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ABSTRACT [ITALIAN] 

Sequenze di DNA particolarmente ricche di guanine e potenzialmente in grado di formare 

strutture di tipo G-quadruplex sono diffuse sia nel genoma umano che in quello di altre 

specie. 

Il telomero ne rappresenta un esempio ormai largamente discusso e costituisce tuttora un 

interessante obiettivo nella strategia antitumorale basata sulla inibizione indiretta della 

telomerasi tramite stabilizzazione di G-quadruplex. Va comunque considerato che nel 

genoma umano sono state individuate oltre 376000 sequenze di questo tipo, ossia con la 

peculiarità di essere ricche in guanine, con una localizzazione preferenziale in alcune 

regioni rappresentate dai proto-oncogeni. In questo ambito i G-quadruplex potrebbero agire 

come interruttori di accensione e spegnimento, o di regolazione, della trascrizione di tali 

sequenze; il DNA strutturato generalmente non viene infatti processato dagli enzimi 

coinvolti. I G-quadruplex sono stati descritti in letteratura quali regolatori di molti processi 

cellulari di rilievo come l'allineamento cromosomico, la replicazione, la trascrizione e la 

ricombinazione del genoma. Recentemente, inoltre, la ricerca nell’ambito della 

stabilizzazione del G-quadruplex si è affacciata all’ambito antivirale. Ad esempio BRACO-

19, uno stabilizzatore di G-quadruplex a struttura acridinica, ha mostrato effetti anti-HIV-1 

ed in generale la capacità di interagire con G-quadruplex costituiti da acidi nucleici a base 

di DNA, RNA o ibridi. 

Lo scopo del progetto di ricerca è costituito dalla sintesi di piccole molecole che agiscono 

come potenziali stabilizzatori di acidi nucleici strutturati in G-quadruplex. Le molecole che 

sono state sintetizzate nel corso di questo progetto condividono, in generale, alcuni motivi 

strutturali comuni a composti riportati in letteratura quali antrachinoni, antraceni, 

naftalenediimmidi, acridine; gli schemi di sintesi sono inoltre stati progettati per riprendere 

le caratteristiche chimico-strutturali di un composto precedentemente sintetizzato dal 
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gruppo di ricerca del Prof. Zagotto che ha mostrato una notevole capacità nello stabilizzare 

il DNA G-quadruplex. 

Tecniche avanzate e complementari quali modellistica molecolare, fluorescence melting, 

studi di legame ESI-MS e ion mobility MS sono state impiegate per lo studio della capacità 

delle molecole sintetizzate di interagire con il DNA e di stabilizzare tale particolare 

struttura. Gli esperimenti hanno messo in luce il ruolo di alcuni aspetti strutturali dei 

composti sintetizzati, come ad esempio le proprietà conformazionali, nell'influenzare 

l'efficacia nella stabilizzazione del quadruplex. La ricerca ha permesso infine di ottenere 

interessanti informazioni di relazione struttura-attività e di inviduare composti con una 

promettente capacità di stabilizzare il G-quadruplex. 

 

Riferimenti 

Neidle S. Stephen Neidle on cancer therapy and G-quadruplex inhibitors. Interview by Joanna De Souza. Drug 

Discov Today. 2004, 9(18), 778-81 

Rezler EM, Bears DJ, Hurley LH. DNA tetraplex-binding drugs. Annu. Rev. Pharmacol. 2003, 43, 359-379 

Read M, Harrison RJ, Romagnoli B et al . Structure-based design of selective and potent G-quadruplex-mediated 

telomerase inhibitors. Proc Natl Acad Sci USA 2001, 98, 4844-9 

Perrone R, Butovskaya E, Daelemans D, Palu` G, Pannecouque C and Richter SN. Anti-HIV-1 activity of the G-

quadruplex ligand BRACO-19. J Antimicrob Chemother. 2014 doi:10.1093/jac/dku280 
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ABSTRACT [ENGLISH] 

The so-called quadruplex forming DNA sequences, with their peculiar feature of being 

particularly rich in guanines, can be found in many portions of both human and non-human 

genome. Considering the human genetic information, while one of the traditional 

localization of these sequences, the telomere, still represents an appealing target in 

anticancer therapy through indirect telomerase inhibition, many novel involvements are 

emerging in other portions of the genome. It has to be considered, first of all, that more 

than 376000 guanine rich sequences were identified in the human genome, with a 

preferential localization in some regions represented by proto-oncogenes. In this context G-

quadruplexes could act as switches turning on and off, or regulating, the transcription of 

some sequences, according to the fact that structured DNA usually is not processed by the 

involved enzymes. G-quadruplexes have also been described over the years to be involved 

in many other key cellular processes such as chromosomal alignment, replication, 

transcription, genome recombination. This year another important piece of information was 

added to the quest for G-quadruplex stabilizers as antiviral agents. BRACO-19, an already 

described acridine-based stabilizing agent, was reported to show anti HIV-1 effects. These 

attractive targets boost the interest for the discovery of novel G-quadruplex stabilizer and 

for the investigation of their binding properties with different nucleic acids (DNA, RNA or 

hybrids), expanding their possible application from the anticancer to the antiviral field. 

The research project is aimed to the synthesis of small molecules acting as potential 

stabilizers of this peculiar super molecular arrangement reported to be relatively easily 

formed by guanine-rich sequences, such as the ones in telomeres. The molecules that were 

synthesized during this project share, in general, the common structural motifs of 

previously reported G-quadruplex stabilizing agents (athraquinones, anthracenes, 

naphtalenediimides, acridines) and are inspired to a compound previously synthesized by 

the research group of Prof. Zagotto that showed a remarkable activity in stabilizing G-

quadruplex DNA. 
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Enhanced techniques such as molecular modeling, fluorescence melting, ESI-MS binding 

studies and ion mobility MS were then employed for the investigation of the capability of 

the synthesized molecules of interacting with, and stabilizing, G-quadruplex DNA. These 

complementary techniques enlightened the relevance of some structural aspects of the 

synthesized compounds, such as conformational properties, in influencing the efficacy of 

the DNA stabilization. The results allow to describe preliminary structure-activity 

relationship data and some promising compounds were finally disclosed. 
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1.1 AIM OF THE PROJECT 

 

This research project is aimed to the design, synthesis, characterization and evaluation of 

novel G-quadruplex stabilizing agents. Among other non-conventional arrangements of 

DNA, G-quadruplexes are reported to be involved in many key cellular processes. One of 

the classical and most described location of these structures is in telomeres: vertebrates 

telomeres contain the repeated sequence TTAGGG, with all the bases except the terminal 

3’ end 15-200 nucleotides are in the duplex form.1 The guanine-rich single stranded 

overhang is very likely to fold into a G-quadruplex structure generally associated with 

proteins.2 This conformation prevents the telomere elongation process by telomerase, due 

to the fact that structured DNA is not processed by the enzyme. As a result, stabilization of 

G-quadruplex structures represents an interesting strategy in preventing cell 

immortalization.  

Telomeres and telomerase are interesting targets in the search of potential anticancer 

agents, first of all because of the peculiar G-quadruplex structure that could represent the 

key for a selective therapy target. Some existing compounds are known to be G-quadruplex 

stabilizers, through the mechanism of intercalation or end stacking: porfirines, perilenes, 

anthraquinones, fluorenones, acridines, dibenzophenanthrolines, telomestatin. In addition to 

this, as long as it has been reported that guanine-rich sequences can be found both in 

telomeres and in promoter regions of DNA (proto-oncogenes) but also in viral DNA/RNA 

genome (SARS, Epstein Barr), stabilization of G-quadruplexes could be involved in the 

viral infection evolution,3 encouraging the growing interest in stabilizers as antiviral agents.  

Our research group previously synthesized a promising compound with excellent G-

quadruplex stabilizing activity.4 In this PhD project the attention was focused primarily 

synthesis of novel compounds to better set up a structure-activity relation study. Structure 

based and ligand based drug design approaches were also introduced in order to support the 
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design of the compounds and to figure out their interaction motif with the quadruplex. 

During the research activity different scaffolds such as anthracene, anthraquinone, 

bisanthrapyrazole and acridine were used for further modifications. On the other hand, 

novel structurally constrained derivatives were designed to investigate the role of the 

flexibility of the side chains in the interaction with the guanines or the loops, even 

overcoming their chemical properties. In this part of the project, NMR experiments were 

carried out in order to support the hypothesis concerning the flexibility constrains. 
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1.2 QUADRUPLEXES: NOT ONLY TELOMERASE 

 

An overview of quadruplexes in human genome 

G-quadruplex is one of the most interesting super molecular, non canonical arrangement of 

DNA. The so called quadruplex forming sequences, with their peculiar feature of being rich 

in guanines, can be found in many portions of the human and non human genome. In fact, 

while one of the traditional localization of these sequences, the telomere, still represents the 

key for an appealing target in anticancer therapy through indirect telomerase inhibition, 

many novel involvements are emerging in other portions of the genome.  

 
FIG1. G-quadruplex structure formed by human VEGF promoter.5 

It has to be considered, first of all, that more than 376000 G-quadruplexes are estimated to 

be present in the whole human genome, with a preferential localization in some regions of 

proto-oncogenes.1 To be more specific, then, it has been reported that in more than 40% of 

human protein-coding genes at least one G-quartet motif can be described in their promoter 

regions, and this represents an additional suggestion about the role of this arrangement as a 

trigger in transcriptional processes.6 G-quadruplexes have also been described over the 

years to be involved in many other key cellular processes in addition to the interference 
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with telomerase such as chromosomal alignment, replication, transcription, and genome 

recombination.7 

 

Introduction to G-quadruplexes in other organisms 

In addition to this, G-quadruplex forming regions are also reported to be present in several 

other organisms.8  

 

FIG2. G-quadruplex sequences as the one reported inhibits HIV replication.9 

Expanding then the area of interest from the antiproliferative field to potential antiviral 

targets, G-rich sequences were shown to inhibit the replication in culture of human 

immunodeficiency virus (HIV-1) and, moreover, as will be later described, NCp, a 

multifunctional protein from HIV-1, has been show to interact with quadruplexes.10 
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1.3 THE ROLE OF TELOMERES 

 

A brief introduction 

At the beginning of XXI century more than 100 different types of cancers and, partially, 

their physiological pathways were already been described. Despite, or in addition to, this 

even today, cancer remains a leading cause of death in the world and the quest for new 

therapeutical strategies remains open. Back in the 90s Shay and Harley discovered in 90 

out of 101 tumor cell lines the presence and the activity of an enzyme, telomerase, instead 

normally inactive in somatic cells.11 Later on additional studies have shown a clear 

correlation between telomerase reactivation and nearly 90% of tumor cells.11 Telomerase, 

as its usual and natural role, is involved in maintaining the length of the most external 

portion of the human chromosome. In fact, the outer ends of the single stranded molecules 

of DNA have a high degree of instability due to various mechanisms including, for 

example, degradation by exonucleases, control systems that identify breaks in DNA and 

that send signal leading to the apoptosis of the cell and, the most intriguing, the loss of 

bases at each cell cycle, due to the mechanism of replication.12 To overcome these 

problems, the outer portions of our genome present peculiar sequences, called telomeres, 

which consist of hundreds of copies of a sequence made by repeated non-coding bases. The 

role of telomeres is to act as a protection of the genetic information, preventing its 

degradation by enzymes, but especially allowing its maintenance through the cell cycles.12 

Telomere shortening due to the mechanism of replication leads anyway to a natural 

senescence of the cell after a number of cycles, setting a limit in the cell lifetime. In some 

cells, however, the telomere happens to be elongated by telomerase, overcoming this time 

limit. This is true in stem cells, while telomerase is inactive in most somatic cells.12 The 

pathologic scenario is when the presence of errors in the regulation of the enzyme 

telomerase occurs, leading to its reactivation that causes a deregulation in the balance 
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between telomere shortening and lengthening. This turns out in the inhibition of the signal 

of cellular aging.11 The observation that almost 90% of the tumor cells was found to 

maintain the length of telomere by this enzyme is then consistent with the resulting 

immortalization of the cell.  

 

Replication and “end replication problem” 

DNA replication is the mechanism that allows the reproduction of the entire 

chromosome(s) during a cell cycle, that is the time between the birth of the cell and the 

moment in which the cell itself splits into two. This part of its life is named mitosis or M 

phase. The intermediate time in which the cell grows and prepares for mitosis, the 

interphase, cell is divided into the G1, S and G2 phases.13 The synthesis of the DNA 

sequences occurs in the S phase and is operated by an enzyme called DNA polymerase. To 

be more specific many kinds of DNA polymerase are involved. Among these, DNA Pol δ, 

the DNA Pol ε and DNA Pol α are the enzymes reported to be involved in the addition of 

nucleotides to the terminal 3'-OH of the 5’-3’ growing sequence.14  

 

FIG3. The fork15 
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Both DNA strands of the double helix are replicated simultaneously. To allow this, at the 

beginning of the replication process the double chain is forced into a structure called the 

replication fork, so that the two single strands become both available for the action of DNA 

polymerase.14  

 

FIG4. Dna polymerase I bound to duplex DNA.16 

Anyway, as long as DNA polymerase can smoothly proceed with the synthesis of the 

nucleic acid only in the 5’-3’ direction, the replication takes place with two different 

mechanisms on the two strands. In fact, one strand is synthesize continuously while the 

original sequence is processed, while the other one is copied in a discontinuous manner, 

through the so called Okazaki fragments.14 These shorter sequences are supposed then to be 

rejoined by another pool of enzymes, the ligase.14 As previously introduced, the DNA 

polymerases involved in the elongation are DNA Pol δ and DNA pol ε, which need a free 

3’-OH free to start the process of polymerization. The action is directed by DNA Pol α that 

binds to the pre-replicative complex. This complex, also known as pre-RC, is formed in the 

G1 phase of the cell cycle.14 The DNA Pol α (primase) synthesizes an RNA primer, a 

sequence of 5-10 nucleotides which ends with the free 3'-OH.14 This event gives rise to all 

the following synthetic process. The leading strand (the one that is smoothly replicated) 

needs only one primer sequence and after its recognition replication proceeds without gaps 
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up to 5’ end. On the other hand primers represent a crucial issue for the lagging strand: the 

need for the primer creates the “end replication problem” encountered at the terminal end 

of the chain. To be more specific, the discontinuous chain instead requires multiple 

primers, resulting at the end in impossibility for the polymerases machinery to completely 

copy the 3’ end. All of this results in the shortening of the lagging strand at each cell cycle, 

which could potentially cause loss of genetic information throughout the cycles.14 Given 

these considerations, it is clearly understandable how the presence of the telomeric 

sequence at the 3’ end of the chromosomic DNA is relevant. 

 

Telomeres and the “Hayflick limit” 

The peculiar structure of telomeres consists in the repetition of a sequence of DNA bases: 

5’-TTAGGG-3’. As long as it is a non-coding sequence, the loss of a portion of the 

telomere during each replication cycle does not lead to loss of genetic information.17 This is 

anyway true until a certain limit is reached. Somatic cells replicate in vitro a limited 

number of times, and this event can directly be connected to what stated above: even if the 

loss of bases during the various cell cycles doesn’t affect coding sequences, after that a 

certain number of bases are lost and the “Hayflick limit” is reached the cell is not in the 

condition to replicate anymore.18 In other words, the exceeding of this limit, that would be 

a further shortening of the telomere, even if theoretically possible as long as are still present 

hundreds of nucleotides, induces an arrest of growth called senescence (M1 phase).17 In 

some cases some cells could exceed this stage of senescence, due to inactivation of the 

genes that normally codify for critical control points of the cell cycle. This would turn out 

in a further shortening of the telomere, leading the cell to a second critical stage (M2), 

usually quickly followed by its death.17 The intriguing point is that a cell somehow 

overcoming phase M2 acquires the ability to replicate indefinitely, becoming virtually 

immortal. This event can be connected, in the great majority of the cases, to the reactivation 

of the enzyme telomerase, as previously introduced.17 
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1.4 TELOMERASE: THE ENZYME 

 

The structure: hTR, hTERT and other proteins involved 

Telomerase is a ribonucleic/proteic complex and has the role of elongating the 3’ portion of 

the terminal chromosome due to the presence in its interior of a portion of RNA, which acts 

as a primer itself. 

 

FIG5. Crystal structure of telomerase from Tribolium castaneum19, 20 

The enzyme is traditionally described as composed of two subunits: the region that carries 

the RNA named hTR (human telomerase RNA) and the catalytic subunit hTERT (human 

telomerase reverse transcriptase).17 Some proteins help then the formation of the complex 

and support the overall stability.  

Concerning hTR, the RNA strand, that allows the recognition and the synthesis of the 

telomeric DNA, is a strand of 451 nucleotides transcribed by RNA polymerase II. 21 Near 

the 5’ end this portion has a peculiar and well conserved among many different species 

base repeat: the sequence of bases 3’-AUCCCAAUC-5’ allows the interaction with the 

telomere.17 Inside this subunit the remaining RNA is in the double stranded form. Among 

its roles there are the regulation of the addition of nucleotides during the transcription of 
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the single stranded sequence and it provides a linkage with the catalytic subunit hTERT.22 

Also peculiar is a pseudoknot domain, known to be relevant in maintaining the structural 

stability of the nucleic acid and of the whole enzyme.22  

 

FIG6. NMR structure of human telomerase RNA pseudoknot.23 

This kind of domain, from a structural point of view, can be seen as a loop region that folds 

and further interacts with a contiguous chain. Another important constituent is represented 

by the transactivation domain, made by a loop hairpin and other internal loops. It 

contributes to the correct folding of the pseudoknot domain and, in general, to the activity 

of the enzyme.22 Many different double stranded or peculiarly arranged domains have been 

deeply described and investigated, all of them giving contributes to the stability and overall 

activity of the subunit and of the enzyme.22 In addition to this, the structural stability is 

ensured also by a good number of associated proteins fundamental to the stability, the 

maturation and localization of the hTR subunit in the complex telomerase and to the 

interaction with the telomere.17  

The catalytic subunit, hTERT, has a highly conserved structure and carries similarities with 

the functional domains of the reverse transcriptase and DNA polymerase. The main 

domains are the TRBD (RNA binding domain), the RT (reverse transcriptase) domain, the 

N-terminal domain and the C-terminal domain.24 The reverse transcriptase domain, in 
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particular, is organized in the two subdomains named “palm” and “fingers”, connected by a 

loop.  

 

FIG7. RNA binding domain from vertebrate.25 

This sequence seems to be involved in the exact placement of the 3’ chromosomic end 

within the active site of the enzyme.22 The domain IFD (insertion finger domain) seems to 

be involved in protein-protein intramolecular interactions that ensure the stability of the RT 

domain.26 The size of the catalytic cavity is enough to allow the insertion of seven or eight 

pairs of bases. The catalytic activity that takes place in the active site is then carried out 

thanks to the presence of three residues of aspartic acid and a lysine, which promotes the 

activation (acid catalysis) of the moiety that acts as a leaving group during the synthesis, 

the pyrophosphate. The N-terminal domain TEN is not detectable in every species, it can 

not in fact be found in the crystallographic structure of the catalytic subunit of telomerase 

from T. castaneum, a recently reported well considered form (FIG5).27 When present, it is 

described to help the enzyme to add multiple sequence repetitions to a single primer. It also 

contains a portion with weak affinity for the RNA-based portion thanks to the RID1 (RNA 

interaction domain 1).28 The C-terminal domain, then, is involved in the process of 

formation and stabilization of the DNA/RNA heteroduplex in the active site of the enzyme.  

As previously introduced, one of the most peculiar features of human telomerase is the 

presence of the RNA subunit, a distinctive region because of which this enzyme differs 



30 

from most of the reverse transcriptase. This is made possible also by the many proteins that 

support and help the overall structural stability. Proteins binding hTERT and remaining 

stably associated in a complex are hsp90 and p23 and in addition to their structural 

functions probably have an influence in promoting an adaptation of the catalytic subunit to 

allow the interaction with the strand.17 Furthermore, the C-terminal residue, happens to be 

associated to other proteins through residues of serine and threonine. These interactions are 

reported to be extremely important for the regulation of the nuclear localization of the 

enzyme.17  

 

Mechanism of action and regulation 

While synthesizing DNA, telomerase proceeds following two mechanisms. Processivity 

type I allows the displacement of telomerase along the DNA template after the addition of 

each nucleotide; processivity type II allows the translocation of the telomerase complex 

after the addition of an entire sequence.29  

The replication itself takes place in three basic steps. The first step consists in bonding of 

the RNA sequence to the 3’ end of the telomere. The heteroduplex formed in this way is 

generally more than 7-8 base pairs long (FIG8). This average lenght is maintained because 

the base pair bonds between the distal couplets of bases are broken as soon as the synthesis 

proceeds.26 The weak interactions between RNA and DNA bases in the heteroduplex are 

not enough to obtain the required stability of the nucleic acid-protein-nucleic acid complex, 

and additional weak interactions are present.26 To be more specific, three different points of 

interaction between the enzymatic complex and the telomeric DNA were enlightened. As 

previously said the 3’ end of the DNA forms a hybrid heteroduplex with the enzymatic 

RNA. Two parts of the DNA sequence closet o this first interact then with a proximal site 

(TEN, N-terminal domain) and a distal site.26  
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FIG8. Detail of RNA/DNA heteroduplex in telomerase from Tribolium castaneum20 

The second step consists in the addition of nucleotides to the growing chain. The enzyme 

proceeds as a DNA polymerase. The process is catalyzed by two Mg2+ ions that are 

involved in the binding to the substrate. Those ions are coordinated by the three residues of 

aspartic acid. A lysine provides the activation of the acid catalysis process to promote the 

cleavage of the leaving group pyrophosphate.22 At one point, the limit of the RNA template 

is reached. Telomerase can then dissociate (if the process is completed) or move toward the 

end of the newly synthesized DNA chain and begin to synthesize another DNA sequence to 

continue the elongation of the telomere. This feature of telomerase is called processivity.22 

The process that allows the translocation of the enzyme has not been completely 

enlightened yet, but it seems to be allowed by a conformational change of the protein 

complex involved in the telomere anchoring sites.30 

As previously introduced, the activity of telomerase is repressed in most somatic cells 

during the embryonic differentiation. On the other hand, it can be still found in its active 

form in some tissues such as the haematopoietic stem cells and lymphocytes.31 Basing on 

the considerations reported above, the expression and the activity of this enzyme are 

described to be fundamental for the immortalization of a cell pursued through an unlimited 

number of replication. The regulation of telomerase activity can occur at several stages of 
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the process in which the enzyme itself is involved: transcription, mRNA splicing, mutations 

and modifications of hTR and hTERT structures, localization inside the cell and assembly 

of the ribonucleoprotein complex.17 The key step anyway is reported to be the expression 

(and its regulation) and the correct assembly of the hTERT catalytic component. The gene 

encoding for hTERT is present as a single copy in the chromosome band 5p15.33.17 It has 

been found that, as can be expected, a functional telomerase requires a complete 

transcription of the gene. In addition to this gene expression regulation factors are very 

important in the tuning process of transcription; hTERT gene has binding sites for these 

factors, classified as activators or repressors, in proximal or distal regions.17 

 

FIG9 NMR structure of a c-myc G-quadruplex.32 

Among the activation factors (or genes encoding for factors) there are: 

- c-myc, an oncogene involved in the mechanisms of cell proliferation, growth and 

apoptosis. This gene encodes a protein, Myc, which form heterodimers able to 

recognize and bind to a site in the promoter.17,33 In addition to this an over 

expression of c-myc gene boosts the activity of the hTERT gene promoter.31 

- Sp1, a transcription factor that binds to the GC-box and is consecutively involved 

in the expression and amplification of some genes relevant for cell survival in 

general. The hTERT gene carries five GC-box located between two E-boxes and 

they seem to be involved in the gene promotion.17,33 
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- VEGF promoter, as reported at the beginning of this chapter.5 

Reported repression factors are:  

- Mad1, the gene coding for the Mad protein. This protein can form Mad/Max 

heterodimers like also Myc does. In this case, otherwise, an interaction with E-box 

promotes a repressive effect.17,33 

- p53, a protein involved in repression of the growth of tumor cells. This can happen 

through an interruption of the cell cycle or by an induced apoptotic event. Recent 

studies propose connections between this protein and the transcriptional repression 

of hTERT. 17 

A lack of expression or a down regulation of these genes turns out, and it has been shown 

in many different tumor cell lines where a reactivated telomerase that guarantees the 

maintenance of telomere length can be enlighted.17,33 Some examples reported in literature 

comprehend cells belonging to tumor tissues from lung, stomach, colon and rectum. These 

cells, supporting this, showed minor or no expression of mRNA coming from the Mad1 

gene, justifying its role in the regulatory mechanisms of tumor.34  

In addition to the above reported regulation processes, the activity of telomerase can be 

influenced by other adjustment mechanisms. In particular the activity of telomerase can be 

also tuned by the telomere itself, depending on its structural properties and the proteins 

bounded to the DNA sequence. 
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1.5 THE TELOMERES 

 

A quite comprehensive definition of telomere is, from a structural point of view, 

“ribonucleoprotein complex”. As previously introduced it is located in the outer part of the 

chromosome and the nucleic acid forming the sequence is mainly arranged in a double 

strand. The most peculiar feature is that the chain comprehends 5’- TTAGGG-3’ repeated 

sequences. In humans this motif can be repeated in a range between 9000 and 15000 bases. 

The structure is then completed by a set of proteins and a single stranded sequence at the 3’ 

end with a size of 50-300 bases. This is usually named G-overhang.35 The telomere is 

shortened at each cycle of a number of bases between 50 and 150.36 It has been proved that 

several thousand bases are required to allow an entire life cycle facing the progressive 

shortening.36 Telomeres are also reported to protect against the activation of cellular 

response to DNA damage (DDR, DNA damage response): thanks to their particular 

structure they can arrange to form a loop called t-loop, which acts as a terminal capping of 

chromosomes. The single-stranded chain is situated in a position which allows its 

interaction with the double helix and form another loop, called the d-loop.35  

 

FIG10. Proteins from the shelterin complex.37 

The structure is stabilized thanks to the interaction with many different proteins, up to more 
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than 200 according to what literature reports.35 The main interaction motif is anyway the 

one with the shelterin complex, a system formed by six interlinked proteins.38 Protein-

protein, protein-single stranded DNA and protein-duplex interactions are present. From a 

molecular point of view, the system consists of TRF1 and TRF2 (Telomeric Repeat 

Binding factor 1 and 2), TIN2 (TRF1-and TRF2-Interacting Nuclear Factor 2), POT1 

(Protection Of Telomeres 1), TPP1 (Also known as the set composed by TINT1, PTOP and 

PIP1) and RAP1 (Repressor/Activator Protein 1).38 TRF1 and TRF2 bind the telomere on 

the double-stranded portion, while POT1 binds the G-overhang (the single stranded 

portion). TIN2, Rap1 and TPP1 are not directly binding DNA, but give respectively 

interaction with TRF1, TRF2 and POT1.39 Even if structurally similar, TRF1 and TRF2 act 

differently within the complex. TRF1 seems to be directly involved in the regulation of the 

enzymatic activity of telomerase. The more extended is the interaction between TRF1 and 

the telomere, the lower is the probability of binding of telomerase for a sterical hindrance 

due to the arrangement obtained.36 TRF1 influences by a negative feedback the activity of 

telomerase, that it binds in greater proportions when the enzyme is processing longer 

telomeres.40 TRF2 is on the other hand involved in telomere protection (it helps the t-loop 

formation) and stabilization of the G-quadruplex. Protein Rap1 is connected to TRF2 and 

plays a role down regulating telomeric length. TIN1 holds then together the protein 

complex, binding to TRF1 and TRF2.40 The POT1/TPP1 heterodimer is otherwise directly 

involved in balancing the activity of telomerase: it competes with the enzyme for the 

binding to the single stranded telomere.40 POT1 itself also possesses a binding domain for 

DNA which allows a strong interaction with the telomeric sequence with high affinity. 

Binding the single stranded chain it inhibits telomerase activity.40  

The correct arrangement and the stability of the shelterin complex is essential for a 

balanced functionality. A failure in even a single subunit affects heavily both the activity of 

telomerase and the various repair mechanisms.38 Concerning this, the DDR system involves 

two particular PI3K-related protein kinases, ATM and ATR. When these proteins are in 

touch with the damaged site a signaling pathway is switched on and all of this leads to the 
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activation of repair mechanisms that could affect the outer portion of the chromosome.39 

Two subunits of the shelterin turned out to be particularly of interest in this field: TRF2 

interferes with the ATM pathway, probably through the stabilization of the t-loop structure, 

while POT1 is involved in the suppression of the ATR pathway.39  

Given all these consideration, telomerase is then regulated by the spatial arrangement of 

telomeric DNA. A peculiar conformation of the nucleic acid could in fact act against the 

enzyme making the DNA sequence itself not processable. 
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1.6 G-QUADRUPLEX 

 

Structural features of quartet and quadruplex 

The DNA sequences rich in guanine tend to form special structures called quartets guanine, 

or G-quartet. These are composed of four guanines arranged in a square planar motif and 

each couple of bases is linked by two hydrogen bonds involving N1, N2 and N7 nitrogen 

atoms and O6 oxygen atom of guanine.19 

 

FIG11. Detailed view of G-quartet.41 

Chains containing a sufficient number of guanines can arrange then in compact structures, 

given from the superimposition of different quartets named G-quadruplexes. The base 

motif is composed by at least two stacked quartets and the loops, sequences of nucleotides 

connecting the guanines but not involved in the structure.19 The G-quadruplex is a structure 

of a remarkable stability thanks to the stacking of the bases (π-π.), and the hydrogen-

bonding motif, together with electrostatic interactions, improve the overall arrangement. 

The heteroatoms directed toward the center of the quartet (and of the quadruplex) require a 

positively charged atom as a compensation for the concentration of negative charge given 
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by the electrons.40 The distance between the N1 nitrogen atom and the O6 oxygen atom, 

between 2.85 and 2.95 Å,42 gives a clear idea about the size of the central cavity and so, 

about the ion that could be involved in this arrangement.  

 

FIG12. Detailed view of G-quadruplex.43 

Atomic radius is a key factor as long as the whole structure is arranged all around this 

“tunnel” of ions. Na+ is sufficiently small to be coordinated by the guanines and be 

maintained in the same surface in a co-planar motif. Given this, it is not unusual the 

collocation of this ion also between the quartets along the G-quadruplex.19,44 K+ is 

otherwise reported to be localized between two quartets of guanine and creates a 

bipyramidal tetragonal configuration being coordinated by the carbonylic oxygens of the 

guanines.44 Other potential stabilizers of G-quadruplex are Rb+, Cs+ or divalent cations 

such as Ca2+ (in this case the structure is similar to the one reported for K+). 

The quadruplex arrangement is supported by the four strands of nucleotides connecting the 

guanines and they can belong to one DNA chains or be the result of the winding of a single 

chain. According to this, G-quadruplexes can be intramolecular, bimolecular or 

tetramolecular. An intramolecular G-quadruplex is an arrangement of a single chain of 

DNA. Concerning the sequence of bases, it can be described as Xn Gm Gm Gm Xo Gm Xp, 
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where m is the number of guanines involved in the formation of the G-quartet, while Xn, Xo 

and Xp represent any combination of nucleotides forming an anse.44 Intermolecular G-

quadruplexes are otherwise made by two (bimolecular) or four (tetramolecular) different 

DNA chains. In the first case, i. e. the bimolecular arrangement, the sequence of bases 

follows the motif Xn Gm Xo Gm Xp, while the tetramolecular structure it can be represented 

as Xn Xn Gm Xo Gm.44 The four strands may also have the same or different orientation: if 

all the sequences are directed towards the same direction they (and the structure) are called 

parallel, while antiparallel arrangements are more various. Examples are: 

- three parallel strands and one with directed towards the opposite direction 

- two parallel closet o each other and two opposite strands closet o each other  

- two parallel and two opposite strands alternatively disposed45 

The arrangement of these sequences is connected with the conformation of the bond 

between guanine and deoxyribose. This dihedral angle may be in the syn conformation, if 

the angle is between 0° and 90°, or in the anti conformation if it is between -120° and 180°. 

When all four strands are parallel all the bases are in the anti conformation while the 

presence of one or more antiparallel strands forces bases to the syn conformation.45 The 

width of the grooves resulting from these different conformations can vary from narrow to 

wide.45  

 

FIG13. G-quadruplex: its volume and surface.57 

Another factor that can influence this parameter is the nature of loops in terms of sequence 
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of bases.44 The loops can be divided into four groups: side loops (connecting two adjacent 

antiparallel chains), diagonal loops (connecting two alternate antiparallel chains), propeller 

loops (connecting two adjacent parallel chains), V-shaped loops (connecting the corners of 

two G-quartets where one of the two is lacking of a connection to a guanine).46 The number 

of quartets stacked, the length of the strands and their sequence and in some cases also the 

ion involved can drive the structure to one or another loop arrangement. 

Basing on all these considerations, G-quadruplexes cannot be described as a well-defined 

and rigid structure, given all the variables described above. 

 

The telomeric G-quadruplex 

The 3’ end of the human telomere, shows an overhang made by a single stranded guanine-

rich DNA.  

 

FIG14. A telomeric G-quadruplex, NMR solved structure.41 

Although a natural tendency to form G-quadruplexes can be expected, as already described 

above the structure forms the shelterin complex together with a number of proteins (hPOT1 

in particular is strongly bound to this portion).19 According to this, G-quadruplex then is 

very prone to form in vivo if induced by the binding to some molecules able to stabilize the 
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arranged structure, even in comparison to the complex with hPOT1.19 The investigation of 

the exact topology of the telomeric G-quadruplex in the cellular environment is 

representing a challenge since years. In 1993, Wang and Patel used the sequence d[AGGG-

(TTAGGG)3] to investigate the structure formed in a NaCl solution through NMR analysis 

and the intramolecular basket type structure was found: two parallel strands with the 

guanines in syn-syn-anti-anti conformations.41  

The study of the G-quadruplex in a Na+ solution, however, has the limitation of not 

completely reproducing the cellular environment, where the concentration of Na+ is 10 mM 

(the measure was carried out with concentrations over ten folds higher) and the 

concentration of K+ is 135 mM.41 More recent studies were then aimed at reproducing 

physiological conditions. In 2002, Parkinson's, Lee and Neidle reported a different 

topology for the same sequence d[AGGG-(TTAGGG)3] obtaining the crystallographic 

structure of the arrangement in a K+ solution.47 This intramolecular quadruplex presents all 

parallel strains and the anti guanine conformation. Other NMR studies on telomeric 

sequences in K+ solutions enlightened the presence of an equilibrium between various 

forms of G-quadruplex supporting, as previously introduced, that a single representation of 

the structure is not enough to describe this peculiar and flexible arrangement.19 The 

probably most representative structure in these studies is called antiparallel (3+1) 

quadruplex, in which three chains are oriented in the same direction, while the fourth in the 

opposite.41  

Some studies enlightened intermolecular structures with three chains belonging to a strand 

of DNA and a chain belonging to a different molecule19 while more recent studies have 

instead described intramolecular structures formed by human telomeric sequence 

d[TAGGG(TTAGGG)3] arranged in the (3+1) core.41 

Coming to the end, the single-stranded chain has proved to be an excellent substrate for the 

formation of a quadruplexes, but the structure adopted in the actual arrangements of the is 

still an open field for further investigation.19 



42 

1.7 OUTSIDE THE TELOMERE: OTHER G-QUADRUPLEXES 

 

Besides telomerase inhibition 

The presence of G-quadruplex has been reported or hypothesized to be formed in several 

specific regions of the genome in addition to telomeres. Recent bioinformatics studies have 

identified that in human genome, basing on considerations about the sequence of bases, 

approximately 376,000 sequences could realistically arrange in G-quadruplexes.48 As 

previously introduced, these sequences show a peculiar and not random localization: the 

so-called “putative G-quadruplex-forming regions” are prevalent in proto oncogenes but 

lack in tumor-suppressor genes and are also co-regulated by the interaction with proteins.19 

In particular, they have been found in 40% of promoter genes and other regulatory regions, 

and this suggests a possible role in the regulation of the transcription.48  

 

FIG15. G-quadruplex from bcl-2 promoter.49 

The genes c-myc (see above for a detailed description of its role and of the role of these and 

other promoters in the regulation of telomerase) and c-kit are two outstanding examples. To 

be more specific, c-kit can be connected to cell proliferation, differentiation and apoptosis. 

A role in the regulation of telomerase itself seems also to be proved.19 Some other reported 
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examples of oncogenic promoter regions realistically regulated by G-quadruplex formation 

are bcl-2 (mediates chromosomal translocation connected with the onset of lymphomas), 

vegf (stimulates the formation of blood vessels), hif-1α (activated in many tumors and 

associated with local invasion and metastasis) sequences.50 In some cases the suggestion of 

the presence of G-quadruplex structures in these sequences has also been confirmed by 

experimental analysis.19 It is also important to notice that promoter regions are part of DNA 

duplexes and they, probably, unwound during transcription to be able to fold in G-

quadruplexes.50 This leads to a novel attractive target in anticancer therapy: a small 

molecule stabilizing these G-quadruplexes could modify the expression of the genes. 

Unusual DNA conformations in human genome seem also to be involved in the triple 

repeat disease. In this disease, manifesting through neuromuscular and neurodegenerative 

disorders, a dynamic intergenerational expansion of triple repeat d(CGG)n-d(CCG)n, 

d(CAG)n-d(CTG)n e d(GAA)n-d(CTT)n is reported.50 

 

G-quadruplex in HIV, other viruses and RNA sequences 

G-quadruplex represents also a promising target in antiviral therapy, as long as many G-

rich sequences have been observed in viral genomes.51 To be more specific, as an example, 

human parvovirus adeno-associated virus (AAV) and HIV are under study.  

 

FIG16. HIV-2 NCp protein complexing Zn.52 
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In particular DNA structured in G-quadruplex was found to interfere with the action of 

HIV-1 integrase.50 Concerning HIV, other studies report how other fundamental processes 

for viral replication seem to be involved. To be more specific, it is known that the main 

structural proteins of HIV-1 are expressed as a 55 kDa polyprotein, later on processed and 

cleaved by a protease to obtain the mature structural proteins.53 A class of proteins resulting 

from this process, called NCps, are reported to bind nucleic acids. In particular the 

interaction is directed to the phosphodiesteric backbone of the polynucleotide and, even if 

the binding motif in nonspecific, NCp shows a sequence-specific binding to runs of Gs, 

UGs or TGs involving zinc fingers in the interaction. The protein, and this activity leads to 

its definition as a “chaperone”, facilitates the arrangement of the nucleic acid to a stable 

conformation: the G-quadruplex.53 In addition to this sequences rich in guanines were 

found in other viral DNA/RNA genomes (SARS, Epstein Barr).3  

This year another important piece of information was added to the quest for G-quadruplex 

stabilizers as antiviral agents. BRACO-19, an already described acridine-based G-

quadruplex stabilizer,54 was reported to show anti HIV-1 effects.55 

 

FIG2. Antiviral activity of a G-quadruplex stabilizer, adapted from Perrone et al.55 

In particular this G-quadruplex stabilizer, as reported in FIG2, is proposed to be capable of 

acting through two different mechanisms. It can inhibit reverse transcription by stabilizing 

G-quadruplexes in viral RNA infecting the cell or also binding the quadruplexes formed by 

post-integration proviral RNA. As previously introduced, indeed, a nucleic acid arranged in 
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G-quadruplex is usually not processed by the enzymes. These attractive targets boost the 

interest for the discovery of novel G-quadruplex stabilizer and for the investigation of their 

binding properties with different nucleic acid (DNA, RNA or hybrids), expanding their 

possible application from the anticancer to the antiviral field 

Many efforts are still being made also from another point of view, the structural 

investigation of G-quadruplex. In general, classical G-quadruplex topologies go nowadays 

together with novel quadruplex folds and pairing and alignments alternative to the tetrad, 

containing homo- and mixed- tetrads, triads, pentads, hexads and heptads.50 This is even 

truer when considering more peculiar and uncommon (or maybe less popular) sequences 

that can form super molecular structures. An example is represented by RNA quadruplexes, 

involving a nucleic acid mostly found in the single stranded arrangement inside the cell.  

 
 

FIG17. RNA G-quadruplex.56 

These structures are much less characterized even if they are reported to be at least as stable 

as DNA quadruplexes, and they are ion-dependent the same way. Their presence and role 

in cell life is a very recent topic, and only little information is available to date.57 
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1.8 QUANTITATIVE VISUALIZATION AND RECENT UPDATES 

 

Inter or intramolecular G-quadruplexes are known to show various, easily interconvertible 

topologies. This leads to an extreme flexibility and the commonly used modeling-docking 

strategies can lack of information in this field. On the other hand, recent investigations 

made use of antibodies to quantitatively visualize G-quadruplexes inside human cells.58 

In 2013 another important step in G-quadruplex investigation has been made: the crystal 

structure of human telomeric DNA complexed with berberine (a stacked alkaloid bound 

with a ratio higher than 1:1) has been reported.59 

 

FIG18. Structure of the cited compound bound to the quadruplex in a ratio higher than 1:1.59 
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 1.9 STABILIZATION OF THE G-QUADRUPLEX 

 

Inhibition of telomerase 

In anticancer therapy two different strategies can be adopted to contrast the activity of 

telomerase. A first attempt was the development of an action targeted to the enzyme. On 

the other hand, recent and more successful strategies are focused on the so-called indirect 

inhibition, obtained by interference with the substrate of the enzyme.60 As far as the first 

strategy is concerned both the inhibition of the catalytic subunit hTERT and of the RNA 

subunit hTR were investigated. This strategy is based on immunotherapy using the hTERT 

as an antigen.60 In the second kind of approach the target are instead the guanine-rich 

sequences in the telomeres. As previously mentioned, these sequences, if arranged in G-

quadruplexes, can inhibit telomerase.60 In the first strategy the action is directed against the 

enzyme blocking the elongation of the telomere, while the cell still survives for a good 

number of cell cycles, according to the length of telomere itself.1 The stabilization of G-

quadruplex allows the same long-term effect because prevents the telomerase to process the 

telomere but also introduces a short-term effect, as long as it is supposed to produce rapid 

cell senescence together with the activation of DNA damage reactions.19 In this case the 

effect is due to the fact that proteins are not able to build the shelterin complex when the 

telomere is structured in G-quadruplex. This turns out in an inefficient protection of the 

single stranded portion.19 

 

The interaction motif: stacking and beyond 

A large number of molecules belonging to various chemical classes have been reported. 

The design of a good G-quadruplex stabilizer, anyway, still represents a hot issue, and 

many approaches of rational design still seem to fail. First of all it has to be considered that, 
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as previously stated, there is not a “one and only” structure describing the G-quadruplex, 

but many topologies can be identified. On the other hand, luckily, all topologies generally 

share three possible binding motifs with a potential stabilizer: end-stacking with an external 

g-quartet, intercalation between two quartets or interaction with the loops.61 The 

“sandwich” pattern has been then reported: the molecule is inserted between two quartets 

of two different G-quadruplexes, or the molecule can be stacked between the quartet and a 

loop.19 In terms of energy the most favored is the end stacking, as long as it does not 

disrupt the arrangement (as may happen in case of intercalation).19 More recently other 

interaction patterns received growing attention. In particular, the field of the groove binders 

seems to be open for new discoveries: binding agents with a good selectivity for G-

quadruplexes have been reported and are under study both in silico and in vitro..62 

 

Reported G-quadruplex stabilizing agents 

Here are reported some of the classes of compounds already known to be G-quadruplex 

stabilizing agents.  

 

As will be enlightened later, most of them share some common features from a structural 

1 
 

 

2 

3 

4 
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point of view to satisfy the requirements for a good interaction with the quartets or, in some 

cases, with the loops. Some outstanding examples among these classes of compounds there 

are anthraquinones, fluorenones, acridines, naphthalene diimides, perylenes and 

telomestatine. 

 

Anthraquinones are one of the first class of described compounds with G-quadruplex 

stabilizing properties. They have a polycyclic planar chromophore and generally two or 

more side chains as substituents of the rings in various positions. In particular the 2,6-

disubstituted series showed a good activity. A good side chain can be connected to the 

aromatic ring through an amide group, carry a spacer and a heterocycle (piperidine or 

pyrrolidine). The heterocyclic nitrogens are charged because of the protonation in the 

physiological environment, and this promotes the interaction with the phosphate groups of 

the nucleic acid, showing otherwise a negative charge. Given that end stacking is supposed 

to be the binding motif, these compounds have not shown great selectivity for G-

quadruplexes when compared to the activity towards double stranded DNA.19 The 

compound BSU-1051 is reported to have an IC50 around 23 µM against telomerase.61 

The scaffold of fluorenones, then, is quite similar to the one of anthraquinones but a slight 

improvement in the stabilization was found, with the activity of the best compound of the 

2,7-disubstituted series presenting an IC50 of 8 µM.63  

Acridines, as BRACO-19, show a planar chromophore carrying a nitrogen that can be 

5 

6 
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protonated at physiological pH, which is a good feature to direct the centre of the molecule 

towards the centre of the quadruplex, where the channel with negative density is present.61 

Some reported crystallographic studies showed that the binding motif could be a stacking 

of disubstituted acridine between the external quartet and a diagonal loop.19  

 

FIG19. Acridine gives stacking interaction with a G-quadruplex42 

In addition to this, trisubstituted acridines showed a better selectivity for the G-quadruplex 

compared to the activity towards double stranded DNA.19  

Porphyrines show an extended planar chromophore that could perfectly match the whole 

quartet. The tetra-N-methylpyridino derivatives, such as TMPyP4, are selective for the 

quadruplex. Also porphyrines carrying a coordinated cation (Mn3+) in the center of the 

structure were reported and showed a high degree of selectivity for the quadruplexes 

(10000 fold when compared to the tendency of binding a double stranded DNA).19 
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FIG20. Two different binding motifs for TMPyP4.64 

Naphthalene diimides feature four side chains with a terminal heterocycle that allow a good 

selectivity for the G-quadruplex.19 Crystallographic studies showed a remarkable end-

stacking binding motif.65 

 

FIG21. Naphtalene diimide binds the G-quadruplex through stacking interaction43 

Perylenes were designed with the aim of increasing the planar surface of the scaffold. 

Imide groups and side chains ending with heterocycles were conserved in order to maintain 

the same overall structural features. PIPER (IC50 0.2 µM) is an outstanding example of this 

class.66 NMR studies showed again that the binding motif with G-quadruplex is the end 

stacking.67 



52 

 

FIG22. A telomestatine derivative bound to the quadruplex.68 

Telomestatine, with its oxazoles backbone, show san excellent overlap with G-quartet in 

terms of size.19 This compound is one of the most effective ligands of G-quadruplex with 

an IC50 against telomerase of 5 nM. 
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1.10 THE LEAD COMPOUND 

 

A good pharmacophore 

The analysis of the already reported stabilizers of the quadruplex allows examining and 

describing the required features to obtain the anti-telomerase activity and, together with 

this, the selectivity for the quadruplex against the double stranded DNA. As can be 

observed in the structures of the compounds cited above, two main features can be 

enlightened: 

- A planar aromatic chromophore, which binds to the planar structure of the G-

quartet through π-π interactions. The size of this planar surface can also drive to 

greater selectivity for the G-quadruplex. In addition to this the presence of a 

nitrogen atom in the scaffold or a metal ion bound through coordination would 

lead to an even more successful interaction, as previously described 

- Two, three of four side chains that can give interactions with the loops and the 

grooves. Two important features are the chain length and the presence at their end 

of heterocycles carrying nitrogen atoms with a positive charge in the physiological 

environment. 

The active lead compound, as will be showed later, presents all the characteristics listed 

above. 

 

Lead compound and modifications 

The compound that was taken as a lead in this research project shows a 1,5-disubstituted 

anthracene scaffold. In addition to this the side chains are charged with two nitrogens from 

the hydrazone group and two nitrogens from the 4,5-dihydroimidazole ring resulting in the 
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possibility of having multiple positive charge states available. The compounds that were 

newly synthesized in the first part of the project were designed keeping in mind these 

features reported to be required for a good activity, but some modification (slight or 

heavier) were applied to the structure to analyze the outcoming effect in terms of binding 

and stabilization activity. In particular, three main aspects were considered: 

- the heterocycle, focusing the attention on the size and the heteroatoms present 

- the role (if any) of the Cα connected to the aromatic scaffold and of its 

hybridization 

- the length and the chemical properties of the side chains 
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The project later on expanded with synthetic schemes based on other scaffolds and the 

subsequent attempts of derivatization. In particular, as will be explained later, 

bisanthrapyrazole was found to be a good candidate, thanks to its scaffold carrying five 

condensated rings with four nitrogen atoms included. To provide further information about 

both the role of the scaffold and the side chains, two well known already cited classes of 

compounds were eventually considered: anthraquinones and acridines. During the latest 

part of the project then, some structurally constrained compounds with a structure 

extremely close to the one of the lead compound were designed and obtained. The aim of 

this additional synthetic scheme was to enlighten the role of the flexibility of the side 

chains, a feature that seems to overcome even their chemical nature in terms of relevance 

for an efficient interaction with the G-quadruplex. 
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1.11 COMPUTATIONAL STUDIES: LIMITATIONS AND 

PERSPECTIVES 

 

The synthetic process can be aided by some advices coming from computational studies: 

although molecular modeling simulations over G-quadruplex-ligand interactions are 

developing and becoming more and more reliable, only in the very recent period a 

structural analysis of both the structures of G-quadruplexes (solved thanks to NMR or X-

rays) and the 3D models of the ligands and their interactions became reliable in terms of 

predicting activity properties. In this connection, some recent research works started to 

consider the combination of ligand-based (the investigation of the structural properties of 

the binders) and structure-based (an analysis that focuses on the target of the binder) virtual 

screening approaches in the search for novel G-quadruplex stabilizing agents.69 While this 

technology enlighten an innovative workflow for the discovery of novel potential 

stabilizers through library screening and then in vitro assay, it still suffers for some 

limitations related to the peculiar features of the G-quadruplex itself. Docking experiments 

have to face the fact that human telomeric sequence has been shown to fold in at least four 

different structures with completely different motifs of guanine disposition and strand/loop 

orientation.69 Considering all the possible viabilities would turn out in an impossibility to 

represent all the realistically possible folds in a reasonable time, in terms of calculations.69 

At the moment, then, the solution is to summarize all the possible and easily inter-

convertible arrangements with one (or more, in the more sophisticated experiments) model 

structure to run dockings or dynamic simulations.69 This strategy is eventually, over the 

time, growing from rough approximation to predictive model. 

The synthesis of novel compounds should anyway take advantage of the knowledge that 

can be obtained by the evaluation of some peculiar structural features of both the ligands 

and the quadruplex. 

A first consideration should be, for example, one that compares the effective extension, 
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basing on real telomeric sequences, of the already well-described planar surface of the 

quadruplex that is available for stacking interaction 

 

FIG23. A closer view to the planar surface of a telomeric G-quadruplex.43 

If we assume that the four carbonilic oxygen atoms coming from the four guanines lay on 

the same plane, they are describing a square with the side of 3.4 Å. This corresponds to 

what stated in the introduction concerning the size of the tunnel where the ions are inserted. 

If we otherwise look at the square described by the nitrogen atoms of the guanines 

connected to the ribose ring, this bigger square has a side that exceeds 9 Å, and this turns 

out in a wide, planar and prone to aromatic stacking interaction surface. A molecule with a 

good interaction profile should take advantage of this feature and, in addition to that, be 

able to give interaction with the bases or the phosphate groups describing the loops. 

The compound that is presented as the lead in this study perfectly fit this DNA 

arrangement. 



57 

 

FIG24. Structural analysis on the lead compound. 

Focusing on the anthracene scaffold, is evident how the size of the three condensed ring, 

with a diagonal of more than 7 Å from carbon to carbon (the actual size is higher if the 

actual bulge of the molecule is considered), gives a surface with the same order of 

magnitude of the one described for the quartet. On the other hand, it is also noticeable that 

the lead compound shows two extended side chains able to largely exceed the size of the 

quartet to give, potentially, an interaction with the loops. 

In this regard, the following picture shows also how these general rules concerning the size 

of the scaffold and of the side chains are well conserved between the lead compound and 

other already reported and well-known stabilizers. As an example, when compared to 

BRACO-1943, the 1,5-disubstituted anthracene derivative shows a perfect superimposition 

of its scaffold to the acridine system. In addition to this, the side chains are, even if pointing 

in different directions because of the position in which the substitution of the ring occurs, 

of a comparable size. The energy of the structures here presented was minimized (see the 

experimental section for further details). As was already described, at the same way, the 

side chains shows in this case protonable nitrogen atoms at their ends. 
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FIG25. Comparison between minimized structures of BRACO-19 and the lead compound. 

On the other hand, this comparison also shows also how the overall bulge of the two 

molecules is, overall the same. 

 

FIG26. Model showing a representation of a possible binding motif.43 

Concluding this overview on the structural features of the lead compound related to the 

ones of other ligands and of the G-quadruplex, the model above shows a possible 

interaction motif between the 1,5 disubstituted anthracene derivative and a structured 

telomeric sequence of DNA (model of the G-quadruplex DNA from Micco et al.43). 

Docking studies were performed on some of the synthesized compounds to assess the 

possible binding motif of the molecules to the structured DNA, according to the recent 
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literature. Obtained models are presented in the following sections and the docking 

procedure is described in the experimental part. 
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2. RESULTS AND DISCUSSION 
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2.1 SCHEME I 
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Rationale of the synthetic scheme 

This synthetic scheme focuses on the synthesis of 1,5-disubstituted analogues of the lead 

compound 7. 
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This first synthetic strategy is being developed in order to obtain some 1,5 disubstituted 

anthracene derivatives to provide additional information in terms of structure-activity 

relationship. In fact, even though is known to be very effective in stabilizing telomeric G-

quadruplexes structure because of its planar π-rich surface, the role or the importance of the 

imidazoyl containing side chain, and as later will be explained of their conformation, are 

still poorly understood.  

On the other hand also bioisosteric substitution of the hydrazone chains is to be 

investigated yet. To be more specific in this scheme the keto derivatives are described. In 

addition to this, some length variations have been tested. 

Thanks to this first synthetic scheme some basic derivatives were obtained. All the obtained 

compounds show a keto group on the side chain with a two or three atoms long spacer. 

Further modifications and variations in particular of the side chains were introduced in the 

second synthetic scheme. 
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Friedel-Craft acylation 

The first step of this reaction scheme is the one that provides a key intermediate: an 

anthracene with two points for further derivatization in the positions 1 and 5. The reaction 

consists in an electrophilic aromatic addiction operated by an acyl cation generated as a 

consequence of the activation of the acyl halide by the stoichiometric Lewis acid AlCl3. 

The reaction was carried out in dichloroethane with yields ranging from 30 to 40 % of 

recrystalized products.  

 

The Lewis acid forms a complex with the acyl chloride. Here the reaction with 3-bromo 

propionyl chloride is presented, but this step has been carried out also with other reagents: 

2-bromo acetyl chloride, acetyl chloride, 3-chloro propionyl chloride. 
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The resulting carbocation is stabilized by resonance and is a good electrophilic reactive 

species.70 Once this is formed, it rapidly reacts with the aromatic system of anthracene. As 

the scheme above demonstrates, according to this aromatic feature, the negative charge 

coming from delocalized electrons can be concentrated, because of the resonance, in some 

positions of the rings more than in others. In fact, the critical and peculiar aspect of this 

reaction consists in the regioselectivity that can be induced by varying the reaction 

conditions. Theoretically an anthracene acylation through the procedure reported above 

should very likely provide a nearly 1:1 mixture of 1,5 and 1,8 disubsituted derivatives. 

R

R

R R

 

Despite this what we experimentally experienced is a huge prevalence of the 1,5 isomer 

(over 90 %) when the reaction is carried out under 0°C and the anthracene is rapidly added 

to a stirred mixture of AlCl3 and the acyl halide in dichloroethane. This event was 

confirmed by other studies on this class of reaction previously reported in literature.71 The 

desired product can be easily isolated by recrystalization from toluene of the crude.  

 

FIG27. Kinetic and thermodynamic drive of the reaction.72 
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The proposed interpretation of the observed results involves the kinetic/thermodynamic 

control of the reaction coordinate. The 1,8 disubstituted isomer is proposed to be the 

thermodynamically induced product, ranking at a lower energy level but produced only 

after the take over of a considerable activation energy. On the other hand the 1,5 isomer can 

be considered as the kinetic product, preferentially provided in low-energetic conditions. 

As a result, this reaction carried out in a cold bath at a controlled temperature allows 

obtaining the desired isomer in good yields (generally over 30%). A clear demonstration of 

the fact that 1,5 isomer was isolated was given by the analysis of NMR spectra, where the 

coupling constants between different signals were compatible with this species (see 

experimental procedures for the detailed transcription of the spectra). 
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Finkelstein reaction: an efficient nucleophilic substitution 

The intermediates obtained with the reaction described above are of a strategic 

relevance. After that, once that the scaffold its built, chlorine or bromine atoms in 

the side chains can be used as linking points to add the desired heterocycle or to 

enlarge the chain.  

 

According to the fact that the halide is close to a carbonyl group (depending on the 

acyl chloride/bromide used), its reactivity towards nucleophilic substitutions 

should be enhanced because of the electron drawing effect and it should represents 

a good leaving group. Despite this, the early attempts of carrying out the reaction 

between the anthracene derivative and an amine were unsuccessful. To improve the 

reactivity, then, the reaction was carried out according to the Finkelstein procedure. 

This consists in the substitution of the halogen in the side chains of the 

intermediates (Br or Cl) with a more reactive iodine atom.73 The subsequent 

nucleophilic substitution of the halogen by the amino derivatives proceeded 

smoothly in most of the cases. The reaction was carried out in xylene in the 

presence of KI and CaCO3.  
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This reaction proceeds through an SN2 mechanism and comes with the inversion of 

the configuration of the carbon that exchanges the bindings. The different 

solubility of the involved halide salts is another help to the driving force of the 

reaction since it influences the equilibrium position: the resulting KBr is poorly 

soluble. To be more specific, then, iodine represents a really good leaving group, 

under these conditions, because of two events: the strength of the C-X bond and 

the stability on solution of the halide ion, once the C-X bond is broken.  

 

FIG28. Halide leaving groups: a ranking.72 

The strength of the bond can be measured in kJ/mol, while in the table reported 

above the pKa of the HX acid gives an indication of the stability of X- ion alone: 

the higher the value of the constant, the lower the degree of dissociation of the HX 

acid. As a result, basing on the fact that both the pKa value for HI and also the 

strength of the C-I bond is the lowest among the ones reported for fluorine, 

chlorine or bromine, I- represents a better leaving group. 
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Once that the substitution took place, the resulting intermediate smoothly reacts with the 

reported amines to give the desired products. 
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Characterization of the products 

Every compound was deeply investigated through NMR and mass spectrometry 

experiments (see experimental section for details). In addition to this, more peculiar 

experiments were carried out in some of the molecules to further investigate some 

structural properties and confirm once again the structure. 

As an example, some of the compounds were analyzed thanks to the facilities available at 

UAlbany - State University of New York, USA. In particular, the spectra reported in the 

following page represent a so-called MS-MS tandem mass spectrometry experiment. The 

LTQ OrbiTrap Velos spectrometer used to record this spectrum allows the isolation of a 

single peak with its isotopic distribution (lower part of the spectrum) in the full scan mass 

spectrum. The second part of the experiment is the fragmentation (upper part of the 

spectrum) was a growing amount of energy is provided to the isolated ion, forcing its 

decomposition. The fragments resulting from that event could help in the correct 

interpretation of the structure of the molecule itself. In the spectrum reported below, many 

fragments were identified confirming the desired structured. 
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2.2 SCHEME II 
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Rationale of the synthetic scheme 

In the first synthetic scheme a novel pathway to obtain 1,5 disubstituted anthracene 

derivatives was enlightened. In addition to this bioisiosteric substitutions of the 

heterocyclic system were operated. In this scheme further modifications of the side chains 

were investigated. In particular the keto group was reacted in opportune conditions to 

obtain derivatives showing hydroxy or C=C double bonds.  

The rationale of these modification was the idea of investigating the influence of different 

spatial bulkiness due to different carbon hybridizations. To be more specific, two different 

classes of compounds with an sp2 carbon atoms in the side chains (keto and alkene 

derivatives) and a class with only sp3 carbon atoms in the side chains (hydroxy derivatives) 

were synthesized to be then compared. Different hybridizations lead to different geometry, 

spatial orientation, flexibility and rotational freedom. 
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NMR studies were used to assess the correct orientation of the double bond. A particular 

focus was dedicated to the compounds carrying an imidazole ring, as long as, as will be 

later explained, were the ones showing more promising activity profiles. 
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Reduction of a keto group with NaBH4 

This reaction, carried out in methanol at room temperature, was designed both to operate a 

direct reduction of the compounds synthesized in the first scheme to obtain the 

corresponding hydroxy derivatives and to synthesize an important intermediate for the 

synthesis of alkene derivatives. 

 

The reduction with NaBH4 proceeds thanks to the transfer of a hydrogen atom with its 

electronic doublet to the substrate that has to be reduced.72 

 

The anion generated by this addition is proposed to stabilize the resulting BH3 species that 

is technically able to transfer other hydrogen atoms and electrons. The final compound is 

isolated after addition of diluted HCl (10%). 

This reaction was carried out successfully both using as substrates final compounds from 

the first scheme and the halogenated intermediates. 
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From the hydroxy derivative to the alkene 

This key step provided the second intermediate for the synthetic route for the obtainment of 

alkene derivatives. 

 

             21                 22 

The reaction starts from the alcoholic derivative that is treated with HCl. The hydroxy 

group, that is the only protonable region of the molecule, acquires a positive charge that 

transforms it in a good leaving group. Loss of water leads so to the obtainment of the key 

intermediate with a C=C double bond in both the side chains. This compound can be 

treated with nucleophilic amines to obtain the final compounds as described in the first 

synthetic scheme. 

An E configuration of the double bond could be expected for this kind of mechanism, but 

what was observed thanks to NMR analysis was that the obtained compound was in the Z 

form, as demonstrated bi the 9.1 Hz value of the coupling constant (J) in the proton NMR 

spectrum. 
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2.3 SCHEME III 
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Rationale of the synthetic scheme 

Anthrapyrazole derivatives are being synthesized as a strategic family of compounds in G- 

quadruplex stabilization. The anthrapyrazole nucleus could represent an ideal starting point 

for the development of novel stabilizers: it shows a more extended π area comparing with 

anthracene and it maintains H-bond donor/acceptor sites represented by nitrogen atoms. A 

structural comparison between this scaffold and the lead compound shows how most of 

their aromatic surface is shared.  

 
FIG29. Superimposition of anthrapyrazole and anthracene 

In this synthetic scheme two strategies are involved. In order to obtain N-substituted 

derivatives of anthrapyrazole, a first attempt was based on the synthesis of the scaffold 

itself as a first step starting from hydrazine and 1,5-dichloro anthraquinone. The second 

step, then would have been a further derivatization on the nitrogen atoms through 

nucleophilic substitution. The second strategy, otherwise, was designed in order to take 

advantage of the commercially available hydrazo imidazoline. In this way a final 

compound showing the exact same side chain of the lead compound was obtained in only 

one step. 
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Synthesis of the anthrapyrazole scaffold 

The synthesis of a plain anthrapyrazole scaffold was operated starting from 1,5-

dichloroanthraquinone and hydrazine. 

 

The procedure for the preparation of compounds from this class was previously reported in 

the patent literature.74 Several attempts were necessary, anyway, to obtain the desired 

product tuning the reaction conditions. As the first part of this scheme shows (above), the 

first step of this reaction is supposed to be the substitution of the chlorine atom. This is 

confirmed by the fact that in the cited patent the isolation of 1,5 di substituted compounds, 

without chlorine but still showing the keto group in positions 9 and 10, was reported.74 The 

reaction was both carried out in a round bottom flask in dimethyl acetamide or without any 

solvent in a microwave reactor. The reaction conditions, anyway, are still being optimized 

as long as the yields are currently still low (see the experimental section for further details). 
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The following step shows an intramolecular reaction, where a new five members ring is 

formed. In this case the rearrangement of the molecule leads to the loss of water. 
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Considerations on the conditions for the synthesis of anthrapyrazole 

The fact that the first step of the reaction is represented by the substitution of the chlorine 

atom on the aromatic ring is also confirmed by the fact that the collateral products obtained 

during the purification process by flash chromatography (mono or di substituted species) 

were not showing any chlorine isotopic pattern in the MS analysis. The preliminary 

attempts of obtaining the anthrapyrazole required several purification steps such as 

automatic column chromatography followed by a preparative TLC. As previously 

introduced, several attempts to carry out the reaction in different solvents were performed. 

Dimethylformamide was substituted with dimethylacetamide (a solvent that shows an even 

higher boiling point) and in addition to that the reaction was also carried out without any 

solvent and\or in the microwave reactor. In every case, anyway, one or more purification 

steps were required.  
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N-derivatization of the scaffold 

In the original synthetic strategy the obtained scaffold was supposed to be ready to be 

modified through substitutions on the nitrogen. Anyway this reaction turned out to be more 

unwilling to happen than what expected. The experiments using an alkyl halide as substrate 

for the substitution and different bases (from triethylamine to NaH) were not successful. On 

the other hand, the reaction of anthrapyrazole with acetic anhydride (with acetic anhydride 

acting both as a solvent and a reactant) led to the N-substituted compound in good yield. 
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The obtained compound was deeply characterized thanks to the use of NMR spectroscopy. 

 

The CoSY experiment is designed to show, on a two dimensional surface, the coupling that 

occurs between two hydrogen atoms connected by the skeleton of the molecule. Every 

cross-peak outside the diagonal line of the spectrum can be considered as representative of 
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a coupling. The spectrum above shows the behavior and the coupling motif of the protons 

belonging to the aromatic part of the molecule. 

 

The NOESY experiment reported above provides, otherwise, some complimentary 

information: it enlightens whether or not two protons, even if one far away from the other 

considering the 2D structure of the molecule are near in the 3D space due to some specific 

conformations. Even in this case, the cross-peak on a two dimensional surface is the signal 

that shows that two protons are close one to the other. In the spectrum above the spatial 

correlation of the aromatic system confirms the information from the previous spectrum. 

 

The full scale experiment (above) provides then an even more useful information about the 
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conformational behavior of the molecule: the aromatic portion does not give any cross peak 

with the -CH3 moiety coming from the acetyl group, suggesting that the carbonylic oxygen 

is the closest atom to the scaffold. 



88 

One-step reaction with hydrazo imidazoline 

A later strategy involved a direct synthesis of a compound structurally related to the lead 

using a one-step procedure. 
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Even in this case, as described above, the mechanism seems to be debatable. In fact, 

according to the proposed structure here reported, the mechanism seems in open contrast 

with the one discussed for the reaction with hydrazine, where a first substitution occurs to 

the chlorine atom on the aromatic ring.  

The use of pyridine as a solvent, probably, influences somehow the reactivity of one or 

both the reactants, driving the reaction firstly to the imine formation and then to the 

nucleophilic substitution. The attack of the “guanidinic” nitrogen on the C-Cl as a first step 

appears less probable because of the lower nucleophilic level due to the electronic 

delocalization. On the other hand, a loss in aromaticity seems unlike to happen and 

probably the side chains are directed outside the scaffold (as drawn).  

The reaction did not lead to the desired compound when conduced in the firstly optimized 
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condition (DMA/microwave as reported above). Anyway, the structure of the compound 

will be further investigated by 2D NMR analysis and also side products will be considered 

with the use of high-resolution mass spectrometry.  
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2.4 SCHEME IV 
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Rationale of the synthetic scheme 

To expand the set of synthesized compounds and explore novel synthetic route, two more 

series of compounds were designed. The relevance of this synthetic scheme goes beyond 

the compound that were effectively obtained, as long as it opens two more paths for the 

preparation of potential G-quadruplex stabilizers. In particular anthraquinone and 

proflavine were chosen as scaffolds for these new derivatives.  

 

Anthraquinone derivatives 

The first step of the synthetic scheme consists in the derivatization of the hydroxy 

anthraquinone scaffold with a linking chain. In order to obtain a “flexible” and convenient 

intermediate, suitable to be derivatized with different moieties, the allyl group was chosen 

as substituent. The reaction was carried out in acetone and allyl bromide was used as a 

substrate for the nucleophilic substitution. The intermediate obtained was characterized by 

2D NMR analysis. 
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The reported CoSY spectra enlighten the correlation between the protons belonging to the 

aliphatic portion of the molecule and the ones coming from the aromatic system. 

The following step is represented by an epoxidation reaction that was carried out using m-

chloroperbenzoic acid. 

 

36    38 

Even in this case the product was studied by NMR and a comparison between the proton 

spectra of the reactant and the product clearly indicated a full conversion to the desired 

compound. This reaction gives a double epoxide as a product. 
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The comparison between the two spectra shows how the signals due to the allylic system 

completely disappear leaving space to the signals compatible with the epoxyde ring. It is 

also important to notice that the symmetry of the molecule is maintained: both the 

functional groups (position 1 and 5 of the anthraquinone scaffold) react the same way. 

The last step of this synthetic procedure consists in the derivatization of the scaffold 

obtained with the previous steps. The procedure developed is suitable for any good 

nucleophile (e.g. primary or secondary amine) but, coherently with the other derivatives 

prepared during this research work, the hydrazo imidazolinic side chain was introduced 

(the same one of the lead compound). 

 

Actually the reactivity of epoxydes is really peculiar and it is possible to drive the reactivity 
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of the nucleophile involved toward one or the other carbon atom forming the ring, 

according to the use or the avoidance of an acid during the reaction. Experiments about the 

conditions of this step are still being carried out. 

 

Proflavine derivatives 

Even in this case the relevance of the synthetic scheme consists in the set up of the 

conditions, described in the experimental section, for the obtainment of an intermediate that 

is easy to modify and ready for further derivatizations.  

In particular, proflavine was reacted with chloroacetyl chloride, a reactant similar to the 

ones described in other reaction schemes of these research work with a completely different 

use. As the mechanism reported below clearly shows, one of the two chlorine atoms of 

chloroacetyl chloride shows a much higher reactivity toward nucleophilic substitution due 

to the proximity to the carbonyl group. This reactant, in fact, represents the activated form 

of chloroacetic acid. 
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In the case of the here reported compound, the intermediate described above was reacted 

with a secondary amine in mild conditions to obtain a final compound with protonable and 

flexible side chains. N-methyl aminoethanol was used but experiments are being carried 

39 41 

40 

42 

43 



97 

out with different primary and secondary amines. This compound was also used as an 

intermediate for further derivatization as it will be described in the following synthetic 

schemes. 
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Characterization of the compounds 
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2.5 SCHEME V 
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Rationale of the synthetic scheme 

In this synthetic strategy the attention was re-focused on the lead compound giving 

particular attention to the role of the structural properties of the side chains. To be more 

specific, constraining groups were introduced to force the spatial orientation of that part of 

the molecule, very flexible in the lead compound. The introduction in the benzylic position 

of a methyl or methylene moiety through two novel synthetic schemes led to two more 

rigid compounds with an opposite constrained orientation of the side chains. 

 
                7     51        48 

 

In silico conformational analysis 

An in silico conformational search was carried out on the three compounds using Avogadro 

[5,6]. The most stable conformations detected are reported below.96 

 
FIG30. Minimized conformation of the cited compounds, MMFF9496 

According to the hypothesis that the side chain conformation could be responsible for 
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disposing the aromatic scaffold in a strategic position for an efficient interaction with the 

quadruplex, to fully dissect the issue of side-chain flexibility, we prepared structurally 

constrained derivatives of the most effective bisantrene compound exhibiting rigid links 

and/or lack free rotation with reference to the planar portion and examined their efficiency 

in stabilizing G-quadruplex. In these compounds the same side chain, connected to 

positions 1 and 5 of the anthracene nucleus, lays coplanarly to the aromatic system, but 

only can dispose alternatively inwards (compound 51) or outwards (compound 48). In 

addition to this, the least perturbing constraining residues (methyl or methylene) were used 

in order to minimize variability and enlighten the role of a mutual adaptation between the 

nucleic acid and the binder. These predictions were then confirmed by 2D-NMR analysis as 

reported in the following paragraph. 

 

Constrained derivative 1 

The desired compound was directly obtained from 1,5-diacetyl anthracene through imine 

formation by reacting with 4,5-dihydro-1H-imidazol-2-yl-hydrazine in isopropanol in 

presence of methansulfonic acid. 
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50     51 

The constraining effect was evaluated thanks to a 2D NOESY NMR experiment, showing 

the proximity between the aromatic proton HA and the methyl group. 
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FIG32a. Comparison between predicted (3D model) and observed (NOESY NMR) conformational properties96 

This spectroscopic piece of information is particularly relevant especially if compared with 

the results of a series of NOE experiments that were previously conduced on bisantrene-

like hydrazones with exactly the same side chain of the 1,5 di substituted lead compound. 

In that case the NMR experiments confirmed “the possibility of free rotation of the side 

chain groups with reference to the planar anthracene moiety”.75 A minimized model for 

compound 51 (force field MMFF9496) here proposed in its three dimensional arrangement 

is consistent with the information given by the NOESY NMR experiment. In the 2D 

spectrum, as expected, other cross peaks are present confirming the relative proximity 

between the protons belonging to the aromatic system. 

NMR-based structural analysis of derivative 51 was then carried to a further level: a 

quantitative 2D NOESY (Nuclear Overhauser Effect Spectroscopy) experiment was 

developed to predict the distance of the protons belonging to the molecule in the prevalent 

three dimensional conformation in solution. The NOESY NMR experiment provides a 

visualization as cross-peaks in a 2D surface of the spatial interactions between protons that 

are close one to the other in the three dimensional arrangement in solution. According to 

what literature reports, the intensity of the cross peak measured on the map is proportional 
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to 1/[distance between protons]6.76 Basing on this, once that a know distance (giving a NOE 

cross-peak) is set as reference, it is possible to estimate the distance between two protons 

showing a signal with a detectable intensity in the 2D spectrum using the equation:  

rij = rref • 6√(Iref/Iij) 

where r are the distances and I the intensities of the NOESY cross-peaks.76 

 
FIG32b. Predicted distances between protons in the minimized model of compound 5196 and detailed view of the 

two cross peaks due to the interaction of the methyl group with the aromatic protons in positions 2 and 9. 

 

Figure 32b shows the minimized predicted conformation for compound 51 calculated in the 

previously cited force field. The ArH-ArH distance of 2.48 Å was chosen as reference and, 

basing on the formula reported above, the calculated distances (2.55 and 3.26 Å) were 

found to be in excellent agreement with the values measured and shown on the model (2.57 

and 3.38 Å respectively). 

 

Constrained derivative 2 

For what concerning compound 48, some of the steps were previously reported by Ryu77 

and Mohebbi.78  
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The chloromethylation of anthracene was performed with ZnCl2 and paraformaldehyde in 

dioxane in the presence of conc. HCl. The following step leads to the obtainment of a 

cyano compound by using NaCN in DMSO or in water/dichloromethane with phase-

transfer catalysis. The hydrolysis of the cyano residue and the subsequent formation of the 

propyl esther was conducted wit p-toluensulfonic acid in n-propanol. The hydrolysis of the 

ester with LiOH in THF/water gave the carboxylic acid, which was then activated with 

thionyl chloride for the cyclization performed in dichloroethan in the presence of AlCl3. 

The imine formation with 4,5-dihydro-1H-imidazol-2-yl-hydrazine in isopropanol in 

presence of methanesulfonic acid gave the final product. 

8 
53 
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The comparison between the proton NMR spectra above shows the differences, in terms of 

chemical shifts, between the protons belonging to the different intermediates involved in 

the synthetic process. In particular, while the aromatic portion does not show great changes, 

the chemical shift of the benzylic CH2 signal decreases moving from compound 44 through 

45 to 46. 

 

Docking studies 

A docking experiment should predict, or at least suggest, the preferential conformation that 

a ligand assumes while interacting with a macromolecule (the docking site). This 

computational experiment is growing in appeal over the years as long as it could provide 

useful suggestions to the synthetic medicinal chemist that, basing on the modeling results 

and observing the predicted conformations and contact areas, can discuss on how to modify 

or develope a scaffold to optimize the interaction. While this technique found a wide 

application in the field of ligand-protein interaction prediction, only few examples of 

docking to nucleic acids were reported until recently,79 due to the fact that super molecular 
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arrangement of DNA (and RNA) are known to be very flexible and transient, while a 

docking study treats the macromolecule as an at least partially rigid structure. 

For this study, a telomeric G-quadruplex sequence (PDB ID: 3T5E) solved in a K+ by X-

ray was used as the reference macromolecule for the docking analysis.80 The docking 

procedure was designed, developed and carried out in accordance with other recently 

reported ligand-G-quadruplex interaction studies.79  

A possible pose of the molecules stacked on a telomeric G-quadruplex was also 

investigated in silico thanks to the software suites cited in the experimental section. 

 

 

FIG31a. Representation of the interaction between the compounds and a telomeric G-quadruplex 

For this study, a telomeric G-quadruplex sequence (PDB ID: 3T5E) solved in a K+ by X-

ray was used as the reference macromolecule for the docking analysis.81 The docking 

procedure was designed, developed and carried out in accordance with other recently 

reported ligand-G-quadruplex interaction studies.79  
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FIG31b. Docking study on the synthesized compounds 

Compounds 7 (a), 48 (c) and 51 (b) were docked as previously described to a telomeric G-

quadruplex structure. According to these models, the three compounds share the π-π 

stacking with an external quartet as preferential binding motif. Curiously, compound 51 (b) 

maintains the same conformation predicted in a previous in silico conformational analysis 

and confirmed by 2D-NOESY NMR in solution.  

  
FIG31c. General view of compound 51 docked in the quadruplex. 

The docking routine procedure is described in the experimental section. 
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Characterization of the compounds 
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2.6 SCHEME VI 
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Rationale of the synthetic scheme 

This synthetic scheme was designed in order to obtain some compound with a peculiar 

feature: the combination of well known scaffolds (anthracene and proflavine) known to 

give interaction with the quadruplex and of a couple of alkylating function to interact 

strongly with the bases in a covalent fashion. As an example, the combination of the G-

quadruplex stabilizing scaffold and the nitrogen mustard alkylating moiety is a recent trend 

and was only very recently investigated.82 A study from Di Antonio et al showed the 

influence of directioning the alkylating reactivity towards a G-quadruplex structure. It 

turned out that combining a scaffold coming from a potent G-quadruplex stabilizing agent 

with the nitrogen mustard moiety led to a selective alkylation of the quadruplex. In this 

connection, some novel nitrogen mustard derivatives were designed.  
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In particular, two derivatives show the proflavine scaffold and two are anthracene-based. 
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As can be noticed from the reported structures, for both the classes of compound, 

monofunctional and bifunctional moieties were synthesized. The compounds with only an 

alkylating function per side were actually prepared in order to achieve a higher selectivity 

reducing bias, side-reactivity and the overall reactivity of the molecule. 
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Nitrogen mustards, in fact, show a cross-linking reactivity. Classical bifunctional mustard 

can be reactive towards two nucleophilic residues going through a cyclic intermediate. 
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Otherwise, if only a chloroethylamine moiety is present, the reaction stops at the 

monoalkylation stage. 

 

Reactivity of N,N dichloroethylamine 

The reaction between 9,10 dichloromethyl anthracene and dichloroethylamine must be 

handled with some precautions and in mild conditions in order to obtain the final product 

and avoid side reaction, and in particular the self-reactivity of dichloroethylamine. 
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Following a procedure already reported by Yin et al,83 the nucleophilic substitution was 

carried out checking temperature and product formation through MS analysis (see 

experimental section for further details). 

 

Activation of the nitrogen mustard 

Most of the reported synthetic procedures for the preparation of nitrogen mustards, when 
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they do not go through the direct nucleophilic substitution with dichloroethylamine 

described above,82 present a hydroxyl intermediate.  
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The final step of the synthesis is then the substitution of the hydroxyl group with a chlorine 

atom through a reaction with thionyl chloride.84 
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2.7 EVALUATION OF G-QUADRUPLEXES AND THEIR 

INTERACTIONS 

 

Experiments carried out at State University of New York 

In the following sections are described some experiments aimed to evaluate the formation 

of G-quadruplexes from guanine rich sequences in solutions and the binding affinity of 

some synthesized ligands to structured DNA. The gel electrophoresis and mass 

spectrometry experiments were carried out during the third year of the PhD school in the 

laboratory of Prof. Fabris at UAlbany, State University of New York, USA. 

 

G-quadruplex forming sequences 

To perform the investigation of both the presence of G-quadruplex sequences in solution 

and of the compound-DNA binding capability two guanine rich DNA sequences were 

chosen as substrates. To be more specific both these sequence show the peculiar TTAGGG 

repeat already described to be peculiar of telomeres (see the introduction for further 

details). In addition to this, a strand as similar as possible to the one used for the 

fluorescence melting assays was considered.  

 

FIG33. Monomeric G-quadruplex arrangement. 

A monomeric, self-folding DNA sequence was analyzed (here called GQm): 5' - AGG 
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GTT AGG GTT AGG GTT AGG GT - 3'. This strand, in an opportune buffer where 

cations are present should be able to self-fold into a G-quadruplex structure. The expected 

structure would be formed by three stacked G-quartets with two ions between the layers 

acting as stabilizers in the middle of the structure. In fact, the sequence shows four repeats 

of the GGG motif. The other bases are supposed to form the loops of the G-quadruplex 

structure. As previously introduced, this sequence is the one that was used for the screening 

of the stabilizing performances of the synthesized compounds through the fluorescence 

melting assay reported in this research work and in the literature.4  

 

FIG34. Dimeric G-quadruplex arrangement. 

To widen the range of the investigation, another, shorter guanine rich sequence was 

considered (here called GQd): 5' - TAG GGT TAG GGT - 3'. As long as this sequence 

shows only two repeats of the GGG motif, two of these strands should combine in solution 

to form a G-quadruplex made by three stacked quartets. Also this sequence shows the 

peculiar TTAGGG telomeric repeat and it has already been reported to be a suitable 

substrate for mass spectrometry investigation of G-quadruplexes.90,92  

In addition to this, these strands were chosen also because, besides reproducing the 

telomeric repeat, many structures of drug-DNA complexes were solved by NMR or X-ray 

analysis of these exact sequences.85 
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2.8 GEL ELECTROPHORESIS 

 

Gel electrophoresis to enlighten G-quadruplexes 

This part of the research work was carried out in the laboratory of Prof. Fabris, UAlbany, 

State University of New York, USA. The capability of guanine rich sequences of forming 

G-quadruplex structures in solution was evaluated firstly through electrophoresis analysis. 

Some procedures for the investigation of G-quadruplexes through this technique have 

already been reported.4 The rationale on which this analysis bases is represented by the fact 

that an electrophoresis gel should separate DNA sequences according to their molecular 

weight (a direct reflection of the strain length in terms of number of bases) but also to their 

shape. In this connection, a DNA sequence arranged in the G-quadruplex structure would 

be running more in a gel than what expected considering only its molecular weight. 

As long as other experiments reported in this research work involved G-quadruplex 

forming sequences incubated in ammonium acetate (see experimental section for details), a 

first attempt was performed using ammonium acetate in the running buffer in order to 

harmonize all the experiments. A native (non denaturing) 20% polyacrylamide gel was run 

under the described conditions. 

  

The sequence used are GQm (5' - AGG GTT AGG GTT AGG GTT AGG GT - 3') and 

GQd (5' - TAG GGT TAG GGT - 3'). The gel showed how all the sequences seemed to run 
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the same way, even if the molecular weight is different. A reference ladder was used as a 

control. In addition to that it is evident how the pre-denatured samples, to which 14 M urea 

was added before the run (U) were running the same as non-denatured (G). This could 

suggest a quick refolding o the structure.  

Given the non optimal quality of the gel obtained with ammonium acetate as running 

buffer, the same experiment was repeated with potassium chloride as running buffer. 

 

Even in this case, anyway, the same effect was observed.  

The following attempt, then, was to compare the behavior of the two sequences, GQm and 

GQd, in two different temperature conditions. Using potassium chloride as running buffer, 

the two gels reported below were obtained at 4°C (left) and room temperature (right) with a 

15% polyacrylamide gel in native conditions. 

 

The gel at room temperature seems to differentiate the two sequences. Anyway, even this 
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experiment does not distinguish between the denatured (U) and non denatured (G) sample. 

The same experimental conditions were kept for a later experiment, involving a 20% 

denaturing gel. 

  

Even in this case the experiment was repeated to give a comparison between the gel at 4°C 

(left) and room temperature (right). Surprisingly, the separation between the two bands 

(GQm and GQd) was lost again. 

To increase the resolution of the two bands the same gels were run at a lower voltage, but 

the result was similar to the one obtained before. 

 

 

Screening of the synthesized compounds 

The synthesized nitrogen mustard derivatives were screened on both the sequences. In this 
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case, a denaturing gel was used. In fact, even if the samples are denatured, a linkage 

between the oligonucleotides should anyway be enlighten by the gel electrophoresis, as 

long as nitrogen mustards lead to a covalent cross-link of the DNA sequence, with a 

corresponding increase of the overall molecular weight. 

 

None of the synthesized compounds, anyway, neither the ones with the proflavine or 

anthracene scaffold showed the capability of covalently binding DNA. 

41 56 

58 
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60 
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2.9 ESI-MS OF G-QUADRUPLEX FORMING SEQUENCES 

 

Individuation of a G-quadruplex through MS analysis 

This part of the research work was carried out in the laboratory of Prof. Fabris, UAlbany, 

State University of New York, USA. The presence of the G-quadruplex arrangement in 

solution was evaluated through both mass spectrometry and gel electrophoresis. As will be 

further described in the experimental section, the experiments were carried out after 

incubation of the samples in ammonium acetate to promote the G-quadruplex formation as 

long as cations are proven to stabilize this structure by disposing in the central channel. 

Ammonium was chosen instead of potassium (or sodium) because it is reported to be more 

“MS-friendly”, and anyway at the same time is generally accepted as a good model ion for 

the investigation of quadruplexes through MS analysis.90 

The ESI-MS experiments on GQm and GQd sequences were carried out after three weeks 

of incubation of the cleaned-up oligonucleotide sample at 4°C in 150 mM ammonium 

acetate on a Thermo OrbiTrap Velos LTQ. Samples were diluted do 5 µM in 150 mM 

ammonium acetate before MS analysis. 

ESI mass analysis showed that ammonium adducts to the DNA strands were present, with a 

good abundance of the + 2NH4
+ ion. Considering the structure of the analyzed sequences, a 

G-quadruplex coming from the self-arrangement of the monomeric strand or from a pairing 

of two short chains (the dimeric sequence) should be structured as three planar G-quartets 

stacked one over the other (there are three G in every repeat, the other bases are supposed 

to form the loops; see the introduction for further details on the structure of G-quadruplexes 

in general and FIG33-34 for a structural representation). Basing on this, a G-quadruplex 

made by three G-quartets should be structured around two ammonium ions (the motif 

should be one ion between two quartet). + 1NH4
+ and + 0NH4

+ ions, always detected in the 
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mass analysis, can be assumed as non-G-quadruplex structured DNA sequences coming 

from non specific interactions between the ammonium ion and the nucleic acid or from the 

loss of the cation during the mass experiment.  
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FIG35. ESI-MS full scan spectrum of GQd sequence (5 µM in 150 mm ammonium acetate). 
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The spectrum above shows a full scan of the ESI-MS experiment on the short GQd dimeric 

sequence. It is evident how, in this condition, most of the nucleic acid detected by the 

instrument is in the single strand conformation. The main peak (1251, (m-3)/3) corresponds 

to the exact mass of the naked sequence (3755.6614 Da) divided by the charge state.  

 

FIG36. Detailed view of the 1400-1550 m/z region. 

Only a little amount of quadruplex is present: a detailed view of the 1440-1550 m/z region 

of the spectrum reveals a peak at 1508 that stands for the combination of two GQd 

sequences and two ammonium ions, the expected asset for the quadruplex. It is also 

relevant to notice that the +2NH4
+ peak is the most intense of the group, more than the 

naked and the +1NH4
+ peak (1501 and 1505 respectively). The same experiment was 
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carried out on the longer GQm monomeric sequence, under the same conditions. 

 

FIG37. ESI-MS full scan spectrum of GQm sequence (5 µM in 150 mm ammonium acetate) 
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In the spectrum above naked oligonucleotide, mono and di ammonium adducts are clearly 

detectable, suggesting a higher tendency to form complexes and, probably, lower 

specificity. It is also true, on the other hand, that considering the -4 charge state the +2NH4
+ 

peak (1825), that can be assumed as the one representative for the quadruplex structure, is 

the most intense of the group. The overall presence of the +2NH4
+ peaks, also in the -4 

charge state, is much more intense than the one observed with the GQd sequence. 

 

Binding assay 

Once that the presence of structured DNA in solution was confirmed, a binding assay 

involving some of the synthesized compounds were involved. First of all, the capability of 

the lead compound of binding the quadruplex was evaluated. According to the results of the 

experiments showed before, the ESI-MS analysis was performed on the GQm sequence 

using a 5:1 compound to DNA ratio with a final concentration of 5 µM in oligonucleotide. 

 
FIG38. Binding experiment of compound 7 

The spectrum above demonstrates the presence of the complex between the lead compound 

and the GQm sequence, with a relative intensity of more than 20%. 
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Particular attention was given to the series of constrained compounds structurally related to 

the lead. A competitive binding study was performed running at once the group of three 

compounds 

 
FIG39. Competitive binding experiment of compounds 7, 51, 48 compared to the binding experiment of 7 alone 

The combined spectrum above compares the spectrum of the lead alone 7 (spectrum below) 

and the result of the competitive binding study. It appears clearly that compound 51, the 

slightly more constrained derivative, has a greater tendency to bind the oligonucleotide. In 

51 

51 

7 

7 
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addition to this it is also noticeable how this compounds leads to the formation of the 2:1 

complex with DNA. The completely constrained derivative didn’t show any relevant 

interaction with the nucleic acid. 

 

Quantitative estimation of binding constant and affinity 

The tendency of the synthesized compounds of forming a complex or, in general, binding 

the G-quadruplex structured nucleic acid is generally expressed in terms of equilibrium 

association constant (K)86, and binding affinity (BA)79. Briefly, as long as relative 

intensities (I) in a mass spectrum are assumed to be proportional to the concentrations of 

the injected solution 

I(DNA)/[DNA] = I(DNA-stabilizer complex)/[DNA-stabilizer complex] 

and the concentrations of G-quadruplex, of the stabilizer and of the complex at the 

equilibrium are readily calculated 

[DNA] = C0 • I(DNA)/(I(DNA) + I(DNA-stabilizer complex)) 

[DNA-stabilizer complex] = C0 • I(DNA-stabilizer complex)/(I(DNA) + I(DNA-stabilizer complex)) 

[stabilizer] = C0 - [DNA-stabilizer complex] 

the equilibrium association constant value can be estimated as follows: 

K = [DNA-stabilizer complex] / [DNA] • [stabilizer] 

This calculation gives an idea of the relative stability of the complex formed between the 

folded macromolecule and the low molecular weight binder.  

On the other hand, another way to express the tendency of a small molecule of binding G-

quadruplex structures investigated by mass spectrometry is the binding affinity (BA).79  

BA = I(DNA-stabilizer complex) / (I(DNA-stabilizer complex) + I(DNA)) 

This formula can be also applied to cases where the binding ratio is higher then 1:1,79 as the 



133 

one reported for compound 51 in the spectrum above: 

BA = (I(DNA-stab. complex 1:1) + I(DNA-stab. complex 2:1)) / (I(DNA-stab. complex 1:1) + I(DNA-stab. complex 2:1) + 

I(DNA)) 

For what concerning the lead compound 7 a K of 3.1 x 10-3 M-1 was estimated. As 

previously reported, anyway, even if this compound gave the best result among the 

obtained compounds according to the fluorescence melting assay, compound 51 shows a 

binding affinity more than 1.5 times higher. This, anyway, does not correlate necessarily 

with the capability of being a good stabilizer: this experiment only estimates the tendency 

of the synthesized molecule to bind the structured DNA. 

 

Tuning of experimental conditions 

To further investigate this event another experiment was carried out: the concentration of 

the constrained compound was doubled in the contest of a similar competitive binding 

study. 

  

FIG40. Conditions of the experiments were finely tuned 

Curiously no evident difference in the spectrum was observed and ratio remains 2:1 as a 

maximum. The couple of spectra reported above show the original experiment (spectrum 

above) compared to the one with the doubled concentration of only compound 51 (below). 
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Getting closer: potassium complexing G-quadruplexes 

A further challenge was to carry on some experiments to investigate the possibility of using 

potassium as G-quadruplex promoting ion even during MS analysis. The use of potassium 

goes in the direction of obtaining a harmonized model to study G-quadruplex, as long as it 

was demonstrated how different ions could promote different quadruplex topologies.1 

According to this, the future aim would be to set up the conditions for a multi-technique 

investigation of the compound-DNA interaction. 

 To achieve this, the GQm and GQd sequences were stored in a 150 mM solution of 

potassium acetate following the procedure reported in the experimental section. After 

suitable dilutions the MS experiment was performed. Preliminary results are shown in the 

spectrum below (ESI-MS). 
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FIG41. Full scan experiment of GQd sequence 

In this case the GQd sequence was used. Even if the main series of peak is represented by 

the GQd peak at 1250.878 with a sequence of K+ adducts (most realistically a sequence of 

non specific interactions). Anyway, a little amount of G-quadruplex was observed. 
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FIG42. Detailed view of a portion of the spectrum 

In particular the peak at 1516.637, the higher in relative intensity for its charge state, 

corresponds to the complex GQd + GQd + 2K+, compatible with the quadruplex structure 

that, as described above, this short dimeric sequence should form. 
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2.10 ION MOBILITY MASS SPECTROMETRY 

 

An introduction to IMMS 

This part of the research work was carried out in the laboratory of Prof. Fabris, UAlbany, 

State University of New York, USA. Ion mobility mass spectrometry (IMS or IMMS) can 

be described among these innovative branches of MS evolutions aimed to the investigation 

of structural and dynamical features of a compound or a complex of biological interest. 

According to this technique ions can be separated not only by their mass to charge ratio but 

also by their size and shape.87 

While the ion mobility phenomenon is known since the beginning of the 20th century, the 

coupling with mass determination was only later achieved.88 The "size" of the analyzed 

species is estimated according to its collision cross section (CCS). In fact, in a general 

setup of an ion mobility mass spectrometer an ion mobility cell is placed before the actual 

mass analyzer. Gaseous ions are sprayed into this cell and accelerated by an electric field. 

The peculiar feature of the cell is the presence of a buffer gas that leads to a certain number 

of collisions between the analyzed molecule and the gas itself: an higher number of 

collisions goes together with an higher collision cross section. As a consequence a loss of 

energy occurs after each collision and the ion takes a longer time to reach the mass analyzer 

(drift effect). As a result, a simultaneous CCS analysis and m/z separation can be 

performed. Ideally, the resulting three-dimensional spectrum obtained considers mass, drift 

time and relative intensity.89  

The instrument that was used for the measures reported in this work (Waters Synapt G2 

HDMS) is based on the electronspray ionization (ESI) or nanoflow ESI and traveling wave 

ion mobility (TWIM) principle. The ion mobility cell shows subsequent stacked electrode 

rings interested by voltage pulses that create a wave that an ion can ride (more slowly if the 
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size is bigger). A time of flight (TOF) device provides then mass analysis.89 

 

IMMS and G-quadruplex 

Even if mass spectrometry investigation of drug-nucleic acid interactions is now well 

accepted as a screening technique, ion mobility experiments still represent a developing 

branch. G-quadruplexes, in particular, represent an outstanding substrate for this kind of 

analysis according to their peculiar structure, so different in size and shape from the single 

strand DNA. Very elegant investigations of the DNA arrangement itself90 and of drug-G-

quadruplex interaction91,92,93 were carried out in the recent years These works reported 

binding experiments carried out common ESI mass spectrometry and also showed some 

examples of an approach to ion mobility study. As for this study, the experiments were 

carried out on telomeric DNA sequences. In this research work a monomer and a dimeric 

G-quadruplex forming sequence, already studied and accepted and also comparable to the 

one used for the fluorescence melting experiments, were chosen as substrates. 

 

Discussion of the results 

According to the measures carried out on the ion mobility mass spectrometer a peculiar 

phenomenon was enlightened. In fact, while the cross section of the nucleic acid combined 

with one ammonium ion increases when compared to the one of the nucleic acid alone, 

suggesting as expected a mass and size increase, when another ammonium ion is bound to 

the nucleic acid the cross section decreases when compared to the one of + 1NH4
+. This 

event enlightens that even if the mass increased, the overall size of the complex could be 

smaller, suggesting the fact that the DNA is actually arranged in a more compact structure 

like the G-quadruplex. This event was recorded with both the nucleic acid alone in 

ammonium acetate and with the two compounds that showed a good binding affinity 
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among the screened ones, confirming this hypothesis. The table below shows graphically 

what previously explained: how the cross section measured in square angstrom (y axis) 

changes upon addition of ammonium ions (x axis) to the nucleic acid. 

 

FIG43. Ion mobility profile 

The most remarkable data is that the complex between compound 19 (called C in the table), 

the nucleic acid and two NH4
+ shows a noticeable slope in the reduction of the cross section 

when compared to the +1NH4
+ complex, much more intense then the one observed with 

compound 51 (called G in the table). This interesting piece of information could be the 

result of a specific binding of the molecule to the quadruplex, resulting in an overall 

stabilization of the structure. In fact, a reduction of the cross section could be coming from 

a decrease of the “breathing” movements of the molecule (vibrations, rapid partial 

unfoldings and refoldings) caused by the stabilization of the G-quadruplex tight 

arrangement itself. On the other hand, with the other compound the slope of the curve 

seems comparable to the one of the nucleic acid alone, suggesting a non-specific binding 

that does not improve the stability of the quadruplex and does not reduce the “breathing” of 

the complex. 

51 

19 
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2.11 FLUORESCENCE MELTING 

 

Description of the experiment 

The fluorescence melting assay evaluates the stability of a complex super molecular 

structure according to the denaturation temperature of the structure itself. The efficacy in 

stabilization of the G-quadruplex by the compounds can be quantified from the variation of 

the melting temperature (Tm). Tm can be defined as the temperature showing 50 % of 

structured DNA and 50 % of denaturated DNA. At room temperature (structured DNA) 5’ 

and 3’ endings, respectively marked with the cromophore FAM (6-carboxy fluorescein) 

and the quencher Dabcyl, are close one to the other. Fluorescence observed in this 

condition is very low as long as Dabcyl has an absorbance maximum at the length of 

emission of FAM. On the other hand a destructured DNA shows a remarkable increase in 

fluorescence. Tm is measured at growing concentration of the compound and the ΔTm can 

be obtained. 

 
FIG44. Fluorescence melting assay 

According to the curves in FIG44, the lead compound remains the best stabilizer of the 
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telomeric G-quadruplex sequence (TTAGGG repeat) screened. On the other hand, 

compound 19 reaches very close values. 

 
FIG45. Detailed comparison of the fluorescence melting assay for compounds 7, 48, 51 

Going back to the constrained derivatives of the lead compound, 48 and 51, fluorescence 

melting enlightens the relevance of the role of the flexibility of the side chains in a G-

quadruplex stabilizer: compound 51 shows a worst stabilizing capability when compared to 

7, but 48, the completely rigid molecule, is the worst stabilizer. As previously introduced, 

the binding affinity measured through MS analysis does not necessarily correspond to the 

ability of stabilizing structured DNA: even if 48 has a greater binding affinity to DNA and 

binds also in the 2:1 ratio (probably due to non specific or unefficient/energetically 

unuseful interactions), 7 remains the best stabilizer. Interestingly, anyway, compound 19 

shows promising results both according to mass spectrometry and fluorescence melting 

experiments. 
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CONCLUSIONS AND PERSPECTIVES 

A wide set of potential G-quadruplex stabilizers was prepared and characterized during this 

research project and, through the exploration of different chemical classes, some 

compounds with a promising stabilizing activity were identified. 

In addition to the fluorescence melting experiment, during the third year innovative 

biological evaluation techniques were set up and optimized (ESI-binding MS, tandem MS, 

ion mobility MS, gel electrophoresis), expanding the field of application of the synthesized 

molecules from the medicinal chemistry to the world of chemical probing. A docking 

routine procedure was also optimized for the investigation of the possible binding motifs, 

opening the path for in silico preliminary screenings of designed molecules and for a more 

detailed study of the mechanism of action/binding fashion of the molecules.  

A wide set of compounds with various chemical and structural features was obtained. 

Structural and conformational properties of the synthesized compounds were deeply 

investigated and their relevance in obtaining a good stabilization effect was spot out.  

O N
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N

N  

19 

Moreover a promising molecule, compound 19, was enlightened as a potential stabilizer by 

both fluorescence melting and ion mobility MS, confirming the reliability of these 

complementary techniques in the set up of a screening process. In addition to this, the role 

of different ions in influencing the behavior and topology of G-quadruplexes and their 

capability of being targeted by the synthesized molecules is now being investigated tuning 
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the experimental and sample preparation conditions. 

In this connection, the value of this research work goes beyond the encouraging results 

reached both in the synthetic part and in the optimized evaluation processes; indeed, we 

developed a multi-technique model-approach for the whole process of the investigation of 

G-quadruplex and its ligands that involves every step from the in silico design to a multi-

technology evaluation, going through the synthesis and the enhanced characterization of 

novel probes\stabilizers. This valuable information will be of a great help in designing 

novel derivatives and it represents a promising starting point for the further convergent 

development of these complementary screening techniques. 
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3. EXPERIMENTAL PROCEDURES 
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3.1 ABBREVIATIONS 

 

°C   celsius degree 

CDCl3     deuterated chloroform  

CHCl3     chloroform  

δ   delta, ppm  

d   doublet  

dd     double doublet  

DCM   dichloromethane  

DMSO   dimethylsulfoxide  

D2O   deuterated water 

EtOAc   ethyl acetate 

EtOH   ethanol 

Et2O   diethyl ether 

g   gram/grams 

h   hour/hours 

HPLC    High Performance Liquid Chromatography  

HRMS   High Resolution Mass Spectrometry  

Hz   Hertz  

J   coupling constant  

L   liter/liters  

m   multiplet or milli 
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M   molarity  

MeOD   deuterated methanol  

MeOH   methanol 

mg   milligram/milligrams 

MHz   MegaHertz  

min   minutes 

mL   milliliters 

mmol   millimole/millimoles 

mol   mole/moles 

MS   mass spectrometry 

MW   molecular weight 

µ   micro  

NMR   Nuclear Magnetic Resonance 

ppm   parts per million 

rt   room temperature  

s   singlet 

SAR   structure-activity relationship  

t   triplet 

THF   tetrahydrofuran  

TLC   Thin Layer Chromatography  
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3.2 MATERIALS 

 

Reactants and reagents 

Sigma-Aldrich and Fluka substances were used without any further purification. 

 

Solvents  

Normapur Prolabo, Sigma-Aldrich, Riedler-De Haen, VWR and Baker solvents were used.  

 

Oligonucleotides 

Oligonucleotides were purchased from IDT - Integrated DNA Technologies (USA). 

 

Deuterated solvents 

Deuterated solvents were purchased from Sigma-Aldrich.  

 

TLC Plates 

Glass supported Thin Layer Chromatography plates Silica Gel 60 F254 by Merck were 

used.  

 

Flash chromatography cartridges 

10 g and 25 g SNAP Cartridges were purchased by Biotage.  

 

DNA purification 
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The clean-up procedure operated on DNA oligonucleotides was performed using Merck 

3000 MWCO tubes. 

 

Gel electrophoresis 

The preparation of native gels for the electrophoresis experiments was carried out 

according to the procedures reported later in this section and using AccuGel 19:1 40% w/v 

acrylamide/bis-acrylamide by Natural Diagnostics as starting material. For denaturing gels 

Ultrapure Sequagel UreaGel System Concentrated, System Diluent and System Buffer by 

National Diagnostics were used. Thermo O'Range 10 bp was used as ready to use ladder as 

a molecular weight indicator during the experiments. TBE (Tris/Borate/EDTA) buffer and 

its dilutions/modifications were prepared according to the reported procedures. Staining of 

the gels was performed with Sigma Stains All. 
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3.3 INSTRUMENTATION 

 

Nuclear Magnetic Resonance (NMR) 

NMR spectra were recorded on a Bruker AMX 300 MHz and on a Bruker AVANCE III 

400 MHz NMR.  

 

High Resolution Mass Spectrometry (HRMS)  

An ESI-TOF Mariner instrument from Applied Biosystems was used to perform MS 

analysis. 

 

Tandem Mass Spectrometry (MS-MS) 

MS spectra showing fragmentation MS-MS experiments were recorded on a Thermo LTQ 

OrbiTrap Velos. 

 

Ion Mobility Mass Spectrometry (IMMS) 

Ion mobility data sets were acquired on a Waters Synapt G2 HDMS. 

  

Automatic flash chromatography 

An Isolera One chromatographic apparatus from Biotage was used for preparative flash 

chromatography. 

 

UV-Vis Spectrophotometer 

A Thermo NanoDrop 2000c spectrophotometer was used to quantify DNA samples and 
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compounds. 

 

High Performance Liquid Chromatography (HPLC)  

A Varian ProStar 210 combined with a Zorbax Eclipse XDB-C8 by Agilent Technologies 

column was used for HPLC analysis. An appropriate ratio of water (A) and acetonitrile (B) 

was used as mobile phase with an overall flow rate of 1 mL min-1; the general method for 

the analyses is here reported: 0 minutes (90% A-10% B), 15 minutes (10% A-90% B), 20 

minutes (10% A-90% B), 21 minutes (90% A-10% B), 25 minutes (90% A-10% B). The 

purity of all compounds was ≥ 95%, unless otherwise stated. 

 

Gel electrophoresis equipment 

E.C. Apparatus Corporation electrophoresis apparatus was used together with Bio-Rad 

equipment. 
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3.4 COMPUTATIONAL ANALYSIS AND ARTWORKS 

 

All the artworks reported in this manuscript are original and produced specifically for this 

research work. The .pdb files of proteins and nucleic acids were downloaded from the 

RCSB Protein Data Bank.94 If the artwork represents an unmodified X-ray or NMR solved 

structure, the reference number leads to the article that is connected to the .pdb file of 

interest.94 The workflow for their visualization or for the structure editing and analysis was 

designed in order to take advantage of the usage of freeware, multiplatform software, 

running the experiments on a Unix G4 machine. 

The structures of the ligands of interest were designed using the JSDraw online tool95 and 

exported to the .mol format. The Avogadro software96 was used to process these files and, 

in particular, for a preliminary visualization of the three dimensional structure of ligands, 

nucleic acid and their complexes. In addition to this, manual or automated sculpting and 

energy minimization scripts (MMFF94 and UFF force fields) from this software were 

applied to obtain a rough model representing the interaction motif. In some preliminary 

model analysis, PyMOL was used.97 Figures were then obtained exploring the resulting 

.mol or .pdb files using UCSF Chimera.98 This software was also used for the structure 

analysis/measurements of both the designed ligands and the .pdb files from RCSB Protein 

Data Bank.94 

Structure to name conversion was operated using ChemDoodle Web Components online 

tools.99 

For what concerning docking studies, AutoDockTools 1.5.6 was used to establish the 

Autogrid points and to visualize the docked poses resulting from the Autodock4 analysis.100 

Both ligand and G-quadruplex 3D models were optimized for the experiment removing the 

co-crystallized ligand, adding polar hydrogens to the structures and computing partial 

charges. The docking grid maps were spaced at 0.500 Å, and the center of the G-
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quadruplex structure was set as the grid center. One hundred docking runs were performed. 

This procedure was optimized and carried out in accordance to other recently reported 

docking studies of small molecules on G-quadruplexes.79 
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3.5 SCHEME I: PROCEDURES 
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Anthracene-1,5-diacetyl (50) 

 

O

O

 

 

A three-neck round-bottom flask was charged with AlCl3 (23 g, 168 mmol) in 150 mL of 

dichloroethane. The stirred suspension was cooled in an ice bath and acetyl chloride (11.8 

mL, 168 mmol) was added. Anthracene (10 g, 56 mmol) was added in portions avoiding 

the temperature to go over 0°C. After the addition of the reactants, the red mixture was 

allowed to stir for 4 hours at room temperature. The proceeding of the reaction was 

monitored through TLC (dichloromethane, ethyl acetate 98:2). The red solid collected from 

filtration was poured in a mixture of 37% HCl (40 mL) and ice (400 g) and let under 

vigorous stirring for additional 2 hours. A yellow solid was then collected by filtration and 

recrystallized from acetic acid and then from toluene. Yield: 30%. 
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C18H14O2 

MW: 262.30 

 

1H-NMR: δΗ (400 MHz, CDCl3) 9.60 (2H, s, ArH), 8.29 (2H, dd, J 8.4 Hz, J 0.8 Hz, 

ArH), 8.12 (2H, dd, J 7.0 Hz, J 1.1 Hz, ArH), 7.56 (2H, dd, J 8.4 Hz, J 7.0 Hz, ArH), 2.85 

(6H, s, CH3) 

 

13C-NMR {1H}: δC (100 MHz, CDCl3) 199.6, 136.5, 133.2, 132.8, 131.3, 129.6, 126.6, 

121.5, 29.9 

 

HRMS (ESI): exp. 263.1035 (M+1), calc. 263.0994 
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Anthracene-1,5-dicarboxylic acid (63) 

 

O

O OH

HO  

 

A three-neck round-bottom flask was charged with 50 (1 g, 3.812 mmol) in 200 mL of 

ethanol and the mixture was heated to reflux. A freshly prepared solution of NaOBr, 

obtained by mixing 33 mL of NaOH 30% and 3.50 mL of bromine in an ice bath, was then 

dropped in the flask during 1 hour. This procedure was repeated twice and then the reaction 

was allowed to stir at refluxing temperature overnight. The reaction was quenched by the 

addition of a solution of 7 g of Na2S2O5 in 200 mL of water. After the addition of 10% HCl 

a solid formed, which was collected by filtration. Another solid was collected from the 

concentration of the filtered solution. An extraction with ethanol from the solid in a 

soxhelet led to a liquid that, after evaporation, gave the product. Yield: 66%. 
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C16H10O4 

MW 266.25 

 

1H-NMR: δΗ (400 MHz, MeOD) 9.61 (2H, m, ArH), 8.27 (4H, m, ArH), 7.59 (2H, m, 

ArH) 

 

13C-NMR {1H}: δC (100 MHz, MeOD) 169.8, 136.5, 132.9, 129.4, 128.2, 127.5, 125.3, 

121.5 

 

HRMS (ESI): exp. 265.0525 (M-1), calc. 265.0600 
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Dimethyl anthracene-1,5-dicarboxylate (64) 

 

O

O O

O  

 

A round-bottom flask was charged with 600 mg of 63 and 25 mL of ethanol. After the 

dissolution of the intermediate, allowed by the warming of the mixture, freshly prepared 

NaOMe (from MeOH and Na) was added (365 mg, 6.761 mmol). Dimethylsulfate (640 µL, 

6.761 mmol) was added after that the reaction mixture was cooled to room temperature. 

The obtained solution was heated to reflux and allowed to stir overnight. The residue 

obtained after the evaporation of the solvent was washed with water and 205 mg of the 

desired compound were obtained. Yield: 31%. 
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C18H14O4 

MW 294.30 

 

1H-NMR: δΗ (400 MHz, MeOD) 9.60 (2H, m, ArH), 8.33 (4H, m, ArH), 7.61 (2H, m, 

ArH), 4.62 (3H, s, CH3), 4.07 (3H, s, CH3) 

 

13C-NMR {1H}: δC (100 MHz, MeOD) 168.9, 136.4, 132.8, 130.2, 128.3, 127.1, 125.8, 

121.5, 53.3 

 

HRMS (ESI): exp. 295.1006 (M+1), calc. 295.0900 
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3-Bromo-1-{5-(3-bromopropionyl)-1-anthryl}-1-propanone (65) 

 

O Br

OBr  

 

A three-neck round-bottom flask was charged with AlCl3 (23.0 g, 168.3 mmol) in 150 mL 

of dichloroethane. The stirred suspension was cooled in an ice bath and 3-Br propionyl 

chloride (17.0 mL, 168.3 mmol) was added. Anthracene (10.0 g, 56.1 mmol) was added in 

portions avoiding the temperature to go over 0°C. After the addition of the reactants, the 

red mixture was allowed to stir for 4 hours at room temperature. The proceeding of the 

reaction was monitored through TLC (dichloromethane, ethyl acetate 98:2). The dark 

yellow solid collected from filtration was poured in a mixture of 37% HCl (40.0 mL) and 

ice (400.0 g) and let under vigorous stirring for additional 3 hours. A yellow solid was then 

collected by filtration, wich was refluxed in 100 mL of acetic acid for 2 hours. The non 

dissolved solid was then dissolved in chloroform and the organic solution was washed with 

basic water (K2CO3). The organic phase was then evaporated to give the product. Yield: 

33%. 
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C20H16Br2O2 

MW 448.15 

 

1H-NMR: δΗ (300 MHz, CDCl3) 9.46 (2H, s, ArH), 8.22 (2H, d J 9.6 Hz, ArH) , 8.00 

(2H, dd J 6.7 Hz, J 1.1 Hz, ArH), 7.50 (2H, dd J 8.4 Hz, J 1.6 Hz, ArH) 3.8-3.7 (4H, m, 

CH2), 3.7-3.6 (4H, m, CH2) 

 

13C-NMR {1H}: δC (75 MHz, CDCl3) 199.21, 135.5, 132.7, 132.5, 131.3, 126.6, 125.9, 

121.5, 30.9, 30.2 

 

HRMS (ESI): exp. 446.9012 (M+1), calc. 446.9524 
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2-Bromo-1-{5-(2-bromoacetyl)-1-anthryl}-1-ethanone (66) 

 

O
Br

O
Br

 

 

A three-neck round-bottom flask was charged with AlCl3 (23.0 g, 168.3 mmol) in 150 mL 

of dichloroethane. The stirred suspension was cooled in an ice bath and 3-Br acetyl 

chloride (14.7 mL, 168.3 mmol) was added. Anthracene (10.0 g, 56.1 mmol) was added in 

portions avoiding the temperature to go over 0°C. After the addition of the reactants, the 

red mixture was allowed to stir for 4 hours at room temperature. The proceeding of the 

reaction was monitored through TLC (dichloromethane, ethyl acetate 98:2). The dark 

yellow solid collected from filtration was poured in a mixture of 37% HCl (40.0 mL) and 

ice (400.0 g) and let under vigorous stirring for additional 3 hours. A yellow solid was then 

collected by filtration; which was refluxed in 100 mL of acetic acid for 2 hours. The non 

dissolved solid was then dissolved in chloroform and the organic solution was washed with 

basic water (K2CO3). The organic phase was then evaporated to give the product. Yield: 

12%. 
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C18H12Br2O2 

MW 420.09 

 

1H-NMR: δΗ(400 MHz, CDCl3) 9.53 (2H, s, ArH), 8.35 (2H, d J 8.7 Hz,) , 8.00 (2H, dd J 

7.0 Hz, J 1.0 Hz, ArH), 7.50 (2H, t, J 8.7 Hz, ArH) 4.70 (4H, s, CH2) 

 

13C-NMR {1H}: δC (100 MHz, CDCl3) 191.2, 136.4, 133.2, 131.2, 129.5, 126.6, 125.9, 

121.5, 32.3 

 

HRMS (ESI): exp. 419.0021 (M+1), calc. 418.9212 
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3-Piperidino-1-{5-(3-piperidinopropionyl)-1-anthryl}-1-propanone (67) 

 

O N

ON

 

 

A round-bottom flask was charged with 65 (50 mg, 0.112 mmol) and 30 mL of xylene. 

CaCO3 (33 mg, 0.335 mmol), KI (55 mg, 0.335 mmol) and piperidine (33 µL, 0.335 mmol) 

were then added. The reaction mixture was allowed to stir at reflux for 7 hours and the 

proceedings were monitored through TLC (chloroform, methanol 6:1). The obtained 

suspension was then filtered. The solid collected was dried in oven for 2 hours and then 

dissolved in 20 mL of chloroform, filtering off the insoluble salts. The filtrate was washed 

with basic water (K2CO3) and the organic phase evaporated to dryness giving the desired 

compound as a brown solid. Yield: 71%. 

 

The hydrochloride salt of the compound can be easily obtained: to a solution of the 

compound in ethanol, HCl 37% was slowly added to acid pH. The mixture was stirred at 

room temperature for 2 hours and then the solvent was evaporated. 

 



168 

C30H36N2O2 

MW 456.62 

 

1H-NMR: δΗ (400 MHz, D2O) 9.19 (2H, s, ArH), 8.23 (2H, d J 8.6 Hz, ArH) , 8.15 (2H, d 

J 6.8 Hz, ArH), 7.55 (2H, m, ArH), 7.50 (2H, dd J 7.6 Hz, J 6.4 Hz, ArH), 3.69 (4H, t J 6.4 

Hz, CH2), 3.6-3.5 (8H, m, CH2), 2.99 (4H, t J 11.8 Hz, CH2), 1.8-1.7 (8H, m, CH2) 

 

13C-NMR {1H}: δC (100 MHz, D2O) 199.2, 136.5, 133.3, 132.6, 131.3, 126.6, 125.9, 

121.2, 51.4, 49.2, 35.2, 26.7, 24.0 

 

HRMS (ESI): exp. 229.1468 ((M+2)/2), calc. 229.1461; exp. 457.2927 (M+1), calc. 

457.2850 

 

 



169 

Tert-butyl piperazine-1-carboxylate (N-Boc piperazine) (68) 

 

HN

N O

O

 

 

In a round-bottom flask piperazine (12 g, 0.139 mol) was dissolved in 500 mL of 

dichloromethane. The obtained solution was stirred and cooled in an ice bath. In another 

flask di-tert-butyl dicarbonate (3.8 g, 0.017 mol) was dissolved in 100 mL of 

dichloromethane. This solution was slowly added drop by drop to the piperazine solution in 

2.5 h and the reaction mixture was then allowed to stir at room temperature overnight. The 

white solid obtained was removed by filtration and the filtered solution was evaporated to 

give a white residue that was suspended in dichloromethane. This suspension was washed 

with water and the organic phase was evaporated to give the product. Yield: 83 %. 

 



170 

C9H18N2O2 

MW 186.25 

 

1H-NMR: δΗ (400 MHz, Acetone) 3.30 (4H, m, CH2), 2.70 (4H, m, CH2), 1.44 (9H, s, 

CH3) 

 

13C-NMR {1H}: δC (100 MHz, Acetone) 160.0, 81.4, 45.8, 44.9, 28.2 

 



171 

tert-Butyl 4-(3-oxo-3-{5-[3-(4-tert-butoxycarbonyl-1-piperazinyl)propionyl]-1-

anthryl}propyl)-1-piperazinecarboxylate (69) 

 

O N

ON

N

N

O

O

O

O

 

 

A round-bottom flask was charged with 65 (50 mg, 0.112 mmol) and 30 mL of xylene. 

CaCO3 (33 mg, 0.335 mmol), KI (55 mg, 0.335 mmol) and N-Boc piperazine (62 mg, 

0.335 mmol) were then added. The reaction mixture was allowed to stir at reflux for 7 

hours and the proceedings were monitored through TLC (chloroform, methanol 6:1). The 

obtained suspension was then filtered. The solid collected was dried in oven for 2 hours and 

then dissolved in 20 mL of chloroform, filtering off the insoluble salts. The filtrate was 

washed with basic water (K2CO3) and the organic phase evaporated to dryness giving the 

desired compound as a brown solid. Yield: 52%. 

 



172 

C38H50N4O6 

MW 658.83 

 

1H-NMR: δΗ (300 MHz, MeOD) 8.12 (2H, s, ArH), 8.02 (2H, dd J 8.9 Hz, J 8.4 Hz, 

ArH), 7.98 (2H, d J 8.9 Hz, ArH), 7.56 (2H, d J 8.4 Hz, ArH), 2.90 (4H, t, CH2), 2.78 (4H, 

t, CH2), 2.69 (8H, m, CH2), 2.60 (8H, m, CH2), 2.22 (18H, s, 6 x CH3) 

 

13C-NMR {1H}: δC (75 MHz, MeOD) 200.2, 154.8, 136.6, 133.0, 132.6, 131.3, 126.9, 

125.4, 121.8, 81.3, 52.9, 49.6, 43.6, 35.2, 28.9 

 

HRMS (ESI): exp. 330.1958 ((M+2)/2), calc. 330.1938; exp. 659.3808 (M+1), calc. 

659.3803 

 

 



173 

3-(1-Piperazinyl)-1-{5-[3-(1-piperazinyl)propionyl]-1-anthryl}-1-propanone 

(70) 

 

O N

ON

HN

NH

 

 

The N-Boc protected compound 69 (38 mg, 0.050 mmol) was dissolved in 5 mL of hot 

dichloromethane. After cooling to room temperature 5 mL of trifluoroacetic acid were 

added and the mixture was allowed to stir at room temperature for 1 hour. The solvent was 

then removed under reduced pressure. The residue was suspended in toluene and the 

reaction mixture was dried again to give the compound. Yield: 91%. 

 



174 

C28H34N4O2 

MW 458.60 

 

1H-NMR: δΗ (300 MHz, MeOD) 8.03 (2H, s, ArH), 8.00 (2H, dd J 9.1 Hz, J 8.3 Hz, 

ArH), 7.98 (2H, d J 8.3 Hz, ArH), 7.90 (2H, d J 9.1 Hz, ArH), 2.91 (4H, t, CH2), 2.72 (4H, 

t, CH2), 2.68 (8H, m, CH2), 2.52 (8H, m, CH2) 

 

13C-NMR {1H}: δC (75 MHz, MeOD) 199.2, 136.5, 131.2, 130.2, 129.4, 126.6, 125.4, 

120.2, 54.5, 50.4, 44.8, 35.2 

 

HRMS (ESI): exp. 230.1458 ((M+2)/2), calc. 230.1414; exp. 459.2861 (M+1), calc. 

459.2755 

 

 



175 

3-(1-Pyrrolidinyl)-1-{5-[3-(1-pyrrolidinyl)propionyl]-1-anthryl}-1-propanone 

(71) 

 

O N

ON

 

 

A round-bottom flask was charged with 65 (50 mg, 0.112 mmol) and 30 mL of xylene. 

CaCO3 (33 mg, 0.335 mmol), KI (55 mg, 0.335 mmol) and pyrrolidine (24 mg, 0.335 

mmol) were then added. The reaction mixture was allowed to stir at reflux for 7 hours and 

the proceedings were monitored through TLC (chloroform, methanol 6:1). The obtained 

suspension was then filtered. The solid collected was dried in oven for 2 hours and then 

dissolved in 20 mL of chloroform, filtering off the insoluble salts. The filtrate was washed 

with basic water (K2CO3) and the organic phase evaporated to dryness giving the desired 

compound as a brown solid. Yield: 79%. 

 

The hydrochloride salt of the compound can be easily obtained: to a solution of the 

compound in ethanol, HCl 37% was slowly added to acid pH. The mixture was stirred at 

room temperature for 2 hours and then the solvent was evaporated. 

 



176 

C28H32N2O2 

MW 428.57 

 

1H-NMR: δΗ (400 MHz, CDCl3) 9.32 (2H, s, ArH), 8.13 (2H, d, J 8.43 Hz, ArH), 7.94 

(2H, dd, J 6.9 Hz, J 0.8 Hz, ArH), 7.44 (2H, t, J 8.50 Hz, ArH), 3.30 (4H, m, CH2),  3.0-2.9 

(4H, m, CH2), 2.52 (8H, m, CH2), 1.72 (8H, m, CH2) 

 

13C-NMR {1H}: δC (75 MHz, CDCl3) 200.1, 136.7, 132.8, 131.0, 126.9, 125.4, 120.9, 

53.4, 49.1, 35.2, 22.5 

 

HRMS (ESI): exp. 215.1394 ((M+2)/2), calc. 215.1305 

 

 



177 

3-Morpholino-1-{5-(3-morpholinopropionyl)-1-anthryl}-1-propanone (72) 

 

O N

ON

O

O

 

 

A round-bottom flask was charged with 65 (50 mg, 0.112 mmol) and 30 mL of xylene. 

CaCO3 (33 mg, 0.335 mmol), KI (55 mg, 0.335 mmol) and morpholine (29 µL, 0.335 

mmol) were then added. The reaction mixture was allowed to stir at reflux for 7 hours and 

the proceedings were monitored through TLC (chloroform, methanol 6:1). The obtained 

suspension was then filtered. The filtrate was evaporated and the residue was dissolved in 

chloroform. This suspension was washed with basic water (K2CO3). The organic phase was 

evaporated to give the product as brown solid. Yield: 64%. 

 

The hydrochloride salt of the compound can be easily obtained: to a solution of the 

compound in ethanol, HCl 37% was slowly added to acid pH. The mixture was stirred at 

room temperature for 2 hours and then the solvent was evaporated. 

 



178 

C28H32N2O4 

MW 460.57 

 

1H-NMR: δΗ(400 MHz, D2O) 9.27 (2H, s, ArH), 8.28 (2H, d, J 8.16 Hz, ArH), 8.19 (2H, 

d, J 7.08 Hz, ArH), 7.6-7.5 (2H, m, ArH), 3.9-3.8 (4H, m, CH2), 3.70 (4H, m, CH2), 3.67 

(8H, m, CH2), 3.2-3.1 (4H, m, CH2) 

 

13C-NMR {1H}: δC (75 MHz, D2O) 200.0, 136.5, 132.9, 131.0, 126.6, 125.5, 121.5, 66.4, 

55.0, 49.4, 35.2 

 

HRMS (ESI): exp. 231.1274 ((M+2)/2) calc. 231.1254 



179 

3-(1H-Imidazol-1-yl)-1-{5-[3-(1H-imidazol-1-yl)propionyl]-1-anthryl}-1-

propanone (19) 

 

O N

ON

N

N  

 

A round-bottom flask was charged with 65 (50 mg, 0.112 mmol) and 30 mL of xylene. 

CaCO3 (33 mg, 0.335 mmol), KI (55 mg, 0.335 mmol) and imidazole (24 mg, 0.335 mmol) 

were then added. The reaction mixture was allowed to stir at reflux for 7 hours and the 

proceedings were monitored through TLC (chloroform, methanol 6:1). The obtained 

suspension was then filtered. The filtrate was evaporated and the residue was dissolved in 

chloroform. This suspension was washed with basic water (K2CO3). The organic phase was 

evaporated to give the product as yellow solid. The solid collected from the filtration 

described above was dried in oven for 2 hours and then dissolved in 20 mL of chloroform, 

filtering off the insoluble salts. The filtrate was washed with basic water (K2CO3) and the 

organic phase evaporated to dryness giving the desired compound as a yellow solid, that 

was merged with the one obtained from the filtrate. Yield: 87%. 

 

The hydrochloride salt of the compound can be easily obtained: to a solution of the 

compound in ethanol, HCl 37% was slowly added to acid pH. The mixture was stirred at 

room temperature for 2 hours and then the solvent was evaporated. 



180 

C26H22N4O2 

MW 422.48 

 

1H-NMR: δΗ (400 MHz, CDCl3) 9.42 (2H, s, ArH), 8.29 (2H, d, J 8.66 Hz, ArH), 7.99 

(2H, dd, J 7.5 Hz, J 1.1 Hz, ArH), 7.68 (2H, s, ArH), 7.65 (2H, “t” J 8.36 Hz), 7.08 (2H, m, 

ArH), 7.06 (2H, m, ArH), 4.56 (4H, t, J 6.0 Hz, CH2), 3.64 (4H, t, J 6.0 Hz, CH2) 

 

13C-NMR {1H}: δC (100 MHz, D2O) 200.87, 135.28, 135.19, 131.84, 131.53, 130.96, 

125.89, 124.94, 123.99, 122.09, 119.70, 44.21, 40.01 

 

HRMS (ESI): exp. 212.0958 ((M+2)/2) calc. 212.0944; exp. 423.1853 (M+1) calc. 

423.1816 

 

 

 



181 

3-(3-Pyridylamino)-1-{5-[3-(3-pyridylamino)propionyl]-1-anthryl}-1-

propanone (18) 

 

O NH

OHN

N

N  

 

A round-bottom flask was charged with 65 (50 mg, 0.112 mmol) and 30 mL of xylene. 

CaCO3 (33 mg, 0.335 mmol), KI (55 mg, 0.335 mmol) and 3-amino pyridine (31 mg, 0.335 

mmol) were then added. The reaction mixture was allowed to stir at reflux for 7 hours and 

the proceedings were monitored through TLC (chloroform, methanol 6:1). The obtained 

suspension was then filtered. The solid collected was dried in oven for 2 hours and then 

dissolved in 20 mL of chloroform, filtering off the insoluble salts. The filtrate was washed 

with basic water (K2CO3) and the organic phase evaporated to dryness giving the desired 

compound as a brown solid. Yield: 23%. 

 



182 

C30H26N4O2 

MW 474.55 

 

1H-NMR: δΗ (400 MHz, CDCl3) 8.27 (2H, m, ArH), 8.10 (2H, m, ArH), 8,00 (2H, m, 

ArH), 7.54 (2H, m, ArH), 7.45 (2H, m, ArH), 7.21 (2H, m, ArH), 7.13 (2H, m, ArH), 6.99 

(2H, m, ArH), 3.72 (4H, m, CH2), 3.50 (4H, m, CH2) 

 

13C-NMR {1H}: δC (75 MHz, DMSO) 202.79, 145.17, 137.28, 136.73, 135.73, 134.33, 

132.76, 124.07, 123.94, 120.03, 117.81 

 

HRMS (ESI): exp. 238.1105 ((M+2)/2), calc. 238.1028; exp. 475.2239 (M+1), calc. 

475.2056 

 



183 

2-(1,3-Thiazol-2-ylamino)-1-{5-[2-(1,3-thiazol-2-ylamino)acetyl]-1-anthryl}-1-

ethanone (73) 

 

O
N
H

O

H
N

S

N

S

N  

 

A round-bottom flask was charged with 66 (50 mg, 0.119 mmol) and 30 mL of xylene. 

CaCO3 (33 mg, 0.337 mmol), KI (55 mg, 0.335 mmol) and 2-amino thiazole (36 mg, 0.337 

mmol) were then added. The reaction mixture was allowed to stir at reflux for 7 hours and 

the proceedings were monitored through TLC (chloroform, methanol 6:1). The obtained 

suspension was then filtered. The solid collected was dried in oven for 2 hours and then 

dissolved in 20 mL of chloroform, filtering off the insoluble salts. The filtrate was washed 

with basic water (K2CO3) and the organic phase evaporated to dryness. The solid was 

further purified through preparative TLC and yellow crystals were obtained. Yield: 20%. 

 



184 

C24H18N4O2S2 

MW 458.56 

 

1H-NMR: δΗ (400 MHz, CDCl3) 9.24 (2H, s, ArH), 8.05 (2H, d, J 9.1 Hz, ArH), 7.78 

(2H,dd, J 7.0 Hz J 1.1 Hz, ArH), 7.60 (2H, d, J 4.4 Hz, ArH), 7.52 (2H, m, ArH), 6.96 (2H, 

d, J 4.4 Hz ArH), 3.67 (4H, m, CH2) 

 

13C-NMR {1H}: δC (75 MHz, CDCl3) 197.2, 160.8, 137.5, 136.5, 132.9, 131.3, 129.7, 

126.6, 125.8, 121.4, 113.1, 50.3 

 

HRMS (ESI): exp. 230.0536 ((M+2)/2), calc. 230.0456 

 

 



185 

2-(1H-Imidazol-1-yl)-1-{5-[2-(1H-imidazol-1-yl)acetyl]-1-anthryl}-1-ethanone 

(74) 

 

O

O

N

N

N

N  

 

A round-bottom flask was charged with 66 (50 mg, 0.119 mmol) and 30 mL of xylene. 

CaCO3 (33 mg, 0.337 mmol), KI (55 mg, 0.335 mmol) and imidazole (24 mg, 0.337 mmol) 

were then added. The reaction mixture was allowed to stir at reflux for 7 hours and the 

proceedings were monitored through TLC (chloroform, methanol 6:1). The obtained 

suspension was then filtered. The solid collected was dried in oven for 2 hours and then 

dissolved in 20 mL of chloroform, filtering off the insoluble salts. The filtrate was washed 

with basic water (K2CO3) and the organic phase evaporated to dryness. The residue was 

washed with a diluted ethanolic solution of HCl and then with aqueous NaOH. The final 

compound was obtained as a yellow solid. Yield: 53%. 

 



186 

C24H19N4O2 

MW 394.43 

 

1H-NMR: δΗ (400 MHz, DMSO) 9.56 (2H, s, NHC=N), 8.94 (2H, s, ArH), 8.51 (4H, d, 

ArH), 7.80 (2H, dd, J 8.4 Hz J 7,2 Hz, ArH), 7.70 (4H, d, NCH=CH), 6.14 (4H, s, CH2) 

 

13C-NMR {1H}: δC (75 MHz, DMSO) 196.71, 185.54, 135.38, 132.99, 131.69, 131.05, 

127.48, 126.32, 125.32, 121.34, 54.85, 31.03 

 

HRMS (ESI): exp. 198.0840 ((M+2)/2), calc. 198,.0715; exp. 395.1717 (M+1), calc. 

395.1430 

 

 



187 

3-(1H-1,2,4-Triazol-1-yl)-1-{5-[3-(1H-1,2,4-triazol-1-yl)propionyl]-1-anthryl}-

1-propanone (75) 

 

O N

ON
N

N

N

N

 

 

A round-bottom flask was charged with 65 (75 mg, 0.167 mmol) and 30 mL of xylene. 

CaCO3 (50 mg, 0.502 mmol), KI (83 mg, 0.502 mmol) and triazole (35 mg, 0.502 mmol) 

were then added. The reaction mixture was allowed to stir at reflux for 7 hours and the 

proceedings were monitored through TLC (chloroform, methanol 6:1). The obtained 

suspension was then filtered. Once cooled in an ice bath, the filtrate gave yellow crystals of 

the final compound. Yield: 24%. 

 



188 

C24H20N6O2 

MW 424.45 

 

1H-NMR: δΗ (400 MHz, DMSO) 9.41 (2H, m, ArH), 9.32 (2H, ‘s’, ArH), 7.67 (2H, m, 

ArH), 7.22 (2H, ‘s’, ArH), 7.10 (2H, m, ArH), 6.97 (2H, m, ArH), 4.68 (4H, m, CH2), 3.88 

(4H, m, CH2) 

 

13C-NMR {1H}: δC (75 MHz, DMSO) 199.2, 151.5, 144.1, 136.7, 131.9, 131.3, 131.0, 

126.5, 125.4, 121.5, 49.4, 39.5 

 

HRMS (ESI): exp. 425.1925 (M+1), calc. 425.1648 

 

 



189 

3.6 SCHEME II: PROCEDURES 
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191 

1-[5-(1-Hydroxy-3-piperidinopropyl)-1-anthryl]-3-piperidino-1-propanol (76) 

 

HO N

N OH

 

 

The keto- derivative 67 (11 mg, 0.024 mmol) was dissolved in 2 mL of methanol in a 

round-bottom flask and NaBH4 was added to the solution (4 mg, 0.096). The reaction 

mixture was allowed to stir overnight at room temperature. The proceedings of the reaction 

were monitored through TLC (chloroform, methanol 6:1). After the end of the reaction, 

HCl 10% was added to acid pH. The reaction mixture was extracted with chloroform and 

the organic phase was washed with basic water. Evaporation of the organic phase gave the 

product as brown solid. Yield: 72%. 

 



192 

C30H40N2O2 

MW 460.65 

 

1H-NMR: δΗ (400 MHz, CDCl3) 8.57 (2H, d, J 5.4 Hz, ArH), 7.95 (2H, d, J 8.2 Hz, ArH), 

7.77 (2H, d, J 6.5 Hz, ArH), 7.51 (2H, dd, J 8.4 Hz, J 7 Hz, ArH), 2.79 (4H, m, CH2 ), 2.67 

(8H, m, CH2), 2.25 (4H, m, CH2 ), 2.08 (4H, m, CH2 ), 1.55 (8H, m, CH2 ) 

 

13C-NMR {1H}: δC (75 MHz, CDCl3) 199.1, 136.9, 133.9, 132.3, 131.4, 126.9, 126.0, 

122.1, 51.4, 50.0, 35.2, 26.3, 24.1 

 

HRMS (ESI): exp. 231.1624 ((M+2)/2), calc. 231,1545; exp. 461.3203 (M+1), calc. 

461,3090 

 

 



193 

1-{5-[1-Hydroxy-2-(1H-imidazol-1-yl)ethyl]-1-anthryl}-2-(1H-imidazol-1-yl)-

1-ethanol (77) 

 

HO

N

N

N

N

OH

 

 

The keto- derivative 74 (11 mg, 0.028 mmol) was dissolved in 2 mL of methanol in a 

round-bottom flask and NaBH4 was added to the solution (4 mg, 0.096). The reaction 

mixture was allowed to stir overnight at room temperature. The proceedings of the reaction 

were monitored through TLC (chloroform, methanol 6:1). After the end of the reaction, 

HCl 10% was added to acid pH. The yellow solid obtained was collected by filtration, 

dissolved in chloroform and the solution was then washed with basic water (K2CO3). The 

organic phase was evaporated to give the final compound as a dark yellow solid. Yield: 

63%. 

 



194 

C24H22N4O2 

MW 398.46 

 

1H-NMR: δΗ (400 MHz, DMSO) 8.39 (2H, m, ArH), 8.32 (2H, s, ArH), 7.82 (2H, m, 

ArH), 7.65 (2H, m, ArH), 7.52 (2H, m, ArH), 7.33 (2H, m, ArH), 7.23 (2H, m, ArH), 5.75 

(2H, m, CHOH), 3.77 (4H, m, CH2) 

 

13C-NMR {1H}: δC (75 MHz, DMSO) 140.9, 18.8, 136.5, 132.9, 130.7, 129.2, 126.4, 

126.0, 121.5, 120.8, 66.3, 55.2 

 

HRMS (ESI): exp. 200.1031 ((M+2)/2), calc. 200.0872; exp. 399.1956 (M+1), calc. 

399.1743 

 

 



195 

1-{5-[1-Hydroxy-3-(1H-imidazol-1-yl)propyl]-1-anthryl}-3-(1H-imidazol-1-yl)-

1-propanol (78) 

 

N

N

N

N

HO

OH

 

 

The keto- derivative 19 (11 mg, 0.022 mmol) was dissolved in 2 mL of methanol in a 

round-bottom flask and NaBH4 was added to the solution (3 mg, 0.089). The reaction 

mixture was allowed to stir overnight at room temperature. The proceedings of the reaction 

were monitored through TLC (chloroform, methanol 6:1). After the end of the reaction, 

HCl 10% was added to acid pH. The brown solid obtained was collected by centrifugation 

and then dissolved in water. The addition of NaOH 1M gave the product as a brown solid 

(free base). Yield: 43%. 

 



196 

C26H26N4O2 

MW 426.51 

 

1H-NMR: δΗ (400 MHz, MeOD) 8.17 (2H, s, ArH), 7.86 (2H, m, ArH), 7.81 (2H, m, 

ArH), 7.71 (2H, d, J 7.0 Hz, ArH), 7.49 (2H, dd, J 7.0 Hz, 1.6 Hz, ArH), 7.30 (2H, m, 

ArH), 7.15 (2H, s, ArH), 5.5-5.4 (2H, m, CH), 4.5-4.4 (2H, m, CH-H), 4.3-4.2 (2H, m, CH-

H) 2.5-2.4 (2H, m, CH-H), 2.3-2.2 (2H, m, CH-H) 

 

13C-NMR {1H}: δC (100 MHz, MeOD) 138.92, 133.32, 129.47, 129.33, 128.92, 126.13, 

123.30, 123.20, 121.15, 67.87, 45.21, 41.10 

 

HRMS (ESI): exp. 2145.1125 ((M+2)/2) calc. 214.1101; exp. 427.2290 (M+1) calc. 

427.2129 

 

 



197 

3-Chloro-1-[5-(3-chloropropionyl)-1-anthryl]-1-propanone (20) 

 

O Cl

OCl  

 

A three-neck round-bottom flask was charged with AlCl3 (23 g, 168 mmol) in 150 mL of 

dichloroethane. The stirred suspension was cooled in an ice bath and 3-Cl propionyl 

chloride (22 mL, 196 mmol) was added. Anthracene (10 g, 56 mmol) was added in portions 

avoiding the temperature to go over 0°C. After the addition of the reactants, the red mixture 

was allowed to stir for 4 hours at room temperature. The proceeding of the reaction was 

monitored through TLC (dichloromethane, ethyl acetate 98:2). The red solid collected from 

filtration was poured in a mixture of 37% HCl (40.0 mL) and ice (400 g) and let under 

vigorous stirring for additional 3 hours. A yellow solid was then collected by filtration, 

which was refluxed in 100 mL of acetic acid for 2 hours. The non dissolved solid was then 

dissolved in chloroform and the organic solution was washed with basic water (K2CO3). 

The organic phase was then evaporated to give the product. Yield: 35%. 

 



198 

C20H16Cl2O2 

MW: 359.25 

 

1H-NMR: δΗ (400 MHz, CDCl3) 9.56 (2H, s, ArH), 8.30 (2H, m, ArH), 8.09 (2H, dd, J 

7.0 Hz, J 0.9 Hz, ArH), 7.57 (2H, dd, J 8.4 Hz, J 7.0 Hz, ArH), 4.65 (4H, t, J 6.2 Hz, CH2), 

3.52 (4H, t, J 6.2 Hz, CH2) 

 

13C-NMR {1H}: δC (75 MHz, CDCl3) 199.2, 136.5, 132.9, 132.2, 131.0, 126.7, 125.9, 

121.2, 40.1, 38.7 

 

HRMS (ESI): exp. 359.0611 (M+1), calc. 359.0535 

 



199 

3-Chloro-1-[5-(3-chloro-1-hydroxypropyl)-1-anthryl]-1-propanol (21) 

 

HO Cl

Cl OH  

 

The keto- derivative 20 (11 mg, 0.031 mmol) was dissolved in 2 mL of methanol in a 

round-bottom flask and NaBH4 was added to the solution (5 mg, 0.122). The reaction 

mixture was allowed to stir overnight at room temperature. The proceedings of the reaction 

were monitored through TLC (chloroform, methanol 6:1). After the end of the reaction, 

HCl 10% was added to acid pH. The reaction mixture was extracted with chloroform and 

the organic phase was washed with basic water. Evaporation of the organic phase gave the 

product. Yield: 72%. 

 



200 

C20H20Cl2O2 

MW 363.28 

 

1H-NMR: δΗ (400 MHz, MeOD) 8.81 (2H, s, ArH), 8.02 (2H, d, J 8.5 Hz, ArH), 7.69 

(2H, d, J 7.0 Hz, ArH), 7.49 (2H, m, ArH), 5.81 (2H, dd, J 8.7 Hz J 3.3 Hz, CHOH), 3.95 

(2H, m, HCH), 3.82 (2H, m, HCH), 2.27 (2H, m, HCH), 2.09 (2H, m, HCH) 

 

13C-NMR {1H}: δC (75 MHz, MeOD) 140.7, 136.2, 123.9, 130.8, 126.4, 126.2, 121.5, 

70.0, 41.7, 41.4 

 

HRMS (ESI): exp. 363.0921 (M+1), calc. 363.0848 

 



201 

(Z)-1-{5-[(Z)-3-Chloro-1-propenyl]-1-anthryl}-3-chloro-1-propene (22) 

 

Cl

Cl  

 

A round-bottom flask was charged with the hydroxyl derivative 21 (130 mg, 0.358 mmol) 

in 50 mL of methanol. The mixture was allowed to stir at room temperature and 2 mL of 

HCl 37% were added. After the addition the reaction was heated at 60°C for 5 hours and 

then stirred at room temperature overnight. The solvent was then evaporated and the 

residue purified by flash chromatography (chloroform, methanol 95:5). Yield: 52%. 

 



202 

C20H16Cl2 

MW 327.25 

 

1H-NMR: δΗ (400 MHz, CDCl3) 8.52 (2H, s, ArH), 7.91 (2H, d J 8.2 Hz, ArH), 7.61 (2H, 

dd J 8.5 Hz, J 8.2 Hz, ArH), 7.55 (2H, d J 8.5 Hz, ArH), 6.51 (2H, m J 9.1 Hz, C=CH), 

6.34 (2 H, m J 9.1 Hz, C=CH), 3.92 (4H, “d”, CH2) 

 

13C-NMR {1H}: δC (100 MHz, CDCl3) 137.9, 133.4, 133.0, 131.5, 130.7, 127.9, 124.0, 

123.6, 121.5, 45.2 

 



203 

(Z)-1-{5-[(Z)-3-(1H-Imidazol-1-yl)-1-propenyl]-1-anthryl}-3-(1H-imidazol-1-

yl)-1-propene (23) 

 

N

N

N

N  

 

A round-bottom flask was charged with the anthracene-based starting material 22 (2 mg, 

0.001 mmol) and 5 mL of xylene. CaCO3 (3 mg, 0.003 mmol), KI (5 mg, 0.003 mmol) and 

imidazole (2 mg, 0.003 mmol) were then added. The reaction mixture was allowed to stir at 

reflux for 7 hours and the proceedings were monitored through TLC (chloroform, methanol 

10:1). The obtained solution was extracted with chloroform and the organic phase was 

washed with aqueous NaOH. The organic phase was then evaporated to dryness to give the 

compound. Yield: 25% 

 



204 

C26H22N4 

MW 390.48 

 

1H-NMR: δΗ (400 MHz, MeOD) 8.76 (2H, s, ArH), 8.01 (2H, d J 8.6 Hz, ArH), 7.72 (2H, 

d J 7.2 Hz, NCH), 7.60 (2H, dd J 8.6 Hz, J 8.1 Hz, ArH), 7.50 (2H, d J 7.2 Hz, NCH), 7.43 

(2H, d J 8.1 Hz, ArH), 7.01 (2H, s, NCH), 6.48 (2H, m J 9.1 Hz, C=CH), 6.15 (2 H, m J 9.1 

Hz, C=CH), 3.43 (4H, “d”, CH2) 

 

13C-NMR {1H}: δC (75 MHz, MeOD) 138.1, 136.5, 136.0, 132.9, 130.7, 130.5, 130.2, 

127.4, 126.0, 121.5, 117.2, 112.0 

 

HRMS (ESI): exp. 391.2064 (M+1), calc. 391.1852 
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3.7 SCHEME III: PROCEDURES 
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24 

30 

29 

28 

26 

25 
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207 

3.4.11.12-Tetrazapentacyclo[8.6.1.22,9.013,17]nonadeca-

1(17),2,5,7,9(18),10,13,15-octaene (28) 

 

N

N

HN

NH  

 

A round-bottom flask was charged with 1,5-dichloro anthraquinone (24, 1 g, 3.583 mmol) 

and 25 mL of dimethylacetamide. After the addition of hydrazine (460 µL, 14.331 mmol) 

the solution was allowed to stir at reflux and monitored through TLC (dichloromethane, 

methanol 97.5:2.5). When the TLC showed no traces of starting material, the reaction 

mixture was poured into ice/water to give a dark solid. The purification of the compound 

was performed by flash chromatography (dichloromethane, methanol 97.5:2.5) followed by 

an additional preparative TLC (dichloromethane, methanol 95:5). Yield: 5%. 

 



208 

C14H8N4 

MW 232.24 

 

1H-NMR: δΗ (400 MHz, Acetone) 7.60 (2H, dd, J 5.9 Hz J 1.7 Hz, ArH), 7.48 (2H, m, 

ArH) 

 

13C-NMR {1H}: δC (100 MHz, Acetone) 143.8, 137.9, 130.6, 129.5, 127.2, 123.8, 113.9 

 

HRMS (ESI): exp. 233.0887 (M+1), calc. 233.0700 



209 

1-{12-Acetyl-3.4.11.12-tetrazapentacyclo[8.6.1.22,5.013,17]nonadeca-

1(17),2,5,7,9(18),10,13,15,18-nonaen-4-yl}-1-ethanone (30) 

 

N

N

N

N
O

O

 

 

A round-bottom flask was charged with anthrapyrazole 28 (8 mg, 0.034 mmol) and 5 mL 

of acetic acid and acetic anhydride (10 µL, 0.103 mmol) was added to the solution. The 

mixture was allowed to stir at room temperature for 4 hours and then it was cooled in an ice 

bath for 2 additional hours. A yellow solid was then obtained and isolated by filtration. 

Yield: 46%. 

 



210 

C18H14N4O2 

MW 318,33 

 

1H-NMR: δΗ (400 MHz, CDCl3) 8.35 (2H, d, J 8.2 Hz, ArH), 8.02 (2H, d, J 7.4 Hz, ArH), 

7.74 (2H, m, ArH), 2.90 (6H, s, CH3)  

 

13C-NMR {1H}: δC (75 MHz, MeOD) 175.3, 153.4, 139.2, 130.7, 129.6, 127.2, 123.7, 

113.8, 23.1 

 

HRMS (ESI): exp. 316.2016 (M+1), calc. 316.1968 

 



211 

4,12-Bis(2-imidazolinyl)-3.4.11.12-

tetrazapentacyclo[8.6.1.22,5.013,17]nonadeca-

1(17),2,5,7,9(18),10,13,15,18-nonaene (26) 

 

N

N

N

N

N

HN

N

NH

 

 

A round-bottom flask was charged with 1,5-dichloro anthraquinone (24, 100 mg, 0.365 

mmol), 4,5-dihydro-1H-imidazol-2-yl hydrazine HBr (132 mg, 1.462 mmol) and K2CO3 

(101 mg, 1.462 mmol) in 15 mL of pyridine. The mixture was refluxed for 10 h and then 

was stirred overnight at room temperature. The following day the solvent was removed 

under reduced pressure and the residue was purified by preparative TLC (n-hexan, ethyl 

acetate, triethylamine 49.5:49.5:1). 

 



212 

C20H16N8 

MW 368.39 

 

1H-NMR: δΗ (400 MHz, DMSO) 8.05 (2H, m, ArH), 7.70 (4H, m, ArH), 3.59 (8H, s, 4x 

CH2)  

 

13C-NMR: δC (75 MHz, DMSO) 169.6, 160.6, 154.8, 135.0, 127.1, 120.0, 118.0, 111.5, 

44.7  

 

HRMS: exp.369.1400 (M+1), calc. 369.1498 
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3.8 SCHEME IV: PROCEDURES 
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215 

1,5-Bis(allyloxy)-9,10-anthracenedione (36) 

 

O

O

O

O

 

 

A round-bottom flask was charged with 1,5-bis-hydroxy anthraquinone (34, 500 mg, 2.08 

mmol) and 50 mL of acetone. Subsequently, K2CO3 (1.725 g, 12.49 mmol) and KI (1.040 

g, 6.24 mmol) were added to the solution. The suspension was allowed to stir at room 

temperature and the allylbromide (1.07 mL, 12.48 mmol) was added. The obtained reaction 

mixture was refluxed for 5 days and the proceedings of the reaction were monitored trough 

TLC (n-hexane, ethyl acetate 2:1). The reaction was then cooled to room temperature and 

the insoluble salts were filtered off. The liquid was washed with water and extracted with 

ethyl acetate. The evaporated organic phase gave the product as a solid. Yield: 46%. 

 



216 

C20H16O4 

MW 320.33 

 

1H-NMR: δΗ (400 MHz, DMSO) 7.94 (2H, dd J1 7,7 Hz J2 1,1 Hz, ArH), 7.68 (2H, “t”, J 

8,1 Hz, ArH), 7.27 (2H, “d”, ArH), 6.16 (2H, m, =CH), 5.68 (2H, dd, J1 2,1 Hz J2 17,2 Hz, 

=CH2), 5.41 (2H, dd, J1 1,4Hz J2 10,4Hz, =CH2), 4.78 (4H, m, OCH2)  

 

13C-NMR {1H}: δC (100 MHz, DMSO) 189.3, 158.9, 134.0, 132.9, 132.2, 119.8, 119.6, 

118.0, 112.7, 69.2 

 

HRMS (ESI): exp. 321,1123 (M+1) calc. 321,1082 



217 

1,5-Bis[(2-oxiranyl)methoxy]-9,10-anthracenedione (38) 

 

O

O

O

O

O

O

 

 

A round-bottom flask was charged with 36 (300 mg, 0.850mmol) in 30 mL of 

dichloromethane. A solution of m-chloroperbenzoic acid (588 mg, 3.40 mmol) in 

dichloromethane was slowly added drop by drop to the reaction mixture. The reaction was 

monitored by TLC (n-hexane, ethyl acetate 2:1). After 4 hours another portion of m-

chloroperbenzoic acid (588 mg, 3.40 mmol) was added and the mixture was allowed to stir 

at room temperature overnight. The reaction is quenched by the addition of a 20% aqueous 

solution of Na NaHSO3 and then sodium carbonate. The organic phase, once evaporated, 

gave the solid product. Yield: 43%. 

 



218 

C20H16O6 

MW 352.3374 

 

1H-NMR: δΗ (400 MHz, CDCl3) 7.95 (2H, dd, J1 7,9 Hz J2 1,1 Hz, ArH), 7.70 (2H, “t” 

J1 8,2 Hz, ArH), 7.31 (2H, dd, J1 8,4Hz J2 0,8Hz, ArH), 4.89 (2H, dd, J1 2,8 Hz J2 11,2 

Hz, CH2O), 4,24 (2H, dd, J1 4,5 Hz J2 11,2 Hz, CH2), 3.50 (2H, m, CHO), 3.13 (2H, dd, 

J1 2,6 Hz J2 5,1 Hz, CH2O), 2,99 (2H, “t”, CH2O) 

 

13C-NMR: δC (75 MHz, CDCl3) 182.2, 158.1, 137.5, 121.7, 120.5, 118.9, 69.5, 53.4, 

50.31 

 

HRMS (ESI):  exp. 353,1099 (M+1) calc. 353,0908 



219 

1,5-Bis{2-hydroxy-3-[2-(2-imidazolinyl)hydrazino]propoxy}-9,10-

anthracenedione (37) 

 

O

O

O

O

OH

OH

H
N

N
H

HN

NH

NHN

N NH

 

 

A round-bottom flask was charged with 38 (10 mg, 0.028 mmol) and 4,5-dihydro-1H-

imidazol-2-yl hydrazine HBr (11 mg, 0.063 mmol) in 10 mL of ethanol. The mixture was 

refluxed overnight and then the solvent was evaporated. The residue was suspended in 

chloroform and the organic phase was washed with water, before being evaporated to give 

the final compound. Yield: 32%. 

 



220 

C26H32N8O6 

MW 552.58 

 

1H-NMR: δΗ (400 MHz, DMSO) 7.95 (2H, m, ArH), 7.72 (4H, m, ArH), 7.55 (2H, m, 

ArH), 5.1-5.0 (6H, m, CH2, CH), 3.69 (8H, s, 4x CH2), 3.35 (4H, d, J 5.7 Hz, CH2)  

 

13C-NMR: δC (75 MHz, DMSO) 189.5, 153.0, 146.6, 144.2, 141.4, 139.3, 131.3, 81.3, 

66.8, 51.5, 19.2  

 

HRMS (ESI): exp. 278.1847 ((M+2)/2), calc. 553.2445 



221 

2-Chloro-1-[6-(2-chloroacetylamino)-3-acridinylamino]-1-ethanone (41) 

 

N N
H

N
H

O O

Cl Cl

 

 

A round-bottom flask was charged with proflavine hydrochloride (39, 100 mg, 0.407 

mmol) and the solid was suspended in chloroacetyl chloride (3 mL). The mixture was 

refluxed for 8 hours and then allowed to stand at room temperature overnight. The 

following day the mixture was refluxed for one additional hour and then, after being cooled 

to room temperature, the suspension was filtered. The brown solid collected is the desired 

product. Yield: 62%. 

 



222 

C17H13Cl2N3O2 

MW 362.21 

 

1H-NMR: δΗ (400 MHz, DMSO) 8.51 (1H, s, ArH), 8.12 (2H, d J 8.4 Hz, ArH), 7.87 (2H, 

d J 8.1 Hz, ArH), 7.35 (2H, dd J 8.4 Hz J 8.1 Hz, ArH), 3.97 (4H, s, CH2) 

 

13C-NMR {1H}: δC (100 MHz, DMSO) 164.9, 147.1, 140.2, 138.2, 135.9, 119.9, 117.3, 

99.0, 43.2 

 

HRMS: exp. 360.2017 (M-1), calc. 360.2021 



223 

2-[N-Methyl(2-hydroxyethyl)amino]-1-(6-{2-[N-methyl(2-

hydroxyethyl)amino]acetylamino}-3-acridinylamino)-1-ethanone (43) 

 

N N
H

N
H

O O

N N
OHHO

 

 

A reaction tube was charged with 41 (5 mg, 0.014 mmol), N-methyl aminoethanol (2.2 µL, 

0.028 mmol) and triethylamine (6 µL, 0.042 mmol) in DMSO (140 µL). The reaction was 

incubated at 60°C for 6 h in a water bath. The proceeding of the reaction was checked by 

MS analysis until complete formation of the product. 



224 

C23H29N5O4 

MW 439.51 

1H-NMR: δΗ (400 MHz, DMSO) 8.75 (1H, s, ArH), 8.01 (2H, d J 8.4 Hz, ArH), 7.92 (2H, 

d J 8.1 Hz, ArH), 7.32 (2H, dd J 8.4 Hz J 8.1 Hz, ArH), 3.58 (4H, s, CH2), 3.40 (4H, t, 

CH2), 2.82 (4H, t, CH2), 2.33 (6H, s, CH3) 

 

13C-NMR {1H}: δC (100 MHz, DMSO) 163.1, 147.1, 140.2, 136.4, 135.9, 119.9, 117.9, 

98.2, 59.3, 58.2, 49.8, 45.2 

 

HRMS: exp. 220.6180 ((M+2)/2), calc. 220.6142; exp. 440.2271 (M+1), calc. 440.2298 
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3.9 SCHEME V: PROCEDURES 
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227 

1-[2-(2-Imidazolinyl)hydrazono]-1-(5-{1-[2-(2-imidazolinyl)hydrazono]ethyl}-

1-anthryl)ethane (51) 

 

N

N

H
N

N
H

N

HN

N

NH  

 

A round bottom flask was charged with 50 (100 mg, 0.381 mmol) and 4,5-dihydro-1H-

imidazol-2-yl hydrazine HBr (205 mg, 1.145 mmol) in 19 mL of isopropanol with 1 mL of  

methansulfonic acid. The mixture was stirred at room temperature for twelve hours and 

then the yellow solid was filtered off. Flash chromatography was performed on this solid 

(isocratic, dichloromethane, methanol, triethylamine 70:29:1) gave light yellow crystals of 

the product. Yield: 25 %.  

 



228 

C24H26N8 

MW 426.52 

 

1H-NMR: δΗ (400 MHz, DMSO) 8.76 (2H, s, ArH), 8.14 (2H, dd, J 5.6 Hz, ArH), 7.55 

(2H, m, ArH), 3.56 (8H, s, CH2), 2.47 (6H, s, CH3)  

 

13C-NMR {1H}: δC (100 MHz, DMSO): 153.4, 148.8, 147.9, 144.6, 144.1, 127.5, 126.6, 

125.7, 113.3, 47.9, 42.3  

 

HRMS (ESI): exp. 214.1260 ((M+2)/2), calc. 427.2280 



229 

1-[2-(2-Imidazolidinyl)hydrazino]-1-(5-{1-[2-(2-

imidazolidinyl)hydrazino]ethyl}-1-anthryl)ethane (52) 

 

H
N

N
H

H
N

N
H

N
H

HN

H
N

NH  

 

Compound 51 (11 mg, 0.032 mmol) was dissolved in 2 mL of methanol in a round-bottom 

flask and NaBH4 was added to the solution (4 mg, 0.096). The reaction mixture was 

allowed to stir overnight at room temperature. The proceedings of the reaction were 

monitored through TLC (chloroform, methanol 6:1). After the end of the reaction, HCl 

10% was added to acid pH. The solvent was removed under reduced pressure and the 

residue was dissolved in dichloromethane and the organic solution was washed with basic 

water (K2CO3). The organic phase was evaporated to give the final compound as a dark 

yellow solid. Yield: 36%. 

 



230 

C24H34N8 

MW 434,58 

 

1H-NMR: δΗ (400 MHz, DMSO) 8.82 (2H, s, ArH), 7.98 (2H, dd, ArH), 7.52 (2H, m, 

ArH), 3.53 (8H, s, CH2), 3.11 (4H, m, CH) 2.21 (6H, s, CH3)  

 

13C-NMR {1H}: δC (100 MHz, DMSO): 136.4, 133.2, 130.7, 130.5, 126.4, 122.9, 121.4, 

100.0, 50.2, 42.4, 20.8 

 

HRMS (ESI):  exp. 369.1099 (M+1) calc. 369.0908 



231 

9,10-Bis(chloromethyl)anthracene (44) 

 

Cl

Cl  

 

A round-bottom flask was charged with anthracene (1.78 g, 10 mmol), dry ZnCl2 (1.64 g, 

12 mmol), paraformaldehyde (1.50 g, 50 mmol) and dioxane (20 mL). HCl 37% was then 

slowly added to the mixture at room temperature. The reaction was allowed to stir at reflux 

for 3 h, and then allowed to stand for 16 h. The yellow solid was collected by filtration and 

washed with H2O and dioxane to give the product, further purified by recrystallization from 

toluene. Yield: 36%  

 



232 

C16H12Cl2 

MW 275.17 

 

1H-NMR: δΗ (300 MHz, DMSO) 8.51 (4H, q, J 3.4 Hz, ArH), 7.71 (4H, q, J 3.4 Hz, 

ArH), 5.87 (4H, s, CH2) 

 

13C-NMR: δC (75 MHz, DMSO) 130.7, 129.2, 126.7, 124.7 



233 

[10-(Cyanomethyl)-9-anthryl]acetonitrile (45) 

 

CN

NC

 

 

A round-bottom flask was charged with 9,10-bis(chloromethyl)anthracene (44, 1.8 g, 6.54 

mmole) and sodium cyanide (1.6 g, 32.7 mmol) in DMSO and the mixture was heated to 50 

°C for 3 h. The reaction was then cooled to room temperature and 200 mL of water were 

added. The resulting mixture was allowed to stir overnight at 4°C. The following day a 

solid precipitate was collected and washed with water to give the product as a yellow solid. 

Yield: 72% 

 



234 

C18H12N2 

MW 256.30 

 

1H-NMR: δΗ (300 MHz, DMSO) 8.52 (4H, q, J 3.3 Hz, ArH), 7.76 (4H, q, J 3.3 Hz, 

ArH), 5.01 (4H, s, CH2)  

 

13C-NMR: δC (75 MHz, DMSO) 129.2, 126.9, 124.9, 124.6, 119.0, 15.9 



235 

[10-(Carboxymethyl)-9-anthryl]acetic acid (46) 

 

COOH

HOOC

 

 

A round-bottom flask was charged with 45 (1 g, 3.9 mmol) and KOH (2.2 g, 39 mmol) in 

butanol (30 mL). The mixture was refluxed for two days and, after cooling, most of the 

butanol was removed under reduced pressure. The residue was treated with HCl 37% and 

the precipitate was collected and washed with cold water. Yield: 32%. 

 



236 

C18H14O4 

MW 294.30 

 

1H-NMR: δΗ (300 MHz, DMSO) 12.5 (2H, s, COOH), 8.35 (4H, q, J  3.3 Hz, ArH), 7.59 

(4H, q, J 3.3 Hz, ArH), 4.65 (4H, s, CH2) 

 

13C-NMR: δC (75 MHz, DMSO) 172.7, 129.9, 127.6, 125.6, 125.3, 33.7  

 

HRMS (ESI): exp. 292.0276 (M-1), calc. 292.0884 

 

 



237 

Pentacyclo[8.6.1.22,5.013,17]nonadeca-1(17),2(18),5,7,9,13,15-heptaene-4,12-

dione (47) 

 

O

O  

 

A round-bottom flask was charged with 46 (0.88 g, 3 mmol) and SOCl2 (10 mL). The 

mixture was refluxed for 4 h and then excess SOCl2 was removed under reduced pressure. 

The crude acyl chloride was dissolved in 70 mL of dichloroethane and the solution was 

cooled in an ice bath. AlCl3 (1.22 g, 9 mol) was added in three portions and the reaction 

was then stirred for 2 h at 0 °C and later refluxed for 20 min. The mixture was eventually 

cooled and poured into ice/water containing 100 mL of 4 N HC1. The solid obtained was 

collected to give the desired product. Yield: 60%.  

 



238 

C18H10O2 

MW 258.27 

 

1H-NMR: δΗ (400 MHz, DMSO) 8.40 (2H, d J 8.4, ArH), 8.03 (2H, d, J 6.7 Hz, ArH), 

7.92 (2H, “t”, J 6.8 Hz, ArH), 4.29 (2H, s, CH2) 

 

13C-NMR {1H}: δC (100 MHz, DMSO): 196.8, 140.2, 130.8, 128.9, 126.4, 123.2, 121.0, 

30.9 

 

HRMS (ESI): calc. 258.0681 (M+1) , exp. 258.0679 
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4,12-Bis[2-(2-imidazolinyl)hydrazono]pentacyclo[8.6.1.22,5.013,17]nonadeca-

1,5,7,9(18),10(17),13,15,18-octaene (48) 

 

N

N

H
N

N
H

N

HN

N

NH

 

 

A round bottom flask was charged with 47 (40 mg, 0.152 mmol) and 4,5-dihydro-1H-

imidazol-2-yl hydrazine HBr (82 mg, 0.458 mmol) in 9 mL of isopropanol with 1 mL of  

methansulfonic acid. The mixture was stirred at room temperature for twelve hours and 

then the yellow solid was filtered off. Flash chromatography was performed on this solid 

(isocratic, dichloromethane, methanol, triethylamine 70:29:1) gave the product as dark 

solid. Yield: 22 %. 
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C24H22N8 

MW 422.49 

 

1H-NMR: δΗ (400 MHz, DMSO) 7.22 (2H, d, J 5.1 Hz, ArH), 7.10 (2H, d, J 5.1 Hz, 

ArH), 6.96 (2H, m, ArH), 4.49 (4H, s, CH2), 3.83 (8H, s, CH2)  

 

13C-NMR: δC (75 MHz, DMSO) 154.6, 150.4, 144.4, 137.6, 137.4, 126.7, 123.4, 111.1, 

102.1, 68.1, 47.3  

 

HRMS (ESI): exp. 212.1141 ((M+2)/2), calc. 423.1967 
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3.10 SCHEME VI: PROCEDURES 
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2-[Bis(2-chloroethyl)amino]-1-(6-{2-[bis(2-chloroethyl)amino]acetylamino}-3-

acridinylamino)-1-ethanone (58) 

 

N N
H

N
H

O O

N N

Cl

Cl Cl

Cl  

 

A reaction tube was charged with 41 (5 mg, 0.014 mmol), N,N-bis-chloroethylenamine 

hydrochloride (5 mg, 0.028 mmol) and triethylamine (6 µL, 0.042 mmol) in DMSO (140 

µL). The reaction was incubated at 60°C for 6 h in a water bath. The proceeding of the 

reaction was checked by MS analysis until complete formation of the product. 



244 

C25H29Cl2N5O2 

MW 573.34 

 

HRMS: exp. 572.1168 (M-1), calc. 572.1175. 
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2-[N-Methyl(2-chloroethyl)amino]-1-(6-{2-[N-methyl(2-

chloroethyl)amino]acetylamino}-3-acridinylamino)-1-ethanone (56) 

 

N N
H

N
H

O O

N N

ClCl  

 

N,NI-2-(N-methylethanolamino)-acetyl-3,6-diamino acridine (43, 140 µL of a 100 mM 

DMSO solution, 0.028 mmol) was reacted with thionyl chloride (5 µL) in a reaction tube. 

The reaction mixture was incubated at 60°C for 6 h in a water bath. The proceeding of the 

reaction was checked by MS analysis until complete formation of the product. 
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C23H27Cl2N5O2 

MW 475.40 

 

HRMS: exp. 474.1452 (M-1), calc. 474.1446. 



247 

2-{N-Methyl[(10-{[N-methyl(2-hydroxyethyl)amino]methyl}-9-

anthryl)methyl]amino}ethanol (59) 

 

N

N
OH

HO

 

 

Compound 44 (4 mg, 0.011 mmol), triethylamine (5 µL, 0.033 mmol), N-

methylaminoethanol (2 µL 0.022 mmol) and DMSO (55 µL) were introduced in a reaction 

tube. The reaction mixture was incubated at 60°C for 6 h in a water bath. The proceeding of 

the reaction was checked by MS analysis until complete formation of the product. 
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C22H28N2O2 

MW 352.47 

 

1H-NMR: δΗ (400 MHz, DMSO) 7.89 (2H, d, ArH), 7.60 (4H, m J 8.4 Hz, 4 x ArH), 3.92 

(4H, s, CH2), 3.56 (4H, t, CH2), 2.87 (4H, t, CH2), 2.62 (6H, s, CH3) 

 

13C-NMR {1H}: δC (100 MHz, DMSO): 133.2, 126.5, 125.9, 123.4, 59.8, 55.2, 39.7 

 

HRMS: exp. 353.2175 (M+1), calc. 353.2168. 
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1-{N-Methyl[(10-{[N-methyl(2-chloroethyl)amino]methyl}-9-

anthryl)methyl]amino}-2-chloroethane (61) 

 

N

N
Cl

Cl

 

 

Compound 59 (55 µL of a 100 mM DMSO solution, 0.055 mmol) was reacted with thionyl 

chloride (5 µL) in a reaction tube. The reaction mixture was incubated at 60°C for 10 

minutes and then allowed to stand at room temperature for 6 hours, followed by other 3 

hours at 60°C in a water bath. The proceeding of the reaction was checked by MS analysis 

until complete formation of the product. 
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C22H26Cl2N2 

MW 388.15 

 

HRMS: exp. 389.1356 (M+1), calc. 389.1365 
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1-{[(10-{[Bis(2-chloroethyl)amino]methyl}-9-anthryl)methyl](2-

chloroethyl)amino}-2-chloroethane (60) 

 

N

N
Cl

Cl

Cl

Cl  

 

A reaction tube was charged with 9,10-bis(chloromethyl)anthracene (3 mg, 0.011 mmol), 

N,N-bis-chloroethylenamine hydrochloride (4 mg, 0.022 mmol) and triethylamine (5 µL, 

0.033 mmol) in DMSO (110 µL). The reaction was incubated at 60°C for 6 h in a water 

bath. The proceeding of the reaction was checked by MS analysis until complete formation 

of the product. 
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C24H28Cl4N2 

MW 486.30 

 

HRMS: exp. 484.0010 (M-1), calc. 483.0999. 
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3.10 BIOPHYSICAL EVALUATION 

 

Fluorescence melting 

The fluorescence melting assay evaluates the stability of a complex supermolecular 

structure according to the denaturation temperature of the structure itself. The efficacy in 

stabilization of the G-quadruplex by the compounds can be quantified from the variation of 

the melting temperature (Tm). Tm can be defined as the temperature showing 50 % of 

structured DNA and 50 % of denaturated DNA. At room temperature (structured DNA) 5’ 

and 3’ endings, respectively marked with the cromophore FAM (6-carboxy fluorescein) 

and the quencher Dabcyl, are close one to the other. Fluorescence observed in this 

condition is very low as long as Dabcyl has an absorbance maximum at the length of 

emission of FAM. On the other hand a destructured DNA shows a remarkable increase in 

fluorescence. Tm is measured at growing concentration of the compound and the ΔTm can 

be obtained. This experiment was performed in the lab of Prof. Sissi, University of Padova. 

  

Other assay procedures  

Fluorescence melting is adopted as a very preliminary screening procedure to identify 

potentially interesting stabilizers. Another technique is represented by Circular Dichroism 

(CD). According to the optical properties (“dichroism” literally means “double color”), this 

spectroscopy method reveals structural variations induced by the ligand. The TRAP assay, 

then, directly evaluates telomerase activity in the elongation of a DNA fragment. This 

sophisticated assay procedure are adopted in case of promising compounds individuated on 

the preliminary screening. 
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3.11 GEL ELECTROPHORESIS 

 

Preparation of G-quadruplex stock solutions 

Oligonucleotides were purchased from IDT, USA. The two sequences: 

- GQm: 5' - AGG GTT AGG GTT AGG GTT AGG GT - 3'  

- GQd: 5' - TAG GGT TAG GGT - 3' 

were dissolved in water (200 µL) and allowed to stand in an ice bath for 2 hours. The 

obtained solutions were poured in two 3000 Da cut-off centrifuge tube and 4 mL of 150 

mM ammonium acetate were added. The tubes were centrifuged for 1 hour at 4°C and the 

cleaning procedure was repeated another time with fresh ammonium acetate solution and 

for the third time with water. The final concentration of the cleaned solution obtained was 

measured with the UV-Vis spectrophotometer. The samples were then diluted to 100 µM 

with ammonium acetate and stored in a 4°C fridge for three weeks. 

 

Preparation of buffers 

10x TBE (Tris/Borate/EDTA) buffer was prepared dissolving the following species in 1 L 

of milliQ water:  

- 108 g Tris (Tris hydroxymethyl aminoethane) 

- 55 g boric acid 

-  7.5 g EDTA (ethylendiamine tetraacetic acid) disodium salt.  

TBE 1x gel running buffer was prepared by dilution of the concentrated buffer in 1:10 

proportions. In some experiments also 60 mM ammonium acetate or 60 mM potassium 

chloride TBE 1x buffers were used and they were prepared from concentrated solutions 
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(600 mM) of respective salts and 10x TBE buffer by suitable dilution. 

 

Preparation of native gels 

10 mL of native gel for the electrophoresis experiments were freshly prepared before every 

experiment. The solution for a 20% polyacrylamide gel was obtained from these 

components:  

- 5 mL AccuGel 19:1 40% w/v acrylamide/bis-acrylamide 

- 1 mL TBE 10% buffer 

- 1 mL 600 mM salt solution (ammoniun acetate or potassium chloride) 

- 3 mL milliQ water 

- 120 µL ammonium persulfate 10% solution 

- 6 µL TEMED (tetramethyl ethylendiamine).  

The solution for a 15% polyacrylamide gel was obtained from these components:  

- 3.75 mL AccuGel 19:1 40% w/v acrylamide/bis-acrylamide 

- 1 mL TBE 10% buffer 

- 1 mL 600 mM salt solution (ammoniun acetate or potassium chloride) 

- 4.25 mL milliQ water 

- 120 µL ammonium persulfate 10% solution 

- 6 µL TEMED (tetramethyl ethylendiamine).  

The solutions were prepared in a 15 mL Falcon tube and rapidly poured into the Bio-Rad 

apparatus as long as the polymerization process starts to take place after the addition of 

APS and TEMED. 1 mm thick apparatus was used. The electrophoresis cell and the 

running buffer were conditioned before every usage and stored for one hour at the desired 
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temperature for the experiment before running the gels and a pre-run was carried out. The 

concentration of the DNA samples was checked every time just before the addition to the 

wells by UV measures. Native gels were run in 60 mM ammonium acetate or 60 mM 

potassium chloride TBE 1x buffers 

 

Preparation of denaturing gels 

10 mL of native gel for the electrophoresis experiments were freshly prepared before every 

experiment. The solution for a 20% polyacrylamide denaturing gel was obtained from these 

components:  

- 8 mL UreaGel System Concentrated 

- 1 mL UreaGel System Diluent 

- 1 mL UreaGel System Buffer 

- 120 µL ammonium persulfate 10% solution 

- 6 µL TEMED (tetramethyl ethylendiamine).  

The solutions were prepared in a 15 mL Falcon tube and rapidly poured into the Bio-Rad 

apparatus as long as the polymerization process starts to take place after the addition of 

APS and TEMED. 1 mm thick apparatus was used. The electrophoresis cell and the 

running buffer were conditioned before every usage and stored for one hour at the desired 

temperature for the experiment before running the gels and a pre-run was carried out. The 

concentration of the DNA samples was checked every time just before the addition to the 

wells by UV measures. Denaturing gels were run in TBE 1x buffer. 

 

Staining and destaining 

Gels were treated with a Sigma Stains All 1:4 solution for 45 minutes to achieve a complete 



257 

staining. Gels under treatment with the staining solution were covered and stored away 

from light. After recovering the staining solution the gels were washed with deionized 

water and allowed to stand in a little amount of deionized water under UV light. 
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3.12 UV-VIS SPECTROSCOPY 

The concentration of DNA samples and of the stock solutions were analyzed in 

concentrations ranging from µM to mM. The DNA samples were quantified before every 

experiment. Stock solutions of synthesized compounds were prepared by dissolving in the 

calculated amount of solvent the weighted powder. The concentration of these samples was 

checked, when possible, by UV-vis analysis. 
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3.13 ELECTRONSPRAY IONIZATION MASS SPECTROMETRY 

 

Preparation of samples 

The preparation of G-quadruplex followed what already reported in the preparation of the 

samples for the gel electrophoresis experiments. Samples for the experiments were 

prepared just before the analysis from opportune dilutions of stock solutions. Solutions 

were sampled for the presence of G-quadruplexes after three weeks of storage at 4°C. 

  

Tandem MS (MS-MS) experiments 

Experiments were performed on a Thermo OrbiTrap LTQ Velos. Fragmentation 

experiments were performed using a 10 µM solution of the compound of interest. 

 

ESI-MS of G-quadruplexes 

Experiments were performed on a Thermo OrbiTrap LTQ Velos. Samples were prepared 

just before the analysis from opportune dilutions of stock solutions. The final concentration 

of the oligonucleotide was 3 µM in 150 mM ammonium acetate, with a ratio 

compound/oligo of 5:1 if a binding study was being performed. 

Some of the G-quadruplex samples were also stored in a 150 mM solution of potassium 

acetate to promote the formation of a potassium including G-quadruplex. To achieve this, 

instead of following the desalting procedure described above, the oligonucleotide was 

treated as following: the oligonucleotide dissolved in water was stored in 150 mM 

potassium acetate and the slow annealing procedure was followed (3 min 100°C and then 

slow cooling to room temperature before putting the samples in a 4C fridge for a week 
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before the analysis). The samples were then desalted by washing with 150 mM 

triethylammonium acetate, following the same routine described for the samples above, 

using 3000 cut-off tubes. Even in this case, a diluition of the samples was performed before 

the MS analysis and the spraying buffer had a final concentration of 10 mM 

triethylammonium acetate. 
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3.14 ION MOBILITY MASS SPECTROMETRY 

 

Preparation of samples 

The preparation of G-quadruplex followed what already reported in the preparation of the 

samples for the gel electrophoresis experiments. Samples for the experiments were 

prepared just before the analysis from opportune dilutions of stock solutions. 

 

Ion mobility experiment 

Compounds were divided into groups of 3 or 4 molecules and then mixed together before 

the addition to the oligonucleotide solution in the described ratio. This experiment was 

designed in order to screen multiple compounds at the same time and evaluate a possible 

competition for the substrate, if any. The instrument collects both mass and mobility data at 

the same time and the spectra were acquired both as full scans and as isolation of single 

peaks. A peak fitting procedure was operated using a preformed algorithm to extrapolate 

mobility data in terms of collision cross sections for a single species. Experiments were run 

and recorded three times and an average value was calculated for every measure. Standard 

deviation was also calculated for every data set. 
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