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Abstract

Downregulation of gene expression by induction of non-canonical DNA structures at promotorial level is a novel attractive
anticancer strategy. In human, two guanine-rich sequences (h_kit1 and h_kit2) were identified in the promotorial region of
oncogene KIT. Their stabilization into G-quadruplex structures can find applications in the treatment of leukemias,
mastocytosis, gastrointestinal stromal tumor, and lung carcinomas which are often associated to c-kit mis-regulation. Also
the most common skin cancer in domestic dog, mast cell tumor, is linked to a mutation and/or to an over-expression of c-
kit, thus supporting dog as an excellent animal model. In order to assess if the G-quadruplex mediated mechanism of
regulation of c-kit expression is conserved among the two species, herein we cloned and sequenced the canine KIT
promoter region and we compared it with the human one in terms of sequence and conformational equilibria in
physiologically relevant conditions. Our results evidenced a general conserved promotorial sequence between the two
species. As experimentally confirmed, this grants that the conformational features of the canine kit1 sequence are
substantially shared with the human one. Conversely, two isoforms of the kit2 sequences were identified in the analyzed
dog population. In comparison with the human counterpart, both of them showed an altered distribution among several
folded conformations.
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Introduction

DNA double helix structure is based on Watson-Crick base-

pairing. Nevertheless, different base pairing can form and lead to

several other ‘‘non canonical’’ structures. A relevant example is

provided by guanines which can pair by means of eight hydrogen

bonds between the N1 and N2 on Watson-Crick face and the O6

and N7 on Hoogsten face, thus forming a planar G-tetrad [1].

Consecutive G-tetrads can stack one over each other providing

very stable supramolecular structures called G-quadruplexes (G-4).

This architecture is further stabilized by coordination of cations,

such as K+ and Na+, that neutralize the negative charge density

deriving from the guanines O6 carbonyl groups pointing towards

the central core of each tetrad.

Accordingly, to potentially fold into a stable G-4 structure a

nucleic acid sequence must be G-rich. In cells, sequences fulfilling

this requirement are represented by the telomeres, noncoding

regions located at the chromosomes end that, in vertebrates, are

constituted by d(TTAGGG) repeats. Additionally, bioinformatics

analyses on the human genome identified a relevant number of

putative G-4 forming sequences clustered at defined regions such

as the transcription start site, the 59-UTR, and the 59 end of the

first intron, whereas they are depleted in coding regions [2,3].

Interestingly, they have also been identified upstream of gene

transcription start sites of oncogenes such as c-MYC, KRAS, BCL-
2, VEGF and PDGF but not at oncosuppressor genes level. This

conserved localization suggested that G-4 may play functional role

in the regulation of gene expression; this hypothesis is now

supported by increasing evidences that G-4 actually form in living

cells and are critical for genome integrity [4,5]. Moreover, G-4

occurrence at promotorial sites prevents the correct assembly of

the transcriptional machinery and leads to transcription alteration

and inhibition of gene expression. For these reasons, G-4

stabilization of oncogenic promoters represents a potential

therapeutic intervention to obtain antiproliferative effects [6,7].

Recently, two G-rich sequences, human kit1 (h_kit1) and kit2

(h_kit2), were identified in the promotorial region of the human

oncogene KIT [8]. They occur respectively between position 212

and 234 bp and between position 264 and 284 bp upstream the

transcription start site (59-UTR) [9]. Both these sequences fold into

G-4 and the resulting molecular structures were solved by NMR

and X-ray crystallography [10–13].
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The KIT gene encodes a type III tyrosine kinase receptor, c-kit,

which is the 145 kDa glycoprotein receptor of stem cell factor

(SCF) [14,15]. Binding of SCF to c-kit leads to receptor

homodimerization, autophosphorylation and, consequently, to

initiation of intracellular signaling pathways such as Shc/Ras/

MAPK, JAK/STAT and PI3K cascades. In human, development

of melanocytes, erythrocytes, germ cells, mast cells and interstitial

cell of Cajal occur through SCF-kit interaction, while ligand-

independent auto-phosphorylation of c-kit is typical of a number

of tumors, such as leukemias, mastocytosis, gastrointestinal stromal

tumor (GIST) and lung carcinomas [16–18].

To solve the consequences of c-kit mis-regulation, numerous

tyrosine kinase inhibitors (TKIs) have been developed and are now

clinically used for the treatment of several malignances. The now-

a-day available pharmacological therapy is based on the chemo-

therapeutics imatinib (Glivec/Gleevec; Novartis) and sunitinib

(Sutent; Pfizer). However, mutations either in the juxtamembrane

domain (exon 11), in the extracellular domain (exon 9), in the

cytoplasmatic ATP-binding domain (exon 13/14) or in the

activation loop domain (exon 17) are frequently occurring and

are responsible for resistance against TKIs [19,20].

An alternative approach to overcome these resistance problems

rests in driving a downregulation of KIT gene expression at the

transcriptional level. As a proof of concept, some ligands were

designed to selectively target the G-4 forms of h_kit1 or h_kit2. So

far, several small molecules belonging to different scaffolds have

been demonstrated to bind one G-4 structure of KIT and to

reduce basal levels of c-kit expression in a dose-dependent manner

and in different cell lines [9,21–25]. On the contrary, a

triarylpyridine derivative was found to reduce the stability of G-

4 in KIT and increments KIT gene expression in HGC-27 cells

[26]. In addition, both synthetic DNA (PNA) and peptide

(peptidomimetic) analogues were found to be able to efficiently

recognize h_kit1 [27,28].

Naturally occurring cancers in pet dogs and humans share

many features, including histological appearance, tumor genetics,

potential prognostic and therapeutic molecular targets as well as

response to conventional therapies. As a consequence, the

domestic dog is nowadays considered as an excellent translational

animal model for human oncology [29–32].

Mast cell tumor (MCT) is the most common skin cancer in dogs

(7–21% of all canine cutaneous tumors), but it is likely to arise in

extra-cutaneous sites including the gastrointestinal tract (visceral

MCT). Although the etiology of canine MCT is still unknown,

several studies revealed that this pathology is linked to a mutation

and/or to an over-expression of c-kit [33,34]; furthermore, c-kit

mutations occurring in dog MCTs are similar to those found in

human GIST [35]. This has made MCTs an important model

disease to assess the functional consequences of c-kit abnormalities

in cancer. Consistently, the use of TKIs today represents the

available pharmacological treatment also for unresectable grade

2–3 canine MCTs sharing c-kit mutations [36].

With the aim to investigate if the promotorial region of the

canine KIT oncogene may represent a possible new molecular

therapeutic targets for comparative oncology studies, in this work

we verified the existence of G-rich sequences in this genomic

region and we assess their potential to fold into stable G-4

structures.

To reach this goal we cloned and sequenced part of the canine

KIT proximal promoter region and we compared it with the

human one in terms of sequence and conformational equilibria in

physiologically relevant conditions.

The results herein collected will have a double valence. Indeed,

they will help in assessing whether:

- the dog may represent a robust translational model for

evaluating the functional consequences of c-kit expression

modulation in human cancer;

- the application of selective G-4 binders as novel anticancer

drugs for canine MCTs is feasible.

Materials and Methods

Ethics Statements
Blood samples and tissue biopsies were not taken for the

purposes of this study. Tissue biopsies were recruited from dogs

affected by MCT and undergoing surgery. Consent from the

owners had been obtained for dogs undergoing MCT surgery.

Blood samples were collected from healthy random-source adult

kennel dogs undergoing routine examination. Consent from the

owners was not required, because there is an agreement between

our Veterinary School and the kennel for the execution of

routinary clinical check ups.

Both kennel dogs and dogs affected by MCT and undergoing

surgery were under the care of licensed veterinarians and

participation in the study did not influence decisions of care.

Animal care, surgery and post-surgery were carried out in

accordance with good veterinary practices. According to the

Italian law (D. Lgs. n. 116/92), an Institutional Animal Care and

Use Committee approval number and date of approval for the

study are not requested for private practice. Only a written

informed consent is needed to conduct a clinical trial.

Canine samples and DNA extraction
Peripheral blood was collected in EDTA tubes from 28 healthy

random-source adult kennel dogs undergoing routine examina-

tion. DNA was extracted by using the DNeasy Blood & Tissue Kit

(Qiagen, Milan, Italy) according to manufacturer’s instructions.

To investigate the possible occurrence of mutation in the putative

G-4 sequence, 23 tissue biopsies were recruited from dogs affected

by MCT and undergoing surgery and c-kit mutational analysis.

Genomic DNA was extracted by using the Invisorb Spin DNA

Extraction Kit (STRATEC Molecular, Berlin, Germany) in

accordance with manufacturer’s proceedings. No distinctions were

done in term of breed, age and any other tumor characteristics.

Partial amplification and sequencing of the canine KIT
proximal promoter

To identify canine G-4 sequences, human KIT G-4 sequences

[8,37] were aligned to canine KIT 59-upstream region (chromo-

some 13) by using the bio-informatic tool Multalin (http://

multalin.toulouse.inra.fr/multalin/).

Primers (Eurofins MWG Operon, Ebersberg, Germany) for

KIT_1_F and KIT_1_R (see Table 1), spanning a 875 base pair

fragment of canine KIT proximal promoter region, were designed

by using the Primer3 software (http://primer3.sourceforge.net/).

This fragment included 350 bp of KIT proximal promoter region,

the entire 59 UTR region, the first KIT exon and 424 bp of the

first intron. A further couple of primers, to be used for a nested

PCR (KIT nested, Table 1), were designed likewise.

About fifty ng of genomic DNA were loaded in the first PCR

reaction and amplified by using the TaKaRa LA Taq Hot Start

polymerase (Takara Biotechnology, Otsu, Shiga, Japan). The

reaction, carried out in a TPersonal thermocycler (Biometra

GmbH, Goettingen, Germany), consisted of 0.5 mM of each

primer, 2.5 U of DNA polymerase, 400 mM of deoxy-ribonucle-

otide triphosphate mix, 5% DMSO and 1X reaction buffer (final

concentrations). The following PCR conditions were used: an
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activation step at 94uC for 30 sec (hot start), 30 cycles of 10 sec at

98uC, 30 sec at 60uC, 45 sec at 68uC, and a final extension step of

10 min at 72uC. Products obtained were checked in 1.5% agarose

(Sigma-Aldrich Chemie GmBH, Munich, Germany) gel electro-

phoresis.

One ml of the undiluted PCR product obtained during the first

PCR reaction was used for the nested PCR, carried out by using

the same conditions described above. The PCR product was

visualized in 1.5% agarose gel electrophoresis and sequenced by

using the ABI 3730XL DNA Analyzer (Life Technologies, Foster

City, CA). Sequences were analyzed with the FinchTV software

(Geospiza Inc., Seattle WA).

Cloning
The nested PCR product (296 bp) was cloned into the pCR2.1-

TOPO plasmid by using the TOPO TA Cloning Kit (Life

Technologies, Foster City, CA). Cloned plasmids were inserted in

TOP10 One Shot E. coli (Life Technologies, Foster City, CA) and

left growing in LB Agar (Sigma-Aldrich Chemie GmBH, Munich,

Germany) supplemented with 5-bromo-4-chloro-3-indolyl-b-D-

galactopyranoside (X-Gal, Sigma-Aldrich Chemie GmBH, Mu-

nich, Germany) and ampicillin (Sigma-Aldrich Chemie GmBH,

Munich, Germany). White colonies were picked up and incubated

overnight in LB Broth (Sigma-Aldrich Chemie GmBH, Munich,

Germany). To isolate the plasmid, the QIAprep Spin Miniprep

Kit (Qiagen, Milan, Italy) was used. To verify the presence of the

fragment of interest, plasmids were digested with EcoRI and

checked by agarose gel electrophoresis. Then, plasmids were

sequenced with universal M13 forward and reverse primers. At

least five clones from three independent PCR reactions and

cloning procedures were verified by sequencing (Macrogen,

Amsterdam, Netherlands).

Statistical analysis
To evaluate the possible relationship between the presence of

SNP in canine kit2 sequence and the tendency to develop MCT, a

Fisher exact test was performed by using the GraphPad Prism 5

software (San Diego, California, USA). A value of P,0.05 was

considered significant.

CD spectroscopy
Circular dichroism spectra were recorded on a Jasco J-810

spectropolarimeter equipped with a Peltier temperature controller

using 1–10 mm path-length cells in the 230–350 nm wavelength

range. For each spectrum, 3 scans were acquired at a 50 nm/min

scanning speed. Spectra were acquired in the absence and in the

presence of variable KCl concentrations in 10 mM Tris, at pH

7.5. DNA substrates (Metabion International, Germany) were

used at 4 mM final concentration and, before use, all DNA

solutions were annealed in the required buffer. Observed CD

signals were converted to mean residue ellipticity [h] = deg6cm2 x

dmol21 (Mol. Ellip.).

To calculate the dissociation constant for KCl (Kd), the fraction

of bound DNA was calculated [AB]/[A]tot = (S-So)/(S‘-S0), where

So and S‘ are the signal corresponding to the free and bound

target, respectively. This was plotted as a function of salt

concentration ([Btot]). Experimental data were fitted according to

a single binding event process according to the following equation:

[AB]/[A]tot = [Btot] (1/(1+Kd)).

Melting and annealing curves were recorded by monitoring the

variation of the dichroic signal at one constant wavelength

(260 nm) in the temperature range 25–95uC with a temperature

slope of 0.8uC/min. Melting temperatures were determined by the

first derivative of the melting curves.

Electrophoretic Mobility Shift Assay – EMSA
Oligonucleotides (5 mM) were 59-labeled with 32P by 1 h

incubation at 37uC with 1 ml dATP[c232P] (Perkin Elmer, Life

Sciences) and 1 U of T4 Polynucleotide Kinase (Thermo

Scientific) in a final volume of 50 ml of provided forward reaction

buffer (Thermo Scientific). Then the enzyme was removed by two

extraction with 100 ml of phenol-chloroform-isoamyl alcohol

(25:24:1) mixture. After ethanol precipitation, DNA was solubi-

lized in 10 mM Tris, 1 mM EDTA, pH 8.0.

Samples containing 0.1 mM of labeled oligonucleotides and

increasing concentration of not labeled DNA were annealed over-

night in 10 mM Tris, pH 8.0 in the presence of variable

concentrations of KCl. The reaction products were resolved on

a 20% PAGE acrylamide (acrylamide/bisacrylamide 19:1) in 0.5X

TBE containing 10 mM KCl. Electrophoretic run was performed

at 250 Volt for 3 hours. At the end of the electrophoretic run the

gel was exposed overnight on a storage phosphor screen

(Amersham Pharmacia Biotech) and finally scanned with a Storm

840 (Amersham Pharmacia Biotech).

Results

Sequencing of the canine KIT promotorial region
Since it is known that KIT may show sequence mutations in

MCTs [38–40], samples for canine KIT promotorial region

sequencing were collected from both healthy dogs (28 blood

samples) and from animals affected by MCT (23 archival tumor

biopsies). The obtained partial sequence of canine KIT promoter

was submitted to GeneBank database (http://www.ncbi.nlm.nih.

gov/) with the following accession number: KF471023. It consists

in the proximal promoter region (224 bp upstream the 59 UTR

region), the entire 59 UTR region (28 bp long) and the beginning

of the first exon (until +44 bp after ATG). Overall, it differs in 3

nucleotides from Broad CanFam 3.1/canFam3 genome submitted

Table 1. Primers for polymerase chain reaction amplification and sequencing of partial canine KIT proximal promoter region
containing the two putative G-quadruplex sequences.

Primer Primer sequence (59-39) Expected product size (bp)

KIT__1__F ACCTTATTGTCTGGGGAGCA 875

KIT__1__R GCGCAACTTTCAACAAAAGG

KIT__nested__F GAGAGCCGGTGATATGCAG 296

KIT__nested__R AGCAGGACGCAGAGAAAATC

F = forward, R = reverse.
doi:10.1371/journal.pone.0103876.t001
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in UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/

hgBlat?command = start) (Figure 1A).

By comparing human and canine promoter sequences, two

putative portions for the G-4 folding were identified: a first one (59-

AGGGAGGGCGCCGGGAGGAGGG-39) was attributable to

h_kit1, and was located from 2117 to 2138 bp upstream the

ATG. The second one (59-AGGAGGGGCGCGGGG-

GAGGGG-39), that might be considered as the h_kit2 counter-

part, was located from 2154 to 2174 bp upstream the first codon

(Figure 1B). Noteworthy, the positions cannot be referred to the

trascription start site, because the 59 UTR region of canine KIT is

not defined and fully characterized in both NCBI and ENSEMBL

databases (http://www.ncbi.nlm.nih.gov/, http://www.ensembl.

org/index.html). Both sequences showed evident species-differ-

ences (Figure 2).

The screening of healthy and pathologic canine samples showed

the presence of a single nucleotide polymorphism (SNP) in canine

kit2. In particular, 32 out of 51 samples (62.7%) presented the

nucleotide A in 2159 position (defined from now on as

d_kit2_A16), while the remaining 19 showed the nucleotide G

(37.3%: named as d_kit2). The statistical analysis did not reveal a

significant association between the presence of each genotype and

the tendency to develop MCT (P = 0,1577, Figure 3). Since the

number of tested samples was not representative of the entire

population, further investigations are needed to obtain the

frequency of the aforementioned SNP in the canine population.

Many breeds have been reported to be predisposed to MCT

[41]. Breed was not considered in this study, but it could be

interesting in perspective to evaluate the influence of such a

genetic factor on KIT promoter genotyping.

G-quadruplex formation in the canine KIT sequences
The alignment of the canine counterpart of the two minimal G-

4 forming sequences present in the promotorial region of human

KIT showed some point mutations between the two species

(Figure 2). The structural studies available for the human

Figure 1. The canine KIT promotorial region contains two putative G-quadruplex forming regions. PANEL A: Alignment of KF471023
(canine KIT partial promoter sequence) and Broad CanFam 3.1/canFam3 genome (UCSC Genome Browser database). PANEL B: Canine d-kit1 and d-
kit2 putative G-quadruplex folding sequences and their location within the proximal c-kit promoter, shown with respect to the first codon.
doi:10.1371/journal.pone.0103876.g001

Figure 2. The human and canine promoter sequences show species-differences. Alignment of human G-quadruplex sequences and
putative canine sequences identified by cloning and sequencing. A) d_kit1; B) d_kit2; C) d_kit2_A16.
doi:10.1371/journal.pone.0103876.g002
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sequences suggest they likely occur at different domains of the G-4

structures. In the case of canine kit1 (d_kit1) the difference involves

residue 12 (T12C), which is localized in the second loop of the

human parallel G-4. Thus, we do not expect remarkable

modulation in the G-4 forming potential from the human to the

canine sequence. Not the same occurs with the sequences related

to h_kit2 where one (d_kit2) or two guanines (d_kit2_A16)

involved in G-tetrad formation are converted into adenines. Thus,

the conformational properties of the d-kit2 sequences might be

affected by the above changes. Hence, they were investigated in

deeper detail and compared to those of the human counterparts

and as well as to some additional mutated sequences (Table 2).

Canine and human kit1 share common conformational
features

Monovalent metal ions are known to promote the formation of

G-4 structure by G-rich sequences. Among them K+ is generally

quite efficient and it is also physiologically relevant. Since DNA

chiroptical properties are function of its folding topology, we

acquired the circular dichroism spectra of the canine sequence

d_kit1 upon addition of KCl. The metal ion induced an intense

positive band at 260 nm and a negative band at 240 nm

(Figure 4A). Once saturated, the CD spectrum of the folded

canine sequence was similar to the one obtained after titration of

human h_kit1 with KCl (Figure 4B). These features suggest the

formation of a parallel G-4 structure which is shared by the two

species. This conclusion is further supported by an almost

superimposable TDS profile (Figure 4C) [42]. However, the

concentration of the metal ion required to saturate the process is

remarkably different for the two sequences. A quantitative analysis

of the experimental data (Table 3, Figure 4D) confirmed that the

canine sequence has a lower affinity for the metal ion. This

correlates with the lower thermal stability observed by monitoring

the variation of the dichroic signal at 260 nm upon increasing the

temperature (Table 4).

From these data we can assume that, in potassium containing

solutions, the human and canine kit1 sequences share a common

parallel G-4 fold, the stability of which is however affected by the

second loop composition.

Canine kit2 exhibits conformational features differing
from the human counterpart

Literature data report that, in the presence of KCl, h_kit2

exhibits a highly polymorphic behavior; it folds into at least two

main parallel G-4 structures corresponding to a monomeric and a

dimeric form. Consequently its dichroic spectrum derives from a

combination of these contributions and is characterized by a main

positive band centered at 260 nm [37]. This picture is remarkably

changed when considering the two canine sequences (d_kit2 and

d_kit2_A16).

In the absence of the metal ion, a dichroic band centered at

258–260 nm was observed for all tested sequences. However,

upon titration with KCl, only the canine ones give rise to a novel

contribution at 295 nm associated to a decrease in intensity of the

260 nm signal (Figure 5A–C). The presence of an isodichroic

point allows describing the system as composed by two main

different optical species which interconvert one into the other in

the presence of the metal ion. To confirm this model, we

determined the apparent binding constant for the metal ions by

monitoring the relative changes of the dichroic signal at 260 nm

(Table 3). According to the proposed model, canine data provided

very similar figures when analyzed at 295 nm, too (Figure 5D).

Thus, the occurrence of a single process affecting the two optical

contributions can be inferred. Due to the involvement of KCl we

can attribute the 260 and 295 nm bands to the unfolded and G-4

folded fractions, respectively. Hence, the canine sequences

apparently fold into a G-4 structure distinct from those assumed

by the human sequence. The novel form shows a slightly

incremented apparent binding affinity for the metal ion. However,

its thermal stability is lower in comparison to the one character-

izing the human parallel G-4 in the same experimental conditions

(Table 4). The lowest melting temperature was recorded for the

mutated sequence d_kit2_A16 in which two guanines expected to

be involved in a G-tetrad pairing are mutated into adenines.

The relative intensity of the 260 vs 295 nm bands was a

function of the DNA sequence. However, we found that sample

preparation affected it, too. This is not odd since the simultaneous

presence of multiple folded species for the h_kit2 is well

established. In particular, both kinetics and DNA strand compo-

sition play relevant roles in determining the prevalent folded form

of h_kit2. In our experimental conditions, the unfolding transitions

of the canine sequences were reversible and no hysteresis was

observed using heating rates ranging from 0.4 up to 1uC/min.

However, we found that upon incubation in the presence of KCl, a

slow rearrangement occurred with decrease of the band centered

at 295 nm and concomitant increase of the 260 nm dichroic signal

(Figure 6, Panels A and C). The same behavior was observed for

the human sequence, for which, however, the process was

substantially faster and led to an almost complete suppression of

the band at 295 nm in minutes, thus justifying its absence during

equilibrium titrations (Figure 6E). At comparable times, the

structural conversion is less efficient for the d_kit2_A16 sequence.

Figure 3. The identified (SNP) in canine kit2 is not associated to
the healthy/MCT state. Association between the presence of d_kit2
or d_kit2_A16 and healthy/pathologic state in 51 canine blood and
tumor samples. Fisher exact test (p = 0.1577).
doi:10.1371/journal.pone.0103876.g003

Table 2. Human (h_) and canine (d_) sequences of KIT
proximal promoter region used in this work.

h__kit1 AGGGAGGGCGCTGGGAGGAGGG

d__kit1 AGGGAGGGCGCCGGGAGGAGGG

h__kit2 CGGGCGGGCGCGAGGGAGGGG

d__kit2 AGGAGGGGCGCGGGGGAGGGG

d__kit2__A16 AGGAGGGGCGCGGGGAAGGGG

h__kit2__T21 CGGGCGGGCGCGAGGGAGGGT

h__kit2__T12/21 CGGGCGGGCGCTAGGGAGGGT

d__kit2__T12/21 AGGAGGGGCGCTGGGGAGGGT

h__kit2__2tet CGGACGGACGCGAGGAAGGAT

Mutations with reference to the human sequences are in bold and italic.
doi:10.1371/journal.pone.0103876.t002
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Kit2 intermolecular structures are efficiently formed in
the canine sequence

Considering the spectra reported in Figure 6, the slow

interconversion of the canine structures seems to fit a two

component equilibrium (isodichroic points are present at 278–

285 nm, depending upon the tested sequence) which does not

involve the unfolded form (the spectra recorded in the absence of

the metal ion do not cross at the same isodichroic point). As above

introduced, it is well established that the human sequence can

rearrange from a monomeric form to a dimeric one. Thus, we

decided to assess if for canine sequences the observed rearrange-

ments are connected to the occurrence of a comparable process.

To verify this hypothesis, we analyzed the CD features of solutions

ranging from 4 up to 40 mM strand concentrations. The results are

summarized in Figure 6 where spectra recorded at low DNA

strand concentration (4 mM; Figure 6, Panels A, C and E) are

compared to those acquired at 10 fold increased concentration

(40 mM; Figure 6, Panels B, D, and F).

By increasing the DNA concentration of the two canine

sequences, a prevalence of the dichroic contribution at lower

wavelength occurs on the equilibrated solutions. As a result, at

high concentration the difference in the folding of the sequences

deriving from the two species partly vanishes. Again, the metal ion

K+ is important to promote such an effect since, by reducing its

concentration to 20 mM (data not shown), comparable profiles are

observed irrespectively of DNA concentration.

The role of increasing oligonucleotide concentration in modu-

lating the structural features of the tested sequences was confirmed

by EMSA. In particular, this assay was applied to resolve the

Figure 4. The human and canine kit1 sequences share a common G-4 fold. CD titrations of mM d_kit1 (Panel A) or h_kit1 (Panel B) with
increasing concentrations of KCl (0–200 mM) in 10 mM Tris, pH 7.5, 25uC. The induction of G-4 folded form was supported by TDS (Panel C) and
quantified from the variation of the CD signal at 260 nm (Panel D).
doi:10.1371/journal.pone.0103876.g004

Table 3. Apparent Kd obtained from CD titrations of the
tested sequences with KCl in 10 mM Tris, pH 7.5, 25uC.

Kd (mM)

d__kit1 25.6261.40

h__kit1 2.2260.39

d__kit2 1.1860.11

d__kit2__A16 7.5860.39

h__kit2 9.4960.83

doi:10.1371/journal.pone.0103876.t003

Table 4. Melting temperatures of the tested sequences
determined from the analysis of the variation of the CD signal
recorded at 260 nm in 10 mM Tris, 50 mM KCl pH 7.5 when a
heating rate 0.8uC/min was applied.

Tm (6C)

h__kit1 59.5

d__kit1 50.0

h__kit2 67.5

d__kit2 49.2*

d__kit2__A16 43.0*

h__kit2__T21 61.4

h__kit2__T12/21 63.2

d__kit2__T12/21 44.2*

h__kit2__2tet 49.0

*values determined at 295 nm.
doi:10.1371/journal.pone.0103876.t004
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oligonucleotides folded forms according to the number of paired

strands, with monomeric forms moving faster (Figure 7). From

these gels it emerges that the extent of oligomeric species is well

related to the oligonucleotide concentration and is promoted by

increasing KCl concentrations (10–100–200 mM). This tendency

is more evident with canine kit2 sequences in comparison to the

human one.

Interestingly, the resolved products turned out to undergo

modest redistribution among forms of different multiplicity once

extracted from the gels (Figure S1). Products extraction allowed us

to acquire the CD spectra of the purified species (Figure S2). The

results confirmed that all multimeric species actually present the

CD signature of a parallel G-4 with a main peak located at

260 nm. Nevertheless, none of the resolved forms obtained from

the canine or human sequences showed a significant contribution

at 295 nm. This rules out the possibility to describe the system

with simple monomer-dimer equilibrium. Conversely, it suggests

the 295 nm contribution as deriving from a kinetically favored

form, which then turns into the thermodynamically stable

structure.

A two-tetrad quadruplex is unlikely for d_kit2 sequences
The heterogeneity of structures assumed by h_kit2 in solution

impairs detailed structural studies [37,43]. However, proper point

mutations allowed the prevalent formation of a single structure,

thus enabling the acquisition of suitable NMR data. These refer to

the sequences h_kit2_T21 and h_kit2_T12/21 (Table 2): they

have been confirmed to prevalently fold into a single dimeric or

monomeric G-4 structure, respectively, when prepared according

to defined experimental conditions (oligonucleotide strand and

KCl concentration, time of incubation) [10,11]. The structure

selection by the mutated sequences was obtained by removing

guanines which could produce alternative pairings. Thus, we

decided to follow a comparable approach on the canine sequence

and we analyzed the corresponding d_kit2_T12/21. In analogy to

the related wild type sequence d_kit2, in the presence of K+, this

oligonucleotide showed a CD spectrum composed of two main

dichroic bands (260 and 295 nm) (Figure 8A). However, distinctly

from the wild type sequence, the conversion of the higher

wavelength contribution toward the parallel form(s) is largely

impaired. Accordingly, TDSs appear comparable but not perfectly

superimposable (Figure S3). Thus we assume that the deleted

guanines may be structurally involved in a parallel folded form(s),

thus increasing their contribution in the folded population.

Finally, in the canine sequences up to two guanines belonging to

one external tetrad of the human parallel G-4 structure (guanines

4, 8, 16 and 20) are lacking. This may be compensated by the

recruitment of different guanines along the sequence. Alternative-

ly, the formation of stable G-4 containing just a two tetrads core

may be conceived. To assess whether a two-tetrads G-4 may

represent a reasonable folding for the canine sequences, we

analyzed a mutated sequence derived from the h_kit2_T21 in

which all guanines belonging to the external tetrads have been

mutated into adenines (h_kit2_2tet). We found that this sequence

is actually structurally organized. However, CD and TDS features

do not support a G-4 structure but more likely a partly paired

hairpin which is not induced by KCl (Figures 8B and S3).

Accordingly, it showed a remarkably high migration rate when

loaded onto a native PAGE (Figure 9).

Discussion

In the past decade, the domestic dog has gained increasing

interest as the most suitable animal model for comparative

oncologic studies on tumor biology as well as for the identification

and validation of new therapeutic targets [44–48]. Obviously, the

robustness of such a model is based, besides the aforementioned

histological appearance, tumor genetics, potential prognostic and

therapeutic molecular targets and response to conventional

Figure 5. The canine kit2 sequences show distinct chiroptical features. CD titrations of 4 mM canine (d_kit2 and d_kit2_A16 in Panels A and
B, respectively) and human (h_kit2 in Panel C) sequences with increasing concentrations of KCl (0–60 mM) in 10 mM Tris pH 7.5, 25uC. In Panel D the
relative variations of the d_kit2_A16 CD signal recorded at 260 and 295 as a function of metal ion concentration are reported.
doi:10.1371/journal.pone.0103876.g005
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therapies, also on the conservation of common cellular pathways

and common potentially useful pharmacological targets.

In this connection here we focused our attention on the canine

KIT promoter region. Overall, to our knowledge this is the first

study in which two G-rich portions have been identified at the

level of the canine KIT promoter region. Additionally, for both of

them, the attitude to fold into G-4 structures has been

demonstrated. Thus, the analogy with the corresponding human

KIT gene and the ensuing usefulness as a comparative animal

model is confirmed.

As far as kit1 sequence is concerned, the preservation of a

common overall parallel G-4 folding between the human and dog

derived sequences has been confirmed and is supported by the

high degree of sequence homology. The main difference is related

to an incremented thermal flexibility of the canine form and to

lower efficiency in accommodating potassium ions. This is

rationally explained by the disruption of the Watson-Crick base-

pair between A1 and T12 occurring in the G-4 folded human

sequence [49]. Thus, overall, our evidences confirm that the two

systems are suitable for comparative works.

More complex is the description of the behavior of the two

canine kit2 sequences in solution.

In dogs, two isoforms not significantly related to the develop-

ment of a pathological condition were herein identified. Based on

the structural information available, the human sequence folds

Figure 6. The folding of canine kit2 sequences is affected by sample preparation and DNA concentration. Chiroptical properties of
d_kit2, d_kit2_A16 and h_kit2 determined at mM (Panels A, C and E) or 40 mM (Panels B, D and F) strand concentration in 10 mM Tris, pH 7.5, 25uC
upon addition of 50 mM KCl.
doi:10.1371/journal.pone.0103876.g006

Figure 7. The canine kit2 sequences undergo strand oligomer-
ization. Variation of the electrophoretic mobility of human and canine
kit2 sequences upon increasing DNA concentration (0.1–100 mM) in
10 mM Tris, 50 mM KCl, pH 7.5. Lanes 1–3 refer to the purified
monomeric forms.
doi:10.1371/journal.pone.0103876.g007

The Canine Proto-Oncogene KIT Promoter Region: Sequence and Folding

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e103876



into G-4 structures most of which derive from three overlapping

tetrads, where guanines 2–6-14–18, 3–7-15–19 and 4–8-16–20 are

paired [10,11]. When compared to the human sequence, both

canine isoforms present mutations that involve guanines belonging

to external tetrad (G 4–8-16–20). Nevertheless, along the

sequence, additional guanines are present and they can be

recruited for G-4 formation. Two of them are peculiar of the

canine sequences (G5 and G13) whereas others are conserved in

human sequences (G10, G12 and G21). Thus, the multiplicity of

folded structures that are formed in solution also by the h_kit2

may be further extended to the dog.

Our experimental data suggest that the different sequences fold

into structures of comparable chiroptical features, the main

difference being the relative population distribution. In particular,

an unprecedented form providing a contribution at 295 nm

turned out to be a kinetically preferred one whereas the

contribution at 260 nm takes account both of monomeric and

intermolecular parallel forms. It is interesting to remind that, in

comparison to the wild type human sequence, multimeric G-4 are

more extensively represented in the canine counterparts. We

initially assumed that this difference arises from a preferential

formation of intermolecular G-quadruplex deriving from stacking

of only a two-tetrads array which would be beneficially stabilized

in the intermolecular arrangement where it could be easier to

allow interaction of consecutive G-4. However, the same

arrangement in a mutated human sequence (h_kit2_2tet) was

found to destabilize any G-4 form to a large extent. Thus, the

recruitment of guanines ‘‘theoretically’’ belonging to the loops in

order to fulfill the three tetrad array may be considered a realistic

possibility. This is straightforward in the d_kit2_A16 where the

third guanine strand span up to 4 consecutive guanines which can

be recruited in the G-4 core simply leading to a reduction of the

length of the second long and flexible loop. Due to the complex

structures distribution in solution and due to the fact that the

chiroptical properties may be properly described according to the

presence of stacking of guanosines of different (positive band at

290 nm) and same (one negative and one positive band at 240 and

260 nm, respectively) glycosidic bond angles, it is not possible at

the moment to safely attribute a defined parallel or antiparallel

structure to the different components [50]. In the future, the use of

specific ligands as structural probe for these sequences might be

useful to get further structural insight.

In conclusion, this work validates the canine c-kit promotorial

sequence as a potential anticancer target. Clearly, the potential

functional role of the observed G-4 motifs needs now to be

assessed at the cellular level. Nevertheless, the herein presented

evidences support the canine as a comparative model for human

disease. While for kit1 the structural superposition is extensive,

some differences may be assumed to occur among the kit2

sequences thus indicating them as a potentially species selective

target. In fact, recruitment of guanines belonging to the loops in

the human sequence to participate in G-4 formation in the canine

kit2 could modify the recognition properties of the newly formed

loops to a non-negligible extent and create novel opportunities for

therapeutic intervention.

Supporting Information

Figure S1 Panel A: resolution of d_kit2_A16 folded
forms by native gel electrophoresis of samples annealed
at different concentration in 10 mM Tris, 50 mM KCl,

Figure 8. Guanine mutations within kit2 sequences alter folding process. CD spectra of canine and human kit2 mutated sequences
recorded in 10 mM Tris, pH 7.5, 25uC upon addition of 50 mM KCl.
doi:10.1371/journal.pone.0103876.g008

Figure 9. Guanine mutations within kit2 sequences alter
electrophoretic mobility of folded forms. Electrophoretic mobility
of human and canine kit2 sequences previously annealed at 4 or 40 mM
strand concentration in 10 mM Tris, 50 mM KCl, pH 7.5.
doi:10.1371/journal.pone.0103876.g009
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pH 7.5. The bands labelled 1–3 were extracted from the gel and

loaded on the native gel reported in Panel B.

(DOCX)

Figure S2 CD spectra of monomeric and dimeric forms
of canine and human kit2 sequences recovered after
purification by native gel electrophoresis.

(DOCX)

Figure S3 TDS of selected d_kit2, d_kit2_T12/21 (Panel
A) and h_kit2_2tet determined on the previously an-
nealed sequences in 10 mM Tris, 50 mM KCl, pH 7.5.

(DOCX)
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