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Ab: antibody. 

Ag: antigen. 

APC: antigen presenting cell. 

ASC: antibody secreting cell. 

BCR: B cell receptor. 

Cq: quantification cycle. 

DC: dendritic cell. 

GC: germinal center. 

HCL: hierarchical clustering. 

Ig: immunoglobulin. 

LDA: linear discriminant analysis. 

MBC: memory B cell. 

PB: plasmablast. 

PBMC: peripheral blood mononuclear cell. 

PC: plasmacell. 

PCA: principal component analysis. 

PCR: polimerase chain reaction. 

qPCR: quantitative PCR. 

RT-qPCR: reverse transcription quantitative PCR. 

Tfh: follicular helper T cell. 

VH: heavy chain immunoglobulin variable region. 

VL: light chain immunoglobulin variable region. 
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Antigen (Ag) encounter activates B cells to proliferate and mature through the formation 

of germinal centers. Here somatic hypermutation of the variable regions and 

Immunolgobulin (Ig) isotype switching lead the high affinity Ag-specific clones to two 

possible differentiation outcomes: antibody (Ab) secreting plasmablasts (PB) or 

quiescent memory B cells (MBC). The molecular mechanism that drives the fate of a 

human B cell to differentiate into PB or MBC is poorly understood. Recent studies have 

provided new insights into the transcriptional program responsible for B cell maturation 

in mice or human bulk populations. The limited availability of samples and the 

difficulties in isolating Ag-specific MBCs from peripheral blood make this analysis 

particularly challenging in humans. We collected samples from human donors that 

received the seasonal influenza vaccine; those were processed and sorted immediately 

after the bleed at two different time points: day 8 and day 22 post vaccination, namely 

the peaks of PBs and MBCs response respectively. The blood samples were used to 

collect PBs, Ag-specific MBCs and naive B cells (NAIVE) by flow cytometry sorting, 

exploiting classical surface markers strategies. A new protocol was set up to allow qPCR 

analysis of multiple genes from sorted single human B cells. This protocol was first used 

in a pilot study on cells sorted from a first vaccinee, to perform gene expression profiling 

of 21 relevant genes that allowed us to discriminate the three different B cell 

populations. Then we up-scaled and optimized the protocol taking advantage of the 

96.96 Fluidigm Dynamic Array technology, which enables to perform RT-qPCR for 96 

single cells against 96 target genes in one single reaction. This new high-throughput 

approach was then applied to 240 single cells belonging to Ag-specific MBCs, PBs and 

NAIVE B cells (80 each) of a second vaccinee, to perform gene expression profiling of 96 

genes involved in several pathways of B cell differentiation. By performing unsupervised 

hierarchical clustering on all the cells, we observed that NAIVE, PBs and MBCs clustered 

separately and it was possible to identify signatures of gene expression characterizing 

the three populations. Linear Discriminant Analysis, a dimensionality-reduction analysis, 

shows that PBs are particularly different from MBCs and NAIVE, that instead share more 

similarities. By performing statistical analysis we identified the significant differentially 

expressed genes, which include genes involved in known B cell expression networks and, 

interestingly, also novel observations (FOXP1, POU2AF1, IRF2). We then compared the 

gene expression profile of Ag-specific MBCs with MBCs isolated from a healthy donor, to 

investigate possible differences in the expression patterns of recently activated MBCs 

and steady-state MBCs. With this analysis we identified 16 genes with a significant 
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differential expression level, denoting a more active profile for the recently activated 

MBCs isolated from the vaccinee. To further investigate the heterogeneity of Ag-specific 

MBCs we also recovered immunoglobulin VH sequences from the same cells by 

sequencing the specific PCR products. Correlation studies showed only weak association 

between B cell receptor (BCR) maturation (in terms of VH mutation rate) and gene 

expression data. Conversely, significant association was found between the expression 

of two genes and the Ig isotype. In particular RORα is associated with IgA, while TBX21 

with IgG, in accordance to previous studies performed on mouse bulk B cell populations. 

The genes identified with this study could be further investigated as they represent 

potential markers of B cell response to human vaccination. 
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Nell’ambito del processo di attivazione dovuto all’interazione con l’antigene (Ag), le 

cellule B proliferano e iniziano un processo di maturazione terminale attraverso la 

formazione dei centri germinativi (GC). All’interno dei GC, a seguito dell’ipermutazione 

somatica delle regioni variabili del recettore delle cellule B (BCR) ed il cambiamento di 

isotipo delle immunoglobuline, i cloni che hanno raggiunto alta affinità per l’Ag possono 

andare incontro a due possibili destini: differenziamento in plasmablasti (PB) che 

secernono anticorpi (Ab) o in cellule B della memoria quiescenti (MBC). Il meccanismo 

molecolare che determina il destino delle cellule B umane durante il differenziamento 

tardivo in PB o MBC è poco conosciuto. Studi recenti hanno rivelato nuovi aspetti del 

programma trascrizionale responsabile della maturazione di cellule B in topo o in 

popolazioni di cellule umane, ma la disponibilità limitata di campioni e la difficoltà 

nell’isolamento di MBC Ag-specifiche da sangue periferico hanno reso l’analisi di questi 

tipi cellulari particolarmente complicata. Per questo sono stati raccolti campioni di 

sangue da donatori sottoposti a vaccinazione stagionale contro l’influenza. Questi 

campioni sono stati processati immediatamente dopo il prelievo, effettuato in 

corrispondenza di due particolari momenti: 8 e 22 giorni dopo la vaccinazione, 

rispettivamente picchi della risposta mediata da PB e da MBC . I campioni di sangue 

periferico sono stati usati per l’isolamento di PB, NAIVE e MBC Ag-specifiche sfruttando 

marcatori di superficie. Per l’analisi del profilo di espressione genica è stato ottimizzato 

un metodo che permette di effettuare qPCR di numerosi geni in cellule B umane isolate 

come singola cellula. Tale approccio è stato usato inizialmente per uno studio pilota 

dell’espressione di 21 geni di interesse su cellule isolate da un primo soggetto, 

permettendoci di discriminare cellule appartenenti alle tre diverse popolazioni. 

Successivamente questo protocollo è stato ottimizzato sfruttando la tecnologia del 

96.96 Dynamic Array prodotto da Fluidigm, sistema che permette di effettuare RT-qPCR 

su 96 singole cellule per 96 geni in una singola reazione. Con questo metodo ad alta resa 

abbiamo analizzato 240 singole cellule appartenenti alle popolazioni di MBC Ag-

specifiche, PB e NAIVE (80 cellule ciascuna) di un secondo soggetto, permettendoci di 

analizzare il profilo di espressione di 96 geni coinvolti nelle vie di differenziamento delle 

cellule B. Attraverso un’analisi statistica di raggruppamento gerarchico dei dati di 

espressione appartenenti a tutti i campioni processati, abbiamo riunito sotto tre gruppi 

diversi per espressione genica le cellule appartenenti alle tre diverse popolazioni e 

abbiamo identificato i geni che le caratterizzano. La Linear Discriminant Analysis, una 

tecnica di riduzione dimensionale supervisionata, sottolinea come i PB siano 
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particolarmente differenti da MBC Ag-specifiche e NAIVE, che invece condividono un 

profilo più simile. Sfruttando diversi metodi di analisi statistica, sono stati identificati i 

geni significativamente espressi in maniera diversa tra le tre popolazioni. Così facendo 

sono stati individuati sia geni il cui ruolo nella maturazione delle cellule B è noto, sia geni 

conosciuti principalmente per la loro funzione in altri processi o altre fasi dello sviluppo 

di queste cellule (FOXP1, POU2AF1, IRF2). Inoltre abbiamo confrontato i profili di 

espressione delle MBC Ag-specifiche con MBC isolate da un donatore sano non 

vaccinato, per identificare possibili differenze nei profili di espressione di MBC 

recentemente attivate e MBC circolanti, lontane dall’attivazione Ag-specifica.  Tale 

analisi ha identificato 16 geni espressi differentemente in maniera significativa, 

evidenziando un profilo di espressione che denota uno stato di attivazione per le MBC 

recentemente contattate dall’Ag. Per studiare ulteriormente l’eterogeneità delle MBC 

Ag-specifiche, tramite PCR abbiamo amplificato e sequenziato le regioni variabili delle 

catene pesanti (VH) delle immunoglobuline espresse dalle stesse cellule, ma gli studi di 

correlazione mostrano solo deboli associazioni tra maturazione del BCR (in termini di 

tasso di mutazione delle VH) e dati di espressione genica. Al contrario, è stata 

individuata associazione significativa tra la selezione dell’isotipo del BCR e l’espressione 

di due geni, in particolare l’espressione di RORα è associata alla classe IgA, mentre 

TBX21 all’IgG, in accordo con studi precedenti effettuati in popolazioni di cellule B 

murine. In conclusione, i geni identificati da questo studio come discriminanti delle MBC 

recentemente attivate dall’Ag potrebbero essere ulteriormente studiati in qualità di 

potenziali marker della risposta B alla vaccinazione in uomo. 
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Efficacy of vaccination relies heavily on the production of long lasting protection. There 

are several important differences between primary and secondary antibody responses, 

concerning both quantity and quality of the antibodies produced (Chart 1).  

On secondary responses the lag phase is reduced and the antibody titers are typically 

higher. Moreover, the first contact with an antigen leads to an initial production of IgM 

and a lagged IgG production, whereas when the antigen is re-introduced the response is 

generally IgG dominated and characterized by higher affinity antibodies. Thus, between 

primary and recall responses, isotype switch and affinity maturation take place. These 

differences are a consequence of the different B cell subset kinetics of response to the 

antigen (Chart 2).  

Briefly, naïve B cells in peripheral lymphoid organs are activated to proliferate and 

differentiate into antibody-secreting plasma cells (peaking 8 days after vaccination) and 

memory B cells (peaking 21-30 days after vaccination). Some plasma cells may migrate 

to and survive in the bone marrow for long periods. In secondary responses, memory B 

Chart 1: Primary and secondary antibody responses[161]. 

Chart 2:  Immune response kinetics of different B cell populations. 
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cells are quickly activated to differentiate in plasmablast and produce larger amounts of 

antibodies, often with more heavy-chain class switching and affinity maturation. 

Therefore the activity of a small number of surviving memory B cells generated during 

the primary immune response is believed to be responsible of this improved 

responsiveness.  Dissecting the peculiar proprieties characterizing the memory 

compartment is then fundamental to understand the basis of humoral memory and 

hence to improve vaccine development. 

4.1. Early B cell development  

B lymphocytes are essential antibody-producing cells of the immune system.  They 

develop from hematopoietic stem cells (HSCs) that originate from bone marrow [1]. The 

pluripotent HSC with its extensive self-renewal potential regenerates all blood cell types 

throughout life by differentiating to progenitor cells with gradually restricted 

developmental potential. HSCs first differentiate into multipotent progenitor (MPP) cells, 

then they commit to either the lymphoid or erythroid-myeloid lineages, resulting in the 

formation of the common lymphoid (CLP) cells [1]. From here, their development into B 

cells occurs in several stages, each marked by various gene expression patterns and 

immunoglobulin H chain and L chain gene loci arrangements, the latter due to B cells 

undergoing V(D)J recombination as they develop [2]. B cells undergo two types of 

selection while developing in the bone marrow to ensure proper development. Positive 

selection occurs through antigen-independent signaling involving both the pre-BCR and 

the BCR. If these receptors do not bind to their ligand, B cells do not receive the proper 

signals and cease to develop [3,4]. Negative selection occurs through the binding of self-

antigen with the BCR: if the BCR can bind strongly to self-antigen, then the B cell 

undergoes clonal deletion, receptor editing or anergy [4]. This negative selection process 

leads to a state of central tolerance, to avoid self-antigen binding by mature B cells 

present in the bone marrow [2]. To complete development, immature B cells migrate 

from the bone marrow to the spleen and pass through the T1 and T2 transitional stages 

[5]. While migrating to the spleen and after spleen entry, they are considered T1 B cells 

[6]. Within the spleen, T1 B cells turn into T2 B cells  and then differentiate into either 

follicular (FO) B cells or marginal zone (MZ) B cells depending on signals received 

through the BCR and other receptors [7]. After differentiation, they are considered 

mature B cells, or naive B cells and they start to circulate between secondary lymphoid 

organs (lymph nodes) through the peripheral system. 
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4.2. Germinal center dynamics and late B cell differentiation 

In order for our bodies to mount a successful humoral immune response, B cells must 

first encounter, and then be activated by, their cognate antigens. Following activation, a 

coordinated cascade of events involving several different cell types drives antigen-

engaged B cells to diversify the antibody they produce in order to increase affinity for 

the antigen and alter its effector function to produce the best possible response to said 

antigen[8]. During this process, the B cell differentiates into either an antibody secreting 

cell (plasmablast (PB) or PCs) or a long lived MBC. This sequence of events takes place 

within a specialized immunological environment termed the germinal center (GC).  

 

GCs are not permanent structures, but rather arise transiently within the lymphoid 

tissue in response to a T cell-dependent antigen (Chart 3). Lymph nodes are composed 

of multiple lobules surrounded by lymph-filled sinuses enclosed by a capsule [9]. Naive B 

and T cells from the circulation cycle continually through the lymph node, residing 

within distinct areas of the lobule where they can interact with antigen-presenting cells 

(APCs) to survey the antigenic environment. The outer layer (cortex) contains follicles of 

naive B cells and follicular dendritic cells (FDCs). These follicles are separated from the T 

cell zone (paracortex), which contains naive T cells and dendritic cells (DCs), by the 

interfollicular zone [10]. Circulating naive B cells bear the chemokine receptor CXCR5 

Chart 3:  B cell activation by the antigen [8]. 
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and so are attracted to the lymphoid follicles by the chemokine CXCL13, which is 

expressed by resident FDCs and marginal reticular cells [11]. Similarly, circulating naive T 

cells expressing the chemokine receptor CCR7 are recruited to the T cell zone by 

fibroblastic reticular cell expression of the CCR7 ligands, CCL19 and CCL21 [12]. Once in 

the follicles, naive B cells interact with antigen via their B cell receptor (BCR). BCR 

binding to cognate antigen activates the B cell, triggering internalization of the BCR and 

presentation of antigen on the cell surface in the context of major histocompatibility 

complex (MHC) class II molecules [13].BCR engagement also up-regulates expression of 

the chemokine receptor CCR7, which promotes B cell migration to the periphery of the T 

cell zone where its ligands are expressed abundantly. During this phase of activation, the 

B cells continue to maintain expression of CXCR5; the balance between CXCL13 

expression in the follicles and CCL19/21 expression in the T cell zone positions B cells at 

the border of the T cell zone [14]. Meanwhile, naive T cells in the T cell zone encounter 

their cognate antigen, here presented by DCs, initiating commitment towards a T 

follicular helper (Tfh) cell phenotype [15]. Tfh cell commitment is accompanied by CCR7 

down-regulation and CXCR5 upregulation, promoting Tfh cell migration to the T/B cell 

boundary where they can support B cell expansion [16,17]. Two days after antigen 

encounter, activated B cells find their cognate Tfh cells and form long-lived interactions 

that result in full B cell activation and proliferation [18,19]. At this time, a subset of 

activated B cells moves away from the extrafollicular sites and differentiate into short-

lived PB. These cells secrete IgM, providing immediate protection to the individual, but 

with low specificity [20]. After 3 days, the activated Tfh and B cells migrate into the 

center of the follicle, where the B cells start to proliferate rapidly. By this time the B cells 

begin to express the master regulator B cell lymphoma 6 protein (BCL6), which drives 

the acquisition of the GC B cell phenotype [21]. The rapid proliferation of activated GC B 

cells within a network of FDCs pushes aside the resident follicular B cells to form the 

early GC over days 5–6. By day 7 the rapid proliferation of GC B cells, coupled with the 

continued influx of activated GC cells, results in the polarization of the fully formed GC 

into two distinct microenvironments called dark and light zones (Chart 4). In the dark 

zone, densely packed GC B cells, referred to as centroblasts, divide rapidly and undergo 

SHM. Centroblasts are retained in the dark zone by their expression of the chemokine 

receptor CXCR4, the ligand of which, CXCL12, is expressed abundantly by dark zone 

stromal cells [22]. Down-regulation of CXCR4 and up-regulation of CD83 and CD86 allow 

the GC B cells to migrate from the dark zone into the light zone, a less densely packed 
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compartment populated with Tfh cells, macrophages and FDCs [23]. In the light zone, B 

cells undergo a process of selection where B cells producing higher-affinity antibodies 

compete for available antigen [24] and/or T cell help [25], thus receiving survival signals 

via BCR binding. Selection promotes centrocyte re-entry into the dark zone for further 

rounds of mutation and selection [26]. Conversely, lower-affinity B cells receive no 

survival cues and undergo apoptosis [27]. In parallel, CSR drives apoptosis of undesirable 

B cell clones through deletion of the Ig heavy chain in a process called locus suicide 

recombination. This prevents BCR expression and thus eliminates the survival signals the 

BCR transmits, inducing apoptosis [28]. Having survived selection in the light zone, GC B 

cells can do one of three things: they can re-enter the dark zone for additional rounds of 

proliferation and somatic hypermutation (SHM) [29]. Alternatively, GC B cells can leave 

the GC and differentiate into PB (precursors of antibody-secreting PCs) or they can 

differentiate to form long-lived MBC to enable a rapid response upon re-encountering 

the same antigen [30,31]. Co-ordination of all the events described above is controlled 

by a number of master regulator transcription factors.  

Among these factors, some are responsible of maintaining B cell identity. Paired box 

protein 5 (PAX5) is the master regulator of B cell identity and is expressed throughout B 

cell development [32], from pro-B cells [33] to mature GC B cells [34]. PAX5 binds 

directly to thousands of DNA sites in B cells and functions by both activating and 

repressing gene expression [32]. During early B cell development PAX5 is required for 

Chart 4: Germinal center dynamics and late B cell differentiation [8]. 
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the initial commitment of lymphoid progenitors to the B cell fate and VDJ recombination 

of the Ig locus [33,35,36]. In mature B cells it regulates the expression of genes critical to 

B cell identity, including components of the B cell receptor (Ig heavy chain and CD79A), 

CD19, CD21, B lymphocyte kinase (BLK), interferon regulatory factor IRF4 and IRF8 [32]. 

In addition, PAX5 further reinforces B cell identity by repressing the expression of 

lineage inappropriate genes, including Fms-like tyrosine kinase 3 (FLT3), CCR2 and CD28, 

which are expressed in PCs following PAX5 down-regulation, and macrophage colony-

stimulating factor (M-CSF) receptor, NOTCH1, RAMP1, LMO2 and CCL3, which are 

expressed in common lymphoid progenitors and myeloid cells [37]. As PAX5 promotes 

and maintains the expression of the B cell transcriptional program, its down-regulation 

is required for differentiation into committed Ig-secreting PCs [38]. Remarkably, PAX5 

directly represses the expression of one of the master regulators of the PC program, 

XBP1, and its down-regulation is required for Ig secretion [39,40]. 

As mentioned earlier, BCL6 is essential for GC formation [41] and is considered the 

master regulator of the GC, where it controls gene expression programs in both GC B 

cells and in Tfh cells [21,42] . Within these cells BCL6 functions predominantly as a 

transcriptional repressor, directly suppressing multiple genes involved in the DNA 

damage-sensing pathway, including TP53, ATR and CHEK1 and regulators of the cell 

cycle, p21, p53 [43,44]; this establishes a transcriptional program that allows both the 

rapid proliferation of cells and the tolerance of DNA damage essential to SHM. In 

addition, BCL6 controls the migration of B cells into the follicle. One of the critical 

functions of BCL6 appears to be the repression of PC differentiation, in this case 

mediated by repression of BLIMP1 [45]. Although BCL6 functions as a transcriptional 

repressor, it also induces AID expression indirectly in GC B cells [41]. Similarly, 

repression of SPI1, IRF8 and MYB is also relieved, all regulators of the GC transcriptional 

program.  

Two transcription factors, B lymphocyte-induced maturation protein 1 (BLIMP1, also 

known as PR domain zinc finger protein 1, PRDM1) and X-box-binding protein 1 (XBP1) 

are essential for orchestrating PC differentiation [30]. BLIMP1 is a transcriptional 

repressor that, within the B cell lineage, is expressed exclusively in antibody-secreting 

cells; at lower levels in PBs and higher levels in mature PCs [46,47]. During PC 

commitment, BLIMP1 represses the expression of the B cell-specific regulators PAX5, 

BCL6, ID3 and Spi-B transcription factor (Spi-1/PU.1-related) (SPIB) [48], thus allowing 

expression of XBP1. However, although XBP1 appears to act downstream of BLIMP1 in 
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the regulatory network [49], BLIMP1 is necessary, but not sufficient for XBP1 expression 

[38]. Furthermore, BLIMP1 is not required for initiation of the PC differentiation 

program as pre-plasmablasts form in the absence of BLIMP1 [50]. XBP1 acts 

downstream of BLIMP1 and is a key regulator of PC development, but it is not absolutely 

required for the formation of antibody-secreting cells [51]. Rather, XBP1 appears to act 

predominantly to set up the cells to allow for the secretion of vast quantities of Ig [52], 

inducing endoplasmic reticulum remodelling, activation of mechanistic target of 

rapamycin (mTOR) [53] and autophagic pathways [54] and the induction of the unfolded 

protein response [52]. Although much is known regarding the interconnections that 

exist between the regulatory networks of these B cell lineage master regulators, 

questions remain as to exactly what initiates each pathway. In addition, controversy still 

surrounds the issue of PC longevity. Short-lived PCs play a critical role in the immune 

response and undergo a ‘traditional’ differentiation program, exiting the cell cycle, 

undergoing terminal differentiation followed by rapid cell death. However, while it is 

clear that a long-lived PC population is maintained in the bone marrow [55], it is still not 

clear how this population is maintained. Recent data suggest that active autophagy 

might account for the longevity of these cells [56], protecting these cells from apoptosis, 

possibly in combination with some degree of ongoing homeostatic proliferation [57]. 

IRF4 is a member of the IRF (interferon regulatory factor) superfamily of transcription 

factors that shows relatively weak DNA binding on its own. Therefore, in order to exert 

its diverse functions it binds DNA co-operatively with a host of other transcription 

factors, including IRF8, PU.1 and Spi-B [58,59]. IRF4 plays an essential role in isotype-

switching, with IRF4-deficient mice failing to induce AID expression and undergo CSR 

when stimulated in vitro [60,61]. IRF4 may regulate AID expression through co-operative 

binding with BATF, a transcription factor essential for AID expression [62]. IRF4 is 

induced rapidly upon BCR ligation [63,64] and is reported to be required for BCL6-

induction and entry into the GC reaction. However, it is not required for maintenance of 

the GC [60]. In addition to establishing the GC reaction, IRF4-deficient mice also fail to 

make mature PCs [60,61] and this defect is a result of failure to induce BLIMP1 

expression [61]. However, it was also suggested that the failure to induce PC 

differentiation is independent of BLIMP1 expression and instead is due to a loss in XBP1 

expression [60]. The ability of IRF4 to initiate two distinct cell fate transitions, GC B cell 

and PC differentiation, originates from its differing expression levels at these times. IRF4 

is expressed at low levels in naive B cells but is up-regulated during PC differentiation 
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[65]. It is thought that the strength of the BCR signaling, as determined by the affinity of 

the BCR for antigen, determines the level of IRF4 induction. This, in turn, determines 

whether the GC B cell program or the PC differentiation program is initiated: initially, 

low concentrations of IRF4 activate AID and BCL6 expression. As the GC reaction 

continues Ig affinity increases, leading to increased BCR signaling and elevated IRF4 

expression, favoring BLIMP1 expression [63,66], BCL6 repression [67] and 

extinguishment of the GC program. These divergent functions of IRF4 are mediated 

through its ability to associate with different binding motifs. At lower concentrations, 

IRF4 co-operates with PU.1 and BATF, facilitating binding to ETS-IRF or AP-1-IRF 

composite motifs and coordinating the GC program. At high concentrations, resulting 

from hypermutation-driven high-affinity BCR- antigen recognition, IRF4 favors binding to 

interferon sequence response elements (ISREs), shifting the cells’ expression profile 

towards the PC program [63]. 

IRF8 is another member of the IRF transcription factor superfamily, but unlike IRF4 is 

expressed abundantly in centroblasts [68] and down-regulated in centrocytes [69]. IRF8 

was proposed initially to regulate BCL6 and AID positively; IRF8 over-expression in 

human B cells increased the abundance of BCL6 and AID transcripts, while siRNA- 

mediated knock-down of IRF8 in a murine GC-derived B cell line had the opposite effect 

[68]. However, more recently, IRF8-deficient mice have been shown to display only 

minor reductions in AID and BCL6 expression and have a normal antibody response [70]. 

While the phenotype of IRF8-deficient B cells is relatively minor, knock-out of both IRF8 

and its common binding partner PU.1 result in heightened PC differentiation and class-

switch recombination [65]. This mouse model showed that IRF8:PU.1 are together able 

to help maintain the B cell program by promoting expression of PAX5 and BCL6 and 

concurrently repressing BLIMP1. 

Another critical component of the humoral immune response is cell death, which allows 

autoimmunity prevention, drives affinity maturation and terminates the response once 

the challenge has been met. Conversely, inhibition of apoptosis is essential for 

immunological memory. Apoptosis induced by the loss of environmental signals such as 

growth factor withdrawal or loss of BCR signaling is initiated by pro-apoptotic members 

of the BCL2 family of proteins (including BIM, BAD, BIK and BAX), while it is prevented by 

the anti-apoptotic BCL2 factors (BCL2, BCLXL and myeloid cell leukaemia 1 (MCL1)). Thus, 

a B cell’s apoptotic potential is determined by the balance between pro-apoptotic and 

anti-apoptotic signaling. Accordingly, B cells undergoing affinity maturation in the GC 
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show low expression of a number of anti-apoptotic factors, such as BCL2, while express 

pro-apoptotic factors such as FAS and BAX abundantly [71]. As such, GC B cells appear to 

be destined to apoptosis unless rescued by BCR signaling. More recently, MCL1 has been 

identified as the main anti-apoptotic regulator of GC B cells and MBCs [72]. Due to the 

requirement for DNA recombination, mutation and rapid proliferation, B cells are prone 

to lymphoma development at various stages of B cell ontogeny. Of these, a number are 

derived from the GC stage, including follicular lymphoma, diffuse large B cell lymphoma, 

Hodgkin’s lymphoma and Burkitt’s lymphoma. In many of these cases either 

translocation of the BCL2 gene or up-regulation of one of the anti-apoptotic BCL2 family 

members can be demonstrated and probably plays a role in the transformation process 

[73]. 

It has become increasingly apparent that the different B cell expression programs are 

controlled by a highly coordinated regulatory network. Within this network, multiple 

points of positive and negative feedback ensure the mutually antagonistic expression of 

the master regulators, augmented by an increasing number of secondary factors that 

reinforce these networks and contribute towards sensing the progress of the GC 

reaction. Initially, the B cell-specific expression pattern is established by PAX5, which not 

only regulates the expression of proteins critical to B cell function but also drives the 

expression of IRF4 (at a low level), IRF8 and BACH2. Together, these factors inhibit the 

expression of the master regulators of PC differentiation, BLIMP1 and XBP1; PAX5 

directly represses XBP1, while IRF8, in combination with PU.1, both maintains PAX5 and 

inhibits BLIMP1. BLIMP1 is also suppressed actively by BACH2. Following activation of 

the B cell via BCR engagement, BCL6 is activated by IRF4/PU.1. BCL6 controls not only 

the establishment of the GC fate, initiating the diversification pathways and rapid 

proliferation of the B cells, but also further represses BLIMP1. Although much has been 

elucidated as to how these pathways repress B cell differentiation into PCs, it is less 

clear how the path is set towards favoring terminal differentiation to PCs, essential for 

the final success of the GC reaction. As SHM produces Igs of ever-increasing affinity, BCR 

signal strength increases, in turn increasing IRF4 expression. Increased IRF4 expression 

then starts to activate BLIMP1, which in turn represses BCL6 and PAX5. Once BLIMP1 

accumulates, it represses multiple genes responsible for maintaining B cell identity, 

including BCL6. This, in turn, allows the expression of genes responsible for PC identity, 

driven in part by IRF4. Finally, suppression of PAX5 relieves repression of XBP1, allowing 

establishment of the full secretory program. Although critical, the network described 
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above appears not to be the whole story. The rapid proliferation of B cells is a necessary 

part of the GC response, but it now seems likely that this process also plays an active 

role in determining cell fate. It has been known for many years that a cell’s potential to 

undergo CSR is determined (at least in part) by the number of divisions it has undergone 

[74,75]. Later, it was shown that a B cell’s potential to undergo differentiation into an 

antibody-secreting cell was also dependent upon division number [74]. Together, these 

data suggest that B cells possess some form of division counting mechanism that 

changes an individual cell potential to undergo cell division, apoptosis and 

differentiation [30]. Further, recent studies suggest that individual naive B cells may 

have a restricted potential with regard to the number and type of effector cells (PC, 

MBCs and GC cells) into which their progeny can differentiate [76]. Clonal populations 

that resisted apoptosis and divided more times were more likely to give rise to multiple 

effector subsets. In addition, clones bearing higher-affinity antigen receptors underwent 

higher levels of cell division and generated a greater ratio of PCs to MBCs than clones 

bearing lower-affinity receptors [76]. Thus a combination of BCR signaling, cell division 

and apoptosis appears to determine the response of an individual B cell following 

antigen encounter. Much is now known about the molecular network regulating the GC 

response and PC differentiation, both of which are controlled largely by the expression 

of a small number of master regulators. However, for what concerns MBC, no 

deterministic transcription factor has been found so far.  

4.3. Generation of memory B cells 

In T cell-dependent B cell responses, accumulating evidence shows that antigen-

activated proliferating B cells begin to follow one of three fates by differentiating into 

extrafollicular short-lived PCs, GC-independent memory B cells or GC-dependent 

memory B cells [77].  

Affinity-dependent B cell selection occurs at the B cell–T cell border as a result of T cell 

help, which could affect B cell fate decisions [78]. Among the various signals provided by 

T cells, the CD40 signal alone can induce activated B cells to differentiate down the 

memory pathway but not into GC cells [79]. In addition to the CD40 signal, cytokine 

signaling is probably required for germinal center B cell differentiation. Indeed, 

interleukin-21 (IL-21) was shown to upregulate the expression of B cell lymphoma 6 

(BCL-6) in B cells, which is a crucial transcription factor for germinal center formation 

and maintenance [80,81]. Hence the formation of durable Tfh cell–B cell conjugates to 

provide adequate T cell help could enable B cells to differentiate into GC B cells. 
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However, if the duration of conjugate formation is fairly short, B cells are more likely to 

join the GC-independent MBC pool. Given that class switching but not somatic 

hypermutation occurs during this early period, BCR specificities of the GC-independent 

MBCs are likely to reflect those of the initial responding B cells. Therefore, the GC-

independent MBCs may enable the host to maintain a broad range of antigen-specific B 

cells possibly providing protection against pathogens that bear related but distinct 

antigens and epitopes. 

As reported above, for what concerns GC-dependent MBC the precise mechanism of 

formation is still unclear. One hypothesis is that there is a master regulator of 

transcription that directs the cells towards a memory B cell fate, but so far no single 

deterministic transcription factor for MBCs has been elucidated. An alternative idea is 

that MBCs differentiate stochastically from GC B cells and that a survival advantage is 

sufficient for MBC differentiation [82].  

It was previously assumed that MBCs are only formed during T cell-dependent immune 

responses and therefore that conventional B2 cells are the exclusive participants in MBC 

generation. However, recent data show that B1 cells can also generate MBCs during T 

cell-independent immune responses [83,84]. B1 cells are the most abundant B cells in 

the peritoneal cavity but they are also present at a low but detectable frequency in the 

spleen [85]. Although T cell-independent MBCs can be generated, it seems that their 

recall response is quantitative, rather than qualitative. Thus it is unclear whether T cell-

independent MBCs have an intrinsic advantage compared with their naive B cell 

counterparts to respond more rapidly and more robustly to the antigen. 

4.4. Heterogeneity of memory B cells 

During the primary immune response, several types of MBCs are generated, suggesting 

the idea that these have distinct functions [86]. Two decades ago, it was hypothesized 

that there are two distinct types of MBCs  (IgM+ and IgG+ cells)  which are activated and 

function in a distinct manner during reinfection [87]. Two groups have recently 

addressed this question and they have reached a similar conclusion that upon antigen 

re-challenge, IgG+ MBCs preferentially differentiate into PB, whereas IgM+ MBCs 

proliferate more and enter the GC reaction [88,89]. However, it seems that there is 

functional heterogeneity even within the IgM+ or IgG+ MBC pools, and it cannot be 

excluded that IgG+ MBCs can re-enter germinal centers or that IgM+ MBCs might produce 

a PB response. A more recent study has proposed that other markers (CD80 and 

programmed cell death 1 ligand 2 (PDL2)) are more functionally relevant to MBC subsets; 
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CD80− PDL2− MBCs  enter the GC reaction, whereas CD80+ PDL2+ MBCs promptly 

differentiate into PBs upon restimulation [90]. The above-mentioned studies mainly 

used MBCs expressing IgG1 or expressing mixtures of IgG1, IgG2a and IgG2b. However, a 

recent study shows the need to functionally characterize each isotype of MBC [91]. 

Transcription factors that are induced in B cells by cytokines are important for regulating 

subsequent B cell behaviour in the primary response; for example, interferon-γ (IFNγ)-

induced T-bet (also known as TBX21) expression is known to be important for IgG2a 

class switching. Interestingly, such transcription factors are also important for the 

survival of immunoglobulin class-specific MBC [91]. Expression of T-bet or retinoic acid 

receptor-related orphan receptor-α (RORα) in IgG2a+ or IgA+ MBCs, respectively, is 

higher than in naive B cells, and these transcription factors are crucial for memory cell 

survival, probably by controlling the transcription of genes that encode cell-surface BCR 

components [91]. As each subclass of immunoglobulin has unique biological activities as 

a result of its Fc portion, targeting particular transcription factors for developing 

antibody isotype- skewing vaccines could be an important strategy for 

immunotherapeutic applications. In summary, these recent studies of MBCs expressing 

IgM, IgG2a and IgA have shown that the origin, the function and the longevity of MBCs 

could differ between cells expressing different antibody isotypes. Therefore, questions 

arise about how such heterogeneity is induced and whether different types of MBCs are 

coordinately activated upon secondary infection.  

4.5. Peculiar characteristics of memory B cells 

Key functional features of MBCs are their longevity and their rapid and robust responses 

to antigen re-exposure, which are the basis of vaccine success. Haematopoiesis is a well-

known example of a biological system with long-term functions. In this system, the long-

term maintenance of homeostasis depends on the co-existence of somatic stem cells 

and more committed progenitor cells [92]. The stem cells ensure the efficient 

replacement of more committed cells, but at the same time maintain themselves 

through a process of self-renewal. The more committed progenitor cells can be quickly 

differentiated into more mature cells following exogenous stimulation. It was postulated 

that such a stem cell-based mechanism might be similarly used by the humoral memory 

system, which requires bi-functionality to efficiently make effector cells upon re-

encountering pathogens and simultaneously continue to maintain the responsive 

memory state. As IgG+ MBCs seem to have a greater propensity to differentiate towards 

PCs than IgM+ MBCs do, it could be suggested that the IgM+ MBC compartment contains 
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more stem cell-like cells, whereas class-switched MBCs, such as IgG+ MBCs, correspond 

to committed progenitor cells. This proposal requires further study but would be similar 

to the situation for memory CD8+ T cells, for which substantial evidence of a stem cell-

based model has recently been provided [93].  

To determine which types of cells and molecules are required for MBC survival, previous 

studies have used IgG+ MBCs as a target. Those can persist in the absence of T cells or 

input from precursor cells, but experiments in mice have suggested that there is a 

requirement for FDCs for the maintenance of IgG+ MBCs [94]. In these mice, the primary 

IgG response was unaffected, but the secondary antibody response was significantly 

decreased. Notably, the impaired memory response corresponded with the reduced 

frequency of antigen-specific MBCs. Inducible deletion of phospholipase Cγ2 (PLCγ2) 

after the generation of IgG1+ MBCs substantially decreased the size of the memory 

compartment, which suggests a requirement for BCR signaling for IgG1+ MBC survival 

[95]. In terms of a requirement for antigen, genetic studies showed that cognate antigen 

was not necessarily required after the generation of IgG+ MBCs, which implicates a 

tonic-like BCR signal in the maintenance of IgG+ MBCs [96]. As a result, factors that 

participate in expression of the BCR components (class-specific immunoglobulin heavy 

and light chains, Igα and Igβ) and tonic BCR signaling molecules could be potential 

determinants of memory B cell survival. The differential persistence of IgM+ and IgG+ 

MBCs was recently shown; Ag-specific IgM+ MBCs persisted for 500 days after priming, 

whereas the number of IgG+ MBCs declined by many fold during this time period [89]. 

This could be explained by differences in the self-renewal activity of IgM+ and IgG+ MBCs 

(as discussed above) and/or by the existence of differential B cell survival mechanisms. 

Consistent with the existence of differential B cell survival mechanisms, blocking the 

receptors for B cell-activating factor (BAFF; also known as TNFSF13B) and a proliferation- 

inducing ligand (APRIL; also known as TNFSF13) did not affect the survival of IgG+ MBCs 

in vivo but had a marked effect on naive IgM+ B cells [97]. Therefore, the differential 

usage of BAFF and/or APRIL might be one cause of differential survival between IgM+ 

and IgG+ MBCs in mice, although this requires further clarification and may not apply to 

human B cells. However, in humans, vaccinations and infections are known to elicit 

stable populations of IgG+ MBCs [98]. Thus, it would be interesting to test the possibility 

of heterogeneity between IgG1+ MBCs in terms of their self-renewal and their survival 

ability. In T cell-dependent primary B cell responses, it is well known that the production 

of high-affinity class-switched antibodies requires Tfh cells and FDCs. Thus, it is worth 
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considering both B cell-intrinsic and B cell-extrinsic mechanisms to account for the 

robust responsiveness of the memory compartment. MBCs rapidly differentiate into PBs 

that produce class-switched antibodies that are capable of clearing the infection far 

more quickly than naive B cells. To explain the rapid response of IgG1+ MBCs compared 

with IgM+ naive B cells, two non-mutually exclusive models have been traditionally 

assumed. In the first one, the unique IgG1 cytoplasmic domain structure of 28 highly 

conserved amino acid residues (compared with the IgM cytoplasmic tail, which consists 

of three amino acids) is thought to be the primary factor accounting for differences in 

responsiveness, while in the second model, other changes such as alterations in 

transcription factor levels that take place during priming are thought to explain the 

differences. In support of the first model, several in vitro biochemical studies have 

shown differential signaling activity of IgM and IgG1 BCRs. To assess the contribution of 

the two models, a mouse IgG+ ‘naive’ B cell line was recently established by nuclear 

transfer from an IgG1+ MBC, thus enabling for the first time a direct comparative 

analysis of naive-type IgG1+ B cells and antigen-experienced memory-type IgG1+ B cells. 

Antigen-experienced, but not naive, IgG1+ B cells rapidly differentiated into PCs, which 

indicates that stimulation history (a BCR-extrinsic factor) is important in determining the 

response [99]. Furthermore, the transcription factor BTB and CNC homologue 2 (BACH2), 

which is known to repress differentiation towards PCs, was expressed at a lower level in 

IgG1+ MBCs than in IgG1+ naive B cells, thus favoring the differentiation of IgG1+ MBCs to 

PCs over germinal center entry. Due to data showing that before the induction of 

BLIMP1 expression (and so PC differentiation) there are several intermediate states 

between activated B cells and PCs, we propose that IgG1+ MBCs could be into such an 

intermediate state by the downregulation of BACH2 [50]. Given that the BACH2 level of 

IgM+ MBCs was more similar to that of naive B cells, IgM+ MBCs are probably also more 

similar to naive B cells in terms of their differentiation state and their ability to enter the 

germinal center pathway. These data shows the importance of stimulation history for 

the robust responsiveness of IgG+ MBCs, but it does not exclude a role for the IgG1 

cytoplasmic domain. 

4.6. B cell receptor formation and maturation 

B cells recognize and respond to foreign antigens through specialized polymorphic 

membrane receptors: the B cell receptor (BCR). Diversification of the antibody 

repertoire is essential for the normal operation of the human adaptive immune system. 

Three molecular mechanisms contribute to the diversity of the immune repertoire of B 
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cells: V(D)J recombination, class-switch recombination (CSR) and somatic hypermutation 

(SHM). These three mechanisms involve DNA damage, modification and the cellular 

DNA-repair machinery. The chromosomal organization of the genes that encode for the 

BCR is highly conserved between the receptor-chain loci, as well as between species 

(Chart 5).  

 

The variable antigen-recognition domains of these receptors are encoded by many 

scattered gene segments of three types (variable (V), diversity (D) and joining (J)) which 

are somatically rearranged, in appropriate cell lineages, before their expression [100]. So, 

V(D)J recombination generates the diversity of B-cell primary immune repertoires [101–

Chart 5:  Chromosomal organization and recombination of the human immunoglobulin heavy chain locus 
and schematic structure of immunoglobulins [108,162]. 
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103]. During the initial phase of V(D)J recombination, the lymphoid-specific 

recombinase-activating gene 1 (RAG1)/RAG2 factors, together with ubiquitous DNA 

architectural proteins (high mobility group, HMG, proteins), recognize and bind to 

recombination signal sequences (RSSs) that flank all variable (V) and joining (J) segments 

and introduce a DNA double-strand break at the border of the RSS. On the chromosome, 

coding ends are left as hairpin-sealed structures, whereas signal ends, which are excised 

from the chromosome, are blunt and 5' phosphorylated. The subsequent steps are taken 

care of by the DNA-repair machinery of the non-homologous end-joining (NHEJ) 

apparatus[104]. The DNA-double-strand break is first identified by the DNA-dependent 

protein kinase (DNA-PK) complex (formed by the Ku70–Ku80 heterodimer and the DNA-

PK catalytic subunit, DNA-PKcs). Before re-ligation, the hairpins at the coding ends are 

first opened, presumably by the Artemis–DNA-PKcs complex. The XRCC4–DNA-ligase IV 

complex carries out the ligation step. The terminal deoxynucleotidyl transferase (TDT) 

further increases the diversity of the coding joint by adding non-templated nucleotides 

(N).  

In the case of B cells, two additional mechanisms, which are triggered after antigen 

recognition, further optimize the antibody response [105]. Class-switch recombination 

(CSR) allows a previously rearranged IgH variable domain to be expressed in association 

with a different constant (C) region, leading to the production of different isotypes (IgG, 

IgA or IgE) (which mediate antigen elimination by different routes) without changing 

antibody specificity. The variable domains of immunoglobulins can also increase their 

affinity for antigen through the accumulation of somatic hypermutations (SHMs) within 

Chart 6: Molecular mechanisms involved in VDJ recombination [162] . 
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the V gene segment. These two B-cell specific antibody-maturation processes take place 

after antigenic stimulation, in the germinal centers of peripheral lymphoid organs, 

whereas V(D)J recombination occurs in the bone marrow (Chart 6). CSR involves 

recombination between two different switch (S) regions that are located upstream from 

each C region of IgH, with deletion of the intervening DNA. Replacement of the Cµ 

region by a C region of another class of immunoglobulin (Cγ1–4, Cα1–2 or Cε) results in 

the production of different isotypes (IgG1–4, IgA1–2 or IgE) with the same V region, and 

therefore, the same specificity and affinity for the antigen. The nature of the produced 

isotype determines its activity (half-life, ability to bind Fc receptors or to activate 

complement) and the location to which it is delivered (such as IgA in the mucosa) [106].  

SHM introduces mutations in the V region and its flanking regions with high frequency. 

These mutations, which are essentially missense mutations and more rarely deletions or 

insertions, occur in the complementarity-determining regions (CDRs) and target 

specifically the Arg-Gly-Tyr-Trp motifs. Normally, SHM is eventually followed by the 

positive selection of B cells that express a BCR with high affinity for antigen, whereas B 

cells that express a BCR with low affinity are deleted by apoptosis or recirculating in the 

GC to undergo further rounds of modification. This selection process occurs in close 

contact with follicular dendritic cells [107]. 

The rapidly emerging technology of B cell receptor BCR sequencing enables 

determination of the antibody repertoire [108]. BCR repertoire analysis can enhance our 

understanding of the effect of pathogen exposure and immune status on antibody 

repertoire, and facilitate identification of new vaccine targets. For example, BCR 

sequencing of circulating B cells in various human populations showed that both age and 

chronic viral infection altered the B cell repertoire [109]. Also, immunoglobulin 

sequencing of B cells isolated from recently immunized individuals identified vaccine-

specific BCR sequences [110,111]. 

4.7. Gene expression studies and combination with BCR repertoire analysis 

Gene expression profiling studies are traditionally performed using whole-transcriptome 

microarrays or RNA sequencing. For the past decade, microarrays capable of 

simultaneously measuring the expression of large numbers of genes in specific cell 

populations have been considered the gold standard for transcriptomic analyses. More 

recently, next-generation sequencing approaches that allow for rapid genome-wide 

sequencing have gained popularity.  
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Typically, transcriptomic studies are performed on whole blood or isolated cell 

populations, and differentially expressed genes are compared during the course of 

infection or vaccination to highlight key mechanisms involved in protection [112–115]. 

Among those, Querec et al studied the immune mechanisms driving protection for the 

yellow fever vaccine YF-17D and identified transcriptomic signatures in PBMC from 

vaccinated individuals that could predict the magnitude of the CD8+ T cell immune 

response [113]. Another study showed that the immunogenicity of the inactivated 

trivalent seasonal influenza vaccine could be predicted by a gene signature in PBMCs 

[112]. These examples all utilized redundant transcriptomic analysis, where the full 

transcriptome was analyzed. This approach remains expensive, requires a further 

validation step for genes of interest (traditionally RT-qPCR), and requires a relatively 

large amount of starting material, which is problematic for rare cell populations. Also, 

for some applications, a targeted panel of genes rather than the complete transcriptome 

is sufficient to address a given question. Hence, there has been a growing interest in the 

development and application of high-throughput multiplex gene expression systems, 

such as the Fluidigm systems, which focus on a specific panel of target genes. Recent 

technological advances in the field of transcriptomics, such as those described above, 

can also be applied to single cell gene profiling [116] . Gene expression studies at the 

single cell level have thus far highlighted the fact that individual cells from an apparently 

homogenous population (such as effector or memory cells) can display high 

heterogeneity at the mRNA level [117]. For example, using the multiplex high-

throughput RT-qPCR Fluidigm system for single cell gene expression profiling, Arsenio et 

al revealed new insights into the fate of CD8+ T cells effector and memory subsets 

during bacterial infection that were masked when the analysis was performed on pooled 

cells [118].  

Considering what has been described so far in this introduction, it is clear that each step 

of B cell maturation is the result of a complex interplay between transcriptional 

regulation and BCR signaling. Thus it is becoming increasingly important to characterize 

B cells at both levels simultaneously, in order to get the most information possible from 

each sample, especially for rare human B cell populations. This is possible by combining 

gene expression studies with Ig repertoire analysis. As reported above, recent 

technology advancement allows performing this kind of analysis even at single cell level. 

Combination of gene expression and Ig repertoire analysis at single cell level could be 

used to further investigate MBC heterogeneity. Indeed Ig repertoire studies allow for 
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the identification of Ig clonal expansion elicited by vaccination. Different MBC clonal 

families being at different maturation stages (in terms of accumulated BCR modifications 

and affinity for the antigen) could be characterized by a peculiar gene expression 

signature. The identification of such signature may become a biomarker for mature MBC 

subsets and be used to follow them during a vaccination response. A first attempt of 

gene expression analysis/BCR sequencing combination was performed by Weinstein et 

al, where single Ag-specific and Ag-nonspecific mouse B cells were used for gene 

expression profiling and BCR sequencing, finding correlations between the two[119].  A 

broader study is the one by McHeyzer-Williams et al, where they performed a deep and 

accurate analysis of murine GC dynamics during recall responses at single cell level[120].  

Most of the studies investigating gene expression profiling and B cell function were 

initially performed in murine models and generally there is good correspondence with 

humans. However this is not always the case, and human lymphocyte biology cannot 

always be easily extrapolated from animals studies [121]. Gaining this kind of 

information in humans is fundamental to better understand humoral B cell immunity, 

but it is also crucial knowledge for next-generation vaccine design. Knowing what 

determines the formation of particular MBC responses (different Ig isotype and thus 

different effector functions) could drive the definition of new adjuvants strategies that 

help in eliciting the appropriate immune response to the pathogen of interest or to 

address specific age-related response impairments. For instance, this is the case of Tbet 

and Rorα that, as mentioned earlier, were indicated as responsible of specific Ig class 

expression in MBC, being potential targets for isotype-skewing vaccines. Combination of 

gene expression and Ig repertoire analysis could be used to further investigate MBC 

heterogeneity. Ig repertoire studies allow identification of clonal expansion elicited by 

vaccination. Moreover the identification of biomarkers characterizing specific B cell 

populations could be used to identify such populations when assessing the vaccine 

efficacy in clinical trials. In addition this could lead to the detection of new B cell subsets 

with possible vaccine efficacy predictive potential. 
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A successful vaccine-induced humoral immune response relies on long lasting protective 

antibodies with appropriate isotype and high affinity for the immunizing antigen. To 

achieve this, antigen-activated B cells enter a process of BCR maturation and isotype 

switch selection that results in the production of short-lived antibody-secreting 

plasmablasts and long-term survival memory B cells. These outcomes are achieved 

within transient structures called germinal centers, residing in the follicles of secondary 

lymphoid organs. The molecular mechanism driving the fate of a human B cell to 

differentiate into a plasmablast or a memory B cell is poorly understood and many 

questions about memory B cells development remain unanswered, especially in humans.  

The goal of this study is to further characterize the molecular dynamics of late human B 

cell differentiation in response to vaccination, with a particular focus on memory B cells. 

We want to address this questions performing gene expression profiling at single cell 

level, thus investigating true population heterogeneity. Besides, comparing gene 

expression patterns induced by vaccination with the profile of steady-state circulating 

populations, we aim at identifying signatures of recent antigen stimulation. Additionally, 

combining gene expression analysis with B cell receptor sequence analysis, we explore 

possible correlations between expression signatures and BCR maturation, in order to 

identify mature subpopulations of memory B cells.  Ultimately this work aims to identify 

putative biomarkers of efficacious B cell responses induced by vaccination. 
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6.1. Human cells  

Two anonymous healthy donors participating to the seasonal Influenza vaccination 

campaign were selected for the study. Blood and plasma samples were collected at day 

8 and day 21 after one dose of undisclosed influenza vaccine upon approval of the 

informed consent. An additional sample from an anonymous healthy blood bank donor 

was collected after written informed consent was provided and ethical approval granted.  

All peripheral blood mononuclear cells (PBMCs) samples were isolated right after the 

bleed and diluted 1:2 in HBSS. PBMCs were isolated by conventional centrifugation over 

a Ficoll gradient and resuspended in PBS. 

6.2. Antigen labelling 

H1-California (Protein Sciences) and HSA (Sigma-Aldrich) were chemically labeled with 

Alexa Fluor 647 succinimidyl ester (Molecular Probes, Invitrogen) following the 

manufacturer's instructions. Each protein antigen was incubated with the dye at a molar 

ratio of 1:10 for 1 hour at room temperature and then loaded into a Zeba desalting spin 

column (Thermo Scientific) to remove the unbound dye. The degree of labeling was 

determined by measuring the absorbance of conjugated protein at the relevant 

wavelength for each fluorochrome by spectrophotometry. Protein concentrations were 

calculated with the Bradford Protein Assay (Giotto Biotech). 

6.3. Flow cytometry analysis and sorting 

Fresh PBMCs were divided in tubes containing approximately 7x106 cells. First they were 

stained with 100µl of 1:500 Live/Dead Aqua (Invitrogen) for 20min in the dark and 

washed with PBS. Then 50 µl of PBS containing 20% rabbit serum were added for further 

20 min at 4°C to saturate Fc receptors. After washing with PBS, PBMCs were stained 

with 50µl of a pre-titrated monoclonal antibodies mix diluted in PBS-1%FBS for 1h at 4°C 

in the dark. PBMCs from day8 after vaccination were stained with anti-CD19 APC (Clone 

SJ25C1, Becton Dickinson, Franklin Lakes, NJ, US), anti CD20 PrCPCy5.5 (Clone L27, 

Becton Dickinson, Franklin Lakes, NJ, US), anti CD27-PE (Clone L128, Becton Dickinson, 

Franklin Lakes, NJ, US), anti CD38-A700 (Clone HIT2, ExBio, Prague, CZ), anti IgG-V450 

(Clone G18-145, Becton Dickinson, Franklin Lakes, NJ, US) and anti IgM-FITC (Clone G20-

127, Becton Dickinson, Franklin Lakes, NJ, US), to identify Plasmablasts (PB) and Naïve B 

cells (NAIVE). PBMCs from day22 after vaccination were stained with CD20 PrCPCy5.5 

(Clone L27, Becton Dickinson, Franklin Lakes, NJ, US), anti CD27-PE (Clone L128, Becton 

Dickinson, Franklin Lakes, NJ, US), anti IgG-V450 (Clone G18-145, Becton Dickinson, 
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Franklin Lakes, NJ, US), anti IgD-A700 (Clone IA6-2, Becton Dickinson, Franklin Lakes, NJ, 

US) and Ag-Alexa647, to identify antigen specific Memory B cells (Ag+MBC). After 

washing with 1,5 ml of PBS-1% FBS, cells were resuspended in 500µl of PBS-EDTA 5mM 

and stored on ice before sorting at BD FACSAria™. PB 

(CD19+/CD20dim/CD27++/CD38++), Ag-spec MBC (CD20+/CD27+/Ag+) and NAIVE 

(CD19+/CD27-) populations were sorted as single cells in 96 well plates containing 5µl of 

lysis buffer, consisting of 1mg/ml Ultrapure BSA (Ambion) and 1U/well Ribolock (Thermo) 

diluted in PCR grade water (Life Sciences). Lysates plates were quickly put on dry ice and 

then stored at -80°C.  

6.4. cDNA synthesis and pre-amplification 

Plates of lysates were thawed on ice and immediately used to perform reverse 

transcription through the SuperscriptIII Reverse Transcriptase Kit (Life technologies). 5µl 

of lysates present in each well were mixed with non-specific primers (0.25µl of 100µM 

oligodT and 0.25µl of 100µM random hexamers, QIAGEN), 0.5µl of 10mM dNTPs (Life 

Technologies) and 1µl of PCR grade water (Life Technologies). The plate was then 

incubated at 65°C for 5 min. A mixture of 2µl of 5X RT buffer, 0.5µl of DTT, 2.5U of 

SuperscriptIII and 0.5U of RNaseOUT (Life Technologies) was added to each well, after 

the plate had been at least 1 min on ice. This final mix was put in the thermocycler and 

incubated 5 min at 25°C, 60 min at 50°C, 15 min at 55°C, 15 min at 70°C and then put on 

ice again. To verify if the quality of the material was suitable for further steps, a test 

qPCR was performed mixing 1µl of cDNA with Taqman Universal Master Mix II (Life 

Technologies), 0.5µl of 20X B2M Taqman Assay (Life Technologies) and 3,5µl of PCR 

grade water. The qPCR plate was put in the qPCR machine (Lightcycler480II) and 

incubated 2 min at 50°C and 10min at 95°C to allow activation of the enzyme and then 

cycled for 40 cycles denaturing 15s at 95°C and annealing/extending 1min at 60°C. If an 

acceptable amount of wells resulted positive then the cDNA was pre-amplified to 

increase the amount of specific cDNA, using all gene-specific primers in a short multiplex 

amplification reaction. In Subject A (SbjA), 5µl of cDNA were mixed with 12.5µl of 2X 

Preamplification mastermix (Life Technologies), 1.3µl of 0.860µM previously prepared 

Taqman assay mix (containing all target genes assays), 1.3µl of 0.86µM VH-κ-λ forward 

primer mix, 1.3µl of 4.5µM CH-κ-λ reverse primer mix and 3.6µl of PCR grade water. 5µl 

of the pre-amplified product was then diluted 1:8 in PCR grade water for gene 

expression analysis, while the remainder was used undiluted for repertoire analysis. In 

Subject B (SbjB) and the healthy donor the pre-amplification protocol was slightly 
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different due to the different number of genes: 5µl of cDNA were mixed with 12.5µl of 

2X Preamplification mastermix (Life Technologies), 7µl of 0.16µM previously prepared 

Taqman assay mix (containing all target genes assays), 0.25µl of 4.5µM VH-κ-λ forward 

primer mix and 0.25µl of 4.5µM CH-κ-λ reverse primer mix. The plate underwent the 

following PCR program: 10 min at 95°C, 18 cycles of 15s at 95°C and 4 min at 57°C. 1µl of 

the pre-amplified product was then diluted 1:8 in PCR grade water for gene expression 

analysis, while the remainder was used undiluted for repertoire analysis. The sequences 

of primers and the Taqman Assay IDs are shown in Table 1-2. 

6.5. Single cell qPCR 

Gene expression data in SbjA was obtained performing one qPCR amplification per 

target gene separately for each plate of single cells. The qPCR reaction mix for each well 

is prepared combining 1µl of diluted pre-amplified cDNA with 5µl of 2X Taqman 

Universal Master Mix II (Life Technologies), 0.5µl of 20X Taqman assay,  and 3.5µl of PCR 

grade water in qPCR specific 96 well plates.  The plate was put in the qPCR machine 

(Lightcycler480II, Roche) and incubated 2 min at 50°C and 10min at 95°C to allow 

activation of the enzyme and then cycled for 40 cycles denaturing 15s at 95°C and 

annealing/extending 1 min at 60°C. Raw data were collected using the Lightcycler 480 II 

software and analysed as reported below. 

Gene expression data in SbjB and the healthy donor was obtained using the Biomark™ 

HD system (Fluidigm). The sample mix was prepared combining 2.7µl of diluted pre-

amplified cDNA with 0.30µl of 20X Sample Loading Reagent (Fluidigm) and 3µl of 

Taqman Universal Master Mix II (Life Technologies). The assay mix was prepared mixing 

3µl of each of the 96 20X Taqman Assays with 3µl of 2X Assay Loading Reagent 

(Fluidigm). Samples and assays were loaded on the 96.96 Dynamic Array™ IFC after 

priming, and then run on the Biomark™ HD qPCR machine. ROX has been used as 

passive reference. Expression data has been retrieved using the Biomark “Data 

Collection” software and Biomark “Real Time PCR Analysis” software using Linear 

Derivative baseline correction and “Auto Detectors” Cq threshold method. Further 

analysis methods are reported below. The Taqman assay ID are shown in Table 1. 

6.6. Single cell Ig PCR and sequencing 

The undiluted pre-amplified cDNA was used to amplify the immunoglobulins VH regions 

with the Q5 High-Fidelity DNA polymerase (New England BioLabs). 4µl of product were 

mixed with 5µl of 5X Reaction Buffer, 5µl of 5X GC Enhancer, 0.5µl of 10mM dNTPs (Life 
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Technologies), 1.25µl of 10µM VH forward primer mix, 1.25µl of 10µM CH reverse 

primer mix and 7.75µl of PCR grade water. The PCR program used was as follows: 30s at 

98°C, 5 cycles of 10s at 98°C, 1min at 57°C and 1min at 72°C and 45 cycles of 10s at 98°C, 

1min at 60°C and 1min at 72°C, and 7min at 72°C. The PCR products were visualized on a 

2% agarose gel stained with GelRed (Biotium) to check for the presence of 350-450bp 

VH products. The PCR products were purified with Agencourt Ampure beads (Beckman 

Coulter) and finally sequenced with the ABI 3730xl 96 capillary DNA analyzer (Applied 

Biosystems). Two or more sequencing reactions were performed for each PCR product 

by using the same forward and reverse primer mixes as the Ig PCR (or single primers 

when needed). The sequences of primers and the Taqman Assay IDs are shown in Table 

1-2. 

6.7. Quantification of antibodies in human plasma 

These experiments were performed using the Gyrolab® system, a technology that 

performs miniaturized immunoassay in a high-throughput manner allowing measuring 

the antigen-antibody bindings. The fluorescence intensity signal of each data-point is 

automatically provided by the instrument through the Gyrolab® evaluator software and 

it is proportional to the quantity of antigen specific antibodies present in the plasma 

sample. For total Ab quantification, plasma samples (diluted 1:2 during PBMC isolation) 

were diluted 1:250 (total 1:500), 1:500 (total 1:1000) and 1:1000 (total 1:2000) in 

RexxipH™ Buffer. For Ag-specific Ab quantification, plasma samples were diluted 1:25 

(total 1:50) in RexxipH™, except for H3N2 IgA that were diluted 1:12,5 (total 1:25). They 

were run using the quantification method to define the concentration of total or Ag-

specific IgG-M-A Ab present in the plasma samples. For capturing we used: Goat Anti-

Human IgG-biotin #109-065-003 Jackson, Goat anti-Human IgM-biotin #109-065-043 

Jackson, Goat anti-Human IgA-biotin #109-065-011 Jackson. Seasonal Flu Ag 2013/14 

(H1N1California-biotin 248ug/mL, H3N2Texas-biotin 286ug/mL and B Massachusetts-

biotin 250ug/mL). The concentration in the assay was 100ug/mL. For detection we used 

anti-Human IgG A-647 (Fc Specific Jackson), anti-Human IgM A-647 (Fc Specific Jackson) 

and anti-Human IgA A-647 (Fc Specific Jackson). The concentration in the assay was 

25nM. 

6.8. Data analysis 

Sorting was performed on BD FACSAria™ and data exported with FACSDiva™ software, 

while further analysis were performed using the FlowJo© (Tree Star), software. 
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For SbjA, pre-processing of raw data was performed using the LightCycler Software 

(Roche). Then, further pre-processing steps were carried out using GenEx (multiD), while 

hierarchical clustering (HCL) heatmaps and Principal Component Analysis (PCA) were 

generated using MultiExperiment Viewer (MeV, http://www.tm4.org) . The cycling 

threshold (Cq) values from individual cells were transformed into relative mRNA 

abundance by subtraction of the Cq value from a baseline of 30, followed by conversion 

to linear scale by expressing each expression value in relation to an arbitrary reference 

level, that in our case was the most expressed sample for each particular assay. Then 

data was converted to log2 scale to perform further statistical analysis. HCL was carried 

out using Euclidean Metrics. 

For SbjB and the healthy donor, pre-processing of single cell gene expression raw data 

was performed directly on the Biomark™ HD  computer, using the Real Time PCR 

Analysis software (Fluidigm) to check the quality of all amplification curves. The Cq 

threshold method used was set to “Auto Detectors”, which calculates independently a 

threshold for each detector (Taqman assay) on a chip. We performed baseline 

correction with the default Linear Derivative method. Data were exported and used for 

descriptive statistic, which were carried out with R (R Foundation for Statistical 

Computing, Vienna, Austria; http://www.R-project.org/). HCL heatmaps and Violin plots 

were generated using the SINGuLAR R package (D. Wang and G. Sun (2014). fluidigmSC: 

Fluidigm SINGuLAR Analysis Toolset. R package version 3.5.2.). Statistical tests were 

performed either in R, Graphpad Prism® or Mev. The cycling threshold (Cq) values from 

individual cells were transformed into relative mRNA abundance by subtraction of the 

Cq value from a baseline of 30 and expressed in log base 2. HCL heamaps were created 

using Euclidean Metric for sample clustering while Pearson metric was used to cluster 

genes. 

In all cases single cells that didn’t express B2M and that presented low levels of 18S 

were removed from the analysis. Comparisons between more than two populations 

were performed with the one-way ANOVA test, Bonferroni adjusted. Further 

comparisons between 2 populations were performed on the ANOVA significant genes 

with Tukey Kramer test. 

VH sequence chromatograms were analyzed with Sequencher® (Gene Codes), while 

alignments with germline sequences were performed as in ref [122]. Correlation studies 

to combine gene expression data and sequence data were performed using GraphPad 

Prism®. 
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The purpose of my study is to investigate the late stages of B cell differentiation by 

comparing the different gene expression profiles induced by the antigen (Ag) encounter 

in human memory (MBC), plasmablast (PB) and naive (NAIVE) B cells. B cells, specifically 

resting populations like MBC and NAÏVE, are particularly delicate and contain low 

amounts of mRNA available for analysis. Also, we want to investigate gene expression at 

a single cell level to appreciate the true variability within the populations and not just a 

mean value of expression as in microarray-based strategies. Therefore we choose an 

approach that guarantees the highest sensitivity, widest dynamic range and the least 

sample manipulation steps possible: single cell RT-qPCR. We performed several tests to 

check the possibility to apply this approach on available clinical trial samples, condition 

that implies a freezing step of peripheral blood mononuclear cells (PBMCs) before cell 

staining and sorting by flow cytometry. These tests show that at single cell level it is not 

possible to obtain comparable results from previously frozen samples, even when 

additionally fixed trying to better preserve mRNA [123]. Therefore we collected fresh 

blood samples from people recruited for the annual Flu vaccination campaign 

(2013/2014). To avoid any bias coming from the freezing/thawing procedure, those 

samples have been processed and sorted immediately after the bleed at two different 

time points, Day 8 and Day 22 post vaccination, collecting PB, NAIVE and Ag-specific 

MBC (Fig. 1A).  

7.1. The single-cell RT-qPCR approach successfully identifies  Ag+MBC, PB and 

NAIVE B cells isolated from human samples by gene expression profile 

analysis in a pilot study 

The single-cell qPCR protocol was first applied on cells isolated from vaccinee Subject A 

(SbjA), as reported in the Methods section. Single cells were sorted  from freshly 

separated PBMCs using classical surface markers to isolate B cells belonging to Ag+MBC, 

PB and NAIVE B cell populations, as indicated in Fig. 1B. We analyzed the expression of a 

restricted number of genes, selected because of their involvement in B cell 

differentiation (Table 1, star-marked genes), using a classical qPCR approach. 

Unsupervised hierarchical clustering (HCL) of gene expression data shows that cells 

belonging to different populations can be distinguished by analyzing the gene expression 

profile (Fig. 2A). Principal Component Analysis (PCA) shows that while PBs are well 

segregated, Ag+MBC and NAIVE B cells are more similar populations (Fig 2B).  Dissecting 

the gene scores on PC1 we identify IRF4, IRF8, PRDM1 (BLIMP1), XBP1 and CD19 as the 

major genes that are differently expressed between PBs and the other two populations. 
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In particular IRF4, PRDM1 (BLIMP1) and XBP1 are expressed at higher levels in PBs. On 

the other hand, by looking at the gene scores on PC2 we identify the expression of IRF4, 

MCL1 and CD19 as responsible of the difference between MBCs and NAIVE B cells. 

Focusing on the Ag+MBC population alone, HCL identifies 4 clusters of cells (Fig. 2C), but 

not all of them are visible in the PCA (Fig. 2D). Specifically, cluster 2 is scattered over the 

other groups and no longer noticeable in PCA, whereas cluster 4 separates into two 

additional groups (Fig. 2C-D, orange square, circle and arrows). The significant genes 

involved in the diversity of the MBC groups are IRF4 and CD19 (ANOVA p<0.05). We also 

recovered the immunoglobulin heavy chain variable region (Ig VH regions) sequences 

expressed by each single cell and analyzed the sequences, as previously reported, to 

identify clonotypes [122]. Comparing the distribution of clonotypes between NAIVE B 

cells, PBs and Ag+MBCs, we observe clonal expansion in the memory population (Fig. 3). 

In summary, with this preliminary study we successfully applied the combined single-cell 

qPCR protocol to human B cells, including particularly challenging populations like 

Ag+MBC. We were also able to identify the genes involved in population discrimination 

and the expressed VH sequences, offering the means to perform gene expression–Ig 

correlation studies. 

7.2. High-resolution characterization of B cell populations by gene expression 

profiling analysis in human peripheral blood 

Having established the reliability of the single cell qPCR approach, we upscaled the 

technique to a more high-throughput setting by using the Fluidigm 96.96 Dynamic Array 

technology for quantitative real time PCR analysis, allowing for simultaneous 

measurement of 96 genes in 96 individual cells isolated from fresh PBMCs of a second 

vaccinee, Subject B (SbjB) (Fig. 1C). We selected a total of 96 target genes involved in 

several pathways related to B cell differentiation (Table 1) and analyzed their expression 

over 70 NAIVE B cells, 65 Ag+MBCs and 75 PBs without applying any normalization to 

housekeeping genes. By analyzing the gene expression patterns we find the cells 

clustering by B cell phenotype (Fig. 4A). We then applied a supervised method for 

dimensionality reduction to enhance group separation: Linear Discriminant Analysis 

(LDA). In this way we can graphically display the expression data of all populations and 

it’s possible to appreciate the similarity of Ag+MBCs and NAIVE in comparison to PBs (Fig. 

4B). We identified 61 significant differentially expressed genes among the three 

populations as a result of the ANOVA test and represented the expression distributions 

for each of these genes using violin plots (Fig. 4C). By comparing the 3 populations, we 
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observe that few genes are detected almost exclusively in PBs: PRDM1 (BLIMP1), XBP1, 

TNFRSF17 (BCMA), IL2r, RORα, KI-67 and CD138, but while the PRDM1 (BLIMP1) and 

XBP1 are expressed at high levels and throughout the whole population, the last ones 

are represented only by a small fraction of cells. Another group of genes shows a higher 

number of positive cells in PBs than in the other populations (ENTPD1 (CD39), IGBP1, 

CD81, KLF2, IRF4, IRF2). Also, the high expression of PRDM1 (BLIMP1), XBP1 and IRF4 

together with downregulation of IRF8, SPIB and PAX5 confirms the classical signature of 

PBs differentiation [30]. PBs also share similar expression patterns with MBCs for genes 

coding for signaling cytokines (AKT1-2, MTOR) and genes involved in activation and 

survival  (CD86, TNFRSF13B (TACI)),  responsiveness (SATB1, KLF2, BACH2), maturation 

(ZBTB32), migration (GNAI1) and antibody secretion (ATF6). On the other hand, PBs and 

NAIVE are less alike: among the few shared genes, a small number shows a matching 

expression distribution (CD80, STAT5, TBX21 (Tbet), PIK3CA), while the majority of 

themis not expressed in comparison with Ag+MBC (GPR183 (EBI2), HIF1α, IL10RA).  It is 

also noteworthy how POU2AF1, a gene with an important role in GC formation and 

maintenance, is expressed at high levels also at later stages in both PBs and MBCs, and 

to a lesser extent in NAÏVE B cells. In the same way FOXP1, whose role is described 

mainly in early B cell development and GCs, seems to be expressed by all MBCs and 

NAIVE cells, but very poorly by PBs. In summary PBs, though sharing a little similarity 

with the other populations, remains the most distinct and well defined group, while 

MBCs and NAIVE are more interconnected. 

7.3. Gene expression activation signatures of Ag-specific memory B cells in 

comparison to naive B cells 

To further investigate the differences between Ag+MBCs and NAÏVE B cells, we repeated 

the same analysis focusing on these two populations. By looking at the LDA we see that 

the two populations are separated, but partially overlapping (Fig. 5A). In fact the direct 

Ag+MBC-NAIVE comparison resulted in 32 significant differentially expressed genes out 

of the 61 previously identified (Fig. 5B). Most of the genes are expressed at higher levels 

in Ag+MBCs indicating greater transcriptional activity in these cells. In particular, among 

the genes showing exclusive or higher expression frequency in Ag+MBCs, some are 

involved in activation (CD80, CD86), proliferation (ZBTB32, IL10RA), survival (MCL1, 

TNFRSF13C (BAFFR), TNFRSF13B (TACI)), migration (GPR183 (EBI2), GNAI2) and 

maturation (MTOR, TBX21 (Tbet), STAT1, TNFRSF13B (TACI), TNFRSF13C (BAFFR)). 

Conversely, the genes that have higher expression frequency in NAIVE are mainly 
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involved in quiescence and cell cycle regulation (SATB1, ZBTB16, BACH2), but we also 

find a higher expression of IL4R and CCR7. Interestingly GPR183 (EBI2), CCR7 and MTOR 

are known for their involvement during early B cell activation and class switch 

recombination, while their role during the late stage of differentiation has not been 

described yet. Moreover SATB1 codes for a chromatin organizer that promotes 

quiescence in hematopoietic stem cells and its role in mature B cells has not been 

investigated yet. While the functional relevance of these genes remains to be confirmed, 

these data provides further support to explore the overall functional properties of these 

cell types. It also further exacerbates the responsive profile of Ag+MBC in comparison to 

NAIVE B cells. 

7.4. Investigating the heterogeneity of the antigen-specific memory B cell 

population 

There is growing awareness that B cell memory is constituted by multiple layers and is 

more heterogeneous than once thought [90]. To investigate the possibility of Ag+MBC 

subpopulations, we used the HCL clustering tree (Fig. 6A). Setting the least restrictive 

threshold possible (0.51) on the clustering dendrogram, we could separate Ag+MBCs in 

two groups, as highlighted in the PCA graph (Fig. 6B), but unfortunately we didn’t 

identify any significant differentially expressed gene (T test, p>0.05) 

7.5. Effect of antigen activation on circulating memory B cells 

To confirm previous data obtained on SbjA and SbjB, we isolated single PBs and MBCs 

from a healthy donor following the same procedure as before (Fig. 1D). Applying HCL 

and LDA to the healthy donor gene expression data, we distinguished the two 

populations and confirmed the classical gene expression patterns previously observed in 

the vaccinee (Fig. 7A-B). The Ag+MBC population was sorted at the peak of memory B 

cells response towards one of the specific vaccine Ags, having been recently in contact 

with the Ag. In order to investigate if the Ag encounter triggers a specific gene 

expression signature, we compared the gene expression profile of Ag+MBCs and steady-

state circulating MBCs. Therefore we looked for gene expression differences between 

Ag+MBCs (vaccinee) and steady-state MBCs (healthy donor), identifying 16 significant 

genes involved in several functions (Fig. 7C-D). Ag+MBCs  show higher expression 

frequencies of genes involved in activation (CD80, CD86), GC dynamics (BCL6, SPIB, IRF8), 

survival (MCL1), protein secretion (ATF6) and BCR signaling (CD22), while a lower 

expression of genes involved in quiescence (KLF9), Ab secretion (IL10RA), hypoxia 
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response (HIF1α) and GC homing (CXCR5). TBX21 (Tbet) and RORα, that are suggested to 

be involved in immunoglobulin isotype selection, will be further examined below. In 

general these data denoted a more active profile for the recently activated Ag+MBCs 

isolated from the vaccinee. 

7.6. Gene expression signatures of B cell maturation 

The main and most known humoral effector function of B cells is conveyed by the BCR 

they bear and eventually secrete. The maturation of B cells is strictly related to the 

affinity of their BCR and its affinity maturation is obtained modifying the BCR sequence 

through SHM and CSR in the germinal centers [105]. Starting from this premise, we 

hypothesized a possible link between BCR maturation and gene expression clustering. 

Therefore, to investigate this hypothesis, we recovered the BCR VH sequences of the 

same cells used for gene expression analysis. First, we performed a clonotype analysis to 

check the sequence clonal dynamics during the vaccinee immune response. Indeed in 

the vaccinee we observe clonal expansion in both PB and Ag+MBC in comparison to the 

NAIVE population, which instead shows absence of clonotypes like the healthy donor 

populations (FIG. 8A). Second, we performed a correlation study on the vaccinee 

sequences to look for associations between the BCR maturation, in terms of BCR 

mutation rate, and gene expression. Unfortunately we were able to identify only few 

and weak correlations (Fig. 8C). Lastly, we focused on the isotype carried by the BCRs. 

Going over the class distribution across the three populations, we notice a peculiar 

clustering of the Ig isotypes (Fig. 8B). In particular we find a striking high percentage of 

circulating IgA in PBs. Looking at FACS data (Fig. 1C) this condition is confirmed, but Ag 

specific ELISA performed on the vaccinee serum shows very low Ag specific IgA at Day8, 

suggesting the presence of unspecific PB in the population we isolated (Supplementary 

Fig. 1). This segregation of Ig isotypes prevented the identification of class specific gene 

expression signatures using an unsupervised method. Hence we focused on two 

transcription factors whose association with Ig isotype selection have been suggested in 

recent literature[91]: RORα and TBX21 (Tbet). Pooling the vaccinee sequences together 

and re-grouping them by Ig class we identify significant association between RORα 

expression and IgA, while TBX21 is associated to IgG (Fig. 8D). In conclusion this dataset 

allowed us to detect Ig clonal expansion in response to vaccination and to associate 

TBX21 and RORα to the expression of a particular Ig isotype in humans, but we weren’t 

able to identify strong connections between the BCR maturation and the expression of 

any of the selected 96 genes.    
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The major goal of this work was to better characterize the transcriptional networks of B 

cell populations at different stages of terminal differentiation in humans, with a 

particular interest in the discrimination between memory B cells (MBC) and 

plasmablasts (PB). Once assessed the specific profile of each population, we examined in 

depth the peculiarity of memory B cells recently activated by the encounter with the 

antigen through the comparison with steady-state circulating memory B cells.  To get 

this information we chose to analyze samples from a single vaccination schedule, so that 

we could work in the context of the same immune response and isolate cells responding 

to the same antigen. The limited availability of samples and the difficulties in isolating 

Ag-specific MBCs from peripheral blood make this analysis particularly challenging in 

humans. In fact antigen-specific cells account for a small amount of the total 

lymphocytes within the blood, so that the presence of molecular changes in antigen-

specific cells and biologically relevant signatures could be masked by experimental noise 

from non-specific counterparts. This limitation has been addressed by adapting a 

method that enables RT-qPCR from different B cell populations (Ag+MBC, PB, NAIVE) at 

single cell level.  With the recent advances in the field of systems biology, this approach 

offers a time-effective way to perform high resolution and high sensitivity gene 

expression profiling of a high but selected number of target genes. It represents an 

alternative to transcriptomic analysis, without requiring further steps of validation or 

large amounts of starting material, so it’s particularly indicated for rare and delicate cell 

populations like antigen specific B cells.  

In principles, following activation, the B cell diversifies the antibody it produces 

increasing its affinity for the antigen and altering its effector function, thus tailoring the 

response to the faced immunological challenge. The B cell then differentiates into either 

a specialized antibody-secreting cell (PB) to face the antigen or a long-lived MBC, so that 

a more rapid (and specific) response can be mounted upon re-encountering the same 

antigen. This sequence of events takes place within specialized immunological 

environments called germinal centers (GC).  Successful completion of the GC reaction 

therefore relies upon careful regulation and co-ordination of B cell movement, division, 

apoptosis, differentiation, DNA repair and recombination. This is achieved through the 

activation (and repression) of multiple transcriptional programs that interact in a series 

of complex regulatory networks. Although much as been discovered regarding the 

coordination of the GC response, a number of fundamental questions remain 

unanswered, especially about the signals driving activated B cells towards terminal 
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differentiation into PB or MBC. Much is known about the molecular dynamics regulating 

GC response and PB differentiation [120], however so far no deterministic transcription 

factor for MBC has been found. We addressed this question by selecting a set of probes 

to profile the expression of genes known or suggested to be involved in various aspects 

of B cell differentiation, with a particular focus on genes with a putative differential 

expression in MBC subsets. Then we interrogated single B cells isolated from human 

vaccinees and belonging to three different B cell populations (Ag+MBC, PB and NAIVE) 

for their gene expression profile. By doing that, we first  confirmed the classical network 

of master regulators driving PB differentiation, which involves upregulation of PRDM1 

(BLIMP1), XBP1, TNFRSF17 (BCMA) and IRF4 and downregulation of IRF8, SPIB and PAX5 

[30,63,124]. We also confirm the importance of MCL1, that has been proposed as the 

main anti-apoptotic factor in mature B cells [27]. However, in contrast with what 

postulated by Vikstrom et al, in our dataset MCL1 is highly expressed in both circulating 

Ag+MBC and PB, while BCL2, another key anti-apoptotic factor, is expressed at low 

frequencies and with no significant difference between populations. Thus, MCL1 

expression seems to be important not only for tissue lymphocytes, but also for the 

maintenance of peripheral B cells. The expression of these genes, except for TNFRSF17 

(BCMA) that was not included in the first pilot experiment, is the same for both SbjA and 

SbjB and the expression patterns are similar in both experiments. 

We also made some interesting observations about genes which are better known for 

their roles in other stages of B cell differentiation. One of these genes is FOXP1, which in 

B cells is mainly known for its role during early pro/pre-B cell development [125]. 

Moreover it is reported to be involved in coordinating transitions between cell 

proliferation and differentiation in many biological contexts [126]. Recently it was 

suggested that FOXP1 has a role also at a more mature stage of B cell development: in 

human tonsillar B cell subpopulations FOXP1 shows the opposite expression pattern to 

BCL6 and shares a part of its target genes. Therefore these proteins may have 

antagonistic roles. In fact it was showed that FOXP1 needs to be downregulated after 

naive B cells activation to ensure appropriate GC formation and transit [126]. We show 

that in humans FOXP1 is expressed at high levels in Ag+MBCs and NAIVE, while it is 

mostly not expressed in PBs. This suggests that FOXP1 could have a potential role in cell 

fate decision during GC reaction, in particular in favoring MBC versus PB differentiation. 

One of the target genes of the repressor activity of FOXP1 is POU2AF1. This gene is 

known to be involved in GC reaction, specifically in promoting proliferation and class 
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switch recombination in response to low levels of IRF4. We observed an exceptional high 

expression of POU2AF1 in Ag+MBC and PB. While its role in PB differentiation is already 

reported in literature [127], its role in MBC differentiation remains unidentified. 

Considering that IRF4 is generally down regulated in MBC, POU2AF1 activation may be 

under the control of different and unknown factors in this population. Another gene 

that we see expressed especially in PB, but also in a subset of MBC and NAIVE, is IRF2. 

This transcription factor is involved in innate immunity and has hardly been described in 

mature B cell differentiation transcriptional networks. Little is known about its 

interaction with other genes belonging to these pathways, except that it may compete 

with PRDM1 (BLIMP1) for the binding of a set of target genes. BLIMP1 and IRF2 may 

interact in the context of plasmacytic differentiation, in which a role for BLIMP1 is well 

documented. IRF2 levels remain constant during B cell development [128], while BLIMP1 

is induced during terminal differentiation to plasma cells. Thus, regulation of target 

genes that both proteins can bind could be achieved by changes in relative protein 

concentrations during induction of PRDM1 (BLIMP1) and differences in binding affinities 

for specific sites [129,130].  

The hallmarks of memory B cells include self-renewal, longevity and rapid response 

upon secondary Ag encounter [131–133]. In fact when we compared Ag+MBCs to the 

NAIVE population we found signatures of higher expression for activation, proliferation, 

survival and maturation markers. Among these, GPR183 (EBI2), GNAI2 and MTOR are 

particularly interesting because their role in MBC is not known yet. EBI2, together with 

CCR7 and CXCR4, plays an important role in positioning B cells in the follicle during 

activation. After activation, EBI2 needs to be downregulated by BCL6 in order to have 

affinity maturation in GC, otherwise the B cell will differentiate in PB without passing 

through GCs [134]. However, it is still unknown whether EBI2 plays a role downstream of 

GCs by regulating the generation, migration and/or function of the effectors of long-

term humoral immunity. Another gene that we find particularly expressed by all Ag+MBC 

is GNAI2. This gene codes for an alpha subunit of guanine nucleotide binding proteins 

and is a transducer in various transmembrane signaling systems. In B cells it is reported 

to be involved in B cell motility and specifically to regulate the entrance of murine B cells 

into peripheral lymph nodes and cause an increase in chemokine receptor signaling 

[135]. GNAI2 role in MBC (but also in PB and NAIVE) could be connected to this function.  

In mouse models, B cell-specific deficiencies in MTOR impair germinal center formation, 

decrease the production of IgG isotypes in response to immunization and lead to a 
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decrease in affinity maturation of antibodies in vivo [136]. Other studies also suggested 

that overall MTOR signaling controls the ability of B cells to divide and to differentiate 

[137–139]. We observed that a subset of Ag+MBC (and PB), but not NAIVE, expresses 

MTOR. This probably contributes in giving Ag+MBC a more active and responsive profile 

than NAIVE.  

Our data shows that few genes are actually upregulated in NAIVE cells, specifically the 

ones involved in cell cycle regulation (ZBTB16, BACH2), which are believed to keep naive 

cells quiescent [99,131]. Interestingly we also see a higher frequency of expression of 

SATB1 that, besides being known for its role in Th2 differentiation [140], is also involved 

in regulating hematopoietic stem cell maintenance versus lineage commitment [141]. 

Thus, in NAIVE B cells, SATB1 could have a similar role in promoting their quiescence. 

Lately it is becoming increasingly clear that the MBC compartment is all but 

homogenous [79,99,142–146]. It was initially postulated that the expression of different 

Ig isotypes (specifically IgM and IgG) defined functional MBC subsets [88,89,147]. 

However recent works in mouse models  revealed that Ig isotypes are not necessarily 

the only markers involved in functional distinction of MBC subpopulations, but the 

expression of receptors like CD80 and PD-L2 could better define MBC activity in terms of 

ability to differentiate into antibody-secreting cells (more “memory-like”) or enter GC 

(more “naïve-like”) on secondary responses [90]. Moreover it was previously reported 

that also CD73 is expressed in MBC subsets and was associated with the maturity of BCR 

[142,148]. Considering the importance of elucidating the molecular mechanisms at the 

basis of MBC functions and their implications in vaccine design, we investigated if such 

heterogeneity could be appreciated also from our data. In our case this meant looking 

for subsets among switched MBCs, since the populations we isolated from the vaccinees 

are mainly constituted by CD27+IgG+MBCs (Fig. 1B-C). In SbjA, having a very small set of 

genes to analyze, we identified two genes (CD19 and IRF4) which were significantly 

discriminating Ag+MBCs in 4 subpopulations. Unfortunately, when we increased the 

number of genes to profile in SbjB, we couldn’t define any significant subset based on 

gene expression data of our 96 selected gene-set; raising the number of target genes 

caused an increased variability of the expression data in SbjB and masked what we 

previously observed in SbjA. Notably, the extended gene-set used for SbjB includes the 

aforementioned CD80, PDCD1LG2 (PDL2) and CD73 genes: in fact we detect expression 

of CD73 in small subsets of Ag+MBCs and NAIVE, and CD80 expression in an Ag+MBC 

subset, while PDCD1LG2 (PDL2) is not expressed at all in our cells. However their 
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expression patterns were not statistically relevant to identify subsets within the Ag+MBC 

population we analyzed. 

We also repeated the same analysis workflow for PBs and MBCs isolated from a healthy 

donor. PBs and MBCs discriminating genes followed the same patterns as in the 

vaccinees. Moreover this experimental set-up allowed us to investigate the vaccination-

induced signatures specific of MBC by comparing the vaccinee profile to the steady-state 

profile of a healthy donor, in order to find out whether there was a transcriptional 

difference between recently activated and quiescent circulating MBCs. This comparison 

revealed a more active profile for Ag+MBCs, characterized by signatures of recent GC 

transition. In fact we find higher expression of activation markers, few cells that are still 

expressing BCL6 and a higher expression level of SPIB and IRF8 which are involved in GC 

dynamics [21,41,124,149,150]. On the other hand, we were also able to highlight a 

signal of exit from the GC, conveyed by reduced frequencies of CXCR5 expression, a 

chemokine receptor responsible for GC homing. Since MBCS do re-circulate between 

lymphoid compartments during an ongoing humoral response [151], this signal is not 

completely shut down, but the trend of the expression distribution is opposite to the 

one of the healthy donor. Another indicator of activation in terms of transcriptional 

activity is the higher expression of ATF6, a gene encoding for a sensor of ER stress 

[152,153]. ATF6 is involved in the unfolded protein response, a process which have been 

proposed to be predictive of good vaccine responses in humans [154] and in particular a 

robust biomarker of later emergence of protective antibody titers [112]. In fact, ATF6 

together with XBP1 is expressed also in PBs at high levels. Activation signals in Ag+MBCs 

match with lower expression of the quiescent factor KLF9, a cell-cycle regulatory gene 

which is described to be downregulated in human spleen-derived MBCs and one of the 

potential reasons of their increased responsivity in comparison to naive B cells upon 

secondary response [131]. Ag+MBCs also express higher levels of CD22, which is a 

response regulator involved in inhibitory control of BCR signaling [155], mirroring recent 

activation of BCR by the Ag. CD22 also regulates time course of B cell response by 

functioning as crucial regulator of B cell division after Ag stimulation and its ablation 

results in rapid B cell differentiation and Ab production [156], in accordance with our 

data where PB show no expression of CD22. Human B cell differentiation is regulated by 

the actions of numerous cytokines, with IL-10 produced by T follicular helper cells (Tfh 

cells), being key factor in promoting proliferation, isotype switching, PC differentiation, 

and secretion of most Ig isotypes by not only naive B cells, but also memory B cells, 
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including both IgM+ and isotype-switched subsets [157]. Both Ag+MBCs and healthy 

donor MBCs express the receptor of IL-10, but our data indicates that Ag+MBCs that 

have recently exited the GC show a subset of cells that do not express it. Also, we 

detected in both MBC populations the expression at high frequency of HIF1α, which is 

considered a master regulator of the hypoxia response and is also involved in the 

unfolded protein response [158]. As for IL10RA, a group of Ag+MBCs do not express 

HIF1α, while in the healthy donor the whole population does. 

Performing a simultaneous VH sequence analysis for the same single cells, we identified 

clonal expansion in the vaccinee PB and Ag+MBC populations. Similarly to the vaccinee 

NAIVE population, all healthy donor VH sequences belonged to single clonotypes instead. 

Considering that the injected influenza vaccine is unknown, we cannot directly compare 

our repertoire analysis with previous studies. Also, the sample size available for 

repertoire analysis is quite limited. Anyhow this wasn’t the reason behind the Ig 

sequencing experiments. Our main interest was to look for potential connections 

between the BCR maturation and transcriptional signatures. Unfortunately our dataset 

didn’t allow us to identify any particular correlation of gene expression data with BCR 

VH mutation rate (that we used as an indicator of BCR maturation), but we did detect an 

association with Ig isotype. Notably we identified an association of TBX21 (Tbet) and 

RORα expression with IgG and IgA isotype respectively. In murine models it was revealed 

that B cell memory is organized in class-specific subsets, each with separate central 

transcriptional regulators [91]. Specifically, transcriptional regulators Tbet and RORα 

control divergent IgG2a and IgA memory B cell subsets respectively to coordinate 

separate functions within these B cell compartments. Tbet is used by many cell types in 

response to inflammatory stimuli, with focus on the clearance of intracellular pathogen 

[159]. Also, IgG2a+ B cell memory relies selectively on a Tbet dependent program to 

establish and maintain subset integrity, according to Wang et al study. Similarly, IgA+ B 

cell memory is specialized to protect the mucosal surfaces [160] and the selective use of 

transcriptional regulator RORα enhances this unique memory B cell function. 

Importantly, these unique developmental programs can be exploited for directed 

immunotherapeutic applications and future class-skewing vaccine formations. 

Overall this type of analysis identified new putative actors in the late differentiation 

pathway of B cells and offered further support to transcriptional data provided by 

murine studies. Moreover we identified genes that characterize recently-activated MBC 

that could be used as indicators of efficacious B cell responses. Extending this approach 
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to a larger number of subjects and including different formulations of a vaccine of 

interest or different age ranges could be helpful in understanding the evolution of 

adaptive immune responses following vaccination in different contexts. Having access to 

bigger sample sizes could also allow performing more extensive Ig repertoire analysis, 

thus helping to uncover associations to particular gene expression patterns that could 

lead to the characterization of mature and high affinity B cell subsets. Lastly, this 

approach that combines phenotype, gene expression and Ig sequence data at single cell 

level, allowed us to highlight and exploit the variability of our samples to better describe 

the true heterogeneity of B cell populations, that wouldn’t have been possible using 

microarray based approaches or other techniques that measure mean expression values 

of the whole population. 
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Figure 1 
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Fig. 1 Isolation of B cell populations from human samples. (A)Vaccination schedule of 

SbjA and SbjB.The specific B cell populations have been isolated day 8 and day 22 post 

vaccination. (B)(C)Flow cytometry analysis of plasmablast (PB) (CD19+CD20dim 

CD27hiCD38hi) and naive B cell (NAIVE) (CD19+CD27-) populations from day 8 and 

antigen-specific memory B cell (Ag+MBC) (CD20+CD27+Ag+) from day 22, isolated from 

SbjA and SbjB respectively. (D) Flow cytometry analysis of plasmablast (PB) 

(CD19+CD20dimCD27hiCD38hi) and memory B cell (MBC) (CD19+CD20+CD27+) populations 

isolated from one single blood sample of a healthy donor. 
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Figure 2 

 

Fig. 2 Pilot study: gene expression analysis of B cell populations in SbjA. (A,B) Single 

cell gene expression values (log2(30-Ct), 21 genes) of n=165 total B cells from SbjA at 

days 8 and day22 after vaccination were analyzed by unsupervised hierarchical 

clustering (A, heatmap with dendogram of single B cells in columns and genes in 

rows) and Principal Component Analysis (B, dot plot shows the position of every cell 

on the space defined by the first two principal components PC1 and PC2 with colored 

circles identifying population grouping). 
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(C,D) Single cell gene expression values (log2(30-Ct),21 genes) of n=74 Ag+MBC from 

SbjA at day22 after vaccination were used for unsupervised hierarchical clustering (C, 

heatmap with dendogram of single B cells in columns and genes in rows) and 

Principal Component Analysis (D, dot plot shows the position of every cell on the 

space defined by the first two principal components PC1 and PC2 with colored circles 

identifying clusters of Ag+MBC); clusters identified by hierarchical clustering are 

represented below the heatmap in different colors; arrows indicate a subgroup of 

cluster 4 identified through PCA. For clarity purposes, protein IDs instead of gene IDs 

are used. 
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Figure 3 

 

Fig. 3 Pilot study: Ig repertoire analysis of B cell populations in SbjA. Ig clonotype 

analysis performed on NAIVE, PB and Ag+MBC with circles indicating clonotype size and 

numbers inside circles indicating the number of clonotypes of that particular size. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Heatmap of Expression (Log2)

1
:n

r

1
:n

r

PIK3CD
IL13RA1
ITPR1
BACH2
SATB1
ZBTB16
IL4R
FCER2
KLF9
CCR7
CXCR5
CXCR4
AICDA
BATF
t bet
FCGR2B
PDL1
IL21R
AKT3
BCL2
TCF7
CD73
CD40
JUN
LTA
BCL6
PIK3CA
CD19
BAFF R
EBI2
SPIB
FOXP1
PAX5
CD22
IRF8
CD80
STAT5
RUNX3
STAT4
CamKIV
CD138
MTA3
ATF6
IFNgR2
STAT3
MTOR
AKT1
SPI1
CD81
CXCR3
IL10RA
HIF1a
ATF3
BAD
GATA3
PRKCG
PRKCZ
STAT1
UHRF1
KI-67
ADORA2A
RORa
CD21
BMPR1A
NFKB1
AKT2
CD86
ZBTB32
IL17RA
IGBP1
IRF2
IL12RB1
IL2RB
CD39
IRF4
CD27
CD38
XBP1
BCMA
BLIMP1
STAT2
KLF2
DOCK8
POU2AF1
TACI
MCL1
GNAI2
CD79A
B2M

1:nc

1
:a

n
n

o
ta

ti
o

n
_

w
id

th

F
6

-M
B

C
1

G
1

0
-N

A
I1

F
1

0
-N

A
I1

D
2

-M
B

C
1

B
9

-M
B

C
1

B
5

-M
B

C
1

E
4

-M
B

C
1

H
2

-N
A

I1
E

3
-N

A
I2

D
1

0
-N

A
I2

G
7

-N
A

I1
H

3
-N

A
I1

H
6

-N
A

I1
B

1
1

-N
A

I2
H

1
-N

A
I1

F
1

1
-N

A
I1

D
2

-N
A

I2
D

4
-N

A
I2

E
8

-N
A

I2
C

3
-N

A
I2

A
6

-N
A

I2
B

2
-N

A
I2

F
9

-N
A

I1
C

1
1

-N
A

I2
G

2
-N

A
I1

F
8

-M
B

C
1

E
1

1
-M

B
C

1
H

5
-N

A
I1

F
8

-N
A

I1
F

6
-N

A
I1

F
5

-N
A

I1
G

9
-N

A
I1

G
3

-M
B

C
1

B
3

-N
A

I2
A

2
-N

A
I2

F
4

-N
A

I1
E

6
-N

A
I2

G
8

-N
A

I1
H

1
1

-N
A

I1
B

6
-N

A
I2

H
1

0
-N

A
I1

A
5

-N
A

I2
C

4
-N

A
I2

C
6

-N
A

I2
D

3
-N

A
I2

G
2

-M
B

C
1

G
1

1
-N

A
I1

B
1

0
-N

A
I2

E
2

-N
A

I2
A

7
-N

A
I2

C
8

-N
A

I2
A

4
-N

A
I2

G
1

2
-N

A
I1

G
5

-N
A

I1
B

4
-N

A
I2

C
9

-N
A

I2
A

3
-N

A
I2

C
5

-N
A

I2
E

1
2

-N
A

I1
F

7
-N

A
I1

G
3

-N
A

I1
A

1
0

-N
A

I2
B

5
-N

A
I2

E
9

-N
A

I2
D

8
-N

A
I2

D
1

1
-N

A
I2

E
4

-N
A

I2
D

7
-N

A
I2

B
7

-M
B

C
1

B
3

-M
B

C
1

A
2

-M
B

C
1

F
2

-M
B

C
1

H
8

-M
B

C
1

H
5

-M
B

C
1

C
3

-M
B

C
1

D
1

0
-M

B
C

1
D

1
2

-N
A

I2
A

9
-M

B
C

1
E

7
-N

A
I2

D
9

-M
B

C
1

F
1

1
-M

B
C

1
E

2
-M

B
C

1
F

4
-M

B
C

1
C

1
1

-M
B

C
1

A
4

-M
B

C
1

E
1

0
-N

A
I2

D
4

-M
B

C
1

D
7

-M
B

C
1

H
6

-M
B

C
1

C
5

-M
B

C
1

B
8

-M
B

C
1

C
2

-N
A

I2
D

6
-M

B
C

1
E

7
-M

B
C

1
C

7
-M

B
C

1
A

5
-M

B
C

1
C

8
-M

B
C

1
A

3
-M

B
C

1
B

1
1

-M
B

C
1

B
8

-N
A

I2
F

2
-N

A
I1

H
9

-N
A

I1
D

6
-N

A
I2

G
4

-M
B

C
1

G
5

-M
B

C
1

D
5

-M
B

C
1

C
6

-M
B

C
1

B
6

-M
B

C
1

E
1

0
-M

B
C

1
A

8
-M

B
C

1
A

7
-M

B
C

1
E

5
-M

B
C

1
C

1
0

-N
A

I2
A

6
-M

B
C

1
E

9
-M

B
C

1
A

9
-N

A
I2

D
1

1
-M

B
C

1
C

2
-M

B
C

1
E

8
-M

B
C

1
D

8
-M

B
C

1
H

7
-M

B
C

1
C

9
-M

B
C

1
F

5
-M

B
C

1
A

1
1

-M
B

C
1

B
2

-M
B

C
1

B
4

-M
B

C
1

B
1

0
-M

B
C

1
E

3
-M

B
C

1
H

9
-M

B
C

1
C

4
-M

B
C

1
G

6
-N

A
I1

G
6

-M
B

C
1

C
1

0
-M

B
C

1
D

3
-M

B
C

1
G

7
-M

B
C

1
C

4
-P

B
1

A
1

0
-P

B
1

C
3

-P
B

1
D

1
0

-P
B

1
D

3
-P

B
1

E
2

-P
B

1
F

6
-P

B
1

G
2

-P
B

1
D

5
-P

B
1

G
9

-P
B

1
G

1
0

-P
B

1
H

8
-P

B
1

E
5

-P
B

1
E

1
0

-P
B

1
A

9
-P

B
1

B
2

-P
B

1
H

1
1

-P
B

1
A

4
-P

B
1

D
2

-P
B

1
A

7
-P

B
1

D
7

-P
B

1
H

4
-P

B
1

C
1

1
-P

B
1

E
6

-P
B

1
A

5
-P

B
1

F
7

-P
B

1
B

6
-P

B
1

A
8

-P
B

1
G

4
-P

B
1

F
9

-P
B

1
H

7
-P

B
1

A
3

-P
B

1
D

8
-P

B
1

D
4

-P
B

1
D

6
-P

B
1

H
3

-P
B

1
C

9
-P

B
1

F
5

-P
B

1
D

1
1

-P
B

1
B

4
-P

B
1

E
7

-P
B

1
E

3
-P

B
1

B
8

-P
B

1
G

6
-P

B
1

H
5

-P
B

1
C

7
-P

B
1

G
3

-P
B

1
A

6
-P

B
1

C
2

-P
B

1
G

8
-P

B
1

C
5

-P
B

1
B

7
-P

B
1

E
4

-P
B

1
H

1
0

-P
B

1
B

5
-P

B
1

A
2

-P
B

1
C

1
0

-P
B

1
B

1
1

-P
B

1
H

9
-P

B
1

E
1

1
-P

B
1

G
7

-P
B

1
B

1
0

-P
B

1
B

9
-P

B
1

H
2

-P
B

1
F

3
-P

B
1

G
5

-P
B

1
F

1
0

-P
B

1
B

3
-P

B
1

A
1

1
-P

B
1

C
8

-P
B

1
E

9
-P

B
1

H
6

-P
B

1
E

8
-P

B
1

D
9

-P
B

1
C

6
-P

B
1

0 5 10

Expression (log2)

Sample Group

MBC

NAI

PB

Gene Group

activation

apoptosis

ATP

BCR

Ca

cell cycle

CTRL

cyt receptor

homing

hypermutation

kinase

migration

ox stress

phenotype

TF

TF 

Heatmap of Expression (Log2)

1
:n

r

1
:n

r

PIK3CD
IL13RA1
ITPR1
BACH2
SATB1
ZBTB16
IL4R
FCER2
KLF9
CCR7
CXCR5
CXCR4
AICDA
BATF
t bet
FCGR2B
PDL1
IL21R
AKT3
BCL2
TCF7
CD73
CD40
JUN
LTA
BCL6
PIK3CA
CD19
BAFF R
EBI2
SPIB
FOXP1
PAX5
CD22
IRF8
CD80
STAT5
RUNX3
STAT4
CamKIV
CD138
MTA3
ATF6
IFNgR2
STAT3
MTOR
AKT1
SPI1
CD81
CXCR3
IL10RA
HIF1a
ATF3
BAD
GATA3
PRKCG
PRKCZ
STAT1
UHRF1
KI-67
ADORA2A
RORa
CD21
BMPR1A
NFKB1
AKT2
CD86
ZBTB32
IL17RA
IGBP1
IRF2
IL12RB1
IL2RB
CD39
IRF4
CD27
CD38
XBP1
BCMA
BLIMP1
STAT2
KLF2
DOCK8
POU2AF1
TACI
MCL1
GNAI2
CD79A
B2M

1:nc

1
:a

n
n

o
ta

ti
o

n
_

w
id

th

F
6

-M
B

C
1

G
1

0
-N

A
I1

F
1

0
-N

A
I1

D
2

-M
B

C
1

B
9

-M
B

C
1

B
5

-M
B

C
1

E
4

-M
B

C
1

H
2

-N
A

I1
E

3
-N

A
I2

D
1

0
-N

A
I2

G
7

-N
A

I1
H

3
-N

A
I1

H
6

-N
A

I1
B

1
1

-N
A

I2
H

1
-N

A
I1

F
1

1
-N

A
I1

D
2

-N
A

I2
D

4
-N

A
I2

E
8

-N
A

I2
C

3
-N

A
I2

A
6

-N
A

I2
B

2
-N

A
I2

F
9

-N
A

I1
C

1
1

-N
A

I2
G

2
-N

A
I1

F
8

-M
B

C
1

E
1

1
-M

B
C

1
H

5
-N

A
I1

F
8

-N
A

I1
F

6
-N

A
I1

F
5

-N
A

I1
G

9
-N

A
I1

G
3

-M
B

C
1

B
3

-N
A

I2
A

2
-N

A
I2

F
4

-N
A

I1
E

6
-N

A
I2

G
8

-N
A

I1
H

1
1

-N
A

I1
B

6
-N

A
I2

H
1

0
-N

A
I1

A
5

-N
A

I2
C

4
-N

A
I2

C
6

-N
A

I2
D

3
-N

A
I2

G
2

-M
B

C
1

G
1

1
-N

A
I1

B
1

0
-N

A
I2

E
2

-N
A

I2
A

7
-N

A
I2

C
8

-N
A

I2
A

4
-N

A
I2

G
1

2
-N

A
I1

G
5

-N
A

I1
B

4
-N

A
I2

C
9

-N
A

I2
A

3
-N

A
I2

C
5

-N
A

I2
E

1
2

-N
A

I1
F

7
-N

A
I1

G
3

-N
A

I1
A

1
0

-N
A

I2
B

5
-N

A
I2

E
9

-N
A

I2
D

8
-N

A
I2

D
1

1
-N

A
I2

E
4

-N
A

I2
D

7
-N

A
I2

B
7

-M
B

C
1

B
3

-M
B

C
1

A
2

-M
B

C
1

F
2

-M
B

C
1

H
8

-M
B

C
1

H
5

-M
B

C
1

C
3

-M
B

C
1

D
1

0
-M

B
C

1
D

1
2

-N
A

I2
A

9
-M

B
C

1
E

7
-N

A
I2

D
9

-M
B

C
1

F
1

1
-M

B
C

1
E

2
-M

B
C

1
F

4
-M

B
C

1
C

1
1

-M
B

C
1

A
4

-M
B

C
1

E
1

0
-N

A
I2

D
4

-M
B

C
1

D
7

-M
B

C
1

H
6

-M
B

C
1

C
5

-M
B

C
1

B
8

-M
B

C
1

C
2

-N
A

I2
D

6
-M

B
C

1
E

7
-M

B
C

1
C

7
-M

B
C

1
A

5
-M

B
C

1
C

8
-M

B
C

1
A

3
-M

B
C

1
B

1
1

-M
B

C
1

B
8

-N
A

I2
F

2
-N

A
I1

H
9

-N
A

I1
D

6
-N

A
I2

G
4

-M
B

C
1

G
5

-M
B

C
1

D
5

-M
B

C
1

C
6

-M
B

C
1

B
6

-M
B

C
1

E
1

0
-M

B
C

1
A

8
-M

B
C

1
A

7
-M

B
C

1
E

5
-M

B
C

1
C

1
0

-N
A

I2
A

6
-M

B
C

1
E

9
-M

B
C

1
A

9
-N

A
I2

D
1

1
-M

B
C

1
C

2
-M

B
C

1
E

8
-M

B
C

1
D

8
-M

B
C

1
H

7
-M

B
C

1
C

9
-M

B
C

1
F

5
-M

B
C

1
A

1
1

-M
B

C
1

B
2

-M
B

C
1

B
4

-M
B

C
1

B
1

0
-M

B
C

1
E

3
-M

B
C

1
H

9
-M

B
C

1
C

4
-M

B
C

1
G

6
-N

A
I1

G
6

-M
B

C
1

C
1

0
-M

B
C

1
D

3
-M

B
C

1
G

7
-M

B
C

1
C

4
-P

B
1

A
1

0
-P

B
1

C
3

-P
B

1
D

1
0

-P
B

1
D

3
-P

B
1

E
2

-P
B

1
F

6
-P

B
1

G
2

-P
B

1
D

5
-P

B
1

G
9

-P
B

1
G

1
0

-P
B

1
H

8
-P

B
1

E
5

-P
B

1
E

1
0

-P
B

1
A

9
-P

B
1

B
2

-P
B

1
H

1
1

-P
B

1
A

4
-P

B
1

D
2

-P
B

1
A

7
-P

B
1

D
7

-P
B

1
H

4
-P

B
1

C
1

1
-P

B
1

E
6

-P
B

1
A

5
-P

B
1

F
7

-P
B

1
B

6
-P

B
1

A
8

-P
B

1
G

4
-P

B
1

F
9

-P
B

1
H

7
-P

B
1

A
3

-P
B

1
D

8
-P

B
1

D
4

-P
B

1
D

6
-P

B
1

H
3

-P
B

1
C

9
-P

B
1

F
5

-P
B

1
D

1
1

-P
B

1
B

4
-P

B
1

E
7

-P
B

1
E

3
-P

B
1

B
8

-P
B

1
G

6
-P

B
1

H
5

-P
B

1
C

7
-P

B
1

G
3

-P
B

1
A

6
-P

B
1

C
2

-P
B

1
G

8
-P

B
1

C
5

-P
B

1
B

7
-P

B
1

E
4

-P
B

1
H

1
0

-P
B

1
B

5
-P

B
1

A
2

-P
B

1
C

1
0

-P
B

1
B

1
1

-P
B

1
H

9
-P

B
1

E
1

1
-P

B
1

G
7

-P
B

1
B

1
0

-P
B

1
B

9
-P

B
1

H
2

-P
B

1
F

3
-P

B
1

G
5

-P
B

1
F

1
0

-P
B

1
B

3
-P

B
1

A
1

1
-P

B
1

C
8

-P
B

1
E

9
-P

B
1

H
6

-P
B

1
E

8
-P

B
1

D
9

-P
B

1
C

6
-P

B
1

0 5 10

Expression (log2)

Sample Group

MBC

NAI

PB

Gene Group

activation

apoptosis

ATP

BCR

Ca

cell cycle

CTRL

cyt receptor

homing

hypermutation

kinase

migration

ox stress

phenotype

TF

TF 

A PB (75 cells) NAIVE (70 cells) Ag+MBC (65 cells) 

Heatmap of Expression (Log2)

1
:n

r

1
:n

r

PIK3CD
IL13RA1
ITPR1
BACH2
SATB1
ZBTB16
IL4R
FCER2
KLF9
CCR7
CXCR5
CXCR4
AICDA
BATF
t bet
FCGR2B
PDL1
IL21R
AKT3
BCL2
TCF7
CD73
CD40
JUN
LTA
BCL6
PIK3CA
CD19
BAFF R
EBI2
SPIB
FOXP1
PAX5
CD22
IRF8
CD80
STAT5
RUNX3
STAT4
CamKIV
CD138
MTA3
ATF6
IFNgR2
STAT3
MTOR
AKT1
SPI1
CD81
CXCR3
IL10RA
HIF1a
ATF3
BAD
GATA3
PRKCG
PRKCZ
STAT1
UHRF1
KI-67
ADORA2A
RORa
CD21
BMPR1A
NFKB1
AKT2
CD86
ZBTB32
IL17RA
IGBP1
IRF2
IL12RB1
IL2RB
CD39
IRF4
CD27
CD38
XBP1
BCMA
BLIMP1
STAT2
KLF2
DOCK8
POU2AF1
TACI
MCL1
GNAI2
CD79A
B2M

1:nc

1
:a

n
n

o
ta

ti
o

n
_

w
id

th

F
6

-M
B

C
1

G
1

0
-N

A
I1

F
1

0
-N

A
I1

D
2

-M
B

C
1

B
9

-M
B

C
1

B
5

-M
B

C
1

E
4

-M
B

C
1

H
2

-N
A

I1
E

3
-N

A
I2

D
1

0
-N

A
I2

G
7

-N
A

I1
H

3
-N

A
I1

H
6

-N
A

I1
B

1
1

-N
A

I2
H

1
-N

A
I1

F
1

1
-N

A
I1

D
2

-N
A

I2
D

4
-N

A
I2

E
8

-N
A

I2
C

3
-N

A
I2

A
6

-N
A

I2
B

2
-N

A
I2

F
9

-N
A

I1
C

1
1

-N
A

I2
G

2
-N

A
I1

F
8

-M
B

C
1

E
1

1
-M

B
C

1
H

5
-N

A
I1

F
8

-N
A

I1
F

6
-N

A
I1

F
5

-N
A

I1
G

9
-N

A
I1

G
3

-M
B

C
1

B
3

-N
A

I2
A

2
-N

A
I2

F
4

-N
A

I1
E

6
-N

A
I2

G
8

-N
A

I1
H

1
1

-N
A

I1
B

6
-N

A
I2

H
1

0
-N

A
I1

A
5

-N
A

I2
C

4
-N

A
I2

C
6

-N
A

I2
D

3
-N

A
I2

G
2

-M
B

C
1

G
1

1
-N

A
I1

B
1

0
-N

A
I2

E
2

-N
A

I2
A

7
-N

A
I2

C
8

-N
A

I2
A

4
-N

A
I2

G
1

2
-N

A
I1

G
5

-N
A

I1
B

4
-N

A
I2

C
9

-N
A

I2
A

3
-N

A
I2

C
5

-N
A

I2
E

1
2

-N
A

I1
F

7
-N

A
I1

G
3

-N
A

I1
A

1
0

-N
A

I2
B

5
-N

A
I2

E
9

-N
A

I2
D

8
-N

A
I2

D
1

1
-N

A
I2

E
4

-N
A

I2
D

7
-N

A
I2

B
7

-M
B

C
1

B
3

-M
B

C
1

A
2

-M
B

C
1

F
2

-M
B

C
1

H
8

-M
B

C
1

H
5

-M
B

C
1

C
3

-M
B

C
1

D
1

0
-M

B
C

1
D

1
2

-N
A

I2
A

9
-M

B
C

1
E

7
-N

A
I2

D
9

-M
B

C
1

F
1

1
-M

B
C

1
E

2
-M

B
C

1
F

4
-M

B
C

1
C

1
1

-M
B

C
1

A
4

-M
B

C
1

E
1

0
-N

A
I2

D
4

-M
B

C
1

D
7

-M
B

C
1

H
6

-M
B

C
1

C
5

-M
B

C
1

B
8

-M
B

C
1

C
2

-N
A

I2
D

6
-M

B
C

1
E

7
-M

B
C

1
C

7
-M

B
C

1
A

5
-M

B
C

1
C

8
-M

B
C

1
A

3
-M

B
C

1
B

1
1

-M
B

C
1

B
8

-N
A

I2
F

2
-N

A
I1

H
9

-N
A

I1
D

6
-N

A
I2

G
4

-M
B

C
1

G
5

-M
B

C
1

D
5

-M
B

C
1

C
6

-M
B

C
1

B
6

-M
B

C
1

E
1

0
-M

B
C

1
A

8
-M

B
C

1
A

7
-M

B
C

1
E

5
-M

B
C

1
C

1
0

-N
A

I2
A

6
-M

B
C

1
E

9
-M

B
C

1
A

9
-N

A
I2

D
1

1
-M

B
C

1
C

2
-M

B
C

1
E

8
-M

B
C

1
D

8
-M

B
C

1
H

7
-M

B
C

1
C

9
-M

B
C

1
F

5
-M

B
C

1
A

1
1

-M
B

C
1

B
2

-M
B

C
1

B
4

-M
B

C
1

B
1

0
-M

B
C

1
E

3
-M

B
C

1
H

9
-M

B
C

1
C

4
-M

B
C

1
G

6
-N

A
I1

G
6

-M
B

C
1

C
1

0
-M

B
C

1
D

3
-M

B
C

1
G

7
-M

B
C

1
C

4
-P

B
1

A
1

0
-P

B
1

C
3

-P
B

1
D

1
0

-P
B

1
D

3
-P

B
1

E
2

-P
B

1
F

6
-P

B
1

G
2

-P
B

1
D

5
-P

B
1

G
9

-P
B

1
G

1
0

-P
B

1
H

8
-P

B
1

E
5

-P
B

1
E

1
0

-P
B

1
A

9
-P

B
1

B
2

-P
B

1
H

1
1

-P
B

1
A

4
-P

B
1

D
2

-P
B

1
A

7
-P

B
1

D
7

-P
B

1
H

4
-P

B
1

C
1

1
-P

B
1

E
6

-P
B

1
A

5
-P

B
1

F
7

-P
B

1
B

6
-P

B
1

A
8

-P
B

1
G

4
-P

B
1

F
9

-P
B

1
H

7
-P

B
1

A
3

-P
B

1
D

8
-P

B
1

D
4

-P
B

1
D

6
-P

B
1

H
3

-P
B

1
C

9
-P

B
1

F
5

-P
B

1
D

1
1

-P
B

1
B

4
-P

B
1

E
7

-P
B

1
E

3
-P

B
1

B
8

-P
B

1
G

6
-P

B
1

H
5

-P
B

1
C

7
-P

B
1

G
3

-P
B

1
A

6
-P

B
1

C
2

-P
B

1
G

8
-P

B
1

C
5

-P
B

1
B

7
-P

B
1

E
4

-P
B

1
H

1
0

-P
B

1
B

5
-P

B
1

A
2

-P
B

1
C

1
0

-P
B

1
B

1
1

-P
B

1
H

9
-P

B
1

E
1

1
-P

B
1

G
7

-P
B

1
B

1
0

-P
B

1
B

9
-P

B
1

H
2

-P
B

1
F

3
-P

B
1

G
5

-P
B

1
F

1
0

-P
B

1
B

3
-P

B
1

A
1

1
-P

B
1

C
8

-P
B

1
E

9
-P

B
1

H
6

-P
B

1
E

8
-P

B
1

D
9

-P
B

1
C

6
-P

B
1

0 5 10

Expression (log2)

Sample Group

MBC

NAI

PB

Gene Group

activation

apoptosis

ATP

BCR

Ca

cell cycle

CTRL

cyt receptor

homing

hypermutation

kinase

migration

ox stress

phenotype

TF

TF 



 

FIGURES AND TABLES 

| 73 

 

 

Fig. 4 Gene expression analysis of all SbjB B cell populations. (A) Single cell gene 

expression values (log2(30-Ct), 96 genes) of n=210 total B cells from SbjB at days 8 and 

day22 after vaccination were used for unsupervised hierarchical clustering (heatmap 

with dendogram of single B cells in columns and genes in rows) and (B) Linear 

Discriminant Analysis (dot plot shows the position of every cell on the space defined by 

the first two linear discriminant components LD1 and LD2). (C) Violin plots depicting 

expression distribution of significant differentially expressed genes (ANOVA p<0.05) 

resulting from Ag+MBC, PB and NAIVE population comparison, ranked by p-value from 

top-left to bottom-right. For clarity purposes, protein IDs instead of gene IDs are used. 
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Figure 5 

 

 

Fig. 5 comparison of Ag+MBC-NAIVE gene expression profiles in SbjB. (A) Linear 

Discriminant Analysis of n=65 Ag+MBC and n=70 NAIVE single cell gene expression values 

(log2(30-Ct), 96 genes) (histogram shows the distribution of cells on the space defined by 

the first linear discriminant component LD1). (B) Violin plots depicting expression 

distribution of significant differentially expressed genes (Tukey test, p<0.05) resulting 

from Ag+MBC versus NAIVE comparison, ranked by p-value from top-left to bottom-right. 

For clarity purposes, protein IDs instead of gene IDs are used. 

  



 

FIGURES AND TABLES 

| 75 

 

Figure 6 

 

 

Fig. 6 Subpopulations identification in Ag+MBC of SbjB. (A) Ag+MBC clustering 

dendogram where the red line indicates the threshold distance (0.51) set to partition 

the population in two subsets based on gene expression patterns. (B) Principal 

Component Analysis showing the distribution and intersection of the identified clusters 

of Ag+MBC. 
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Figure 7 
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Fig. 7 Vaccinee (SbjB) versus healthy donor comparison of MBC populations. (A) Single 

cell gene expression values (log2(30-Ct), 96 genes) of n=88 total B cells from the healthy 

donor were used for unsupervised hierarchical clustering (heatmap with dendogram of 

single B cells in columns and genes in rows). (B) Linear Discriminant Analysis showing 

that MBC (grey) and PB (black) from healthy donor overlap with the respective vaccinee 

populations (green Ag+MBC, blue PB). (C) Linear Discriminant Analysis of SbjB Ag+MBC 

and healthy donor MBC single cell gene expression values (log2(30-Ct), 96 genes) 

(histogram shows the distribution of cells on the space defined by the first linear 

discriminant component LD1). (D) Violin plots depicting expression distribution of 

significant differentially expressed genes (Tukey test, p<0.05) resulting from SbjB 

Ag+MBC versus healthy donor MBC comparison, ranked by p-value from top-left to 

bottom-right. For clarity purposes, protein ID instead of gene ID is used. 
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Figure 8 
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Fig. 8 Ig Repertoire analysis and correlations with gene expression data. (A) Ig 

clonotype analysis performed on SbjB and healthy donor populations, with circles 

indicating clonotype size and numbers inside circles indicating the number of clonotypes 

of that particular size. (B) Ig isotype distribution over Ag+MBC, PB and NAIVE populations 

in SbjB. (C) Spearmann correlation study of VH full gene mutation rate and gene 

expression on SbjB Ag+MBC (top) and PB (bottom); dots represent ρ values for each 

gene, orange color identifies significant correlations (p<0.05). (D) Association of Rorα 

(left) and Tbet (right) expression with Ig  isotype (ANOVA, ****p<0.0001). For clarity 

purposes, protein IDs instead of gene IDs are used.  
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Supplementary Figure 1 

 

Supplementary Fig. 1 Quantification of total and Ag-specific antibodies in vaccinees 

and healthy donors plasma. Histograms reporting total Ig (left) and Ag-specific (right) 

titers in plasma of 6 healthy donor (top row) and 4 vaccinees at Day8 (middle row) and 

Day22 (bottom row) after vaccination for IgG, IgM and IgA isotypes. Red arrows indicate 

subjects discussed in this work; red squares indicate  Ag-specific titers of SbjB. These 

results were obtained performing high-throughput ELISA on the Gyrolab Workstation. 
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Table 1 (continues on next page) 
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Table 1 (continues from previous page) 

 

Table 1: List of IDs, Taqman Assay codes and categories of the genes (and respective 

proteins) analyzed in this study. 
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Table 2  

 

Table 2: Immunoglobulin-specific primers used for PCR amplification. Primers specific 

for the V region of all Ig chains were introduced in the pre-amplification reaction mix 

(‘Preamp’ ID prefix). VH specific primers were used in the Ig PCR and sequencing 

procedure (‘Ig PCR’ ID prefix). 
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