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ABSTRACT 

Cisplatin is one of the most potent anticancer agents used in the treatment of various solid 

tumors. Unfortunately the onset of resistance is the main limit of this therapy and severely 

compromises the treatment effectiveness. Although several studies regarding cisplatin resistance 

have been performed, the molecular mechanisms are not completely understood. Classically, 

cisplatin is studied as a DNA-damaging chemotherapy agent, but more recent investigations 

showed that only 5-10% of intracellular platinum is bound to nuclear DNA, while the great 

majority of the intracellular drug can interact with a variety of cellular component including 

proteins, RNA and mitochondrial DNA. MtDNA, unlike nDNA, does not possess efficient repair 

systems; therefore it is more susceptible to the onset of mutations often associated to cancer 

development, loss of tumor suppressor, activation of oncogenes and mitochondrial dysfunctions 

related with an increase of glycolytic activity. The Warburg effect indicates the alteration of 

energetic metabolism used by tumor cells as a strategy to adapt and grow independently from the 

substrate availability. 

This evidence suggested us to verify the hypothesis that a similar metabolic strategy might be of 

relevance in cisplatin resistance.  

Therefore, our aim was to investigate the energetic metabolism and the mitochondrial dynamic of 

cisplatin-resistant and sensitive cancer cells with different experimental approaches, in order to 

reveal targets useful to overcome the resistance. 

In our laboratory we have already revealed that cisplatin resistant ovarian cancer cell line C13, as 

compared to sensitive line 2008, exhibits metabolic changes. Indeed, resistant clone showed a 

different mitochondrial and metabolic profile characterized by an increase of glucose and 

glutamine uptake, a decrease of the mitochondrial membrane potential and mitochondrial mass.  

In this scenario, we proceeded to phenotype other cancer cells that present acquired or intrinsic 

resistance in order to identify new targets to sensitize to cisplatin treatment. 

Our results pointed out alterations in mitochondrial fusion and fission in chemoresistant cancer 

cells. Moreover data obtained by real time q-PCR showed that resistant clones, with an imbalance 

toward fission process, present a faster mitochondrial turn-over using mitophagy as a 

mitochondrial quality control mechanism. Furthermore the data showed a mitochondrial network 

differently organized in resistant variants underlining a probable implication of dynamic process in 

resistance mechanisms. 
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Having regard to the data about metabolic reprogramming, breast cancer cells that have an innate 

resistance to cisplatin were evaluated. 

The expression of c-Myc nuclear transcription factors, involved in the metabolic reprogramming of 

tumor cells, has been evaluated highlighting a different expression of some of its target genes 

involved in the glycolylisis and glutaminolysis, besides an increased dependency of glucose in 

cisplatin resistant cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

RIASSUNTO 

Il cisplatino è uno dei più potenti agenti antitumorali utilizzati nel trattamento di vari tumori solidi. 

Purtroppo l'insorgenza della resistenza è il limite principale di questa terapia e compromette 

gravemente l'efficacia del trattamento. Anche se sono stati eseguiti numerosi studi per quanto 

riguarda la resistenza al cisplatino, i meccanismi molecolari non sono del tutto chiari. 

Classicamente, il cisplatino è studiato come agente chemioterapico che crea danno a livello del 

dna ma studi più recenti hanno dimostrato che solo il 5-10% del platino è legato al DNA nucleare, 

mentre la maggior parte del farmaco intracellulare può interagire con diverse componenti cellulari 

tra cui proteine, RNA e DNA mitocondriale. Il DNA mitocondriale, a differenza del DNA nucleare, 

non possiede sistemi di riparazione efficienti ed è quindi più suscettibile alla comparsa di 

mutazioni spesso associate allo sviluppo del cancro, alla perdita di oncosoppressori, attivazione di 

oncogeni e ad alterazioni della funzionalità mitocondriale correlata ad aumento dell'attività 

glicolitica. L'aumento della glicolisi anaerobica, anche in presenza di alte concentrazioni di 

ossigeŶo ;effetto WarďurgͿ, è l͛alterazioŶe del ŵetaďolisŵo eŶergetiĐo utilizzata dalle Đellule 

tumorali come strategia per adattarsi e crescere in modo indipendente dalla disponibilità del 

substrato. Queste evidenze scientifiche ci hanno suggerito di verificare l'ipotesi che una simile 

strategia possa essere rileǀaŶte Ŷell͛iŶsorgeŶza della resisteŶza al ĐisplatiŶo.  

Pertanto, lo scopo di questo studio è stato quello di indagare il metabolismo energetico e la 

dinamica mitocondriale delle cellule tumorali sensibili e resistenti al cisplatino con diversi approcci 

sperimentali, al fine di rivelare utili targets per superare questa importante forma di resistenza.  

Nel nostro laboratorio abbiamo già dimostrato che la linea di carcinoma ovarico resistente al 

cisplatino C13, rispetto alla linea sensibile del 2008, presenta cambiamenti metabolici. Infatti, il 

clone resistente ha mostrato un profilo mitocondriale e metabolico differente, caratterizzato da 

un aumento della dipendenza da glucosio e glutammina, una diminuzione del potenziale di 

membrana e della massa mitocondriale.  

In questo scenario, lo studio ha proseguito con la valutazione del meccanismo di resistenza 

cisplatino fenotipizzando altre cellule tumorali che presentano resistenza acquisita o intrinseca.  

I Ŷostri risultati iŶdiĐaŶo uŶ͛alterazioŶe dei ŵeĐĐaŶisŵi di fusioŶe e fissioŶe ŵitoĐoŶdriale Ŷelle 

cellule tumorali chemioresistenti. I dati ottenuti dalla q-PCR Real Time hanno dimostrato che i 

cloni resistenti, che presentano uno squilibrio verso processo di fissione, attivano un turn-over 
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mitocondriale più veloce, utilizzando la mitofagia come meccanismo di controllo della qualità 

mitocondriale.  

Inoltre i dati ottenuti hanno mostrato un network mitocondriale diversamente organizzato nelle 

resistenti sottolineando una probabile implicazione della dinamica mitocondriale nei meccanismi 

di resistenza. 

Per quanto riguarda i dati relativi alla riprogrammazione metabolica, sono state prese in esame 

cellule del cancro al seno che hanno una resistenza innata al cisplatino.  

È stata valutata l'espressione del fattore di trascrizione c-Myc che è coinvolto nella 

riprogrammazione metabolica delle cellule tumorali, per di più si è evidenziata una diversa 

espressione di alcuni geni bersaglio di c-Myc coinvolti nella glicolisi e glutamminolisi, oltre che una 

maggior dipendenza dal glucosio nelle linee resistenti di carcinoma al seno. 
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ABBREVIATION 

Abs      Absorbance 

ADP      Adenosine Diphosphate 

AIF      Apoptosis Inducing Factor 

Akt       Protein kinase B 

AMPK      Adenosine Mono Phosphate Kinase 

ANT      Adenine Nucleotide Translocator 

ATP      Adenosine Triphosphate 

ATP7A  e ATP7B     Copper-Transporting P-type ATPase  

BER      Base Excision Repair 

CAD      Caspase-Activated DNase 

CDDP      Cis-diamminedichloroplatinum II 

CoA      Coenzyme A 

CTR1  Copper Transport protein 1 

DMEM  Dulbecco's modified Eagle's medium 

DRP1      Dynami-Related Protein 1 

ERCC1  Excision Repair Cross-Complementation Group 1 

FAD      Flavin Adenine Dinucleotide  

FBS      Fetal Bovine Serum 

FIS1      Fission Protein Homolog 1 

GAPDH:     glyceraldehyde 3-phosphate dehydrogenase 

GSH      Glutathione 

GTP      Guanosine 5'-Triphosphate 

HIF  Hypoxia Inducible Factor 
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HR  Homologous Recombination Repair 

ICAD      Inhibitor of Caspase-Activated DNase 

KEAP 1      Kelch-like ECH-associated protein 1 

LC3      Microtubule-Associated Protein 1A/1B-Light Chain 3 

MEF      Mouse Embryonic Fibroblasts 

MFI      Mean Fluorescence Intensity 

Mff      Mitochondrial Fission Factor 

MFN1      Mitofusin-1 

MFN2      Mitofusin-2 

MME      Membrana Mitocondriale Esterna 

MMI      Membrana Mitocondriale Interna 

MMP      Mitochondrial Membrane Permiabilization 

MMR                                                                    Mismatch Repair 

MOMP      Mitochondrial Outer Membrane Permiabilization 

mtDNA:      mitochondrial DNA 

mRNA      Messenger RNA 

mTOR      Mammalian Target Of Rapamycin 

NAD      Nicotinamide Adenine Dinucleotide  

NER  Nucleotide Excision Repair 

NF‐Kb:      Fattore NuĐleare‐Kď 

NRF2      Nuclear factor (erythroid-derived 2)-like 2 

OPA1      Optic atrophy 1 

PBS      Phosphate Buffered Saline  

PIK3                                                                      Phosphatidylinositol 3-Kinase 
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PKA      Protein-Kinase A 

PTP      Permeability Transition Pore 

ROS                                                                       Reacting Oxygen Species 

RPMI      Roswell Park Memorial Institute 

RT PCR:      ‘eal‐Tiŵe PolǇŵerase ChaiŶ ‘eaĐtioŶ 

SQSTM1     Sequestosome 1 

TNF      Tumor Necrosis Factor 

TOM20:      Translocase of Outer Mitochondrial Membranes 

TRAP1       Tumor necrosis factor Receptor Associated Protein 1 

VDAC      Voltage-Dependent Anion Channels 
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INTRODUCTION 

1. CURRENT CANCER THERAPY  

Cancer is the main cause of death in economically developed countries (The Global Burden of 

Disease: 2004 Update. Geneva: World Health Organization; 2008.). There were 14.1 million new 

cases and 8.2 million deaths in 2012. The most commonly diagnosed cancers were lung (1.82 

million), breast (1.67 million), and colorectal (1.36 million); the most common causes of cancer 

death were lung cancer (1.6 million deaths), liver cancer (745,000 deaths), and stomach cancer 

(723,000 deaths), (http://globocan.iarc.fr). 

The incidence of cancer is increasing in countries economically developed due to aging and 

the growth of the population, as well as, the adoption of cancer-associated lifestyle choices, 

including smoking, physical inactivity, and western diets. The prevention is able to help to reduce 

an important percentage of the worldwide burden of cancer by implementing programs for 

tobacco control, vaccination, and early detection and treatment, as well as public health 

campaigns promoting physical activity and healthier dietary patterns. Nevertheless, there is still 

much to learn about the causes of several types of cancer. (Jemal A., et al., 2011).   

Cancer cells differ from normal cells in many ways that allow them to escape the proliferation 

control mechanisms and to become invasive. In addition, cancer cells tend to evolve 

spontaneously towards a growing autonomy and increase the ability to colonize and expand into 

different tissues because they are able to ignore signals that normally lead to apoptosis. 

Cancer was listed as a genetic complex multi-step disease, due to the acquisition of mutations 

of oncogenes and tumor suppressor genes (Ortega AD. et al., 2009). Oncogenes derive from proto-

oncogenes that, once undergone the mutation, alter their protein synthesis, through the 

production of wrong proteins (Liu, E.T. et al., 2004; Balmer A.M. et al., 2005). The tumor 

suppressors, instead, usually control the over-expression of oncogenes, but, in different types of 

cancer, they are destroyed or altered leading to a decrease of their functionality.  

Cancer cells may be able to influence the normal cells, molecules and blood vessels that 

surround and feed the tumor area known as the microenvironment. For instance, cancer cells can 

induce nearby normal cells to form blood vessels that supply tumors with oxygen and nutrients 

that allow the tumor to grow. Although the immune system normally removes damaged or 

abnormal cells from the body, cancer cells can mutate enough and become able to escape the 

surveillance mechanisms of the immune system: many cancers produce chemical messengers that 

http://globocan.iarc.fr/
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inhibit the actions of immune cells or other cancers have defects in the way that antigens are 

presented on their cell surface. 

Cancer therapy uses different strategies whose effectiveness is variable depending on the 

type of cancer, the speed with which the treatment is undertaken, and many other factors. 

Surgical therapy keeps a critical role in cancer treatment, even if it has become less invasive, often 

performed endoscopically, with the consequent advantage of being more acceptable to the 

patient, who has a post-operative path favored in general also by the progress of anesthetic 

techniques. It is often accompanied with radiotherapy and chemotherapy to increase the 

percentages of survival (Gatenby R.A. 2009). 

The complex of pharmacological therapies and techniques employed in their administration, 

used in the tumors treatment, has the purpose to stop the proliferation of cancer cells throughout 

the body, especially in the secondary localization level of metastases. Since different treatments 

are applied to the patient, drug therapy aims to be more effective and less aggressive. 

(Deberardinis R. J., et al., 2008). Therefore chemotherapy uses biological therapies, which attack 

the molecular mechanisms of cancer with drugs, specifically targeted on each type of tumor; when 

this is not possible, chemotherapy uses high doses of drugs. The anticancer drugs may have 

several targets in the cell: in general different classes of drugs are distinguished (alkylating agents, 

antimetabolites, intercalating agents and mitotic inhibitors), but in the final analysis the 

pharmacological target is constituted by the DNA.  

                                 

 
Fig.1: Sites of action of cytotoxic agents (Luqmani Y.A., 2005). 
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Chemotherapy has several side effects, in order to reduce them, as far as possible, these 

drawbacks have been devised in particular strategies for administering therapy. In the first place 

the chemotherapy is carried out in an intermittent manner, according to schemes that provide 

curative cycles lasting several days, alternated with rest intervals up to 3-4 weeks: in this way it is 

possible to the normal cell populations to recover between one cycle and the others, taking 

advantage to the tumor cells, generally slower to recover the damage. In order to further reduce 

the side effects it is necessary to use the association of more antitumor drugs 

(polychemotherapy), increasing the overall effect due to different mechanisms of action, and 

decreasing at the same time the toxicity. In some cases, chemotherapy is used as a precautionary 

measure (adjuvant chemotherapy) after surgery for tumor removal, to eradicate any microscopic 

metastases which have already spread at the time of the transaction. Often chemotherapy is used 

even before the surgery; in this case the chemotherapy, neoadjuvant, has the aim to reduce the 

tumor mass in order to make it more easily removable with surgical interventions. 

Overall, the viability and success of chemotherapy are related to factors from both the patient 

(age, general health, performance status) and the tumor (biological characteristics of the degree 

of response to chemotherapy, total tumor mass extension): especially in the latter case the 

phenomenon of resistance to anticancer drugs assumes considerable importance, event which 

unfortunately almost occurs during the course of chemotherapy (Luqmani Y.A., 2005). 

2. DRUG RESISTANCE AND CHEMOTHERAPY 

Resistance to chemotherapy and molecularly targeted therapies is the major problem of the 

current cancer research. The investigation of the chemoresistance of malignant cells is needed 

also for oncology practice because drug resistance is often considered to be a cause of therapy 

failures and the impact on survival could be highly significant. 

Cancer cells are constantly using a variety of tools, involving genes, proteins and altered 

pathways, to ensure their survival against antineoplastic drugs. The mechanisms of resistance to 

'classical' cytotoxic chemotherapeutics are complex and multifactorial (Koberle et al., 2010). 

A variety of factors have been demonstrated to be involved in chemoresistance, including the 

reduced intracellular concentrations of drugs, alterations in drug targets, activation of prosurvival 

pathways, ineffective induction of cell death and interactions between cancer cells and the tumor 

microenvironment (Shi W. J. and Gao J.B., 2016). 
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Resistance to antineoplastic chemotherapy is a process that involves a specific drug, a specific 

tumor and a specific patient. Chemoresistance can be divided into innate chemoresistance, 

intrinsically present before the administration of chemotherapy, and acquired chemoresistance 

when it can develop during  antineoplastic drug administration (Meads M. B. et al., 2009). An 

example of intrinsic resistance is provided by cells of non-neoplastic normal peritumoral tissues. In 

fact, in the woman's breast invasive carcinomas treated in neoadjuvant manner with highly 

aggressive protocols as a result of healthy breast peritumoral tissue biopsies, it is noted the total 

absence of damage induced by chemotherapeutic protocol. If on the one hand this example 

demonstrates a physiological and natural resistance to chemotherapy by normal cells, on the 

other, it allows to hypothesize that the chemosensitivity is an acquired characteristic. (DeVita V.T., 

et al., 2008).  

The acquired drug resistance may be due to several factors such as the cell cycle kinetics of 

the biochemical and pharmacological causes (Gottesman M. M., 2002). Today chemosensitivity 

and acquired chemoresistance represent a vast field of research because the two properties 

characterize the profile of each tumor. To date the input that generates the chemoresistance, 

especially those acquired, is little known but it is reasonable to think that the genetic instability, 

underling cancer, can induce mutations that produce phenotypic drug resistance. Spontaneous 

mutations can occur within the tumor cells population and develop resistant clones (cells derived 

from the division of a single cell, which all have the same genetic heritage) capable of withstanding 

to chemotherapeutic drugs due to different biochemical mechanisms (Weinstein I. B., 2002). The 

selective advantage gained promotes the proliferation of resistant clone, which allows the entire 

population to be insensitive to treatment: the tumor can growth unstoppably. In some cases the 

cancer cells are even capable of synthesizing a cell membrane protein which extrudes cytotoxic 

molecules, keeping intracellular drug concentration below a cell-killing threshold and cancer cells 

become resistant to multiple drugs. (Ullah M. F., 2008). With the increasing array of anticancer 

agents, improving preclinical models and the use of high-throughput screening techniques are 

now opportunities to understand and overcome drug resistance through the clinical assessment of 

rational therapeutic drug.  
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Fig. 2: General principles of drug resistance. 

 

 

Fig. 3: Summary of downstream factors that influence drug resistance.  

3. CISPLATIN                       

Cisplatin is one of the best known alkylating 

chemotherapeutic agents, and it͛s mainly used for the 

treatment of solid tumors, especially testicular cancer, 

ovarian cancer and the head and neck cancers (Rosencweig 

M. et al., 1977; Vokes E.E. et al., 1992). It is effective against 

various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. 

(Dasari S. and Tchounwou P.B., 2014).  It is an antineoplastic agent discovered by Rosenberg, that 

through in vitro studies discovered cisplatin as a neutral complex, formed by the dissolution of 

platinum electrodes in places chloride ammonium (Bloemink JM and J. Reedijk, 1996). Also certain 

electrolysis products of platinum mesh electrodes were capable of inhibiting cell division in 

Escherichia coli creating much interest in the possible use of these products in cancer 

chemotherapy. In fact theǇ didŶ͛t lead to division, inducing, instead, a damage in DNA replication 

(B. Rosenberg et al. 1965; Rosenberg B. et al., 1967; Brown S.J. et al., 1994) . 

Fig. 4: cis-diamminedichloroplatinum 
II 
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3.1 MECHANISM OF CYTOTOXICITY 

Cisplatin has a planar structure (Fig. 4) formed by a central atom of platinum in the oxidation 

state of +2 to which are linked two chlorine atoms and two NH3 molecules thus obtaining a 

framework-planar geometry. The molecule exists in two isomers cis and trans but it is only the first 

has a strong anti-tumor activity. The mechanism of action of alkylating agents in general is to 

transfer their alkyl groups to various cell constituents, in particular the most significant target is 

the DNA (Fig. 5) (Lemke T.K. D.A. and Williams, 2008). These modify the bases of DNA, interfering 

with replication and transcription and leading to mutations. Cross-linking atoms in the DNA, 

preventing strand separation for synthesis or transcription, also cause damage. Base mispairing 

between strands is also induced by alkylation (Luqmani, 2005). 

 

 

 

 

 

 

 

 

Fig. 5: Main adducts formed after binding of cis-DDP to DNA: 1,2-intrastrand cross-link, interstrand cross-link, 
monofunctional adduct, and protein-DNA cross-link. The main site of attack of cis-DDP to DNA is N7 of guanine. 

The activity of cisplatin is conditioned by the amount of chlorine ions present in the 

environment: in the blood, in which the concentration of the ions is high, it is mainly present in the 

neutral form with the two chlorines bonded to the central platinum; in the cell, the decrease of 

the concentration of the ions causes the outgoing of chlorine atoms, which are replaced by water 

molecules: the molecule is positively charged and thus can react with nucleophilic groups (DNA, 

RNA and proteins ) (Kartalou M. and Essigmann J.M., 2001).  

In DNA, the sites for the binding of cisplatin are mainly the N'-7 atom of guanine, by binding 

preferably the nitrogen in position 7. Cisplatin forms monofunctional adducts, which may evolve 

into bifunctional, blocking the replication and/or preventing the transcription (Fig. 5) (Fichtinger-

Schepman A.M.J. et al., 1985). The crosslinks created, which may be intrastrand or interstrand, 
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cause alterations of the double helix structure of DNA and consequently an altered interaction 

with proteins involved in replication and transcription processes (G. Villani et al., 1994). In 

particular, preventing or making difficult to the polymerase to bind with DNA, a DNA duplication 

failure occurs, and this block primarily affects tumor cells, whose feature is a fast replication. In 

addition to preventing these fundamental processes, cisplatin seems to damage cancer cells by 

inducing apoptosis (Florea A.M. and Büsselberg D., 2011); also the production of ROS induced by 

cisplatin can lead to irreversible damage to the cells (Brozovic A. et al., 2010).        

The drug is primarily used intravenously for the treatment of ovarian cancer, testicular and 

advanced bladder cancer. It is primarily eliminated by kidney, and only 10% takes the bile duct. 

The main side effect is nephrotoxicity, due to the activation of inflammatory mechanisms inside 

cells, apoptosis, oxidative stress induction and early vasoconstriction that causes ischemic injury. 

This effect is enhanced in patients already suffering a disease on renal tract level in therapy with 

other drugs that have the same toxicity. Other side effects are ototoxicity, neurotoxicity and 

myelosuppression, and alterations in liver function; cisplatin is also a strong emetogenic. There are 

many precautions in this regard and medications that can help reduce these problems (Lemke T.K. 

And Williams D.A., 2008). There is, however, another problem associated with the use of cisplatin, 

common to other chemotherapeutic drugs: the induction of resistance, either intrinsic or 

acquired, that seriously compromises the efficacy. 

Therefore,  the  occurrence  of  resistance  to  platinum  is  the  major  problem  that  

undermines efforts to effectively treatment. One approach to overcome this limitation is to 

elucidate the mechanisms responsible for drug resistance and then develop ways to treat 

resistance effectively or prevent its occurrence.  

3.2 MECHANISM OF RESISTANCE 

Despite the development of new targeted anticancer therapies, mechanisms of protection 

against cytotoxic compounds will continue to act as the main limit to successful treatment of 

cancer. More knowledge about these resistance mechanisms may help to design strategies to 

circumvent resistance. In vitro studies suggest that cisplatin resistance can result from mutations 

and epigenetic events at the molecular and cellular levels causing cancer relapse and failure of 

treatments. Cisplatin resistance appears to be a mutifactorial phenomenon (Fig. 6), including 

reduced accumulation of platinum compounds by either active efflux/sequestration/secretion or 

impaired influx, detoxification by GSH conjugates, metallothioneins and other antioxidants, 
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increased levels of DNA damage repair (nucleotide excision repair and mismatch repair), changes 

in DNA methylation status, alterations of membrane protein trafficking as a result of defective 

organization and distribution of the cytoskeleton, overexpression of chaperones, up- or down-

regulated expression of microRNA (miRNA1), transcription factors and small GTPases, inactivation 

(Shen D.W. et al., 2012). 

 

             
                     

Fig. 6. Cisplatin resistance mechanisms. Many mechanisms may contribute to cisplatin resistance including reduced 

uptake, increased efflux, increased detoxification, inhibition of apoptosis and increased DNA repair (increased NER, 

loss of MMR, and increased TLS); alteration in DNA methylation and expression of stress-response chaperones. 

(Haiyan Zhu et al., 2016). 

Reduced drug accumulation  

The predominant cause of cisplatin resistance is the reduced effective concentration of 

intracellular drug (Haiyan Zhu et al., 2016). This can be due to the decrease in uptake, the increase 

in efflux, and the inactivation by thiol-containing proteins, which results in reduction in cisplatin–

DNA adduct formation and ultimately leads to resistance to cisplatin.  

The compounds of platinum is taken up within the cell by passive diffusion (not saturable) or 

through facilitated transport: some copper transporter (CTR1), seem to be involved in the 

influence of cisplatin (Song I.S. et al., 2004; Holzer A.K. et al., 2006) and could therefore have a role 

in resistance. The cells with a decreasing expression of these receptors appear to be resistant to 
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the drug due to their rapid cytoplasmic internalization, consequently to the exposure to the 

chemotherapeutic drug, limiting further uptake (Safaei R. et al., 2004-2005). Mouse embryonic 

fibroblasts (MEF) null for CTR1 provide 3.2-fold increased resistance as compared with transfected 

cells. The other shuttle coppers between the Golgi and the plasma membrane, ATP7A and ATP7B, 

are instead involved in the efflux of the drug (Safaei R. et al,. 2004; Samimi G. et al., 2003): the 

copper, in fact, competes with cisplatin for the cellular uptake, but is also able to reduce the 

outflow of the chemotherapeutic drug, increasing its accumulation and toxicity (Stewart D.J. et al., 

1995).  

The overexpression of the receptor ATP7B, decreasing the competition between the two 

elements is associated with a worse prognosis in patients with cancer esophageal level 

(Higashimoto M. et al., 2003) and squamous cancer cells of the head and neck (Miyashita H. et al,. 

2003), suggesting an implication in the resistance. Patients, whose carcinomas expressed high 

levels of ATP7B, had a significantly poorer prognosis than patients with tumors that expressed low 

levels of ATP7B (Nakayama K. et al., 2001). 

The main protein involved in the effective elimination of the drug from the cell, acting as an 

efflux pump is the P-glycoprotein, an adeŶosiŶe ϱ′-triphosphate (ATP)-binding cassette (ABC) 

transporters, located on the cell membrane and able to recognize the various types of anticancer 

drugs, including compounds cisplatin-based (Gottesman M.M. and Ling V., 2006). Its over-

expression, observed in resistant cells in particular of ovarian tumors, sarcomas and breast 

tumors, can determine the failure of chemotherapy and worsen the prognosis (Rodrigues F.F.O. et 

al., 2008; Hoffmann B.C. et al., 2010). 

In addition, other ABC transporters , including multidrug resistance proteins (MRPs), MRP1, 

MRP2, MRP3, and MRP5, (ATP-dependent pump), might mediate cisplatin resistance by increasing 

cisplatin export. (Galluzzi L. et al. 2012).  

Drug Inactivation by thiol containing species 

In the cytoplasm, platinum-based agents become acquo species and can avidly react to 

intracellular nucleophilic species, such as glutathione (GSH), methionine, metallothioneins (MTs), 

and thiol-containing proteins. An overexpression of these compounds may lead to resistance 

through the binding and inactivation of the drug, which subsequently can be expelled from the cell 

through a series of membrane protein, like outflow pumps GS-X (Siddik Z.H. et al., 2003). 
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GSH, which is a thiol-containing tripeptide (Glu-Cys-Gly), can bind to cisplatin, through adduct 

formation, to prevent cisplatin from binding to DNA and other targets, quench proapoptotic 

reactive oxygen species. Moreover it helps to maintain the redox environment while maintaining 

reduced sulfhydryl groups (Haiyan Z., 2016). 

Methionines and metallotionine are low-molecular-weight thiol-containing proteins 

comprised of several cysteine and aromatic amino acid residues (Siegsmund M.J. et al., 1999). MTs 

contain sulfide groups and are involved in the zinc and copper homeoastasis and detoxification 

(Siddik Z.H. et al., 2003). They can confiscate the largest amount of cisplatin; the presence of these 

compounds is linked to the resistance in ovarian carcinomas, cervical and lung (Kavanagh J.J. et al., 

2005; Li M. et al., 2009). Therefore the association of MT levels with cisplatin resistance may be 

tissue specific and may play a minor role depending on the cellular environment. 

Increased repair of platinum-DNA adducts  

The well known mechanism of cisplatin is the alteration in the structure of the DNA molecule, 

then, the extent of the damage and the amount of DNA damage determine survival or cell death. 

(Cobo M. et al., 2007). There are several mechanisms of DNA repair, among which nucleotide 

excision repair (NER) and mismatch repair (MMR) are the predominant DNA repair mechanisms. 

NER is an ATP-dependent multiprotein complex that recognizes the binding induced on DNA by 

1,2-intrastrand cross-links, and subsequently excises the DNA that includes as 27- to 29-base-pair 

oligonucleotides. The gap that remains is then filled by DNA polymerase (Chaney S.G. and Sancar 

A. J., 1996). In particular, many studies have shown that an high gene expression of the excision 

repair cross-complementation group 1 (ERCC1), is a single-strand DNA endonuclease and forms a 

tight heterodimer with ERCC4 to incise DNA oŶ the ϱ′ side of ďulkǇ lesioŶs suĐh as DNA–cisplatin 

adducts and  is related to the increase in the DNA repair capacity (Galluzzi L. et al., 2012), in 

particular in the tumor ovary resistant cells (Selvakumaran M. et al., 2003). In addition, cell lines 

that develop resistance in vitro after exposure to cisplatin chemotherapy were found to have 

increased expression of ERCC1 (Ferry K.V. et al., 2000). Other repair mechanisms can be the HR 

(homologous recombination repair), capable of repairing the damage created at the level of the 

double helix, due to the intersection of the platinum through inter-chain cross bonds to DNA and 

the BER (base excision repair). Studies have also shown a greater tolerability to DNA damage, 

(Kelland L.R., 2000), caused by the MMR (mismatch repair), a control mechanism of mismatches, 
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ATP dependent, generated during DNA replication, which usually acts in case of the DNA 

polymerase errors (Martin LP. et al., 2008).  

The mismatch repair system consists of three steps and involves at least five: MLH1, MSH2, 

MSH3, MSH6, and PMS2; the decrease of this system can contribute partly to the development of 

tolerance in case of DNA damage; and it has been observed that tumor lines, with a deficiency of 

MMR, are 2-3 fold more resistant to cisplatin treatment (Stojic L. et al., 2004). Epigenetic silencing 

of MMR seems to occur more often through Mut L homologue 1 (hMLH1) promoter 

hypermethylation, as it has been shown in ovarian, endometrial, gastric, and colorectal carcinoma, 

among others (Peltomaki P., 2003; Geisler J.P. et al., 2003; Bignami M. et al., 2003). 

Genetic alteration and apoptosis inhibition 

Cisplatin-induced apoptosis is essential for the anticancer effect of cisplatin. Cisplatin 

stimulates apoptosis by triggering the extrinsic death receptor pathway or the intrinsic 

mitochondrial pathway. The resistant cells show a decrease of apoptotic mechanism: this seems to 

be caused by an increase of the genes, proteins and pathways of anti-apoptotic signal and/or a 

reduction of those pro-apoptotic (Scatchard K. et al,. 2012). Multiple proteins such as the Bcl-2 

family proteins and p53 and several signaling pathways including mitogen-activated protein kinase 

(MAPK) pathway and nuclear factor-ʃB ;NF-ʃBͿ pathǁaǇ are iŶǀolǀed iŶ the eǆtriŶsiĐ aŶd iŶtriŶsiĐ 

apoptosis pathways. Dysfunction of these proteins and signaling pathways may lead to the 

development of cisplatin resistance (Fig.7). 

                          

 
Fig. 7: Multiple molecules and signaling pathways that inhibit apoptosis are involved in cisplatin resistance. (CPR, 
cisplatin resistance; MAPK, mitogen-activated protein kinases; NF-ʃB, ŶuĐlear faĐtor-ʃB; TNFAIPϴ, tuŵor-necrosis-
factor-α-induced protein 8) (Haiyan Z., 2016). 
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In fact, one of the main genes involved in the regulation of the cell cycle, apoptosis and 

proliferation, is the tumor suppressor p53. It has been observed that its alteration is associated 

with cisplatin resistance (O'Connor P.M. et al., 1997), moreover other studies reported that the 

frequency of protein mutations is greater in resistant ovarian cancer cell lines than the sensitive 

counterpart (Kigawa J. et al., 2001). 

Another important pathway is the PIK3/Akt/mTOR, key regulator in cell survival and involved 

in all aspects of tumor biology as the transformation of cells, growth, proliferation, migration, 

apoptosis and DNA repair. It has been observed that an increase of activity contributes to the drug 

resistance through various mechanisms such as, for example, inhibition of apoptosis (Saal L.H. et 

al., 2007; Liu C. et al., 2009). 

Other proteins involved in resistance are those of the Bcl-2 family, which participate in the 

apoptosis, acting on the complex that regulates the permeability of the external mitochondrial 

membrane (MOMP). The family contains proteins pro and anti-apoptotic: there are evidences that 

show as an alteration of their balance with a decrease of the first and an increase of the second 

may lead to a reduction of the effectiveness of the drug in some types of cancer such as ovarian 

cancer and lung cancer (Han J.Y. et al., 2003; Williams J. et al., 2005). 

MAPKs play critical roles in the complex intracellular signaling network, which regulates gene 

expression in response to various extracellular stimuli. (Dean M. et al., 2005). The correlation 

between MAPK activation and CPR has recently been recognized. CPR cancer cells often have 

reduced MAPK activity; inhibition of JNK, p38 kinase, or ERK attenuates cisplatin-induced 

apoptosis and cell death (Basu A. and Tu H., 2005). 

Finally numerous in vitro and in vivo studies, have shown that constitutive activation of NF-ʃB, 

gene involved in immunoregulation, inflammation, growth regulation, apoptosis, and 

carcinogenesis, inhibits chemotherapy-induced apoptosis in different types of cancer, including 

cervical cancers (Venkatraman M. et al., 2005). 

 

3.3 CISPLATIN AND MITOCHONDRIA 

The cisplatin due to its alkylation capacity is able to form adducts with the nucleophilic species 

of DNA, RNA and proteins (Fichtinger-Schepman A.M.J., 1985), in particular it seems that many 

consequences of its cytotoxicity are due to binding to the nuclear DNA (nDNA). The only damage 

to nDNA, however, does not explain the high cytotoxic effect of the chemotherapy drug nor its 

tissue specificity (Marullo R., 2013). In this regard, recent studies have shown that the cisplatin 
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intracellular concentration, binding to nuclear DNA, is about 5-10%, thus, it is significant the drug 

concentration that can interact with other cellular components, such as proteins, RNA, 

endoplasmic reticulum, lysosomes (Mandic A. et al ,. 2003), including the mitochondrial DNA 

(mtDNA)  (Arnesano F. et al., 2008). Mitochondria contain their own DNA (mtDNA) that is 

transcribed and translated to synthesize 13 proteins of the mitochondrial electron transport chain 

(Fernandez-Silva P. et al., 2003). Mitochondrial DNA has no efficient repair systems like nuclear 

DNA and therefore is more sensitive to oncogenic mutations and insults of toxic substances 

(Preston J.J. et al., 2001). Also the adducts that are formed between cisplatin and the 

mitochondrial DNA have a low spin speed (Olivero O.A. et al., 1997). Recent literature has shown 

that cells depleted of mitochondrial DNA show significant resistance to cell death mediated by a 

range of chemotherapeutic agents (Park et al., 2004; Montopoli et al. 2009). A mechanism that 

could explain the effect on the mitochondria in the treatment with cisplatin, involves the 

formation of ROS: it has been observed that exposure to chemotherapy increases the expression 

of reactive oxygen species, consequently, to a decrease in mitochondrial respiratory chain 

(Santandreu F.M. et al., 2010), linked to respiratory partial decoupling (Stöckl D. et al., 2007).  

Also antioxidants counteract the cytotoxicity induced by cisplatin in tumor cells, showing that 

oxidative stress is important for its antiproliferative activity (Santandreu F.M. et al., 2010). The 

radical species produce damage either directly or by inducing the activation of pro-apoptotic 

intracellular pathways (Madesh and Hajnóczky M.G., 2001). In fact, the increase in the intra-

mitochondrial calcium, dysregulated during apoptosis induced by the drug, interacting with the 

ROS products, allows the opening of the PTP (permeability transition pore), which causes the 

rupture of the outer mitochondrial membrane and therefore apoptosis (Desagher S. and Martinou 

J.C., 2000; Harris M.H. and Thompson C.B., 2000; Korsmeyer S.J. et al., 2000). Moreover the 

opening of the PTP results in the release of cytochrome c and consequently in the activation of 

caspases (Duchen M.R., 2000; Fiskum G., 2000; Hajnóczky G. et al., 2000). Even the only alteration 

of the channels anionic-voltage dependent VDAC, mitochondrial porins ion channels, localized in 

the outer membrane, has been indicated as a mechanism able to control the pro-apoptotic 

factors, without the complete opening of PTP (formed by VDAC and ANT), in particular by 

mediating the release of cytochrome c. These channels can be a cisplatin target, they have two 

cysteines in their domain and two methionines and the chemoterapeutic drug can form adducts 

with cellular proteins (K.J. Cullen et al., 2007). The closure of these porins may cause a defect in 

the exchange between ATP and ADP: the result is the inhibition of the F0F1-ATPase, which causes 
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hyperpolarization and release of cytochrome c after the loss of integrity of the outer membrane 

(Vander Heiden M.G. et al., 1999). Another mechanism that appears to be implicated in the 

activation of apoptosis is mediated by a family of proteins, the Bcl-2 (Bax and Bak) which controls 

the permeability of the outer mitochondrial membrane. The Bcl-2 family includes not only pro-

apoptotic factors but also inhibitors of cell death (Bcl-2, Bcl-Xl) (Oltvai Z.N. and Korsmeyer S.J., 

1994; Reed J.C. et al., 1996). The mechanism by which apoptosis on the part of these proteins is 

induced is still little known but it seems that, consequently to the stimulus by apoptotic agents 

such as cisplatin, pro-apoptotic factors can interact with one another and form homo- and hetero-

dimers: in particular the formation of homodimers of Bax promotes apoptosis and this is opposed 

to hetero-dimerizations of Bcl-2 / Bax (Oltvai Z.N. and Korsmeyer S.Y., 1994).  

Once dimers are created, these are transported in the MME, causing an alteration of the 

potential and the creation of large pores (MOMP) (Waterhouse N.J. et al., 2002), which facilitate 

the release of pro-apoptotic factors , normally present in the inter-membrane space, such as 

cytochrome c, in the cytoplasm level. To confirm the role of the alteration of these proteins in the 

cisplatin activity, was observed that high levels of Bcl-2 in ovarian cancer cells expression seem to 

confer resistance to chemotherapeutic treatment (Eliopoulos A.G. et al., 1995), as well as an 

increase of Bcl-Xl (Gauthier E.R. et al., 1996; Han Z. et al., 1996). However, the increased 

expression of the protein Bak is common before an apoptotic event.   

Cytochrome c, implicated in the mechanism of programmed cell death, is a soluble protein 

and positively charged, located in the intermembrane space (Sancho-Martinez S. et al., 2012). 

Citocrome c is involved in the mitochondrial respiratory chain through interaction with the 

complex III and IV (Hatefi Y., 1985; Mathews F.S., 1985), once translocated in the cytosol during 

apoptosis, it interacts with other proteins and activates Apaf-1, leading to the formation 

apoptosome (Hill M.M. et al., 2004). This, through ATP hydrolysis, recruits and activates pro-

caspase 9 (Zou H. et al., 1999), which cleaves and actives the pro-caspase. These effector caspases, 

like caspase-3, activate the endonuclease (CAD), usually complexed with its inhibitor (ICAD) 

(Sakahira H. et al., 1998); once activated, the CAD degrade chromosomal DNA, causing chromatin 

condensation, either through reorganization of the cytoskeleton and the disintegration of the cell 

into apoptotic bodies (Nunez R. et al., 2010). A study of intestinal epithelial cells, revealed a 

positive correlation between the mitochondrial density and the sensitivity to cisplatin: the 

reduction of mitochondrial concentration, raising the threshold for the onset of an event 
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apoptotic or necrotic, it gives the cell an advantage against death induced by chemotherapy (Qian 

W. et al., 2005).  

Furthermore mitochondrial damage by cisplatin has been increasingly studied as a mediator 

of systemic toxicity such as gastrointestinal toxicity, ototoxicity (Devarajan P. et al., 2002) and 

nephrotoxicity (Park M.S. et al., 2003). Indeed, mitochondria are thought to be a major target for 

cisplatin in cancer cells (Tacka K.A. et al., 2004) and alterations in mitochondrial function (reduced 

mitochondrial respiration and ATP production) have been investigated in cancer cell resistance 

(Harper M.E. et al., 2002). 

 

4. REGULATION OF MITOCHONDRIAL DYNAMICS 

Mitochondria are intracellular organelles involved in several cellular processes, they produce 

the energy currency (ATP) through respiration and regulate cellular metabolism. They also 

constitute a crucial structure for the control of apoptosis and the regulation of intracellular 

calcium (Sukhorukov V.M. et al., 2012); moreover they are involved in many other activities such 

as gluconeogenesis metabolism of fatty acids, steroid hormone and porphyrin synthesis and 

interconversion of amino acids. The ability to perform various functions is given by their ability to 

change shape (may be present in fact in spherical form or elongated). Their distribution within the 

cell is functional: although they are present in many sites, mitochondria tend to concentrate 

where there is a high demand for energy or where there is the need to perform the metabolic 

activity (Anesti V. and Slide L., 2006).  

Mitochondrial dynamic is request for different mitochondrial functions and in literature, it has 

been demonstrated to be involved in cytotoxicity of chemotherapeutic drugs (Kong B. et al., 

2015).  

4.1 MITOCHONDRIAL METABOLISM AND MORPHOLOGY 

Mitochondria are elongated structures that are surrounded by a double membrane each 

formed by a phospholipid bilayer. The two membranes are quite distinct in appearance and in 

physico-chemical properties, thus determining the biochemical function of each membrane 

(Pernas and Scorrano, 2016). 
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Fig.8: Mitochondrial morphology and structure. (http://www.federica.unina.it/smfn/citologia-ed-
istologia/perossisomi-mitocondri/). 

The outer membrane (OMM) completely encloses the mitochondrion, defines the boundary 

with the cytosol and is structurally similar to the plasmatic membrane. It is mainly composed of 

lipids (50%) and from proteins, the most abundant are the porins: these form broad channels 

which permit entry to proteins up to 5000 (ATP,NAD,CoA,ions,nutrients), and are able to open and 

close to reversibly on the basis of the conditions of the cell. On the contrary, the inner membrane 

(IMM) encloses and convolutes into the mitochondrial matrix, forming cristae, which develop 

inside the organelle and modify their structure and shape according to the energy demand. The 

inner membrane is freely permeable only to oxygen, carbon dioxide, and water. (NelsonD.L. and 

Cox M.M., 2002). The IMM is formed mainly from proteins and cardiolipin, which, being formed by 

four chains of fatty acids, reduces the permeability to protons, thus creating an electrochemical 

gradient between the space inter-membrane and the matrix, important for the transduction of 

energy. In space inter-membrane there are proteins that participate in the apoptotic process such 

as cytochrome c and b and that have an important role in oxidative phosphorylation (NelsonD.L 

and Cox M.M., 2002).  

The matrix contains a lot of water-soluble proteins and different enzymes, as well as 

ribosomes and mtDNA (it encodes a number of proteins involved in the transport of the electrons, 

process localized in the mitochondrial cristae). The matrix is the site in which occurs mainly the 

oxidation of pyruvate and fatty acids to form CO2 and reduction of coenzymes NAD and FAD FADH 

and NADH, while in the internal mitochondrial membrane occurs the electron transport to oxygen 

and is present the complex F0F1 or ATPsintasi. The cells use two processes for the ATP production, 

a key molecule for their functionality: glycolysis and oxidative phosphorylation. The glycolysis 

occurs in the cytosol and is constituted by a series of reactions that lead to the cleavage of a 

glucose molecule into two phosphoglyceraldehyde molecules and these metabolites into two 
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pyruvate molecules with the formation of two ATP molecules and two NADH for each glucose 

molecule consumed; all this can occur in the absence of oxygen (glycolysis anaerobia) with the 

final transformation of pyruvic acid in lactate, or in the presence of oxygen (aerobia), with 

complete oxidation of pyruvic acid in water and carbon dioxide in the Krebs cycle. The third phase 

of respiration, i.e. the oxidative phosphorylation, takes place at the level of the internal 

mitochondrial membrane and leads to the production of ATP through a system consisting of five 

complexes (Fig. 9), four of which are oxidoreductases: the complex I (NADH dehydrogenase), the 

complex II (succinate dehydrogenase), the complex III (cytochrome C reductase) and complex IV 

(cytochrome c oxidase); then there is the ATP synthase or V complex where there is the real 

synthesis of ATP, starting from ADP molecules. Three of the four complexes of oxide reductase, 

function as proton pumps by coupling the electron transport of hydrogen of NADH, up to oxygen, 

final acceptor, with the transfer of protons from the mitochondrial matrix to inter-membrane 

space. Then, it generates a proton gradient that is used by the ATP synthase to catalyze the 

phosphorylation of ADP to ATP, bringing as final result to the obtainment of 36 molecules of ATP 

(Stock D. et al., 2000; Boekema E.J. and Braun H.P., 2007). 

                                          

Fig.9: The schematic depiction of the five complexes (I-V) of the respiratory chain localized in the lipid bilayer of the 
internal mitochondrial membrane. (Scarpulla, 2008). 

 

The mitochondria cannot be created ex novo, they originate from mitochondria already 

formed. Mitochondria are dynamic organelles interconneted to form a network. The network will 

be changed in response to numerous stimuli both endogenous and exogenous e.g. the level of 

nutrients, leading to a shift toward the fusion or fission mitochondrial (Hales K.J et al., 2010); the 

adjustment is controlled sophistically during the cell cycle and defects of this can be connected to 

human pathologies (Westermann B., 2010) as Parkinson (Laar V.S.V. and Berman S.B., 2009), 

diabetes (Liesa M. et al., 2009), cancer (Grandemange S. et al., 2009) and Alzheimer (Zhu X. et al., 
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2013). Some evidence emphasizes a link between mitochondrial bioenergetic functions and its 

architecture. In particular, besides its critical implication in mitochondrial quality control, 

mitochondrial dynamics has been recently linked to energy demand and supply balance.  

4.2 KEY REGULATOR IN MITOCHONDRIAL METABOLISM  

Mitochondria play a central role in bioenergetic and metabolism of amino acids and lipids, 

since they host β-oǆidatioŶ, Kreď͛s ĐǇĐle, aŶd oǆidatiǀe phosphorǇlatioŶ ;OXPHO“Ϳ. In normal 

condition, a large amount of ATP is required for cells replication: glucose participates with two ATP 

molecule synthesis through glycolysis and up to 36 ATPs through its complete catabolism by the 

TCA cycle and OXPHOS (oxidative phosphorylation) (Wu R, Racker E., 1959). 

 The glycolysis is the central pathway for the glucose catabolism. In addition to obtaining a 

limited amount of energy, glycolysis is a good source of intermediates for tracks biosynthetic 

(amino acids). The final product, two molecules of pyruvate, maintains the greater part of the 

energy from the departure of the glucose that will be formed, under aerobic conditions, from the 

most effective redox reactions of the citric acid cycle and by the oxidative phosphorylation (Nelson 

D.L. and Cox M.M., 2002). An alternative catabolic pathway that uses the glucose (phosphorylated) 

is represented by the pentose phosphate pathway. This pathway in addition to constituting an 

alternative branch of the glycolysis first reactions, supplies important precursors, tracks anabolic 

activities of nucleic acids and produces reducing power in the form of NADPH (fundamental in the 

biosynthesis of fatty acids) (Ramos-Montoya A, et al. 2006).  

Acetyl-CoA is the fiŶal produĐt iŶ ǁhiĐh ĐoŶǀerge the ŵaiŶ ĐataďoliĐ routes ;β-oxidation of 

fatty acids, glycolysis, oxidation of amino acids). This compound is the main source that supplies 

the citric acid cycle. The main functions of the citric acid cycle are supplying the respiratory chain 

of fuel to synthesize ATP (in the form of reducing power, NADH and FADH2) and constitute a sort 

of compensation reservoir of metabolites whose flows are involved in all the main metabolic 

pathways (biosynthetic and degradative) (Nelson D.L. and Cox M.M., 2002).  

Being at the heart of the entire intermediate metabolism, in normal conditions the dynamic 

equilibrium between the reactions that remove intermediates by cycle and those that instead 

supply the cycle, is carefully preserved. If, in particular situations, a considerable quantity of 

intermediates were subtracted to the citric acid cycle and used as precursors in other ways, the 

balance would be quickly restored by anaplerotic reactions. These reactions are regulated to 

maintain Kreb cycle, involved to sustain the non essential amino acids biosynthesis and fatty acids, 
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compatible with the needs of the cell. This occurs through the conversion of pyruvate to 

oxaloacetate by pyrivate carboxylase, and through glutamine ŵetaďolisŵ ;froŵ glutaŵiŶe to  α-

ketoglutarate). In addition to glucose, glutamine is catabolized in appreciable quantities for most 

mammalian cells growing in culture. Therefore glucose and glutamine both supply carbon, 

nitrogen, free energy, and reduce equivalents necessary to support cell growth and division 

(Nelson D.L. and Cox M.M., 2002). 

In the final phase of the aerobic metabolism the electron transporters (NADH and FADH2) are 

oxidized releasing protons and electrons. The electronic transfer along the mitochondrial 

respiratory chain ends with the oxygen as the final acceptor, which is reduced to form water. The 

high energy released during the process is coupled to the transport of protons to pass through the 

inner mitochondrial membrane (impermeable to charged species). 

                 

Fig.10: Metabolic pathways active in proliferating cells. (Vander Heiden M.G. et al., 2010). 

4.3 KEY REGULATOR IN MITOCHONDRIAL FUSION AND FISSION 

The mitochondrial morphology is determined by a balance between the fusion and fission 

organelles, in which the mitochondria form elongated tubules that continually divide and fuse to 

create a dynamic network interconnected (Chen H. et al,. 2003). Even if the importance of the 

dynamism of the mitochondrial network is recognized, many aspects of fusion and fission remain 

unclear. However processes seem to improve the ability to control efficiency and stability of the 

mitochondria and increase the oxidative capacity (Hoitzing H. et al., 2015). Between the steps 



28 
 

G1/S mitochondria create a single tubular network of large size and are in the hyperpolarized and 

highly coupled form: this leads to an increase in the production of energy for preparing the cell to 

the high expenditure necessary for the process of DNA synthesis (Mitra K. et al., 2009). Instead in 

the course of following steps S, G2 and M, the hyperfused mitochondrial network disassembles 

and becomes very fragmented; this massive breakdown is required for the process of mitosis and 

to facilitate the equitable division of mitochondrial content between daughter cells (Qian W., 

2013). It has been widely demonstrated that the changes in the activity of the proteins of fusion 

and fission can cause alterations in the mitochondrial shape. In fact, when both fusion and fission 

are inhibited through modulation of these proteins, the mitochondrial morphology is similar to 

that observed in a basal state, thus demonstrating that the shape is the result of a balance 

between these two processes (Chen H. et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Mitochondria life cycle. a) Mitochondrial morphology, mitochondrial fusion and fission alternate during the 
life of the mitochondria. The mitochondria which have a reduced metabolic capacity, are removed. b) The 
mitochondrial dynamics are involved in the modulation of important biological functions.  (Westermann B., 2010). 
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However the mitochondrial morphology depends not only by the components of 

mitochondrial dynamic (the proteins involved in mitochondrial fusion or fission processes), but 

may also depend on other distinct proteins or mediators such as cytoskeleton proteins or other 

unknown cellular components. Mitochondria are able to respond to cellular signals by remodeling 

their morphology. In this regard, changes in the activity of mitochondrial fusion proteins can 

modulate the distribution and circulation of this organelle (Santel A. and Fuller MT., 2001). Thus, 

the mitochondrial elongation after starvation is necessary to maintain ATP production and to 

support mitochondria-dependent cellular growth (Gomes L.C. et al., 2011).  

This leads to an increase in efficiency of bioenergy, required to optimize the production of ATP 

when in presence of limited nutrients available. On the other hand, the mitochondrial 

fragmentation, a division event that produces one or more daughters mitochondria, is associated 

with a depleted ATP production (Jheng et al., 2012), an increase in the mitochondrial uncoupling 

and nutrients storage, in order to avoid wastage of energy. Through the fusion and fission events, 

mitochondria share membranes, solutes, metabolites and proteins, as well as the electrochemical 

gradients.  

FUSION:  

At the molecular level, mitochondrial fusion is a two-step process, requiring the coordinated 

fusion of both outer mitochondrial membranes (OMMs) and inner mitochondrial membranes 

(IMMs) by separable sequential events (Malka et al., 2005; Song et al., 2009). In mammals, this 

process depends on distinct mitochondrial sublocalization of three fusogenic proteins: the 

mitofusins 1 and 2 (Mfn1 and Mfn2), located on the outer mitochondrial membrane and involved 

in outer membrane fusion (Eura et al., 2003) and the IMM-located optic atrophy 1 (Opa1) (Olichon 

et al., 2002) involved in inner membrane fusion. This fusion event allows a transfer of information 

via exchange of mtDNA, proteins, lipids, and metabolites (Jakobs S, et al.2003).  

However it is not yet well elucidated how the outer and inner mitochondrial membranes 

coordinately fuse neither the factors that signal to a particular region of the mitochondrial 

membrane to start the tethering and fusion and then distribute in a correct manner the 

mitochondrial content. Thus, the study of the proteins controlling mitochondrial fusion and their 

activity is important. 
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Fig.12: Schematic representation of OMM fusion that may occur in a step distinct from IMM fusion. (Pernas and 
Scorrano, 2016). 

 

Two mitochondria must come into close contact for the initiation of fusion (Meeusen S. et al., 

2004) (Figure 12a). Then, the dynamin-related OMM proteins Mitofusin 1 andMitofusin 2, that 

hydrolyse GTP, form homotypic or heterotypic complexes (Song Z, et al., 2009) between two 

different mitochondria (Figure 3) and dimerize via their coiled domain, allowing mitochondrial 

tethering and fusion.  

MITOFUSIN: 

As demonstrated by gain- and loss-of-function studies, both Mfn proteins regulate 

mitochondrial fusion, although at different stages (Bach et al., 2003; Chen et al., 2003, 2005; 

Santel et al., 2003). Indeed, Mfn1 mediates mitochondrial docking and fusion more efficiently than 

Mfn2, probably due to its higher GTPase activity (Ishihara et al., 2004). Moreover, Mfn1 but not 

Mfn2 is required to mediate Opa1-driven mitochondrial fusion (Cipolat et al., 2004). When 

overexpressed, each protein is able to rescue the loss of the other and promote fusion (Chen et 

al., 2003). The MFN2 has multiple roles, whether or not related to fusion, and partly due to its 

tissue specificity. For example, it has been identified at the level of the endoplasmic reticulum, 

where it seems to control the morphology and the binding to the mitochondria (de Brito and 

Scorrano, 2008). It is also involved in the oxidative metabolism, in cell cycle, and in cell death; this 
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could explain the greater involvement of MFN2 in pathological processes (for example its 

mutation may lead to neurodegenerative disease of Charcot-Marie-Tooth type 2°) (Zuchner S. et 

al., 2004). 

OPTIC ATROPHY 1 (OPA1): 

OPA1 is required for fusion of the inner membrane, in a dependent-membrane potential 

manner, mtDNA maintenance and cristae morphology (Frezza C, et al., 2006). The role of this 

protein in cristae organization could be mediated by the ATP synthase whose oligomerization 

appears to have an impact on inner membrane curvature and cristae biogenesis.  

OPA1 is located in the space intermembrane in its soluble form, or is linked to the internal 

mitochondrial membrane (Akepati V. R. et al., 2008). There are at least eight isoforms of OPA1, 

produced by alternative splicing and proteolytic processing by mitochondrial proteases which 

create the molecular structures of OPA1 distinguished in long and short form (Ishihara N. et al., 

2006). Isoform 1 (contains only exon 4) and isoform 7 (contains exon 4 and 5b) are the dominantly 

expressed forms in human and mouse cells. These distinct isoforms have the ability to interact 

between them and, even if the function of each isoform is not clear, it seems necessary to the 

fusion of mitochondria the combination between a short form and a long one (Song Z. et al., 

2007). In fact OPA1 is also regulated by proteolytic cleavage, which decreases the amount of long 

OPA1 isoforms and increases the amount of the short ones. In a Western blot analysis, human or 

mouse OPA1 is detected as five distinct bands between 100 and 80 kDa. The two bands showing a 

higher molecular mass (known as long isoforms) are thought to be a mixture of the translation of 

alternative splicing mRNA isoforms 1, 2, 4, and 7. The three bands showing a lower molecular mass 

are considered the products of proteolysis of the long isoforms and also the product of translation 

of splice isoforms 3, 5, 6, and 8. Despite being essential to this process, some studies have 

identified that an overexpression of OPA1 leads to a fragmentation of the mitochondrial network 

(Arnoult D. et al., 2005; Griparic L. et al., 2007). This may be due to an alteration of the proportion 

between the endogenous isoforms and oligomers, which determines, consequently, failure to 

control the mitochondrial morphology and therefore the fragmentation. Studies also report that a 

decrease of OPA1 results in the activation of apoptosis and leads in addition to mitochondrial 

cristae altered formations (Arnoult D. et al., 2005). The ability of the protein to retain the 

morphology of the cristae is due to the soluble isoform which creates a complex ,through self-

oligomeric interactions with the long forms of OPA1 anchored at the level of the MMI, this 
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determines the magnitude of the joints at the level of the cristae and the amount of cytochrome c 

released during apoptosis (Frezza C. et al., 2006; Yamaguchi R. et al., 2008). 

FISSION:  

Fission is the other process used by mitochondria to respond to cytosolic needs and to change 

its functionality, a division event that produces one or more daughters mitochondria. Fission 

requires the coordination of cytoplasmic, cytoskeletal, and organellar elements and consists of 

three key steps: (a) marking of a fission site (Figure 13), (b) assembly of cytosolic dynamin related 

protein 1 (DRP1) dimers and oligomers into a spiral structure around mitochondria (Figure 13b), 

and (c) GTP hydrolysis and DRP1 helix constriction that split the mitochondrion (Figure 13c) (van 

der Bliek A.M., et al., 2013).  

 

                         

Fig.13: Mitochondrial fission is coordinated by DRP1, mitochondrial adaptors, and cytoplasmic elements. (Pernas and 

Scorrano, 2016). 

 

Multiple receptors can recruit DRP1 to mitochondria; four mitochondrially localized adaptor 

proteins have been identified: mitochondrial fission factor (MFF);mitochondrial dynamics proteins 

of 49 kDa and 51 kDa (MiD49 and MiD51; the latter is also known as Mief1); and fission 1 (FIS1). 

However, the main proteins involved in the process of mitochondrial fission are the dynami-

related protein 1 or DRP1 and fission protein homolog 1 or FIS1 which, during the fission process, 

localize at the level of the OMM.  
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DINAMIN RELATED PROTEIN 1 (DRP1): 

DRP1 is a protein GTPase, GTP hydrolysis is required to obtain the mechanical force to ensure 

that the oligomers of the protein, once formed a spiral around the mitochondrial tubule in the 

cleaving point, have the capacity to tighten it and then return to finish the cleavage (Hoppins S. et 

al., 2007; Ingerman E. et al., 2005). Mutations at the level of the site of GTP binding lead to the 

formation of mitochondria extremely long and interconnected due to lack of fulfillment of the 

process (Yoon et al., 2001). Unlike the proteins described above, Drp1 presents no 

transmembrane domains, and usually is located in the cytoplasmic level; to carry out its activities 

at the level of the mitochondria or peroxisomes requires interaction with a protein anchored on 

the membrane of these: FIS1 (James D.I. et al., 2003; Yoon Y et al. 2003). Drp1 undergoes 

numerous modifications post-translational, and its effects on the mitochondrial dynamics are 

mainly controlled by its phosphorylation. In particular it can be phosphorylated at the level of the 

serine 616 through the complex Cdk1/CyclinB that induces the fission stimulating translocation 

into the mitochondria and the link with other proteins involved in the process. Instead the 

phosphorylation of serine 637, carried out by protein kinase A (PKA), leads to a decrease in the 

GTPase activity with consequent inhibition of fission (Chang C.R. and Blackstone C., 2010). 

HUMAN-FIS1: 

FIS1, is located mainly at the level of the outer membrane of the mitochondria: its structure C-

terminal is essential for the mitochondrial localization, while the N-terminal part is needed to 

make future fission. FIS1 plays a role in recruiting DRP1 in certain cell types and under specific 

physiological conditions (Loson O.C et al., 2013), possibly in an isoform-specific manner. Its over-

expression is the cause of the mitochondrial fragmentation, while its repression leads to the 

elongation, confirming its role as a limiting factor in the dynamics of the fission (James D.I. et al., 

2003; Stojanovski D. et al., 2004); contrary to DRP1, to which also an over-expression does not 

alter the network. An increase of the expression is also involved in apoptosis, causing the release 

of cytochrome c; while its reduction can lead to resistant phenotypes to this process (Y.J. Lee et 

al., 2004). The fusion and fission usually possess a mutual balance, for example the inhibition of 

DRP1 expression leads to a down-regulation of fusion proteins such as OPA1 and the mitofusins 

(Ishihara N. et al., 2009).  
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DRP1 RECEPTORS: 

Studies have shown that other multiple mitochondrially localized receptors can recruit DRP1 

to mitochondria: mitochondrial fission factor (MFF) and mitochondrial dynamics proteins of 49 

kDa and 51 kDa (MiD49 and MiD51; the latter is also known as Mief1). Mff over-expression results 

in a fragmented mitochondrial network, whereas its genetic ablation induces elongation and 

significantly reduces DRP1 recruitment at mitochondria (Loson O.C et al., 2013). The adaptors 

MiD49/51 specifically recruit DRP1 to mitochondria (Zhao J. et al., 2011); the knockdown of MiD51 

induces elongation and fragmentation. MiD51 over-expression also induces elongation , cluster 

formation, and recruitment of inactive DRP1 to mitochondria (Zhao J. et al., 2011).  

Components of the fission and fusion machinery have been shown to be regulated at the 

post-translational level through phosphorylation, ubiquitination and sumoylation. All these post-

translational modifications allow mitochondria to adopt rapid and reversible morphological 

changes and to adapt to continuously changing environmental conditions. 

Several experiments point to a role of balanced mitochondrial fusion and fission events in the 

maintenance of mitochondrial integrity. Enforced mitochondrial fusion by down-regulation of 

proteins responsible for fission such as Drp1 was found to lead to a drop in mitochondrial ATP 

production, drop in cell proliferation and increased autophagy (Parone PA.. et al., 2008). 

Moreover proteins of the fission machinery as Drp1 and Fis1 appear to play a role later by 

triggering mitochondrial elimination also called mitophagy (Mijaljica D. et al., 2007).  

4.4 KEY REGULATOR IN MITOPHAGY 

Mitophagy is the process by which the mitochondria are eliminated and fission of 

mitochondrial network into individual units seems to be necessary for efficient mitophagy (Twig G, 

et al., 2008). This could proceed via proteolytically processing of the fusion protein OPA1 occurring 

in energetically compromised mitochondria or by an increased activity of the fission proteins, such 

as Fis1 or Drp1 (Gomes L.C. et al., 2008).  

Mitophagy could constitute a quality checkpoint for the maintenance of mitochondrial 

bioenergetics. Indeed, elimination of damaged mitochondria could stimulate mitochondrial 

biogenesis and thereby maintain cells with efficient organelles. 
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For example, inhibition of autophagy in 

yeast results in increased ROS production and a 

decrease of mitochondrial OXPHOS associated 

with a higher mtDNA mutation rate  (Zhang Y et 

al.,  2007).   Mitochondria are the main 

producers of ATP through the oxidative 

phosphorylation, but the accumulation of ROS, 

that is obtained by this process, can lead to their 

dysfunctions.  

The altered mitochondria must be removed 

to maintain the homeostasis and turnover and 

this selective elimination is an important 

mechanism of mitochondrial quality control 

(Lemasters J.J., 2005; Kim I. et al. 2007).  

To emphasize the importance of this 

process, recent studies have demonstrated that 

defects in the elimination of the mitochondria 

are associated with a wide range of human 

diseases, for example in neurodegenerative 

disorders (Johri A. and Beal M.F., 2012), to 

myopathies (Cotán D. et al., 2011) to aging (Yen 

W.L. and D.J. Klionsky, 2008)   to    heart    disease    and    to   those autoimmune diseases (Zungu 

M. et al., 2011; Zhou R. et al., 2011), as well as to tumorigenesis (Ravikumar et al. 2010).  

The mitophagic process  is  regulated  by five basic steps. The  autophagic  induction  with 

assembly of phagopore, formed by an initial isolated membrane, which then will give origin to the 

autophagosome. The recognition of damaged mitochondria through the interaction with specific 

proteins receptors as BNIP3 or p62 which recognizes the ubiquitinated proteins of the external 

mitochondrial membrane including mitofusins and accumulates in the mitochondria damaged. 

They acts as a molecular adapters through the direct interaction with LC3 with whom form a 

complex able to recruit the mitochondrion damaged toward the autophagic machinery.  

Then there is the autophagosome formation, followed by the fusion of autophagosome with 

the lysosome and the formation of autophagolysosome where the content is degraded by 

Fig. 14: The general process of selective autophagic 
degradation of mitochondria. When cells suffer 
different kinds of stress, damaged or excessive 
mitochondria are removed by mitophagy to 
maintain cellular homeostasis. (Green D.R., 2011). 
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lysosomal acidic proteases. Subsequently permeasis and lysosomal transporter export the 

degradation products in the cytoplasm where they can be reused to build macromolecules or can 

be metabolized. 

Mitophagy serves to degrade damaged or dysfunctional mitochondria to match metabolic 

demand and orchestrate mitochondrial quality and quantity control in cellular homeostasis; many 

proteins play important roles in this process.  

PINK1-PARKIN:  

The best-studied mitophagy-related 

pathway in mammals is mediated by PINK1 

(PTEN induced putative kinase 1) and Parkin. 

PINK1 and Parkin encode a mitochondrially 

targeted Ser/Thr kinase and a cytosolic RING-

domain containing E3 Ub ligase, respectively. 

Parkin also regulates mitochondrial morphology 

and integrity in mammalian cells and is widely 

expressed in many tissues including brain, 

skeletal muscle, heart, and liver. (Narendra D. 

et al., 2008).  

The translocation of Parkin to mitochondria 

requires the presence of PINK1, and that the 

accumulation of PINK1 on mitochondrial 

membrane surface causes the recruitment of 

parkin to mitochondria even in the absence of  

defects  of  Δψŵ  (Matsuda  et  al.,  2010; 

Narendra  et  al.,  2010;  Vives-Bauza  et  al., 

2010). In addition,  a  novel  role of PARK2 as a  

tumor  suppressor  has  been  verified  in breast  

and ovarian cancer, highlighting that PARK2-

dependent   mitophagy   might   be associated 

with cancer biology (Poulogiannis G. et al., 

2010). 

Fig. 15: Parkin-mediated mitophagy. The 
accumulated PINK1 directs Parkin to mitochondria 
with low Δψm. Parkin targets the depolarized 
mitochondrion with ubiquitin, which links to the 
phagophore through p62, following Parkin-mediated 
Beclin1 complex form. The ubiquitinated 
mitochondrion is engulfed within the 
autophagosome and degraded in lysosomes. (Sih-
han Wang, 2012) 



37 
 

PINK1 locates either in the mitochondrial intermembrane space (IMS) or OMM and may be 

maintained at a low expression level in healthy mitochondria. Both the kinase activity and the 

mitochondrial localization of PINK1 seem to be essential for the recruitment of Parkin to the 

mitochondria. 

Once the mitochondrial membrane potential is decreased, proteolysis or import of PINK1 is 

blocked so that it is stabilized and accumulated on the OMM where it recruits PARK2 to induce 

mitophagy (Narendra DP, et al., 2010). 

Following translocation, PARK2 polyubiquitinates itself and its mitochondrial substrates such as 

VDAC1 (voltage-dependent anion channel) (Chan et al., 2011; Geisler et al., 2010), the MFN 

mitofusine1 and MFN2 (Gegg et al., 2010; Ziviani et al., 2010), which are essential for the 

maintenance of the correct melting process of mitochondria, Drp1 (Wang et al.,2011)  that 

regulates the mitochondrial fission and Bcl-2 (Chen et al., 2010), producing the docking site for the 

Ub-binding adaptor SQSTM1/p62 to trigger autophagic degradation by binding to the LC3-

interacting region (LIR) motif of LC3/GABARAP (GABA(A) receptor-associated protein) (Pankiv S. et 

al., 2007). 

LC3: 

LC3 is a specific marker of the autophagosome. It is a system similar to the ubiquitin and is 

expressed in many cell types when it is in a cytosolic, not active, form. Consequently to the 

autophagic stimulus it is activated and localizes in both the outer and the inner surface of the 

autophagosome having both a role in the membranes fusion, both in the degradation of selective 

content. Because of the synthesis and modification of LC3 is greater during the autophagic 

process, its  expression can be useful as an indicator of the level of cellular autophagy (Barth S. et 

al. 2010).  

Indeed the newly synthesized LC3 is immediately cleaved at its C-terminal end via autophagin 

(ATG4) into the cytoplasmic form of LC3-I (16 kDa). When autophagy is active, LC3-I is conjugated 

with phosphatidyl-ethanolamination (PE) into LC3-II (14 kDa). LC3-II is recruited via its lipid moiety 

to the inner and outer surface of autophagosome membrane. After fusion with lysosome, LC3-II is 

still presented in the single membrane autophagolysosome, which is the original outer membrane 

of autophagosome before fusion (Tanida I., et al., 2008).  

During autophagosome formation, the diffused distribution of the cytosolic form, LC3-I 

translocates to a punctuate distribution of the membrane form LC3-II. p62/SQSTM1 (p62) provides 
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a link for the ubiquitinated targets to the autophagosome through its interaction with LC3. p62 is 

ultimately degraded by lysosomal enzymes in the autophagolysosome (Dieter A. Kubli and Åsa B. 

Gustafsson, 2012). 

P62: 

P62 is an autophagy adaptor, with the ability to interact with key signaling proteins through 

well-defined structural elements (Moscat J. and Diaz-Meco M.T., 2009). Thus, p62, due to the 

ubiquitin-associated (UBA) or LC3-interacting region (LIR) domains, can promote the autophagy 

process and the degradation of ubiquitinated cargos. Autophagy, however, plays a key role in the 

control of p62 levels as it is constantly degraded via non-selective autophagy through its LIR 

domain that binds to LC3 on autophagosomes membranes (Moscat J. and Diaz-Meco M.T., 2009). 

New data demonstrated that p62 activates mTORC1 dependent nutrient sensing, which can 

upregulate c-Myc (Valencia et al., 2014); NF-ʃB-mediated inflammatory responses, and the NRF2-

activated antioxidant defense. Thus, oxidative stress and inflammation induce p62 through NRF2 

and NF-ʃB to promote selective autophagy and cell detoxification.  

BNIP3/NIX(BNIP3L): 

Several studies indicate that there may exist a crosstalk between PINK1-PARK2-dependent 

mitophagy and mitophagy receptor-mediated pathways. (Feng D, et al., 2013). Indeed, BNIP3L/NIX 

(BCL2/adenovirus E1B interacting protein 3-like) appears to promote CCCP-induced mitochondrial 

depolarization and PARK2 translocation to mediate mitophagy in mouse embryonic fibroblasts 

(Ding WX et al.,  2010); this suggests that identification of more cofactors and coregulators are 

implicated in mitophagy. Indeed, BNIP3 interacts with LC3 via its LIR for autophagic degradation of 

mitochondria. Generally, there are three models for the mechanism of BNIP3- or BNIP3L-

dependent mitophagy. First, BNIP3 or BNIP3L triggers mitochondrial depolarization and initiates 

mitophagy. Second, BNIP3 or BNIP3L functions as a receptor protein to recruit autophagic 

machinery to mitochondria. Third, BNIP3 or BNIP3L can compete with BECN1 for the binding to 

BCL2 or BCL2L1. The increased expression of BNIP3 or BNIP3L will release BECN1 from BCL2 or 

BCL2L1 to activate mitophagy. In response to hypoxia or oxidative stress, cells will undergo rapid 

mitophagy to enable cell survival, or undergo apoptotic or necrotic cell death. Both BNIP3 and 

BNIP3L are able to induce mitochondrial depolarization, cytochrome c release, and apoptosis 

when overexpressed (Thomas RL. et al., 2011). 
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Fig.16: Removal of mitochondria via autophagy adaptors or autophagy receptors (Dieter A. Kubli and Åsa B. 

Gustafsson, 2012). 

 

5. MITOCHONDRIAL ROLE IN CANCER CELLS 

Mitochondrial dynamic is essential for the function of this organelle, thus, it is possible that 

mitochondrial dynamics alterations could participate in tumorigenesis by contributing to the 

accumulation of damaged mitochondria in cells (Fig. 17).  

                                                       

 
Fig. 17. Model linking a mitochondrial fission defect, accumulation of dysfunctional mitochondria and tumorigenesis. 
The dysfunctional mitochondria accumulate within cells, causing additional damages to mtDNA that could contribute 
to tumorigenesis. (Grandemange S. et al., 2008) 
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Mitochondrial DNA mutations deletions and depletions have been identified in cancer cells 

(Higuchi M. et al., 2007). These mutations could be the consequence of ROS damages 

accumulated, in fact mtDNA is subject to mutations due to its proximity with the respiratory chain 

and due to a not efficient DNA repair system. Yu and colleagues have demonstrated that reduced 

mitochondrial DNA copy number could be involved in breast cell transformation or progression 

(Yu M, et al. 2007).   

Mitochondrial fusion activity is necessary for mtDNA maintenance, thus, it is possible that an 

impairment of this process could contribute to the loss of mtDNA observed in some cancers. 

Moreover, as mitochondrial fission is also important for elimination of damaged mitochondria, it is 

possible that an impairment of this process may contribute to the accumulation of damaged 

mitochondria (Fig. 17). However, it remains to determine whether and how dysfunctional 

mitochondria could contribute to tumorigenesis (Frezza C. and Gottlieb E., 2009). 

5.1 MITOCHONDIAL METABOLISM IN CANCER 

Hanahan et al. proposed six hallmarks to define a cancer cell: independence for growth 

signals, insensitivity to antigrowth signals, apoptotic resistance, acute replicative potential, 

sustained angiogenesis and invasive potential (Hanahan D. and Weinberg R.A. 2000). In many 

cancers, a common characteristic is dysfunctional mitochondria, explaining why cancer cells 

mainly rely on glycolysis to generate ATP (Warburg effect). Usually the healthy cells use the 

oxidative phosphorylation to produce energy, when they have the oxygen, which also inhibits the 

process of glycolysis ("Pasteaur effect") (Racker E., 1974). Instead, various studies on tumor cells 

have hightlighted the "effect Warburg", the use of the aerobic glycolysis to produce energy by the 

tumor cells, even in the presence of sufficient oxygen (Warburg O. et al., 1927). Initially, this 

phenomenon was thought to be a consequence of decreased availability of oxygen molecules for 

the mass in expansion, but subsequent observations have shown how this metabolism is more 

than a simple adaptation to hypoxia, and it could confers a proliferative advantage to cells in 

evolution. A number of mitochondrial protein defects have been described in the Warburg effect, 

such as alterations of the subunit of the ATP synthase (Lopez-Rios F. et al., 2007), or mutations of 

the succinate dehydrogenase and fumarate hydratase (King A. et al., 2006).  

Compared to normal cells, tumor cells increase their bioenergetic requests, for which the 

glucose and glutamine plays a pivotal role in the progression of cancer influencing energy 

metabolism. To this end, the most human solid tumors including breast tumors, require a 
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supplement of glutamine to support the growth of the cells. In particular glutamine is a non-

essential amino acid and serves as a precursor for the synthesis of many amino acids, proteins and 

nucleotides. It also participates in gluconeogenesis and helps provide oxidative fuel (NADPH and 

NADH) for the cells in rapid proliferation and fabrics as well as for the synthesis of glutathione 

(Mohammed R. et al., 2013). In fact most tumors, including the more aggressive forms of breast 

cancer, require a constant supply of glutamine to support growth and cell proliferation. Growing 

evidence suggests that specific alterations in the metabolism of glutamine, in tumor cells, provide 

possible methods for the treatment of tumors. Due to its role anaplerotic in TCA cycle, glutamine 

replenishes the necessary intermediate for the synthesis of macromolecules (Chen H. et al., 2015). 

Therefore, a reduction of the metabolism of glutamine can limit the proliferation of tumor cells 

and thereby serve as a point of metabolic control that is activated in response to the genotoxic 

stress (Jeong SM et al., 2013). Moreover, glutamine is metabolized to produce NADPH and GSH, 

that are necessary to maintain the oxidative homeostasis within the cell. Thus glutamine 

deprivation is sufficient to reduce levels of GSH (Lora J. et al., 2004) and can cause oxidative stress 

and sensitize the cells to chemotherapeutic agents. 

Other studies have suggested that the lactic acid produced during glycolysis could activate the 

metal-proteinase enzymes and the remodeling of the matrix, thus promoting the cellular invasion 

and metastasis (Berardi M.J. and Fantin V.R., 2011; DeBerardinis R.J. et al., 2008). What remains 

controversial of the Warburg effect is the reason why the amount of lactate produced is very high, 

when most of this could be oxidized by increasing the production of ATP. Evidence explains the 

phenomenon by observing how the process of glycolysis exceeds the maximum speed of oxidation 

of pyruvate and this leads the cells to use mechanisms at high flow for the oxidation of pyruvate 

(Curi R. et al., 1988). It is further assumed that, in the face of the defects of the mitochondrial 

activity, aerobic glycolysis is necessary to decrease the production of ATP by oxidative 

phosphorylation (Frezza C. and Gottlieb E., 2009).  

However, some studies have led to a reassessment of these knowledge: not all tumors are 

associated with an increase in the glycolysis, but it is found that the tumor cells both use the 

mechanisms for the production of energy, also the oxidative phosphorylation is responsible for the 

production of 50-80% energy for the cell (Guppy M. et al., 2002). Then, there are evidences that 

show how both the mitochondrial activity, such as the oxidative phosphorylation, may help the 

growth of the tumor (Yan H. et al., 2009). 
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5.2 MITOCHONDIAL DYNAMIC IN CANCER 

The mitochondrial fusion and fission are involved in many cellular processes such as 

apoptosis, cell proliferation and the consumption of ATP, the signaling pathways that regulate 

these mechanisms may be altered by the carcinogenic process. The pathways respond to several 

stress and are able to coordinate the mitochondrial dynamics with other cell physiological aspects; 

some drugs that inhibit protein synthesis, are able to promote the mitochondrial stress-induced 

hyperfusion, in which are implicated OPA1 and MFN1 (Tondera D. et al., 2009). This process leads 

to an increased production of ATP (Mitra K. et al., 2009) and inhibits the mitophagy and apoptosis 

(Gomes L.C. et al., 2011; Rambold A.S. et al., 2011). A prolonged mitochondrial fusion can cause 

mitochondrial bound between daughter cells, resulting in a unequal distribution of mitochondria 

and an alteration of the chromosomes that can lead to aneuploidy. These processes can cause 

alteration of the organelle division and mitochondrial dysfunction that promotes cell growth 

(Kashatus D.F. et al., 2011). Evaluating the mitochondrial impairment in the progression of lung 

cancer, it has been observed that the tumor cells exhibit a fragmented mitochondrial network and 

show a decrease of the protein MFN2, and therefore of the fusion, opposed to an increase of the 

DRP1 and then of the fission process (Rehman J. et al., 2012).  

Cancer cells are characterized by a basal resistance to apoptosis and the release of 

cytochrome c in the cytosol is a key process for initiation of this event. In lung cancer cells, it has 

been observed that an high concentration of mitofusin 2 could lead to a greater concentration of 

cytochrome c in the cytosol and a decrease at the mitochondrial level. Therefore it has been 

shown the overexpression of Mfn2 and inhibition of protein of fission can reduce the tumor 

proliferation and inducing apoptosis in a spontaneous way (Rehman J. et al., 2012). Moreover 

Mfn2 depletion in different cell models modifies the cellular metabolic profile, leading to reduced 

mitochondrial membrane potential, cellular oxygen consumption, mitochondrial proton leak, and 

mitochondrial co-enzyme Q level, as well as decreased oxidation of glucose, pyruvate, and fatty 

acids (Bach E.A. et al., 2003; Chen H. et al., 2005; Mourier A. et al., 2015). To compensate for the 

reduĐed aĐtiǀitǇ of the respiratorǇ ĐhaiŶ aŶd Kreď͛s ĐǇĐle, the Đell iŶĐreases gluĐose uptake, 

decreases glycogen synthesis, and shifts to anaerobic glycolysis to generate ATP. However, these 

alterations are not resulting from mitochondrial mass variations.  

On the other hand, Mfn2 overexpression causes increased mitochondrial membrane potential 

and glucose oxidation (Pich L. et al., 2005). Moreover several studies showed that Mfn2 protein 

and mRNA levels are down-regulated in different types of malignancies, including colorectal 
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(Cheng H. et al., 2013), lung (Rehman S. et al., 2012), liver (Wang D. et al., 2010, 2015), gastric 

(Zhang G.E. et al., 2013), and urinary bladder cancers (Jin B. et al., 2011). Alterations of 

mitochondrial network dynamics, through fusion or fission imbalance, induces the impairment of 

mitochondrial energy production in mammalian cells, which suggests that mitochondrial dynamics 

can be involved in the control of mitochondrial metabolism. If mitochondrial fusion influences 

mitochondrial OXPHOS, the inverse is also true since fusion of mitochondria is dependent on the 

mitochondrial inner membrane potential (Mattenberger Y. et al., 2003) and the OXPHOS activity.  

However, there are many examples of OXPHOS dysfunction that can cause mitochondrial 

fission. Pharmacological inhibition of complex I of the respiratory chain is associated with a 

decreased mitochondrial membrane potential, an increase in ROS production and mitochondrial 

fission (Benard G, et al., 2007).  

5.3 MITOCHONDIAL DYNAMIC IN CISPLATIN RESISTANCE 

The mitochondrial dynamic assumes an important role also in resistance of tumor cells to 

chemoterapeutic agents such as cisplatin. By comparing the percentage of cells with tubular 

mitochondria in the gynecological cancer cells sensitive and resistant to the chemotherapy,  it has 

been observed a high level of mitochondrial fusion process in resistant cells as compare to the 

sensitive (Kong B. et al. 2015). This suggests that the mitochondria fusion can promote cell 

survival, due to a better mitochondrial activity, through an efficient production of ATP and its 

transport (Kong B. et al. 2015).  

In addition, the inhibition of mitochondrial fragmentation reduces the release of cytochrome c 

and delays the cell death. A study conducted on lung adenocarcinoma cells has highlighted an 

over-expression of OPA1, significantly correlated with the gender of the patient, the cellular 

differentiation, the stage of the tumor, the histopathological subtype, the high incidence of 

relapse of the disease and the reduction of the sensitivity to cisplatin. The results have shown that 

the high expression of OPA1 increases the resistance to cisplatin, with a consequent effect on the 

survival of the patient: patients with a low level of the fusion protein had a better prognosis, while 

patients with a high level of OPA1 exhibited cells more resistant, with consequent less hope of 

healing (Fang H.Y. et al., 2012). This is possibly due to the down-regulation of OPA1 that increases 

the mitochondrial cristae deformation (Frezza C. et al., 2006), thus, this alteration can lead to an 

increase in the release of cytochrome c, inducing apoptosis; accordingly silencing the expression of 

OPA1 may decrease the cisplatin resistance (Fang H.Y. et al., 2012). 
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Some studies have reported a relationship between DRP1 and chemoresistance in gynecologic 

cancer cells. The Piceatannol, a compound present in some foods, by inducing the 

dephosphorylation of serine 637 of the DRP1 and thus promoting the mitochondrial fission and 

apoptosis, increases the sensitivity of the cells to cisplatin. These responses can be decreased by 

the inhibition of the fission (Kong B. et al., 2015). There are also studies in contrast with these 

result, for example it has been observed that a down-regulation of the DRP1 protein leads to a 

drug sensitivity, in ovarian carcinoma cells (Qian W. et al., 2014). Moreover the over-expression of 

DRP1 seems to lead a cisplatin resistance in lung cancer (Parone P.A. et al., 2008; Chiang C.R. and 

Blackstone C., 2010). Therefore, DRP1 can confer both resistance and sensitivity to this drug, 

stressing the importance of the therapeutic strategy targeted to the type of cancer and stage 

(Kong B. et al., 2015). 

5.4 MITOPHAGY IN CANCER 

Autophagy has always been supposed to play a double role in tumorigenesis; either 

supporting survival or promoting death, depending on the type of cancer and its stadium (in fact it 

appears to act as a tumor suppressor in the early stages of cancer and contributes instead to 

progression in more advanced stages); on the mutation involved and the tumor microenvironment 

(Rosenfeldt M.T., Ryan K.M., 2011).  

Generally, basal autophagy remains at a low level to maintain cellular homeostasis and 

sustains prolonged survival by degradation of polyubiquitinated or aggregated proteins and 

damaged organelles. For example it has been observed that the basal autophagy is greater in the 

tumor regions where there is a deficiency of oxygen, where it becomes essential for cell survival 

(Degenhardt K. et al., 2006); moreover the autophagosomes are more present in hypoxic tumor 

cells and deletions of genes essential for the autophagy lead to cell death (Karantza-Wadsworth V. 

et al., 2007; Mathew R. et al., 2007). Nevertheless a low autophagic activity can cause the 

accumulation of damaged macromolecules and organelles (in particular the mitochondria) and 

consequently induce oxidative stress, activation of consecutive response to DNA damage and 

genomic instability (Levin B. and Klionsky V.J., 2004; Chen No Karantza and V., 2011), then the 

autophagic defect is associated with the accumulation of mutations of oncogenes and increases 

susceptibility to cancer (Karantza-Wadsworth V. et al., 2007; Vogelstein B. et al., 2013). 

Similarly, mitophagy follows this double nature of autophagy. The mtDNA exhibits a high 

susceptibility to damage attributed to exposure to ROS, restricted repair systems, and lack of 
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histone protection. (Gredilla R. et al., 2012). Thus, mitophagy serves to remove dysfunctional 

mitochondria to counteract oxidative stress and prevent carcinogenesis. Conversely, mitophagy 

can protect cells from apoptosis or necrosis and promote tumor cell survival under some adverse 

conditions such as poor nutrient supply and hypoxic stresses. (Lisanti M.P. et al., 2010). Therefore, 

mitophagy emerges as a key quality control factor and decision maker in cancer cells.  

5.5 TRAP1 IN CANCER 

There is a relationship between the protein TRAP1 (tumor necrosis factor receptor associated 

protein 1) and the network: in fact, TRAP1 regulates the expression of the DRP1 and Mff (factor of 

mitochondrial fission, involved in the recruitment of the DRP1 on OMM during the fission process) 

(Otera H. et al., 2010) and controls the modifications of mitochondrial morphology. 

TRAP1 is one chaperone, member of the family of heat shock protein 90, present at the level 

of the mitochondrial matrix, with GTPase activity (Felts S.J. et al., 2000); its expression is increased 

in response to the many stimuli such as oxidative stress, hydroperoxide stress, and deprivation of 

glucose (Lee A.S., 2001; Carette J. et al,. 2002; Mitsumoto A. et al., 2002). It is involved in 

preventing cell death caused by reactive oxygen species (ROS) (Masuda Y. et al., 2004; Montesano 

Gesualdi N. et al., 2007), by counteracting their production; it also decreases the lipid peroxidation 

and preserves the mitochondrial membrane potential, and prevents the unfolding of damaged 

proteins (Siegelin M.D. et al., 2011). The action of this protein at the mitochondrial level seems to 

be a consequence of the ability to control the morphology: it has been observed that silencing of 

TRAP1 leads the balance between the two fusion and fission processes toward the fusion, without 

altering the expression of proteins OPA1 and MFN 1 and 2.  

Instead TRAP1 leads to a significant decrease of the DRP1 and Mff; it controls their 

mitochondrial localization or on their expression (Takamura H. et al., 2012). Indeed, TRAP1 can 

control the expression levels and the process of ubiquitination (step previous to the proteins 

degradation in the proteasome) of mitochondrial proteins and thus leads to the DRP1 and Mff 

degradation (Amoroso M.R. et al., 2012). The two opposite processes of fusion and fission are 

useful to evaluate the different stress levels: an increase of fusion and/or a decrease of the fission 

help to decrease the stress level, while the decrease of fusion and the increase of fission occurs 

when cells are stressed. The protein TRAP1 is highly expressed in several tumors such as breast, 

colon and lung cancers as compared with normal tissues (Kang B.H. et al., 2007), and it has been 
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observed that the increase in its expression leads to mitochondrial aberration with increase of 

ROS, destruction of membrane potential, decrease of mtDNA and mitochondrial mass.  

Therefore, high levels of this protein may be a critical link between mitochondrial alterations 

and carcinogenesis, even if this theory needs further clarification (Chang N.I. and Blackstone C., 

2014). TRAP1, through the cellular protection from oxidative stress, has an anti-apoptotic effect 

and is associated with the chemoresistance. In fact, this protein seems to block the apoptosis 

induced by the drug in various types of cancers such as prostate cancer, colon rectal, breast cancer 

and ovarian cancer (Leav I. et al., 2010; Aust S. et al., 2012; Maddalena F. et al., 2013). Of note, 

there are few TRAP1 antagonists, recently discovered, that lead to a mitochondrial activity 

collapse and cell death, suggesting TRAP1 as a new molecular target for improving the 

chemotherapies (Landriscina M. et al., 2010). 
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AIM 

The cisplatin and its derivatives are widely used as frontline chemotherapy for the treatment 

of several solid tumors, including sarcomas and ovarian and breast carcinomas. Unfortunately the 

emergence of resistance is a formidable challenge for research because it limits the clinical 

efficacy of these compounds. The resistance phenomenon is multifactorial and the molecular 

mechanism is not yet fully understood. Recent studies have shown that the cisplatin may interact 

not only with the nuclear DNA, but also with a variety of cellular components, including cytosolic 

proteins and the mitochondrial DNA (mtDNA) (Arnesano F. et al., 2008). The mtDNA, unlike the 

nDNA, does not possess effective repair systems, consequently it is more susceptible to the onset 

of mutations and oncogenic transformations. In literature there are few works closely related to 

cisplatin resistance and mitochondria, and there are conflicting data that correlate the cisplatin 

resistance to mitochondrial alterations (Cullen KJ. et al., 2007).   

Previously we have demonstrated that ovarian cancer cells resistant to cisplatin (C13) are 

characterized by a compensatory mechanisms that turn energetic metabolism with a reduced 

activity of the respiratory chain and a lower mitochondrial mass as compare to sensitive line 

(2008), as well as a different susceptibility to various metabolic stress and an altered 

mitochondrial network.    

Our goal was to identify new pharmacological targets related to metabolic and mitochondrial 

changes useful to overcome cisplatin resistance. In order to increase the current understanding of 

the mitochondrial dynamics regulation and metabolism role in chemoresistance, we studied two in 

vitro models: cancer cell presenting acquired resistance and cancer cells with innate resistance to 

cisplatin. 

FIRST AIM: MITOCHONDRIAL SHAPE REMODELING IN CISPLATIN RESISTANCE 

The overall hypothesis is that chemoresistance in cancer cells is determined by dysregulated 

mitochondrial dynamics, thus the purpose is to investigate the mitochondrial shape remodeling in 

cisplatin resistant cells to discover new targets useful for this form of acquired resistance.  

In this scenario we analyzed other cell lines resistant and sensitive to cisplatin, in particular 

squamous epidermoid carcinoma of cervix and osteosarcoma. In these tumor cells we didŶ͛t find 

significant differences as regard the mitochondrial ŵeŵďraŶe poteŶtial ;ΔΨͿ aŶd mass between 

sensitive and resistant lines; however it was clear a different mitochondrial morphology.  

The mitochondrial shape is the result of the balance between fusion and fission processes.  
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The mitochondrial dynamic is a complex phenomenon and still not yet understood. Moreover 

several regulator proteins and signaling pathways are not completely clarified. Thus, we continued 

our study investigating the mitochondrial dynamics and proteins that have a key role in 

coordinating the mitochondrial processes of fusion and fission. 

SECOND AIM: GLUCOSE AND GLUTAMINE METABOLISM IN CISPLATIN RESISTANCE 

As regard the second aim, our study, performed in Professor Toker laboratory (Department of 

Pathology at the Beth Israel Deaconess Medical Center, Harvard Medical School), focused on the 

role of glucose and glutamine metabolism in breast carcinoma cells that have an innate resistance 

to cisplatin.  

Reprogramming of the metabolic pathways is defined as one of the hallmarks of cancer 

(Hanahan et al., 2011). Compared to normal cells, tumor cells increase their bioenergetic needs; 

thus, glucose and glutamine plays a pivotal role in the progression of cancer, influencing energy 

metabolism. Most of cancer cells show a metabolic shift from oxidative phosphorylation to 

anaerobic glycolysis (Warburg effect), and consequently glutamine, due to its anaplerotic role in 

the tricarboxylic acid cycle (TCA), provides the intermediate for the synthesis of new 

macromolecules.  

Previous data, obtained in Montopoli laboratory, have already shown a metabolic 

reprogramming  in cancer cells that exhibit acquired resistance to cisplatin. Indeed, it has been 

demonstrated how ovarian cancer cells C13, resistant to cisplatin, increases their glucose 

dependency and are more sensitive to the glycolysis inhibition. Moreover, in the presence of an 

altered mitochondrial function, glutamine, becomes the privileged carbon resource, for the 

cisplatin-resistant line (Catanzaro et al.,2015).  

Therefore, our goal was to explore the alterations of the metabolic pathways in breast cancer 

cells resistant to cisplatin and then identify possible targets to overcoming the chemoresistance. 

The transcription factor c-Myc controls the expression of several key genes involved in the 

regulation of metabolic pathways including glycolysis and glutaminolysis. However, the role of the 

glutamine metabolism and its association with c-Myc, in the development of cisplatin resistance, is 

not fully understood. Our studies show differences in glucose dependency between sensitive and 

cisplatin resistant cancer cells, and also an increased expression of the oncogene c-Myc in resistant 

cells. We have also identified a different expression of specific c-Myc target genes involved in the 

glycolysis and glutaminolysis regulation.   
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Thus, the modulation of the metabolic pathways may be an interesting approach to develop 

most effective treatments for breast cancer and to overcome the resistance to the 

chemotherapeutic drugs. 
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MATERIALS AND METHODS 

First in vitro model of acquired cisplatin resistance 

1. Cell lines 

1.1 Human carcinoma cell lines  

The 2008 cell line derived from human ovarian carcinoma, instead A431 cells derived from 

human cervix squamous carcinoma; their CDDP-resistant variant (C13; A431Pt) were selected by 

exposure to increasing CDDP concentrations for a period of 9 months. The cells were grown in 

RPMI 1640 medium (Lonza) and osteosarcoma cells, U2OS and U2OS-Pt, ǁere groǁŶ iŶ MĐ CoǇ͛ 

5A (Lonza) medium; both media were supplemented with 10% fetal bovine serum, 4 mM 

glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin, in humidified condition at 5% CO2 and 

37° C. Cells were collected every 2 days with minimum amount of 0.25% trypsin-0.2% EDTA.  

The A431 cells (epidermoid carcinoma) express the mutated form of the p53 gene with 

substitution at codon 273 (His273) (missense mutation). Instead ovarian carcinoma 2008 and 

osteosarcoma U2OS are wild type for p53. 

1.2 206-ρ° Đell liŶe 

206-ρ° Đells, oďtaiŶed froŵ ŵtDNA depletioŶ of ϭϰϯB-TK- osteosarcoma cells, were cultured in 

high-glucose Dulbecco's modified Eagle's medium (Gibco), supplemented with 10% fetal bovine 

serum (FBS), mm L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin, 1mM sodium-

pyruvate, 1 % of a solution of not essential aminoacid (NEAA) and 0.05 mg/ml uridine, in 

humidified condition at 5% CO2 and 37° C. 

1.3 Mouse eŵďrǇoŶiĐ fiďroďlasts ;Mef’sͿ OPA1 knock-out, Mfn1 knock-out, OPA1 transgenic, 

shTRAP1  

All Mef͛s Đells ǁere groǁŶ iŶ DulďeĐĐo's ŵodified Eagle's ŵediuŵ (Lonza), supplemented with 

10% fetal bovine serum (FBS), mm L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin, 1 

% of a solutioŶ of Ŷot esseŶtial aŵiŶoaĐid ;NEAAͿ aŶd Mef͛s OPAϭ kŶoĐk-out also with 0.05 mg/ml 

uridine, in humidified condition at 5% CO2 and 37° C. Mef͛s OPAϭ KO, MfŶϭ KO aŶd OPAϭtg ǁere 

kiŶdlǇ proǀided froŵ “ĐorraŶo LaďoratorǇ ;UŶiǀersitǇ of PadoǀaͿ ;Cogliati et al., ϮϬϭϯͿ aŶd Mef͛s 

shTRAp1 were kindly provided from Rasola Laboratory (University of Padova). 
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2. Cell viability assays 

2.1. Trypan blue exclusion assay 

This test measures the percentage of viable cells with the intact membrane thus excluding the 

blue dye, while dead cells take up the colouring agent. 12 wells plates were seeded with a 

constant number of cells and, following overnight incubation, were exposed to different 

treatments, according to experimental protocols. At the end of incubation the cells were washed, 

detached with 0.25% trypsin-0.2% EDTA and suspended in trypan blue (Sigma-Aldrich, St Louis, 

MO, USA), at 1:1 ratio in medium solution. Cell number was counted using a chamber Burker 

hemocytometer under the microscope. 

3. Mitochondrial membrane potential ;ΔΨͿ and mitochondrial mass  

3.1 Flow cytometry 

MitoĐhoŶdrial traŶsŵeŵďraŶe poteŶtial ;ΔΨŵͿ ǁas proďed ďǇ the ĐatioŶic lipophilic, green-

fluorescent rhodamine-123 (Rh123) (Molecular Probes, Invitrogen, Carlsbad, CA, USA) that is 

readily sequestered by active mitochondria in a potential-depeŶdeŶt ŵaŶŶer: a loss of ΔΨŵ is 

associated with a lack of Rh123 retention and a decrease in fluorescence. Mitochondrial mass was 

measured by Acridine Orange 10-Nonyl bromide (NAO) staining. NAO is a fluorescent probe that 

selectively binds to cardiolipin (CL) of mitochondrial membrane regardless of mitochondrial 

membrane potential determining mitochondrial mass. Cells were seeded and incubated for 48 

hours, washed with phosphate buffer saline solution (PBS), detached with 0.25% trypsin-0.2% 

EDTA and centrifuged for 5 min at 1200xrpm. The cell pellet was then resuspended with Rh123 (10 

µM) or NAO (25 nM) and incubated for 15 minutes in dark. Fluorescence intensity was analyzed 

using an Epics XL flow cytometer (Coulter Systems, Fullerton, CA, USA) equipped with a 488 Argon 

laser. The green emission signal of Rh123 was measured at 525 nm and the orange emission signal 

of NAO at 580 nm. Necrotic cells were excluded by electronically gating data on the basis of 

forward versus side scatter profiles; a minimum of 104 cells of interest were analyzed further. 

Mean fluorescence intensity (MFI) values were obtained using the EXPO 32 software (Coulter 

Systems, Fullerton, CA, USA). 
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4. Mitochondrial network 

4.2. Confocal microscope 

Cells were seeded at approximately 50% confluence on glass cover slips and incubated 

overnight in a 12 wells plate. After 48 hours, media were removed and cells were stained with 50 

nM Mitotracker Orange (Invitrogen). Then cells were fixed with 4% formaldehyde (SIGMA St Louis, 

USA) for 15 min. After repeated washings, Mowiol 40-88 (Sigma, St Louis, MO) was added at a final 

conĐeŶtratioŶ of Ϭ.ϱ ʅg/ŵl aŶd the slides ǁere imaged using a fluorescence laser scanner 

microscope (Nikon Eclipse E600 confocal microscope and Nikon EZ-Cl software (version 3.91), 

magnification 60X). 

5. Immunoblot assay 

Cells were plated in 100 mm cell culture dish and allowed to attach overnight. After 24 hrs 

cells were washed 3 times with PBS and lysed with ice-cold lysis buffer [TRIS 25 mM pH 7,4; NaCl 

150 mM; IGEPAL 1%; sodium deoxycholate 1%; SDS 0,1%; EDTA 1 mM] supplemented with the 

protease inhibitor cocktails (Protease Inhibitor cocktail tablets EDTA-free, Roche Molecular 

Biochemicals, Mannheim, Germany). Cell lysates were then centrifuged at 14000 g for 15 minutes 

at 4°C and the supernatant protein content was determined by Lowry procedure (Bio-rad DC 

Protein Assay) using bovine serum albumin as standard. Laemmli buffer 5X [250 mM Tris-HCl 

pH=ϲ.ϴ, ϱϬ% glǇĐerol, ϭϬ% “D“, ϱϬϬ ŵM β-mercaptoethanol, 0.004% bromophenol blue, H2O q.b] 

was added (1/5 v/v) to protein lysates, and the samples were denatured for 5 min at 100°C. 

Equal amounts of protein (30 µg) were loaded on a 10% polyacrylamide gel and 

electrophoretically separated in running buffer [25 Mm TRIS, 250 mM glycine (Applichem), 0.1% 

SDS, H2O q.b.], for 1h at a constant current of 200 V (Bio-rad Mini-PROTEAN® Tetra System). After 

electrophoresis, the proteins were blotted onto an Hybond-P PVDF membrane (Amersham 

Biosciences), previously soaked in methanol, using a transfer buffer [25 mM Tris,192 mM glycine, 

H2O q.b.]. A current of 250 mA was applied for 1h and 45min at 4°C. Non specific binding sites 

were blocked by immersing the membrane in TBS-Tween 20 solution containing 10% non-fat dried 

milk and shaking for 1h at room temperature. After 3x10 min washes with TBS-Tween 20 [10 mM 

TRIS, 150 mM NaCl, 0,1% Tween 20 (Sigma-Aldrich), H2O q.b.] at room temperature, the 

membrane was exposed to the primary antibodies: MFN2 (1:1000; Rabbit, Sigma), MFN1 (1:1000; 

Mouse, Abcam), OPA1 (1:1000; Rabbit, Biosciences), LC3B (1:1000; Rabbit, Cell Signaling), p-DRP1 
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(1:1000; Rabbit, Cell Signaling), TRAP1 (1:1000; Cell Signaling) overnight at 4°C. After washing, the 

membrane was incubated with HRP-conjugated anti-rabbit secondary antibody (1:3500; 

PerkinElmer, MA,USA) and HRP-conjugated anti-mouse secondary antibody (1:10000, Dako) for 2h 

at room temperature.  

The signal was visualized with enhanced chemiluminescent kit (Amersham Biosciences) 

aĐĐordiŶg to the ŵaŶufaĐturer͛s iŶstruĐtioŶs aŶd aŶalǇzed ďǇ MoleĐular Iŵager VersaDoĐ MP 

4000 (Bio-rad). The integrated intensity was normalized to antibodies: Tom20 (1:2000; Rabbit, 

Santa Cruz Biotechnology), beta-actin (1:5000; AbCam), beta-tubulin (1:2000; Mouse, Sigma-

Aldrich), calnexin (1:2000; Rabbit, Santa Cruz biotechnology), GAPDH (1:2000; Mouse, Santa Cruz 

Biotechnology). 

6. qRT-PCR analysis 

Cells were grown as indicated and total mRNA was extracted as per ŵaŶufaĐturer͛s 

instructions using kit Direct-zol™ ‘NA MiŶiPrep ;)Ǉŵo researĐhͿ and measured with a NanoDrop 

2000 (Thermo Fischer Scientific Inc.). The relative expression of each gene was determined by 

quantitative real-tiŵe PC‘ ;EĐo™IlluŵiŶa, ‘eal-Time PCR system, San Diego, CA, USA) using One 

Step SYBR PrimeScript RT-PCR Kit (Takara Bio, Inc., Otsu, Shiga, Japan) and the primers designed as 

follow:  

BNIP3: F: ϱ͛-GAATTTCTGAAAGTTTCCTTCCA-ϯ͛,  

             R: 5͛-TTGTCAGACGCCTTCCAATA-ϯ͛;  

H-FI“ϭ: F: ϱ͛-CTTGCTGTGTCCAAGTCCAA-ϯ͛,  

              ‘: ϱ͛-CCACAGCCCCGTTTTATTTA-ϯ͛;  

D‘Pϭ: F: ϱ͛-CAGTGTGCCAAAGGCAGTAA-ϯ͛,              

            ‘: ϱ͛-GATGAGTCTCCCGGATTTCA-ϯ͛. 

Linearity and efficiency of PCR amplifications were assessed using standard curves generated by 

serial dilution of complementary DNA; melt-curve analysis was used to confirm the specificity of 

amplification and absence of primer dimers. All geŶes ǁere Ŷorŵalized to β-actin: F: ϱ͛-

CCAACCGCGAGAAGATGA-ϯ͛, ‘: ϱ͛-CCAGAGGCGTACAGGGATAG-ϯ͛for 2008-C13 cell lines; GAPDH: 

F:ϱ͛-CTGACTTCAACAGCGACACC-ϯ͛, ‘: ϱ͛-GTGGTCCAGGGGTCTTACTC-ϯ͛ for A431-A431-Pt cell lines 

and CALNEXIN: F: ϱ͛-GAAGGGAAGTGGTTGCTGTG-ϯ͛; ‘:ϱ͛-GATGAAGGAGGAGCAGTGGT-ϯ͛ for 

U2OS-U2OS-Pt and SKOV3 WT-SKOV3 CDDP3. Expression levels of the indicated genes were 

ĐalĐulated ďǇ the ΔΔCt method usiŶg EĐo™ “oftǁare ǀϰ.Ϭ.ϳ.Ϭ. 
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7. Transmission Electron Microscopy 

12-multiwells plates were seeded with a constant number of cells and, following overnight 

incubation, cells were fixed with 2.5% glutaraldehyde in sodium cacodylate 0.1M pH 7.4 for 1 hour 

at 4°C, and then postfixed with 1% osmium tetroxide and 1% potassium ferrocyanide in the same 

buffer for 1 hour at 4°C. Samples were dehydrated through a graded series of ethanol, infiltrated 

and then embedded in epoxy embedding medium (Fluka). After being stained with uranyl acetate 

and lead citrate, the sections were observed under a Tecnai G2 (FEI) transmission electron 

microscope operating at 100 kV. Images were collected by a F114 (TVIPS) CCD camera.  

The TEM images and experiment are performed from the University of Padua electron 

microscopy facility.  

8. Statistical analyses 

All data are expressed as mean ± SEM. Standard ANOVA procedures followed by multiple 

pairwise comparison adjusted with Bonferroni corrections were performed for cell viability assays. 

UŶpaired “tudeŶt͛s t-tests were used to analyse all the other results. Significance was considered 

at p < 0.05. 

Second in vitro model of innate cisplatin resistance 

All the experiments were performed in Toker Laboratory, BIDMC, Harvard Medical School, 

Boston. 

1. Cell lines 

1.1 Human Triple Negative breast cancer, basal like, cell lines.  

Breast cancer cells MDA-MB-468, SUM 149, HCC1143 and HCC1937 were obtained from the 

American Type Culture Collection (ATCC) and authenticated using short tandem repeat (STR) 

profiling. All cell lines were maintained in RPMI 1640 (CellGro) supplemented with 10% FBS 

(Gemini), in humidified condition at 5% CO2 and 37° C. DMEM lacking glucose, glutamine and 

pyruvate was obtained from CellGro. Cells were passaged for no more than 6 months and 

routinely assayed for mycoplasma contamination. 
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2. Cell viability assays 

2.1. Trypan blue exclusion assay 

12 wells plates were seeded with a constant number of cells and, following overnight 

incubation, were exposed to different treatments, according to experimental protocols. At the end 

of incubation the cells were washed, detached with 0.25% trypsin - 0.2% EDTA and suspended in 

trypan blue (Sigma-Aldrich, St Louis, MO, USA), at 1:1 ratio in medium solution. Cell number was 

counted using countess slide and cell Countess (Invitrogen). 

2.2. Propidium Iodide assay 

Cell viability was assayed with a propidium iodide-based plate reader assay, as previously 

described (Zhang, L. et al., 1999). Cells were seeded in 96-well plates and exposed to different 

treatments, according to experimental protocols. Then cells were treated with a final 

concentration of 30 µM propidium iodide for 20 min at 37°C. The initial fluorescence intensity was 

measured in a SpectraMax M5 (Molecular Devices) at 530nm excitation/620nm emission. 

Digitonin was then added to each well at a final concentration of 600 µM. After incubating for 20 

min at 37°C, the final fluorescence intensity was measured. The fraction of dead cells was 

calculated by dividing the background-corrected initial fluorescence intensity by the final 

fluorescence intensity. Viability was calculated by this formula: 1-fraction of dead cells. 

3. Immunoblot assay 

Cells were plated in 60 mm cell culture dish and allowed to attach overnight. After 48 hrs cells 

ǁere ǁashed ǁith PB“ at ϰ  C and lysed in radioimmunoprecipitation assay buffer (1% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS, 150 mmol/L NaCl, 50 mmol/L Tris-HCl (pH 7.5), proteinase 

inhibitor cocktail, 50 nmol/L calyculin, 1 mmol/L sodium pyrophosphate, aŶd ϮϬ ŵŵol/L sodiuŵ 

 uorideͿ for ϭϱ ŵiŶutes at ϰ  C. Cell extracts were pre-cleared by centrifugation at 14,ϬϬϬ rpŵ for 

ϭϬ ŵiŶutes at ϰ  C, and protein concentration was measured with the Bio-Rad DC protein assay. 

Lysates were then resolved on 10% acrylamide gels by SDS-PAGE and transferred 

electrophoretically to nitrocellulose membrane (Bio-Rad) at 100 V for 90 minutes. The blots were 

blocked in Tris-buffered saline (TBST) buffer (10 mmol/L Tris-HCl, pH 8, 150 mmol/L NaCl, and 

0.2% Tween 20) containing ϱ% ;ǁ/ǀͿ ŶoŶfat drǇ ŵilk for ϭ hour, aŶd theŶ iŶĐuďated ǁith the 

speĐi Đ priŵarǇ aŶ ďodǇ diluted iŶ ďloĐkiŶg ďu er at ϰ  C overnight. Membranes were washed 

three times in TBST and incubated with HRP-conjugated secondary antibody for 1 hour at room 
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temperature. Membranes were washed three times and developed using enhanced 

chemiluminescence substrate (EMD Millipore). Antibodies used: PARP (1.2000; rabbit), glutamine 

sinthetase (1:1000; mouse) and c-Myc (1:1000; rabbit) purchased by Cell Signaling Technology. 

The integrated intensity was normalized to beta-actin (1:5000) purchased from Cell Signaling 

Technology. 

4. Quantitative Real-Time PCR 

Cells ǁere groǁŶ as iŶdiĐated aŶd total ŵ‘NA ǁas isolated as ŵaŶufaĐturer͛s iŶstruĐtioŶs 

using Clonotech NucleoSpin RNA plus and measured with a NanoDrop ND-1000 

speĐtrophotoŵeter ;NaŶoDrop TeĐhŶologies, IŶĐ. WilŵiŶgtoŶ, DE, U“AͿ. ϭ ʅg of total ‘NA ǁas 

reverse-transcribed to complementary DNA using TaqMan Reverse Transcription Reagents Kit. 

Relative expression of each gene was determined by quantitative real-time PCR (ABI Prism 7700 

sequence detector) using  SYBR Green and the primers designed as follow:  

c-MYC  ϱ͛: AACACACAACGTCTTGGAGC;ϯ͛: GCACAAGAGTTCCGTAGCTG 

GOTϭ  ϱ͛: GGGTAGGAGGTGTGCAATCT; ϯ͛: TGCATCCCAGTAGCGATAGG 

GOTϮ  ϱ͛: TGCGGTTTTGACTTCACAGG; ϯ͛: CCCAGGCATCCTTATCACCA 

GTPϮ  ϱ͛: GCAATTCAGCCGAGAGAAGG; ϯ͛: TTGGCAGGAATGAAGATCCG 

GDHϭ  ϱ͛:  GCTATGGCCGTTTGACCTTC; ϯ͛: GTGTATGCCAAGCCAGAGTG 

GDHϮ  ϱ͛: TGGTGGCCTCAGGTGAAAAT ; ϯ͛: GGATCAGACGTTCGCAATCC     

GL“ϭ  ϱ͛: AGAAGGAAACAGGGGATCGG ; ϯ͛: GCCATGACACTGCCTGATTC   

GL“Ϯ  ϱ͛: AGTGTGCAGTGGTTGATGTG ; ϯ͛: CGCTCACCTGTGTTCATGTC 

A“CTϮ  ϱ͛: GTGGGTTTACTCTTTGCCCG  ; ϯ͛: TCCTCCACGCACTTCATCAT 

LATϭ  ϱ͛: AACTATCACCTGGGCGTCAT ; ϯ͛: TAGAGCAGCGTCATCACACA 

PC  ϱ͛:  GGACTTCACTGCCACCTTTG; ϯ͛: AGCTCAAAGAAGACCTGCCT 

GLUTϭ  ϱ͛: CCCAGAAGGTGATCGAGGAG ; ϯ͛: CCAGCAGGTTCATCATCAGC 

GLUTϰ  ϱ͛: CGAGCCATCCTTCAGTCTCT ; ϯ͛: TGTCGGTAGCTGGAATTGGT 

PFKM  ϱ͛: CCGTTCTGAGTGGAGTGACT ; ϯ͛: TCTGGGCAGTGGTAGTGATG  
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PGKϭ  ϱ͛: ACTCGGGCTAAGCAGATTGT ; ϯ͛: GTGCTCACATGGCTGACTTT 

LDHA  ϱ͛: CAGCCCGATTCCGTTACCTA ; ϯ͛: CTGGGTGCAGAGTCTTCAGA 

PKL‘  ϱ͛: TCGTCTTTGCCTCCTTTGTG ; ϯ͛: GATCTCGATGCCTAGGTCCC. 

qRT-PC‘ ǁas perforŵed iŶ tripliĐate usiŶg Ϯ ʅl of ĐoŵpleŵeŶtarǇ DNA teŵplate iŶ a ϭϱ-ʅl 

reaction. Linearity and efficiency of PCR amplifications were assessed using standard curves 

generated by serial dilution of complementary DNA; melt-curve analysis was used to confirm the 

specificity of amplification and absence of primer dimers. Expression levels of the indicated genes 

ǁere ĐalĐulated ďǇ the ΔΔCt ŵethod with 18S rRNA as the reference gene. 

5. Statistical analyses 

All data are expressed as mean ± SEM. Standard ANOVA procedures followed by multiple 

pairwise comparison adjusted with Bonferroni corrections were performed for cell viability assays. 

Unpaired “tudeŶt͛s t-tests were used to analyse all the other results. Significance was considered 

at p < 0.05. 

6. Multivariate analysis 

To identify the most significant differences between groups, univariate statistical analysis was 

used. Filtering procedures, such as fold-change analysis, t-test (for paired and unpaired data) and 

ANOVA were applied, as provided by MetaboAnalyst web-based software (Xia J.et al., 2009; Xia 

J.and Wishart D.S., 2011). Significantly different data at the probability level of p<0.05 were used 

for further procedures of multivariate analysis, to obtain identification of relevant biomarkers. 

Tentatively, the entire data set was submitted to multivariate analysis by means of the procedures 

provided by MetaboAnalyst (Xia J. et al., 2009; Xia J. and Wishart D.S., 2011) and meta-P server 

(Kastenmüller G. et al., 2011). 

Principal Component Analysis (PCA). PCA is an unsupervised method to detect the directions 

which best explain the variance in a data set, transforming a number of possibly correlated 

variables into a smaller number of uncorrelated variables defined as principal components, which 

are linear combinations of the original variables. The first principal component explains as much of 

the variability in the data as possible, and each following component accounts for the remaining 

variability. The data are represented in a dimensional space of n variables, which are reduced into 

a few principal components; these are descriptive dimensions indicating the maximum variation 
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within the data. After the principal components scores have been obtained, they can be 

graphically plotted to observe any groupings in the data set. PCA computation was obtained with 

MetaboAnalyst based on R prcomp package, using singular value decomposition algorithm. The 

covariance matrix and standardized principal component score were selected. The scores of the 

first two principal components were graphically plotted to observe any groupings in the data set. 

Cluster analysis. Cluster analysis is a multivariate procedure of exploratory data analysis for 

detecting natural groupings in data. Data classification consists of placing samples into more or 

less homogeneous groups, in order to reveal any relationship among groups. Ward's method 

(minimizing the sum of squares of any two clusters), provided by MetaboAnalyst, was used. 

DistaŶĐe iŶdiĐes ǁere deterŵiŶed ďǇ PearsoŶ͛s ŵethod. HierarĐhiĐal ĐlusteriŶg ǁas perforŵed 

with the hclust function provided by R package stat. Results were presented as dendrograms and 

heat maps. 
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RESULTS 

MITOCHONDRIAL SHAPE REMODELING IN CISPLATIN RESISTANCE 

1. Cisplatin resistance 

Even if the benefits of cisplatin are largely recognized, the therapeutic effectiveness of the 

drug is limited by the onset of cisplatin resistance (Koberle B. et al., 2010). In this project cisplatin-

sensitive and cisplatin-resistant cancer cells, whose CDDP IC50 (24hrs) are shown in Table 1, have 

been characterized in order to define mechanisms of resistance not yet fully understood. Tab.1 

presents IC50 values for each cell line, obtained from concentration-response curves after cisplatin 

treatment. As expected wild type cells are more sensitive to cisplatin as compare to resistant 

counterpart. 

 

 A431 A431-Pt 2008 C13 U2OS U2OS-Pt 

IC50 

CDDP;μM) 

7.019 
 

2.789 - 17.67 

20.88 
 

13.29 - 32.81 

1.376 
 

0.3854 -  4.910 

10.44 
 

1.555 -  70.16 

7.899 
 

4.438 - 14.06 

22.78 
 

10.23 - 50.72 

 

Table 1: CDDP cytotoxic effect, expressed as IC50 of cisplatin-sensitive (A431,2008,U2OS) and cisplatin-resistant cancer 

cells (A431-Pt,C13,U2OS-Pt). Data represent 3-4 indipendent experiments. 

2. Phenotyping sensitive and cisplatin resistant cell: acquired resistance model 

2.1  Mitochondrial potential and mass 

Mitochondrial mass and mitochondrial membrane potential ;ΔΨm), which is generated by the 

proton gradient across the inner mitochondrial membrane, were both analysed by flow cytometer 

(Fig. 1), using specific different fluorescent probes: 10-Nonyl bromide Acridine Orange and 

potential-dependent rhodamine-123(Rh123). Flow cytometer assay shows that mitochondrial 

potential and mass is significantly lower in C13 than in 2008 cells (Fig. 1B) (Catanzaro et al. 2015) 

but there are no differences as regard the other cell lines (Fig. 1A and 1C).  
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Figure 1: Mitochondrial mass and potential measured by flow cytometry and expressed as ratio of mean fluorescent 

intensity [MFI] of NAO (25 nM) and Rh123 (10 µM) between resistant cells to sensitive counterpart. 1A. A431-Pt vs 

A431; 1B. C13 vs 2008; 1C. U2OS-Pt vs U2OS. Each bar represents the mean ± SEM of 4 independent experiments. 

***p<0.001, C13 vs 2008. 

2.2 Effect of galactose and rotenone 

To test the mitochondrial functionality of cancer cells and to understand their dependency 

from glycolysis and OXPHOS for energy production, cell viability was measured after exposure to 

different experimental tool causing mitochondrial stress. The first experimental strategy was to 

treat cancer cells with glucose-free/galactose medium. Galactose is very slowly metabolized 

through the glycolytic pathway, therefore glycolysis dependent cells are not able to survive for a 

long time unlike those with an efficient oxidative phosphorylation (Reitzer et al., 1979). Fig. 2 

shows the cell viability in DMEM or in DMEM glucose-free and added with 5 mM galactose. It is 

evident that in galactose stressed metabolic condition, the cell proliferation is lower than in 

DMEM. The effect is more significantly pronounced in the cisplatin-resistant C13 cell line. This data 

suggests a major glucose-dependence of C13 whose oxidative phosphorylation is not so efficient 

to counteract the block of the glycolysis (data published, Catanzaro et al. 

2015).
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Figure 2: Effect of galactose 5mM on A431/A431-Pt, 2008/C13, U2OS/U2OS-Pt cell viability incubated for 24 hours in 

DMEM or in glucose free/galactose medium. Data are expressed as % of cell number compared to the control. Data 

are the mean±SEM of 3 different experiments. ** p<0.01, C13 vs 2008; +p <0.05, +++p <0.001, galactose vs control. 

Rh-123 NAO
0.0

0.5

1.0

1.5

M
F
I

(r
a
ti

o
 o

f 
A

4
3
1
-P

t/
 W

T
)

Rh-123 NAO
0.0

0.5

1.0

1.5

M
F
I

(r
a
ti

o
 o

f 
C

1
3
/2

0
0
8
)

*** ***

Rh-123 NAO
0.0

0.5

1.0

1.5

M
F
I

(r
a
ti

o
 o

f 
U

2
0
S

-P
t/

W
T

)

1A 1B 1C 



64 
 

The second experimental strategy was to incubate cells with rotenone, an inhibitor of NADH-

CoQ oxidoreductase (complex I) in the mitochondrial respiratory chain (Pitkänen S. and Robinson 

B.H., 1996). The results clearly demonstrate that CDDP-resistant cells C13 and A431-Pt are less 

sensitive than wild-type cells 2008 and A431 to the complex I inhibitor (Fig. 3).       

Figure 3: Effect of rotenone (0.1-10 µM) on A431/A431-Pt, 2008/C13, U2OS/U2OS-Pt cell viability after 24 hours of 

treatment. Data are expressed as % of cell number compared to the respective control. Data are the mean ± SEM of 3 

different experiments. *p <0.05, C13 and A431-Pt vs 2008 and A431; +++ p. < 0.001 rotenone vs control. 

2.3 OXPHOS expression 

In order to characterize the oxidative phosphorilation, we measured the individual complexes 

expression of mitochondrial respiratory chain  by Western Blotting. Data shown in Figure 4 

demonstrate that there are no significant differences in complexes expression; only resistant cell 

line U2OS-Pt (Fig.4 c)  has a decreased expression of complex II and IV as compare to sensitive cells 

U2OS. 
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Figure 4: OXPHOS complexes protein expression. Optical density (O.D.) was normalized to TOM20 and is expressed as 

ratio between resistant to sensitive cell lines. Data are the mean ± SEM of four determinations. **p < 0.01 U2OS-Pt vs 

U2OS.  

2.4 Mitochondrial DNA is a cisplatin target 

We demonstrated that there are no difference as regard mitochondrial function between 

cisplatin-resistant and sensitive cancer cell lines. Thus, we would verify if mitochondrial DNA is 

involved in mechanism of cisplatin resistance.   

Recent studies have shown that the density of mitochondria might affect the chemoresistance 

suggesting that mitochondria are a potential target for cisplatin (Quian W. et al. 2005). Results 

from early research in our laboratory demonstrated that in cisplatin-resistant cells (C13) the 

respiratory chain activity is lower and the dependency on glucose is higher than in cisplatin-

sensitive cells 2008 (Montopoli M. et al., 2011). It was also observed that cisplatin is equipotent in 

both mtDNA-deprived 2008-ρ0 and C13-ρ0 cells, demonstrating that mtDNA lack decreases drug 
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sensitivity. Moreover, the results obtained in this study (Fig.5) confirm that mtDNA is a cisplatin 

target, indeed Rho 0 cell line is less sensitive to cisplatin as compare 143B TK-, but not to taxol. In 

particular, the cisplatin IC50 values, obtained from concentration-response curves, are 2.84 (0.91-

8.869) for 143B Tk- cells and 7.843 (3.270-18.81) for Rho0 cells. Thus, mtDNA is specifically 

involved in cisplatin mechanism of resistance. 
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Figure 5: Effect of CDDP (0.01-0.1-1-10-50 µM) and Taxol (0.1-1-10-100 nM) on 143 TK- and 206-Rho0 cell viability 

after 24 hours of treatment. Data are expressed as % of cell number of treated cells compared to the respective 

control. Data are the mean ± SEM of 3 different experiments. *p < 0.05, **p<0.01 206-Rho0 vs 143 TK- . 

2.5 Mitochondrial network 

Mitochondria form a dynamic structure called network whose structure is close related with 

the functionality of these organelles. Images (Fig. 6), acquired with confocal microscopy, using 

Mitotracker orange probe, showed a different mitochondrial network organization, common in all 

lines resistant to CDDP compared to their WT counterpart. In particular, in the uterine cervix cells 

it is possible to observe a network more condensed and tubular in the resistant clone as compare 

WT line in which the network is more filamentous. Instead, as regards the resistant lines of ovarian 

carcinoma C13 and osteosarcoma U2OS Pt, the mitochondrial network appears scattered and less 

structured than the lines 2008 and U2OS.  
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2.6 Mitochondrial morphology 

To better investigate the mitochondria morphology, mitochondrial shape was analyzed with 

transmission electron microscopy (TEM). TEM images (Fig.7) reflect the different mitochondrial 

morphology obtained with confocal microscopy: there is a different mitochondrial phenotype 

between ciplatin-resistant and sensitive cell lines. Indeed, cisplatin-resistant cells A431-Pt exhert 

longer mitochondria as compared to wild type cells (A431) and the cristae are well defined; on the 

other hand, in cisplatin resistant cells C13 and U2OS-Pt, mitochondria appear smaller and the 

cristae are less defined as compared to those of sensitive lines (2008 and U2OS respectively). 

 

Figure 7: Images of mitochondrial morphology in wild type cells (A431, 2008, U2OS) and resistant (A431-Pt, C13, 

U2OS-Pt) acquired by Tecnai G2 (FEI) transmission electron microscope operating at 100 kV; images were collected by 

a F114 (TVIPS) CCD camera. The TEM images and experiment are performed from the University of Padua electron 

microscopy facility.   
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2.7 Mitochondrial fusion and fission 

The network organization is the result of the balance between two opposite processes, fusion 

and fission, and the mitochondrial morphology can change in response to metabolic and 

pathogenetic conditions of these organelles and their intracellular environment. 

2.7.1 Key regulator protein expression in fusion process 

In order to understand the differences in mitochondria network organization, the expression 

of key proteins of this processes was evaluated: specifically the mitofusins 1 and 2, GTPases 

localized in the outer membrane, and OPA1 localized in the inner membrane that modulate the 

fusion process and cristae remodeling. 

In the epidermoid carcinoma of cervix line (A431-A431 PT) (Fig. 2), it can be noted a significant 

increase of 40% in the OPA1 expression and 20% about MFN1 in resistant line. 

Figure 8: Expression of OPA1 (A), MFN1 (B), MFN2 (C), the optical density was normalized on TOM 20 in cancer cells 

wild type and resistant (A431, A431 PT). The data are expressed in percentage respect to wild-type; *p<0.05; 

**p<0.01; resistant vs WT. Data are the mean±SEM of 3 different experiments. 

Instead in ovarian carcinoma 2008-C13 cancer cells (Fig. 9) there is an opposite situation in 

which the expression of OPA1 is 30% less in resistant clone while the expression of two mitofusins 

does not change significantly. 

A431 A431 PT
0

50

100

150

200

**

O
.D

.(
%

 O
F

 W
T

)o
f 

O
P

A
1

n
o

rm
a

li
z
e

d
 t

o
T

O
M

 2
0

A431 A431 PT
0

50

100

150

200

*

O
.D

.(
 %

 O
F

 W
T

)o
f 

M
F

N
1

n
o

rm
a

li
z
e

d
 t

o
 T

O
M

2
0

A431 A431 PT
0

50

100

150

200

O
.D

.(
%

 O
F

 W
T

)o
f 

M
F

N
2

n
o

rm
a

li
z
e

d
 t

o
 T

O
M

 2
0

MFN 2  86 KDa

A CB

MFN 1 86 KDa

TOM 20 17 KDa

OPA1 80-100 KDa

TOM 20 17 KDa TOM 20 17 KDa

A431     A431 PT A431     A431 PT A431     A431 PT

 



70 
 

2008 C13
0

50

100

150

200

O
.D

.(
 %

 O
F

 W
T

)o
f 

M
F

N
1

n
o

rm
a

li
z
e

d
 t

o
 T

O
M

2
0

2008 C13
0

50

100

150

200

***

***

O
.D

.(
%

 O
F

 W
T

)o
f 

O
P

A
1

n
o

rm
a

li
z
e

d
 t

o
T

O
M

 2
0

2008 C13
0

50

100

150

200

***

ns

O
.D

.(
%

 O
F

 W
T

)o
f 

M
F

N
2

n
o

rm
a

li
z
e

d
 t

o
 T

O
M

 2
0

OPA 1  80-100 KDa MFN 1  84 KDa

TOM 20 17 KDa TOM 20 17 KDa TOM 20 17 KDa

MFN 2 86 KDa

2008       C13 2008       C132008       C13

 

Figure 9: Expression of OPA1 (A), MFN1 (B), MFN2 (C), the optical density was normalized on TOM 20 in cancer cells 

wild type and resistant (2008, C13). The data are expressed in percentage respect to wild-type;  ***p<0.001; resistant 

vs WT. Data are the mean±SEM of 3 different experiments. 

Also in the resistant line U2OS PT (Fig. 10) there is a significant decrease of the OPA1 

expression about 40% and an increase of the expression of MFN2. 
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Figure 10: Expression of OPA1 (A), MFN1 (B), MFN2 (C), the optical density was normalized on TOM 20 in cancer cells 

wild type and resistant (U2OS, U2OS-Pt). The data are expressed in percentage respect to wild-type; *p<0.05; 

***p<0.001; resistant vs WT. Data are the mean±SEM of 3 different experiments. 

2.7.2 Effect of cisplatin on fusion protein 

As shown in Fig. 11, the treatment with cisplatin (1-10 µM) for 24h  induces opposite effects 

in resistant clone as compared to sensitive. In fact, in the line A431-Pt, OPA1 and MFN2 decrease, 

specially at higher concentration; in the sensitive line, instead, cisplatin increases the expression of 

both proteins by approximately 20%. 

 

A 
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Mef’s Đells WT OPA1 KO MFN1 KO OPA1 tg 

IC50 

CDDP;μMͿ 
1.583 

 
0.2154 to 11.63 

2.214 
 

0.7484 to 6.549 

14.43 
 

4.304 to 48.35 

3.998 
 

2.480 to 6.444 

 

Table 2: CDDP cytotoxic effect, expressed as IC50 of Mouse Embryonic Fibroblast (Mef) cell lines: WT, Mef OPA1-/- 

knockout, Mef MFN1-/- knockout and OPA1 transgenic (over-expressed). Data represent 3-4 indipendent experiments. 
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Figure 14: Effect of CDDP (0.01-0.1-1-10 µM) on Mef WT, Mef OPA1- / - knockout, Mef MFN1- / - knockout and OPA1 

transgenic cell viability after 24 hours of treatment. Data are expressed as % of cell number of treated cells compared 

to the control. Data are the mean ± SEM of 3 different experiments. ** p0.01, mef MFN1 KO vs mef WT, * p0.05, 

mef MFN1 KO vs mef WT and mef OPA1 tg vs mef WT .  

2.7.4 Key regulator protein expression in fission process 

Fission is a division event that produces one or more daughter mitochondria and requires the 

coordination of several proteins: Drp1, HFis-1, MFF. Drp1 is a GTPases involved in the 

mitochondrial membrane fission; multiple receptors can recruit DRP1 to mitochondria, such as 

HFis1, localized in the outer mitochondrial membrane and MFF, mitochondrial fission factor. Drp1 

undergoes to post-transcriptional modifications during the mitochondrial fission. The first of these 

modifications is the phosphorylation that promotes the distribution of Drp1 in the mitochondria 

and therefore their fragmentation. 

By western blotting and real-time PCR, the protein expression and mRNA levels involved in the 

process of fission were evaluated.  

In the line of the uterine cervix (A431-A431 PT) (Fig. 15), there is no differences between p-

DRP1 protein expression, the phosphorylated isoform localized at the mitochondrial level, and 

total DRP1, but there is a significant decrease of the HFIS-1 gene expression about 20%. 
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Figure 15:  Expression of pDRP1  and total DRP1 (A),  the optical density was normalized respectively to TOM 20 and 

GAPDH, in wild type and resistant (A431, A431 PT) cells. The In (B) mRNA expression of genes DRP1 and H-FIS1 

normalized on GAPDH. The data are expressed as a ratio of resistant cells to wild-type set to 1. Data are the 

mean±SEM of 3 different experiments; *p<0.05; resistant vs WT. 

Also in ovarian carcinoma lines 2008-C13 (Fig. 16) the p-DRP1 protein expression is similar to 

total Drp1. The HFIS-1 gene expression is higher in resistant clone then sensitive cells. 

Figure 16:  Expression of pDRP1  and total DRP1 (A),  the optical density was normalized respectively to TOM 20 and 

actin, in wild type and resistant (2008, C13)cells. In (B) mRNA expression of genes DRP1 and H-FIS1 normalized on 

actin. The data are expressed as a ratio of resistant cells to wild-type set to 1. Data are the mean±SEM of 3 different 

experiments; **p<0.01; resistant vs WT. 
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In resistant line U2OS PT (Fig. 17) there is an increased expression of p-DRP1 and total DRP1 

and also the gene expression of HFIS1 (50%). 
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Figure 17:  Expression of pDRP1  and total DRP1 (A),  the optical density was normalized respectively to TOM 20 and 

actin, in wild type and resistant (U2OS, U2OS-Pt) cells. *p<0.01; resistant vs WT. In (B) mRNA expression of genes 

DRP1 and H-FIS1 normalized on calnexin. Data are the mean±SEM of 3 different experiments. The data are expressed 

as a ratio of resistant cells to wild-type set to 1; *p<0.05; resistant vs WT. 

Even if variations in the ratio between active form p-Drp1 and total Drp1 are not observed, it 

is evident the higher expression of both isoform of Drp1 in resistant clones C13 and U2OS-Pt as 

compare to sensitive counterpart, suggesting an involvement of Drp1 protein in the modulation of 

fission process in ovarian carcinoma and osteosarcoma resistant cells.   

To better investigate the fission process, also mitochondrial fission factor (Mff) protein 

expression was evaluated by Western Blot. All resistant clones have an higher expression of at 

least one of the two Mff isoforms (Fig.18), but the increased expression is significantly greater in 

C13 and U2OS-Pt resistant cell lines than A431-Pt. 
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2.9 TRAP1 role in the regulation of mitochondrial dynamics 

The results reported in the literature (Takamura et al. 2013) show TRAP1, (Tumor Necrosis 

Factor Receptor Associated Protein 1), the chaperonine localized in the mitochondrial matrix with 

specific function in the regulation of mitochondrial function, as a possible regulator factor in the 

balance between the fusion and fission processes.  

In  collaboration with the professor Rasola (University of Padova) the expression of TRAP1  

was evaluated.  In the lines A431 and A431 PT of the protein expression is different: in Fig. 23 

shows that resistant cancer cells presents a reduced expression of TRAP1 as compare to the 

sensitive line (approximately 30%). 

 

 

 

 

 

 

 

 

Figure 23:  Expression of TRAP1,  the optical density was normalized on TOM 20 in cancer cells wild type and resistant 

(A431, A431-Pt). Data are the mean±SEM of 3 different experiments. The data are expressed in percentage respect to 

wild-type. **p<0.01; resistant vs WT. 

Instead, the protein profile of TRAP1, does not differ in 2008 and C13 cancer cell lines (Fig. 

24). 
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Figure 24:  Expression of TRAP1,  the optical density was normalized on TOM 20 in cancer cells wild type and resistant 

(2008, C13). Data are the mean±SEM of 3 different experiments. The data are expressed in percentage respect to wild-

type. 
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GLUCOSE AND GLUTAMINE METABOLISM IN CISPLATIN RESISTANCE 

The metabolic reprogramming of the tumor cells is characterized by alteration of several 

oncogenes and oncosuppressor genes that can lead to important changes in energy metabolism 

such as the increase in the glycolytic and glutaminolytic flow, but also the up-regulation of amino 

acids and the lipids metabolism, induction of PPP pathway and macromolecules biosynthesis 

(Chen J.Q. and Russo J. 2012). 

Cisplatin  could be accumulate rapidly in mitochondria and deteriorate the mitochondrial DNA 

and metabolic function, leading to significant changes in the levels of metabolites involved in 

tricarboxylic acid cycle (TCA cycle) and glycolysis pathway. Due to its anaplerotic role in the TCA 

cycle, glutamine replenishes the intermediates needed by most cancer cells to synthesize 

macromolecules. Therefore, reduced glutamine metabolism may limit the proliferation of cancer 

cells and thereby serve as a metabolic checkpoint that becomes activated in response to genotoxic 

stress such as cisplatin (Jeong S.M. et al., 2013).  

 

3. Phenotyping sensitive and cisplatin resistant cell: innate resistance model 

The study of our laboratory of Padova have already shown a metabolic reprogramming  in 

cancer cells that exhibit acquired resistance to cisplatin. In fact it has been shown how the ovarian 

cancer  cells C13, resistant to cisplatin, increases its glucose dependency and is more sensitive to 

the glycolysis block. Moreover, in the presence of an altered mitochondrial function, glutamine, 

due to its anaplerotic role in the TCA cycle, becomes the privileged carbon resource, for the 

cisplatin-resistant line (Catanzaro et al.,2015).  

In this scenario, our goal was to check if there was a energetic metabolic remodeling even in 

an innate resistance model. Thus, in Toker Laboratory (BIDMC, Harvard Medical School, Boston), 

glutamine and glucose metabolisms and their regulation controlled by the oncogene c-Myc were 

evaluated in breast cancer cells that present an intrinsic resistance to cisplatin. 

 

3.1 Triple Negative Breast Cancer cells selection 

Breast cancer cell lines that present different sensitivity to CDDP treatment were selected. 

Four lines were identified, which respond differently to CDDP treatment and to doxorubicin 

treatment (24 + 48 hours). These two chemotherapeutic agents are used in combination for the 
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3.2 Effect of glutamine and glucose deprivation on cell viability 

Several studies have proven that interfering with glutamine metabolism can inhibit the 

growth of various types of cancer cells, including breast cancer (Chen L. et al., 2015).  

Therefore, cell viability was measured by Propidium Iodide assay and cell growth curves by 

Trypan Blue assay, following treatment in glutamine deprivation (with the dialyzed serum), and 

with medium containing a low glutamine concentration (650µM), concentration of physiological  

glutamine, (Tardito et al. 2014) as compare to the concentration of glutamine which is normally in 

the culture media (2055 µM). The Figure 30 shows a greater sensitivity to glutamine deprivation in 

two cell lines: SUM149 and HCC1143, that is significant after seven days of treatment.                                                    

 

Figure 30: Effect of glutamine deprivation on MDA-MB-468, SUM 149, HCC1143 and HCC1937 cell viability after 

24+48+72+120+168 hours of treatment measured by Propidium Iodide Assay. Data are expressed as % of cell viability 

of treated cells compared to the respective control. Data are the mean ± SEM of 3 different experiments. +p0.05, 

++p<0.01;  treated vs control. 

Also the Figure 31, which represents the growth curves, confirms a greater sensitivity to 

glutamine deprivation in SUM149 and HCC1143 cell lines especially after 48 and 72 hours where it 

is significant; whereas as regards the treatment with low concentration of glutamine there are no 

significant differences.  
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Having already obtained interesting data in cisplatin resistant ovarian carcinoma cells about 

glucose metabolism, glucose dependency was evaluated in TNBC line to investigate if glucose is 

involved in mechanisms of intrinsic resistance. Cell viability assay was performed by Trypan Blue 

assay measuring cell growth curves in glucose free media and in media with low glucose (1g/L). As 

shown in Figure 33, the cisplatin resistant lines, HCC1143 and HCC1937, have a greater 

dependence on glucose. 

 

Figure 33: Effect of glucose deprivation or low glucose media (1g/L) on MDA-MB-468, SUM 149, HCC1143 and 

HCC1937 cell viability after 24 hours of treatment measured by Trypan Blue Assay. Data are expressed as % of cell 

number of treated cells compared to the respective control. Data are the mean ± SEM of 3 different experiments. 

+p0.05, ++p<0.01;  treated vs control. 

3.3 Screening of genes involved in glutamine metabolism  

In order to check if cisplatin can modify mRNA levels of genes involved in glutamine 

metabolism, the mRNA expression of all genes involved in glutaminolysis was measured after 24 

hrs with 5 µM CDDP treatment. In particular were measured the genes coding for: the two main 

glutamine transporter (LAT1 and ASCT2), the glutaminase, the enzyme which converts glutamine 

to glutamate, the glutamate dehydrogenase which converts glutamate to alpha-ketoglutarate 

which enters in TCA cycle inside the mitochondrion. Moreover mRNA of the genes coding for GOT 

and GTP2 were measured, which convert the glutamate to aspartate (which contributes to the 

nucleotides biosynthesis) and alanine respectively. Also glutamine synthetase mRNA were 
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measured, coding for the enzyme that converts glutamate in glutamine. As shown in Figure 34 

cisplatin cause an overall increase of all the genes involved in glutaminolysis in all TNBC cell lines. 

The multivariate analysis, Principal Component Analysis (PCA) and Clustering Analysis 

(Dendrogram and Heatmap) were performed by Professor Ragazzi (University of Padova). 

 

                       

 

           

 

 

34.B 

34.A 
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Figure 34: mRNA levels of ASCT2, LAT1, GLS1/2, GDH1/2, GOT1/2, GTP2, GS, C-MYC after treatment of 24 hours with 

CDDP 5µM. The mRNA was measured with Real Time q-PCR. Data are the mean±SEM of 3 different experiments. 

EǆpressioŶ leǀels of the iŶdiĐated geŶes ǁere ĐalĐulated ďǇ the ΔΔCt ŵethod ǁith 18S rRNA as the reference gene. 34 

(A) shows the 2-D scores plot between selected PCs, the PCA analysis is performed using the prcomp package. The 

calculation is based on singular value decomposition; 34 (B) shows the clustering result in the form of a dendrogram; 

34 (C) shows the clustering result in the form of a heatmap (distance measure using euclidean, and clustering 

algorithm using ward.D). 

Then, also C-MYC gene expression and c-Myc protein expression were evaluated after 24 and 

48 hours of CDDP 5µM treatment. As shown in Figure 35 B , in resistant lines HCC1143 and 

HCC1937 there is an increase in c-Myc expression after 48 hours treatment with CDDP.  
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Figure 36: mRNA levels of glycolytic genes (GLUT1/4, PFKM, PGK1, PKLR, PC, LDHA), on basal conditions,. The mRNA 

was measured with Real Time q-PCR. Expression levels of the indicated geŶe ǁas ĐalĐulated ďǇ the ΔΔCt ŵethod ǁith 

18S rRNA as the reference gene. Data are the mean ± SEM of 3 different experiments. 

 

This study shows differences in the dependency of glucose between cisplatin-resistant and 

sensitive TNBC cell lines, and also an increased expression of the c-Myc oncogene in cisplatin-

resistant cells. Of note, we also identified differential expression of specific c-Myc target genes 

involved in the regulation of glycolysis and glutaminolysis.  
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DISCUSSION 

Cisplatin is employed for the treatment of a wide array of solid tumor including testicular, lung 

and ovarian cancer (Galanski M., 2006).  

Even if the benefits of cisplatin are widely recognized, the main problem of its clinical 

effectiveness is the onset of resistance (Köberle B. et al., 2010), which appears to be multifactorial, 

for example through the decreased uptake of the drug, the increased export, the increased levels 

of intracellular glutathione and DNA repair mechanisms, or a decreased apoptosis (Rabik A.C. and 

Dolan M.E., 2007; Boulikas T. et al., 2007). However, the molecular mechanisms of resistance are 

not yet fully understood. 

Cisplatin cytotoxicity has been originally ascribed to interactions between cisplatin and 

nuclear DNA, which lead to the formation of adducts that activate the apoptotic machinery (Wang 

D, and Lippard S., 2005). Now, instead, it is understood that the cytotoxicity mechanism is much 

more complex and shows different intracellular targets. 

Recent studies have shown that the cisplatin intracellular concentration, binding to nuclear 

DNA, is about 5-10%, thus the drug concentration that can interact with other cellular components 

is significant, including the mitochondrial DNA (mtDNA) (Arnesano F. et al., 2008). MtDNA has no 

efficient repair systems like nuclear DNA and therefore, it is more sensitive to oncogenic 

mutations because of the nearness of mtDNA to the ROS production site that makes this genome 

vulnerable to oxidative damage (Marrache S. et al., 2014).  

Our in vitro model of human ovarian carcinoma is composed by the wild type line 2008 and its 

derived clone C13 that is generated by in vitro selection in the presence of increasing 

concentrations of cisplatin (Andrews PA. and Albright K.D., 1992). The advantage of using isogenic 

cells lines, as an acquired resistance model, is the possibility to study the differences between 

chemosensitive and chemoresistant that are caused by cisplatin response and not due to the 

different genotype. 

Our results from early research  demonstrated that in cisplatin-resistant ovarian cancer cells 

(C13), the respiratory chain activity is lower and the dependency on glucose is higher than in 

cisplatin-sensitive cells 2008 (Montopoli M. et al., 2011).  

It was also observed that cisplatin is equipotent in both mtDNA-deprived 2008-ρϬ aŶd Cϭϯ-ρϬ 

cells, demonstrating that mtDNA lack decreases drug sensitivity. Moreover, mtDNA is involved in 

metastatic capability, indeed recent studies have shown that also the density of mitochondria 
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might affect the chemoresistance (Quian W. et al., 2005), suggesting that mitochondria are a 

potential target for cisplatin. 

Furthermore, in previous studies, oxygen consumption, cell viability in metabolic stress 

condition such as galactose and rotenone, mitochondrial potential/mass and mtDNA content were 

measured in 2008 and C13 cells; the results showed a significant reduction of all mitochondrial 

parameters in cisplatin resistant clones (Catanzaro D. et al., 2015).  

Mitochondrial function is important for cancer cells because it is involved in bioenergetic 

activities, such as ATP production, in the regulation of programmed cell death, in the ROS 

production and trafficking of small metabolites. It is well known that cancer cells undergo a shift in 

their ďasal ŵetaďoliĐ pathǁaǇs, the ͞Warďurg effeĐt͟, ǁhereďǇ eǀeŶ uŶder high oǆǇgeŶ teŶsioŶ 

they produce most of their ATP by glycolysis (Warburg O., 1956). This shift in metabolism has been 

reported to be accompanied by a change in mitochondrial morphology and size, although the 

molecular mechanism accompanying the morphological changes associated with the Warburg 

effect remain poorly understood. 

Some evidence showed a link between mitochondrial bioenergetic functions and its 

architecture. In particular, besides its critical implication in mitochondrial quality control, 

mitochondrial dynamics has been linked to energy demand and supply balance (Molina, A.J., et al., 

2009). 

In this scenario, we proceeded studying CDDP resistance mechanism, by phenotyping other 

cancer cell lines sensitive and resistant, in particular: epidermoid carcinoma of the cervix and 

osteosarcoma to compare the data with those of 2008 and C13 lines. 

The results obtained by confocal microscopy  showed a mitochondrial network differently 

organized in resistant variants underlining a probable implication of mitochondrial dynamic in  

resistance mechanisms. 

The network organization is the result of the balance between two opposite processes, fusion 

and fission, and the mitochondrial morphology can change in response to metabolic and 

pathogenetic conditions. Mitochondrial fission and fusion influence nearly all aspects of 

mitochondrial function, including respiration, calcium buffering and apoptosis (Cortassa M. et al., 

2004; Jeong S.M. et al., 2004) and they are important processes for cell survival during a variety of 

stressors (Tondera D. et al., 2009). Indeed, fusion is important to mtDNA distribution within 

mitochondria population and to maintain these organelles active; instead, fission is necessary for 

the mitochondria distribution in all cell compartments to respond to different energetic needs.  
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Mitochondria dynamics are controlled by the activity of key regulating proteins, which include 

fission proteins and fusion proteins.  

Mitochondrial fission requires the cytosolic dynamin related protein 1 (Drp1) and its 

mitochondrial receptors fission 1 (Fis1), mitochondrial fission factor (Mff) and Mitochondrial 

Division (Mid) 49 and 51. While the factors that control mitochondrial fusion are Optic Atrophy 1 

(OPA1) and Mitofusin 1 and 2 (Mfn1/2). 

Our results indicate an altered mitochondrial dynamic in chemoresistant cancer cells 

compared to their chemosensitive counterparts. Indeed, cisplatin-resistant cell line A431-Pt 

showed an imbalance toward fusion processes by an increased protein expression of OPA1 and a 

decreased expression of fission proteins, besides a tubular and hyperfused mitochondrial network. 

Moreover, TEM images demonstrated a well defined cristae structure in resistant line A431-Pt as 

compared to sensitive counterpart.  

Interestingly, also Tondera et al. reported that mitochondrial hyperfusion could be induced by 

selective stresses and conferred cellular resistance to stress with higher cellular ATP level (Tondera 

et al. 2009). Together with our observations, these findings suggest that fused mitochondria, in 

A431-Pt resistant cells, promote cell survival and mtDNA protection to cisplatin-induced damage 

and that fusion is a mechanism by which intact mitochondria could complement a damaged unit 

and possibly recover its activity, thereby maintaining metabolic efficiency (Chan D.C., 2006).  

A431 cells (epidermoid carcinoma) express the mutated form of the p53 gene with 

substitution at codon 273 (His273) (missense mutation). The tumor suppressor p53 exerts its 

biological function by regulating transcription of numerous downstream target genes involved in 

cell cycle arrest, apoptosis, DNA repair, senescence, and metabolism as a transcription factor 

(Levav-Cohen Y, et al., 2014). p53 is also directly recruited to the mitochondria and induces 

apoptosis independent of its function as a transcription factor (Vaseva A.V. and Moll U.M., 2009). 

When p53 activity is lost by gene deletion or mutations, it causes the inhability to control cell 

death in tumors (Muller P.A. and Vousden K.H., 2013).  

Extensive cross-talks of the signaling pathways regulating mitochondrial dynamics and 

apoptosis proteins have been reported. Kong B. et al. suggested that chemoresistant gynecologic 

cancer cells lose their response to CDDP partly due to deactivated p53 and that p53 is involved in 

the regulation of mitochondrial dynamics by controlling the L-OPA1 processing (Kong B. et al., 

2015).  
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Moreover, Patten et al. indicated that Opa1 complex through self-assembly is involved in the 

control of the cristae junctions (Patten D.A. et al., 2014), which are narrow tubular tunnels 

connecting cristae to the space between the outer and inner membranes (inter-membrane space), 

and it is essential for maintaining the mitochondrial cristae integrity and consequently the mtDNA 

as well as preventing the aberrant cell death through the cytocrome c relase and apoptosis. 

However, the loss of long form of OPA1 seems to destabilize Opa1 complexes that eventually lead 

to the loss of cristae structures, and cytochrome c release (Merkwirth, Dargazanli et al. 2008). 

Whether OPA1-regulated cristae structure is involved in chemoresistance is not known and needs 

to be further studied. 

Taken together, these findings propose that resistant epidermoid carcinoma cells A431-Pt use 

mitochondrial fusion as a mechanism to counteract cisplatin induced cell death, and moreover 

these cells present an overexpression of OPA1, suggesting that stabilize OPA1 could prevent the 

cytocrome c release and apoptosis. 

While fusion may recruit dysfunctional mitochondria into the active pool, autophagy targets 

depolarized mitochondria for digestion and elimination (Elmore S.P., et al., 2001); the mechanism 

that sorts mitochondria between the two fates is still unclear (Levine B., Yuan J., 2005). If fusion 

and autophagy are competing fates of the damaged mitochondria, fission might play a key role in 

allowing such competition to occur. 

As regards the other two resistant ovarian carcinoma C13 and osteosarcoma U2OS-Pt cell 

lines, fission protein are more expressed (Drp1 and Mff protein expression and H-Fis gene 

expression) and OPA1 is down-regulated.  

The mitochondrial dynamic is closely correlated to mitophagy, in particular it has been 

suggested that fragmented mitochondria are easily engulfed in the autophagosomes due to their 

smaller volume. Furthermore, Fis1 is involved in mitophagy; cells overexpressing hFis1 accumulate 

fragmented mitochondria, several markers of autophagy and autophagic vesicles (Gomes L.C. and 

Scorrano L., 2008). Thus mitochondrial dysfunction and mitochondrial fragmentation are 

responsible for the induction of mitophagy (Mao K. and Klionsky D.J., 2013).  

Data obtained by real time q-PCR and western blotting showed that the resistant clones, 

presenting an imbalance toward fission process, have a more elevated BNIP3 mRNA level and 

protein expression then WT lines. BNIP3 expression is induced by stresses such as hypoxia and 

oxidative impairment. Recently, BNIP3 was reported to modulate autophagy as a mitochondrial 

receptor that tethers mitochondria to autophagosomes (Hanna R.A., et al.,2012).  
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These data suggest that cisplatin resistant cells present a faster mitochondrial turn-over, by 

mitophagy as a mitochondrial quality control mechanism. Indeed, the mitophagic process could 

avoid the mtDNA damage caused by cisplatin and make the cell able to survive despite the 

presence of cisplatin. 

Then, in order to check how the mitochondrial dynamics influence the cisplatin response, a 

viability test was performed using Mouse Embryonic Fibroblast cell lines: WT, Mef OPA1 -/- 

knockout, Mef MFN1 -/- knockout and OPA1 trasgenic (over-expressed) kindly provided by 

Professor Scorrano laboratory.  

The results show that the lines with an altered expression of proteins involved in 

mitochondrial fusion are less sensitive to cisplatin as compared to WT line and suggest a 

mitochondrial dynamics involvement in mechanisms of resistance to cisplatin.  

This finding indicates a deregulation in the proteins that control mitochondrial dynamics, the 

"mitochondria-shaping" proteins, a process dependent on mitochondrial fusion and fission and 

inextricably linked to mitochondrial biogenesis, distribution, signaling and apoptosis (Frezza C., et 

al., 2006).  

The mitochondrial dynamic is extremely complex and its regulation has not yet been 

elucidated. Some studies highlighted a link between mitochondrial bioenergetic functions and its 

dynamics (Schrepfer E. and Scorrano L., 2016). In particular, mitochondrial morphology could 

modulate ATP production capacity in response to alterations in energy demands. Moreover, in 

cancer cells, the interplay between deregulated signal transduction and changes in mitochondrial 

metabolism is multifarious.  

Several papers demonstrated that TRAP1 (Tumor Necrosis Factor Receptor Associated Protein 

1), the chaperonine localized in the mitochondrial matrix, is an important regulation factor of 

mitochondrial metabolism in tumor cells, favoring mitochondria integrity and cell survival (Rasola 

et al., 2014; Yoshida, S. et al., 2013; Felts S.J. et al., 2000). In addition, TRAP1 is involved in the 

induction of a chemoresistant phenotype in human colorectal carcinoma (Costantino E. et al., 

2009) due to his role in ROS-adaptive responses in tumor cells. 

The results reported in the literature show TRAP1 as a possible regulator factor in the balance 

between the processes of fusion and fission, during the stress stimuli (Takamura H. et al., 2013).  

In collaboration with Professor Rasola laboratory, TRAP1 protein expression was investigated 

in order to verify if it could have a key role in the regulation of processes studied in this thesis. In 

stress conditions, the overexpression of TRAP1 decreases the production of ROS and lipid 
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peroxidation and preserves the potential mitochondrial ATP production and the activity of the 

complex IV (Butler E.K. et al., 2012; Voloboueva L.A. et al., 2008; Xu L. et al., 2009). Takamura et al. 

show that a decrease in stable expression of TRAP1 leads to an abnormality of the mitochondrial 

morphology, by the alteration of DRP1 expression. 

Thus, the resistant clones that have an imbalance to the fusion, have a decreased expression 

of TRAP1, and there is an opposite situation in the resistant clones that have an imbalance 

towards the fission. In order to understand if TRAP1 is involved in the regulation of mitochondrial 

dynamic, it has been analyzed the network organization and the expression of OPA1, MFN1 and p-

D‘Pϭ iŶ Mef͛s liŶes ǁith T‘APϭ sileŶĐed. The data oďtaiŶed shoǁ aŶ iŶĐrease iŶ fusioŶ proteiŶ 

eǆpressioŶ iŶ shT‘APϭ Mef͛s Đells aŶd a differeŶt ŵitoĐhoŶdrial Ŷetǁork organization. Of note, 

there are few TRAP1 antagonists, recently discovered, that lead to a mitochondrial activity 

collapse and cell death, suggesting TRAP1 as a new molecular target to improving the 

chemotherapies (Landriscina M. et al., 2010). 

As regards the project in collaboration with Professor Toker (Department of Pathology at the 

Beth Israel Deaconess Medical Center, Harvard Medical School), another important feature 

correlated with the cisplatin resistance, previously studied in our laboratory (Catanzaro D. et al., 

2015) was evaluate: the metabolic reprogramming in resistant cancer cells.  

In the last years, increasing evidences have suggested that growth signalling pathways directly 

control cell metabolism and proliferation through the regulation of metabolic enzymes (Cairns R.A. 

et al., 2011; Ward P.S. and Thompson C.B. 2012).  

The metabolic reprogramming is an hallmark in neoplastic transformation, correlated with the 

degree of tumor invasiveness. It is characterized by an increase of the glucose uptake and lactate 

production, as well as a decrease in the capacity of mitochondrial respiration in the presence of 

oxygen (effect Warburg). This metabolic reprogramming is even more thrust in the cisplatin 

resistant phenotype as we have demonstrated in previous study (Catanzaro D. et al., 2015). 

Indeed, cancer cells are characterized by alteration of several oncogenes and tumour 

suppressor genes that can lead to important modifications of bioenergetc and biosynthetic 

activities (Chen J.Q. and Russo J., 2012), allowing them to an high metabolic adaptability to the 

dynamic tumor microenvironment. The dysregulation of the main metabolic pathway is often 

associated with oncogenic signaling pathways involved in the bioenergetic capabilities of cancer 

cells. The hypoxia-inducible factor (HIF) and c-MYC are two of the main critical factors for 

tumorigenesis. Acting alone, HIF and c-Myc partially regulate the adaptation mechanisms that 
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cancer cells undergo in a low oxigen microenvironment. However, acting in concert, these 

transcription factors reprogram metabolism, protein synthesis, and cell cycle progression to 

support bioenergetics and cell survival (Gordan J.D. et al., 2007).  

The study performed in Professor Toker laboratory is focused on metabolic reprogramming in 

breast cancer cells that have an innate resistance to cisplatin. 

Breast cancer is the second most common cancer in the world and women who have this 

disease show a high rate of relapse (Mendes et al., 2015). Breast cancer triple negative TNBC is the 

strongest form of the disease and is the class treated only with chemotherapy (Hirshfield K.M. and 

Ganesan S., 2014). Moreover, there is currently no targeted therapy specific to the TNBC, and the 

patients that exhibit this phenotype have a poor prognosis (Timmerman et al., 2013). 

Several oncogenes can modify important metabolic pathways, such as the glucose transport, 

tricarboxylic acid cycle (TCA), glutaminolysis, oxidative phosphorylation and pentose phosphates 

pathway (PPP) (Chen J.Q. and Russo J., 2012).  

Both glucose and glutamine are fundamental metabolic substrates in tumor cells and are 

essential for the development of cancer invasion and metastasis. Thus, this scenario prompted us 

to explore c-Myc transcription factor and some of its target genes involved in glycolytic and 

glutaminolytic fluxes. 

Data obtained showed that resistant lines HCC1143 and HCC1937 have a greater dependence 

on glucose and a down-regulation of the gene coding for lactate dehydrogenase A.  

LDHA is a c-Myc target gene that converts pyruvate, derived from glucose through glycolysis, 

to lactate. Besides, resistant TNBC cells showed an increased expression of c-Myc.  

c-Myc has an important role in cell proliferation in a large number of human tumors including 

breast cancer. C-Myc could transactivate genes involved in glycolysis under normoxia; however 

pyruvate, which is converted to lactate by LDHA, could also be converted to acetyl-CoA and 

oxidized by increased Myc-mediated mitochondrial biogenesis. (Li F. et al., 2005). 

Thus, our results suggest that cisplatin resistant TNBC cells redirect pyruvate toward TCA cycle 

rather than lactate conversion.  

Furthermore, lactate can be used as a metabolic fuel by oxidative cancer cells. Pérez-Esculedo 

et al., demostrated that HeLa cancer cells support the oxidative use of lactate to take advantage of 

intracellular lactate signaling to optimize glutamine metabolism, in particular oxidative 

glutaminolysis. Lactate can stimulates glutamine uptake and catabolism through c-Myc 

transactivation (Péerez-Escuredo J. et al., 2015).  

http://www.ncbi.nlm.nih.gov/pubmed?term=Russo%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22750268
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The data of glutaminolysis genes showed that cisplatin causes a general increase of all the 

genes in all cell lines. Specifically, results showed an increase of two glutamine transporter: ASCT2 

(Alanine, serine, cysteine-preferring transporter 2) and LAT1 (L-type amino acid transporter 1), c-

myc target genes besides glutaminase 1 that converts glutamine in glutamate within 

mitochondria.  

Glutamine is an amino acid that is abundant in human plasma and is present in high 

concentrations in the medium used for cell culture. Several oncogenes, including c-myc, have been 

identified to promote expression of metabolic enzymes and regulators that carry preferential use 

of glycolysis with respect to mitochondrial oxidative phosphorylation (OXPHOS). Due to its 

anaplerotic role in TCA cycle, glutamine reconstitutes the necessary intermediates for the 

synthesis of macromolecules (Chen et al., 2015). Moreover, glutamine serves as a precursor for 

glutathione (GSH) synthesis. Therefore, a reduction of the glutamine metabolism can limit the 

proliferation of tumor cells and thereby it serves as a point of metabolic control that is activated in 

response to the genotoxic stress such as chemotherapeutic drugs. Thus, the deprivation glutamine 

is sufficient to reduce levels of GSH (Lora J et al 2004) and can cause oxidative stress and sensitize 

the cells to cisplatin. 

Even if the metabolic reprogramming is essential for the rapid proliferation of tumor cells, a 

systematic characterization of the metabolic pathways of transformed cells is not yet fully known. 

(Hsu P.P. and Sabatini D.M., 2008). 

It will be our future interest to clarify the roles of glucose and glutamine in breast cancer cells 

resistant to cisplatin, in order to find possible pharmacological targets useful to overcome the 

resistance. Our future experiments will be focused on the investigation of glucose transporters 

(GLUT1 and 4) expression and their translocation on plasma membrane, with the purpose of 

pointing out the involvement of glycolytic flux in cisplatin resistance. Then, a possible cross-talk 

between lactate and glutamine metabolism will be considered for future analysis, using possible 

iŶhiďitors aŶd ǀerifǇiŶg the uptake of this tǁo ͞oŶĐoŵetaďolites͟. 

In conclusion, the data presented in this thesis show how the phenomenon of resistance is 

extremely complex and closely related to mitochondrial function, metabolism and dynamics. 

Therefore, the data obtained confirm that mitochondria is a cisplatin target and is involved in 

cisplatin cytotoxicity and resistance mechanism. 

With the aim of verifying the dependence on mitophagy for survival in resistant ovarian 

cancer and osteosarcoma cells, the mitophagic flux will be investigated trough different 
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approaches. We will perform, through MitoKeima probe, a quantification of mitochondria 

degradation after different conditions. In particular, we will analyze the stimulation of the 

autophagic process with FCCP, the autophagy inhibition with chloroquine and finally cisplatin will 

be used to better understand the involvemet of mitophagy/autophagy in the resistance 

mechanism. 

Then, since it is well known that BNIP3 can induce mitophagy and we verified that it is 

overexpressed in C13 and U2OS-Pt resistant lines, BNIP3 will be silenced in our cancer cell lines 

sensitive and resistant to cisplatin.  Thus, in order to correlate mitophagy and cisplatin resistance, 

si-BNIP3 cells will be treated with cisplatin to verify whether the reduction of mitophagy levels 

could restore a chemosensitization to cisplatin. 

Therefore, combining chemotherapeutic drugs, such as cisplatin, with mitophagic modulators 

may offers opportunities to counteract resistance in cells that exert the mitochondrial quality 

control process as mechanism of defense to cisplatin. 

Acquiring knowledge in the mitochondrial remodelling and in energy metabolism, in particular 

in cisplatin-resistant cancer, helps to identify new targets useful to innovative pharmacological 

approaches. Moreover, these data could be useful to clarify the mechanism of action of cisplatin, 

which is not completely clear. 
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