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Abstract (Italian) 

Introduzione: Lo scompenso acuto in cirrosi è definito come la progressione acuta di 

una o più gravi complicanze della patologia epatica ed è la principale causa di 

ospedalizzazione nei pazienti con cirrosi. L'insufficienza epatica acuta su cronica (ACLF) 

è caratterizzata da uno scompenso acuto della cirrosi, da danno d'organo e da un 

elevato tasso di mortalità a 28 giorni. L'ACLF è caratterizzato da infiammazione 

sistemica e l'outcome infausto è strettamente associato con l'eccessiva risposta 

infiammatoria che si attiva nel paziente. L'inflammasoma è un complesso multi-

proteico che attiva, mediante taglio proteolitico, citochine pro-infiammatorie come IL-

1β e IL-18. Queste, hanno un ruolo nello sviluppo della patologia epatica. Le vescicole 

extracellulari (EVs) sono coinvolte in molti processi biologici importanti, sia fisiologici 

che patologici. Il processo di secrezione delle EVs da diversi tipi di cellule e la loro 

azione nel modulare l'avanzamento della patogenesi nella malattia epatica, non sono 

ancora completamente chiariti. 

Scopo: Lo scopo di questo studio è caratterizzare la via del segnale coinvolta nello 

scompenso acuto della cirrosi e dell'insufficienza epatica acuta-su-cronica attraverso: 

la caratterizzazione del profilo infiammatorio dei pazienti arruolati, lo studio in vitro 

dell'effetto citotossico nel plasma dei pazienti nelle cellule tubulari renali (RTC), lo 

studio dell'espressione dell'inflammasoma nelle cellule trattate e nelle cellule 

mononucleate del sangue periferico (PBMC) estratte dai pazienti, la caratterizzazione 

delle EVs estratte dal plasma dei pazienti arruolati e lo studio del loro effetto in vitro su 

colture di RTC. 

Materiali e Metodi: sono stati arruolati pazienti con cirrosi compensata, scompenso 

acuto in cirrosi, insufficienza epatica acuta-su-cronica e una popolazione di volontari 
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sani come controllo. I livelli plasmatici di IL-6, IL-1β e IL-18 sono stati misurati con kit 

ELISA. L'effetto citotossico del plasma nelle RTC è stato testato con il kit costituito da 

annexina V e propidio ioduro. Il livello di espressione delle molecole 

dell'inflammasoma è stato determinato sia nelle cellule stimolate con il plasma, sia nei 

PBMC estratti dai pazienti, attraverso Real Time Poly Chain Reaction (RT-PCR). Le EVs 

plasmatiche sono state estratte mediante ultracentrifugazione e la loro concentrazione 

determinata con il Nanosight. La loro caratterizzazione è stata eseguita mediante 

analisi al FACS. L'effetto citotossico delle EVs sulle RTC è stato determinato mediante 

saggio XTT. 

Risultati: I livelli plasmatici delle citochine pro-infiammatorie, misurati nei primi 

pazienti arruolati, non mostra differenze tra i gruppi di pazienti con cirrosi 

compensata, scompensata e insufficienza epatica acuta-su-cronica. Anche la vitalità e 

la morte cellulare nelle colture stimolate con i plasma dei pazienti arruolati non hanno 

mostrato un profilo peculiare dei gruppi testati e non è stata riscontrata attivazione 

della trascrizione delle molecole dell'inflammasoma. L'espressione del Tool-like 

receptor 2 (TLR-2) nei PBMC si è dimostrata significativamente elevata nei pazienti con 

cirrosi compensata rispetto a quelli con scompenso acuto (p=0,036). Aggiungendo 

albumina al mezzo di coltura cellulare si è notata una riduzione dell'effetto citotossico 

del plasma dei pazienti nelle RTC. La concentrazione plasmatica di EVs risulta maggiore 

nei pazienti con insufficienza epatica acuta-su-cronica rispetto ai controlli sani. Le 

vescicole non esprimono i marcatori tipici piastrinici (CD41 e CD42b) e monocitari 

(CD14) sulla loro superficie ma esprimono il marcatore dell'epitelio attivato da 

piastrine (CD62E). I livelli di CD62E sono significativamente elevati nei pazienti con 

insufficienza eparica acuta-su-cronica rispetto ai controlli sani e ai pazienti con cirrosi 
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compensata (p=0,0041 e p=0,0111, rispettivamente). I livelli di CD40L sono 

significativamente elevati in tutti i gruppi di pazienti rispetto ai controlli sani (p<0,02). 

Le EVs isolate dei pazienti con insufficienza epatica acuta-su-cronica hanno un effetto 

citotossico superiore rispetto a quelle dei controlli sani e dei pazienti con cirrosi 

compensata nelle RTC (p<0,0001). Le cellule incubate con le EVs da pazienti con 

scompenso acuto in cirrosi e insufficienza epatica acuta-su-cronica vanno incontro ad 

apoptosi (p<0,0001), a produzione massiccia di ROS (p<0,0001), alla perdita della 

capacità di  internalizzare l'albumina (p<0,0001) e alla riduzione dell'espressione di 

Zonula Occludens-1 (ZO-1) (p=0,0166) rispetto ai soggetti sani e ai pazienti con cirrosi 

compensata. Non si osserva invece un cambiamento nell'espressione cellulare di 

megalina e PGC1α.  

Conclusioni: Il ruolo delle EVs nella cirrosi scompensata necessita di essere 

approfondito perché potrebbero rappresentare il veicolo su cui viaggiano i mediatori 

del danno d’organo extraepatico. 

  



5 
 

ABSTRACT (English) 

Introduction: Acute decompensation was defined as the acute development of one or 

more major complications of liver disease and it was the main cause of hospitalization 

in patients with cirrhosis. The acute-on-chronic liver failure (ACLF) was characterized 

by acute decompensation of cirrhosis, organ failure and high 28-day mortality. ACLF 

displayed key features of systemic inflammation and its poor outcome was closely 

associated with exacerbated systemic inflammatory responses. Inflammasomes were 

multiprotein complexes which proteolytically activates the cytokines IL-1β and IL-18. 

These substrates might have an effect on the development of liver disease. 

Extracellular vesicles (EVs) were involved in many important biological processes as 

well as in disease pathogenesis. The dynamics of EVs secretion by different cell types 

and how the secreted EVs interact to advance the pathogenesis of liver disease were 

still unknown.  

Aims: The aim of this study was to characterize the molecular pathways involved in 

acute decompensation of cirrhosis and ACLF through: the characterization of the 

inflammatory profile of patients, the in vitro evaluation of cytotoxic effects of plasma 

from patients on renal tubular cells, the expression of Inflammasome in these treated 

cells and in Peripheral Blood Mononuclear Cells (PBMC) of patients, the 

characterization of EVs from patients and the study of in vitro effects of isolated EVs in 

renal tubular cells. 

Material and Methods: We enrolled patients with compensated cirrhosis, acute 

decompensation in cirrhosis, ACLF and healthy subjects as control population. Plasma 

levels of IL-6, IL-1β and IL-18 were detected by ELISA assay. Cytotoxic effects of plasma 

on renal tubular cells were assayed by annexin V and propidium iodide kit. 
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Inflammasomes expression was detected both in renal tubular cells treated and in 

PBMC extracted from patients by Real Time PCR. Plasma EVs were extracted by 

ultracentrifugation and concentration was measured by Nanosight. Characterization of 

EVs was performed by FACS analysis. Cytotoxic effects of plasma EVs on renal tubular 

cells were assayed by XTT assay. 

Results: Plasma levels of pro-inflammatory cytokines measure in the firsts patients 

enrolled did not differed between the groups of compensated cirrhosis, acute 

decompensation and ACLF. Also viability and death rate did not change in a way 

statistically significant in cell stimulated with plasma from the three groups of patients. 

Furthermore, Inflammasome gene expression in these cells did not underlines the 

activation of this protein complex. In PBMC from patients, gene  expression of Tool-like 

receptor 2 (TLR-2) was significantly higher in patients with compensated cirrhosis 

compare to acute decompensation of cirrhosis (p=0.036). Albumin added to cell 

medium reduced cytotoxic effects of plasma on renal tubular cells. Plasma EVs of 

patients enrolled were more concentrated in ACLF groups compare to healthy subjects. 

EVs did not expressed selected platelets (CD41, CD42b) and monocyte markers (CD14) 

in their surface but they expressed marker of platelets  activated endothelium (CD62E). 

The levels of CD62E were significantly higher in patients with ACLF compare to healthy 

subjects and patients with compensated cirrhosis (p=0.0041 and p=0.0111, 

respectively). CD40L levels were significantly higher in all patients' groups compare to 

healthy subjects (p<0.02). Plasma EVs from patients with acute and acute-on-chronic 

liver failure exerted a higher cytotoxic effects compare to healthy subjects and patients 

with compensated cirrhosis on renal tubular cells (p<0.0001). Cells incubated with EVs 

from acute and acute-on-chronic liver failure underwent to apoptosis (p<0.0001), to 
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ROS production (p<0.0001), to lose albumin intake capabilities (p<0.0001) and 

reduction of Zonula Occludens-1 (ZO-1) expression (p=0.0166) compare to healthy 

subjects and patients with compensated cirrhosis. Instead, megalin and PGC1α 

expression did not change. 

Conclusions:  The role of EVs in decompensated cirrhosis and ACLF need to be 

invastigated and study their hypothetic role as vehicle of mediator of extrahepatic 

organ injury and complications of cirrhosis. 
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Introduction 

1 Inflammatory response in Acute decompensation and Acute-on-

chronic liver failure 

Liver cirrhosis is the most advanced stage of chronic liver disease and represents a 

leading cause of mortality in adults, resulting in 1.03 million deaths per year worldwide 

(1). For several years cirrhosis has been considered a progressive disease characterized 

by a compensated phase followed by a decompensated phase and resulting invariable 

in death. In the last 20 years, with the development of effective etiological treatments, 

this concept has been overcome and cirrhosis has been considered a dynamic disease 

across compensated and decompensated stages (1). More recently, with the discovery 

of acute-on-chronic liver failure (ACLF) these concepts have been further revised. 

Indeed, it has been shown that in any stages of the disease an acute decompensating 

event may occur, leading to organ failure and conferring a high mortality risk (2). 

Definitions and outcomes 

Acute decompensation is defined as the acute development of one or more major 

complications of liver disease (ie, ascites, encephalopathy, gastrointestinal 

hemorrhage, bacterial infection), and it is the main cause of hospitalization in patients 

with cirrhosis (3).  

According to the European Association for the Study of the Liver Chronic Liver Failure 

(EASL-CLIF) consortium ACLF is characterized by 3 main features: presence of acute 

decompensation, organ failure (predefined by the SOFA-CLIF score) and high 28-day 

mortality rate (threshold of 15%) (4). 
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The Sequential Organ Failure Assessment (SOFA) scale which is used to diagnose organ 

dysfunctions and failures in general intensive care units (ICUs) (5). The SOFA score was 

found to be a better predictor of short-term prognosis of patients with cirrhosis than 

were liver-specific scores (the Child-Pugh and MELD scores). The investigators of the 

CANONIC study (4) used a modified SOFA scale, called CLIF-SOFA (Table 1). The CLIF-

SOFA scale assessed the function of six organ-systems (liver, kidneys, brain, 

coagulation, circulation, and respiration) but also included some markers specific for 

cirrhosis. The definitions for organ failures based on the CLIF-SOFA scale were as 

follows: 1) Liver failure was defined by serum bilirubin levels of 12.0 mg/dL or more; 2) 

Kidney failure was defined by serum creatinine levels of 2.0 mg/dL or more, or the use 

of renal-replacement therapy; 3) Cerebral failure was defined by grade III or IV hepatic 

encephalopathy according to the West Haven classification; 4) Coagulation failure was 

defined by an International Normalized Ratio (INR) of more than 2.5 and/or platelet 

count of 20×109/L or less; 5) Circulatory failure was defined by the use of vasopressin 

(including terlipressin) to maintain arterial pressure; 6) Respiratory failure was defined 

by a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen (FiO2) of 

200 or less or a pulse oximetry saturation (SpO2) to FiO2 ratio of 200 or less (Table 1). 

ACLF has been graded in 3 stages: 

Stage 1: Patients with serum creatinine (sCr) ≥ 2 mg/dl; patients with single failure of 

the liver, coagulation, circulation, or respiration who had a sCr level ranging from 1.5 

to 1.9 mg/dL and/or mild to moderate hepatic encephalopathy (grade 1 or 2 according 

to West Haven criteria); and patients with single cerebral failure who had a serum 

creatinine level ranging from 1.5 and 1.9 mg/dL; 

Stage 2: Patients with 2 organ failures; 
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Stage 3: Patients with 3 organ failures or more. 

About 31% of patients with an acute decompensation of cirrhosis develop ACLF during 

the hospitalization. The occurrence of ACLF confers high risk of mortality, being 33% 

and 51% at 28-days and 90 days, respectively (4). Conversely, the prognosis of patients 

with an acute decompensation of cirrhosis without ACLF are quite better, being 2% 

and 10% at 28-days and 90-days, respectively. Finally, a stepwise increase in mortality 

rate has been found according to ACLF staging (23% for stage 1, 31% for stage 2 and 

75% for stage 3 at 28 days).  

  



11 
 

Table 1: The Chronic Liver Failure (CLIF)-Sequential Organ Failure assessment (SOFA) Scale*  
(Moreau R., Clin Mol Hepatol. 2016; 22(1): 1–6) 

 

Organ/system 
Score 

0 1 2 3 4 

Liver; Bilirubin, mg/dL 
<1.2 ≥1.2 - <2.0 ≥2.0 - <6.0 ≥6.0 - <12.0 ≥12.0 

Kidney; Creatinine, 
mg/dL 

<1.2 ≥1.2 - <2.0 ≥2.0 - <3.5 ≥3.5 - <5.0 ≥5.0 

  
  

or use of renal-replacement therapy 

Cerebral; HE grade† No HE I II III IV 

Coagulation; INR‡ 
<1.1 

≥1.1 - 
<1.25 

≥1.25 - <1.5 ≥1.5 - <2.5 
≥2.5 or Platelets 

≥20×109/L 

Circulation; MAP 
mmHg ≥70 <70 

Dopamine ≤5 or 
Dobutamine or 

Terlipressin§ 

Dopamine >5 or E 
≤0.1 or NE ≤0.1 

Dopamine >15 or E 
> 0.1 or NE > 0.1 

Lungs; PaO2/FiO2: or 
>400 

>300 - 
≤400 

>200 - ≤300 >100 - ≤200 ≤100 

SpO2/FiO2Π 
>512 

>357 - 
≤512 

>214 - ≤357 >89 - ≤214 ≤89 

 
HE denotes hepatic encephalopathy; INR, International Normalized Ratio; MAP, mean arterial pressure; E, epinephrine; NE, 
norepinephrine; PaO2, partial pressure of arterial oxygen; FIO2, fraction of inspired oxygen; SpO2, pulse oximetry saturation. 

*Adapted from ref. 1. The highlighted area in violet depicts the diagnostic criteria for organ failures. 
 †The CLIF-SOFA scale used West Have classification while the original SOFA scale used the Coma Glasgow score. 
 ‡INR was not included in the original SOFA scale. 

  §Terlipressin use was not taken into account in the original SOFA scale; doses for E and NE are expressed in 
μg/kg.min. 

 ΠThe SpO2/FiO2 ratio was not included in the original SOFA scale. 
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Multiorgan dysfunction and failure likely result from a complex interplay where the 

systemic spread of bacterial products represents the primary event. The consequent 

activation of the host innate immune response triggers endothelial molecular 

mechanisms responsible for arterial vasodilation, and also jeopardizes organ integrity 

with a storm of pro-inflammatory cytokines and reactive oxygen and nitrogen species. 

Thus, the picture of advanced cirrhosis could be seen as the result of an inflammatory 

syndrome in contradiction with a simple hemodynamic disturbance (6). 

Pathological bacterial translocation 

Bacterial translocation was defined as translocation of bacteria and/or bacterial 

products (lipopolysaccharides, peptidoglycans, muramyl-dipeptides, bacterial DNA, 

etc.) from the gut to mesenteric lymph nodes (7). It was a physiological process in 

healthy conditions and crucial for host immunity. In contrast, in cirrhosis, 

‘‘pathological’’ bacterial translocation developed with a sustained increase in quantity 

(rate and/or degree) of translocated bacteria (8). 

The most evidenced clinical expression of pathological bacterial translocation was 

spontaneous bacterial peritonitis (SBP). SBP often originates from bacteria in the gut 

that belong to the normal intestinal microbiota. In vivo experiments showed that E. coli 

administered orally to cirrhotic rats was found not only in the intestinal lumen but also 

in the mesenteric lymph nodes and ascites (9). Furthermore, not only bacteremia but 

also inflow of translocating bacterial products into the hepato-splancnic and systemic 

circulation impacted on the cirrhotic host (10). Three were the main routes of bacterial 

translocation: (1) direct sampling of luminal bacteria by dendritic cells via processes 

between epithelial cells, not affecting tight junction function; (2) injured/inflamed 
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epithelium with dysfunctional epithelial barrer; (3) M-cells overlaying Peyer Patches as 

specialized cells providing access of microbial products to antigen-presenting cells 

(Figure 1). 

Figure 1: Compartments and key players involved in mediating pathological bacterial translocation and 
the associated host response (Wiest R et al., J Hepatol. 2014;60(1):197-209). 

 

 

One more time, three different levels of barrier against bacterial translocation were 

known (I-III, Figure 1): (I) lumen and secretory component (mucus layer, antimicrobial 

peptides) of gut barrier; (II) mechanical epithelial barrier and the gut-assiciated 

lymphatic tissue (GALT) beneath with response elements to bacterial translocation 

(pro-inflammatory cytokines) and autonomic nervous system; (III) systemic immune 
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system in case of spreasing of bacterial beyond mesenteric lymph nodes including 

hematogenous (portal venous) and lymphatic (ductus thoracicus) route of delivery 

(11). Rate and degree of pathological bacterial translocation increased with severity of 

liver disease: whereas they were increased in early cirrhosis, pathological translocation 

of viable bacteria occurs in the decompensated stage. Influencing factors that impact 

on the compartments driving pathological bacterial translocation were multiple and 

key players were pro-inflammatory cytokines, malnutrition (12), sympsthetic 

hyperactivity (13), genetic susceptibility (14, 15) and lack of bile acids (16, 17). After a 

priming events of paracellular translocation of bacterial products in early stage of 

cirrhosis, the main hypothesis was that epithelial tolerance, that normally avoids 

overwhelming mucosal inflammation, enhanced transcytosis of viable bacteria leading 

to immune paralysis in the GALT (18, 19). Augmented pro-inflammatory response to 

gut-derived products and failure to control invading bacteria and -products in concert 

with host susceptibility determined remote organ injury. This may included acute-on-

chronic liver failure, hepato-renal-syndrome and hepatic encephalopathy (10). 

Therefore, understanding the physiology of gut-bacteria interactions and the 

pathogenesis of bacterial translocation can lead to new therapeutic targets in the 

prevention of infections and other complications of cirrhosis. 

Pathogenesis 

The pathogenesis of acute-on-chronic liver failure is still debated, however, the 

common denominator seems to be the systemic inflammation (4). Indeed, white cell 

count and plasma C-reactive protein levels were found to be higher in patients with 

acute-on-chronic liver failure than those with acute decompensation. Similar findings 
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were found for plasma levels of several cytokines (for example: IL-6, TNF-α) and 

chemokines (IL-8) (20). Therefore, acute-on-chronic liver failure is characterized by an 

excessive inflammatory response during the "early ACLF" (2). 

The inflammatory response can be triggered from so-called inducers, that can be 

exogenous (microbial and nonmicrobial) and endogenous, such as signals released 

from necrotic cells or products of extracellular matrix breakdown (21).  

Exogenous inducers  

Bacterial infections have been considered to be a relevant trigger of ACLF. Indeed, 

almost 30% of cases of ACLF a bacterial infection can be identified as a potential 

precipitating event. Bacterial inducers are pathogen-associated molecular patterns 

(PAMPs) and virulence factors (21). PAMPS are recognize by pattern-recognition 

receptor (PRRs), which are receptors of host innate immune system and include toll-

like receptors (TLRs), nucleotide-binding oligomerization domain- (NOD-) like receptors 

(NLRs), retinoic acid-inducible gene- (RIG-), cytosolic DNA sensors. PRRs may be 

localized in cell surface or in the endolysosome compartment such as TLRs, or they 

may be cytosolic receptors such as NLRs, RIG-I and DNA sensors. When PAMPs bind 

PRRs, they trigger a signaling cascades that activate transcription factors. These last 

increase the transcription of antimicrobial effectors gene, cytokines and chemokines 

genes and other molecules of adaptive immunity (21, 22). When bacteria invade host 

cells, they may be recognized and bound by intracellular PRRs. 

After binding of PAMPs, PRRs assemble into high-molecular weight, caspase-1-

activating platforms called ‘‘inflammasomes’’ that control maturation and secretion of 

interleukins such as IL-1β and IL-18, whose potent pro-inflammatory activities direct 

host responses to infection and injury (23). 
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Inflammasomes 

Inflammasomes are platforms for Caspase-1 activation and IL-1β maturation (23). 

Caspases are cysteine proteases involved in inflammation and cell death. Their potent 

cellular activities are controlled by proteolytic activation. Caspase-1 is a pro-

inflammatory caspase whose catalytic activity is tightly regulated by signal-dependent 

autoactivation whithin inflammasomes (24). IL-1β is a pro-inflammatory mediator 

generated in the site of injury and it is involved in cellular recruitment to a site of 

infection or injury. Pro-inflammatory stimuli induce expression of the inactive IL-1β 

proform, but cytokine maturation and release are controlled by inflammasomes. 

Inflammasomes are assembled by self-oligomerizing scaffold proteins. NLR family 

member showed inflammasome activity in vitro. In fact, NLRP3 inflammasome is 

currently the most fully characterized inflammasome and consist of the NLRP3 

scaffold, the ASC (PYCARD) adaptor, and Caspase-1 (23). 

Upon NLRP3 activation, NLRP3 oligomerization leads to PYD domain clustering and 

presentation for homotypic interaction with the PYD- and CARD-containing the 

adaptor ASC, whose CARD domain in turn recruits the CARD of procaspase-1. 

Procaspase-1 clustering permits autocleavage and formation of Caspase-1, which then 

processes cytokine maturation and secretion of pro-inflammatory cytokines, such as 

interleukin-1β and IL-18 (23)(Figure 2).  
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Figure 2: NLRP3 Inflammasome Activation (Schroder K. et al. Cell 2010 (140):821-832).  
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Endogenous inducers 

Endogenous inducers are produced from tissue damage or injury. They are molecules 

released by necrotic cells and product of breakdown of the extracellular matrix. They 

are called danger-associated molecular patterns (DAMPs) and they are recognized by 

sensor expressed at the surface of resident macrophages and trigger inflammation 

(25). Necrosis can be result of the induction of programmed cell death, and in this case 

includes processes of pyroptosis and necroptosis. Only pyroptosis results from 

inflammasome activation (26).  

Necrotic cells release adenosine triphosphate (ATP) that can be binded from PRRs and 

contribute to NLRP3 inflammasome activation in macrophages (22). 

Immunopatology and Outcomes 

The aim of the inflammatory response to bacterial infection is to promote host 

resistance by reducing bacterial burden, instead the aim of the DAMPs-mediated 

response to tissue injury is to promote tissue repair (26). Both the two categories of 

inflammatory response, when excessive, may induce tissue damage. The excessive 

inflammatory response to bacterial infection that cause collateral tissue damage is a 

process called immunopathology. Bacterial are potential causes of immunopathology, 

but they can exert tissue damage also via toxins and virulence factors (21, 26). Severe 

outcome of bacterial infection can be caused by failure of protective tissue-intrinsic 

mechanisms. Several studies report that severity of the disease may be related to 

failed disease tolerance (27-29). 

Immunopatology is a major mechanism explaining the development of ACLF in 

patients with SBP. SBP caused by gram-negative bacteria of intestinal origin is the most 
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common infection in patients with cirrhosis, and it is more common in patients with 

ALCF than in those without (4). In case of SBP, the greater the intensity of the immune 

response, the higher the risk of developing Hepatorenal Syndrome Type 1, a form of 

ACLF (30). 

Immune response is in general dependent from age and from genetic factors. Patients 

with ACLF are younger than those without (4) and show a more vigorous immune 

response to infection (27). Regarding genetics factors, it was demonstrated that 

variants of cytosolic receptor NOD2 may contribute to susceptibility to intestinal 

bacterial translocation, in a manner NFkB dependent (15), and to the poor outcome of 

patients. Single-nucleotide polymorphism (SNPs) in gene encoding PRRs (TLR2, TLR4) 

or nuclear receptor are associated with an increased risk of bacterial infection in 

patients with cirrhosis (31). Recently, Alcaraz-Quiles J. et al. identify two common 

functional polymorphisms in the IL-1 gene cluster (rs1143623 in IL-1β gene and 

rs425196 in IL-1ra) which are associated with the inflammatory process related to the 

development of ACLF (32). 

 Almost 20% of the cases of ACLF are precipitated by alcohol consumption and in some 

cases may have the characteristic of alcoholic hepatitis (4). The main features of 

alcoholic hepatitis are hepatocyte death and liver inflammation, with prominent 

neutrophil infiltration (33). 

Patients with excessive alcohol consumption have gut dysbiosis and increase of 

permeability of intestinal barrier (11, 33). As a consequence, translocation of bacterial 

PAMPs may occur. PAMPS were recognized and binded by TLRs in liver resident 

macrophages. This binding to TLRs stimulates the production of pro-inflammatory 

cytokines that are potent neutrophil-attracting cues. Therefore, on the one hand, 
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production of pro-inflammatory cytokines and mediators can lead to tissue damage, 

on the other hand there are findings suggesting that the primary purpose of 

inflammatory response might be to promote tissue repair/regeneration. In fact, it has 

been observed a better prognosis the higher is the liver infiltration by neutrophils (34). 

Activity of TNF-α, induced by lipopolysaccharide (LPS) of gram-negative bacteria, 

stimulate production of reactive oxygen species (ROS) from hepatocytes and so 

oxidative stress (33). Subsequently, ROS and LPS induce hepatocyte endoplasmatic 

reticulum stress, that together with oxidative stress trigger a cell-extrinsic response 

that contains homeostasis-restoring components (35). Patients with severe alcoholic 

hepatitis also develop extrahepatic organ failures but it is still unclear whether an 

excessive systemic inflammatory response can lead to extrahepatic organ failure. 

At last, approximately 50% of cases of ACLF is of unknown origin, but probably they are 

associated with systemic inflammation (4). Three hypotheses have been proposed: the 

presence of gut dysbiosis, the role of translocation of bacterial PAMPs and the action 

of endogenous inducers of inflammation (as shown above). 

In patients with gut dysbiosis, it was shown a decrease of Bacteroidaceae and an 

increase of Enterobacteriaceae, but this is dependent from stage of cirrhosis and its 

severity (36-40). However, changes in gut microbiome correlates with a more intense 

systemic inflammation, probably due to metabolites produced by intestinal 

microbiome itself (40). 

About bacterial translocation, it was shown that bacteria could release PAMPs that 

reach systemic circulation, it can be recognized by TLRs at different sites and trigger 
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inflammation (41, 42). Generally, TLR recognition is not dependent on bacteria viability 

or invasiveness (26). 

Among ACLF patients, indipendently from levels of systemic inflammation, patients 

who have prior episodes of decompensation of liver disease have a lower risk of death 

than those who do not have prior episodes of decompensation (4). It has been 

hypothesized that patients may be primed by prior episodes of decompensation and 

become more tolerant when exposed to new noxious stimuli.  

An extreme inflammatory response is not the only feature of ACLF. Interestingly it has 

been shown that in patients with ACLF circulating CD14+ immune cells are enriched 

MER-expressing subset of cells which exhibit decreased responses to LPS stimulation. 

MER receptor have a role in the clearance of apoptotic cells by phagocytes and it is the 

expression product of MERTK gene. The induction of MERTK occurs in response to 

stimuli homeostatic-restoring signals (43). Therefore, CD14+ cells expressing MER 

receptor may be engaged to protect damage tissues in ACLF contest.  

Further stressing these concepts it has been shown that plasma from patients with 

acute decompensation had increased levels of prostaglandin E2 that may inhibit the 

macrophages TNF-α production in response to LPS (44) and decrease the macrophages 

ability to kill bacteria.  

This findings suggests that some patients with ACLF and acute decompensation of 

cirrhosis show an immuneparalysis that may confer a predisposition to the 

development of new infections, that impairs survival in patients with cirrhosis (45). In 

patients with ACLF it may represent a sort of compensatory anti inflammatory 

response that is a well known condition in patients with sepsis (46). 
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2 Organ crosstalk 

The human organism is organized in various organ systems that are intimately 

connected to each other. The concept of “crosstalk” has not been clearly defined . The 

term comes from electronics, denoting any signal or circuit that unintentionally affects 

another. In molecular biology, crosstalk is used to describe instances when one or 

more components of signal transduction pathway affect a different pathway, either at 

the transmembrane or at the intracellular level. The “organ crosstalk” can be defined 

as the complex biological communication, signaling and feedback between distant 

organs mediated via cellular, molecular, neural, endocrine and paracrine factors. The 

physiological crosstalk is necessary to maintain regular homeostasis and normal 

functioning of the organism. Nevertheless, a pathological crosstalk can also develop 

when the effect of one malfunctioning and damage organ induces structural and/or 

functional dysfunction in distant organs. This effect is usually negative since it results 

injurious and destructive for the target organs and, as consequence, for the whole 

organism (47-50). Thus, in the diseased state, the crosstalk can trigger an organ 

disequilibrium and create a vicious damage in distant organs (49, 50).  

Liver and Kidney crosstalk 

Liver and kidney are important regulators of body homeostasis and are involved in 

excreting the toxic byproducts of metabolism and exogenous drugs (51). The 

intersection of liver and kidney disorders is so frequent in clinical practice that it 

seemed likely the hypothesis of a bidirectional crosstalk. There are a number of 

potential contributing causes for liver-kidney crosstalk that may predispose to the 

development of this vicious interaction and which are relevant for the susceptibility, 
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etiology, severity and duration of the disease state. Severity of the failing organ can 

initiate various complex metabolic, cell mediated and humoral pathways affecting 

distant organs, contributing to the high therapeutic costs, and significantly higher 

morbidity and mortality. The severity of liver damage often parallels the severity of 

kidney injury and viceversa (51, 52). An acute kidney injury (AKI) is common in patients 

with a severe liver disease while AKI may per se induce a liver damage by promoting 

oxidative stress, inflammation and apoptosis.  

IgA Nephropathy and Hepatorenal Syndrome are examples of pathological crosstalk. A 

high incidence of IgA nephropathy has been reported in patients with liver cirrhosis, 

though, clinically evident nephrotic syndrome is very uncommon. Impaired hepatic 

clearance of circulating IgA immune complexes and subsequent deposition in renal 

glomeruli has been considered principally in the pathogenesis of liver cirrhosis 

associated IgA nephropathy (53). Hepatorenal syndrome (HRS) is a functional form of 

acute kidney injury (AKI) that develops in patients with advanced cirrhosis or fulminant 

hepatic failure. It is the cause of deterioration of kidney function in only a fraction of 

all AKI cases diagnosed in cirrhotic patients (54). 

The liver-kidney crosstalk in the disease state is poorly understood. A better 

understanding of this bidirectional crosstalk may offer improved management 

strategies but it encompasses several mechanisms of cell and tissue damage and/or 

dysfunction.  
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3 Extracellular vesicles 

Several mechanisms involved in cell-to cell communication have been identified, 

including secretion of growth factors, cytokines, surface receptors, and nucleotides. 

Recent studies have suggested that cells may also communicate by membrane-derived 

nanometer-sized vesicles termed Extracellular Vesicles (EVs). For a long time, EVs were 

considered to be inert cellular debris and the frequently observed vesicles by electron 

microscopy in the interstitial space of tissues or in blood were considered the 

consequence of cell damage or the result of dynamic plasma membrane turnover. EVs 

are released by normal and diseased cells, both in vitro and in vivo. They have been 

identified in all major bodily fluid, including blood, urine, bile, saliva, semen, 

cerebrospinal fluid, as well as in cirrhosis-associated ascites (55). EVs are involved in 

many important biological processes as well as in disease pathogenesis (56, 57). EVs 

represent an heterogeneous population, differing in cellular origin, number, size, 

antigenic composition, and functional properties. 

Classification of EVs 

Based on their cellular biogenesis, EVs are classified into three groups: exosomes, 

microvesicles and apoptotic bodies (58). Exosomes are EVs derived from intracellular 

trafficking via the endolysosomal pathway: they are intraluminal vesicles contained in 

multivesicular bodies (MVBs), which are released to the extracellular environment 

upon fusion of MVBs with the plasma membrane. The size of exosomes is estimated to 

range between 40 and 150 nm in diameter (59). Microvesicles are vesicles of different 

sizes (usually from 50 to 1000 nm in diameter) which bud directly from the plasma 

membrane. Lastly, apoptotic bodies, usually greater than 500 nm in diamater, 
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represent cell fragments and they are formed by large-scale plasma membrane 

blebbing  during apoptosis. 

Communications via EVs 

The most critical function of EVs is intercellular communication. This may be paracrine, 

endocrine, and also autocrine. Communication via EVs involves two facets: target cell 

recognition and signal transfer to the target cell (60).  

EVs released from a given cell type may interact through specific receptor ligands with 

other cells, leading to target cell stimulation directly or by transferring surface 

receptors.  

This implicates that MVs interact only with target cells that specifically recognize 

rather than just with any cell present in the microenvironment. This interaction may 

either be limited to a receptor-mediated binding to the surface of target cells forming 

a platform for assembly of multimolecular complexes or leading to cell signaling, either 

to be followed by internalization as a result of direct fusion or endocytic uptake by 

target cells.  

Once internalized, MVs can fuse their membranes with those of endosomes, thus 

leading to a horizontal transfer of their content (mRNAs, microRNAs and proteins) in 

the cytosol of target cells. Alternatively, they may remain segregated within 

endosomes and be transferred to lysosomes or dismissed by the cells following the 

fusion with the plasma membrane, thus leading to a process of transcytosis. 

Several studies have demonstrated that RNA, DNA, and proteins are encapsulated in 

EVs as bioactive molecules. These play important role in intercellular communication, 

and in specific signal transduction in the pathophysiological states of cells both in vitro 

and in vivo (61-63).  
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In patients suffering from inflammation evoked by various diseases, EVs are often 

observed in plasma and in other body fluids (64-67) and the number of EVs are 

increased in response to the disease severity. In particular, the number of EVs has 

been observed to increase in the bloodstream of patients suffering from acute and 

chronic inflammation evoked by diseases such as sepsis, stroke, preeclampsia, 

atherosclerosis, diabetes mellitus, metabolic syndrome, and cancer (65, 67-71). 

Moreover, Hergenreider E. and Yamamoto S. (63, 72) showed that cells under 

inflammatory conditions actively communicate with their adjacent cells through EVs. 

Biological activities of  EVs 

EVs exert their effects on fundamental biological processes in a pleiotropic manner, 

directly activating cell surface receptors via protein and bioactive lipid ligands, merging 

their membrane contents into the recipient cell plasma membrane and delivering 

effectors including transcription factors, oncogenes, small and large non-coding 

regulatory RNAs, mRNAs and infectious particles into recipient cells (73-75)(Figure 3). 

 Manteinence of normal physiology: stem cell mainteinance, tissue repair, 

immune sorveillance and blood coagulation (64, 76); 

 Signalosomes: EVs can act as multifunctional signalling complexes for 

controlling fundamental cellular and biological functions (in the regulation of 

immune responses (77), in immune suppression (78) and immune activation 

(79); 

 Cell phenotype modulation: for example, in converting the hematopoietic stem 

cell phenotype into a liver cell phenotype (80); 
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 Stem cell maintenance and plasticity: stem cell-derived EVs have a pivotal role 

in tissue regeneration following injury (81); 

Pathological role of EVs 

 Stimulation of tumour progression: EVs induce proliferation in cells, stimulating 

tumor grown, stimulating angiogenesis, promoting matrix remodeling and 

inducing metastasis (75, 82); 

 Spread of pathogens: HIV-1, Epstein-Barr virus and prions (83-85); 

 Local propagation of neurodegenerative disease: Alzheimer Disease (86) and 

Parkinson's Disease (87). 
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Figure 3: Role of extracellular vesicles in normal physiology and disease pathogenesis (Nature Reviews 
Drug Discovery 12, 347-357 (2013)) 



29 
 

EVs in liver disease 

As it happens for cardiovascular disorders, thrombosis and cancer, also in case of liver 

cirrhosis circulating levels of EVs are increased. Some studies described this 

phenomena as a result of increased formation and/or decreased clearance of EVs. 

Causes which trigger EVs production are: alcohol consumption (88), viral infection (89), 

diabetes (90), obesity (91), dyslipidaemia (92) and physical inactivity (93). Processes in 

liver disease that increase EVs formation are apoptosis and cell activation. Moreover, 

stimuli for EVs release are oxidative stress (94), shear stress (95), systemic 

inflammation and bacterial translocation (96, 97). 

Under healthy conditions, spleen and liver macrophages are the primary contributors 

to EVs clearance from the circulation (98). It is well known that cirrhosis is associated 

with a defect in macrophage function, so Lemoinne S. et al. (99) speculate that 

clearance of EVs might be decreased in these patients. 

EVs in liver disease progression 

In physiological condition, extracellular vesicles are released at low levels from almost 

all cell types. Most of them are derived from platelets and endothelial cells (100) and 

have been shown to be important in haemostatic events such as coagulation. 

Nevertheless, the dynamics of EV secretion by different cell types and how the 

secreted EVs interact to advance the pathogenesis of a given disease is still unknown. 

Controlled in vitro study which involved liver injury model to explore EV-mediator 

fibrosis (101-103), transcriptomic signaling (104-108) and targeted immunotherapy 

(109-111) in artificial cell culture system. However, in vivo studies present an added 

degree of complexity due to the difficulty of identifying liver specific EVs within the 
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circulating pool. For this reason, several studies focus on EVs characterization and 

temporal changes in relation to liver disease development (112-114). 

Role of EVs in liver fibrogenesis, portal hypertension and activation of coagulation 

In hepatic fibrosis the excessive extracellular matrix is produced by activated 

mesenchymal cells which resemble myofibroblasts. They derive from quiescent hepatic 

stellate cells (115). It was shown that the same cells that drive fibrogenesis (hepatic 

stellate cells) can become major effectors of fibrolysis via production and activation of 

certain matrix metalloproteinases (MMPs) (116). Kornek et al. (103) demonstrated that 

T cell EVs circulate in blood and are elevated in patients with active chronic hepatitis C 

compared with patients with mild hepatitis C and healthy controls. Further, EVs 

derived both from CD8+ and CD4+ T cells can induce a fibrolytic phenotype in hepatic 

stellate cells. This activity depends on fusion of the plasmatic membrane with hepatic 

stellate cells membranes and transfer of T cell membrane molecules such as CD147  to 

hepatic stellate cells in a partly CD54 (ICAM-1) dependent manner. Moreover, indirect 

evidence indicates that EVs could also promote fibrolysis via the microRNAs they 

countain (117). 

Angiogenesis is proposed to promote fibrogenesis in the liver (118). Angiogenesis is 

increased by EVs generated in vitro from platelets, lymphocyte, and endothelial 

progenitors cells. Published results of Feldstein and colleagues (119) suggest that 

hepatocyte derived EVs contribute to angiogenesis and liver fibrosis in steatohepatitis, 

in a manner depandent on Vanin-1. In sight of this, the hypothesis is that the 

proangiogenic effect of EVs may have a role in promotion of fibrogenesis in the liver.  
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Portal hypertension is a frequent and severe complication of cirrhosis. It is a 

combination of structural and dynamic components. The structural components 

include fibrosis, regenerative nodule formation and vascular remodelling. EVs role in 

fibrosis is discussed above, but they might also contribute to vascular remodelling in 

cirrhosis through the release of EVs expressing Hedgehog ligands from hepatic stellate 

cells. These ligands induce the expression of inducible nitric oxide syntase (iNOS) (120).  

Moreover, portal myofibroblast release EVs that stimulate angiogenesis in a VEGF-

dependent manner, enhancing vascular remodeling (121). 

In cirrhotic patients, progressive splanchnic arterial vasodilatation may aggravates 

portal hypertension. EVs seem to contribute to vascular hypocontractility in patients 

with advance cirrhosis. This was demonstrated from Rautou et al. (122), which showed 

that patients with Child-Pugh B or C cirrhosis have increased circulating levels of EVs of 

Leukoendothelial, lymphocyte, erythrocyte and hepatocyte origin. These EVs decrease 

arterial blood pressure in mice through the transfer of phospholipids from EVs to 

endothelial cells. Interestingly, this was not observed with EVs from patients with 

Child-Pugh A cirrhosis. 

Role of EVs in hepatocellular carcinoma  

A study, published from Brodsky at al. (114), in a small group of HCC patients reported 

association between tumor size and plasma levels of hepatic and endothelial EVS. 

Furthermore, number of EVs decrease after HCC removal by liver transplantation. 

Many other group reported investigation of the role of EVs in the development of 

cancer. First of all, EVs promote angiogenesis. EVs containing the oncogenic epidermal 

growth factor receptor (EGFR) that could be taken by endothelial cells. Second, EVs 
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containing active oncogene (64). Third, EVs might also favour multidrug resistance, a 

major cause of unsuccessful cancer treatment (123). In the end, EVs may facilitates 

tumor invasion and metastasis, stimulating expression of matrix metalloproteinase in 

fibroblast by CD147 transport from T cell (124). 

Circulating procoagulant EVs in patients with acute liver failure  

Patients with acute liver failure seem to be prone to thrombosis than to bleeding 

complication, and intrahepatic thrombosis might exacerbate initial liver injury (125). 

The procoagulant activity of EVs, due to presence of phosphatidylserine and tissue 

factor at their surface, in patients with acute liver injury is fourfold and 38-fold higher 

respectively than that in healthy controls (126, 127). 

EVs as diagnostic and prognostic biomarkers in patients with liver disease 

A great interest has recently been directed toward using EVs as biomarker for disease 

diagnosis and prognosis. EVs isolated from several biological fluids (urine, bile, serum) 

can be characterized with proteomic, genomic and lipidomic approaches. 

Levels of EVs originating from CD4+ and CD8+ T cells are increased in patients with 

chronic hepatitis C, whereas levels of EVs from CD14+ and invariant natural killer T 

cells are augmented in patients with Non-alcoholic Fatty Liver Disease (NAFLD). This 

observation may be helpful in identifying the cause of liver blood test abnormalities in 

patients with HCV infection and the metabolic syndrome after liver transplantation 

(128). 

In liver rejection, EVs may be helpful in discriminating case of acute rejection, because 

EVs levels progressively decrease after surgery in patients without rejection (114). 
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Circulating EVs are potential noninvasive markers of disease severity and activity in 

chronic hepatitis C, NAFLD and cirrhosis (103).   

EVs levels were associated with the presence of the systemic inflammatory response 

syndrome. Multivariate logistic regression analysis showed that EVs concentration 

were indipendently associated with death and liver transplantation in patients with 

acute liver failure (127). Most of these circulating g EVs are CD41+. Thus, these 

originate from platelets, supporting the hypothesis that the severity of acute liver 

failure is related to systemic inflammatory response syndrome and coagulopathy.   

EVs and the complication of cirrhosis 

Probably, EVs don't have a role in the complications of cirrhosis, except for initial 

phase of development of portal hypertension. However, several properties of EVs 

contribute to ascites, hepatic encephalopathy, hepatopulmonary syndrome, 

portopulmonary hypertension and hepatorenal syndrome. 

The EVs ability to increase endothelial permeability and consequently, to contributed 

to the formation of ascites is still debated. Furthermore, EVs were found in the ascites 

of patients with ovarian and colorectal cancer but not in ascites of patients with 

cirrhosis (129). 

Instead, EVs contribute to hepatic encephalopaphy for several reasons: patients with 

cirrhosis and encephalopathy have 3.5-fold more leukoendothelial EVs than those 

without encephalopathy (122); EVs might increase blood-brain barrier endothelial cell 

permeability (130); brain endothelial cells might release EVs that induce astrocyte 

swelling (131).  
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The role of EVs in hepatopulmonary syndrome has not yet been assessed, but 

potentially EVs can modulate the main mechanism (pulmonary vasodilation and 

angiogenesis) involved in the development of this syndrome. 

Hepatorenal syndrome is characterized by functional renal failure in patients with 

cirrhosis and ascites. EVs may contributed to systemic and splancnic vasodilation (122). 

Moreover, EVs have been shown to induce renal vasoconstriction in sickle cell disease 

(132). 

  



35 
 

AIMS of THE STUDY 

The aim of this study was to characterize the molecular pathways involved in acute 

decompensation of cirrhosis and acute-on-chronic liver failure. This aim was pursued 

through the following intermediate goals: 

- Characterization of the inflammatory profile of patients by detection of pro-

inflammatory cytokines in plasma; 

- Evaluation of cytotoxic effects of plasma from patients with compensated cirrhosis, 

acute decompensation and acute-on-chronic liver failure on renal tubular cells 

considering the role of organ crosstalk on pathophysiology of liver disease; 

- Evaluation of expression of Inflammasome in renal tubular cells stimulated with 

plasma from patients with compensated cirrhosis, acute decompensation in cirrhosis 

and acute-on-chronic liver failure and in (PBMC) isolated from the same groups of 

patients; 

- Characterization of EVs from plasma of patients with compensated cirrhosis, acute 

decompensation and acute-on-chronic liver failure and healthy subjects like a vehicle 

of communication between organs; 

- Study of in vitro effects of EVs, extracted from plasma of patients with compensated 

cirrhosis, acute decompensation, acute-on-chronic liver failure and healthy subjects, in 

cells of renal tubular epithelium in order to investigate their role on pathogenesis of 

ACLF.   
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Material and Methods  

Patients  

Inclusion and Exclusion Criteria 

Outpatients with compensated cirrhosis: Inclusion criteria were as follows: (1) cirrhosis 

as diagnosed by liver biopsy or clinical, biochemical, ultrasound, and/or endoscopic 

findings; (2) age >18 years. Exclusion criteria were the follows: (1) hepatocellular 

carcinoma beyond Milan criteria; (2) ascites; (3) positive urine culture; (4) therapy with 

albumin; (5) autoimmune diseases; (6) genetic emocromatosis; (7) varices; (9) previous 

stories of decompensation.  

Patients with acute decompensation in cirrhosis: Inclusion criteria were as follows: (1) 

cirrhosis as diagnosed by liver biopsy or clinical, biochemical, ultrasound, and/or 

endoscopic findings; (2) age >18 years; (3) one or more major complications of liver 

disease (ie, ascites, encephalopathy, gastrointestinal hemorrhage, bacterial infection). 

Exclusion criteria: (1) liver transplantation; (2) Hepatocellular carcinoma; (3) 

hospitalization for scheduled procedures. 

ACLF patients: Inclusion criteria: (1) cirrhosis as diagnosed by liver biopsy or clinical, 

biochemical, ultrasound, and/or endoscopic findings; (2) age >18 years; (3) ACLF 

diagnosed according to the the EASL-CLIF consortium definition (Moreau et al 

Gastroenterology 2013). 

Study design and samples collection 

Demographic, clinical and routine laboratory data were collected at the inclusion in the 

study. Peripheral venous blood samples were collected from patients with Acute 

Decompensation and Acute-on-Chronic Liver Failure at diagnosis; patients with 
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compensated cirrhosis were enrolled at outpatients visit. Blood samples were 

collected in EDTA tubes and subsequently centrifuged for 10 min at 3,500 rpm. 

Following centrifugation, plasma was immediately separated from blood cells and 

stored at −80°C until use. All samples were processed within 4 h after collection. 

Collection and processing of control samples from healthy volunteers followed an 

identical protocol. 

Determination of IL-6, IL-1β and IL-18 in plasma 

Plasma was assayed for IL-6, IL-1β and IL-18. Cytokines concentration was measured by 

human instant enzyme-linked immuno-sorbent assay (ELISA) kit (eBioscience, San 

Diego, Calif., USA) with a fluorometric assay. Plasma was processed according to the 

manufacturer's instructions. Cytokines levels were measured in plasma at 450 nm by 

VICTOR X4 multilabel plate reader (Perkin Elmer Life Sciences, Waltham, Mass., USA) 

and concentrations (pg/ml) were calculated from the standard curve according to the 

manufacturer's protocol. Standard samples ranged from 7.8 to 500 pg/ml for IL-1β, 

from 3.1 to 200 pg/ml for IL-6  and from 78 to 5000 pg/ml for IL-18. Human IL-1β 

instant ELISA kit sensitivity is 0.7 pg/ml, human IL-6 instant ELISA kit sensitivity is 0.92 

pg/ml, and human IL-18 instant ELISA kit sensitivity is 9.2 pg/ml.  

Isolation of PBMCs from blood 

Human PBMC were isolated from 10 mL of venous blood using Ficoll–Hystopaque 

density centrifugation. After the centrifugation at 2200 rpm for 20 minutes at room 

temperature without brake, PBMC were collected from the interphase layer and 

washed with physiological solution (0,9% p/V NaCl)(Monico SPA, Mestre Venezia). 

PBMC were suspended in RPMI 1640 supplemented with 40% (v/v) FBS and storage at 

-80°C until further processing.  
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RTC Culture 

Primary cultures of human proximal Renal Tubular Cells (RTCs) were obtained from 

kidneys removed by surgical procedures from patients affected by renal carcinomas. 

An immortalized human proximal RTC line was generated by infection with a hybrid 

Adeno5/SV40 virus. The purity of the primary cultures was assessed on the basis of cell 

characterization, according to published criteria (133). RTCs were cultured in 

completed liquid-phase medium (RPMI-1640, PBI International, Milan, Italy) 

supplemented with 10% heat-inactivated fetal bovine serum for 30 min at 56°C, 2 mM 

L-glutamine, 100 IU/ml penicillin, and 100 mg/ml streptomycin (Sigma Chemical Co., 

St. Louis, Mo., USA). These cells were maintained in a controlled atmosphere (5% CO2) 

at 37°C and passaged at 80% confluence checked by an inverted microscope. 

Induction of Apoptosis 

RTCs were treated with participants' plasma from the Compensated Cirrhosis, Acute 

Decompensation and healthy subject groups. The ability of plasma to induce apoptosis 

was evaluated at 24 h. Untreated cells were maintained in the same manner and used 

as an internal control. 

RTCs were plated at 2 × 106 cells per well in 6-well plates and incubated with 90% 

RPMI-1640 medium (with 2 mM L-glutamine, 100 IU/ml penicillin, and 100 mg/ml 

streptomycin) and 10% of EDTA plasma from the Compensated Cirrhosis, Acute 

Decompensation and healthy subject groups in the standard condition (at 37°C in 5% 

CO2 for 24 h). Prior to use, RTCs were washed twice in Dulbecco's phosphate-buffered 

saline (PBS; without calcium and magnesium), pH 7.4. Each incubation was performed 

in triplicate. 
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Detection of cell viability by flow cytometry 

The Annexin V-FITC kit (Beckman Coulter, Brea, Calif., USA) is an apoptotic detection 

kit based on the binding properties of annexin V to phosphatidylserine and on the 

DNA-intercalating capabilities of propidium iodide (PI). Cells were washed twice with 

cold Dulbecco's PBS and resuspended in 500 μl of PBS at a concentration of 1 × 

106 cells/ml. 100 μl of this solution was incubated by 5 μl of FITC-conjugated annexin V 

and 2.5 μl PI (Beckman Coulter). The cells were gently vortexed and incubated for 15 

min at room temperature (25°C) in the dark. Then, 400 μl of 1× binding buffer was 

added to each tube. Analysis was performed by Navios Flow Cytometer (Beckman 

Coulter) to identify the subpopulations of the apoptotic cells within 1 h. Apoptotic cells 

were gated and enumerated by identifying those cells that exhibited FITC and PI 

staining. Annexin V-FITC labeling was used to quantitatively determine the percentage 

of cells that were undergoing apoptosis. PI was used to distinguish necrotic from non 

necrotic cells. The biparametric analysis showed three distinct populations: viable cells 

which had low FITC and low PI signals, apoptotic cells which had high FITC and low PI 

signals, and necrotic cells which had high FITC and high PI signals. A minimum of 

20,000 events were collected on each sample. 

Seeding Cells into xCELLigence Plates 

The E16 xCELLigence plates were prepared by addition of complete media (50 µL) to 

every well. After equilibration to 37 °C, plates were inserted into the xCELLigence 

station, and the base-line impedance was measured to ensure that all wells and 

connections were working within acceptable limits. The software automatically 

informs the researcher if any connection problems arise. Following harvesting and 
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counting, cells were diluted to the correct seeding density and added to the wells in 50 

µL.  

RNA extraction and quantification 

Total RNA was extracted using RNasy Trizol (Invitrogen, Carlsbad, CA) according to the 

manufacturer’s instructions and quantified by spectrophotometry at 260 nm. Total 

RNA (up to 1 mg) was reverse transcribed using kit iScript cDNA Synthesis (BioRad). 

The single cycle reaction consisted of 5 minutes at 25°C, 30 minutes at 42°C for to 

activated reverse transcriptase and 5 minutes at 5°C for to inactivate enzyme. 

Gene expression analysis 

After complementary DNA synthesis, quantitative real-time PCR reactions (RT-PCR) 

were carried out using the CFX96 Real-Time instrument (Bio-Rad Laboratories Inc, 

Hercules, CA, USA) and kit iQ SYBR Green Supermix (BioRad). The single-tube RT-PCR 

assays consisted of 1 denaturation cycle at 95°C for 30 s, 45 cycles of amplification at 

95°C for 10 s and 60°C for 30 s. Melt curve analysis was performed by ramping 

products from 65 to 95°C, acquiring fluorescence readings for each degree change. For 

genes, the fluorescence of the SYBR green dye was determined as a function of the 

PCR cycle number, giving the threshold cycle (CT) number. The CT values were used to 

quantify the PCR product, DCT was calculated by subtracting CT (control gene: Actin) 

from CT (target genes). The DCT value of the control was used arbitrarily as a constant 

that was subtracted from all other DCT values to determine DDCT value. In treated RTC 

cells and PBMC samples the relative expression were generated for each sample by 

calculating 2-ΔΔCt (134). 
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The following sets of primers were used: NFkB-F: 5′- GCCAACAGATGGCCCATACC -3′; 

NFkB-R: 5′- TGCTGGTCCCACATAGTTGC -3′; Caspase 1-F: 5'- ACATCCCACAATGGGCTCTG-

3'; Caspase 1-R: 5'- TCCACATCACAGGAACAGGC-3'; Caspase 3-F: 5'- 

TGCATACTCCACAGCACCTG-3'; Caspase 3-R: 5'-TTCTGTTGCCACCTTTCGGT-3'; TNF-α-F: 

5'-CCAGACCAAGGTCAACCTCC-3'; TNF-α-R: 5'-CCCTCCCAGATAGATGGGCT-3'; IL-1β-F: 

5'-CCACCTCCAGGGACAGGATA-3'; IL-1β-R: 5'-CAACACGCAGGACAGGTACAG-3'; NLRP3-

F: 5'-GAGGAAAAGGAAGGCCGACA-3'; NLRP3-R: 5'-CCCGGCAAAAACTGGAAGTG-3'; 

PYCARD-F: 5'-CCTCAGTCGGCAGCCAAG-3'; PYCARD-R: 5'-GGTACTGCTCATCCGTCA-3'; 

TLR2-F: 5'-CCCTGGGCAGTCTTGAACAT-3'; TLR2-R: 5'-GGCTTGAACCAGGAAGACGA-3'; 

TLR4-F: 5'-TCCCCTGAGGCATTTAGGCA-3'; TLR4-R: 5'-GAAAAGGCTCCCAGGGCTAA-3'. 

The housekeeping gene Actin was amplified in parallel in all amplification sets.  

EVs isolation and count 

Plasma EVs from cirrhotic patients and healthy subject were collected from 1 ml of 

plasma. EVs were isolated from plasma using a two-step differential centrifugation 

protocol based on a first low-speed centrifugation, 2000 g for 5 minutes, in order to 

remove cells, cellular debris and apoptotic bodies. The supernatant was subsequently 

ultracentrifuged at 100,000 g for 1 h at 4°C washed in serum-free medium 199 (M-199) 

to sediment plasma vesicles. Pellet of EVs was resuspended in M-199 (Sigma Aldrich) 

and 1% DMSO (Sigma-Aldrich) was added to allow freezing storage in -80°C until use. 

To trace EVs by fluorescent microscopy or FACS analysis, EVs were labelled with the 

red fluorescent aliphatic chromofore intercalating into lipid bilayer PKH26 DYE (Sigma-

Aldrich). After labelling, EVs were washed and ultrecentrifuged at 100,000 g for 1 

hours at 4°C. EVs pellets were suspended in M-199and stored at -80°C until use. 
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Plasma EVs were analysed by nanoparticle tracking analysis (NTA), using the NanoSight 

LM10 System (NanoSight Ltd, Amesbury, UK), configured with a 405 nm laser and a 

high sensitivity digital camera system as previous described (135). Briefly, EVs coming 

from 1 ml of plasma were resuspended in 200 μl of M-199 and 1% DMSO. Each 

samples was then diluted 1:1000 in physiologic solution (Fresenius Kabi, Runcorn, UK). 

For this analysis, a monochromatic laser beam at 405 nm was applied to the diluted 

suspension of EVs. For each sample, three videos of 30 seconds duration were 

recorded and number of particles/ml and mean size was averaged. NTA post-

acquisition settings optimized and kept constant between samples, and each video 

was then analysed to give the mean, mode, and median visicles size together with an 

estimation of the concentration.   

EVs characterization by FACS 

Flow cytometry analysis was performed with a FACSCalibur machine using CellQuest 

software (Becton Dickinson Bioscience Pharmingen, Franklyn Lake, NJ, USA). As EVs are 

too small for FACScan analysis, we bound EVs to surfactant-free white 

aldehyde/sulfate latex beads 4% w/v, 4 mm diameter (Molecular Probes, Invitrogen) 

(136). We incubated beads with EVs for 30 minutes at RT and then overnight at 4°C in 

a final volume of 1 ml PBS-BSA 0.5%. Then the adsorbed EVs were divided in different 

vials and incubated with antibodies diluted 1:50, for 15 minutes at 4°C. The adsorbed 

EVs were then washed and analyzed with a FACSCalibur and CellQuest software. Flow 

cytometry was performed using anti-human monoclonal antibodies (MAbs): FITC 

conjugated CD41(Becton Dickinson, San Jose, CA), CD42b and CD14 (Dako, 

Copenhagen, Denmark) and PE-conjugated CD62E, CD31, α4 integrin(Becton 

Dickinson, San Jose, CA), L-selectin (Dako, Copenhagen, Denmark), β1-integrin 
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(Chemicon Int., Temecula, CA). Comparison of plasma EVs among groups was 

performed by evaluating the relative amount of EVs positive for a selected marker in 

respect to all EVs, in conditions where the same quantity of EVs was tested 

(concentration detected by NTA analysis).  

Viability and Proliferation Assays on RTCs 

RTCs were cultured on 24-well plates (Falcon Labware, Oxnard, CA) at a concentration 

of 5 × 104 cells/well and incubated with 5∙108 EVs/ml for 24h and 250 μg/ml XTT 

(Sigma,St. Louis, MO) in a medium lacking phenol red. The absorption values at 450 nm 

(XTT) were measured in an automated spectrophotometer at different time points. All 

experiments were performed in triplicate. 

Detection of Apoptosis - TUNEL Assay in vitro on RTCs 

RTCs were subjected to TUNEL assay (terminal deoxynucleotidyltransferase (TdT)-

mediated dUTP nick end labelling) (ApopTag, Oncor, Gaithersburg, MD) after starving 

for 12 hrs without FCS and subsequent incubation with stimulation with EVs for 24h. 

Then, cells were fixed in 1% paraformaldehyde, post-fixed in pre-cooled ethanol and 

acetic acid 2:1, incubated with TdT enzyme in a humidified chamber at 37° C for 1 hr 

and counterstained with antidigoxigenin-FITC antibody and with propidium iodide (1 

μg/mL). Samples were analyzed under a fluorescence microscope and green-stained. 

Apoptotic cells were counted in 10 non-consecutive microscopic fields. 

ROS detection 

Image-iT LIVE Green Reactive Oxygen Species (ROS) Detection Kit was used to analyze 

oxidative stress on RTCs as suggested by manufacturer (Life Technologies). Briefly, 5-

(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) was 
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added to RTCs in different experimental conditions: after 30 min, cells were fixed with 

4% paraformaldehyde and then counterstained with Hoechst and analyzed by FACS 

analysis. 

Detection of FITC-conjugated albumin uptake 

Albumin uptake was studied after incubation of RTCs previously exposed to EVs with 

50 μg/ml of FITC-conjugated human albumin (Sigma, St. Louis, MO, USA) at 37°C for 

two hours. After FITC-albumin challenge, RTCs were extensively washed twice with 

PBS, detached from tissue culture plates with EDTA and analysed by FACS. 

FACS analysis 

For FACS analysis, after exposure to EVs, RTCs were detached from tissue culture 

plates with EDTA, washed twice with one times PBS and fixed with 4% 

paraformaldehyde. Cells were then stained for one hour at 4°C with antibodies 

directed to human zonula occludens-1 (ZO-1), megalin, PGC-1alpha (Santa Cruz 

Biotech, Santa Cruz, CA, USA). After incubation with primary antibodies, samples were 

washed twice with PBS and incubated with appropriated FITC-conjugated secondary 

antibodies (Sigma Aldrich, MO, USA) for 30 minutes at room temperature. At the end 

of staining, cells were newly washed and subjected to FACS analysis (Becton Dickinson, 

Franklin Lakes, NJ, USA). All incubation periods were performed using PBS containing 

0.25% BSA, 0.1% saponine and 0.0016% sodium azide. 

Statistical analysis 

Statistical analysis was performed with GraphPad Prism (Prism 5 for Windows, Version 

5.01). Continuous variables are presented as median (25%–75% percentile), according 



45 
 

to their distribution. The difference between 3 or more groups of these variables was 

analyzed with One-way ANOVA and Kruskal-Wallis test. The difference between two 

groups was analyzed with t-test. Significance level for all tests was set at p<0.05.  
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Results 

Patients 

In the first part of the study, 22 patients were enrolled: 12 patients with compensated 

cirrhosis, 8 with acute decompensation of cirrhosis and 2 with acute-on-chronic liver 

failure. In Table 2 demographic and biochemical data about the three different groups 

have been reported. 

Table 2: Demographic and biochemical data of patients included. Data are expressed as median and 
range. Differences between groups were analyzed using ANOVA test. 

  
    

 
range 

Compensated 
Cirrhosis 

Acute 
Decompensation 

Acute-on-chronic p-value 

male (%)  77% 75% 50% 
 

age (y)  63 (53-73) 61 (51-64) 59 (55-64) ns 
Total bilirubin (μmol/L) 1.7-17.0 14.3 (9.3-20.0) 80.3 (32.4-124.0) 590.8 (501.6-679.9) <0.0001 
Direct bilirubin  (μmol/L) 0.0-3.4 6.8 (4.4-8.8) 58.9 (21.8-86.6) 477.0 (407.2-546.7) <0.0001 
INR 0.88-1.13 1.1 (1.0-1.1) 1.4 (1.3-1.7) 1.9 (1.8-1.9) 0.001 
Creatinine  (μmol/L) 62-115 72.0 (65.0-92.0) 67.0 (60.0-84.5) 204.0 (150.0-258.0) ns 
Urea (mmol/L) 2.50-7.50 5.6 (4.3-7.2) 6.7 (4.8-9.6) 27.5 (19.7-35.2) ns 
Na (mmol/L) 136-145 140 (139-140) 133 (130-135) 132 (129-126) 0.001 
K (mmol/L) 3.4-4.5 4.1 (4.0-4.2) 3.8 (3.7-4.4) 4 (3.9-4.2) ns 
White blood cells (*10.9/L) 4.40-11.00 5.3 (4.5-7.7) 6.6 (4.7-9.1) 15.6 (11.6-19.6) ns 
Red blood cells (*10.12/L) 4.50-5.90 4.9 (4.3-5.0) 3.0 (2.8-3.3) 3.4 (3.2-3.7) <0.0001 
Haemoglobin (g/dL) 14-17.5 13.8 (12.5-14.4) 9.7 (9.3-10.3) 12.0 (10.3-13.6) 0.002 
Platelets (*10.9/L) 150-450 148.5 (70.8-201.2) 78.0 (55.5-126.0) 59 (59-59) ns 
AST (U/L) 10-45 31 (25-50) 51 (41-64) 43 (43-43) ns 
ALT (U/L) 10-50 30 (22-44) 32 (24-37) 31 (31-31) ns 
GGT (U/L) 3-65 32 (21-45) 37 (30-46) 99 (99-99) ns 
ALP (U/L) 56-128 75 (63-99) 124 (103-166) 250 (250-250) 0.006 
Albumin (g/L) 1-47 43 (41-44) 29 (25-31) 30 (30-30) 0.003 

 

 
    

 
 

    

 
 

    
Inflammatory profile in patients 

Plasma inflammatory cytokines levels were measured by ELISA assay in all patients. IL-

6, IL-1β and IL-18 levels did not show significantly differences between the groups 

(Table 3). Unfortunately, the number of patients whit acute decompensation of 

cirrhosis and acute-on-chronic groups was really low.  
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Table 3: IL-6, IL-1β and IL-18 levels in plasma of patients detected with ELISA assay. Data are expressed 
as median and range. Differences between groups were analyzed using ANOVA test. 

   
Compensated 
cirrhosis 

Acute decompensation Acute-on-chronic p-value 

IL-6   (pg/ml)  32.5 (27.4-47.1) 41.1 (31.3-58.5) 42.24 0.631 

IL-1β (pg/ml)  9.6 (9.4-10.1) 10.3 (8.8-11.1) 10.11 0.827 

IL-18 (pg/ml)  187 (138.1-220.2) 292.4 (167.9-408.6) 263.6 0.318 

Statistical analysis: non-parametric Kruskal Wallis test for n-indipendent samples  

 

Effect of plasma on RTCs viability 

Cytotoxic effect of plasma from patients was assayed in RTCs by flow-cytometry 

according to (137). The RTCs incubated with 10% v/v of plasma from patients with 

compensated cirrhosis, acute decompensation of cirrhosis and acute-on-chronic liver 

failure did not show significantly different levels of viability, apoptosis and necrosis 

after 24 hrs of stimulation (Figure 4). 

Figure 4: cell viability, apoptosis and necrosis detected by FACS after 24 hours of stimulation with 

plasma from the three groups of patients enrolled. Data are represented as single values and median. 
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Gene expression analysis on treated RTCs  

After stimulation, RTCs were collected for gene expression analysis. Total RNA was 

extracted and expression of the main molecules of inflammasomes (NFkB, NLRP3, 

Caspase-1 and -3, TNF-α, PYCARD and IL-1β) was assayed. The expression levels of 

molecules of inflammasome was not significantly different between the groups (Table 

4). 

Table 4: gene expression in RTCs stimulated with plasma from patients of the three groups enrolled. 

Data are expressed as median and range. Differences between groups were analyzed using ANOVA test. 

   Compensated cirrhosis Acute decompensation Acute-on-chronic p-value 

NFkB  1120 (1040-1528) 960 (728-1079) 924 (833-1016) 0.354 

NLRP3  1.7 (1.5-1.8) 1.0 (0.9-1.2) 1.2 (1.2-1.2) 0.159 

Caspase-1  27.7 (20.0-28.5) 9.1 (4.9-13.2) 2.1 (1.6-2.6) 0.056 

TNF- α  0.3 (0.3-0.3) 0.1 (0.1-0.3) 0.4 (0.3-0.5) 0.493 

PYCARD  2.7 (2.3-2.8) 2.7 (2.1-3.6) 1.4 (1.4-1.5) 0.096 

IL-1β  3.3 (2.6-3.8) 1.5 (1.1-3.6) 0.3 (0.2-0.3) 0.073 

Caspase-3 2.3 (2.2-2.3) 1.0 (0.9-1.9) 0.7 (0.6-0.8) 0.254 

The data are reported  as 2-∆∆CT 
Statistical analysis: non-parametric Kruskal Wallis test for n-indipendent samples  

 

Gene expression analysis on PBMC from patients 

Gene expression analysis of molecules of inflammasomes and the two main receptors 

of PAMPS and DAMPS (TLR2 and 4) was assayed also in PBMC extracted from whole 

blood of patients.  No differences in gene expression of molecules of inflammasome 

were found, except for TLR-2 (Table 5). Its expression in PBMC  from patients with 

acute decompensation was higher than compensated cirrhosis (p=0.031).  
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Table 5: gene expression in PBMC from patients of the three groups enrolled. Data are expressed as 
median and range. Differences between groups were analyzed using ANOVA test. 

 
   Compensated cirrhosis Acute decompensation Acute-on-chronic p-value 

NFkB  
0.0014 

(0.0011-0.0025) 
0.0007 

(0.0003-0.0012) 
0.0011 

(0.0010-0.0012) 
0.391 

NLRP3  
0.0008 

(0.0005-0.0011) 
0.0004 

(0.0003-0.0005) 
0.0006 

(0.0005-0.0007) 
0.441 

Caspase-1  
0.16 

(0.15-0.35) 
0.10 

(0.06-0.15) 
0.08 

(0.06-0.09) 
0.208 

TNF- α  
0.0019 

(0.0016-0.0091) 
0.0006 

(0.0003-0.0011) 
0.0005 

(0.0005-0.0006) 
0.077 

PYCARD  
0.075 

(0.062-0.120) 
0.065 

(0.036-0.078) 
0.043 

(0.034-0.051) 
0.441 

IL-1β  
0.0026 

(0.0021-0.0034) 
0.0015 

(0.0007-0.0022) 
0.0013 

(0.0010-0.0016) 
0.441 

Caspase-3  
0.0026 

(0.0021-0.0037) 
0.0012 

(0.0011-0.0027) 
0.0022 

(0.0020-0.0023) 
0.510 

TLR-2 
0.0043 

(0.00021-0.015) 
0.016 

(0.011-0.030) 
0.0071 

(0.0070-0.014) 
0.036* 

TLR-4 
0.000025 

(0.0000061-0.0018) 
0.0013 

(0.000081-0.0021) 
0.00080 

(0.00061-0.0012) 
0.422 

The data are reported  as 2-∆∆CT 
Statistical analysis: non-parametric Kruskal Wallis test for n-indipendent samples  

 

Evaluation of cell viability by xCELLigence Real-Time Cell Analyzer 

In a second phase of the study we included healthy subjects as control groups and we 

incremented the number of patients with acute-on-chronic liver failure (n=5).  

Cytotoxicity assay was performed with the xCELLigence Real-Time Cell Analyzer (RTCA) 

in order to measure RTCs viability and proliferation in real time after stimulation with 

plasma of patients and controls. It was assayed only a small group of patients for 

setting-up. In Figure 5 data about percentage of cell viability after 24 hrs of stimulation 

with 10% v/v of plasma has been reported. After these first experiments it was clear 

that there was not a defined trend in viability rate in the different groups.  

The same experiment was performed adding albumin to cell medium with 10% v/v of 

plasma from patient. It was used solution containing 0-20-45 g/L of albumin. Figure 6 
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shows that physiologic concentration of albumin (45 g/L) reduced cell death respect 

the absence of albumin in medium. 

Figure 5: viability rate in cells stimulated for 24 hours with plasma from patients and healthy subject 
enrolled. Data are represented as single values and median.  
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Figure 6: viability, represented as normalized cell index, in cell treated with plasma from one patients in 
medium containing different concentration of albumin. Data are expressed as single values and median. 
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Characterization of extracellular vesicles in cirrhotic patients  

Patients 

EVs analysis was carried on 48 patients: 12 healthy subjects, 12 patients with 

compensated cirrhosis, 13 patients with acute decompensation in cirrhosis and  11 

patient with acute-on-chronic liver failure. Table 5 record demographic and 

biochemical data of all patients. As expected there was a stepwise increase in bilirubin, 

INR, serum creatinine, white blood cells and haemoglobin moving from compensated 

cirrhosis to acute decompensation and acute-on-chronic liver failure. 

Table 5: Demographic and biochemical data of patients included. Data are expressed as median and 
range. Differences between groups were analyzed using ANOVA test. 

 Compensated 
Cirrhosis 

Acute 
Decompensation 

Acute-on-chronic p-value 

male (%) 75% 53.8% 81.8%  

age (y) 61.5 (52.5-70.5) 51.0 (43.8-65.3) 54.0 (51.0-66.0) ns 

Total bilirubin (μmol/L) 26.0 (14.2-35.3) 54.6 (33.5-138.2) 300.2 (151.1-434.4) <0.0001 

Direct bilirubin  (μmol/L) 10.5 (6.3-13.0) 38.8 (22.1-103.3) 244.5 (117.0-356.3) <0.0001 

INR 1.3 (1.0-1.3) 1.5 (1.4-1.6) 1.8 (1.7-2.8) <0.0001 

Creatinine  (μmol/L) 69.5 (59.8-86.0) 68.0 (52.5-79.0) 117.0 (73.0-312.0) 0.017 

Urea (mmol/L) 4.3 (3.7-7.5) 3.8 (2.9-8.7) 11.6 (8.7-26.5) 0.0024 

Na (mmol/L) 140 (137-141) 135 (127-137) 133 (130-137) 0.0198 

K (mmol/L) 4.3 (4.0-4.4) 3.7 (3.3-4.2) 4.3 (3.7-4.7) ns 

White blood cells (*10.9/L) 3.7 (2.8-4.3) 5.8 (4.1-6.6) 10.0 (6.8-11.8) 0.0008 

Red blood cells (*10.12/L) 4.6 (4.3-4.9) 2.8 (2.7-3.6) 3.0 (2.5-3.5) <0.0001 

Haemoglobin (g/L) 125 (102-149) 101 (87-105) 95.0 (83-116) 0.0298 

Platelets (*10.9/L) 53.0 (38.0-120.3) 95.0 (78.0-134.0) 59.0 (43.0-65.0) 0.0242 

AST (U/L) 41.0 (29.3-89.0) 67.0 (41.8-82.8) 118.0 (50.0-215.0) ns 

ALT (U/L) 30.0 (18.8-100.3) 34.0 (17.0-44.0) 58.0 (31.0-128.0) ns 

GGT (U/L) 37.5 (18.8-103.3) 66.0 (44.5-378.0) 48.5 (14.0-95.3) ns 

ALP (U/L) 86.5 (54.3-104.8) 156.0 (118.0-165.0) 138.0 (98.5-221.0) 0.0057 

Albumin (g/L) 40.0 (38.0-46.0) 28.0 (24.0-36.0) 29.0 (26.0-32.0) 0.0005 
 

    

 

Detection of plasma EVs in cirrhotic patients and healthy subjects 

EVs in plasma obtained from all enrolled patients and healthy subjects were quantified 

and size was determined by NanoSight analysis. Data collected about size and 

concentration were reported in Table 7.  
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Plasma EVs showed a heterogenic size between the groups: the size of EVs from 

healthy subjects was significantly lower only respect Acute-on-chronic group 

(p=0.0019).    

Table 7: size and concentration of EVs analyzed in the four groups. Data are reported as median of 
mode values calculated by Nanosight, and range. 

samples Mode size (nm) Concentration 
(particles/ml) (*10

11
) 

healthy subject 167,5 (130,6-192,1) 0,2 (0,2-0,3) 

compensated cirrhosis 191,0 (163,2-238,9) 0,4 (0,3-0,5) 

Acute Decompensation 189,9 (174,4-223,0) 0,3 (0,2-0,7) 

Acute-on-chronic 220,6 (193,3-250,9) 0,7 (0,5-1,5) 

 

Data about concentration of EVs showed a trend toward their increase in patients with 

cirrhosis and ACLF, as shown in Figure 7. In fact the concentration of EVs from Acute-

on-chronic group was significantly higher than concentration in healthy subjects 

(p=0.0021). 
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Figure 7: histogram of concentrations (in particles for milliliter) of EVs extracted from plasma of patients 
enrolled. Data are represented as mean ± standard error of the mean (SEM). Statistical analysis was 
made with ANOVA test. 
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We then stratified any group of patients according to the most frequent size of EVs as 

follows: "less than 150 nm", "between 150 and 200 nm" and "up to 200 nm". As shown 

in Figure 8, the percentage of patients having a prevalence of small vesicles was higher 

in healthy subjects and disappeared in patients with acute-on-chronic liver failure. 

Controversely,  the percentage of big vesicles was higher in acute-on-chronic liver 

failure group than the other groups. 
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Figure 8: in each group of subject enrolled, EVs is grouped by size. Healthy subject have EVs smaller than 
200 nm. Acute-on-chronic patients have EVs bigger than 150 nm. 

 

Characterization of EVs 

Cytofluorimetric analysis of the EVs using  the antibody showed in Table 8 was used for 

determining the origin of EVs. 

Table 8: selected markers for EVs origin characterization 

Marker  Localization  Function  

CD41  platelets membrane glycoprotein  

CD42b  platelets Von Willebrant factor Receptor  

CD14  Monocyte, macrophages, granulocytes membrane receptor  

CD31/PECAM-1  endothelium cell adhesion  

CD62E/E-selectin  platelets activated endothelium cell adhesion  

 

Analysis of EVs showed the absence of typical platelet markers such as CD41 and 

CD42b and also for monocyte/macrophages/granulocyte marker CD14 (Figure 9 A, B, 

C). The endothelial marker CD31 was expressed in EVs from patients with Acute 

Decompensation of cirrhosis and Acute-on-chronic liver failure (Figure 9 D). EVs from 

Acute-on-chronic patients were positive for CD42E, a platelet activated endothelium 
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marker, and this expression was significantly higher respect healthy subjects and 

patients with compensated cirrhosis (p=0.0041 and p=0.0111, respectively)(Figure 9 E). 

EVs were characterized also for the presence of molecules involved in vesicles 

internalization in target cells or tissue (integrins and selectins) and a molecule crucial 

for cell signaling in both adaptive and innate immunity, CD40 Ligand (Table 9). 

 

Table 9: Other selected markers for EVs characterization 

Marker  Localization  Function  

CD40 Ligand/CD154  T activated cells  cytokines production, macrophages activation  

CD29/β1-integrin  focal adhesion  cell adhesion  

α-4 integrin  leukocytes  cell adhesion  

CD62/L-selectin  white blood cells  hinder MV endocitosis  

 

α4 , β1-integrin and L-selectin expression was higher in EVs from acute-on-chronic liver 

failure patients than healthy subjects (all p=0.0017). L-selectin was more expressed in 

patients with acute-on-chronic liver failure than in those with compensated cirrhosis 

(p=0.0014)(Figure 9 F, G, H). Expression of CD40 Ligand was higher in all group of 

patients than healthy subject (healthy vs compensated p=0.0009; healthy vs acute 

decompensation p=0.0226; healthy vs acute-on-chronic p<0.0001) and between 

patients, the expression was higher in acute-on-chronic liver failure group than in 

compensated cirrhosis (p=0.0008)(Figure 10). 

 
 
 
 
Figure 9: Graphs represent EVs characterization. Comparison of EVs among groups was performed by 
evaluating the relative amount of EVs positive for a selected marker in respect to all EVs. Data are 
shown as single values, median and interquartile range. Statistical analysis was performed using the 
Mann-Whitney test. 
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Figure 10: CD40L expression in EVs for each group. Comparison of EVs among groups was performed by 
evaluating the relative amount of EVs positive for a selected marker in respect to all EVs. Statistical 
analysis was performed using the Mann-Whitney test. 

he
at

hy
 s
ub

je
ct
s

co
m

pe
ns

at
ed

 c
irr

ho
si
s

ac
ut

e 
de

co
m

pe
ns

at
io
n

A
cu

te
-o

n-
ch

ro
ni
c-50

0

50

100

CD40L

***
*

**


(F

L
1
-H

):
 F

IT
C

**

 

When we divided patients in groups according to CD40 Ligand expression percentage, 

patients with higher level of CD40 Ligand expression (>50%) were almost completely  

acute-on-chronic, instead healthy subjects expressed lower levels of this molecule 

(<5%)(Figure 11). 

 

 

 

 

 

 

 

 

 

Figure 11: expression levels of CD40L in EVs is categorized in the histogram. Classes are: CD40L levels 
lower than 5% in EVs, levels between 5 and 25%, between 25 and 50% and expression levels above 50% 
in EVs. In ordinate axis is represented the number of patients. 
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EVs: In vitro experimentation 

Effect of EVs on RTC viability 

EVs cytotoxic effects in vitro was tested on RTCs (Figure 12). After 48 hr of incubation, 

cells showed decrease in cell viability at MTT assay when incubated with EVs from 

patients with acute decompensation and acute-on-chronic respect controls and EVs 

from patients with compensated cirrhosis (all p<0.0001). 

Figure 12: Effect of EVs on RTCs viability, expressed as optical density (O.D.). Less is O.D. lower is cell 
viability. Statistical analysis was performed using the Mann-Whitney test. 

   

 

 

 

 

 

 

 

 

Apoptosis was detected on RTCs stimulated with EVs by TUNEL assay (Figure 13). 

Apoptotic rate increased in cells incubated with EVs from patients than in those 

incubated with EVs from healthy subject (all p<0.0001). Apoptotic rate was 

significantly higher in acute-on-chronic liver failure group than in compensated 

cirrhosis group (p=0.0006). 
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Cell stimulation with EVs led to massive production of ROS when vesicles belonging to 

patients with acute decompensation or acute-on-chronic liver failure were used 

(p<0.0001). Instead, there was no significant ROS production from cells incubated with 

EVs from patients with compensated cirrhosis respect healthy subjects (Figure 14). 

Figure 13: apoptosis in RTCs stimulated with EVs assayed with TUNEL. In order axis there is the mean 
number of apoptotic cells detected for field. Data is represented as single value, median and 
interquartile range. Statistical analysis was performed using the Mann-Whitney test.   
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Figure 14: ROS production in RTCs incubated with EVs. Comparison of ROS among groups was 
performed by evaluating the relative amount of cells positive for a selected marker in respect to all cells. 
Data is represented as single value, median and interquartile range. Statistical analysis was performed 
using the Mann-Whitney test. 

 

 

 

 

 

 

 

 

 

Effect of EVs on cellular functions and activity 

Using Albumin-fitc it was possible to track transportation of albumin inside epithelial 

tubular cells. Figure 15 shown  a decrease in albumin transportation in cells incubated 

with EVs from patients with acute decompensation and acute-on-chronic liver failure 

(p<0.0001). One of albumin transporters, Megalin, was detected by flow cytometry 

assay and its expression didn't change between the groups (Figure 16).  
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Figure 15: albumin-fitc intake in RTCs incubated with EVs. Comparison of albumin amount in cells among 
groups was performed by evaluating the relative amount of cells positive for albumin in respect to all 
cells. Data is represented as single value, median and interquartile range. Statistical analysis was 
performed using the Mann-Whitney test.  
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Figure 16: Megalin expression in RTCs incubated with EVs. Comparison of Megalin expression in cells 
among groups was performed by evaluating the relative amount of cells positive for Megalin in respect 
to all cells. Data is represented as single value, median and interquartile range. Statistical analysis was 
performed using the Mann-Whitney test.  
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The expression of cell-cell junction protein ZO-1 decreased in cells incubated with EVs 

from patients than controls, but a significant difference was found only between 

patients with acute decompensation and healthy subjects (p=0.0166) (Figure 17). 

Figure 17: ZO-1 expression in RTCs incubated with EVs. Comparison of ZO-1 expression in cells among 
groups was performed by evaluating the relative amount of cells positive for ZO-1 in respect to all cells. 
Data is represented as single value, median and interquartile range. Statistical analysis was performed 
using the Mann-Whitney test.  
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It was determined also the expression of PGC1α, a molecule involved in mitochondria 

biogenesis, in renal tubular cells stimulated with EVs. As shown in Figure 18 there was 

no difference in PGC1α expression between the groups.  
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Figure 18: PGC1α expression in RTCs incubated with EVs. Comparison of PGC1α expression in cells 
among groups was performed by evaluating the relative amount of cells positive for PGC1α in respect to 
all cells. Data is represented as single value, median and interquartile range. Statistical analysis was 
performed using the Mann-Whitney test.  
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Discussion 

In this project it was studied the acute and acute-on-chronic liver failure from a 

biological point of view. Starting from the patients, it was carry on a study with 

different approaches, in order to in vitro characterize liver disease. The first approach 

was focused on the characterization of inflammatory profile of the patients through 

the detection of pro-inflammatory cytokines in plasma; the second hypothesized a 

cytotoxic activity of molecules released in the blood flow from the organ or organs 

injured. The last one was born on the need of focusing the attention on a single 

component of plasma, the extracellular vesicles. 

Patients enrolled in the first part of the study showed abnormalities in laboratory 

findings including elevated serum bilirubin, prolonged prothormbin time (elevated 

international normalized ratio, INR) and hyponatremia. The levels in these parameters 

significantly differed between the groups of cirrhotic patients, acute decompensation 

and patients with acute-on-chronic liver failure. Groups differed also for ALP levels and 

serum albumin concentration. Creatinine and urea, markers of kidney function, were 

elevated respect physiological range in patients with acute-on-chronic liver failure. 

Renal dysfunction is critical in the definition of acute-on-chronic liver failure and it has 

been found a powerful predictor of mortality in patients with cirrhosis. Indeed, these 

patients have a high risk to develop AKI. AKI is defined as an abrupt (within 48 hours) 

reduction in kidney function currently defined as an absolute increase in serum 

creatinine of more than or equal to 0.3 mg/dl (≥ 26.4 μmol/l), or a percentage increase 

in serum creatinine of more than or equal to 50% from baseline which is known, or 

presumed, to have occurred whithin the prior 7 days (138, 139). AKI can be found in 

27–49% of patients hospitalized for an acute decompensation of cirrhosis (140-143). 
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AKI markedly increased mortality in cirrhotic patients, whose 3-month mortality rate 

reached 26% (144). Increasing evidences show that inflammatory response is involved 

in apoptosis and cellular dysfunction during AKI, mediated by the activation of 

inflammasome (145). Furthermore, also acute decompensation and acute-on-chronic 

liver failure were characterized by systemic inflammation (4) and activation of 

inflammasome (23). For these reasons, first step of the  study was to characterize the 

inflammatory profile of patients through the detection of plasma levels of IL-6, IL-1β 

and IL-18. The second one was to assess the cytokines release from cells in which 

inflammasome was activated. Unfortunatly, this determination was difficult to perform 

because of the small sample size, especially for acute-on-chronic liver failure group. 

However, these samples were part of a group of 522 patients with decompensated 

cirrhosis (237 with acute-on-chronic liver failure) and 40 healthy subjects in which it 

was measured a panel of 29 cytokines and marker of systemic oxidative stress by Clària 

J. and co-workers and recently published in Hepatology (20). It was shown that 

patients with acute decompensation and without acute-on-chronic liver failure had 

very high baseline levels of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-8, 

macrophage chemotactic protein 1 (MCP-1), inducible protein 10 (IP10), macrophage 

inflammatory protein(MIP)-1β, granulocyte macrophage colony-stimulating factor 

(GM-CSF) and granulocyte colony-stimulating factor (G-CSF). Moreover, patients with 

acute-on-chronic liver failure showed higher levels of pro-inflammatory cytokines than 

those without. Surprisingly, Clària J. described also a characteristic cytokines profiles 

according to the type of precipitating event of acute-on-chronic liver failure. Finally, in 

the paper was highlighter the pivotal role of systemic inflammation as the primary 

driver of acute-on-chronic liver failure (20).  Few years ago, Baroja-Mazo and 



67 
 

colleagues (146) found that activation of inflammasomes led to the release of 

functional oligomeric inflammasome particles containing both NLRP3 and ASC that 

acted as danger signals to amplify inflammation by promoting the activation of 

caspase-1 extracellularly and in surrounding macrophages following internalization of 

the particles. In macrophages, caspase-1 induces the specific type of cell death called 

'pyroptosis'. It was clear that this effect hit not only macrophages but overexpression 

of ASC was found able to induce the death also in culture of monkey kidney cells (146). 

For this reason, one aim of this study was to determined the cytotoxic effect of plasma 

from patients enrolled on renal epithelial cell line. First of all, the effect of circulating 

molecules in activation of inflammasome in cells was evaluated by gene expression of 

inflammasome components (receptors, catalytic domain, adaptor molecule, etc..) in 

epithelial cell line. Secondly, the cell death as a consequence of inflammasome 

activation after stimulation of cell culture with plasma from patients was assessed. 

This was performed by detection of annexin V and propidium iodide bond in cells. This 

approach has been largely applied for understanding the mechanism of cell death 

involved in Cardiorenal Syndromes pathophysiology (137, 147-150). In this syndrome, 

apoptosis played a pivotal role in organ injury and failure. A dual apoptotic pathway 

activation in cells incubated with plasma from patients was found, as well as the 

production of pro-inflammatory cytokines in vitro (137, 148).   

Unfortunately, in patients enrolled in the first phase of the study no clear trend in cell 

viability or death was identified among groups. It has been hypothesized that both the 

low sample size and the complexity of plasmatic fluid may be responsible of these 

results. Patients with acute decompensation in cirrhosis, and acute-on-chronic above 

all, had a molecular ensemble in plasma that included cell grow factors, drugs, pro- 
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and anti-inflammatory cytokines and mediators, excess of bilirubin and low levels of 

the main molecules scavenger such as albumin, that might interact with cells and gave 

conflicting signals. Furthermore, therapy for patients admitted in hospital (both 

patients with acute decompensation and acute-on-chronic) might represent another 

confounding factor that influences in vitro cell viability.      

The in vitro effect of the main active drugs administered to patients with compensated 

and decompensated cirrhosis have been reported. Potassium canrenoate, a synthetic 

steroid and is used in the treatment of hypertension, induced a dose-dependent 

degree of DNA fragmentation and of DNA repair synthesis in primary cultures of 

hepatocytes from rat and human donors (151). Beta blockers are known to have 

favorable effects on endothelial function partly because of their capacity to reduce 

oxidative stress (152). Controversial results were collected for vitamin B12. A recent 

study showed that cytotoxicity activity in Caco-2 cells, a colon cancer cells, was lacked 

for vitamin B12 (153). It was also observed mitochondrial ROS accumulation and 

decreased mitochondrial SOD2 expression. Moreover, electron microscopy showed 

mitochondrial swelling (154). Vitamin K1 has been demonstrated as having 

antiproliferative and proapoptotic effects in colon cancer cell lines (155). 

Insulin stimulates the growth and proliferation of a variety of cells in culture. Several 

hypotheses have been proposed, including regulation of essential metabolic processes 

and interaction of insulin with receptors for insulin-like growth factors. Evidence 

supporting these various hypotheses is reviewed (156). 

Furthermore, it was demonstrated that pure albumin stimulates proximal tubular 

epithelial cells (PTEC) proliferation, and may have a role in homeostasis in health, as 
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well as in disrupted PTEC turnover in proteinuric nephropathies (157). Closely related 

results were obtained in our study when adding physiological concentration of albumin 

to the cell medium with plasma from cirrhotic patients, it was found a decrease in cell 

mortality respect the condition of low concentration of albumin. 

The lacking of activation of inflammasome in cells stimulated with plasma from 

patients was confirmed by gene expression. The same analysis was made in PBMC of 

patients and it was found an interesting expression pathway of TLR-2, that increase in 

PBMC of patients with acute decompensation and decrease in patients with acute-on-

chronic liver failure, respect a condition of compensated cirrhosis. Toll-like receptor 

(TLR) 2 was critically involved in production of TNF-α in response to Gram-positive 

microbial stimuli (158). Riondan et al. (159) showed an up-regulation of TLR-2 

expression in CD14+ PBMC of cirrhotic patients, despite none of whom showed 

evidence of overt infection. TLR-2 expression was increase irrespective of the etiology 

of cirrhosis and thus is likely related to cirrhosis per se. Following in vitro PBMC 

stimulation with an endotoxin of S. aureus, the production of TNF-α by was inversely 

related to PBMC expression of TLR-2 and was significantly blunted in cirrhotic patients 

compared with control subject. Riondan (159) concluded saying that, even in the 

absence of clinically apparent sepsis, PBMC of cirrhotic patients had been 

presensitized by exposure to Gram-positive bacteria antigens in vivo and developed 

tolerance to such antigens in vitro.  

The trouble of studying molecular signaling vehicled from the whole plasma led us to 

focus on one of its components, the EVs. These vesicles were one of the main actors 

responsible of cell-to-cell communication in the organism. In large scale, this 

communication led to both physiological and pathological crosstalk between distant 
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organs. The biogenesis and cellular release of the vesicles were largely described (160) 

and their involvement in liver disease pathogenesis was addressed through the 

characterization of extracellular vesicles in different scenario: nonalcoholic 

steatohepatitis, alcoholic hepatitis, viral hepatitis, liver fibrosis, cholangiopathies and 

hepatobiliary malignancies as reviewed elsewhere (160). Little is known about the 

characterization of EVs in the progression of liver pathology. In this project was 

observed that, after isolation from plasma, concentration of EVs increase with the 

progression of hepatopathy. Several works were published on changes in plasma levels 

of circulating EVs in patients with cardiovascular and other disease (69, 90, 91) or 

about the stimuli of EVs release relevant for liver disease (reviewed in (99) but in our 

case it was considered the increase in concentration related to hepatopathy stage by 

comparison between healthy subjects and patients and between compensated and 

decompensated cirrhosis, regardless of etiology of cirrhosis. About size of EVs Momen-

Heravi F. (161), according to Scott et al. (Analytical Ultracentrifugation: Techniques and 

Methods Scott et al., 2005 The Royal Society of Chemistry, 273–276), said that EVs 

derived from plasma and serum had smaller sizes that reflect more Brownian motion 

during sedimentation (streaming factor), which could lead to reduced resolution and 

sedimentation efficiency.  

Despite the vast majority of EVs were origined from platelets, those found in the 

cirrhotic patients were more frequently originated from activated endothelium. It 

could be hypothesized the use of a small number of markers for the characterization of 

platelets and monocyte origin. However, Stravitz et al. (127), in the characterization of 

EVs phenotypes in plasma of patients with acute liver failure and acute liver injury, 

reported the prevalence of platelets, hepatocyte, monocyte, but also endothelial cells, 
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although few in number. EVs isolated from patients expressed high levels of integrins 

and selectins molecules compare to healthy subjects. Surface-exposed receptors and 

ligands were responsible for biodistribution, for the binding of EVs to target cells or to 

the extracellular matrix. Subsequently, EVs may trigger intracellular signalling 

pathways through a simple interaction with the surface receptors or ligands of target 

cells or by undergoing internalization (55). 

While CD40L was classically described on the surface of activated T lymphocytes, it is 

also found on activated mast cells and eosinophils (162). An especially important site 

of CD40L expression is the activated platelet (163). Therefore, following an acute 

injury, infiltrating platelets and inflammatory cells can both activate a variety of local 

structural cells, including fibroblasts, through the CD40–CD40L system (164). This 

means two main things: the first, it could be hypothesized that EVs characterized in 

this study could have platelets phenotype, underlined by the CD40L in their surface. 

Secondly, Henn V. and colleagues in 1998 (163) demonstrated that CD40L on platelets 

induces endothelial cells to secrete chemokines and to express adhesion molecules, 

thereby generating signals for the recruitment and extravasation of leukocytes at the 

site of injury. In this case we could hypothesize that both platelets and platelets-

derived EVs may activated the endothelium in cirrhotic patients. Endothelium itself 

could release other EVs we described above. The result was a local injury and a spread 

of inflammatory molecules by EVs. While EVs in vitro effects were studied only on 

renal tubular cells, the results were very interesting: EVs from patients induced 

apoptotic death of cells that was significantly higher in acute decompensation and 

acute-on-chronic liver failure than that observed in compensated cirrhotic and healthy 

subjects. In the same times, a conspicuous production of ROS was induced which was 
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maximal in cells incubated with EVs from patients with acute decompensation and 

acute-on-chronic liver failure. The same cells showed substantially decreased in 

albumin uptake, that is one of the main function of renal epithelial tubular cells.  

Although albumin is a large anionic protein, it is not completely retained by the 

glomerular filtration barrier. In order to prevent proteinuria, albumin is reabsorbed 

along the proximal tubules by receptor-mediated endocytosis, which involves the 

binding proteins megalin and cubilin. Endocytosis depends on proper vesicle 

acidification. Disturbance of endosomal acidification or loss of the binding proteins 

leads to tubular proteinuria (165).  Interestingly an increase in albuminuria has been 

found in patients with cirrhosis and acute-on-chronic liver failure (166). Christensen et 

al. (167) claimed that megalin, a 517-kDa monomeric protein in the proximal tubular 

brush border, was responsible for albumin endocytosis, according to their functional 

data.  For this reason, also expression of megalin was investigated and it was shown 

that its expression did not change between the group of cells stimulated. Probably, EVs 

did not have effects on megalin production. EVs might have a role as inhibitory 

effector for albumin endocytosis but further experiments are needed. Mitochondria 

were essential in cells, especially if cells had active transport mechanism, such as 

Na+/K+ ATPase pump. In renal tubular cells stimulated with extracellular vesicles, was 

detected the concentration of PGC1α, a molecules involved in mitochondria biogenesis 

(168). The lacking of differences in PGC1α expression between the groups of cells 

treated suggested that EVs had no influences in mitochondria biogenesis. 

The zona occludens proteins (ZO) are a family of tight junction associated proteins that 

function as cross-linkers, anchoring the tight junction strand proteins to the actin-

based cytoskeleton (169). ZO-1 is a cell-intrinsic determinant of epithelial polarization 
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and lumen formation through coordination of multiple cellular processes, including 

mitotic spindle orientation (170). Physiological tubular handling of electrolytes is based 

on the maintenance of cell polarity and on the integrity of tight junction protein 

expression. After stimulation of tubular cells with healthy and cirrhotic groups EVs, it 

was observed a marked decrease of ZO-1 expression, especially between healthy 

subjects and patients with acute decompensation in cirrhosis. Other experiments are 

needed for confirm these data, but one may argue that these functional changes could 

alter the ability of tubular cells in maintaining compositionally distinct fluid-filled 

compartments with precise electrolyte concentrations. 

Increased permeability of the gut has been demonstrated in patients with 

inflammatory disorders such as cirrhosis (171) as well as animal models of intestinal 

inflammation and infection (172). Alterations in tight junction architecture are one 

cause of increased permeability (173). Changes in the expression of these different 

tight junction proteins alter the resistance of the intestinal barrier. Bacterial 

translocation commonly occurs in both cirrhotic rats with ascites (45–78%) and 

cirrhotic patients (174). In our study, only renal epithelial cell line were used and a 

decreased expression of ZO-1 was shown in renal tubular cells after EVs stimulation of 

cells. However, if we hypothesize a decrease expression of ZO-1 also in intestinal 

epithelium after EVs actions, we could consider that EVs may be involved in increasing 

intestinal permeability and bacterial translocation in cirrhotic patients.  
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Conclusions 

In conclusion, this study showed that characterization of inflammatory profile of 

patients with compensated, but especially decompensated cirrhosis, need a big sample 

size and well selected patients for avoid confounding factors and reach statistical 

significance. Sometimes, cytotoxic effect of plasma is not easy to detect if we consider 

the whole plasma. EVs may have active role in cirrhosis: they are able to induce 

apoptosis and increase ROS production in renal tubular cells. Furthermore, this study 

demonstrates that EVs from patients with decompensated cirrhosis and acute-on-

chronic liver failure are able to produce functional alteration of tubular epithelial cells 

such as the loss of cell polarity. We need to investigate the role of EVs in 

decompensated cirrhosis and study their hypothetic role as vehicle of mediator of 

extrahepatic organ injury and complications of cirrhosis.  
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