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ABSTRACT

During these years of my Ph.D. studies the main aim of the research work was to improve the
efficiency on energy generation into industrial facilities. Novelties are proposed both on the devices
used for energy generation and on energy consumption data analytics. In the first part of the thesis,
Solid Oxide Fuel Cell (SOFC) and Reversible Solid Oxide Cell (RSOC) are proposed: these
technologies have many advantages such as high efficiency on energy generation, heat available at
high temperature, and modularity.

A new heat recovery for a modular micro-cogeneration system based on SOFC is presented
with the main goal of improving the efficiency of an air source heat pump with unused heat of fuel
cell exhausted gases. The novelty of the system proposed is that exhaust gases after the fuel cell are
firstly used to heat water and/or used to produce steam, then they are mixed with the external air to
feed the evaporator of the heat pump with the aim of increasing energy efficiency of the latter. This
system configuration decreases the possibility of freezing of the evaporator as well, which is one of
the drawbacks for air source heat pump in climates where temperature close to 0 °C and high humidity
could occur. Results show that the performance of the air source heat pump increases considerably
during cold season for climates with high relative humidity and for users with high electric power
demand.

As previously cited, not only SOFC but also RSOC are deeply analysed in the thesis to define
innovative energy generation system with the possibility of varying H/P ratio to match energy
generation and demand in order to avoid mismatching and, consequently, integration system with a
lower system. The aim is to define a modular system where each RSOC module can be switched
between energy generation mode (fuel consumption to produce electricity and heat) and energy
consumption (electricity and heat are consumed to produce hydrogen, working as Solid Oxide
Electrolysis Cells) to vary overall H/P of the overall system. Hydrogen is a sub-product of the system
and can be used for many purposes such as fuel and/or for transport sector. Then a re-vamping of the
energy generation system of a paper mill by means of RSOCS is proposed and analysed: a real
industrial facility, based in Italy with a production capacity of 60000 t/y of paper, is used as case
study. Even if the complexity of the system increases, results show that saving between 2% and 6%
occurs. Hydrogen generation is assessed, comparing the RSOC integrated system with PEM
electrolysis, in terms of both primary energy and economics. Results exhibit significant primary
energy and good economic performance on hydrogen production with the novel system proposed.

In the thesis novelties are proposed not only on energy system “hardware” (component for
energy generation) but also on “software”. In the second part of the thesis, artificial intelligence and
machine learning methods are analysed to perform analytics on energy consumption data and
consequently to improve performances on energy generation and operation strategy.

A study on how cluster analysis could be applied to analyse energy demand data is depicted.
The aim of the method is to design cogeneration systems that suit more efficiently energy demand



profiles, choosing the correct type of cogeneration technology, operation strategy and, if they are
necessary, energy storages. A case study of a wood industry that requires low temperature heat to dry
wood into steam-powered kilns that already uses cogeneration is proposed to apply the methodology
in order to design and measure improvements. An alternative cogeneration system is designed and
proposed, thermodynamics benchmarks are defined to evaluate differences between as-is and
alternative scenarios. Results show that the proposed innovative method allows to choose a more
suitable cogeneration technology compared to the adopted one, giving suggestions on the operation
strategy in order to decrease energy losses and, consequently, primary energy consumption.

Finally, clustering is suggested for short-term forecasting of energy demand in industrial
facilities. A model based on clustering and KNN is proposed to find similar pattern of consumption,
to identify average consumption profiles, and then to use them to forecast consumption data.
Novelties on model parameters definition such as data normalisation and clustering hyperparameters
are presented to improve its accuracy. The model is then applied to the energy dataset of the wood
industry previously cited. Analysis on the parameters and the results of the model are performed,
showing a forecast of electricity demand with an error of 3%.



PREFACE

In the last centuries humankind improved its life condition, expectation and wealth. At the end
of the 18" century, the first industrial revolution occurred, and the economy started a transition from
being based on agriculture to being based on the industry thus enhancing life conditions. From 18%
to 21% century, other industrial revolutions occurred (Figure P. 1). The first industrial revolution was
mainly an introduction of mechanisation of industrial processes. The second industrial revolution
improved the efficiency of industrial processes by introducing mass production and labour division.
Successively, with the third industrial revolution electronics and information technologies such as
computer, programmable logic controller (PLC) and robot were introduced. More recently, industrial
internet of thing (110T), big data, machine learning and artificial intelligence (Al) were introduced
by the fourth industrial revolution.
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Figure P. 1. Timeline of the industrial revolutions (from www.manufacturing-operations-
management.com)

The increase in energy consumption is one of the main consequences of these revolutions, as it
is related to the worldwide growth of the industrial sector. Energy is necessary for industry, and it is
used for many purposes: for example, it could be used for lighting, to produce heat and/or cooling, as
mechanical energy by motors thus reducing human manual labour, or for chemical processes as
electroplating. During the first industrial revolution, the primary energy source used was coal,
whereas oil was mainly used during the second. Electricity was introduced during the second
industrial revolution increasing the overall energy consumption: even if it is not a primary energy
source but an energy vector, countries such as Italy (that is poor of coal and oil) were able to produce
energy using renewable energies like hydropower (Figure 2). Industrial processes used electricity to
improve power and efficiency: for example, during the first industrial revolution only steam motors
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were available to produce mechanical energy, whereas electrical motors with higher versatility and
efficiency on energy conversion were successively developed.
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Figure P. 2. World historical energy consumption divided by energy source (from
https://ourworldindata.org/energy-production-and-changing-energy-sources)

Meanwhile the industrial sector increases its share on the world economy and, consequently,
also on energy consumption and the use of primary energy sources such as coal, oil, natural gas or
hydrocarbons has increased CO2 concentration into the atmosphere. Nowadays, CO> has reached the
highest concentration in the last 800 000 years (Figure P. 3 and Figure P. 4).
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Figure P. 3. World historical CO: level into the atmosphere (from www.climate.gov/news-
features/understanding-climate/climate-change-atmospheric-carbon-dioxide)

\%



Carbon Dioxide Abundance (pprm)

|:.
1970 1875 1880 18&5 1880 1805 2000 2005 2010 2015 2020 2025 2030
ear

Figure P. 4. World CO: level into the atmosphere from 1970 to 2017 (from
www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-
dioxide)

The scientific community is worried about the consequences of the increasing of CO2 level, one
of the most known being global warming. CO: is one of the gases related to greenhouse effect: if its
concentration increases, the atmosphere decreases its transparency with respect to infrared radiation
from the Earth surface to the space. Earth has a natural greenhouse effect thanks to the natural
presence of greenhouse gases that allow a temperature suitable for life. However, during the last
centuries anthropic activity has been increasing continuously the concentration of greenhouse gases
(not only CO2 but also CH4 and N2O), and consequently the global average temperature has increased

too (Figure P. 5).
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Figure P. 5. Globally averaged combined land and ocean surface temperature anomaly,
different colours refer to different temperature dataset (from Climate Change 2014 Synthesis
Report Summary for Policymakers — IPCC, www.ipcc.ch)

The scientific community has already warned policymakers about the global warming effects
on atmosphere temperature and, then, on the whole climate: sea level increase, change on
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precipitation and modification on the climate are expected effects. The Intergovernmental Panel on
Climate Change (IPCC) of United Nation published the Climate Change 2014 Synthesis Report
Summary for Policymakers, where different scenarios based on global emission of CO- are proposed.
The increase of temperature by the end of the 21% century is likely to be between 0.3 °C and 1.7 °C
when considering the lower emission scenario (RCP2.6), and between 2.6 °C and 4.8 °C with the
higher emission scenario (RCP8.5) (Figure P. 6).
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Figure P. 6. Global average surface temperature change, 2081-2100 mean temperature
versus 1986-2005, red projections and time series are related to the worst scenario (RCP8.5), blue
ones to the lower scenario (RCP2.6), intermediate scenarios are also presented (RCP4.5 and
RCP6.0) (from Climate Change 2014 Synthesis Report Summary for Policymakers — IPCC,
www.ipcc.ch)

Global sea levels are likely to increase with a higher rate under RCP8.5 model (worst scenario) than
RCP2.6 (Figure P. 7). Also changing on precipitation are expected (Figure P. 8).
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Figure P. 7. Global mean sea level rise, 2081-2100 mean sea level versus 1986-2005, red
projections and time series are related to the worst scenario (RCP8.5), blue ones to the lower
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scenario (RCP2.6), intermediate scenarios are also presented (RCP4.5 and RCP6.0) (from Climate
Change 2014 Synthesis Report Summary for Policymakers — IPCC, www.ipcc.ch)

Figure P. 8. Change in average precipitation, 2081-2100 average precipitation (right) versus
1986-2005 average (left). Data refers to the average of the models previous cited (from Climate
Change 2014 Synthesis Report Summary for Policymakers — IPCC, www.ipcc.ch)

Industry has an important role in CO. emissions as it is one of the largest energy consuming
sector compared to transport, residential and tertiary. According to the International Energy Agency
(IEA), the share of the total final energy consumption in 2016 was 31.7% for industry, 31.6% for
transport and 36.7% for other uses (mainly residential and tertiary) (Figure P. 9).
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Figure P. 9. World energy consumption by sector in 2016 (data from International Energy
Agency — IEA Key World Energy Statistics)

Considering the first five countries for total energy consumption (Japan, Russia, India, United
States and China), it is possible to appreciate how much industry has an impact on the energy
consumption: 34.54% of 4824 Mtoe of the total final energy consumption is due to the industry sector.
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China features the highest share: industry sector consumes 50% on final energy consumption (Figure
P. 10).
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Figure P. 10. Top five final energy consumers divided by sector in 2016 (data from
International Energy Agency — IEA Key World Energy Statistics)

Figure P. 11 shows the world primary energy sources: more than 80% are hydrocarbons (oil or
natural gas) and coal. These energy sources are strictly related to global warming effect because of
the CO> emissions during the combustion process. As the industrial sector has the highest share of
energy consumption compared to transport and other sectors, it has a high responsibility on
greenhouse gases emissions. As a matter of fact, reduction of the consumption of primary energy
sources, increase of energy efficiency and use of renewables are key drivers for the industry to
decrease greenhouse gases emissions as suggested by IPCC.
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Figure P. 11. World primary energy supply by source in 2016 (data from International
Energy Agency — IEA Key World Energy Statistics)



Italy is considered one of the most industrialised countries in the world. Italian industrial sector
has also a unique peculiarity in the world: industrial districts. An industrial district is a cluster of
industries (usually small-medium enterprises, SME), working on the same or similar businesses, that
are geographically located in a (relative) small area. This can bring many advantages: according to
the latest report of Intesa San Paolo bank, industrial districts have a shorter supply chain, a higher
innovation rate and consequently they usually have higher profitability (return of equity - ROE) and
labour productivity (Economia e finanza dei distretti industriali — Rapporto annuale —n. 11 Dicembre
2018). The Italian National Institute of Statistics (ISTAT) defined 141 different districts during its
last national industrial census (Figure P. 12). The majority (38, about 27% of the total) are classified
as mechanical industry districts, then textile and clothes (32, about 22.7 %), furniture and household
goods (24, 17% of the total), leather and tannery industry (17, 12.1%), food industry (15, about 10.6
%). The last 10% are classified as chemical industry (5), jewellery, musical instruments (4),
metallurgical industry (4) and pulp and paper industry (2).
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Figure P. 12. Italian industrial districts, 2011 census (Data from ISTAT, | distretti industriali
Anno 2011, https://www.istat.it/it/archivio/150320)
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Moreover, Italian industrial districts can take advantage of smart and modular energy systems
to suit energy demand of the industrial clusters that have homogeneous sectors and, consequently,
similar average energy consumptions.

Not only cogeneration and/or improvements on energy generation could be used to increase
efficiency on energy systems: big data and, consequently, machine learning and artificial intelligence
are trend topics on smart energy systems. Information technologies (IT) are expected to revolutionise
energy sector (Figure P. 13). An example of this transformation could be smart grids. Usually, energy
grids (and electricity grid in particular) are designed with a centralized unidirectional generation site
and distribution: there are few (generally big) generators, and many (big or small) users. Smart grids,
instead, have de-centralised generators, and each component of the grid could switch from consumer
to producer. In this case, IT are necessary to manage the grid, for example load balancing is easier
with centralised generators than in smart grids where small and de-centralised generators must be
coordinated.

An increase of renewable energy plants such as solar or wind should be preferred to decrease
greenhouses emissions. One of the main issues is the planning and management of renewables, as
they are highly affected by weather conditions. As a matter of fact, these energy sources have been
increasing their share on overall energy production in the last years, and IT tools must be developed
and implemented. Kaile Zhou et al. have analysed the use of big data and machine learning in energy
sector and their impact for each component of the energy system, from power generation to energy
consumption (Figure P. 13).
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Figure P. 13. Big data support on smart energy system (Kaile Zhou et al., Big data driven
smart energy system management: From big data to big insights, Renewable and Suitable Energy
Reviews)

In this thesis, the topic of energy efficiency related to industrial facilities is tackled. As
previously mentioned, the industrial sector has a high energy demand with consequences on
greenhouse gases emissions. The aim of the work is to increase efficiency on energy generation and
conversion into industrial facility: lower consumptions (and emission and costs) are then expected.

The main topics stress on energy generation and conversion instead of improving energy saving of
XI



industrial processes: energy generation is similar between different industrial sectors, but industrial
processes change and could be completely different between each other. Moreover, if improvements
are achieved on energy generation, they could be introduced in many sectors. Enhancements on
industrial processes require, instead, a deep knowledge of each process and, if improvements could
be achieved, they could not be shared with other sectors. In this thesis, improvements are proposed
by increasing efficiency on energy generation by means of alternative energy generation systems and
big data methods.

Firstly, alternative energy systems are proposed to increase efficiency on energy generation,
with a focus on polygeneration systems where different types of energy are produced simultaneously.
An industrial facility for example could require electricity and heat at different temperatures, low
level (lower than 50 °C) and medium level (up to 100 °C). Polygeneration is expected to increase
efficiency compared to separate energy generation systems: a common example is cogeneration. Fuel
cells, in particular solid oxide fuel cells (SOFC), are proposed due to their advantages: modularity
and flexibility, high efficiency on energy conversion, waste heat available at high temperature (600
°C — 1000 °C) and flexibility on fuel.

In the first part of the thesis, an analysis of solid oxide fuel cells is performed. This type of fuel
cell can convert the chemical energy of hydrocarbons (for example propane, natural gas, etc) and
ammonia directly into electricity and heat. SOFC work at high temperature (600 °C — 1000 °C) with
high efficiency both on electricity production and overall energy conversion. Innovative energy
systems based on SOFC are proposed to increase efficiency on energy production, firstly with a
modular cogeneration system where air source heat pump improves heat production using SOFC
exhausted gases increasing its coefficient of performance. The proposed system could produce
electricity and heat at different levels: a higher level using exhausted gases of SOFC (around 1000
°C), and a lower level (about 50 °C) from air source heat pump. Applications in industrial facilities
are possible as some processes could require heat at different temperatures and/or combining
industrial energy demand with district heating.

A polygeneration system with hydrogen production based on SOFC and solid oxide electrolyser
is then proposed: the aim is to vary heat to power ratio on energy generation with hydrogen production
to match heat to power user request with a high efficiency both on energy production (using SOFC
cells) and on hydrogen production (using solid oxide electrolyser). A paper mill is analysed and
proposed to introduce this innovative energy system to increase efficiency on energy generation,
dismissing a part of an old steam cogeneration system meanwhile decreasing energy costs.
Simulations prove that primary energy saving could be achieved also with hydrogen production.

In the second part of the thesis machine learning, big data and artificial intelligence are
explored. The starting point is related to the huge amount of data that are usually collected into
Enterprise Resource Planning (ERP) system. Such data are not often used to query and perform
analytic studies on it. These methods could provide analytics on collected data, allowing
improvements on energy efficiency of the industrial facility. Moreover, they can give the opportunity
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to forecast energy consumption and continuous monitoring of the correct operation and/or need of
maintenance of the production plants.

The aim of this part of the thesis is to use these methods in order to increase the efficiency of
energy systems. The main idea is that improvements on energy generation technologies (“hardware”)
are only a “part of the effort” to achieve energy savings in industry. Data analysis, suitable operation
strategies, smart energy system controls and load forecasting (“software”) can be developed and
applied as well. As a matter of fact, if data analytics is not applied to increase the matching between
energy demand and production, or load forecasting is not used to correctly choose the size of the
generation plant and the storage, energy dissipation could occur even if energy systems with high
performance (such as SOFC) are used. Improvements on the previous cited “software” are as
important as improvements on the “hardware” of the energy system. Even if different machine
learning methods are available, in this thesis clustering and KNN method are proposed to perform
analytics on energy consumption data, firstly to size and define most suitable operation mode for
energy system, then to perform short forecasting.

As previously cited, firstly clustering is proposed to perform analytics on energy demand data,
dividing dataset into homogenous groups. The main scope is to analyse which cogeneration
technology suits better the energy demand avoiding a mismatch between production and demand (and
consequently, heat losses). On the other side, an improvement in operation strategy and definition of
the energy storage system defining average consumptions curves can be useful. A case study of an
industrial facility where both electricity and heat are required is used to validate the method proposed:
it suggests not only the most suitable cogeneration technology for the observed energy demand but
also heat storage and improvements on operation strategy to avoid heat losses and, consequently,
increasing energy efficiency. It is demonstrated that primary energy saving between 2-6% could be
achieved.

In the final part of the thesis, clustering and KNN method are applied to analyse data and
perform short forecasting on energy consumption. These methods have been already used to perform
forecasting when it is based mainly on historical observations and it is not easy to define mathematical
models such as in the case of an industrial process. Novelty on data normalisation and
hyperparameters definitions are proposed to decrease error on forecasting. The proposed method is
then applied to a case study to verify its performances: it was able to forecast electricity consumption
with a percentage error lower than 5% whereas an estimated error of 13% can be estimated if novelties
on data normalisation are not applied.
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1 FUEL CELL FOR ENERGY GENERATION

1.1 ENERGY GENERATION IN INDUSTRIAL FACILITIES

Industry is one of the sectors with the highest consumption of energy: according to Figure 1,
about 25 % of the final energy consumption in European Union is related to industry. Moreover,
industry may have different types of energy request: meanwhile electricity is used mainly by electric
motors and heaters, in some cases cooling could be required (especially by industries related to food
processing), or heat at different temperature (hot water or steam). One of the more effective ways to
increase energy efficiency and to save money is to implement cogeneration (or polygeneration)
systems: primary energy consumption can decrease if two or three types of energy (for example
electricity and heat) are produced simultaneously by one single plant instead of separate production.

Agriculture
and forestry Other

22% 0.4%
Semvices —‘ /

135 %

Transport
332%

Industry
250 %

Households
267 %

Figure 1. Final energy consumption by sector, EU-28, 2016 (% of total, based on tonnes of
oil equivalent) [1]

Figure 2 displays the average H/P based on energy demand by industrial sector ([2]) compared
to H/P of the traditional cogeneration technologies ([3]): as a matter of fact, there is often a mismatch
between energy production and consumption, so integration systems (such as boiler, steam generator
and/or electricity from grid) are required. It is possible to appreciate also that fuel cells have the
lowest H/P range (0.5-1) with only one industrial sector (Printing and publishing) inside this range.
Internal combustion engine has, instead, more industrial sectors (Apparel and other textile products,
Lumber and wood products, Industrial machinery and equipment, Instruments and related products
and Printing and publishing) inside its H/P range (0.83 - 2).

In this part of the thesis, fuel cells (firstly considering solid oxide fuel cells (SOFC), then
analysing also reversible solid oxide cells) are analysed for industrial purpose because of the
following positive characteristics: the highest efficiency on energy conversion (both on electricity
only and overall cogeneration) and their modularity. Table 2 based on reference [3] compares
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cogeneration technologies on electric and overall efficiency (based on HHV), typical capacity, H/P
range, partial load and type of fuel used. Fuel cell could reach 60 % on electricity efficiency
meanwhile internal combustion engines (ICE) and steam turbines could reach 40 %. Overall
efficiency reaches 80 % on HHV. In the next chapters, firstly fuel cells (and SOFC in particular) are
presented with a detailed description of the model used for simulation. An improvement of the model
is presented with an innovative heat recovery system based on air source heat pump, in order to
increase the overall efficiency on cogeneration. Successively, an energy conversion system based on
SOFC and reversible solid oxide cells (RSOC) is proposed to adjust H/P ratio of energy request
meanwhile hydrogen could be produced. A case study of a paper mill is considered where efficiency
of energy generation system is increased using SOFC — RSOC system.

Industrial sector and cogeneration technology

Textile mill producis
Steam
Primary metal industries e ——
Petroleum and coal prodiicts n——
Transportation equipm T —
Stone, clay and glass products n———— —
Food and kndred products —ne—
Fabricated metal products n———
Electronic and other eletric eg —
Miscellaneous mam ] —
re | E—
Paper and allied products  n—
Rubber and misc. plastic products —m——
Chemicals and allied products — wmm
Micro t
]
]
-
-
Gas
Printing and pub ng m
Fuel Cell
0 5 10 15 20 25 30 35 40

H/P ratio

Figure 2. H/P ratio of average energy demand by industrial sector ([2]) and typical
cogeneration technologies ([3])

ICE Steam Gas Turbine Micro Fuel Cell
Turbine Turbine

Electric

Efficiency 27-41% 5-40% 24-36% 22-28% 30-63%
(HHV)
Overall

efficiency 77-80% Near 80% 66-71% 63-70% 55-80%
(HHV)




ICE Steam Gas Turbine Micro Fuel Cell
Turbine Turbine
Typical 0.001-2.8
) 0.5 —several )
capacity 0.005-10 0.3-300 0.03-1 commercial
hundred MW
(MWe) use
H/P range 0.83-2 10-14.3 0.9-1.6 1.43-2 0.5-1
Partial load Yes Yes Poor Yes Possible
Natural gas,
biogas, LPG,
Natural gas, Hydrogen,
sour gas, ) Natural gas,
) i synthetic gas, natural gas,
Fuels industrial All ) sour gas and
waste aas landfill gas liauid fuel propane and
9as and fuel oils a methanol
manufactured
gas

Table 1. Overview of cogeneration technologies [3]




1.2 FUEL CELLS

1.2.1 GENERAL INTRODUCTION TO FUEL CELL
Fuel cells (FC) are power devices that convert chemical energy inside a fuel directly in
electricity with a high efficiency [4]. Hydrogen or hydrocarbons as fuel (depending on the type of
fuel cells) and an oxidant (air) are used. Basically, a fuel cell’s generator is made by these elements:
- Unit cell, where the electrochemical reactions take place;
- Stacks, where many units are electrically connected to obtain the desire power output;
- Auxiliaries such as air compressors, pumps, fuel processor (some kinds of fuel cells need it)
and a DC/AC converter.
The core of the entire system is the unit cell (Figure 3) where fuel and oxidant react and the
products are electricity (DC), heat and some gases with minimal pollutant. It is divided by:
- Anode, the part of the cell fed with the fuel;
- Cathode, the part of the cell fed with the oxidant (usually air);
- Electrolyte, who physically separate anode and cathode allowing the transportation of ions.

Load
Qe

—

Fuelln-______.l [_______ Oxidant In
:
Positive lon
or 1
Negative lon H;0
H,0
Depleted Fuel and ] ‘ Depleted Oxidant and
Product Gases Out Product Gases Out
Anude_l [ T— Cathode
Electrolyte
(lon Conducior)

Figure 3. Representation of a Unit Cell [4]

Anode and cathode could be made with a catalytic material such as Platinum to allow a higher
rate of reaction; some types of fuel cells work at low temperature, that is at low rate. The type of
electrolyte of the unit cell is important because it defines:

- range of working temperature of the unit cell (it could vary from 40-80 °C of polymeric
membranes to over 600 °C of ceramics);

- type and purity of the fuel (pure hydrogen with a low rate of CO or hydrocarbons);

- type of oxidant (air or air with a low rate of CO,);

- sensitivity on pollutant (such as CO, sulphurs, ammonia).

A single unit has low power (usually about 15-20 W), so in order to reach the requested power
many cells are connected electrically in series and parallel.
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1.2.2 DESCRIPTION OF DIFFERENT TYPES OF FUEL CELLS

The first fuel cell was developed by Sir William Robert Groove (1811-1896): it had an electrode
made of platinum put into nitric acid and another one made of zinc into copper sulphate, generating
a current of 12 A at 1.8 V. Until now, different kinds of fuel cell (FC) were improved especially for
aerospace: for example, a type of alkaline FC was created by Francis Thomas Bacon and used for
Apollo Program of NASA, or proton exchange fuel cell (PEFC) was improved by GE and used for

Gemini Program.

The modern fuel cells are divided by the material of the electrolyte: proton exchange fuel cell
(PEFC), alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell
(MCFC), and solid oxide fuel cell (SOFC). This allows using different fuels and defining different
operating temperatures. Table 2 makes a summary of the different FC developed.

Table 2. Characteristic of different types of FC [4]

PEFC AFC PAFC MCFC SOFC
Perovskites,
Hydrated Potassium Immobilized | Immobilized Vo0
2U3-
olymeric ion | hydroxide in liquid liquid molten
Electrolyte POy y f i : ) stabilised
exchange asbestos phosphoric carbonate in
. e s i Zr02 (YSZ)
membranes matrix acid in SiC LiAIO, .
(ceramics)
Operating
Temperature 40-80 °C 65-220 °C 205 °C 605 °C 600-1000 °C
(°C)
Stack elect. 50%-60%
efficiency (% 32%-40% 36%-45% 43%-50% 43%-55% (SOFC+GT
of LHV) 70%)
Only H2 Only H2
Gases at Only H2 Hz, CO Hz, CO
<0.5% CO <0.5% CO
anode <10 ppm CO <0.5 ppm H2S | <0.5 ppm H2S
<50 ppm H2S | <50 ppm H.S
External
No, for some
reformer for No, for some
Yes Yes Yes fuels and cell
hydrocarbon fuels _
design
fuel
External shift Yes with .
. e . Yes with
conversion of purification L
purification Yes No No
COto to remove
to remove CO
hydrogen CO




PEFC AFC PAFC MCFC SOFC
Natural Gas
LPG
The same of | The same of | The same of
Methanol The same of
Type of fuel PEFC plus PEFC plus PEFC plus
Ethanol PEFC )
_ landfill gas coal gas coal gas
Gasoline
Diesel
Hydrocarbons
and CO could | Hydrocarbons
Low be used as could be used
operating fuel as fuel,
temperature and no high
Rapid start- P ) ) _g
J allow to use expensive efficiency,
P common electro- high
absence of )
_ construction | catalysts are temperature
corrosive Excellent )
Advantages ) material, needed, of waste heat
material, performances )
) waste heat the high allow bottom
high current
. could be used | temperature cycles and
densities (2 i
) for of waste heat | cogeneration,
W/cm®) )
cogeneration | allow bottom cheaper
or bottom cycle to material could
cycle improve be used for
overall cell hardware
efficiency
Very high High
Require water i corrosive temperature
i Phosphoric
management, Require acid is highl electrolyte cause thermo
quite removing CO .g y require mechanical
. corrosive, .
_ sensitive to | and CO2 from ) expensive | stress, thermal
Disadvantages . require ) )
poisoning H> and also exDensive material for mismatches
X iv
(CO, from the air P o cell hardware, among
_ material in )
sulphurs, in the cathode low power materials and
) the stack o
ammonia) densities (0,2 | the thermal
W/cm?) cycling.




1.3 SOFC

1.3.1 INTRODUCTION TO SOFC

One type of fuel cells presented in Table 2 is Solid Oxide Fuel Cell (SOFC): electrolyte is a
solid, non-porous material usually based on Y2Ozs-stabilised ZrO (YSZ), the anode is a Ni-ZrO> and
the cathode is Sr-doped LaMnOs. This allows using a high operation temperature (600-1000 °C) and
consequently:

- high electrical efficiency;

- high temperature of the waste heat that allow bottom cycles (gas turbine, steam turbine
or also Stirling engine) or cogeneration;

- internal reforming, not only hydrogen but also hydrocarbons can be used,;

- lower sensibility on pollutant, differently from other fuel cells (like as PEFC and AFC),
CO could be used as fuel and it is not a pollutant.

The main disadvantage is related to the high operation temperature, as problems can occur due
to the mismatching between materials with different thermal expansion coefficients, mainly the
interconnections and the seal materials. Steady-state working is better than continuous start-stop
because it avoids thermal cycles and increases the life time. The research in this field is directed to
develop:

- materials with a better electrical and thermo-mechanical performances at 1000 °C;
- materials (such as mixture of ceramics and metals) with lower operating temperature,
but with higher power density and efficiency.

The power range is from 1 kW to 10 MW, so SOFC can be used for household application,
auxiliary power unit and as power plant with high efficiency.

The most diffused cells developed today have tubular and planar form. The first type, made by
Siemens-Westinghouse, is the best-known and a cross section is represented in Figure 4. The cathode
is produced by extrusion and sintering, then the electrolyte is applied by electrochemical vapour
deposition (EVD). The anode is produced by metallic Ni and YSZ by sintering metal particles with a
porosity of 20%-40% to allow the mass flow of reactant and product gases; it requires a thermal
expansion comparable to the other cell materials. The cell interconnection is made by doped
lanthanum chromite, and it must be chemical unreactive to resist to both anode and cathode gases.
All the cell components must:

- be capable of withstanding thermal cycling;
- not be affected on electronic conductivity by interdiffusion of ionic species;
- permit only electronic conduction and interdiffusion of ionic species at 1000 °C.
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Figure 4. Cross-section of cylindrical Siemens-Westinghouse SOFC [4]

Planar SOFCs are based on planar cells (Figure 5). Usually the shape of the cell is rectangular
or circular: the gases flow in counter-flow or cross-flow in the first case, or in co-flow in both of
them. Moreover, it is possible to distinguish the different cells according to structural support. The
early cells were electrolyte-supported, so they required a thick electrolyte around 200 um with both
electrodes at 50 um. The anode-supported cells are possible thanks to advances in manufacturing
techniques: the anode is 0.5-1 mm thin, the electrolyte is around 3 to 15 pum and the cathode is 50 pm
(it gives also the difference in thermal expansion between anode and electrolyte). This type of fuel
cell has very high power density, from 1.8 W/cm? in laboratory tests to 600-800 mW/cm? in
commercial conditions. A cathode-supported fuel cell would also be possible, but the mass flow
limitation and the manufacturing challenges allow lower performance than the anode-supported. A
kind of metal interconnection-supported fuel cell has been studied to minimize the use of expensive
ceramic materials and mass flow resistance. The problems are finding a materials’ combination and
a manufacturing process that avoid corrosion and deformation of the metal and interfacial reactions
during manufacturing and operation. Three different materials are used as interconnection:

- lanthanum or yttrium chromite (ceramic); they work pretty well at high operating
temperature (900 °C - 1000 °C), they are chemically stable with thermal expansion.
Unfortunately, they are costly and mechanically weak;

- Cr-based or Ni-based superalloys for intermediate-high operation temperature (800 °C
- 900 °C). They are chemically stable, but they require a coating to prevent Cr-
poisoning. Moreover, this technology features high cost due to the difficulty to form Ni
and Cr;

- ferritic steel for intermediate operation temperature. The material is cheaper than the
other ones, but it needs a coating to improve corrosion resistance and conductivity
during thermal cycles because it is chemically unstable.

The power density of planar SOFC (about 300-500 mW/cm?) allows to engineer small-scale
power and APU application, with the possibility to reach a customization for high-volume
application.



o, electric
} current

«— seal

&) «— cathode
7 4+ electrolyte
<«— anode

Figure 5. Representation of a planar fuel cell with a rectangular shape [5]

1.3.2 THERMODYNAMIC OF SOFC
In a fuel cell an electrochemical reaction occurs, fuel is oxidized with the production of
electricity and exhausted gases that could be used for heat recovery (Table 3).

Anode Reaction Cathode Reaction
H,+0% —H,0+2¢
CO+0*—=COx+2¢ Y5 0p+2e—0%
CH4+40%*—2H,0+ CO_ +8¢°

Table 3. Chemical reaction in a SOFC [4]

When it is operative, at the anode the oxidation of H> and CO takes place (with the loss of
electrons), and at the cathode the reduction of the O occurs. The current | of the electric circuit
depends on the flow of electrons. The voltage of a fuel cell could be defined by Nernst’s Equation.
In ideal condition and with 1=0, the ideal voltage at the working temperature T is (Eq. 1):

RT TI(M)
In

nF - T1(p)

Viar = Eqg. 1

where Viq is the voltage at standard ambient temperature and pressure (25 °C and 101325 Pa),
R is ideal gas constant, n is the electrons flow, F is the Faraday constant, 77(r) and 71(p) are the product
of reactants and product of fugacity respectively. This ideal value won’t be reached even at 1=0 due
to irreversibility losses. Three main phenomena cause a reduced efficiency of fuel cell with respect
to the ideal value (Figure 6):



- activation-related losses, related to chemical changes on electrodes surface or gas
absorption. They could be described by Tafel equation where b is called Tafel gradient
and the unit of measurement of i is mA/cm? (Eq. 2).

Bi=a+bxlog(i) Eqg. 2

- ohmic losses, related to electric resistivity of electrolyte and of electrodes. They could
be described using Ohm law (Eq. 3).

B2 = Rine *1 Eq. 3

- mass-transport-related losses, related to operation condition. When the current density
is too high, the reactant diffusion into the electrolyte and the replacement of the products
become too slow, so a concentration gradient with a loss of voltage happens. They could
be described by Eq. 4 where i is the limitation current, the highest speed at which it is
possible to feed reactants to the fuel cell.

_RT Eq 4
fo = L in(1 =) q

Theoretical EMF or Ideal Voltage —

Region of Activation Polarization
E,x" (Reaction Rate Loss)

1.01 Total Loss
g
= Regionof
E Concentration Polarization
o (Gas Transport Loss)
© Region of Ohmic Polarization

0.6+ (Resistance Loss)

Operation Voltage, V, Curve

Current Density (mAJem?2)

Figure 6. Voltage loss related to current density [4]

1.3.3 SOFC SYSTEM SIMULATION
A SOFC system is simulated using a tool developed for thermodynamic simulation at Technical

University of Denmark (DTU), DNA — Dynamic Network Analyser [6]. It is developed in Fortran
language and by using this tool it is possible to define thermodynamic systems based on different
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components (such as gasifier, steam turbines, gas turbines, burner, fuel cell, absorption chiller etc),
and it allows to perform both steady-state and dynamic simulations.

A SOFC model was developed by prof. Marvin Mikael Rokni (formerly Masoud Rokni). It was firstly
presented in [7], and then it was proposed with different fuels such as ethanol [8]-[10], methanol [8]-
[10], ammonia [8]-[10], DME [8]-[10], woodchips gasification [11], biomass [12] or municipal
waste gasification [13]. As previously mentioned, SOFC could be coupled with a bottom cycle to
increase electricity production, for example by using Stirling engine [8], [10], [12]-[14], steam
turbine [7] or steam injected turbine [11]. Even if previous references present a SOFC system for
electricity production with a net power in the order of megawatt, SOFC was studied also for small
power application with ground source heat pumps (GSHP) in [10], [15]-[17] thanks to its modularity.
In this thesis, a modular SOFC system using natural gas as fuel ([10], [18], [19]) is proposed and
simulated: it is based on SOFC stacks, a catalytic partial oxidizer (CPO), heat exchangers to pre-heat
fuel and oxidant, air compressors, a desulfurizer and a burner (Figure 7).

||

o—\]— Pre-reformer Desulfurizer Fuel
cP | \—' E — RPJ . L’ Pl
‘ &, Llj

— Burner * AP

Air Heat Recovery Air

l

Figure 7. SOFC system representation with heat recovery

The desulfurizer is necessary to avoid sulfur poisoning of the SOFC stack, CPO cracks
hydrocarbons into CO and H, air compressors compress air for cathode and CPO. CP is the cathode
pre-heater: it uses exhausted gases to pre-heat inlet air for the SOFC. Fuel is pre-heated into FP and
RP heat exchanger that use exhausted gases from the anode. Electricity is converted by an AC/DC
converter with an efficiency assumed to be 92 %, meanwhile auxiliaries' consumptions are assumed
to be 1.5 % of the total electricity production. Exhausted gases are burned to convert the unused fuel
into heat that could be recovered to produce steam. The latter could feed bottom cycles or could be
used for space heating. In the next paragraph (1.3.4), the mathematical model of SOFC stack is
described.
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1.3.4 SOFC STACK DEFINITION

SOFC stacks are simulated using a zero-dimensional model ([12]) which describes power using
experimental data. Gases temperature is considered varying between 650 °C and 800 °C. Once
defined Nernst ideal reversible voltage Enemst, activation polarization losses AEact, ohmic losses AEohm
and concentration losses AEconc, the operational voltage of the cell Ecein can be defined as (Eqg. 5):

Ecell = ENernst - (AEact + Athm + AEconc) Eq- S

Under the assumption that only Ha is used, Enemst could be defined as (Eg. 6):

_Agfo N RT In PH, tot Poz)

E = Eq. 6
Nernst TleF TleF pHZO q

PH, tot = PH, T Pco + 4DcH, Eq. 7

Where Agfo is the Gibbs free energy for H2 reaction at standard temperature and pressure, py, ..., Po,

and py, o are the partial pressure for hydrogen, oxygen and water respectively (Eq. 7), F is the Faraday
constant and R the universal gas constant.
Activation polarization is described using Butler-Volmer equation (Eq. 8):

RT - iy
(0.001698T — 1.254) « F - (3 13.087 + T = 1.096 » 109

AE, o = Eq. 8

Where T and iq are respectively the operating temperature and current density. Ohmic losses (Eq. 9)
can be defined as related to electrical conductivity of electrodes (oan for anode, oca for cathode), ionic
conductivity of the electrolyte (cel), thickness of these elements (tan for anode, tca for cathode and tey
for electrolyte) and current density (iq):

t t t
AEohm = (0“—”+ﬂ+i)id Eq. 9

an ca el

Thicknesses are assumed to be tan = 600 um for the anode, tei = 50 um for the electrolyte and tca = 10
um for the cathode. Conductivity is assumed to be gan = 10° for the anode, meanwhile conductivity
of the cathode and of the electrolyte are related to the operating temperature T and are defined by Eq.
10 and Eq. 11 respectively:

_ 5.76% 107 0.117

_>76+10" Eq. 10
Oca T P g517% 1057 f
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0, = 85881078 + T3 —1.101 * 10™* * T2 + 0.04679 * T — 6.54 Eq. 11
Concentration losses (AEconc) occur when insufficient amounts of reactants are transported to the
electrodes, mainly at high current densities for anode-supported SOFC. Experimental data were used

to validate the model introducing anode limiting current, a parameter based on anode porosity and
tortuosity. Equation proposed is (Eq. 12):

* [ i
AE ... =B <ln (1 + p”z—.d) —In (1 - —d>> Eq. 12
pHZO *lgs las

where B is the diffusion coefficient defined using a calibration technique (Eq. 13):

B = (0.008039 * X;;* — 0.007272) Eq. 13

ref

where Xy, is the mass reaction rate of Hz and Trer is reference temperature (1023 K). Anode limiting
current is defined as (Eq. 14):

2"‘F"‘sz*Dbin*Van

las =

Eq. 14
R*T *ty, *Tan

where Van is the anode porosity (assumed 30%), zan is the anode tortuosity (2.5) and Dyin the binary
diffusion coefficient. Duin is also calibrated using experimental data (Eq. 15):

T 1.75
) o Pref Eq. 15
Tref 4

Dpin = (—4.107 » 1075 X, + 8.704 x 1075) = <
where pref is the reference pressure (1.013 bar). Current density iq is defined using Faraday law (Eqg.
16):

_ Ny, * 2% F
— i Eq. 16

1q 1 q

A is the physical area of the cell (144 cm?). Each stack is composed by 70 cells, each stack has a

power of 1 kW, and the number of stacks varies with the nominal power of the SOFC to be achieved.

Figure 8 represents SOFC voltage over current density, comparing simulation data with experimental

data ([12]): it is possible to appreciate that the proposed model describes perfectly experimental data.
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Figure 8. SOFC voltage over current density, model versus experimental data ([12])

Voltage

1.4 SOFC — AIR SOURCE HEAT pumP (ASHP) SYSTEM FOR ADVANCED HEAT
RECOVERY

14.1 INTRODUCTION TO THE SYSTEM

As previously mentioned ([7], [11]), SOFC system can be used to produce steam that is a
valuable thermal vector in industrial facilities (for example it is used into paper mills to dry paper).
Figure 8 illustrates the SOFC system proposed in [7] where exhausted gases are used to produce
steam for a Rankine cycle in three different stages: economizer, evaporator and super-heater.
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Figure 9. Example of SOFC system with steam production for a Rankine cycle [7]
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On the other hand, exhausted gases after heat recovery still have an enthalpy content that is

unused. Industrial processes do not require heat at only medium-high temperature: for example,
processes like fermentation uses heat at temperature of 50 °C (Figure 10). Heat pumps have been
already proposed to increase energy efficiency on heat production for these processes: reference [20]
analyses how heat pumps can be used to produce thermal energy for industrial processes at different
temperatures.
Industrial waste heat could be used not only in industrial processes, but also for district heating: in
reference [21], a tool to analyse the possibility of using waste heat for district heating varying cost of
fuel, electricity and distance for the transfer to district heating is developed. In [22], [23] it is analysed
the possibility of heat recovery of an industrial area in the north of China. In [24] it is studied the
technical, economic, institutional and environmental feasibilities of using low-level residual
industrial waste heat for the district heating of Delft (The Netherlands). In [25], a district heating
system using waste heat from industries, waste incineration and a cogeneration plant is proposed and
analysed to improve energy saving and to achieve economic saving.
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Figure 10. Industrial processes thermal request divided by temperature ([20])

In this study, air source heat pump (ASHP) combined with SOFC is proposed. The main idea is to
increase heat production, and consequently the coefficient of performance (COP) of the heat pump:
exhaust gases exiting the fuel cell are firstly used to satisfy medium - high temperature heat request
(such as steam production), then they are mixed with external air using an adiabatic mixer to feed the
evaporator of the heat pump with the aim of increasing energy efficiency of the latter (Figure 11).
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Figure 11. SOFC + ASHP system scheme

ASHP are cheaper compared to other types of heat pumps such as ground source heat pumps,
but efficiency decreases if freezing of evaporator (which is one of the drawbacks for air source heat
pump in area like North Europe) occurs. System configuration using air and exhausted gases of SOFC
decreases the possibility of freezing that could occurs when temperature is around 0 °C and relative
humidity is sufficiently higher than 50 %. A modular system based on a SOFC system of 50 kW of
nominal power and 7 kW of ASHP heating power is proposed. Simulations are performed varying
external air temperature, air humidity and SOFC nominal power.

142 SOFC SYSTEM

As previously mentioned, the system is proposed to recover heat from waste gases of SOFC. A
modular system of 50 kW SOFC nominal power (50 stacks of 1 kW each) and 7.7 kW ASHP heating
power is proposed. SOFC system is based on the scheme analysed in section 1.3.3, natural gas is
proposed as fuel even if ammonia, DME, ethanol or methanol could be used just changing fuel
processor components ([8], [9]). When natural gas is used, desulphurizer and CPO are necessary: the
first is required to prevent sulphur poisoning of the stack, the second to crack hydrocarbons. Figure
12 represents a detailed scheme of the SOFC system and interconnection with the ASHP. An adiabatic
mixer is used in order to mix exhausted gases and inlet air. Simulation of SOFC at full nominal power
(50 kW) reports an electric efficiency of 53 % and a thermal efficiency 42.86 %, meanwhile waste
gases after heat recovery are at 105 °C. Table 4 resumes the main results of the thermodynamic
benchmarks of SOFC system simulation at full load.
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Figure 12. Representation of SOFC system. The air mixer to partially recover heat from the
exhausted gases of the SOFC is connected after the Heat Recovery by point 1 (see previous Figure
15).

Parameter Value

SOFC (50 kw, full load),

=0.4286
thermal efficiency Hthermal SOFC

SOFC (50 kW, full load),

[ ici lectrical, =0.5299
electrical efficiency electrical SOFC

SOFC (50 kw, full load),

_ H/P = 0.8088
heat to power ratio

SOFC auxiliaries consumption,

- . Nrans = 0.9068
efficiency on electrical output

Exhausted gas temperature 105 °C

Table 4. Efficiencies of the different components of the SOFC system.

Desulphurizer not only prevents stack poisoning, but also sulphur inside exhausted gases: Table
5 shows the results of exhausted gas analysis. Note that sulphur formation in any form (such as SOx)
is avoided and, consequently, if gas mixture is condensed, condensate may not include any acid:
ASHP does not require heat exchanger in acid resistant material such as stainless steel to prevent
corrosion by acid condensate. At full-load, it is calculated that the humidity ratio (water mass versus
dry air mass) is 0.342 Kgwater/KQdry air.
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Composition Gas percentage Composition Gas percentage
N2 56.76% Ar 0.59%
Water 24.37% NO 0.00%
CO2 12.90% SO2 0.00%
02 5.37% NO: 0.00%

Table 5. Mass composition of SOFC exhausted gas at full load, gas temperature 105 °C.

143 ASHP

ASHP plays an important role in the system: it recovers heat from exhausted gases at (relative)
low temperature. ASHPs have variable COP during the year, typically lower during colder periods
when freezing of evaporation section may occur. It is advisable to consider that in climates where
conditions with air temperature just above 0 °C (especially between 5 and 7 °C depending on the
design of the finned coil) and relative humidity above 50 % are more frequent, possibility of freezing
of the outdoor heat exchanger (evaporator) may lead to a decrease in seasonal performance of the
heat pump (ice has poor heat transfer capability and reduces available area for air and so air mass
flow rate). For such a reason defrost of evaporator section is periodically necessary. Defrosting can
be performed by an auxiliary heat source (electrical resistance or gas burner) or reversing the cycle.
In any case, defrosting is quite penalizing for the heat pump energy performance, as it increases its
energy request. The authors propose to mix the exhausted gases exiting the SOFC (Figure 12 and
point 1 in Figure 15) with outdoor air (point 2 in Figure 15) with the aim to enhance temperature of
inlet air at the ASHP evaporator (point 3 in Figure 15) in order to prevent ice formation.

Heat pumps could be simulated using technical norms, for example UNI 11300-4 to consider
different working temperature at condenser/evaporator and using EN 14825 for partial load of the
heat pump in heating mode ([26]-[28]). In this study, it is proposed to simulate ASHP using a
regression of technical datasheet (Figure 13, Figure 14, and Table 6) from [29].

As previously mentioned, when external air relative humidity is higher than 50 % and
temperature is just above 0 °C, freezing of evaporator may occur. Typically, freezing rate is maximum
when air temperature is around 7 °C. A frost factor is considered [30] as multiplying penalty factor
to decrease COP of the heat pump to take into account the periodic defrosting. Reference proposes a
value that is defined as a function of outdoor air temperature (in the range of —10 to 10 °C) and relative
humidity (in the range of 50-100 %): the penalty factor is lower given a lower outdoor air temperature
(up to values just above 0 °C), and the higher the relative humidity [30].
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Figure 13. Technical datasheet, relation between nominal heating power and external air
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Figure 14. Technical datasheet, relation between nominal COP and external air temperature

([29D).

Parameter Value

External Air 2 °C - Condenser
outlet Water 45 °C (A2W45)
Pnom — Nominal heating power 7.7 kW
COPnom — Nominal COP 2.75
Table 6. Nominal conditions of ASHP ([29]).

ASHP Nominal Condition

14.4 ADIABATIC MIXER AND EVAPORATOR
As previous mentioned, the proposal is mixing air with off-gases from the SOFC plant. The
aim is to increase air temperature at evaporator inlet as much as possible to avoid freezing of

evaporator and increasing the COP. Figure 15 represents the proposed air mixing system: SOFC
19



exhausted gases (point 1) and outdoor air (point 2) are mixed in an adiabatic mixer. In some cases,
humidity condensation may also occur (point 31). Mixture (point 3) is used in the evaporator
delivering heat to the ASHP and then is discharged (point 4). Humidity condensation may occur also
into the evaporator (point 41). It is supposed that no auxiliary flow inducing system such as a fan is
necessary: the head pressure available from the fan of the heat pump model here referred (around 80
Pa) is supposed to be adequate to face the pressure drop of the mixer (and of the ducts and evaporator).

Off-gases from | 4
SOFC plant

2 3 4
Adiabatic mixer Evaporator [—

S N

41

Air

Figure 15. Air mixing system. Curves pointing down represent possible water condensation
after the air heat exchange respectively in the mixer (point 31) and the evaporator (point 41).

A mathematical model is proposed to describe the components of the system according to equations
regarding wet air proposed in [31]. Firstly, it is described the adiabatic mixer (Eq. 17):

( Mpy1+ Mpa2 = Mpag3
| Mpaqs* Wy +mpap* Wy =mpyz* W3 +my3;
{mDAl*hl-l'mDAZ*hZ_mDA3*h3+ml31*hl31 Eq. 17

. [(Mpaq * Wi +mpy, x W,
W5 = min »Wsat 3
Mpa3

In this system of equations it is imposed:
- conservation of dry air mass (mp,4 1, point 1), dry exhausted gases (mp4 », point 2) and dry
air mixture (mp,4 3, point 3);
- conservation of water mass flow rate. W;, W,, W5 are respectively the humidity ratio in points
1, 2 and 3, m, 3 is the liquid mass flow rate in case of humidity condensation in the adiabatic
mixer;
- conservation of energy. h4, h,, h5 are respectively the specific enthalpy in 1, 2, 3, the values
depend on air temperature and humidity ratio. h, 3 is the enthalpy of condensate water.
Wiae 3 1S the humidity ratio in state 3 in saturation condition, depending only on air temperature in 3
(total pressure is assumed to be 101325 Pa). If Wy, 3 is lower than weighted average of humidity
ratio in states 1 and 2 condensation occurs.
Then evaporator is defined (Eq. 18):
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Mpa3 = Mpya
Mpaz * Wz =mpgg * Wy +my sy

Mpa3 * h; = Mpa4 * hy + Mmy4q * hl,41 +Q
W4 = min(Wg, Wsat,4)

Eq. 18

In this system of equations it is imposed:

- conservation of dry air mixture mass. mp,4 3, mpy4 4 are respectively the dry mass flow rate in
states 3 and 4;

- conservation of water mass. W3, W, are the humidity ratio values respectively in 3 and 4, m; 4
is the liquid mass flow rate in case of humidity condensation in the evaporator;

- conservation of energy. hs, h, are respectively the specific enthalpy in 3 and 4, they depend
on air temperature and humidity ratio. h, 4 is the enthalpy of condensate water and Q is the
heat absorbed by the refrigerant at the heat pump evaporator.

Wsae 4 1s the humidity ratio in 4 in saturation condition, depending only on air temperature in 4. If
Wsae 4 1S lower than humidity saturation in state 3 condensation occurs. The heat pump is expected to
increase its performances because of the higher air enthalpy at the evaporator inlet. This is due to
both the higher temperature and the higher humidity ratio (both sensible and latent terms contribute
to the enhancement of enthalpy due to the adiabatic mixer).

1.45 SIMULATION OF THE SYSTEM

A steady-state analysis is performed with the aim of studying the energy performance of the
system at different operation conditions. The analysis is performed by varying the dry bulb air
temperature from —7.5 °C to 15 °C with a step of 2.5 °C, relative humidity from 25 % to 100 % with
a step of 25 %, and SOFC nominal electric power from 20 to 50 kW (step of 10 kW). Only two
couples of values, namely outdoor air relative humidity and SOFC nominal electric power, are
presented in next section 4 to compare very different situations: 25 % - 20 kW, and 100 % - 50 kW.
Varying SOFC nominal electrical power is advisable because it affects the exhausted gases flow rate
entering the adiabatic mixer. A 7.7 KW nominal heating power ASHP is chosen to have consistent
mass flow rates between heat pump evaporator and SOFC.

The simulations allow to calculate air temperature at the evaporator outlet (point 4 in Figure
15), as well as the COP of the heat pump. The main aim of the proposed system is to increase the
COP of the ASHP. As previously mentioned, COP is a function of air temperature and relative
humidity. A high value of the latter is useful to improve the COP because of the condensation of
latent heat that increases the heat exchange inside the evaporator, under assumption that the finned
coil surface temperature is not below 0 °C. Unlike, frost may grow in the fins reducing heat exchange
between air and refrigerant. As already cited in section 1.4.3, this may occur more frequently when
air temperature in the evaporator inlet is between 5 °C and 9 °C. In such case, a defrost factor has to
be considered [30] to take into account the penalization of COP due to periodic defrosting of the
evaporator with finned coil (e.g. by reversing the cycle). Analysis of COP variation between a
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traditional ASHP (without the adiabatic mixer) and the current system is performed and presented for
four very different representative cases by a combination of external air relative humidity and SOFC
nominal power (25 % - 20 kW, 25 % - 50 kW, 100 % - 20 kW, 100 % - 50 KW). COPuyariation benchmark
is defined as (Eqg. 19):

COPinnov,sys

—1)-100 Eqg. 19
COPtrad,sys ) q

COPyariation = (

COPuariation higher than 0 (zero) means that the current system has a higher COP than the
traditional one, and therefore ASHP performs better.

Analysis on primary energy saving (%PES) is also proposed, wherein the innovative system is
compared with a traditional one with separate production of heat (boiler) and electricity (national
grid) in terms of primary energy (PE). Considering that the system here proposed has a net available
electricity generation Eava (that is the difference between SOFC net electric power and ASHP
consumption) and a heat generation Hava (that is the sum of heat cogenerated by SOFC and generated
by ASHP), %PES benchmark is defined as (Eqg. 20):

PE Eava+ Hava
WPES = [ 1 — —1125¥5 ) 1100 = | 1 — Jete_Tboiler |, 4 Eq. 20
PEtrad,sys FSOFC

where Fsorc is the fuel (primary energy) consumption of SOFC, #7ele is the global electric
efficiency from grid (assumed to be 0.435), and #uoiter is the efficiency of boiler for heat production
(assumed to be 0.9). Such a definition is consistent with that of the primary energy saving of
cogeneration systems as referenced in the 2012/27/EU Energy Efficiency Directive [32] and Directive
2004/8/EC on promaotion of cogeneration [33].

1.4.6 RESULTS- EVAPORATOR OUTLET AIR TEMPERATURE

Firstly, the difference in evaporator outlet temperature (airside) between an ASHP standalone
(only ASHP) and ASHP-SOFC integrated system is outlined (Figure 16). In both cases considered as
previously described (case 1: 25 % - 20 kW, and case 2: 100 % - 50 kW), temperature at the evaporator
outlet is higher in the ASHP-SOFC system because of the positive effect of high temperature of the
exhausted gases from SOFC. The higher the SOFC electric power, the higher the temperature
difference between the two systems is found to be. The reason is due to the increasing of airflow rate.
For example, at 0 °C external air temperature T4 is 3 °C higher with ASHP-SOFC system with respect
to ASHP only in case 1, whereas at same conditions T4 is 10 °C higher in case 2.

Even if the increasing of temperature of discharged gases (point 4, Figure 15) is proved, COP
may increase or not. If evaporator temperature is between —7.5 °C and 10 °C and relative humidity is
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higher than 50 %, then the frost factor shall be considered, which can affect the energy performance
of the heat pump.

ASHP+50FC-1 ASHPonly -1 =—ASHP+SOFC-2 = = ASHPonly-2
25

20
15
10

5

T.(°C)

-10
-15
75 5 225 0 2.5 5 7.5 10 125 15
T, (°C)
Figure 16. Evaporator outlet air temperature (T4) in function of external air temperature (T2)
in the two cases (air relative humidity - SOFC nominal electric power). Case 1: 25 % - 20 kW;
Case 2: 100 % - 50 kW.

1.4.7 RESULTS - COEFFICIENT OF PERFORMANCE

Figure 17 compares the COP of the presented system with that of an ASHP only, considering
the two very different cases previously described: low external air relative humidity with low SOFC
nominal electric power (respectively 25 % and 25 kW), and high external air relative humidity with
high SOFC nominal electric power (respectively 100 % and 50 kW). It is apparent that the system
proposed here is not always advantageous. The latent heat contribution of SOFC exhausted gases
may be greater than the sensible one and therefore more frequent defrosting is requested when air
temperature is in the critical range (5-9 °C as already stated). The higher weight of the frost factor
may decrease the COP of the innovative system. For low humidity and low power (case 1), the
proposed system has lower COP than traditional one when external air temperature is lower than
about 8.5 °C, ranging from 2 to 3 for ASHP only and from 1.7 to 3 for ASHP-SOFC. However, in
the case of 100 % - 50 kW, the higher exhausted mass flow rate (due to the higher electrical power)
allows COP of the proposed system to be always higher (between 2.1 and 4.8) than COP of the
traditional system (between 1.7 and 4).
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Figure 17. COP in function of external air temperature (T2) in the two cases (air relative
humidity - SOFC nominal electric power). Case 1: 25 % - 20 kW; case 2: 100 % - 50 kW.

Figure 18 depicts COPuyariation With varying outdoor air temperature for four very different
representative cases by a combination of external air relative humidity and SOFC nominal power.
COPuariation IS influenced by:

- inlet air relative humidity. Given a fixed amount of SOFC power, COPyariation increases with
increasing relative humidity of the air. According to Figure 18, the present system with 20
kW SOFC nominal power has a COP lower than the traditional one (COPyariation IS lower than
0) at 0 °C and 25 % external air condition. COPvariation becomes positive if inlet air has higher
relative humidity (e.g. 100 %);

- SOFC electric power. The higher the SOFC power, the higher the mass flow rate of exhausted
gases, so the higher the temperature of the gases at the outlet of the adiabatic mixer. This
parameter has a strong effect on system performances. Figure 18 shows that for inlet air
temperature equal to 2.5 °C COPyariation increases from 30 % up to 110 % when considering a
SOFC power of 20 kW and 50 kW, respectively.
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Figure 18. COP variation varying the external inlet air temperature for four very different
cases in terms of SOFC nominal power and air relative humidity.

The main conclusion of this reasoning is that the adiabatic mixer has a positive effect on the heat
pump COP when outdoor air has a high relative humidity and when SOFC electric power is high.
When SOFC power is 50 kW, COP of heat pump is always improved by the mixer. If a 20 kw SOFC
is used, then the present system has a higher COP only when relative humidity of the inlet air is close
to 100 %.

Figure 18 shows another interesting aspect of the system in which the higher air relative
humidity and SOFC power, the lower air temperature at which maximum COPyariation OCcurs. If inlet
air temperature is above 12.5 °C, the adiabatic mixer is not useful at all.

1.4.8 RESULTS - PRIMARY ENERGY SAVING

As previously mentioned, %PES is defined to quantify energy saving from the proposed system
and compared to the traditional solution (system). Figure 19 depicts %PES as a function of the
outdoor air temperature for the same four different cases as in Figure 18 (very different cases but
representative). The proposed system allows a primary energy saving in the range of 37.5 % — 45 %.
The system with relatively small SOFC power presents lower %PES compared to the case with
relatively high SOFC power, only for temperature below 2.5 °C and when relative humidity is low
(25 %). Such critical value of air temperature decreases to 0.5 °C when humidity is high (close to 100
%).

Note that the higher the relative humidity, the higher %PES in the given temperature range of
T, (dotted lines are always above continuous lines in Figure 19). It is also worth to note that primary
energy saving depends also on the partial load operation of SOFC. This is due to variation of power
ratio, and thereby the efficiency of SOFC.
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Figure 19. Primary energy saving varying the external inlet air temperature for four very
different cases in terms of SOFC nominal power and air relative humidity.

1.4.9 CONCLUSIONS

A cogeneration system based on SOFC fed by natural gas (producing both electricity and heat)
and ASHP with an advanced heat recovery system (to increase overall heat production) is analysed
and proposed to enhance overall efficiency of the system on energy generation. Outdoor air entering
the evaporator of heat pump is mixed with exhausted gases from the SOFC plant with the aim of
increasing evaporator temperature and thereby reducing possibility of freezing. Such conditions allow
increasing the coefficient of performance for the heat pump.

Simulations are performed varying the external air temperature, air humidity and SOFC
nominal power. Thermodynamic analysis shows that in some cases the effect of mixing the exhausted
gases with air is negative: when SOFC electric power is lower in comparison to its nominal power
(50 kW) and/or inlet air has a low relative humidity, COP decreases up to 35 %. Instead, COP
increases up to 100 % when SOFC electric power is close to its nominal, and/or inlet air has a high
relative humidity. A comparison based on primary energy consumption between the system proposed
here and a traditional one with separate production (electricity demand is covered by the national grid
and heat demand is produced separately by a boiler) proves that significant savings can be achieved
(between 37.5 % and 45 %).

Results show that ASHP performance could be increased considerably during cold season for
climates with high relative humidity. Such results quantify the coefficient of performance and primary
energy saving of the SOFC-ASHP integrated system.
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1.5 RSOC-SOEC

1.5.1 INTRODUCTION
Hydrogen will play a key role into the next energy systems: analyses and studies have been
already performed ([34]-[38]) to verify the state-of-art, the production costs, and the uses as energy
vector for the transport sector and as energy storage. As a matter of fact, hydrogen is proposed for:
- Decarbonized transport sector: hydrogen as the energy vector for transport when fuel
cells instead of combustion engines are proposed, with the aim of reducing pollution
and CO2 emission;

- Management of high energy price fluctuation: hydrogen can be used to reduce the cost
fluctuation of energy: it can be produced when low costs occur, and then converted into
electricity when prices are high;

- Management of energy system with high share of renewable energy: mismatching
between production and demand of energy can be frequent in energy systems with high
share of renewable energy. Energy sources such as solar or wind are highly related to
weather conditions and are not programmable. As a matter of fact, in some periods the
energy production is higher than the energy demand, in others vice versa. Hydrogen is
proposed as an energy storage, as it is produced when a surplus of energy production is
available and it is consumed when a deficit of energy is present ([35], [36]).

Hydrogen is actually used in chemical industry, but according to [38] it is mainly produced by the
reforming of natural and refinery gases (48%), as a by-product of chemical production (30%), and by
coal gasification (18%). Only a small amount is produced with water electrolysis. The production of
hydrogen from hydrocarbons and/or coal is considered not suitable in the long run because CO; is
produced. Water electrolysis using renewable energy is proposed as main alternative to decrease
greenhouses emission. Water electrolysis is an electrochemical reaction where water is divided into
hydrogen and oxygen using thermal and electrical energy:

2H,0 - 2H, + 0, Eq. 21

The overall energy request of the reaction (AH) is partially supplied by heat (AQ) and partially in an
electrical manner by changing the Gibbs energy (AG) (Eq. 22):

AH = AQ + AG Eq. 22
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The theoretical minimum cell voltage (V,.,) of the electrolyser could be calculated under the
assumption that an external heat source supplies the thermal energy requested. It is directly related to
the Gibbs free energy (AG) according to the equation Eq. 23:

_AG

rev — ﬁ Eqg. 23

Where n is the number of electrons transfers per reaction (n=2) and F represents the Faraday’s
constant (96485 C/mol). Thermoneutral voltage is defined, instead, under the assumption that
electrolysis takes place without heat integration, consequently the overall energy demand (including
heat) is provided electrically. Thermoneutral voltage (V) is defined as (Eq. 24):

_AH

R Eq. 24
nkF a

Vin

Figure 20 represents how electrical, thermal and total energy demands vary with temperature. Firstly,
1., decreases slightly with the increase of the temperature of the reaction in a range of 1.25V - 0.91
V between 0 °C and 1000 °C. Thermoneutral is approximatively 1.47-1.48 V if the cell works below
100 °C, and 1.26-1.29 V if the temperature range is between 100 — 1000 °C.
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Figure 20. Electrical (4G), thermal (4Q) and total (4H) energy demand variation on
temperature ([39])

The main water electrolysis technologies currently available are proton exchange membrane
electrolysis (PEMEL or PEM), alkaline electrolysis (AEL) and solid oxide electrolysis (SOEL).
Differences occur on the electrolyte of the cell and, consequently, on working temperature, specific
energy demand and efficiency on energy conversion.

The alkaline electrolyser has a 25-30% aqueous KOH solution as electrolyte, and the electrolytes are
immersed and separated by a diaphragm. It is considered a low temperature electrolyser working at
60 — 90 °C. Partial reactions at the electrodes are represented in Figure 21 .
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Anode Cathode

1
20H™ = H0 + 50, + 2¢” 2H,0 + 2e~ — 2H, + 20H"

Figure 21. Partial reactions in alkaline electrolyser

Figure 22 represents how the system works: water is fed at the anode side where hydrogen is
produced, two drums store the produced gases (one for hydrogen and one for oxygen) with the
electrolyte working as gas-liquid separator. External cooling system is required to dissipate heat
produced during electrolysis. Gas quality after drying is typically in the range of 99.5-99.9% for H>
and 99-99.8% for Oo; catalytic gas purification could increase gas purity to 99.999%. Commercial
electrolysis stacks work at 1.25 — 2.1 V (varying on current density) and a current density of 0.4
Alcm?, reaching a rated efficiency of 63—-71% on hydrogen LHV and a specific energy demand of
4.2-4.8 KWh/Nm? [39] (Table 7).
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Figure 22. Alkaline electrolyse system [39]

Proton Exchange Membrane Electrolyser (PEMEL) was introduced in 1960s by General Electric.
Electrodes are directly mounted on a proton exchange membrane (usually Nafion © membrane).
PEMEL is considered also a low temperature electrolyser, as it works at 60-90 °C.
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Figure 23. PEMEL system ([39])

Figure 23 represents a PEMEL system: water is supplied at the anode side where oxygen is produced,
meanwhile hydrogen is available at cathode side. The following partial reactions take place into the
electrolyser (Figure 24):
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Anode Cathode
1
H,0 = 50, +2H* 4 2e” 2H* + 2e~ - H,

Figure 24. Partial reaction of PEMEL

The corrosive acidic regime provided by the proton exchange membrane requires the use of noble
metal catalysts like iridium for the anode and platinum for the cathode. Compared to alkaline
electrolyser, PEMEL has a very low cross-permeation: Hz with a 99.99% purity is available after
drying. One of the featured characteristics of PEMEL compared to AEL is the compact module design
and the higher current density operation. Consequently, a high-pressure operation on the cathode side
(H2) could be achieved: hydrogen can be produced at higher pressure than AEL. This is a key feature
if compressed hydrogen is required, energy requested to compress hydrogen after electrolysis is
higher than the one requested by compression of water before electrolysis. The cell voltage in PEMEL
stack is 1.6 — 2.5 V with a current density of 1 - 2 A/cm?; stack efficiency is reported to be 60-68%
on hydrogen LHV with an energy demand of 4.4-5.0 kWh/Nm?3 [39] (Table 7).

The solid oxide electrolyser works at higher temperature compared to AEL and PEMEL, around 700
— 900 °C. High working temperature requires that electrolyte is based on solid oxide. Figure 25
represents a simplified layout of a system: electrolyser is based on planar cells, and water is provided
as steam at high temperature. Higher working temperature implies a lower electricity consumption as
showed in Errore. L'origine riferimento non é stata trovata.: part of the energy is given by heat.

HT Heat q) LT Heat Oxygen
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Preheater Recuperatur
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) Feed water pump
Steam + H _©_

Recycle Compressor

Figure 25. Solid oxide electrolyser system ([39])

Partial reactions at the electrodes are (Figure 21 and Figure 26):
Anode Cathode

1
0% =0, +2e” H,0 +2e™ - H, + 0%~

Figure 26. Partial reactions in solid oxide electrolyser

AEL and PEMEL are considered mature technologies, and commercial system are currently available
at megawatt power scale. Instead, solid oxide electrolysers are still under development with few
commercial systems available within kilowatt power scale. It is reported an efficiency of 81 % on

hydrogen LHV with an energy demand of 3.7 kWh/Nm? [39] (Table 7).
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Type of electrolyte | Nominal power Energy demand NLay

Proton Exchange

Membrane 0.01-2 MW 4.4 — 5 KWh/Nm?® 60 % - 68%
(PEMEL)
Alkaline (AEL) 0.03—6 MW 4.2 — 4.8 KWh/Nm? 63 % - 71 %
Solid Oxide 98 %
Electrolysis (SOEL) 2.2 KW 3.7 kWh/Nm? 84.6 % (including

water evaporation)
Table 7. Overview of commercial electrolysis system based on ref. [39], each technology is
divided by nominal power, energy demand and efficiency on hydrogen production on LHV

Nowadays there is a great interest in SOEL thanks to its reversibility: reversible solid oxide
cells (RSOC) can be used both as electrolyser (solid oxide electrolyser cells — SOEC - if steam and
electricity are provided) and as fuel cell (solid oxide fuel cell - SOFC - if hydrogen and oxygen are
available). Thanks to this reversibility, RSOC could have a key role in the future energy systems
where fluctuations on energy production occur and hydrogen is used as energy storage. In the next
section it is proposed a RSOC system as polygeneration system: heat, electricity and hydrogen are
produced varying how many cells work as fuel cells and as electrolyser and, consequently, varying
H/P ratio on energy generation. If H/P varies, it is possible to decrease the mismatching on energy
request and, consequently, increasing efficiency because energy losses are avoided. Hydrogen is a
noble by-product of the system and could be used as fuel or, alternatively, for transport. Firstly, the
model of the solid oxide cell electrolyser (section 1.5.2) and of the overall system (section 1.5.3) are
analysed. Successively, an interaction of SOEC and SOFC is proposed (sections 1.5.4 and 1.5.5) to
match H/P of energy demand and production. Finally (section 1.6), a re-vamping of the energy
generation system of an industrial facility (a paper mill) using RSOC is proposed and analysed.

1.5.2 SOEC CELL MODEL

In SOEC, water (H20) is divided into hydrogen (H2) and oxygen (O>) using not only electricity,
but also heat in order to decrease the electricity consumption. The SOEC system simulated in this
work is based on the model presented in [14], [40] and [41]-[43]. The molar production of H;
(M, oue) is related to current value, consequently (Eq. 25):

_ Nstack * Ncell * Acell *]

mHz,Out - 2F Eq 25

Where Nstack is the number of stacks, Ncenr is the number of cells per each stack, Acen is the cell area
(m?), J is the current density (A/m?) and F is the Faraday constant (96485.34 C/mol). The molar
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production of Oz (1, oy¢) (EQ. 26) and the residual H20 (1, 0,04¢) (EQ. 27) can be calculated from
the water inlet (1, 0,in):

1 Nstack * Ncell * Acell *]

Mo, out = Mu,0,in — EmHz,out = My,0,in — AF Eq. 26
mHzo,out = mHZO,in - mHz,out = mHZO,in - Notack * chell; * et/ Eq. 27

The SOEC power (Psokec) is defined as (Eq. 28):
Psoec = Nstack * Neeu * Ecen * Acen *J Eqg. 28

where Ecen is the cell voltage (V). The minimum electrical work is determined by Nernst potentials
but also irreversibilities occur such as activation (AE,), polarization (AE.,,.) and ohmic resistance

(Athm) (Eq- 29):
Ecel = Enernst + AEact + AEghm + AEconc Eq. 29

The Nernst potential and the polarization (activation, ohmic and concentration) are calculated as
explained in [13], [42] meanwhile the diffusion coefficient is approximated using the kinetic theory
and Chapman-Enskog theory [43]. The pressure at the outlet is defined as (Eq. 30):

Pcaout = Peajin * (1 = dPca) * Pan,y, = Panjin * (1 — dPan) Eq. 30
where dp., and dp,, are the pressure drops at the cathode and at the anode side respectively; pca out
» Pan,,, aNd panin are the pressure at the cathode outlet, the anode outlet, and the anode inlet
respectively.

1.5.3 SOEC SySTEM PROPOSED

SOECs require both electricity and heat to produce hydrogen. In particular, the latter is
necessary to generate high-temperature steam as a reactant and, on the other hand, as a cooling vector
for the compressed hydrogen in order to reduce the power for compression. Consequently, SOEC
system is mainly composed by SOEC stacks and counter-flow heat exchangers.
Figure 27 represents the proposed system: HEX1 and HEX2 are two heat exchangers that cool
hydrogen and oxygen, respectively, after they are produced within the SOEC, while preheating water
to obtain steam at the required working condition. HEX3 uses exhaust gases from SOFC to heat the
steam up to the SOEC working temperature. The produced hydrogen and oxygen are discharged after
SOEC stack at 750 °C, while inlet water has a temperature of 25 °C: heat exchanger are used to cool
products (hydrogen and oxygen) to pre-heat water. Without heat recovery performed by HEX1 and
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HEX2, HEX3 would exchange a higher thermal power, and it would require a higher exhaust gases
flow rate to reach operating temperature, thus increasing the heat demand by SOEC. The SOEC
system proposed is simulated with the tool DNA from DTU ([14], [40]). Table 8 resumes the main
parameters of the system.

HEAT FROM SOFC

HYDROGEN OXYGEN

ELECTRICITY
SOEC

Figure 27. SOEC system layout. Water (blue line) is heated by using produced gases (black

lines, hydrogen and oxygen) and exhaust gases from SOFC (red line), in order to obtain steam at

operating temperature by means of heat exchangers (HEX1, HEX2 and HEX3). Electricity (yellow
line) is needed to perform electrolysis in the SOEC stack.

Table 8. SOEC system parameters.

Parameter Value
Stack nominal electric power 100 kw
Hydrogen flow (at 90 % of
ydrogen flow (at 90 % 2.63 kg/h
nominal electric power)
Heat request from SOEC (at 90 %
: : 15 kw
of nominal electric power)
Working temperature 750 °C
Working pressure 7.01 bar
Pressure drop 0.05 bar

1.5.4 SOFC/SOEC INTERACTION

Different industrial sectors have different heat to power ratios: Figure 2 summarizes how the
ratio varies compared with different cogeneration technologies. Reference [3] proposes these
technologies: internal combustion engine (ICE), steam turbine, gas turbine, micro turbine and fuel
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cell. Each technology has different H/P ratio and electrical capacity: steam turbine has the highest
H/P ratio (10-14.3), while fuel cell features the lowest (0.5-1). Electrical capacity is the highest for
steam and gas turbines as well (until several hundreds of MW). None of the previous technologies
achieves a H/P ratio between 2 and 10 even if many industrial sectors have typical H/P consumption
in that range. If a factory has a H/P on energy demand close to 6, none of the cogeneration
technologies previously mentioned match the request. Different approaches could be applied,
depending on the operation strategy, energy cost and other parameters:

1 Cogeneration system with H/P below 6 (such as ICE or gas turbine): mismatching
between H/P of energy demand and energy production could be adjusted with a heat
integration system. This would increase heat production or electricity export to the grid.
If this solution is adopted, heat integration system (mainly using boiler) is usually
chosen because heat demand is usually variable and revenues on electricity export to
national grid could not cover electricity generation costs;

2 Cogeneration system with H/P over 10 (such as steam turbine): mismatching between
H/P could be adjusted by increasing heat demand (such as district heating as presented
in [44]) or dissipating unused heat or importing electricity from grid.

Integration heating system and (in particular) unnecessary heat dissipation could decrease efficiency
of energy generation. The main priority for the industry is not only energy efficiency but also cost
reduction, that is related to purchase, installation, operative and maintenance costs of the energy
generation technology chosen.

RSOC is proposed as innovative cogeneration system for industry because cells can be used
to produce electricity and heat (operation as SOFC) or to produce hydrogen consuming electricity
and heat (operation as SOEC). Varying the proportion between SOFC and SOEC it is possible to
modify H/P ratio of the energy generation. Advantages of a RSOC system are:

- High versatility on fuels: as previously mentioned ethanol [8]-[10], methanol [8]-[10],
ammonia [8]-[10], DME [8]-[10], woodchips gasification [11], biomass [12] or
municipal waste gasification [13] could be used, it requires only to change fuel pre-
reformer. According to [3] only steam turbines have a higher versatility on fuel;

- SOFC and RSOC systems have high modularity, so the scale of the plant can vary from
kilowatt to megawatt;

- Heat is produced using heat recovery from SOFC exhausted gases that have a
temperature higher than 600 °C, while industrial processes use heat at temperature
generally lower than 150 °C (Figure 10);

- Hydrogen is also a product of the RSOC system, it could be re-used as fuel for SOFC
or for other uses (exported to natural gas grid, storage and distribution for transports
etc).

Figure 28 represents the proposed SOFC-SOEC system (RSOC): SOFC consumes fuel to produce

electricity and heat, SOEC consumes a part of electricity and heat available from SOFC to obtain

hydrogen and oxygen from water. Unused heat from SOFC can be used to produce steam and/or heat
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directly for processes. The aim is to vary the heat-to-power ratio of the system (i.e., the ratio between
heat and electricity generated by the system, H/Prsoc) by varying the proportion between the stacks
used as SOFC and the ones operating as SOEC, in order to match the energy profiles of the user (a
paper mill) at supply and demand sides. If only SOFCs are used, the H/P ratio of the system is equal
to the H/P of the SOFC. Instead, if a combination of SOFCs and SOECs are used, a part of the
electricity and heat generated by SOFCs is consumed by SOECs to electrolyse water and convert it
into hydrogen and oxygen.

water
fuel
SOFC |——— e
SOEC
Electricity Heat Hydrogen
v

Figure 28. SOFC-SOEC system proposal

15,5 MATHEMATICAL MODEL

A mathematical model of the interaction between SOFC and SOEC is proposed in order to
define how H/P ratio of energy generation varies with different configurations. nrsoc is defined (Eq.
31) as the ratio between SOEC electricity consumption (Psoec) and SOFC electricity generation
(Psorc):

PSOEC

Npsoc = Eg. 31

PSOFC

Hrsoc and Prsoc are the heat and electricity generation of the overall system, respectively. These
variables are defined as the difference between SOFC generation (subscript SOFC) and SOEC
consumption (subscript SOEC) in terms of heat (H) (Eq. 32) and electricity (P) (Eg. 33):

Hgrsoc = Hsorc — Hsogc Eq. 32

Prsoc = Psorc — Psokc Eq. 33

Then nrsoc is related to (H/P)rsoc, (H/P)sorc and (H/P)soec. Firstly, heat-to-power ratio of RSOC

system is defined (Eq. 34) considering energy production of SOFC and consumption of SOEC (Eq.
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32 and Eq. 33 respectively). An expression that only uses H/P ratios as variables is obtained to relate
electricity consumption of SOEC and electricity production of SOFC (Eq. 37).

H Hsorc — Hsokc
— = Eq. 34
(P)RSOC Psorc — Psokc |
H H
(E)RSOC _ (ﬁ)SOFC * Psopc — (ﬁ)sozsc * Psopc Eq. 35
p Psorc — Psokc
H H P,
H (ﬁ)SOFc - (ﬁ)sozsc * pzzllii
($)rsoc = P Eq. 36
P 1 — LS0EC
Psorc
H H
H (B)sorc — (B)soec * Nrsoc Eq. 37
(Z)rsoc = g
P 1 —ngsoc
nrsoc is defined (Eq. 38) directly from (H/P)rsoc, (H/P)sorc and (H/P)sokc as:
H H
(ﬁ)Rsoc - (ﬁ)sopc
Ngsoc = Eq. 38

H H
(ﬁ)Rsoc - (ﬁ)SOEc

Figure 29 shows how the heat-to-power ratio of RSOC system ((H/P)rsoc) varies with nrsoc.
SOEC consumes electricity and heat to electrolyse water, and energy is provided by SOFC: the higher
the SOEC utilisation, the lower the electricity and heat available from SOFC. (H/P)rsoc represents
the ratio between electricity and heat available from the RSOC system: the higher the fraction of
stacks operating as SOEC, the higher the (H/P)rsoc. (H/P)rsoc increases when the proportion shifts
towards SOEC presence, because SOEC consumes proportionally more electricity than heat from
SOFC. nrsoc is useful to analyse how to match (H/P)sorc and heat-to-power ratio required by the user
(H/P)user: if (H/P)user is higher than (H/P)sorc, an increase of SOEC utilisation is needed to increase
(H/P)rsoc.
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Figure 29. RSOC system heat to power ratio versus nrsoc

Given Prsoc, which is known because it is the electricity required by the RSOC system, Psorc and
Psoec can be defined through nrsoc. Considering the previous equations, Psorc and Psoec can be
obtained respectively by Eq. 39 and Eq. 40:

1
Psorc = T fpsoc * Prsoc Eq. 39
n
Psopc = R Prsoc Eq. 40
1 —ngsoc

The RSOC number of stacks is directly related to its nominal power and, consequently, to the nominal
power of both SOFC and SOEC. The parameter Puaxrsoc is defined as the sum of SOFC electric
generation and SOEC electric consumption, so the maximum electric power of the RSOC system (Eq.
41) and, accordingly, the number of stack required can be calculated.

Pyax,rsoc = Psorc + Psokc Eqg. 41

Eq. 42 combines Eq. 39, Eq. 40 and Eq. 41 to obtain Pmaxrsoc (maximum electric power of
RSOC), by relating nrsoc (ratio between SOEC and SOFC) and Prsoc (electricity production of
RSOC system).

1+n
ﬂ*PRsoc Eq. 42

Pyax,rsoc = 1 —
Nprsoc
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Eq. 37 and Eq. 42 are useful to size the RSOC system, which is the novel element proposed in
this study. In particular:

1. (H/P)rsoc and Prsoc are known due to energy request of the user, while (H/P)sorc and
(H/P)soec are gathered from technical datasheet and/or simulation. Eq. 37 defines the ratio
between SOEC and SOFC power (nrsoc) by using these parameters;

2. EQq. 42 defines the size of the RSOC system (Pwmaxrsoc) and, consequently, the number of
stacks as a function of the ratio between SOEC and SOFC (nrsoc), and electricity generation
of RSOC system (Prsoc).

For the sake of clarity and a better comprehension of the entire system, each variable used in the
previous equations is also represented in Table 9, which shows the structure of the novel system.

COMPONENT | VARIABLE DESCRIPTION
Hrsoc Heat production of RSOC system
Prsoc Electricity production of RSOC system
(H/P)rsoc Heat to power ratio of RSOC system
RSOC nrsoc Ratio between electricity consumption of SOEC and
electricity production of SOFC
S Sum of both electric power of SOFC and electric power of
' SOEC
Hsorc Heat production of SOFC system
SOFC Psorc Electricity production of SOFC system
(H/P)sorc Heat to power ratio of SOFC system
Hsoec Heat consumption of SOEC system
SOEC Psoec Electricity consumption of SOEC system
(H/P)soec Heat to power ratio of SOEC system consumption

Table 9. List of RSOC, SOFC and SOEC variables in order to define the mutual interaction.

Figure 30 compares H/P of the proposed system varying nrsoc and other cogeneration
technologies: gas turbine, ICE, micro gas turbine and steam turbine. It is possible to appreciate that
RSOC can cover H/P range between 2 and 10 in which no cogeneration system is available, even if
the proposed system in that range mainly consumes fuel to produce hydrogen: nrsoc is higher than
50%, consequently it works more in SOEC than SOFC mode.
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Figure 30. H/Prsoc variation on nrsoc compared with H/P of other cogeneration technologies
(gas turbine, ICE, micro gas turbine, steam generator) (images from [45]-[48])

1.6 ENHANCEMENT OF ENERGY GENERATION SYSTEM IN INDUSTRIAL FACILITY
wWITH SOFC/RSOC

1.6.1 INTRODUCTION

Many countries have already implemented subsidies on energy efficiency in generation and
utilisation, with the aim of decreasing overall consumption and energy intensity of gross domestic
product. Many processes in the industrial sector are highly energy intensive, so that energy efficiency
measures and innovative conversion solutions are deeply investigated for both environmental
protection [49] and operational costs reduction [50]. Advantages can be evaluated in either purely
technical (energy saving) or techno-economic (cost reduction) terms. Typical examples are industrial
applications where high energy flows are treated, like metals and plastic manufacturing [51], or wood
processing [52]. A number of studies has investigated glass production and the potential for energy
performance improvement with different integrated processes [53], [54]. Energy analyses on cast iron
foundries have been developed, proposing system improvements to decrease and control energy
demand [55]-[57].
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The contemporary request of heat and electricity characterizes the pulp and paper industry,
which thus opens to innovative process integration for energy efficiency improvement [58], [59].
Focusing on the final step, i.e. paper production in paper mills, two energy vectors are involved: heat
to satisfy the need of drying the mid-products, and electrical power to drive the motors. The use of
CHP units in paper mills is a known strategy, typically implemented with conventional internal
combustion engines or steam turbines [60], [61]. Decarbonisation strategies have been investigated
considering the use of renewable biomass or waste from the facility itself as sources, as well as the
introduction of carbon capture technologies [62], [63].

In this study, the re-vamping of the energy generation system of a paper mill by means of
Reversible Solid Oxide Cells (RSOCs) is proposed. The aim is not only to increase efficiency on
energy generation, but also to create a polygeneration system where hydrogen is produced. The study
focuses on a real industrial facility, based in Italy, with a production capacity of 60000 t/y of paper.
As the main novelty of this study, the adoption of a solid oxide fuel cell / solid oxide electrolyser cell
(SOFC/SOEC) system is proposed, substituting of part of the existing set of cogenerators. This
introduces an additional hydrogen production as a result of the need to balance the mismatch of heat-
to-power ratios between energy production and demand. As a matter of fact, this enlarges the plant
activity beyond paper production, exploiting the inherent capability of managing high-temperature
flows and bringing it into the field of multi-energy integrated systems, which are expected to become
more and more relevant in the clean energy future.

In the field of multi-energy systems, hydrogen has been studied lately as an alternative for both
power generation and storage. Canan et al.[34] have studied hydrogen production from renewable
and non-renewable sources to assess environmental impact, production costs, energy and exergy
efficiency of the different methods. Astiaso Garcia et al.[35] have surveyed and analysed potential of
hydrogen as energy storage systems in EU countries to reduce energy fluctuations and possible
negative effects due to an increase of renewable sources share in power generation. Guandalini et
al.[36] have investigated the use of Power-to-Gas systems coupled with wind farms to improve
dispatchability. Castellani et al. [37] have studied the use of hydrogen produced with renewable
energy for flue gas treatment to produce methane and ammonia, in order to reduce carbon footprint
of the process. The main novelty of the multi-energy integrated system proposed in this thesis is that
can be used to revamp or to substitute cogeneration systems in industrial facility. Thanks to its
flexibility on H/P ratio on energy generation, it decreases the mismatching between energy production
and demand. Other cogeneration technologies such as ICE, gas turbine or steam turbine have a lower
flexibility because H/P ratio can vary only into a limited range (Figure 30). On the other hand,
hydrogen is a sub product: if it is adopted on large scale, the proposed system would introduce a de-
centralised hydrogen production scenario, that could be a first stage towards its introduction as energy
vector.
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1.6.2 OVERVIEW OF THE INDUSTRIAL FACILITY AND ACTUAL ENERGY GENERATION SYSTEM

The industrial facility under consideration is a paper mill located in the North-East of Italy. It
produces paper with a weight between 40 g/m? and 500 g/m?, and it is equipped with two paper
production lines with an annual capacity of 60000 t/year. Figure 31 represents the scheme of one
production line within the paper mill, highlighting the different processes involved. First, pulp is
mixed with water and raw materials (e.g., kaolinite, a type of clay) in the headbox. Then, the obtained
pre-product is sent to the wet-press section where rollers press it to start removing water from the
pulp. Next, in the drying section, heated rollers and felts further decrease water content and thickness
of the pre-product down to production specifications. Each production line consumes electricity for
motors (each roller has an independent one) and vacuum pumps (felts uses vacuum instead of heat
for drying), while heat is required to heat up rollers (steam is generally used). In some cases, natural
gas-fired dryers are used within the drying section.

Headbox Slice Dolly Roller Felt Felt Dryer Heated Dryer Top Felt Felt Dryer

|

Breast Roller Couch RollerPickup Roller Bottom Felt  Felt Dryer

Wet End Wet Press Section Dryer Section
Figure 31. Schematic representation of a paper production line.

After the economic crisis of 2008, the drop in paper request reduced the production rate
significantly. Due to the high start-up time (typically half to one day), a paper production line must
run continuously, with the workers active on a three-shift basis. In order to match the lower paper
request to the plant capacity, the production cycles have been organised in series of some full-load
days followed by days off, e.g. each production line is run continuously for 6 days and then it is
switched off for 3 days. Figure 32 represents the current organisation of the production. In Case 1,
only line 1 works; in Case 2, only line 2 works; in Case 1+2, both lines 1 and 2 are in operation. One
of the consequences of this production plan is that the total operating time is uniformly divided into
three situations: for one third of the time all the paper production lines work, for another one third
only Line 1 works, and for the last one third only Line 2 is in operation. As electricity and steam
consumptions are generally variable with time, in this work a representative average value of
electricity and heat consumption is considered for each case, extracted from real data.
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Figure 32. Production organisation of the paper mill considered.

The considerable amounts of electricity and steam required by the industrial process suggests
the adoption of a cogeneration system. In the current configuration, the industrial facility has two
cogeneration units. The oldest one is based on a natural gas-fired steam generator (installed in the
*70s to substitute the previous coal-fired unit), coupled to two steam turbines (still the original ones
first installed in the ‘40s). The newest cogeneration unit (installed in 2013) features an internal
combustion engine (ICE) with heat recovery. Figure 33 represents the overall energy system: both
the ICE and the steam turbines discharge steam at the same thermodynamic conditions (235 °C and
280 kPa, as required by the process), and generate electricity. Steam is used in the paper production
process mainly to heat up rollers, and it returns to the ICE and the steam generator as condensed water
at a temperature of 80 °C and atmospheric pressure. Both the steam generator and the ICE use natural
gas as fuel.

water STEAM TURBINE
COGENERATION SYSTEM
e
t " z ._‘ ! : lvr_) g
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! 1
1 1
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electricity

Figure 33. Overview of the cogeneration system with the main equipment and energy flows.
Grey flows are natural gas, blue flows are water, red flows are steam, and yellow flows are
electricity.

An analysis is performed in order to revamp the current energy system (in particular, the oldest
component, that is the steam turbines) with fuel cells that are expected to have higher efficiency. In
the next sections both steam turbine and ICE cogenerator are described.

1.6.3 STEAM TURBINE COGENERATION SYSTEM
The steam turbine cogeneration system is composed by a steam generator, two steam turbines,
and a thermal user (the paper drying process) that also acts as condenser (Figure 33). The steam
generator is fired by natural gas and releases steam at 420 °C and 35 bar (3500 kPa). The steam
turbines expand the fluid, thus generating power while decreasing the pressure from 35 bar to 2.8 bar,
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which is the pressure required by the paper dryer cylinders. During the expansion process, the
temperature decreases from 420 °C to 235 °C. The requested steam mass flow rate varies according
to the number of paper machines operating. Steam turbines operation depends on the steam flow rate
required for the paper production process: turbine 1 is used when steam generation is between 5 ton/h
and 21 ton/h, turbine 2 is used when steam generation is higher. Both steam turbines are more than
50 years old and, even with proper annual maintenance, low performances are expected. In the present
work, the steam generator and the turbines are modelled by means of characteristic curves that link
fuel demand, electrical generation, and steam mass flow rate. The curves are obtained via
mathematical regression from operational data collected in recent years. The information provided
by the company about the turbines includes regression curves, so these are used for the analysis
directly as given. For the steam generator performance, the curve is obtained from the provided
measured values via numerical regression. Figure 34 represents data and curve of natural gas
consumption as a function of generated steam mass flow rate (ton/h). The natural gas flow rate (m®/h)
is converted into energy demand (MW) using a reference lower heating value (LHV) of natural gas
equal to 9.91 kWh/m?3. Equations in Table 10 describe each component (Eq. 43 for steam generator,
Eq. 44 for steam turbine 1 and Eq. 45 steam turbine 2) with a suitable expression, where mig;eqm 1S
the mass flow rate of the steam (ton/h), Fuel,,,ssr IS the natural gas consumption of the steam
generator (MW), and Ps; is the electric power generated by the turbine (kW).
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Figure 34. Data sampling of steam generator and regression.
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Component

Equation

Condition

Turbine 2

PST = 5_3216e0-0007*msteam

Mgteam = 21 ton/h

Eq. 45

Table 10. Mathematic description of each component of the steam turbine cogenerator.

Figure 36. Photo of the existing steam turbines (turbine 1 in front, turbine 2 behind).

1.6.4 INTERNAL COMBUSTION ENGINE COGENERATOR

In the beginning of 2013, the company decided to increase its energy generation capacity, both
electricity and heat, adding an ICE fuelled by natural gas with a nominal electric power of 4.3 MW.
Heat recovery from exhaust gases allows producing steam at the same pressure and temperature of
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the turbines discharged steam (235 °C, 3.5 bar). It is possible also to recover heat from the engine
cooling water and the intercooler, but this heat is available at low temperature, so it cannot be used
for steam generation purposes. In some very limited periods of the year (typically during winter),
such low-temperature heat is used for space heating and/or for auxiliaries, anyway for most of the
time it is dissipated using dry coolers. Table 11 summarises main ICE nominal parameters. The
performance is simulated under different operating conditions based on data taken from its technical
datasheet. ICE could work at partial load down to 40 % of the nominal electric power.

Parameter Value
Nominal electric power 4.3 MW
Nominal fuel consumption 10.07 MW
Steam outlet temperature 235°C
Steam outlet pressure 3.5 bar (350 kPa)
Nominal electric efficiency 42.7%
Nominal thermal efficiency 44.1%

Table 11. ICE nominal parameters.

1.6.5 POLYGENERATION SYSTEM PROPOSED

Reference [2] suggests that paper mills have a H/P ratio of 5. On the other hand, steam turbines
have a H/P between 10 and 14, gas turbines between 0.9-1.6, and fuel cells lower than 1 ([3], Table
1). Considering the facility described previously, steam turbines are the units under discussion for
modification or substitution in order to improve the energy performance, as they feature very low
efficiency. The proposal is to adopts RSOC system both in SOFC and SOEC mode: reversible fuel
cells are proposed because SOFCs are used as alternative cogeneration units, meanwhile SOECs
recover excess power generation when the heat-to-power ratio impose to over-generate electricity to
satisfy the heat demand. This is likely to occur not rarely, due to a SOFC heat-to-power ratio very
different from the steam turbine one. The rationale of the proposed concept is the high efficiency of
the SOFC systems as well as the already proven capability of the facility to manage high-temperature
flows. Moreover, this change allows the paper mill to enlarge its sector of activity, entering into the
field of multi-energy systems. Indeed, the expected net hydrogen production could be exploited
directly as fuel, thus reducing the natural gas consumption (used as fuel for steam generator, ICE and
RSOC working in SOFC mode), or be addressed to an external market, e.g. hydrogen for mobility.
Figure 37 represents the novel system proposed with the scheme of the energy flows. Steam turbines,
ICE and SOFC produce both electricity and heat for steam production, SOEC consumes a part of
SOFC electricity and heat to both produce hydrogen and to match H/P ratio between energy
generation and consumption.
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Figure 37. Overview of the novel system. Grey flow is natural gas, blue flow is water, red
flow is steam, yellow lines are electricity, and black lines are hydrogen. Inlet water of SOEC is an
independent circuit with respect to water for steam production

In the paper mill, Line 1 and Line 2 have different energy demands. The SOFC-SOEC system
proposed here features some SOFCs that only operate for combined heat and power generation,
whereas other stacks are reversible solid oxide cell. RSOCs are proposed to efficiently manage energy
generation: they can be used to produce electricity and steam when both production lines are in
operation, whereas they can produce hydrogen (working as SOEC) when only one line works and the
energy request is lower. The focus is on performance and efficiency improvements at system level,
so the analysis mostly looks at overall values. The term ‘RSOC’ refers here to the difference between
SOFC generation and SOEC consumption, i.e. the net effect of the set of the cells, as seen from the
industrial facility. Table 12 resumes RSOC parameters on SOEC and SOFC mode.

RSOC Mode Parameter Value
Stack nominal electric power 100 kW
Hydrogen flow (at 90 % of nominal electric power) 2.63 kg/h
SOEC Heat request from SOEC (at 90 % of nominal electric power) 15 kW
Working temperature 750 °C
Working pressure 7.01 bar
Stack nominal electric power 100 kW
SOFC Electric efficiency (at 90 % of nominal electric power) 52.7 %
H/P ratio (at 90% of nominal electric power) 0.842
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RSOC Mode Parameter Value
Exhaust gases temperature 1330 °C
Table 12. RSOC system parameters.

1.6.6 OPERATION OF THE NOVEL SYSTEM

As previously mentioned, the novel energy generation system proposed is based on three
different components: steam turbine, ICE and RSOC. The main goals of the proposed revamping of
the cogeneration plant are:

- toincrease the efficiency of the energy generation system;

- to cast off the old and low-efficiency steam turbines;

- to produce hydrogen by SOECs during periods of mismatched heat-to-power ratio between
the user request ((H/P)user) and the possible SOFC-only generation ((H/P)sorc), achieving
the equality by varying the ratio between RSOC working as SOFC and RSOC working as
SOEC.

Paper mill could work also in three different mode: only line 1 (case 1), only line 2 (case 2) and both
lines (case 1+2). Each case has different energy demands of electricity and heat, consequently
different configurations of the novel system are required. In order to size each component, the case
with the highest energy load (Case 1+2) is considered. Some constraints are considered:

A. the current generation system will be upgraded gradually, and not entirely dismissed. SOFCs
are thought to be adopted to decrease the amount of electricity produced by the oldest
component, so with low efficiency, of the system (steam turbine);

B. the existing ICE has better performance than the steam turbines, and it currently works with
a base-load strategy. Steam turbines, instead, work as an additional system to cover heat
demand. A similar strategy is proposed for the novel system: ICE will work as base load,
while SOFCs, and possibly one of the two steam turbines, will work as additional generation
system.

The following assumptions are also considered:

- RSOC is used only in SOFC mode due to high electricity consumption;

- only Turbine 1 is used in order to dismiss the highest-power one (Turbine 2), constraint A,

- ICE, steam turbine, and RSOC cover heat and electricity consumption without any integration
from grid;

- ICE electricity production is maximised (constraint B).

A system of equations (Eq. 46) describes energy flows and interactions between steam turbine, ICE
and RSOC. Electricity (Puser) and heat (Huser) demands from the user are covered by steam turbines
cogeneration system (respectively Pst and Hsr), ICE (Pice and Hice), and the part of RSOC working
in SOFC-only mode (Psorc and Hsorc). Heat-to-power ratio of each component of the system (steam
turbine, ICE and SOFC) is defined as constraint, imposing the lower power limits of ICE, steam
turbine and SOFC. The steam flow rate varies between 5 ton/h and 21 ton/h, as mentioned in Table
10. Among the solutions of the system, one is selected by solving as an optimisation problem:
maximise electricity production of ICE (Pice) (constraint B).
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( Pice + Pst + Psorc = Pyser
Hicg + Hsr + Hsore = Hyser

Hycg = Prcg * f oz = 0
'P

HST_PST*fST'gZO

ma x(Pjcg) S.t.3 Eq. 46

Hsorc — Psorc * fSOFCE =0
‘P

5 < Mgeqm < 21
Picg >0
Psr >0
Psorc > 0

As previously mentioned, Case 1+2 has the highest energy load because both Line 1 and Line
2 work simultaneously. Since this is the scenario with the highest energy load, it is assumed that Psorc
proposed as solution of this system is, also, the maximum electric power of the RSOC system installed
(Prsoc installed). In other cases, RSOC system can work partly in SOFC mode, partly in SOEC mode.
A constraint is added: the sum of electric power of the cells working as SOFC and as SOEC must be
lower or equal than Prsoc installed.

A new system of equations (Eq. 47) describes the novel system when Line 1 or Line 2 works
separately (respectively Case 1 and Case 2). In these cases, less energy (both electricity and heat) is
required, so a part of RSOCs is used as SOECs to produce hydrogen. The energy request of SOEC
(Psoec and Hsoec for electricity and heat respectively), the equation of heat-to-power ratio of SOEC,
and constraint on electric power of SOFC and SOEC (RSOC system) are considered in Eq. 47.
Similarly to Eq. 46, maximisation of ICE electricity production (Pice) is imposed.

( Pice + Pst + Psorc = Pyser + Psorc
Hicg + Hsr + Hsope = Hysgr + Hsorc

Hicg = Pice *f,CE,% =0
HST—PST*]CST_%:()

H — P. =0
ma x(Pjcg) S.t.3 sorc — £soFc * fSOFC’g Eq. 47

Hsopc — Psopc * fso;sc,% =0
5 < Mgream < 21

P >0

\ Psorc + —Psoec < Prsoc instalied

Results of Eq. 46 and Eq. 47 of the novel system are reported in Table 13. It is possible to cast
off turbine 2 (the highest power one) because the availability of steam from SOFC decreases the
steam flow rate to be processed by steam turbine. Adoption of RSOC system allows matching H/P
ratio of energy production and H/P of energy demand. RSOC system produces hydrogen when only

48



one line operates. Simulations show that electricity consumption from the grid is avoided, making the

system grid independent.

CURRENT SYSTEM INNOVATIVE SYSTEM
CASES ICE'(% Operating Turbine ICE'(% Turbine
nominal turbine steam flow | nominal steam flow SOFC SOEC
load) rate load) rate
CASE 1 100% | Turbinel | 12.8 ton/h 60% 11.38ton/h | 2.448 MW | 576 kW
CASE 2 100% | Turbinel | 8.8 ton/h 100% 6.04 ton/h 2.595 MW | 551 kW
CASE1+2 | 100% | Turbine?2 | 24.8ton/h 100% 20.68 ton/h | 3.259 MW -

Table 13. Working parameter of ICE (% partial load), steam turbine (steam flow), SOFC and

SOEC electric power.

1.6.7 PRIMARY ENERGY SAVING

This section presents a thermodynamic analysis comparing the current and the novel systems.
The analysis calculates energy flows and estimates primary energy (PE) consumption for each case.
Primary energy consumption is proposed as a benchmark: for each case (Case 1, Case 2 and Case
1+2), primary energy saving (PES) between the current and the novel systems is determined (Eqg. 48).
Primary energy of the existing system (PEcurrentsys.) iS @ function of natural gas consumption by steam
turbines (Fuelcons,st) and by ICE (Fuelcons,ice), and electricity from grid (Egria). Primary energy of the
novel system (PEnovel sys.) IS @ function of natural gas consumption by steam turbine (Fuelconsst), by
ICE (Fuelcons,ice), and by SOFC (Fuelconssorc). Primary energy of natural gas is expressed by LHV
(49.2 MJ/Kg), whereas electricity consumptions are converted to primary energy by no-renewable
primary factor fonren=1.95 according to Italian standard DM 26/06/2015 (corresponding to an
efficiency ngria equal to 0.513). If hydrogen is produced, its primary energy is expressed by LHV (120
MJ/kg), and it is subtracted from the energy consumption of the energy system because it is

considered to be used as fuel within the system.

Enovel SYs.

PES=1-
PEcurrent SYys.

PES =1-—

Fuelcons,ST + Fuelcons,ICE + Fuelcons,SOFC - FuelHZ

Egrid
ngrid

Fuelcons,ST + Fuelcons,ICE +

Eq. 48

Calculations show that the novel system presents a primary energy saving in all cases. Table 14
summarizes the results: Case 1 and Case 2 have lower PES, while hydrogen is produced. Instead,
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Case 1+2 does not have hydrogen production (RSOC is used only in SOFC mode due to the higher
energy request), and it has the highest efficiency. In fact, SOFC and PES (considering also Table 13)
are related: the higher SOFC nominal power, the higher PES.

CASE HYDROGEN PRODUCTION PES
Case 1 16.857 kg/h 2.7%
Case 2 16.137 kg/h 2.3%
Case 1+2 - 6.5%

Table 14. Primary energy saving values for each analysed case.

1.6.8 HYDROGEN GENERATION PERFORMANCE

Results of section 1.6.7 demonstrates that primary energy savings can occur with respect to
current system, whereas the complexity of the novel system with hydrogen production is increased.
In this section, focusing on hydrogen only, an estimation of the primary energy saving obtained with
the production of hydrogen within the novel system with respect to a more established alternative that
uses PEM electrolysers (PEMEC) is proposed.

In general, SOEC systems have higher efficiency on hydrogen production compared to other
technologies (e.g., PEM electrolysis), thanks to the thermodynamically more favourable operating
conditions. However, they require heat at high temperature, which might not be easily available.

In the paper mill application, when the industrial facility operates at partial load (i.e., only one paper
production line works) the energy generation system operation also changes: a part of the RSOC units
works as SOFC, and a part works as SOEC, thus determining a net hydrogen output. Looking at
Figure 38, SOEC uses energy (both electricity and heat) generated only by some of the units in the
RSOC system that work as SOFC. SOEC requires heat at high temperature (750 °C, Table 8) which
SOFC could provide by means of heat recovery while generating electricity. As SOEC has a
proportionally lower heat consumption than electricity compared to the H/P ratio of SOFC generation
(Table 8), a part of the SOFC heat generation (Hsorc) is used for SOEC (Hsoec), and a part is used to
produce steam (Hsorc-Hsoec). Figure 38 details the energy flows for the hydrogen-generating section
of the SOFC-SOEC system.
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Figure 38. Section of RSOC system used to produce hydrogen. Electricity required by SOEC
is provided by SOFC, with no excess (Psorc=Psoec); meanwhile a part of the heat (Hsorc-Hsoec)
produces steam for industrial needs.

Eq. 49 describes primary energy saving on hydrogen generation (PESH2 gen). The primary
energy consumption by the novel system (PEw2 novel sys) COrresponds to the natural gas consumed by
the SOFC when working to produce energy for SOEC (Fuelcons,sorc, H2 gen). The traditional system
consumes primary energy (PEH2 trad sys) t0 produce hydrogen by a PEM electrolysis cell, considering
that the electricity consumed (Epemec) is taken from the grid (#grid, as previous mentioned, is fixed at
0.513). Efficiency on hydrogen production by the PEM electrolyser is fixed at 48 kWhe/kgn2 as
proposed in reference [38] for 2020. Finally, to consistently compare the two systems considering the
same total output, it is supposed that the traditional system uses a natural gas boiler (efficiency #poiler
equal to 0.9) to generate the heat for industrial uses (i.e., the thermal power that is not consumed by
SOEC in the novel system, represented by the variable (Hsorc-Hsoec) in Figure 38).

PES =1 PEHZ novel sys. 1 Fuelcons,SOFC H2 gen
H2 gen — - = - -
g PEy; traa sys. Epemec n Hsorc — Hsogc Eq. 49
ngrid Nboiler

The comparison only analyses case 1 and case 2 among the paper mill operating configurations, as
partial operation of the paper production lines is a necessary condition for net hydrogen production
to occur. Eq. 49 supplies the primary energy savings, which are reported in Table 15. In Case 1 and
Case 2, values of PESH2 gen Show around 45 % reduction of primary energy consumption with the use
of the integrated SOFC-SOEC system. Case 1+2, instead, has no hydrogen production, because
RSOC is used only in SOFC mode.

CASE H2 PROD Fuel cons., SOFC EpPemEC Hsorc-Hsoec | PES H2 gen
Case 1 16.857 kg/h 1.09 MW 1.86 MW 0.39 MW 45.6%
Case 2 16.137 kg/h 1.05 MW 1.78 MW 0.36 MW 45.3%
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CASE H2 PROD Fuel cons., SOFC EreEMEC Hsorc-Hsoec | PES H2 gen

Case 1+2 - - - - -

Table 15. Primary energy saving on hydrogen generation

1.6.9 HYDROGEN COST

The aim of the system revamping is not only to save primary energy for the industrial heat and
power consumption, but also to introduce a hydrogen production that could be profitable at a
reasonable cost. To evaluate the economics of the hydrogen production in the novel system, the RSOC
integrated solution is compared to a simpler alternative based on PEMEC. It is considered, also, that
when a RSOC system is used, products are both hydrogen and heat for industrial use (Figure 38).
Hence, the PEMEC system must be coupled to a steam generator, which is assumed to be a natural
gas-fired boiler with efficiency equal to 0.90, to offer the same output. The analysis assumes to feed
the PEMEC with grid electricity.

The cost analysis first calculates the equivalent annual cost (EAC), then divides it by annual
hydrogen production to obtain the fuel cost. EAC (Eq. 50) depends on Net Present Value (NPV) and
Annuity factor (A,i):

NPV

EAC =
Agi

Eq. 50

The NPV here considered includes investment costs (purchase costs of the components), annual
energy costs, and annual maintenance costs (considering inflation rate). Purchase and maintenance
costs of RSOC and PEMEC are estimated according to [38] referring to 2020 scenario. RSOC is still
a developing technology, so the cost is a forecast and it is likely subject to variation. A sensitivity
analysis on the RSOC purchase cost is performed in order to take into account this uncertainty,
comprising a range between —10 % and +30 % of the proposed cost. It is considered, also, that the
RSOC system integrated in the paper mill produces hydrogen only during 2/3 of the total time, while
for 1/3 its components are used in SOFC-only mode (Table 13). Therefore, investment cost is
proportionally allocated to the output, and only 2/3 of it affect the hydrogen economics. Variable cost
for energy input in terms of electricity and gas are given by [64] and [65], respectively. Moreover,
each of them has an annual increasing index, calculated as the average cost variation over the last 4
years. As previously mentioned, heat is available and used to produce steam in the RSOC system,
while the PEMEC system uses a natural gas-fired boiler to generate the steam: in this case, only
natural gas consumption is considered. Annuity factor is defined by the expected lifetime of the
system (assumed equal to 10 years) and by an interest rate of 4 %.

PARAMETER VALUE
Purchase cost RSOC 2 000 €/kW
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PARAMETER VALUE
Purchase cost PEM 1 000 €/kW
Maintenance cost RSOC/PEM 5%
Natural gas cost 0.0237 €/kWh
Natural gas increasing index -0.031 %
Electricity cost 0.1436 €/kWh
Electricity increasing index -0.059 %
Expected lifetime RSOC/PEM 10 year
Interest rate 4%
Inflation rate 2%

Table 16. Economic parameter of the analysis

Figure 39 represents the results in terms of hydrogen cost as a function of the variation of RSOC
purchase cost with respect to the forecasted value. In the whole range considered, the RSOC
system has a lower cost of hydrogen production than the PEMEC system. Hydrogen cost varies
between 6 €/kg and 8 €/kg, while it is equal to 10 €/kg with a PEMEC. This reflects the high
efficiency of RSOC in both SOEC and SOFC operation, and the availability of heat from the
RSOC system energy balances that is used to generate steam for the industrial facility. On the
opposite, the PEMEC system has a separate unit for steam generation, thus excluding any synergy.
Moreover, the lower electricity-to-hydrogen efficiency is affected by the high price of electricity
compared to natural gas.
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Figure 39. Economic analysis of hydrogen generation cost.
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1.6.10 CONCLUSIONS

An innovative energy system based on RSOC for combined heat and power generation has been
studied. Itis analysed its application to an industrial facility (paper mill) to increase energy efficiency,
while adding new business stream in the hydrogen field. The main component of the retrofit is the
Reversible Solid Oxide Fuel Cell (RSOC), which can be used alternatively either as SOFC (to
generate heat and electricity) or as SOEC (to produce hydrogen). The ratio between SOFC and SOEC
varies with the variation of electricity and heat consumption in order to match the H/P ratios at supply
and demand side.

The current system is composed by two steam turbines and an ICE, and it allows electricity
withdrawn from the power grid when needed. Operational data of the system has been used to model
the existing components and size the units of the innovative system. The introduction of RSOCs
makes it possible to dismiss one of the low-efficient steam turbines, thus increasing the efficiency on
energy generation. Simulations show that it is possible to achieve a primary energy saving up to 6 %:
the higher the SOFC power, the higher the achieved PES. Hydrogen is produced at a rate of 16 kg/h,
but it occurs exclusively when only one paper production line is in operation. Furthermore, simulation
results highlight that the RSOC system features a primary energy saving on hydrogen production in
the order of 45 % with respect to a traditional system based on PEM electrolysis fed with grid
electricity. Economic analysis has investigated hydrogen generation cost in the proposed RSOC
system, comparing it to the production via PEM electrolysers. In the whole range of variation of the
investment cost (-10 % to +30% of the value proposed in literature), the RSOC integrated system has
lower cost for hydrogen generation.
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2 BIGDATAFORENERGY EFFICIENCY

2.1 BIGDATA-INTRODUCTION

2.1.1 INTRODUCTION TO BIG DATA AND MACHINE LEARNING

In the recent years, terms as “big data”, “data analytics”, “machine learning” have become more
and more common, and Information Technology (IT) has increased its importance due to many
reasons. As computational and memory costs are decreasing slightly, computational power is
increasing with very high rates. As a matter of fact, the amount of data available for analysis are
increasing enormously, meanwhile their cost is decreasing. According to Mc Kinsey, the era of the
so-called “big data” has arrived [66]. “Big data” can be briefly described as 4V: Volume, Velocity,
Voracity and Value [67]. The first V/, Volume, refers to the amount of data available: they are not just
some sample of experiments, but GB or TB of data collected and stored. Velocity refers to the
frequency of data acquisition, updating and processing: it can be lower than 10 minutes because data
needs to be processed and analysed just after they are collected. Variety refers to the different sources
and structures data can be collected from, for example measurement sensors, weather data and social
media. Value means that data and (in particular) its analytics increase their value. Reference [68]
analyses why big data can impact also on the energy sector: as sensors increase the amount of data
available, wireless transmission, network communication and cloud computing technologies increase
the transmission and processing velocity. More recently, available sources (also of unstructured
energy data) have increased too: not only weather and social media data, but also grid equipment,
asset management data (for example generator, transformer etc), smart meter, economic data and
Geographic Information System (GIS) are available (what previously was defined as variety).

Not only big data, but also machine learning methods can be used in the energy sector. Machine
learning was defined as “the field of study that gives computers the ability to learn without being
explicitly programmed” (Arthur Samuel - 1959) or similarly “A computer program is said to learn
from experience E with respect to some class of tasks T and performance P, if its performance at
tasks in T, as measured by P, improves with experience E” (Tom Mitchell - 1997). These methods
can directly learn the task to do from dataset even if the process is unknown and/or it is impossible
to be described with equations. Different methods have already been defined and are available ([69]);
some of them, that are strictly related to energy, are briefly summarized in the next paragraphs.

2.1.2 CLUSTERING AND KNN

Clustering methods such as k-means are used to divide dataset into homogeneous groups. At
least one distance function must be defined to calculate the distance between each datum of the
dataset. The main purpose of this method is the classification task. It is labelled as unsupervised
method because it learns on its own how to classify data. Figure 40, Figure 41 and Table 17 represent
an example [70] of clustering applied to Iris dataset. Iris dataset contains 50 sampling data (sepal
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width and length, petal width and length) of 3 different species of Iris, Setosa, Versicolor and
Virginica. Data are classified using k-means algorithm by variables sepal width and length, petal
width and length: the algorithm divides data into homogeneous groups using a distance function (for
example Euclidean distance) calculated on the values of these variables. Each group (cluster)
aggregates samplings with the lowest distance between each other. If three clusters are chosen, it is
expected that k-means divides sampling data into the three species previously cited. It is possible to

appreciate that clustering allows to correctly classify mostly of the dataset with the correct species
(144 on 150 of total observations);
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Figure 40. Iris dataset plotted over sepal width and sepal length [70]
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Figure 41. Iris dataset plotted over petal width and petal length [70]

Dataset
Setosa | Versicolor | Virginica
o Setosa 50
£
& | Versicolor 48 4
(73]
8 Virginica 2 46

Table 17. Iris dataset classification [70]

k-Nearest Neighbour (kNN) is similar to the clustering methods previously cited. It is used mainly
for classification purposes. It is a “supervised method”, that means that classification is performed
using a dataset previously classified.

2.1.3 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (or also PCA) is probably the most well-known method of
dimensional reduction [71]. The aim of this method is to decrease the dimensions of the dataset
analysis by using an orthogonal transformation. Consequently, also the variety of data decreases. It
is expected that most of the phenomena observed have linear correlate variables even if this
correlation is unknown. When PCA is performed, resulting variables will be uncorrelated. Data
analysis and analytics are easier when PCA is applied because a lower number of variables must be
plotted. Reference [72] is an example of a dimensional reduction problem: the author uses PCA to
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decrease the number of variables of a thermal energy system (solar absorption chiller system) to
predict the system performance (Figure 42).
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Figure 42. Thermal energy system [72]

When PCA is applied, it is possible to analyse which is the contribution of each variables to
PCA components (Table 18). Value can vary from -1 to 1 as R parameter of the linear regression: the
closer to 1, the variable and PCA component are closely related.

. PCA Component
Variable

PCA1l | PCA2 | PCA3 | PCA4
Tehw,i 0.0530 | 0.1185 | —0.0910 | —0.0857
Tehwo | —0.0180 | 0.1539 | —0.1152 | —0.0146
Thw,i 0.5102 | —0.0862 | —0.2571 | —0.0857
Thw,o 0.3850 | 0.1626 | 0.5644 | 0.1345
Tew,i 0.0974 | 0.2508 | 0.4163 | 0.1062
Tew,o 0.1540 | 0.2764 | 0.3216 | 0.0597
Tsc,i 0.4736 | 0.0207 | 0.0385 | 0.0349
Tsco 0.5678 | —0.0867 | —0.3357 | —0.2005
Viuel —0.0445 | 0.8736 | —0.3883 | 0.0569
Tamb 0.0804 | —0.1342 | —0.2282 | 0.9526

Table 18. PCA applied to a thermal energy system for dimensional reduction [72]

It is possible to appreciate from Figure 43 that the first PCA component (PCA 1) resumes hot
water inlet, hot water outlet, solar collector outlet and solar collector inlet variables. Such variables
give the higher contribution to the first PCA component, and they are strictly correlated each other as
they are related to solar collectors (Figure 42). For this component, dimensional reduction occurs
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because four variables are described with just one PCA component. Figure 44 represents the
contribution to PCA component 2: only fuel flow gives a high contribution to this variable,
consequently it means that for this component a dimensional reduction is not applied.
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Figure 43. PCA component 1 over variables [72]
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Figure 44. PCA component 2 over variables [72]

2.1.4 DECISION TREE
A decision tree is a decision support tool where the outcomes are based on the values of the
algorithms that contain only conditional control statements (Figure 45).
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Figure 45. Decision tree example (Image from [73])

Decision tree learning is a machine learning method that uses observations to define decision
tree mainly for classification, regression and data mining. Even if the phenomena described in the
dataset are unknown, this method learns from observations and defines condition statements to create
an algorithm to calculate outcomes by minimising errors. Reference [74] uses decision tree machine
learning to predict energy demand of a HVAC system of a hotel by using outdoor air temperature,
relative humidity, number of rooms booked and previous value of electricity consumption. Such
methodology analyses data and proposes an algorithm based only on conditional statements of the
variables: the result is the decision shown in Figure 46 where the predicted consumption depends on
each step of the tree.
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Figure 46. Decision tree example [74] — X[O] is outdoor air temperature, X[1] is relative
humidity, X[2] is number of room booked, X[4] previous value of electricity consumption

2.1.5 ARTIFICIAL NEURAL NETWORK

Acrtificial neural network (ANN) is probably one of the most known machine learning methods
because it mimics the brain. The brain is made by neurons connected to each other by axons; our
experiences modify the connections between neurons, as axons can increase or decrease connections
depending on how much they are used. The elementary unit of an ANN is the artificial neuron, which
processes the incoming signal to other neurons. Artificial neurons are connected to each other and a
weight on the incoming signal is usually defined. ANN must be trained: they do not have any
knowledge about the tasks they have to perform, so some examples must be given in order to train
the entire network. This method is highly flexible because it could be used to perform tasks such as
image recognition, classification and definition of black box. ANN is defined “black box” model
because it is defined only by observed value and it is unknown how the model is set up, in particular
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which are the connections and the weights between of the neurons. In the previously cited reference
[72], an ANN is used to predict the performance (Qcooling and COP) of a solar absorption chiller
system. Each variable selected for the model is connected to a neuron of the input layer, whereas the
performance variables are connected to the neurons of the output layer. Between the input and the
output layer, a hidden layer is added (in this case only one even if more could be used); the
connections between the input, hidden and output layers are defined by observed data with a training
process (Figure 47). Each neuron has a transfer function (Figure 48) to transform input to output: in
this case, tangent sigmoid and linear functions are reported to be used.

Figure 47. ANN representation [72]

\

Inner connections £x) Outer connections
> X >

_—

Figure 48. Neuron representation. Inner and outer connection are related to a transfer
function f(x)

By varying the number of neurons of the hidden layer, ANN performance varies too. Figure 49
represents the root mean square error (RMSE) on performance (Qcooling and COP): generally, errors
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decrease when the number of neurons increases. It is possible to appreciate that 6 neurons on the input
layer are sufficient to decrease RMSE.

ANN performances

0.06

Number of neurons

=———Prediction - Qcooling (kW) = = Training - Qcooling (kW)
= Drediction - COP Training - COP

Figure 49. ANN performances on training and prediction varying hidden layer number of

neurons (data from [72])

2.1.6 EXAMPLES OF APPLICATION OF BIG DATA AND MACHINE LEARNING IN ENERGY SECTOR
Machine learning methods and big data have been already proposed to be applied to energy
sector in many fields. Examples of possible application are:

Load forecasting, machine learning can be useful to analyse time series data and forecast
consumption of energy. Ref. [75] proposes ANN with Autoregressive Integrated
Moving Average (ARIMA) to analyse time series. References [76]-[78] analyse time
series using clustering and weighted KNN algorithm to find similar pattern of
consumption of electricity and its price;

Smart building, machine learning methods are proposed to improve the efficiency of
energy generation and consumption of buildings. Ref. [79] proposes ANN and genetic
algorithms to optimise energy usage and, consequently, reducing consumptions. Ref.
[74] previously cited compares ANN and decision tree to forecast HVAC electricity
consumption of a hotel. Clustering is proposed in [80] to define patterns of electricity
curves of building consumptions;

Energy production, machine learning method can be useful to analyse energy system,
define grey/black box of the system, and to estimate the performances and optimisation.

Ref. [81] reports that ANN are used to estimate thermal efficiency, specific fuel
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consumption and volumetric efficiency under different partial load and methane ratio
of internal gas engines using biogas. Ref. [82] proposes ANN to simulate solar collector
and estimate its performances at different working condition with the aim of identifying
possible research gap and improvements. Ref. [83] simulates an absorption system
based on water-ammonia using ANN with different designs, solution fractions and
working parameters; the scope is to find the optimum design in order to maximize
exergy efficiency and the coefficient of performance. Ref. [84] improves geothermal
energy availability analysing data with ANN;

- Renewable energy forecasting and management, it is well-known that renewable energy
systems (RES) may have high variability on production and availability. Machine
learning methods are proposed to increase their efficiency, mainly to forecast
production by using, for example, weather data. Ref. [85] proposed ANN and multi-
linear regression method to estimate solar radiation with daily meteorological
measurements. References [86]-[88] propose reviews on photovoltaics power
generation forecasting methods: ANN, clustering, decision tree, support vector
machine, support vector regression and ARIMA models are proposed. Not only solar
energy but also other RES are investigated: ref. [89] reviews different machine learning
methods to forecast wind energy for electricity production.

The previous examples want to briefly show how big data and machine learning methods could
be applied to the energy sector. In the next chapters, clustering and KNN methods will be analysed to
define innovative methods useful for energy system, in particular for the design and optimisation of
energy generation system and to increase accuracy of load forecasting. The aim is to increase
efficiency of energy generation system in industrial facilities.
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2.2 CLUSTERING-INTRODUCTION AND METHODS

2.2.1 INTRODUCTION TO CLUSTERING AND K-MEANS

Clustering is a type of machine learning method used to classify data and to perform data
segmentation. Samples are grouped into subsets or “clusters”: in each cluster, objects are more likely
to be related to one another than to those assigned to different clusters. Clustering is strictly related
to the concept of “degree of similarity” (or “degree of dissimilarity”) between the objects being
clustered. Similarity is defined by the method, for example distance function. For each group of data
(cluster) it is possible to define a centroid. Figure 50 represents an example: a dataset is clustered into
three different homogenous groups and centroids are centred into each group. A datum is classified
by its distance from the centroid: it is related to the group with the nearest centroid.

f\,~

’N-‘-\'-l -

Figure 50. Clustering example

K-means is a clustering method used when all the variables are quantitative and Euclidean
distance between objects is defined as a dissimilarity function: the lowest the distance, the highest the
similarity. Euclidean distance between each object xa and xy is measured using variable i=1...n that
describes each object (Eq. 51):

n
At %) = ) (= %) Eq. 51
i=1

If a dataset with m objects is provided, K-means divides the dataset into N clusters minimising
Euclidean distance between each object of the cluster. The number of clusters N is given by the user.
In the next section, the silhouette method is described. It defines the suitable number of clusters for a
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dataset. Euclidean distance is not the only distance function for K-means method: for example,
MATLAB © ([90]) provides a built-in function (k-means) to perform cluster analysis in which cosine,
absolute distance (called also cityblock), correlation and hamming distance functions are defined as
well.

2.2.2 How TO CHOOSE THE CORRECT NUMBER OF CLUSTERS — SILHOUETTE METHOD

As previously mentioned, cluster analysis requires to define the number of clusters. Silhouette
([91], [92]) method is proposed in order to perform such a task.
Silhouette criterion optimises the number of clusters by searching for the maximum distance between
observation of the same cluster and observation assigned to the neighbouring one. Silhouette s(i) of
the object i is defined by Eq. 52:

b(i) — a(i)
max{a(i), b(i)}

s(i) = Eq. 52

Where:
- a(i) is the average distance between the datum i and all the other observations assigned to the
same cluster;
- b(i) is the average distance between the datum i and all the observations assigned to the
neighbouring clusters.
Average s(i) of all the observations is considered. As a matter of fact, varying the number of clusters
also average s(i) changes: the optimum number of clusters maximises the average silhouette.
Figure 51 represents a dataset referring to the case study described in section 2.4: each point is a
sample, and it is described by electric power consumption and heat to power ratio (H/P) of the
industrial user. Each observations greater or lower than 6 times of the standard deviation (sigma) are
excluded in order to not consider outliers. Silhouette is applied to estimate the optimum number of
clusters: it is possible to appreciate that if the number of clusters is 3, the maximum average silhouette
can be obtained (Figure 52, also referring to the case study further reported). This condition means
that the distance between objects of the same cluster and objects of the neighbouring is maximised.
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Figure 51. Energy request described by electricity power consumption (kW) and H/P ratio
with a 6 times sigma filter applied
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Figure 52. Average silhouette of dataset presented in Figure 51

2.2.3 INTRODUCTION TO KNN

KNN (k-Nearest Neighbors) is an unsupervised machine learning method used mainly for
classification and regression [69]. If a classified dataset is given, KNN classifies new observations
choosing the nearest k neighbors of each observation. Figure 53 represents an example: a new
observation (green triangular) must be classified in a dataset where data are classified into red
rectangular and blue dot. The observation is classified by firstly calculating the distance with each
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datum, and then observing the classification of the k nearest neighbors. If k = 3 is chosen, observation
is classified as blue dot category, whereas if k = 5 is chosen, observation is classified as red
rectangular category.

Figure 53. kNN example — Classification of an observation

kNN is useful when a dataset is clustered and then new observations need to be classified. For
example, in section 2.5 it is proposed a short forecasting method where a dataset is clustered and then
kNN is used for forecast. Clustering is used to divide dataset in N clusters, and for each cluster an
average curve is defined. When a new observation occurs, forecast is performed classifying its cluster;
consequently, the average curve is proposed. KNN performs the classification task analyzing how the
k neighbors nearest to the observation are classified, and the distances between them.

kNN requires two hyperparameters: the number of neighbors (k), and the distance function. These
parameters are usually defined by using heuristic techniques or cross-validation. Here we propose to
use FitchkNN fuction developed in MATLAB ©: it optimizes the kNN model by choosing the
distance function and the number of neighbors to decrease the classification error [93].
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2.3 USE OF CLUSTERING TO DEFINE POLYGENERATION SYSTEM

2.3.1 INTRODUCTION

As presented in [2], not all the industrial sectors have the same energy intensity, that is energy
consumption over production. Moreover, each industrial sector features different ratio between the
different types of energy consumed (i.e. different thermal to electricity ratio): drying is more energy
intensive compared to assembling. An increase on energy efficiency would decrease the final energy
consumption, but each industrial sector requires different energy generation systems and
technologies.

Many studies have been already performed with the aim of increasing efficiency. For example,
analyses on energy consumption and heat recovery on energy intensive sectors were performed ([55],
[56], [94]-[96]).

Polygeneration systems are used when more than one type of energy is requested

simultaneously, for example cooling, heat and electricity. More specifically, cogeneration is used
when two different types of energy are requested, for example heat and electricity, or cooling and
electricity. Different energy systems can be used to cover user’s energy request and to achieve high
thermodynamic/economic efficiency.
Typically, a cogeneration system is sized on a cumulative curve, representing the number of hours
each value of power is requested for (Figure 54). The size of the cogeneration system is chosen in
order to cover thermal or electric load for a defined number of hours. The main problem of these
graphs is that they analyse separately each type of energy (e.g. electricity and heat), and they do not
analyse the relationship between them or common daily pattern of consumption. In the author’s
opinion, the size of a cogeneration / polygeneration system is a classification problem, because it is
necessary to classify energy data to choose the correct system in terms of both technology and size.
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Figure 54. Cumulative curve of thermal (a) and electric load (b), continuous lines represent
the energy request, dashed lines the cogeneration production (from [97])

An innovative approach to design energy generation systems based on big data analysis is here

developed. More specifically, a study on how cluster analysis could be applied to analyse energy
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demand data is depicted. The aim of the method is to design cogeneration systems because they suit
the energy demand profiles, by choosing the correct type of cogeneration technology, operation
strategy and energy storages. Clustering can improve how a cogeneration system is chosen. As a
matter of fact, by dividing data in uniform datasets of energy demand and energy ratio (like H/P), it
is possible to choose the most suitable technology for each cluster, thus improving energy
performance.

Clustering can be used also to classify energy demand profiles to define standard patterns of
consumption. This is useful to evaluate the viability of energy storages in case of mismatching
between energy production and consumption and to suggest the most suitable operation strategy.
Firstly, it is supposed that the user’s energy request data are sampled uniformly (for example every
15 minutes, every hour etc) and stored using at least three variables: time stamp (date and time of
observation) and at least two energy variables, for example electric power and mean heat power
request. Then data will be used to perform two different analyses, power analysis and profile analysis:

1. Power analysis: every observation is considered separately to define clusters with
similar values of the variables (i.e. electricity demand and H/P ratio). This information,
and how such variables vary inside the cluster, will suggest the most suitable
polygeneration technology and/or information to design the generation system;

2. Profile analysis: daily energy demand profile (not a single observation) is defined and
clustered to identify how energy demand varies during daytime. Possible mismatching
can be detected between energy demand and energy production using energy system
defined with Power analysis.

In the next paragraph, the proposed methodology will be explained.

2.3.2 METHODOLOGY

Power and Profile analysis are based on clustering of data but with a different definition of the
dataset. In the first one, each observation is a datum; in the second one, each datum is a day of
observation. A common workflow is proposed (Figure 55) to define a dataset and cluster data, and to
perform them:

1. Datacleaning: not all the observed data are suitable for the analysis due to measurement
errors and/or bad electric signal. Filter should be applied to the dataset to delete
outlayers and/or uselnss observations.

2. Dataset creation: observed and filtered data are used to create suitable datasets for the

analysis. In case of power analysis, each observed data can be a record of the dataset.
In case of profile analysis, observations lasting one day can be arranged together to
define a daily consumption profile. After a dataset is created, data are normalized.

3. Estimation of the number of clusters: before applying clustering, it is necessary to

define the number of clusters. Silhouette is applied to estimate the suitable number of
clusters for the dataset.
4. Cluster analysis: cluster analysis is applied to the dataset.
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Figure 55. Analysis workflow proposed

Power analysis is performed with the definition of a dataset where each observation is reported
and represented at least by two energy variables, for example electric power and H/P ratio. It is
expected that cluster analysis defines homogenous clusters according to the variables. In the case of
electric power and range of H/P ratio, it suggests which type of cogenerator technology fits better the
data by using properly references such as Table 1 based on [3]. If a significant mismatching between
energy generation and demand occurs, it could be suitable to add components to the polygeneration
system to best fit the production and demand curves meanwhile increasing overall efficiency of the
system. For example, if it is necessary to adjust the H/P ratio of a cogeneration system, heat
integration system and/or heat pumps could be used to increase it, meanwhile Stirling engines and
ORC would be useful to decrease it by converting unused heat into electricity. Figure 56 represents
an example of Power Analysis, where dataset has two energy variables: electricity demand and H/P
ratio. Clustering is applied, and dataset divides data into homogenous groups. For each cluster
(group), it is possible to appreciate how variables varies: in this case, electricity over H/P ratio. An
average H/P curve is proposed to analyse the variation. It is possible to appreciate that electricity
demand varies between 80 and 180 kW, meanwhile H/P is around 2. This information can be used to
choose the most suitable cogeneration technology (Table 1).
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Profile analysis is proposed to define different consumption profiles. Each profile could be used
to verify how energy demands vary during daytime, that is the best operation strategy to increase
efficiency. In order to perform the analysis, it is proposed to create a dataset where each datum is a
daily consumption profile; it is described by several variables that depend on the number of
observations and on how many energy variables are observed. In the case that energy demand is
sampled every 15 minutes with two variables (electric power and H/P ratio), each daily profile is
made by 96 observations, and each datum is described by 192 variables (96 variables for the electric
power and 96 for the H/P ratio). As a matter of fact, cluster analysis divides the dataset into
homogenous clusters; for each cluster, energy demand profiles are similar, and it is possible to define
reference curves. Reference curves could be used to analyse the mismatching between energy
production by the cogeneration system and energy request. With respect to Power analysis, Profile
analysis applied with reference curve gives information on:

- Energy storage: if a mismatching between energy production by the cogeneration

system and reference profile occurs, energy can be stored when production is higher
than demand. The reference curve provides also information on the size of the storage
required,;

- Energy integration system: as previously mentioned, an integration system can occur
if the mismatching between energy production and demand cannot be stored;

- Operation strategy: reference curves provide useful information concerning which
operation strategy for the system is more suitable to increase its efficiency and to
decrease the operative costs.

Figure 57 represents a sample of the profile analysis: each datum of the dataset is a day of observation.
If clustering is applied, it is possible to define similar profile of consumption. Profile analysis lets
understand how each energy variable (in this case electricity consumption and H/P) varies during
daytime, and how they are related to each other.
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2.4 CLUSTER FOR ENERGY SYSTEM - A CASE STUDY

2.4.1 CASE STUDY INTRODUCTION
A case study is presented to apply the proposed analysis: it concerns an industrial facility selling
wood (timber) laminated window, plywood, engineered veneer, laminate, flooring and white wood.
The firm is located in the north of Italy with suppliers in East Europe, Africa and a subsidiary in
Gabon. Every year it works about 110 000 m? of trunks and its ovens could dry 6 000 m® of wood per
cycle. It was founded more than 100 years ago and the total revenue in 2017 was of over 90 millions
of euros. The industrial process requires to dry the wood into kilns and to store it into warehouses.
Electricity is used for the production equipment, offices, lighting purpose into the warehouses and to
charge electric forklifts. Heat is used for the kilns that work at about 70 °C. Energy is actually
generated by using:
- two cogeneration systems (CHP) based on internal combustion engines (ICE) to
produce both electricity and heat;
- natural gas fired boiler as an integration system for the kilns when the cogeneration
systems do not produce enough heat compared to the one requested.
Electricity can be withdrawn from the grid if the demand is higher that the production. Figure 58
represents the energy fluxes and the interconnections between each component of the system. The
proposal is to classify energy demand data with suitable variables in order to determine which energy
generation system and operation strategy is more suitable for this application.

COGENERATORS BOILER GRID
HEAT
KILNS WAREHOUSES OFFICES

Figure 58. Electricity and heat energy fluxes, connection between production and demand

Energy demand (both electricity and heat) was sampled each 15 minutes from 01/01/2015 to
25/09/2017. Electricity data is available as the mean power requested (kW). The heat request, instead,
is calculated by measuring water flow rate (m®h) and inlet and outlet temperature (°C) to heat the
kilns. Data are stored into a structured SQL database. It is expected that this dataset could contain
some sampling event with missing measurement and with outliers. Missing measurement in a SQL
database are managed with NULL value, so events with at least one variable with a NULL value are
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not considered for the study because the system is not able to sample the process, and other variables
could be affected by errors. Outliers could occur because data are stored without any validation.

2.4.2 DATACLEANING

The first step of the proposed workflow for each analysis is data cleaning. Not only missing
errors, but also errors on sensors and/or in recording values may occurs. Data are plotted with a
histogram (with a log scale on the x axis) and a probability plot of quartiles (QQ plot) to intercept
outliers. QQ plot is used to compared dataset distribution to normal distribution: where there is not
matching probably, outliers occur. Figure 59 displays how data are distributed: it is possible to
appreciate that outliers are present for both electricity and heat demand. Electricity data are mainly
between 100 and 1000 kW, while the maximum sampled value is higher than 10° kW. The same
occurs for the heat demand: in fact, QQ plots show that the current dataset does not follow a standard
distribution.
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Figure 59. Representation of the dataset without filtering data, histogram and QQ plot of
electricity (top) and thermal power (bottom) demand

To filter the outliers, it is proposed to define an upper limit for each of the variables, both for
electricity and heat demand. The limit is set considering the maximum request of electricity and heat
of the system. Figure 60 represents the filtered data: QQ plots show that the filtered dataset is closer
to a normal distribution and the range of the dataset has decreased.
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Histogram electricity cons. QQ Plot of Sample Data versus Standard Normal
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Figure 60. Representation of the dataset filtering data, histogram and QQ plot of electricity
(top) and thermal power (bottom) demand

After data cleaning is performed, data can be used to define the dataset for the analysis and to
perform them.

2.4.3 POWER ANALYSIS

As previously mentioned, Power analysis is carried out to choose the most suitable energy
system. Dataset previously defined and presented in Figure 51 is clustered, where each datum is an
observation with two variables, electricity power and H/P ratio. Silhouette criterion is applied to
define the most suitable number of clusters (Figure 52). Figure 61 represents the dataset after being
clustered into 3 groups, while Table 19 resumes each cluster. Cluster 2 and cluster 3 resume more
than 85% of the observations, with a H/P ratio between 0 and 4.72. Electricity power demand varies
from 190 kW to 390 kW for cluster 2, and from 43 kW to 192 kW for cluster 3. According to, Table
19 the most suitable cogeneration technologies for such values of electricity power and H/P range are
ICE and gas micro-turbines. It is possible to appreciate that the actual cogeneration system is based
on ICE. The gas micro-turbines system allows a H/P range higher than ICE technology: a solution
with two turbines of 200 kW each is proposed because considering only one turbine is useful to cover
the energy request represented in cluster 2, but not in cluster 3.

For each cluster, a reference curve (H/P ratio vs electricity power) is defined based on
observations in order to analyse possible mismatching between observations and the proposed energy
system. Figure 62, Figure 63 and Figure 64 represent respectively the reference curves of cluster 1,
cluster 2 and cluster 3. For each reference curve, it is represented the mean of the observations varying
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electricity power and H/P ratio: mean observations curve + one standard deviation (Mean obs + 1 SD
and Mean obs - 1 SD). In each figure, the cogeneration system proposed is simulated by following
the electricity demand (cogeneration system curve). For each point of the mean observation curve, it
is displayed the number of the observations in the dataset: this variable shows how many times this
value of electricity power occurs. It is possible to appreciate for cluster 3 (Figure 64) that consumption
occurs more frequently between 120 and 200 kKW: the cogeneration system here proposed suits
perfectly the reference curve. For cluster 2, instead, simulations show that the cogeneration system
has a H/P ratio higher than the requested (Figure 63): it is necessary to evaluate a suitable operation
strategy and/or an energy storage. Cluster 1 (Figure 62) has electricity demand between 100 and 220
kW, meanwhile H/P ratio is between 4 and 7: a heat integration system is necessary because H/P
request is higher than H/P of the cogeneration system proposed.

Dataset

Legend

+ Cluster 1
* Cluster2
Cluster 3

H/P ratio

1 ¥
0 50 100 150 200
Electricity (kW)

Figure 61. Clustered data of Figure 51 for Analysis 1 — Power Analysis

300 350 400 450

Table 19. Cluster and number of observations for each cluster of Power analysis

Cluster | Number of observations | Electricity cons. range | H/P ratio range
1 13.34 % 43 — 306 kW 29-11
2 42.13 % 190 — 390 kW 0-4.72
3 44,53 % 43 -192 kW 0-39
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Cluster3 that is44.5 % of the dataset
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Figure 64. Reference curve of electricity — H/P of cluster 3 (44.5 % of the observations)

2.4.4 PROFILE ANALYSIS

Profile analysis is performed to verify the necessity of energy storage systems, and to check for
the most suitable operation strategy. Each datum of the dataset is a daily profile, the cluster analysis
is used to check similar patterns of consumption and to define average profiles. In the case study here
proposed, the silhouette criterion suggests dividing the dataset into 4 clusters (Figure 65). Even if the
maximum distance is 2, there is a local maximum with 4 clusters. It is chosen to increase slightly the
number of clusters (from 2 to 4) in order to have average profiles that suit better the observations.
The proposed cogeneration system is plotted as well under the assumption that it follows the
electricity demand. Table 20 resumes the importance of each cluster: cluster 4 describes more than
45% of the total observations and cluster 1 about 32%. The analysis of the average curves of these
two clusters describes more than 75% of the sampled days.

Table 20. Cluster and number of observations for each cluster of Profile Analysis

Cluster | Number of observations
1 31.91 %
2 21.90 %
3 0.27 %
4 45.92 %

78



Silhouette cluster criterion

0.32 T T

o ©
N N
° ®

I I

o

N

iN
T

o
N
N
I
\\
-

Average sihouette

I
)

I
-

T AN

012 \ \ | I \ \ \ |

2 4 6 8 10 12 14 16 18
Number of cluster

Figure 65. Average silhouette for Analysis 2

Figure 66, Figure 67, Figure 68 and Figure 69 represent the average electricity and H/P ratio
profile for cluster 1, cluster 2, cluster 3 and cluster 4 respectively. In the x-axis, it is reported the time
of the observation: each profile represents one day of observations, sampled every 15 minutes. The
first observation is at 0:00, and the last one (96') at 23:45. For each figure, three curves are reported.
The mean electricity consumption curve shows how it varies during daytime (left y axis). A range of
+ one standard deviation is added (Electricity cons. + 1 SD and Electricity cons. - 1 SD). The second
curve (Mean H/P cons.) represents the average H/P consumption during daytime (right y axis); a
range is defined considering + one standard deviation (H/P cons. + 1 SD and H/P cons. - 1 SD). H/P
cogen. system curve represents the H/P of the cogeneration system here proposed when it follows the
electricity consumption (Mean electricity cons.). Mismatching between H/P request (Mean H/P cons.)
and H/P of the system (H/P cogen. system curve) may occurs: if Mean H/P cons. is higher, more heat
is required compared to the heat available, consequently an integration system is required. On the
contrary, if Mean H/P cons. is lower, a quantity of heat is available and unused. A heat storage can
be useful in order to increase overall efficiency of the system as heat is not dissipated when it is
available, and a heat integration system is used only when the heat storage is empty.
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Figure 69. Average electricity power and H/P curves of cluster 4

Figure 69 represents the average electricity power and H/P consumption curves of cluster 4. In
this case, the cogeneration system produces less heat than required during the first hours of the day
(point 1). Moreover, during the day the mismatch changes, with H/P of the cogeneration system
higher than that of the user (point 2). A heat storage is necessary to store the unused heat and to avoid
an integration system when demand is higher than generation. The plot suggests also to check the
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operation strategy: if the cogeneration system follows only the electricity request, unnecessary heat
is available and, even if a storage system is available, total heat produced in an average day is more
than the demand. Reference curve of cluster 1 (Figure 66) seems to be similar to reference curve of
cluster 4 (Figure 69): both electricity demands and H/P ratio have a similar variation during daytime.
It is possible to appreciate that electricity consumption for cluster 1 varies between 130 and 160 kW,
meanwhile for cluster 4 it varies between 200 and 250 kW.

Figure 67 represents the average curves for cluster 2. In this case, the cogeneration system is
not able to cover the heat demand, and an integration system is necessary (point 3). Moreover, a heat
storage system is unnecessary because there is not unused heat during the day.

Cluster 3 (Figure 68) has different reference curves compared to the other clusters: electricity
demand and H/P ratio seem to vary differently from cluster 1, cluster 2 and cluster 4. H/P ratio is also
higher (between 10 and 15) than the other cases, (maximum is 5). As a matter of fact, this case is
related to some observations of Power Analysis (cluster 1, Figure 61 and Figure 62) with high H/P
ratio: dataset has just some days (just 0.27% according to Table 20) with higher heat demand than
other clusters, and the overall energy request (heat and electricity) is more irregular.

245 POWER AND PROFILE ANALYSES RESULTS

Results of the Power analysis and the Profile analysis suggest an alternative energy generation
system compared to the actual one. As previously mentioned, two ICEs are used as cogenerator, with
a heat integration system based on natural gas fired boilers. Water tanks as heat storage are not used.
According to the analysis, the most suitable cogeneration technology is a gas micro-turbine with 2
generators of 200 KW nominal electrical power each: each gas turbine has a range of electricity
production between 15 kW and 200 kW, meanwhile the H/P ratio can vary between 2.5 (at 30% of
partial load) and 2 (at full load).

A model based on polynomial regression is defined according to technical datasheet ([98]).
Regression models are created to define electric efficiency and H/P ratio varying the partial load both
in electricity driven mode and heat driven mode. Figure 70 represents the gas turbine model where
electricity efficiency and H/P ratio are related to the ratio between the net power required and the
maximum power: gas turbine is used following electricity demand and partial load is defined on the
maximum electric power. Figure 71 represents the gas turbine model where electricity efficiency and
H/P ratio are related to the ratio between the heat required and the maximum heat power: gas turbine
is used following heat demand, and partial load is defined on the maximum heating power. For all
the regressions defined, R? is higher than 0.99.
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Mismatching between the cogeneration system and the energy request occurs, therefore a heat
storage system is necessary. A heat storage of 720 kWh is proposed to heat water from the kiln from
20 °C to 75 °C. Such a value is proposed considering the maximum mismatching between the average
curves of heat production of the proposed cogeneration system and heat demand. An integration
system is required when heat demand is higher than production: Figure 62 shows that in some cases
(Power Analysis - Cluster 1) H/P required is higher than H/P available from the cogeneration system
proposed. The profile analysis proposed that in some cases (for example Profile analysis — Cluster 2,
Figure 67) heat is not available, therefore a heat integration system is required. A natural gas fired
boiler with an efficiency of 0.9 is considered as integration system.

Profile analysis suggests not only the opportunity to consider a heat integration and/or a heat
storage system, but also the operation strategy. Meanwhile reference curve of cluster 3 (Figure 68)
has a higher H/P ratio on consumption than H/P on generation (so an integration is necessary), it
happens that for cluster 1 (Figure 66) and cluster 4 (Figure 69) more heat is available than storage, so
it is necessary to dissipate it. Consequently, two different scenarios are considered for the operation
strategy:

1. Scenario TO BE 1. The cogeneration system follows only the electricity demand,;

2. Scenario TO BE 2. The cogeneration system follows the heat demand when both the
conditions are satisfied: heat storage is full at 95%, and heat demand is lower than the
heat produced in case of operation strategy 1. In the opposite case, the cogeneration
system follows the electricity request.

The aim of scenario TO BE 2 is to increase as much as possible the energy efficiency of the system
avoiding heat dissipation. On the other hand, electricity consumption from grid increases.

2.4.6 PERFORMANCE OF THE ALTERNATIVE SYSTEM PROPOSED

In this section, an analysis on the performance of the alternative system proposed is performed.
Firstly, energy fluxes of the two scenarios TO BE (scenario TO BE 1 and scenario TO BE 2) are
proposed in order to analyse how they vary. In particular, we are interested in heat losses (it is
supposed that they would be higher for scenario TO BE 1) and electricity consumption from grid (it
is supposed that it would be higher for scenario TO BE 2). Successively, a primary energy analysis
is performed. The two scenarios are compared with the traditional system (AS IS) by using the
primary energy (PE) consumption and the grid electricity exchange as benchmarks. The main scope
is to analyse the primary energy saving obtained by changing the cogeneration system and using this
operation strategy. The primary energy factor of natural gas is fixed at 9.95 kWh/Sm?, whereas the
electricity exchanged with the grid is considered to be produced with an efficiency of 0.434. Defined
F as the total fuel consumption (cogenerator and integration system), Egrig,in the total electricity
withdrawn from the grid and Egrigout the total electricity exported to the grid, the primary energy
function is defined by Eq. 53:

84



Egrid,in - Egrid,out Eq 53
0.434 '
Figure 72 and Figure 73 represent the energy fluxes of the two scenarios. As previously

mentioned, if the operation strategy follows only the electricity consumption (TO BE 1 - Figure 72)
heat losses occur (they are about 11% of the total heat consumption). The system, however, is grid
independent. The hybrid operation strategy of scenario TO BE 2 decreases considerably heat losses,
from 0.484 GWh to 0.003 GWh. Though, the consequence is that the electricity withdrawn from the
grid increases to 0.222 GWh.

PE =F +

Energy fluxes - Scenario TO BE 1
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Figure 72. Energy fluxes for Scenario TO BE 1
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Energy fluxes - Scenario TO BE 2
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Figure 73. Energy fluxes for Scenario TO BE 2

According to the simulations in both scenarios, saving on primary energy occurs (Table 21). As
previously mentioned, the actual cogeneration system (scenario AS IS) uses ICE, that is one of the
cogeneration technologies proposed in Power analysis. Gas micro-turbines are chosen for an
alternative scenario because the analyses show that a higher H/P ratio is required. The use of gas
micro-turbines only (TO BE 1) produces a primary energy saving of 2 % thanks to a better matching
between H/P ratio of the user and of the cogenerator. The greatest saving (6 %) is obtained with the
hybrid operation system (TO BE 2). The higher energy saving respect to scenario TO BE 1 is a
consequence of the operation strategy that significantly decreases heat losses (0.434 GWh for TO BE
1, 0.003 GWh for TO BE 2) even if electricity is consumed from the grid.

Table 21. Primary energy saving of the different scenarios

Scenario | Primary energy | Saving
AS IS 6.505 GWh -

TOBE1 6.377 GWh 2.01 %

TOBE?2 6.137 GWh 6.00 %

Heat storage has an important role on the overall efficiency of the system: it is suggested as a
consequence of the mismatch proved by the Profile analysis. Without a heat storage, energy demand
related to the integration system increases as unused heat of cogeneration system is not stored, so an
integration system is required to cover the request. Three benchmarks are proposed to evaluate its
influence: index of saving, index of coverage and mean heat stored.
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The index of saving (Is) (Eq. 54) is a benchmark of how much a heat storage prevents that the
unused heat is dissipated thus increasing heat losses. It is defined as the ratio between the heat
absorbed and stored by the heat storage (Hstoreq, in) ON the total heat produced by cogeneration system
(Hchp):

H ,
IS — s;)red,m Eq. 54
CHP

The index of coverage (Ic) (Eq. 55) is proposed as the ratio between total heat stored and used
(Hstored, out), and the total heat demand by the user (Huser). This index measures the capacity of the heat
stored (produced by the cogeneration system when demand is lower than production) to decrease the
power of the integration system. It is defined as:

H stored,out

[ = —Stored.out Eq. 55

Huser

The mean heat stored in the period is defined as the percentage of the maximum heat storage.
Table 22 resumes the results: hybrid operation strategy (TO BE 2) decreases the heat production of
the cogenerator system with respect to the electric following strategy (Figure 72 and Figure 73),
nevertheless both the percentages of heat stored and the impact of the heat stored to cover heat
demand are increased. In particular, the heat stored covers about 5 % on the heat demand in scenario
TO BE 2, meanwhile the integration system covers 18 % (0.693 GWh on 3.97 GWh of heat demand).
Without heat storage, consumption of the integration system would increase of one third. It is possible
to appreciate also that the mean heat storage is close to 50 % (respectively 50.5 % for TO BE 1 and
48.9 % for TO BE 2). Furthermore, even if the mean heat storage is lower in TO BE 2 than TO BE
1, the operation strategy here proposed uses stored heat more efficiently: Ic is 4.68 % compared to
4.31 % of the scenario TO BE 1, meanwhile Is is 5.73 % and 4.31 % respectively. This means that
the heat storage in scenario TO BE 2 has a higher importance both in covering heat demand of the
user (Ic benchmark) and in suitably using the heat produced by the cogenerator (Is benchmark).

Table 22. Benchmark on the heat storage system

Scenario Is Ic % Mean heat stored
TOBE 1 4.6 % 4.3 % 50.5 %
TOBE 2 57 % 4.7 % 48.9 %
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2.5 USE OF CLUSTERING AND KNN FOR SHORT FORECASTING

2.5.1 INTRODUCTION

In this chapter a forecast method based on clustering and KNN is proposed. The main goal is to
define a methodology to forecast energy request of industrial facilities. Industries use energy
(electricity, heating and cooling) both for industrial processes and auxiliaries (lighting, compressed
air, etc.). It can be supposed that the energy used for production processes depends on the variety and
entity of the production output: if the production output remains constant in terms of type and quantity
of items, the energy does not vary significantly.

Machine learning and big data methods have already been proposed to forecast the values of
the energy demand from the users and the energy produced by the generation plant. In [99], artificial
neural network (ANN) is used to predict residential building energy demand; in [100], support vector
machine (SVM) and ANN are applied to predict heat and cooling demand in non-residential sector.
In [101], ANN and clustering are used to predict photovoltaic power, whereas in [102] and [103]
principal component analysis (PCA) is considered to analyze and forecast photovoltaic data. In [104]
and [105], SVM is used.

The aim of this study is to define a model based on machine learning technique that allows to
forecast energy demands for a short period (for example the following hour). The method is based on
data collected on energy demands, by using a clustering approach. It is supposed that average profiles
can be defined using a dataset of observations related to at least one year. Such observations are used
to perform the forecast. A method for short forecasting is here proposed. When the energy demand is
sampled frequently (for example every 15 minutes) and a dataset is available, data can be used to
train a model in order to predict the energy requested. Clustering is used to define average curves,
meanwhile KNN (k-nearest neighbors’ algorithm) classifies each observation and forecast the energy
demand. The clustering method has been already used to classify daily load curves ([106], [107]) and
to forecast energy demands ([108], [109]). As a novelty of this study, an innovation on the data
normalization to improve performances of the method is proposed.

The first concept introduced is the energy demand curve. It represents a temporal sequence of
observations and forecasts of energy demand. Each curve can be split into two parts: support and
forecast. The former is the part of the data that will be provided to the model, constituted by the latest
observations. Forecast is the predicted data based on the support (Table 23). The length of the support
(s) and of the forecast (f) is fixed by the user. In this model, it is proposed that 0 < f < s-2. Section
2.6.5 will illustrate the performance of the model varying f and s for a real case study.

Table 23. Example of curves, definition of support and forecast (sample dataset)

SUPPORT FORECAST
i=1]i=2 i=s=8|j=1 j=f=4
10 | 11 | 10 | 13 | 12 | 14 | 16 12 11 | 12 | 18 13

88



To perform the forecast, the model features a workflow (Figure 74) based on the following
steps:
- Model training, a dataset of observations is used to train the model. Observations
define average demand curves and train the classification model,
- Classification, observations are used to classify which is the most similar average

curve;
- Forecast, the average curve forecast is used to define forecast of the observations.

CURVE
CLASSIFICATION eAverage curve is

. used to define
eObservations are forecast
used to classify the
correspondent
average curve

eQObservation
dataset trains the
model

MODEL
TRAINING FORECAST

Figure 74. Workflow of the forecast method proposed

The model proposed is based on two machine learning methods: clustering and KNN. Clustering
is used only in the training process to define the average curve, whereas KNN is used to classify
observations and to relate them with average curves.

2.5.2 MODEL TRAINING
The main task to define the forecast model is the training process. It requires observations of
one year or more to train the model properly. Observations are ordered temporarily and then used to
defined curves with support and forecast. These curves define a dataset. Workflow of the training
(Figure 75) can be divided in the following steps:
1. Define dataset — Firstly, it is necessary to define and to normalise a dataset. Then, data
are randomly divided into three subgroups: validation, training, and test dataset. These

subgroups represent respectively 25 %, 50 % and 25 % of the total observations. The
validation dataset is used to define hyperparameters of the model, the training dataset to
train both cluster and kNN model and the test dataset to verify the performance of the
trained model;

2. Define hyperparameters — As previously mentioned, the proposed model defines both
cluster and KNN model. Both methods require to define at least the distance function
and the number of clusters (cluster model), or the number of observations for
classification (kNN model). The euclidean distance function is proposed for cluster

model, meanwhile the number of clusters and the number of observations for
classification are defined using the validation dataset;
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3. Train cluster model — When all the hyperparameters are set, the training dataset is used
to train the cluster model and to define the average forecast curves;

4. Train KNN model — When both the cluster model and consequently the average forecast
curves are defined, KNN is defined. KNN is used to forecast observations;

5. Test model — The test dataset is used to test the trained model and to check its
performances by using MAPE and RMSE.

TRAIN kNN
MODEL

* Define kNN model

 Verify model using
test dataset

TEST MODEL

e Define clusters using
training dataset

TRAIN CLUSTER
MODEL

o Definition and
normalisation
* Define validation,

training and test
dataset

DEFINE
DATASET

DEFINE HYPER
PARAMETERS

* Define hyper
parameters of
clustering and kNN
using validation
dataset

using training dataset

Figure 75. Workflow to train the model
After the training process, the model can be used to forecast new observations.

2.5.3 DATA NORMALIZATION

One of the first step of data analytics is data normalization. As datasets have different values
and scale effect may occur, classification methods such as clustering will not work properly if data
are not normalized. Usually, normalization is performed using standard score or min-max scaling
[69], [110]. Standard score normalizes dataset (X) using the average () and the standard deviation
(o) as described in Eq. 56:

X—u
o

Eq. 56

In this model, authors propose to normalize dataset differently. As the goal of the model is to
forecast energy demand curves, the idea is that different curves may have different scale but similar
variation. In this case, the standard score would be normalized but the curves would still have (a
lower) scale effect. Instead, in this study it is proposed for each curve to calculate the average of the
observations, and then to calculate the variations between observations and average as (Eq. 57):

]rl aj q
Where 0;j,i is the observation i of the curve j, a; is the average and n;; is the normalized
observation. Figure 76 represents an example explaining why this normalization is proposed. Curves
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1 and 2 have different scale but similar variation. Firstly, standard score is applied, then the average
normalization. The average (avg) and the standard deviation (std) for the standard score are calculated
using all the support values. In the other case, the average of support of each curve is calculated and
used for normalization. Forecast values are excluded because they become known only during
training process. As it can be seen in Figure 76, curve 2 is 1.58 times bigger than curve 1, and a noise
is added. It is possible to appreciate that the proposed method (avg) based on the average of the curves
reduces the scale effect, but it keeps the variation. As a matter of fact, normalized curve 1 and 2 have
similar values. Instead, the standard score method proposes normalized curves with different values
because it normalizes not only the scale effect but the variation as well.

[ SUPPORT | FORECAST |
Curve 1 [ 10.0000] 10.1000] 10.0000] 10.0000] 10.1000] 10.0000] 10.0000] 10.0000] 10.0000] 10.0000] 10.0000] [ave [12.9369]
Curve 2 [ 15.8000] 15.8000] 15.9580] 15.8000] 15.8000] 15.8000] 15.9580] 15.8000] 15.8000] 15.8000] 15.8000| [std [ 3.0187|

STANDARD SCORE

norm, curve 1 -0.9729] -0.9398] -0.9729] -0.9729] -0.9398] -0.9729] -0.9729] -0.9729] -0.9729] -0.9729] -0.9729]

norm, curve 2| 0.9485] 0.9485] 1.0008] 0.9485] 0.9485] 0.9485] 1.0008] 0.9485] 0.9485] 0.9485] 0.9485]

[ SUPPORT | FORECAST |
Curve 1 [ 10.0000] 10.1000] 10.0000] 10.0000] 10.1000] 10.0000] 10.0000] 10.0000] 10.0000] 10.0000] 10.0000| [avg, curve 1]10.0286]
Curve 2 [ 15.8000] 15.8000] 15.9580] 15.8000] 15.8000] 15.8000] 15.9580] 15.8000] 15.8000] 15.8000] 15.8000| [ave, curve 2]15.8451]

AVERAGE

norm, curve 1] -0.0028] 0.0071] -0.0028] -0.0028] 0.0071] -0.0028] -0.0028] -0.0028] -0.0028] -0.0028] -0.0028]

norm, curve 2 [ -0.0028[ -0.0028] 0.0071] -0.0028] -0.0028] -0.0028] 0.0071] -0.0028] -0.0028] -0.0028] -0.0028]

Figure 76. Data normalization example

2.5.4 HYPERPARAMETERS DEFINITION

As previously mentioned, it is necessary to define parameters (that are called hyperparameters)
for clustering and kNN. Clustering requires the distance function and the number of clusters, kNN
requires the number of the nearest neighbors and the distance function. Only the clustering distance
function is defined a priori (Euclidean distance), the other ones are defined using validation dataset.
Firstly, the number of clusters is defined: as previously mentioned, different criteria have been already
developed, they usually try to minimise the number of clusters in order to maximise the distance
between data. It is in the author opinion that a more suitable criterion is the minimum number of
clusters that minimise the forecasting error. The model here proposed clusters the data to obtain
average curves, and then uses them to forecast the energy demand. It is proposed to vary the number
of clusters (from 2 to N) in a range and for each simulation to calculate MAPE between data and
average curves of the clusters. MAPE is the acronym of Mean Absolute Percentage Error and in this
case is defined as (Eq. 61):
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1 - 1 aj’i
MAPE = EZ(TZ(d_ ~ 1) Eq. 58

= 4

Where n is the number of curves, | is the number of the forecasted values of each curve, d;; is the
value observed and pj;i is the value of the average curve of cluster related to the observed value. The
hyperparameter “number of clusters” is then defined as the minimum n that has a MAPE lower than
the average of the next three values (Eq. 59):

MAPE(n+ 1) + MAPE(n + 2) + MAPE(n + 3)
3

min(n) | MAPE (n) < Eq. 59

It can be possible to define also n as the minimum number of clusters associated with a MAPE lower
than a defined limit (Eg. 60):

min(n) | MAPE(n) < MAPE;m;: Eq. 60

This method can be seen as an early stopping method, because the number of clusters increases as
much as the accuracy of the system is increased. Figure 77 and Figure 78 report an example of how
this method is applied to a validation dataset of electricity and heat demand, where each curve has 8
observations as support and 4 as forecast. Data refers to the case study defined in section 2.6 and
already presented in section 2.4. It is possible to appreciate that curves have a MAPE decreasing
rapidly between 2 and 10 clusters, whereas between 10 and 30 they become more stable. With more
than 30 clusters the curves have a very low gradient, and locally MAPE increases even if the number
of clusters increases. In this case, the method suggests fixing 10 clusters for heat and 13 for electricity.
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Figure 77. Electricity validation dataset, MAPE varying number of clusters from 2 to 100 —
curve 8 -4

Heat - Validation dataset
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Figure 78. Heat validation dataset, MAPE varying number of clusters from 2 to 100 — curve 8
-4

As previously mentioned, usually the optimum number of clusters to divide a dataset in is defined
using a criterion such as silhouette or gap statistics. Silhouette calculates the average distance between
each member of a cluster and another cluster, and the optimum number of clusters is the minimum
number that increases distance [92]. If silhouette criterion is applied to the validation dataset (both
electricity and heat), the number of clusters that are suggested will be lower than the one that method
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proposed: Figure 79 and Figure 80 show that in both cases the suggested number of clusters is two.
If this value is used, however, MAPE would be the highest (Figure 77 and Figure 78).

Silhouettecriteria - Electricity
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Figure 79. Silhouette applied to electricity validation dataset, distance varying number of
clusters from 2 to 100 — curve 8 - 4
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Figure 80. Silhouette applied to heat validation dataset, distance varying number of clusters
from 2 to 100 — curve 8 - 4
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As previously mentioned, in the proposed model kNN hyperparameters are defined usinga MATLAB
© optimization function (Fitchknn): it optimizes kNN hyperparameters (the distance function and the
number of neighbors) to decrease classification error [93].
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2.6 SHORT FORECASTING WITH CLUSTERING AND KNN — A CASE STUDY

2.6.1 CASE STUDY INTRODUCTION

The case study presented in section 2.4 is used also in this section to perform forecasting on
energy demand. Briefly, the dataset is based on the energy demands of electricity and heat of an
industrial facility selling wood (timber) laminated window, plywood, engineered veneer, laminate,
flooring and white wood. The industrial process requires heat to dry wood into the kilns (working
temperature 70 °C), and to store it into warehouses. Electricity is used for the production equipment,
the offices, lighting purpose into the warehouses and to charge electric forklifts. Heat is generated
with ICE cogenerators, and a boiler is present as a heat integration system. Figure 81 represents the
connection between each component of the system.

COGENERATORS BOILER GRID
HEAT
KILNS WAREHOUSES OFFICES

Figure 81. Electricity and heat energy fluxes, connection between generation and utilization

Energy uses (both electricity and heat) were sampled each 15 minutes from 01/01/2015 to
25/09/2017. The electricity demand is available as mean power (kW) in such interval. The heat
demand, instead, is calculated by measuring water flow rate (m3/h) and inlet and outlet temperature
(°C) to heat the kilns. Data are stored into a structured SQL database. Data cleaning is performed on
the dataset as suggested in section 2.4.2 in order to delete missing measure (NULL value) and/or
outliers: an upper and lower limit on electricity and heat request are defined. QQ plot (Figure 82)
shows that the dataset with filtered data follows a normal distribution.
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Figure 82. Representation of the dataset filtering data, histogram and QQ plot of electricity
demand (top) and heat power demand (bottom)

The proposal is to use these data to define curves with support and forecast to train and validate
the forecast model, one for electricity and one for heat. Then an analysis on MAPE and RMSE varying
the length of support and forecasting of curves is performed, also it is analyzed the influence of curve
size and how normalization impacts on the hyperparameters. Curves with a length of 8-4 (8 values of
observation, 4 of forecasting), 10-4, 10-8 and 12-8 are defined for validation and training.

2.6.2 MODEL VALIDATION AND TRAINING

The dataset previously defined is filtered by NULL data or outliers, and split into training,
validation and test representing respectively 50 %, 25 % and 25 %. Curves of different lengths for
support and forecast are defined in order to discuss the influence of both on the definition of
hyperparameters (such the “number of clusters™), in dividing the dataset and on improving the
accuracy of the forecast.

Concerning the former, it is necessary to define the number of clusters for each dataset, the
number of the nearest neighbors, and the distance function for kNN. The euclidean distance is
proposed as the distance function for clustering. Validation is performed as proposed in section 2.5.4.
Successively, the model is trained using the training dataset, and then it is tested using the test dataset.

Concerning the accuracy of the forecast, it is defined by calculating MAPE and RMSE between
forecasted value and dataset.
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2.6.3 ERRORESTIMATION

When a forecast method is proposed, it is necessary to estimate the error on the forecasting. As
previously mentioned, error estimation is used also to define hyperparameters. MAPE and RMSE
errors are suggested. Firstly, MAPE is defined as (Eq. 61):

1 - 1 l Dji
MAPE = —Z(—Z(—'— ) Eq. 61
ns l £ dji
i=1 j=1 !

Where n is the number of curve, | is the number of the forecasted values of each curve, p;,i is the
model predicted value of the curve, and d;; is the value observed. RMSE is the acronym of Root Mean
Square Error. RMSE is proposed instead of the mean square error (MSE) because it is possible to
compare the error using the same unit of measurement. It is defined as (Eq. 62):

n

!
1 1
RMSE = —z TZ(ij,i —dj;)? Eq. 62
=1

n
i=1

These errors are calculated on the entire forecast, meanwhile the first forecasted value of each curve
is the most important. MAPE1 and RMSEL1 are calculated considering not all the forecasted values,
but only the first one (I = 1).

2.6.4 MODEL TEST

Table 24 resumes some results of the simulations considering energy demand curves of
different length as previously mentioned. MAPE is calculated using the test dataset (error between
forecasted values and observed values), once for the first forecasted value (Test dataset - MAPE 1)
and once for the entire forecast (Test dataset - MAPE). The MAPE value calculated with the
validation dataset is reported as well, in order to define the hyperparameter “number of clusters”
(section 2.5.4). It is possible to appreciate that “MAPE calculated with validation dataset” is a good
predictor of “MAPE calculated with test dataset”. For example, considering the “curve 8-4
electricity”, the MAPE calculated with the validation dataset is 3.60 %, whereas the MAPE calculated
with the test dataset is 3.58 %. Results show also the difference between electricity and heat dataset:
curve 8-4 has a MAPE of 3.58 % and 34.11 % respectively. The difference can be explained
considering the higher variation of heat values.
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Table 24. Simulation of the model with different curves length

Validation dataset Test dataset
Curve | Type of energy
MAPE MAPEl | MAPE | RMSE1 | RMSE
8-4 Electricity 3.60% 2.75% | 3.58% | 5.15kW | 3.82 kW
8-4 Heat power 35.41% 32.95% | 34.11% | 93.43 kW | 55.43 kW
10-4 Electricity 3.71% 2.74% | 3.57% | 5.15kW | 3.82 kW
10-4 Heat power 35.23% 32.70% | 34.95% | 93.20 kW | 54.82 kW
10-8 Electricity 4.79% 290% | 4.47% | 5.47kW | 3.53 kW
10-8 Heat power 36.66% 35.30% | 34.12% | 90.03 kW | 41.99 kW
12-8 Electricity 4.69% 2.80% | 4.47% | 5.31kW | 3.53 kW
12-8 Heat power 39.00% 32.10% | 37.21% | 95.14 kW | 43.05 kW

2.6.5 INFLUENCE OF THE CURVE SIZE

Observations are used to define the curves to train and to test the forecast model. Support is the
part of the curve that is used to classify observation and, consequently, it defines the forecasted value
(forecast part). The length of support (s) and forecast (f) may vary the hyperparameter “number of
clusters” and, consequently, the error on forecast. Increasing forecast length (with same support
length) is expected to increase forecast error because the model needs to predict more observations.
It is unknow if the effect of increasing the support length (with the same forecast length) could
increase or decrease the accuracy on the curve classification. Figure 83 and Figure 84 represent the
value of MAPE criteria for the validation dataset, varying support and forecast for electricity and heat
respectively.

Firstly, it is possible to appreciate that the electricity validation dataset has more regular
variation of MAPE than the heat validation dataset. With the electricity dataset, MAPE increases by
increasing support and/or forecast lengths: it is supposed that the electricity demand varies differently
from the heat. As expected, electricity dataset shows that the MAPE increases by increasing forecast
length of the curve. The MAPE increases from 3.5 % of 16-2 curve (4 support length, 2 forecast
length) to 6.3 % of 16-4 curve: the more forecasts are required, the more the error increases. On the
other hand, the increase of support length is related to the increase of the MAPE as well: from 2.9 %
of curve 4-2 to 3.5 % of curve 16-2. Even if more observations are available to classify each curve,
error does not decrease.
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Electricity FORECAST
2 4 6 8 10 12 14
4 2.9%
6 29% | 3.6%
= 8 31% | 3.6% | 4.1%
‘é 10 31% | 3.7% | 4.1% | 4.8%
2 12 32% | 38% | 43% | 47% | 51%
14 33% | 3.9% | 44% | 49% | 53% | 5.8%
16 35% | 4.0% | 45% | 51% | 53% | 58% | 6.3%

Figure 83. Heatmap of MAPE of electricity validation dataset with curves with different
support and forecast length

Heat FORECAST
Pow er 2 4 6 8 10 12 14
4 37.7%
6 36.7% | 35.2%
) 8 33.8% | 35.4% | 39.2%
S 10 36.8% | 35.2% | 37.3% | 36.7%
2 12 402% | 37.8% | 39.0% | 39.0% | 36.9%
14 35.0% | 36.9% | 33.1% | 36.1% | 39.2% | 37.4%
16 35.4% | 39.0% | 37.8% | 39.0% | 39.3% | 37.9% | 38.8%

Figure 84. Heatmap of MAPE of heat power validation dataset with curves with different
support and forecast length

2.6.6 INFLUENCE OF THE NORMALIZATION

As mentioned in section 2.5.3, here we propose a hormalization based on the percentage norm
instead of the standard score. The aim is to reduce the scale effect of the curves and to maintain their
variation. Figure 85 and Figure 86 represent the MAPE varying the number of clusters on the
electricity validation dataset. A curve of 8 observations as support and 4 for forecast is used in Figure
85, and one of 10 observations for support and 4 for forecast is used in Figure 86. In both cases,
dataset has a higher MAPE when it is normalized with standard score rather than with the percentage
norm proposed.
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Figure 85. Comparison on MAPE with the electricity validation dataset, curve with 8
observation and 4 forecast values, normalisation between percentage norm and standard score
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Figure 86. Comparison on MAPE with the electricity validation dataset, curve with 10
observation and 4 forecast values, normalisation between percentage norm and standard score

2.6.7 CONCLUSIONS

In this chapter, a model for short forecasting is proposed and analyzed. As in the authors’ opinion this
task is a pattern recognition problem: machine learning methods such as “clustering analysis” and
“kNN” are proposed to perform the task. A dataset of observations is required to define
hyperparameters, to train the model and to test it. Novelties on hyperparameters (“number of clusters”
definition) and on data normalization are proposed to increase the performances of the method. A
case study is presented in order to apply the proposed method, to analyze how the length of energy

demand curves (numbers of observations and forecast) impacts on the model, and to check its
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performances. Results show that the improvements here proposed increase the performance,
meanwhile the length of the curves (both on support and forecast) affects error: the higher the length
(both on support and/or forecast), the higher the error. A validation dataset is not used only to define
hyperparameters, but also to predict error on forecast. It is in the authors’ opinion that further
improvements could be achieved by studying the most suitable distance function for the dataset and/or
by weighting the observations.
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CONCLUSIONS

Industrial sector is one of the main consumers of energy that is based mainly on hydrocarbons;
it directly contributes to greenhouse gases emissions and, consequently, to global warming.
Improvements on energy generation systems for industrial facilities and their management are
required to decrease the environmental impact. In this thesis, innovative energy generation systems
are proposed firstly, based on novel technologies based on SOFC and RSOC. Successively, machine
learning methods are applied to perform data analytics and artificial intelligence techniques on energy
data in order to define energy system with higher efficiency and to perform forecasting with a high
accuracy.

SOFC (and also RSOC) are proposed as energy generator for industrial systems thanks to their
advantages: possibility of using different types of fuel (from natural gas to low weight hydrocarbons
such as butane or propane), heat available at high temperature, modularity and high efficiency on
energy conversion (both electricity and overall efficiency).

An innovative heat recovery system SOFC with air source heat pump is proposed, where SOFC waste
gases heat up air at the heat pump evaporator inlet to increase the coefficient of performance.
Simulations with different temperatures and relative humidity were performed, and the results show
that the heat pump performance increases up to 100% whit high humidity and/or high SOFC
utilization. Primary energy saving between 37.5% and 45% are reported comparing the proposed
system with separate energy production.

SOFC combined with RSOC are then analyzed as a flexible energy system where it is necessary to
vary heat to power ratio: the aim is to match H/P between energy generation and demand in order to
avoid heat integration system with a lower efficiency on energy conversation. A case study based on
a paper mill is presented to analyze the possibility of revamping the energy generation system by
using SOFC/RSOC and dismissing the old steam turbine. The main aim is to match H/P between
energy generation and demand with a higher efficiency, and to produce hydrogen as sub-product of
the system. Results of the simulation show that is possible to achieve a primary energy saving up to
6%: the higher the SOFC power, the higher the achieved PES. Hydrogen production could reach a
production rate of 16 kg/h but exclusively when only one paper production line is in operation. In the
whole range of variation of the investment cost (-10% to +30% of the value proposed in literature),
the RSOC integrated system has a lower cost for hydrogen generation than the traditional system
actually proposed.

Improvements on industrial energy system could be achieve not only with innovative energy
components, but also using energy consumption data with artificial intelligence and machine learning.
Clustering is suggested as machine learning method for data analytics, to define the most suitable
energy generation technology and to forecast energy consumption. Two innovative analyses based
on clustering of energy consumption data (power and profile analyses) are illustrated in the thesis.
These analyses divide data into homogenous groups (cluster), to define firstly which is the most
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suitable polygeneration technology (power analysis) and then to define average days of consumption
(profile analysis) to identify the most suitable operation strategy. These methods are then applied to
a case study. Power analysis on energy data sampled every 15 minutes for 2 years suggests the most
suitable cogeneration system (micro gas turbine) and the nominal power. Then profile analysis is used
to check the operation strategy minimizing energy losses and increasing overall efficiency suggesting
a heat storage system and its capacity.

Finally, clustering combined with k-nearest neighbors (KNN) is proposed to find similar
pattern of energy demand, to identify average demand profiles and then to use them to forecast energy
request of the next hours. Even if clustering combined with kNN have been already analyzed as
forecasting methods, in this thesis novelties on hyperparameters definition and data normalization are
proposed. Firstly, it is suggested to normalize data before clustering using a percentage norm instead
of a norm based on min-max or using mean and standard deviation of the dataset: the aim is to
decrease only scale effect on the data, not its variation. Then the number of cluster hyperparameter is
set using error estimation function (for example mean absolute percentage error) between data
observed and average curves instead of silhouette and/or gap statistic criteria as suggested as state-
of-art: the proposal is to know a priori which the forecast error would be. The methodology is then
applied to the case study previously analyzed and electricity and heat consumptions are then
forecasted.
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