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ABSTRACT 

 

During these years of my Ph.D. studies the main aim of the research work was to improve the 

efficiency on energy generation into industrial facilities. Novelties are proposed both on the devices 

used for energy generation and on energy consumption data analytics. In the first part of the thesis, 

Solid Oxide Fuel Cell (SOFC) and Reversible Solid Oxide Cell (RSOC) are proposed: these 

technologies have many advantages such as high efficiency on energy generation, heat available at 

high temperature, and modularity. 

A new heat recovery for a modular micro-cogeneration system based on SOFC is presented 

with the main goal of improving the efficiency of an air source heat pump with unused heat of fuel 

cell exhausted gases. The novelty of the system proposed is that exhaust gases after the fuel cell are 

firstly used to heat water and/or used to produce steam, then they are mixed with the external air to 

feed the evaporator of the heat pump with the aim of increasing energy efficiency of the latter. This 

system configuration decreases the possibility of freezing of the evaporator as well, which is one of 

the drawbacks for air source heat pump in climates where temperature close to 0 °C and high humidity 

could occur. Results show that the performance of the air source heat pump increases considerably 

during cold season for climates with high relative humidity and for users with high electric power 

demand. 

As previously cited, not only SOFC but also RSOC are deeply analysed in the thesis to define 

innovative energy generation system with the possibility of varying H/P ratio to match energy 

generation and demand in order to avoid mismatching and, consequently, integration system with a 

lower system. The aim is to define a modular system where each RSOC module can be switched 

between energy generation mode (fuel consumption to produce electricity and heat) and energy 

consumption (electricity and heat are consumed to produce hydrogen, working as Solid Oxide 

Electrolysis Cells) to vary overall H/P of the overall system. Hydrogen is a sub-product of the system 

and can be used for many purposes such as fuel and/or for transport sector. Then a re-vamping of the 

energy generation system of a paper mill by means of RSOCS is proposed and analysed: a real 

industrial facility, based in Italy with a production capacity of 60000 t/y of paper, is used as case 

study. Even if the complexity of the system increases, results show that saving between 2% and 6% 

occurs. Hydrogen generation is assessed, comparing the RSOC integrated system with PEM 

electrolysis, in terms of both primary energy and economics. Results exhibit significant primary 

energy and good economic performance on hydrogen production with the novel system proposed. 

In the thesis novelties are proposed not only on energy system “hardware” (component for 

energy generation) but also on “software”. In the second part of the thesis, artificial intelligence and 

machine learning methods are analysed to perform analytics on energy consumption data and 

consequently to improve performances on energy generation and operation strategy.  

A study on how cluster analysis could be applied to analyse energy demand data is depicted. 

The aim of the method is to design cogeneration systems that suit more efficiently energy demand 
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profiles, choosing the correct type of cogeneration technology, operation strategy and, if they are 

necessary, energy storages. A case study of a wood industry that requires low temperature heat to dry 

wood into steam-powered kilns that already uses cogeneration is proposed to apply the methodology 

in order to design and measure improvements. An alternative cogeneration system is designed and 

proposed, thermodynamics benchmarks are defined to evaluate differences between as-is and 

alternative scenarios. Results show that the proposed innovative method allows to choose a more 

suitable cogeneration technology compared to the adopted one, giving suggestions on the operation 

strategy in order to decrease energy losses and, consequently, primary energy consumption.  

Finally, clustering is suggested for short-term forecasting of energy demand in industrial 

facilities. A model based on clustering and kNN is proposed to find similar pattern of consumption, 

to identify average consumption profiles, and then to use them to forecast consumption data. 

Novelties on model parameters definition such as data normalisation and clustering hyperparameters 

are presented to improve its accuracy. The model is then applied to the energy dataset of the wood 

industry previously cited. Analysis on the parameters and the results of the model are performed, 

showing a forecast of electricity demand with an error of 3%. 
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PREFACE 

 

In the last centuries humankind improved its life condition, expectation and wealth. At the end 

of the 18th century, the first industrial revolution occurred, and the economy started a transition from 

being based on agriculture to being based on the industry thus enhancing life conditions. From 18th 

to 21st century, other industrial revolutions occurred (Figure P. 1). The first industrial revolution was 

mainly an introduction of mechanisation of industrial processes. The second industrial revolution 

improved the efficiency of industrial processes by introducing mass production and labour division. 

Successively, with the third industrial revolution electronics and information technologies such as 

computer, programmable logic controller (PLC) and robot were introduced. More recently, industrial 

internet of thing (IIOT), big data, machine learning and artificial intelligence (AI) were introduced 

by the fourth industrial revolution. 

 

Figure P. 1. Timeline of the industrial revolutions (from www.manufacturing-operations-

management.com) 

The increase in energy consumption is one of the main consequences of these revolutions, as it 

is related to the worldwide growth of the industrial sector. Energy is necessary for industry, and it is 

used for many purposes: for example, it could be used for lighting, to produce heat and/or cooling, as 

mechanical energy by motors thus reducing human manual labour, or for chemical processes as 

electroplating. During the first industrial revolution, the primary energy source used was coal, 

whereas oil was mainly used during the second. Electricity was introduced during the second 

industrial revolution increasing the overall energy consumption: even if it is not a primary energy 

source but an energy vector, countries such as Italy (that is poor of coal and oil) were able to produce 

energy using renewable energies like hydropower (Figure 2). Industrial processes used electricity to 

improve power and efficiency: for example, during the first industrial revolution only steam motors 
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were available to produce mechanical energy, whereas electrical motors with higher versatility and 

efficiency on energy conversion were successively developed. 

 

 

Figure P. 2. World historical energy consumption divided by energy source (from 

https://ourworldindata.org/energy-production-and-changing-energy-sources) 

Meanwhile the industrial sector increases its share on the world economy and, consequently, 

also on energy consumption and the use of primary energy sources such as coal, oil, natural gas or 

hydrocarbons has increased CO2 concentration into the atmosphere. Nowadays, CO2 has reached the 

highest concentration in the last 800 000 years (Figure P. 3 and Figure P. 4). 

 

 

Figure P. 3. World historical CO2 level into the atmosphere (from www.climate.gov/news-

features/understanding-climate/climate-change-atmospheric-carbon-dioxide) 
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Figure P. 4. World CO2 level into the atmosphere from 1970 to 2017 (from 

www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-

dioxide) 

The scientific community is worried about the consequences of the increasing of CO2 level, one 

of the most known being global warming. CO2 is one of the gases related to greenhouse effect: if its 

concentration increases, the atmosphere decreases its transparency with respect to infrared radiation 

from the Earth surface to the space. Earth has a natural greenhouse effect thanks to the natural 

presence of greenhouse gases that allow a temperature suitable for life. However, during the last 

centuries anthropic activity has been increasing continuously the concentration of greenhouse gases 

(not only CO2 but also CH4 and N2O), and consequently the global average temperature has increased 

too (Figure P. 5). 

 

Figure P. 5. Globally averaged combined land and ocean surface temperature anomaly, 

different colours refer to different temperature dataset (from Climate Change 2014 Synthesis 

Report Summary for Policymakers – IPCC, www.ipcc.ch) 

The scientific community has already warned policymakers about the global warming effects 

on atmosphere temperature and, then, on the whole climate: sea level increase, change on 
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precipitation and modification on the climate are expected effects. The Intergovernmental Panel on 

Climate Change (IPCC) of United Nation published the Climate Change 2014 Synthesis Report 

Summary for Policymakers, where different scenarios based on global emission of CO2 are proposed. 

The increase of temperature by the end of the 21st century is likely to be between 0.3 °C and 1.7 °C 

when considering the lower emission scenario (RCP2.6), and between 2.6 °C and 4.8 °C with the 

higher emission scenario (RCP8.5) (Figure P. 6). 

 

 

Figure P. 6. Global average surface temperature change, 2081-2100 mean temperature 

versus 1986-2005, red projections and time series are related to the worst scenario (RCP8.5), blue 

ones to the lower scenario (RCP2.6), intermediate scenarios are also presented (RCP4.5 and 

RCP6.0) (from Climate Change 2014 Synthesis Report Summary for Policymakers – IPCC, 

www.ipcc.ch) 

Global sea levels are likely to increase with a higher rate under RCP8.5 model (worst scenario) than 

RCP2.6 (Figure P. 7). Also changing on precipitation are expected (Figure P. 8). 

 

 

Figure P. 7. Global mean sea level rise, 2081-2100 mean sea level versus 1986-2005, red 

projections and time series are related to the worst scenario (RCP8.5), blue ones to the lower 



 

VIII 

 

scenario (RCP2.6), intermediate scenarios are also presented (RCP4.5 and RCP6.0) (from Climate 

Change 2014 Synthesis Report Summary for Policymakers – IPCC, www.ipcc.ch) 

 

 

 

Figure P. 8. Change in average precipitation, 2081-2100 average precipitation (right) versus 

1986-2005 average (left). Data refers to the average of the models previous cited (from Climate 

Change 2014 Synthesis Report Summary for Policymakers – IPCC, www.ipcc.ch) 

Industry has an important role in CO2 emissions as it is one of the largest energy consuming 

sector compared to transport, residential and tertiary. According to the International Energy Agency 

(IEA), the share of the total final energy consumption in 2016 was 31.7% for industry, 31.6% for 

transport and 36.7% for other uses (mainly residential and tertiary) (Figure P. 9). 

 

 

Figure P. 9. World energy consumption by sector in 2016 (data from International Energy 

Agency – IEA Key World Energy Statistics) 

Considering the first five countries for total energy consumption (Japan, Russia, India, United 

States and China), it is possible to appreciate how much industry has an impact on the energy 

consumption: 34.54% of 4824 Mtoe of the total final energy consumption is due to the industry sector. 
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China features the highest share: industry sector consumes 50% on final energy consumption (Figure 

P. 10). 

 

 

Figure P. 10. Top five final energy consumers divided by sector in 2016 (data from 

International Energy Agency – IEA Key World Energy Statistics) 

Figure P. 11 shows the world primary energy sources: more than 80% are hydrocarbons (oil or 

natural gas) and coal. These energy sources are strictly related to global warming effect because of 

the CO2 emissions during the combustion process. As the industrial sector has the highest share of 

energy consumption compared to transport and other sectors, it has a high responsibility on 

greenhouse gases emissions. As a matter of fact, reduction of the consumption of primary energy 

sources, increase of energy efficiency and use of renewables are key drivers for the industry to 

decrease greenhouse gases emissions as suggested by IPCC. 

 

Figure P. 11. World primary energy supply by source in 2016 (data from International 

Energy Agency – IEA Key World Energy Statistics) 
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Italy is considered one of the most industrialised countries in the world. Italian industrial sector 

has also a unique peculiarity in the world: industrial districts. An industrial district is a cluster of 

industries (usually small-medium enterprises, SME), working on the same or similar businesses, that 

are geographically located in a (relative) small area. This can bring many advantages: according to 

the latest report of Intesa San Paolo bank, industrial districts have a shorter supply chain, a higher 

innovation rate and consequently they usually have higher profitability (return of equity - ROE) and 

labour productivity (Economia e finanza dei distretti industriali – Rapporto annuale – n. 11 Dicembre 

2018). The Italian National Institute of Statistics (ISTAT) defined 141 different districts during its 

last national industrial census (Figure P. 12). The majority (38, about 27% of the total) are classified 

as mechanical industry districts, then textile and clothes (32, about 22.7 %), furniture and household 

goods (24, 17% of the total), leather and tannery industry (17, 12.1%), food industry (15, about 10.6 

%). The last 10% are classified as chemical industry (5), jewellery, musical instruments (4), 

metallurgical industry (4) and pulp and paper industry (2). 

 

 

Figure P. 12. Italian industrial districts, 2011 census (Data from ISTAT, I distretti industriali 

Anno 2011, https://www.istat.it/it/archivio/150320) 
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Moreover, Italian industrial districts can take advantage of smart and modular energy systems 

to suit energy demand of the industrial clusters that have homogeneous sectors and, consequently, 

similar average energy consumptions. 

Not only cogeneration and/or improvements on energy generation could be used to increase 

efficiency on energy systems: big data and, consequently, machine learning and artificial intelligence 

are trend topics on smart energy systems. Information technologies (IT) are expected to revolutionise 

energy sector (Figure P. 13). An example of this transformation could be smart grids. Usually, energy 

grids (and electricity grid in particular) are designed with a centralized unidirectional generation site 

and distribution: there are few (generally big) generators, and many (big or small) users. Smart grids, 

instead, have de-centralised generators, and each component of the grid could switch from consumer 

to producer. In this case, IT are necessary to manage the grid, for example load balancing is easier 

with centralised generators than in smart grids where small and de-centralised generators must be 

coordinated. 

An increase of renewable energy plants such as solar or wind should be preferred to decrease 

greenhouses emissions. One of the main issues is the planning and management of renewables, as 

they are highly affected by weather conditions. As a matter of fact, these energy sources have been 

increasing their share on overall energy production in the last years, and IT tools must be developed 

and implemented. Kaile Zhou et al. have analysed the use of big data and machine learning in energy 

sector and their impact for each component of the energy system, from power generation to energy 

consumption (Figure P. 13). 

 

Figure P. 13. Big data support on smart energy system (Kaile Zhou et al., Big data driven 

smart energy system management: From big data to big insights, Renewable and Suitable Energy 

Reviews) 

In this thesis, the topic of energy efficiency related to industrial facilities is tackled. As 

previously mentioned, the industrial sector has a high energy demand with consequences on 

greenhouse gases emissions. The aim of the work is to increase efficiency on energy generation and 

conversion into industrial facility: lower consumptions (and emission and costs) are then expected. 

The main topics stress on energy generation and conversion instead of improving energy saving of 
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industrial processes: energy generation is similar between different industrial sectors, but industrial 

processes change and could be completely different between each other. Moreover, if improvements 

are achieved on energy generation, they could be introduced in many sectors. Enhancements on 

industrial processes require, instead, a deep knowledge of each process and, if improvements could 

be achieved, they could not be shared with other sectors. In this thesis, improvements are proposed 

by increasing efficiency on energy generation by means of alternative energy generation systems and 

big data methods. 

Firstly, alternative energy systems are proposed to increase efficiency on energy generation, 

with a focus on polygeneration systems where different types of energy are produced simultaneously. 

An industrial facility for example could require electricity and heat at different temperatures, low 

level (lower than 50 °C) and medium level (up to 100 °C). Polygeneration is expected to increase 

efficiency compared to separate energy generation systems: a common example is cogeneration. Fuel 

cells, in particular solid oxide fuel cells (SOFC), are proposed due to their advantages: modularity 

and flexibility, high efficiency on energy conversion, waste heat available at high temperature (600 

°C – 1000 °C) and flexibility on fuel. 

In the first part of the thesis, an analysis of solid oxide fuel cells is performed. This type of fuel 

cell can convert the chemical energy of hydrocarbons (for example propane, natural gas, etc) and 

ammonia directly into electricity and heat. SOFC work at high temperature (600 °C – 1000 °C) with 

high efficiency both on electricity production and overall energy conversion. Innovative energy 

systems based on SOFC are proposed to increase efficiency on energy production, firstly with a 

modular cogeneration system where air source heat pump improves heat production using SOFC 

exhausted gases increasing its coefficient of performance. The proposed system could produce 

electricity and heat at different levels: a higher level using exhausted gases of SOFC (around 1000 

°C), and a lower level (about 50 °C) from air source heat pump. Applications in industrial facilities 

are possible as some processes could require heat at different temperatures and/or combining 

industrial energy demand with district heating. 

A polygeneration system with hydrogen production based on SOFC and solid oxide electrolyser 

is then proposed: the aim is to vary heat to power ratio on energy generation with hydrogen production 

to match heat to power user request with a high efficiency both on energy production (using SOFC 

cells) and on hydrogen production (using solid oxide electrolyser). A paper mill is analysed and 

proposed to introduce this innovative energy system to increase efficiency on energy generation, 

dismissing a part of an old steam cogeneration system meanwhile decreasing energy costs. 

Simulations prove that primary energy saving could be achieved also with hydrogen production. 

In the second part of the thesis machine learning, big data and artificial intelligence are 

explored. The starting point is related to the huge amount of data that are usually collected into 

Enterprise Resource Planning (ERP) system. Such data are not often used to query and perform 

analytic studies on it. These methods could provide analytics on collected data, allowing 

improvements on energy efficiency of the industrial facility. Moreover, they can give the opportunity 
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to forecast energy consumption and continuous monitoring of the correct operation and/or need of 

maintenance of the production plants. 

The aim of this part of the thesis is to use these methods in order to increase the efficiency of 

energy systems. The main idea is that improvements on energy generation technologies (“hardware”) 

are only a “part of the effort” to achieve energy savings in industry. Data analysis, suitable operation 

strategies, smart energy system controls and load forecasting (“software”) can be developed and 

applied as well. As a matter of fact, if data analytics is not applied to increase the matching between 

energy demand and production, or load forecasting is not used to correctly choose the size of the 

generation plant and the storage, energy dissipation could occur even if energy systems with high 

performance (such as SOFC) are used. Improvements on the previous cited “software” are as 

important as improvements on the “hardware” of the energy system. Even if different machine 

learning methods are available, in this thesis clustering and kNN method are proposed to perform 

analytics on energy consumption data, firstly to size and define most suitable operation mode for 

energy system, then to perform short forecasting. 

As previously cited, firstly clustering is proposed to perform analytics on energy demand data, 

dividing dataset into homogenous groups. The main scope is to analyse which cogeneration 

technology suits better the energy demand avoiding a mismatch between production and demand (and 

consequently, heat losses). On the other side, an improvement in operation strategy and definition of 

the energy storage system defining average consumptions curves can be useful. A case study of an 

industrial facility where both electricity and heat are required is used to validate the method proposed: 

it suggests not only the most suitable cogeneration technology for the observed energy demand but 

also heat storage and improvements on operation strategy to avoid heat losses and, consequently, 

increasing energy efficiency. It is demonstrated that primary energy saving between 2-6% could be 

achieved. 

In the final part of the thesis, clustering and kNN method are applied to analyse data and 

perform short forecasting on energy consumption. These methods have been already used to perform 

forecasting when it is based mainly on historical observations and it is not easy to define mathematical 

models such as in the case of an industrial process. Novelty on data normalisation and 

hyperparameters definitions are proposed to decrease error on forecasting. The proposed method is 

then applied to a case study to verify its performances: it was able to forecast electricity consumption 

with a percentage error lower than 5% whereas an estimated error of 13% can be estimated if novelties 

on data normalisation are not applied. 
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1 FUEL CELL FOR ENERGY GENERATION 

1.1 ENERGY GENERATION IN INDUSTRIAL FACILITIES 

Industry is one of the sectors with the highest consumption of energy: according to Figure 1, 

about 25 % of the final energy consumption in European Union is related to industry. Moreover, 

industry may have different types of energy request: meanwhile electricity is used mainly by electric 

motors and heaters, in some cases cooling could be required (especially by industries related to food 

processing), or heat at different temperature (hot water or steam). One of the more effective ways to 

increase energy efficiency and to save money is to implement cogeneration (or polygeneration) 

systems: primary energy consumption can decrease if two or three types of energy (for example 

electricity and heat) are produced simultaneously by one single plant instead of separate production. 

 

 

Figure 1. Final energy consumption by sector, EU-28, 2016 (% of total, based on tonnes of 

oil equivalent) [1] 

Figure 2 displays the average H/P based on energy demand by industrial sector ([2]) compared 

to H/P of the traditional cogeneration technologies ([3]): as a matter of fact, there is often a mismatch 

between energy production and consumption, so integration systems (such as boiler, steam generator 

and/or electricity from grid) are required. It is possible to appreciate also that fuel cells have the 

lowest H/P range (0.5-1) with only one industrial sector (Printing and publishing) inside this range. 

Internal combustion engine has, instead, more industrial sectors (Apparel and other textile products, 

Lumber and wood products, Industrial machinery and equipment, Instruments and related products 

and Printing and publishing) inside its H/P range (0.83 - 2). 

In this part of the thesis, fuel cells (firstly considering solid oxide fuel cells (SOFC), then 

analysing also reversible solid oxide cells) are analysed for industrial purpose because of the 

following positive characteristics: the highest efficiency on energy conversion (both on electricity 

only and overall cogeneration) and their modularity. Table 2 based on reference [3] compares 
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cogeneration technologies on electric and overall efficiency (based on HHV), typical capacity, H/P 

range, partial load and type of fuel used. Fuel cell could reach 60 % on electricity efficiency 

meanwhile internal combustion engines (ICE) and steam turbines could reach 40 %. Overall 

efficiency reaches 80 % on HHV. In the next chapters, firstly fuel cells (and SOFC in particular) are 

presented with a detailed description of the model used for simulation. An improvement of the model 

is presented with an innovative heat recovery system based on air source heat pump, in order to 

increase the overall efficiency on cogeneration. Successively, an energy conversion system based on 

SOFC and reversible solid oxide cells (RSOC) is proposed to adjust H/P ratio of energy request 

meanwhile hydrogen could be produced. A case study of a paper mill is considered where efficiency 

of energy generation system is increased using SOFC – RSOC system. 

 

Figure 2. H/P ratio of average energy demand by industrial sector ([2]) and typical 

cogeneration technologies ([3]) 

 

 ICE Steam 

Turbine 

Gas Turbine Micro 

Turbine 

Fuel Cell 

Electric 

Efficiency 

(HHV) 

27-41% 5-40% 24-36% 22-28% 30-63% 

Overall 

efficiency 

(HHV) 

77-80% Near 80% 66-71% 63-70% 55-80% 
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 ICE Steam 

Turbine 

Gas Turbine Micro 

Turbine 

Fuel Cell 

Typical 

capacity 

(MWe) 

0.005-10 
0.5 – several 

hundred MW 
0.3-300 0.03-1 

0.001-2.8 

commercial 

use 

H/P range 0.83-2 10-14.3 0.9-1.6 1.43-2 0.5-1 

Partial load Yes Yes Poor Yes Possible 

Fuels 

Natural gas, 

biogas, LPG, 

sour gas, 

industrial 

waste gas, 

manufactured 

gas 

All 

Natural gas, 

synthetic gas, 

landfill gas 

and fuel oils 

Natural gas, 

sour gas and 

liquid fuel 

Hydrogen, 

natural gas, 

propane and 

methanol 

Table 1. Overview of cogeneration technologies [3] 
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1.2 FUEL CELLS 

1.2.1 GENERAL INTRODUCTION TO FUEL CELL 

Fuel cells (FC) are power devices that convert chemical energy inside a fuel directly in 

electricity with a high efficiency [4]. Hydrogen or hydrocarbons as fuel (depending on the type of 

fuel cells) and an oxidant (air) are used. Basically, a fuel cell’s generator is made by these elements: 

- Unit cell, where the electrochemical reactions take place; 

- Stacks, where many units are electrically connected to obtain the desire power output; 

- Auxiliaries such as air compressors, pumps, fuel processor (some kinds of fuel cells need it) 

and a DC/AC converter. 

The core of the entire system is the unit cell (Figure 3) where fuel and oxidant react and the 

products are electricity (DC), heat and some gases with minimal pollutant. It is divided by: 

- Anode, the part of the cell fed with the fuel; 

- Cathode, the part of the cell fed with the oxidant (usually air); 

- Electrolyte, who physically separate anode and cathode allowing the transportation of ions.  

 

Figure 3. Representation of a Unit Cell [4] 

Anode and cathode could be made with a catalytic material such as Platinum to allow a higher 

rate of reaction; some types of fuel cells work at low temperature, that is at low rate. The type of 

electrolyte of the unit cell is important because it defines: 

- range of working temperature of the unit cell (it could vary from 40-80 °C of polymeric 

membranes to over 600 °C of ceramics); 

- type and purity of the fuel (pure hydrogen with a low rate of CO or hydrocarbons); 

- type of oxidant (air or air with a low rate of CO2); 

- sensitivity on pollutant (such as CO, sulphurs, ammonia). 

A single unit has low power (usually about 15-20 W), so in order to reach the requested power 

many cells are connected electrically in series and parallel. 
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1.2.2 DESCRIPTION OF DIFFERENT TYPES OF FUEL CELLS 

The first fuel cell was developed by Sir William Robert Groove (1811-1896): it had an electrode 

made of platinum put into nitric acid and another one made of zinc into copper sulphate, generating 

a current of 12 A at 1.8 V. Until now, different kinds of fuel cell (FC) were improved especially for 

aerospace: for example, a type of alkaline FC was created by Francis Thomas Bacon and used for 

Apollo Program of NASA, or proton exchange fuel cell (PEFC) was improved by GE and used for 

Gemini Program.  

The modern fuel cells are divided by the material of the electrolyte: proton exchange fuel cell 

(PEFC), alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell 

(MCFC), and solid oxide fuel cell (SOFC). This allows using different fuels and defining different 

operating temperatures. Table 2 makes a summary of the different FC developed.  

 

Table 2. Characteristic of different types of FC [4] 

 PEFC AFC PAFC MCFC SOFC 

Electrolyte 

Hydrated 

polymeric ion 

exchange 

membranes 

Potassium 

hydroxide in 

asbestos 

matrix 

Immobilized 

liquid 

phosphoric 

acid in SiC 

Immobilized 

liquid molten 

carbonate in 

LiAlO2 

Perovskites, 

Y2O3-

stabilised 

ZrO2 (YSZ) 

(ceramics) 

Operating 

Temperature 

(°C) 

40-80 °C 65-220 °C 205 °C 605 °C 600-1000 °C 

Stack elect. 

efficiency (% 

of LHV) 

32%-40% 36%-45% 43%-50% 43%-55% 

50%-60% 

(SOFC+GT 

70%) 

Gases at 

anode 

Only H2 

<10 ppm CO 

Only H2 

<0.5% CO 

<50 ppm H2S 

Only H2 

<0.5% CO 

<50 ppm H2S 

H2, CO 

<0.5 ppm H2S 

H2, CO 

<0.5 ppm H2S 

External 

reformer for 

hydrocarbon 

fuel 

Yes Yes Yes 
No, for some 

fuels 

No, for some 

fuels and cell 

design 

External shift 

conversion of 

CO to 

hydrogen 

Yes with 

purification 

to remove 

CO 

Yes with 

purification 

to remove CO 

Yes No No 
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 PEFC AFC PAFC MCFC SOFC 

Type of fuel 

Natural Gas 

LPG 

Methanol 

Ethanol 

Gasoline 

Diesel 

The same of 

PEFC 

The same of 

PEFC plus 

landfill gas 

The same of 

PEFC plus 

coal gas 

The same of 

PEFC plus 

coal gas 

Advantages 

Rapid start-

up, 

absence of 

corrosive 

material, 

high current 

densities (2 

W/cm2) 

Excellent 

performances 

Low 

operating 

temperature 

allow to use 

common 

construction 

material, 

waste heat 

could be used 

for 

cogeneration 

or bottom 

cycle 

Hydrocarbons 

and CO could 

be used as 

fuel 

and no 

expensive 

electro-

catalysts are 

needed, 

the high 

temperature 

of waste heat 

allow bottom 

cycle to 

improve 

overall 

efficiency 

Hydrocarbons 

could be used 

as fuel, 

high 

efficiency, 

high 

temperature 

of waste heat 

allow bottom 

cycles and 

cogeneration, 

cheaper 

material could 

be used for 

cell hardware 

Disadvantages 

Require water 

management, 

quite 

sensitive to 

poisoning 

(CO, 

sulphurs, 

ammonia) 

Require 

removing CO 

and CO2 from 

H2 and also 

from the air 

in the cathode 

Phosphoric 

acid is highly 

corrosive, 

require 

expensive 

material in 

the stack 

Very high 

corrosive 

electrolyte 

require 

expensive 

material for 

cell hardware, 

low power 

densities (0,2 

W/cm2) 

High 

temperature 

cause thermo 

mechanical 

stress, thermal 

mismatches 

among 

materials and 

the thermal 

cycling. 
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1.3 SOFC 

1.3.1 INTRODUCTION TO SOFC 

One type of fuel cells presented in Table 2 is Solid Oxide Fuel Cell (SOFC): electrolyte is a 

solid, non-porous material usually based on Y2O3-stabilised ZrO2 (YSZ), the anode is a Ni-ZrO2 and 

the cathode is Sr-doped LaMnO3. This allows using a high operation temperature (600-1000 °C) and 

consequently: 

- high electrical efficiency; 

- high temperature of the waste heat that allow bottom cycles (gas turbine, steam turbine 

or also Stirling engine) or cogeneration; 

- internal reforming, not only hydrogen but also hydrocarbons can be used; 

- lower sensibility on pollutant, differently from other fuel cells (like as PEFC and AFC), 

CO could be used as fuel and it is not a pollutant. 

The main disadvantage is related to the high operation temperature, as problems can occur due 

to the mismatching between materials with different thermal expansion coefficients, mainly the 

interconnections and the seal materials. Steady-state working is better than continuous start-stop 

because it avoids thermal cycles and increases the life time. The research in this field is directed to 

develop: 

- materials with a better electrical and thermo-mechanical performances at 1000 °C; 

- materials (such as mixture of ceramics and metals) with lower operating temperature, 

but with higher power density and efficiency. 

The power range is from 1 kW to 10 MW, so SOFC can be used for household application, 

auxiliary power unit and as power plant with high efficiency. 

The most diffused cells developed today have tubular and planar form. The first type, made by 

Siemens-Westinghouse, is the best-known and a cross section is represented in Figure 4. The cathode 

is produced by extrusion and sintering, then the electrolyte is applied by electrochemical vapour 

deposition (EVD). The anode is produced by metallic Ni and YSZ by sintering metal particles with a 

porosity of 20%-40% to allow the mass flow of reactant and product gases; it requires a thermal 

expansion comparable to the other cell materials. The cell interconnection is made by doped 

lanthanum chromite, and it must be chemical unreactive to resist to both anode and cathode gases. 

All the cell components must: 

- be capable of withstanding thermal cycling; 

- not be affected on electronic conductivity by interdiffusion of ionic species; 

- permit only electronic conduction and interdiffusion of ionic species at 1000 °C.  
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Figure 4. Cross-section of cylindrical Siemens-Westinghouse SOFC [4] 

Planar SOFCs are based on planar cells (Figure 5). Usually the shape of the cell is rectangular 

or circular: the gases flow in counter-flow or cross-flow in the first case, or in co-flow in both of 

them. Moreover, it is possible to distinguish the different cells according to structural support. The 

early cells were electrolyte-supported, so they required a thick electrolyte around 200 µm with both 

electrodes at 50 µm. The anode-supported cells are possible thanks to advances in manufacturing 

techniques: the anode is 0.5-1 mm thin, the electrolyte is around 3 to 15 µm and the cathode is 50 µm 

(it gives also the difference in thermal expansion between anode and electrolyte). This type of fuel 

cell has very high power density, from 1.8 W/cm2 in laboratory tests to 600-800 mW/cm2 in 

commercial conditions. A cathode-supported fuel cell would also be possible, but the mass flow 

limitation and the manufacturing challenges allow lower performance than the anode-supported. A 

kind of metal interconnection-supported fuel cell has been studied to minimize the use of expensive 

ceramic materials and mass flow resistance. The problems are finding a materials’ combination and 

a manufacturing process that avoid corrosion and deformation of the metal and interfacial reactions 

during manufacturing and operation. Three different materials are used as interconnection: 

- lanthanum or yttrium chromite (ceramic); they work pretty well at high operating 

temperature (900 °C - 1000 °C), they are chemically stable with thermal expansion. 

Unfortunately, they are costly and mechanically weak; 

- Cr-based or Ni-based superalloys for intermediate-high operation temperature (800 °C 

- 900 °C). They are chemically stable, but they require a coating to prevent Cr-

poisoning. Moreover, this technology features high cost due to the difficulty to form Ni 

and Cr; 

- ferritic steel for intermediate operation temperature. The material is cheaper than the 

other ones, but it needs a coating to improve corrosion resistance and conductivity 

during thermal cycles because it is chemically unstable. 

The power density of planar SOFC (about 300-500 mW/cm2) allows to engineer small-scale 

power and APU application, with the possibility to reach a customization for high-volume 

application. 
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Figure 5. Representation of a planar fuel cell with a rectangular shape [5] 

1.3.2 THERMODYNAMIC OF SOFC 

In a fuel cell an electrochemical reaction occurs, fuel is oxidized with the production of 

electricity and exhausted gases that could be used for heat recovery (Table 3).  

 

Anode Reaction Cathode Reaction 

H2+O2-→H2O+2e- 

CO+O2-→CO2+2e- 

CH4+4O2-→2H2O+ CO2 +8e- 

½ O2+2e-→O2- 

Table 3. Chemical reaction in a SOFC [4] 

When it is operative, at the anode the oxidation of H2 and CO takes place (with the loss of 

electrons), and at the cathode the reduction of the O2 occurs. The current I of the electric circuit 

depends on the flow of electrons. The voltage of a fuel cell could be defined by Nernst’s Equation. 

In ideal condition and with I=0, the ideal voltage at the working temperature T is (Eq. 1): 

 

𝑉𝑖𝑑,𝑇 =
𝑅𝑇

𝑛𝐹
𝑙𝑛
∏(𝑟)

∏(𝑝)
 Eq. 1 

 

where Vid is the voltage at standard ambient temperature and pressure (25 °C and 101325 Pa), 

R is ideal gas constant, n is the electrons flow, F is the Faraday constant, Π(r) and Π(p) are the product 

of reactants and product of fugacity respectively. This ideal value won’t be reached even at I=0 due 

to irreversibility losses. Three main phenomena cause a reduced efficiency of fuel cell with respect 

to the ideal value (Figure 6): 
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- activation-related losses, related to chemical changes on electrodes surface or gas 

absorption. They could be described by Tafel equation where b is called Tafel gradient 

and the unit of measurement of i is mA/cm2 (Eq. 2). 

 

𝛽1 = 𝑎 + 𝑏 ∗ 𝑙𝑜𝑔( 𝑖) Eq. 2 

 

- ohmic losses, related to electric resistivity of electrolyte and of electrodes. They could 

be described using Ohm law (Eq. 3). 

 

𝛽2 = 𝑅𝑖𝑛𝑡  ∗ 𝐼  Eq. 3 

 

- mass-transport-related losses, related to operation condition. When the current density 

is too high, the reactant diffusion into the electrolyte and the replacement of the products 

become too slow, so a concentration gradient with a loss of voltage happens. They could 

be described by Eq. 4 where iL is the limitation current, the highest speed at which it is 

possible to feed reactants to the fuel cell. 

 

𝛽3 =
𝑅𝑇

𝑛𝐹
𝑙𝑛( 1 −

𝑖

𝑖𝐿
) Eq. 4 

 

 

Figure 6. Voltage loss related to current density [4] 

1.3.3 SOFC SYSTEM SIMULATION 

A SOFC system is simulated using a tool developed for thermodynamic simulation at Technical 

University of Denmark (DTU), DNA – Dynamic Network Analyser [6]. It is developed in Fortran 

language and by using this tool it is possible to define thermodynamic systems based on different 
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components (such as gasifier, steam turbines, gas turbines, burner, fuel cell, absorption chiller etc), 

and it allows to perform both steady-state and dynamic simulations. 

A SOFC model was developed by prof. Marvin Mikael Rokni (formerly Masoud Rokni). It was firstly 

presented in [7], and then it was proposed with different fuels such as ethanol [8]–[10], methanol [8]–

[10], ammonia [8]–[10], DME [8]–[10], woodchips gasification [11], biomass [12] or municipal 

waste gasification [13]. As previously mentioned, SOFC could be coupled with a bottom cycle to 

increase electricity production, for example by using Stirling engine [8], [10], [12]–[14], steam 

turbine [7] or steam injected turbine [11]. Even if previous references present a SOFC system for 

electricity production with a net power in the order of megawatt, SOFC was studied also for small 

power application with ground source heat pumps (GSHP) in [10], [15]–[17] thanks to its modularity. 

In this thesis, a modular SOFC system using natural gas as fuel ([10], [18], [19]) is proposed and 

simulated: it is based on SOFC stacks, a catalytic partial oxidizer (CPO), heat exchangers to pre-heat 

fuel and oxidant, air compressors, a desulfurizer and a burner (Figure 7). 

 

 

Figure 7. SOFC system representation with heat recovery 

The desulfurizer is necessary to avoid sulfur poisoning of the SOFC stack, CPO cracks 

hydrocarbons into CO and H2, air compressors compress air for cathode and CPO. CP is the cathode 

pre-heater: it uses exhausted gases to pre-heat inlet air for the SOFC. Fuel is pre-heated into FP and 

RP heat exchanger that use exhausted gases from the anode. Electricity is converted by an AC/DC 

converter with an efficiency assumed to be 92 %, meanwhile auxiliaries' consumptions are assumed 

to be 1.5 % of the total electricity production. Exhausted gases are burned to convert the unused fuel 

into heat that could be recovered to produce steam. The latter could feed bottom cycles or could be 

used for space heating. In the next paragraph (1.3.4), the mathematical model of SOFC stack is 

described. 
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1.3.4 SOFC STACK DEFINITION 

SOFC stacks are simulated using a zero-dimensional model ([12]) which describes power using 

experimental data. Gases temperature is considered varying between 650 °C and 800 °C. Once 

defined Nernst ideal reversible voltage ENernst, activation polarization losses ΔEact, ohmic losses ΔEohm 

and concentration losses ΔEconc, the operational voltage of the cell Ecell can be defined as (Eq. 5): 

 

Ecell = ENernst − (ΔEact + ΔEohm + ΔEconc) Eq. 5 

 

Under the assumption that only H2 is used, ENernst could be defined as (Eq. 6): 

 

ENernst =
−Δ𝑔𝑓

0

𝑛𝑒𝐹
+
𝑅𝑇

𝑛𝑒𝐹
𝑙𝑛(
𝑝𝐻2,𝑡𝑜𝑡√𝑝𝑂2

𝑝𝐻2𝑂
) Eq. 6 

 

𝑝𝐻2,𝑡𝑜𝑡 = 𝑝𝐻2 + 𝑝𝐶𝑂 + 4𝑝𝐶𝐻4  Eq. 7 

 

Where Δ𝑔𝑓
0 is the Gibbs free energy for H2 reaction at standard temperature and pressure, 𝑝𝐻2,𝑡𝑜𝑡 , 𝑝𝑂2 

and 𝑝𝐻2𝑂 are the partial pressure for hydrogen, oxygen and water respectively (Eq. 7), F is the Faraday 

constant and R the universal gas constant. 

Activation polarization is described using Butler-Volmer equation (Eq. 8): 

 

ΔEact =
𝑅𝑇

(0.001698𝑇 − 1.254) ∗ 𝐹
sinh−1(

𝑖𝑑
2 ∗ (13.087 ∗ 𝑇 − 1.096 ∗ 104)

) Eq. 8 

 

Where T and id are respectively the operating temperature and current density. Ohmic losses (Eq. 9) 

can be defined as related to electrical conductivity of electrodes (σan for anode, σca for cathode), ionic 

conductivity of the electrolyte (σel), thickness of these elements (tan for anode, tca for cathode and tel 

for electrolyte) and current density (id): 

 

ΔEohm = (
𝑡𝑎𝑛
𝜎𝑎𝑛

+
𝑡𝑐𝑎
𝜎𝑐𝑎

+
𝑡𝑒𝑙
𝜎𝑒𝑙
)𝑖𝑑 Eq. 9 

 

Thicknesses are assumed to be tan = 600 µm for the anode, tel = 50 µm for the electrolyte and tca = 10 

µm for the cathode. Conductivity is assumed to be σan = 105 for the anode, meanwhile conductivity 

of the cathode and of the electrolyte are related to the operating temperature T and are defined by Eq. 

10 and Eq. 11 respectively: 

 

𝜎𝑐𝑎 =
5.76 ∗ 107

𝑇
exp (−

0.117

8.617 ∗ 10−5𝑇
) Eq. 10 
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𝜎𝑒𝑙 = 8.588 ∗ 10−8 ∗ 𝑇3 − 1.101 ∗ 10−4 ∗ 𝑇2 + 0.04679 ∗ 𝑇 − 6.54 Eq. 11 

 

Concentration losses (ΔEconc) occur when insufficient amounts of reactants are transported to the 

electrodes, mainly at high current densities for anode-supported SOFC. Experimental data were used 

to validate the model introducing anode limiting current, a parameter based on anode porosity and 

tortuosity. Equation proposed is (Eq. 12): 

 

ΔEconc = 𝐵 (ln(1 +
𝑝𝐻2 ∗ 𝑖𝑑

𝑝𝐻2𝑂 ∗ 𝑖𝑎𝑠
) − ln (1 −

𝑖𝑑
𝑖𝑎𝑠
)) Eq. 12 

 

where B is the diffusion coefficient defined using a calibration technique (Eq. 13): 

 

𝐵 = (0.008039 ∗ 𝑋𝐻2
−1 − 0.007272) ∗

𝑇

𝑇𝑟𝑒𝑓
 Eq. 13 

 

where 𝑋𝐻2 is the mass reaction rate of H2 and Tref is reference temperature (1023 K). Anode limiting 

current is defined as (Eq. 14): 

 

𝑖as =
2 ∗ 𝐹 ∗ 𝑝𝐻2 ∗ 𝐷𝑏𝑖𝑛 ∗ 𝑉𝑎𝑛

𝑅 ∗ 𝑇 ∗ 𝑡𝑎𝑛 ∗ 𝜏𝑎𝑛
 Eq. 14 

 

where Van is the anode porosity (assumed 30%), τan is the anode tortuosity (2.5) and Dbin the binary 

diffusion coefficient. Dbin is also calibrated using experimental data (Eq. 15): 

 

Dbin = (−4.107 ∗ 10−5 ∗ 𝑋𝐻2 + 8.704 ∗ 10
−5) ∗ (

𝑇

𝑇𝑟𝑒𝑓
)

1.75

∗
𝑝𝑟𝑒𝑓

𝑝
 Eq. 15 

 

where pref is the reference pressure (1.013 bar). Current density id is defined using Faraday law (Eq. 

16): 

 

id =
�̇�𝐻2 ∗ 2 ∗ 𝐹

𝐴
 Eq. 16 

 

A is the physical area of the cell (144 cm2). Each stack is composed by 70 cells, each stack has a 

power of 1 kW, and the number of stacks varies with the nominal power of the SOFC to be achieved. 

Figure 8 represents SOFC voltage over current density, comparing simulation data with experimental 

data ([12]): it is possible to appreciate that the proposed model describes perfectly experimental data. 
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Figure 8. SOFC voltage over current density, model versus experimental data ([12]) 

1.4 SOFC – AIR SOURCE HEAT PUMP (ASHP) SYSTEM FOR ADVANCED HEAT 

RECOVERY  

1.4.1 INTRODUCTION TO THE SYSTEM 

As previously mentioned ([7], [11]), SOFC system can be used to produce steam that is a 

valuable thermal vector in industrial facilities (for example it is used into paper mills to dry paper). 

Figure 8 illustrates the SOFC system proposed in [7] where exhausted gases are used to produce 

steam for a Rankine cycle in three different stages: economizer, evaporator and super-heater. 

 

 

Figure 9. Example of SOFC system with steam production for a Rankine cycle [7] 
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On the other hand, exhausted gases after heat recovery still have an enthalpy content that is 

unused. Industrial processes do not require heat at only medium-high temperature: for example, 

processes like fermentation uses heat at temperature of 50 °C (Figure 10). Heat pumps have been 

already proposed to increase energy efficiency on heat production for these processes: reference [20] 

analyses how heat pumps can be used to produce thermal energy for industrial processes at different 

temperatures. 

Industrial waste heat could be used not only in industrial processes, but also for district heating: in 

reference [21], a tool to analyse the possibility of using waste heat for district heating varying cost of 

fuel, electricity and distance for the transfer to district heating is developed. In [22], [23] it is analysed 

the possibility of heat recovery of an industrial area in the north of China. In [24] it is studied the 

technical, economic, institutional and environmental feasibilities of using low-level residual 

industrial waste heat for the district heating of Delft (The Netherlands). In [25], a district heating 

system using waste heat from industries, waste incineration and a cogeneration plant is proposed and 

analysed to improve energy saving and to achieve economic saving. 

 

 

Figure 10. Industrial processes thermal request divided by temperature ([20]) 

In this study, air source heat pump (ASHP) combined with SOFC is proposed. The main idea is to 

increase heat production, and consequently the coefficient of performance (COP) of the heat pump: 

exhaust gases exiting the fuel cell are firstly used to satisfy medium - high temperature heat request 

(such as steam production), then they are mixed with external air using an adiabatic mixer to feed the 

evaporator of the heat pump with the aim of increasing energy efficiency of the latter (Figure 11). 
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Figure 11. SOFC + ASHP system scheme 

ASHP are cheaper compared to other types of heat pumps such as ground source heat pumps, 

but efficiency decreases if freezing of evaporator (which is one of the drawbacks for air source heat 

pump in area like North Europe) occurs. System configuration using air and exhausted gases of SOFC 

decreases the possibility of freezing that could occurs when temperature is around 0 °C and relative 

humidity is sufficiently higher than 50 %. A modular system based on a SOFC system of 50 kW of 

nominal power and 7 kW of ASHP heating power is proposed. Simulations are performed varying 

external air temperature, air humidity and SOFC nominal power.  

1.4.2 SOFC SYSTEM 

As previously mentioned, the system is proposed to recover heat from waste gases of SOFC. A 

modular system of 50 kW SOFC nominal power (50 stacks of 1 kW each) and 7.7 kW ASHP heating 

power is proposed. SOFC system is based on the scheme analysed in section 1.3.3, natural gas is 

proposed as fuel even if ammonia, DME, ethanol or methanol could be used just changing fuel 

processor components ([8], [9]). When natural gas is used, desulphurizer and CPO are necessary: the 

first is required to prevent sulphur poisoning of the stack, the second to crack hydrocarbons. Figure 

12 represents a detailed scheme of the SOFC system and interconnection with the ASHP. An adiabatic 

mixer is used in order to mix exhausted gases and inlet air. Simulation of SOFC at full nominal power 

(50 kW) reports an electric efficiency of 53 % and a thermal efficiency 42.86 %, meanwhile waste 

gases after heat recovery are at 105 °C. Table 4 resumes the main results of the thermodynamic 

benchmarks of SOFC system simulation at full load. 

 



 

17 

 

 

Figure 12. Representation of SOFC system. The air mixer to partially recover heat from the 

exhausted gases of the SOFC is connected after the Heat Recovery by point 1 (see previous Figure 

15). 

 

Parameter Value 

SOFC (50 kW, full load), 

thermal efficiency 
ηthermal,SOFC = 0.4286 

SOFC (50 kW, full load), 

electrical efficiency 
ηelectrical,SOFC = 0.5299 

SOFC (50 kW, full load), 

heat to power ratio 
H/P = 0.8088 

SOFC auxiliaries consumption, 

efficiency on electrical output 
ηtrans = 0.9068 

Exhausted gas temperature 105 °C 

Table 4. Efficiencies of the different components of the SOFC system. 

Desulphurizer not only prevents stack poisoning, but also sulphur inside exhausted gases: Table 

5 shows the results of exhausted gas analysis. Note that sulphur formation in any form (such as SOx) 

is avoided and, consequently, if gas mixture is condensed, condensate may not include any acid: 

ASHP does not require heat exchanger in acid resistant material such as stainless steel to prevent 

corrosion by acid condensate. At full-load, it is calculated that the humidity ratio (water mass versus 

dry air mass) is 0.342 kgwater/kgdry_air. 
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Composition Gas percentage  Composition Gas percentage 

N2 56.76%  Ar 0.59% 

Water 24.37%  NO 0.00% 

CO2 12.90%  SO2 0.00% 

O2 5.37%  NO2 0.00% 

Table 5. Mass composition of SOFC exhausted gas at full load, gas temperature 105 °C. 

 

1.4.3 ASHP 

ASHP plays an important role in the system: it recovers heat from exhausted gases at (relative) 

low temperature. ASHPs have variable COP during the year, typically lower during colder periods 

when freezing of evaporation section may occur. It is advisable to consider that in climates where 

conditions with air temperature just above 0 °C (especially between 5 and 7 °C depending on the 

design of the finned coil) and relative humidity above 50 % are more frequent, possibility of freezing 

of the outdoor heat exchanger (evaporator) may lead to a decrease in seasonal performance of the 

heat pump (ice has poor heat transfer capability and reduces available area for air and so air mass 

flow rate). For such a reason defrost of evaporator section is periodically necessary. Defrosting can 

be performed by an auxiliary heat source (electrical resistance or gas burner) or reversing the cycle. 

In any case, defrosting is quite penalizing for the heat pump energy performance, as it increases its 

energy request. The authors propose to mix the exhausted gases exiting the SOFC (Figure 12 and 

point 1 in Figure 15) with outdoor air (point 2 in Figure 15) with the aim to enhance temperature of 

inlet air at the ASHP evaporator (point 3 in Figure 15) in order to prevent ice formation. 

Heat pumps could be simulated using technical norms, for example UNI 11300-4 to consider 

different working temperature at condenser/evaporator and using EN 14825 for partial load of the 

heat pump in heating mode ([26]–[28]). In this study, it is proposed to simulate ASHP using a 

regression of technical datasheet (Figure 13, Figure 14, and Table 6) from [29]. 

As previously mentioned, when external air relative humidity is higher than 50 % and 

temperature is just above 0 °C, freezing of evaporator may occur. Typically, freezing rate is maximum 

when air temperature is around 7 °C. A frost factor is considered [30] as multiplying penalty factor 

to decrease COP of the heat pump to take into account the periodic defrosting. Reference proposes a 

value that is defined as a function of outdoor air temperature (in the range of –10 to 10 °C) and relative 

humidity (in the range of 50-100 %): the penalty factor is lower given a lower outdoor air temperature 

(up to values just above 0 °C), and the higher the relative humidity [30]. 
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Figure 13. Technical datasheet, relation between nominal heating power and external air 

temperature ([29]). 

 

 

Figure 14. Technical datasheet, relation between nominal COP and external air temperature 

([29]). 

Parameter Value 

ASHP Nominal Condition 
External Air 2 °C - Condenser 

outlet Water 45 °C (A2W45) 

Pnom – Nominal heating power 7.7 kW 

COPnom – Nominal COP 2.75 

Table 6. Nominal conditions of ASHP ([29]). 

1.4.4 ADIABATIC MIXER AND EVAPORATOR 

As previous mentioned, the proposal is mixing air with off-gases from the SOFC plant. The 

aim is to increase air temperature at evaporator inlet as much as possible to avoid freezing of 

evaporator and increasing the COP. Figure 15 represents the proposed air mixing system: SOFC 
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exhausted gases (point 1) and outdoor air (point 2) are mixed in an adiabatic mixer. In some cases, 

humidity condensation may also occur (point 31). Mixture (point 3) is used in the evaporator 

delivering heat to the ASHP and then is discharged (point 4). Humidity condensation may occur also 

into the evaporator (point 41). It is supposed that no auxiliary flow inducing system such as a fan is 

necessary: the head pressure available from the fan of the heat pump model here referred (around 80 

Pa) is supposed to be adequate to face the pressure drop of the mixer (and of the ducts and evaporator). 

 

 

Figure 15. Air mixing system. Curves pointing down represent possible water condensation 

after the air heat exchange respectively in the mixer (point 31) and the evaporator (point 41). 

A mathematical model is proposed to describe the components of the system according to equations 

regarding wet air proposed in [31]. Firstly, it is described the adiabatic mixer (Eq. 17): 

 

{
 
 

 
 

𝑚𝐷𝐴,1 +𝑚𝐷𝐴,2 = 𝑚𝐷𝐴,3

𝑚𝐷𝐴,1 ∗ 𝑊1 +𝑚𝐷𝐴,2 ∗ 𝑊2 = 𝑚𝐷𝐴,3 ∗ 𝑊3 +𝑚𝑙,31

𝑚𝐷𝐴,1 ∗ ℎ1 +𝑚𝐷𝐴,2 ∗ ℎ2 = 𝑚𝐷𝐴,3 ∗ ℎ3 +𝑚𝑙,31 ∗ ℎ𝑙,31

𝑊3 = min(
𝑚𝐷𝐴,1 ∗ 𝑊1 +𝑚𝐷𝐴,2 ∗ 𝑊2

𝑚𝐷𝐴,3
,𝑊𝑠𝑎𝑡,3)

 Eq. 17 

 

In this system of equations it is imposed: 

- conservation of dry air mass (𝑚𝐷𝐴,1, point 1), dry exhausted gases (𝑚𝐷𝐴,2, point 2) and dry 

air mixture (𝑚𝐷𝐴,3, point 3); 

- conservation of water mass flow rate. 𝑊1,𝑊2,𝑊3 are respectively the humidity ratio in points 

1, 2 and 3, 𝑚𝑙,3 is the liquid mass flow rate in case of humidity condensation in the adiabatic 

mixer; 

- conservation of energy. ℎ1, ℎ2, ℎ3 are respectively the specific enthalpy in 1, 2, 3, the values 

depend on air temperature and humidity ratio. ℎ𝑙,3 is the enthalpy of condensate water. 

𝑊𝑠𝑎𝑡,3 is the humidity ratio in state 3 in saturation condition, depending only on air temperature in 3 

(total pressure is assumed to be 101325 Pa). If 𝑊𝑠𝑎𝑡,3 is lower than weighted average of humidity 

ratio in states 1 and 2 condensation occurs. 

Then evaporator is defined (Eq. 18): 
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{
 

 
𝑚𝐷𝐴,3 = 𝑚𝐷𝐴,4

𝑚𝐷𝐴,3 ∗ 𝑊3 = 𝑚𝐷𝐴,4 ∗ 𝑊4 +𝑚𝑙,41

𝑚𝐷𝐴,3 ∗ ℎ3 = 𝑚𝐷𝐴,4 ∗ ℎ4 +𝑚𝑙,41 ∗ ℎ𝑙,41 + 𝑄

𝑊4 = min(𝑊3,𝑊𝑠𝑎𝑡,4)

 Eq. 18 

 

In this system of equations it is imposed: 

- conservation of dry air mixture mass. 𝑚𝐷𝐴,3, 𝑚𝐷𝐴,4 are respectively the dry mass flow rate in 

states 3 and 4; 

- conservation of water mass. 𝑊3,𝑊4 are the humidity ratio values respectively in 3 and 4, 𝑚𝑙,4 

is the liquid mass flow rate in case of humidity condensation in the evaporator; 

- conservation of energy. ℎ3, ℎ4 are respectively the specific enthalpy in 3 and 4, they depend 

on air temperature and humidity ratio. ℎ𝑙,4 is the enthalpy of condensate water and 𝑄 is the 

heat absorbed by the refrigerant at the heat pump evaporator. 

𝑊𝑠𝑎𝑡,4 is the humidity ratio in 4 in saturation condition, depending only on air temperature in 4. If 

𝑊𝑠𝑎𝑡,4 is lower than humidity saturation in state 3 condensation occurs. The heat pump is expected to 

increase its performances because of the higher air enthalpy at the evaporator inlet. This is due to 

both the higher temperature and the higher humidity ratio (both sensible and latent terms contribute 

to the enhancement of enthalpy due to the adiabatic mixer). 

1.4.5 SIMULATION OF THE SYSTEM 

A steady-state analysis is performed with the aim of studying the energy performance of the 

system at different operation conditions. The analysis is performed by varying the dry bulb air 

temperature from –7.5 °C to 15 °C with a step of 2.5 °C, relative humidity from 25 % to 100 % with 

a step of 25 %, and SOFC nominal electric power from 20 to 50 kW (step of 10 kW). Only two 

couples of values, namely outdoor air relative humidity and SOFC nominal electric power, are 

presented in next section 4 to compare very different situations: 25 % - 20 kW, and 100 % - 50 kW. 

Varying SOFC nominal electrical power is advisable because it affects the exhausted gases flow rate 

entering the adiabatic mixer. A 7.7 kW nominal heating power ASHP is chosen to have consistent 

mass flow rates between heat pump evaporator and SOFC. 

The simulations allow to calculate air temperature at the evaporator outlet (point 4 in Figure 

15), as well as the COP of the heat pump. The main aim of the proposed system is to increase the 

COP of the ASHP. As previously mentioned, COP is a function of air temperature and relative 

humidity. A high value of the latter is useful to improve the COP because of the condensation of 

latent heat that increases the heat exchange inside the evaporator, under assumption that the finned 

coil surface temperature is not below 0 °C. Unlike, frost may grow in the fins reducing heat exchange 

between air and refrigerant. As already cited in section 1.4.3, this may occur more frequently when 

air temperature in the evaporator inlet is between 5 °C and 9 °C. In such case, a defrost factor has to 

be considered [30] to take into account the penalization of COP due to periodic defrosting of the 

evaporator with finned coil (e.g. by reversing the cycle). Analysis of COP variation between a 
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traditional ASHP (without the adiabatic mixer) and the current system is performed and presented for 

four very different representative cases by a combination of external air relative humidity and SOFC 

nominal power (25 % - 20 kW, 25 % - 50 kW, 100 % - 20 kW, 100 % - 50 kW). COPvariation benchmark 

is defined as (Eq. 19): 

 

𝐶𝑂𝑃𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = (
𝐶𝑂𝑃𝑖𝑛𝑛𝑜𝑣,𝑠𝑦𝑠

𝐶𝑂𝑃𝑡𝑟𝑎𝑑,𝑠𝑦𝑠
− 1) ∙ 100 Eq. 19 

 

COPvariation higher than 0 (zero) means that the current system has a higher COP than the 

traditional one, and therefore ASHP performs better. 

Analysis on primary energy saving (%PES) is also proposed, wherein the innovative system is 

compared with a traditional one with separate production of heat (boiler) and electricity (national 

grid) in terms of primary energy (PE). Considering that the system here proposed has a net available 

electricity generation Eava (that is the difference between SOFC net electric power and ASHP 

consumption) and a heat generation Hava (that is the sum of heat cogenerated by SOFC and generated 

by ASHP), %PES benchmark is defined as (Eq. 20): 

 

%𝑃𝐸𝑆 = (1 −
𝑃𝐸𝑖𝑛𝑛𝑜,𝑠𝑦𝑠

𝑃𝐸𝑡𝑟𝑎𝑑,𝑠𝑦𝑠
) ∙ 100 = (1 −

𝐸𝑎𝑣𝑎
𝜂𝑒𝑙𝑒

+
𝐻𝑎𝑣𝑎
𝜂𝑏𝑜𝑖𝑙𝑒𝑟

𝐹𝑆𝑂𝐹𝐶
) ∙ 100 Eq. 20 

 

where FSOFC is the fuel (primary energy) consumption of SOFC, ηele is the global electric 

efficiency from grid (assumed to be 0.435), and ηboiler is the efficiency of boiler for heat production 

(assumed to be 0.9). Such a definition is consistent with that of the primary energy saving of 

cogeneration systems as referenced in the 2012/27/EU Energy Efficiency Directive [32] and Directive 

2004/8/EC on promotion of cogeneration [33]. 

1.4.6 RESULTS - EVAPORATOR OUTLET AIR TEMPERATURE 

Firstly, the difference in evaporator outlet temperature (airside) between an ASHP standalone 

(only ASHP) and ASHP-SOFC integrated system is outlined (Figure 16). In both cases considered as 

previously described (case 1: 25 % - 20 kW, and case 2: 100 % - 50 kW), temperature at the evaporator 

outlet is higher in the ASHP–SOFC system because of the positive effect of high temperature of the 

exhausted gases from SOFC. The higher the SOFC electric power, the higher the temperature 

difference between the two systems is found to be. The reason is due to the increasing of airflow rate. 

For example, at 0 °C external air temperature T4 is 3 °C higher with ASHP-SOFC system with respect 

to ASHP only in case 1, whereas at same conditions T4 is 10 °C higher in case 2. 

Even if the increasing of temperature of discharged gases (point 4, Figure 15) is proved, COP 

may increase or not. If evaporator temperature is between –7.5 °C and 10 °C and relative humidity is 



 

23 

 

higher than 50 %, then the frost factor shall be considered, which can affect the energy performance 

of the heat pump. 

 

Figure 16. Evaporator outlet air temperature (T4) in function of external air temperature (T2) 

in the two cases (air relative humidity - SOFC nominal electric power). Case 1: 25 % - 20 kW; 

Case 2: 100 % - 50 kW. 

1.4.7 RESULTS - COEFFICIENT OF PERFORMANCE 

Figure 17 compares the COP of the presented system with that of an ASHP only, considering 

the two very different cases previously described: low external air relative humidity with low SOFC 

nominal electric power (respectively 25 % and 25 kW), and high external air relative humidity with 

high SOFC nominal electric power (respectively 100 % and 50 kW). It is apparent that the system 

proposed here is not always advantageous. The latent heat contribution of SOFC exhausted gases 

may be greater than the sensible one and therefore more frequent defrosting is requested when air 

temperature is in the critical range (5–9 °C as already stated). The higher weight of the frost factor 

may decrease the COP of the innovative system. For low humidity and low power (case 1), the 

proposed system has lower COP than traditional one when external air temperature is lower than 

about 8.5 C, ranging from 2 to 3 for ASHP only and from 1.7 to 3 for ASHP-SOFC. However, in 

the case of 100 % - 50 kW, the higher exhausted mass flow rate (due to the higher electrical power) 

allows COP of the proposed system to be always higher (between 2.1 and 4.8) than COP of the 

traditional system (between 1.7 and 4). 
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Figure 17. COP in function of external air temperature (T2) in the two cases (air relative 

humidity - SOFC nominal electric power). Case 1: 25 % - 20 kW; case 2: 100 % - 50 kW. 

Figure 18 depicts COPvariation with varying outdoor air temperature for four very different 

representative cases by a combination of external air relative humidity and SOFC nominal power. 

COPvariation is influenced by: 

- inlet air relative humidity. Given a fixed amount of SOFC power, COPvariation increases with 

increasing relative humidity of the air. According to Figure 18, the present system with 20 

kW SOFC nominal power has a COP lower than the traditional one (COPvariation is lower than 

0) at 0 °C and 25 % external air condition. COPvariation becomes positive if inlet air has higher 

relative humidity (e.g. 100 %); 

- SOFC electric power. The higher the SOFC power, the higher the mass flow rate of exhausted 

gases, so the higher the temperature of the gases at the outlet of the adiabatic mixer. This 

parameter has a strong effect on system performances. Figure 18 shows that for inlet air 

temperature equal to 2.5 °C COPvariation increases from 30 % up to 110 % when considering a 

SOFC power of 20 kW and 50 kW, respectively. 

 



 

25 

 

 

Figure 18. COP variation varying the external inlet air temperature for four very different 

cases in terms of SOFC nominal power and air relative humidity. 

 

The main conclusion of this reasoning is that the adiabatic mixer has a positive effect on the heat 

pump COP when outdoor air has a high relative humidity and when SOFC electric power is high. 

When SOFC power is 50 kW, COP of heat pump is always improved by the mixer. If a 20 kW SOFC 

is used, then the present system has a higher COP only when relative humidity of the inlet air is close 

to 100 %. 

Figure 18 shows another interesting aspect of the system in which the higher air relative 

humidity and SOFC power, the lower air temperature at which maximum COPvariation occurs. If inlet 

air temperature is above 12.5 °C, the adiabatic mixer is not useful at all. 

1.4.8 RESULTS - PRIMARY ENERGY SAVING 

As previously mentioned, %PES is defined to quantify energy saving from the proposed system 

and compared to the traditional solution (system). Figure 19 depicts %PES as a function of the 

outdoor air temperature for the same four different cases as in Figure 18 (very different cases but 

representative). The proposed system allows a primary energy saving in the range of 37.5 % – 45 %. 

The system with relatively small SOFC power presents lower %PES compared to the case with 

relatively high SOFC power, only for temperature below 2.5 °C and when relative humidity is low 

(25 %). Such critical value of air temperature decreases to 0.5 °C when humidity is high (close to 100 

%).  

Note that the higher the relative humidity, the higher %PES in the given temperature range of 

T2 (dotted lines are always above continuous lines in Figure 19). It is also worth to note that primary 

energy saving depends also on the partial load operation of SOFC. This is due to variation of power 

ratio, and thereby the efficiency of SOFC. 
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Figure 19. Primary energy saving varying the external inlet air temperature for four very 

different cases in terms of SOFC nominal power and air relative humidity. 

1.4.9 CONCLUSIONS 

A cogeneration system based on SOFC fed by natural gas (producing both electricity and heat) 

and ASHP with an advanced heat recovery system (to increase overall heat production) is analysed 

and proposed to enhance overall efficiency of the system on energy generation. Outdoor air entering 

the evaporator of heat pump is mixed with exhausted gases from the SOFC plant with the aim of 

increasing evaporator temperature and thereby reducing possibility of freezing. Such conditions allow 

increasing the coefficient of performance for the heat pump. 

Simulations are performed varying the external air temperature, air humidity and SOFC 

nominal power. Thermodynamic analysis shows that in some cases the effect of mixing the exhausted 

gases with air is negative: when SOFC electric power is lower in comparison to its nominal power 

(50 kW) and/or inlet air has a low relative humidity, COP decreases up to 35 %. Instead, COP 

increases up to 100 % when SOFC electric power is close to its nominal, and/or inlet air has a high 

relative humidity. A comparison based on primary energy consumption between the system proposed 

here and a traditional one with separate production (electricity demand is covered by the national grid 

and heat demand is produced separately by a boiler) proves that significant savings can be achieved 

(between 37.5 % and 45 %). 

Results show that ASHP performance could be increased considerably during cold season for 

climates with high relative humidity. Such results quantify the coefficient of performance and primary 

energy saving of the SOFC-ASHP integrated system. 
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1.5 RSOC - SOEC 

1.5.1 INTRODUCTION 

Hydrogen will play a key role into the next energy systems: analyses and studies have been 

already performed ([34]–[38]) to verify the state-of-art, the production costs, and the uses as energy 

vector for the transport sector and as energy storage. As a matter of fact, hydrogen is proposed for: 

- Decarbonized transport sector: hydrogen as the energy vector for transport when fuel 

cells instead of combustion engines are proposed, with the aim of reducing pollution 

and CO2 emission; 

 

- Management of high energy price fluctuation: hydrogen can be used to reduce the cost 

fluctuation of energy: it can be produced when low costs occur, and then converted into 

electricity when prices are high; 

 

- Management of energy system with high share of renewable energy: mismatching 

between production and demand of energy can be frequent in energy systems with high 

share of renewable energy. Energy sources such as solar or wind are highly related to 

weather conditions and are not programmable. As a matter of fact, in some periods the 

energy production is higher than the energy demand, in others vice versa. Hydrogen is 

proposed as an energy storage, as it is produced when a surplus of energy production is 

available and it is consumed when a deficit of energy is present ([35], [36]). 

 

Hydrogen is actually used in chemical industry, but according to [38] it is mainly produced by the 

reforming of natural and refinery gases (48%), as a by-product of chemical production (30%), and by 

coal gasification (18%). Only a small amount is produced with water electrolysis. The production of 

hydrogen from hydrocarbons and/or coal is considered not suitable in the long run because CO2 is 

produced. Water electrolysis using renewable energy is proposed as main alternative to decrease 

greenhouses emission. Water electrolysis is an electrochemical reaction where water is divided into 

hydrogen and oxygen using thermal and electrical energy: 

 

2𝐻2𝑂 → 2𝐻2 + 𝑂2 Eq. 21 

 

The overall energy request of the reaction (Δ𝐻) is partially supplied by heat (Δ𝑄) and partially in an 

electrical manner by changing the Gibbs energy (Δ𝐺) (Eq. 22): 

 

Δ𝐻 = Δ𝑄 + Δ𝐺 Eq. 22 
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The theoretical minimum cell voltage (𝑉𝑟𝑒𝑣 ) of the electrolyser could be calculated under the 

assumption that an external heat source supplies the thermal energy requested. It is directly related to 

the Gibbs free energy (Δ𝐺) according to the equation Eq. 23: 

 

𝑉𝑟𝑒𝑣 =
Δ𝐺

𝑛𝐹
 Eq. 23 

 

Where n is the number of electrons transfers per reaction (n=2) and F represents the Faraday’s 

constant (96485 C/mol). Thermoneutral voltage is defined, instead, under the assumption that 

electrolysis takes place without heat integration, consequently the overall energy demand (including 

heat) is provided electrically. Thermoneutral voltage (𝑉𝑡𝑛) is defined as (Eq. 24): 

 

𝑉𝑡𝑛 =
Δ𝐻

𝑛𝐹
 Eq. 24 

 

Figure 20 represents how electrical, thermal and total energy demands vary with temperature. Firstly, 

𝑉𝑟𝑒𝑣 decreases slightly with the increase of the temperature of the reaction in a range of 1.25 V - 0.91 

V between 0 °C and 1000 °C. Thermoneutral is approximatively 1.47-1.48 V if the cell works below 

100 °C, and 1.26-1.29 V if the temperature range is between 100 – 1000 °C. 

 

Figure 20. Electrical (𝛥𝐺), thermal (𝛥𝑄) and total (𝛥𝐻) energy demand variation on 

temperature ([39]) 

The main water electrolysis technologies currently available are proton exchange membrane 

electrolysis (PEMEL or PEM), alkaline electrolysis (AEL) and solid oxide electrolysis (SOEL). 

Differences occur on the electrolyte of the cell and, consequently, on working temperature, specific 

energy demand and efficiency on energy conversion.  

The alkaline electrolyser has a 25-30% aqueous KOH solution as electrolyte, and the electrolytes are 

immersed and separated by a diaphragm. It is considered a low temperature electrolyser working at 

60 – 90 °C. Partial reactions at the electrodes are represented in Figure 21 . 
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Anode  Cathode 

2𝑂𝐻− → 𝐻2𝑂 +
1

2
𝑂2 + 2𝑒

− 
 

2𝐻2𝑂 + 2𝑒
− → 2𝐻2 + 2𝑂𝐻

− 

Figure 21. Partial reactions in alkaline electrolyser 

Figure 22 represents how the system works: water is fed at the anode side where hydrogen is 

produced, two drums store the produced gases (one for hydrogen and one for oxygen) with the 

electrolyte working as gas-liquid separator. External cooling system is required to dissipate heat 

produced during electrolysis. Gas quality after drying is typically in the range of 99.5–99.9% for H2 

and 99–99.8% for O2; catalytic gas purification could increase gas purity to 99.999%. Commercial 

electrolysis stacks work at 1.25 – 2.1 V (varying on current density) and a current density of 0.4 

A/cm2, reaching a rated efficiency of 63–71% on hydrogen LHV and a specific energy demand of 

4.2–4.8 kWh/Nm3 [39] (Table 7). 

 

Figure 22. Alkaline electrolyse system [39] 

Proton Exchange Membrane Electrolyser (PEMEL) was introduced in 1960s by General Electric. 

Electrodes are directly mounted on a proton exchange membrane (usually Nafion © membrane). 

PEMEL is considered also a low temperature electrolyser, as it works at 60-90 °C. 

 

Figure 23. PEMEL system ([39]) 

Figure 23 represents a PEMEL system: water is supplied at the anode side where oxygen is produced, 

meanwhile hydrogen is available at cathode side. The following partial reactions take place into the 

electrolyser (Figure 24): 
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Anode  Cathode 

𝐻2𝑂 →
1

2
𝑂2 + 2𝐻

+ + 2𝑒− 
 

2𝐻+ + 2𝑒− → 𝐻2 

Figure 24. Partial reaction of PEMEL 

The corrosive acidic regime provided by the proton exchange membrane requires the use of noble 

metal catalysts like iridium for the anode and platinum for the cathode. Compared to alkaline 

electrolyser, PEMEL has a very low cross-permeation: H2 with a 99.99% purity is available after 

drying. One of the featured characteristics of PEMEL compared to AEL is the compact module design 

and the higher current density operation. Consequently, a high-pressure operation on the cathode side 

(H2) could be achieved: hydrogen can be produced at higher pressure than AEL. This is a key feature 

if compressed hydrogen is required, energy requested to compress hydrogen after electrolysis is 

higher than the one requested by compression of water before electrolysis. The cell voltage in PEMEL 

stack is 1.6 – 2.5 V with a current density of 1 - 2 A/cm2; stack efficiency is reported to be 60–68% 

on hydrogen LHV with an energy demand of 4.4–5.0 kWh/Nm3 [39] (Table 7). 

The solid oxide electrolyser works at higher temperature compared to AEL and PEMEL, around 700 

– 900 °C. High working temperature requires that electrolyte is based on solid oxide. Figure 25 

represents a simplified layout of a system: electrolyser is based on planar cells, and water is provided 

as steam at high temperature. Higher working temperature implies a lower electricity consumption as 

showed in Errore. L'origine riferimento non è stata trovata.: part of the energy is given by heat. 

 

Figure 25. Solid oxide electrolyser system ([39]) 

Partial reactions at the electrodes are (Figure 21 and Figure 26): 

Anode  Cathode 

𝑂2− →
1

2
𝑂2 + 2𝑒

− 
 

𝐻2𝑂 + 2𝑒
− → 𝐻2 + 𝑂

2− 

Figure 26. Partial reactions in solid oxide electrolyser 

AEL and PEMEL are considered mature technologies, and commercial system are currently available 

at megawatt power scale. Instead, solid oxide electrolysers are still under development with few 

commercial systems available within kilowatt power scale. It is reported an efficiency of 81 % on 

hydrogen LHV with an energy demand of 3.7 kWh/Nm3 [39] (Table 7). 
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Type of electrolyte Nominal power Energy demand 𝜼𝑳𝑯𝑽 

Proton Exchange 

Membrane 

(PEMEL) 

0.01 – 2 MW 4.4 – 5 kWh/Nm3 60 % - 68% 

Alkaline (AEL) 0.03 – 6 MW 4.2 – 4.8 kWh/Nm3 63 % - 71 % 

Solid Oxide 

Electrolysis (SOEL) 2.2 kW 3.7 kWh/Nm3 

98 % 

84.6 % (including 

water evaporation) 

Table 7. Overview of commercial electrolysis system based on ref. [39], each technology is 

divided by nominal power, energy demand and efficiency on hydrogen production on LHV 

Nowadays there is a great interest in SOEL thanks to its reversibility: reversible solid oxide 

cells (RSOC) can be used both as electrolyser (solid oxide electrolyser cells – SOEC - if steam and 

electricity are provided) and as fuel cell (solid oxide fuel cell - SOFC - if hydrogen and oxygen are 

available). Thanks to this reversibility, RSOC could have a key role in the future energy systems 

where fluctuations on energy production occur and hydrogen is used as energy storage. In the next 

section it is proposed a RSOC system as polygeneration system: heat, electricity and hydrogen are 

produced varying how many cells work as fuel cells and as electrolyser and, consequently, varying 

H/P ratio on energy generation. If H/P varies, it is possible to decrease the mismatching on energy 

request and, consequently, increasing efficiency because energy losses are avoided. Hydrogen is a 

noble by-product of the system and could be used as fuel or, alternatively, for transport. Firstly, the 

model of the solid oxide cell electrolyser (section 1.5.2) and of the overall system (section 1.5.3) are 

analysed. Successively, an interaction of SOEC and SOFC is proposed (sections 1.5.4 and 1.5.5) to 

match H/P of energy demand and production. Finally (section 1.6), a re-vamping of the energy 

generation system of an industrial facility (a paper mill) using RSOC is proposed and analysed. 

 

1.5.2 SOEC CELL MODEL  

In SOEC, water (H2O) is divided into hydrogen (H2) and oxygen (O2) using not only electricity, 

but also heat in order to decrease the electricity consumption. The SOEC system simulated in this 

work is based on the model presented in [14], [40] and [41]–[43]. The molar production of H2 

(�̇�𝐻2,𝑜𝑢𝑡) is related to current value, consequently (Eq. 25): 

 

�̇�𝐻2,𝑜𝑢𝑡 =
𝑁𝑠𝑡𝑎𝑐𝑘 ∗ 𝑁𝑐𝑒𝑙𝑙 ∗ 𝐴𝑐𝑒𝑙𝑙 ∗ 𝐽

2𝐹
 Eq. 25 

 

Where Nstack is the number of stacks, Ncell is the number of cells per each stack, Acell is the cell area 

(m2), J is the current density (A/m2) and F is the Faraday constant (96485.34 C/mol). The molar 
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production of O2 (�̇�𝑂2,𝑜𝑢𝑡) (Eq. 26) and the residual H2O (�̇�𝐻2𝑂,𝑜𝑢𝑡) (Eq. 27) can be calculated from 

the water inlet (�̇�𝐻2𝑂,𝑖𝑛): 

 

�̇�𝑂2,𝑜𝑢𝑡 = �̇�𝐻2𝑂,𝑖𝑛 −
1

2
�̇�𝐻2,𝑜𝑢𝑡 = �̇�𝐻2𝑂,𝑖𝑛 −

𝑁𝑠𝑡𝑎𝑐𝑘 ∗ 𝑁𝑐𝑒𝑙𝑙 ∗ 𝐴𝑐𝑒𝑙𝑙 ∗ 𝐽

4𝐹
 Eq. 26 

 

�̇�𝐻2𝑂,𝑜𝑢𝑡 = �̇�𝐻2𝑂,𝑖𝑛 − �̇�𝐻2,𝑜𝑢𝑡 = �̇�𝐻2𝑂,𝑖𝑛 −
𝑁𝑠𝑡𝑎𝑐𝑘 ∗ 𝑁𝑐𝑒𝑙𝑙 ∗ 𝐴𝑐𝑒𝑙𝑙 ∗ 𝐽

2𝐹
 Eq. 27 

 

The SOEC power (PSOEC) is defined as (Eq. 28): 

 

𝑃𝑆𝑂𝐸𝐶 = 𝑁𝑠𝑡𝑎𝑐𝑘 ∗ 𝑁𝑐𝑒𝑙𝑙 ∗ 𝐸𝑐𝑒𝑙𝑙 ∗ 𝐴𝑐𝑒𝑙𝑙 ∗ 𝐽 Eq. 28 

 

where Ecell is the cell voltage (V). The minimum electrical work is determined by Nernst potentials 

but also irreversibilities occur such as activation (ΔEact), polarization (ΔEconc) and ohmic resistance 

(ΔEohm) (Eq. 29): 

 

Ecell = ENernst + ΔEact + ΔEohm + ΔEconc Eq. 29 

 

The Nernst potential and the polarization (activation, ohmic and concentration) are calculated as 

explained in [13], [42] meanwhile the diffusion coefficient is approximated using the kinetic theory 

and Chapman-Enskog theory [43]. The pressure at the outlet is defined as (Eq. 30): 

 

𝑝ca_out = 𝑝ca,in ∗ (1 − 𝑑𝑝ca) ∗ 𝑝𝑎𝑛𝑜𝑢𝑡 = 𝑝an,in ∗ (1 − 𝑑𝑝an) Eq. 30 

where 𝑑𝑝ca and 𝑑𝑝an are the pressure drops at the cathode and at the anode side respectively; 𝑝ca_out 

, 𝑝𝑎𝑛𝑜𝑢𝑡  and 𝑝an,in  are the pressure at the cathode outlet, the anode outlet, and the anode inlet 

respectively. 

1.5.3 SOEC SYSTEM PROPOSED 

SOECs require both electricity and heat to produce hydrogen. In particular, the latter is 

necessary to generate high-temperature steam as a reactant and, on the other hand, as a cooling vector 

for the compressed hydrogen in order to reduce the power for compression. Consequently, SOEC 

system is mainly composed by SOEC stacks and counter-flow heat exchangers. 

Figure 27 represents the proposed system: HEX1 and HEX2 are two heat exchangers that cool 

hydrogen and oxygen, respectively, after they are produced within the SOEC, while preheating water 

to obtain steam at the required working condition. HEX3 uses exhaust gases from SOFC to heat the 

steam up to the SOEC working temperature. The produced hydrogen and oxygen are discharged after 

SOEC stack at 750 °C, while inlet water has a temperature of 25 °C: heat exchanger are used to cool 

products (hydrogen and oxygen) to pre-heat water. Without heat recovery performed by HEX1 and 
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HEX2, HEX3 would exchange a higher thermal power, and it would require a higher exhaust gases 

flow rate to reach operating temperature, thus increasing the heat demand by SOEC. The SOEC 

system proposed is simulated with the tool DNA from DTU ([14], [40]). Table 8 resumes the main 

parameters of the system. 

 

 

Figure 27. SOEC system layout. Water (blue line) is heated by using produced gases (black 

lines, hydrogen and oxygen) and exhaust gases from SOFC (red line), in order to obtain steam at 

operating temperature by means of heat exchangers (HEX1, HEX2 and HEX3). Electricity (yellow 

line) is needed to perform electrolysis in the SOEC stack. 

 Table 8. SOEC system parameters. 

Parameter Value 

Stack nominal electric power 100 kW 

Hydrogen flow (at 90 % of 

nominal electric power) 
2.63 kg/h 

Heat request from SOEC (at 90 % 

of nominal electric power) 
15 kW 

Working temperature 750 °C 

Working pressure 7.01 bar 

Pressure drop 0.05 bar 

 

1.5.4 SOFC/SOEC INTERACTION 

Different industrial sectors have different heat to power ratios: Figure 2 summarizes how the 

ratio varies compared with different cogeneration technologies. Reference [3] proposes these 

technologies: internal combustion engine (ICE), steam turbine, gas turbine, micro turbine and fuel 
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cell. Each technology has different H/P ratio and electrical capacity: steam turbine has the highest 

H/P ratio (10-14.3), while fuel cell features the lowest (0.5-1). Electrical capacity is the highest for 

steam and gas turbines as well (until several hundreds of MW). None of the previous technologies 

achieves a H/P ratio between 2 and 10 even if many industrial sectors have typical H/P consumption 

in that range. If a factory has a H/P on energy demand close to 6, none of the cogeneration 

technologies previously mentioned match the request. Different approaches could be applied, 

depending on the operation strategy, energy cost and other parameters: 

1 Cogeneration system with H/P below 6 (such as ICE or gas turbine): mismatching 

between H/P of energy demand and energy production could be adjusted with a heat 

integration system. This would increase heat production or electricity export to the grid. 

If this solution is adopted, heat integration system (mainly using boiler) is usually 

chosen because heat demand is usually variable and revenues on electricity export to 

national grid could not cover electricity generation costs; 

2 Cogeneration system with H/P over 10 (such as steam turbine): mismatching between 

H/P could be adjusted by increasing heat demand (such as district heating as presented 

in [44]) or dissipating unused heat or importing electricity from grid. 

Integration heating system and (in particular) unnecessary heat dissipation could decrease efficiency 

of energy generation.  The main priority for the industry is not only energy efficiency but also cost 

reduction, that is related to purchase, installation, operative and maintenance costs of the energy 

generation technology chosen. 

RSOC is proposed as innovative cogeneration system for industry because cells can be used 

to produce electricity and heat (operation as SOFC) or to produce hydrogen consuming electricity 

and heat (operation as SOEC). Varying the proportion between SOFC and SOEC it is possible to 

modify H/P ratio of the energy generation. Advantages of a RSOC system are: 

- High versatility on fuels: as previously mentioned ethanol [8]–[10], methanol [8]–[10], 

ammonia [8]–[10], DME [8]–[10], woodchips gasification [11], biomass [12] or 

municipal waste gasification [13] could be used, it requires only to change fuel pre-

reformer. According to [3] only steam turbines have a higher versatility on fuel; 

- SOFC and RSOC systems have high modularity, so the scale of the plant can vary from 

kilowatt to megawatt; 

- Heat is produced using heat recovery from SOFC exhausted gases that have a 

temperature higher than 600 °C, while industrial processes use heat at temperature 

generally lower than 150 °C (Figure 10); 

- Hydrogen is also a product of the RSOC system, it could be re-used as fuel for SOFC 

or for other uses (exported to natural gas grid, storage and distribution for transports 

etc). 

Figure 28 represents the proposed SOFC-SOEC system (RSOC): SOFC consumes fuel to produce 

electricity and heat, SOEC consumes a part of electricity and heat available from SOFC to obtain 

hydrogen and oxygen from water. Unused heat from SOFC can be used to produce steam and/or heat 
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directly for processes. The aim is to vary the heat-to-power ratio of the system (i.e., the ratio between 

heat and electricity generated by the system, H/PRSOC) by varying the proportion between the stacks 

used as SOFC and the ones operating as SOEC, in order to match the energy profiles of the user (a 

paper mill) at supply and demand sides. If only SOFCs are used, the H/P ratio of the system is equal 

to the H/P of the SOFC. Instead, if a combination of SOFCs and SOECs are used, a part of the 

electricity and heat generated by SOFCs is consumed by SOECs to electrolyse water and convert it 

into hydrogen and oxygen. 

 

Figure 28. SOFC-SOEC system proposal 

1.5.5 MATHEMATICAL MODEL 

A mathematical model of the interaction between SOFC and SOEC is proposed in order to 

define how H/P ratio of energy generation varies with different configurations. nRSOC is defined (Eq. 

31) as the ratio between SOEC electricity consumption (PSOEC) and SOFC electricity generation 

(PSOFC): 

 

𝑛𝑅𝑆𝑂𝐶 =
𝑃𝑆𝑂𝐸𝐶
𝑃𝑆𝑂𝐹𝐶

 Eq. 31 

 

HRSOC and PRSOC are the heat and electricity generation of the overall system, respectively. These 

variables are defined as the difference between SOFC generation (subscript SOFC) and SOEC 

consumption (subscript SOEC) in terms of heat (H) (Eq. 32) and electricity (P) (Eq. 33): 

 

𝐻𝑅𝑆𝑂𝐶 = 𝐻𝑆𝑂𝐹𝐶 − 𝐻𝑆𝑂𝐸𝐶 Eq. 32 

 

𝑃𝑅𝑆𝑂𝐶 = 𝑃𝑆𝑂𝐹𝐶 − 𝑃𝑆𝑂𝐸𝐶  Eq. 33 

 

Then nRSOC is related to (H/P)RSOC, (H/P)SOFC and (H/P)SOEC. Firstly, heat-to-power ratio of RSOC 

system is defined (Eq. 34) considering energy production of SOFC and consumption of SOEC (Eq. 

water 

fuel 

Heat 

SOFC 

Electricity 

SOEC 

Hydrogen 
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32 and Eq. 33 respectively). An expression that only uses H/P ratios as variables is obtained to relate 

electricity consumption of SOEC and electricity production of SOFC (Eq. 37). 

 

(
𝐻

𝑃
)𝑅𝑆𝑂𝐶 =

𝐻𝑆𝑂𝐹𝐶 − 𝐻𝑆𝑂𝐸𝐶
𝑃𝑆𝑂𝐹𝐶 − 𝑃𝑆𝑂𝐸𝐶

 Eq. 34 

 

(
𝐻

𝑃
)𝑅𝑆𝑂𝐶 =

(
𝐻
𝑃)𝑆𝑂𝐹𝐶 ∗ 𝑃𝑆𝑂𝐹𝐶 − (

𝐻
𝑃)𝑆𝑂𝐸𝐶 ∗ 𝑃𝑆𝑂𝐸𝐶

𝑃𝑆𝑂𝐹𝐶 − 𝑃𝑆𝑂𝐸𝐶
 Eq. 35 

 

(
𝐻

𝑃
)𝑅𝑆𝑂𝐶 =

(
𝐻
𝑃)𝑆𝑂𝐹𝐶 − (

𝐻
𝑃)𝑆𝑂𝐸𝐶 ∗

𝑃𝑆𝑂𝐸𝐶
𝑃𝑆𝑂𝐹𝐶

1 −
𝑃𝑆𝑂𝐸𝐶
𝑃𝑆𝑂𝐹𝐶

 Eq. 36 

 

(
𝐻

𝑃
)𝑅𝑆𝑂𝐶 =

(
𝐻
𝑃
)𝑆𝑂𝐹𝐶 − (

𝐻
𝑃
)𝑆𝑂𝐸𝐶 ∗ 𝑛𝑅𝑆𝑂𝐶

1 − 𝑛𝑅𝑆𝑂𝐶
 Eq. 37 

 

nRSOC is defined (Eq. 38) directly from (H/P)RSOC, (H/P)SOFC and (H/P)SOEC as: 

 

𝑛𝑅𝑆𝑂𝐶 =
(
𝐻
𝑃)𝑅𝑆𝑂𝐶 − (

𝐻
𝑃)𝑆𝑂𝐹𝐶

(
𝐻
𝑃)𝑅𝑆𝑂𝐶 − (

𝐻
𝑃)𝑆𝑂𝐸𝐶

 Eq. 38 

 

Figure 29 shows how the heat-to-power ratio of RSOC system ((H/P)RSOC) varies with nRSOC. 

SOEC consumes electricity and heat to electrolyse water, and energy is provided by SOFC: the higher 

the SOEC utilisation, the lower the electricity and heat available from SOFC. (H/P)RSOC represents 

the ratio between electricity and heat available from the RSOC system: the higher the fraction of 

stacks operating as SOEC, the higher the (H/P)RSOC. (H/P)RSOC increases when the proportion shifts 

towards SOEC presence, because SOEC consumes proportionally more electricity than heat from 

SOFC. nRSOC is useful to analyse how to match (H/P)SOFC and heat-to-power ratio required by the user 

(H/P)USER: if (H/P)USER is higher than (H/P)SOFC, an increase of SOEC utilisation is needed to increase 

(H/P)RSOC. 
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Figure 29. RSOC system heat to power ratio versus nRSOC 

Given PRSOC, which is known because it is the electricity required by the RSOC system, PSOFC and 

PSOEC can be defined through nRSOC. Considering the previous equations, PSOFC and PSOEC can be 

obtained respectively by Eq. 39 and Eq. 40: 

 

𝑃𝑆𝑂𝐹𝐶 =
1

1 − 𝑛𝑅𝑆𝑂𝐶
∗ 𝑃𝑅𝑆𝑂𝐶  Eq. 39 

 

𝑃𝑆𝑂𝐸𝐶 =
𝑛𝑅𝑆𝑂𝐶

1 − 𝑛𝑅𝑆𝑂𝐶
∗ 𝑃𝑅𝑆𝑂𝐶  Eq. 40 

 

The RSOC number of stacks is directly related to its nominal power and, consequently, to the nominal 

power of both SOFC and SOEC. The parameter PMAX,RSOC is defined as the sum of SOFC electric 

generation and SOEC electric consumption, so the maximum electric power of the RSOC system (Eq. 

41) and, accordingly, the number of stack required can be calculated. 

 

𝑃𝑀𝐴𝑋,𝑅𝑆𝑂𝐶 = 𝑃𝑆𝑂𝐹𝐶 + 𝑃𝑆𝑂𝐸𝐶  Eq. 41 

 

Eq. 42 combines Eq. 39, Eq. 40 and Eq. 41 to obtain PMAX,RSOC (maximum electric power of 

RSOC), by relating nRSOC (ratio between SOEC and SOFC) and PRSOC (electricity production of 

RSOC system). 

 

𝑃𝑀𝐴𝑋,𝑅𝑆𝑂𝐶 =
1 + 𝑛𝑅𝑆𝑂𝐶
1 − 𝑛𝑅𝑆𝑂𝐶

∗ 𝑃𝑅𝑆𝑂𝐶  Eq. 42 
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Eq. 37 and Eq. 42 are useful to size the RSOC system, which is the novel element proposed in 

this study. In particular: 

1. (H/P)RSOC and PRSOC are known due to energy request of the user, while (H/P)SOFC and 

(H/P)SOEC are gathered from technical datasheet and/or simulation. Eq. 37 defines the ratio 

between SOEC and SOFC power (nRSOC) by using these parameters; 

2. Eq. 42 defines the size of the RSOC system (PMAX,RSOC) and, consequently, the number of 

stacks as a function of the ratio between SOEC and SOFC (nRSOC), and electricity generation 

of RSOC system (PRSOC). 

 

For the sake of clarity and a better comprehension of the entire system, each variable used in the 

previous equations is also represented in Table 9, which shows the structure of the novel system. 

 

COMPONENT VARIABLE DESCRIPTION 

RSOC 

HRSOC Heat production of RSOC system 

PRSOC Electricity production of RSOC system 

(H/P)RSOC Heat to power ratio of RSOC system 

nRSOC 
Ratio between electricity consumption of SOEC and 

electricity production of SOFC 

PMAX,RSOC 
Sum of both electric power of SOFC and electric power of 

SOEC 

SOFC 

HSOFC Heat production of SOFC system 

PSOFC Electricity production of SOFC system 

(H/P)SOFC Heat to power ratio of SOFC system 

SOEC 

HSOEC Heat consumption of SOEC system 

PSOEC Electricity consumption of SOEC system  

(H/P)SOEC Heat to power ratio of SOEC system consumption 

Table 9. List of RSOC, SOFC and SOEC variables in order to define the mutual interaction. 

Figure 30 compares H/P of the proposed system varying nRSOC and other cogeneration 

technologies: gas turbine, ICE, micro gas turbine and steam turbine. It is possible to appreciate that 

RSOC can cover H/P range between 2 and 10 in which no cogeneration system is available, even if 

the proposed system in that range mainly consumes fuel to produce hydrogen: nRSOC is higher than 

50%, consequently it works more in SOEC than SOFC mode. 
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Figure 30. H/PRSOC variation on nRSOC compared with H/P of other cogeneration technologies 

(gas turbine, ICE, micro gas turbine, steam generator) (images from [45]–[48]) 

 

1.6 ENHANCEMENT OF ENERGY GENERATION SYSTEM IN INDUSTRIAL FACILITY 

WITH SOFC/RSOC 

1.6.1 INTRODUCTION 

Many countries have already implemented subsidies on energy efficiency in generation and 

utilisation, with the aim of decreasing overall consumption and energy intensity of gross domestic 

product. Many processes in the industrial sector are highly energy intensive, so that energy efficiency 

measures and innovative conversion solutions are deeply investigated for both environmental 

protection [49] and operational costs reduction [50]. Advantages can be evaluated in either purely 

technical (energy saving) or techno-economic (cost reduction) terms. Typical examples are industrial 

applications where high energy flows are treated, like metals and plastic manufacturing [51], or wood 

processing [52]. A number of studies has investigated glass production and the potential for energy 

performance improvement with different integrated processes [53], [54]. Energy analyses on cast iron 

foundries have been developed, proposing system improvements to decrease and control energy 

demand [55]–[57]. 

STEAM 
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The contemporary request of heat and electricity characterizes the pulp and paper industry, 

which thus opens to innovative process integration for energy efficiency improvement [58], [59]. 

Focusing on the final step, i.e. paper production in paper mills, two energy vectors are involved: heat 

to satisfy the need of drying the mid-products, and electrical power to drive the motors. The use of 

CHP units in paper mills is a known strategy, typically implemented with conventional internal 

combustion engines or steam turbines [60], [61]. Decarbonisation strategies have been investigated 

considering the use of renewable biomass or waste from the facility itself as sources, as well as the 

introduction of carbon capture technologies [62], [63]. 

In this study, the re-vamping of the energy generation system of a paper mill by means of 

Reversible Solid Oxide Cells (RSOCs) is proposed. The aim is not only to increase efficiency on 

energy generation, but also to create a polygeneration system where hydrogen is produced. The study 

focuses on a real industrial facility, based in Italy, with a production capacity of 60000 t/y of paper. 

As the main novelty of this study, the adoption of a solid oxide fuel cell / solid oxide electrolyser cell 

(SOFC/SOEC) system is proposed, substituting of part of the existing set of cogenerators. This 

introduces an additional hydrogen production as a result of the need to balance the mismatch of heat-

to-power ratios between energy production and demand. As a matter of fact, this enlarges the plant 

activity beyond paper production, exploiting the inherent capability of managing high-temperature 

flows and bringing it into the field of multi-energy integrated systems, which are expected to become 

more and more relevant in the clean energy future. 

In the field of multi-energy systems, hydrogen has been studied lately as an alternative for both 

power generation and storage. Canan et al.[34] have studied hydrogen production from renewable 

and non-renewable sources to assess environmental impact, production costs, energy and exergy 

efficiency of the different methods. Astiaso Garcia et al.[35] have surveyed and analysed potential of 

hydrogen as energy storage systems in EU countries to reduce energy fluctuations and possible 

negative effects due to an increase of renewable sources share in power generation. Guandalini et 

al.[36] have investigated the use of Power-to-Gas systems coupled with wind farms to improve 

dispatchability. Castellani et al. [37] have studied the use of hydrogen produced with renewable 

energy for flue gas treatment to produce methane and ammonia, in order to reduce carbon footprint 

of the process. The main novelty of the multi-energy integrated system proposed in this thesis is that 

can be used to revamp or to substitute cogeneration systems in industrial facility. Thanks to its 

flexibility on H/P ratio on energy generation, it decreases the mismatching between energy production 

and demand. Other cogeneration technologies such as ICE, gas turbine or steam turbine have a lower 

flexibility because H/P ratio can vary only into a limited range (Figure 30). On the other hand, 

hydrogen is a sub product: if it is adopted on large scale, the proposed system would introduce a de-

centralised hydrogen production scenario, that could be a first stage towards its introduction as energy 

vector. 
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1.6.2 OVERVIEW OF THE INDUSTRIAL FACILITY AND ACTUAL ENERGY GENERATION SYSTEM 

The industrial facility under consideration is a paper mill located in the North-East of Italy. It 

produces paper with a weight between 40 g/m2 and 500 g/m2, and it is equipped with two paper 

production lines with an annual capacity of 60000 t/year. Figure 31 represents the scheme of one 

production line within the paper mill, highlighting the different processes involved. First, pulp is 

mixed with water and raw materials (e.g., kaolinite, a type of clay) in the headbox. Then, the obtained 

pre-product is sent to the wet-press section where rollers press it to start removing water from the 

pulp. Next, in the drying section, heated rollers and felts further decrease water content and thickness 

of the pre-product down to production specifications. Each production line consumes electricity for 

motors (each roller has an independent one) and vacuum pumps (felts uses vacuum instead of heat 

for drying), while heat is required to heat up rollers (steam is generally used). In some cases, natural 

gas-fired dryers are used within the drying section. 

 

  

Figure 31. Schematic representation of a paper production line. 

 

After the economic crisis of 2008, the drop in paper request reduced the production rate 

significantly. Due to the high start-up time (typically half to one day), a paper production line must 

run continuously, with the workers active on a three-shift basis. In order to match the lower paper 

request to the plant capacity, the production cycles have been organised in series of some full-load 

days followed by days off, e.g. each production line is run continuously for 6 days and then it is 

switched off for 3 days. Figure 32 represents the current organisation of the production. In Case 1, 

only line 1 works; in Case 2, only line 2 works; in Case 1+2, both lines 1 and 2 are in operation. One 

of the consequences of this production plan is that the total operating time is uniformly divided into 

three situations: for one third of the time all the paper production lines work, for another one third 

only Line 1 works, and for the last one third only Line 2 is in operation. As electricity and steam 

consumptions are generally variable with time, in this work a representative average value of 

electricity and heat consumption is considered for each case, extracted from real data. 
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Figure 32. Production organisation of the paper mill considered. 

The considerable amounts of electricity and steam required by the industrial process suggests 

the adoption of a cogeneration system. In the current configuration, the industrial facility has two 

cogeneration units. The oldest one is based on a natural gas-fired steam generator (installed in the 

‘70s to substitute the previous coal-fired unit), coupled to two steam turbines (still the original ones 

first installed in the ‘40s). The newest cogeneration unit (installed in 2013) features an internal 

combustion engine (ICE) with heat recovery. Figure 33 represents the overall energy system: both 

the ICE and the steam turbines discharge steam at the same thermodynamic conditions (235 °C and 

280 kPa, as required by the process), and generate electricity. Steam is used in the paper production 

process mainly to heat up rollers, and it returns to the ICE and the steam generator as condensed water 

at a temperature of 80 °C and atmospheric pressure. Both the steam generator and the ICE use natural 

gas as fuel. 

 

Figure 33. Overview of the cogeneration system with the main equipment and energy flows. 

Grey flows are natural gas, blue flows are water, red flows are steam, and yellow flows are 

electricity. 

An analysis is performed in order to revamp the current energy system (in particular, the oldest 

component, that is the steam turbines) with fuel cells that are expected to have higher efficiency. In 

the next sections both steam turbine and ICE cogenerator are described. 

 

1.6.3 STEAM TURBINE COGENERATION SYSTEM 

The steam turbine cogeneration system is composed by a steam generator, two steam turbines, 

and a thermal user (the paper drying process) that also acts as condenser (Figure 33). The steam 

generator is fired by natural gas and releases steam at 420 °C and 35 bar (3500 kPa). The steam 

turbines expand the fluid, thus generating power while decreasing the pressure from 35 bar to 2.8 bar, 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

Line 1

Line 2

Case Case 1 Case 1+2 Case 1+2 Case 2 Case 2 Case 2 Case 1+2 Case 1 Case 1
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which is the pressure required by the paper dryer cylinders. During the expansion process, the 

temperature decreases from 420 °C to 235 °C. The requested steam mass flow rate varies according 

to the number of paper machines operating. Steam turbines operation depends on the steam flow rate 

required for the paper production process: turbine 1 is used when steam generation is between 5 ton/h 

and 21 ton/h, turbine 2 is used when steam generation is higher. Both steam turbines are more than 

50 years old and, even with proper annual maintenance, low performances are expected. In the present 

work, the steam generator and the turbines are modelled by means of characteristic curves that link 

fuel demand, electrical generation, and steam mass flow rate. The curves are obtained via 

mathematical regression from operational data collected in recent years. The information provided 

by the company about the turbines includes regression curves, so these are used for the analysis 

directly as given. For the steam generator performance, the curve is obtained from the provided 

measured values via numerical regression. Figure 34 represents data and curve of natural gas 

consumption as a function of generated steam mass flow rate (ton/h). The natural gas flow rate (m3/h) 

is converted into energy demand (MW) using a reference lower heating value (LHV) of natural gas 

equal to 9.91 kWh/m3. Equations in Table 10 describe each component (Eq. 43 for steam generator, 

Eq. 44 for steam turbine 1 and Eq. 45 steam turbine 2) with a suitable expression, where �̇�𝑠𝑡𝑒𝑎𝑚 is 

the mass flow rate of the steam (ton/h), 𝐹𝑢𝑒𝑙𝑐𝑜𝑛𝑠,𝑆𝑇  is the natural gas consumption of the steam 

generator (MW), and 𝑃𝑆𝑇 is the electric power generated by the turbine (kW). 

 

 

Figure 34. Data sampling of steam generator and regression. 

Component Equation Condition  

Steam 

generator 

𝐹𝑢𝑒𝑙𝑐𝑜𝑛𝑠,𝑆𝑇 =  0.0053 ∗ �̇�𝑠𝑡𝑒𝑎𝑚
2 +  0.3842

∗ �̇�𝑠𝑡𝑒𝑎𝑚  +  6.5287  
5 ton/h < �̇�𝑠𝑡𝑒𝑎𝑚< 35 

ton/h 
Eq. 43 

Turbine 1 𝑃𝑆𝑇 = 0.0007 ∗ �̇�𝑠𝑡𝑒𝑎𝑚 + 6.3908 
5 ton/h < �̇�𝑠𝑡𝑒𝑎𝑚  < 

21 ton/h 
Eq. 44 

y = 0.0053x2 + 0.3842x + 6.5287

R² = 0.9967
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Component Equation Condition  

Turbine 2 𝑃𝑆𝑇 = 5.3216𝑒0.0007∗𝑚𝑠𝑡𝑒𝑎𝑚   �̇�𝑠𝑡𝑒𝑎𝑚 ≥ 21 ton/h Eq. 45 

Table 10. Mathematic description of each component of the steam turbine cogenerator. 

 

 

Figure 35. Steam generator, photo of natural gas burners 

 

 

Figure 36. Photo of the existing steam turbines (turbine 1 in front, turbine 2 behind). 

1.6.4 INTERNAL COMBUSTION ENGINE COGENERATOR 

 

In the beginning of 2013, the company decided to increase its energy generation capacity, both 

electricity and heat, adding an ICE fuelled by natural gas with a nominal electric power of 4.3 MW. 

Heat recovery from exhaust gases allows producing steam at the same pressure and temperature of 
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the turbines discharged steam (235 °C, 3.5 bar). It is possible also to recover heat from the engine 

cooling water and the intercooler, but this heat is available at low temperature, so it cannot be used 

for steam generation purposes. In some very limited periods of the year (typically during winter), 

such low-temperature heat is used for space heating and/or for auxiliaries, anyway for most of the 

time it is dissipated using dry coolers. Table 11 summarises main ICE nominal parameters. The 

performance is simulated under different operating conditions based on data taken from its technical 

datasheet. ICE could work at partial load down to 40 % of the nominal electric power. 

 

Parameter Value 

Nominal electric power 4.3 MW 

Nominal fuel consumption 10.07 MW 

Steam outlet temperature 235 °C 

Steam outlet pressure 3.5 bar (350 kPa) 

Nominal electric efficiency 42.7% 

Nominal thermal efficiency 44.1% 

Table 11. ICE nominal parameters. 

1.6.5 POLYGENERATION SYSTEM PROPOSED 

 

Reference [2] suggests that paper mills have a H/P ratio of 5. On the other hand, steam turbines 

have a H/P between 10 and 14, gas turbines between 0.9-1.6, and fuel cells lower than 1 ([3], Table 

1). Considering the facility described previously, steam turbines are the units under discussion for 

modification or substitution in order to improve the energy performance, as they feature very low 

efficiency. The proposal is to adopts RSOC system both in SOFC and SOEC mode: reversible fuel 

cells are proposed because SOFCs are used as alternative cogeneration units, meanwhile SOECs 

recover excess power generation when the heat-to-power ratio impose to over-generate electricity to 

satisfy the heat demand. This is likely to occur not rarely, due to a SOFC heat-to-power ratio very 

different from the steam turbine one. The rationale of the proposed concept is the high efficiency of 

the SOFC systems as well as the already proven capability of the facility to manage high-temperature 

flows. Moreover, this change allows the paper mill to enlarge its sector of activity, entering into the 

field of multi-energy systems. Indeed, the expected net hydrogen production could be exploited 

directly as fuel, thus reducing the natural gas consumption (used as fuel for steam generator, ICE and 

RSOC working in SOFC mode), or be addressed to an external market, e.g. hydrogen for mobility. 

Figure 37 represents the novel system proposed with the scheme of the energy flows. Steam turbines, 

ICE and SOFC produce both electricity and heat for steam production, SOEC consumes a part of 

SOFC electricity and heat to both produce hydrogen and to match H/P ratio between energy 

generation and consumption. 
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Figure 37. Overview of the novel system. Grey flow is natural gas, blue flow is water, red 

flow is steam, yellow lines are electricity, and black lines are hydrogen. Inlet water of SOEC is an 

independent circuit with respect to water for steam production 

In the paper mill, Line 1 and Line 2 have different energy demands. The SOFC-SOEC system 

proposed here features some SOFCs that only operate for combined heat and power generation, 

whereas other stacks are reversible solid oxide cell. RSOCs are proposed to efficiently manage energy 

generation: they can be used to produce electricity and steam when both production lines are in 

operation, whereas they can produce hydrogen (working as SOEC) when only one line works and the 

energy request is lower. The focus is on performance and efficiency improvements at system level, 

so the analysis mostly looks at overall values. The term ‘RSOC’ refers here to the difference between 

SOFC generation and SOEC consumption, i.e. the net effect of the set of the cells, as seen from the 

industrial facility. Table 12 resumes RSOC parameters on SOEC and SOFC mode. 

 

RSOC Mode Parameter Value 

SOEC 

Stack nominal electric power 100 kW 

Hydrogen flow (at 90 % of nominal electric power) 2.63 kg/h 

Heat request from SOEC (at 90 % of nominal electric power) 15 kW 

Working temperature 750 °C 

Working pressure 7.01 bar 

SOFC 

Stack nominal electric power 100 kW 

Electric efficiency (at 90 % of nominal electric power) 52.7 % 

H/P ratio (at 90% of nominal electric power) 0.842 
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RSOC Mode Parameter Value 

Exhaust gases temperature 1330 °C 

Table 12. RSOC system parameters. 

1.6.6 OPERATION OF THE NOVEL SYSTEM 

 

As previously mentioned, the novel energy generation system proposed is based on three 

different components: steam turbine, ICE and RSOC. The main goals of the proposed revamping of 

the cogeneration plant are: 

- to increase the efficiency of the energy generation system; 

- to cast off the old and low-efficiency steam turbines; 

- to produce hydrogen by SOECs during periods of mismatched heat-to-power ratio between 

the user request ((H/P)USER) and the possible SOFC-only generation ((H/P)SOFC), achieving 

the equality by varying the ratio between RSOC working as SOFC and RSOC working as 

SOEC. 

Paper mill could work also in three different mode: only line 1 (case 1), only line 2 (case 2) and both 

lines (case 1+2). Each case has different energy demands of electricity and heat, consequently 

different configurations of the novel system are required. In order to size each component, the case 

with the highest energy load (Case 1+2) is considered. Some constraints are considered: 

A. the current generation system will be upgraded gradually, and not entirely dismissed. SOFCs 

are thought to be adopted to decrease the amount of electricity produced by the oldest 

component, so with low efficiency, of the system (steam turbine); 

B. the existing ICE has better performance than the steam turbines, and it currently works with 

a base-load strategy. Steam turbines, instead, work as an additional system to cover heat 

demand. A similar strategy is proposed for the novel system: ICE will work as base load, 

while SOFCs, and possibly one of the two steam turbines, will work as additional generation 

system. 

The following assumptions are also considered: 

- RSOC is used only in SOFC mode due to high electricity consumption; 

- only Turbine 1 is used in order to dismiss the highest-power one (Turbine 2), constraint A; 

- ICE, steam turbine, and RSOC cover heat and electricity consumption without any integration 

from grid; 

- ICE electricity production is maximised (constraint B). 

A system of equations (Eq. 46) describes energy flows and interactions between steam turbine, ICE 

and RSOC. Electricity (PUSER) and heat (HUSER) demands from the user are covered by steam turbines 

cogeneration system (respectively PST and HST), ICE (PICE and HICE), and the part of RSOC working 

in SOFC-only mode (PSOFC and HSOFC). Heat-to-power ratio of each component of the system (steam 

turbine, ICE and SOFC) is defined as constraint, imposing the lower power limits of ICE, steam 

turbine and SOFC. The steam flow rate varies between 5 ton/h and 21 ton/h, as mentioned in Table 

10. Among the solutions of the system, one is selected by solving as an optimisation problem: 

maximise electricity production of ICE (PICE) (constraint B). 
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𝑚𝑎 𝑥(𝑃𝐼𝐶𝐸) 𝑠. 𝑡.

{
 
 
 
 
 

 
 
 
 
 
𝑃𝐼𝐶𝐸 + 𝑃𝑆𝑇 + 𝑃𝑆𝑂𝐹𝐶 = 𝑃𝑈𝑆𝐸𝑅
𝐻𝐼𝐶𝐸 + 𝐻𝑆𝑇 + 𝐻𝑆𝑂𝐹𝐶 = 𝐻𝑈𝑆𝐸𝑅
𝐻𝐼𝐶𝐸 − 𝑃𝐼𝐶𝐸 ∗ 𝑓𝐼𝐶𝐸,𝐻

𝑃

= 0

𝐻𝑆𝑇 − 𝑃𝑆𝑇 ∗ 𝑓𝑆𝑇,𝐻
𝑃

= 0

𝐻𝑆𝑂𝐹𝐶 − 𝑃𝑆𝑂𝐹𝐶 ∗ 𝑓𝑆𝑂𝐹𝐶,𝐻
𝑃

= 0

5  <  �̇�𝑠𝑡𝑒𝑎𝑚   <  21 
𝑃𝐼𝐶𝐸 > 0 
𝑃𝑆𝑇 > 0
𝑃𝑆𝑂𝐹𝐶 > 0

  Eq. 46 

 

As previously mentioned, Case 1+2 has the highest energy load because both Line 1 and Line 

2 work simultaneously. Since this is the scenario with the highest energy load, it is assumed that PSOFC 

proposed as solution of this system is, also, the maximum electric power of the RSOC system installed 

(PRSOC installed). In other cases, RSOC system can work partly in SOFC mode, partly in SOEC mode. 

A constraint is added: the sum of electric power of the cells working as SOFC and as SOEC must be 

lower or equal than PRSOC installed. 

A new system of equations (Eq. 47) describes the novel system when Line 1 or Line 2 works 

separately (respectively Case 1 and Case 2). In these cases, less energy (both electricity and heat) is 

required, so a part of RSOCs is used as SOECs to produce hydrogen. The energy request of SOEC 

(PSOEC and HSOEC for electricity and heat respectively), the equation of heat-to-power ratio of SOEC, 

and constraint on electric power of SOFC and SOEC (RSOC system) are considered in Eq. 47. 

Similarly to Eq. 46, maximisation of ICE electricity production (PICE) is imposed. 

 

𝑚𝑎 𝑥(𝑃𝐼𝐶𝐸) 𝑠. 𝑡.

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑃𝐼𝐶𝐸 + 𝑃𝑆𝑇 + 𝑃𝑆𝑂𝐹𝐶 = 𝑃𝑈𝑆𝐸𝑅 + 𝑃𝑆𝑂𝐸𝐶
𝐻𝐼𝐶𝐸 + 𝐻𝑆𝑇 + 𝐻𝑆𝑂𝐹𝐶 = 𝐻𝑈𝑆𝐸𝑅 + 𝐻𝑆𝑂𝐸𝐶

𝐻𝐼𝐶𝐸 − 𝑃𝐼𝐶𝐸 ∗ 𝑓𝐼𝐶𝐸,𝐻
𝑃

= 0

𝐻𝑆𝑇 − 𝑃𝑆𝑇 ∗ 𝑓𝑆𝑇,𝐻
𝑃

= 0

𝐻𝑆𝑂𝐹𝐶 − 𝑃𝑆𝑂𝐹𝐶 ∗ 𝑓𝑆𝑂𝐹𝐶,𝐻
𝑃

= 0

𝐻𝑆𝑂𝐸𝐶 − 𝑃𝑆𝑂𝐸𝐶 ∗ 𝑓𝑆𝑂𝐸𝐶,𝐻
𝑃

= 0

5  <  �̇�𝑠𝑡𝑒𝑎𝑚   <  21 
𝑃𝐼𝐶𝐸 > 0 
𝑃𝑆𝑇 > 0

𝑃𝑆𝑂𝐹𝐶 +−𝑃𝑆𝑂𝐸𝐶 ≤ 𝑃𝑅𝑆𝑂𝐶 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑  

   Eq. 47 

 

Results of Eq. 46 and Eq. 47 of the novel system are reported in Table 13. It is possible to cast 

off turbine 2 (the highest power one) because the availability of steam from SOFC decreases the 

steam flow rate to be processed by steam turbine. Adoption of RSOC system allows matching H/P 

ratio of energy production and H/P of energy demand. RSOC system produces hydrogen when only 
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one line operates. Simulations show that electricity consumption from the grid is avoided, making the 

system grid independent. 

 

CASES 

CURRENT SYSTEM INNOVATIVE SYSTEM 

ICE (% 

nominal 

load) 

Operating 

turbine 

Turbine 

steam flow 

rate 

ICE (% 

nominal 

load) 

Turbine 

steam flow 

rate 

SOFC  SOEC  

CASE 1 100% Turbine 1 12.8 ton/h 60% 11.38 ton/h 2.448 MW 576 kW 

CASE 2 100% Turbine 1 8.8 ton/h 100% 6.04 ton/h 2.595 MW 551 kW 

CASE 1 + 2 100% Turbine 2 24.8 ton/h 100% 20.68 ton/h 3.259 MW - 

Table 13. Working parameter of ICE (% partial load), steam turbine (steam flow), SOFC and 

SOEC electric power. 

1.6.7 PRIMARY ENERGY SAVING 

 

This section presents a thermodynamic analysis comparing the current and the novel systems. 

The analysis calculates energy flows and estimates primary energy (PE) consumption for each case. 

Primary energy consumption is proposed as a benchmark: for each case (Case 1, Case 2 and Case 

1+2), primary energy saving (PES) between the current and the novel systems is determined (Eq. 48). 

Primary energy of the existing system (PEcurrent sys.) is a function of natural gas consumption by steam 

turbines (Fuelcons,ST) and by ICE (Fuelcons,ICE), and electricity from grid (Egrid). Primary energy of the 

novel system (PEnovel sys.) is a function of natural gas consumption by steam turbine (Fuelcons,ST), by 

ICE (Fuelcons,ICE), and by SOFC (Fuelcons,SOFC). Primary energy of natural gas is expressed by LHV 

(49.2 MJ/kg), whereas electricity consumptions are converted to primary energy by no-renewable 

primary factor fp,nren=1.95 according to Italian standard DM 26/06/2015 (corresponding to an 

efficiency ηgrid equal to 0.513). If hydrogen is produced, its primary energy is expressed by LHV (120 

MJ/kg), and it is subtracted from the energy consumption of the energy system because it is 

considered to be used as fuel within the system. 

 

𝑃𝐸𝑆 = 1 −
𝑃𝐸𝑛𝑜𝑣𝑒𝑙 𝑠𝑦𝑠.

𝑃𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑦𝑠.
 

 

 

 

𝑃𝐸𝑆 = 1 −
𝐹𝑢𝑒𝑙𝑐𝑜𝑛𝑠,𝑆𝑇 + 𝐹𝑢𝑒𝑙𝑐𝑜𝑛𝑠,𝐼𝐶𝐸 + 𝐹𝑢𝑒𝑙𝑐𝑜𝑛𝑠,𝑆𝑂𝐹𝐶 − 𝐹𝑢𝑒𝑙𝐻2

𝐹𝑢𝑒𝑙𝑐𝑜𝑛𝑠,𝑆𝑇 + 𝐹𝑢𝑒𝑙𝑐𝑜𝑛𝑠,𝐼𝐶𝐸 +
𝐸𝑔𝑟𝑖𝑑
𝜂𝑔𝑟𝑖𝑑

 
Eq. 48 

 

Calculations show that the novel system presents a primary energy saving in all cases. Table 14 

summarizes the results: Case 1 and Case 2 have lower PES, while hydrogen is produced. Instead, 
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Case 1+2 does not have hydrogen production (RSOC is used only in SOFC mode due to the higher 

energy request), and it has the highest efficiency. In fact, SOFC and PES (considering also Table 13) 

are related: the higher SOFC nominal power, the higher PES. 

 

CASE HYDROGEN PRODUCTION PES 

Case 1 16.857 kg/h 2.7% 

Case 2 16.137 kg/h 2.3% 

Case 1+2 - 6.5% 

Table 14. Primary energy saving values for each analysed case. 

1.6.8 HYDROGEN GENERATION PERFORMANCE 

 

Results of section 1.6.7 demonstrates that primary energy savings can occur with respect to 

current system, whereas the complexity of the novel system with hydrogen production is increased. 

In this section, focusing on hydrogen only, an estimation of the primary energy saving obtained with 

the production of hydrogen within the novel system with respect to a more established alternative that 

uses PEM electrolysers (PEMEC) is proposed. 

In general, SOEC systems have higher efficiency on hydrogen production compared to other 

technologies (e.g., PEM electrolysis), thanks to the thermodynamically more favourable operating 

conditions. However, they require heat at high temperature, which might not be easily available.  

In the paper mill application, when the industrial facility operates at partial load (i.e., only one paper 

production line works) the energy generation system operation also changes: a part of the RSOC units 

works as SOFC, and a part works as SOEC, thus determining a net hydrogen output. Looking at 

Figure 38, SOEC uses energy (both electricity and heat) generated only by some of the units in the 

RSOC system that work as SOFC. SOEC requires heat at high temperature (750 °C, Table 8) which 

SOFC could provide by means of heat recovery while generating electricity. As SOEC has a 

proportionally lower heat consumption than electricity compared to the H/P ratio of SOFC generation 

(Table 8), a part of the SOFC heat generation (HSOFC) is used for SOEC (HSOEC), and a part is used to 

produce steam (HSOFC-HSOEC). Figure 38 details the energy flows for the hydrogen-generating section 

of the SOFC-SOEC system. 

 



 

51 

 

 

Figure 38. Section of RSOC system used to produce hydrogen. Electricity required by SOEC 

is provided by SOFC, with no excess (PSOFC=PSOEC); meanwhile a part of the heat (HSOFC-HSOEC) 

produces steam for industrial needs. 

 

Eq. 49 describes primary energy saving on hydrogen generation (PESH2 gen). The primary 

energy consumption by the novel system (PEH2 novel sys) corresponds to the natural gas consumed by 

the SOFC when working to produce energy for SOEC (Fuelcons,SOFC, H2 gen). The traditional system 

consumes primary energy (PEH2 trad sys) to produce hydrogen by a PEM electrolysis cell, considering 

that the electricity consumed (EPEMEC) is taken from the grid (ηgrid, as previous mentioned, is fixed at 

0.513). Efficiency on hydrogen production by the PEM electrolyser is fixed at 48 kWhe/kgH2 as 

proposed in reference [38] for 2020. Finally, to consistently compare the two systems considering the 

same total output, it is supposed that the traditional system uses a natural gas boiler (efficiency ηboiler 

equal to 0.9) to generate the heat for industrial uses (i.e., the thermal power that is not consumed by 

SOEC in the novel system, represented by the variable (HSOFC-HSOEC) in Figure 38). 

 

𝑃𝐸𝑆𝐻2 𝑔𝑒𝑛 = 1 −
𝑃𝐸𝐻2 𝑛𝑜𝑣𝑒𝑙 𝑠𝑦𝑠.

𝑃𝐸𝐻2 𝑡𝑟𝑎𝑑 𝑠𝑦𝑠.
= 1 −

𝐹𝑢𝑒𝑙𝑐𝑜𝑛𝑠,𝑆𝑂𝐹𝐶 𝐻2 𝑔𝑒𝑛
𝐸𝑃𝐸𝑀𝐸𝐶
𝜂𝑔𝑟𝑖𝑑

+
𝐻𝑆𝑂𝐹𝐶 − 𝐻𝑆𝑂𝐸𝐶

𝜂𝑏𝑜𝑖𝑙𝑒𝑟

 
Eq. 49 

 

The comparison only analyses case 1 and case 2 among the paper mill operating configurations, as 

partial operation of the paper production lines is a necessary condition for net hydrogen production 

to occur. Eq. 49 supplies the primary energy savings, which are reported in Table 15. In Case 1 and 

Case 2, values of PESH2 gen show around 45 % reduction of primary energy consumption with the use 

of the integrated SOFC-SOEC system. Case 1+2, instead, has no hydrogen production, because 

RSOC is used only in SOFC mode. 

 

CASE H2 PROD Fuel cons., SOFC EPEMEC HSOFC-HSOEC PES H2 gen 

Case 1 16.857 kg/h 1.09 MW 1.86 MW 0.39 MW 45.6% 

Case 2 16.137 kg/h 1.05 MW 1.78 MW 0.36 MW 45.3% 
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CASE H2 PROD Fuel cons., SOFC EPEMEC HSOFC-HSOEC PES H2 gen 

Case 1+2 - - - - - 

Table 15. Primary energy saving on hydrogen generation 

1.6.9 HYDROGEN COST 

 

The aim of the system revamping is not only to save primary energy for the industrial heat and 

power consumption, but also to introduce a hydrogen production that could be profitable at a 

reasonable cost. To evaluate the economics of the hydrogen production in the novel system, the RSOC 

integrated solution is compared to a simpler alternative based on PEMEC. It is considered, also, that 

when a RSOC system is used, products are both hydrogen and heat for industrial use (Figure 38). 

Hence, the PEMEC system must be coupled to a steam generator, which is assumed to be a natural 

gas-fired boiler with efficiency equal to 0.90, to offer the same output. The analysis assumes to feed 

the PEMEC with grid electricity. 

The cost analysis first calculates the equivalent annual cost (EAC), then divides it by annual 

hydrogen production to obtain the fuel cost. EAC (Eq. 50) depends on Net Present Value (NPV) and 

Annuity factor (At,i): 

 

𝐸𝐴𝐶 =
𝑁𝑃𝑉

𝐴𝑡,𝑖
 Eq. 50 

 

The NPV here considered includes investment costs (purchase costs of the components), annual 

energy costs, and annual maintenance costs (considering inflation rate). Purchase and maintenance 

costs of RSOC and PEMEC are estimated according to [38] referring to 2020 scenario. RSOC is still 

a developing technology, so the cost is a forecast and it is likely subject to variation. A sensitivity 

analysis on the RSOC purchase cost is performed in order to take into account this uncertainty, 

comprising a range between –10 % and +30 % of the proposed cost. It is considered, also, that the 

RSOC system integrated in the paper mill produces hydrogen only during 2/3 of the total time, while 

for 1/3 its components are used in SOFC-only mode (Table 13). Therefore, investment cost is 

proportionally allocated to the output, and only 2/3 of it affect the hydrogen economics. Variable cost 

for energy input in terms of electricity and gas are given by [64] and [65], respectively. Moreover, 

each of them has an annual increasing index, calculated as the average cost variation over the last 4 

years. As previously mentioned, heat is available and used to produce steam in the RSOC system, 

while the PEMEC system uses a natural gas-fired boiler to generate the steam: in this case, only 

natural gas consumption is considered. Annuity factor is defined by the expected lifetime of the 

system (assumed equal to 10 years) and by an interest rate of 4 %.  

 

PARAMETER VALUE 

Purchase cost RSOC 2 000 €/kW 
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PARAMETER VALUE 

Purchase cost PEM 1 000 €/kW 

Maintenance cost RSOC/PEM 5 % 

Natural gas cost 0.0237 €/kWh 

Natural gas increasing index -0.031 % 

Electricity cost 0.1436 €/kWh 

Electricity increasing index -0.059 % 

Expected lifetime RSOC/PEM 10 year 

Interest rate 4 % 

Inflation rate 2 % 

Table 16. Economic parameter of the analysis 

 

Figure 39 represents the results in terms of hydrogen cost as a function of the variation of RSOC 

purchase cost with respect to the forecasted value. In the whole range considered, the RSOC 

system has a lower cost of hydrogen production than the PEMEC system. Hydrogen cost varies 

between 6 €/kg and 8 €/kg, while it is equal to 10 €/kg with a PEMEC. This reflects the high 

efficiency of RSOC in both SOEC and SOFC operation, and the availability of heat from the 

RSOC system energy balances that is used to generate steam for the industrial facility. On the 

opposite, the PEMEC system has a separate unit for steam generation, thus excluding any synergy. 

Moreover, the lower electricity-to-hydrogen efficiency is affected by the high price of electricity 

compared to natural gas. 

 

 

Figure 39. Economic analysis of hydrogen generation cost. 
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1.6.10 CONCLUSIONS 

An innovative energy system based on RSOC for combined heat and power generation has been 

studied. It is analysed its application to an industrial facility (paper mill) to increase energy efficiency, 

while adding new business stream in the hydrogen field. The main component of the retrofit is the 

Reversible Solid Oxide Fuel Cell (RSOC), which can be used alternatively either as SOFC (to 

generate heat and electricity) or as SOEC (to produce hydrogen). The ratio between SOFC and SOEC 

varies with the variation of electricity and heat consumption in order to match the H/P ratios at supply 

and demand side. 

The current system is composed by two steam turbines and an ICE, and it allows electricity 

withdrawn from the power grid when needed. Operational data of the system has been used to model 

the existing components and size the units of the innovative system. The introduction of RSOCs 

makes it possible to dismiss one of the low-efficient steam turbines, thus increasing the efficiency on 

energy generation. Simulations show that it is possible to achieve a primary energy saving up to 6 %: 

the higher the SOFC power, the higher the achieved PES. Hydrogen is produced at a rate of 16 kg/h, 

but it occurs exclusively when only one paper production line is in operation. Furthermore, simulation 

results highlight that the RSOC system features a primary energy saving on hydrogen production in 

the order of 45 % with respect to a traditional system based on PEM electrolysis fed with grid 

electricity. Economic analysis has investigated hydrogen generation cost in the proposed RSOC 

system, comparing it to the production via PEM electrolysers. In the whole range of variation of the 

investment cost (-10 % to +30% of the value proposed in literature), the RSOC integrated system has 

lower cost for hydrogen generation. 
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2 BIG DATA FOR ENERGY EFFICIENCY 

2.1 BIG DATA – INTRODUCTION 

2.1.1 INTRODUCTION TO BIG DATA AND MACHINE LEARNING 

In the recent years, terms as “big data”, “data analytics”, “machine learning” have become more 

and more common, and Information Technology (IT) has increased its importance due to many 

reasons. As computational and memory costs are decreasing slightly, computational power is 

increasing with very high rates. As a matter of fact, the amount of data available for analysis are 

increasing enormously, meanwhile their cost is decreasing. According to Mc Kinsey, the era of the 

so-called “big data” has arrived [66]. “Big data” can be briefly described as 4V: Volume, Velocity, 

Voracity and Value [67]. The first V, Volume, refers to the amount of data available: they are not just 

some sample of experiments, but GB or TB of data collected and stored. Velocity refers to the 

frequency of data acquisition, updating and processing: it can be lower than 10 minutes because data 

needs to be processed and analysed just after they are collected. Variety refers to the different sources 

and structures data can be collected from, for example measurement sensors, weather data and social 

media. Value means that data and (in particular) its analytics increase their value. Reference [68] 

analyses why big data can impact also on the energy sector: as sensors increase the amount of data 

available, wireless transmission, network communication and cloud computing technologies increase 

the transmission and processing velocity. More recently, available sources (also of unstructured 

energy data) have increased too: not only weather and social media data, but also grid equipment, 

asset management data (for example generator, transformer etc), smart meter, economic data and 

Geographic Information System (GIS) are available (what previously was defined as variety). 

Not only big data, but also machine learning methods can be used in the energy sector. Machine 

learning was defined as “the field of study that gives computers the ability to learn without being 

explicitly programmed” (Arthur Samuel - 1959) or similarly “A computer program is said to learn 

from experience E with respect to some class of tasks T and performance P, if its performance at 

tasks in T, as measured by P, improves with experience E” (Tom Mitchell - 1997). These methods 

can directly learn the task to do from dataset even if the process is unknown and/or it is impossible 

to be described with equations. Different methods have already been defined and are available ([69]); 

some of them, that are strictly related to energy, are briefly summarized in the next paragraphs. 

 

2.1.2 CLUSTERING AND KNN 

Clustering methods such as k-means are used to divide dataset into homogeneous groups. At 

least one distance function must be defined to calculate the distance between each datum of the 

dataset. The main purpose of this method is the classification task. It is labelled as unsupervised 

method because it learns on its own how to classify data. Figure 40, Figure 41 and Table 17 represent 

an example [70] of clustering applied to Iris dataset. Iris dataset contains 50 sampling data (sepal 
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width and length, petal width and length) of 3 different species of Iris, Setosa, Versicolor and 

Virginica. Data are classified using k-means algorithm by variables sepal width and length, petal 

width and length: the algorithm divides data into homogeneous groups using a distance function (for 

example Euclidean distance) calculated on the values of these variables. Each group (cluster) 

aggregates samplings with the lowest distance between each other. If three clusters are chosen, it is 

expected that k-means divides sampling data into the three species previously cited. It is possible to 

appreciate that clustering allows to correctly classify mostly of the dataset with the correct species 

(144 on 150 of total observations); 

 

 

Figure 40. Iris dataset plotted over sepal width and sepal length [70] 
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Figure 41. Iris dataset plotted over petal width and petal length [70] 

  Dataset 

  Setosa Versicolor Virginica 

C
lu

st
er

in
g

 Setosa 50   

Versicolor  48 4 

Virginica  2 46 

Table 17. Iris dataset classification [70] 

k-Nearest Neighbour (kNN) is similar to the clustering methods previously cited. It is used mainly 

for classification purposes. It is a “supervised method”, that means that classification is performed 

using a dataset previously classified.  

 

2.1.3 PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis (or also PCA) is probably the most well-known method of 

dimensional reduction [71]. The aim of this method is to decrease the dimensions of the dataset 

analysis by using an orthogonal transformation. Consequently, also the variety of data decreases. It 

is expected that most of the phenomena observed have linear correlate variables even if this 

correlation is unknown. When PCA is performed, resulting variables will be uncorrelated. Data 

analysis and analytics are easier when PCA is applied because a lower number of variables must be 

plotted. Reference [72] is an example of a dimensional reduction problem: the author uses PCA to 
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decrease the number of variables of a thermal energy system (solar absorption chiller system) to 

predict the system performance (Figure 42). 

 

Figure 42. Thermal energy system [72] 

When PCA is applied, it is possible to analyse which is the contribution of each variables to 

PCA components (Table 18). Value can vary from -1 to 1 as R parameter of the linear regression: the 

closer to 1, the variable and PCA component are closely related. 

Variable 
PCA Component 

PCA 1 PCA 2 PCA 3 PCA 4 

Tchw,i 0.0530 0.1185 − 0.0910 − 0.0857 

Tchw,o − 0.0180 0.1539 − 0.1152 − 0.0146 

Thw,i 0.5102 − 0.0862 − 0.2571 − 0.0857 

Thw,o 0.3850 0.1626 0.5644 0.1345 

Tcw,i 0.0974 0.2508 0.4163 0.1062 

Tcw,o 0.1540 0.2764 0.3216 0.0597 

TSC,i 0.4736 0.0207 0.0385 0.0349 

TSC,o 0.5678 − 0.0867 − 0.3357 − 0.2005 

Vfuel − 0.0445 0.8736 − 0.3883 0.0569 

Tamb 0.0804 − 0.1342 − 0.2282 0.9526 

Table 18. PCA applied to a thermal energy system for dimensional reduction [72] 

It is possible to appreciate from Figure 43 that the first PCA component (PCA 1) resumes hot 

water inlet, hot water outlet, solar collector outlet and solar collector inlet variables. Such variables 

give the higher contribution to the first PCA component, and they are strictly correlated each other as 

they are related to solar collectors (Figure 42). For this component, dimensional reduction occurs 
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because four variables are described with just one PCA component. Figure 44 represents the 

contribution to PCA component 2: only fuel flow gives a high contribution to this variable, 

consequently it means that for this component a dimensional reduction is not applied. 

 

Figure 43. PCA component 1 over variables [72] 

 

 

Figure 44. PCA component 2 over variables [72] 

2.1.4 DECISION TREE 

A decision tree is a decision support tool where the outcomes are based on the values of the 

algorithms that contain only conditional control statements (Figure 45). 
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Figure 45. Decision tree example (Image from [73]) 

Decision tree learning is a machine learning method that uses observations to define decision 

tree mainly for classification, regression and data mining. Even if the phenomena described in the 

dataset are unknown, this method learns from observations and defines condition statements to create 

an algorithm to calculate outcomes by minimising errors. Reference [74] uses decision tree machine 

learning to predict energy demand of a HVAC system of a hotel by using outdoor air temperature, 

relative humidity, number of rooms booked and previous value of electricity consumption. Such 

methodology analyses data and proposes an algorithm based only on conditional statements of the 

variables: the result is the decision shown in Figure 46 where the predicted consumption depends on 

each step of the tree.  
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Figure 46. Decision tree example [74] – X[O] is outdoor air temperature, X[1] is relative 

humidity, X[2] is number of room booked, X[4] previous value of electricity consumption 

2.1.5 ARTIFICIAL NEURAL NETWORK 

Artificial neural network (ANN) is probably one of the most known machine learning methods 

because it mimics the brain. The brain is made by neurons connected to each other by axons; our 

experiences modify the connections between neurons, as axons can increase or decrease connections 

depending on how much they are used. The elementary unit of an ANN is the artificial neuron, which 

processes the incoming signal to other neurons. Artificial neurons are connected to each other and a 

weight on the incoming signal is usually defined. ANN must be trained: they do not have any 

knowledge about the tasks they have to perform, so some examples must be given in order to train 

the entire network. This method is highly flexible because it could be used to perform tasks such as 

image recognition, classification and definition of black box. ANN is defined “black box” model 

because it is defined only by observed value and it is unknown how the model is set up, in particular 
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which are the connections and the weights between of the neurons. In the previously cited reference 

[72], an ANN is used to predict the performance (Qcooling and COP) of a solar absorption chiller 

system. Each variable selected for the model is connected to a neuron of the input layer, whereas the 

performance variables are connected to the neurons of the output layer. Between the input and the 

output layer, a hidden layer is added (in this case only one even if more could be used); the 

connections between the input, hidden and output layers are defined by observed data with a training 

process (Figure 47). Each neuron has a transfer function (Figure 48) to transform input to output: in 

this case, tangent sigmoid and linear functions are reported to be used. 

 

Figure 47. ANN representation [72] 

 

 

Figure 48. Neuron representation. Inner and outer connection are related to a transfer 

function f(x) 

 

By varying the number of neurons of the hidden layer, ANN performance varies too. Figure 49 

represents the root mean square error (RMSE) on performance (Qcooling and COP): generally, errors 

f(x) 
Inner connections Outer connections 
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decrease when the number of neurons increases. It is possible to appreciate that 6 neurons on the input 

layer are sufficient to decrease RMSE. 

.  

Figure 49. ANN performances on training and prediction varying hidden layer number of 

neurons (data from [72]) 

2.1.6 EXAMPLES OF APPLICATION OF BIG DATA AND MACHINE LEARNING IN ENERGY SECTOR 

Machine learning methods and big data have been already proposed to be applied to energy 

sector in many fields. Examples of possible application are: 

 

- Load forecasting, machine learning can be useful to analyse time series data and forecast 

consumption of energy. Ref. [75] proposes ANN with Autoregressive Integrated 

Moving Average (ARIMA) to analyse time series. References [76]–[78] analyse time 

series using clustering and weighted kNN algorithm to find similar pattern of 

consumption of electricity and its price; 

 

- Smart building, machine learning methods are proposed to improve the efficiency of 

energy generation and consumption of buildings. Ref. [79] proposes ANN and genetic 

algorithms to optimise energy usage and, consequently, reducing consumptions. Ref. 

[74] previously cited compares ANN and decision tree to forecast HVAC electricity 

consumption of a hotel. Clustering is proposed in [80] to define patterns of electricity 

curves of building consumptions; 

 

- Energy production, machine learning method can be useful to analyse energy system, 

define grey/black box of the system, and to estimate the performances and optimisation. 

Ref. [81] reports that ANN are used to estimate thermal efficiency, specific fuel 
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consumption and volumetric efficiency under different partial load and methane ratio 

of internal gas engines using biogas. Ref. [82] proposes ANN to simulate solar collector 

and estimate its performances at different working condition with the aim of identifying 

possible research gap and improvements. Ref. [83] simulates an absorption system 

based on water-ammonia using ANN with different designs, solution fractions and 

working parameters; the scope is to find the optimum design in order to maximize 

exergy efficiency and the coefficient of performance. Ref. [84] improves geothermal 

energy availability analysing data with ANN; 

 

- Renewable energy forecasting and management, it is well-known that renewable energy 

systems (RES) may have high variability on production and availability. Machine 

learning methods are proposed to increase their efficiency, mainly to forecast 

production by using, for example, weather data. Ref. [85] proposed ANN and multi-

linear regression method to estimate solar radiation with daily meteorological 

measurements. References [86]–[88] propose reviews on photovoltaics power 

generation forecasting methods: ANN, clustering, decision tree, support vector 

machine, support vector regression and ARIMA models are proposed. Not only solar 

energy but also other RES are investigated: ref. [89] reviews different machine learning 

methods to forecast wind energy for electricity production. 

 

The previous examples want to briefly show how big data and machine learning methods could 

be applied to the energy sector. In the next chapters, clustering and kNN methods will be analysed to 

define innovative methods useful for energy system, in particular for the design and optimisation of 

energy generation system and to increase accuracy of load forecasting. The aim is to increase 

efficiency of energy generation system in industrial facilities. 

  



 

65 

 

2.2 CLUSTERING – INTRODUCTION AND METHODS 

2.2.1 INTRODUCTION TO CLUSTERING AND K-MEANS 

Clustering is a type of machine learning method used to classify data and to perform data 

segmentation. Samples are grouped into subsets or “clusters”: in each cluster, objects are more likely 

to be related to one another than to those assigned to different clusters. Clustering is strictly related 

to the concept of “degree of similarity” (or “degree of dissimilarity”) between the objects being 

clustered. Similarity is defined by the method, for example distance function. For each group of data 

(cluster) it is possible to define a centroid. Figure 50 represents an example: a dataset is clustered into 

three different homogenous groups and centroids are centred into each group. A datum is classified 

by its distance from the centroid: it is related to the group with the nearest centroid. 

 

 

Figure 50. Clustering example 

K-means is a clustering method used when all the variables are quantitative and Euclidean 

distance between objects is defined as a dissimilarity function: the lowest the distance, the highest the 

similarity. Euclidean distance between each object xa and xb is measured using variable i=1...n that 

describes each object (Eq. 51): 

 

𝑑(𝑥𝑎, 𝑥𝑏) =∑(𝑥𝑎 − 𝑥𝑏)
2

𝑛

𝑖=1

 Eq. 51 

 

If a dataset with m objects is provided, K-means divides the dataset into N clusters minimising 

Euclidean distance between each object of the cluster. The number of clusters N is given by the user. 

In the next section, the silhouette method is described. It defines the suitable number of clusters for a 
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dataset. Euclidean distance is not the only distance function for K-means method: for example, 

MATLAB © ([90]) provides a built-in function (k-means) to perform cluster analysis in which cosine, 

absolute distance (called also cityblock), correlation and hamming distance functions are defined as 

well. 

2.2.2 HOW TO CHOOSE THE CORRECT NUMBER OF CLUSTERS – SILHOUETTE METHOD 

As previously mentioned, cluster analysis requires to define the number of clusters. Silhouette 

([91], [92]) method is proposed in order to perform such a task. 

Silhouette criterion optimises the number of clusters by searching for the maximum distance between 

observation of the same cluster and observation assigned to the neighbouring one. Silhouette s(i) of 

the object i is defined by Eq. 52: 

 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
 Eq. 52 

 

Where: 

- a(i) is the average distance between the datum i and all the other observations assigned to the 

same cluster; 

- b(i) is the average distance between the datum i and all the observations assigned to the 

neighbouring clusters. 

Average s(i) of all the observations is considered. As a matter of fact, varying the number of clusters 

also average s(i) changes: the optimum number of clusters maximises the average silhouette. 

Figure 51 represents a dataset referring to the case study described in section 2.4: each point is a 

sample, and it is described by electric power consumption and heat to power ratio (H/P) of the 

industrial user. Each observations greater or lower than 6 times of the standard deviation (sigma) are 

excluded in order to not consider outliers. Silhouette is applied to estimate the optimum number of 

clusters: it is possible to appreciate that if the number of clusters is 3, the maximum average silhouette 

can be obtained (Figure 52, also referring to the case study further reported). This condition means 

that the distance between objects of the same cluster and objects of the neighbouring is maximised. 
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Figure 51. Energy request described by electricity power consumption (kW) and H/P ratio 

with a 6 times sigma filter applied 

 

 

Figure 52. Average silhouette of dataset presented in Figure 51 

 

2.2.3 INTRODUCTION TO KNN 

kNN (k-Nearest Neighbors) is an unsupervised machine learning method used mainly for 

classification and regression [69]. If a classified dataset is given, kNN classifies new observations 

choosing the nearest k neighbors of each observation. Figure 53 represents an example: a new 

observation (green triangular) must be classified in a dataset where data are classified into red 

rectangular and blue dot. The observation is classified by firstly calculating the distance with each 
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datum, and then observing the classification of the k nearest neighbors. If k = 3 is chosen, observation 

is classified as blue dot category, whereas if k = 5 is chosen, observation is classified as red 

rectangular category. 

 

 

Figure 53. kNN example – Classification of an observation 

kNN is useful when a dataset is clustered and then new observations need to be classified. For 

example, in section 2.5 it is proposed a short forecasting method where a dataset is clustered and then 

kNN is used for forecast. Clustering is used to divide dataset in N clusters, and for each cluster an 

average curve is defined. When a new observation occurs, forecast is performed classifying its cluster; 

consequently, the average curve is proposed. kNN performs the classification task analyzing how the 

k neighbors nearest to the observation are classified, and the distances between them. 

kNN requires two hyperparameters: the number of neighbors (k), and the distance function. These 

parameters are usually defined by using heuristic techniques or cross-validation. Here we propose to 

use FitchkNN fuction developed in MATLAB ©: it optimizes the kNN model by choosing the 

distance function and the number of neighbors to decrease the classification error [93]. 
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2.3 USE OF CLUSTERING TO DEFINE POLYGENERATION SYSTEM 

2.3.1 INTRODUCTION 

As presented in [2], not all the industrial sectors have the same energy intensity, that is energy 

consumption over production. Moreover, each industrial sector features different ratio between the 

different types of energy consumed (i.e. different thermal to electricity ratio): drying is more energy 

intensive compared to assembling. An increase on energy efficiency would decrease the final energy 

consumption, but each industrial sector requires different energy generation systems and 

technologies. 

Many studies have been already performed with the aim of increasing efficiency. For example, 

analyses on energy consumption and heat recovery on energy intensive sectors were performed ([55], 

[56], [94]–[96]). 

Polygeneration systems are used when more than one type of energy is requested 

simultaneously, for example cooling, heat and electricity. More specifically, cogeneration is used 

when two different types of energy are requested, for example heat and electricity, or cooling and 

electricity. Different energy systems can be used to cover user’s energy request and to achieve high 

thermodynamic/economic efficiency.  

Typically, a cogeneration system is sized on a cumulative curve, representing the number of hours 

each value of power is requested for (Figure 54). The size of the cogeneration system is chosen in 

order to cover thermal or electric load for a defined number of hours. The main problem of these 

graphs is that they analyse separately each type of energy (e.g. electricity and heat), and they do not 

analyse the relationship between them or common daily pattern of consumption. In the author’s 

opinion, the size of a cogeneration / polygeneration system is a classification problem, because it is 

necessary to classify energy data to choose the correct system in terms of both technology and size. 

 

Figure 54. Cumulative curve of thermal (a) and electric load (b), continuous lines represent 

the energy request, dashed lines the cogeneration production (from [97]) 

An innovative approach to design energy generation systems based on big data analysis is here 

developed. More specifically, a study on how cluster analysis could be applied to analyse energy 
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demand data is depicted. The aim of the method is to design cogeneration systems because they suit 

the energy demand profiles, by choosing the correct type of cogeneration technology, operation 

strategy and energy storages. Clustering can improve how a cogeneration system is chosen. As a 

matter of fact, by dividing data in uniform datasets of energy demand and energy ratio (like H/P), it 

is possible to choose the most suitable technology for each cluster, thus improving energy 

performance. 

Clustering can be used also to classify energy demand profiles to define standard patterns of 

consumption. This is useful to evaluate the viability of energy storages in case of mismatching 

between energy production and consumption and to suggest the most suitable operation strategy. 

Firstly, it is supposed that the user’s energy request data are sampled uniformly (for example every 

15 minutes, every hour etc) and stored using at least three variables: time stamp (date and time of 

observation) and at least two energy variables, for example electric power and mean heat power 

request. Then data will be used to perform two different analyses, power analysis and profile analysis: 

1. Power analysis: every observation is considered separately to define clusters with 

similar values of the variables (i.e. electricity demand and H/P ratio). This information, 

and how such variables vary inside the cluster, will suggest the most suitable 

polygeneration technology and/or information to design the generation system; 

2. Profile analysis: daily energy demand profile (not a single observation) is defined and 

clustered to identify how energy demand varies during daytime. Possible mismatching 

can be detected between energy demand and energy production using energy system 

defined with Power analysis.  

In the next paragraph, the proposed methodology will be explained. 

2.3.2 METHODOLOGY 

Power and Profile analysis are based on clustering of data but with a different definition of the 

dataset. In the first one, each observation is a datum; in the second one, each datum is a day of 

observation. A common workflow is proposed (Figure 55) to define a dataset and cluster data, and to 

perform them: 

1. Data cleaning: not all the observed data are suitable for the analysis due to measurement 

errors and/or bad electric signal. Filter should be applied to the dataset to delete  

outlayers and/or uselnss observations. 

2. Dataset creation: observed and filtered data are used to create suitable datasets for the 

analysis. In case of power analysis, each observed data can be a record of the dataset. 

In case of profile analysis, observations lasting one day can be arranged together to 

define a daily consumption profile. After a dataset is created, data are normalized. 

3. Estimation of the number of clusters: before applying clustering, it is necessary to 

define the number of clusters. Silhouette is applied to estimate the suitable number of 

clusters for the dataset. 

4. Cluster analysis: cluster analysis is applied to the dataset. 
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Figure 55. Analysis workflow proposed 

Power analysis is performed with the definition of a dataset where each observation is reported 

and represented at least by two energy variables, for example electric power and H/P ratio. It is 

expected that cluster analysis defines homogenous clusters according to the variables. In the case of 

electric power and range of H/P ratio, it suggests which type of cogenerator technology fits better the 

data by using properly references such as Table 1 based on [3]. If a significant mismatching between 

energy generation and demand occurs, it could be suitable to add components to the polygeneration 

system to best fit the production and demand curves meanwhile increasing overall efficiency of the 

system. For example, if it is necessary to adjust the H/P ratio of a cogeneration system, heat 

integration system and/or heat pumps could be used to increase it, meanwhile Stirling engines and 

ORC would be useful to decrease it by converting unused heat into electricity. Figure 56 represents 

an example of Power Analysis, where dataset has two energy variables: electricity demand and H/P 

ratio. Clustering is applied, and dataset divides data into homogenous groups. For each cluster 

(group), it is possible to appreciate how variables varies: in this case, electricity over H/P ratio. An 

average H/P curve is proposed to analyse the variation. It is possible to appreciate that electricity 

demand varies between 80 and 180 kW, meanwhile H/P is around 2. This information can be used to 

choose the most suitable cogeneration technology (Table 1). 

 

Figure 56. Example of Power analysis – representation of a cluster 

DATA CLEANING DATASET CREATION
EST. OF NUMBER OF 

CLUSTER
CLUSTER ANALYSIS
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Profile analysis is proposed to define different consumption profiles. Each profile could be used 

to verify how energy demands vary during daytime, that is the best operation strategy to increase 

efficiency. In order to perform the analysis, it is proposed to create a dataset where each datum is a 

daily consumption profile; it is described by several variables that depend on the number of 

observations and on how many energy variables are observed. In the case that energy demand is 

sampled every 15 minutes with two variables (electric power and H/P ratio), each daily profile is 

made by 96 observations, and each datum is described by 192 variables (96 variables for the electric 

power and 96 for the H/P ratio). As a matter of fact, cluster analysis divides the dataset into 

homogenous clusters; for each cluster, energy demand profiles are similar, and it is possible to define 

reference curves. Reference curves could be used to analyse the mismatching between energy 

production by the cogeneration system and energy request. With respect to Power analysis, Profile 

analysis applied with reference curve gives information on: 

- Energy storage: if a mismatching between energy production by the cogeneration 

system and reference profile occurs, energy can be stored when production is higher 

than demand. The reference curve provides also information on the size of the storage 

required; 

- Energy integration system: as previously mentioned, an integration system can occur 

if the mismatching between energy production and demand cannot be stored; 

- Operation strategy: reference curves provide useful information concerning which 

operation strategy for the system is more suitable to increase its efficiency and to 

decrease the operative costs. 

 

Figure 57 represents a sample of the profile analysis: each datum of the dataset is a day of observation. 

If clustering is applied, it is possible to define similar profile of consumption. Profile analysis lets 

understand how each energy variable (in this case electricity consumption and H/P) varies during 

daytime, and how they are related to each other. 

 

Figure 57. Example of Profile analysis – representation of a cluster  
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2.4 CLUSTER FOR ENERGY SYSTEM - A CASE STUDY 

2.4.1 CASE STUDY INTRODUCTION 

A case study is presented to apply the proposed analysis: it concerns an industrial facility selling 

wood (timber) laminated window, plywood, engineered veneer, laminate, flooring and white wood. 

The firm is located in the north of Italy with suppliers in East Europe, Africa and a subsidiary in 

Gabon. Every year it works about 110 000 m3 of trunks and its ovens could dry 6 000 m3 of wood per 

cycle. It was founded more than 100 years ago and the total revenue in 2017 was of over 90 millions 

of euros. The industrial process requires to dry the wood into kilns and to store it into warehouses. 

Electricity is used for the production equipment, offices, lighting purpose into the warehouses and to 

charge electric forklifts. Heat is used for the kilns that work at about 70 °C. Energy is actually 

generated by using: 

- two cogeneration systems (CHP) based on internal combustion engines (ICE) to 

produce both electricity and heat; 

- natural gas fired boiler as an integration system for the kilns when the cogeneration 

systems do not produce enough heat compared to the one requested. 

Electricity can be withdrawn from the grid if the demand is higher that the production. Figure 58 

represents the energy fluxes and the interconnections between each component of the system. The 

proposal is to classify energy demand data with suitable variables in order to determine which energy 

generation system and operation strategy is more suitable for this application. 

 

 

Figure 58. Electricity and heat energy fluxes, connection between production and demand 

 

Energy demand (both electricity and heat) was sampled each 15 minutes from 01/01/2015 to 

25/09/2017. Electricity data is available as the mean power requested (kW). The heat request, instead, 

is calculated by measuring water flow rate (m3/h) and inlet and outlet temperature (°C) to heat the 

kilns. Data are stored into a structured SQL database. It is expected that this dataset could contain 

some sampling event with missing measurement and with outliers. Missing measurement in a SQL 

database are managed with NULL value, so events with at least one variable with a NULL value are 
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not considered for the study because the system is not able to sample the process, and other variables 

could be affected by errors. Outliers could occur because data are stored without any validation. 

2.4.2 DATA CLEANING 

The first step of the proposed workflow for each analysis is data cleaning. Not only missing 

errors, but also errors on sensors and/or in recording values may occurs. Data are plotted with a 

histogram (with a log scale on the x axis) and a probability plot of quartiles (QQ plot) to intercept 

outliers. QQ plot is used to compared dataset distribution to normal distribution: where there is not 

matching probably, outliers occur. Figure 59 displays how data are distributed: it is possible to 

appreciate that outliers are present for both electricity and heat demand. Electricity data are mainly 

between 100 and 1000 kW, while the maximum sampled value is higher than 106 kW. The same 

occurs for the heat demand: in fact, QQ plots show that the current dataset does not follow a standard 

distribution. 

 

 

 

Figure 59. Representation of the dataset without filtering data, histogram and QQ plot of 

electricity (top) and thermal power (bottom) demand  

To filter the outliers, it is proposed to define an upper limit for each of the variables, both for 

electricity and heat demand. The limit is set considering the maximum request of electricity and heat 

of the system. Figure 60 represents the filtered data: QQ plots show that the filtered dataset is closer 

to a normal distribution and the range of the dataset has decreased. 
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Figure 60. Representation of the dataset filtering data, histogram and QQ plot of electricity 

(top) and thermal power (bottom) demand  

 

After data cleaning is performed, data can be used to define the dataset for the analysis and to 

perform them. 

2.4.3 POWER ANALYSIS 

As previously mentioned, Power analysis is carried out to choose the most suitable energy 

system. Dataset previously defined and presented in Figure 51 is clustered, where each datum is an 

observation with two variables, electricity power and H/P ratio. Silhouette criterion is applied to 

define the most suitable number of clusters (Figure 52). Figure 61 represents the dataset after being 

clustered into 3 groups, while Table 19 resumes each cluster. Cluster 2 and cluster 3 resume more 

than 85% of the observations, with a H/P ratio between 0 and 4.72. Electricity power demand varies 

from 190 kW to 390 kW for cluster 2, and from 43 kW to 192 kW for cluster 3. According to, Table 

19 the most suitable cogeneration technologies for such values of electricity power and H/P range are 

ICE and gas micro-turbines. It is possible to appreciate that the actual cogeneration system is based 

on ICE. The gas micro-turbines system allows a H/P range higher than ICE technology: a solution 

with two turbines of 200 kW each is proposed because considering only one turbine is useful to cover 

the energy request represented in cluster 2, but not in cluster 3. 

For each cluster, a reference curve (H/P ratio vs electricity power) is defined based on 

observations in order to analyse possible mismatching between observations and the proposed energy 

system. Figure 62, Figure 63 and Figure 64 represent respectively the reference curves of cluster 1, 

cluster 2 and cluster 3. For each reference curve, it is represented the mean of the observations varying 
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electricity power and H/P ratio: mean observations curve ± one standard deviation (Mean obs + 1 SD 

and Mean obs - 1 SD). In each figure, the cogeneration system proposed is simulated by following 

the electricity demand (cogeneration system curve). For each point of the mean observation curve, it 

is displayed the number of the observations in the dataset: this variable shows how many times this 

value of electricity power occurs. It is possible to appreciate for cluster 3 (Figure 64) that consumption 

occurs more frequently between 120 and 200 kW: the cogeneration system here proposed suits 

perfectly the reference curve. For cluster 2, instead, simulations show that the cogeneration system 

has a H/P ratio higher than the requested (Figure 63): it is necessary to evaluate a suitable operation 

strategy and/or an energy storage. Cluster 1 (Figure 62) has electricity demand between 100 and 220 

kW, meanwhile H/P ratio is between 4 and 7: a heat integration system is necessary because H/P 

request is higher than H/P of the cogeneration system proposed. 

 

 

Figure 61. Clustered data of Figure 51 for Analysis 1 – Power Analysis 

 

Table 19. Cluster and number of observations for each cluster of Power analysis 

Cluster Number of observations Electricity cons. range H/P ratio range 

1 13.34 % 43 – 306 kW 2.9 - 11 

2 42.13 % 190 – 390 kW 0 – 4.72 

3 44.53 % 43 – 192 kW 0 – 3.9 

 

 



 

77 

 

 

Figure 62. Reference curve of electricity – H/P of cluster 1 (13.3 % of the observations) 

 

 

Figure 63. Reference curve of electricity – H/P of cluster 2 (42.1 % of the observations) 
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Figure 64. Reference curve of electricity – H/P of cluster 3 (44.5 % of the observations) 

2.4.4 PROFILE ANALYSIS 

Profile analysis is performed to verify the necessity of energy storage systems, and to check for 

the most suitable operation strategy. Each datum of the dataset is a daily profile, the cluster analysis 

is used to check similar patterns of consumption and to define average profiles. In the case study here 

proposed, the silhouette criterion suggests dividing the dataset into 4 clusters (Figure 65). Even if the 

maximum distance is 2, there is a local maximum with 4 clusters. It is chosen to increase slightly the 

number of clusters (from 2 to 4) in order to have average profiles that suit better the observations. 

The proposed cogeneration system is plotted as well under the assumption that it follows the 

electricity demand. Table 20 resumes the importance of each cluster: cluster 4 describes more than 

45% of the total observations and cluster 1 about 32%. The analysis of the average curves of these 

two clusters describes more than 75% of the sampled days. 

 

Table 20. Cluster and number of observations for each cluster of Profile Analysis 

Cluster Number of observations 

1 31.91 % 

2 21.90 % 

3 0.27 % 

4 45.92 % 

 



 

79 

 

 

Figure 65. Average silhouette for Analysis 2 

Figure 66, Figure 67, Figure 68 and Figure 69 represent the average electricity and H/P ratio 

profile for cluster 1, cluster 2, cluster 3 and cluster 4 respectively. In the x-axis, it is reported the time 

of the observation: each profile represents one day of observations, sampled every 15 minutes. The 

first observation is at 0:00, and the last one (96th) at 23:45. For each figure, three curves are reported. 

The mean electricity consumption curve shows how it varies during daytime (left y axis). A range of 

± one standard deviation is added (Electricity cons. + 1 SD and Electricity cons. - 1 SD). The second 

curve (Mean H/P cons.) represents the average H/P consumption during daytime (right y axis); a 

range is defined considering ± one standard deviation (H/P cons. + 1 SD and H/P cons. - 1 SD). H/P 

cogen. system curve represents the H/P of the cogeneration system here proposed when it follows the 

electricity consumption (Mean electricity cons.). Mismatching between H/P request (Mean H/P cons.) 

and H/P of the system (H/P cogen. system curve) may occurs: if Mean H/P cons. is higher, more heat 

is required compared to the heat available, consequently an integration system is required. On the 

contrary, if Mean H/P cons. is lower, a quantity of heat is available and unused. A heat storage can 

be useful in order to increase overall efficiency of the system as heat is not dissipated when it is 

available, and a heat integration system is used only when the heat storage is empty. 
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Figure 66. Average electricity power and H/P curves of cluster 1 

 

 

Figure 67. Average electricity power and H/P curves of cluster 2 
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Figure 68. Average electricity power and H/P curves of cluster 3 

 

 

Figure 69. Average electricity power and H/P curves of cluster 4 

Figure 69 represents the average electricity power and H/P consumption curves of cluster 4. In 

this case, the cogeneration system produces less heat than required during the first hours of the day 

(point 1). Moreover, during the day the mismatch changes, with H/P of the cogeneration system 

higher than that of the user (point 2). A heat storage is necessary to store the unused heat and to avoid 

an integration system when demand is higher than generation. The plot suggests also to check the 
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operation strategy: if the cogeneration system follows only the electricity request, unnecessary heat 

is available and, even if a storage system is available, total heat produced in an average day is more 

than the demand. Reference curve of cluster 1 (Figure 66) seems to be similar to reference curve of 

cluster 4 (Figure 69): both electricity demands and H/P ratio have a similar variation during daytime. 

It is possible to appreciate that electricity consumption for cluster 1 varies between 130 and 160 kW, 

meanwhile for cluster 4 it varies between 200 and 250 kW. 

Figure 67 represents the average curves for cluster 2. In this case, the cogeneration system is 

not able to cover the heat demand, and an integration system is necessary (point 3). Moreover, a heat 

storage system is unnecessary because there is not unused heat during the day. 

Cluster 3 (Figure 68) has different reference curves compared to the other clusters: electricity 

demand and H/P ratio seem to vary differently from cluster 1, cluster 2 and cluster 4. H/P ratio is also 

higher (between 10 and 15) than the other cases, (maximum is 5). As a matter of fact, this case is 

related to some observations of Power Analysis (cluster 1, Figure 61 and Figure 62) with high H/P 

ratio: dataset has just some days (just 0.27% according to Table 20) with higher heat demand than 

other clusters, and the overall energy request (heat and electricity) is more irregular. 

2.4.5 POWER AND PROFILE ANALYSES RESULTS 

Results of the Power analysis and the Profile analysis suggest an alternative energy generation 

system compared to the actual one. As previously mentioned, two ICEs are used as cogenerator, with 

a heat integration system based on natural gas fired boilers. Water tanks as heat storage are not used. 

According to the analysis, the most suitable cogeneration technology is a gas micro-turbine with 2 

generators of 200 kW nominal electrical power each: each gas turbine has a range of electricity 

production between 15 kW and 200 kW, meanwhile the H/P ratio can vary between 2.5 (at 30% of 

partial load) and 2 (at full load).  

A model based on polynomial regression is defined according to technical datasheet ([98]). 

Regression models are created to define electric efficiency and H/P ratio varying the partial load both 

in electricity driven mode and heat driven mode. Figure 70 represents the gas turbine model where 

electricity efficiency and H/P ratio are related to the ratio between the net power required and the 

maximum power: gas turbine is used following electricity demand and partial load is defined on the 

maximum electric power. Figure 71 represents the gas turbine model where electricity efficiency and 

H/P ratio are related to the ratio between the heat required and the maximum heat power: gas turbine 

is used following heat demand, and partial load is defined on the maximum heating power. For all 

the regressions defined, R2 is higher than 0.99. 
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Figure 70. Polynomial regression of electricity efficiency and H/P ratio varying partial load 

on electricity driven mode 

 

 

Figure 71. Polynomial regression of electricity efficiency and H/P ratio varying partial load 

on heat driven mode 
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Mismatching between the cogeneration system and the energy request occurs, therefore a heat 

storage system is necessary. A heat storage of 720 kWh is proposed to heat water from the kiln from 

20 °C to 75 °C. Such a value is proposed considering the maximum mismatching between the average 

curves of heat production of the proposed cogeneration system and heat demand. An integration 

system is required when heat demand is higher than production: Figure 62 shows that in some cases 

(Power Analysis - Cluster 1) H/P required is higher than H/P available from the cogeneration system 

proposed. The profile analysis proposed that in some cases (for example Profile analysis – Cluster 2, 

Figure 67) heat is not available, therefore a heat integration system is required. A natural gas fired 

boiler with an efficiency of 0.9 is considered as integration system. 

Profile analysis suggests not only the opportunity to consider a heat integration and/or a heat 

storage system, but also the operation strategy. Meanwhile reference curve of cluster 3 (Figure 68) 

has a higher H/P ratio on consumption than H/P on generation (so an integration is necessary), it 

happens that for cluster 1 (Figure 66) and cluster 4 (Figure 69) more heat is available than storage, so 

it is necessary to dissipate it. Consequently, two different scenarios are considered for the operation 

strategy: 

1. Scenario TO BE 1. The cogeneration system follows only the electricity demand; 

2. Scenario TO BE 2. The cogeneration system follows the heat demand when both the 

conditions are satisfied: heat storage is full at 95%, and heat demand is lower than the 

heat produced in case of operation strategy 1. In the opposite case, the cogeneration 

system follows the electricity request. 

The aim of scenario TO BE 2 is to increase as much as possible the energy efficiency of the system 

avoiding heat dissipation. On the other hand, electricity consumption from grid increases. 

2.4.6 PERFORMANCE OF THE ALTERNATIVE SYSTEM PROPOSED 

In this section, an analysis on the performance of the alternative system proposed is performed. 

Firstly, energy fluxes of the two scenarios TO BE (scenario TO BE 1 and scenario TO BE 2) are 

proposed in order to analyse how they vary. In particular, we are interested in heat losses (it is 

supposed that they would be higher for scenario TO BE 1) and electricity consumption from grid (it 

is supposed that it would be higher for scenario TO BE 2). Successively, a primary energy analysis 

is performed. The two scenarios are compared with the traditional system (AS IS) by using the 

primary energy (PE) consumption and the grid electricity exchange as benchmarks. The main scope 

is to analyse the primary energy saving obtained by changing the cogeneration system and using this 

operation strategy. The primary energy factor of natural gas is fixed at 9.95 kWh/Sm3, whereas the 

electricity exchanged with the grid is considered to be produced with an efficiency of 0.434. Defined 

F as the total fuel consumption (cogenerator and integration system), Egrid,in the total electricity 

withdrawn from the grid and Egrid,out the total electricity exported to the grid, the primary energy 

function is defined by Eq. 53: 
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𝑃𝐸 = 𝐹 +
𝐸𝑔𝑟𝑖𝑑,𝑖𝑛 − 𝐸𝑔𝑟𝑖𝑑,𝑜𝑢𝑡

0.434
 Eq. 53 

Figure 72 and Figure 73 represent the energy fluxes of the two scenarios. As previously 

mentioned, if the operation strategy follows only the electricity consumption (TO BE 1 - Figure 72) 

heat losses occur (they are about 11% of the total heat consumption). The system, however, is grid 

independent. The hybrid operation strategy of scenario TO BE 2 decreases considerably heat losses, 

from 0.484 GWh to 0.003 GWh. Though, the consequence is that the electricity withdrawn from the 

grid increases to 0.222 GWh. 

 

Figure 72. Energy fluxes for Scenario TO BE 1 
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Figure 73. Energy fluxes for Scenario TO BE 2 

 

According to the simulations in both scenarios, saving on primary energy occurs (Table 21). As 

previously mentioned, the actual cogeneration system (scenario AS IS) uses ICE, that is one of the 

cogeneration technologies proposed in Power analysis. Gas micro-turbines are chosen for an 

alternative scenario because the analyses show that a higher H/P ratio is required. The use of gas 

micro-turbines only (TO BE 1) produces a primary energy saving of 2 % thanks to a better matching 

between H/P ratio of the user and of the cogenerator. The greatest saving (6 %) is obtained with the 

hybrid operation system (TO BE 2). The higher energy saving respect to scenario TO BE 1 is a 

consequence of the operation strategy that significantly decreases heat losses (0.434 GWh for TO BE 

1, 0.003 GWh for TO BE 2) even if electricity is consumed from the grid.  

 

Table 21. Primary energy saving of the different scenarios 

Scenario Primary energy Saving 

AS IS 6.505 GWh - 

TO BE 1 6.377 GWh 2.01 % 

TO BE 2 6.137 GWh 6.00 % 

 

Heat storage has an important role on the overall efficiency of the system: it is suggested as a 

consequence of the mismatch proved by the Profile analysis. Without a heat storage, energy demand 

related to the integration system increases as unused heat of cogeneration system is not stored, so an 

integration system is required to cover the request. Three benchmarks are proposed to evaluate its 

influence: index of saving, index of coverage and mean heat stored. 
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The index of saving (IS) (Eq. 54) is a benchmark of how much a heat storage prevents that the 

unused heat is dissipated thus increasing heat losses. It is defined as the ratio between the heat 

absorbed and stored by the heat storage (Hstored, in) on the total heat produced by cogeneration system 

(HCHP): 

 

𝐼𝑆 =
𝐻𝑠𝑡𝑜𝑟𝑒𝑑,𝑖𝑛
𝐻𝐶𝐻𝑃

 Eq. 54 

 

The index of coverage (IC) (Eq. 55) is proposed as the ratio between total heat stored and used 

(Hstored, out), and the total heat demand by the user (Huser). This index measures the capacity of the heat 

stored (produced by the cogeneration system when demand is lower than production) to decrease the 

power of the integration system. It is defined as: 

 

𝐼𝐶 =
𝐻𝑠𝑡𝑜𝑟𝑒𝑑,𝑜𝑢𝑡
𝐻𝑢𝑠𝑒𝑟

 Eq. 55 

 

The mean heat stored in the period is defined as the percentage of the maximum heat storage. 

Table 22 resumes the results: hybrid operation strategy (TO BE 2) decreases the heat production of 

the cogenerator system with respect to the electric following strategy (Figure 72 and Figure 73), 

nevertheless both the percentages of heat stored and the impact of the heat stored to cover heat 

demand are increased. In particular, the heat stored covers about 5 % on the heat demand in scenario 

TO BE 2, meanwhile the integration system covers 18 % (0.693 GWh on 3.97 GWh of heat demand). 

Without heat storage, consumption of the integration system would increase of one third. It is possible 

to appreciate also that the mean heat storage is close to 50 % (respectively 50.5 % for TO BE 1 and 

48.9 % for TO BE 2). Furthermore, even if the mean heat storage is lower in TO BE 2 than TO BE 

1, the operation strategy here proposed uses stored heat more efficiently: IC is 4.68 % compared to 

4.31 % of the scenario TO BE 1, meanwhile IS is 5.73 % and 4.31 % respectively. This means that 

the heat storage in scenario TO BE 2 has a higher importance both in covering heat demand of the 

user (IC benchmark) and in suitably using the heat produced by the cogenerator (IS benchmark). 

 

Table 22. Benchmark on the heat storage system 

Scenario IS IC % Mean heat stored 

TO BE 1 4.6 % 4.3 % 50.5 % 

TO BE 2 5.7 % 4.7 % 48.9 % 
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2.5 USE OF CLUSTERING AND KNN FOR SHORT FORECASTING  

2.5.1 INTRODUCTION 

In this chapter a forecast method based on clustering and kNN is proposed. The main goal is to 

define a methodology to forecast energy request of industrial facilities. Industries use energy 

(electricity, heating and cooling) both for industrial processes and auxiliaries (lighting, compressed 

air, etc.). It can be supposed that the energy used for production processes depends on the variety and 

entity of the production output: if the production output remains constant in terms of type and quantity 

of items, the energy does not vary significantly. 

Machine learning and big data methods have already been proposed to forecast the values of 

the energy demand from the users and the energy produced by the generation plant. In [99], artificial 

neural network (ANN) is used to predict residential building energy demand; in [100], support vector 

machine (SVM) and ANN are applied to predict heat and cooling demand in non-residential sector. 

In [101], ANN and clustering are used to predict photovoltaic power, whereas in [102] and [103] 

principal component analysis (PCA) is considered to analyze and forecast photovoltaic data. In [104] 

and [105], SVM is used. 

The aim of this study is to define a model based on machine learning technique that allows to 

forecast energy demands for a short period (for example the following hour). The method is based on 

data collected on energy demands, by using a clustering approach. It is supposed that average profiles 

can be defined using a dataset of observations related to at least one year. Such observations are used 

to perform the forecast. A method for short forecasting is here proposed. When the energy demand is 

sampled frequently (for example every 15 minutes) and a dataset is available, data can be used to 

train a model in order to predict the energy requested. Clustering is used to define average curves, 

meanwhile kNN (k-nearest neighbors’ algorithm) classifies each observation and forecast the energy 

demand. The clustering method has been already used to classify daily load curves ([106], [107]) and 

to forecast energy demands ([108], [109]). As a novelty of this study, an innovation on the data 

normalization to improve performances of the method is proposed. 

The first concept introduced is the energy demand curve. It represents a temporal sequence of 

observations and forecasts of energy demand. Each curve can be split into two parts: support and 

forecast. The former is the part of the data that will be provided to the model, constituted by the latest 

observations. Forecast is the predicted data based on the support (Table 23). The length of the support 

(s) and of the forecast (f) is fixed by the user. In this model, it is proposed that 0 < f ≤ s-2. Section 

2.6.5 will illustrate the performance of the model varying f and s for a real case study. 

Table 23. Example of curves, definition of support and forecast (sample dataset) 

SUPPORT FORECAST 

i = 1 i = 2 … i = s = 8 j = 1 … j = f = 4 

10 11 10 13 12 14 16 12 11 12 18 13 
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To perform the forecast, the model features a workflow (Figure 74) based on the following 

steps: 

- Model training, a dataset of observations is used to train the model. Observations 

define average demand curves and train the classification model; 

- Classification, observations are used to classify which is the most similar average 

curve; 

- Forecast, the average curve forecast is used to define forecast of the observations. 

 

Figure 74. Workflow of the forecast method proposed 

The model proposed is based on two machine learning methods: clustering and kNN. Clustering 

is used only in the training process to define the average curve, whereas kNN is used to classify 

observations and to relate them with average curves. 

2.5.2 MODEL TRAINING 

The main task to define the forecast model is the training process. It requires observations of 

one year or more to train the model properly. Observations are ordered temporarily and then used to 

defined curves with support and forecast. These curves define a dataset. Workflow of the training 

(Figure 75) can be divided in the following steps: 

1. Define dataset – Firstly, it is necessary to define and to normalise a dataset. Then, data 

are randomly divided into three subgroups: validation, training, and test dataset. These 

subgroups represent respectively 25 %, 50 % and 25 % of the total observations. The 

validation dataset is used to define hyperparameters of the model, the training dataset to 

train both cluster and kNN model and the test dataset to verify the performance of the 

trained model; 

2. Define hyperparameters – As previously mentioned, the proposed model defines both 

cluster and kNN model. Both methods require to define at least the distance function 

and the number of clusters (cluster model), or the number of observations for 

classification (kNN model). The euclidean distance function is proposed for cluster 

model, meanwhile the number of clusters and the number of observations for 

classification are defined using the validation dataset; 

•Observation 
dataset trains the 
model

MODEL 
TRAINING

•Observations are 
used to classify the 
correspondent 
average curve

CURVE 
CLASSIFICATION •Average curve is 

used to define 
forecast

FORECAST
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3. Train cluster model – When all the hyperparameters are set, the training dataset is used 

to train the cluster model and to define the average forecast curves; 

4. Train kNN model – When both the cluster model and consequently the average forecast 

curves are defined, kNN is defined. kNN is used to forecast observations; 

5. Test model – The test dataset is used to test the trained model and to check its 

performances by using MAPE and RMSE. 

 

Figure 75. Workflow to train the model 

After the training process, the model can be used to forecast new observations. 

2.5.3 DATA NORMALIZATION 

One of the first step of data analytics is data normalization. As datasets have different values 

and scale effect may occur, classification methods such as clustering will not work properly if data 

are not normalized. Usually, normalization is performed using standard score or min-max scaling 

[69], [110]. Standard score normalizes dataset (X) using the average (µ) and the standard deviation 

(σ) as described in Eq. 56: 

 

𝑋 − 𝜇

𝜎
 Eq. 56 

 

In this model, authors propose to normalize dataset differently. As the goal of the model is to 

forecast energy demand curves, the idea is that different curves may have different scale but similar 

variation. In this case, the standard score would be normalized but the curves would still have (a 

lower) scale effect. Instead, in this study it is proposed for each curve to calculate the average of the 

observations, and then to calculate the variations between observations and average as (Eq. 57): 

 

𝑛𝑗,𝑖 =
𝑜𝑗,𝑖

𝑎𝑗
− 1 Eq. 57 

 

Where oj,i is the observation i of the curve j, aj is the average and nj,i is the normalized 

observation. Figure 76 represents an example explaining why this normalization is proposed. Curves 

•Definition and 
normalisation
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training and test 
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DEFINE 
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clustering and kNN 
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DEFINE HYPER 
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training dataset
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•Define kNN model 
using training dataset
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1 and 2 have different scale but similar variation. Firstly, standard score is applied, then the average 

normalization. The average (avg) and the standard deviation (std) for the standard score are calculated 

using all the support values. In the other case, the average of support of each curve is calculated and 

used for normalization. Forecast values are excluded because they become known only during 

training process. As it can be seen in Figure 76, curve 2 is 1.58 times bigger than curve 1, and a noise 

is added. It is possible to appreciate that the proposed method (avg) based on the average of the curves 

reduces the scale effect, but it keeps the variation. As a matter of fact, normalized curve 1 and 2 have 

similar values. Instead, the standard score method proposes normalized curves with different values 

because it normalizes not only the scale effect but the variation as well. 

 

Figure 76. Data normalization example 

2.5.4 HYPERPARAMETERS DEFINITION 

As previously mentioned, it is necessary to define parameters (that are called hyperparameters) 

for clustering and kNN. Clustering requires the distance function and the number of clusters, kNN 

requires the number of the nearest neighbors and the distance function. Only the clustering distance 

function is defined a priori (Euclidean distance), the other ones are defined using validation dataset. 

Firstly, the number of clusters is defined: as previously mentioned, different criteria have been already 

developed, they usually try to minimise the number of clusters in order to maximise the distance 

between data. It is in the author opinion that a more suitable criterion is the minimum number of 

clusters that minimise the forecasting error. The model here proposed clusters the data to obtain 

average curves, and then uses them to forecast the energy demand. It is proposed to vary the number 

of clusters (from 2 to N) in a range and for each simulation to calculate MAPE between data and 

average curves of the clusters. MAPE is the acronym of Mean Absolute Percentage Error and in this 

case is defined as (Eq. 61): 

 

Curve 1 10.0000 10.1000 10.0000 10.0000 10.1000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 avg 12.9369

Curve 2 15.8000 15.8000 15.9580 15.8000 15.8000 15.8000 15.9580 15.8000 15.8000 15.8000 15.8000 std 3.0187

norm, curve 1 -0.9729 -0.9398 -0.9729 -0.9729 -0.9398 -0.9729 -0.9729 -0.9729 -0.9729 -0.9729 -0.9729

norm, curve 2 0.9485 0.9485 1.0008 0.9485 0.9485 0.9485 1.0008 0.9485 0.9485 0.9485 0.9485

Curve 1 10.0000 10.1000 10.0000 10.0000 10.1000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 avg, curve 1 10.0286

Curve 2 15.8000 15.8000 15.9580 15.8000 15.8000 15.8000 15.9580 15.8000 15.8000 15.8000 15.8000 avg, curve 2 15.8451

norm, curve 1 -0.0028 0.0071 -0.0028 -0.0028 0.0071 -0.0028 -0.0028 -0.0028 -0.0028 -0.0028 -0.0028

norm, curve 2 -0.0028 -0.0028 0.0071 -0.0028 -0.0028 -0.0028 0.0071 -0.0028 -0.0028 -0.0028 -0.0028
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𝑀𝐴𝑃𝐸 =  
1

𝑛
∑(

1

𝑙
∑(

𝑎𝑗,𝑖

𝑑𝑗,𝑖
− 1))

𝑙

𝑗=1

𝑛

𝑖=1

 Eq. 58 

 

Where n is the number of curves, l is the number of the forecasted values of each curve, dj,i is the 

value observed and pj,i is the value of the average curve of cluster related to the observed value. The 

hyperparameter “number of clusters” is then defined as the minimum n that has a MAPE lower than 

the average of the next three values (Eq. 59): 

 

min(𝑛) | 𝑀𝐴𝑃𝐸(𝑛) <
𝑀𝐴𝑃𝐸(𝑛 + 1) + 𝑀𝐴𝑃𝐸(𝑛 + 2) +𝑀𝐴𝑃𝐸(𝑛 + 3)

3
 Eq. 59 

 

It can be possible to define also n as the minimum number of clusters associated with a MAPE lower 

than a defined limit (Eq. 60): 

 

min(𝑛) | 𝑀𝐴𝑃𝐸(𝑛) < 𝑀𝐴𝑃𝐸𝑙𝑖𝑚𝑖𝑡 Eq. 60 

 

This method can be seen as an early stopping method, because the number of clusters increases as 

much as the accuracy of the system is increased. Figure 77 and Figure 78 report an example of how 

this method is applied to a validation dataset of electricity and heat demand, where each curve has 8 

observations as support and 4 as forecast. Data refers to the case study defined in section 2.6 and 

already presented in section 2.4. It is possible to appreciate that curves have a MAPE decreasing 

rapidly between 2 and 10 clusters, whereas between 10 and 30 they become more stable. With more 

than 30 clusters the curves have a very low gradient, and locally MAPE increases even if the number 

of clusters increases. In this case, the method suggests fixing 10 clusters for heat and 13 for electricity. 
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Figure 77. Electricity validation dataset, MAPE varying number of clusters from 2 to 100 – 

curve 8 - 4 

 

Figure 78. Heat validation dataset, MAPE varying number of clusters from 2 to 100 – curve 8 

- 4 

As previously mentioned, usually the optimum number of clusters to divide a dataset in is defined 

using a criterion such as silhouette or gap statistics. Silhouette calculates the average distance between 

each member of a cluster and another cluster, and the optimum number of clusters is the minimum 

number that increases distance [92]. If silhouette criterion is applied to the validation dataset (both 

electricity and heat), the number of clusters that are suggested will be lower than the one that method 
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proposed: Figure 79 and Figure 80 show that in both cases the suggested number of clusters is two. 

If this value is used, however, MAPE would be the highest (Figure 77 and Figure 78). 

 

 

 

Figure 79. Silhouette applied to electricity validation dataset, distance varying number of 

clusters from 2 to 100 – curve 8 - 4 

 

 

Figure 80. Silhouette applied to heat validation dataset, distance varying number of clusters 

from 2 to 100 – curve 8 - 4 
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As previously mentioned, in the proposed model kNN hyperparameters are defined using a MATLAB 

© optimization function (Fitchknn): it optimizes kNN hyperparameters (the distance function and the 

number of neighbors) to decrease classification error [93]. 
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2.6 SHORT FORECASTING WITH CLUSTERING AND KNN – A CASE STUDY 

2.6.1 CASE STUDY INTRODUCTION 

The case study presented in section 2.4 is used also in this section to perform forecasting on 

energy demand. Briefly, the dataset is based on the energy demands of electricity and heat of an 

industrial facility selling wood (timber) laminated window, plywood, engineered veneer, laminate, 

flooring and white wood. The industrial process requires heat to dry wood into the kilns (working 

temperature 70 °C), and to store it into warehouses. Electricity is used for the production equipment, 

the offices, lighting purpose into the warehouses and to charge electric forklifts. Heat is generated 

with ICE cogenerators, and a boiler is present as a heat integration system. Figure 81 represents the 

connection between each component of the system. 

 

 

Figure 81. Electricity and heat energy fluxes, connection between generation and utilization  

 

Energy uses (both electricity and heat) were sampled each 15 minutes from 01/01/2015 to 

25/09/2017. The electricity demand is available as mean power (kW) in such interval. The heat 

demand, instead, is calculated by measuring water flow rate (m3/h) and inlet and outlet temperature 

(°C) to heat the kilns. Data are stored into a structured SQL database. Data cleaning is performed on 

the dataset as suggested in section 2.4.2 in order to delete missing measure (NULL value) and/or 

outliers: an upper and lower limit on electricity and heat request are defined. QQ plot (Figure 82) 

shows that the dataset with filtered data follows a normal distribution.  

COGENERATORS BOILER GRID 

KILNS WAREHOUSES OFFICES 

HEAT 
ELECTRICITY 
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Figure 82. Representation of the dataset filtering data, histogram and QQ plot of electricity 

demand (top) and heat power demand (bottom)  

The proposal is to use these data to define curves with support and forecast to train and validate 

the forecast model, one for electricity and one for heat. Then an analysis on MAPE and RMSE varying 

the length of support and forecasting of curves is performed, also it is analyzed the influence of curve 

size and how normalization impacts on the hyperparameters. Curves with a length of 8-4 (8 values of 

observation, 4 of forecasting), 10-4, 10-8 and 12-8 are defined for validation and training. 

2.6.2 MODEL VALIDATION AND TRAINING 

The dataset previously defined is filtered by NULL data or outliers, and split into training, 

validation and test representing respectively 50 %, 25 % and 25 %. Curves of different lengths for 

support and forecast are defined in order to discuss the influence of both on the definition of 

hyperparameters (such the “number of clusters”), in dividing the dataset and on improving the 

accuracy of the forecast.  

Concerning the former, it is necessary to define the number of clusters for each dataset, the 

number of the nearest neighbors, and the distance function for kNN. The euclidean distance is 

proposed as the distance function for clustering. Validation is performed as proposed in section 2.5.4. 

Successively, the model is trained using the training dataset, and then it is tested using the test dataset. 

Concerning the accuracy of the forecast, it is defined by calculating MAPE and RMSE between 

forecasted value and dataset. 

 



 

98 

 

2.6.3 ERROR ESTIMATION 

When a forecast method is proposed, it is necessary to estimate the error on the forecasting. As 

previously mentioned, error estimation is used also to define hyperparameters. MAPE and RMSE 

errors are suggested. Firstly, MAPE is defined as (Eq. 61): 

 

𝑀𝐴𝑃𝐸 = 
1

𝑛
∑(

1

𝑙
∑(

𝑝𝑗,𝑖

𝑑𝑗,𝑖
− 1))

𝑙

𝑗=1

𝑛

𝑖=1

 Eq. 61 

 

Where n is the number of curve, l is the number of the forecasted values of each curve, pj,i is the 

model predicted value of the curve, and dj,i is the value observed. RMSE is the acronym of Root Mean 

Square Error. RMSE is proposed instead of the mean square error (MSE) because it is possible to 

compare the error using the same unit of measurement. It is defined as (Eq. 62): 

 

𝑅𝑀𝑆𝐸 =  
1

𝑛
∑√

1

𝑙
∑(𝑝𝑗,𝑖 − 𝑑𝑗,𝑖)2
𝑙

𝑗=1

𝑛

𝑖=1

 Eq. 62 

 

These errors are calculated on the entire forecast, meanwhile the first forecasted value of each curve 

is the most important. MAPE1 and RMSE1 are calculated considering not all the forecasted values, 

but only the first one (l = 1). 

2.6.4 MODEL TEST 

Table 24 resumes some results of the simulations considering energy demand curves of 

different length as previously mentioned. MAPE is calculated using the test dataset (error between 

forecasted values and observed values), once for the first forecasted value (Test dataset - MAPE 1) 

and once for the entire forecast (Test dataset - MAPE). The MAPE value calculated with the 

validation dataset is reported as well, in order to define the hyperparameter “number of clusters” 

(section 2.5.4). It is possible to appreciate that “MAPE calculated with validation dataset” is a good 

predictor of “MAPE calculated with test dataset”. For example, considering the “curve 8-4 

electricity”, the MAPE calculated with the validation dataset is 3.60 %, whereas the MAPE calculated 

with the test dataset is 3.58 %. Results show also the difference between electricity and heat dataset: 

curve 8-4 has a MAPE of 3.58 % and 34.11 % respectively. The difference can be explained 

considering the higher variation of heat values. 
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Table 24. Simulation of the model with different curves length 

Curve Type of energy 
Validation dataset Test dataset 

MAPE MAPE1 MAPE RMSE1 RMSE 

8-4 Electricity 3.60% 2.75% 3.58% 5.15 kW 3.82 kW 

8-4 Heat power 35.41% 32.95% 34.11% 93.43 kW 55.43 kW 

10-4 Electricity 3.71% 2.74% 3.57% 5.15 kW 3.82 kW 

10-4 Heat power 35.23% 32.70% 34.95% 93.20 kW 54.82 kW 

10-8 Electricity 4.79% 2.90% 4.47% 5.47 kW 3.53 kW 

10-8 Heat power 36.66% 35.30% 34.12% 90.03 kW 41.99 kW 

12-8 Electricity 4.69% 2.80% 4.47% 5.31 kW 3.53 kW 

12-8 Heat power 39.00% 32.10% 37.21% 95.14 kW 43.05 kW 

 

2.6.5 INFLUENCE OF THE CURVE SIZE 

Observations are used to define the curves to train and to test the forecast model. Support is the 

part of the curve that is used to classify observation and, consequently, it defines the forecasted value 

(forecast part). The length of support (s) and forecast (f) may vary the hyperparameter “number of 

clusters” and, consequently, the error on forecast. Increasing forecast length (with same support 

length) is expected to increase forecast error because the model needs to predict more observations. 

It is unknow if the effect of increasing the support length (with the same forecast length) could 

increase or decrease the accuracy on the curve classification. Figure 83 and Figure 84 represent the 

value of MAPE criteria for the validation dataset, varying support and forecast for electricity and heat 

respectively. 

Firstly, it is possible to appreciate that the electricity validation dataset has more regular 

variation of MAPE than the heat validation dataset. With the electricity dataset, MAPE increases by 

increasing support and/or forecast lengths: it is supposed that the electricity demand varies differently 

from the heat. As expected, electricity dataset shows that the MAPE increases by increasing forecast 

length of the curve. The MAPE increases from 3.5 % of 16-2 curve (4 support length, 2 forecast 

length) to 6.3 % of 16-4 curve: the more forecasts are required, the more the error increases. On the 

other hand, the increase of support length is related to the increase of the MAPE as well: from 2.9 % 

of curve 4-2 to 3.5 % of curve 16-2. Even if more observations are available to classify each curve, 

error does not decrease. 
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Figure 83. Heatmap of MAPE of electricity validation dataset with curves with different 

support and forecast length 

 

 

Figure 84. Heatmap of MAPE of heat power validation dataset with curves with different 

support and forecast length 

2.6.6 INFLUENCE OF THE NORMALIZATION 

As mentioned in section 2.5.3, here we propose a normalization based on the percentage norm 

instead of the standard score. The aim is to reduce the scale effect of the curves and to maintain their 

variation. Figure 85 and Figure 86 represent the MAPE varying the number of clusters on the 

electricity validation dataset. A curve of 8 observations as support and 4 for forecast is used in Figure 

85, and one of 10 observations for support and 4 for forecast is used in Figure 86. In both cases, 

dataset has a higher MAPE when it is normalized with standard score rather than with the percentage 

norm proposed. 
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Figure 85. Comparison on MAPE with the electricity validation dataset, curve with 8 

observation and 4 forecast values, normalisation between percentage norm and standard score 

 

Figure 86. Comparison on MAPE with the electricity validation dataset, curve with 10 

observation and 4 forecast values, normalisation between percentage norm and standard score 

2.6.7 CONCLUSIONS 

In this chapter, a model for short forecasting is proposed and analyzed. As in the authors’ opinion this 

task is a pattern recognition problem: machine learning methods such as “clustering analysis” and 

“kNN” are proposed to perform the task. A dataset of observations is required to define 

hyperparameters, to train the model and to test it. Novelties on hyperparameters (“number of clusters” 

definition) and on data normalization are proposed to increase the performances of the method. A 

case study is presented in order to apply the proposed method, to analyze how the length of energy 

demand curves (numbers of observations and forecast) impacts on the model, and to check its 
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performances. Results show that the improvements here proposed increase the performance, 

meanwhile the length of the curves (both on support and forecast) affects error: the higher the length 

(both on support and/or forecast), the higher the error. A validation dataset is not used only to define 

hyperparameters, but also to predict error on forecast. It is in the authors’ opinion that further 

improvements could be achieved by studying the most suitable distance function for the dataset and/or 

by weighting the observations. 
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CONCLUSIONS 

 

Industrial sector is one of the main consumers of energy that is based mainly on hydrocarbons; 

it directly contributes to greenhouse gases emissions and, consequently, to global warming. 

Improvements on energy generation systems for industrial facilities and their management are 

required to decrease the environmental impact. In this thesis, innovative energy generation systems 

are proposed firstly, based on novel technologies based on SOFC and RSOC. Successively, machine 

learning methods are applied to perform data analytics and artificial intelligence techniques on energy 

data in order to define energy system with higher efficiency and to perform forecasting with a high 

accuracy.  

SOFC (and also RSOC) are proposed as energy generator for industrial systems thanks to their 

advantages: possibility of using different types of fuel (from natural gas to low weight hydrocarbons 

such as butane or propane), heat available at high temperature, modularity and high efficiency on 

energy conversion (both electricity and overall efficiency). 

An innovative heat recovery system SOFC with air source heat pump is proposed, where SOFC waste 

gases heat up air at the heat pump evaporator inlet to increase the coefficient of performance. 

Simulations with different temperatures and relative humidity were performed, and the results show 

that the heat pump performance increases up to 100% whit high humidity and/or high SOFC 

utilization. Primary energy saving between 37.5% and 45% are reported comparing the proposed 

system with separate energy production. 

SOFC combined with RSOC are then analyzed as a flexible energy system where it is necessary to 

vary heat to power ratio: the aim is to match H/P between energy generation and demand in order to 

avoid heat integration system with a lower efficiency on energy conversation. A case study based on 

a paper mill is presented to analyze the possibility of revamping the energy generation system by 

using SOFC/RSOC and dismissing the old steam turbine. The main aim is to match H/P between 

energy generation and demand with a higher efficiency, and to produce hydrogen as sub-product of 

the system. Results of the simulation show that is possible to achieve a primary energy saving up to 

6%: the higher the SOFC power, the higher the achieved PES. Hydrogen production could reach a 

production rate of 16 kg/h but exclusively when only one paper production line is in operation. In the 

whole range of variation of the investment cost (-10% to +30% of the value proposed in literature), 

the RSOC integrated system has a lower cost for hydrogen generation than the traditional system 

actually proposed. 

Improvements on industrial energy system could be achieve not only with innovative energy 

components, but also using energy consumption data with artificial intelligence and machine learning. 

Clustering is suggested as machine learning method for data analytics, to define the most suitable 

energy generation technology and to forecast energy consumption. Two innovative analyses based 

on clustering of energy consumption data (power and profile analyses) are illustrated in the thesis. 

These analyses divide data into homogenous groups (cluster), to define firstly which is the most 
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suitable polygeneration technology (power analysis) and then to define average days of consumption 

(profile analysis) to identify the most suitable operation strategy. These methods are then applied to 

a case study. Power analysis on energy data sampled every 15 minutes for 2 years suggests the most 

suitable cogeneration system (micro gas turbine) and the nominal power. Then profile analysis is used 

to check the operation strategy minimizing energy losses and increasing overall efficiency suggesting 

a heat storage system and its capacity.  

Finally, clustering combined with k-nearest neighbors (kNN) is proposed to find similar 

pattern of energy demand, to identify average demand profiles and then to use them to forecast energy 

request of the next hours. Even if clustering combined with kNN have been already analyzed as 

forecasting methods, in this thesis novelties on hyperparameters definition and data normalization are 

proposed. Firstly, it is suggested to normalize data before clustering using a percentage norm instead 

of a norm based on min-max or using mean and standard deviation of the dataset: the aim is to 

decrease only scale effect on the data, not its variation. Then the number of cluster hyperparameter is 

set using error estimation function (for example mean absolute percentage error) between data 

observed and average curves instead of silhouette and/or gap statistic criteria as suggested as state-

of-art: the proposal is to know a priori which the forecast error would be. The methodology is then 

applied to the case study previously analyzed and electricity and heat consumptions are then 

forecasted. 
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