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Sommario

Una stima accurata degli estremi idrologici è fondamentale per le sue molte-
plici implicazioni nella progettazione ingegneristica, per la quantificazione e
mappatura di eventi di piena, nell’industria assicurativa, a supporto decisio-
nale. I metodi tradizionali, di cui la distribuzione Generalizzata dei Valori
Estremi (GEV) è il riferimento, si basano su assunzioni spesso sottovalutate
o che non vengono verificate, non sfruttano in maniera efficace i dati dispo-
nibili e sono inadatti per tenere conto della variabilità inter-annuale. Con
l’obiettivo di perfezionare la stima di estremi con elevato tempo di ritorno,
questa tesi si concentra sulla Distribuzione Metastatistica dei Valori Estremi
(MEVD), un approccio introdotto per superare alcuni dei limiti della teoria
tradizionale. Il lavoro qui proposto dapprima analizza la definizione di ME-
VD ottimale in funzione di fattori climatici locali e delle proprietà statistiche
della precipitazione alla scala giornaliera. La conclusione che viene tratta
attribuisce alla variabilità inter-annuale delle proprietà statistiche della pre-
cipitazione un ruolo chiave per la definizione della finestra di stima ottimale.
Nella maggior parte dei casi considerati, ad eccezione di climi molto secchi,
la finestra di stima dovrebbe essere mantenuta il più breve possibile per
risolvere la variabilità delle distribuzioni tra gli anni. L’utilizzo di finestre
brevi rende la MEVD adatta allo studio di estremi in un clima che cambia,
permettendole di risolvere la variabilità inter-annuale. Finora, la MEVD è
stata applicata principalmente alla precipitazione (a scala giornaliera e ora-
ria). Qui, per la prima volta, la MEVD viene utilizzata per studiare valori di
portata, sviluppando un’analisi di frequenza delle piene implementata utiliz-
zando la MEVD su serie di picchi di portata negli Stati Uniti Continentali.
Inoltre, viene valutato l’impatto di El Niño Southern Oscillation (ENSO) sui
regimi di piena. Rispetto alla GEV, la MEVD fornisce stime più accurate
in ∼76% delle stazioni analizzate, con una significativa riduzione dell’errore
di stima soprattutto per tempi di ritorno molto più elevati della dimensione
del campione utilizzato per la stima dei parametri. Invece, la distinzione dei
picchi a seconda delle fasi di ENSO ha portato a miglioramenti trascurabili
nella stima di piene estreme. Infine, sfruttando l’interessante proprietà della
MEVD di includere distribuzioni miste nella sua formulazione in maniera
naturale, diverse aree metropolitane americane sono state scelte come casi
studio per l’applicazione di una MEVD che distingue tra pioggia ciclonica e
non ciclonica. L’effetto dei cicloni tropicali sulla precipitazione è ben rico-
noscibile, e l’utilizzo di un approccio MEVD misto è risultato vantaggioso in
alcuni casi. A causa dell’effetto prolungato nel tempo che i cicloni tropicali
hanno sulla precipitazione, il vantaggio della MEVD mista nella riduzione
dell’incertezza di stima è maggiore quando si considerano valori di pioggia
cumulati su finestre temporali più lunghe del giorno singolo.



Abstract

An accurate estimation of hydrologic extremes is fundamental for its many
implications on engineering design, flood quantification and mapping, in-
surance and re-insurance purposes, policy-making. Traditional methods,
hinging on the Generalized Extreme Value (GEV) distribution, are founded
on often-overlooked and untested assumptions, make an ineffective use of
the available data, and are ill-suited for accounting for inter-annual vari-
ability. With the aim of improving the estimation accuracy of high return
period extremes, this dissertation focuses on the Metastatistical Extreme
Value Distribution (MEVD), an approach introduced to relax some of the
limitations of the traditional Extreme Value Theory. The present work first
analyzes the definition of the optimal MEVD formulation as a function of
local climatic factors and of key statistical properties of rainfall at the daily
scale. It concludes that the inter-annual variability of rainfall statistical
properties plays an important role in the definition of the optimal time win-
dow to be used for parameter estimation. In the largest amount of cases
examined, except for very dry climates, with few rainy days, the analysis
window should be kept to the minimum of 1 year in order to resolve the
time variability of the distributions. The use of short time windows also
makes the MEVD a suitable approach to study extremes in a changing cli-
mate, as it contributes to its ability to resolve inter-annual variability. Up
to now, the MEVD has been applied mainly to rainfall (at the daily and
hourly scale). Here, for the first time, the MEVD is used to study stream-
flow data, developing a flood frequency analysis MEVD-based on series of
flow peaks in the Continental United States. Moreover, the impact of El
Niño Southern Oscillation (ENSO) on flood regimes is evaluated. In the
comparison with the GEV, results show the outperformance of the MEVD
in ∼76% of the analyzed stations, with a significant reduction in the esti-
mation error especially when considering return periods much higher than
the size of the sample used to estimate the distributional parameters. Yet, a
negligible improvement in the estimation of extreme floods was found when
stratifying peaks according to ENSO phases. In the end, leveraging the
appealing property of the MEVD to naturally include mixtures of distribu-
tions in its formulation, a MEVD that distinguishes between non-Tropical
Cyclones (TCs) and Tropical Cyclones-induced rainfall is applied to several
American metropolitan areas. The impact of TCs on rainfall is well distin-
guishable, and the use of a mixed MEVD approach resulted beneficial in
several cases. Its advantage in the reduction of the estimation error when
compared to the single-distribution MEVD was found to be more significant
when considering cumulative values of rainfall over consecutive days, due to
the prolonged impact TCs have on rainfall over time.
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rameters of Mesa and Zürich. . . . . . . . . . . . . . . . . . . 36

3.10 Median values of SS for the München-like station for n̄ = 5,
25, 75, 100, 150, 200. . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Median values of SS for the München-like station for all the
values of n̄ (1). . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Median values of SS for the München-like station for all the
values of n̄ (2). . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.13 Comparison between the FSE from the ”full” MEVD and the
simplified approaches. . . . . . . . . . . . . . . . . . . . . . . 39

3



3.14 Estimation of the quantile associated to a return period of
100 years for the MEVD and the GEV distribution. . . . . . 41

3.15 Annual maxima (red circles) for the series of daily rainfall of
Padova station, from 1725 to 2018 (missing years: 1765-1767,
1815-1825, 1838-1840). . . . . . . . . . . . . . . . . . . . . . . 42

4.1 El Niño and La Niña winter patterns over North America. . . 47
4.2 Spatial distribution of the selected stream gages with phases

detectability, cumulative number of stations with data in each
water year and histogram summarizing the number of stations
in terms of the number of years of record. . . . . . . . . . . . 49

4.3 Number of water years belonging to each historical series. . . 50
4.4 Peaks selected in the historical record of St. John River at

Ninemile Bridge station. . . . . . . . . . . . . . . . . . . . . . 51
4.5 Average number of peaks per year selected with the peaks

selection methods. . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Portion of the hydrograph for Little River Above Townsend

(TN) station for which the empirical distributions of the the
three phases have been detected as statistically different. Gray,
green and orange circles indicate the peaks respectively oc-
curred during El Niño, La Niña and the neutral phase. . . . . 55

4.7 Best distribution for the ordinary events based on the skill
score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Comparison between the optimal MEVD and the GEV dis-
tribution based on the SS values. . . . . . . . . . . . . . . . . 58

4.9 Ratio between the Fractional Standard Error from the opti-
mal MEVD and the FSE from the GEV distribution. . . . . . 59

4.10 FSE for the MEVD and the GEV distribution plotted as a
function of the ratio T/S . . . . . . . . . . . . . . . . . . . . 60

4.11 FSE for the MEVD and the GEV distribution plotted as a
function of the ratio T/S for two groups of average number
of yearly flood peaks. . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Map showing the optimal MEVD in its single or mixed version. 62
4.13 FSE for the single-distribution MEVD and the mixed MEVD

plotted as a function of the ratio T/S . . . . . . . . . . . . . 62

5.1 Stations location and time coverage of the rainfall records. . . 68
5.2 Evaluation of the consistency between the records in the main

station and in the secondary one. . . . . . . . . . . . . . . . . 69
5.3 TCs trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Number of Tropical Cyclones per year for the analyzed stations. 72
5.5 Example of trajectory identification. . . . . . . . . . . . . . . 74
5.6 Exceedance probability in a log-log plot of the ordinary events

for the six stations analyzed. . . . . . . . . . . . . . . . . . . 76

4



5.7 QQ plots for Charleston station. . . . . . . . . . . . . . . . . 77
5.8 QQ plots for Charlotte station. . . . . . . . . . . . . . . . . . 77
5.9 QQ plots for Houston station. . . . . . . . . . . . . . . . . . . 78
5.10 QQ plots for Jacksonville station. . . . . . . . . . . . . . . . . 78
5.11 QQ plots for New Orleans station. . . . . . . . . . . . . . . . 79
5.12 QQ plots for Coloso (PR) station. . . . . . . . . . . . . . . . 79
5.13 Frequency of the number of consecutive days of TC-induced

rainfall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.14 Tornado Alley. . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.15 Ratio between the FSE from the mixed MEVD and the single-

distribution MEVD, as a function of T/S. Daily rainfall, buffer
500 km, complete record. . . . . . . . . . . . . . . . . . . . . 82

5.16 Ratio between the FSE from the mixed MEVD and the single-
distribution MEVD, as a function of T/S. Daily rainfall, buffer
500 km, from 1970. . . . . . . . . . . . . . . . . . . . . . . . . 83

5.17 Ratio between the FSE from the mixed MEVD and the single-
distribution MEVD, as a function of T/S. 3-days cumulative
rainfall, buffer 500 km, complete record. . . . . . . . . . . . . 85

5.18 Ratio between the FSE from the mixed MEVD and the single-
distribution MEVD, as a function of T/S. Daily rainfall, buffer
250 km, complete record. . . . . . . . . . . . . . . . . . . . . 86

5.19 Ratio between the FSE from the mixed MEVD and the single-
distribution MEVD, as a function of T/S. 3-days cumulative
rainfall, buffer 250 km, complete record. . . . . . . . . . . . . 87

7.1 Skill score values for the single-distribution MEVD. Panel a
(b) shows the skill score values for a MEVD with an estima-
tion window of 5 (10) years. . . . . . . . . . . . . . . . . . . . 93

7.2 Skill score of the mixed MEVD. Panel a (b) shows the skill
score values for a mixed MEVD with an estimation window
of 5 (10) years. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5



List of Acronyms

Acronym Full name

AM Annual maxima
CONUS Continental United States
DI Dispersion Index
ENSO El Niño Southern Oscillation
EV Extreme Values
EVT Extreme Value Theory
EW Estimation window
FFA Flood frequency analysis
FSE Fractional Standard Error
GEV Generalized Extreme Value
GHCN Global Historical Climate Network
GPD Generalized Pareto Distribution
MEVD Metastatistical Extreme Value Distribution
NHC National Hurricane Center
NOAA National Oceanic and Atmospheric Administration
Nr number of realizations
POT Peak Over Threshold
PR Puerto Rico
PWM Probability Weighted Moments
SS Skill Score
T return period
TC Tropical Cyclone
TRMM Tropical Rainfall Measuring Mission
U.S. United States
USGS United States Geological Survey
USWRC United States Water Resources Council

6



Chapter 1

Introduction and motivation of the work

Extreme events in water and Earth sciences are of fundamental importance
in several fields, such as engineering design, insurance and re-insurance, en-
vironmental and urban planning, policy-making, etc. Their accurate quanti-
tative estimation, i.e. accurately linking the magnitude of an extreme event
and its frequency of occurrence, remains difficult, partly because extremes
are, by definition, poorly sampled, partly due to the changing dynamics of
the Earth system.
The traditional Extreme Value Theory (EVT) is grounded in assumptions
that limit their application and, due to their ineffective use of observations,
are ill-suited for taking into account the inter-annual variability that char-
acterizes historical records.

The traditional statistical theory of extremes was developed and applied in
the most diverse areas, e.g. sea water level and storm surges (Coles (2001);
Haigh et al. (2010); Muis et al. (2016)), air quality (Roberts (1979); Tob́ıas
and Scotto (2005); Martins et al. (2017)), droughts (Fleig et al. (2006);
Sousa et al. (2011)), earthquakes (Pisarenko and Sornette (2003); Pisarenko
et al. (2014)), wind speed in hurricanes (Coles and Casson (1998); Heckert
et al. (1998)), traffic (O’Connor and O’Brien (2005); Zhou et al. (2016)).
With a more specific focus on rainfall, precipitation extremes have been
widely studied, e.g. for their implication on floods (see for example Smith
and Baeck (2015); Zhang and Villarini (2017)) and flash floods (Rebora
et al., 2013), on agriculture (Rosenzweig et al. (2002); Powell and Reinhard
(2015)), on water resources (Dettinger et al., 2011), on sewage systems and
stormwater infrastructure (Rosenberg et al., 2010), for being responsible of
the spread of waterborne diseases (Curriero et al. (2001); Cann et al. (2013)),
for triggering landslides (D’Odorico and Fagherazzi, 2003).

To provide a quantitative perspective on the relevance of the topic, Figure
1.1 (from Wallemacq and House (2018)) shows the number of disasters by
major category (climate-related and geophysical, upper panel) and by type
(lower panel), at the global scale in the period 1998-2017. Climate/water-
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Chapter 1 – Introduction and motivation of the work

Figure 1.1: Global number of disasters per major category (upper panel) and type (lower
panel) in the period 1998-2017 (from: Wallemacq and House (2018)).

related events, despite not as deadly as geophysical ones, still cause an un-
acceptable large number of fatalities every year (Figure 1.2). Moreover,
globally they cause most of the economic losses (Figure 1.3), hence empha-
sizing the need of refining the existing methods or developing new ones, in
order to most accurate determine their frequency and magnitude.

The return period (T ), or average recurrence time of an event (see Chapter
2), is a key concept when dealing with extremes, as it is used in many regu-
lations of engineering mitigation and adaptation measures, and summarizes
in a single and readily communicated (though often misunderstood) quan-
tity the frequency of occurrence of events exceeding an assigned magnitude.
Water structures are designed for events corresponding to return periods
that vary according to national regulations, but orders of magnitudes are

8



Chapter 1 – Introduction and motivation of the work

Figure 1.2: Deaths due to climate-related (blue line) and geophysical disasters (brown
line) (from: Wallemacq and House (2018)).

similar for several different countries. For example, emergency spillways of
a concrete dam are designed with reference to a flow peak discharge of the
order of T=1000 years, for a earth-fill dam T=3000 years; typical values of
T for river levels in the case of levees are near 200 years, for bridge piers
around 100 years. These values of T are much higher than the length of
the available observational time series, such that the estimation of the cor-
responding events is very uncertain.

Realistic sizes of observational records are some tens of years, exceptionally
they can reach 100 years or more. This means that the value of design
variable that needs to be estimated has a return period several times higher
with respect to the length of the time series (see Figure 1.4). If one empiri-
cally associates to the maximum value in a time series a return period equal
to the series length, this situation means that extreme value estimation is
an extrapolation exercise well beyond the range of the observations (blue
area in Figure 1.4). Hence, the estimation can only be performed with the
help of a statistical model bridging the gap between observations and target
extremes. As a result, the key question is which statistical model is most ap-
propriate to describe the quantity of interest in the ”extrapolation range”.
An important, though often overlooked issue, is that models that exhibit
acceptable goodness of fit within the observational range, may lead to large
estimation errors in the extrapolation range, for large return periods.

Recently, a new statistical approach that aims to improve over the tradi-
tional Extreme Value Theory by relaxing some of its founding hypotheses,
and with a view to considering non-stationary processes, has been intro-
duced, the Metastatistical Extreme Value Distribution (MEVD) (Marani
and Ignaccolo, 2015). This approach uses most of the available observations
to better constrain the shape of the distributional tail in the extrapolation

9
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Figure 1.3: Top 10 countries for economic losses, due to the disaster type that is responsible
of them (from: Wallemacq and House (2018)).
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Figure 1.4: Visual explanation of the issues emerging when estimating values associated
to high return periods, using historical series limited in time. Red dots represent annual
maxima (extremes, following the definition of the EVT), the black line is an EV distribu-
tion fitted on data. The data range (white area) and the extrapolation range (blue area)
are, respectively, the range in which data are available and the one in which a statistical
model is needed to estimate values characterized by a return time higher than the one
associated to the highest observed maximum. The target value that needs to be estimated
is represented as a black dot on the x-axis.

range, and will be described in some detail in the next Chapter.

The MEVD approach proposed in this thesis is developed for at point anal-
yses. Regional approaches, that are necessary in ungaged areas, are not
explored here. However, the MEVD formulations studied in the present dis-
sertation are suitable candidates for analyses in ungaged sites, since they
would not spatially interpolate directly the distribution of maxima, which is
affected by high uncertainty. A spatial interpolation of the ordinary values
(i.e., all the observations, regardless their degree of extraordinariness), in-
deed, is likely to be more robust, thanks to the larger amount of information
available. Even though the topic is of big interest, it does not fit this thesis
purposes, leaving room for future work.
One of the limitation of the traditional EVT are the issues about data avail-
ability, and specifically short time series. Nowadays, developing technolo-
gies, e.g. satellites and radar as well as more innovative ones that leverage
daily-use devices, such as cell phone links (van het Schip et al., 2017) or
smartphones (Allamano et al., 2015) are increasing the information avail-
able, complementing the one provided by gages. Two points of strengths can
be stressed about the MEVD approach with respect to the classical meth-
ods for extremes estimation: 1) it was shown to outperform the traditional
EVT in estimating high return period quantiles also when only short series
of data are available (with an error reduction up to the 50%, see Zorzetto
et al. (2016)), and 2) after an appropriate downscaling, it can be used for
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better estimate extremes from satellite data (for example, those from the
Tropical Measurement Mission, which consists of only 18 years of data, see
Zorzetto and Marani (2019)). The above-mentioned advantages make there-
fore the MEVD approach the ideal candidate for estimating extremes when
only short time series are available or in areas where gages are scarce and
the most reliable information is provided by satellites.
Undoubtedly, the advantage brought by the MEVD is lost when the obser-
vational records include only annual maxima, which were the common data
historically recorded. It is yet worth noting that much effort is made in
the direction of including historical information from geological formations,
stratigraphy, sediments or from archives (also using supervised/unsupervised
deep learning techniques, e.g., Nayman et al. (2019)), or to extract data from
where annual maxima were then derived. The joint work of hydrologists, ge-
omorphologists and historians to reconstruct long-term records (of extreme
floods, for examples, as in Sheffer et al. (2003)) can provide valuable infor-
mation that can complement the one already available.

The work presented here expands the formulation of the MEVD and ex-
plores its application to a variety of water extremes, including daily rainfall
and flood peak discharge, focusing on a practically robust application of the
MEVD and on incorporating the possible simultaneous presence of different
physical mechanisms generating events with different statistical characteris-
tics. Hence, this dissertation, after briefly recalling the traditional EVT and
the MEVD framework, starts from first refining the application methodol-
ogy of the MEVD approach, focusing on the optimal size of the window
that should be used for parameter estimation with reference to daily rain-
fall extremes. Afterwards, it develops a MEVD tailored for flood frequency
analysis and, with the aim of reintroducing into statistical practice the ex-
plicit consideration of the physical mechanisms that generate hydrological
processes, it proposes a mixed MEVD to take into account the effects of
El Niño Southern Oscillation (ENSO) on flood regimes over the Continen-
tal United States (CONUS). The final Chapter describes an approach that
leverages the appealing property of the MEVD to naturally include mixtures
of distributions to distinguish among different rainfall types to analyze the
role of Atlantic Tropical Cyclones (TCs) in generating extreme rainfall.
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Chapter 2

Extreme Value Theory

The Extreme Value Theory (EVT) defines extremes as block maxima, i.e. the
maximum value, x, among all (”ordinary”) values si (i = 1, . . . , n) occurred
within a period/block of time of prescribed duration (usually 1 year). Under
the assumption that the n ordinary events in each block are independent and
identically distributed (i.i.d.) according to the same cumulative distribution
F (s), the cumulative distribution of block maxima is Hn(x) = [F (x)]n.
In this context, the probability that the block maximum exceeds a value x
in each year, p = 1 − Hn(x), can be used to express the return period, as
T = 1/p = 1/(1−Hn(x)) (where time is expressed in multiples of the block
length, which will be taken to be 1 year hereafter). The return period, T, of
a specified event magnitude s is a key concept when dealing with extreme
values. Here, T will be used in its definition as the average time between
two successive exceedances of s (see Volpi et al. (2015) for a good discussion
of possible definitions of T ).
When the return period of interest is much smaller than the length (say,
S) of the observational time series, the quantile corresponding to T can be
estimated directly from observations, e.g. by ordering yearly maxima in
ascending order and by substituting the cumulative probability with its fre-
quency estimation, such that Tk = 1/(1−Hk) (where Hk = k/(S+ 1) is the
cumulative frequency corresponding to xk, the k-th value in the ordered list
of yearly maxima). Volpi et al. (2019) recently proposed a procedure, called
Complete Time-series Analysis, that allows extreme value analyses using all
available data (as opposed to just annual maxima, as in the traditional ap-
proach) when the return period of interest is T <= S.

When T > S it is necessary to adopt a parametric expression for Hn(x), to
be fitted to observations, in order to extrapolate quantile estimates beyond
the range of observed values. The choice of a probability distribution Hn(x),
and the methods used to estimate its parameters, define the accuracy with
which high quantiles can be estimated, formally as xT = H−1

n (1− 1/T ).

The quantification of this accuracy is of central interest both theoretically
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and for practical applications (Castillo, 1988). The hydrological literature
traditionally addresses this problem through goodness-of-fit measures, com-
paring the performance of different candidate distributions in describing
observed samples (e.g., Papalexiou and Koutsoyiannis (2013)). However,
goodness-of-fit metrics do not reflect the accuracy with which the return pe-
riod of an extreme that was not yet observed in the past can be estimated.
This thesis will instead focus on cross-validation approaches, that provide
out-of-sample estimates of uncertainty, which more accurately describe pre-
dictive uncertainty.

When n→∞:

lim
n→∞

[F (x)]n =

{
1, if F (x) = 1

0, if F (x) < 1

which means that the limit distribution degenerates (it takes only values 0
and 1).
In order to avoid this degeneration problem, a linear transformation is ap-
plied:

Y = an + bnx (2.1)

where an and bn are appropriate constants depending on n such that the
limit distribution

lim
n→∞

Hn(an + bnx) = lim
n→∞

Fn(an + bnx) = Hn(x) (2.2)

becomes non-degenerated.

2.1 Traditional Extreme Value Theory

According to the Three Types Theorem (Fisher and Tippett (1928); Gne-
denko (1943); Gumbel (2004)), the only three types of non-degenerated
distributions satisfying Eq.(2.2) are:

1. the Frechet distribution

2. the Gumbel distribution

3. the reverse-Weibull distribution

These three limit distributions are unified in the Generalized Extreme Value
(GEV) distribution (Von Mises (1936); Coles (2001)) depending on the value
of its shape parameter ξ:

H(x;µ, ψ, ξ) = exp
{
−
[
1 + ξ

(x− µ)

ψ

]− 1
ξ

+

}
(2.3)
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where {x : 1 + ξ(x − µ)/ψ} > 0, µ ∈ (−∞,∞) is the location parameter,
ψ > 0 is the scale parameter and ξ ∈ (−∞,∞) is the shape parameter. For
ξ > 0, ξ = 0 and ξ < 0 the GEV distribution leads itself back to the Frechet,
the Gumbel and the reverse-Weibull distributions, respectively.

As the threshold increases, the Pickands-Balkema-de Haan theorem (Balkema
and de Haan (1974); Pickands (1975)) states that the distribution of the ex-
ceedances over a set threshold u (peaks over threshold, POT) follows a
Generalized Pareto Distribution (GPD):

F (x) = 1−
(
1 + ξ

x− u
σ

)− 1
ξ (2.4)

where ξ and σ are the shape and the scale parameters, respectively.
If the number of exceedances over the threshold u in any one year follows a
Poisson distribution with mean λ (the so called Poisson-GPD model), this
model leads again to the GEV distribution for annual maxima (Davison and
Smith, 1990).
Serinaldi and Kilsby (2014) analyzed two global datasets of daily rainfall
and found that as the threshold increases, the variance of the shape param-
eter of the GPD reduces with the increasing record length and the mean
values tend to be positive, which is linked to a heavy tail behavior (if ξ < 0,
instead, the distribution presents an upper-end point).

The interested reader is addressed to Katz et al. (2002) for a review of the
statistical methods for extremes in hydrology and climatology and to Pa-
palexiou et al. (2013) for a recent overview of the history of the EVT.

While the traditional EVT is quite appealing, as it provides a conceptual
justification for the use of a well-defined distributional form (the GEV dis-
tribution), the assumptions on which it is grounded are rather specific. For
example, the justification for assuming a large number of events/year (ideally
tending to infinity) is dubious, such that is in practice impossible to deter-
mine whether the actual distribution of extremes is close to an asymptotic
GEV form (see for example Cook and Harris (2004); Koutsoyiannis (004a)).
This circumstance makes it difficult to determine whether the distribution of
extremes presents a heavy tail, i.e. a tail that decays algebraically slow, with
significant conceptual and practical implications (Koutsoyiannis (004b); Pa-
palexiou and Koutsoyiannis (2013); Papalexiou et al. (2013)). The assump-
tions underlying the POT approach also present limitations, as the hypothe-
ses of a Poisson arrival of exceedances and of GP-distributed magnitudes of
the exceedances strictly hold for a ”large enough” threshold and under the
same asymptotic assumptions on n as for the derivation of GEV (Pickands,
1975).
In practice, the theoretical basis outlined above greatly complicates the se-
lection of a suitable threshold, which must simultaneously be large enough
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for the approach to hold, and low enough to retain a sufficient number of
events/year, questioning the effectiveness of the POT approach. In addition
to the above theoretical limitations, the traditional EVT does not make
good use of the available information and effectively bases extreme value
estimates on a small fraction of the available observations (annual maxima
or a few values over a high threshold). This is a missed opportunity in the
search of optimizing quantile estimation uncertainty, which calls for mini-
mizing uncertainty given the available observations, or for minimizing the
length of the observational time series needed to achieve an acceptable level
of uncertainty. The latter objective is of great interest in the presence of
non-stationarity (WMO, 2009), when a stochastic process may be assumed
to be piece-wise stationary, provided that sufficiently short subsets of the
observational time window are considered. In the limit, one would like to
be able to track variations of T-year extremes from one year to the next.
The traditional EVT precludes a time series study of this type, since GEV
parameters cannot be estimated on a single yearly maximum or on the few
exceedances over a high threshold occurring in a year (unless a specific para-
metric time variability, or co-variability with explanatory variable, of GEV
parameters is assumed, thereby partly prescribing the time-variations which
are being sought). The estimation of GEV parameters on sliding windows
with length S ∼ a few years is also not viable, as GEV estimation uncer-
tainty grows quickly as T >> S (Zorzetto et al., 2016).

In order to overcome the problem of data wastage in the estimation of ex-
tremes, and with a view to tackling non-stationary processes, Marani and
Ignaccolo (2015) proposed an alternative approach towards extreme values:
the Metastatistical Extreme Value distribution (MEVD). This approach ex-
ploits all the available data, irrespective of their magnitude, to build the
distribution of yearly maxima, Hn(x), from the distribution of ordinary val-
ues, F (x). Zorzetto et al. (2016) showed that the MEVD outperforms GEV
when T >> S, reducing uncertainty by about 50% on average. This prop-
erty makes the MEVD a good candidate for extreme value analysis in non-
stationary rainfall, as it can achieve a relatively low estimation uncertainty
(∼ 20%, see Zorzetto et al. (2016)) based on short observational windows.
For a visual comparison of the data used by the three methodologies (GEV,
POT and MEVD) see Figure 2.1.

2.2 The Metastatistical Extreme Value Distribu-
tion

As originally introduced by Marani and Ignaccolo (2015), the MEV cumu-
lative distribution for annual maxima is derived from the probability dis-
tributions of the ordinary values. The MEVD approach considers both the
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Figure 2.1: Events on which the three approaches are fitted (GEV in panel a, POT in
panel b and MEVD in panel c), showed on the record of daily rainfall of the station of
Albany, USA. GEV uses only annual maxima (red dots), POT identifies the exceedances
(red stars) over a threshold (dashed blue line, representing the 95th percentile of the
rainfall values) and MEVD exploits all the ordinary values (red plus).
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distributions describing the ordinary values (F (x; ~θ)) and the number of oc-
currences in each year (n) as random variables. A similar type of approach,
applied to non-equilibrium dynamical systems (Beck and Cohen, 2004), wa-
ter dynamics in the soil-plant system (Porporato et al., 2006), fluctuation
in river streamflow (Botter et al., 2013), time series modelling (Tjøstheim,
1986), modelling of ordinary fine-scale rainfall (Thayakaran and Ramesh,
2017) is also known as superstatistics or doubly stochastic processes.

The MEVD assumes that ordinary events are independent and writes the
probability that a yearly maximum is smaller or equal to a specified value
x as follows:

H(x) =
∞∑
n=1

∫
Ω~Θ

[F (x; ~θ)]ng(n, ~θ)d~θ (2.5)

where g(n, ~θ) is the joint probability distribution (discrete in N and contin-
uous in ~Θ) of the number of events in a year, n, and of the parameter vector
~θ); Ω~Θ is the population of the parameters values.
Marani and Ignaccolo (2015) propose to fit the distribution of the ordinary
events to data in each year on record and to estimate the ensemble average
in Eq.(2.5) as the corresponding sample average:

ζ(x) =
1

S

S∑
j=1

[F (x; ~θj)]
nj (2.6)

For daily rainfall, Marani and Ignaccolo (2015) propose to adopt a Weibull
distribution for F (x; ~θ), based on a global study by Wilson and Toumi
(2005). Marra et al. (2018) make a similar assumption for hourly rainfall.
The MEVD-Weibull can hence be written as:

ζ(x) =
1

S

S∑
j=1

[
1− exp

(
−
( x
Cj

))wj]nj
(2.7)

where:

1. S is the number of years for which observations are available

2. Cj and wj are the scale and shape parameter of the Weibull distribu-
tion for year j

3. nj is the number of events in year j

The reader is addressed to Figure 2.2 for a visualization of the application
procedure of the MEV approach.

Several studies have shown the advantages of using the MEVD over the
traditional EVT for rainfall data. Zorzetto et al. (2016) first analyzed a large
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Figure 2.2: Explanation of the application methodology of Eq.(2.6) on a series of daily
rainfall. Every year, the scale (C ) and shape (w) parameters of the yearly Weibull distri-
butions are estimated by fitting them on the ordinary values; the number of events n is
the number of wet days within each year. The yearly cumulative distribution of maximum
daily rainfall can therefore be computed as in the expression within the summation in
Eq.(2.6). The MEVD is finally computed as the average over all the years of the cumu-
lative distributions of annual maxima (represented here as a red line). From: (Zorzetto
et al., 2016).
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dataset of long daily rainfall records and found that the MEVD outperforms
the GEV distribution when applied to daily rainfall data, especially when
dealing with return periods much larger than the length of the observation
sample (the average MEVD error reaches a 50%-60% reduction of the GEV
estimation error). Marra et al. (2018) found comparable results in the appli-
cation of the MEVD to hourly rainfall data and then proposed a Simplified
MEVD (SMEV) to take into account different distributions underlying the
ordinary events (Marra et al., 2019). A smooth modeling using the SMEV
approach was developed on Austrian daily rainfall records by Schellander
et al. (2019). Zorzetto and Marani (2019) proposed a downscaling proce-
dure to recover the spatial correlation and the probability density function of
daily rainfall at the point (gage) scale from satellite estimates and combined
this methodology with the MEVD approach, finding that this new approach
provides an improvement in the estimation of high return period quantiles
even if only a very short record of observations is available (19 years, in the
case of the Tropical Rainfall Measuring Mission). Considering streamflow
records, Chapters 4 of this thesis shows the outperformance of the MEVD
with respect to the traditional GEV in flood frequency analysis performed
over the CONUS.

As written in Eq.(2.6), the distributions underlying the ordinary events are
fitted on a yearly basis; moreover, Eq.(2.6) considers all the values in the
record as generated by the same physical mechanism. In Chapter 3 the pos-
sibility of using different sizes of the estimation window is explored, while
Chapters 4 and 5 formulate a mixed version of the MEVD, to take into
account for different physical phenomena generating hydrological processes
(ENSO and TCs, respectively).
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Chapter 3

Optimal estimation of rainfall extremes through
the Metastatistical Extreme Value Distribution
and implications for trend detection

This Chapter studies the predictive uncertainty associated with MEVD es-
timates of large rainfall quantiles as a function of local rainfall statistical
properties. The study defines a MEVD formulation providing the minimum
predictive uncertainty in the presence of short observations as a function
of statistical properties characterizing the number and variability of wet
days/year and the inter-annual variability of the statistical properties of
rainfall events. Using these results, the advantages of applying the optimized
MEVD formulation to short sliding windows to accurately characterize the
possible presence of trends in extreme events within long rainfall time series
is shown through the estimation of the daily rainfall quantile associated to
a return period of 100 years (h100) on the long daily rainfall series of Padova
station. MEVD-estimates are then compared to GEV-estimates, in order to
evaluate the suitability of the two approaches to trend detections.

3.1 Introduction

An overview on the traditional EVT and the MEVD approach has been
presented in Chapter 2. Marani and Ignaccolo (2015) propose to fit the
distribution of the ordinary events to data in each year on record and to
estimate the ensemble average in Eq.(2.5) as the corresponding sample av-
erage. Here it is noted that F (x; ~θ) may in general be fitted to multiple years,
especially in the presence of a dry climate, for which several years may be
needed to provide representative samples for the estimation of ~θ. Marra
et al. (2019), for example, used the whole calibration sample for parameter
estimation when considering stratifying observations among different rain-
fall types. If observations for S years are available, and ~θk is the parameter
vector estimated in the k-th estimation window with length EW (years), the
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probability distribution of annual maxima Eq.(2.5) may be approximated as:

H(x) =
1

S

S∑
j=1

[F (x; ~θk(j))]
nj (3.1)

where k(j) indicates the estimation window containing year j.

In the case of daily rainfall, following the reasoning by Wilson and Toumi
(2005); Marani and Ignaccolo (2015), Eq.(3.1) can be written using a Weibull
distribution for the F (x; ~θk(j))

H(x) =
1

S

S∑
j=1

[
1− exp

(
−
( x

Ck(j)

))wk(j)
]nj

(3.2)

After Zorzetto et al. (2016), parameter estimation of the ordinary Weibull
distributions is performed here using the Probability Weighted Moments
(PWM) method. This method has been shown to provide reduced bias and
uncertainty in the presence of small samples, and is less affected by outliers
Greenwood et al. (1979). Furthermore, PWM’s give more weight to the tail
of the distribution than to its central part.
Coherently with the guidelines of the World Meteorological Organization
(Klein Tank, A. M. G. Zwiers and Zhang, 2009), a wet day is defined as a
period of 24-hours in which at least 1 mm of rainfall was measured. Tun-
ing the threshold might provide a better description of the ordinary events
on the one hand, but it would result in a case-dependent choice, this issue
becoming even more relevant when comparing for example data from rain
gages and satellites, which are characterized by different detection thresh-
olds (Zorzetto and Marani, 2019). Hence, in the present dissertation, which
analyzes a wide variety of location characterized by different climatic fea-
tures, ordinary events are defined as the exceedances over a fixed threshold,
set to the widely-used 1 mm value indicated by the WMO. This choice is
different from Marra et al. (2019), who focused on a more confined area and
left-censored observed values using a threshold equal to the 75th quantile
computed on the observed data.
The selection of the length EW of the estimation window represents a trade-
off between making sure that a sufficient number of events is used to estimate
distributional parameters and keeping EW to a minimum to resolve inter-
annual fluctuations in rainfall regimes. The optimal choice of EW is thus
potentially a function of the average number of events/year, its inter-annual
variability, the values and inter-annual variability of Weibull parameters.
The original formulation of the MEVD, as well as subsequent rainfall ap-
plications (Zorzetto et al. (2016); Marra et al. (2018); Zorzetto and Marani
(2019)) assume EW=1 year. This Chapter seeks to determine how the
choice of the EW affects the uncertainty in MEVD quantile estimation.
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3.1.1 Some properties of the MEVD

Marra et al. (2019) propose a Simplified MEVD (SMEV in short), originally
devised to account for multiple distributions and to reduce the computa-
tional effort required to invert Eq.(2.7) and estimate the quantile correspond-
ing to a fixed value of the cumulative probability. The SMEV distribution
makes two assumptions: 1) it assumes a single probability distribution can
represent all the ordinary values on record; 2) it replaces the variable number
of events/year with one single average value. Originally, Marra et al. (2019)
propose to account for the possible presence of different rainfall-generating
mechanisms (e.g. local convective storms vs. large-scale stratiform pertur-
bations). Here it is considered the simplest SMEV distribution expression,
which may be written as:

SMEV (x) = F (x; ~θ)n̄ (3.3)

where F (x; ~θ) is the ordinary-value distribution fitted to the whole sample
and n̄ is the average yearly number of events.
The simplicity of the SMEV is appealing, but it is important to explore the
implications of neglecting the inter-annual variability in the number of events
and in rainfall regimes. Some of these implications are here investigated
theoretically and, subsequently, through applications.

In order to address the sensitivity of the MEVD to the variability in the
nj ’s, let’s consider a generic term, Fj(x)nj = Fj(x; ~θ)nj , in Eq.(2.6). The
sensitivity of this term to changes in its exponent can be expressed as the
ratio of the fractional change in Fj(x)nj to the fractional change in nj :

d[Fj(x)nj ]

Fj(x)nj
= dnj · log[Fj(x)] (3.4)

These terms all tend to 0 when Fj(x)→ 1, i.e. for large (extreme) x. There-
fore, it can be concluded that the sensitivity of all the terms appearing in the
MEVD to the changes in the nj ’s (which may be due to internal variability,
to climate changes, or to observational errors) decreases as the return period
of the event of interest increases. This line of reasoning also indicates that
the sensitivity to changes in the nj ’s is likely to be smaller in dry climates,
where small values of n̄ prevent a large variability in the exponents nj ’s.
For the question immediately at hand, regarding the impacts of adopting
the Simplified MEVD, this finding implies that the effect on the value of
H(x) of substituting n̄ in place of the nj ’s in Eq.(2.6) decreases for large x,
even more so since the terms dnj = n̄ − nj tend to be of both signs and of
similar magnitudes, thus leading to a compensation in the sum in Eq.(2.6).
In general, the importance of the role of n̄ is a function of the return period:
the greater the return period of interest the smaller the role of the number of
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wet days. The implications for climate modelling are worth noting: the pre-
vious result suggests that the accurate modelling of the exact distribution of
the number of rainy days/year at a site is not as important as reproducing
the correct distribution of the magnitudes of ordinary events, particularly if
the focus is on large extremes.

After analyzing the impact of the variability in the number of yearly events,
the importance of the inter-annual variability of the probability distribu-
tions of ordinary events is now addressed. Originally, the SMEV approach
was proposed by Marra et al. (2019) by simply neglecting the inter-annual
variability in the probability distribution of rainfall depth. Here it is shown
that the SMEV expression can be fully retrieved, for large extremes, if the
number of events/year and the parameter vector of the ordinary value dis-
tribution are independent.
The derivation starts from introducing the survival function G(x; ~θ), such
that F (x; ~θ) = 1 − G(x; ~θ). For large values of x, one can expand the n-th
power of F (x) around G0 = limx→∞G(x; ~θ) = 0, as follows:

F (x)n = [1−G(x; ~θ)]n ∼= 1− n(1−G0)n−1 ·G(x; ~θ) + o(G(x; ~θ)n)

∼ 1− nG(x; ~θ) (3.5)

Under the condition of independence of n and θ, Eq.(2.5) can now be rewrit-
ten as:

H(x) =
∞∑
n=1

∫
Ω~Θ

[F (x; ~θ)]ng(~θ) · p(n)d~θ =

∫
Ω~Θ

[1−
( ∞∑
n=1

p(n) · n
)
·G(x; ~θ)]g(~θ)d~θ =∫

Ω~Θ

[1− < n > ·G(x; ~θ)]g(~θ)d~θ (3.6)

If the ensemble average < n > is approximated with the sample average n̄
and the ensemble average over Ω~Θ is approximated with a sample average

over the parameter values, ~θj , estimated from suitable subsets of the data,
it can be written:

H(x) =
1

S

S∑
j=1

[1− n̄G(x; ~θj)] ∼
1

S

S∑
j=1

F (x; ~θj)
n̄ (3.7)

which is a first simplification of the MEVD expression, which neglects the
variability in the yearly number of events, but still accounts for the inter-
annual variability of the distributions. Eq.(3.7) can be further simplified, by
assuming that the parameters ~θj are time-invariant and equal to a constant
~θ, which yields to the SMEV expression as in Eq.(3.3). This version of
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the MEVD can be retrieved under the assumption of independence between
n and θ or by assuming that ordinary rainfall depths come from a time-
independent distribution. Whether these hypotheses hold in practice, and
what their impacts may be on the estimation of large extremes needs to be
tested. It will be done in the following.

3.1.2 Implications for the detection of trends in extreme
events

The detection of possible trends in extreme rainfall events is of great in-
terest, though it remains difficult due to the large uncertainties involved in
traditional approaches to estimating extremes (Easterling et al., 2000). Es-
timation uncertainty, in fact, arguably hides subtle changes in extremes and
new approaches to better quantify changing extremes are emerging (e.g.
Chavez-Demoulin and Davison (2005); Khaliq et al. (2006); Aryal et al.
(2009); Westra and Sisson (2011); Begueŕıa et al. (2011); Ouarda and El-
Adlouni (2011)). The study of long observational time series can also be of
help in the detection of possible trends. In a recent paper, Papalexiou and
Montanari (2019) performed a global analysis of daily precipitation in the
1964-2013 period and found an increasing trend in the frequency of extremes
that is unlikely under the assumption of stationarity. With a view to practi-
cal applications Wright et al. (2019) recently highlighted the need to define
intensity-duration-frequency (IDF) curves, used in engineering design, that
account for expected changes in extremes over the lifetime of water infras-
tructures.

The use of improved-accuracy extreme value analysis methods, allowing a
reduced uncertainty even for short analysis windows can significantly con-
tribute to our ability of quantifying changing extremes, in the observed past
and in the projected future. This Chapter shows that the improved MEVD
discussed here can provide such a contribution, by comparing results from
MEVD and the traditional EVT methods applied to moving window anal-
yses over a long observational time series.

3.2 Materials and Methods

3.2.1 Datasets

Observations

The dataset studied in Zorzetto et al. (2016) is used here; it consists of
37 daily rainfall stations widely distributed geographically and selected on
the basis of their long observational periods (average series length is 135
years). These two features allow exploring different climatic conditions and
quantifying the accuracy of the estimations for high return periods, using

25



Chapter 3 – Optimal MEVD for rainfall extremes and trend detection

different calibration sample sizes and experimenting with different values of
the length of the estimation window.

For extreme-event trend studies the focus is on the daily rainfall observa-
tions recorded in Padova (Italy, 1725-today) (Marani and Zanetti, 2015), the
longest among the stations considered here. The Padova time series consists
of 277 observational years (gaps: 1765-1767, 1815-1825 and 1838-1840).

The observational dataset representing a variety of actual rainfall statistics
is a fundamental reference for the quantification of uncertainty in a context
tightly anchored to reality. However, in order to be able to design anal-
ysis experiments in which the range of key statistical properties expected
to affect the optimal extreme value analysis approach can be pushed ”to
the limit”, synthetic data designed after some of the ”most extreme” sites
in the dataset are also used. Synthetic data allow to flexibly change the
values of some key statistical properties. One such property is the mean
value of events/year, n̄, which in the dataset considered here varies from
23 days/year (Mesa, Arizona, USA) to 173 days/year (Säntis, in the Swiss
Alps). A second candidate is the dispersion index, DIn, defined as the ratio
between the variance of the number of events/year, s2

n, and n̄. DIn is equal
to 1 events/year for a Poisson process, which is the reference non-clustered
process. However, rainfall is typically found to be inter-annually clustered:
the average value of DIn in the dataset studied here is 2.1 events/year, the
minimum value is 1 events/year (Asheville), while the maximum value is
3.7 events/year (Mount Aigoual). Ideally, one would like to explore an even
wider range of n̄ and DIn, hence the choice of generating synthetic data to
complement analyses of observations.
In addition to this, as noted by Marra et al. (2019), the inter-annual varia-
tions of the ordinary events distribution parameters are co-caused by three
effects: (i) inter-annual variations of the characteristics of the ordinary
events; (ii) parameter estimation uncertainty; and (iii) varying proportions
in the occurrence of different types of ordinary events, if the identical dis-
tribution assumption within each year fails. Here, it is noted that a fourth
source of uncertainty is given by (iv) measurement errors, which characteris-
tic of the observational setup. Parameter estimation uncertainty is an intrin-
sic feature of the data, and increases as the number of events/year decreases.
The analysis of synthetic time series of rainfall, which are uncertainty-free,
can provide indications that can be used to infer implications related to ob-
servational records. Lastly, in this Chapter, precipitation values are assumed
to be identically distributed, while in the analyses performed in Chapter 5
the different rainfall mechanisms will be taken into account.
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Synthetic daily rainfall time series

The first set of experiments aims to determine the dependence of the value
of the optimal length of the estimation window, EW , in the (n̄,DIn) plane.
The second set of experiments is designed to evaluate the dependence of the
optimal choice of EW on the inter-annual variability of the ordinary event
probability distribution. In order to perform these experiments, synthetic
time series are generated as follows:

1. two stations are selected, Mesa and Zürich, which are characterized
by the highest and lowest variability, among all stations, in the yearly
values of the shape parameter (w) of the fitted Weibull distributions
(σw = 0.16 for Mesa and σw = 0.06 for Zürich). The focus is on the
shape parameter because it is the main control of the sub-algebraic tail
of the Weibull distribution. The probability density functions of the
yearly shape parameters for these two stations are shown in Figure 3.1.
By keeping the original values of yearly fitted scale and shape param-
eters, new Weibull-distributed synthetic series of daily rainfall depth
are generated. The number of wet days in each synthetic year is gener-
ated from a negative binomial distribution (Fisher, 1941) where n̄ and
DIn are varied to explore a wide range of their possible values. The
choice of a binomial distribution is supported by a satisfactory agree-
ment between fitted and observed values of n (see Quantile-Quantile
(QQ) plots in Figure 3.2). The synthetic series are generated with an
average number of rainy days between 5 and 365 (steps of 5 days/year)
and with values of the dispersion index between 1.25 and 4 events/year
(0.25 events/year steps);

2. with reference to the station of München, for which the correlation
coefficient among the estimated scale (C ) and shape (w) parameters
of the yearly fitted Weibull distributions is low (ρ ∼ 0.1), and while
keeping the original series of C values, the variance of w was varied
by multiplying and dividing the original value by a factor of 4. While
doing so, a range of the number of rainy days per year from 5 to 200 is
explored. The values of w are generated from a Gamma distribution,
while the values of n are drawn from a negative binomial distribution
(both distributions are fitted to observations, see QQ plots in Figure
3.3).

3.2.2 Cross-validation procedure

The uncertainty in the estimation of high return period quantiles is quan-
tified by means of a cross-validation procedure, performing a Monte Carlo
experiment with a number of realizations Nr=1000. The cross-validation
procedure is structured as follows:
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Figure 3.1: Kernel density function for the yearly shape parameters of the Weibull distri-
butions estimated on the records of daily rainfall of Mesa (red) and Zürich (blue) stations.
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Figure 3.2: Quantile-quantile (QQ) plot of the estimated vs real number of wet days for
Mesa (panel a) and Zürich (panel b) stations, in order to evaluate the goodness of fit of
the negative binomial distribution on the original number of events in these two stations.
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Figure 3.3: Features of München station. Gamma and Weibull distributions (represented
in red and black respectively) were tested for the scale and shape parameter and the
negative binomial distribution was used for the number of rainy days. Panel a (b) shows
the QQ plot of the estimated C (w) values with the two tested distributions, while panel
c) represents the QQ plot of the estimated number of wet days using the negative binomial
distribution.

1. the observational (or synthetic) years on record is randomly reshuf-
fled (keeping all observations in their original year to preserve both
their yearly frequency distributions and the distribution of the num-
ber of events/year) to generate a realization displaying no systematic
variability;

2. the reshuffled time series is divided into two independent samples,
randomly selecting S years as calibration sample, which is used for
estimating the values in the parameter vector ~θk(j), and keeping the
remaining years (the test sample, with size L = Ltot − S , Ltot being
the length of the whole series) to test the accuracy of the estimated
quantiles;

3. the empirical cumulative frequencies are estimated using the Weibull
plotting position formula Fk =k/(L+1), where k = 1, . . . , L is the
position of value xk in and ascending order listing of the test sample.
MEVD quantiles are estimated by solving H(xk) = Fk (where H(x) is
given by Eq.(2.7));

4. the accuracy by comparing MEVD estimates to the statistics from the
test sample is estimated according to the evaluation metrics described
in 3.2.3;

5. the above process is repeated Nr=1000 times to obtain a full statis-
tical description of error metrics. This whole process is repeated for
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different calibration sample sizes (S=5, 10, 20 and 30 years) and for
different estimation window lengths (EW=1, 2, 3, 4, 5 and S years).

This cross validation approach is also applied using GEV estimates (for
comparisons with the current standard approach) and using the simplified
versions of the MEVD.

3.2.3 Evaluation Metrics

The evaluation of the estimation accuracy is performed using two different
metrics, tailored for different analysis purposes. The attention is focused on
the uncertainty in the evaluation of high quantiles and on a global perfor-
mance metric:

1. Non-dimensional error. For the j-th realization, the non-dimensional
error is computed as

εj(S, T ) =
xest,j(S, T )− xobs,j(S, T )

xobs,j(S, T )
(3.8)

between estimated and observed maxima for a specific calibration sam-
ple size (S ) and return period (T ). The Monte Carlo approach allows
the construction of a full frequency distribution of the non-dimensional
error. The Fractional Standard Error (FSE) is then computed over all
the Monte Carlo realizations of the non-dimensional error:

FSE(S, T ) =
1

Nr

[ Nr∑
j=1

εj(S, T )2
] 1

2
(3.9)

2. Skill Score (SS∈ (−∞, 1]) (Murphy and Winkler (1992); Hashino et al.
(2006)). The SS is computed for each Monte Carlo realization in order
to provide a global index of accuracy of the MEVD quantile estimates.
Because the interest is here on large return periods, a modified ver-
sion of the SS is used, computed only on quantiles with return period
greater than the calibration sample size (T/S≥1, since for T<S there
is no need to fit a statistical model):

SS(xest,j , xobs,j) = ρ2
xest,j ,xobs,j

−
[
ρxest,j ,xobs,j −

(σxest,j
σxobs,j

)]2
+

−
[(µxest,j − µxobs,j )

σxobs,j

]2
(3.10)

where ρxest,j ,xobs,j is the correlation between the estimated values (xest,j)
and the observations (xobs,j); σxest,j and σxobs,j (µxest,j and µxobs,j )
represent the standard deviation (mean) of the estimates and the ob-
servations, respectively. The second term in Eq.(3.10) measures the
conditional bias, and the third term the unconditional bias.
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Figure 3.4: Stations arranged according to values of average yearly number of rainy days
and Dispersion Index of n. Colors represent the optimal estimation window length based
on the median value of SS, computed from quantiles corresponding to T > S (S=10 years
here). The color scale indicates the optimal estimation window length.

3.3 Results

3.3.1 Optimal Estimation Window Length

For most stations EW=1 year maximizes the value of the SS (dark blue
circles in Figure 3.4).
A pattern in the plane (n̄,DIn) can be hypothesized: 1) in a region de-
limited by small values of n̄ and a relatively small DIn (DIn < 2.5), the
optimal EW>1 year; 2) in a central area, characterized by higher values of
n̄ (60-160), irrespective of the value of DIn, the optimal EW =1 year for
the largest majority of the stations; 3) three stations (Mount Aigoual, San
Bernard and Säntis) with high n̄ and DIn, for which the optimal EW>1
year.

At a first sight, the hypothesized regions do not seem to have clear-cut
boundaries, especially with reference to region 2. In this region, indeed,
four stations exhibit an optimal estimation window greater (Lubiana and
Albany) or equal (Melbourne and Hoofdoorp) to two years, even if they lie
in an area of the plot in which most of the other stations require a parame-
ter estimation on a yearly basis. One possible explanation could be the fact
that the actual gain obtained by using an estimation window longer than
one year is not significant. Therefore, the plot in Figure 3.4 is complemented
with the box plots in Figure 3.5, in order to evaluate the actual differences
in the SS values obtained using the optimal estimation window and the one
1 year long.
As it can be seen in Figure 3.5, for three out of four of these stations (Hoof-
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Figure 3.5: Difference between the SS obtained with the optimal estimation window (gray
boxes with a green colored median) and the SS from a 1-year estimation window (black
boxes with a red colored median) for stations in Figure 3.4 for which the optimal estimation
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the 25th and 75th percentiles and the colored lines are the median values. Subplot b)
within the main plot represents the box plots for Mount Aigoual station, for which the
5th percentile is much smaller than the other values. It is plotted separately to avoid the
compression of all the other values along the y-axis.

doorp, Lubiana and Melbourne) no significant differences in the median
value and in the percentiles of the SS can be appreciated, meaning that
there is a negligible improvement when using a EW >1 year (i.e., these
stations could also be represented in blue in Figure 3.4). The SS somewhat
improves for Albany when EW=10 years with respect to EW=1 year. How-
ever, it can be noted that Albany is near the hypothesized boundary below
which greater values of EW reduce the estimation error.
The three stations in the set, Mount Aigoual, San Bernard and Säntis, which
require an estimation window larger than one year despite their large average
number of rainy days per year, are all located in high-altitude mountainous
areas: 1567 m asl for Mount Aigoual, 2472 m asl for San Bernard and 2502
m asl for Säntis. Looking at their comparative box plots in Figure 3.5, the
station of Mount Aigoual is the one that is characterized by a more signifi-
cant difference (and a much wider uncertainty) when using a 1-year window
or the optimal one. This might suggest that other explanatory variable re-
lated with orographic forcing or to the mixture of solid/liquid precipitation
might play a role, but they are not accounted for in this analysis.

The SS is a global metrics that provides one single number to univocally
identify the optimal EW , yet it has the drawback that computing the differ-
ences between the SS of the optimal EW and the EW= 1 year does not lead
to a straightforward quantification of the actual advantage conferred by the
use of one EW instead of another. On the contrary, the FSE as estimated in
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Eq.(3.9) refers to single return periods, but allows to immediately quantify
the reduction in the estimation uncertainty obtained by using the optimal
EW .
Figure 3.4 is complemented identifying the optimal EW on the basis of the
FSE computed for the quantile with the maximum return period (Tmax =
Ltot − S + 1) in each station. The record lengths all differ one from the
other, but being the stations all characterized by very long historical series,
the highest quantiles that can be estimated using S=10 years are all asso-
ciated to return periods greater than 10 times the calibration sample size.
The same pattern that was highlighted in Figure 3.4 is found in Figure 3.6,

in terms of comparison between EW=1 year or longer (slight differences can
be instead seen when looking at the precise size of the EW ). Again, the
interest is in evaluating to which extent the estimation accuracy is reduced
by using an EW=1 year instead of the optimal one. The FSE is a good
candidate to make this comparison. As it can be seen in Figure 3.7, the
four stations characterized by the lower values of n̄, in combination with a
low DIN , are taking a more significant advantage in the use of a long EW ,
being the FSE steadily decreasing while widening the EW . Albany, Bilpin
Fern Grove and Lubiana show very little difference in the FSE(EW=1yr)
and FSE(EW=optimal), whereas for the remaining stations the highest re-
duction of the FSE value occurs between EW=1 years and EW=2 years,
the advantage becoming negligible for larger estimation windows.

So far, the dependence of the optimal estimation window size has been ex-
plored in the (n̄,DIn) ”phase space”. Other factors are likely important in
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these analyses, in particular the inter-annual variability in the distributions
of the ordinary events, which will now be explored. Furthermore, the avail-
able stations do not represent all values of potential interest in the (n̄,DIn)
plane (Figure 3.4). In particular, the areas corresponding to very small and
very large values of n remain unrepresented.

Therefore, as described in Section 3.2.1, synthetic series of daily rainfall are
generated using Weibull parameters from Mesa and Zürich, while chang-
ing n̄ and DIn. The two cases, large (Mesa) and low (Zürich) inter-annual
variability in the distributions of ordinary events, exhibit marked differ-
ences (Figure 3.8, complemented by Figure 3.9). In the presence of high
inter-annual variability of rainfall magnitudes (Figure 3.8a), EW=1 year is
optimal starting at low values of n̄. When the probability distributions of
rainfall magnitudes are more uniform across the years (Figure 3.8b), optimal
values of EW may be large even for large values of n̄. This finding points to
the importance of the variability in the rainfall distributions that seems to
exert a stronger control with respect to the average number of events/year,
except for very small values of n̄ (indicatively less than 20-25 events/year).
In these dry climates a large EW size is optimal, independently of the
variability of the probability distributions. In the case of low inter-annual
variability, differences in the performance using the optimal EW or EW=1
year are relatively small (see Figure 3.9). In this case, using EW=1 year
size is advisable, since there is little to gain from searching for the optimal
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Figure 3.8: Optimal estimation window length for the synthetic series generated starting
from the parameters of Mesa (Zürich), represented in panel a (b). Each synthetic station
is represented as 5 days/year x 0.25 days/year bin centered in the n̄ and DIn values used
to generate the synthetic data. The color scale indicates the optimal estimation window.

EW size. This choice also has the advantage of allowing the use of short
sliding windows to more sharply detect changes in trends in non-stationary
processes.

To further explore the role of the inter-annual variability in ordinary value
distributions, the variability of the shape parameter is now changed in order
to explore much lower and higher variability than the observed one. This
is obtained by multiplying the original values of the variance of w by fac-
tors equal to 0.25 and 4, respectively. Further changes to the variability of
ordinary value distributions are explored by varying the average number of
events/year from 5 to 200.
Figure 3.10 (complemented by Figure 3.11 for all the values of n̄) and Fig-
ure 3.12 show the median SS value, computed over the Nr = 1000 Monte
Carlo realizations. For large values of the variance of w, EW=1 year yields
a better performance with respect to longer estimation window lengths. No
clear dependence on the average number of wet days is identifiable as the
value of SS for a given EW does not show a relation on n̄ as represented
by the size of circles in Figure 3.10. When the variance of w is decreased
to 1/4 of the original value, EW=10 years outperforms other estimation
window sizes, but differences between EW=10 years and EW=2 years are
quite small (see Figure 3.11). Again, no clear dependence on the average
number of rainy days/year.
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Figure 3.9: Optimal estimation window length for the synthetic series generated starting
from the parameters of Mesa (Zürich), represented in panel a (b). Each synthetic station
is represented as 5 days/year x 0.25 days/year bin centered in the n̄ and DIn values used
to generate the synthetic data. The color scale indicates the optimal estimation window.
Opacity values represent the differences between the SS of the optimal EW and the EW=1
year. Synthetic stations for which the optimal EW is 1 years have full opacity.
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Figure 3.10: Median values of SS for the München-like station in which 1) the variance
of the shape parameter of the yearly Weibull distributions fitted to the original record is
modified, and 2) the average number of wet days per year is changed. The variance is
multiplied by factors of 0.25, 1, and 4. The colors refer to the EW=1 year (blue), EW=2
years (red), and EW=S=10 years (black). The size of the dots is proportional to the
yearly average number of rainy days. Here, to keep the plot clear, only values of n̄ = 5,
25, 75, 100, 150, 200 are shown (all the values on n̄ are shown in Figure 3.11).
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Figure 3.12: Plots showing the median skill score for the MEVD with an EW of 1 year
(blue dots) and the EW of 10 years (black dots) for three values of the variance of w. On
the left, the original variance is divided by 4, in the central sub-plot the variance is the
original one and on the right the variance is multiplied by 4. The average number of days
is from 5 to 200, with a step of 5 until 100 and with an increased step of 10 between 100
and 200. The calibration sample size is 10 years.
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3.3.2 ”Full” MEVD and Possible Simplifications

The performance of the SMEV formulation (Marra et al., 2019) is exten-
sively explored as a function of the statistical characteristics of the arrival
process and of the variability in the probability distributions of ordinary
days. The aim of this analysis is to understand the sensitivity of the two
versions of the MEVD with respect to changes in the sample sizes and when
considering high ratios of the return period (T ) to the calibration sample
size (S ). Schellander et al. (2019), for example, found that differences in the
errors provided by the two approaches are negligible, of the order of 10−4.

In the first row of Figure 3.13 it can be seen how the SMEV estimation ac-
curacy generally decreases with respect to that of the MEVD (with EW=1
year) as large values of T/S are considered. Moreover, when the calibration
sample size is increased (from 10 to 30 years), the results from the two ap-
proaches behave differently. In the case of the MEVD with EW=1 year the
FSE decreases as S is increased. In the case of the simplified MEVD the
use of a larger value of S does not necessarily lead to an improvement in
the estimation error (FSE). This result may be explained by the fact that,
when the calibration sample size is increased, data from a greater number of
years are fitted with just one single distribution. Deviations from this single,
”average”, distribution therefore increase and offset the advantage of using
more data in fitting the distribution. This result, obtained from a dataset
including very different climates, ranging from quite dry climatic conditions
to very wet ones, and characterized by varying degrees of variability in the
distributions, highlights the fact that a parameter estimation on a yearly
basis allows to better describe the possible inter-annual variations in statis-
tical properties.

The sensitivity of MEVD estimates to the values of the yearly number
of events is now evaluated. In particular, results from the ”full” MEVD
are compared with those obtained from substituting the original number
of events/year with the average n̄ (second row in Figure 3.13). This com-
parison is performed using different calibration sample sizes (S = 5, 10, 20
and 30 years) on the whole historical dataset. As expected, the values of the
FSE of the two approaches are really similar one to the other and differences
become slightly more negligible when moving towards high ratios of T over
S.

The negligible effect of the change from the original number of events to its
average value suggests that the differences found in the comparison between
the ”full” MEVD and the SMEV are completely driven by the inter-annual
variability. Hence, the computation of the FSE for a MEVD-EW = S years
is performed keeping the original number of wet days and it is compared to
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Figure 3.13: Comparison between the Fractional Standard Error (FSE) computed over
the Nr = 1000 realizations for all the stations belonging to the historical dataset, plotted
as a function or the ratio between the return period (T ) and the calibration sample size
(S) from the MEVD with the parameters estimation performed on a yearly basis and
keeping the original number of events (”full” MEVD, in blue) and possible simplifications
(orange). These are respectively: the SMEV (first row), the MEVD with a yearly pa-
rameters estimation and the approximation of the original number of wet days by their
average number (”MEVD-EW=1yr-n avg”, in the second row) and the MEVD with an
EW as large as the calibration sample size and the original number of wet days (”MEVD-
EW=Syrs-n original”, third row). The two columns refer to the different sizes of the
calibration sample: S = 10 years on the left and S = 30 years on the right. Dots represent
the median value of the FSE in each bin and the shaded areas the 25th and 75th percentile.
To keep the same number of values on which computing the statistics of the FSE for all
the calibration sample sizes (and to have more than one bin in the case of S = 30 years),
the binning is done in a way such that there are at least 40 values within each bin.
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the ”full” MEVD (third row in Figure 3.13). Results are very similar to (al-
most indistinguishable from) the comparison between the ”full” MEVD and
the SMEV. This experiment confirms the key role played by the inter-annual
variability of the distributions and the negligible impact of the substitution
of the original number of events with its average value.

3.3.3 Detectability of extreme value changes over time

The MEVD formulation with EW=1 year was shown to be, in wet climates,
a practical solution since the adoption of a longer, though optimal, EW size
does not afford significant estimation improvements. Having exhaustively
characterized the estimation error dependence on the sample size, the ben-
efit of leveraging the improved MEVD accuracy to resolve the inter-annual
variability in daily rainfall extremes is now illustrated. The relevant case
of the multi-centennial time series recorded in Padova (Italy) is examined;
it allows the analysis of long-term changes in rainfall regimes (Marani and
Zanetti, 2015). The focus is on the estimation of the daily rainfall depth,
h100, corresponding to a 100 year return period. Equivalently, since the anal-
ysis concerns changes in extremes that occur on time scales shorter than 100
year, h100 can be thought of as the value that is exceeded, in any given year,
with a probability equal to p = 0.01. Estimates of h100 are performed with
both MEVD and GEV (Weibull parameters for the MEVD are fitted on a
yearly basis using PWM’s, see Greenwood et al. (1979) and GEV parameters
on annual maxima using L-Moments, see Hosking (1985); Hosking (1990)),
over time windows of 10 and 30 years sliding over the time series with steps
of 1 year.

It is interesting to notice potential trends in h100 as estimated with the
two approaches. For the 10-year moving window (Figure 3.14a), hMEVD

100

smoothly fluctuates within the interval hMEVD
100 ∈ [75 : 150], whereas the

values of hGEV
100 presents several abrupt upward and downward shifts. This

happens because the GEV distribution, being fitted to 10 yearly maxima,
is very sensitive to the possible presence of a few very large or very low
maxima in the analysis window (see the series of yearly maxima in Figure
3.15). The MEVD, on the contrary, uses all the daily rainfall values in
the analysis window and is thus not very sensitive to a few large or low
values, thereby leading to more stable estimates of the 100-year event. This
time coherence of extremes afforded by the use of the MEVD is entirely
analogous to the spatial coherence noted when estimating maps of extreme
events from rainfall remote sensing estimates (Zorzetto and Marani, personal
communication).
Fluctuations in hGEV

100 are more contained for the 30-year window (Figure
3.14b), due to the longer sample used for parameter estimation and because
short fluctuation frequencies are dampened by the use of longer analysis
windows (which is also visible in the case of MEVD estimates). The results
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Figure 3.14: The plot in panel a (b) shows the estimation of the quantile associated to
a return period of 100 years for the MEVD (blue line) and the GEV distribution (red
line) on 10 (30)-year windows sliding over the whole time series of Padova station (step=1
year). The value of h100 obtained from each data window is associated with the last year
in the window. The shaded areas represent a one standard deviation confidence interval
computed by means of the Monte Carlo cross-validation process illustrated earlier. The
first year for which h100 is computed is 1734 when using sliding windows of 10 years and
1754 in the case of the 30-year windows.
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Figure 3.15: Annual maxima (red circles) for the series of daily rainfall of Padova station,
from 1725 to 2018 (missing years: 1765-1767, 1815-1825, 1838-1840).

in Figure 3.14 highlight important features in MEVD and GEV estimates.
Fluctuations in hGEV

100 (and its uncertainty bounds) are of the same size of
the overall difference between the 100-year extreme at the end of the time
series (modern times) and its estimate for the mid 18th century. hMEVD

100 , on
the contrary, displays fluctuations (and confidence intervals) that are smaller
than the difference in extremes between the end and the beginning of the
time series. The narrower confidence interval characterizing MEVD also
for short analysis window lengths is an additional advantage when change
and trend analysis is the objective. In this case, the resolution with which
estimates are produced are of central importance, and define the time scale
at which change can be detected. Our results show, in concrete, that GEV
provides very uncertain estimates when extreme value changes over time
scales of 10 to 30 years are investigated.
Despite by means of a Mann-Kendall test (Mann (1945); Kendall (1975)) the
h100 values estimated with the two approaches both show a non-stationarity,
GEV estimates present abrupt steps that are unlikely to be realistic, hence
making this approach not suitable for performing trend analyses.

3.4 Discussion

In this Chapter, the climatic factors determining, to first-order, the op-
timal MEVD approach to daily rainfall extreme value analysis have been
identified. The MEVD approach has then been compared with the recently-
proposed Simplified MEVD to quantify the possible impacts of such sim-
plifications on the estimation uncertainty. Finally, the quantification of the
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uncertainty of the MEVD was leveraged and its optimal formulation was
adopted to show the benefits of its use in the study of long-term changes in
daily rainfall extremes. In the following, the key points that can be high-
lighted from the analyses performed are summarized.

The average number of events and their variability throughout the years
are not enough to identify an univocal correspondence with the length of
the optimal estimation window (EW ), unless the number of events within
a series is very little (and this effect is sharpened by an increasing variance)
or relatively small in combination with a small variance. In the last two
cases, since the parameter estimation performed on the yearly basis would
lead to high uncertainties due to the small sample available for a robust fit
of a statistical distribution, the optimal length of the EW is larger than
one year. As the number of events per year increases, the size of the cali-
bration sample increases, with a consequent reduction in the uncertainties
when performing a yearly parameters estimation.

The previous reasoning is not linearly linked with the average number of
events/year and their variance. Through synthetic experiments, it was
shown that the inter-annual variability plays a key role in the choice of
the optimal EW . A high/low variability in the yearly distributions has an
impact on the selection of the EW that maximizes the accuracy in the es-
timations. When the records show a high variability throughout the years,
the transition from a EW of one year to a longer one occurs for low values
of average number of rainy days, whereas there is not a clear shift when the
statistical properties of the records are more uniform. These properties are
therefore what really controls the choice of the EW . When their variabil-
ity is high, considering aggregating years to widen the sample size used for
parameters estimation is not beneficial; values belong to distributions that
might be very different one from each other, hence the use of a single dis-
tribution to fit them is smoothing these differences over with the resulting
failing of the advantage of having a large sample on which, theoretically,
more robustly fitting a statistical model.

The ”full” MEVD (i.e., the MEVD in which the parameters estimation is
performed with a EW of one year and the number of events is the origi-
nal one) is then compared with three simplified versions, the SMEV (Marra
et al., 2019), the MEVD with a EW=1 year and the number of events sub-
stituted by its average (”MEVD-EW=1yr-avg n”), and the MEVD with
the original number of events but using an EW of the same size of the cal-
ibration sample (”MEVD-EW=Syrs-n original”). The SMEV approach is
undoubtedly appealing and it allows reducing the quantiles computational
effort, but its use becomes relevant in dry climates or when there is the need
of stratifying events in different types. Differences in the FSE comparison
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between the ”full” MEVD and the ”MEVD-EW=1yr-avg n” were found to
be negligible, confirming the importance of the inter-annual variability. The
main contribution in the differences that were found in the FSE from the
”full” MEVD and the SMEV is hence given by the use of a single distribu-
tion fitted on the whole calibration sample, as it was shown by comparing
the FSE from the ”full” MEVD and the one from the MEVD-EW=Syrs-n
original.

Following the important finding of the crucial role exerted by the inter-
annual variability, the property of the ”full” MEVD to resolve the time-
variability to study long-term changes in daily rainfall extremes was lever-
aged to compute the rainfall height associated to a return period of 100 years
(h100) using sliding windows on the long series of daily rainfall of Padova
(1725-today) with both the MEVD and the GEV distribution. MEVD
estimates are characterized by smooth fluctuations, while GEV estimates
present some abrupt changes (especially when using a moving window of
10-years, due to the limitation of this approach to estimate values using
short samples) that are unlikely to be realistic. Furthermore, in times dur-
ing which lot of emphasis is laid by the scientific community on detecting
trends and possible changes in the climate, the GEV is not a reliable method
due to its incapability of following climatic variability (e.g., large scale oscil-
lations) that must be carefully understood in order to assess possible climatic
changes. The MEVD approach, instead, being able to resolve inter-annual
fluctuations by using short time moving windows without being affected by
the large errors of the traditional EVT, is a suitable model for trend detec-
tion.
With more practical implications, being the question of whether/to which
degree updating design variables for engineering purposes widely discussed
nowadays, it was shown here that the traditional EVT is not a suitable
methodology to be applied.
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Chapter 4

Metastatistical Extreme Value Distribution
applied to floods across the continental United
States: Use of mixed distributions and the impact
of ENSO on flood regimes

This Chapter develops a MEVD approach tailored for flood frequency anal-
ysis (FFA) and, given the increasing interest in understanding and linking
hydrological processes to the physical phenomena by which they are gen-
erated, a mixed-MEVD approach based on ENSO phases is proposed. In
this application, the possible impact of ENSO on extreme flood regimes is
evaluated.

4.1 Introduction

Globally, in the period 1998-2017, floods have been the most frequent dis-
aster (43.4% of the natural disasters) and have caused more than 140,000
deaths (representing 11% of the fatalities due to natural disasters of all
types) (Wallemacq and House, 2018). Within this global context, during
the 20th century floods in the United States were the number-one natural
disaster in terms of the number of lives lost and property damage (Perry,
2000), the costliest (Miller et al., 2008) and affected the largest number of
people (Strömberg, 2007). They are also the second weather-related haz-
ard in terms of fatalities in the United States, with 4,586 reported deaths
between 1959 and 2005, mainly due to flash floods caused by heavy pre-
cipitation (Ashley and Ashley, 2008). Reliable flood frequency estimation
methods are the basis to devise and implement strategies for the mitigation
of these societal and economic impacts, with applications in a number of
fields, from the design of hydraulic structures, to environmental manage-
ment and planning, to flood insurance. A key concept is the design flood
peak value, typically set in national regulations by specifying an average
recurrence interval, or return period, T, associated with a probability of
being exceeded in each year equal to p=1/T. The T-year flood, in turn, is
estimated based on the analysis of past floods, requiring the selection of a
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probability distribution to perform this inference using a sample with size S
� T (Benson, 1962).

Flood frequency analyses are commonly performed as a part of engineer-
ing and planning projects, but they too often represent a mere statistical
fitting exercise, and do not attempt to incorporate a representation of the
underlying physical processes. As noted by Klemeš (1974); Klemeš (1988);
Klemeš (1993), the standard approach of extreme event probability estima-
tion is moving towards a higher mathematical abstraction, renouncing any
leveraging or understanding of the different flood-generating mechanisms at
play. The hydrological-process information in the observations is thus of-
ten neglected, and the selection of an optimal statistical model through a
goodness-of-fit metric remains the main focus of these types of analyses.

The U.S. federal guidelines themselves (Bulletin 17-B, IACWD (1982)), and
its updated version 17-C (England, Jr. et al., 2018) recognize that the
assumption under which stream gage records are generated by one single
flood-generating mechanism may not always be realistic. They highlight the
need to understand and more accurately identify these physical mechanisms
and list the identification and treatment of mixed distributions to represent
their diversity as a research and application priority.

Even though the idea of a more process-driven flood frequency analysis is not
necessarily new (e.g. Hirschboeck (1987)), there has been a renewed interest
in recent years in process-based formulations of extreme flood distributions
(e.g., Alila and Mtiraoui (2002); Smith et al. (2011); Villarini and Slater
(2017); Barth et al. (2019)). Flood-generating processes can quite naturally
be analyzed using mixed distributions (e.g., Alila and Mtiraoui (2002)), but
the determination of which flood peaks result from the different processes
and of when the use of mixed distributions is beneficial remains an open
problem (e.g., Villarini and Slater (2017)).

There are several different hydrological mechanisms that can drive the oc-
currence of flood events, including snowmelt, frontal systems, local convec-
tive processes, monsoons, and intense tropical cyclones (see Villarini (016a);
Zhang et al. (2017)). Slater et al. (2015) compared hydrologic and geo-
morphic drivers in flood hazard, while Berghuijs et al. (2016) analyzed the
dominant flood generating mechanisms across the United States. Barth
et al. (2017); Barth et al. (2019) investigated the role of atmospheric rivers
in the generation of flood peaks across the western United States and sug-
gested a weighted mixed population approach to perform a process-driven
flood frequency analysis to reflect the differences in flood agents.

Within the context of mixed distributions, this Chapter formulates a novel
flood frequency distribution and uses it to investigate the role of El Niño
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Figure 4.1: El Niño and La Niña winter patterns over North America. From: NOAA
Climate.gov

Southern Oscillation (ENSO) in the generation of floods, and the detectabil-
ity of its signature in observed records. ENSO is a major mode of variability
of the coupled atmosphere-ocean system associated with episodes of above-
normal (El Niño) and below-normal (La Niña) sea surface temperature in
the tropical Pacific Ocean, with impacts on seasonal winds, rainfall, and
temperature across the globe. See Figure 4.1 for a visualization of the ef-
fects of El Niño and La Niña on North America.

Here the use of a novel approach is proposed, the Metastatistical Extreme
Value Distribution (MEVD), which can naturally incorporate mixed distri-
butions to represent flood magnitudes generated by different mechanisms.
The MEVD has been introduced by Marani and Ignaccolo (2015) and has
been applied mostly to rainfall (Zorzetto et al. (2016); Marra et al. (2018);
Zorzetto and Marani (2019)), for which it was shown to provide significantly
smaller estimation uncertainty when compared to traditional approaches, es-
pecially when considering return periods that are larger than the sample size
used for distribution estimation.

Currently, the MEVD has yet to be applied to flood magnitudes and flood
frequency analysis. Here the first such application is provided and the follow-
ing relevant questions are asked: does the MEVD outperform the traditional
Generalized Extreme Value (GEV) distribution in flood frequency analysis?
Does the incorporation of mixed probability distributions representing dif-
ferent types of flood events associated with different ENSO phases improve
the estimation of event magnitudes with high return periods?

To answer these questions, the MEVD approach is applied to daily records
from stream gage stations across the continental United States, examin-
ing the role played by mixtures of distributions associated with different
ENSO phases. The results are compared and contrasted against those from
the GEV distribution, providing qualitative and quantitative evaluations of
their relative predictive performance.
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4.2 Data and methodology

Daily records from 5,311 U.S. Geological Survey (USGS) stream gages across
the continental United States are analyzed (Figure 4.2, panel a). The focus
is on water years, defined to run between October 1 and September 30, and
only sites where at least 30 complete (i.e. with more than 330 daily observa-
tions/year) years of observation exist are selected, and where no statistically
significant trends are found (at the 5% level, based on the Mann-Kendall
test; Mann (1945); Kendall (1975)). The historical time series selected cover
the period 1916-2017, with record lengths between 31 and 101 years (Fig-
ure 4.2, panels b and c). Consult Figure 4.3 for an overview of the spatial
distribution of the lengths of the historical time series.

Flood frequency analysis requires the identification of independent events;
here, two approaches have been tested for the independent peaks selection:

1. the largest flood peaks within time windows of length equal to T = 10 ·
days+log(A), where A is the drainage area in square miles (Lang et al.,
1999) are identified. Additionally, the smallest discharge peak within
any pair of consecutive peaks is discarded if the minimum flow between
them does not drop below a threshold equal to 75% of the lower of
the two (Water Resources Council, USWRC (1976)). This additional
condition is necessary to eliminate secondary peaks occurring during
recession periods of previous floods;

2. a threshold equal to the 75th percentile of the historical discharge value
is set, flood events are identified between flow up-crossing and down-
crossing of the threshold and the maximum value within the flood
event is selected.

The entire set of peak discharge values of uncorrelated events resulting from
the two selection processes is here called the set of ”ordinary events” to
denote that it contains all the independent events that have occurred in the
record, irrespective of their magnitudes. One example of peaks selected with
the two methods (for the station of St. John River at Ninemile Bridge) is
shown in Figure 4.4.

The second method was yet discarded, since the spatial distribution of the
average number of peaks per year does not reflect the different climatic areas
in the CONUS and smoothes them over; it indeed brings to the selection
of very few peaks in most of the country (see Figure 4.5 for the number of
peaks selected with the first (panel a) and second (panel b) method).
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Figure 4.2: Panel a: Spatial distribution of the selected stream gages. The colors refer to
the statistical detectability of ENSO phases in the distribution of discharge peak values:
black dots indicate stations where the frequency distributions of ordinary peak discharge
values in different ENSO phases are indistinguishable from one another; stations for which
three different phases are detected are displayed in red; in blue, stations where two out
of three ENSO phases can be distinguished. Panel b shows the cumulative number of
stations with data in each water year, while the histogram in panel c summarizes the
number of stations in terms of the number of years on record.
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Figure 4.3: Number of water years belonging to each historical series. Colors refer to
different ranges of length.

4.3 MEVD approach

As recalled in Chapter 1, the MEVD, originally introduced by Marani and
Ignaccolo (2015), is explicitly formulated on the basis of the probability dis-
tribution(s) of the ordinary values, from which the distribution of extremes
(annual maxima) is then derived. Hence, the expression of the MEVD de-
scribing the extreme events is identified by estimating its parameters using
the entire set of observed ordinary events (see Eq.(2.5) and Eq.(2.6)). This
is quite different from the assumptions at the basis of the traditional Ex-
treme Value Theory (EVT), which focuses on fitting a distribution to the
annual maxima or to relatively few values above a high threshold.
Here, the MEVD is applied to peak discharges and modified to account
for ordinary values belonging to different populations, corresponding, in the
present case, to different ENSO phases.
The cumulative distribution function ζ(x) of the mixed-MEVD can be writ-
ten as follows:

ζ(x) =
1

M

M∑
j=1

nph∏
p=1

[
Fp(x; ~θj)

]nj,p (4.1)

where nph is the number of phases that induce statistically different distribu-
tions of the ordinary events and should therefore be considered separately;
Fp is the yearly (or time-window, when the low number of events/year re-
quires parameter estimation to be performed of multi-year windows) cu-
mulative distribution of the ordinary values in phase p; nj,p is the original
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Figure 4.4: Peaks selected (red dots) within a 4 water years time window (1951-1954)
using the historical record of St. John River at Ninemile Bridge station. The plot in
panel a shows the peaks selected applying the first method, i.e., criterium of Lang et al.
(1999) and the additional control from the USWRC (1976) are applied. The plot in panel
b shows instead the peaks selected using the second method (the threshold equal to the
75th percentile of the flow values is represented by the green dashed line).
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Figure 4.5: Panel a (b) shows the average number of peaks per year selected with the first
(second) method. Black dots represent those stations for which the number of peaks per
year is lower or equal than 10 (1243 vs 4249 stations), orange dots those with an average
yearly number of peaks between 11 and 20 (3801 vs 320 stations) and light-blue dots are
the stations with a number of peaks per year greater than 20 (267 vs 2 stations).
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yearly number of the peaks in phase p and year j ; M is the number of years
for which observations are available. Eq.(4.1) reduces to the original formu-
lation in Marani and Ignaccolo (2015) when only one phase is present.
The mixed MEVD formulation in Eq.(4.1) is similar to an approach proposed
in Marra et al. (2019), which, however, does not account for the inter-annual
variability of the events (i.e. there is no dependence on j in Eq.(4.1) ).

The first step in the application of the MEVD approach is identifying a
suitable parametric distribution to represent the ordinary events. Three
candidate distributions for the F (x; ~θj) in Eq.(2.6) are evaluated: Weibull,
Generalized Pareto, and Gamma distributions. The most suitable distribu-
tion is selected on the basis of the Skill Score (see Section on the evaluation
metrics for its definition), comparing the estimated quantiles to the observed
ones. In the present analyses, the Gamma distribution was the best per-
forming one (see Section 4.5 for further details).

Because the average number of flood events in a year is small for many
stations (e.g., in 1243 of the 5311 analyzed stations the average number of
peaks/year is smaller than or equal to 10; see Figure 4.5a), parameters es-
timation is performed using five-year windows or the entire sample. Unlike
the application of the MEVD to the analysis of daily rainfall (Zorzetto et al.
(2016)), the use of a yearly estimation window is not considered here due
to the potential inaccuracies in the estimation of the parameters when few
values are available. This happens because the autocorrelation in discharge
is much larger than in precipitation, leading to the need to use an inhibition
window to identify independent flood events as previously described. This
problem is further exacerbated when stratifying the data into different com-
ponents of the mixture of distributions: the use of multi-year windows for
parameter fitting is then necessary to make sure that, in periods in which
multiple ENSO phases are present, there is a sufficient number of flood
events in each phase to allow a robust parameter estimation.
Following the results presented in Chapter 3, the estimation window was
kept as short as possible, provided that the number of events/block was
large enough to robustly estimate parameters (hence the choice of 5 years
as the minimum size for the blocks). The same sizes of the blocks used for
parameter estimation were then used when dividing the peaks according to
the different ENSO phases the mixed-MEVD. As discussed in the following,
there is not optimal a priori choice of the size of the blocks, but the ”optimal
MEVD”, is defined as the one that minimizes the estimation uncertainty.
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4.4 Fitting Procedure and Cross-Validation

4.4.1 Fitting Procedure

GEV fitting is performed on annual maxima using L-Moments (Hosking,
1990). Zorzetto et al. (2016) found that the cross-validation performance of
the Peak-Over-Threshold GEV fits is indistinguishable from the performance
of Maximum Likelihood or L-Moments GEV fits on annual maxima. Hence,
we only present here results from the application of the latter. The param-
eters of the yearly distributions in the MEVD (Eq.(4.1)) are estimated on
data from five-year windows or the whole sample. MEVD-Gamma fitting
is performed on the selected independent peaks via L-Moments (Hosking
(1990)).

4.4.2 Evaluation Metrics

To identify the possible signature of ENSO phases in the distributions of
ordinary flood peaks, each event is assigned to one of the three ENSO
phases based on the Extended Multivariate ENSO Index (https://www.
esrl.noaa.gov/psd/enso/past_events.html). The phases are defined with
a monthly time span by means of an index: -1 for El Niño, 1 for La Niña
and 0 for the neutral phase. Consequently, a test on whether the distribu-
tions of ordinary flood peaks for each phase are different from one another
is done using the Kolmogorov-Smirnov test with the Bonferroni correction
(Bonferroni (1936)) to account for multiple hypotheses testing (the three
possible combinations among the phases, in this case). If the distributions
of the peak magnitudes belonging to two separate ENSO phases are not
statistically different at the 5% level, all discharge peak values from both
phases are combined. Hence, each time series is classified in the dataset
depending on whether: 1) three separate ENSO phases are distinguishable
in the empirical distribution of ordinary flood peaks; 2) two separate ENSO
phases are distinguishable (i.e. peaks from two of the phases were merged);
3) no ENSO phases are statistically different from each other in the set of
ordinary events (see Figure 4.6 for an example of peaks distinction).

The values of the empirical cumulative frequency associated with observed
peak discharge in the test sub-sample are estimated using the Weibull plot-
ting position (Fk = k/(L+1), where k denotes the k-th peak discharge value,
Qk, in an ascending order ranking). The estimated quantiles corresponding
to each value Fk are computed using the MEVD and GEV distribution by
solving MEVD(QMEVD

k ) = Fk and GEV (QGEV
k ) = Fk, respectively.

To evaluate goodness-of-fit and estimation accuracy two metrics are used:

1. estimated quantiles are compared with observed ones through the
computation of the Skill Score (SS ∈ (−∞; 1]) (Murphy and Win-
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Figure 4.6: Portion of the hydrograph for Little River Above Townsend (TN) station for
which the empirical distributions of the the three phases have been detected as statistically
different. Gray, green and orange circles indicate the peaks respectively occurred during
El Niño, La Niña and the neutral phase.

kler (1992); Hashino et al. (2006)), which provides a global metric of
estimation accuracy:

SS(Qest, Qobs) = ρ2
Qest,Qobs

− [ρQest,Qobs − (σQest/σQobs)]
2 +

−[(µQest − µQobs/σQobs)]
2 (4.2)

where ρQest,Qobs is the correlation between the estimated values (Qest)
and the observations (Qobs); σQest and σQobs (µQest and µQobs) rep-
resent the standard deviation (mean) of the observations and esti-
mations, respectively. The SS accounts for the potential skill (i.e.,
coefficient of determination) as well as conditional and unconditional
biases. The SS is used both in the context of ordinary values fitting
and of extreme values estimation evaluation. In the latter case, to
provide a measure of the estimation of high quantiles, the terms in the
skill score definition (Eq.(4.2)) are computed only on quantiles with
return period Tk = (1 − Fk) − 1 > S, i.e. greater than the length of
the dataset used for calibration. This reflects application needs, which
target the estimation of extremes with return period much greater
than the length of the observational time series available (estimation
of quantiles with Tk ≤ S can be performed empirically, without the
need to assume a specific probability distribution);

2. the non-dimensional error is computed as:

εj(S, T ) =
[Qest,j(S, T )−Qobs,j(S, T )]

Qobs,j(S, T )
(4.3)
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for which the whole frequency distribution is estimated based on the
Nr = 1000 Monte Carlo realizations.
Over these realizations, the Fractional Standard Error (FSE) is finally
computed:

FSE(S, T ) =
[ 1

Nr

Nr∑
j=1

εj(S, T )2
] 1

2
(4.4)

4.4.3 Cross-Validation

The uncertainty in estimating high quantiles associated with the use of the
MEVD (in its single- or multi-phase versions) and of the GEV distribution
is quantified by means of a cross-validation procedure involving Monte Carlo
simulations (with Nr = 1000 realizations for each station) as follows:

1. the observational sample is divided into two sub-samples obtained by
randomly selecting S years from the original time series of length Ltot:
this sub-sample is used for parameter estimation, while data in the
remaining L = Ltot − S years are used for testing;

2. in every realization, both the SS and the FSE between the estimated
and observed quantiles are computed, as described in the Section about
the estimation metrics;

3. the whole procedure above is performed for different calibration sample
sizes (S = 10, 20, and 30 years), to evaluate how estimation uncertainty
varies jointly with return period and calibration sample size.

4.5 Results

4.5.1 Ordinary Values

First, the most appropriate parametric distribution for ordinary peak dis-
charge values is selected, based on the SS computed for the ordinary peaks.
Among the stations analyzed, the distribution that provides the highest SS
in most of the cases (71%) is the Gamma distribution (Figure 4.7), which has
thus been selected for use in comparative analyses over the whole CONUS.
This is consistent with other studies in the literature (e.g., Hann (1977);
Palynchuk and Guo (2008); Villarini and Strong (014c); Slater and Villarini
(2017)).
For most of the stations (3718 or 70% of the total), no statistically differ-
ent distributions were detected. At 883 sites (about 17%) the three phases
are all different from one another. For the remaining 13% of the stations,
common distributions were found to be shared by El Niño and the neutral
phases or by La Niña and the neutral phase (Figure 4.2). In most of the
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Figure 4.7: The map shows the best distribution for the ordinary events based on the skill
score. A black dot means that for that station a MEVD-Weibull would be the optimal
one, a light-blue dot indicates a MEVD-GPD as the best performing distribution and the
orange dots are those stations for which a MEVD-Gamma is the best MEVD.

analyzed cases, different ENSO phases are detectable in ordinary peak dis-
charge values in areas located in the eastern and southern United States,
which are known to be more strongly affected by ENSO (e.g., Emerton et al.
(2017); Mallakpour and Villarini (2017)). Detectable phases were found also
in a group of stations in the U.S. Midwest, which are not usually areas that
are affected by the effects of ENSO, but other processes might play a role.

4.5.2 Extreme Values Analysis

Now the question of evaluating the predictive performance of the MEVD-
Gamma formulations comes into play; the predictive performances of these
two new approaches is compared with those from the traditional GEV dis-
tribution. Then, the potential benefits of including ENSO phases in extreme
flood estimation is quantified.

When comparing the ”optimal MEVD” (i.e., the MEVD formulation based
on the number of phases that yielded the maximum SS value computed on
yearly maxima), the MEVD outperforms the traditional approach in ∼78%
of the stations based on the SS metric; Figure 4.8 shows the results from a
S=10 years calibration period in terms of the relative difference between the
SS from the optimal MEVD and the SS from the GEV distribution, divided
by the absolute value of the SS for the GEV distribution here assumed as a
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Figure 4.8: Comparison between the optimal MEVD (i.e. the one yielding the highest
SS, regardless of the approach that is applied) and the GEV distribution based on the
SS values, averaged over all the 1000 Monte Carlo realizations; colors indicate which
distribution provides the highest values of the SS for each station (tones of blue for the
MEVD and tones of red for the GEV distribution, respectively). Differences are computed
between the SS of the MEVD and the one of the GEV distribution, with respect to the
absolute value of the SS of the GEV: (SSMEVD–SSGEV )/|SSGEV |). White dots indicate
the stations for which the SS values are equal, at the first decimal digit.

reference. Some areas where the performance of the GEV distribution is gen-
erally higher can be identified. They are characterized by a small number of
uncorrelated flow peaks/year (e.g. the Rocky Mountains and southern Cal-
ifornia; see Figure 4.5a), usually in combination with short historical time
series.

In addition to characterize one method’s predictive performance globally,
there is also an interest in focusing on the prediction accuracy for high return
periods, being this the case for most practical applications. The return pe-
riod associated with the maximum value in each test sub-series is estimated
as Tmax = Ltot − S + 1, where Ltot represents the length of the historical
series: it is variable among the analyzed stations and ranges between 22 and
92 years. When looking at the FSE(S=10 years, Tmax) computed for the
highest return period from the MEVD and GEV approaches, the MEVD
outperforms the GEV distribution in about 76% of the analyzed stations
(Figure 4.9). The information provided by Figure 4.9 is complemented for
all return periods in Figure 4.10, where the FSE is plotted as a function of
the ratio between return period and calibration sample size S=10, 20 and
30 years in the different rows). Focusing on the first row of Figure 4.10
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Figure 4.9: Ratio between the Fractional Standard Error from the optimal MEVD (defined
on the basis of the SS between the single-phase and multi-phase approach) and the FSE
from the GEV distribution, computed for the highest return period at each station. Blue
dots represent sites where the MEVD outperforms the GEV distribution (the ratio between
the two FSEs is lower than one), while red dots indicate those stations in which the
GEV distribution is providing a more accurate estimation. Shaded colors indicate small
differences between the two approaches.

(S=10 years), for small values of the ratio between the return period (T )
and the calibration sample size (S ) the errors in the estimations computed
with the two EV approaches are comparable both in terms of average value
and uncertainty. When higher values of T/S are considered, the estimates
provided by the traditional GEV distribution are less accurate than those
provided by the MEVD approach, which shows a 30% improvement with
respect to GEV estimates. Many engineering applications are almost exclu-
sively focused on high return periods (i.e., return periods much larger than
the span of observational time series): the uncertainty of the GEV-based
estimates shows a steadily increasing trend of the FSE with increasing re-
turn period, while the MEVD estimation error stabilizes around a value of
about 0.32 for high values of T/S. This result suggests that, when estimating
quantiles corresponding to return periods much larger than values that have
been observed, the estimation errors of the traditional EVT approach will
become very large, and much larger than for the MEVD-based estimates.
The results of the FSE computed with calibration sample sizes of 20 and 30
years (second and third row in Figure 4.10) are consistent with those from
S=10 years, yet limited to smaller ratios of T over S.
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Figure 4.10: Fractional Standard Error (FSE) for the MEVD (in blue) and the GEV
distribution (in red) averaged across all the stations for return periods greater than the
calibration sample size, plotted as a function of the ratio between the return period (T )
and the length of the calibration sample size (S=10 years in this case). The dots represent
the mean values computed across all the stations and over T/S bins that include at least
300 values. The shaded areas are limited by the 25th and 75th percentiles. The different
rows are related to the calibration sample sizes (S = 10, 20 and 30 years).

The average number of peaks/year exhibits a large variation across space
(from 3 to 31) suggesting that different analysis approaches may be differ-
ently effective in dry areas, where extremely few flood events are observed,
and more humid areas, where the larger number of events/year makes avail-
able larger quantities of data. Also in consideration of the spatial pattern
identified in Figure 4.8, it is thus interesting to analyze the possible de-
pendence of the estimation performance associated with different EV ap-
proaches with respect to the number of floods/year. Figure 4.11 shows the
FSE plotted as a function of T/S for two groups of stations representing
two end-member cases: sites with less than 10 events/year and sites with
more than 17 events/year (limits are defined in such a way that both groups
include about 1000 stations). The advantage in the use of the MEVD ap-
proach instead of the traditional one is limited to higher values of T/S when
few peaks are selected, while it always outperforms the GEV distribution
when a greater number of peaks is available. This is linked to the fact that,
for the same T/S, having a small number of peaks is not adding much in-
formation to the distribution of maxima, like it does when the number of
peaks increases. However, the robustness of the MEVD with respect to the
GEV distribution is confirmed for high ratios of return period over sample
size.

In the end, the focus is on answering the second question, i.e. whether
it is beneficial to adopt a mixed-distribution MEVD approach accounting
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Figure 4.11: Fractional Standard Error as a function of T/S for the MEVD (blue) and
GEV distribution (red). Dots represent the mean of the FSE in each bin (the width of
the bins is chosen such that they contain at least 100 values). Shaded areas are limited
by the 25th and 75th percentiles. Panel a refers to sites where, on average, less than 10
events/year occur. Panel b shows results for sites where the average number of yearly
flood peaks is greater than 17.

for the different ENSO phases when estimating extreme flood magnitudes.
Figure 4.12 shows the performance of the optimal MEVD when the single-
component approach and the mixed one are compared, on the SS basis (the
performance of the two MEVD approaches is presented as the relative dif-
ference between the SS from the single-component MEVD and the one from
the mixed approach, divided by the absolute value of the SS for the mixed
MEVD here assumed as a reference). It was found that including mixtures
of distributions is not actually improving the estimations: given the highest
SS, values are equally divided between mixed and single-population MEVD
and in most of the cases there is no difference between them. Moreover,
whenever the mixed MEVD is selected, the value of the SS is generally com-
parable to what obtained using a single MEVD. The signal that was detected
in the ordinary distributions is confirmed by the use of a mixed distribu-
tion for the estimation of extremes only along the eastern and south-eastern
United States, which are known to be more strongly affected by ENSO.

These conclusions are corroborated by the analyses of the FSE values ob-
tained from multi-phase and single-phase MEVD approaches (Figure 4.13),
which show negligible improvement in the estimation accuracy when adopt-
ing a mixed-distribution MEVD based on multiple ENSO phases.
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Figure 4.12: Map showing the optimal MEVD for those stations in which different phases
have been detected by means of the Kolmogorov-Smirnov test. Magenta (black) dots
represent stations for which the highest skill score is the one obtained (not) includ-
ing the different phases in the MEVD. The relative performance of the two MEVD
approaches has been evaluated through through the ratio: (SSnon−mixed−MEVD −
SSmixed−MEVD)/|SSmixed−MEVD|. White dots represent the stations for which this ratio
is equal to 0.

Figure 4.13: Fractional Standard Error as a function of the ratio return period (T ) over
calibration sample size (S) for those stations in which both the single-distribution and
the mixed MEVD have been applied. The columns represent the different EV approaches
(black is used for the single-component MEVD, magenta for the mixed approach and red
for the GEV distribution), the rows the calibration sample sizes (S=10, 20 and 30 years)
that have been evaluated. The dots represent the mean value, while the filled area is
between the 25th and 75th percentile.
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4.6 Discussion

This Chapter develops and applies for the first time an adapted formulation
of the Metastatistical Extreme Value Distribution to flood peaks observed
at more than 5,000 USGS stream gages across the continental United States.
The key points can be summarized as follows.

1. The MEVD approach provides more accurate estimates of high flood
peak discharge quantiles in about 76% of the stations, especially when short
records are available to estimate the parameters of the distribution. The
MEVD displays the smallest Fractional Standard Error for small calibra-
tion sample sizes and high return periods, the case of greatest practical
interest.

2. When considering ENSO as the discriminating factor, the estimation of
high return period flow values is not necessarily improved, even though the
ENSO signature in the distributions of ordinary flood peaks were identified
as statistically significant at a non-negligible number. Either the uncertainty
intrinsic to extreme value estimation overwhelms the effects of ENSO phases
or just one of the ENSO phases detected in the distribution of the ordinary
events dominates the shape of the distributional tail. However, the introduc-
tion and formalization of this mixed-distribution MEVD for extreme value
analysis remains important because it lends itself to applications in other
contexts and where different physical drivers need to be considered, such
as the North Atlantic Oscillation in western Europe (Marani and Zanetti,
2015) or the Arctic Oscillation in north eastern Europe (Bartolini et al.,
2009).

3. ENSO signal is well recognisable in the distributions of the ordinary
peaks; therefore, even if it was found that including mixtures of distributions
in the MEVD approach brings to negligible improvement in the estimation
accuracy of high return period quantiles, it can still provide valuable infor-
mation. The index that distinguishes between an El Niño or La Niña year is
forecasted in advance through climatic models. Knowing that a specific area
needs to distinguish between two or three phases can support FFA in terms
of which distribution should be use to make more accurate flow estimations.
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Chapter 5

A mixed MEVD for different rainfall types: the
case of tropical cyclones.

Extreme rainfall is a widely relevant topic, and much effort is devoted to
the estimation of high return period rainfall events. Among the mechanisms
that can generate extreme rainfall Tropical Cyclones (TCs) are an important
example, with far-reaching socio-economic impacts. Here a mixed MEVD
approach is explored in order to understand whether including the different
rainfall-generating mechanisms (namely, stratiform and local convective sys-
tems as opposed to tropical cyclones) can reduce the estimation uncertainty.

5.1 Introduction

Tropical cyclones (TCs) cause loss of lives and economic damages every year
(Pielke Jr. and Landsea (1998); Palmieri et al. (2006); Pielke Jr. (2007);
Rappaport (2000); Rappaport (2014)). While at the global scale storms are
the second most frequent natural disaster, in the United States they occupy
first place in the ranking, and have costed the country 944.8 billion US$ in
the period 1998-2017 (Wallemacq and House, 2018).
In addition to the well-known and most studied losses due to high wind
speed and storm surges, TCs are responsible for widespread flooding (Vil-
larini and Smith (2013); Rowe and Villarini (2013); Czajkowski et al. (2013);
Villarini et al. (014a)) and flash flooding in urban areas and small basins
(Hirschboeck, 1991), they trigger landslides (Bucknam et al., 2001). Cza-
jkowski et al. (2017), for example, using insurance claims showed that the
number of residential losses from TCs-caused flooding were twice as much
as storm-surge losses in U.S. communities, and affected equally coastal and
inland areas.
Besides the damages they cause, TCs can even have some positive side ef-
fects, for instance on groundwater recharge (Abdalla and Al-Abri, 2011) and
on drought mitigation (Kam et al., 2013). It is therefore important to un-
derstand how streamflow response varies due to storms, for a more effective
reservoir management and water resource allocation (Chen et al., 2015).
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TCs have captured general attention especially after Hurricane Katrina (Au-
gust 2005), which had devastating consequences (1,833 total fatalities and an
estimated economic damage of 108 billion US$, as reported by Knabb et al.
(2011)). Currently, there is no unequivocal agreement on whether climate
change translated into an increased TC activity in recent years. Emanuel
(2005) and Webster et al. (2005) underline the increase in tropical cyclone
activity in the last decades; Pielke Jr. (2005) argued for the absence of trends
in damages caused by hurricanes in the United States. Elsner et al. (2008),
using satellite-derived tropical cyclone wind speeds (between 1981 and 2006),
found significant trends for wind speed quantiles above the 70th percentile,
which are consistent with the hypothesis that TC winds should increase
with increasing ocean temperature (Emanuel, 1991). Landsea et al. (2006)
were more cautious in the quantification of the anthropogenic impact on the
frequency of extreme tropical cyclones, due to concerns about data quality,
stating that additional efforts in the reanalysis of existing TC databases are
necessary before performing reliable trend analyses. In a review on trop-
ical cyclones and climate change and in more recent work, Knutson et al.
(2010); Knutson et al. (2015) proposed projections according to which the
frequency of the most intense cyclones will increase, with increases in the
precipitation rate within 100 km of the storm center of the order of 20%.
Moreover, damages on coastal zones due to storm surges associated with
TCs are expected to increase.

With a focus on TC-induced rainfall, Prat and Nelson (2013) character-
ized the rainfall over land associated with TCs in several metropolitan areas
around the world using TRMM precipitation data (three of the stations con-
sidered by Prat and Nelson (2013) are analyzed here: Charleston, Houston
and New Orleans). For these stations, they found an average contribution
of TCs to rainfall between 8.6 and 10.1% (maximum range: 18.2-25.7%).
Khouakhi et al. (2017) quantified the contribution of TCs to annual, seasonal
and extreme rainfall, finding that along the U.S. East Coast the contribution
of TCs to rainfall, despite being lower than in East Asia and Oceania and
South East Africa, is still relevant (10-15% and up to 25% for annual and
seasonal rainfall, respectively). These proportions increase when looking
at extremes, reaching values higher than 30% when the variable of interest
are TC-induced annual maxima. Consistently with the results by Khouakhi
et al. (2017), Aryal et al. (2018) showed that rainfall annual maxima in large
areas from the Gulf Coast to the U.S. North East are significantly influenced
by TCs, with contributions from ∼20% (along the Gulf Coast) to ∼35% (in
coastal Carolina/Virginia).
Furthermore, it is important to highlight that not only coastal areas are
impacted by TC rainfall. TC remnants, indeed, can produce heavy rain-
fall further away from the coast (see Villarini et al. (2011); Khouakhi et al.
(2017)): TC influence on rainfall can be detected in gauges located up to
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400 km from the coastline.

The topic of TC rainfall contributions is of great relevance in engineering,
for insurance companies and policy makers. In particular, the estimation
of high return period quantiles from different sources of rainfall can provide
precious support to the design of prevention and mitigation structures, as
well as the basis for more accurate risk evaluation.
Several studies have been focused on the link between TCs and rainfall ex-
tremes at the regional scale: in the United States (Shepherd et al. (2007);
Knight and Davis (2009); Kunkel et al. (2010)), Australia (Villarini and
Denniston, 016b), on Asia (Kim et al. (2006); Ren et al. (2006)), North
America (Barlow, 2011). Khouakhi et al. (2017) performed a global analy-
sis.

Within the above framework, and leveraging the added value of incorporat-
ing the physical mechanisms into the statistical analysis of extreme events,
the work presented here separates events associated with stratiform and
local rainfall-generating systems from TC-induced rainfall, and proposes a
mixed statistical approach to account for the different storm types. Marra
et al. (2019) first explored the use of the MEVD to model extremes emerging
from multiple underlying processes, focusing on the eastern Mediterranean
region: two classes of synoptic systems that show different precipitation
features were identified and distinguished, 1) Mediterranean lows and 2)
active Red Sea troughs and other synoptic systems. Marra et al. (2019)
proposed an appealing simplified MEVD approach (SMEV). SMEV ensures
the sample size to be large enough for robustly fitting a distribution after
the stratification in event types and reduces the effort in computing MEVD
quantiles, yet with the drawback of neglecting the inter-annual variability
among the distributions.

Traditionally, the EVT focuses on the analysis of annual maxima (AM)
or on the POT approach (Coles (2001), see 2.1 for a detailed discussion).
These methods are based on number of assumptions, as they either assume
a large number of events/year or the validity of specific distributions (Gen-
eralize Pareto for exceedances over a high threshold and Poisson occurrence
of events, see Section 2.1). Even more importantly, traditional EVT meth-
ods only use annual maxima or a few values over a high threshold, hence
discarding most of the available information. Here, we propose the use of
the MEVD (Marani and Ignaccolo (2015); Zorzetto et al. (2016)) and apply
it to long series of daily rainfall in several American metropolitan areas,
which have a high likelihood of being struck by a TC (see Section 5.2 for
details about the case studies). Furthermore, in order to study the potential
benefit of considering mixtures of distributions describing different rainfall
types in the estimation of high return period quantiles, the performances of
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the single-component MEVD and of its mixed version (which distinguishes
between non-TC and TC-induced rainfall) are relatively compared.

The aims of the present Chapter are to understand 1) if including differ-
ent distributions associated with different rainfall types (non-TC vs TC-
induced) in the MEVD formulation improves the accuracy of the estimation
of extremes, 2) what is the spatial variability, across the sites analyzed, of
the TC influence on extreme rainfall, and 3) which is the temporal scale
that better allows to identify TCs effects on extreme rainfall.
Section 5.2 describes the data analyzed and is followed by a Section sum-
marizing the methodology adopted; Section 5.4 presents the results and a
conclusions section highlights the key points.

5.2 Data

Long time series of daily rainfall from the Global Historical Climate Net-
work (GHCN) are analyzed. The case studies are five metropolitan areas
in the Continental United States (Charlotte, Charleston, Jacksonville, New
Orleans and Houston) and Puerto Rico (Coloso station), which have a high
probability to be impacted by a TC. Except for Charleston, the stations do
not have a continuous record, due to missing or incomplete years (a year
is considered as complete when it includes at least 330 values). To avoid
gaps in the series and to extend the available records, when possible, they
are complemented using nearby stations. The maximum distance between
the ”main” station and the complementary one is about 15 km. See Table
5.1 and Figure 5.1 about location and time coverage details for the selected
stations.

To avoid mixing stations with significantly different rainfall observations,
a two-sample Kolmogorov-Smirnov test at a significance level α=0.05 was
applied to the records of the overlapping years between the main station
and the one selected as candidate to complement the record. This check is
important because, even if the stations considered are close enough, they
might be located at different altitudes –as it happens in Puerto Rico- or
they might be influenced by local phenomena to varying degrees (e.g., one
on the coast with respect to one more inland). If the empirical distributions
of rainfall are detected to be statistically different, the secondary station is
discarded. Furthermore, in order to verify that a TC affecting one area was
influencing rainfall to some extent the same day also 15 km farther, values
of TC-induced rainfall occurred in the same day during the years shared by
the ”main” and the ”complementary” station(s) were plotted one against
the other (Figure 5.2). There is not a perfect match between these values,
as may be expected. However, points are grouped around the 45 degrees
line, suggesting a homogeneous behaviour across stations; moreover, when
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Table 5.1: Name and identification number of the stations analyzed. Names in bold refer
to the station with the longer record, while the others are the stations used to complement
the main ones.

STATION IDENTIFICATION NUMBER

Downtown Charleston, SC USW00013782

Charlotte Douglas Airport, NC USW00013881
Charlotte, NC USC00311695

Houston William P Hobby Airport, TX USW00012918
Houston Weather Bureau City, TX USW00012945

Jacksonville, FL USW00093852
Jacksonville International Airport, FL USW00013889

New Orleans Audubon, LA USW00012930
New Orleans Carrollton, LA USC00166676
New Orleans Airport, LA USC00166661

Coloso, PR RQC00662801

Figure 5.1: Panel a): Map showing the location of the stations analyzed, divided in
”main” (red squares) and ”secondary” (yellow dots). Puerto Rico is represented closer to
the CONUS in order to reduce empty spaces in the map. Panel b): Years of record for the
analyzed stations. Black bars refer to the main station, while gray bars to the secondary
ones. See Table 1 for matching identification numbers and station names. The longest
continuous record, for Charleston station, spans the period from 1893 to 2018.

the ”main” station recorded a value of TC-induced rainfall, the same oc-
curred also for the ”secondary” station on the same day.
After these tests, no secondary station to fill the gaps in the record or to
extend it was found for Puerto Rico, as may be seen in Figure 5.1b.

The trajectories of tropical storms are derived from the HURDAT2
database (Figures 5.3, 5.4), the revised version of the National Hurricane
Center’s (NHC) North Atlantic basin hurricane database, also known as
”best track” database (Landsea and Franklin, 2013). Data go back to 1851,
but observations before the 1970’s, the pre-satellite era, are argued to dis-
play significant uncertainties, due to storm undercount (Vecchi and Knutson
(2011); Landsea et al. (2012); Hagen et al. (2012)). For this reason analyses
were performed both with and without the first part of the database (before
1970).
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Figure 5.2: Scatter plot of TC-induced rainfall values recorded on the same day in the
main station (xM on the x-axis) and the secondary one(s) (xC on the y-axis). Magenta
dots (which are not present in this case) would represent values of rainfall that have been
identified as TC-induced in one stations but not in the other.

While acknowledging that uncertainties characterizing the first part of the
dataset might somewhat affect the estimation of high quantiles, using also
the data from 1851-1969 can provide useful information on values corre-
sponding to return periods much higher than the calibration sample size.
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Figure 5.3: Trajectories of TCs influencing rainfall values in each station (blue lines). The
trajectories within a buffer of 250 (500) km are represented by orange (green) lines and
numbers 1 (2) in the panel name. Letters in the panel name indicate the different stations:
a) Charleston, b) Charlotte, c) Houston, d) Jacksonville, e) New Orleans, f) Coloso (PR).
The whole record available is considered here.

5.3 Methodology

In order to evaluate the possible advantage of including different rainfall
generating mechanisms, the MEVD is applied here to daily rainfall records
both in its single-component formulation (i.e., a MEVD that treats all the
rainfall values as belonging to the same population, as in Eq.(2.6) ) and in
its mixed version (i.e., considering different distributions for non-TC rainfall
and the TC-induced one).
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Figure 5.4: Number of Tropical Cyclones per year for the analyzed stations. The left
column refers to TCs that enter the buffer of 250 km, while the right one to those entering
the buffer of 500 km (number 1 and 2 in the panel name, respectively). Letters in the panel
names indicate the stations: a) Charleston, b) Charlotte, c) Houston, d) Jacksonville, e)
New Orleans and f) Coloso (PR). The blue dashed line indicates the beginning of the
satellite era (1970).
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The mixed approach is similar to the SMEV approach proposed by Marra
et al. (2019) for rainfall from two synoptic systems, since they both include
different distributions underlying the events. However, the approach pro-
posed here differs from the SMEV formulation in the definition of the ”or-
dinary distributions”: the SMEV expression does not consider time-varying
distributions (no dependence on j ). In Chapter 3 the relevance of account-
ing for the inter-annual variability in the statistical properties of rainfall was
emphasized by means of analyses on both historical and synthetic records of
daily rainfall data. Those analyses indicate that it is useful to preserve the
variability across the years when a sufficient number of events/year is avail-
able to estimate parameter values sufficiently accurately. Hence, parameter
estimation is performed here on a yearly basis for non-TC rainfall, whereas
only one distribution (resulting in one single pair of parameters) is fitted to
the values of TC-induced rainfall. The use of the entire calibration sample in
the second case becomes necessary since the number of rainfall events caused
by TCs in any one year is not sufficient to ensure a large-enough sample on
which to fit a distribution without introducing large uncertainties.

Leveraging the intrinsic ability of the MEVD to naturally account for differ-
ent phenomena (in this case and TC and non-TC rainfall), a mixed version
of the MEVD is applied as follows:

ζ(x) =
1

M

M∑
j=1

[FnTC(x; ~θj)]
nnTCj · [FTC(x; ~θ)]n

TC
j (5.1)

where FnTC(x; ~θj) is the distribution fitted to the non-TC ordinary events in

year j, while FTC(x; ~θ) is the distribution fitted on all the TC rainfall values
in the calibration sample (and therefore independent on j ); nnTC

j (nTC
j ) is

the number of non-TC (TC) events in any-one year.

Following the reasoning by Wilson and Toumi (2005); Marani and Ignac-
colo (2015), the Weibull distribution is used to describe the ordinary values
(daily rainfall values>1 mm).
Parameter estimation is performed by means of Probability Weighted Mo-
ments (PWM), since they are less sensitive to outliers and perform better
for small samples if compared to Maximum Likelihood or the conventional
method of moments (Greenwood et al., 1979).

5.3.1 Tropical Cyclone-Induced Rainfall

For the application of the mixed-MEVD, first the definition of TC-induced
rainfall is needed. A rainfall value is attributed to a tropical storm if the
value is measured in the time window ±1 day during which a storm trajec-
tory enters a 250 or 500 km radius buffer around the rain gauge (see Figure
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Figure 5.5: Example of two trajectories entering a buffer of 250 (orange) and 500 (green)
km. If the station (red square) records a rainfall value in the time window (± 1day) in
which the trajectory is within the buffer, that value is attributed to a TC.

5.5 for an example of TC influencing-rainfall trajectory identification). The
choice of the buffer size is consistent with other studies in the literature (for
example Villarini et al. (2014) indicate rainfall to be influenced by a hurri-
cane up to a distance of 5o, ∼500 km). Considering a time window widened
to the previous day and the one after allows to capture both possible pre-
decessor rainfall events (Galarneau et al., 2010) and storm remnants.
Consecutive wet days during a TC are highly correlated, which violates
the independence hypothesis at the basis of the traditional EVT and of the
MEVD. In order to only select independent events, the maximum daily rain-
fall depth associated with each TC is considered here.

Due to the extended influence that TCs have over time (if compared for
example to their extratropical counterparts, Wallace and Hobbs (2006)),
rainfall events with duration over multiple days are also studied. Hence, the
cumulative rainfall in non-overlapping windows of different lengths, from 2 to
5 days, is also analyzed. In this case, the aggregated values of precipitation
are considered as being TC-induced if at least one of the values in the ag-
gregation time window has been influenced by a TC. The threshold for daily
rainfall is consequently modified when considering rainfall over multiple days
(thragg) and the selection criteria are as follows: thragg = noaggr days·1mm,
where noaggr days is the number of days on which rainfall is aggregated and
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1 mm is the threshold set for daily rainfall.

5.3.2 Evaluation of estimation accuracy

A Monte Carlo experiment involving Nr = 1000 realizations was performed
for each station and the uncertainty of MEVD-estimated quantiles (accord-
ing to both the single and two-component versions) was quantified using a
cross-validation procedure. In each realization j :

1. the observational record is randomly reshuffled (keeping all observa-
tions in their original year to preserve both their yearly frequency
distributions and the distribution of the number of events/year) to
generate a realization displaying no systematic variability;

2. the reshuffled record is divided into two independent sub-samples, ran-
domly selecting S years for parameters calibration and using the re-
maining L = Ltot–S years (where Ltot represents the length of the
series) for testing the accuracy in the estimation of maxima;

3. the relative error εj is computed between the estimated maxima and
the observed ones for each calibration sample size S and return period
T as εj(S, T ) = (xest,j(S, T )− xobs,j(S, T ))/xobs,j(S, T );

4. the above process is repeated Nr=1000 times to obtain a full statis-
tical description of error metrics. This whole process is repeated for
different calibration sample sizes (S= 10, 20 and 30 years).

5. The Fractional Standard Error is computed over the 1000 realizations
as:

FSE(S, T ) =
1

Nr

Nr∑
j=1

εj(S, T )2]1/2 (5.2)

5.4 Results

Berg et al. (2013), in a study on precipitation over Germany, showed that
while stratiform precipitation has a power-law behavior, the curve of con-
vective precipitation in a log-log plot is concave, that is, steeper at higher
intensities. Here, the distinction is tested between non-TC and TC-induced
rainfall; being the latter a sub-sample of convective rainfall, a similar be-
havior could be expected. As it can be noted in Figure 5.6, the distribution
of TC-induced rainfall forms a more or less abrupt ”elbow” bend for high
values of rainfall depths.
A two-sample Kolmogorov-Smirnov test at the 0.05 significance level was
applied in order to detect the statistical difference between the non-TC and
the TC-rainfall; the empirical distributions resulted statistically different in
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Figure 5.6: Log-log plot of the exceedance probability of ordinary event magnitude for the
six stations analyzed: a) Charleston, b) Charlotte, c) Houston, d) Jacksonville, e) New
Orleans and f) Coloso, PR. Blue dots indicate all the values of daily rainfall, irrespective
of their generating mechanisms, black dots are the values not influenced by a TC and red
dots represent TC-induced rainfall values.

all the analyzed cases.

After the detection of the statistical difference between the distributions
of non-TC and TC-induced rainfall, the suitability of the Weibull distribu-
tion to describe rainfall values both in the single-type and the multiple-type
approach was tested (see Quantile-Quantile plots in Figures 5.7,. . ., 5.12).
The choice of the aggregation window of 3 days followed the evaluation of
the frequency of the number of consecutive days affected by TCs in the an-
alyzed stations (see Figure 5.13). In most of them, there is an important
contribution of TCs on rainfall up to 2-3 consecutive days, therefore the use
of 3-days non-overlapping windows allows capturing most of the impact of
the TCs on rainfall.
In terms of the advantage introduced by explicitly considering different rain-
fall types, three cases are found, that may be illustrated by the Charleston,
Houston, and Coloso cases. For the Charleston station (Figure 5.7), there
is a slightly improvement in the accuracy of the estimations of TC-induced
rainfall depths when moving from daily to 3-day cumulative rainfall, but
values are well estimated also at the daily scale. In Houston (Figure 5.9),
Hurricane Harvey caused more than 800 mm of rainfall in three days, which
is more than two times higher than the next highest 3-day cumulative rainfall
(estimated T∼2000 years, Emanuel (2017)). The fitted Weibull distribution
tends to underestimate high return periods in the station of Coloso (Figure
5.12); Weibull estimates are less affected by this issue when considering 3-
day cumulative rainfall.
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Figure 5.7: Quantile-Quantile (QQ) plots for Charleston station. The two rows represent
daily and 3-day cumulative rainfall respectively. The three columns refer to: all the rainfall
values, irrespective the generating mechanism (left), non-TC rainfall (center), and TC-
induced rainfall (right). The data refer to the entire record available (1893-2018), and to
a 500 km buffer. All-type rainfall values and non-TC rainfall values are fitted using yearly
Weibull distributions, while TC-induced rainfall values are fitted with a single probability
distribution.

Figure 5.8: Quantile-Quantile (QQ) plots for Charlotte stations. The two rows represent
daily and 3-day cumulative rainfall respectively. The three columns refer to: all the rainfall
values, irrespective the generating mechanism (left), non-TC rainfall (center), and TC-
induced rainfall (right). The data refer to the entire record available (1893-2018), and to
a 500 km buffer. All-type rainfall values and non-TC rainfall values are fitted using yearly
Weibull distributions, while TC-induced rainfall values are fitted with a single probability
distribution.
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Figure 5.9: Quantile-Quantile (QQ) plots for Houston stations. The two rows represent
daily and 3-day cumulative rainfall respectively. The three columns refer to: all the rainfall
values, irrespective the generating mechanism (left), non-TC rainfall (center), and TC-
induced rainfall (right). The data refer to the entire record available (1921-2018), and to
a 500 km buffer. All-type rainfall values and non-TC rainfall values are fitted using yearly
Weibull distributions, while TC-induced rainfall values are fitted with a single probability
distribution.

Figure 5.10: Quantile-Quantile (QQ) plots for Jacksonville stations. The two rows rep-
resent daily and 3-day cumulative rainfall respectively. The three columns refer to: all
the rainfall values, irrespective the generating mechanism (left), non-TC rainfall (center),
and TC-induced rainfall (right). The data refer to the entire record available (1872-2018),
and to a 500 km buffer. All-type rainfall values and non-TC rainfall values are fitted us-
ing yearly Weibull distributions, while TC-induced rainfall values are fitted with a single
probability distribution.
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Figure 5.11: Quantile-Quantile (QQ) plots for New Orleans stations. The two rows rep-
resent daily and 3-day cumulative rainfall respectively. The three columns refer to: all
the rainfall values, irrespective the generating mechanism (left), non-TC rainfall (center),
and TC-induced rainfall (right). The data refer to the entire record available (1896-2018),
and to a 500 km buffer. All-type rainfall values and non-TC rainfall values are fitted us-
ing yearly Weibull distributions, while TC-induced rainfall values are fitted with a single
probability distribution.

Figure 5.12: Quantile-Quantile (QQ) plots for Coloso (PR) station. The two rows rep-
resent daily and 3-day cumulative rainfall respectively. The three columns refer to: all
the rainfall values, irrespective the generating mechanism (left), non-TC rainfall (center),
and TC-induced rainfall (right). The data refer to the entire record available (1905-2018),
and to a 500 km buffer. All-type rainfall values and non-TC rainfall values are fitted us-
ing yearly Weibull distributions, while TC-induced rainfall values are fitted with a single
probability distribution..
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Figure 5.13: Frequency of the number of consecutive days of TC-induced rainfall for the
250 km buffer (orange) and the 500 km buffer (green) for the six stations analyzed: a)
Charleston, b) Charlotte, c) Houston, d) Jacksonville, e) New Orleans, f) Coloso (PR).

After verifying the existence of a significant statistical difference between the
distributions of non-TC and TC-induced rainfall values and the suitability of
the Weibull distribution as a model to describe ordinary events, the poten-
tial advantage of using a mixed approach instead of the single-distribution
MEVD was evaluated. Results are presented in terms of the ratio between
the the value of the Fractional Standard Error for the mixed-MEVD and
the one for the single-component MEVD as a function of the calibration
sample size (S = 10, 20 and 30 years). This analysis allows to immediately
appreciate which approach provides the most accurate estimations and, si-
multaneously, the effect of the sample size on the estimation error.

Through a qualitative assessment of the density of the TCs trajectories
passing near the stations selected (Figure 5.3) and of the number of TCs
entering the buffers every year (Figure 5.4), the estimation of high-return
period quantiles at the Charleston, Jacksonville, New Orleans and Puerto
Rico stations would be expected to benefit from the use of mixtures of dis-
tributions. Despite the results by Prat and Nelson (2013), who indicate a
significant TC contribution on rainfall in the Houston area, the density of
storms trajectories entering the buffers around the city does not seem to
imply a significant influence of TCs on extreme rainfall. This conclusion is
supported by the histograms in Figure 5.4 (panels c1 and c2), especially for
the 250 km buffer.
Moreover, values show that Houston experiences very heavy non-TC rain-
fall. One explanation may be tornadoes generated by convective cells at
the mesoscale, mainly in spring. Houston is indeed located in the so called
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Figure 5.14: Number of tornadoes recorded per 2,470 mi2. Modified from FEMA (2008)

”Tornado Alley”, a term indicating U.S. areas that are often affected by tor-
nadoes. According to the map that shows the tornado activity in the United
States (page 3 in FEMA (2008), reported in Figure 5.14) based on NOAA
Storm Prediction Center Statistics, Houston belongs to the third class (the
highest among the stations analyzed here), where tornadoes are moderately
frequent. For this class, the range is from 5 to 10 recorded EF3, EF4, and
EF5 tornadoes per 2,470 square miles (EF stays for Enhanced Fujita Scale
according to which tornadoes severity is categorized).
A comparison with the monthly reports available at https://www.ncdc.

noaa.gov/sotc/tornadoes, which report occurrences dating back, at most,
to 2006, shows that some of the highest rainfall values, if not associated to
TCs, occurred in months in which tornadoes were reported in the Houston
area. Therefore, even if a precise match with tornado occurrence cannot be
tested due to the coarse monthly resolution of tornado records, most likely
these heavy rainfall values were generated by these convective systems.

Considering the potential advantage of distinguishing separate distributions
for non-TC and TC-induced daily rainfall, it can easily be seen that using
mixtures of distributions is not beneficial for all the stations analyzed (Fig-
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Figure 5.15: Ratio between the FSE computed with a mixed MEVD and the FSE ob-
tained with the single-component MEVD, as a function of the ratio return period (T ) to
calibration sample size (S) for the stations analyzed. The whole hurricane record and a
500 km buffer is used. Colors refer to the different sample sizes: S = 10 (green), 20 (light-
blue) and 30 (purple) years. Each panel shows one station: a) Charleston, b) Charlotte,
c) Houston, d) Miami, e) New Orleans and f) Coloso (Puerto Rico). The red line sets
the threshold between the performances of the two MEVD approaches: if dots are located
below this line, the use of mixtures in the MEVD is beneficial, while if they are above the
line, a single-component MEVD is providing more accurate estimations.

ures 5.15 and 5.16, for the whole record and the one from 1970, considering
a 500 km buffer). With reference to Prat and Nelson (2013), distinguishing
two types of distributions does not result in more accurate estimations for
the Houston station, hence supporting the first hypothesis linked to the low
frequency of TCs in this area.
For the Charleston station, characterized by the most uniform frequency
of TCs over all the period of record, for both the record lengths a mixed
MEVD outperforms the single-component one; not surprisingly, given the
number and the uniformity over time of TCs entering the buffers around
this station, increasing the calibration sample size from 10 to 20 and 30
years is still confirming the trend and the advantage of the mixed approach
becomes higher. When TC-induced rainfall events are present throughout
the whole record, indeed, using more years to estimate the parameters of
the different (non-TC and TC rainfall) distributions includes more values
in both the rainfall types, resulting in a higher accuracy in the parameters
estimation for the distribution of TC rainfall.
Regarding Coloso station (PR), for which a strong signal due to the high
density of the TCs trajectories would have been expected, including mix-
tures of distributions in the MEVD approach is not reducing the uncertainty
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Figure 5.16: Ratio between the FSE computed with a mixed MEVD and the FSE ob-
tained with the single-component MEVD, as a function of the ratio return period (T)
to calibration sample size (s) for the stations analyzed. The hurricane record since 1970
and a 500 km buffer are used. Colors refer to the different sample sizes: S = 10 (green),
20 (light-blue) and 30 (purple) years. Each panel shows one station: a) Charleston, b)
Charlotte, c) Houston, d) Miami, e) New Orleans and f) Coloso (Puerto Rico). The red
line sets the threshold between the performances of the two MEVD approaches: if dots
are located below this line, the use of mixtures in the MEVD is beneficial, while if they
are above the line, a single-component MEVD is providing more accurate estimations.
The purple line (S=30 years) is not present as the record is not long enough to allow an
evaluation for T/S values greater than 1.
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in the estimations (the ratio between FSE computed using the mixed ap-
proach and the FSE resulting from the application of the single-component
MEVD is higher than one). When looking at high return period quantiles,
the mixed and the single-component approaches provide the same uncer-
tainty in the estimation. Also in this case, the calibration sample sizes of 20
and 30 years reduce the uncertainty in the estimations.

Following the reasoning about the impact of TCs on consecutive days and
supported by the plots in Figure 5.13, the case of 3-days cumulative rainfall
was also evaluated. In this case, a mixed MEVD is always outperform-
ing the single-component one when considering aggregated values of rainfall
over time windows longer than one day, especially for high T/S, with the
exception of the Houston station. This would suggest that the effect of high
intensity rainfall due to TCs is more evident when cumulative rainfall over
time windows longer than one day. Figure 5.17 shows the results for the
aggregated values of rainfall over a time window of 3 days: the FSE reduc-
tion associated with the inclusion of multiple distributions in the MEVD is
generally higher than in the case of daily rainfall.
The Houston area, being impacted by a smaller number of TCs/year and
possibly because it is affected also by tornadoes (that yet cause heavy rain-
fall for a shorter time, usually one day) and due to the heavy rainfall caused
by Hurricane Harvey in August 2017 (more than 800 mm in three days) is
not showing any advantage for the use of mixtures of distributions.

5.5 Discussion

This Chapter evaluates the potential improvement in the estimation of ex-
tremes including mixtures of distributions used to discriminate between non-
Tropical Cyclones and Tropical Cyclones-induced rainfall. Understanding
and differentiating rainfall-generating mechanisms is indeed relevant for a
conceptual reasoning and it can be useful to more accurately estimate ex-
tremes. For this reason, the MEVD was applied to long series of daily rainfall
in six U.S. metropolitan areas, considering non-TC and TC-induced rainfall
both as coming from the same distribution and belonging to different ones.

On the basis of the non-parametric two-sample Kolmogorov-Smirnov test,
the distributions of non TC and TC-induced ordinary rainfall events were
found to be always statistically separable. A behavior similar to the one
shown by Berg et al. (2013) in a study on stratiform and convective rainfall
was highlighted here, as the exceedance probability of TC-induced rainfall
generally presents a more pronounced concavity in a log-log plot.
When moving from the ordinary event distribution to the estimation of ex-
treme values, it was shown that including mixtures of distributions describ-
ing non TC and TC-induced rainfall is reducing the estimation uncertainty
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Figure 5.17: Ratio between the FSE computed with a mixed MEVD and the FSE ob-
tained with the single-component MEVD, as a function of the ratio return period (T)
over calibration sample size (S) for the stations analyzed, considering 3-day cumulative
rainfall on the whole record and the 500 km buffer. The colors of the dots refer to the
different sample sizes: S = 10 (green), 20 (light-blue) and 30 (purple) years. Each panel
shows one station: a) Charleston, b) Charlotte, c) Houston, d) Miami, e) New Orleans
and f) Coloso (Puerto Rico). The red line sets the threshold between the performances
of the two MEVD approaches: if dots are located below this line, the use of mixtures in
the MEVD is beneficial, while if they are above the line, a single-component MEVD is
providing more accurate estimations
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Figure 5.18: Ratio between the FSE computed with a mixed MEVD and the FSE ob-
tained with the single-component MEVD, as a function of the ratio return period (T)
over calibration sample size (s) for the stations analyzed, considering daily rainfall on
the whole record and the buffer of 250 km. The colors of the dots refer to the different
sample sizes: S = 10 (green), 20 (light-blue) and 30 (purple) years. Each panel shows
one station: a) Charleston, b) Charlotte, c) Houston, d) Miami, e) New Orleans and f)
Coloso (Puerto Rico). The red line sets the threshold between the performances of the two
MEVD approaches: if dots are located below this line, the use of mixtures in the MEVD
is beneficial, while if they are above the line, a single-component MEVD is providing more
accurate estimations
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Figure 5.19: Ratio between the FSE computed with a mixed MEVD and the FSE ob-
tained with the single-component MEVD, as a function of the ratio return period (T)
to calibration sample size (S) for the stations analyzed, considering 3-days cumulative
rainfall on the whole record and the 250 km buffer. The colors of the dots refer to the
different sample sizes: S = 10 (green), 20 (light-blue) and 30 (purple) years. Each panel
shows one station: a) Charleston, b) Charlotte, c) Houston, d) Miami, e) New Orleans
and f) Coloso (Puerto Rico). The red line sets the threshold between the performances
of the two MEVD approaches: if dots are located below this line, the use of mixtures in
the MEVD is beneficial, while if they are above the line, a single-component MEVD is
providing more accurate estimations
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at several stations. Possible reasons for the mixed approach not being con-
sistently superior to the single-component MEVD in the case of daily rainfall
are the definition used for TC-induced daily rainfall and the temporal in-
fluence of TCs on rainfall fields. Considering only the maximum among the
values of precipitation identified in a time window where a TC is present
and attributing the others to non-TC rainfall is contaminating the two dis-
tributions, to variable degrees, depending on the features that TC-rainfall
presents in each station (higher or lower duration of TC influence on rain-
fall in the area). Moreover, the life of a TC lasts much longer than one
day (Wallace and Hobbs, 2006), and their impact on rainfall occurs on time
scales longer than the daily one, hence a time window of 2-3 consecutive
days better captures TC-induced rainfall.

The hypotheses above are corroborated by the results found when consid-
ering values of 3-day cumulative rainfall: in this case, the mixed approach
outperforms the single-component MEVD because this window length al-
lows a better description of the effect of a TC on rainfall. This emphasizes
the importance of accurately defining and evaluating TC-induced rainfall on
a time scale longer than the daily one, which would support water manage-
ment and flood risk mitigation. The case of Houston remains an exception.
Beside the low frequency of TCs in this are, other factors might play a role:
a) the presence of tornadoes, which are categorized as generating non-TC
rainfall but produce very heavy rainfall, and b) the amount of rainfall caused
by Hurricane Harvey in August 2017, more than 800 mm/3 days, which af-
fects the distributional parameters and quantile estimation, especially when
non-TC and TC rainfall depths are kept separate.

Considering the different analyses performed by changing starting date,
buffer size and calibration sample size, the main inferences are as follows:
a. results based on the whole available record and the subset starting in
1970 are found to be consistent;
b. the 500 km buffer shows a slight improvement in the use of the mixed-
MEVD with respect to the single-component MEVD if compared to the 250
km buffer (compare Figures 5.15 and 5.18 with Figures 5.17 and 5.19 respec-
tively); TCs signature on rainfall can be detected up to very large distances
from the gauge (as indicated by Villarini et al. (2014));
c. increasing the calibration sample size from 10 to 30 years, especially in the
case of cumulative rainfall, makes the advantage of using a mixed-MEVD
generally higher; within a longer sample size it is more likely to have a suffi-
cient number of TC-induced rainfall values, hence reducing the uncertainty
in parameter estimation.

88



Chapter 6

Discussion and Conclusions

The work presented in this thesis is focused on the extension and optimiza-
tion of the Metastatistical Extreme Value Distribution.

An important step forward has been made in understanding the main factors
controlling the choice of the optimal estimation window used for parameter
estimation. On the one hand, it is important to ensure that the size of the
calibration sample is large enough to reduce uncertainty in parameter esti-
mation, yet this is not the only factor that must be taken into account. The
inter-annual variability of the distributions exerts a crucial role: provided
that the number of values in the sample used for parameter estimation is
large enough to allow robustly fitting a distribution, a yearly parameter es-
timation becomes optimal for lower values of average number of rainy days
when the variability among the distributions is high.
When looking at trends, or performing non-stationary analyses, it is impor-
tant to keep the estimation window as short as possible, in order to be able
to follow climate variability. The MEVD in its optimized formulation (1
year estimation windows) is therefore an ideal candidate to perform trend
analyses. The long series of daily rainfall at the Padova station, which allows
analyses of long-term changes in rainfall regimes, was used to illustrate the
benefits of the optimized MEVD approach in resolving the fluctuation and
trends in the 100-year daily rainfall depth. It was shown how the MEVD
minimizes the noise deriving from estimation uncertainty allowing a greater
sensitivity in trend detection and an improved ability to resolve short time
scale changes in extremes. The GEV distribution is indeed very sensitive to
the possible presence of a few very large or very low maxima in the analysis
window and it is largely affected by the use of short sliding windows, which
are instead necessary to resolve the time variability of extremes.
Common methods used for trend analysis, e.g. quantile regression, are based
on identifying a trend on high quantiles, and therefore are subject to the
estimation uncertainty of the distribution chosen to describe them. Also
in this sense, the MEVD can provide relevant support, being able to more
accurate estimate the quantiles of interest.
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This dissertation described the first application of the MEVD to flood fre-
quency analysis. The main difference between discharge and rainfall records
is that the former are characterized by a higher correlation; hence, an in-
hibition window to identify independent flood events is needed. A MEVD-
Gamma was used to estimate extreme flow peaks over the CONUS, showing
that it outperforms the traditional EVT in about 76% of the 5,311 USGS
stations analyzed. The MEVD provided a reduction of about 30% in the
estimation error for return periods that are higher than the sample used for
parameter estimation.
Furthermore, given the growing interest in bringing physical mechanisms
back into hydrological statistical analysis, a MEVD approach accounting
for different flood generating mechanisms was developed, with particular fo-
cus on different ENSO phases. Differences in the probability distributions of
ordinary peaks occurring during El Niño, La Niña or the neutral phase were
demonstrated and a mixed MEVD ENSO-based was applied to streamflow
records where the signature ENSO on flood events was identified. However,
negligible or no improvement in the estimation accuracy of extreme values
was found when including in the MEVD the different distributions based on
phase detection.
Nonetheless, the ability of accounting for mixtures of distributions in the
flood-peak MEVD formulation has significant practical potential: several
flood drivers can be identified (e.g., snowmelt, rain-on-snow, ice jam, atmo-
spheric rivers) whose role can be studied using the approach developed.
Regarding ENSO, its detection in the distributions of the ordinary peaks is
also still valuable: the detection or prediction of the occurrence of different
ENSO phases justifies the use of a phase-based MEVD with potential im-
provements for flood frequency analysis.

Leveraging the appealing property of the MEVD to naturally include the
physical phenomena underlying hydrologic processes, the relevant topic of
tropical cyclones-induced rainfall has been studied. Six metropolitan areas
that are often impacted by TCs have been chosen as case studies. The ordi-
nary distributions of non-TC and TC-induced daily rainfall were identified
as statistically different, and distinguishing between the two event types was
beneficial for extreme value analysis in some cases.
Due to the relatively long characteristic time scale associated with TCs ef-
fects, the daily time scale was found not to be the most appropriate scale
for investigating this phenomenon. Hence, cumulative rainfall on time win-
dows of 3 days was considered, and both the single-component MEVD and
its mixed version were applied. The latter was found to yield a significant
advantage.
The Houston station represented an exception, which spurred some inter-
esting questions. In the Houston area case, the mixed MEVD approach did
not provide improvements in estimation uncertainty at the daily scale, nor
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for 3-days cumulative rainfall. The proposed explanation lies in the possible
role of tornadoes, which cause heavy rainfall under non-TC conditions. Fu-
ture work will need to extend the analysis based on a mixed MEVD which
includes at least a third precipitation type, associated with the presence of
tornadoes.
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Figure 7.1: Skill score values for the single-distribution MEVD. Panel a (b) shows the skill
score values for a MEVD with an estimation window of 5 (10) years.
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Figure 7.2: Skill score of the mixed MEVD. Panel a (b) shows the skill score values for a
mixed MEVD with an estimation window of 5 (10) years.
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bilità. Pubblicazioni del R. Istituto Superiore di Scienze Economiche e
Commerciali di Firenze.

Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A. (2013). Re-
silience of river flow regimes. Proc. Natl. Acad. Sci., 110(32):12925–12930.

Bucknam, R., Coe, J., Chavarria, M., Godt, J., Tarr, A., Bradley, L.-A.,
Rafferty, S., Hancock, D., Dart, R., and Johnson, M. (2001). Landslides
triggered by Hurricane Mitch in Guatemala - Inventory and discussion.
Technical report, U.S. Geological Survey.

Cann, K., Thomas, D., Salmon, R., Wyn-Jones, A., and Kay, D. (2013).
Extreme water-related weather events and waterborne disease. Epidemiol.
Infect., 141(4):671–686.

Castillo, E. (1988). Extreme Value Theory in Engineering. Academic Press
Inc, San Diego, CA.

Chavez-Demoulin, V. and Davison, A. (2005). Generalized additive models
for sample extremes. Appl. Stat., 54:207–222.

Chen, X., Kumar, M., and Mcglynn, B. (2015). Variations in streamflow re-
sponse to large hurricane-season storms in a southeastern U.S. watershed.
J. Hydrometeorol., 16:55–69.

96



Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values.
London.

Coles, S. and Casson, E. (1998). Extreme value modelling of hurricane wind
speeds. Struct. Saf., 20(3):283–296.

Cook, N. and Harris, R. (2004). Exact and general FT1 penultimate distribu-
tions of extreme wind speeds drawn from tail-equivalent Weibull parents.
Struct. Saf., 26:391–420.

Curriero, F., Patz, J., Rose, J., and Lele, S. (2001). The association between
extreme precipitation and waterborne disease outbreaks in the United
States, 1948-1994. Am. J. Public Health, 91(8):1194–1199.

Czajkowski, J., Villarini, G., Michel-Kerjan, E., and Smith, J. (2013). De-
termining tropical cyclone inland flooding loss on a large scale through a
new flood peak ratio-based methodology. Environ. Res. Lett., 8.

Czajkowski, J., Villarini, G., Montgomery, M., Michel-Kerjan, E., and
Goska, R. (2017). Assessing Current and Future Freshwater Flood Risk
from North Atlantic Tropical Cyclones via Insurance Claims. Sci. Rep.,
7:1–10.

Davison, A. and Smith, R. (1990). Models for Exceedances over High
Thresholds. J. R. Stat. Soc. Ser. B, 52(3):393–442.

Dettinger, M., Ralph, F., Das, T., Neiman, P., and Cayan, D. (2011). At-
mospheric Rivers, Floods and the Water Resources of California. Water,
3(2):445–478.

D’Odorico, P. and Fagherazzi, S. (2003). A probabilistic model of rainfall-
triggered shallow landslides in hollows: A long-term analysis. Water Re-
sour. Res., 39(9):1–14.

Easterling, D., Meehl, G., Parmesan, C., Changnon, S., Karl, T., and
Mearns, L. (2000). Climate Extremes: Observations, Modeling, and Im-
pacts. Science, 289(5487):2068–2074.

Elsner, J. B., Kossin, J. P., and Jagger, T. H. (2008). The increasing inten-
sity of the strongest tropical cyclones. Nature, 455:92–95.

Emanuel, K. (1991). The theory of hurricanes. Annu. Rev. Fluid Mech.,
23:179–196.

Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the
past 30 years. Nature, 436:686–688.

Emanuel, K. (2017). Assessing the present and future probability of Hurri-
cane Harvey’s rainfall. PNAS, 114:12,681–12,684.

97



Emerton, R., Cloke, H., Stephens, E., Zsoter, E., Woolnough, S., and Pap-
penberger, F. (2017). Complex picture for likelihood of ENSO-driven flood
hazard. Nat. Commun., 8:1–9.

England, Jr., J., Cohn, T., Faber, B., Stedinger, J., Thomas, Jr., W.,
Veilleux, A., Kiang, J., and Mason, Jr, R. (2018). Guidelines for deter-
mining flood flow frequency – Bulletin 17C. Technical report, Reston,VA.

FEMA (2008). Taking shelter from the storm: building a safe room for your
home or small business. Technical report.

Fisher, R. (1941). The negative binomial distribution. Ann Eugen.,
11(1):182–187.

Fisher, R. and Tippett, L. (1928). Limiting forms of the frequency distribu-
tion of the largest or smallest member of a sample. Math. Proc. Cambridge
Philos. Soc., 24(2):180–190.

Fleig, A., Tallaksen, L., Hisdal, H., Demuth, S., Fleig, A., Tallaksen, L.,
Hisdal, H., and Demuth, S. (2006). A global evaluation of streamflow
drought characteristics. Hydrol. Earth Syst. Sci., 10(4):535–552.

Gnedenko, B. (1943). Sur La Distribution Limite Du Terme Maximum
D’Une Serie Aleatoire. Ann. Math., 44(3):423.

Greenwood, J., Landwehr, J., and Matalas, N. (1979). Probability weighted
moments: definition and relation to parameters of several distributions
expressable in inverse form. Water Resour. Res., 15(5):1049–1054.

Gumbel, E. J. (2004). Statistics of extremes. Dover Publications.

Hagen, A. B., Strahan-Sakoskie, D., and Luckett, C. (2012). A reanaly-
sis of the 1944-53 atlantic hurricane seasons-the first decade of aircraft
reconnaissance. J. Clim., 25:4441–4460.

Haigh, I., Nicholls, R., and Wells, N. (2010). A comparison of the main
methods for estimating probabilities of extreme still water levels. Coast.
Eng., 57(9):838–849.

Hann, C. (1977). Statistical Methods in Hydrology. The Iowa State Univer-
sity Press.

Hashino, T., Bradley, A. A., and Schwartz, S. S. (2006). Evaluation of bias-
correction methods for ensemble streamflow volume forecasts. Hydrol.
Earth Syst. Sci. Discuss., 3(2):561–594.

Heckert, N. A., Simiu, E., and Whalen, T. (1998). Estimates of hurri-
cane wind speeds by ”Peaks Over Threshold” method. J. Struct. Eng.,
124(4):445–449.

98



Hirschboeck, K. (1987). Hydroclimatically-defined mixed distributions in
partial duration flood series. In Hydrol. Freq. Model. Proc. Int. Symp.
Flood Freq. Risk Anal., pages 199–212, Louisiana State University, Baton
Rouge, U.S.A. Springer Netherlands, Dordrecht.

Hirschboeck, K. (1991). Hydrology of floods and droughts - climate and
floods in ”National water summary 1988-89: Hydrologic events and floods
and droughts”, U.S. Geological Survey Water-Supply Paper 2375. Tech-
nical report, U.S. Geological Survey.

Hosking, J. (1985). Estimation of the Generalized Extreme-Value Distribu-
tion by the Method of Probability-Weighted Moments. Technometrics,
27(3).

Hosking, J. (1990). L-Moments: Analysis and estimation of distributions
using linear combinations of order statistics. J. R. Stat. Soc. Ser. B,
52(1):105–124.

IACWD (1982). Guidelines for determining flood flow frequency: Hydrology
subcommittee bulletin 17B. Technical report, USGS, Reston,VA.

Kam, J., Sheffield, J., Yuan, X., and Wood, E. (2013). The influence of
atlantic tropical cyclones on drought over the Eastern United States (1980-
2007). J. Clim., 26:3067–3086.

Katz, R., Parlange, M., and Naveau, P. (2002). Statistics of extremes in
climatology and hydrology. Adv. Water Resour., 25:1287–1304.

Kendall, M. (1975). Rank Correlation Methods. Charles Griffin, London.

Khaliq, M., Ouarda, T., Ondo, J., Gachon, P., and Bobée, B. (2006). Fre-
quency analysis of a sequence of dependent and/or non-stationary hydro-
meteorological observations: A review. J. Hydrol., 329(3-4):534–552.

Khouakhi, A., Villarini, G., and Vecchi, G. (2017). Contribution of tropical
cyclones to rainfall at the global scale. J. Clim., 30:359–372.

Kim, J., Ho, C., Lee, M., Jeong, J., and Chen, D. (2006). Large increase
in heavy rainfall associated with tropical cyclone landfalls in Korea after
the late 1970s. Geophys. Res. Lett., 33:L18706.

Klein Tank, A. M. G. Zwiers, F. W. and Zhang, X. (2009). Guidelines on
analysis of extremes in a changing climate in support of informed decisions
for adaptation, World Meteorological Organization. Technical report.
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