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Abstract

Ordered categorical data are frequently encountered in many fields of research, such as,

sociology, psychology, quality control, medical studies, and so forth. Especially in med-

ical research, it is inevitable to meet a lot of problems containing ordered categorical

data. Our specific interest is to find convincing solutions to some of the testing prob-

lems which include restrictions in the set of alternatives, such as testing for stochastic

dominance and testing for monotonic stochastic ordering while using such a kind of

data. When the number of nuisance parameters of underlying distributions or that

of observed variables is small, there are some likelihood-based solutions. Our interest,

however, is for cases where such numbers are not small. In these cases likelihood-based

methods do not work, thus our interest is to proceed nonparametrically within permu-

tation methods. Permutation methods are conditional on the pooled set of observed

data which, in turn, are typically a set of sufficient statistics under the null hypothesis

for the underlying distribution. Moreover, due to the evident complexity of such prob-

lems, according to Roy (1953), we also must use their Union-Intersection representation

consisting on an equivalent break-down of the hypothesis under testing into a set of

simpler sub-hypotheses for each of which a permutation test is available and such tests

are jointly considered. So we must stay within the nonparametric combination of several

dependent permutation tests. In the thesis, guided by two medical examples from the

literature, we propose suitable solutions that are proved to be admissible combinations

of optimal conditional partial tests and so enjoying good asymptotic properties.





Sommario

Dati di tipo categoriale ordinato si incontrano molto frequentemente in molti ambiti di

ricerca, ad esempio: sociologia, psicologia, controllo della qualità, studi clinici, e cos̀ı via.

Specialmente nella ricerca medica è quasi invitabile incontrare un gran numero di proble-

mi in cui i dati sono espressi con variabili di tipo categoriale ordinato. Il nostro specifico

interesse è di trovare convincenti soluzioni ad alcuni problemi di verifica d’ipotesi che

richiedono restrizioni sull’insieme delle alternative, come ad esempio test di dominanza

stocastica e test di regressione monotona quando i dati disponibili sono appunto di tipo

categoriale ordinato. Quando il numero di parametri di disturbo e/o quello delle variabi-

li in gioco è piccolo vi sono disponibili, ancorché piuttosto problematiche, delle soluzioni

desunte via likelihood. Il nostro interesse comunque è principalmente rivolto a situazioni

in cui tali numeri non sono piccoli. In casi, cioè, in cui soluzioni via likelihood o non sono

disponibili o non sono possibili. Perciò il nostro interesse è di procedere in modo non

parametrico nell’ambito dei metodi di permutazione. I metodi di permutazione sono

metodi inferenziali condizionati ai dati osservati che, tipicamente, sono un insieme di

statistiche sufficienti sotto l’ipotesi nulla per la sottostante distribuzione, qualunque essa

sia. Inoltre, per l’evidente complessità dei problemi, in accordo con Roy (1953) dob-

biamo necessariamente adottare la loro rappresentazione di tipo Unione-Intersezione,

consistente in una scomposizione delle ipotesi in un equivalente insieme di sotto-ipotesi

per ognuna delle quali sia disponibile un test di permutazione e che tali test vengano

processati congiuntamente. Per cui si dovrà operare nell’ambito della combinazione non

parametrica di una pluralità di test di permutazione tra loro dipendenti. Nella tesi,

guidati da due esempi di letteratura di ambito medico, vengono discusse alcune solu-

zioni a questo tipo di problemi che risultano combinazioni ammissibili di test parziali

condizionatamente ottimi e perciò dotate di buone proprietà asintotiche.
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Preamble

Overview

Ordered categorical data are popular in many fields, such as psychology, medical studies,

quality control, sociology, and so on. Such data are presented in the form of ordered

categories, as for instance, {Unqualified quality, Qualified quality}; {Unhappy, Neither
happy nor unhappy, Happy}; {Death, Vegetative state, Major disability, Minor disability,

Good recovery}; and so forth. Various related experiments are designed to analyze the

superior or inferior rank of comparable groups, and the corresponding sample sizes are

always small or moderate. Such problems incorporating ordered categorical data are

still challenging for researchers, especially with testing under constrained alternatives.

Most researchers tend to use likelihood approaches because, in general, the related

solutions are provided with nice statistical inferential properties, but they must be

based on too stringent assumptions including normality or other specific distributions

assumptions of underlying populations, separable nuisance entities, etc. The stringent

assumptions may be set up for one reason or another, such as researchers’ prior informa-

tion; statistical inference experiences; a reduction in the cost of computation; and so on.

When problems involve the comparison of several groups or the data are multivariate

distributed, in such a setting, the number of underlying parameters/nuisance param-

eters, and/or the number of observed variables can often be much larger than sample

sizes, the corresponding solutions within likelihood frameworks, when available become

an extremely difficult task. Therefore, unless there are clearly reasonable assumptions

allowing for a considerable reduction of underlying complexity, the most interesting is

that when one pseudo-parameter is represented as a function of many underlying nui-

sance parameters, there is no general correct testing solution within that approach.

The likelihood approaches may provide questionable but interpretable results, and for

more general and complex situations, there is no simple closed-form expression for the

solution.
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4 Main contributions of the thesis

In the face of different or complicated situations, such as, the lack of underly-

ing distribution’s information, the existence of multidimensional variables, the exis-

tence of unknown dependence relations between variables, and so on, compared with

parametric/semi-parametric methods, it seems to be more suitable for solving the prob-

lems by nonparametric approaches, which in turn are based on mild assumptions.

Among nonparametric approaches, the nonparametric combination (NPC) of depen-

dent permutation tests which work within the principles of sufficiency and conditionality,

could provide admissible solutions for many complex situations that are also asymptot-

ically coincident with the optimal ones when these exist. According to Roy’s Union-

Intersection approach, the NPC testing procedure can properly and equivalently break-

down the global problem into a set of sub-problems, each of which provided with proper

partial permutation tests, the corresponding global result is obtained by jointly analyzed

all of them. In this thesis, we tried to analyze some testing problems incorporating with

ordered categorical data.

The rest of the thesis is organized as follows. Chapter 1 reviews the literature on

the ordered constraint problems with the main focus on categorical ordinal variables.

Chapter 2 introduces the notions of the permutation approach and some relevant defi-

nitions and properties. Chapter 3 discusses the two-sample problem for unidimensional

and multidimensional cases, and the J-sample stochastic ordering case. Chapter 4 study

approaches for stochastic ordering constraints with respect to time. Some concluding

remarks are in Chapter 5. The overview of software tools and algorithms is in the

Appendix Section.

Main contributions of the thesis

The main contributions of the thesis can be summarized as follows.

• We proposed related permutation solutions for 2 ×K unidimensional and multi-

dimensional cases (Chapter 3).

• We produced the permutation solutions based on UI-NPC for the J-sample stochas-

tic ordering case (Chapter 3).

• We provided an analysis of a unidimensional example of subarachnoid hemorrhage

measured by the Glasgow outcome scale (Chapter 3).

• For the repeated measure designs, we proposed the permutation solutions to detect

the stochastic ordering with respect to time (Chapter 4).
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• We provided an analysis of the pain scores on the shoulder tip under two treatment

schemes after laparoscopic cholecystectomy (Chapter 4).





Chapter 1

Introduction

1.1 Foreword

Throughout past decades, statisticians have continuously proposed and improved various

approaches to analyzing contingency tables with categorical ordinal variables in order to

make restricted inferences. There is plenty of occurrences of ordered categorical data in

many fields of research and statistical consulting, such as sociology, psychology, medical

studies, quality control, and so forth. Various investigations or experiments are designed

to analyze superior or inferior rank of comparable groups, such as the ordering of treat-

ment effects in clinical experiments; whether the treatment effect varies with taking

different doses of the drug; respondents’ inclinations toward some particular questions

in social sciences and psychology; quality examination of products in marketing and

technology; etc.

Such ordered categorical data are usually organized in contingency tables, and denote

the rows by X be explanatory variable and the columns by Y be response variable, with

J and K classes, respectively. Assume X take values at {τ1, τ2, · · · , τJ}, and Y take

values at {υ1, υ2, · · · , υK}. If rows or columns is/are ordered categorical, there are simple

order ≺ in rows and/or columns (i.e. τ1 ≺ τ2 ≺ · · · ≺ τJ or υ1 ≺ υ2 ≺ · · · ≺ υK), and

the table becomes doubly-ordered table if both are ordered categorical variables. The

problem of comparing whether different levels in the row variable X satisfy stochastic

dominance is our principal interest, therefore, we intend to provide tests of hypothesis

with ordinal responses especially by testing for stochastic dominance between several

levels of variable X.

It is well known that there are several difficulties to analyze such studies concern-

ing some aspects: sample size is small or moderate; an occurrence of tied data; high

dimensional contingency tables; the larger the sample size, the greater the number of

7



8 Section 1.2 - Solutions within the likelihood framework

underlying nuisance parameters; and so forth. Such problems are still challenging and

further research is going on.

1.2 Solutions within the likelihood framework

1.2.1 Prologue

A substantial of inferences, which study the restricted issues (especially stochastic or-

dering problems) defined on the identical ordered categorical scale, is made by the

introduction of the likelihood framework schemes.

Under the likelihood framework, there are two main approaches to the problem of

testing distributional equality in the null hypothesis against an ordered alternative.

One is to consider the likelihood ratio principle, that is, to search for the maximum of

the likelihood function under both the null parameter space and full parameter space,

usually including the assumption of normality of the populations. The majority of the

statistics by the introduction of the likelihood-based framework are established in a

form similar to the chi-bar-squared χ̄2 statistic or χ2-mix type statistics, and few parts

of approaches are to consider the F distribution and Student’s t distribution.

It is well known that quantitative data have mathematical meaning and can be

worked out with mathematical operations. Different from quantitative data, qualitative

data or categorical data are usually descriptive. Categorical data could be represented

by numerical data (i.e. “1” for No pain, “5” for Severe pain), but this does not have any

clear mathematical meaning since numbers play the role of ordinal code symbols. Ordi-

nal categorical data where the variables have order categories and the distance between

categories is unknown if ordinal categories are represented by numbers (scores) having

a ranking, analysis of ordinal data should incorporate natural ordering and numbers,

to avoid loss of information when we only consider numerical data. Moreover, by rep-

resenting ordered categorical variables by artificial variables, the restricted issues could

be transformed into standard regression problems, and the isotonic regression tool is

the well-known regression-based manner to make inference on such ordered restricted

issues. It is an intuitive and natural idea for ordered categorical data analysis, however,

that we need to maintain the sorting property of categories when we encounter issues

in practice.
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1.2.2 Regression-based approaches

Regression methods for making inferences of the fitting of the curves or mathematical

functions to a series of data points or joint distributions have always been the focus

of attention. It is also straightforward to give the definition of a regression function,

which is chosen to fit a series of observed data points. Of course, there may be some

problems to be considered, such as how to evaluate the quality of fit; and how to avoid

the uncertainty as much as possible; and so on. The solutions to such questions involve

selecting the appropriate measure of the quality of fit, the most common methods are

based on restricted least squares or restricted least absolute deviations.

In different situations, in fact, regression methods could be chosen with different

functions forms with respect to the shapes of the observed curves or the prior informa-

tion of the researchers who may believe that the “true” distribution has a particular

form with the appropriate functions. Unlike the liberal performance of unrestricted re-

gression function, most approaches are working within several assumptions or subject

to some particular constraints, and in fact, the ordered constraints have always been

taken into account for the restricted classes of regression functions. Particularly, by the

mathematical way, the ordered restricted regression functions can be summarized by

the monotonic regression functions. A monotonic regression function is called isotonic

regression when the function shows a nondecreasing trend, it indicates that the curve

plotted has a nondecreasing tendency as the values of the independent variable increase.

If the function has a non-increasing tendency, the regression function can be named as

the antitonic regression. Here we will give the well-known definition of the isotonic

regression (see more details in the book of Robertson et al. (1988)).

Definition 1.1. Let X be the finite set {τ1, τ2, · · · , τJ} with the simple order τ1 ≺
τ2 ≺ · · · ≺ τJ . A function f measuring on X is isotonic regarding the ordering if

f(τ1) ≤ f(τ2) ≤ · · · ≤ f(τJ), with f(τ1) < f(τJ). Moreover, the simple order relation

on X can be replaced with a more weak relation on X, such as quasi-order relation.

Simple order should satisfy four conditions: I) reflexive: τi ≺ τi, for τi ∈ X; II)

transitive: τi ≺ τj, τj ≺ τk, imply τi ≺ τk; III) antisymmetric: τi ≺ τj, τj ≺ τi, imply

τi = τj; IV) comparable: if τi, τj ∈ X, implies either τi ≺ τj or τj ≺ τi. Quasi-order

need to satisfy reflexive and transitive but not necessarily satisfy antisymmetric.

It is worth noting that, the main objective of the statistical inference for order re-

stricted regression theory is to find a solution to assess the quality of fit under con-

straints, thus, the common least squares method must be extended to the restricted

least squares.
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Definition 1.2. Let X be the finite set {τ1, τ2, · · · , τJ} with the simple order τ1 ≺ τ2 ≺
· · · ≺ τJ , w be a positive weight function defined on X and F is a restricted family of

functions f measuring on X. Suppose g be a given function defined on X, a function g∗

defined on X is an isotonic regression of g with weights w(τ) if and only if g∗ is isotonic

and g∗ is the solution to the restricted least squares problem

minimize
∑

τ∈X

[g(τ)− f(τ)]2w(τ)

in the class of all isotonic functions f in F . In the words, g∗ is the least squares projection

of g onto the collection F . The emphasis of the solution is to find the function g∗.

The problems of comparing several populations or several mean values are of interest

in practice. The majority of methods for dealing with such issues are considered under

the assumption of normality. As a typical problem in the setting, it is desirable to test

the null hypothesis of equality of means against the alternative where the means are

isotonic under the normality assumptions. The following example was presented in the

book by Barlow et al. (1972) and also in the book by Robertson et al. (1988).

Suppose Y1,Y2, · · · ,YJ is a sequence of independent random samples from normal

populations with unknown means {µ1, µ2, · · · , µJ} and known variances {σ2
1, σ

2
2, · · · , σ2

J}.
Let µj and σ2

j be means and variances functions defined on finite set X, respectively.

Viz., X = {τ1, τ2, · · · , τJ} with the simple order τ1 ≺ τ2 ≺ · · · ≺ τJ , such that µj = µ(τj)

and σ2
j = σ2(τj). For the j-th samples, let nj be the sample size corresponding to the j-

th sample Yj, namely, Yj = {Yj1, Yj2, · · · , Yjnj
}, and sample mean be Ȳj =

∑nj

i=1 Yji/nj

for j = 1, 2, · · · , J , and denote total sample size by n =
∑

j nj.

We intend to find the maximum likelihood estimator (MLE) under the constraint

µ(τ1) ≤ µ(τ2) ≤ · · · ≤ µ(τJ). We start from the likelihood function as follows:

L(Y1, · · · ,YJ |µ,σ) = (2π)−n/2
J∏

j=1

σ
−nj

j exp

{
− 1

2σ2
j

nj∑

i=1

(Yji − µ(τj))
2

}
,

The log-likelihood function is proportional to

l(µ, σ2|Y) ∝ −
J∑

j=1

σ−2
j

nj∑

i=1

(Yji − µ(τj))
2.
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It is straightforward to minimize the
∑J

j=1 σ
−2
j

∑nj

i=1(Yji−µ(τj))2 to obtain the restricted

MLE subject to µ(τ1) ≤ µ(τ2) ≤ · · · ≤ µ(τJ). The sum can be rewritten as

J∑

j=1

nj∑

i=1

σ−2
j (Yji − Ȳj)

2 + 2
J∑

j=1

nj∑

i=1

σ−2
j (Yji − Ȳj)[Ȳj − µ(τj)] +

J∑

j=1

[Ȳj − µ(τj)]
2njσ

−2
j .

The first term does depend on µ(τj), the second term disappears, thus, the solution

become to minimize
∑J

j=1[Ȳj − µ(τj)]
2nj/σ

2
j for restricted MLE subject to µ(τ1) ≤

µ(τ2) ≤ · · · ≤ µ(τJ). Comparing with the definition above, let g and w be the functions

defined on X, namely, g(τj) = Ȳj and weights w(τj) = nj/σ
2
j . Denote the restricted

MLE of µ by g∗, hence g∗ is isotonic regression of g with weights w.

The problem of the case is to test the equality of means in the null hypothesis against

the alternative that the means are isotonic.

H0 : µ(τ1) = µ(τ2) = · · · = µ(τJ)

against

H1 : µ(τ1) ≤ µ(τ2) ≤ · · · ≤ µ(τJ) with µ(τ1) < µ(τJ)

It is clear that the MLEs of µ = {µ(τ1), µ(τ2), · · · , µ(τJ)} under null hypothesis H0 are

given by

µ̂(τ1) = µ̂(τ2) = · · · = µ̂(τJ) =
J∑

j=1

w(τj)Ȳj/
J∑

j=1

w(τj) with w(τj) = nj/σ
2(τj).

The likelihood ratio test can be taken into account to settle such problems. Furthermore,

the finite set X could assume artificial variables by the introduction of ”scores” that

maintain the same order restrictions, it may be relabelled by numerical values based on

actual problems.

1.2.3 Chi-squared-based statistics

The problem of comparing several populations or groups frequently occurs in many ar-

eas. Normality assumptions are often introduced to settle such issues, and it is expected

to test for homogeneity of normal means against order restricted alternative. More de-

tails about the following example were presented in the book by Barlow et al. (1972)

and also in the book by Robertson et al. (1988).
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Suppose X be finite set {τ1, τ2, · · · , τJ} with simple order/quasi-order ≺ defined on

X. To simplify, the components inX can be remarked by numerical values that maintain

the same order relations, namely, X = {1, 2, · · · , J}, and denote positive weights by

wj. At the same time, Y1,Y2, · · · ,YJ is a sequence of independent random samples

from normal populations with unknown means {µ1, µ2, · · · , µJ} and known variances

{σ2
1, σ

2
2, · · · , σ2

J}, denote sample size and sample mean by nj and Ȳj for j = 1, 2, · · · , J ,
the simplified notations share the same meaning as presented in the previous subsection.

The interest of problem may test for homogeneity of normal means with order re-

stricted alternative,

H0 : µ1 = µ2 = · · · = µJ vs. H1 : µ1 ≤ µ2 ≤ · · · ≤ µJ , with µ1 < µJ .

Under H0, the MLE µ̂ of µ1 = µ2 = · · · = µJ are given by the previous subsection,

µ̂ =
J∑

j=1

wjȲj/

J∑

j=1

wj with wj = nj/σ
2
j

Assume the restricted MLE of µ under H1 be µ
∗, it is clear that µ∗ is isotonic regression

of Ȳ with weights w = {w1, w2, · · · , wJ}.
The likelihood ratio test (LRT) for testing H0 against H1 rejects H0 for small values

of the statistic

λ =
maxµ∈H0 L(Y1, · · · ,YJ |µ,σ)
maxµ∈H1 L(Y1, · · · ,YJ |µ,σ)

The negative of the log-likelihood function is proportional to

−2 log λ ∝
J∑

j=1

wj(µ
∗
j − µ̂)2

Therefore, the LRT rejects to the null hypothesis for large values of

χ̄2
J =

J∑

j=1

wj(µ
∗
j − µ̂)2, with wj = nj/σ

2
j

Here the subscript J implies the number of means being compared.
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Furthermore, if the variances are unknown with form σ2
j = ajσ

2, where aj are known

but σ2 is unknown, the LRT of the statistic is given by

Ē2
J =

∑J
j=1wj(µ

∗
j − µ̂)2

∑J
j=1 a

−1
j

∑nj

i=1(Yji − µ̂)2

where the statistic Ē2
J rejects H0 for large values.

Although the statistic χ̄2
J is of form as

∑J
j=1wj(µ

∗
j − µ̂)2, the null distribution of the

χ̄2
J is not easy to determine especially when the value of J is large. Accordingly, the

following definition is a powerful tool to give a solution to obtain the null hypothesis

distribution (Robertson et al. (1988)).

Definition 1.3. Let µ ∈ H0. The level probabilities are defined as

Pr(l, J ;w) = Pr(M = l), l = 1, 2, · · · , J,

where M is the number of level sets in Y∗, which is in accordance with the isotonic

regression of Y = (Y1, Y2, · · · , YJ) with weights w, and Y1, Y2, · · · , YJ are independent

normal variables with mean µj and variance w−1
j . Obviously, the Pr(l, J ;w) do not

depend on the common value of µj and they are unchanged if w is multiplied by a

positive constant. Particularly, when w1 = w2 = · · · = wJ , level probabilities have the

form of Pr(l, J).

The general form of the null distribution of the statistic χ̄2
J which need the values of

level probabilities Pr(l, J ;w) is given by

Pr
(
χ̄2
J ≥ c

)
=

J∑

l=1

Pr(l, J ;w) Pr
(
χ2
l−1 ≥ c

)
, c > 0.

Obviously, the density of χ̄2
J can be expressed as a weighted sum of well-known densities.

Therefore, it is necessary to find the level probabilities Pr(l, J ;w) for getting the null

hypothesis distribution. Unfortunately, simple closed-form expressions for Pr(l, J ;w)

are not possible to be determined except some particular orderings (Barlow et al. (1972)

and Robertson et al. (1988)).

The general method can be implemented in two steps, and the main idea is by using

recursive algorithms. Firstly, we need to compute the value of Pr(J, J ;w). And then

for l < J , the recursive formulas for Pr(J, J ;w) in terms of Pr(j, i;w) for j ≤ i < J ,

the values Pr(l, J ;w) can be computed under the constraint
∑J

l=1 Pr(l, J ;w) = 1.
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The example below is a special case of simple order, where H1 : µ1 ≤ µ2 ≤ · · · ≤ µJ ,

with µ1 < µJ . Suppose Y1, Y2, · · · , YJ are independent normally distributed variables,

with a common zero mean and variances w−1
1 , w−1

2 , · · · , w−1
J under H0. The method

firstly considers the probability Pr(Y1 < Y2 < · · · < YJ); by setting Uj−1 = Yj −Yj−1 for

j = 2, 3, · · · , J , the orthant probabilities Pj−1 are

Pj−1 = Pr(U1 > 0, U2 > 0, · · · , Uj−1 > 0), for j = 2, 3, · · · , J.

Clearly, U = (U1, U2, · · · , UJ−1) is multivariate normally distributed, viz. U ∼ N (0,Σ).

For J > 5, however, there does not exist a general closed expression for orthant proba-

bilities Pj−1(see Abrahamson (1964)); for the case J ≤ 5, the related solution of which

can be obtained by the correlation coefficients ρjk and integrals. Let B1, B2, · · · , Bl, for

1 ≤ l ≤ J , be the (unordered) level sets of Y∗, and L{B1,B2,··· ,Bl} be the collection of all

decompositions of Y∗ into l (unordered) level sets, and #(·) is the number of elements

of w∗
Bj
.

The level probabilities Pr(l, J ;w) for the case J = 2, are straightforward to achieve,

Pr(1, 2;w) = Pr(2, 2;w) = P1 = 1/2.

For the case J = 3, Pr(3, 3;w) = P2 = 1/4 + 1/2π · sin−1 ρ12, and based on recursive

algorithm,

Pr(2, 3;w) =Pr(2, 2;w1 + w2, w3) · Pr(1, 2;w1, w2)

+ Pr(2, 2;w1, w2 + w3) · Pr(1, 2;w2, w3)

since Pr(1, 3;w) = 1− Pr(3, 3;w)− Pr(2, 3;w).

Similarly, Pr(4, 4;w) takes the value of P3. For Pr(3, 4;w), the number of level sets

is 3 for simple order, therefore, there are three decomposition methods to weights w;

namely,

Pr(3, 4;w) =
∑

(B1,B2,B3)∈L{B1,B2,B3}

[
Pr(3, 3;w∗

B1
,w∗

B2
,w∗

B3
) ·

3∏

i=1

Pr(1,#(w∗
Bi
);w∗

Bi
)

]

where the decompositions of w include {w1, w2}, {w3}, {w4}; {w1}, {w2, w3}, {w4};
{w1}, {w2}, {w3, w4}. Applying the decomposition methods to w of Pr(2, 4;w), the re-

sults obtained, consist of the following: {w1}, {w2, w3, w4}; {w1, w2, w3}, {w4}; {w1, w2},
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{w3, w4}; thus Pr(2, 4;w) is expressed as follows,

Pr(2, 4;w) =Pr(2, 2;w1, w2 + w3 + w4) · Pr(1, 3;w2, w3, w4)

+Pr(2, 2;w1 + w2 + w3, w4) · Pr(1, 3;w1, w2, w3)

+Pr(2, 2;w1 + w2, w3 + w4) · Pr(1, 2;w1, w2) · Pr(1, 2;w3, w4).

It implies that Pr(2, 4;w) = 1−Pr(2, 4;w)−Pr(3, 4;w)−Pr(4, 4;w). For more details,

refer to the book (Robertson et al. (1988)).

Given that the condition is in some particular orderings, have the same weights or

have some other stringent restrictions, the distributions of χ̄2
J can be determined by the

level probabilities Pr(l, J ;w) when the number of groups is not larger than 5, e.g. the

above-mentioned example. There do not exist simple closed-form expressions of level

probabilities for more general cases (J > 5), hence, the density of statistic χ̄2
J may differ

depending on the choice of the weights Pr(l, J ;w).

Obviously, in order to obtain the maximum likelihood estimator (MLE) through min-

imizing the negative of the log-likelihood function, both the regression-based approaches

and chi-squared-based methods consider least squares to assess the quality of fit. Hence

the restricted MLE is isotonic regression of the given function with weights. The method

adopted is the likelihood ratio test (LRT), which has always been widely used in the

parametric area and has many nice properties of making statistical inferences, the statis-

tic named chi-bar-squared statistic χ̄2
J and its density is of form as a weighted sum of

central chi-squared densities. Even though we have the form of the density of χ̄2
J , the

choice of the weights may either take expensive computations or cannot be possible to

compute in weak restrictions, especially when the number of comparison groups is large.

Comparing the gain in the power of the chi-bar-squared statistic with that of the stan-

dard chi-squared statistic, it is an obvious advantage that the chi-bar-squared statistic is

better than the chi-squared statistic when the alternative is of stochastic ordering (Bar-

low et al. (1972)). It is well known that, the classical Pearson’s chi-squared test presents

quite a poor performance when there exist the ordering columns in the contingency table

(e.g., Graubard and Korn (1987); Nair (1987)).

Almost at the same time, Kudo (1963) also made a major contribution for the related

similar problem, which tests equality constraint among means of a given multivariate

normal population with known covariance matrix against one-sided ordered alternative

hypothesis, namely, H0 : µ1 = µ2 = · · · = µJ against H1 : µ1 < µ2 < · · · < µJ .

The hypotheses could be equivalently represented by the differences between adjacent

means, that is, the null hypothesis H0 : µl+1 −µl = 0 against the alternative hypothesis
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H1 : µl+1 − µl > 0 for l = 1, · · · , J − 1. The author proposed a chi-bar-squared statistic

χ̄2 based on the likelihood ratio criterion. The key point of statistic χ̄2 is to find the

restricted MLE. However, the task is not so simple to achieve under the constraints.

Colombi and Forcina (2016) introduced two schemes of testing procedures for detecting

several relevant violations of the order relations. One of the schemes considers the de-

composition of the log-likelihood ratio, and the other scheme is based on the assumption

of asymptotically multivariate normal distributions. Zhu and Chen (2018) proposed a

manner to decompose the dimensions of a given multivariate normal distributed sample

into two disjoint subsets, and gave the likelihood ratio test statistic (mLR) based on

these two complementary subsets, and the distribution of mLR can be described by a

finite mixture of F distributions. When the dimension of the sample is less than 4,

the authors gave the specific expressions of the LRT statistic. Obviously, the larger the

problem dimension, the more difficult it is to express the mLRT statistic. Comparing

the behavior of powers with the classical likelihood ratio test and the Perlman-Wu test

(Perlman and Wu (2003)), the proposed test behaved generally better, but not uniformly

better.

Further, by introducing the concept of a cumulative effective score, the statistic

χ̄2 can be extended to cumulative chi-squared tests for testing ordered alternatives

(Hirotsu (1982); Hirotsu (1986)). The author proposed a test of the null hypothesis of

homogeneity of means against one-sided ordered alternative for a multivariate normal

problem for

H0 : µ1 = · · · = µJ vs. H1 : µ1 ≥ · · · ≥ µJ

and a test of the null hypothesis of linearity

H0 : λ1 − λ2 = λ2 − λ3 = · · · = λJ+K−2 − λJ+K−1

against convexity alternative for adjacent cohort effect in the given cohort model

H1 : λ1 − λ2 ≥ λ2 − λ3 ≥ · · · ≥ λJ+K−2 − λJ+K−1

Given the introduction of cumulative effective scores, these tests are characterized as

a weighted sum of independent chi-squared random variables each with one degree of

freedom. The algorithm for deriving the weights is provided by both the Čebyšev’s

orthogonal polynomials for finite points and recurrence algorithms. The approximation

of the cumulative chi-squared can be achieved by two-moment approximation. Nair
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(1987) had also been done an in-depth study into the general case of cumulative chi-

squared statistics for the ordered alternatives. As populations behave as multinomial

or binomial, the testing problem of interest is to test homogeneity of parameters or of

cumulative probabilities, against stochastic dominance or ordering in the alternatives.

These two testing problems all yield test statistics which have an asymptotic χ̄2 distri-

bution. The limiting distribution of the proposed statistic has the form of a weighted

sum of central chi-squared random variables with one degree of freedom under the null

hypothesis distribution, namely, T
D→∑

i ciχ
2
1(i), and is distributed as a weighted sum of

non-central chi-squared random variables with one degree of freedom with non-central

parameters δi under the ordered alternative; that is, T
D→∑

i ciχ
2
1(i)(δi).

When the samples involve the count random variables or discrete populations, for in-

stance, we have J populations having independent distribution functions F1, · · · , FJ , the
related likelihood functions have the form of the product of probability mass functions

for finite points. A typical way for such a case under order constraints is based on the

likelihood ratio criterion. However, the greater the number of compared distributions,

the more difficult the computations. Dykstra (1982) considered the case of survival

functions with right-censored data defined on finite time points 0 = T0 < T1 < · · · <
Tn < Tn+1 = ∞, and assume the related survival functions satisfy stochastic ordering

relations

P1

st

≥ P2

st

≥ · · ·
st

≥ PJ

The author gave restricted MLEs which are expressed in the form of Kaplan-Meier

product limit estimators, provided by using iterative algorithms based on the pairwise

scheme. The solution has good performance for statistical inference, however, the actual

MLEs are difficult to realize. The restricted MLEs provided by the solution converge to

the actual MLEs in probability. Such an iterative procedure for solutions that depend

only on pairwise problems was also studied by Feltz and Dykstra (1985). For a similar

problem under ordered restrictions, Wang (1996) indicated that there do not exist closed-

form expressions for maximum likelihood estimators when the number of compared

distributions is larger than 2. By the introduction of Monte Carlo simulation, Wang

(1996) derived the limiting distribution of the log-likelihood ratio test under the null

hypothesis; obviously, the limiting distribution can be expressed in terms of a chi-bar-

squared statistic. Considering a typical problem, given two m-dimensional multivariate

populations, in order to know if one stochastically dominates the other, Sampson and

Whitaker (1989) proposed an algorithm that reduces the dimensionality of the problem

to obtain a numerical approximation of MLEs. The algorithm transforms the two-sample
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problem into two one-sample problems in which the MLEs of the one-sample problem

can be achieved by a min-max formulation based on isotonic regression techniques, it is

obvious that the LRT statistic has an asymptotic χ̄2 distribution.

Davidov and Peddada (2011) proposed a manner to settle the problem of comparison

stochastic ordering among groups for multivariate binary response data regardless of

any dependence structure. The testing problem can be broken down into several sub-

problems of pairwise comparison by using procedures of union-intersection tests and

Bonferroni-based tests, and made statistical inferences of the combination of individual

univariate tests.

1.2.4 Association-model-based approach

As given samples can be summarized in terms of two-way contingency tables, the sim-

plest case is to consider a 2× 2 table. Various statistical methods for examining homo-

geneity/association in 2 × 2 tables have been studied intensively over the years. One

of the famous methods is Fisher’s exact test which provides a powerful behavior for

a testing association. An alternative exact test is Barnard’s exact test. Both exact

tests are based on the conditionality principle where the margins are held fixed. Other

alternatives are to use the Pearson chi-squared statistic or chi-bar-squared statistic,

both of them behave well for essentially testing independence/association between two

categorical variables.

Further, given that the J × K two-way contingency table, the testing problem for

homogeneity versus ordered restrictions becomes much more difficult and complicated,

especially when columns or rows or both are defined on the ordering categorical scale.

Methods of statistical inferences for such problems have been proposed and developed

by many researchers under specific assumptions, such as variables from the regular

exponential family, a nonnegative association of cell probabilities, and so forth. When

available, likelihood-based solutions within stringent assumptions are provided with nice

characterization statistical inferences. In general, however, it is quite difficult to obtain

proper testing inference in practice, especially for the multivariate case. The multivari-

ate case is much more difficult to be analyzed within likelihood frameworks than the

univariate one. In such a setting, the number of underlying nuisance parameters to

be removed and/or that of observed variables can often be much larger than sample

sizes. So, unless clearly justified assumptions allowing for a considerable reduction of

underlying complexity, the most intriguing of which is when one pseudo-parameter is

expressed as a function of many underlying nuisance parameters, no general correct test-

ing solution is possible within that approach. In what follows, the columns or rows refer
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to ordered categorical variables, or both columns and rows refer to ordered categorical

variables. In such a setting, the columns or rows can be assumed as multinomial or

binomial distributions, and denote explanatory variable by rows and response variable

by columns.

Method called linear-by-linear association model is a general scheme for studying

whether an association between column variables and row variables satisfies a set of

ordinal structures. Assigned scores α1 < · · · < αj < · · · < αJ for the rows and β1 <

· · · < βk < · · · < βK for the columns, the linear-by-linear association model is in the

form of

log Pr(Y = k | X = j) = µ+ λXj + λYk + ψαjβk

where the parameter ψ indicates the direction of the association.

Agresti et al. (1990) proposed an algorithm of a statistic to test for independence

against a one-sided alternative for small-sample inference in the doubly-ordered table.

The significant value of the statistic for the testing problem is provided by both the

linear-by-linear association model and the exact permutation distribution of ordinal

odds ratios. Moreover, Agresti and Coull (2002) reviewed various approaches for the

categorical responses with inequality constraints in the contingency tables. The empha-

sis of the proposed approach is to presume the inequality constraints on the parameters

of these categorical responses, and the linear-by-linear association model should satisfy

the assumption. For the problem of binomial responses with several ordered levels, they

introduced a generalized linear model under the condition of monotonicity constraint

on the underlying parameters. When the contingency table consists of more than two

rows and columns respectively, the problems become the multinomial case with several

ordered levels. In this case, the authors prefer to collapse rows and columns into the

double dichotomy of the two variables to obtain a set of 2 × 2 tables, and proposed

the association structure, that is described with several types of odds ratios and the

log-linear models with monotonicity ordered parameters. The algorithm is processed

in the cell probabilities. Kateri (2011) intended to find which one is better between

two samples measured on the same ordinal scale, through the column effect association

model with constrained column scores. That author also gave a unified scheme for com-

paring two treatment groups, when the testing problem of interest is to detect the null

hypothesis of homogeneity against the ordered restricted alternative, and the ordered

restrictions consist of stochastic ordering and umbrella ordering. By the introduction of

the Bayesian approach, Kateri and Agresti (2013) assumed the conditional probabilities

in each row as conjugate Dirichlet priors, and gave the stochastic ordering and other
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types of ordinal odds ratios structure for the two-samples comparison.

1.2.5 Distance-based approach

In particular, some statisticians turned their attention to assigning specific norms to

the given data, such as L2-norm. Under the assumption of the norm, many statistical

inferences related to distance can be derived immediately, such as location, dispersion

or symmetry of random variables; confidence intervals; and so forth. All methods that

decompose a J ×K table into a number of 2× 2 tables and consider the related partial

tests on odd-ratios fall into the subsequent problem of combining that number of depen-

dent tests. That combination process is traditionally carried out by using a Bonferroni’s

type of analysis, which in turn may become too conservative.

For testing whether the two mean vectors from two independent high-dimensional

samples are equal, Zhang et al. (2019) proposed an L2-norm-based test statistic Tn,p

with fixed p and any n,

Tn,p = (n1n2/n)||ȳ1 − ȳ2||2

which has a similar form to the Hotelling’s T 2-test statistic TH = (n1n2/n)(ȳ1 −
ȳ2)

TΣ−1(ȳ1 − ȳ2), where Σ is the estimated covariance matrix; and a non-exact test

statistic TBS = (n1n2/n)||ȳ1 − ȳ2||2 − tr(Σ) proposed from Bai and Saranadasa (1996).

The asymptotic distribution of the proposed test statistic can be achieved by using the

Welch-Satterthwaite (W-S) χ2-approximation under the null hypothesis. The proposed

approach for the testing problem, is to avoid assuming any strong particular conditions

of the unknown covariance matrix and the underlying distribution of the samples, it also

works when the dimension of units is larger than the total sample size. The problem

of testing is a goodness of fit problem, the key point of the literature is that the two

samples are from unknown distributions but with the same covariance matrix. The au-

thors derived the W-S χ2-approximation approach from the fixed and low dimensional

normal data to high-dimensional normal or non-normal data without any assumptions

of the covariance matrix.

In the spirit of distance-based approach, Weiß (2019) considered a distance func-

tion defined on the ordinal random variables for the problem with ordinal categorical

variables and ordinal times series, and expressed ordinal random variable with the rank-

count variable. The author intended to consider the distance-based approach based on

expected distances, which is structured by the framework with two necessary aspects:

one is the definition of distance measures or metric measures and another one is possible
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properties of ordinal distances, and then to obtain the measures of location, dispersion

or symmetry of random variables and the measures of serial dependence within a given

process. Three types of distance measures are introduced in the literature, such as

Hamming distance dH(sk, sl) := 1 − δk,l, with δk,l denotes Kronecker delta; Minkowski

distance do,1(sk, sl) :=| k − l |; and squared Euclidean distance do,2(sk, sl) := (k − l)2;

where both sk and sl belong to the ordered categorical range S, and with s0 < · · · < sm.

Thus, a distance-based approach gives us the possibility to obtain the asymptotic distri-

bution with the given measures. However, since it is not an easy way to achieve this aim,

Weiß indicated ”Unfortunately, it is not possible to find simple closed-form formulae for

this asymptotics being valid for any type of distance measure d. But focusing on a par-

ticular type of distance instead, such derivations are possible”. Furthermore, the author

extended the case with I.I.D. ordinal random variables to the case with dependence

ordinal random variables and the ordinal time series.

1.3 Solutions by nonparametric scheme

In the realistic problems, researchers may not desire to assume specific distributions

to the given data in advance, but making assumptions based on prior information is

inevitable. Indeed, researchers tend to assign specific parametric families to observa-

tions, and make statistical inferences within principles of parametric approaches. It is

natural to obtain a nice and intuitive statistical characterization of inferences within

parametric/semi-parametric assumptions. Perhaps the supposed parametric family is

far from the potential population of a given data; however, it is intuitively appealing

and useful for analyzing the problems.

In the clinical research, the biomedical studies are designed to answer some specific

questions, including the feedback on several treatments (such as new drugs; dosage

levels; toxin doses; and so forth), and to make a further comparison between the new

treatment and other competitors in order to find the better one. This involves a compar-

ison of the ranking levels of treatment effects, and the corresponding statistical studies

lie within the order restriction inferences and hypothetical inference theorems. Methods

of hypothetical inference for order restrictions take frequently account of parametric the-

orems, which always consider intrinsic assumptions including several aspects: normality;

data homogeneity in the alternatives; random sampling from a pre-specific population;

random effects independent of units; separable nuisance entities; and so forth. Under

such assumptions, most parametric tests enjoy convergence theorem, and tend to some

particular asymptotic distributions (such as mixed chi-squared distribution; mixed F
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distribution; etc.), but generally with an unknown rate of convergence. It is worth not-

ing that these methods are intuitively attractive for statistical inference, but they do not

guarantee correctness or closeness to “true” latent populations. In some scenarios, the

normality assumption is even quite questionable. What is more, expensive computation

costs may be inevitable to deal with multidimensional problems under the likelihood

framework scheme for making restricted inferences.

When the problems are so complex or involve multidimensional cases, algorithms of

nonparametric approaches only need mild assumptions, therefore, we may suggest us-

ing nonparametric approaches instead of parametric/semi-parametric methods to avoid

those disadvantages or stringent restrictions of parametric approaches. In particular,

the permutation testing principle plays an important role in the nonparametric area

to overcome most of the complex multidimensional problems within restricted assump-

tions. There exist two indispensable principles for permutation approaches, namely, the

conditionality and sufficiency principles, where the conditioning is with respect to a set

of sufficient statistics in the null hypothesis. Due to this, it shows a general good power

behavior. The permutation method usually works in a so-called combination-based algo-

rithm, which provides solutions for many complex situations under lack of knowledge on

underlying distributions, with multidimensional variables, or with unknown dependence

relations between variables. The approach is called nonparametric combination (NPC)

of dependent permutation tests (Pesarin (2001), Pesarin (2015), Pesarin (2006); Basso

et al. (2009); Pesarin and Salmaso (2006), Pesarin and Salmaso (2010); Pesarin et al.

(2016)). The procedure of NPC testing performs Roy (1953)’s Union-Intersection (UI)

approach in typical nonparametric settings. In other words, the procedure assumes that

the original testing problem can be appropriately and equivalently broken-down into a

set of sub-problems, that each sub-problem is provided with an appropriate permuta-

tion solution and that these sub-problems can be jointly analyzed. Especially, the idea

of “dependence” is reflected in the underlying unknown dependence, which in turn is

fully contained in the sufficient statistic, and due to conditioning, it remains invariant

in the computational process. The subsequent combination process often adopts Fisher,

Liptak or Direct combining functions. It is worth noting that, the power functions pro-

vided by NPC regarding permutation principles may not be the optimal one but are

close to the best parametric counterparts when available, even when the sample sizes

are moderate. The results provided by such an approach, being generally exact, do not

require asymptotic approximations and so they would be more credible and closer to

the latent real populations.

The testing problems for homogeneity against ordered restrictions defined on the
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ordered categorical scale are our principle interest. Ordered categorical data have often

appeared in many fields. Taking clinical experiments for an example, experiment is de-

signed to analyze the treatment effects of drugs in order to provide convincing evidence

that the treatment has an active effect; each subject is randomly assigned to receive ei-

ther the treatment or a placebo, and choose one of several options {No pain; Mild pain;

Moderate pain; Severe pain} to answer the study question. The options mentioned

above obviously define on an ordered categorical variable. Ordered categorical data

usually present many tied data in practice. Given such characteristics of ordered cate-

gorical data, the statistical inferences by NPC test become slightly more complicated,

we should be more careful to select the permutation tests for sub-problems. Sometimes,

ordered categorical data are usually organized with two-way contingency tables or even

on longitudinal time tables.

Graubard and Korn (1987) discussed the choices of column scores for testing inde-

pendence in ordered 2×K contingency tables, and listed 14 tests under different column

scores preassigned methods based on the exact conditional permutation theorem. They

preferred to consider equally spaced scores for column preassigned scores when the choice

is not apparent in practice, and should examine the mid-rank as column scores carefully

before using a rank test. They deemed, that one should be more cautious to choose

rank statistics for testing independence when the distribution of column margin is not

or far from uniform. It is worth noting that the selection of the schemes of the column

scores should be careful when the column factors are interval measures. Lumley (1996)

proposed a generalized estimating equation (GEE) model, which incorporates most as-

sociation structures based on the cumulative odds ratio. Analyzing categorical ordinal

data on longitudinal design, Brunner and Langer (2000) proposed an extension of the

Wilcoxon-Mann-Whitney test to factorial designs, the pooling data were constructed

on the nonparametric marginal model and on the relative treatment effects which were

estimated by using the empirical method based on mid-ranks.

Considering the problem of testing distributional equality in the null hypothesis

against stochastic dominance in the alternative between two levels of treatment for or-

dinal categorical variables, Arboretti et al. (2007) and Arboretti and Bonnini (2009)

introduced a solution based on score transformation and on the finite moments of trans-

formed variables, with w1 < w2 < · · · < wk and E{[w(X)]r} =
∑

k Pr(X = Ak)w
r
k, thus,

the null hypothesis is in the form of

H0 : {X1
d
= X2} ≡

{
K−1⋂

r=1

E{[w(X1)]
r} = E{[w(X2)]

r}
}
.
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against the stochastic dominance as follows

H1 : {X1

st
> X2} ≡

{
K−1⋃

r=1

E{[w(X1)]
r} > E{[w(X2)]

r}
}
.

which is based on the nonparametric combination of dependent permutation tests. The

rationale for this is based on the notion that “joint equality of first K − 1 moments of

two discrete distributions over K classes entails equality of their probability generating

functions and so of their distributions”. Bazyari and Pesarin (2013) intended to test

for the homogeneity of mean vectors against the alternatives of two-sided restricted in

multivariate normal distributions. There are two cases under the multivariate normal

distributions: one case which has known covariance matrices can be settled within

classical likelihood ratio criterion, which has a known mixed chi-squared asymptotic

distribution; the other, which has unknown and common covariance matrices. Firstly,

the authors gave a reformulation of the test statistic and determined the upper bounds

for its p-values; in the meantime, they also proposed a solution on the permutation

approach. Gökpinar et al. (2017) preferred to utilize the so-called χ2-P statistic, which

indicates that the algorithm of separable χ2 statistic is working within the permutation

approach, for testing equality of linear, quadratic and cubic effects for categorical ordinal

data with small sample size.

An nonparametric statistic called the modification of the Baumgartner-Weiß-Schindler

(modified BWS) statistic was proposed by Neuhäuser (2006), for testing homogeneity

of binomial proportions H0 : π0 = π1 = · · · = πJ against one-sided ordered alternative

H1 : π0 ≤ π1 ≤ · · · ≤ πJ with at least π0 < πJ . Compared the exact test based on the

modified BWS statistic with asymptotic Cochran-Armitage (asymptotic CA) test and

exact Cochran-Armitage (exact CA) test, the modified BWS test shows better behavior

than the exact CA test, but not uniformly better than the asymptotic CA test. Jelizarow

et al. (2015) also provided an in-depth study on the global inference for two samples with

multivariate high dimensional ordinal data on marginal distributions. The authors dis-

cussed and gave algorithms for several pairwise testing problems, such as identical joint

distribution (IJD) against non-identical joint distribution (NJD); simultaneous marginal

homogeneity (SMH) against marginal inhomogeneity (MI); simultaneous marginal ho-

mogeneity (SMH) against two-sided alternative as marginal order (MO). They gave the

test statistics of multivariate quadratic forms, which variables are independent, for two

testing problems (SMH against MI; SMH against MO), respectively. In the meantime,

they discussed the permutation-based global inference about marginal distributions.



Chapter 2

Theory of Permutation Tests

2.1 Prologue

In practical investigations, the comparison of several groups for making inferences, re-

searchers meet with a set of questions, this leads us to study in-depth and construct

valid methods to either determine if such groups are well-matched or make a superior

or inferior rank analysis. Especially in the field of clinical experiments, it is usually nec-

essary to compare different levels of treatment effects. Researchers gave different levels

of treatment to the subjects, and then compared the outcomes of the treated subjects

to assess whether the subject’s response differs as the treatment scheme changes, and

so the related response distribution may depend on treatment effect. Researchers desire

to provide convincing evidence to select the superior one or rating levels of treatments.

In particular, such a challenging task can be converted into a statistical language de-

scription, the object is to determine whether there exists stochastic ordering among

groups.

The methods we will discuss are to determine whether categorical explanatory vari-

ables satisfy stochastic ordering restriction when the response variables are expressed

with ordered categories in contingency tables. It is well known that solutions to or-

der restricted problems are mentioned by many kinds of literature. These solutions

assume the underlying population response is normally distributed under some quite

stringent assumptions; or the solution suggested by Nair (1987) considers the cumula-

tive chi-squared method for multinomial or binomial data, but there is no closed-form

of expressions for the related test statistics.

If the response variable is measured on a binary scale (Yes or No; A or B; Agree or

Disagree; etc.), there are many kinds of literature that provide solutions for detecting

stochastic ordering among explanatory variables (e.g. Agresti et al. (1990); Agresti

25
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and Coull (2002); Kateri and Agresti (2013); etc.). When the responses are binary data

(K ≥ 2, J = 2), the testing problem pertains to comparing several independent binomial

samples. If the response variable defined on a multinomial scale (i.e. extreme disagree,

disagree, neither disagree nor agree, agree, extreme agree; No pain, Mild pain, Moderate

pain, Severe pain; etc.), the problem we will discuss pertains to comparing multinomial

samples. Further, the solutions for comparing two multinomial samples (K = 2, J ≥ 2)

were already mentioned by existing literature (i.e. Arboretti and Bonnini (2009) ; Kateri

and Agresti (2013); etc.).

The solutions to the ordered restricted problems incorporating ordered categorical

response variables become extremely difficult when both K and J are large, especially

if the sample size is small or moderate. Solutions to these problems may be handled

with parametric/semi-parametric methods, so it seems to be more suitable for solving

them by nonparametric approaches.

In the field of nonparametric permutation tests, Pesarin (see Pesarin (1990), Pesarin

(1992), Pesarin (2001)) performed an in-depth investigation and built a rigorous theo-

retical framework for nonparametric combination (NPC) methodology which motivates

many researchers to be able to cope with more general and complicated problems (i.e.

Salmaso, Arboretti Giancristofaro, etc.). In this chapter, we will introduce the basic

and important ideas behind the permutation approach and give some necessary rele-

vant definitions and properties. The majority of the notions that will be explored in

this chapter are treated in the books Pesarin (2001) and Pesarin and Salmaso (2010)

unless otherwise stated. For more details and proofs, please refer to the books (Pesarin

(2001); Pesarin and Salmaso (2010)).

2.2 Data Layout

In the beginning, we will start with a two-sample Q-dimensional design. The extensions

to more general settings are straightforward to obtain within the NPC.

Let X be the sample space, on where elementary event A is defined. Let F be the

collection of events of interest for statistical problems, namely, A ∈ F ; and P be an

assigned probability measure defined on the set of such subsets F on sample space X ,

where each P pertains to a nonparametric family P , namely, P ∈ P . Therefore, the

related probability space is in the form of the triple (X ,F ,P).

Let X be a non-degenerate variable defined on the sample space X ; also denote an

unknown parent distribution by P , and fP be the underlying likelihood related to P .

In what follows, the statistical model is defined by (X,X ,A, P ). Furthermore, in the
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following we do not distinguish between the variable X and its observed sample points,

the context is sufficient to avoid misunderstanding.

Let X·j = {Xj,i, i = 1, . . . , nj} = {Xj,1, Xj,2, . . . , xj,nj
} ∈ X nj be a realization of

independent and identically distributed (IID) Q-dimensional random variables with la-

tent distribution Pj with sample size nj, j = 1, 2, where min(n1, n2) ≥ 1. Each Xj,i

is a Q-dimensional vector, with the form of Xj,i = (X1,j,i, X2,j,i, · · · , XQ,j,i)
T ∈ XQ, for

i = 1, 2, · · · , nj, Q ≥ 1. Denote pooled data by X = (X·1

⊎
X·2), where

⊎
is the sym-

bol for pooling data. Obviously, the related model of pooled samples X is defined by

(X,X n,A(n), P (n) ∈ P(n)) with n = n1 + n2 and P (n) = P
(n1)
1 · P (n2)

2 .

With the so-called unit - by - unit representation, the aforementioned samples can

be summarized as

X = {Xi = X(i), i = 1, · · · , n;n1, n2} = {X1, . . . , Xn1 , Xn1+1, . . . , Xn},

where the first n1 data in the list belong to first sample and the rest belong to the second

sample.

Define unit labels as u = (1, . . . , n), assume u∗ = (u∗1, . . . , u
∗
n) is one permutation of

u. Denote a set of all permutations of u by Π(u), namely, u,u∗ ∈ Π(u). Similarly, one

permutation X∗ of X can be obtained by two steps: one is to permute u which is the

subscript of X; second is to reorganize elements by sorting the indices of subscripts u∗.

And the related complete enumerations are n!. Denote the set of all permutations X∗

of X by Π(X), thus any component of Π(X) is in the form of

X∗ = {X∗
i = X(u∗i ), i = 1, . . . , n;n1, n2} = {X∗

1 , . . . , X
∗
n1
, X∗

n1+1, . . . , X
∗
n},

and so X∗ = (X∗
·1

⊎
X∗

·2), where X∗
·1 = {X∗

i = X(u∗i ), i = 1, · · · , n1} and X∗
·2 = {X∗

i =

X(u∗i ), i = n1 + 1, · · · , n} denote the permuted sample and the two permuted samples,

respectively.

2.3 Basic testing problem

The testing problem for detecting the distributional equality in the null hypothesis

against stochastic dominance in the alternative typically leads to a one-sided testing

problem.

Take the same clinical trial example, studied subjects are randomly assigned two

levels of treatment, X1 received Standard treatment, the other X2 received Placebo. We

presuppose that both treatment schemes have yielded nonnegative effects in H1, denote
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the Standard treatment effect by δ1 and Placebo effect by δ2. And further, we expect

that if the standard treatment has an effect, thus δ1 is larger than or at least equal to

δ2 with reference from prior information, such as δ1 ≥ δ2 ≥ 0.

The related hypotheses under testing are expressed as

H0 : X1
d
= X2

d
= X ≡ P1 = P2 vs. H1 : X1 + δ1

d
> X2 + δ2.

where
d
= and

d
> take the meaning of equal in distribution and stochastic dominance in

distribution, respectively.

Note that under H0,
d
= infers that variables from both sides of the equation have the

same underlying distribution P , namely, P1 = P2 = P . Thus, the joint null likelihood

of X takes the form of

fP (X) =

n1∏

i=1

fP1(X1,i)

n2∏

i=1

fP2(X2,i) =
2∏

j=1

nj∏

i=1

fP (Xj,i)

which is invariable with respect to any permutation X∗,

fP (X
∗) =

n1∏

i=1

fP1(X
∗
1,i)

n2∏

i=1

fP2(X
∗
2,i) =

2∏

j=1

nj∏

i=1

fP (X
∗
j,i) = fP (X)

This shows that data under H0 are exchangeable, which is permutable. The aforemen-

tioned exchangeability can be directly presented as

(X1,1, · · · , X1,n1 , X2,1, · · · , X2,n2)
d
= (X∗

1 , · · · , X∗
n1
, X∗

n1+1, · · · , X∗
n)

where the marginal distributions of Xj,i are identical.

For simplicity purposes, let δ1 > 0, and δ2 = 0, thus we only need to retain one

effect δ = δ1 > 0, the one-sided alternative can be rewritten as H1 : X1 + δ
d
> X2 = X.

Without loss of generality, random effects may differ depend on units, that is (X1,i, δi)

for i = 1, 2, · · · , n1, and provided that X1,i+δi ≥ X1,i with at least one strict inequality.

Thus the hypotheses can be rewritten as follows

H0 : δ
d
= 0 vs. H1 : δ

d
> 0

We may denote the data set by X(δ) = {X1,1 + δ1, . . . , X1,n1 + δn1 , X2,1, . . . , X2,n2}
under H1, and X(0) = {X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2} under H0. In the Figure (2.1),

the relationship of X(0) and X(δ) are clearly visualized,
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Figure 2.1: Representation of X(0) and X(δ) in H0 and H1, respectively

H0

X(0)

H1

X(δ)

2.4 Permutation principles

By the definition of sufficient statistic, the pooled data set X is a sufficient statistic for

P in H0, and we will give a short proof of the description as follows:

Let T (·) be a statistic, and assume it is an identity function, namely, T (x) = x. The

related conditional distribution of X given T is

P (X = x | T (X) = T (x)) =
P (X = x and T (X) = T (x))

P (T (X) = T (x))
=
P (X = x)

P (X = x)
= 1.

It is worth noting that no information on P contained in X is left on the residual

(conditional) distribution (X | X). The related latent likelihood is fP , thus, X is the

sufficient statistic for the underlying distribution P . Similarly, let us consider S(X) =

(X | X), whose distribution does depend on a constant, in other words, not related to

the underlying distribution P . Therefore S(X) plays the role of an auxiliary/ancillary

statistic.

When P pertains to a nonparametric family P ; or P is parametric but the number

of its parameters is larger than sample size; or in most cases in which it lies outside the

regular exponential family, the pooled data set X(0) in H0 is minimal sufficient.

For every permutation u∗ = (u∗1, . . . , u
∗
n) of u = (1, 2, · · · , n), the related permutation

of X is X∗, the likelihood ratio fP (X)/fP (X
∗) = 1, ∀u∗ ∈ Π(u), thus each permutation

X∗ is of equally likely nature. Additionally, pooled data X(0) are minimal sufficient,

and are exchangeable in H0. Those bases are often termed the Permutation principle,

and the conditional tests which use that principle, are called Permutation tests.

Permutation tests lie within conditional methods of inference. Since it is a conditional

procedure, it is worth noting that a permutation test cannot be performed in general

until after the data have been observed, and it is also termed the conditional principle.

Within the principle of conditionality, the permutation procedure for making statistical

inferences can be established based on the pooled data X in H0.

Further, considering the conditionality principle, we define the related conditional
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reference space, like the set that contains points that are equivalent to data X in the

sense that they preserve all its information about P as that contained in X. Denote

such related conditional reference space by X n
/X. To simplify, in what follows, we intend

to unify the symbol of the related conditional reference space with X/X. All distinct

Figure 2.2: Conditional reference space X/X

X
X

X/X

points X∗ in X/X provide the same information as X (i.e. X∗ ∈ X/X in the Figure

(2.2)), and a new related conditional reference space X/X∗ is generated by data X∗;

obviously, X/X∗ also contains all points which provide the same information as X∗,

that is, X ∈ X/X∗ , then we can immediately conclude that X/X = X/X∗ . In addition,

provided that fP (X ) > 0, it is easy to know that the likelihood ratio fP (X)/fP (X
∗) is

(X,X∗)-invariant, and P -independent, and so it is distributional free over the class of all

possible distributions. In other words, X/X is a set of sufficient statistics, corresponding

to the orbit of equivalent points associated with X. The conditional space X/X can be

presented in the form of

X/X =





⋃

u∗∈Π(u)

[X(u∗i ), i = 1, 2, · · · , n]



 = Π(X)

In H1, the set of sufficient statistics is the pair (X·1;X·2). It is obvious that the pair

data are not exchangeable between two groups, but are exchangeable within groups.

2.4.1 Some relevant properties

Based on the principles of the permutation procedure, some relevant properties can be

inferred for making statistical inferences. In addition, suppose the symbols in what

follows share the same meaning as aforementioned notations.

(1) The act of conditioning on a set of sufficient statistics for P in H0 entails that

any conditional inference is independent of the underlying population distribution

P , where the distribution P may be univariate, multivariate, normal, categorical,

and so forth. This conditionality principle gives rise to the following fundamental

property:
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Let (X ,F ,P) be the probability space related to variable X, then sufficiency of X

for underlying P , under H0, implies that the null conditional probability of any

event A ∈ F , given X, is independent of P , i.e.

Pr{X∗ ∈ A;P | X} = Pr{X∗ ∈ A | X} = Pr[A | X].

Since every X∗ ∈ X/X is sufficient for underlying distribution P in H0, X/X can

be also considered as playing the role of a sufficient space, i.e.

Pr[A | X] = Pr[A | Π(X)] = Pr[A | X/X]

Three relevant consequences of this property are:

(i) Under H0, all distinct permutations X∗ of X are of equally likely nature.

As for finite n, the number M = M (n) =
∑

Π(X) I[X
∗ ∈ Π(X)] of points

in Π(X) is finite and ∀X∗ ∈ Π(X) it is f
(n)
P (X∗)dX∗ = f

(n)
P (X)dX, the

conditional null probability of any A ∈ F given Π(X) is the count ratio:

Pr{X∗ ∈ A | Π(X)} =

∑
X∗∈A f

(n)
P (X∗)dX∗

∑
X∗∈Π(X) f

(n)
P (X∗)dX∗

=
∑

Π(X)

I(X∗ ∈ A)

M
= #(X∗ ∈ A)/M

where #(·) is the number of elements of Π(X) that satisfy condition (·).

(ii) In H0, the data set X is uniformly distributed over Π(X) conditionally, i.e.

all points of Π(X) are equally likely:

Pr(X∗ = x | Π(X)) =




M−1 ∀x ∈ Π(X)

0 ∀x /∈ Π(X)

(iii) Let T = (T1, · · · , TS)T be a vector of S ≥ 1 permutation statistics (e.g.

tests), and ϕ : RS → R1 is any measurable function, then the conditional

null distribution of ϕ is independent of P ; indeed,

Pr(ϕ(T ∗
1 , · · · , T ∗

S) ≤ z;P | X) = Pr(ϕ(T ∗
1 , · · · , T ∗

S) ≤ z | X)

= Pr(ϕ−1
T
(z) | X) =

#(X∗ ∈ ϕ−1
T
(z))

M

since, due to measurability of ϕ, ∀z ∈ R1, it is ϕ−1
T
(z) ∈ F .
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It is worth noting that: i) the conditional probability Pr[A | X] has always an

objective existence; ii) the conditional null distribution of ϕ is independent of

all dependence parameters underlying T; iii) to characterize sufficiency of X in

H0, permutation tests require the existence of a likelihood fP (X) > 0, not its

calculability; iv) when X is minimal sufficient for P , it makes no sense to work

outside the permutation testing principle (Pesarin (2015)); v) permutation tests

are nonparametric, distribution-free and intrinsically robust.

(2) Based on property (1), if X is a continuous variable and T is a continuous non-

degenerate function, then in H0 and ∀X ∈ X n, the p-value-like statistic λ0T =

λT (X) = Pr{T (X∗) ≥ T 0 = T (X) | Π(X)} is uniformly distributed over its

attainable support:

Pr{λT (X) ≤ α | Π(X)} = α, 0 ≤ α ≤ 1

so, α (attainable) plays the role of critical value for λ, whatever the test statistic

T is chosen. It is worth noting that λ is a proper p-value for test T only if H0 is

true; thus, it can be viewed as a unifying way to define test statistic.

(3) A permutation test T is exact if its null distribution essentially depends only on

exchangeable null error deviates X.

(4) For unidimensional one-sided testing problem, suppose a permutation test is based

on difference between two non-degenerate non-decreasing sample statistics, i.e.

T ∗(δ) = S1(X
∗
1(δ)) − S2(X

∗
2(0)), for j = 1, 2. The above-mentioned permuta-

tion test being conditionally on data X, is conditionally unbiased for every

attainable α and every δ
d
> 0.

Let us assume that Sj, j = 1, 2, are symmetric functions which are invariant with

respect to data entry: the value Sj(·) remains the same for all permutations of Xj,

namely, Sj(Xj) = Sj(X
⋆
j), with X⋆

j being any rearrangement (i.e. within-sample

permutation) of Xj holds for j = 1, 2.

In particular:

Pr(λT (X(δ)) ≤ α | Π(X)) ≥ Pr(λ(X(0))T ≤ α | Π(X)) = α

be equivalent to

λT (X(δ)) = Pr(T ∗(δ) ≥ T o(δ) | X/X(δ)) ≤ Pr(T ∗(0) ≥ T o(0) | X/X(0)) = λT (X(0))
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here, T o(·) means that the observed value of test statistic T .

Thus, ∀δ d
> 0, p-value statistics are such that λ(X(δ))

d

≤ λ(X(0)) (i.e., the uniform

dominance property); this also confers α (attainable) the role of critical value for

λ. Moreover, if there exist δ1, δ2 and δ3, satisfying δ1
d
> δ2

d
> 0

d
> δ3, then

λ(X(δ1))
d

≤ λ(X(δ2))
d

≤ λ(X(0))
d

≤ λ(X(δ3))

(5) The latter property can be used to define the unconditional/population power of

a permutation test T , as a function of (δ, α, T, P, n). Of course, such population

power function is defined as

W (δ, α, T, P, n) = EPn [Pr(λT (X(δ)) ≤ α | Π(X))] .

Of course, W (δ, α, T, P, n) ≥ W (0, α, T, P, n) = α ≥ W (δ′, α, T, P, n), ∀α > 0,

since, by (4), the integrand is ≥=≤ α as δ
d
> 0

d
> δ′, for all P ∈ P , all sample sizes

(n1, n2) and all designs (i.e., the so-called uniform monotonicity of unconditional

power).

(6) The null permutation distribution of any S-dimensional statistic T given X could

be determined by the property (1), say F (t | Π(X)). The procedure based on

conditional sufficient requires the complete enumerations of Π(X). When the

sample size is large or the structure of data is complex, to examine the complete

enumerations of elements in Π(X) becomes extremely difficult. Thus, based on

current computational knowledge, the Conditional Monte Carlo procedure can

provide reasonable estimates of it at any required degree of accuracy. The simplest

correct way to do this requires R > 1 independent random permutations from

Π(X). Thus, ∀t ∈ RS,

F̂ (t | Π(X)) = #(T∗ ≤ t)/R

gives an unbiased and strongly consistent estimate of F (t | Π(X)).

(7) Under H0, the empirical probability measure (EPM) is a permutation invariant

function over Π(X). Define EPM by P̂X(A) = #(Xi ∈ A)/n, for every A ∈ F . If

X∗ is a realization of one permutation of X, based on the exchangeability in H0,

then #(X∗
i ∈ A) = #(Xi ∈ A) holds for ∀X∗ ∈ X/X, i.e. P̂X∗(A) = P̂X(A), P̂X(·)

is also a symmetric function.
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Indeed, we can infer the data information provided by P̂X, such inferred infor-

mation is the same with the information provided by Π(X). In other words,

conditioning on Π(X) is equivalent to conditioning on P̂X. Thus, EPM P̂X is a

sufficient function in H0 for any underlying P . Define the empirical distribution

function (EDF) by F̂X∗ = #(X∗
i ≤ x)/n = F̂X(x), which is also a permutation

invariant function over Π(X) and is also a sufficient function.

2.5 The Nonparametric Combination (NPC) Method-

ology

When the testing problems involve some complex dilemmas, such as: complex-structural

data; unknown dependent structure among variables; multivariate problems; homogene-

ity of several groups; and so forth, the nonparametric combination (NPC) approach pro-

vides a general methodology for such dilemmas. In particular, the NPC testing solution

performs Roy (1953)’s Union-Intersection approach in a general nonparametric setting

when an equivalent set of sub-problems is properly carried out.

Suppose the original testing problem can be appropriately and equivalently broken-

down into a set of sub-problems, each sub-problem describes partially the original one,

but the joint sub-problems equivalently describe the overall testing problem. Therefore,

the overall hypotheses H0 and H1 are equivalently broken-down into S ≥ 2 pairwise

sub-hypotheses: H0s against H1s for s = 1, 2, · · · , S.
Thus the hypotheses can be presented as follows:

H0 ≡
S⋂

s=1

H0s vs. H1 ≡
S⋃

s=1

H1s

It is worth noting that S sub-hypotheses can be one- and/or two-sided, simple and/or

composite.

2.5.1 Partial permutation tests

Considering each pairwise sub-hypothesis: H0s against H1s, for s = 1, 2, · · · , S. Suppose
also that each sub-hypothesis is provided with a partial permutation test Ts. In partic-

ular, all partial permutation test Ts should satisfy some specific assumptions which are

required for the nonparametric combination approach:
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(i) All partial permutation tests Ts hold marginally unbiased and are significant

for large values. This implies that the values of partial tests are stochastically

larger in H1s than in H0s in both conditionally and unconditionally cases, for

s = 1, 2, · · · , S, so that its p-value-like statistics should satisfy:

Pr(λs(X(δs) ≤ α | Π(X), H1s) ≥ Pr(λs(X(0) ≤ α | Π(X), H0s) = α, ∀α > 0

It is worth noting that in the large majority of situations the set of p-values

λ1, λ2, · · · , λS are positively dependent (in the sense of Lehmann (1986)).

(ii) At least one partial permutation test Ts is consistent, so implying that the power

of Ts in H1s converges to 1 as the sample size n tends to infinity, that shows as

follows,

Pr(Ts ≥ Tsα | H1s)
n→∞7−→ 1, ∀α > 0, for at least one s = 1, 2, · · · , S.

where Tsα is assumed to be finite, and playing the role of the permutation α-critical

value of Ts.

2.5.2 Some important properties of Combining functions

The nonparametric combination approaches can be achieved by both Ψ and ψ combining

functions assumed to be measurable. Combining functions Ψ are applied to the values

of a set of partial tests T1, · · · , TS, and ψ are applied to a set of p-values statistics

λ1, · · · , λS associated to partial tests T1, · · · , TS.
The global hypotheses are tested by combining S dependent partial permutation

tests:

Tψ = Ψ(T1, · · · , TS) ≡ ψ(λ1, · · · , λS)

Take into account combining functions ψ, multiple testing problems and the signifi-

cant evidence of large values motivate ψ to satisfy some specific properties.

a1) If one p-value is dominant than the counterpart one, the corresponding com-

bining functions ψ have a non-increasing tendency, namely, ψ(· · · , λs, · · · ) ≤
ψ(· · · , λ′s, · · · ) holds, if λs > λ′s.

a2) Each ψ must attain its supremum value ψ̄, even when only one argument attains

zero: ψ(· · · , λs, · · · ) → ψ̄ if λs tends to zero.
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a3) For all α > 0, critical value Tψα of ψ is finite and satisfies Tψα < ψ̄.

To facilitate understanding of the procedure of NPC approach, the following table shows

the steps of the procedure. It corresponds to the NPC procedure for a general problem

with S partial tests, R random permutations and combining function ψ.

Table 2.1: Representation of the conditional Monte Carlo method

X X∗
1 · · · · · · X∗

r · · · X∗
R

T o1 T ∗
11 · · · · · · T ∗

1r · · · T ∗
1R

...
...

...
...

T oS T ∗
S1 · · · · · · T ∗

Sr · · · T ∗
SR

↓
λ̂o1 L̂∗

11 · · · · · · L̂∗
1r · · · L̂∗

1R
...

...
...

...

λ̂oS L̂∗
S1 · · · · · · L̂∗

Sr · · · L̂∗
SR

↓ Tψ
T oψ T ∗

ψ1 · · · · · · T ∗
ψr · · · T ∗

ψR

↓
λ̂ψ

The Table (2.1) displays the procedure of the representation, the corresponding steps

are as follows:

b1) Compute the observed values of permutation test T = (T1, · · · , TS)T , namely,

To = T(X) = (T o1 , · · · , T oS)T .

b2) We intend to compute the values of permutation test T = (T1, · · · , TS)T in the

permutation space. Indeed, it is obviously difficult to compute the complete enu-

merations of Π(X), thus, we randomly select R permutations from the related

permutation space and calculate the corresponding values of permutation tests,

that is, T∗
r = T(X∗

r) = (T ∗
1r, · · · , T ∗

Sr)
T , for r = 1, · · · , R. R defaults to a suffi-

ciently large value (i.e., 5 000; 10 000; etc.).

b3) The consistent estimate of null permutation distribution F (t | Π(X)) of statistic

T be

F̂ (t | Π(X)) =
1
2
+
∑

r I(T
∗
r ≤ t)

R + 1
, ∀t ∈ RS
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Therefore, the corresponding estimate of the permutation normalized empirical

significance level functions be

L̂∗
sr = L̂∗

s(T
∗
sr) =

1
2
+
∑R

j=1 I(T
∗
sj ≥ T ∗

sr)

R + 1

Compute λos = L̂∗
s(T

o
s ), and let λ∗sr = L̂∗

s(T
∗
sr), it is worth noting that all these

p-values are measured in (0, 1).

b4) Since we obtain a set of p-values, λ̂
o
= (λ̂o1, · · · , λ̂oS) and L̂∗

r = (L̂∗
1r, · · · , L̂∗

Sr). The

combined observed T oψ = ψ(λ̂o1, · · · , λ̂oS) and permutation values T ∗
ψr = ψ(L̂∗

1r, · · · , L̂∗
Sr),

for r = 1, · · · , R.

b5) Compute the estimate of the p-value of the test as λ̂ψ =
∑

r I(T
∗
ψr ≥ T oψ)/R.

Under H0, the sub-matrix {T ∗
sr}S×R simulates the S-dimensional null distribution of

S partial permutation tests. The sub-matrix {λ̂sr}S×R presents the permutation nor-

malized empirical significance level functions corresponding to the sub-matrix {T ∗
sr}S×R.

And the sub-vector {T ∗
ψr}R simulates the null permutation distribution of combined test

Tψ.

Thus, the statistic λ̂ψ gives an unbiased and, as R diverges, a strongly consistent

estimate of the p-value statistic λψ of Tψ.

Under H1, at least one T
o
s presents larger observed values than in H0; so, if the com-

bining function ψ is non-decreasing in each argument, the p-value statistic satisfies the

relation: λ̂ψ;H1

d

≤ λ̂ψ;H0 uniformly for every data set X and every underlying distribu-

tion F . Hence, the latter justifies that H0 is rejected when λ̂ψ ≤ α; moreover, it can be

proved that Tψ is provided with the unbiasedness and consistency properties.

More specifically, let’s zoom in on the sub-matrix {T ∗
sr}S×R of Table (2.1), to see how

the procedure works within two-sample Q-dimensional design,
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Table 2.2: Representation of a two-sample Q-dimensional permutation

X X∗
1 · · · X∗

R

X1(1) · · · XQ(1) X1(u
∗
1) · · · XQ(u

∗
1) · · · X1(v

∗
1) · · · XQ(v

∗
1)

X∗
·1

...
...

...
... · · · ...

...

X1(n1) · · · XQ(n1) X1(u
∗
n1
) · · · XQ(u

∗
n1
) · · · X1(v

∗
n1
) · · · XQ(v

∗
n1
)

X1(1 + n1) · · · XQ(1 + n1) X1(u
∗
1+n1

) · · · XQ(u
∗
1+n1

) · · · X1(v
∗
1+n1

) · · · XQ(v
∗
1+n1

)

X∗
·2

...
...

...
... · · · ...

...

X1(n) · · · XQ(n) X1(u
∗
n) · · · XQ(u

∗
n) · · · X1(v

∗
n) · · · XQ(v

∗
n)

↓ ↓ ↓
T (T o1 , · · · , T oS) (T ∗

11, · · · , T ∗
S1) · · · (T ∗

1R, · · · , T ∗
SR)

↓ ↓ ↓
λ (λ̂o1, · · · , λ̂oS) (L̂∗

11, · · · , L̂∗
S1) · · · (L̂∗

1R, · · · , L̂∗
SR)

↓ ↓ ↓
Tψ T oψ T ∗

ψ1 · · · T ∗
ψR

In the Table (2.2), X presents the observed data, and (X∗
1, · · · ,X∗

R) ∈ X/X be a set of

permutations of X. X∗
·1 presents a sub-matrix including the first n1 data corresponding

to {X,X∗
1, · · · ,X∗

R}, and the rest belong to the sub-matrix X∗
·2. T be the S partial

permutation tests, namely, (T1, · · · , TS)T .
Take the sub-matrix ofX (Yellow part) for example, each row representsQ-dimensional

data related to each element of X. According to the data layout, the aforemen-

tioned representation of X is X = (X1, · · · , Xn1 , X1+n1 , · · · , Xn), the element is, Xi =

(X1(i), · · · , XQ(i)), for i = 1, 2, · · · , n.
In the case of two-sample Q-dimensional design, the testing problem is to determine

the stochastic dominance between two groups, the permutation procedure lies within

sufficient space X/X.

2.5.3 Some relevant Combining Functions

Combining functions ψ define a class C of possibilities. A sub-class CA ⊂ C contains

admissible functions. A combining function ψ is admissible if its acceptance region is

convex in the (λ1, · · · , λS) representation (Birnbaum (1954), Birnbaum (1955)).

The admissible combining functions mostly used in practice are:



Chapter 2 - Theory of Permutation Tests 39

c1) The Fisher combining function is based on the statistic

TF = −2 ·
∑

s

log(L∗
s)

TF is the most popular combining function and corresponds to the product rule.

c2) The Liptak combining function is based on the statistic

TL =
∑

s

Φ−1(1− L∗
s)

where Φ is the standard normal cumulative distribution function.

c3) The Tippett combining function is based on the statistic

TT = max
1≤s≤S

(1− L∗
s)

Tippett test is significant for large values.

c4) The Direct combining function Ψ applied to the set of partial tests is:

TD =
∑

s

T ∗
s

It is worth mentioning that, the direct combining function is suitable if all partial

permutation tests T ∗
k at least should share the same asymptotic null distribution

so satisfying Anderson-Darling’s spirit.

NPC gives us a significant evidence to reject the null hypothesis when the value of Tψ

is sufficient large. It is worth emphasizing that, if the partial tests are exact, unbiased

and at least one is consistent, then the NPC methodology yields exact, unbiased and

consistent solutions. Further, if we can determine the best power among the S partial

tests, then the power of combined tests is close to that of the best one in theory.

2.6 Conclusion

In this chapter, we introduced some of the most important ideas and properties of

permutation tests. We take the simple two-sample Q-dimensional design as a typical

example, to establish a preliminary impression of the data layout. The approaches

are suitable for balanced samples, and are also equally applicable to the unbalanced

case. We assume these two samples share the same underlying distribution P in H0,
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in which case the pooled data X are exchangeable and sufficient. When underlying

distribution P lies within nonparametric family P , or incorporates infinitely many pa-

rameters, or cannot be converted to the regular exponential family, X plays the role

of minimum sufficient in H0. The aforementioned bases give rise to the Permutation

principle within the conditionality principle of inference. The conditional tests based

on the permutation principle are termed permutation tests. When we are trying to

make use of a nonparametric permutation approach, it is essential to keep in mind that

nonparametric permutation approaches must work within the principles of sufficiency

and conditionality.

The nonparametric combination (NPC) is a well-known methodology based on the

permutation theory. According to Roy’s Union-Intersection approach, the NPC proce-

dure subdivides the global hypothesis into some suitable pairwise sub-hypotheses, and

each pairwise sub-hypotheses has appropriate partial permutation tests, the resulting is

achieved by jointly analyzed all of them. Common combining functions contain Fisher’s,

Liptak’s, Tippett’s and the Direct; all of them are significant for large values to reject

H0, are unbiased, consistent and admissible. Of course, in the face of different or compli-

cated situations, the NPC method is a flexible general tool for facing with most complex

testing problems.

In the next chapter, we will further explore the testing problem which involves mono-

tonic stochastic ordering case, especially, the case including multivariate data in which

comparison groups are more than two.
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Testing for restricted alternatives

with ordered data

3.1 Prologue

Without loss of generality, we will start with a clinical example. Suppose a study where

subjects are randomly assigned J-levels of treatment, and then at a fixed observation

point, subjects are asked to rate the response score for assigned treatment scheme or

researchers determine the subsequent treatment effects according to a categorical scale.

Some important aspects should be highlighted here:

d1) Each subject can be seen to behave equally likely. Assume each subject has

a similar physical and health condition before receiving the treatment scheme,

regardless of either the place where they are from, or their educational background,

or some other aspects which should influence the outcomes in theory.

d2) Each subject is randomly assigned to the treatment scheme, moreover, they can

be assumed to behave independently.

d3) The outcomes lie within categorical measurement, and they are deemed to be

ordered because of psychological anticipated based on common sense. Thus, out-

comes are defined on K ordinal categorical measurement with simple ordering

v1 ≺ v2 ≺ · · · ≺ vK .

d4) The sample size is usually not very large, so that asymptotic considerations may

become improper.

41
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d5) Usually, those treatment schemes would yield nonnegative effects, say δ, and Stan-

dard Treatment behavior better than Placebo based on prior information of re-

searchers.

This typical realistic example can be described in statistical language, and the re-

sulting data can be organized in a contingency table, as shown in Table (3.1).

Table 3.1: General Clinical Example

X
Cats.

v1 v2 v3 · · · vK Total

X·1 n11 n12 n13 · · · n1K n1

X·2 n21 n22 n23 · · · n2K n2

...
...

...
...

...
...

...

X·J nJ1 nJ2 nJ3 · · · nJK nJ

Total N·1 N·2 N·3 · · · N·K n

A general typical example Table (3.1), the green region presents J groups (ex-

planatory) of random sample receiving J-levels of treatment scheme, the larger the

J , the better the effect is expected by the treatment scheme (Psychological antici-

pated); and the yellow area (responses) includes I categories which satisfy simple or-

dering v1 ≺ v2 ≺ · · · ≺ vK . nj, j = 1, 2, · · · , J , are the sample sizes of treated samples,

and N·k, k = 1, 2, · · · , K are frequencies of the related categories. The total sample size

is n =
∑

j nj.

The problem of interest is to determine whether there exist stochastic dominance

or stochastic ordering among J treatments; in other words, whether the explanatory

variable satisfies the stochastic ordering restriction, namely, X1

d

≤ X2

d

≤ · · ·
d

≤ XJ , with

X1

d
< XJ .

It is termed the typical one-sided testing problem with stochastic dominance or

stochastic ordering. Therefore, the related null hypothesis is as follows

H0 : X1
d
= X2

d
= · · · d

= XJ

against the one-sided alternative hypothesis

H1 : X1

d

≤ X2

d

≤ · · ·
d

≤ XJ , with X1

d
< XJ .
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Obviously, the responses are measured on the same ordered categorical scale {v1, · · · , vK},
they can be considered multinomially distributed. Define the cumulative distribution of

responses by F at ordered categories v1 ≺ v2 ≺ · · · ≺ vK , as FX(vk) = Pr{X � vk} for

k = 1, · · · , K. Thus, the aforementioned hypotheses are equivalently expressed as

H0 : {FX1 = FX2 = · · · = FXJ
} vs. H1 : {FX1 ≥ FX2 ≥ · · · ≥ FXJ

} with FX1 > FXJ

With clear meaning of the symbols, the rationale for this formulation resides in that if,

according to increasing j, non-decreasing treatment effects δ yield at latent null variables

X, i.e. δh ≤ δj, 1 ≤ h < j ≤ J , then latent variables should behave as

Xh = (X + δh)
d

≤ (X + δj) = Xj

The related testing problem has a rather difficult solution within the likelihood ratio

theory, which with categorical data, in addition, presents quite a serious difficulty: even

for moderate number of cells it is recognized to be not unique (Cohen et al. (2000),

Cohen et al. (2003); Wang (1996); Silvapulle and Sen (2005); Colombi and Forcina

(2016); etc.). Moreover, to get a solution, important supplementary options, difficult

to justify in terms of the real problem under study, are required. This difficulty mostly

consists in that the set of alternatives is restricted to lie in the (J − 1) × (K − 1)-

Dimensional positive orthant where the likelihood cannot be maximized under H0 by

ordinary methods of maximization.

Our solution does firstly consider the setting of two treatment schemes, and then,

according to Roy (1953)’s UI and Jonckheere–Terpstra’s approaches, by a break-down

of the hypothesis into S − 1 pairs of sub-hypotheses. Later, all resulting dependent

partial tests are combined by an NPC method.

3.2 The two-sample unidimensional case

Let us firstly consider the two-sample one-dimensional case, where data are in a 2×K

table, and denote two samples by X·j, j = 1, 2, respectively. For the sake of clarity, the

related table are shown as
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Table 3.2: Two-sample one-dimensional case

X
Cats.

v1 v2 v3 · · · vK Total

X·1 n11 n12 n13 · · · n1K n1

X·2 n21 n22 n23 · · · n2K n2

Total N·1 N·2 N·3 · · · N·K n

Thus, the specific hypotheses are expressed as

H0 : X1
d
= X2 ≡ {F1(vk) = F2(vk), k = 1, · · ·K}

against

H1 : X1

d
< X2 ≡

K−1⋃

k=1

[F1(vk) > F2(vk)]

The related testing problem can be equivalently set as

H0 : F1 = F2 ≡
K−1⋂

k=1

[F1(vk) = F2(vk)]

against the set of restricted alternatives

H1 : F1 > F2 ≡
K−1⋃

k=1

[F1(vk) ≥ F2(vk)], with at least one strict inequality

It is worth noting that:

e1) According to Roy (1953), in H0, where the two distribution are considered to be

identical, such a null hypothesis is equivalent to the intersection of a set of sub-

null-hypotheses, where the two cumulative distribution functions for each category

in each sub-null-hypothesis are the same. The alternative in H1 is equivalent to

the union of a set of inequalities. Thus, the testing problem has been equivalently

broken-down into K − 1 one-sided sub-problems ;

e2) H1 defines a multi-one-sided set of alternatives;
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e3) Under bothH0 andH1, cumulative empirical distribution function satisfies F1(vK) =

F2(vK) = 1, and so category vK is not considered since it does not provide infor-

mation on any possible diversity;

e4) Thus, the global solution requires the joint comparison ofK−1 differences random

relative frequencies: F̂1(vk)− F̂2(vk), k = 1, · · · , K − 1.

For such testing problem, however, the number of unknown nuisance parameters to take

care in any 2×K testing process is (2×K − 1), and the likelihood is to be maximized

in the (K− 1)-dimensional positive orthant, indeed a very difficult task especially when

K > 4. Due to these well-recognized difficulties of likelihood approaches, our approach

is to stay within the conditionality principle of inference (please refer to Chapter 2), i.e.

by incorporating both the sufficiency principle and the permutation theory. Since, the

crucial point for that joint analysis is the proper handling of all underlying dependen-

cies, to attain general solutions we must work within the UI-NPC of related dependent

permutation tests because, due to (iii) (see Chapter 2), the estimation of dependence

coefficients is not required since NPC works independently of such dependencies, re-

gardless of how complex these are.

Accordingly, the K − 1 partial test statistics are:

T ∗
k = C(n1, n2) · [F̂ ∗

1k − F̂ ∗
2k]
[
F̄·k(1− F̄·k)

]− 1
2 , k = 1, · · · , K − 1,

where this partial permutation tests are based on the cumulative empirical distribu-

tion functions which symmetric, non-decreasing and non-degenerate measurable func-

tions; F̂ ∗
jk = F̂ ∗

j (vk) =
∑nj

i=1 I(X
∗
j,i � vk)/nj, j = 1, 2, F̄·k =

∑k
k=1N·k/n are per-

mutation and marginal empirical distribution functions (EDFs), respectively. Further,

C(n1, n2)
[
F̄·k(1− F̄·k)

]− 1
2 is the permutation variance of F̂ ∗

1k − F̂ ∗
2k. It is easy to see

that, F̄·k, k = 1, · · · , K, since (n∗
1k + n∗

2k) = (n1k + n2k), are permutationally invariant

cumulative frequencies obtained from the permuted table {f ∗
jk, k = 1, · · · , K, j = 1, 2}

where margins are fixed due to conditioning (as shown in the Table 3.3).



46 Section 3.2 - The two-sample unidimensional case

Table 3.3: Two-sample one-dimensional permuted table

X
Cats.

v1 v2 v3 · · · vK Total

X∗
·1 n∗

11 n∗
12 n∗

13 · · · n∗
1K n1

X∗
·2 n∗

21 n∗
22 n∗

23 · · · n∗
2K n2

Total N·1 N·2 N·3 · · · N·K n

The aforementioned partial test statistics are suitable for the comparison of two-

sample one-dimensional cases, and include some noteworthy properties:

f1) Marginal EDFs F̂jk are maximum likelihood unbiased estimates of population

CDFs Fj(vk), k = 1, · · · , K − 1, j = 1, 2;

f2) Each partial permutation test T ∗
k is a reformulation of Fisher’s exact probability

test, and so it is a best conditional test ;

f3) Large values of each partial test T ∗
k are significant against its related null sub-

hypothesis H1k;

f4) The K − 1 partial tests are positively dependent;

f5) For the computation of T ∗
k , 0 is assigned to expressions with the form 0/0;

f6) C(n1, n2) = [n1n2(n− 1)/n2]1/2 is a permutation constant not dependent on k;

f7) For increasing sample sizes, each T ∗
k under H0 converges to the standardized nor-

mal distribution: T ∗
k

d→ N (0, 1).

According to the approach discussed in Pesarin (2001), Pesarin (2006) and Pesarin and

Salmaso (2010), the global testing solution can be obtained by their UI-NPC while using

any admissible combining function, such as Fisher’s, Liptak’s, Tippett’s, the Direct, and

so forth.

The simplest admissible combination is by the direct sum of partial tests T ∗
k :

T ∗
AD =

K−1∑

k=1

T ∗
k = C(n1, n2) ·

K−1∑

k=1

[F̂ ∗
1k − F̂ ∗

2k]
[
F̄·k(1− F̄·k)

]− 1
2 .

Such a solution looks like the discrete version of the Anderson-Darling goodness-of-fit

type test for multi-one-sided alternatives, which is the sum of standardized partial tests.
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It is worth emphasizing that: g1) each partial test T ∗
k is unbiased and so combined

test T ∗
AD is unbiased; g2) combined test T ∗

AD is consistent if at least one partial test T ∗
k

is consistent; g3) T ∗
AD is an admissible combination of partial best tests and so provided

with good power behavior.

Of course, by using other admissible combining functions one can obtain other so-

called good solutions, none of which, however, iss uniformly better than any other. The

corresponding p-value-like statistics can be written as λAD = Pr{T ∗
AD ≥ T oAD | X}, where

T oAD = TAD(X) is the observed value of TAD on the pooled data X. So, remembering

that p-value-like statistics play the role of tests whose common critical value is α, if

λAD ≤ α, the null hypothesis is rejected at significance level α > 0.

Similarly, there are some other useful partial tests for the same unidimensional prob-

lem, which can be tackled by considering the comparison of two probability generating

functions (Arboretti et al. (2007); Arboretti and Bonnini (2009); Pesarin and Salmaso

(2010)). One is based on Mid-ranks, which converts the original categories into the

mid-rank of the categories among the pooled data set X, namely,

MR(Xj,i) =#(Xj,s ≤ Xj,i)−
1

2
#(Xj,s = Xj,i)

=
2∑

j=1

nj∑

i=1

I(Xj,s ≤ Xj,i)−
1

2

2∑

j=1

nj∑

i=1

I(Xj,s = Xj,i)

Mid-ranks are also symmetric, nondecreasing and non-degenerate measurable func-

tions. To be simplified, let ϕ(·) indicates the Mid-ranks transformation MR(·), namely,

ϕ(Xj,i) = MR(Xj,i), and then to proceed by comparing means of mid-ranks. The

corresponding test is

T ∗
MR = ϕ(X∗

1 )− ϕ(X∗
2 ) =

∑

i

ϕ(X∗
1,i)/n1 −

∑

i

ϕ(X∗
2,i)/n2

Since
∑

j

∑
i ϕ(X

∗
j,i) is a permutation invariant quantity, T ∗

MR is equivalent to the stan-

dardized version (ϕ(X∗
1 ) − ϕ(X∗

2 ))/V ar|X(ϕ(X
∗
1 ) − ϕ(X∗

2 ))
1/2, to

∑
i ϕ(X

∗
1,i)/n1, and

to −∑i ϕ(X
∗
2,i)/n2, where V ar|X(ϕ(X∗

1 ) − ϕ(X∗
2 ))

1/2 is the permutation variance of

ϕ(X∗
1 ) − ϕ(X∗

2 ). Obviously, due to conditioning on pooled data X, the permutation

variance V ar|X(ϕ(X∗
1 )− ϕ(X∗

2 ))
1/2 is always finite.

It is worth cautioning that, in H0, pooled data X are considered to be from the same

underlying distribution F . With transformation ϕ(·), we assume that the ϕ-expectation

of any transformed data be EF [ϕ(X)] = EF [ϕ(X(0))] =
∫
X
ϕ(x)dF (x) < ∞; i.e. we

assume that population mean-ϕ is finite. The finite ϕ-mean in H1 will be such that
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EF [ϕ(X(δ))] =
∫
X
ϕ(z)dPH1(z) > EF [ϕ(X(0))] for every δ > 0. It is clearly easy to

see that, under H0, the standardized version of T ∗
MR also converges to standardized

normal distribution: T ∗
MR

d→ N (0, 1). The corresponding p-value-like statistic is λMR =

Pr{T ∗
MR ≥ T oMR | X}, where, T oMR means the observed value of TMR on X. If λMR ≤ α,

the alternative is accepted at significant level α > 0.

Another common approach is based on score functions, which were tackled by as-

signing non-decreasing appropriate W scores to ordered categories, e.g. as vk → wk, for

k = 1, · · · , K, where w1 ≤ · · · ≤ wK , with at least one strict inequality. In such a case,

the data are transformed into wki = wk · 1(X(i) = vk), for i = 1, · · · , n, where 1(·) is
the counting function. It is clearly easy to see that, w∗

1 =
∑n1

i=1

∑K
k=1w

∗
ki presents the

sum of the first permuted samples, and w∗
2 =

∑n
i=n1+1

∑K
k=1w

∗
ki presents the sum of the

second one. Therefore, the permutation solution is nothing else than a comparison of

sample means of scores, the related partial permutation test is

T ∗
W = w̄∗

1 − w̄∗
2

Similarly,
∑

j w
∗
j is a permutation invariant quantity, T ∗

W is equivalent to the standard-

ized version (w̄∗
1 − w̄∗

2)/V ar|X(w̄
∗
1 − w̄∗

2)
1/2, to w̄∗

1, and also to −w̄∗
2. The aforementioned

w̄∗
j is also a symmetric nondecreasing and non-degenerate measurable function. Stan-

dardized partial test T ∗
W , under H0, also converges to the standard normal distribution:

T ∗
W

d→ N (0, 1). Further, a common score transformation is to assign the categories

to equidistant numerical data (the distance between categories is normalized to one),

integers numbers are common simple equidistant numerical data.

It is clearly easy to see that both Mid-ranks and score solutions share the spirit of

Cramér-von Mises goodness-of-fit type statistic for multi-one-sided alternatives, which

is the standardized sum of partial tests, and reject the alternatives for the large values

of the test statistic.

3.3 The two-sample multidimensional case

In the general multidimensional case, let us start from two-sample Q-dimensional prob-

lem, Q ≥ 2. The formulation of testing for multidimensional hypotheses are H0 : X1
d
=

X2 against H1 : X1

d
< X2. The multidimensional hypotheses H0 and H1, according to

Roy (1953) are assumed to be equivalently broken-down into K ≥ 2 unidimensional

sub-hypotheses, H0 ≡
⋂K
k=1H0k and H1 ≡

⋃K
k=1H1k. Thus, with Q dimensional ordinal

data and K ordered categories for each variable, the hypotheses are equivalently written
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as

H0 ≡
Q⋂

q=1

{
K−1⋂

k=1

[F1q(vk) = F2q(vk)]

}

against

H1 ≡
Q⋃

q=1

{
K−1⋃

k=1

[F1q(vk) > F2q(vk)]

}

It is clearly easy to see that the global testing problem is broken-down into V = Q ×
(K − 1) partial sub-problems.

Thus, for each component variable q = 1, · · · , Q, partial test T ∗
ADq can be obtained

according to Chapter 2. Since all these partial tests are standardized and so, sharing

the same asymptotic null distribution, for their combination we can proceed with their

direct sum.

This provides for the Q-dimensional extension of the Anderson-Darling test for multi-

one-sided alternatives:

T ∗
AD =

Q∑

q=1

T ∗
ADq = C(n1, n2) ·

Q∑

q=1

K−1∑

k=1

[F̂ ∗
1qk − F̂ ∗

2qk]
[
F̄·qk(1− F̄·qk)

]− 1
2 .

It is worth highlighting that, now, with symbol X it is represented the Q-dimensional

variable and the pooled sample data matrix, the context generally suffices avoiding

misunderstandings. Of course, the Q-dimensional T ∗
AD enjoys the same good properties

as the unidimensional.

In place of the direct combination of Q partial tests T ∗
ADq, i.e. one Anderson-Darling

test for each variable, it is possible to think of a more general combination like for

instance T ∗
ψ = ψ(T ∗

AD1, · · · , T ∗
ADQ). The most commonly used combining functions ψ

are Fisher’s TF = −2
∑

q log(λ
∗
ADq), or Liptak’s T

∗
L =

∑
q Φ

−1(1− λ∗ADq), where λ
∗
ADq is

the p-value statistic of T ∗
ADq and Φ(·)−1 is the inverse standard normal CDF. Since in

T ∗
AD all summands are well defined, it is also of some interest to observe that the double

summation can equivalently be computed as
∑

k

∑
q.

Similarly to the unidimensional setting, the multidimensional problem can, however,

be tackled by Mid-ranks T ∗
MR and Scores T ∗

W . For each component variable q, the

permutation solution based on Mid-ranks is to proceed by comparing sample means of

mid-ranks, T ∗
MR = ψ

(
(ϕ1(X∗

1 )− ϕ1(X∗
2 )), · · · , (ϕQ(X∗

1 )− ϕQ(X∗
2 ))
)
. It is well-known

that all standardized versions of partial tests are sharing the same limiting distribution

function, and it is reasonable to combine the resulting partial tests by using their direct
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sum. The corresponding test statistic by direct combining function is as follows,

T ∗
MR =

Q∑

q=1

T ∗
MRq =

Q∑

q=1

(
ϕq(X∗

1 )− ϕq(X∗
2 )
)
V ar|X

(
ϕq(X∗

1 )− ϕq(X∗
2 )
)− 1

2

For Q > 1, we can assign non-decreasingWq scores to ordered categories, e.g. vqk → wqk,

for k = 1, · · · , K and q = 1, · · · , Q, where wq1 ≤ · · · ≤ wqK , with at least one strict

inequality ∀q. In such a case, the data are transformed into wqki = wqk · 1(Xqji = vqk),

for j = 1, 2 and i = 1, · · · , n. Thus, the permutation solution is to compare of sample

means of scores, T ∗
W = ψ

(
(w̄∗

11 − w̄∗
12), · · · , (w̄∗

Q1 − w̄∗
Q2)
)
. The test statistic with Q-

dimensional data based on score function by direct combination is immediately obtained

as follows,

T ∗
W =

Q∑

q=1

T ∗
Wq =

Q∑

q=1

(
w̄∗
q1 − w̄∗

q2

)
V ar|X

(
w̄∗
q1 − w̄∗

q2

)− 1
2

It is suitable to use the Direct combination for T ∗
Wq, due to the same limiting distribution

function of all standardized partial tests. The related p-values for its counterpart-partial

tests T ∗
MR and T ∗

W can be summarized as {λ∗MR1, · · · , λ∗MRQ} and {λ∗W1, · · · , λ∗WQ},
respectively. Other combining functions are also suitable for those p-values, such as

Fisher’s, Liptak’s and Tippett’s.

3.4 The J-sample stochastic ordering problem

Let’s turn our attention to the Table (3.1), the testing problem of interest is to detect

whether there exists stochastic ordering among J samples, namely, H1 : X1

d

≤ X2

d

≤
· · ·

d

≤ XJ , with X1

d
< XJ . According to the Jonckheere-Terpstra idea, the J ×K table

can be broken down into (J − 1) sub-tables. Thus, the global testing problem is broken

down into (J − 1) sub-problems each based on a 2×K sub-table.

To be specific, for any j ∈ {1, · · · , J − 1}, we divide the data set X into two pooled

pseudo-groups, where the first pseudo-group is obtained by pooling data of the first j

ordered groups and the second by pooling the rest. With the symbol
⊎

for pooling data

sets, the procedure considers the first pooled pseudo-group as

Y1(j) = X·1

⊎
X·2

⊎
· · ·
⊎

X·j



Chapter 3 - Testing for restricted alternatives with ordered data 51

and the second as

Y2(j) = X·j+1

⊎
X·j+2

⊎
· · ·
⊎

X·J

for j = 1, · · · , J − 1, where X·j = {Xj,i, i = 1, · · · , nj} is the data set in the j-th group.

In the null hypothesis H0, related pooled variables satisfy the relationships Y1(j)
d
=

Y2(j), j = 1, · · · , J−1, hence, data from every pair of pseudo-groups are exchangeable. In

the alternative H1, as for at least one j the relation inequality Xj

d

≤ Xj+1, 1 ≤ j ≤ J−1

is strict, which leads to the corresponding stochastic dominance between each pair of

pseudo-groups Y1(j)
d
< Y2(j) for j ≤ J − 1, where the strict equality is satisfied for

all J − 1 pseudo-groups. Therefore, the hypotheses for monotonic stochastic ordering

problem can be equivalently written as

H0 :

{
J−1⋂

j=1

(Y1(j)
d
= Y2(j))

}
vs. H1 :

{
J−1⋃

j=1

(Y1(j)
d
< Y2(j))

}

which are emphasizing a break-down into a set of J − 1 sub-hypotheses.

For each sub-problem, the analysis of Subsection 3.2 provides for proper tests statis-

tic, and then the global problem can be jointly analyzed by their UI-NPC. Here, to be

clearly easy to understand, first take j = 1 for example, and then extend to the general

case. When j = 1, the first pooled pseudo-groups is Y1(1) = X·1, and the second one

is Y2(1) = X·2

⊎ · · ·⊎X·J , which leads to a two-sample one/multi-dimensional design,

when j is fixed, the problem becomes to the 2 × K one/multi-dimensional case; and

sample sizes of two comparison pseudo-groups will differ as j changing. The specific

sub-hypotheses are H0 : Y1(1)
d
= Y2(1) against H1 : Y1(1)

d
< Y2(1). The related combined

test statistics can use Anderson-Darling, Mid-ranks and scores tests for one-sided al-

ternatives, we already described. It is worth noting that, sample sizes for j-th pair of

pseudo-groups, denoted by n1(j) and n2(j), respectively.

Therefore, for any j, we can consider the Anderson Darling test as follows:

T ∗
AD(j) = C(n1(j), n2(j)) ·

K−1∑

k=1

[
F̂ ∗
1(j)k − F̂ ∗

2(j)k

]
[F̄·(j)k(1− F̄·(j)k)]

− 1
2 , j = 1, · · · , J − 1,

where: n1(j) = n1 + · · · + nj, n2(j) = n− n1(j); the permutation relative frequencies are

F̂ ∗
l(j)k = #(X∗

l(j) � vk)/nl(j) =
∑nl

i=1 I(X
∗
l(j),i � vk)/nl(j), l = 1, 2; the marginal relative

frequencies are F̄·(j)k = [#(X∗
1(j) � vk) + #(X∗

2(j) � vk)]/n; partial tests T ∗
AD(j) are

positively dependent; and C(n1(j), n2(j)) are the permutation k-invariable constants. So

the global test is solved by combining the J − 1 partial tests within the UI-NPC as, for
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instance by

T ∗
AD =

J−1∑

j=1

T ∗
AD(j).

Of course, if Q > 1 variables were involved, the multivariate stochastic ordering solution

would require one stochastic ordering partial test for each component variable, q =

1, · · · , Q. So, with clear meanings of the symbols the global test, by Direct combination,

is:

T ∗
AD,Q =

J−1∑

j=1

C(n1(j), n2(j)) ·
Q∑

q=1

K−1∑

k=1

[
F̂ ∗
1q(j)k − F̂ ∗

2q(j)k

]
[F̄·q(j)k(1− F̄·q(j)k)]

− 1
2 .

When J > 2, such a case can be also settled by Mid-ranks and Scores data transforma-

tions. For each j, under the unidimensional setting, the permutation solution based on

Mid-ranks for unidimensional data is to proceed by comparing sample means of mid-

ranks T ∗
MR = ψ

(
(ϕ(1)(X∗

1 )− ϕ(1)(X∗
2 )), · · · , (ϕ(J−1)(X∗

1 )− ϕ(J−1)(X∗
2 ))
)
. And all these

standardized versions of partial tests share the same asymptotic distribution function,

the corresponding partial tests based on Mid-ranks are:

T ∗
MR(j) =

(
ϕ(j)(X∗

1 )− ϕ(j)(X∗
2 )
)
· V ar|X

(
ϕ(j)(X∗

1 )− ϕ(j)(X∗
2 )
)− 1

2

The global test is given by combining J − 1 partial tests by Direct combination as,

T ∗
MR =

J−1∑

j=1

T ∗
MR(j)

When Q > 1, the problem becomes a multidimensional case, the permutation solu-

tion is to combine all partial tests T ∗
MR(j)Q or all counterpart p-values λ∗MR(j)Q with

any suitable combining function φ, namely, T ∗
MR,Q = φ

(
T ∗
MR(1)Q, · · · , T ∗

MR(J−1)Q

)
or

T ∗
MR,Q = φ

(
λ∗MR(1)Q, · · · , λ∗MR(J−1)Q

)
. Due to the same limiting distribution of all

partial tests T ∗
MR(j)Q, the global test by Direct combination is as follows,

T ∗
MR,Q =

J−1∑

j=1

Q∑

q=1

(
ϕq(j)(X∗

1 )− ϕq(j)(X∗
2 )
)
· V ar|X

(
ϕq(j)(X∗

1 )− ϕq(j)(X∗
2 )
)− 1

2

For J > 2, with unidimensional setting, the approach based on score function is to assign

non-decreasing W scores to ordered categories, e.g. as vk(j) → wk(j) for k = 1, · · · , K,

where w1(j) ≤ · · · ≤ wK(j), with at least one strict inequality. The data are transformed
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into wki(j) = wk(i) · 1(X(i) = vk), for i = 1, · · · , n, where 1(·) is the counting function.

It is clearly easy to see that, w∗
1(j) =

∑n1(j)

i=1

∑K
k=1w

∗
ki presents the sum of the first

permuted samples, and w∗
2(j) =

∑n
i=n1(j)+1

∑K
k=1w

∗
ki presents the sum of the second one.

The partial tests based on score transformation, for any j, can be given by

T ∗
W (j) =

(
w̄∗

1(j) − w̄∗
2(j)

)
V ar|X

(
w̄∗

1(j) − w̄∗
2(j)

)− 1
2

Thus, the global test is given by combining J − 1 partial tests as follows,

T ∗
W =

J−1∑

j=1

(
w̄∗

1(j) − w̄∗
2(j)

)
V ar|X

(
w̄∗

1(j) − w̄∗
2(j)

)− 1
2

and for Q > 1, the unidimensional case extent to multidimensional problem, the per-

mutation solution is to proceed by combining all partial tests T ∗
W (j)Q or all counterpart

p-values λ∗W (j)Q with any suitable function φ, that is, T ∗
W,Q = φ

(
T ∗
W (1)Q, · · · , T ∗

W (J−1)Q

)

or T ∗
W,Q = φ

(
λ∗W (1)Q, · · · , λ∗W (J−1)Q

)
. Due to the same asymptotic distribution function

of all partial tests T ∗
W (j)Q, the aforementioned global test by Direct combination is as

follows

T ∗
W,Q =

J−1∑

j=1

Q∑

q=1

(
w̄∗

1q(j) − w̄∗
2q(j)

)
V ar|X

(
w̄∗

1q(j) − w̄∗
2q(j)

)− 1
2

According to our experience, except for the Direct, the most suitable combining func-

tions for this problem are Fisher’s and Liptak’s. Since in the stochastic ordering problem

under the alternative all J − 1 partial tests contain a positive non-centrality quantity,

i.e. all lie in their respective sub-alternatives, Tippett’s combination is less sensitive

than others.

3.5 A typical medical example

Let us consider the example in Table (3.4) from Chuang-Stein and Agresti (1997), also

reported by Agresti and Coull (1998) and Agresti and Coull (2002), Silvapulle and Sen

(2005), Kateri and Agresti (2013) and Colombi and Forcina (2016). It regards a uni-

dimensional survey on subarachnoid hemorrhage measured by the Glasgow outcome

scale, where 210 patients received a Placebo, 190 received a Low dose, 207 a Medium

dose and 195 a High dose. Response data, related to the extent of trauma, measured

on the same ordinal categorical scale, are classified according to J = 4 levels of treat-

ment: {Placebo, Low, Medium, High}, with clinical outcome classified in K = 5 ordered
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categories {Death, Vegetative state, Major disability, Minor disability, Good recovery}.

Table 3.4: Dose and Extent of trauma due to subarachnoid hemorrhage

Treatment
Cats.

Death Veget Major Minor Recov Total

Placebo 59 25 46 48 32 210

Low 48 21 44 47 30 190

Medium 44 14 54 64 31 207

High 43 4 49 58 41 195

Total 194 64 193 217 134 802

Based on our intuition, but also in accordance with quoted authors, patients taking

Placebo are expected to achieve lower treatment effect than those taking Low dose,

patients taking Low dose are expected to have lower effects than those with Medium

dose, and so forth. Therefore, it is expected that patients exhibit monotonically non-

decreasing responses as the dose increases. Thus, it is required to test whether there

is a monotonic stochastic ordering on distributions related to the 4 treatment levels.

Formally, the hypotheses to consider are:

H0 : XP
d
= XL

d
= XM

d
= XH

against

H1 : XP

d

≤ XL

d

≤ XM

d

≤ XH , with XP

d
< XH

If responses were quantitative, this problem is also termed of the isotonic regression.

Defining the cumulative distribution function for X at ordered categories v1 ≺ · · · ≺ vK

as FX(vk) = Pr{X � vk}, namely, the hypotheses are equivalently expressed as

H0 : {FXP
= FXM

= FXL
= FXH

}

against the alternative

H1 : {FXP
≥ FXM

≥ FXL
≥ FXH

} with at least one strict inequality
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From the aforementioned subsection 3.4, the analysis of the data from the medical

example is termed the J-sample one-dimensional stochastic ordering problem. In the

face of such a realistic problem, based on Jonckheere-Terpstra’s idea, the problem can

equivalently be broken-down into J − 1 = 3 sub-problems, each sub-problem is based

on a 2 × 5 contingency table. We intend to analyze this problem within the UI-NPC

approach, based on Conditional Monte Carlo with R = 100 000 random permutations.

Firstly, we take into account one 2 × 5 contingency table resulting from collapsing

the three levels of treatment, in the other words, it is equivalent to compare whether the

one receiving Standard treatment stochastically dominates the other receiving Placebo.

The resulting p-value based on Anderson-Darling equals 0.0141. For the test based on

Mid-ranks transformation, giving p-value 0.0144. For the test based on score function

which assigns the categories into equidistant scores, the related p-value is 0.0131. It is

interesting to note that p-values from three partial tests are comparable, as they only

differ in the third digit.

When we collapse the first two rows and the rest two rows, respectively. The resulting

reorganized table, is equivalent to the sub-problem when j = 2. For the Anderson-

Darling, Mid-ranks, Score partial tests, the p-values are all at most 0.002, only slightly

differ at the fourth digit.

Similarly, collapse the first three rows, the sub-problem implies that compare the

highest level of treatment with the rest, to prove if one taking the highest treatment

stochastically dominates than the other. The resulting p-values are comparable from

the Anderson-Darling and Score partial tests, and the Mid-ranks test behaves slightly

better, giving p-value 0.0062.

For the combination functions, by using Fisher’s T ′′
F , Liptak’s T

′′
L, Tippett’s T

′′
T and

Direct T ′′
D, the corresponding results are shown in the Table (3.5). It is worth mentioned

that: h1) W scores are assigned to equidistant ordering integer numbers as (w1 =

1, w2 = 2, w3 = 3, w4 = 4, w5 = 5); h2) since small p-value statistics are evidence for H1,

Fisher’s, Liptak’s and Tippett’s are non-increasing functions of partial p-values. The

p-values based on UI-NPC method are:

Table 3.5: p-values based on UI-NPC approach

T ∗
(1) T ∗

(2) T ∗
(3) T

′′

D T
′′

F T
′′

L T
′′

T

λ̂AD(j) 0.0141 0.0025 0.0074 0.0017 0.0015 0.0012 0.0068

λ̂W (j) 0.0131 0.0021 0.0076 0.0010 0.0012 0.0010 0.0053

λ̂MR(j) 0.0144 0.0024 0.0062 0.0011 0.0014 0.0011 0.0068
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Results in Table (3.5) clearly show that the p-values based on four different combi-

nation functions T
′′

D, T
′′

F , T
′′

L and T ′′
T , all reject the null hypothesis at significance level

α = 0.01 of monotonic stochastic ordering among the J = 4 levels of treatment. So

the inferential conclusion is that patients present non-decreasing responses as the dose

increases.

It is worth noting that the three combined p-value statistics T
′′

D, T
′′

F and T
′′

L differ

only slightly in the fourth digit. This means that related tests are all suitable for testing

unidimensional dominance and stochastic ordering alternatives, and so the resulting

combined p-values are likely close to the best one. In our case, if the stochastic ordering

alternative is true it is jointly true by construction for all J − 1 partial tests T ∗
(j). So,

Tippett’s T ′′
T differs from other combination functions because its power behavior is

mostly sensitive when only one partial test lies in the alternative. Due to too many ties

in the data set, the test with rank transformations was not considered.

Since all p-values statistics related to TAD(3) are < 0.05/3, by simple Bonferroni’s

rule it results that subjects taking High dose exhibit significantly lower responses than

those taking lower doses.



Chapter 4

Testing for restricted alternatives

with repeated data

4.1 Prologue

Given that two groups with unidimensional data, the related permutation solutions for

stochastic dominance testing problems have been proposed in the former Chapter. When

these two groups are observed repeatedly at several recording times, we are wondering

if there still exists one subject that stochastically dominates the other. Such repeated

measure design is a common occurrence in experimental situations, in which subject

is observed at a sequence of recording time points. The responses of the unit may be

expected to comply with an unknown tendency, or be viewed as the discretized stochastic

process. To be clearly understood, we also take the clinical experiment, for example,

the corresponding table is shown as follows,

Table 4.1: General two subjects with repeated data

Treatment
A B

Time Time

ID 1 2 · · · · · · · · · T ID 1 2 · · · · · · · · · T

1 X1,1,1 X1,1,2 · · · · · · · · · X1,1,T 1 X2,1,1 X2,1,2 · · · · · · · · · X2,1,T

2 X1,2,1 X1,2,2 · · · · · · · · · X1,2,T 2 X2,2,1 X2,2,2 · · · · · · · · · X2,2,T

...
...

... · · · · · · · · · ...
...

...
... · · · · · · · · · ...

i X1,i,1 X1,i,2 · · · · · · · · · X1,i,T i X2,i,1 X2,i,2 · · · · · · · · · X2,i,T

...
...

... · · · · · · · · · ...
...

...
... · · · · · · · · · ...

n1 X1,n1,1 X1,n1,2 · · · · · · · · · X1,n1,T n2 X2,n2,1 X2,n2,2 · · · · · · · · · X2,n2,T

57
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Suppose study subjects are randomly assigned to two levels of treatment schemes,

the subjects will be asked to rate their post-treatment responses at several recording

time points, or to score the symptoms before being given medication at several recording

time points, or the researchers proceed with measurements of subjects’ post-treatment

responses at fixed time points. Some noteworthy aspects should be emphasized here:

i1) Physical fitness of subjects we consider may be of equally likely nature, or in

general, the physical fitness may be seen as distinct due to different factors. In

what follows, the contents will be sufficient to distinguish whether study subjects

are of equally likely nature or not.

i2) Study subjects are independently observed of each other regardless of which treat-

ment regimens they receive.

i3) Outcomes of distinct subjects either at the same time point or different time points

are independent.

i4) The outcomes of the subject’s pre-treatment or post-treatment are defined on the

same ordered categorical scale. In other words, subjects need to rate categories of

their pre-treatment or post-treatment effects according to an ordered categorical

scale, such as: {No pain; Mild Pain; Moderate Pain; Severe Pain}; {Unhappy;
Neither happy nor unhappy; Happy}; and so forth.

i5) The measurement contents are the same, since subjects are asked to answer the

same question at different time occasions.

i6) The sample sizes are usually moderate, and the existence of unbalanced compari-

son groups is allowed.

i7) Both treatment regimens would yield non-negative treatment effects δ, and re-

searchers expect one receiving Standard treatment would yield better effect than

those receiving Placebo. Assume the effects of Placebo are not active nor non-

negative, and so are set at zero.

According to these basic settings, let’s turn our attention to the Table (4.1). There are

two levels of treatment regimens in the Table (4.1), one is Standard treatment denoted

by A, the other one is Placebo denoted by B. Both of them repeatedly measure T

recording time points. Sample sizes of A and B are n1 and n2, respectively; in addition,

sample sizes could be unbalanced: n1 = ( 6=)n2. The layout of unit is Xj,i,t, for j = 1, 2,

i = 1, · · · , nj, t = 1, · · · , T , it implies that unit Xj,i,t belongs to the j-th treatment



Chapter 4 - Testing for restricted alternatives with repeated data 59

scheme, i-th unit of j-th treatment scheme, t-th measurement. To be simplified, assumed

j = 1 stands for Standard treatment, and j = 2 for Placebo.

In such a case, we have some problems of interest to study:

j1) In the group being given standard treatment, whether the treatment effects will

tend to decrease as the number of measurements increases, in other words, whether

the treatment effects will tend to decrease over time.

j2) In the group being given placebo, whether the post-treatment effects also tend to

decrease over time.

j3) Whether one taking placebo stochastically dominates the other receiving standard

treatment, i.e. whether he/she presents stochastically lower outcome.

4.2 Repeated measurements with two occasions

To be more clearly understood, we will start from one sample in which subjects’ post-

treatment responses are measured at two recording time points. There are n study

subjects taking the clinical experiments, and post-treatment responses of subjects are

measured at time points t = 1, 2. Subjects are independent of each other, the mea-

surements at two time points are not independent. Suppose samples are set to be

X·t = {X1,t, X2,t, · · · , Xn,t} ∈ X n for t = 1, 2.

The associated table is shown as follows,

Table 4.2: Two recording time points

ID

Time
1 2

1 X1,1 X1,2

2 X2,1 X2,2

3 X3,1 X3,2

. . . . . . . . .

i Xi,1 Xi,2

. . . . . . . . .

j Xj,1 Xj,2

. . . . . . . . .

n Xn,1 Xn,2
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The researchers intend to determine whether the first-time treatment effect stochas-

tically dominates the second-time treatment effect. For this case, we can consider the

question in two ways: one is that, specific to the responses of each unit, whether there

exists a dominating relation between two measurements; second is that, assuming each

column as a whole to be considered, whether one stochastically dominates the other.

These two ways can be considered equivalent, thus and so, the two related hypotheses

can be shown as follows,

I) Specific to each unit: testing the responses pertain to the i-th unit,

H0i : {Xi,1
d
= Xi,2

d
= Xi·} vs. H1i : {Xi,1

d
> Xi,2

d
= Xi·}.

Since the related global hypotheses are shown as

H0 :

{
⋂

i

{Xi,1
d
= Xi,2}

}
≡ {X·1

d
= X·2} vs. H1 :

{
⋃

i

{Xi,1

d
> Xi,2}

}
≡ {X·1

d
> X·2}.

II) Specific to each column: testing the responses at two recording time points,

H0 : {X·1
d
= X·2}, vs. H1 : {X·1

d
> X·2}.

It is worth noting the strong similarity of I) to II). In I) data paired are assumed to be

dependent within each pair and pairs are independent; in II) it is apparently assumed

the traditional two-sample setting.

4.2.1 Some typical regression functions

To analyze such problem, suppose outcomeXi,t can be expressed as a regression function,

Xi,1 = µ+ ηi + σ1 · Zi,1, Xi,2 = µ+ ηi − δ + σ2 · Zi,2, i = 1, · · · , n.

There are some noteworthy aspects to point out: k1) µ be the population constant; k2) ηi

be unknown components specific to the i-th unit, which are not dependent on treatment

schemes; k3) δ be a non-negative and be defined as a treatment effect for subjects under

treatment; k4) σ1 and σ2 are scale coefficients pertaining to the counterpart groups;

k5) Assume Zi,1 and Zi,2 be identically distributed error components with zero median:

Pr{Zi,t < 0} = Pr{Zi,t > 0}, for every i and t. Actually, the error components are

assumed to be at least exchangeable within units but are independent between units.
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It is worth highlighting that solutions to the regression function will differ depending

on the addition or removal of some components.

l1) Assume ηi = 0, σ1 = σ2 = 1, all other components assume the same meaning as

aforementioned content. The regression functions are presented as

Xi,1 = µ+ Zi,1, Xi,2 = µ− δ + Zi,2, i = 1, · · · , n.

Considering the differences between measurement of i-th unit, that is, {∆i =

Xi,1 − Xi,2 = δ + Zi,1 − Zi,2, i = 1, · · · , n} which are equivalently represented as

{∆i − δ = Zi,1 − Zi,2, i = 1, · · · , n}.

l2) Assume σ1 = σ2 = 1, all other components have the same meaning as the forego-

ing. The regression functions are expressed as

Xi,1 = µ+ ηi + Zi,1, Xi,2 = µ+ ηi − δ + Zi,2, i = 1, · · · , n.

The differences between measurement of i-th unit are {∆i = Xi,1 − Xi,2 = δ +

Zi,1 − Zi,2, i = 1, · · · , n} ≡ {∆i − δ = Zi,1 − Zi,2, i = 1, · · · , n}.

l3) Assume σ1 = σ2, all other components share the same meaning as described above.

The regression functions are in the form of

Xi,1 = µ+ ηi + σ · Zi,1, Xi,2 = µ+ ηi − δ + σ · Zi,2, i = 1, · · · , n,

where σ is the unknown standard deviation assumed to be independent of unit and

treatment levels, and satisfying the condition 0 < σ <∞. Further, the differences

between measurements of i-th unit are {∆i = Xi,1−Xi,2 = δ+σ · (Zi,1−Zi,2), i =

1, · · · , n} ≡ {∆i − δ = σ · (Zi,1 − Zi,2), i = 1, · · · , n}.

l4)

Xi,1 = µ+ ηi + σ1 · Zi,1, Xi,2 = µ+ ηi − δ + σ2 · Zi,2, i = 1, · · · , n,

where two scale coefficients σ1 and σ2 may not be guaranteed to be identical. When

σ1 = σ2, the model becomes the third case. Moreover, in the case with σ1 6= σ2, if

σ1 and σ2 are only scale coefficients but not dependent on the treatment effects,

the testing problem falls into logical fallacy because Xi,1 and Xi,2 are not equal

in distribution under H0. Therefore, when σ is the function of treatment effects,

with σ(0) = σ1 and σ(δ) = σ2 (0 < σ <∞), Xi,1 and Xi,2 are equal in distribution
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under H0, we only consider this situation. The associated differences between

measurements of i-th unit are {∆i = Xi,1 − Xi,2 = δ + (σ1Zi,1 − σ2Zi,2), i =

1, · · · , n} ≡ {∆i − δ = (σ1Zi,1 − σ2Zi,2), i = 1, · · · , n}.

It is clearly easy to see that, there are three types of the differences of responses per-

taining to i-th unit, namely, {Zi,1 − Zi,2}; {σ · (Zi,1 − Zi,2)}; and {σ1Zi,1 − σ2Zi,2}.
Thus, instead of studying the left side of equations ∆i − δ, we turn our attention to

work on the right side of equations. It is already known that, Zi,1 and Zi,2 are at least

exchangeable and identically distributed, and independent with respect to units. Sup-

pose the underlying likelihood related to Zi,j is fZ , then it is straightforward to obtain

fZ(Zi,1)fZ(Zi,2) = fZ(Zi,2)fZ(Zi,1) =
∏

j fZ(Zi,j), which characterizes exchangeability

of Zi,1 and Zi,2 within units. Now, let us analyze those three cases individually:

m1) For the case of {Zi,1 − Zi,2}, within transformation function {ζ(x, y) = 1, y >

x; 0, y ≤ x}, we can obtain

(Zi1, Zi2)
d
= (Zi2, Zi1)

ζ→ ζ(Zi1, Zi2)
d
= ζ(Zi2, Zi1)

→ E[ζ(Zi1, Zi2)] = E[ζ(Zi2, Zi1)]

→ Pr(Zi2 > Zi1) = Pr(Zi1 > Zi2)

→ Pr(Zi2 − Zi1 > 0) = Pr(Zi1 − Zi2 > 0)

→ Zi2 − Zi1
d
= Zi1 − Zi2.

Therefore, Zi2 − Zi1 and Zi1 − Zi2 are equal in distribution, and it also implies

that Zi2 − Zi1 is symmetric around zero.

m2) For the case of {σ · (Zi,1 − Zi,2)}, according to the symmetry of Zi2 − Zi1, it is

straightforward to obtain that

Zi2 − Zi1
d
= Zi1 − Zi2 → E[σ · (Zi1, Zi2)] = E[σ · (Zi2, Zi1)]

→ σ · (Zi2 − Zi1)
d
= σ · (Zi1 − Zi2).

Since, σ · (Zi2 − Zi1) and σ · (Zi1 − Zi2) are equal in distribution, they are also

symmetric around zero.

m3) For the case of {σ1Zi,1−σ2Zi,2}, due to the exchangeability between Zi,1 and Zi,2,

σ1 ·Zi,1 and σ2 ·Zi,2 are not exchangeable unless the error components Zi,1 and Zi,2

are symmetrically distributed around zero. Thus, only within the transformation
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function {ζ(x, y) = 1, y > x; 0, y ≤ x}, we have

(σ1Zi,1, σ2Zi,2)
d
= (σ2Zi,2, σ1Zi,1)

ζ→ ζ(σ1Zi,1, σ2Zi,2)
d
= ζ(σ2Zi,2, σ1Zi,1)

→ E{ζ(σ1Zi,1, σ2Zi,2)} d
= E{ζ(σ2Zi,2, σ1Zi,1)}

→ Pr{σ1Zi,1 > σ2Zi,2} = Pr{σ2Zi,2 > σ1Zi,1}

Even though the underlying distributions of Zi1 and Zi2, i = 1, · · · , n, are un-

known, the conclusion about symmetry of σ1Zi,1 − σ2Zi,2 can be obtained.

All three types of the differences of responses are symmetric, equivalent to say that ∆i−δ
is also symmetric around zero, and further, ∆i is symmetric around δ. It is well known

that, in H0, it is expected that there are no differences in treatment effects between

two levels of treatment schemes, thus, δ takes the value of zero, which implies that ∆i

is symmetric around zero. In H1, the expected effect under the standard treatment is

not worse than that under placebo, or we say that treatment effect receiving standard

treatment is better than that being given placebo. Thus, δ is active, namely, δ > 0, and

it is straightforward to say ∆i is symmetric around a location or a so-called treatment

effect δ.

4.2.2 A general regression function

In general, related assumptions on components of regression function could be appro-

priately relaxed, regression function can be expressed as

Xi,1 = µ+ ηi + σ · Zi,1, Xi,2 = µ+ ηi − δi + σ(δi) · Zi,2, i = 1, · · · , n,

where: n1) σ is a function of treatment effect δi. Suppose σ(0) = σ, for δi > 0, we have

σ(δi) 6= σ, which implies that the scale coefficients are not constant σ in the alternative

under conditioning 0 < σ <∞. n2) Error components Zi,1 and Zi,1 which are generally

non-Gaussian, are assumed to behave as a stationary stochastic process with null mean

and median and unknown distribution PZ , where these error terms are exchangeable

within units, but independent with respect to units. n3) δi, i = 1, · · · , n, are treatment

effects pertaining to the i-th unit. Let δ be the vector of δi, if δ = 0, it implies that

there are no differences between two levels of treatment schemes; if δ > 0, it means that

there exist at least one δi active. The corresponding differences between measurements

of i-th unit are {∆i − δi = σZi,1 − σ(δi)Zi,2, i = 1, · · · , n}. For any i = 1, · · · , n,

o1) If δi = 0, the right side of equations become σ(Zi,1 − Zi,2), so it pertains to the

case of m2).
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o2) If δi > 0, the right side of equations become σZi,1 − σ(δi)Zi,2, it belongs to the

case of m3).

Whether δi = 0 or δi > 0 holds, ∆i is symmetric around δi. In H0, δ should take

the value of the zero vector, there are no differences between two treatment schemes.

Furthermore, in H1, δ is not a negative vector nor a zero vector, in which at least one

δi non-negative, since, δ can be expressed as a union of δi ≥ 0 with at least one strict

inequality. It means that, in H1, that may exist some {δi = 0} and the rest {δi > 0}.
Thus and so, the hypotheses can be expressed as

H0 : δ = 0 ≡
⋂

i

{δi = 0} =
⋂

i

{H0i},

against

H1 : δ > 0 ≡
⋃

i

{δi ≥ 0}, with at least one strict inequality

≡
⋃

i

{δi > 0} =
⋃

i

{H1i}.

The global testing problem is broken down into a set of sub-problems, that allows us

to handle it by studying each paired hypotheses H0i : {δi = 0} and H1i : {δi > 0} for

i = 1, · · · , n.

4.2.3 Related solutions

To study the properties of ∆i − δi, it would be inevitable to analyze the types of data

Xi,t. If the existence of continuity assumption on Xi,t holds, there are some suggested

solutions for such problems:

p1) Assume error terms follow a specific underlying distribution and the identical

treatment effect δ. For the simplest case like l1), Zi,t are independent with respect

to units, and Zi,t ∼ N (0, 1), t = 1, 2, i = 1, · · · , n. In such a case, the Student’s

t-test is suitable for the differences ∆i, that is,

T = ∆̄ ·
√
n

Σ̂
,

where ∆̄ =
∑

i∆i/n, Σ̂
2 =

∑
i(∆i−∆̄)2/(n−1). Due to the normality assumption

on error terms, differences ∆i are also normally distributed: ∆i ∼ N (δ,Σ2
∆). The

sampling distribution of test T is central Student’s t with n−1 degrees of freedom
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in H0; under H1 the test T is distributed as a non-central Student’s t with a

positive non-central parameter, and so it is significant for large values.

p2) Assume the underlying distribution of paired (Xi,1, Xi,2) are IID from a bivariate

normal distribution, and so the differences of paired data are also normally dis-

tributed. Of course, the inverse is not true, because the differences of paired data

are normally distributed does not guarantee for normality of (Xi,1, Xi,2).

p3) If the underlying distribution of ∆i is unknown, all study subjects are of equally

likely nature, i.e. pairs (Xi,1, Xi,2) are IID, and so all ∆i can be assumed to

be independently identically distributed. In such a case, it is suitable to use a

nonparametric approach based on the rank function. Suppose ties are assumed

to occur with probability zero, Wilcoxon signed-rank test could be reasonable for

this case,

W =
∑

i

wi ·Ri,

where Ri =
∑

1≤h≤n I(|∆h| ≤ |∆i|), and weights wi = 1 if ∆i > 0 and wi = 0 if

∆i < 0. It is worth mentioning that Wilcoxon signed-rank test works within the

conditionality principle of inference.

p4) ∆i is symmetric around δi, and with the unknown underlying distribution. Due

to the continuity of Xi,t, ∆i are also continuous.

It is well known that, ∆i is symmetric around 0 in H0, and then assuming one

variable Yi be an indicator function of ∆i as follows,

Yi =




1 if ∆i > 0

0 if ∆i ≤ 0

According to continuity of ∆i, we have Pr(Yi = 1) = Pr(Yi = 0) = 1/2, since

Yi are independent and identically distributed Bernoulli random variables with

successful probability 1/2, Yi ∼ Ber(1, 1/2), i = 1, · · · , n. Denote the sum of

Yi by U , namely U =
∑n

i Yi, it is immediately clear to see that U is Binomially

distributed, that is, U ∼ Bi(n, 1/2) under H0. So U corresponds to a version of

the well-known McNemar test.

If all δi are identical with value δ, and δ > 0 in H1, then U is also binomially

distributed with parameters n and p = Pr(Yi = 1) > 1/2, respectively, and
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namely, U ∼ Bi(n, p). Thus and so, the large values of U are significant to reject

the null hypothesis.

If we cannot determine the values of δi in H1, and ∆i is independent of each other,

U can be considered as a sum of independent Bernoulli random variables that are

not necessarily identically distributed, therefore, U is termed Poisson binomial

distribution. Then the probability mass function having u successful trials out of

a total of n trails can be rewritten as

Pr(U = u) =
∑

A∈Au

∏

i∈A

pi
∏

j∈Ac

(1− pj),

where pi = Pr(∆i > 0) ≥ 1/2, i = 1, · · · , n; and Au is a set of all subsets

containing u integers which means the existence of u successful trials, Ac is the

complement of A. The complete enumerations of Au is n!/{u!(n−u)!}, however, it
is impractical to compute the sum when the sample size is large. The mean value

and variance of U are E(U) =
∑n

i=1 pi and V ar(U) =
∑n

i=1 pi(1−pi), respectively.
It is immediately easy to know that large value of U gives us a significant evidence

to reject H0.

If no assumption of continuity of Xi,t exist, Viz. Xi,t are taken from a discrete distri-

bution, then the differences ∆i are also discrete. Under the assumptions of symmetry,

both in H0 and H1, ∆i is symmetric around δi, for i = 1, · · · , n.

q1) Let p+i, p−i and p0i be the probabilities Pr(∆i > 0), Pr(∆i < 0) and Pr(∆i = 0),

respectively. Assume one variable Yi presents the indicator function of ∆i as

follows,

Yi =




1 if ∆i > 0

0 if ∆i ≤ 0

Clearly, Pr(Yi = 1) = p+i and Pr(Yi = 0) = p−i+p0i, the sum U of successful trails

is also termed Poisson binomial distribution. Then the probability mass function

having u successful trails out of a total of n trails can be also expressed as follows,

Pr(U = u) =
∑

A∈Au

∏

i∈A

p+i
∏

j∈Ac

(1− p+j),

where p+i = Pr(∆i > 0), i = 1, · · · , n; and Au is a set of all subsets containing u

integers which means the existence of u successful trials, Ac is the complement of
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A. And the mean value and variance of U are E(U) =
∑n

i=1 p+i and V ar(U) =∑n
i=1 p+i(1− p+i), respectively.

Accordingly, due to the existence of p0i, we have p+i = p−i ≤ 1/2 in H0; the

corresponding mean value is EH0(U) =
∑n

i=1 p+i ≤ n/2. In H1, p+i > {p−i + p0i}
holds because of δi ≥ 0, which is slipped to the right compared with zero; the mean

value of U in H1, is EH1(U) =
∑n

i=1 p+i ≥ n/2. Comparing with the underlying

population of U in H0, the population of U in H1 is slipping to the right, thus,

large values are significant for rejecting H0.

Under the H0, Xi,1 and Xi,2 are equal in distribution, and are exchangeable within

unit. Thus, the two observed data of i-th unit are considered as if they were

randomly assigned to two time points, it seemingly randomly assign a sign “+” or

“−” to the difference ∆i, and each with probability 1/2. The related permutation

test statistic is

U∗ =
n∑

i

Y ∗
i =

n∑

i

I(∆∗
i > 0) =

n∑

i

I(∆i · S∗
i > 0),

where S∗
i are IID random variables and each takes the value of +1 or −1 with

probability 1/2, and are independent of ∆i. In H0, the expectation and variance

of U∗ are shown as follows, respectively

E(U∗) = E(
n∑

i

I(∆i · S∗
i > 0)) =

n∑

i

Pr(∆i · S∗
i > 0) =

n∑

i

[
1

2
p+i +

1

2
p−i] =

n∑

i

p+i,

V ar(U∗) = V ar(
n∑

i

I(∆i · S∗
i > 0)) =

n∑

i=1

p+i(1− p+i).

Therefore, the standardized version of related permutation test can be obtained

immediately, T ∗
U = (U∗ − E(U∗))/

√
V ar(U∗), which for large sample size is nor-

mally distributed, namely, T ∗
U

d→ N (0, 1).

q2) In H0, according to the exchangeability between Xi,1 and Xi,2 within unit, it seems

as if the two observations pertaining to i-th unit are randomly assigned to two

time points, which is equivalent to assign the sign “ + ” or “ − ” to ∆i and each

with probability 1/2. One solution for such a case is to take into consideration

a test of the form T =
∑n

i ∆i. The permutation solution is based on the form

T ∗ =
∑n

i ∆
∗
i =

∑n
i ∆i ·S∗

i , where S
∗
i are IID random variables and each takes the
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value of −1 or +1 with probability 1/2 each, independent of ∆i. As we known,

n∑

i

∆i(0) · S∗
i (in the null hypotheses)

d
<

n∑

i

∆i(δi) · S∗
i (in the alternatives),

where δi > 0, therefore, large values are significant to reject the null hypothesis.

The mean value and the variance of T ∗ are shown as follows,

E(
∑

i

∆∗
i /n) =

∑

i

E(∆i · S∗
i )/n =

∑

i

(∆i · 1/2−∆i · 1/2)/n = 0,

V ar(
∑

i

∆∗
i /n) = V ar(

∑

i

∆i · S∗
i /n) =

∑

i

∆2
i /n

2.

Therefore, the permutation standardized version:

T ∗
S =

(
∑

i

∆i · S∗
i

)
/

(
∑

i

∆2
i

)1/2

.

4.3 Repeated measurements with T occasions

When the recording time points T is larger than 2, such a case, termed the repeated

measure designs, is shown in the Table (4.1). As described in the Prologue, each subject

is independently and randomly assigned to one of the two levels of treatment (A or B),

and the measurements at different recording time points are assumed to follow a suitable

stochastic process. Denote j = 1 for the standard treatment and j = 2 for placebo.

A general regression function can be expressed as follows,

Xj,i,t = µ+ ηj,i + δj,i,t + σ(δj,i,t) · Zj,i,t, j = 1, 2; i = 1, · · · , nj; t = 1, · · · , T,

where: r1) µ be the population constant; r2) ηj,i be unknown components specific to

the i-th unit of j-th scheme, which are not dependent on treatment schemes; r3) δj,i,t

be the treatment effect specific to the i-th unit of j-th scheme at t time point; r4) σ be

a function of δj,i,t; suppose σ(0) = σ, for δj,i,t > 0 we have σ(δj,i,t) 6= σ; r5) Zj,i,t are

assumed to generally non-Gaussian error terms distributed as a stationary stochastic

process with null mean and unknown distribution PZ , these error terms are assumed to

be exchangeable within units but independent with respect to units.

The testing problem of interest is to determine whether the treatment effect will

tend to decrease over time. For such a case, we start from the analysis of preliminary

stratification testing, and then analyze the whole entity.
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In short, the related hypotheses for j-th scheme can be presented as follows

H0[j] :

{
⋂

i

{δj,i,1 = δj,i,2 = · · · = δj,i,T = 0}
}

=

{
⋂

i

H0i[j]

}
,

against

H1[j] :

{
⋃

i

{δj,i,1 > δj,i,2 > · · · > δj,i,T}
}

=

{
⋃

i

H1i[j]

}
.

Thus, in H0[j], the treatment effects are identical over time, which leads to that Xj,i,t

are stationary distributed over time. Specific to the j-th treatment scheme, for any i,

suppose the underlying distribution of Xj,i is fj,i, the joint null likelihood X·j takes the

form of

f(X·j) =

nj∏

i=1

{
T∏

t=1

fj,i(Xj,i,t)

}
,

which, due to assumed exchangeability, is invariable with respect to any permutation

X∗
·j,

f(X∗
·j) =

nj∏

i=1

{
T∏

t=1

fj,i(X
∗
j,i,t)

}
= f(X·j).

Thus, the related conditional reference space is X/X·j
. Further, considering the whole

entity X, which also plays the role of related conditional reference space, because of

f(X) =
∏2

j=1 f(X·j) =
∏2

j=1 f(X
∗
·j) = f(X∗), denote it by X/X. It is worth emphasizing

that the exchangeability only works within units, which means that each unit also plays

the role of sufficient space, the joint likelihood of Xj,i = (Xj,i,1, Xj,i,2, · · · , Xj,i,T ) is in

the form of

f(Xj,i) =
T∏

t=1

fj,i(Xj,i,t) =
T∏

t=1

fj,i(X
∗
j,i,t) = f(X∗

j,i)

Which proves that the sufficient space of Xj,i is X/Xj,i
, in which the data are exchange-

able. Similarly, it can also be explained by the meaning of the orbit, in which the

likelihoods of all points are assumed to be the same. In our case, under H0, to each

study subject, it is defined a sub-orbit, where these components are exchangeable within

orbit. In short, each unit Xj,i can be considered as a sub-orbit, in which the data are

exchangeable. Further, the exchangeability of data does not hold between subjects,
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specifically, data X1,1,2 of subject X1,1 and data X1,4,2 of subject X1,4 cannot be ex-

changed. It also implies that sub-orbits are independent of each other, the intersection

of any two sub-orbits yields an empty set.

Accordingly, the global conditional reference space X/X can be expressed with the

product of sub-sufficient space of Xj,i, namely, X/X·j
= X/Xj,1

× · · · ×X/Xj,nj
. The data

are only permuted and exchangeable within each conditional reference space, which yield

the permutation sufficient space X/X∗
·j
= X/X∗

j,1
× · · · × X/X∗

j,nj
.

The aforementioned hypotheses are equivalent to

H0[j] :

{
⋂

i

{Xj,i,1
d
= Xj,i,2

d
= · · · d

= Xj,i,T
d
= Xj,i·}

}
,

against

H1[j] :

{
⋃

i

{Xj,i,1

d
> Xj,i,2

d
> · · · d

> Xj,i,T}
}
.

Since, considering the testing for the whole entity X, the global hypotheses can be

expressed as the union or intersection of a sequence of sub-hypotheses,

H0 :

{
⋂

j

H0[j]

}
, vs. H1 :

{
⋃

j

H1[j]

}
,

Where it is to be emphasized that treatments (j = 1, 2) play the role of strata. Accord-

ingly, the related conditional reference space can be expressed by the product of X/X·j

in H0, that is, X/X = X/X·1 ×X/X·2 . In what follows, we will study the testing problem

with respect to the strata, and then jointly analyze the whole entity.

4.3.1 Two relevant solutions

For determining the tendency of treatment effects over time, relevant solutions can be

motivated by the case with two recording time points. First of all, we intend to find a

proper way to decompose the whole entity into either a sequence of pairwise comparable

columns in two parts. And then the problem can be handled by the UI-NPC approaches

accordingly, in which each sub-problems can be assigned proper test statistics. It is

worth cautioning that, all solutions should be based on the related conditional reference

space, such as X/X·j
, X/X. On the basis of permutation sufficient space, there are at

least two approaches to tackle such a problem. In what follows, we will discuss two
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decomposing methods under the conditional reference space X/X·j
, and the solutions to

the whole entity are straightforward to obtain based on X/X.

(I) The first method is to decompose the global problem into a set of pairwise compa-

rable columns, namely, sub-problem has termed the case with two recording time

points. On the basis of the permutation space X/X·j
or X/X, the permutation al-

gorithm is working within all sub-orbits concurrently, and then proceed solutions

to sub-problems after permuting. For such a case, some relevant solutions have

been already proposed. Firstly, let’s see how the decomposing method works.

For each j scheme, the hypotheses are equivalent to

H0[j] ≡ {δj,·,1 = · · · = δj,·,T = 0} =

{
⋂

hk

{δj,·,h = δj,·,k}
}

=

{
⋂

hk

H0hk[j]

}
,

against

H1[j] ≡ {δj,·,1 ≥ · · · ≥ δj,·,T} =

{
⋃

hk

{δj,·,h > δj,·,k}
}

=

{
⋃

hk

H1hk[j]

}
, 1 ≤ h < k ≤ T,

where denote the treatment effects belong to the j-th treatment scheme, t-th

measurement by δj,·,t. For each pair h and k of time points with h < k, the paired

sub-hypotheses H0hk and H1hk can be expressed with the intersection and union

of a set of sub-sub-hypotheses, respectively. Such as

H0hk[j] :

{
⋂

i

{δj,i,h = δj,i,k}
}

≡
{
⋂

i

{
Xj,i,h

d
= Xj,i,k

}}
,

against

H1hk[j] :

{
⋃

i

{δj,i,h > δj,i,k}
}

≡
{
⋃

i

{
Xj,i,h

d
> Xj,i,k

}}
.

Thus, the global problem is converted into studying a set of pairwise variables, and

then by jointly analyze them within the UI-NPC approach. The related algorithm

can be seen in Tables (4.3) .

In our case, the data are defined on the ordered categorical scale, in short, no

assumption of continuity of data exists. Obviously, after permuting all data in

sub-orbits concurrently, for each paired h and k, the related partial permutation

tests are given by the previous discussion, one is based on the Poisson Binomial

distribution, another one is based on the direct sum of differences.
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⊲ Based on Poisson Binomial distribution: for paired h and k, the partial

permutation test is U∗
hk[j] =

∑nj

i I(∆∗
j,i,hk > 0). Obviously, for any i, ∆j,i,hk

is symmetric around zero in H0, ∆j,i,hkis symmetric around (δj,i,h− δj,i,k) > 0

in H1. The underlying distribution of U in H1 is slipped to the right side

comparing with that in H0; thus, large values of U are significant.

The standardized version of the permutation test statistic is

T ∗
Uhk[j]

= (U∗
hk[j] − E(U∗

hk[j]))/
√
V ar|X·j

(U∗
hk[j]),

which is standard normally distributed as the sample size tends to infin-

ity. The corresponding p-value-like statistics can be written as λTUhk[j]
=

Pr(T ∗
Uhk[j]

≥ T oUhk[j]
| X/X·j

), where T oUhk[j]
= TUhk[j]

(X·j) is the observed value

of T conditioning on the X·j for paired h and k.

As discussed previously, the p-value-like statistics play the role of tests whose

common critical value is α; thus, if λTUhk[j]
≤ α, the null hypothesis is rejected

at significance level α > 0.

Table 4.3: From original to permutation

Original

ID
Time

1 2 · · · T − 1 T

1 Xj,1,1 Xj,1,2 · · · Xj,1,T−1 Xj,1,T

2 Xj,2,1 Xj,2,2 · · · Xj,2,T−1 Xj,2,T

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
nj Xj,nj ,1 Xj,nj ,2 · · · Xj,n,T−1 Xj,nj ,T

⇓

Permutation

ID
Time

1 2 · · · T − 1 T

1 X∗
j,1,1 X∗

j,1,2 · · · X∗
j,1,T−1 X∗

j,1,T

2 X∗
j,2,1 X∗

j,2,2 · · · X∗
j,2,T−1 X∗

j,2,T

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
nj X∗

j,nj ,1
X∗
j,n,2 · · · X∗

j,nj ,T−1 X∗
j,nj ,T
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Accordingly, we can obtain a set of partial test values (T ∗
U12[j]

, T ∗
U13[j]

, · · · , T ∗
U(T−1)T [j]

)

or a set of p-values (λTU12[j]
, λTU13[j]

, · · · , λTU(T−1)T [j]
) which are necessarily de-

pendent. The hypotheses can be tested by combining such dependent partial

tests values or p-values, as

T ∗
ψ = Ψ(T ∗

U12[j]
, T ∗

U13[j]
, · · · , T ∗

U(T−1)T [j]
) ≡ ψ(λTU12[j]

, λTU13[j]
, · · · , λTU(T−1)T [j]

).

It is well known that, since all partial tests share the same asymptotic distri-

bution, the Direct combination function Ψ can be applied; Fisher’s, Liptak’s

and Tippett’s combination functions ψ are suitable more than for partial test

statistics, for combining a set of p-values.

⊲ Based on Direct sum of differences: for any paired h and k, with h < k, the

partial permutation test is

T ∗
Shk[j]

=

nj∑

i

∆∗
j,i,hk =

nj∑

i

(
X∗
j,i,h −X∗

j,i,k

)

=

nj∑

i

{
(δ∗j,i,h − δ∗j,i,k) + σ(δ∗j,i,h)Z

∗
j,i,h − σ(δ∗j,i,k)Z

∗
j,i,k

}
.

The standardized version of permutation test statistic is

T ∗
Shk[j]

= (
∑

i

∆∗
j,i,hk − E(

∑

i

∆∗
j,i,hk))/(V ar|X·j

(
∑

i

∆∗
j,i,hk))

1/2,

which is asymptotically standard normally distributed. The corresponding

p-value-like statistics can be written as λTShk[j]
= Pr(T ∗

Shk[j]
≥ T oShk[j]

| X/X·j
),

where T oShk[j]
= TShk[j]

(X·j) is the observed value of T conditioning on the X·j

for paired h and k. Obviously, for any i, ∆∗
j,i,hk is symmetric around zero

in H0, ∆
∗
j,i,hk is symmetric around (δ∗j,i,h − δ∗j,i,k) in H1. And the p-value-like

statistics play the role of tests whose common critical value is α; thus, if

λTShk[j]
≤ α, the null hypothesis is rejected at significance level α > 0.

Accordingly, we can obtain a set of partial test values (T ∗
S12[j]

, T ∗
S13[j]

, · · · , T ∗
S(T−1)T [j]

)

or a set of p-values (λTS12[j]
, λTS13[j]

, · · · , λTS(T−1)T [j]
). The global hypotheses

can be tested by combining such partial tests values or p-values, as

T ∗
ψ = Ψ(T ∗

S12[j]
, T ∗

S13[j]
, · · · , T ∗

S(T−1)T [j]
) ≡ ψ(λTS12[j]

, λTS13[j]
, · · · , λTS(T−1)T [j]

).

It is well known that the Direct combination function Ψ can be applied to the
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set of partial tests; Fisher’s, Liptak’s and Tippett’s combination functions ψ

are suitable for combining a set of p-values.

(II) The second approach is to decompose the global problem into T −1 sub problems,

where the original data set can be divided into two pooled pseudo-groups in each

sub-problem, the first pseudo-group is obtained by pooling data within units of

the first t time points, and the second one by pooling the rest. To be specific,

the first part is X1,j,(t)i = Xj,i,1

⊎ · · ·⊎Xj,i,t and the second one is X2,j,(t)i =

Xj,i,t+1

⊎ · · ·⊎Xj,i,T , for t = 1, 2, · · · , T − 1. The related decomposition scheme

for t = 1 is shown in Table (4.4). When t = 1, the first pseudo-group is the first

column (green part), and the second pseudo-group is by pooling the rest (yellow

part). The global hypotheses can be rewritten as follows

H0[j] :

{
T−1⋂

t=1

{
nj⋂

i

{
X1,j,(t)i

d
= X2,j,(t)i

}}}
, vs. H1[j] :

{
T−1⋃

t=1

{
nj⋃

i

{
X1,j,(t)i

d
> X2,j,(t)i

}}}
.

Table 4.4: Two pooled pseudo-groups for t = 1

Original

ID
Time

1 2 · · · T − 1 T

1 Xj,1,1 Xj,1,2 · · · Xj,1,T−1 Xj,1,T

2 Xj,2,1 Xj,2,2 · · · Xj,2,T−1 Xj,2,T

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
nj Xj,nj ,1 Xj,nj ,2 · · · Xj,nj ,T−1 Xj,nj ,T

⇓

Permutation

ID
Time

1 2 · · · T − 1 T

1 X∗
j,1,1 X∗

j,1,2 · · · X∗
j,1,T−1 X∗

j,1,T

2 X∗
j,2,1 X∗

j,2,2 · · · X∗
j,2,T−1 X∗

j,2,T

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
nj X∗

j,nj ,1
X∗
j,n,2 · · · X∗

j,nj ,T−1 X∗
j,nj ,T
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For each t, the partial permutation test statistic can be

T ∗
(t)[j] =

n∑

i

(
t∑

t=1

X∗
j,i,t/t−

T∑

t=t+1

X∗
j,i,t/(T − t)

)
.

We are wondering if the partial permutation test is significant to reject H0 for

large value. When t = 1, the test statistic is in the form of

T ∗
(1)[j] =

nj∑

i

(
X∗
j,i,1 −

T∑

t=2

X∗
j,i,t/(T − 1)

)

=

nj∑

i

(
T∑

t=2

(
X∗
j,i,1 −X∗

j,i,t

)
)
/(T − 1) =

nj∑

i

T∑

t=2

(
∆∗
j,i,1t

)
/(T − 1).

For t = T − 2, the test is in the form of

T ∗
(T−2)[j] =

nj∑

i

(
T−2∑

t=1

X∗
j,i,t/(T − 2)−

T∑

t=T−1

X∗
j,i,t/2

)

=

nj∑

i

(
T−2∑

t=1

∆∗
j,i,t(T−1) +

T−2∑

t=1

∆∗
j,i,tT

)
/2(T − 2).

When t = T − 1, the test is

T ∗
(T−1)[j] =

nj∑

i

(
T−1∑

t=1

X∗
j,i,t/(T − 1)−X∗

j,i,T

)
=

nj∑

i

T−1∑

t=1

(
∆∗
j,i,tT

)
/(T − 1).

In the spirit of mathematical induction, when t = 1, and t = T − 2, both test

statistics are the functions of differences, and we find the test is also a function

of differences when t = T − 1, we can infer that the test statistics T ∗
(t)[j] are the

functions of differences. In H0, δ should take the value of a zero vector, and δ is

not a negative vector nor a zero vector in H1. Clearly, we have

T ∗
(t)[j]|H0

(0)
d
< T ∗

(t)[j]|H1
(δ).

The partial permutation test is significant to reject H0 for large values. The

standardized version of that partial test is (T ∗
(t)[j] − E(T ∗

(t[j])))/(V ar|X·j
(T ∗

(t)[j]))
1/2

which is standard normally distributed. Accordingly, the related p-value-like is

λT(t)[j] = Pr(T ∗
(t)[j] ≥ T o(t)[j] | X·j), where T o(t)[j] = T(t)[j](X·j) is the observed

value of T(t)[j] based on X·j. Assume the critical value is α, the null hypoth-

esis is rejected at significant value α > 0 when λT(t)[j] ≤ α. We can obtain a
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set of p-values as (λT(1)[j] , λT(2)[j] , · · · , λT(T−1)[j]
) and a set of partial test values as

(T ∗
(1)[j], T

∗
(2)[j], · · · , T ∗

(T−1)[j]). There are some suitable combination functions for

combining partial test values or p-values, such as Fisher’s, Liptak’s, Tippett’s and

Direct combining functions.

4.4 A medical example with repeated data

Now, let us consider a practical medical example in Table (4.4) from Lumley (1996), and

also mentioned by Brunner and Langer (2000). The related table is shown in Table (4.5).

The study subjects after receiving laparoscopic cholecystectomy are randomly assigned

to two levels of treatment schemes, one is standard treatment (active drug), the other

Table 4.5: Pain scores on shoulder tip under two treatment schemes after laparo-
scopic cholecystectomy

Treatment
Y N

Time Time

ID 1 2 3 4 5 6 ID 1 2 3 4 5 6

1 1 1 1 1 1 1 23 5 2 3 5 5 4
2 3 2 1 1 1 1 24 1 5 3 4 5 3
3 3 2 2 2 1 1 25 4 4 4 4 1 1
4 1 1 1 1 1 1 26 4 4 4 4 4 3
5 1 1 1 1 1 1 27 2 3 4 3 3 2
6 1 2 1 1 1 1 28 3 4 3 3 3 2
7 1 3 2 1 1 1 29 3 3 4 4 4 3
8 2 2 1 1 1 1 30 1 1 1 1 1 1
9 1 1 1 1 1 1 31 1 1 1 1 1 1
10 3 1 1 1 1 1 32 1 5 5 5 4 3
11 1 1 1 1 1 1 33 1 3 2 2 1 1
12 2 1 1 1 1 2 34 2 2 3 4 2 2
13 1 2 2 2 2 2 35 2 2 1 3 3 2
14 3 1 1 1 3 3 36 1 1 1 1 1 1
15 2 1 1 1 1 1 37 1 1 1 1 1 1
16 1 1 1 1 1 1 38 5 5 5 4 3 3
17 1 1 1 1 1 1 39 3 3 3 3 1 1
18 2 1 1 1 1 1 40 5 4 4 4 2 2
19 4 4 2 4 2 2 41 1 3 3 3 3 1
20 4 4 4 2 1 1
21 1 1 1 2 1 1
22 1 1 1 2 1 2
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is placebo. The patients are asked to rate the scores for shoulder tip pain before being

given medication, the pain scores are defined on the ordered categorical scale with five

categories, in which the pain scores are from 1 (low) to 5 (high), so denoting the five

categories by (v1 = 1 ≺ v2 = 2 ≺ · · · ≺ v5 = 5). The total sample is made up of 41

study subjects, in which 22 of these belong to the treatment group Y and 19 pertain to

the placebo or control group N . Further, the clinical data are observed at six different

recording times.

Comparing with the time points and the number of ordered categories, the total

sample size is quite small. The number of parameters for each unit is 56 − 1 = 15 624,

and the total number of parameters is 41× (56 − 1) = 640 584. In such a framework, it

looks impossible to handle the problem by using the likelihood approach.

4.4.1 Analysis for Treatment group

Firstly, we intend to answer the question of interest mentioned at the beginning of the

chapter, whether the treatment effects will tend to decrease over time for the standard

treatment scheme. For such a multidimensional case, the related regression function can

be expressed as follows,

X1,i,t = µ+ η1,i + δ1,i,t + σ(δ1,i,t) · Z1,i,t, i = 1, · · · , 22; t = 1, · · · , 6.

The related hypotheses are

H0[1] :

{
⋂

i

{δ1,i,1 = δ1,i,2 = · · · = δ1,i,T = 0}
}

=

{
⋂

i

H0i[1]

}
,

against

H1[1] :

{
⋃

i

{δ1,i,1 > δ1,i,2 > · · · > δ1,i,T}
}

=

{
⋃

i

H1i[1]

}
.

As the solutions discussed previously, we can tackle such a testing problem by two

decomposition schemes.

⊲ For the first decomposition scheme, we intend to handle this problem within UI-

NPC approach, based on Conditional Monte Carlo with R = 100 000 random

permutations. The corresponding sub-p-values are shown in Table (4.6),
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Table 4.6: Sub-p-values for Treatment group under the first decomposition scheme

p12 p13 p14 p15 p16 p23 p24

Bi 0.05243 0.00349 0.00348 0.00341 0.01520 0.30785 0.30821

Sum 0.14683 0.00501 0.01147 0.00036 0.00211 0.09851 0.14508

p25 p26 p34 p35 p36 p45 p46 p56

Bi 0.05424 0.05318 0.92187 0.76591 0.76439 0.30962 0.53850 1.0000

Sum 0.02188 0.06307 0.63614 0.28075 0.45179 0.20738 0.36377 0.72054

Table 4.7: p-values under combination functions of Treatment group

Fisher Liptak Tippett Direct

Binomial 0.00033 0.00015 0.01823 0.00027

Sum 0.00028 0.00005 0.00318 0.00007

⊲ For the second decomposition scheme, based on Conditional Monte Carlo with

R = 100 000 random permutations. The related results are shown in Table (4.8),

Table 4.8: p-values for Treatment group under the second decomposition scheme

H01 H02 H03 H04 H05 Fisher Liptak Tippett Direct

p 0.00119 0.00021 0.00426 0.00757 0.15323 0.00008 0.00008 0.00018 0.00007

Results in the Table (4.6), clearly show that the sub-p-values under the first decompo-

sition algorithm. Obviously, we can obtain 15 = T × (T − 1)/2 paired sub-hypotheses

according to 6 recording time points, and each is assigned two test statistics, which are

based on Poisson binomial test and direct sum of differences. Based on the related 15

sub-p-values, the global p value of preliminary stratification testing for the Treatment

group is obtained by combination functions Fisher, Liptak, Tippett, Direct, are shown

in the Table (4.7). All reject the null hypothesis at significant level α = 0.05 of mono-

tonic stochastic ordering among 6 recording time points. The combined result which is
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given by Tippett’s combination function, differs from that given by other combination

functions because its power behavior is very sensitive to the small sub-p-values. Sim-

ilar to Tippett, combining function Fisher is slightly sensitive to small p-values. The

combined p-values of Liptak and the Direct are very similar.

Results in the Table (4.8), so obtained following the second decomposition scheme,

also show that the 5 sub-p-values. The global p-values are given by Fisher’s, Liptak’s,

Tippett’s, the Direct combination functions. All p-values reject the null hypothesis at

significant level α = 0.01, which is acceptance of the alternative of monotonic stochastic

ordering over time. In the second decomposition scheme, combining function Tippett’s

also shows slightly different from other combination functions, because it is very sensitive

to the small p-values. Both decomposition schemes give the inferential conclusion, which

is that the treatment effects in the Treatment group present a statistically significant

decreasing tendency over time.

4.4.2 Analysis for Control group

Similarly, the testing problem is to detect whether the treatment effects will tend to

decrease over time in the control group. For such a multidimensional case, the related

regression function can be expressed as follows,

X2,i,t = µ+ η2,i + δ2,i,t + σ(δ2,i,t) · Z2,i,t, i = 1, · · · , 19; t = 1, · · · , 6.

The related hypotheses are

H0[2] :

{
⋂

i

{δ2,i,1 = δ2,i,2 = · · · = δ2,i,T = 0}
}

=

{
⋂

i

H0i[2]

}
,

against

H1[2] :

{
⋃

i

{δ2,i,1 > δ2,i,2 > · · · > δ2,i,T}
}

=

{
⋃

i

H1i[2]

}
.

As the solutions discussed previously, we can tackle such a testing problem by two

decomposition schemes.

⊲ For the first decomposition scheme, we intend to handle this problem within UI-

NPC approach, based on Conditional Monte Carlo with R = 100 000 random

permutations. The corresponding sub-p-values are shown in Table (4.9),
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Table 4.9: Sub-p-values for Control group under the first decomposition scheme

p12 p13 p14 p15 p16 p23 p24

Bi 0.98256 0.92525 0.98301 0.79938 0.20501 0.79918 0.79821

Sum 0.96640 0.94997 0.99154 0.60069 0.07158 0.46501 0.72653

p25 p26 p34 p35 p36 p45 p46 p56

Bi 0.08812 0.00179 0.98248 0.03028 0.00020 0.08706 0.0000 0.03020

Sum 0.07062 0.00054 0.78154 0.09860 0.00085 0.02256 0.00005 0.04993

Based on the sub-p-values, the global p values of preliminary stratification testing

for the control group are obtained by combination test functions Fisher’s, Liptak’s,

Tippett’s, Direct,

Table 4.10: p-values under combination functions of Control group

Fisher Liptak Tippett Direct

Binomial 0 0.00846 0 0.00301

Sum 0.00072 0.0212 0.00029 0.02162

⊲ For the second decomposition scheme, based on Conditional Monte Carlo with

R = 100 000 random permutations. The related results are shown in Table (4.11),

Table 4.11: p-values for Control group under the second decomposition scheme

H01 H02 H03 H04 H05 Fisher Liptak Tippett Direct

p 0.88294 0.37906 0.09764 0.00045 0.00058 0.00465 0.02441 0.00125 0.0232

Results in the Table (4.9), show 15 sub-p-values under the first decomposition algorithm,

all paired sub-hypotheses are assigned two test statistics, which are based on Poisson

binomial test and direct sum of differences. The global p values of preliminary stratifica-

tion testing for the Control group are obtained by combination functions Fisher, Liptak,

Tippett, the Direct, are shown in the Table (4.10). All results in the Table (4.10) give us
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a significant evidence to reject the null hypothesis at significant level α = 0.05, in which

results from Fisher’s and Tippett’s are comparable, and those from Liptak’s and the

Direct are similar. Because both Fisher and Tippett are sensitive to the small values of

p-value-like, which are likely close to the small value of sub-p-values. The combination

functions Liptak and the Direct may be susceptible to the large p-values.

Results in the Table (4.11), given that the second decomposition scheme, show 5

sub-p-values of corresponding 5 partial tests T(t)2. The global p-values are also given by

Fisher’s, Liptak’s, Tippett’s, the Direct combination functions. In the second decom-

position scheme, p-values give us a significant evidence to reject the null hypothesis at

significant level α = 0.05, to reject the homogeneity effects in the null hypothesis over

time. Due to the influence of small p-values in the partial tests, Fisher and Tippett

yield similar results. The inference is that the treatment effects in the Control group

present a statistically significant decreasing tendency over time.

4.4.3 Analysis for Whole entity data

For such a multidimensional case, the related regression function can be expressed as

follows,

Xj,i,t = µ+ ηj,i + δj,i,t + σ(δj,i,t) · Zj,i,t, j = 1, 2; i = 1, · · · , nj; t = 1, · · · , 6.

The related hypotheses are

H0 :

{
⋂

j

H0[j]

}
, vs. H1 :

{
⋃

j

H1[j]

}
.

Similarly to the solutions discussed previously, we can tackle such a testing problem by

two decomposition schemes.

⊲ For the first decomposition scheme, we intend to handle this problem within UI-

NPC approach, based on Conditional Monte Carlo with R = 100 000 random

permutations. The corresponding sub-p-values are shown in Table (4.12),
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Table 4.12: Sub-p-values for Whole entity data under the first decomposition scheme

p12 p13 p14 p15 p16 p23 p24

Bi 0.53318 0.13262 0.23523 0.06668 0.01177 0.53339 0.53238

Sum 0.77848 0.41838 0.68570 0.04006 0.00188 0.18367 0.41565

p25 p26 p34 p35 p36 p45 p46 p56

Bi 0.01184 0.00034 0.98958 0.13319 0.01236 0.06742 0.00011 0.53251

Sum 0.00718 0.00010 0.77859 0.06913 0.00454 0.01393 0.00060 0.14928

Table 4.13: p-values under combination functions of Whole entity data

Fisher Liptak Tippett Direct

Binomial 0 0 0.00073 0

Sum 0.00004 0.00014 0.00091 0.00016

⊲ For the second decomposition scheme, based on Conditional Monte Carlo with

R = 100 000 random permutations. The related results are shown in Table (4.14),

Table 4.14: p-values for Whole entity data under the second decomposition scheme

H01 H02 H03 H04 H05 Fisher Liptak Tippett Direct

p 0.1857 0.00839 0.00382 0.00002 0.00036 0.00008 0.00016 0.00004 0.00014

From the results given from the treatment group and control group, we can conjecture

that the treatment effects show a decreasing tendency over time when we take the whole

entity to be considered, i.e. irrespectively of treatment levels. Based on the sub-p-values,

the global p values are obtained by combination functions Fisher’s, Liptak’s, Tippett’s,

Direct. All results shown in the Table (4.13) and in the Table (4.14) reject the null

hypothesis at significant level α = 0.01, also support our conjecture.
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4.4.4 Third question

To answer the dominance question whether one taken placebo stochastically dominates

the other received active drug, which is termed the 2×K multidimensional problem in

the previous chapter. Formally, the multi-one-sided hypotheses are:

H0 : XT
d
= XN , vs. H1 : XT

d
< XN .

Equivalent to

H0 ≡
6⋂

q=1

{
4⋂

k=1

[F1q(vk) = F2q(vk)]

}
, vs. H1 ≡

6⋃

q=1

{
4⋃

k=1

[F1q(vk) > F2q(vk)]

}
.

We intend to deal with the problem within UI-NPC approach, based on Conditional

Monte Carlo with R = 100 000 random permutations. For tests: Anderson-Darling T ∗
AD,

on Scores T ∗
W and on Mid-ranks T ∗

MR. Given that the suitable combination functions:

Fisher’s T
′′

F , Liptak’s T
′′

L , Tippett’s T
′′

T and the Direct T
′′

D, the p-values based on UI-NPC

method are shown in Table (4.15),

Table 4.15: p-values based on UI-NPC approach

T ∗
(1) T ∗

(2) T ∗
(3) T ∗

(4) T ∗
(5) T ∗

(6) T
′′

D T
′′

F T
′′

L T
′′

T

λ̂AD(j) 0.05974 0.00066 0.00002 0.00001 0.00029 0.00595 0.00002 0.00002 0.00002 0

λ̂W (j) 0.09162 0.00076 0.00002 0.00001 0.00031 0.00733 0.00001 0.00001 0.00002 0

λ̂MR(j) 0.11871 0.00053 0.00005 0.00001 0.00036 0.00752 0.0001 0.00002 0.00007 0

In the Table (4.15), results show sub-p-values from 5 sub-hypotheses and the com-

bined p-values based on four combination functions T
′′

F , T
′′

L , T
′′

T , and the Direct T
′′

D. All

combined p-values reject the null hypothesis at significant level α = 0.01. Thus, we

can infer that patients taking placebo stochastically dominates those taking standard

treatment.

It is worth noting that, for permutation test statistic T ∗
AD and T ∗

W , the combined

p-values are almost comparable, as they only differ slightly in the fifth digit under four

combination functions. All the combined p-values by T ∗
AD and T ∗

W are very close to the

best among that of sub-hypotheses.

Given that permutation test T ∗
MR, the result 0.0001 by the combining function T

′′

D

differs from other combination functions due to the result of T ∗
(1). Sub-p-value of T ∗

(1)

shows great different from that of other partial tests based on Mid-ranks.





Chapter 5

Conclusions

Conclusions and future directions

In this thesis, we discuss the testing problems of interest, where one study is con-

cerning whether there exists stochastic ordering with respect to time, and another study

is concerning whether there are stochastic ordering or stochastic dominance among the

comparison groups. All those measurements are defined on an ordered categorical scale.

First of all, we discussed 2 × K unidimensional and multidimensional cases, the

related permutation solutions based on Anderson-Darling, Mid-ranks, and Scores func-

tions have been provided. It is worth noting that handling such a problem by traditional

parametric approaches may become extremely difficult if not impossible. In contrast,

the permutation method within the UI-NPC methodology may provide reasonable so-

lutions. For the J-sample stochastic ordering case, the basic idea is to properly break

down the global problem into a set of unidimensional sub-problems, where each sub-

problem is processed with a proper permutation method, and then they are jointly

analyzed. We named this the UI-NPC approach based on the permutation theory. The

UI-NPC approach works within the conditionality principle of inference, where the con-

ditioning is with respect to a set of sufficient statistics in the null hypothesis like the

pooled observed data. So, it is based on the permutation testing approach and the

NPC of dependent permutation tests. It is worth noting that when the set of observed

data is minimal sufficient in the null hypothesis there is no reason to stay outside the

permutation strategy.

In the face of repeated measure designs, to answer the question about detecting the

stochastic ordering concerning time, the traditional approaches may exist dilemmas.

Due to repeated measurements with outcome expressed on ordered categories, since a

great number of nuisance parameters are to be removed when we are working within

likelihood approaches, so that the total sample size is generally too small for obtaining

85
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any useful joint estimation and related inference may become problematic. Secondly,

the data look like a discrete stochastic process with unknown time-dependent transition

matrices. While maintaining the integrity of information of each unit, and constructing

an effective model without sacrificing calculation speed, it is indeed a dilemma to balance

between both sides. Such problems have quite difficult solutions within the likelihood

ratio theory which, in turn, and when available, have nice characterizations under their

usually too stringent assumptions.

As it seems that the UI-NPC solutions are effective for the considered testing prob-

lems with ordered categorical data, there are at least some further future lines of research

to be done. One line is concerning the power behavior of our solutions in some scenarios

of practical interest. One more line may concern the analysis to establish under which

conditions one specific test statistic is better than the others. A further line of research

is to study the rate of convergence of our UI-NPC solutions to the best parametric

competitor under the stringent conditions useful for the existence and availability of the

latter.
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Appendix A

Computational tools

The thesis deals with ordered constraint problems with a central focus on ordered

categorical data. Main NPC routines have been achieved in statistical software tools R,

Python, SAS R©, StatXact R©, MATLAB R©, etc. All computing routines in the thesis were

implemented in R statistical software (R Core Team (2017)).

In Chapter 3, we discuss the testing problem focussing on ordered categorical data

and propose approaches to address whether there are stochastic ordering or stochastic

dominance among comparison groups, the required computational time takes around 6

minutes with a laptop.

In Chapter 4, we deal with testing problems still focussing on ordered categorical

data, in which one considers whether the treatment effects will tend to decrease over

time, another one is detecting whether the placebo stochastically dominates standard

treatment observations. For the first question, we equivalently divided the original

problem into a set of sub-problems with two decomposition methods, for details re-

fer to chapter 4. The required computational time is lower than 2 minutes. For the

second question, to detect stochastic dominance between two repeated-measure-design

samples, the related analysis would be addressed by the method of chapter 3, and the

computational time costs around 3 minutes.
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Neuhäuser, M. (2006) An exact test for trend among binomial proportions based on

a modified Baumgartner-Weiß-Schindler statistic. Journal of Applied Statistics 33,

79–88.

Perlman, M. D. and Wu, L. (2003) On the validity of the likelihood ratio and maximum

likelihood methods. Journal of Statistical Planning and Inference 117, 59–81.

Pesarin, F. (1990) On a nonparametric combination method for dependent permutation

tests with applications. Psychotherapy and Psychosomatics 54(2-3), 172–179.

Pesarin, F. (1992) A resampling procedure for nonparametric combination of several

dependent tests. Statistical Methods & Applications 1(1), 87–101.



96 Bibliography

Pesarin, F. (2001) Multivariate Permutation Tests: With Applications to Biostatistics.

Chichester: John Wiley & Sons, Ltd.

Pesarin, F. (2006) Permutation test: Multivariate. In Encyclopedia of Statistical Sci-

ences. New York: John Wiley & Sons, Inc.

Pesarin, F. (2015) Some elementary theory of permutation tests. Communications in

Statistics - Theory and Methods 44, 4880–4892.

Pesarin, F. and Salmaso, L. (2006) Permutation tests for univariate and multivariate

ordered categorical data. Austrian Journal of Statistics 35, 315–324.

Pesarin, F. and Salmaso, L. (2010) Permutation tests for complex data: theory, appli-

cations and software. Chichester: John Wiley & Sons, Ltd.

Pesarin, F., Salmaso, L., Carrozzo, E. and Arboretti, R. (2016) Union–intersection

permutation solution for two-sample equivalence testing. Statistics and Computing

26, 693–701.

R Core Team (2017) R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Robertson, T., Wright, F. T. and Dykstra, R. L. (1988) Order Restricted Statistical

Inference. Chichester: John Wiley & Sons, Ltd.

Roy, S. N. (1953) On a heuristic method of test construction and its use in multivariate

analysis. The Annals of Mathematical Statistics 24, 220–238.

Sampson, A. R. and Whitaker, L. R. (1989) Estimation of multivariate distributions

under stochastic ordering. Journal of the American Statistical Association 84, 541–

548.

Silvapulle, M. J. and Sen, P. K. (2005) Constrained Statistical Inference: Inequality,

Order and Shape Restrictions. Hoboken, NJ: John Wiley & Sons, Inc.

Wang, Y. (1996) A likelihood ratio test against stochastic ordering in several popula-

tions. Journal of the American Statistical Association 91, 1676–1683.

Weiß, C. H. (2019) Distance-based analysis of ordinal data and ordinal time series.

Journal of the American Statistical Association pp. 1–37.

Zhang, J. T., Guo, J., Zhou, B. and Cheng, M. Y. (2019) A simple two-sample test in

high dimensions based on L2 -norm. Journal of the American Statistical Association

pp. 1–42.



Bibliography 97

Zhu, G. and Chen, J. (2018) Multi-parameter one-sided monitoring tests. Technometrics

60, 398–407.





Huiting Huang
CURRICULUM VITAE

Contact Information

University of Padova
Department of Statistical Sciences
via Cesare Battisti, 241
35121 Padova. Italy.

Tel. +39 377 849 8239
e-mail: huang@stat.unipd.it

Current Position

Since October 2016 (expected completion: April 2020);
Ph.D. Student in Statistical Sciences, University of Padova.
Thesis title: Permutation tests for stochastic ordering with ordered categorical data.
Supervisor: Prof. Luigi Salmaso
Co-supervisor: Prof. Fortunato Pesarin and Prof. Dabuxilatu Wang.

Research interests

• Ordered constraints problems with ordered categorical data;
• Ordered constraints problems with complex designed data;
• Analysis to establish under which conditions one specific test statistic is better than the

others;
• Study the rate of convergence of our UI-NPC solutions to the best parametric competitor

under the stringent conditions useful for the existence and availability of the latter.

Education

September 2013 – June 2016
Master (laurea specialistica/magistrale) degree in Science.
University of Guangzhou, Faculty of Mathematics and Information Science
Title of dissertation: “Some evaluation methods for the outstanding claims reserve based on fuzzy
linear regression models”
Supervisor: Prof. Dabuxilatu Wang

September 2009 – June 2013
Bachelor degree (laurea triennale) in Science.
University of Huizhou, Faculty of Mathematics
Title of dissertation: “Discussion on the branches of a polyhedral chain-link model with chiral”
Supervisor: Prof. Xiaosheng Cheng

Visiting periods

December 2018 – March 2019
University of Guangzhou,
Guangzhou, China.
Supervisor: Prof. Dabuxilatu Wang



Work experience

September 2015 – May 2016
Prof. Dabuxilatu Wang.
The editorial member of the book Insurance Actuarial Science. This book is for undergraduate
students in the major of Financial Mathematics which is only used for internal circulation, not for
publication.

September 2014 – July 2015
Prof. Dabuxilatu Wang.
A tutor for undergraduates.

September 2010 – December 2011
Parents of a high-school student.
A mathematics private teacher.

March 2012 – May 2012
Zijin middle school.
A trainee teacher.

Awards and Scholarship

2016-2019
PhD scholarship, Guangzhou University.

11/2015
Graduate Students Scholarship of Guangzhou University (Grade 2), Guangzhou University.

Computer skills

• Proficient at LATEX;
• R;
• Proficient at Office software system;
• Further statistical software that I use: SPSS, Matlab.

Language skills

• Chinese: mother tougue.
• English: moderate (written).

Publications

Articles in journals
Wang D., Huang H., Jiang C. and Zhang Q. (2015) A Fuzzy CUSUM Control Chart based on Boot-
strap Distribution. Journal of Guangzhou University 14, 4–9.



Chapters in books
Pesarin F., Salmaso L., Huang H., Arboretti R. and Ceccato R. (2018) Permutation tests for stochas-
tic ordering with ordinal data. In Advances in Statistical Modelling of Ordinal Data, eds. Capecchi
S., Di Iorio F. and Simone R. pp. 163–170, Publisher, Italy.

Huang, H., Pesarin, F., Arboretti, R., and Ceccato, R. (2019) Multivariate permutation tests for
ordered categorical data. Manuscript submitted for publication.

References

Prof. Luigi Salmaso
University of Padova
Stradella S. Nicola, 336100 Vicenza - Italy
Phone: +39 0444 99 87 20
e-mail: luigi.salmaso@unipd.it

Prof. Fortunato Pesarin
University of Padova
Via C. Battisti, 241 - 35121 Padova - Italy
e-mail: pesarin@stat.unipd.it

Prof. Dabuxilatu Wang
University of Guangzhou
230 Wai Huan Xi Road,Guangzhou Higher Ed-
ucation Mega Center, Guangzhou 510006 -
P.R.China
Phone: +86 1852 0770 116
e-mail: wangdabu@gzhu.edu.cn




	List of Figures
	List of Tables
	Preamble
	Overview
	Main contributions of the thesis

	1 Introduction
	1.1 Foreword
	1.2 Solutions within the likelihood framework
	1.2.1 Prologue
	1.2.2 Regression-based approaches
	1.2.3 Chi-squared-based statistics
	1.2.4 Association-model-based approach
	1.2.5 Distance-based approach

	1.3 Solutions by nonparametric scheme

	2 Theory of Permutation Tests
	2.1 Prologue
	2.2 Data Layout
	2.3 Basic testing problem
	2.4 Permutation principles
	2.4.1 Some relevant properties

	2.5 The Nonparametric Combination (NPC) Methodology
	2.5.1 Partial permutation tests
	2.5.2 Some important properties of Combining functions
	2.5.3 Some relevant Combining Functions

	2.6 Conclusion

	3 Testing for restricted alternatives with ordered data
	3.1 Prologue
	3.2 The two-sample unidimensional case
	3.3 The two-sample multidimensional case
	3.4 The J-sample stochastic ordering problem
	3.5 A typical medical example

	4 Testing for restricted alternatives with repeated data
	4.1 Prologue
	4.2 Repeated measurements with two occasions
	4.2.1 Some typical regression functions
	4.2.2 A general regression function
	4.2.3 Related solutions

	4.3 Repeated measurements with T occasions
	4.3.1 Two relevant solutions

	4.4 A medical example with repeated data
	4.4.1 Analysis for Treatment group
	4.4.2 Analysis for Control group
	4.4.3 Analysis for Whole entity data
	4.4.4 Third question


	5 Conclusions
	Appendix A Computational tools
	Bibliography

