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Abstract

Efficient classification techniques are nowadays in huge demand in observational astron-

omy, which is probably the oldest area of application of statistical science to the study

of nature. The rapid evolution through technology has determined a paradigm shift

where rich and/or massive data sets are becoming the dominant source of information.

A typical sky survey collects terabytes of data each night on millions of possible ob-

jects (stars, galaxies, etc.) which themselves may encompass many observed properties.

Some success stories are the Sloan Digital Sky Survey whose whelm of very high quality

photometric data allowed astronomers to pinpoint the position of over one million of

galaxies, and NASA’s Fermi space telescope, thanks to which we are still deepening our

knowledge of high-energy phenomena. Discoveries in these fields are of utmost relevance

as they contain a wealth of information about the history of our Galaxy, and impact

on the understanding of our own Solar System. However, the simple collection of these

data sets is just the beginning of the process. A key step in astronomical breakthrough

research is the meaningful analysis of the collected information. The complex structure

of the data, combined with the availability of a tremendous number of observations,

represents a non-negligible statistical challenge from both the theoretical and computa-

tional viewpoint. Statisticians must work at the forefront of this area.

This thesis aims to enlarge the set of clustering and classification techniques available

for astronomy, providing new flexible solutions to cope with the requirements imposed

by the vast diversity of celestial objects. In the first part, we propose an innovative ap-

proach based on Bayesian nonparametric methods to the signal extraction of high-energy

astronomical sources immersed in a strong background contamination. Our model si-

multaneously clusters the photons and gives an estimate of the number of sources using

a Dirichlet Process (DP) mixture, while separating them from the irregularly shaped

background, that is reconstructed using a novel Bayesian nonparametric technique based



on B-spline functions. The resultant is then a hierarchical model in the class of mixtures

of DP mixtures. We provide a suitable Markov Chain Monte Carlo algorithm to con-

duct the inference, and a post-processing procedure to quantify the information coming

from the discovered clusters. We finally test the capacity of the model in locating and

extracting the signal of the sources using several artificial datasets, and a further appli-

cation on the Fermi LAT map is proposed.

In the second part, we propose a novel statistical approach to separate the different lev-

els of brightness in the emission activity of high-energy sources. The method analyses

the variation of flux in time and clusters the observations to infer on the latent states of

variability that correspond to distinct physical mechanisms of the source. We model the

transition among the latent states with a continuous-time Markov chain, and the flux

measurements in each state with an Ornstein-Uhlenbeck (OU) process. The resultant

technique belongs to the class of continuous-time hidden Markov models (HMMs) and

can be fitted via maximum likelihood estimation using an efficient EM algorithm. In

addition, we assess the properties of the model with a proper bootstrap algorithm. We

finally illustrate the efficiency of the method on a light curve from a blazar discovered

by the Fermi LAT.



Sommario

Negli ultimi anni, si è assistito ad un crescente interesse per lo sviluppo di avanzati stru-

menti di classificazione per l’astronomia osservativa, la più antica area di applicazione

della statistica per lo studio dei fenomeni naturali. La rapida evoluzione degli strumenti

tecnologici ha infatti portato ad un decisivo cambio di paradigma, dove imponenti moli

di dati sono diventate le più frequenti fonti di informazione disponibili. Durante una ti-

pica fase di esplorazione del cielo vengono registrati terabyte di dati relativi a milioni di

possibili oggetti astronomici, tra cui stelle e galassie; tra le più annoverate esplorazioni,

la Sloan Digital Sky Survey, che ha permesso agli astronomi di localizzare la posizione

di oltre un milione di galassie, e il telescopio spaziale Fermi della NASA, grazie al quale

la conoscenza dei fenomeni ad alta energia è in continua crescita. Scoperte di questa

portata hanno una grandissima rilevanza nella comprensione non solo dell’origine e del-

l’evoluzione del nostro sistema solare, ma anche dell’intera galassia in cui ci troviamo.

Tuttavia, la semplice raccolta di dati è soltanto l’inizio del processo, in quanto il vero

punto di svolta nella ricerca astronomica è dato dall’analisi dell’informazione raccolta.

Le ingenti e complesse moli di dati disponibili rappresentano infatti una vera e propria

sfida per gli statistici, che sono chiamati a rispondere a queste richieste con sviluppi e

innovazioni sia su aspetti teorici che computazionali della statistica.

Questa tesi mira a fornire quegli strumenti flessibili per la classificazione e il cluste-

ring dei dati che l’astronomia moderna richiede, facendo fronte all’enorme varietà di

oggetti astronomici identificabili nell’universo. Nella prima parte, viene proposto un

innovativo approccio Bayesiano nonparametrico per l’estrazione del segnale di sorgen-

ti astronomiche ad alta energia immerse in un’irregolare contaminazione di fondo. Il

modello proposto è in grado di raggruppare i fotoni osservati e fornire una stima del

numero di sorgenti tramite una mistura di Dirichlet Process, separando il loro segnale

dal rumore di fondo, che viene ricostruito attraverso un innovativo approccio Bayesiano

nonparametrico basato sulle funzioni B-spline. Il modello gerarchico che ne risulta è una



mistura di misture di Dirichlet Process. Viene proposto inoltre un algoritmo di simula-

zione nella classe dei metodi Markov Chain Monte Carlo per condurre l’inferenza, e un

algoritmo che quantifica l’informazione proveniente dai gruppi identificati sfruttando i

valori campionati dalla distribuzione a posteriori. I risultati ottenuti su diversi insiemi

di dati simulati confermano la capacità del modello proposto di localizzare e quantificare

il segnale di sorgenti astronomiche. Viene infine proposta un’applicazione del metodo

ad una mappa di fotoni proveniente dal Fermi LAT.

Nella seconda parte, viene proposto un innovativo strumento statistico per separare i

diversi livelli di luminosità nell’attività di emissione di sorgenti astronomiche ad alta

energia. Il metodo analizza la variazione di flusso nel tempo e raggruppa le osservazioni

al fine di svolgere inferenza sul numero di stati latenti, che corrispondono a differenti

meccanismi fisici della sorgente. La transizione fra i diversi stati latenti viene modellata

da una catena di Markov a tempo continuo, e il flusso in ciascuno stato con un processo

di Ornstein-Uhlenbeck (OU). Il modello che ne risulta appartiene alla classe di modelli

hidden Markov e può essere stimato via massima verosimiglianza con un algoritmo EM;

in aggiunta, è possibile risalire alle proprietà del modello attraverso un opportuno algo-

ritmo bootstrap. Viene infine mostrata un’applicazione del metodo proposto sul segnale

proveniente da una sorgente blazar osservata dal Fermi LAT.
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Introduction

“It was here already, long ago;

it was here before our time.”

Solomon - Ecclesiastes

Overview

Statistical learning, by which we mean the ability of discovering patterns and regulari-

ties in the data, plays a central role in knowledge discovery. This also includes allocating

objects to a pre-assigned or unknown number of groups according to a set of observed

attributes or features, which is a natural activity of any science. A major distinction

is made depending on whether the groups are defined, and known a priori, or need be

detected using the data. Clustering, or unsupervised learning, considers the latter situ-

ation. A surge of techniques has been proposed over the years, which differ significantly

in their definition of what a cluster is and how to identify it. A precise statistical notion

of what a group is, is provided by the density-based approach. Here, the clusters are

associated with some specific features of the probability distribution which is assumed

to underlie the data. The model-based or parametric approach has received a large

attention in literature, and aims to represent the probability distribution of the data

as a mixture of parametric distributions. A cluster is associated with each component

of the mixture and the observations are allocated to the cluster with maximal density

among the components. Standard accounts are the seminal works of Fraley and Raftery

(1998) and Fraley and Raftery (2002).

Discovering and locating high-energy γ-ray sources in the whole sky map is a de-

clared target of the Fermi Gamma-ray Space Telescope collaboration. The knowledge

about these celestial objects can improve our understanding of high-energy astrophysi-

cal phenomena, and will help to resolve the mystery of the fundamental nature of dark

matter. The data collected by the Fermi Large Area Telescope (LAT) are counts of

3



4 Main contributions of the thesis

γ-ray photons which cover the energy range from about 20 MeV to more than 300 GeV.

Each detected photon represents an event which is characterized by several variables,

the primary ones are the direction of the photon, expressed in Galactic coordinates, its

energy content and the so-called event type which expresses the quality of the measure-

ment. Using these data, astrophysicists are interested in determining the number of

the emitting extra-galactic high energy sources, measuring their intensities, and pooling

the individual photon counts into the corresponding clusters. A major challenge is how

to efficiently separate the signal of the emitting source from noise. The Fermi LAT

data, in particular, are characterized by two types of noise: measurement error associ-

ated with the components of the LAT (tracker, calorimeter etc.)1 and the diffuse γ-ray

background which spreads over the entire area observed by the telescope. A consistent

literature on signal extraction methods for observational astronomy has been developed

across the years [Hobson et al. 2010, Section 7]. Many contributions require the whole

sky map to be split into small regions, where to search for one source at time. The

ongoing sky surveys provide however billions of photon counts from sky regions which

are too large to be analysed with small area techniques. This motivated our research,

whose aims are to expand the current statistical toolbox of the analysis of photon count

maps by providing advanced statistical techniques that can simultaneously locate mul-

tiple sources, while covering a very large sky area, and separate them from the heavy

and irregularly shaped background contamination.

Straight after the signal detection, astronomers need to classify the nature of the

sources measuring the variation of brightness in time. Many observed sources in the

high-energy astrophysics, such as blazars, supermassive black holes and merging neutron

stars, are intrinsically time-varying in their light emission due to several physical mech-

anisms. Establishing when such variations initiate and identifying their duration is a

crucial step towards the comprehension and classification of the nature of the occurring

phenomena. The literature of the last two decades has largely focused on low-energy

sky surveys and on the analysis of celestial objects with prevalently regular emission

activity during time. This has allowed astrophysicists to formulate ad-hoc models for

any specific case. However, the recent observations of high-energy phenomena are char-

acterised by the presence of irregular patterns and aperiodic variations in brightness

[Dodds-Eden et al. 2011, Ramakrishnan et al. 2015], which are likely due to multiple

underlying physical processes. This increased the demand of advanced statistical meth-

ods to describe the emission activity of time-varying sources. The hope is that the more

accurate models used to fit the light emission of high-energy sources across time will

1https://www.nasa.gov/content/goddard/fermi-spacecraft-and-instruments
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lead to a deeper understanding of the various phenomena of the Universe.

Main contributions of the thesis

This research project aims to investigate the suitability of advanced parametric and non-

parametric mixture models from both the frequentist and the Bayesian perspectives, for

the effective analysis of spatial and temporal observations in high-energy astrophysics.

Contribution 1: A hierarchical Bayesian nonparametric model for source ex-

traction and background separation

In the first part of the thesis, we propose an innovative approach which uses Bayesian

nonparametric techniques to extract the signal of astronomical sources in gamma-ray

count maps under the presence of a strong background contamination. Our model si-

multaneously induces clustering on the photons using their spatial information and gives

an estimate of the number of sources, while separating them from the irregularly shaped

background which extends over the entire map. From the statistical perspective, the

signal of the sources is modelled using a Dirichlet Process mixture, which allows us to

discover and locate a possible infinite number of clusters. The background contami-

nation on the other hand is completely reconstructed using a novel flexible Bayesian

nonparametric model based on B-spline basis functions. The result can be then thought

of as a hierarchical mixture of nonparametric mixtures for flexible clustering of highly

contaminated signals. We provide also a Markov chain Monte Carlo algorithm to infer

the posterior distribution of the model parameters which does not require any tuning

parameter, and a suitable post-processing algorithm to quantify the information com-

ing from the detected clusters. The analyses of several artificial datasets confirm the

capacity of the model to discover and locate the sources in the map, to quantify their

intensities and to estimate and account for the presence of the background contamina-

tion. Last, we will give an illustration based on the Fermi LAT data.

Contribution 2: Continuous time hidden Markov modelling for flare detec-

tion in astronomical gamma-ray light curves

In the second part of the project, we develop a new model for astronomical gamma-ray

light curves which overcomes the limitations of the existing methods and is capable of

separating the distinct states in the emission activity of a source. The detection of a

flare can be posed as a clustering problem where flux measurements correspond to either

a resting or to a flaring phase. We propose a novel multi-state model for gamma-ray
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light curves with the aim of disentangling the flaring activity. The switching between

resting and flaring is modelled through a latent continuous time Markov process that can

accommodate irregularly spaced observation times. We adopt distinct OU processes to

characterize the flux variation in the discovered phases. The resulting compound model

can be fit via maximum likelihood estimation using an efficient EM algorithm. We de-

velop also a suitable bootstrap algorithm to evaluate the adequacy of the model and to

test whether evidence of additional states emerges from the data. We finally propose

an illustrative example based on the signal of a blazar monitored by the Fermi LAT.

Results confirm the adequacy of our model to successfully identify the emission phases

of the light curve which correspond to distinct physical mechanisms.



Chapter 1

Source extraction and background

separation: a Bayesian

nonparametric approach

“Not all those who wander are lost;”

John R. R. Tolkien - The Lord of the Rings

1.1 Introduction

Source extraction in astronomy aims to discover new astronomical sources and study

their physical characteristics. The ultimate purpose is to extend our knowledge about

the incredibly various energetic phenomena that originate in the universe.

In the last twenty years, new technologies have massively increased the precision of

detectors and the size of storage systems. The resulting richness of data resources poses

significant statistical challenges and has stimulated the development of new statistical

techniques and advanced computational methods that culminate into more powerful and

precise source extraction approaches.

From a statistical perspective, extracting a source means quantifying the evidence of

its presence in an observed region of the sky using a collection of photons, also known as

events. This is challenging in practice because the source signals are embedded in and

thus masked by background contamination, which is generally a significant component

of the data. The intensity of the contamination varies both with sky coordinates and

with the energy, i.e., across the joint domain of the image and the spectrum, that is

the distribution of the energy. Regions in the so-called galactic space, for example,

are subject to contamination from the nearby Milky Way galaxy, while more distant

7



8 Section 1.1 - Introduction

locations in the extragalactic space are dominated by the isotropic γ-ray background

(IGRB) component and thus are not subject to heavy contamination.

1.1.1 Astrophysical source extraction

Source extraction has received growing interest both in the astronomical and the statis-

tical literatures. Hobson et al. (2010) differentiate methods according to whether they

are designed to identify a single source or multiple sources simultaneously. While the

former has received considerable attention since the early 1990s [Kraft et al. 1991, Mat-

tox et al. 1996, van Dyk et al. 2001, Protassov et al. 2002, Park et al. 2006, Weisskopf

et al. 2007, Knoetig 2014], the latter have received a growing interest only more recently,

both for X-ray [Guglielmetti et al. 2009, Primini and Kashyap 2014, Jones et al. 2015]

and γ-ray data [Acero et al. 2015, Selig et al. 2015]. The high computational costs

of simultaneous extraction have doubtlessly delayed their development. However, their

features make them more attractive than single extraction methods as they allow to

analyse a whole region of the sky all at once.

Signal extraction methods must duly concern for the presence of the background

component in the data. This is particularly true for simultaneous extraction as the

intensity of the contamination can significantly vary across the map. When the back-

ground is small or relatively constant over the region of interest, one can model the

spatial and the energy components of the background as uniform as proposed by Jones

et al. (2015), or alternatively consider the Bayesian aperture photometry approach of

Primini and Kashyap (2014) for low count images.

For intense and prominent background contaminations which incorporate many het-

erogeneous processes, Guglielmetti et al. (2009) define a Poisson-based mixture model

for X–ray count images that account for the background using thin-plate splines. As

an alternative, the recent work of Acero et al. (2016) develops a detailed reconstruc-

tion of the γ-ray background for the whole sky using 8 years of observations from the

Fermi LAT telescope; this precise background estimate can be used for example with

the approach of Stein et al. (2015), which is thought to detect unknown structures in

an image for which part of the information, and thus also the background, is known.

Acero et al. (2015) perform multiple source extraction exploiting a preliminary version

of the Acero et al. (2016) background estimate. However, the model of Acero et al.

(2016) may include any source that was not accounted for as part of the background,

masking its signal in a subsequent study. In parallel, Selig et al. (2015) exploit the

method of Selig and Enßlin (2015) based on Information Field Theory to propose their
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own reconstruction of the Fermi LAT sky. However, the problems encountered with the

model of Acero et al. (2016) are still extant.

The data are collected by high-energy detectors in the form of photons with spatial

direction in the rectangular map

X = {(x, y) : x ∈ (xmin, xmax), y ∈ (ymin, ymax)},

and energy in the interval

E = {E : E ∈ (Emin, Emax)}.

We propose here a novel approach to simultaneously extract the signal of high-energy

sources and reconstruct the background contamination that extends over a map. The

method exploits the spatial coordinates and the energy of the photons (x, y, E) to prob-

abilistically allocate them to the corresponding sources, for which secondary analyses

can be accomplished. In practice, continuous measurements of sky coordinates and en-

ergies are not always accessible, in particular when the resolution of the telescope is low.

Data are therefore gathered into bins. Nevertheless, our method can be applied also to

binned data by treating the centroid of the bins as continuous measures. This strategy

will of course work best with high resolution data, i.e., when pixels of the instrument

are small.

1.1.2 Main goals and outline

Through this chapter, we largely exploit Bayesian nonparametric modelling to overcome

the limitations of the existent approaches in locating the sources in a map highly con-

taminated by background. In particular, the new method we propose has the following

features: (i) it dynamically determines the number of sources in the map, (ii) it clusters

the photons according to their spatial direction and energy, and (iii) it flexibly esti-

mates the background contamination without neither relying on previous knowledge of

the background map, nor using empirical reconstructions of it.

Most of the available simultaneous extraction methods require to set the number of

sources at the beginning of the analysis [Guglielmetti et al. 2009, Ray et al. 2011, Acero

et al. 2015] or are computationally limited [Primini and Kashyap 2014]. The more recent

work of Jones et al. (2015), which inspired this research, considers a Bayesian extraction

method based on mixtures, and the number of sources is inferred using the reversible
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jump Markov chain Monte Carlo algorithm [Green 1995]. This chapter exploits the ad-

vantages of mixture modelling and extends the model of Jones and coauthors using an

infinite mixture induced by a Dirichlet Process prior [Ferguson 1973]. In this way, the

model is conceptually appropriate as it dynamically extracts the sources in a map and

admits also new unobserved signals that would become detectable when new photons

will be available. In addition, the Gibbs sampling algorithms for Bayesian nonparamet-

ric methods [Müller et al. 2015] scale the mixture size faster than Green’s algorithm,

guaranteeing practical advantages in the model estimation.

In parallel to the signal extraction, our method provides also an accurate and flexible

model for the background contamination. This component is crucial in the detection of

new sources, as a wrong choice of the background distribution may lead to misleading

results and causes the identification of spurious sources. Jones et al. (2015) model the

background as uniform either on the map and the spectrum. However, this assumption

is unrealistic for heavily contaminated regions as the ones close to the Galactic space. We

propose a new model that combines innovative Bayesian nonparametric techniques with

B-spline functions [de Boor 2001] for flexible reconstruction of bivariate irregular signals.

Some comparable approaches in literature [Denison et al. 1998, Biller 2000, DiMatteo

et al. 2001, Sharef et al. 2010] adopt the reversible jump algorithm to select the active

spline functions in the model. As discussed above, simulation algorithms for Bayesian

nonparametric methods are particularly advantageous and lead to a fast model selection.

With respect to Guglielmetti et al. (2009) and Schellhase and Kauermann (2012), we

do not rely on any minimisation problem that in practice can be unfeasible. We provide

also a Gibbs sampler for spline knots that is free from any tuning parameter.

The Chapter is structured in 6 sections. Section 1.2 presents our innovative model

based on Bayesian nonparametric mixtures for signal extraction from highly contam-

inated astronomical data. We first propose a model that only accounts for the sky

coordinates, and then extend the model to also account for photon energies. Section

1.3 shows that the model developed in Section 1.2 is a mixture of Dirichlet Process

mixtures and shows how it can be fit with a Gibbs sampler. The model is validated

in Section 1.4 with a suite of simulation studies, first illustrating the method and then

demonstrating the advantage of considering spectral data. Some results from a region

of the Fermi LAT sky are presented in Section 1.5. Final discussion appear in Section

1.6, and technical details of the Gibbs sampling algorithms in the Appendix.
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Figure 1.1: Photons emitted from an astronomical source located at (0, 0) in different
energy bins. Increasing the energy range (from left-top to right-top, and from left-
bottom to right-bottom) the events become rarer and concentrate around the direction
of the source.

1.2 The statistical model

Let i = 1, . . . , n denotes a collection of observed photons with recorded sky coordinates

xi = (xi, yi) ∈ X and energy Ei ∈ E . As a single photon may originate from either one

of the astronomical sources or from the background, we formalize the statistical model

for the sky coordinates as

f(xi|Θ) = δs(xi|ϑs) + (1 − δ)b(xi|ϑb), (1.1)

where s(·|·) and b(·|·) are the density functions for the combined sources and for the

background, respectively parametrised by the vectors ϑs and ϑb. Finally, δ ∈ (0, 1) is a

mixing parameter, which we assume to be a priori Beta(λ, λ) distributed, where λ > 0

is a fixed hyperparameter. Thus, the full parameter is Θ = {ϑs, ϑb, δ}.

1.2.1 The source model

We investigate a modelling approach for s(·|·) starting from the simplest case, a unique

source with spatial direction µ = (µx, µy). Although the considered source is point-like,

and thus the direction of every emanated photon xi should be equal to µ, the signal

is spread around the true location of the source because of the instrument response

function, also known as Point Spread Function (PSF). Telescopes are sensible to the

energetic value of the incoming events: high-energy photons are rarer and concentrate
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around the source direction µ, while low energy photons are more frequent and appear

much more spread. Figure 1.1 illustrates the variation of both the number of incoming

photons and their spread around the centre of the source (0◦, 0◦) as the energy increases

according to the LAT PSF [Ackermann et al. 2012].

The LAT PSF is known in pixelized form; a parametric formulation is not available.

For ease of interpretation and computation, we opt for a parametric approximation of

the PSF. Specifically, following King (1962), we use

xi|Ei,µ ∼ tνi(µ, σ
2
i I), (1.2)

where td(a,C) is a bivariate Student t distribution with vector of location parameters

a, scale matrix C and d degrees of freedom, I is the 2 × 2 identity matrix, σ2
i = σ2(Ei)

and νi = ν(Ei) are known coefficients which depend on the energy Ei. Details on the

approximation of the PSF are given in the Appendix A1.

Once the single source model is established, some aspects must be considered be-

fore extending to multiple sources. First, the number of underlying sources in a map is

unknown. Second, each source can have a different intensity, and third, no a priori infor-

mation on their locations in space is available. We hence translate all these assumptions

into the model

s(xi|Ei,F) =

∫

p(xi|µ, σ
2
i , νi)F(dµ), F ∼ DP(αs,F0), (1.3)

where DP(r,P0) is a Dirichlet Process prior with concentration parameter r and base

measure P0 and p is the density function of a bivariate Student t distribution as in (1.2).

Model (1.3) is known in the literature as Dirichlet Process mixture and estimates s(·|·)

mixing the kernel p with respect to the unknown measure F . F0 has the role of prior

distribution over the location parameter µ and it is taken to be uniform over X . For a

review on Bayesian nonparametrics, see Müller et al. (2015).

The proposed model allows then a generic photon i to come from a possibly infinite

number of sources that a priori can be anywhere in the map. In practice, just a finite

number of observations, say ns, come from the sources, and for this reason (1.3) will

appear as a finite summation of at most ns components.

1.2.2 The background model

The second component of (1.1), b(·|·), represents the total amount of background in the

map. As mentioned in Section 1.1, high-energy count images use to be heavily affected
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by an irregular contamination at every level of energy; additionally, the background

noise is fruit of several astronomical phenomena that cannot be predicted and prevented.

These considerations translate into the practical impossibility of deriving an analytical

distribution for the background, but encourage to abandon any parametric distribution

in favour of flexible non-parametric solutions.

We recall here the definition of B-spline basis function of order m defined on a set of

knots τ = (τ1, . . . , τm+1):

Bm(x|τ ) =
x− τ1
τm − τ1

Bm−1(x|τ−(m+1)) +
τm+1 − x

τm+1 − τ2
Bm−1(x|τ−1), (1.4)

where B1(x|(a, b)) = 1[a,b)(x) and τ−j is the vector τ without its j-th element. By

construction, the function (1.4) is always positive between τ1 and τm+1, while it is zero

outside and unimodal for m > 1. Furthermore, (1.4) can assume many different shapes

depending on the location of the knots, and can be easily normalised by B̃m(x|τ ) =

m/(τm+1 − τ1)Bm(x|τ ); thus, B̃(·|·) is a distribution to all effects. See de Boor (2001)

for a full review on spline functions.

These characteristics motivate the use of B-splines for modelling complex data, such

as the background contamination in this study. Let us consider an event with direction

xi from the background component. First, we define the bivariate density function

ϕ(xi|ℓ, b) = B̃4(xi|ℓ)B̃4(yi|b), (1.5)

where ℓ = (ℓ1, . . . , ℓ5) and b = (b1, . . . , b5) denote respectively the knots of the longitude

and of the latitude B-splines, both with order fixed to 4 to guarantee enough flexibility

of the density. We model the background as

b(xi|G) =

∫

ϕ(xi|ℓ, b)G(dℓ, db), G ∼ DP(αb,G0). (1.6)

Formula (1.6) is an infinite mixture of normalised B-spline functions induced by a Dirich-

let Process prior, although the model will appear in practice as a finite mixture of at

most nb components, where nb is the unknown number of photons from the background.

The base measure of the process G0 works as a prior distribution for the set of longitude

and latitude knots. The order of the knots in the vector is guaranteed by assuming

the first of the five elements to be uniform distributed over the limits of the map, i.e.,

ℓ1 ∼ U(xmin, xmax) and b1 ∼ U(ymin, ymax), and the remaining to be uniform distributed

as well, but bounded to the left of their precedents. So, the knots for the longitude

coordinate distribute as ℓk ∼ U(ℓk−1, xmax), and for the latitude as bk ∼ U(bk−1, ymax),
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for k = 2, . . . , 5.

1.2.3 Including the spectral information

The convolution of the two Dirichlet Process mixtures in Formula (1.1) exploits only the

spatial information of the recorded photons. A direct extension includes photons energy

as a third response variable of the model. Jones et al. (2015) explored this approach and

stated that, in the X–ray framework, the extended full model improves considerably the

detection performance compared to the only spatial version and reveals itself a good

solution for disentangling overlapping sources. In the γ-ray field, Acero et al. (2015)

showed that a variation in the emission activity of many sources monitored by the LAT,

caused by an increment of the energy, has a power-law decay. Because of the complex

structure of the background contamination, it is challenging to define an appropriate

model for the energy of the photons. In this section, we propose a simple extension of

(1.1) as follows:

f ext(xi, Ei|Θ
ext) = δsext(xi, Ei|ϑ

ext
s ) + (1 − δ)bext(xi, Ei|ϑ

ext
b ), (1.7)

where the unknown functions sext and bext are equal to

sext(xi, Ei|ϑ
ext
s ) = s(xi|Ei,F)g(Ei|Emin, ηs),

bext(xi, Ei|ϑ
ext
b ) = b(xi|G)g(Ei|Emin, ηb),

(1.8)

and g(·|e, η) is the density function of a Pareto distribution, that has a power-law kernel,

with shape parameter η and scale e = Emin. Some alternatives listed by Acero et al.

(2015) are the exponential and the log-normal distributions; however, we are not going to

exploit them in this work. The Gamma distribution for the shape parameter is conjugate

with the Pareto model, so we take ηs ∼ Gamma(aηs , bηs) and ηb ∼ Gamma(aηb , bηb).

In (1.8), we model the photon energy of the sources and of the background with a

single Pareto distribution. This assumption is rather simplistic, but it is useful in a

first stage of the analysis to explore whether the energy variable will be helpful or not

to increase the detection performance of the model. Future developments will focus on

how to appropriate model the energy of the photons from the background, and on how

to allow the point sources to have distinct spectral models.
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1.2.4 Misclassification effect

From a physical perspective, the astronomical sources and the background contamina-

tion show different characteristics: the background tends to be much smoother than

the signal of point sources, and huge spikes are considerably unlikely. However, real

data are heavily contaminated and show often irregular behaviours which may cause

misclassification effects when models are fitted. We thus distinguish two types of error.

We refer to the first as Type I error: it occurs when groups of photons from the

background are spatially gathered in a way similar to the signal from a point source.

This phenomenon is fairly common in the analysis of astronomical maps and cannot

be prevented, as it strongly depends from how the photons from the background are

spatially distributed. In Section 1.4.1 we will discuss a proper method to evaluate

whether the components of the mixture s(·|·) represent astronomical sources using the

draws from the posterior distribution of the model parameters.

The second type of error, called Type II error, occurs when the signal from a point

source is captured by the background model. This effect is mainly caused by the extreme

flexibility of B-spline functions combined with Bayesian nonparametric methods; then,

the probability that the mixture b(·|·) embeds some weak sources is not negligible. In

order to prevent this effect, we control the shape of the B-splines kernel imposing some

restrictions on the parameter space. Specifically, these restrictions work on the variance

of the normalized B-spline functions. From Carlson (1991), if a random variable X is

distributed according to the density function B̃m(·|τ ), then its variance is

V ar(X) = V(τ ) :=

∑m

p=1

∑m+1
q=p+1(τp − τq)

2

(m+ 1)2(m+ 2)
. (1.9)

According to (1.2), the covariance matrix of the spatial location of a photon i from a

point source is V ar(xi|Ei) = viI, where

vi =
νiσ

2
i

νi − 2

is a function of the known set of parameters (σ2
i , νi) and νi > 2. Let ṽ = maxi vi. Then,

for every component l of the background mixture model, we want the set of knots ℓl

and b l to respect the following constraint,

V(ℓl) > cṽ, V(b l) > cṽ, (1.10)

where c is tuned to control the smoothness of the background component. If c is small,
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the above constraint becomes inefficient to prevent the misclassification; on the contrary,

if c is too large, the posterior distribution of ℓ and b under (1.10) becomes computa-

tionally infeasible to treat. In this work, we suggest to guide the selection of c using

a pre-existing background model, when available, as the one provided by Acero et al.

(2016). In details, we can fit just the B-spline Dirichlet Process mixture (1.6) on a

dataset drawn from the available background model and tune the value of c by as-

sessing the variances of the mixture components, taking into account also the grade of

smoothness we want our background model to have. In this work, we set c = 1.5 as

it approximately coincides with the posterior modes of V(ℓ)/ṽ and V(b)/ṽ. We will

further show in Section 1.4 that this value guarantees a good separation of the back-

ground from the sources and at the same time prevents the Type II misclassification. In

alternative, one can set a softer constraint by considering for example c = min(V(ℓ))/ṽ,

which guarantees a more flexible background reconstruction but augments the risk of

embedding some sources.

If instead νi ≤ 2 ∀i, the variance of the Student t distribution is undefined and the

constraint (1.10) becomes just

V(ℓl) > c, V(b l) > c.

1.3 Model generalization and simulation algorithm

1.3.1 A mixture of Dirichlet Process mixtures

A generic mixture of Dirichlet Process mixtures can be expressed as follows. Let {yi}
n
i=1

where yi ∈ Y ⊆ R
p. The observations originate from

f(yi|δ,K1, . . . ,KJ) =
J
∑

j=1

δjgj(yi|Kj),

gj(yi|Kj) =

∫

qj(yi|θj)Kj(dθj), Kj ∼ DP(αj,K0,j).

(1.11)

where δ ∼ Dir(λ). We furthermore assume that J is fixed, θj ∈ Θj and the size dim(Θj)

may differ for any j.

The spatial model (1.1) directly derives from the above formulation by setting J = 2,

g1(xi|K1) = s(xi|Ei,F), g2(xi|K2) = b(xi|G), q1(xi|θ1) = p(xi|µ, σ
2
i , νi) and q2(xi|θ2) =

ϕ(xi|ℓ, b). The base measure K0,1 = F0 is flat over X and K0,2 = G0 is a sequence of

uniform distributions as described in Section 1.2.2. To extend the model as described
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Figure 1.2: Directed Acyclic Graph (DAG) which illustrates the dependency struc-
ture among the variables of the model. The solid lines represent Model (1.1), and
both solid and dashed lines describe Model (1.7).

in Section 1.2.3, we just multiply the densities g1(xi|K1) by g(Ei|Emin, ηs) and g2(xi|K2)

by g(Ei|Emin, ηb).

We describe now the dependency structure of quantities in the proposed models

using a Directed Acyclic Graph (DAG), as shown in Figure 1.2. The edges represent

the objects of the models: the data are shown as grey circles, the model parameters

are white circles and the hyperparameters are white rectangles. The arrows outline the

relationship among the elements: if an arrow connects an edge A to an edge B, then

B depends from A. The dependency structure of the spatial model f(·|·) is described

only by the solid lines, while both solid and dashed lines display the extended model

f ext(·|·).

We display in the DAG also the latent group variable Zi that highlights whether

the photon i is deemed to come from the astronomical sources or from the background.

Thus, the n events are split into a first group of ns observations assigned to the sources,

and into a second group of nb observations assigned to the background. On the left

side of the edge Zi, we represent the mixture model s(·|·) used to perform the signal

extraction of the sources. Following the directions of the arrows we can follow how the

Bayesian nonparametric model reconstructs the unknown generating process of the data.

First, the set of location parameters {µ1, . . . ,µns
} is sampled from a random probability

measure F that comes from DP(αs,F0). Then, conditioning on µi, the model generates

the direction of the photon xi using a bivariate Student t distribution whose scale and
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degrees of freedom are (σ2
i , νi) and given by the photon energy Ei. On the right side

of Zi we display the mixture model b(·|·) which represents the background. The model

parameters {(ℓ1, b1), . . . , (ℓnb
, bnb

)} come from a probability measure G sampled from

a Dirichlet Process prior DP(αb,G0). The spatial location of photon i is then generated

using the bivariate spline function ϕ(·|ℓi, b i).

According to the extension of the model presented in Section 1.2.3, the energy Ei

is Pareto distributed with scale ηs when i is assigned to the sources, and with scale ηb

when i is assigned to the background.

Because of the discreteness of random probability measures sampled by Dirichlet

Process priors [Ferguson 1973, Blackwell 1973], we will observe just a subset of ks distinct

values in {µ1, . . . ,µns
}, and a subset of kb in {(ℓ1, b1), . . . , (ℓnb

, bnb
)}. Therefore, the

model produces two distinct levels of clustering: the first is given by the values of Z, and

the second by the photons with the same value of the model parameters. This aspect

is particularly relevant for the model s(·|·), as each component of the mixture has a

physical interpretation and represents the signal of a distinct astronomical source. The

components of b(·|·) instead do not have a particular physical meaning and represent

just separate regions of the background contamination.

1.3.2 The MCMC algorithm

We develop a simulation algorithm in the class of Markov chain Monte Carlo methods

for posterior inference of mixtures of Dirichlet Process mixture models. The pseudo-

code of Code-Box 1 extends the Gibbs sampling scheme for Bayesian nonparametric

mixtures based on the Chinese Restaurnat Process [Escobar 1994, Escobar and West

1995, Section 3.3.1 of Müller and Rodriguez 2013] to include the two orders of clustering

described at the end of the previous section. The algorithm refers to the generic mixture

model (1.11) and can be used to fit both the proposed models f(·|·) and f ext(·|·). We

keep track of the first level of clustering through a vector Z of size n: Zi = j means that

the algorithm assigns the i-th observation to the j-th mixture model, for i = 1, . . . , n

and j = 1, . . . , J . In accordance with Section 3.3.1 of Müller and Rodriguez (2013), we

introduce for all Dirichlet Process mixtures an n-size vector, Hj, to store the second level

of clustering. Thus, Hji = l states that observation i is assigned to the l-th component

of the j-th Dirichlet Process mixture, for l = 1, . . . , kj, where kj is the set of distinct

values from the random probability measure Kj. Additionally, Hji = 0 if Zi 6= j. The

proposed algorithm is iterative, so the quantity involved are marked with (t) to denote

the t-th iteration. When J = 1, the algorithm reduces to the standard collapsed Gibbs

sampler for Bayesian nonparametric inference.
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Algorithm 1: Gibbs sampling for mixture of Dirichlet Process mixtures

The following pseudo-code outlines an iterative algorithm for posterior inference in
mixture models as in (1.11). For ease of presentation, we show just a single iteration t
given the output from iteration t− 1. The procedure must be run for a large number
of times T .
Input: θ

(t−1)
j = (θj1, . . . , θjkj)

(t−1) is the set of k
(t−1)
j distinct values from Kj,

g
(t−1)
j = (gj1, . . . , gjn)(t−1) is the estimate of the density gj(·|·) over the n

observations, H
(t−1)
j , an integer hj, δ

(t−1)
j , and (optional) α

(t−1)
j , for

j = 1, . . . , J .
begin

Sample a set of additional parameters θ̃j = (θ̃j1, . . . , θ̃jhj) from K0,j, for

j = 1, . . . , J . Let H∗
j = H

(t−1)
j , θ∗j = θ

(t−1)
j and k∗j = k

(t−1)
j .

Step [1] Draw Z
(t)
i from

p(Z
(t)
i = j|g(t−1)

ji , δ
(t−1)
j ) ∝ δ

(t−1)
j g

(t−1)
ji , j = 1, . . . , J,

and draw δ(t) from Dir(n (t) + λ), where n (t) = (n1, . . . , nJ)(t) and

n
(t)
j =

∑n

i=1 1(Z
(t)
i = j).

Step [2] for j = 1, . . . , J do

Step [2.a] For i = 1, . . . , n, if Z
(t)
i 6= j, set H∗

ji = 0. For l = 1, . . . , k∗j , if there
isn’t any H∗

ji = l, remove θjl from θ∗j and decrease k∗j by one.

Step [2.b] For all i such that Z
(t−1)
i 6= j and Z

(t)
i = j, draw from

p(H∗
ji = l|H∗

j,−i,θ
∗
j , θ̃j, α

(t−1)
j ) ∝











n∗
jlqj(yi|θ

∗
jl) l = 1, . . . , k∗j ,

α
(t−1)
j

hj
qj(yi|θ̃jh)

l = k∗j + h,
h = 1, . . . , hj,

according to Algorithm 8 of Neal (2000), where n∗
jl =

∑n

i=1 1(H∗
ji = l) and

H∗
j,−i is the vector H∗

j without the i-th element. If l > k∗j , then H∗
ji = k∗j + 1

and increase k∗j by one. Draw a value for θj(k∗j+1) from

π(θ|yi) ∝ qj(yi|θ)K0,j(θ) (1.12)

and add it to θ∗j .

Step [2.c] For all i such that Z
(t)
i = j, update H∗

ji using the probabilities given
by [2.b]. If a cluster becomes empty, remove it and decrease k∗j by one. If a
new component is accepted, increase k∗j by one, sample a new value from (1.12)
and add it to θ∗j . Finally, conditioning on H∗

j , update the model parameters θ∗j .

At the end, H
(t)
j = H∗

j , k
(t)
j = k∗j and θ

(t)
j = θ∗j .

Step [2.d] Let n
(t)
jl =

∑n

i=1 1(H
(t)
ij = l). Compute

g
(t)
ij =

k
(t)
j
∑

l=1

n
(t)
jl

n
(t)
j + α

(t−1)
j

qj(yi|θ
(t)
jl ) +

hj
∑

h=1

α
(t−1)
j

hj
qj(yi|θ̃jh), i = 1, . . . , n.

Step [2.e] (optional) Update the concentration parameter αj with the data

augmentation strategy of Escobar and West (1995), using k
(t)
j , n

(t)
j , aj and bj.

Output: Z(t) and k
(t)
j ,H

(t)
j ,θ

(t)
j ,g

(t)
j , α

(t)
j , for j = 1, . . . , J .
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For every iteration, Step [1] pulls the observations into the J distinct mixture models.

Then, for j = 1, . . . , J , Step [2] works as follows: [2.a] it removes the observations which

previously belonged to mixture j and changed at the current iteration the first level

of clustering; [2.b] it assigns the second clustering indicator to the new entries; [2.c] it

updates the labels and sample from the posterior distribution of the model parameters;

and [2.d] it estimates the density value of the n observations. Step [2.b] and [2.c] work

on the indicators of the second clustering level and either assign the data to an existent

component or add a new one. With respect to Page 30 of Müller and Rodriguez (2013),

we implement Algorithm 8 of Neal (2000) which does not require us to compute the

predictive density function, that is often computationally demanding.

Afterwards, the algorithm samples new values from the posterior distribution of the

model parameters. The Student t distribution used does not have a conjugate prior

for the non centrality parameter µ; however, a data augmentation strategy [van Dyk

and Meng 2001] can be implemented to achieve a simple and efficient Gibbs sampler.

For what concerns the set of knots (ℓ, b) of the background model, a closed conditional

distribution is not easily accessible. Thus, we implement a rejection sampler which

updates each knot once at a time while conditioning on the values assumed by the

other knots. As every knot is bounded, a uniform distribution can be used as proposal.

Before accepting the knots, Condition (1.10) must be respected. Details are given in

Appendix A2. Lastly, we include the optional Step [2.e] to learn the Dirichlet Process

concentration parameters from the data by exploiting the data augmentation strategy

of Escobar and West (1995) with αj ∼ Gamma(aj, bj).

When we fit the extended model f ext(·|·), we need just an additional step to sample

from the posterior distribution of ηs and ηb. Because of the conjugacy between the

Gamma and the Pareto distributions, the simulation is straightforward.

1.4 Numerical experiments

In this section, we illustrate how the proposed signal extraction method works through

some numerical experiments. We simulate artificial datasets in a spatial region of

200×200 pixels of size 0.05◦ across 25 energy levels. The energy bins are log10-equispaced

with size 0.1 in the interval 0 and 2.5, spanning an energy range between 1 GeV and

316.2278 GeV . Let S be the number of sources in the artificial dataset, with direc-

tions (ψ1, . . . , ψS): we simulate the counts in pixel (u, v, z) drawing from the Poisson
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Figure 1.3: Map of 10,000 events obtained by the generating method described at
the beginning of Section 1.4, using 9 equally bright sources and a moderate background
contamination.

distribution

Yuvz ∼ Poi

(

S
∑

s=1

Λψs

uvz + Λbuvz

)

,
u, v = 1, . . . , 200,

z = 1, . . . , 25,

where Λψs
uvz is the expected number of photons from the source located in ψs and Λbijk are

the expected counts from the background. In order to conduct realistic experiments, we

draw the signal of a source using the Fermi LAT PSF and a power-law spectral model

Λψs

uvz = PSF (ψs)uvz · F0,s

(

Ek
E0

)−̺s

, (1.13)

where the parameters F0,s and ̺s control the brightness of the source, E0 is the minimum

level of energy observed (here E0 = 1GeV ) and Ek denotes the centroid of the k-th

energy bin. PSF (ψs)uvz is the probability that a photon with energy l is recorded in

the pixel jk. The background expectation Λbuvz is given by Acero et al. (2016).

1.4.1 An illustrative example

We first propose an illustrative example based on 9 equally bright sources with the

same spectral parameters F0,s = 1 · 10−9 and ̺s = 2, for s = 1, . . . , 9, and a moderate

background contamination. We select a dataset of 10,000 photons at random from the

initial 25,140 generated by the simulation to reduce computational time. The reduced

map of events, that we call DX , is shown in Figure 1.3; the sources are labelled from

1 to 9. The aim of this first part is to illustrate the functioning of the model and how
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Figure 1.4: Left: posterior distribution of the number of active components of s(·|·)
across the 10,000 iterations, after a burn-in period of 20,000. The modal value is 10,
with 3644 visit times. Right: draws from the posterior distribution of µ when the
number of components is ks = 10. Using Algorithm 2, we distinguish 11 modal values
to use as reference points.

to perform a post-processing analysis on the draws from the posterior distribution of

the model parameters. For this reason, we fit only the spatial model f(·|·) of Formula

(1.1), postponing the comparison of performance with the extended model f ext(·|·) to

the next section.

We set the total number of iterations to 30,000 and use the first 20,000 as burn-

in. Neal’s algorithm used in Steps [2.b] and [2.c] of our MCMC sampler requires the

additional parameters hs and hb: we set hs = hb = 5 which guarantees a fast exploration

of the support of the posterior distribution without increasing computational time. Last,

the concentration parameters αs and αb are learned from the data using Step [2.e] of

Algorithm 1. We set αs ∼ Gamma(9, 3) and αb ∼ Gamma(4, 2) to have the expectation

of αs to be larger than the one of αb; so, E(αs) = 3 and E(αb) = 2, while the variance

is one for both the parameters. By doing so, the a priori number of clusters induced by

the Dirichlet Process priors, taking λ = 1, is E(ks) ≈ 21.18 and E(kb) ≈ 14.8.

The left plot of Figure 1.4 shows the posterior distribution of the number of compo-

nents in the mixture model of the sources ks, across the 10,000 iterations: with more

than 36.44% visits, 10 is the most visited size, and almost 89% of the times the mixture

size is between 9 and 11. The trace plots of the draws from the posterior distributions

of (µx,1, . . . , µx,10) and (µy,1, . . . , µy,10) are displayed in the left column of Figure 1.5.

The algorithm achieves convergence for the parameters of the first nine components

and the draws reveal unimodal distributions, while the posterior of µ10 is prevalently

multimodal. This effect arises when the MCMC sampler repeatedly adds to and re-

moves a mixture component from the model, due to the small number of corresponding
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Figure 1.5: Left column: trace plots of µx (top) and µy (bottom) when the number
of active components is 10. Right column: relabelled trace plots from µx (top) and µy
(bottom). We distinguish two new components, labelled as 10 and 11, that previously
belonged to the 10th component.

observations. The spare groups of photons which make the algorithm adding the tenth

component are located at very different points of the map, causing the posterior distri-

bution of µ10 to be multimodal. The multiple modes can then either be spare signals

from the background which are not captured by b(·|·), or alternatively they represent

the signal of faint sources made by very few photons.

Following Malsiner-Walli et al. (2016), we develop a post-processing algorithm to

relabel the values sampled from µ|DX so as to avoid multimodal posterior distributions,

as it is the case for the 10thcomponent in the left column of Figure 1.5. The pseudo-code

is illustrated in Code-Box 2.

During Step [2] of Algorithm 2, we fit the kernel density estimator of Wand (1994)

over the draws from the posterior distribution of µ|DX and we select the modal values

to perform the relabelling. The kernel estimator works on a grid that must be carefully

chosen to highlight the modes of the posterior distribution of µ while avoiding overfit-

ting; we chose here an equally spaced grid of 150 bins on both dimensions. The number
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Algorithm 2: Relabelling algorithm

Input: k
(t)
s and (µ1, . . . ,µks)

(t), for all the iterations t after the burn-in period.

Let d̃ = 0.06 be a given threshold, that corresponds to the radius of the 99%
credibility interval of µ, when the data are known to come from a source.
begin

Step [1] Let k+s be the modal value inside k
(1)
s , . . . , k

(T )
s ; for r = 1, 2, . . . such that

k
(r)
s = k+s , we consider µ

(r)
+ = (µ1, . . . ,µks)

(r).
Step [2] As the density of µ|DX is multimodal, run a bivariate nonparametric

density estimator over (µ
(1)
+ ,µ

(2)
+ , . . . ) as the one proposed by Wand (1994) based

on bivariate Gaussian kernels. Sort the modes in decreasing order, starting from
the highest, and stop when the density value is smaller than a given threshold ξ.
Let (µ∗

1, . . . ,µ
∗
P ) br the P directions detected.

Step [3] For r = 1, 2, . . . and j = 1, . . . , k+s , compute

d
(r)
j = min

p=1,...,P
||µ(r)

j − µ∗
p||

and if d
(r)
j < d̃ then label µ

(r)
j as p, otherwise call it back. Relabel as p also the

observations assigned to the j-th component of the source mixture s(·|·) during the
r-th iteration of the MCMC algorithm.

of modes P to use as reference points is chosen according to an heuristic threshold ξ:

any mode whose density value is larger than ξ is taken as a reference points for the

relabelling procedure, otherwise is discarded. Although one can take an arbitrary small

value of ξ, a too small threshold augments the risk of using spurious modes as reference

point for the relabelling. Here we set ξ = 0.1.

In the right plot of Figure 1.4, we show the draws from the posterior distribution of

µ when the size of the mixture s(·|·) is equal to 10; we furthermore choose to discard

the values of the corners and close to the edges, restricting our attention on the region

(−4.5◦, 4.5◦)×(−4.5◦, 4.5◦). Our post-processing algorithm selects P = 11 modal values,

which are marked as orange points in the right plot of Figure 1.4. Finally, Step [3]

relabels the draws according to their distance to the P reference points. The quantity

d
(r)
j represents the distance of µ

(r)
j , the location parameter of the j-th component drawn

at the r-th iteration, to the closest reference point. If d
(r)
j is larger than a threshold d̃,

then it is marked with the label of that reference point, otherwise it is believed to be

generated by a spurious cluster of photons that was wrongly accounted for by the source

mixture s(·|·), and for this reason it is relabelled as back.

The right column of Figure 1.5 shows the draws from µ|DX after Algorithm 2 was

applied. The relabelling procedure has highlighted two new distinct components that

were previously part of a unique one, the tenth. The rest of the draws from the tenth
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Table 1.1: Details of the results given by the relabelling procedure. From left to
right, the columns display: (1) the cluster labels, (2) the source IDs when the sources
are within 0.1◦ from the estimated direction, (3) the true direction of the source (4) the
expected number of photons from the estimated cluster, (5) the 90% HPD interval of
the cluster size, (6) the true number of photons from the source and (7) the estimated
probability that the clusters correspond to real sources.

clusterID sourceID E(µ| . . . ) ψ E(N | . . . ) HPD90% #Counts P(source| . . . )

1 3 (-0.237, -1.882) (-0.225, -1.875) 144.68 (126, 163) 122 1.000
2 8 (2.817, 1.787) (2.825, 1.825) 133.24 (117, 150) 130 1.000
3 9 (2.89, 3.907) (2.925, 3.925) 133.03 (117, 149) 125 1.000
4 4 (0.2, 1.379) (0.225, 1.375) 180.16 (162, 199) 142 1.000
5 5 (0.418, 0.075) (0.475, 0.075) 175.49 (156, 195) 123 1.000
6 6 (1.29, -0.985) (1.325, -0.925) 143.43 (126, 161) 142 0.999
7 2 (-0.964, -2.453) (-0.925, -2.475) 165.51 (146, 186) 139 0.999
8 7 (2.017, 0.646) (2.075, 0.725) 121.43 (105, 139) 131 0.979
9 1 (-3.508, -1.801) (-3.475, -1.725) 116.73 (100, 133) 128 0.944

10 // (-2.345, 3.826) // 31.02 (20, 44) // 0.291
11 // (0.345, 2.276) // 22.64 (9, 37) // 0.041

component are remarked as back, as they cannot be associated with any modal value.

Using Algorithm 2, we can also perform the second level of clustering in the mixture

s(·|·). Since for any µ
(r)
j there exists at least one photon assigned to the j-th component

of s(·|·) during the r-th iteration, the procedure changes the labels of both µ
(r)
j and the

relative photons, forming new clusters which should represent the astronomical sources

in the map. We can quantify their intensities by counting the photons assigned to them.

In addition, at some iterations of the MCMC sampler, a cluster might become empty;

the number of times the cluster has at least one observation over the length of the

Markov chain gives an estimate of the probability that the cluster truly coincide with a

real astronomical source.

Table 1.1 summarises the results for the 11 clusters which were identified by the

algorithm. The first two columns show respectively the cluster ID and the corresponding

source ID in case that the estimated direction of the source (Column 3) is 0.1◦ away from

the true direction (Column 4). Columns 5 and 6 summarise the posterior distribution of

the counts in each cluster, and can be compared with the seventh column, which shows

the true number of photons from the sources. Finally, the last column gives an estimate

of the probability that the discovered clusters coincide with the existent sources.

The model precisely locates all 9 true sources with very high posterior probability.

Moreover, we select two additional spurious clusters with small expected number of

counts and small estimated probabilities, which do not correspond to any source.
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Table 1.2: Results obtained fitting the proposed models on the three simulated
datasets. Each row displays, for a given scenario (first column), the number of true
and spurious clusters with the type of model in the second column. For ease of pre-
sentation, we distinguish the results according to the estimated probabilities of being
a real source, and we group them into three equally large intervals called respectively
low [0 - 0.333], medium [0.334 - 0.666] and large [0.667 - 1]. For every interval, we
report the number of sources discovered (denoted as true) and the spurious clusters
(denoted as noise).

low [0 - 0.333] medium [0.334 - 0.666] large [0.667 - 1]
Scen. #Sources Model true noise true noise true noise

1
15

Spatial 0 0 0 0 15 0
1 Extended 0 1 1 0 14 0

2
15

Spatial 0 1 0 0 15 0
2 Extended 0 2 0 0 15 0

3
25

Spatial 4 1 1 0 18 0
3 Extended 0 0 2 1 20 0

1.4.2 Model comparison

We carried out a number of numerical experiments to evaluate the performance of the

models f(·|·) and f ext(·|·). The goal is to determine whether the presence of the ad-

ditional energy variable impacts on cluster recognition and on background separation.

We consider three different artificial datasets which were generated with the same back-

ground region used for the above illustrative example, but which largely differ in the

number of sources and in their spectral parameters. The first scenario considers a map

with 15 equally bright sources (F0,s = 1 · 10−9 and ̺s = 2 for s = 1, . . . , 9). The second

scenario is made by 15 sources located of the same directions of the previous scenario,

but with different spectral parameters. The last scenario is made by 25 sources with

different spectral parameters; in addition, it includes two pairs of overlapping sources.

In the first pair, the source with ID 1 is 0.07◦ from the one with ID 2, and in the

second pair the source ID 22 is 0.11◦ from ID 23. The characteristics of the simulated

sources used in the second and in the third scenarios were randomly chosen from the

catalogue of Acero et al. (2015). Every dataset consists of Poisson counts as described

at the beginning of Section 1.4. The size of each simulated dataset is reduced to 10,000

records to reduce computational cost. We run the MCMC sampler 20,000 times to fit

both f(·|·) and f ext(·|·), and we used half of the iterations as burn-in. The relabelling

procedure in Code-Box 2 is then applied to the draws from the posterior distributions

with the same set-up illustrated in Section 1.4.1. The results are summarised in Table

1.2. Further details on the simulations are given in Appendix B.

The three simulations evaluate the two models in terms of the total number of sources
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discovered and the number of spurious clusters located. In addition, for every mixture

component which effectively locates a source, we say that the signal is correctly extracted

if the 90% HPD interval of the cluster size includes the true number of photons from

that source.

In the first numerical example, the spatial model clearly locates the 15 sources with-

out any spurious cluster and correctly extracts 13 of them. The extended model performs

slightly worse in terms of signal recognition. It locates 14 sources in the high proba-

bility range and 1 in the middle range. It also pinpoints a false positive with very low

probability (0.03), but correctly extract the signal of 14 sources, one more than the

model f(·|·) in (1.1). For the second scenario, both models perform remarkably well,

discovering all 15 sources with large posterior probabilities and few spurious clusters.

In addition, the extended model f ext(·|·) correctly extracts 10 of the 15 sources, against

the 8 of the baseline model f(·|·). Regarding the final scenario, which is the most com-

plex one, both models locate most of the sources in the high probability range, although

some aspects must be considered. Model f(·|·) discovers 4 sources in the low probability

range and 1 in the middle range, showing in addition a spurious cluster. Model f ext(·|·)

shows instead higher posterior probabilities, but at the same time it completely misses

the 21-th source and locates a spurious cluster with probability in the middle range.

Both models do not clearly disentangle the two pairs of overlapping sources, but reveal

a unique component in the direction of interest. The sources of the first pair (IDs 1

and 2) emit respectively 238 and 157 photons, while the second (IDs 22 and 23) 229

and 30. The component of f(·|·) referred to the first pair exhibits around 389 expected

counts, against the 369 expected from f ext(·|·). In the same way, the component from

the spatial model which detect the second pair has 229 expected counts, against the 240

expected from f ext(·|·). Both models fail in distinguishing the two pairs of overlapping

sources, but correctly extract their total intensities. In total, both f(·|·) and f ext(·|·)

correctly extract the signal of 18 celestial objects.

In conclusion, the two models revealed high quality performances in locating and

extracting the signal of the sources over the three simulated maps of photons. In the

first scenario, the spatial model detects 100% of the sources in high posterior probability

range, against a 93% of the extended model. In the second scenario, both models

correctly locate all the sources and show just few spurious clusters. Finally, in the last

scenario the two models discover 72% and 80% of the sources, respectively; in addition,

these rates become 76% and 88% if we consider also the middle probability range.
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Figure 1.6: Left: 10◦ × 10◦ region from the Fermi LAT telescope. The available
dataset based on 9 years of observation is composed by 98,598 events, binned into a
200 × 200 grid. The scale colour value varies with respect to the number of counts
per pixel observed. Right: contour plot of the estimated background density using
the spatial-only model, based on 20,000 records sampled at random from the starting
dataset.

1.5 Application to the Fermi LAT data

We finally use the proposed models to analyse a γ-ray dataset collected by the Large

Area Telescope (LAT) onboard the Fermi telescope. The data refer to the set of events

detected within a region surrounding the newly discovered dwarf galaxy Antlia 2. This

region is relatively close to the galactic plane so there is a large contribution from

diffuse background processes which have strong gradients across the field of view. A

first background model developed by the Fermi Collaboration [Acero et al. 2016] is

made up of an isotropic component plus a diffuse component which represents galactic

processes. The physical processes which give rise to these diffuse emissions are very

difficult to model. We do not expect the Fermi background model to capture all the

detailed morphological and spectral characteristics of the true background. Therefore,

a nonparametric method as the one we propose would be more suitable for estimating

the noise component of the data.

We consider events from a squared region of 200 × 200 spatial bins and 30 log10-

equispaced energy bins spanning the range 0.5 GeV − 500 GeV .

The 98,598 detected counts are displayed in the left plot of Figure 1.6: each point in

the map represents a spatial pixel, coloured according to the number of photons which

fall into it. A noise component extends rather evidently over the whole map which is

more prevalent at the left side of the plot and slowly fades out moving towards the right
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Table 1.3: Results for the Fermi LAT data. The estimated directions of the clusters
are shown in the second and in the fourth columns, while the third and the fifth display
the estimated posterior probabilities of being a source. The first cluster receives a non
negligible posterior evidence from both models. Its closest source is 0.93◦ away, but
its presence is not supported by our models. Cluster IDs 2 and 4 are less than 0.1◦

away from two sources recorded in the third Fermi LAT catalogue. The two models
diverge about the direction of third cluster, as the estimated points are 0.57◦ away.
Finally, the fifth cluster is selected only by the spatial model with very low posterior
probability.

Spatial Spatial and Spectral
ClusterID E(µ| . . . ) P(source| . . . ) E(µ| . . . ) P(source| . . . )

1 (1.86, 0.90) 0.79 (1.86, 0.90) 0.47
2 (-3.94, 0.47) 0.62 (-3.94, 0.47) 0.91
3 (-2.10, 1.67) 0.27 (-1.59, 1.85) 0.20
4 (0.04, -1.79) 0.27 (0.05, -1.79) 0.68
5 (-2.02, 2.39) 0.07 // //

side.

Signal extraction is performed using both the spatial-only model and its spectral

extension to evaluate the accordance of the results. The settings of the algorithm are

the same as in the previous numerical examples. We furthermore reduce the dataset

size to 20,000 records to streamline computational cost.

The estimate of background morphology given by the spatial model is illustrated

using the contour plot on the right side of Figure 1.6. It clearly shows: i) a prominent

surface which extends over the left part of the image, and which is more pronounced at

the left-top and left-bottom edges, ii) a moderate contamination in the middle part of

the image, and iii) a progressive decrease of the noise intensity moving forward towards

to the x-axis.

Once the background contamination is filtered appropriately, we proceed with signal

extraction. Table 1.3 displays the results obtained from the two models after the post-

processing algorithm was applied. The two models select respectively 5 and 4 clusters.

The first is located in the same direction from both models and is supported to be

a source by a large estimated probability. However, the closest source in the third

Fermi LAT catalogue is 0.93◦ away and both models do not show any evidence of

that. We thus believe that further investigation about the true location of this source

are to be considered. The second and the fourth clusters are less than 0.1◦ from two

sources discovered by the Fermi collaboration; the spatial and spectral model is more

accurate in terms of posterior evidence than the only spatial one. The two models

are discordant with respect to the direction of the third cluster, as the first points

0.57◦ away from the other. In addition, the two reported probabilities fall into the low
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range as they are less than 0.33. We hence suppose that the third cluster is currently

locating a sky region contaminated by a prominent background component, whose signal

is occasionally captured by the source mixture model. However, the discovered signal

could also originate from a pair or a group of faint neighboring sources. In this latter

case, a statistical analysis using data from lower energy ranges would be more suitable

to reveal their presence. Finally, the fifth cluster is located only by the spatial model

and exhibits a very poor posterior evidence. We are confident to conclude that no source

is located at this direction.

1.6 Discussion

We introduced in this chapter an innovative approach to signal extraction of astronom-

ical sources in highly contaminated γ-ray count maps using the spatial and spectral

information of the events. The method exploits advanced Bayesian nonparametric tech-

niques to detect the directions of the sources and, at the same time, to fit the underlying

background component. A constraint on the parameter space is imposed to reduce the

risk of absorption of the signals of the sources by the background. In addition, we

developed a post-processing algorithm to solve the well-known label switching effect of

mixture models and to extrapolate the relevant information when the posterior distribu-

tion of some location parameters exhibits multiple modes. We furthermore illustrated

how the model works through an illustrative example.

We first introduced a model that exploits only the spatial information of the events;

we then extended it by considering also the photon energy. We thus carried out some

numerical experiments to test the detection performance of our method. We simulated

the datasets using the Fermi LAT Point Spread Function and a power law spectral

model in the range of energies 1 GeV − 316.2278 GeV ; the spectral parameters of the

sources were chosen at random from the third Fermi LAT catalogue to include both

bright and faint sources. The results of the numerical experiments are very promising.

Both models successfully locate most of the sources with high posterior evidence and

correctly extract their signals. The two models exhibit similar detection performances

and reveal only few spurious clusters which can be easily recognised using the post-

processing algorithm proposed. However, it emerges that the extended model f ext(·|·)

helps in quantifying the source intensity, but at the same time it slightly increases the

number of Type I errors. Finally, the models were applied over a region of the sky

surrounding the dwarf galaxy Antlia 2, observed by the LAT component of the Fermi

telescope, and produced concordant results.
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With respect to the reversible jump approach of Jones et al. (2015), the Dirichlet

Process mixture has both conceptual and computational advantages. Considering that

the number of components in Bayesian nonparametric mixtures is potentially infinite,

a larger number of records usually implies a larger size of the mixture. Thus, a model

based on a Dirichlet Process is more appropriate than a finite mixture given data,

with astronomical data, new observations become constantly available and may guide

to the identification of new sources. Moreover, the available algorithms for Bayesian

nonparametric models are more efficient for posterior inference and scale the mixture

size faster than the reversible jump algorithm.

Further developments will concentrate on carefully including the spectral information

into the Dirichlet Process models, with particular attention to the background compo-

nent, and on developing a formal disentangling procedure for reconstructing the signal

of overlapping sources.





Chapter 2

Continuous time hidden Markov

models for flare detection in

gamma-ray light curves

“I watched C-beams glitter in the dark near the Tannhäuser Gate.”

Rutger Hauer - Blade Runner

2.1 Introduction

The statistical analysis of time varying astronomical sources is an interdisciplinary field

which combines both astronomical and statistical methods to investigate the physical

mechanisms that characterise celestial objects. This type of analysis works with photons

which fall on the detector surface of a telescope during the monitoring activity of a

source in time. Then, a common practice is to convert counts into flux to standardise

the observations with respect to some features, as the exposure time of the instrument

to the portion of the sky where they come from and the size of the instrument’s surface,

even known as effective area. The flux time series that describes the emission activity

of a source as a function of time is called light curve.

Up to now, several authors modelled the light curves of astronomical sources either

by adopting a single stochastic process [Kelly et al. 2009, MacLeod et al. 2010, Zu et al.

2013], with particular emphasis on optical data, or by their extensions which linearly

combine multiple stochastic processes [Kelly et al. 2011, Sobolewska et al. 2014]. In

addition, Dodds-Eden et al. (2011) and Witzel et al. (2012) accounted also for low

variations in the signal due to the instrumental error with a Gaussian distribution.

33
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Many works in the literature focus on the analysis of optical and X-ray light curves,

that generally present moderate variations in the flux [Uttley et al. 2005, Sobolewska

and Papadakis 2009, Kelly et al. 2011]. However, other types of light curves are highly

variable and show evidence in favour of multiple states. This is the case, of example, of

the Galactic black hole associated to the source Sagittarius A* (Sgr A*), whose emission

activity was previously modelled with a unique stochastic process [Witzel et al. 2012],

and more recently Meyer et al. (2014) proposed a two latent states model, in accord with

the conclusions of Dodds-Eden et al. (2011). Lots of phenomena in the universe cover

a wide range of energies in the electromagnetic spectrum up to the γ-rays, the most

energetic type of radiation in the universe. However, γ-ray light curves are known also

to be highly complex. For example, Ramakrishnan et al. (2015) show the presence of

abrupt spikes in the γ-ray light curves of several blazars, monitored by the Fermi LAT.

In addition, Kushwaha et al. (2017) pass beyond the use of Gaussian distributions to

model the flux of blazars and Active Galactic Nuclei (AGNs) [Sobolewska et al. 2014],

and showed that skewed distributions are preferable as they successfully account for the

jets in the emission activity. Thus, establish when such flares occur is a key task to

comprehend the physical mechanisms at the base of high-energy sources, but a formal

procedure to learn these mechanisms using γ-ray data has not been provided yet.

We introduce in this chapter a new formal statistical technique to distinguish the

multiple states of variability in γ-ray light curves. The statistical method we propose

finds its roots in the class of latent states models. In particular, we exploit the well-

known hidden Markov models (HMMs), that have been largely studied in the statistical

literature [Zucchini et al. 2016] and extensively applied in many areas, such as engi-

neering [Wei et al. 2002, de Gunst and Schouten 2003, Lee et al. 2004, Roberts and

Ephraim 2008], genomics [Krogh et al. 2001, Schliep et al. 2003, Hobolth and Stone

2009, Städler and Mukherjee 2013, Cui et al. 2015] and finance [Genon-Catalot et al.

2000, Mamon and Elliott 2014]. The Markovian assumption claims that the current

value of the process depends solely on the value in the previous step. Athough in some

cases this assumption is not properly respected and requires to consider further exten-

sions [Barbu and Limnios 2009], it leads to versatile and interpretable statistical models,

and computational advantages in the estimation step.

This chapter aims to substantially improve the statistical toolbox available to classify

the nature of high-energy astronomical sources. Among the challenges to overcome, the

presence of multiple latent states of variability and of abrupt increments of brightness,

and the high dependence between subsequent observations have a central role. The

contribution given by the chapter is organised in four sections as follows: Section 2.2
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extends the methods already exploited in literature and defines a new model that ac-

counts for different levels of variability in γ-ray light curves, Section 2.3 outlines the

estimation algorithm and a bootstrap procedure to assess the properties of the model,

Section 2.4 shows a case-study using the γ-ray light curve from blazar PKS 1510-05, and

Section 2.5 concludes by discussing the main contributions of the chapter and further

extensions that can be explored.

2.2 Hidden Markov modelling approach

2.2.1 Continuous time observations

We consider a collection of n observations Y = {yti}
n
i=1 representing the flux of an astro-

nomical source over a discrete sequence of observation times (t1, . . . , tn) ∈ (Tmin, Tmax),

where Tmax − Tmin is the entire observation period. The emission activity of a source

is constantly monitored and thus, after transforming the photon counts into flux, the

observations should be available at constant time bins. In practice, data usually show

big gaps in the observation times due to the limited telescope time, the night/day cycles

and instrument failures which might not make the records available at some points. So,

∆i = ti − ti−1 is not constant.

This issue led Kelly et al. (2009) to consider a more appropriate model for continuous

time observations. A generic process {yt}t is said to follow an Ornstein-Uhlenbeck (OU)

process if its dynamic can be described by the stochastic differential equation ∂yt =

τ(µ − yt)∂t + σ∂Zt, where ∂Zt is the increment of a standard Brownian motion with

Zt ∼ N (0, 1), µ is a real parameter which represents the mean, σ is the volatility and

τ is the speed of mean reversion [Ornstein and Uhlenbeck 1930]. The solution to the

differential equation above leads yti−1+∆i
|yti−1

to be Gaussian with mean and variance

equal to

µ∗
i = yti−1

e−τ∆i + µ(1 − e−τ∆i), σ2∗
i =

σ2(1 − e−2τ∆i)

2τ
, (2.1)

for every observation time ti and for every arbitrary time interval ∆i. This modelling

approach has the advantage of directly solving the time gaps issue described above

without performing any data imputation. Taking ∆i → ∞ we obtain µ∗
i = µ and

σ2∗
i = σ2/2τ , the parameters of the limit distribution of the process and also of the first

observation yt1 .
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ti−1 ti ti+1 ti+2

Sti−1 Sti Sti+1
Sti+2

Yti−1 Yti Yti+1
Yti+2

Figure 2.1: DAG of the continuous time hidden Markov model. Grey circles are the
data and white circles represent the latent Markov process.

2.2.2 Multiple states modelling

The recent analyses of Sobolewska et al. (2014), Ramakrishnan et al. (2015) and Kush-

waha et al. (2017) has brought out that γ-ray light curves from blazars and AGNs are

characterised by distinct levels of variability and large peaks in the brightness, suggest-

ing the presence of multiple heterogeneous mechanisms that occur at the base of the

source. So, an ideal statistical model to fit these kinds of light curves must account

also for the presence of different emission phases. The only attempt in the astronomy

literature to use a state-space model was made by Meyer et al. (2014), who proposed a

two states hidden Markov model (HMM) to separate the measurement error from the

true signal of the source Sgr A*, fitting an X-ray light curve. The transition between

the source dominated and the noise dominated states was governed by a discrete time

Markov chain.

We propose in this section to model the signal of time varying γ-ray sources with a

multistate continuous time hidden Markov model [Zucchini et al. 2016, Chapter 11]. We

adopt an OU process for modelling the flux measurements Y [Kelly et al. 2009, Meyer

et al. 2014], but we consider also a latent continuous time Markov process St ∈ S =

{1, . . . , S} with initial probability vector δ and generator matrix Q = {qij, i, j ∈ S},

with qij ≥ 0 when i 6= j, and qii = −
∑

j 6=i qij. Thus, conditioning to the current value

of the latent state, for any time gap ∆i the statistical model is yti−1+∆i
|yti−1

, Sti−1+∆i
=

s ∼ N (µ∗
i,s, σ

2∗
i,s), where

µ∗
i,s = yti−1

e−τs∆i + µs(1 − e−τs∆i), σ2∗
i,s =

σ2
s(1 − e−2τs∆i)

2τs
.

A graphical representation of the model is given in Figure 2.1 using a Directed Acyclic

Graph (DAG), which describes the dependency relation among the involved random
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Algorithm 3: EM algorithm for continuous time HMMs and OU processes

Input: (Θ̂, Q̂, δ̂)(0), choose an arbitrary threshold ǫ and set ∆(0) > ǫ, r = 0,
ℓ(0) = −∞ and ∆t arbitrary large.

while ∆(r) > ǫ do
1. r = r + 1;
—— E-step ——
2. For i = 1, . . . , n, compute c(r) and (αi,βi)

(r) using (2.4).

3. Decompose Q(r−1) = VDV−1. For all s, s′ ∈ S, compute Λ(s, s′) and store m̂
(r)
s,s′ .

4. T̂
(r)
s = m̂

(r)
s,s/q̂

(r−1)
s,s , for all s ∈ S.

5. For i = 1, . . . , n, store the n-size vector ξ̂
(r)

i = α̃
(r)
i ⊙ β̃

(r)

i , where ⊙ is the
term-by-term product.
—— M-step ——
6. For all s, s′ ∈ S and s 6= s′, q̂

(r)
s,s′ = m̂

(r)
s,s′/T̂

(r)
s ; then, q̂

(r)
s,s = −

∑

S

s′=1 q̂
(r)
s,s′ .

Compute P̂ = exp{Q̂∆t} and set δ̂
(r)

equal to the first raw of P̂.

7. For all s ∈ S, update (µ̂s, σ̂
2
s)

(r) using (2.6) and τ̂
(r)
s with a Newton-Rhapson

step.
8. Let ℓ(r) =

∑n

i=1 log c
(r)
i . Compute the distance ∆(r) = ||ℓ(r−1), ℓ(r)||.

Output: The parameter estimates (Θ̂, Q̂, δ̂)(r).

variables. We display the flux measurements of the source with grey circles, and the

latent process S with white circles.

Let us denote with f (yti ;Θ) the S× S diagonal matrix whose s-th diagonal element

is φ(yti ;µ
∗
i,s, σ

2∗
i,s), φ is the density function of a Gaussian distribution, 1 is the unitary

vector of length S and Θ = ∪S

s=1(µs, σ
2
s , τs). According to Zucchini et al. (2016), the

likelihood function for the model parameters (Θ,Q), assuming that δ is known, is

L(Θ,Q) = δT f (yt1 ;Θ)
n
∏

i=2

exp{Q∆i}f (yti ;Θ)1. (2.2)

Since Q is a matrix, exp{Q} refers to the matrix exponential, that is defined as

exp{Q} :=
∑∞

k=0Q
k/k! [Norris 1998, page 62].

2.3 Model estimation

2.3.1 Parameters estimation via EM algorithm

We outline an efficient Expectation-Maximization (EM) algorithm for estimating (Θ,Q).

We do not focus on the estimation of the initial probability distribution δ as it has neg-

ligible long term effects on the likelihood. A first version of the algorithm for estimating

continuous time HMMs was proposed by Rydén (1996) for arrival counts data, and later
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improved by Roberts et al. (2006) and Metzner et al. (2007). We show that the same

algorithm states with slight modifications also for our model. Although the likelihood

function of the model is given in Formula (2.2), the estimation procedure we exploit

works on the complete representation of the likelihood that elicits both the observed

time series Y and the latent path of the process S. According to Albert (1962), Rydén

(1996) and Bladt and Sørensen (2005), the complete log-likelihood function for the

model parameters (Θ,Q) is

logLc(Θ,Q) ∝
S
∑

s=1

1(S0 = s) log δs −
S
∑

s=1

Tsqs +
∑

s 6=s′

ms,s′ log qs,s′

−
1

2

S
∑

s=1

n
∑

i=1

ξi(s)

{

log σ2∗
i,s −

(yti − µ∗
i,s)

2

σ2∗
i,s

}

.

(2.3)

With respect to (2.2), Formula (2.3) includes some quantities related to the latent

Markov chain S: ms,s′ is the number of times the process S jumps from a state s to

s′, Ts is the total time spent in the s-th state, and ξi(s) says whether S is in the state

s or not at the observation time ti. However, the mentioned quantities are unknown

and cannot be directly quantified from the observed light curve. For this reason, the

EM first takes the expectation of the unknown quantities, and then it maximizes the

likelihood to get the parameter estimates. The estimation algorithm is an iterative

two-steps procedure that must be run until the convergence is reached. In the next, we

illustrate the two steps; in addition, a pseudo-code of the algorithm is given in Code-Box

3.

E-step:

The E-step of the algorithm provides an estimate of ms,s′ , Ts and ξi(s) conditioning

to the current values of (Θ̂, Q̂). Given c1 = δT f (yt1 ; Θ̂)1, α1 = δT f (yt1 ; Θ̂)/c1 and

βn = 1, we first compute the forward densities (α2, . . . ,αn) and the backward densities

(β1, . . . ,βn−1) as

αi =
αi−1 exp{Q̂∆i}f (yti ; Θ̂)

ci
, i = 2, . . . , n,

βi =
exp{Q̂∆i+1}f (yti+1

; Θ̂)βi+1

ci+1

, i = 1, . . . , n− 1,

(2.4)

where ci = αi−1 exp{Q̂∆i}f (yti ; Θ̂)1. The quantities in Formula (2.4) differ by a rescal-

ing factors (c1, . . . , cn) from the forward and backward densities of Rydén (1996), that
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are widely known to be numerically unstable, as they tend to zero or to infinity expo-

nentially fast with the sample size n [Leroux and Puterman 1992, Zucchini et al. 2016,

Chapter 3]. For this reason, Roberts et al. (2006) proposed the above adjustment. It

follows the estimate of ms,s′ as

m̂s,s′ = q̂s,s′
n
∑

i=2

αi−1Λi(s, s
′)βi

ci
, (2.5)

where

Λi(s, s
′) =

∫

ti

ti−1

exp{Q(t− ti−1)}ese
T

s′
exp{Q(ti − t)}f (yti ;Θ)dt

and es is a vector of length S whose elements are 0 expect for the s-th, which is 1.

To solve the above integral of a matrix exponential, we first need to elicit each ele-

ment of the integrand matrix. If Q is diagonalisable, then we can write Q = VDV−1,

where V is the matrix of eigenvectors and D = diag(d1, . . . , dS) is the diagonal matrix

of eigenvalues. In this way, the integrand can be simplified by exploiting the relation

exp{Qt} = V exp{Dt}V−1 and exp{Dt} = diag{exp(d1t), . . . , exp(dSt)}. By substitut-

ing in the above formula, we derive that the pq-th element of Λi is equal to

Λi,p,q(s, s
′) =

S
∑

u=1

S
∑

v=1

VpuV
−1
us Vs′vV

−1
vq φ(yti ; µ̂

∗
i,s′ , σ̂

2 ∗
i,s′)Ji(du, dv),

where

Ji(du, dv) = edvti−duti−1

∫ ti

ti−1

et(du−dv)dt =







∆ie
du∆i if du = dv,

edu∆i−edv∆i

du−dv
if du 6= dv.

As an alternative, the evaluation of the above integral of matrix exponential can be

replaced by an evaluation of a matrix exponential of higher order [Roberts and Ephraim

2008, Formulas (28)-(31)].

The estimation of the remaining quantities directly follows from the estimation of

ms,s′ : in particular, T̂s = m̂s,s/q̂s,s and ξ̂i(s) = E(ξi(s)|Θ,Q,Y) = αi,sβi,s.

M-step:

The second step updates the estimates of the model parameters (Θ,Q) using the quan-

tities given by the E-step. The maximum likelihood estimator of the elements of Q

outside of the diagonal is

q̂s,s′ =
m̂s,s′

T̂s
,



40 Section 2.3 - Model estimation

Algorithm 4: Bootstrap for continuous time HMMs and OU processes

Input: The maximum likelihood estimates (Θ̂, Q̂) and δ̂. Set B arbitrary large.
for b = 1, . . . , B do

1. Set k = 1, U1 = Tmin and draw Z1 ∼ δ̂.
while Uk < Tmax do

2. k = k + 1;
3. sample uk ∼ Exp(−q̂Zk−1,Zk−1

) and set Uk = Uk−1 + uk;
4. sample Zk from P(Zk = s|Zk−1 = r) = −q̂r,s/q̂r,r, with r, s ∈ S.

5. For i = 1, . . . , n, let k(i) an integer s.t. ti ∈ U k(i) and U k(i) = (Uk(i), Uk(i)+1).

Set S
(b)
ti

= Zk(i).

6. For i = 1, . . . , n, sample y
(b)
ti
|y(b)ti−1

, S
(b)
ti

= s ∼ N (µ∗
i,s, σ

2∗
i,s). Store the n-size

bootstrap replicate Y(b).
7. Fit the model on Y(b) to get (Θ̂, Q̂)(b).

Output: The boostrap replicates Y(b) and the estimates (Θ̂, Q̂)(b), for b = 1, . . . , B.

and q̂s,s = −
∑

s′ 6=s q̂s,s′ . The solutions to the score equations for the mean µs and the

square of the volatility σ2
s are available in closed form:

µ̂s =

∑n

i=2
ξ̂i(s)

1−e2τ̂s∆i
(yti − yti−1

e−τ̂s∆i)(1 − e−τ̂s∆i)
∑n

i=1
ξ̂i(s)

1−e−2τ̂s∆i
(1 − e−τ̂s∆i)2

,

σ̂2
s =

∑n

i=2 2τ̂s
ξ̂i(s)

1−e−2τ̂s∆i
(yti − yti−1

e−τ̂s∆i − µ̂s(1 − e−τ̂s∆i))2

∑n

i=1 ξ̂i(s)
,

(2.6)

while the speed of mean reversion τs requires a Newton-Raphson step to be updated.

We further update the initial probability vector δ̂ using the stationary distribution of

the Markov chain when ∆i → ∞, that can be easily computed by taking the transition

probability matrix exp{Q̂∆t} and ∆t large. It can be proved that the rows of the

resultant matrix become equal to the stationary distribution of the process [Norris 1998,

Chapter 3]. Last, by exploiting the definition of the rescaling factor ci, the log-likelihood

value is given by ℓ(Θ̂, Q̂) =
∑n

i=1 log ci.

2.3.2 Model assessment via bootstrap algorithm

In the steps that follow the parameter estimation, we focus on assessing the model

accuracy and the distribution of the parameter estimators. We furthermore need to

test the presence of outliers with respect to the model, and thus if an additional state

is required to adequately fit the light curve. Depending on the type of the source,

the proposed hidden Markov model requires in fact a different number of regimes to
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accurately describe the underlying physical mechanisms that cause the flares.

The EM algorithm is widely used in statistical literature for estimating the model

parameters, and can be further exploited to compute the Fisher information and get

the standard errors of the estimates. The approach has been investigated also for con-

tinuous time models [Rydén 1996, Lu 2017]; however, the information matrix is often

not available in closed-form, and thus its derivation can be computationally demanding.

Furthermore, under the hidden Markov modelling assumption, the distribution of the

maximum value admitted by the process max(Y ) has not a closed form, and thus it

cannot be used to test the presence of outliers.

We provide an alternative approach to the model assessment based on bootstrap

methods [Davison and Hinkley 1997, Zucchini et al. 2016 in Section 3.6.2]. The para-

metric bootstrap exploits the generating process induced by the model, described also

by the DAG plot in Figure 2.1, and draws new replicates of the original light curve.

The replicates are then compared to the observed time series to evaluate the adequacy

of the model in describing the data generating process. In addition, the parameter

estimates obtained on the bootstrap samples allow us to infer the distribution of the

maximum likelihood estimators, and thus quantify the bias and the standard errors of

the estimates.

The bootstrap algorithm is given in Code-Box 4. Steps 1-4 sample the underlying

path of the latent process. The duration time, i.e., the time spent by the process in a

state before the next jump, is exponentially distributed according to Albert (1962) and

Bladt and Sørensen (2005); the transition probabilities to the other states are given in

Step 4. Steps 5-7 draw the replicates of the flux in the observation times (t1, . . . , tn)

conditioned to the sampled latent path. In the last step, the algorithm fits the model on

the bootstrap replicates and stores the parameter estimates. By taking the maximum

of each bootstrap sample Y(b), we are able also to efficiently infer the distribution of

max(Y ).

2.4 Application to the Fermi LAT data

In this section, we present an application of our model to a real-case dataset, and in

particular we consider a γ-ray light curve from the blazar PKS 1510-05 recorded by the

Fermi LAT. Blazars are very luminous and energetic sources characterised by an highly

variable signal, with heavy fluctuations in brightness on short time intervals.

The available light curve made by 630 flux measurements is displayed in Figure 2.2.

Most of the observations are equally spaced in time with ∆i = 2; however, the light curve
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Figure 2.2: The γ-ray light curve from the blazar PKS 1510-05 recorded by the
Fermi LAT telescope over 630 observation times. The most frequent time gap is
∆i = 2, and the largest is ∆i = 60. The light curve is evidently punctuated by flares
over the entire observation period.

shows some not negligible time gaps that make the continuous time modelling approach

adequate to fit this kind of data. Along the entire observation period, we distinguish

a prevalent resting phase in the lower part of the graph; in addition, lots of flares in

the form of spikes are visible. We conclude that, from a mere graphical inspection, the

presence of at least two distinct classes of emission activity emerges from the light curve.

We set a two-states continuous time model: the first is taken as OU and is dedicated

to fit the moderate emission activity in the lower part of the graph (between 0 and

1 · 10−6), while the second is log-normal distributed to account for the intense flares in

the light curve [Kushwaha et al. 2017]. In this way, we are implicitly assuming that the

logarithm of the flux measurements in the second state is OU distributed, which implies

that yti−1+∆i
|yti−1

∼ logN (µ∗
i,2, σ

2∗
i,2), and thus the emission activity in the second state

is a log-OU process.

Table 2.1 displays the estimates of the model parameters. The fourth column is the

estimated diagonal of the transition probability matrix exp{2Q̂} and gives the proba-

bility of S to remain in the same state after the most frequent time gap ∆i = 2, also

known as persistence probability; it further confirms that both the discovered states find

large evidence. The second component, labelled as s = 2, refers to the log-OU process:

it is faster mean reverting as τ̂2 is smaller τ̂1, and it has a smaller persistence probability
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Figure 2.3: Left: γ-ray light curve of the blazar PKS 1510-05 (solid black line)
against the mean (solid red line) and 95% confidence interval (dashed lines) of the
predictive density. Right: histogram of the flux compared to the limit distributions
of the process in Formula (2.7) (red line) and of a single log-OU process (blue line).

than the first. The mean and the square of the volatility parameters in the table have

different scales and so they are not directly comparable. For this reason, we display in

the last two columns the mean and the variance of the limit distributions: when s = 1,

the limit is N (µ̂1, σ̂
2
1/(2τ̂1)), while for s = 2 it is logN (µ̂2, σ̂

2
2/(2τ̂2)). It emerges that

the estimated flux in the second state is remarkably larger and more variable than in

the first. We can conclude that the log-OU state mainly describes the flaring activity

of the source, where a general increase of the average flux is anticipated by prominent

spikes in the light curve.

The graphs in Figure 2.3 display the observed light curve against the fitted model,

and give an indication of the goodness of fit. In the left plot, we compare the observed

flux with the predictive distribution Yti |Y
1:(i−1) [Zucchini et al. 2016, Chapter 5], where

Y1:(i−1) is the vector of the first i − 1 elements in the time series: the solid red line

represents the prediction ŷti = E(Yti |Y
i−1, Θ̂, Q̂) and describes the trend of brightness

Table 2.1: Estimates of the model parameters in the two latent states. From left
to right: mean, square of the volatility, speed of mean reversion and probability to
remain in the same state after an interval ∆i = 2. The standard errors obtained with
B = 200 bootstrap replicates are given in parenthesis. The last two columns show the
mean and the variance of the limit distributions in the two states.

µ̂s σ̂2
s τ̂s p̂s,s(∆t = 2) lim∆→∞ EY lim∆→∞ VY

s = 1
4.69 · 10−7

(1.602 · 10−8)

5.563 · 10−14

(8.822 · 10−15)

0.699
(0.08)

0.952
(0.012)

4.69 · 10−7 3.977 · 10−14

s = 2
−13.443
(0.066)

0.172
(0.032)

0.522
(0.119)

0.868
(0.039)

1.576 · 10−6 4.446 · 10−13
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Figure 2.4: Left: autocorrelation function of the model residuals. Right: plot of the
classification of the flux measurements. For every data point i, the colour represents
ξ̂i(2), the estimated probability to be a flaring emission. A shift toward red states
that the observation is more probable to come from the flaring activity.

in time, while the dashed lines are respectively the 2.5% and 97.5% quantiles of the

predictive distribution. The empirical coverage of the interval is respected. In the

right plot of Figure 2.3, we compare the marginal histogram of the flux with the limit

distribution of the proposed HMM, that is the mixture

δ̂1N

(

µ̂1,
σ̂2
1

2τ̂1

)

+ δ̂2 logN

(

µ̂2,
σ̂2
2

2τ̂2

)

. (2.7)

The mixture kernels are the limit distributions of the OU and log-OU processes, and δ̂ =

(0.732, 0.268) is the proportion of resting and flaring emissions in the long-term period.

In addition, following Kushwaha et al. (2017), we display also the limit distribution of

a single log-OU process, fitted via maximum likelihood estimation. It emerges from the

plot that the mixture model (2.7) (red line) is globally more adequate than the single

log-OU process (blue line), and accounts also for the extreme values in the right tail of

the histogram caused by the multiple jets in the light curve. These conclusions are also

numerically supported: the maximum of the log-likelihood functions of the continuous

time HMM and the single log-OU are 8569.888 and 8524.614, respectively. The chi-

square ratio test gives a p-value of 1.26 · 10−17, confirming that the proposed model is

far more appropriate to fit this γ-ray light curve than a single stochastic process.

Figure 2.4, on the left, displays the autocorrelation function of the model residuals

r̂ti = yti − ŷti : the autocorrelation values fall within the red confidence bars after the

first lag, confirming that our model correctly fits also the temporal dependency among
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Figure 2.5: Bootstrap distributions of the estimators of µ̂, σ̂2 and τ̂ in the normal (top line) and log-normal (bottom line) distributions
based on B = 200 replicates.
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Figure 2.6: Distribution of max(Y ) based on B = 200 bootstrap replicates. The
red line corresponds to the maximum in the observed light curve Y. The proportion
of bootstrap values larger than the observed maximum is 0.16.

the data.

We further classify the flux data points in the light curve using the estimated proba-

bilities (ξ̂1, . . . , ξ̂n). In Figure 2.4, data are coloured with respect to ξ̂i(2), the estimated

probability of being a flaring observation. The model clearly performs a distinct sepa-

ration of the two classes, dividing the flaring activity from the resting phase. The only

exception is made by the few observations in the middle of the two states.

We assess the properties of the model using the bootstrap algorithm in Code-Box

4. We sample B = 200 replicates from the model to reconstruct the distribution of

the parameter estimators in the two phases. We display in Figure 2.5 the histograms

of the fitted values on the bootstrap replicates (Θ̂1, . . . , Θ̂B), and we compare them

to the maximum likelihood estimates on the light curve Y , shown with red lines. The

graphs do not evidence the presence of bias in the estimates, except for the square

of the volatility parameter in the normal-distributed state (top-middle graph), whose

bootstrap density is shifted to the right with respect to the estimated value on Y . This

bias is prevalently caused by the flux observations between the two phases, showed in

Figure 2.4 and previously discussed, that cannot properly be assigned to one of the two

components.

Last, we assess also the distribution of max(Y ), the maximum value admitted by the

model. Figure 2.6 displays the histogram of the maximum in the bootstrap replicates

(max(Y(1)), . . . ,max(Y(200))) against max(Y): among the 200 replicates, the 16% has
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a maximum flux measurement larger than max(Y), allowing to conclude that even the

largest spike is not an outlier with respect to the fitted model, and consequently that

an additional state in the HMM is not required.

2.5 Discussion

One of the declared goals of the Fermi LAT is to monitor the emission activity, i.e.,

the number of photons emitted during the time, of many high-energy astronomical

sources. The emitted photons cover a vast range of energies in the spectrum, including

the γ-rays, which are the most energetic type of radiation in the universe. In addition,

high-energy sources are known to be highly variable in the brightness due to distinct

physical mechanisms that occur at the base. We proposed in this chapter a new approach

to formally distinguish and separate the emission phases in γ-ray light curves. Our

proposal consists in a continuous time multistate hidden Markov model. A continuous

time Markov chain controls the switch between the latent states of the light curve, and

an OU process models the brightness in each phase. We adapted the EM algorithm

of Rydén (1996) to fit the model, and we provided a suitable parametric bootstrap to

evaluate the model accuracy and assess the distributions of the parameter estimators.

We tested the proposed method on a light curve of 630 flux measurements from the

blazar PKS 1510-05 recorded by the Fermi LAT. The model brings out the presence

of two distinct classes of variability in the light curve: the first denotes a resting phase

characterised by a roughly constant emission along the entire observation period, and

the second outlines instead an highly variable emission phase characterised by jets and

spikes. In addition, our method surpasses the simpler competitor proposed by Kushwaha

et al. (2017) for blazar light curves both in terms of model accuracy and capacity to

detect the extreme values.

The model can be further extended to account for many aspects that we did not

consider in this chapter. First, we can include a step in the estimation algorithm to

automatically select the number of latent states for the Markov process, thereby leading

to a model that admits new states of flaring activity as the time goes on. For this

purpose, Bayesian methods offer several solutions and powerful estimation algorithms

to infer on the number of latent states. A second task would involve the characteri-

sation of the flaring period. The duration of flares is a key element in the analysis of

time-varying sources as it plays a central role in the comprehension of the nature of the

occurring events. The hidden Markov process previously described intrinsically models

the duration of the flaring phase with an exponential distribution. However, it is well
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established that in practice this assumption may result as inaccurate or inconsistent

for the data [Barbu and Limnios 2009]. Hidden semi-Markov models allow to relax the

Markovian assumption by replacing the exponential distribution with other suitable al-

ternatives. Although some parametric distributions can be considered, we are convinced

that nonparametric methods will offer a more accurate comprehension of the duration of

the flaring activity of a source. A new approach would then not impose any parametric

restriction to the persistence time distribution, in order to offer a more detailed and

fully data driven comprehension of the flaring activity and of the underlying physical

mechanisms.



Chapter 3

Conclusions

“e quindi uscimmo a riveder le stelle.”

(“and thence we came forth to see again the stars.”)

Dante Alighieri - La Divina Commedia

The rapid evolution of technology during the last decades has allowed astronomers to

collect huge amounts of data from sky surveys in a single day of observation. In par-

allel to the increasing availability of information, the demand of advanced statistical

techniques to extrapolate the relevant knowledge has consistently increased to the ex-

tent that Statistic nowadays covers a core role in astrophysical research. This thesis

aims to enlarge the available statistical toolbox for the analysis of complex datasets

in astronomy, with special emphasis on the study and the explanation of high-energy

astrophysical phenomena. In particular, we provided innovative solutions and efficient

computational methods to address the following tasks: (i) discovering and locating the

sources in the sky, (ii) extracting and quantifying their signal and (iii) characterising

their emission activity. We proposed both frequentist and Bayesian solutions which

find their roots in the field of unsupervised learning. There, data are assumed to be

generated according to several distinct clusters, whose labels need to be unveiled.

The main contributions of the thesis are split in the two chapters 1-2. Chapter 1

focuses on Tasks 1 and 2. It presents a new model which exploits both the spatial

information and the energy contents of the photons to locate the emitting sources in

the sky. It furthermore clusters the observations and quantifies the intensities of the

clusters. We modelled the spatial distribution of the photons with a Dirichlet process

mixture, which identifies the extra-galactic sources we are searching for. To separate

them from the diffuse gamma-ray background which spreads over the entire map, we

represented the latter by a Bayesian nonparametric mixture of B-spline functions. The

resultant model is a hierarchical mixture of nonparametric mixtures which allows us to

49
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flexibly cluster highly contaminated signals. We simultaneously determined the number

of sources in the map, their directions and their intensities. Inference was carried out

by MCMC simulation where no tuning parameter needed to be specified. A suitable

post-processing algorithm quantifies the information coming from the detected clusters.

Numerical assessment on artificial datasets confirmed the capacity of our model to ef-

ficiently discovering and locating the sources in the map. In addition, a comparison

study on several simulated datasets highlighted how considering the energy contents of

the photons efficiently improved the ability of the algorithm of extracting the signal of

the sources. Finally, by applying the models on the Fermi LAT data, we confirmed the

presence of already known sources, and we located also new candidate points, whose

nature must be further investigated. Future developments will focus on how to include

the energy contents into the Dirichlet Process models, with particular attention to the

background component, and how to develop a formal procedure for disentangling the

signal of overlapping sources.

Chapter 2 addresses Task 3. It focuses on the investigation of the emission activity

of time-varying astronomical sources, whose signal is known to be highly variable across

time. Most contributions in astrophysics use a single continuous time stochastic process

to describe the emission activity of a source. However, the recent analyses revealed that

some sources are characterised by multiple flaring phases which are due to the distinct

underlying physical mechanisms. We proposed a continuous time multistate model to

handle the presence of several states of variability. A continuous time Markov chain

controlled the switching between the latent phases, while the flux within the states was

modelled by a suitable stochastic autoregressive process. The proposed model belongs

to the class of hidden Markov models (HMMs) and can be efficiently fitted by max-

imum likelihood estimation using the Expectation-Maximization (EM) algorithm. In

addition, we developed a bootstrap algorithm to assess whether additional latent states

in the model are present. A case study on a blazar light curve confirmed the desired ca-

pability of the proposed method to correctly separate the multiple emission phases of the

analysed source. Further developments will focus on investigating whether an alterna-

tive distribution for the duration of flares improves the model accuracy. We will exploit

the hidden semi-Markov modelling approach, which allows to relax the Markovian as-

sumption on the latent process, and we will replace the exponential distribution with

further parametric and nonparametric alternatives, with the ultimate aim of offering a

clearer comprehension of the duration of flares.
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Appendix

A1. Adapting the Student t distribution to the Fermi

LAT PSF

We outline here how to derive the approximation of the Fermi LAT PSF based on the

bivariate Student t distribution (see Section 1.2.1). The Fermi PSF is available from

Ackermann et al. (2012) as a cube of pixels, where the first two dimensions refer to the

spatial coordinates and the third to the energy. Thus, the PSF in the pixel uwz gives

the probability that a photon with energy in z-th bin falls into the uw-th spatial bin of

the detector. For every energy bin z, we draw a large sample of artificial photons in the

form of Poisson counts using the LAT PSF, and we fit a bivariate Student t distribution

using maximum likelihood estimation. The resultant parameters estimates are σ2
z and

νz. In order to guarantee the existence of the Student t variance, we first set the degrees

of freedom to 2.1 for every energy bin z, and after we derive the maximum likelihood

estimate of σ2
z conditioned to νz = 2.1.

A2. Gibbs sampling algorithms

We outline the Gibbs sampling steps used in the MCMC algorithm described in Section

1.3.2.

Draw the coordinates of the source µj

Let {xi}
m
i=1 be the set of photons assigned to the j-th component of the source mixture

model. Then:

1. ∀i, sample from

ui|xi,µ
(t−1)
j ∼ Gamma

{

νi
2

+ 1,
1

2σ2
i

(

σ2
i νi + ||xi − µ

(t−1)
j ||2

)

}

;
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2. sample from

µ
(t)
j |{xi, ui}i ∼ NX







(

m
∑

i=1

ui
σ2
i

)−1( m
∑

i=1

uixi
σ2
i

)

I,

(

m
∑

i=1

ui
σ2
i

)−1

I







,

where NX is a bivariate Gaussian distribution bounded into X .

Draw the B-spline knots (ℓj, bj)

Let {ωi}
m
i=1 be a set of n observations bounded into the interval (ωmin, ωmax) with density

B̃4(·|τ ), and τ a five-dimensional vector of knots that will be replaced in our algorithm

by ℓ and b. At the t-th iteration, the full-conditional distribution of τk is

π(τ |τ̃−k, {ωi}i) ∝
m
∏

i=1

B̃4(ωi, τ̃ )G0(τ̃ )

where τ̃ = (τ
(t)
1:(k−1), τ, τ

(t−1)
(k+1):5) if k = 2, 3, 4, τ̃ = (τ, τ

(t−1)
2:5 ) if k = 1 and τ̃ = (τ

(t)
1:4, τ) if

k = 5, τ̃−k is the vector without its k-th element and G0 is the base measure of a set of

knots as specified in Section 1.2.2. Then, for k = 1, . . . , 5:

1. let (τk,left, τk,right) the lower and the upper bounds of τk given in Table A1, and

b̃ = max
τ

π(τ |τ̃−k, {ωi}i)(τk,right − τk,left);

2. sample τ ∗ ∼ U(τk,left, τk,right) and u ∼ U(0, 1): if

ub̃

(τk,right − τk,left)
< π(τ ∗|τ̃−k, {ωi}i)

then τ
(t)
j = τ ∗.

Table A1: Lower and upper bounds of the full-conditional distribution of the spline
knots. ω(1) is the lowest value in {ωi}

m
i=1, while ω(n) is the largest.

Knot Left bound Right bound

τ1 ωmin min(ω(1), τ
(t−1)
2 )

τ2 τ
(t)
1 τ

(t−1)
3

τ3 τ
(t)
2 τ

(t−1)
4

τ4 τ
(t)
3 τ

(t−1)
5

τ5 max(ω(n), τ
(t)
4 ) ωmax
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Finally, check whether the imposed constraints on the B-spline variance are respected

using τ (t) (Section 1.2.4). If not, go back to τ (t) = τ (t−1) and restart the procedure.

This sampling scheme can be adopted to draw independently from the posteriors of ℓj

and bj.



56 Appendix

B. Details of the results in Section 1.4.2

This Section contains the details of the results obtained from the spatial model and its

extension over three scenarios in Section 1.4.2. Every table describes a scenario; results

above the horizontal line in the middle refer to the model f(·|·), while the ones under

the line are from f ext(·|·).

clusterID sourceID ψ E(µ| . . . ) E(N | . . . ) HPD90% #Counts P(source| . . . )

1 3 (-3.025, 3.875) (-3.022, 3.863) 141.228 (126, 156) 130 1.000
2 7 (-1.375, 3.075) (-1.411, 3.096) 145.457 (129, 163) 132 1.000
3 6 (-1.575, 2.125) (-1.606, 2.075) 132.911 (114, 152) 118 1.000
4 5 (-1.925, 1.525) (-1.948, 1.512) 152.561 (134, 172) 144 1.000
5 1 (-3.575, -0.125) (-3.608, -0.123) 142.652 (128, 158) 126 1.000
6 2 (-3.225, -2.075) (-3.266, -2.115) 120.686 (106, 136) 132 1.000
7 4 (-2.375, -2.875) (-2.387, -2.882) 115.630 (101, 131) 131 1.000
8 8 (0.375, -2.625) (0.347, -2.677) 147.688 (130, 166) 116 1.000
9 9 (0.775, -3.625) (0.737, -3.648) 135.008 (119, 152) 136 1.000

10 11 (1.425, -0.375) (1.372, -0.429) 125.579 (109, 144) 124 0.999
11 12 (1.475, -1.525) (1.421, -1.553) 148.315 (130, 166) 130 1.000
12 14 (3.325, -0.425) (3.276, -0.429) 130.985 (115, 148) 133 1.000
13 13 (2.675, 2.075) (2.641, 2.075) 149.686 (133, 167) 139 1.000
14 15 (3.575, 3.125) (3.569, 3.096) 133.204 (117, 150) 120 1.000
15 10 (0.925, 3.825) (0.932, 3.761) 122.828 (107, 138) 121 1.000
1 11 (1.425, -0.375) (1.381, -0.414) 124.271 (108, 141) 124 1.000
2 2 (-3.225, -2.075) (-3.235, -2.094) 124.935 (110, 141) 132 1.000
3 9 (0.775, -3.625) (0.744, -3.607) 124.024 (108, 140) 136 1.000
4 5 (-1.925, 1.525) (-1.961, 1.519) 145.293 (127, 165) 144 1.000
5 15 (3.575, 3.125) (3.53, 3.116) 132.841 (117, 149) 120 1.000
6 8 (0.375, -2.625) (0.346, -2.682) 146.642 (130, 163) 116 1.000
7 10 (0.925, 3.825) (0.903, 3.788) 125.217 (109, 141) 121 1.000
8 12 (1.475, -1.525) (1.461, -1.59) 143.726 (127, 160) 130 1.000
9 14 (3.325, -0.425) (3.291, -0.414) 122.639 (107, 138) 133 0.994

10 13 (2.675, 2.075) (2.654, 2.023) 149.304 (133, 166) 139 1.000
11 3 (-3.025, 3.875) (-2.996, 3.872) 138.994 (124, 154) 130 0.999
12 6 (-1.575, 2.125) (-1.643, 2.107) 128.411 (110, 147) 118 0.988
13 7 (-1.375, 3.075) (-1.404, 3.116) 144.145 (126, 162) 132 0.960
14 1 (-3.575, -0.125) (-3.633, -0.162) 143.337 (126, 160) 126 0.949
15 4 (-2.375, -2.875) (-2.359, -2.85) 123.451 (109, 139) 131 0.618
16 // // (-0.927, -1.842) 24.674 (14, 37) // 0.029

Scenario 1.



Appendix 57

clusterID sourceID ψ E(µ| . . . ) E(N | . . . ) HPD90% #Counts P(source| . . . )

1 7 (-1.375, 3.075) (-1.41, 3.039) 135.653 (120, 151) 129 1.000
2 5 (-1.925, 1.525) (-1.957, 1.492) 147.515 (131, 165) 130 1.000
3 11 (1.425, -0.375) (1.407, -0.407) 144.977 (128, 162) 130 1.000
4 8 (0.375, -2.625) (0.312, -2.657) 156.715 (140, 174) 135 1.000
5 1 (-3.575, -0.125) (-3.6, -0.196) 73.277 (61, 86) 98 1.000
6 6 (-1.575, 2.125) (-1.566, 2.125) 109.641 (94, 127) 114 1.000
7 3 (-3.025, 3.875) (-3.052, 3.813) 129.066 (114, 144) 114 1.000
8 9 (0.775, -3.625) (0.781, -3.642) 174.268 (158, 190) 160 1.000
9 14 (3.325, -0.425) (3.284, -0.477) 121.261 (106, 137) 126 0.990

10 4 (-2.375, -2.875) (-2.426, -2.868) 125.715 (110, 142) 128 1.000
11 12 (1.475, -1.525) (1.485, -1.532) 131.321 (115, 148) 124 1.000
12 2 (-3.225, -2.075) (-3.209, -2.095) 219.127 (203, 235) 201 1.000
13 13 (2.675, 2.075) (2.658, 2.055) 168.953 (152, 186) 137 0.999
14 15 (3.575, 3.125) (3.519, 3.11) 164.190 (147, 182) 127 0.998
15 10 (0.925, 3.825) (0.859, 3.813) 64.927 (51, 79) 74 0.821
16 // // (-1.097, 0.508) 30.047 (17, 42) // 0.089
1 13 (2.675, 2.075) (2.626, 2.048) 166.051 (150, 183) 137 1.000
2 12 (1.475, -1.525) (1.443, -1.528) 127.151 (112, 143) 124 1.000
3 10 (0.925, 3.825) (0.898, 3.836) 62.327 (50, 76) 74 0.999
4 8 (0.375, -2.625) (0.352, -2.645) 154.646 (137, 173) 135 1.000
5 4 (-2.375, -2.875) (-2.377, -2.869) 133.612 (117, 150) 128 1.000
6 15 (3.575, 3.125) (3.536, 3.091) 165.479 (149, 182) 127 1.000
7 6 (-1.575, 2.125) (-1.559, 2.122) 108.325 (92, 126) 114 0.997
8 11 (1.425, -0.375) (1.352, -0.41) 143.478 (127, 161) 130 0.974
9 3 (-3.025, 3.875) (-3.014, 3.836) 126.975 (112, 141) 114 0.967

10 1 (-3.575, -0.125) (-3.56, -0.187) 80.813 (68, 95) 98 0.920
11 9 (0.775, -3.625) (0.716, -3.614) 171.257 (155, 188) 160 0.999
12 2 (-3.225, -2.075) (-3.287, -2.124) 227.767 (211, 244) 201 0.999
13 14 (3.325, -0.425) (3.263, -0.485) 118.948 (103, 135) 126 0.856
14 7 (-1.375, 3.075) (-1.377, 3.016) 133.400 (118, 149) 129 0.976
15 5 (-1.925, 1.525) (-1.922, 1.452) 145.496 (129, 162) 130 0.923
16 // // (-1.65, -2.794) 28.301 (14, 42) // 0.050
17 // // (-1.104, 0.483) 24.654 (13, 37) // 0.022

Scenario 2.
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clusterID sourceID ψ E(µ| . . . ) E(N | . . . ) HPD90% #Counts P(source| . . . )

1 1 (-3.925, -3.075) (-3.946, -3.083) 389.222 (370, 408) 238 1.000
1 2 (-3.875, -3.025) (-3.946, -3.083) 389.222 (370, 408) 157 1.000
2 13 (0.025, 3.325) (0.006, 3.277) 239.043 (220, 257) 270 1.000
3 16 (0.625, 0.025) (0.57, 0.009) 36.981 (25, 50) 27 0.994
4 22 (3.175, -3.475) (3.231, -3.613) 248.908 (229, 268) 30 1.000
4 23 (3.225, -3.575) (3.231, -3.613) 248.908 (229, 268) 229 1.000
5 4 (-1.975, -1.475) (-2.011, -1.493) 529.974 (508, 552) 535 1.000
6 11 (-0.275, -1.725) (-0.317, -1.758) 39.945 (26, 55) 21 0.926
7 20 (2.575, -1.275) (2.586, -1.316) 464.563 (442, 487) 467 1.000
8 12 (-0.125, 0.625) (-0.156, 0.627) 77.552 (64, 91) 69 0.999
9 24 (3.575, 2.725) (3.554, 2.747) 108.473 (94, 124) 91 0.999

10 19 (2.525, -0.375) (2.506, -0.344) 206.648 (186, 227) 217 0.977
11 17 (0.675, -3.375) (0.651, -3.436) 21.941 (12, 33) 24 0.855
12 8 (-1.025, -0.575) (-1.043, -0.609) 32.534 (19, 47) 18 0.744
13 15 (0.475, -2.125) (0.409, -2.111) 202.121 (182, 224) 204 0.943
14 7 (-1.225, -2.825) (-1.285, -2.818) 172.095 (155, 190) 164 0.991
15 9 (-0.775, -2.325) (-0.801, -2.376) 71.547 (55, 89) 76 0.790
16 25 (3.625, -2.075) (3.635, -2.111) 48.543 (35, 63) 43 0.622
17 3 (-3.575, 3.275) (-3.543, 3.277) 98.895 (85, 113) 111 0.678
18 5 (-1.875, 3.875) (-1.93, 3.807) 46.350 (35, 59) 37 0.662
19 18 (2.475, 2.825) (2.425, 2.747) 224.684 (205, 244) 255 0.737
20 21 (2.675, -3.925) (2.667, -3.878) 24.907 (12, 38) 19 0.296
21 14 (0.225, -3.675) (0.167, -3.79) 53.375 (14, 97) 65 0.003
22 6 (-1.475, 3.625) (-1.446, 3.542) 19.067 (10, 29) 20 0.261
23 10 (-0.425, 2.975) (-0.398, 2.924) 19.007 (9, 31) 9 0.206
24 // // (0.167, 2.836) 19.632 (7, 34) // 0.050
1 14 (0.225, -3.675) (0.225, -3.72) 85.862 (72, 100) 65 1.000
2 9 (-0.775, -2.325) (-0.772, -2.34) 73.269 (57, 90) 76 0.996
3 22 (3.175, -3.475) (3.216, -3.575) 244.879 (207, 266) 30 0.979
3 23 (3.225, -3.575) (3.216, -3.575) 244.879 (207, 266) 229 0.979
4 7 (-1.225, -2.825) (-1.232, -2.848) 178.056 (160, 196) 164 1.000
5 19 (2.525, -0.375) (2.526, -0.378) 204.200 (185, 224) 217 1.000
6 15 (0.475, -2.125) (0.455, -2.122) 199.518 (177, 220) 204 0.985
7 24 (3.575, 2.725) (3.523, 2.746) 105.659 (91, 121) 91 1.000
8 13 (0.025, 3.325) (-0.005, 3.328) 243.865 (225, 263) 270 1.000
9 4 (-1.975, -1.475) (-1.999, -1.54) 530.908 (510, 553) 535 1.000

10 1 (-3.925, -3.075) (-3.916, -3.066) 368.748 (347, 389) 238 1.000
10 2 (-3.875, -3.025) (-3.916, -3.066) 368.748 (347, 389) 157 1.000
11 16 (0.625, 0.025) (0.608, -0.015) 35.528 (24, 48) 27 0.981
12 11 (-0.275, -1.725) (-0.312, -1.758) 41.006 (27, 56) 21 0.932
13 18 (2.475, 2.825) (2.449, 2.819) 225.448 (207, 245) 255 0.997
14 5 (-1.875, 3.875) (-1.922, 3.836) 47.519 (35, 60) 37 0.951
15 20 (2.575, -1.275) (2.526, -1.322) 459.778 (438, 483) 467 1.000
16 25 (3.625, -2.075) (3.599, -2.049) 51.958 (39, 65) 43 0.717
17 12 (-0.125, 0.625) (-0.158, 0.639) 74.206 (61, 88) 69 0.968
18 8 (-1.025, -0.575) (-1.002, -0.596) 30.488 (18, 44) 18 0.812
19 3 (-3.575, 3.275) (-3.533, 3.255) 98.712 (84, 113) 111 0.762
20 6 (-1.475, 3.625) (-1.462, 3.546) 21.315 (10, 33) 20 0.637
21 17 (0.675, -3.375) (0.685, -3.429) 19.202 (10, 30) 24 0.726
22 // // (4.289, -4.011) 27.165 (16, 38) // 0.428
23 10 (-0.425, 2.975) (-0.465, 2.964) 18.788 (9, 31) 9 0.438

Scenario 3.
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