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Abstract

In times of natural and anthropogenic climate change, tidal bio-geomorphic sys-

tems are most exposed to possibly irreversible transformations with far-reaching

ecological and socio-economic implications. It is thus of critical importance to

develop models for predicting the evolution of such systems under varying forc-

ings and, if present, their dynamically-accessible stable states.

The notion that freshwater and terrestrial ecosystems may switch abruptly to

alternative stable states as a result of feedbacks between consumers and limiting

resources is widely acknowledged. On the contrary, theoretical or observational

proofs of the existence of alternative equilibrium states in intertidal ecosystems

has until recently proven to be elusive.

This is due to a prevalent reductionist approach, which has until recently

mostly produced either purely ecological or purely geomorphological models,

while the coupled dynamics of landforms and biota in the intertidal zone has

remained largely unexplored.

The presence and continued existence of tidal morphologies, and in particular

of salt marshes, is intimately connected with biological activity, especially with

the presence of halophytic vegetation. In fact, observations and models coupling

geomorphological and biological processes indicate that vegetation crucially af-

fects marsh equilibrium configurations through the production of organic soil,

the capture of sediment, and the stabilization against erosion produced by wind

waves. Often, different vegetation species live within very narrow elevation in-

tervals, associated with similarly narrow ranges of environmental pressures, thus

leading to the emerge of the zonation phenomenon. Here we present modeling

analysis on the spatial distribution of geomorphological and vegetational spatial

patterns in tidal landscapes arising as a result of two-way feedbacks between

physical and biological processes. We challenge the traditional interpretation

of zonation as a one–way relation between dominant processes in the intertidal

frame (i.e. competition vs. edaphic controls), which fails to capture the active

role played by vegetation in engineering its own environment.



We use a point model of the coupled elevation-vegetation dynamics, which

retains the description of the chief processes shaping these systems, to show

how competing stable states are responsible for the formation of characteristic

large-scale bio-geomorphic features in tidal landscapes worldwide.

Our analyses extended to a one-dimensional context allows us to explore the

mechanism that leads to the formation of well-known, smaller-scale patterns

associated with marsh vegetation species distributions.

We develop and present a model that for the first time incorporates species

competition, species mutations, sediment transport and soil accretion in a spatially-

extended setting, emphasizing that the formation of smaller-scale intertwined

topographic and vegetation patterns are driven by bio-geomorphic feedbacks.

We finally analyze the robustness of large-scale and marsh-scale bio-geomorphic

features to changes in the forcings, with implications for marsh ecosystem re-

silience to climate change and anthropogenic pressures.



Sommario

I sistemi bio-geomorfologici a marea sono tra i sistemi più esposti a trasfor-

mazioni, anche irreversibili, a causa dei notevoli cambiamenti climatici generati

da cause naturali o antropiche, con importanti conseguenze ecologiche e impli-

cazioni socioeconomiche. É quindi di fondamentale importanza lo sviluppo di

modelli per prevedere l’evoluzione di questi sistemi soggetti a forzanti variabili

e, se presenti, studiarne i loro stati di equilibrio dinamicamente stabili.

L’idea che gli ecosistemi d’acqua dolce e terrestri possano essere soggetti

a bruschi passaggi fra stati di equilibrio stabile alternativi, come risultato di

retroazioni tra i diversi consumatori e le risorse limitanti, è ampiamente nota e

riconosciuta. D’altro canto, dimostrazioni teoriche o osservazioni dirette della

esistenza di tali stati di equilibrio negli ecosistemi intertidali non sono ancora

consolidate o ampiamente discusse.

Ciò è dovuto ad un approccio prevalente riduzionista, finora principalmente

basato su modelli puramente ecologici o puramente geomorfologici, mentre la

dinamica accoppiata di morfologia e biologia nella zona intertidale è ancora in

gran parte inesplorata.

La presenza e la sopravvivenza delle strutture morfologiche a marea, e in

particolare delle barene, sono intimamente connesse con l’attività biologica, in

particolare con la presenza di vegetazioni alofite. Infatti, le osservazioni e i

modelli che accoppiano processi geomorfologici e biologici indicano che la vege-

tazione influenza in modo cruciale gli stati di equilibrio attraverso la produzione

di suolo organico, la cattura di sedimenti, e la stabilizzazione contro l’erosione

prodotta dalle onde da vento. Spesso, specie vegetali differenti vivono a quote

altimetriche diverse ma molto ravvicinate fra loro, associate ad altrettanto di-

verse pressioni ambientali, determinando in tal modo l’emergere del fenomeno

di zonazione. In questo studio si presentano alcune analisi modellistiche sulla

distribuzione spaziale di strutture geomorfologiche e vegetali negli ambienti a

marea come risultato di retroazioni bi-direzionali tra i processi fisici e biologici.

Viene discussa e rielaborata l’interpretazione tradizionale che vede il fenomeno



di zonazione come una relazione univoca fra i processi presenti nella zona inter-

tidale (cioè competizione fra specie e controlli edafici), che non riesce a cogliere

il ruolo attivo svolto dalla vegetazione nel modellare questo ambiente.

Si utilizza cos̀ı un modello puntuale che accoppia dinamiche fra elevazione

e vegetazione, descrivendo i principali processi che portano alla formazione di

tali sistemi, mostrando come gli stati di equilibrio stabile, in competizione fra

loro, siano responsabili della formazione delle caratteristiche strutture osservate

a grande scala negli ambienti a marea.

L’estensione delle analisi ad un contesto unidimensionale permette di esplo-

rare il meccanismo che porta alla formazione delle ben note strutture a piccola

scala, associate a diverse distribuzioni di specie vegetali sulle barene.

Il modello sviluppato, incorpora per la prima volta la competizione fra specie,

la mutazione di specie, il trasporto di sedimenti e la produzione di suolo in un

ambiente esteso nello spazio, evidenziando come la formazione a piccola scala di

strutture topografiche e vegetali intrecciate fra loro, siano guidate da retroazioni

bio-geomorfologiche.

Si analizza infine la robustezza a larga e piccola scala delle strutture bio-

geomofologiche al variare delle forzanti esterne presenti, con implicazioni sulla

resistenza degli ecosistemi barenali al cambiamento climatico e alle pressioni

antropiche.
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Introduction

This work focuses on intertidal systems, i.e. coastal and estuarine systems

which are subject to fluctuating water levels forced by tides. These systems are

characterized by the presence of bio-geomorphic structures, such as marshes,

tidal flats, and sub-tidal platforms, which are possible equilibrium states result-

ing from the interplay of physical and biological processes.

The objectives of the present Thesis are the development of a 0–D and 1–D

bio-geomorphological models to analyze the complex interplay between physical

and biological components of intertidal environments and their dynamics.

In this Thesis, these tidal landscape structures are shown to be bio-geomorphic

in nature, as they emerge from the coupled dynamics of biotic and abiotic pro-

cesses. At large scales, tidal landforms and the associated ecosystems are shown

to emerge as multiple, competing, equilibrium states from the interplay of erosion

and deposition processes and biostabilization produced by vegetations and the

benthic microalgae. The existence of these competing stable states represents

the large-scale pattern formation mechanism for characteristic and ubiquitous

biogeomorphic features of tidal landscapes. At a smaller scale, biogeomorphic

features in tidal marshes are actively engineered by the ability of vegetation

species of tune soil elevation within preferential ranges. We propose here a

novel interpretation, based on new detailed observations, which, for the first

time, couples geomorphic dynamics and species competition/mutation in a spa-

tially extended setting.

In Chapter 1 we present some of the main features of the tidal environ-

ment, focusing in particular on salt marshes, which are usually thought to as
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characterized by a flat topography. Actually, these platforms display small topo-

graphic gradients, associated with the presence of different vegetal species which

encroach the tidal landscape at different elevations.

In Chapter 2 using a 0–D model we show how competing stable states

are responsible for the formation of ubiquitous characteristic large-scale bio-

geomorphic features in tidal landscapes. We develop a point model of the joint

evolution of tidal landforms and biota including the dynamics of intertidal veg-

etation, benthic microbial assemblages, erosional and depositional processes, lo-

cal and general hydrodynamics, and relative sea-level change. Alternative stable

states and punctuated equilibrium dynamics emerge, characterized by possible

sudden transitions of the system, governed by vegetation type, disturbances of

the benthic biofilm, sediment availability and changes in the rate of relative

sea level rise. Multiple equilibria highlight the importance of the coupling be-

tween biological and sediment transport processes in determining the evolution

of a tidal system as a whole. A sensitivity analysis is carried out in order to

study the influence of the governing processes on tidal landscape equilibria and

dynamics.

Chapter 3 we present a biomorphodynamic 1–D model that describes the

time evolution of a marsh transect, and we detail its structure and most relevant

features. Changes in soil elevation are everywhere dictated by the local balance

among the rate of inorganic soil deposition, determined by the hydro-dynamic

circulation/sediment transport processes and the rate of organic soil production

by vegetation, modulated by a fitness function describing how biomass produc-

tion of species varies depending on its adaptation to the edaphic conditions

associated with elevation. The evolutionary vegetation model includes also the

interspecific spatial competition and the mutation, as mechanisms that allow

the self–development and self–colonization of the species in relation with the

edaphic conditions.

In Chapter 4 we explore through the 1–D model, the mechanisms that lead

to the formation of well-known vegetation patterns associated with marsh veg-
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etation species distributions corresponding to competing stable states. At the

marsh–scale, we find that zonation is a bio-geomophological pattern, rather than

simply a biological one, with visible symptoms that underly feedbacks between

biomass productivity and soil accretion. We carry out a sensitivity analysis to

explore the model response and the resilience of pattern–structures to changes

in external forcings. Two different evolutionary vegetation mechanisms are ex-

plored with a significant number of analyses: the competition mechanism (i.e.

spatial competition among fixed species over time) and the coupled competition–

mutation mechanisms (i.e. spatial competition among variable species over

time).

Finally, a Conclusion Chapter draws a set of the main findings and conclu-

sions.





Chapter 1

Large–scale and marsh–scale:

eco–morphodynamic details of

tidal environments

In this Chapter we provide a general introduction to the morphological and

biological characteristics of tidal areas and a description of the study area high-

lighting the importance and novelty of the study presented.

1.1 Tidal environments: generality

The long-term morphological evolution of tidal landscapes is the result of

complex and delicate balance between hydrodynamic processes, morphodynamic,

ecological and anthropogenic interventions. As a result of these forcings, the

tidal landscape morphology evolves and organizes in a strong relation with the

ecological dynamics showing complex feedback mechanisms between hydrody-

namic, physical and ecological processes.

In the tidal environment we can distinguish, from a morphological point

of view, several characteristic structures: the salt marshes, the tidal flats, the

subtidal flats and the networks of channels, whose hydrodynamic behavior is

different because of the different roles of the forcings that govern the propagation
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of tidal currents.

The behavior of the salt marshes is particularly interesting. These morpho-

logical characteristics formations are usually located on the margins of the tidal

platform, although sometimes, as in the case of Venice Lagoon, these structures

interpose themselves between the areas of the lagoon next to the inlets and the

areas far from the edge of the tidal platform.

The salt marshes are the topographically highest vegetated areas of the tidal

platform subject to periodic flooding as a result of fluctuating water levels of

adjacent saline water bodies; being higher than the average sea, they emerge for

the most of the tidal cycle and are submerged only in particular conditions of

high tide (sigizia) that flows and covers during phase of flux and uncovers during

the subsequent phase of reflux (Adam, 1990). They occur in temperate and high

latitudes along estuaries, bays and tidal rivers, where wave energy is sufficiently

low to allow establishment of salt tolerant grasses (Halophytes) in the intertidal

zone (Allen and Pye, 1992). Because of the rich variety halophytic vegetation,

capable to grow in areas subject to prolonged periods of flooding and in soils with

high salt content, there are important interactions between hydrodynamic and

transport morphodynamic processes (Marani et al., 2004, 2007; Day et al., 1999)

together with, not negligible, processes of production of organic soil. Generally,

salt marshes are flat structures, carved by a widespread network of small creeks

that influence or enable the tide periodical flooding. The salt marshes have an

important role in the tidal ecosystem: they play specific and diverse functions

that can be divided into two main types:

- Morphological function: marshes are important natural dissipators of tidal

currents and waves, thus protecting landward sea defences from scour and

wave erosion; they also act as sediment trapping zones, and play a central

role in determining water quality and in buffering nutrient fluxes from the

land;

- Naturalistic function: host the highest organic, vegetable and bacterial

production and represent favorable habitats to the settlement of benthic
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communities and are areas of transit, parking and reproduction areas for

many species of birds.

Tidal flats are sand or mud coastal habitats characterized by lower eleva-

tions when compared to salt marshes, and are thus not colonized by halophytic

plants. They are flooded during the most of the tidal fluctuations and despite

the extreme edaphic conditions due to periodic exposure to air and variations in

salinity, they are colonized by marine phanerogams (seagrasses, e.g. Zostera ma-

rina, Zostera noltii, Cymodocea nodosa for the Venice Lagoon), algae (e.g. Ulva

rigida), small crustaceans, and various benthic microbial assemblages. These

zones are even more exposed to the erosive action of the wave motion generated

by wind that produces altimetrical instability also because of the periodical

frequent tidal floods.

The subtidal platforms, the last tidal morphological structure, develop below

the minimum tidal level and are always submerged by the water.

The environments described above are strongly correlated and interdepen-

dent. Therefore it seems important to understand how these environments can

or not evolve to stable equilibrium states and what is the mechanism that leads

to their formation.

Climate changes, human interventions and natural changes occurred over

the centuries in tidal areas, such as those that occurred in the Venice lagoon,

profoundly influenced their evolution with mutations sometimes irreversible. It

is therefore of critical importance to test predictive models that simulate the

geomorphological evolution of the tidal systems: this issue is closely linked to

ecological, socio-cultural but also economic issues.

We will focus on salt marsh, tidal flat and subtidal flat evolution, subjected

to different external forcings; it is also of strategic importance to understand

how the salt marshes develop, what is the biological-morphological mechanism

that leads to their growth and shape and what is the important link with the

vegetation.
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1.2 Biotic components that shape the ecosys-

tem

Tidal enviroments are characterized by the presence of halophytic vegetation,

macrophytes which can complete their entire life cycle in environments with high

soil salinity and saturation (Adam, 1990) and of sediment inhabiting macrofauna

and microbes (microfitobenthos, MPB) that engineer and structure the landscape

or substrate at different scales.

Microphytobenthos assemblages have an important role in the tidal system

dynamics as ecological or bio-engineers (Widdows and Brinsley, 2002). They

are composed of benthic microalgae that live in and on sediments of inter-

tidal areas where light reaches the sediment surface. They drive biogeochemical

processes contributing to the carbon flux (Middelburg et al., 2000), primary

productivity, exchanges of nutrients between sediments and the water-column

(Sundbäck and Granéli, 1988), and sediment dynamics (oxygenation and sta-

bilization). They strongly enhance the stability of mudflats by directly and

indirectly altering the properties of the surface, making it more resistant to

erosion (Yallop et al., 1994; Miller et al., 1996).

The halophytes, salt tolerant grasses, have a crucial importance in the de-

velopment of intertidal environments. The main characteristic of the marshes

vegetation is its spatial distribution of stable and monospecific communities,

that create the particular phenomenon called zonation (Adam, 1990) linked to

the different environmental gradients as well as biological interactions. The dif-

ferent elevations are very close to each others but few centimeters are sufficient

to change from a species colonization to another one.

A striking characteristic of salt marshes is their apparent tabular shape, with

a slight depression towards the inner of the area of about 10-20 cm (slopes of

about one per thousand) and visibly appreciable just because the vegetation

changing (Pignatti, 1966).

Salt-marsh vegetation is largely responsible for the stability of these areas,
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through feedbacks involving hydrodynamic and sediment circulations. Plant

roots, in fact, stabilize the soil, while the aboveground biomass importantly re-

duces water flow velocity and dampens wind-induced waves, thus effectively im-

peding sediment resuspension and erosion. Furthermore, the biomass produced

by halophytes often constitutes the largest contribution to the local incoming

flux of soil and thus is crucial in allowing marsh accretion to keep pace with soil

compaction, subsidence and sea-level rise (Day et al., 1999).

On the other hand, the net effect of deposition and erosion processes de-

termines local topography, which, together with tidal forcing and subsurface

water flow, in turn determines the edaphic conditions constraining vegetation

development and selecting halophytic species (Silvestri et al., 2005).

Vegetation cover, over the marsh surface, has a dual role. Firstly, vegetation

reduces the velocity of water flow near the marsh surface increasing the oppor-

tunities for accretion, and secondly, the root mass helps to increase the stability

of the material already deposited.

The origin of salt marshes within an intertidal zone is usually attributed

to increased deposition rates in tidal flats causing an increase in topographic

elevation and thus less frequent flooding of the soil, which may then be colonized

first by microbiota and then by pioneer vascular plants of the resulting more

elevated area (i.e. pioneer zone).

The pioneer zone, which is covered by most tides, is where the rate of ac-

cretion is greater because of the duration of tidal inundation, when sediment

deposition may take place. As the level of the marsh surface rises, the dura-

tion of inundation decreases and a wider range of species is able to colonize the

middle and high marshes becoming progressively more floristically various.

We think that an understanding of salt marsh dynamics still lacks a com-

prehensive and predictive theory, mainly because many of the linkages between

the relevant ecological and geomophological processes (vegetation patterns for-

mation and patterns distributions) are poorly understood.
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1.3 The Venice tidal environment: inorganic

and organic characters

1.3.1 Lack of sediments: some causes

The Venice lagoon is the most extended wet environment in Italy, it covers an

area of about 550 km2 and 40 km2 of these are made up of salt marshes covered

by halophytes and periodically flooded by high tides. The lagoon is the result

of a coevolution of human and natural processes that have repeatedly changed

the hydrodynamic and morphological characters. It is subject to intense erosion

processes, which have radically changed the character of its biomorphological

structures.

The lagoon is in a non equilibrium state that causes a general tendency to

erosion, evident in the alignment of the subtidal flats, in the deepening of the

tidal flats, in the loss of the morphological variability and in the gradual disap-

pearance of the salt marshes. During the centuries, the reduction of sediment

input in the lagoon due to natural and anthropogenic causes has been the main

problem for the lagoon morphology.

Wave motion due to wind and boats, the eustatism, the subsidence, the

reduced availability of river sediments, the human intervention, the activities of

illegal fishing, were and continue to be the main responsible of erosion and/or

sedimentary processes able to significantly change the lagoon structure.

The transport of goods and passengers by water is one of the activities that

more typically characterize the area of the Venice lagoon. The high flow of

energy on the channel sides due to the passage of boats, involves a progres-

sive silting up as a result of the continuous transport of sediments from the

surrounding tidal flat, which then will tend to further deepen. The periodic

dredging of the channel, which is required in order to maintain the navigability,

keeps this mechanism active and constantly contributes to the deepening of the

areas crossed by the channels.

The resuspension of bottom sediments is also determined by fishing activities.
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They deliver to the already precarious balance of the lagoon sediment, further

negative contribution. The activities of fishermen, whether authorized or illegal,

produce irreversible damage to the integrity of the sediment in the tidal flats,

producing not only an increase in the available sediment to an easier resuspension

and transport to the sea but also the removal of the stabilizing biofilm on the

surface.

The diversion of the rivers that flowed into the Venice lagoon, which took

place in the past centuries, to prevent the silting up of the lagoon, almost elimi-

nated the amount of sediment from the drainage basin. At the time of “Repub-

blica Serenissima di Venezia”, the evolutionary trend of the lagoon was opposite

of the current one and the problem was the silting promoted by the major con-

tribution of sediment by rivers that flowed into the lagoon. The evolution of

the lagoon after the diversion of the main rivers, led to an increase in the av-

erage depth of the seabed with a consequent increase in the amplitudes of the

wind waves. In this way it established a positive feedback mechanism, in such a

deepening of the bathymetry corresponds to an increase of wave energy, which

then induces a further and more rapid deepening of the bathymetry because of

the increased energy of the waves, which favors erosion of both the tidal flat and

the edge of salt marshes. The fine sediments carried in suspension by the waves,

being characterized by a low settling velocity, also tend to be gradually carried

toward the inlets by tidal currents.

1.3.2 Salt marsh vegetation in the ecosystem evolution

The spatial distribution of vegetation over the salt marshes is not spatially

uncorrelated, it is instead organized in characteristic spatial patches, whose ob-

servation is currently promoting a growing interest in the study of the phe-

nomenon (Pignatti, 1966; Marani et al., 2003).

The salt marsh soil appears to be covered by a mosaic of patches and each of

them is formed by a single vegetation species or by a charachteristic association

of a few species as we can observe in figures 1.1–1.5.



12
CHAPTER 1. LARGE–SCALE AND MARSH–SCALE:

ECO–MORPHODYNAMIC DETAILS OF TIDAL ENVIRONMENTS

Figure 1.1: Patch of salicornia veneta, that dominates near a forming creek of about

10-20 cm large and 10 cm deep, where the soil elevations are lower between areas of

limonium on the left and sarcocornia fruticosa on the right.
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Figure 1.2: Transition from a mixed vegetation cover near a tidal creek (left and

background) to a limonium narbonense patch.
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Figure 1.3: Sharp transition between limonium narbonense (above) and spartina

maritima (below).
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Figure 1.4: Smooth transition from a juncus acutus patch (left), a sarcocornia fru-

ticosa patch, and a limonium narbonense patch.
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Figure 1.5: Transitions from a spartina maritima patch (above) to a sarcocornia

fruticosa patch (middle), to a pucinellia patch (below).
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The elevation-based zonation model persists in salt marsh ecology (Adam,

1990; Pennings and Callaway, 1992; Silvestri et al., 2005). Many halophytes

seem to better live in a preferred elevation range and this is an obvious con-

straint for their development.

Silvestri et al. (2005) observed that this reference elevation range change,

considering different salt marshes even within the same tidal environment (i.e

the Venice lagoon), even if the sequence of adaptation to the different ranges of

elevation is the same, only rigidly shifted.

The zonation is generally linked to the concept of “succession” i.e. the

replacement of plant species in an orderly sequence of colonization and devel-

opment. This hypothesis is based on the assumption that, on emerging salt

marshes, after an initial colonization phase, the substrate would be more sta-

ble and sediments would be trapped by the vegetation. This would allow other

species to invade the marsh, producing changes directed towards a mature and

stable climax ecosystem (Silvestri et al., 2005). Results of long-term monitor-

ing, however, reveal that the dynamics of salt marsh vegetation does not always

proceed according to succession schemes (Leeuw et al., 1993).

A number of authors (Chapman, 1976; Bockelmann et al., 2002; Costa et al.,

2003; Rogel et al., 2001) have described plant zonation in salt-marsh environ-

ments and have evaluated the environmental factors affecting the distribution

of halophytes.

The reproduction, germination and development of halophytes depend on

a number of physiological needs, broadly related either to a sufficient input

of energy and vital substances (e.g. water, oxygen, light, salt ions, macro-

nutrients and micro-nutrients, etc.) or to the limitation of stressing factors (e.g.

soil waterlogging, toxic substances in soils, sudden thermal changes, interand

intra-specific competition).

Hence, the distribution of halophytes seems to be dictated also by location

and size of tidal channels, since tidal networks largely control the distribution

of tidal flooding within the marsh (Sanderson et al., 2000).
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Figure 1.6: The spatial distribution of vegetation – Remote sensing – in the San

Felice salt marsh, Venice Lagoon (Belluco et al., 2006; Wang et al., 2009)

Figure 1.7: Vegetation map of the San Felice salt marsh in the Venice Lagoon

(geometric resolution is 0.5 m, channels and creeks are in blue (Marani et al., 2006b)
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Also numerous edaphic and biotic factors have been found to be related

to saltmarsh plant distribution, for example, nutrient availability (Rogel et al.,

2001), wave disturbance, temperature, salinity, frequency and duration of tidal

inundations (Callaway et al., 1990), human management (Adam, 1990).

Studies in many natural environments have shown that variations in species

distributions may also reflect biotic interactions, in particularly interspecific in-

teractions (competition and/or facilitation) (Costa et al., 2003; Pennings and Callaway,

1992).

Numerous experimental studies have found evidence to support the impor-

tance of interspecific competition in shaping wetland zonation patterns (Grace and Wetzel,

1981; Wilson and Keddy, 1985; Bertness et al., 1992; Levine et al., 1998). Most

experimental field studies of zonation in salt marsh plants have been conducted

at middle and high latitudes of the northern hemisphere and in regularly in-

undated tidal marshes pointing to trade-offs between the ability of a species to

tolerate stress and competitive ability and a competitive displacement of subor-

dinate species to physically stressful habitats.

In this Thesis, we will present the spatial competition concept as spatial

interaction among two or more species that can potentially occupy the same

habitat unit; the spatial competition will be applied following two main criteria,

the first one will prefer the best fit species to specific elevation and the second

one will be a stochastic formulation randomly selecting a species. The mutation

is the second concept presented here as a random speciation that may happen

in the species, changing some characters of phenotype or genotype. These two

concepts are the base of the ecosystem evolution.

It is well accepted by ecologists that organisms not only adjust their proper-

ties to the physical environment, but they also modify and in a certain case

create it. In parallel, the mechanism by which species modify their physi-

cal environment, encompassing geomophologic components in ways to create

or maintain suitable niche conditions for other species, have received growing

attention among the ecological community (Bruno et al., 2003; Corenblit et al.,
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2011). The idea of facilitation describes species interactions that benefit at least

one of the participants and cause harm to neither (Stachowicz, 2011). This pro-

cess has become a central concept in ecology for describing ecosystem structure

and function through the consideration of positive interactions between species

mediated by habitat changes or constructions. A formalization of such depen-

dency between organisms mediated by the physical components of ecosystems

was proposed in ecology by Jones et al. (1994, 1997) in their concept of “ecosys-

tem engineers”. Physical ecosystem engineers are organisms that directly or

indirectly control the availability of resources to other organisms by causing

physical state changes in biotic or abiotic materials. Physical ecosystem engi-

neering by organisms is the physical modification, maintenance or creation of

habitats. The ecological effects of engineering on other species occur because the

physical state changes directly or indirectly control resources used by these other

species (Jones et al., 1997). Engineers are found in all ecosystems (Jones et al.,

1994), more important in some ecosystems than others. The ecosystems engi-

neering, effect of organisms, could have a broad range of impacts on ecosystem

functions (Matthews et al., 1997). The concept of facilitation has improved in

ecology the understanding of the relationship between biodiversity and ecosys-

tem function by considering more explicitly the effects of engineer species on

habitat properties (Bruno et al., 2003). It is suggested that increasing engineer

species diversity may increases community structural and functional complexity.

The presence of habitat patches created by engineer plants or animals increases

species richness at the landscape level. Evidence for such positive landscape-

level effects of engineer animal and plant species on biodiversity has been found

within fluvial and terrestrial systems, for example in association with beaver ac-

tivities (Corenblit et al., 2011). The concept of “niche construction” also refers

to the modification of the physical environment by organisms. Niche construc-

tion is an analog of ecosystem engineering, although this latter term is used

mainly at the scales of ecosystem dynamics, while niche construction operates

both at scales of ecological dynamics and the evolution of organisms. Numerous
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examples of niche construction by organisms can be found in the ecological lit-

erature (Corenblit et al., 2011), demonstrating the usefulness of the concept for

describing co-evolutionary dynamics between species mediated by engineered or

constructed physical environments.

In this Thesis we will present the ecological phenomenon of patterns forma-

tion from a new point of view. The patterns are traditionally explained as the

result of the spatial distribution of edaphic conditions (dominant in the lower

areas of the marsh, where physical conditions are harshest) and of interspecific

competition (dominant in the higher zones, where stress is low). Importantly, the

existing interpretative paradigm, which has not produced a predictive modeling

formulation, takes the topography, and the associated environmental conditions,

as a fixed constraint set a priori.

We show here, using modeling and observations, that the importance of

biomass production in determining equilibrium elevations in a salt marsh nat-

urally leads to zonation patterns that are both vegetational and geomorphic:

these patterns are not the sign of a passive adaptation of vegetation species to

the environment, but, rather, the signature of a positive feedback in which vege-

tation species tune soil elevation within a favorable range and elevation changes,

in turn, affect the rate of biomass production.

1.4 Introductory notes to the 0–D and 1–D mod-

els: multiple stable equilibria and patterns

formation

Salt marshes display the complex ecological and physical interactions and

thus require an interdisciplinary approach to discern the mechanism by which

they function (Fagherazzi et al., 2004; Kirwan and Murray, 2007; Marani et al.,

2007). Numerical modeling is one powerful tool that can be used to quan-

tify the nonlinear feedbacks, morphology and sediment transport processes.
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Numerical models can be used to test hypotheses regarding salt marsh pro-

cesses, quantify the exchanges of energy and material across the intertidal land-

scape, and shed light on the long-term evolution and resilience of these systems

(Fagherazzi et al., 2012).

At the large–scale there are the zero-dimensional models that simulate pro-

cesses (i.e., net primary production and elevation change) at a single point within

a marsh.

Next are the models that simulate morphodynamics (i.e., sedimentation,

channel development, and erosion) across a marsh transect (a one-dimensional

model). These models are said to be “ecogeomorphic” if they additionally con-

sider the feedbacks between marsh vegetation and physical processes such as

sedimentation and erosion.

In the Chapter 2 we will describe, apply and subsequently improve a point

model that describes the time evolution of the bottom elevations considering the

complex interactions between the halophytic vegetations, the microbes colonies,

the sediment deposition and erosion processes, the hydrodynamic and the rate

of the relative see level rise.

This bio-morphodynamic model introduces a coupled relation between the

geomorphological and the biological processes, considering both a steady state

vegetation model and a dynamic vegetation model.

In this work, we resume the results of recent contributions in the study of the

lagoon morphodynamics (Marani et al., 2007; Fagherazzi et al., 2006), in which

was highlighted the complex link between the deposition of sediment and the

erosion process that may occurs within the lagoon basin, closely related to hy-

drodynamic conditions assumed and the presence or absence of the vegetative

component that plays a key role in limiting the contribution of erosion. The

model adopted here is further tested with real data of forcing providing obser-

vations and assessments. We explore the stable equilibria that can be reached,

the dynamics to achieve, transients and the weight of the physical and biological
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factors that control the transition through these different stable equilibria.

Although the problem of the deficit of the lagoon sediments is of great impor-

tance for many aspects highlighted, the development of predictive models and an

organic theory is still in the early stages of development (D’Alpaos et al., 2007;

Fagherazzi et al., 2006; Kirwan and Murray, 2007; Marani et al., 2007, 2010), as

a result of the overlapping of various processes, whose dynamics are poorly un-

derstood, which operate on different spatial and temporal scales. These trends

can be explained more thoroughly, knowing the morphodynamic processes re-

sponsible of the development of the major geomorphological structures, and

understanding the relative roles and interactions between physical and biolog-

ical components, as part of a coupled description of the evolution of the eco–

geomorphological system.

In this work we describe a long-term bio–morphodynamic model of evolution

of tidal basins, obtained by coupling a model which describes the bathymetry

variations as result of a mass balance between the amount of deposited sedi-

ment and the erosion because of wave motion, to a model which describes the

dynamics of halophytic vegetation considering the forcing action of tides, differ-

ent inputs of sediments and variations of the sea level, including also the effects

of biological processes that contribute to the production of organic soil.

The current understanding of intertidal bio-gemorphology, recognized the

central role of vegetation primary productivity in leading to different large-scale

topographic equilibria, and coexisting alternative stable states (Morris et al.,

2002; Marani et al., 2007, 2010). At intermediate scales, tidal landforms and

the associated ecosystems are shown to emerge as multiple, competing, equi-

librium states from the interplay of erosion, deposition, and biostabilization

(Marani et al., 2007). Here we show how smaller-scale marsh biogeomorphic

features, zonation and the associated geomorphic patterns (Silvestri et al., 2005;

Marani et al., 2006b) emerge.

In the Chapter 4, using modelling and observations, we present the impor-
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tance of biomass production in determining equilibrium elevations in a marsh

that naturally leads to zonation patterns that are both vegetational and geo-

morphic.

We will show that the zonation patterns are a striking and widespread salt

marsh characteristic (Adam, 1990) combined with multimodal distributions of

bottom elevations that illustrate how this is a symptom of multiple stable equi-

librium states generated by the competition of the different plant species that

tune the topographic bathymetry.

These patterns are historically explained as a passive adaptation of vegeta-

tion species to the environment and the different edaphic conditions (Bertness and Ellison,

1987; Bockelmann et al., 2002; Marani et al., 2006b; Pennings and Callaway,

1992; Silvestri et al., 2005) supposing the topography and the edaphic condi-

tions as a constraint fixed a priori.

We suggest here a new interpretation according to new detailed observations:

the signature of a positive feedback in which vegetation species tune soil eleva-

tion, in turn, affect the rate of biomass production. We challenge the traditional

interpretation of zonation as a tradeoff between dominant processes in different

parts of the intertidal frame, which fails to capture the active role played by

vegetation in engineering its own environment.

For the first time we couple geomorphic dynamics and species competi-

tion in a spatially extended setting. In fact, previous models were either 0D

(Morris, 2006) or did not include a description of interspecific competition

(D’Alpaos et al., 2007; Fagherazzi et al., 2012; Kirwan and Murray, 2007; Mudd et al.,

2004; Temmerman et al., 2007) and were thus intrinsically incapable of provid-

ing insight into zonation-generating mechanisms.

Furthermore we explore the response of tidal landscapes to variations in the

governing physical and biological forcings, such as rates of relative sea level rise,

sediment supply concentrations, types of vegetation, different tidal amplitudes,

different maximum areal biomass productivity, different settling velocities and

different spatial vegetation species competition dynamics.
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We focus on the biogeomorphic dynamics of a marsh transect oriented in a

direction perpendicular to the nearest channel that feeds the marsh with inor-

ganic sediment. Changes in bottom elevation are governed by the local balance

among the rate of inorganic soil deposition determined by the hydrodynamic

circulation/sediment transport processes; the rate of organic accretion by vege-

tation modulated by a fitness function which describes how biomass production

of species i varies depending on its adaptation to the edaphic conditions associ-

ated with elevation (Silvestri et al., 2005; Morris, 2006; Marani et al., 2010) and

the relative rate of sea level rise, R.

Changes in bottom elevations along the transect are coupled, through a two-

way feedback, to changes in the spatial distribution of different vegetation species

as a consequence of inter-specific competition, which may occur either i) by se-

lecting, at each site the species which displays the maximum fitness function for

the elevation of the considered site (“fittest-takes-it-all”) or ii) by randomly se-

lecting a species with a probability proportional to the fitness function (“stochas-

tic competition” mechanism). Furthermore we introduce a mutation mechanism

that contributes to the different spatial distribution of species and also allows

the growth of new species.





Chapter 2

0–D: physical and biological

large–scale processes shaping the

tidal landscape

2.1 Introduction

The dynamics of tidal biogeomorphological systems is governed by inter-

acting ecological, hydrological, and geomorphological processes, which exhibit

fast responses and possibly irreversible transformations as a result of environ-

mental changes and increasing human pressures (Schneider, 1997; Bohannon,

2007; Day et al., 2007). A thorough quantitative understanding of the many

linkages between the dominant biological and geomorphological processes in

tidal environments is still lacking (Rinaldo et al., 1999a,b; Feola et al., 2005;

Marani et al., 2006a; Murray et al., 2008), such that a comprehensive and pre-

dictive theory of tidal landscape evolution is still proving elusive. Such a lack

of a predictive understanding of tidal morphodynamics can be ascribed, to a

large extent, to our quite recent awareness that biological dynamics in intertidal

areas are not just an epiphenomenon of physical geomorphological transforma-

tions (Reinhardt et al., 2010). As in many other fields of science, the long-

standing paradigm of physical processes carving the landscape and dictating
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the constraints for biological agents, forced to live within those constraints, is

being abandoned, in favor of a new view in which biota feedbacks on, directly

alters, and contributes to shape the landscape (Viles, 1988; Jones et al., 1994;

Yoo et al., 2005; Muneepeerakul et al., 2008; Murray et al., 2008; D’Odorico et al.,

2010; Reinhardt et al., 2010). The explicit description of interacting biotic and

abiotic dynamics is therefore a key requirement to understand, and model, the

evolution of intertidal systems and recent contributions in the field of tidal

biomorphodynamic modelling have indeed proposed formulations which account

for the intertwined effects and the mutual influence of biotic and abiotic compo-

nents (Morris et al., 2002; Mudd et al., 2004; van de Koppel et al., 2005; D’Alpaos et al.,

2006; Morris, 2006; D’Alpaos et al., 2007; Kirwan and Murray, 2007; Marani et al.,

2007; Temmerman et al., 2007; Kirwan et al., 2008; Mudd et al., 2009; Larsen and Harvey,

2010; Mudd et al., 2010; D’Alpaos, 2011; D’Alpaos et al., 2011b). Here, we build

on such recent approaches to further explore the response of tidal landscapes to

variations in the governing physical and biological forcings, such as tidal range,

wind climate, sediment supply, vegetation and microphytobenthos colonization,

and rates of relative sea-level rise (RSLR). In particular we focus on the mutual

influence exerted by bio-physical processes in controlling the biomorphodynamic

evolution of tidal systems, giving rise to the possible existence of multiple stable

states corresponding to characteristic and widespread geomorphic features.

To this end we refine the model proposed by Marani et al. (2007, 2010),

which formalizes a description of the chief biological and physical land-forming

processes responsible for the long-term evolution of tidal unchanneled morpholo-

gies. The model treats soil elevation and vegetation biomass as separate depen-

dent variables, and describes their evolution in terms of two coupled dynamic

equations leading to stable and unstable equilibria. In the original formulation

the platform is subjected to a sinusoidal tide and to a constant forcing suspended

sediment concentration (SSC), representing the available sediment due to wave

activity on adjacent areas, and possible fluvial or marine inputs. Here, we relax

some of the simplifying assumptions and explore the response of intertidal ge-
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omorphologies, mediated by vegetation, to realistic tidal forcings, time-varying

SSCs, and wind characteristics obtained from observations from the Venice La-

goon. We furthermore explore the full extent of the arising alternative equilibria,

their dynamic accessibility, and the biological and physical factors controlling

the possible abrupt transitions among them.

The Chapter is organized as follows. In Section 2.2 we briefly summarize

the structure and features of the biomorphodynamic model and provide some

information on the data used to force the model. Section 2.3 and 2.4 analyzes

the role of physical and biological factors shaping the tidal landscape, subject

to synthetic and realistic forcings, under the assumptions that: i) biomass is at

all times in equilibrium with the current soil elevation (“equilibrium vegetation

model”), or ii) biomass evolves according to its own time scales (“dynamic-

vegetation model”). Finally, Section 2.5 draws a set of the main observations.

2.2 The point biogeomorphic model

The model describes the coupled time evolution of the elevation, z(t), of a

tidal platform, computed with reference to the (variable) relative mean sea level

(RMSL), and of the vegetation biomass, B(t), possibly colonizing it. The bio-

geomorphic evolution of the tidal platform is described by two coupled dynamic

equations:

dz

dt
= QS(z, B) +QT (z, B) +QO(B)−QE(z, B,MPB(z))−R

(2.1)

dB

dt
= r(z)B

(

1−
B

Bmax

)

−m(z) B (2.2)

Equation (2.1) is the sediment continuity equation in which QS, QT , and

QO are the annually-averaged sediment fluxes due to settling, trapping, and

production of organic soil, respectively; QE is the annually-averaged erosion

rate, mainly due to wind-induced waves in micro- and meso-tidal environments;
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MPB(z) indicates the dependence of microphytobenthos (and of the associated

sediment-stabilizing biofilm) on soil elevation; and R is the rate of RSLR (sea

level variations plus local subsidence), which need be included in equation (2.1)

to keep track of the moving sea level. Equation (2.2) governs the time evolu-

tion of the annually-averaged above-ground halophytic vegetation biomass, B

(Levins, 1969), in which r(z) is the reproduction rate, m(z), is a mortality rate,

and Bmax is the maximum biomass density of a fully vegetated marsh.

The annually-averaged settling and trapping rates, QS and QT , are expressed

as

QS(z, B) =
1

nY T

ws

ρb

∫

T

C(z, B, t)dt (2.3)

QT (z, B) =
1

nY T

αBβ

ρb

∫

T

C(z, B, t)dt (2.4)

where T is the period over which averaging is performed (a multiple or a fraction

of one year), nY is the number of years in T (such that QS and QT are the

annually-averaged rates); ws is the settling velocity (here estimated as ws = 0.2

mm/s for a median sediment diameter d50 = 50 µm (Gibbs, 1985)); ρb = ρs ·

(1 − p) is the bulk density, with ρs = 2650 kg/m3 and sediment porosity p

=0.5, implicitly accounting for compaction processes; β = 0.382 and α = 1.02 ·

106 d250 U
1.7 m/s (m2/g)β, with U being an average flow velocity during a tidal

cycle (Mudd et al., 2004; D’Alpaos et al., 2007); C(z, B, t) is the instantaneous

SSC, in turn determined by solving a sediment balance equation in this 0D

context that describe the exchange of water and sediment between the channel

(where the tidal wave propagates and suspended sediments are transported) and

the tidal platform (Krone, 1987; Temmerman et al., 2003).

This is done according to the following conservation equation:

d

dt
(DC) = −wsC − αBβC + C̃

dh

dt
(2.5)

where h(t) is the instantaneous tidal elevation with respect to local MSL,

D(t) = h(t)− z is the instantaneous water depth, and
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C̃(z, B, t) =







C0 when dh/dt > 0

C(z, B, t) when dh/dt < 0
(2.6)

The concentration in the channel is fixed at C0, while h(t) = H · sin(2πt/T )

(T = 12 hrs, the main tidal period, H being the tidal amplitude). Note that

wsC(t)/ρb and −αBβC(t)/ρb are the instantaneous settling and trapping fluxes,

respectively, which, by integration over all tidal cycles in one year yield the yearly

mean total inorganic flux.

Although belowground biomass production plays a key role in maintaining

marsh surface elevations (e.g., Turner et al., 2004; Nyman et al., 2006; Neubauer,

2008), the model does not address an explicit representation of below-ground

processes (e.g., Mudd et al., 2009), and assumes the production of organic mat-

ter, QO, to be proportional to the annually-averaged aboveground biomass, B, an

assumption commonly adopted in salt-marsh ecomorphodynamic models (e.g.,

Randerson, 1979; Morris et al., 2002; Mudd et al., 2004; D’Alpaos et al., 2006,

2007; Kirwan and Murray, 2007):

QO = γB (2.7)

where γ = 2.0 · 10−3 m3/yr/kg incorporates typical vegetation characteristics

and the density of the organic soil produced.

The erosion flux, QE, is computed on the basis of the wind-wave induced

bottom shear stress (BSS), estimated using a point wave model (Carniello et al.,

2005; Fagherazzi et al., 2006; Carniello et al., 2011). The effective BSS due to

wind-wave action, τ , is thus a function of water depth, D, and wind velocity, uw

(Fagherazzi et al., 2006; Defina et al., 2007). The computation of the erosion

flux for a value, z, of the platform elevation is performed by selecting a value

of wind velocity, Uw, and computing the instantaneous erosion flux as (e.g.,

Partheniades, 1965):

Ew,t(z, B,MPB, Uw, t) =
e

ρb
I(B)

τ(D(t), Uw)− τc(MPB)

τc(MPB)
(2.8)
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D(t) = h(t) − z is the instantaneous water depth (with h(t) the instan-

taneous tidal elevation with respect to local MSL); e is an erosion coefficient

characteristic of sediment type and structure (here e = 10−4 kg/m2/s, e.g.,

van Ledden et al. (2005)); I(B) is a step function, such that I(B) = 1 if B = 0

and I(B) = 0 if B > 0, accounting for the fact that wind waves are effi-

ciently dissipated by the presence of vegetation, which thus reduces erosion to

zero (Möller et al., 1999; Neumeier and Ciavola, 2004; Augustin et al., 2009);

τc(MPB) is the threshold BSS for erosion, strongly dependent on the pres-

ence/absence of stabilizing polymeric biofilms produced by benthic microbes

(e.g., Paterson, 1989; Amos et al., 1998). Microphytobenthos growth is light-

limited (MacIntyre et al., 1996) and we assume that the incoming solar irra-

diance is sufficient for microbial photosynthetic activity starting at Mean Low

Water Level (MLWL). We further assume, coherently with typical observed val-

ues (Amos et al., 1998), τc = 0.4 Pa when z < −H and τc = 0.8 Pa when

z > −H.

We next average Ew,t over a tidal period, to obtain the average erosion at

elevation z:

Ew(z, B,MPB, Uw) =
1

T

∫

T

Ew,t(z, B,MPB, Uw, t) dt (2.9)

and finally we average Ew over the probability distribution of observed wind

velocities, f(Uw), to obtain the average erosion flux, E(z, B,MPB) as a function

of elevation, vegetation biomass, and MPB:

E(z, B,MPB) =

∫

Uw

Ew(z, B,MPB, uw)f(uw) duw (2.10)

Equation (2.2) describes the dynamics of vegetation biomass using a lo-

gistic model (Levins, 1969), with elevation-dependent parameters. The repro-

duction and mortality rates, r(z) and m(z), reflect the physiological responses

of halophytic species to soil water saturation, locally represented by elevation

(Silvestri et al., 2005; Marani et al., 2006c).

For many purposes, e.g. when studying the properties of equilibrium states,
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it may be assumed that vegetation adapts to changes in elevation very quickly

(e.g., Allen, 1995; Morris et al., 2002; Mudd et al., 2004; D’Alpaos et al., 2007;

Kirwan and Murray, 2007) compared to typical geomorphological time scales

(often appreciable changes in local elevations occur over several years). Under

this hypothesis, vegetation biomass is instantaneously adapted to soil elevation,

yielding an “equilibrium vegetation model”, in which B is solely a function of

z. Marani et al. (2010) also treat in detail the solutions arising from the fully

coupled dynamical system obtained by treating biomass as an independent vari-

able according to a “dynamic-vegetation” modeling approach. We will here first

confine ourselves to the case of “instantaneous” vegetation adaptation (Section

2.3) and then provide examples of model’s purview of fully-coupled analyses

(Section 2.4). In particular, in the former case, the two equations (2.1) and

(2.2) can be decoupled, by first finding the steady-state solution, B(z), of (2.2)

and by substituting it back into (2.1). A trivial solution of dB/dt = 0 is B = 0,

which cannot be observed in actual marshes because the presence of seed banks

and the continuous input of propagules from surrounding marshes would repop-

ulate a marsh where vegetation had temporarily disappeared (e.g., Adam, 1990;

Ungar, 1991). This leaves the steady-state solution:

Bs(z) = Bmax

[

1−
m(z)

r(z)

]

(2.11)

which is valid for z ≥ 0, while Bs(z) = 0 when z < 0.

Two typical, and contrasting, relations between soil aeration and vegetation

biomass may be considered.

The first case (“multispecies vegetation”) is characterized by biomass increasing

with increasing soil elevation (between MSL, z = 0, and Mean High Water Level

(MHWL), z = H) and is typical e.g. of Mediterranean tidal environments,

where several species adapted to progressively more aerated conditions compete

(Day et al., 1999; Marani et al., 2004; Silvestri et al., 2005) or sites in northern

continental Europe and in the UK (e.g., Allen, 1995). In the “multispecies

vegetation” case we assume a reproduction rate which linearly increases with
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elevation, while the mortality rate is assumed to decrease linearly with z: r(z) =

0.5 z/H +0.5 yr−1; m(z) = −0.5 z/H +0.5 yr−1. We also assume each plant to

produce at most one daughter plant per year in the most favourable conditions,

i.e. r(H) = 1 yr−1 and m(H) = 0 yr−1. Observations in this case indicate that

biomass is equal to zero at z = 0 and maximum at z = H (Marani et al., 2004;

Silvestri et al., 2005). We thus take r(0) = m(0) = 0.5 yr−1.

The second case is a Spartina-dominated environment, characteristic of some

North-American sites (Morris and Haskin, 1990; Morris et al., 2002), in which

biomass is a decreasing function of elevation between z = 0 and z = H. In this

case we assume r(0) = 1 yr−1 and m(0) = 0 yr−1, while r(H) = m(H) = 0.5

yr−1 (such that the steady-state biomass is maximal at z = 0 and is zero at

z = H). The reproduction and mortality rates are thus: r(z) = −0.5 z/H + 1.0

yr−1; m(z) = 0.5 z/H yr−1.

In the following we explore the stable equilibrium states and transient dy-

namics associated with equations (2.1) and (2.2) by considering both: i) syn-

thetic forcings (such as sinusoidal tides of varying amplitude, constant SSCs and

rates of RSLR), and ii) observed tidal levels, sediment concentrations, and wind

velocities, measured within a monitoring network in the Venice lagoon by the

Venice Water Authority (figure. 2.1). This dataset was homogeneously upscaled

at the hourly time scale for the whole 2004-2006 observation period.

2.3 Equilibrium-vegetation modeling

2.3.1 Synthetic forcings: general model behavior leads to

different tidal patterns

We first consider, as a reference case, the ideal case of a system subjected to

a sinusoidal tide with amplitude H = 0.5 m and period T = 12 hours, forced by

a constant external SSC and by a constant rate of RSLR (Marani et al., 2010).

Figure 2.2 shows the rate of change of platform elevation, dz/dt, as a function

of the elevation, z, for the two vegetation types considered, when a constant
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SSC, C0 =20 mg/l, and a constant rate of RSLR, R=3.5 mm/yr, are assumed.

These forcings may be considered to be representative of the local RSLR for

the 20th Century in the Venice Lagoon (Carbognin et al., 2004; Meehl, 2007;

Marani et al., 2007). The shape of the curves in figure 2.2 is determined by

the dependence of the deposition and erosion fluxes (see eq. (2.1)) on platform

elevation. For platform elevations below MLWL, z < −H, the settling flux is

weakly dependent on z and dz/dt remains nearly constant, whereas it linearly

decreases for elevations larger than MLWL, to vanish at MHWL due to the re-

duction in the frequency and duration of inundations. The erosion flux, QE,

is negligible for z < −2.5 m because wind waves do not induce an appreciable

bed shear stress in deep waters (Carniello et al., 2005; Fagherazzi et al., 2006;

Defina et al., 2007). QE then increases with elevation, reaching a maximum at

approximately z = −1.2 m, to decrease again for larger values of z because

of reduced wind-driven BSS and of shorter flooding times (for z >MLWL).

QE vanishes as soon as z > 0, when the platform is encroached by halophytic

plants which reduce turbulent kinetic energy (e.g., Leonard and Croft, 2006;

Mudd et al., 2010) and increase the critical shear stress for erosion (Möller et al.,

1999; Neumeier and Ciavola, 2004; Augustin et al., 2009). As soon as the plat-

form reaches an elevation which allows vegetation encroachment (z >MSL), the

organic and trapping rates, QO and QT , respectively, contribute in determining

the dependence of dz/dt on z. In the Spartina-vegetated case, because both QO

and QT are maximum at z = 0 and decrease with z due to the decrease in plant

biomass with marsh elevation, vegetation encroachment significantly accelerates

the vertical growth of the platform (figure 2.2b), thus producing an abrupt in-

crease in the total accretion rate. On the contrary, in the multispecies vegetation

case (figure 2.2a), QO increases with z, whereas QT initially increases, because

of the increase in biomass, to subsequently decrease at higher values of z due to

the reduced SSC associated with decreased water depths and fewer inundation

periods. A more gradual acceleration in the vertical growth of the marsh surface

together with a smoother increase in the total accretion rate is thus observed in
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the multispecies vegetation case.

Solid circles in figure 2.2 mark stable equilibrium states, which include a

subtidal platform equilibrium, located at elevations lower than MLWL, and a

marsh intertidal equilibrium located above MSL. These equilibria are stable

because a negative (positive) perturbation of elevation produces a value dz/dt >

0 (dz/dt < 0), which tends to bring the system back to the original equilibrium

state. A third solution of dz/dt = 0 also exists, corresponding to an unstable

equilibrium state, which cannot be observed, as any perturbation drives the

system away from it.

Changes in R and C0 may lead to a different number and type of equilibria.

An increase in C0 stretches the curves in figure 2.2 and moves them upward,

increasing the equilibrium elevations and possibly making the subtidal equilib-

rium disappear if C0 becomes larger than a threshold (60 mg/l, in the present

case). Analogously, an increase in the rate of RSLR results in a proportional

downward vertical shift of the curves in figure 2.2.

From these considerations we can infer the presence of a path to pattern

formation: depending on spatially-varying initial conditions and RSLR forcing

different areas within the same tidal environment can manifest different equilib-

rium states.

2.3.2 Synthetic forcings: the role of the rate of RSLR

and of organic production

The bifurcation diagram in figure 2.3 shows equilibrium platform elevations

plotted as a function of the rate of RSLR, which summarizes the number and

type of possible equilibria for a given value of R. In order to fully appreci-

ate the role of vegetation, different cases of maximum organic accumulation are

considered, namely the cases γ = 2 · 10−3 m3/kg/yr (black line), γ = 4 · 10−3

m3/kg/yr (green line), and the hypothetical case in which vegetation is absent

(red line). It is seen that biomass productivity substantially affects marsh ele-

vation, suggesting that vegetation may play here the role of ecosystem engineer
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Figure 2.2: Time derivative of platform elevation, dz/dt, as a function of platform

elevation, z, (a) in the multispecies vegetation case and (b) in the Spartina-dominated

case, when the system is forced with a sinusoidal tide of amplitude H = 0.5 m, period

T = 12 hours, wind characteristics of the Chioggia station (see figure 2.1), rate of SLR

R = 3.5 mm/yr, and SSC C0 = 20 mg/l. The elevation z is computed with respect to

the local MSL.
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(Jones et al., 1994).

In the case of sea regression (negative values of R), no tidal equilibrium is

possible for R < −14.9 mm/yr, suggesting the transition to a terrestrial environ-

ment. For -14.9 mm/yr < R < 0.0 mm/yr only a subtidal platform equilibrium

exists, as intertidal platforms are not possible as stable features. For 0.0 mm/yr

< R < 7.2 mm/yr the subtidal equilibrium coexists with a marsh equilibrium

(when γ = 2 ·10−3 m3/kg/yr), whereas for 5.4 mm/yr < R < 7.2 mm/yr marsh,

tidal-flat, and subtidal equilibria constitute alternative stable equilibrium states.

Tidal-flat and subtidal equilibria coexist also for 7.2 mm/yr < R < 10.1 mm/yr.

The subtidal platform equilibrium vanishes for R > 10.1 mm/yr, while all in-

tertidal equilibria disappear for R > 10.6 mm/yr, marking the transition to a

marine environment. The role played by vegetation can be further appreciated

by considering the effect of vegetation productivity on the possible equilibria.

When γ = 4 · 10−3 m3/kg/yr, the vegetated marsh can keep pace with rates

of RSLR up to 9.2 mm/yr. On the contrary, in the absence of vegetation the

marsh platform would drown for rates of RSLR larger than 5.4 mm/yr. The

presence of vegetation thus significantly increases the capability of marshes to

survive increasing rates of RSLR and decreasing sediment availability, allowing

existing vegetated surfaces to sustain rates of RSLR and sediment supply that

would preclude marsh surfaces from developing in the first place (Marani et al.,

2010; D’Alpaos, 2011; Kirwan et al., 2011; Mudd, 2011).

2.3.3 Synthetic forcings: the role of the tidal range

We now analyze the equilibria of a system forced by constant external SSC

and RSLR rate, subjected to sinusoidal tides of different amplitudes with the

same period T = 12 hours.

As the tidal amplitude increases, the intensity of wind induced erosive pro-

cesses over the subtidal platform progressively decreases (figure 2.4), whereas

the range of elevations potentially subjected to erosion progressively increases.

To understand this behavior one must consider that the maximum BSS as a
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Figure 2.3: Bifurcation diagram showing equilibrium elevations, zeq, as a function

of the rate of RSLR, R, in the case of a Spartina-dominated system forced with a

sinusoidal tide with period T = 12 hours, amplitude H = 0.5 m, and SSC C0 = 20

mg/l. Two possible scenarios for organic production are also considered (namely

γ = 2.0 · 10−3 m3/yr/kg and γ = 4.0 · 10−3 m3/yr/kg) together with the hypothetical

case in which vegetation is absent.
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function of water depth (inset in figure 2.4a) occurs for intermediate depths. In

fact, for very low depths wave height is severely limited, while for large depths

the orbital velocities connected with surface waves, and the associated BSSs,

become very small close to the sediment surface (e.g., Fagherazzi et al., 2006).

It follows that, in the limiting case of a null tidal amplitude (i.e. when the

water depth is constant during the tidal cycle) platform elevations continuously

experience the same BSS (in particular, elevations around −1.1 m experience

the maximum BSS throughout the tidal cycle). The system therefore experi-

ences strong erosion (QEmax
≈ 27 mm/yr when H = 0) in a relatively narrow

range of elevations. As the tidal amplitude increases, a given platform elevation

experiences a wider range of BSSs during the tidal cycle (elevations around −1.1

m experience also BSSs smaller than the maximum one because of variations in

the water depth with the tide – see e.g. inset in figure 2.4a) and the intensity

of the erosion processes decreases (QEmax
≈ 10 mm/yr when H = 1.0 m). This

suggests that bottom erosion due to the effects of wind waves is more intense in

microtidal settings rather than in meso- and macrotidal settings. The subtidal

equilibrium elevations, zeq, experience small variations as the tidal amplitude

increases (zeq = −2.0 m when H = 0.2 m; zeq = −1.75 m when H = 0.75

m see solid gray circles in figure 2.4b). Interestingly, no subtidal equilibria

are possible for tidal amplitudes larger than 0.75 m (when C0 = 20 mg/l and

wind observations at S. Leonardo are considered), due to the increase in the

settling rate and to the concurrent decrease in the erosion rate, for increasing

tidal amplitudes (figure 2.4b). Considering more severe wind focings (e.g. wind

characteristics at Chioggia, see also Section 2.3.5) produces a general lowering

of subtidal equilibria (see solid white circles in figure 2.4b). Finally, a decrease

in the available sediment increases the depth of subtidal equilibria which exist

for a wider range of tidal amplitudes (see solid gray pentagons in figure 2.4b).

Marani et al. (2010) showed that subtidal equilibrium elevations are relatively

less sensitive to increasing rates of RSLR rather than to decreases in the SSC.

Here we emphasize that the range of existence of subtidal equilibria is relatively
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less sensitive to variations in the wind forcings rather than to decreases in the

available sediment.

We also analyzed the influence of the tidal range on tidal-flat and salt-marsh

equilibria (figure 2.5). The equilibrium elevation of the marsh within the tidal

frame increases with the tidal amplitude: for prescribed forcing SSCs and rates

of RSLR, marshes in high tidal ranges are higher in the tidal frame (i.e. relative

to the respective MHWL) than marshes in low tidal ranges. Moreover, marshes

populated by a variety of vegetation species (“multispecies vegetation” case), in

which biomass increases with marsh elevation, are higher in the tidal frame than

Spartina-populated marshes, characterized by a decrease in biomass as marsh

elevation increases. This suggests that marshes in high tidal ranges are more sta-

ble, and therefore more resilient to increasing rates of RLSR, than those in low

tidal ranges, in agreement with recent findings by Kirwan and Guntenspergen

(2010), Kirwan et al. (2010), and D’Alpaos et al. (2011b). Moreover, the exis-

tence of a variety of vegetation species which populate the marsh increases the

stability and resilience of these morphological structures. Different vegetation

type are also characterized by interesting differences both in the type and number

of equilibria. In the cases considered here (C0 = 20 mg/l and R = 3.5 mm/yr),

no marsh equilibria exist in the “multispecies vegetation” case for tidal ampli-

tudes smaller than 0.5 m. On the contrary, in the Spartina-dominated case,

a marsh equilibrium and a tidal-flat equilibrium coexist for tidal amplitudes

smaller than 0.5 m.

2.3.4 Observed forcings: the role of the tidal regime

We study here the stable equilibrium states emerging from eq. (2.1) when the

system is forced with observed tidal levels, sediment concentrations, and wind

velocities. To this end we consider the “multispecies vegetation” case, typical of

the Venice Lagoon, and the observed 20th-century rate of RLSR for the Venice

Lagoon, R = 3.5 mm/yr (Carbognin et al., 2004; Meehl, 2007; Marani et al.,

2007). Figure 2.6(a) shows dz/dt versus z and the corresponding stable equilibria
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Figure 2.4: a) Erosion rate, QE , and b) sub-tidal platform equilibrium elevations, zeq,

computed for different tidal amplitudes when the system is forced with a sinusoidal

tide with period T = 12 hours, rate of SLR R = 3.5 mm/yr, wind characteristics

at different stations (see figure 2.1), and different SSCs. Solid lines in figure 2.4a,

computed by considering wind characteristics at the S. Leonardo station, represent

the case in which MPB and vegetation are both present and increase the value of

the critical shear stress for erosion; dashed lines show the case in which the polymeric

biofilm due to MPB is disrupted by human activity or bioturbation (e.g., invertebrates)

and only vegetation contributes to increase the threshold shear stress for erosion. Inset

in figure 2.4a: Dependence of the bottom shear stress, τ , on water depth computed for

a wind speed of 15 m/s. Solid gray circles in figure 2.4b are obtained when considering

wind at the S. Leonardo station and C0 = 20 mg/l; solid white circles: wind at the

Chioggia station and C0 = 20 mg/l; solid gray pentagons: wind at the S. Leonardo

station and C0 = 10 mg/l.
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Figure 2.5: Salt-marsh and tidal-flat equilibrium elevations made dimensionless with

the tidal amplitude, zeq/H, versus the tidal amplitude, H, computed for different tidal

amplitudes when system is forced with a sinusoidal tide with period T = 12 hours,

rate of SLR R = 3.5 mm/yr, and SSC C0 = 20 mg/l.

computed on the basis of tidal observations at Murano (figure 2.7a), wind regime

at Tessera, and suspended sediment concentrations at Campalto (see figure 2.1).

For a rate of RLSR R = 3.5 mm/year we find two stable equilibria: a sub-

tidal platform equilibrium (z = −1.38 m) and a salt-marsh equilibrium (z =

0.30 m), values which are consistent with observed geomorphic features in the

Venice lagoon. If R = 7.3 mm/yr, representing a somewhat extreme IPCC

projection for RSLR in the next Century, the elevations of both the subtidal

and marsh equilibria are substantially decreased. However, it is worth noting

that the nature of these equilibria remains unchanged, for this set of tidal, wind,

and sediment forcings. In particular, there is no transition from a salt-marsh

(vegetated) equilibrium to an unvegetated tidal flat equilibrium (z < 0). A

detailed inspection of figure 2.6a makes it possible to determine the threshold

rate of RSLR for marsh drowning, R = 10.5 mm/yr, the limit value for which

a marsh transitions to a tidal flat. If R > 16.2 mm/yr, such that no solution

to dz/dt = 0 exists, the system transitions to a marine environment. This

analyses show that the available equilibrium states are relatively insensitive to
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a variability in the rate of RSL change, at least when the actual forcings from

a network of stations in this area are considered. It should however be noted

that the model postulates that the incoming flux of suspended sediment, i.e. the

sources of C0(t), remains constant, whatever change may occur. This means that

any accretion may occur only at the expenses of other morphological structures,

if no sediment input from rivers of the sea is present (as in the case of the Venice

lagoon). In order to properly describe the response of the system to large values

of R further feedbacks should thus be included in the model.

Figure 2.6b represents the accessible stable equilibria for the same forcings

as in figure 2.6a, except that the astronomical tide (figure 2.7b), rather than

the observed tide (figure 2.7a), was imposed. The exclusion of meteorological

contributions to the tide causes a general lowering of the equilibrium elevations,

due to the generally lower water levels characterizing the astronomical tide, as

indicated in figure 2.7.

To understand why the sub-tidal platform equilibrium elevation is decreased

one must recall the relationship between the maximum bottom shear stress and

water depth (inset in figure 2.4a). If frequent tidal levels are reduced, as in

this case, so is the elevation for which the maximum erosion occurs and thus

the equilibrium elevation for which erosion, deposition and sea level rise balance

one another. The elevation of the marsh equilibrium is also reduced, but the

mechanism leading to this reduction does not involve the erosion flux, as in

the previous case, since erosion over marshes is inhibited by the presence of

vegetation, independent of elevation (within the elevation interval allowing the

development of halophytic plants). In this case a reduced frequency of high

tidal levels implies a reduced sediment deposition at high elevations and thus

a reduction of the soil elevation for which deposition, trapping and organic

sediment production balance the rate of RSLR.

The comparison of figure 2.6a and b shows that the sensitivity of the observ-

able bio-geomorphic equilibria to changes in the tidal regimes is quite strong.

Relatively small differences in the prevalent tidal levels (compare figures 2.7a
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Figure 2.6: Stable equilibrium states in the oxygen-limited vegetation case with (a)

tidal observations at “Murano”, wind at “Tessera” and suspended sediment concen-

tration C0(t) at “Campalto”; (b) same as in (a) except that the astronomic tide (i.e.

with no meteorological component) is prescribed; (c) same as in (a) except that tidal

observations at “Saline” are used.
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and b) are responsible for relevant changes in the elevations of both salt-marsh

and subtidal equilibrium states. On the other hand, similar changes in equilib-

rium elevations occur as a result of increases in R which are quite extreme within

the range of the IPCC projections (figure 2.6a). One must therefore conclude

that the tidal system studied is potentially more exposed to changes in the tidal

regime than to changes in the rate of RSLR. The strong sensitivity of system

equilibria to the characteristics of the local tide are emphasized by figure 2.6c,

which shows the results of using the same wind and suspended sediment forcing

as in figure 2.6c and b, and the tidal observations at the “Saline” tide gauge

(see figure 2.1 for the location and figure 2.7c for the probability density func-

tion of tidal levels). The differences between figure 2.6a and figure 2.6c indeed

show that the local tide can decisively influence the elevation of the available

equilibrium states.

2.3.5 Observed forcings: the role of the wind regime

Figure 2.8 shows a comparison between the probabilities of exceedance of

wind velocity measured at four different sites in the Venice Lagoon (see figure

2.1). Differences can obviously occur only in sub-tidal equilibria (or in tidal

flats, if present, figure 2.9), as wind-driven waves are assumed to be completely

dissipated by marsh vegetation. It is also worthwhile recalling (Marani et al.,

2007, 2010) that wind waves are likely to produce BSS values exceeding typical

threshold values for sediment erosion (e.g. τ > τc = 0.4 Pa) only for wind veloc-

ities larger than about 5 m/s. As a consequence, differences in the probability

distributions for wind velocities uw < 5 m/s will not produce differences in the

subtidal equilibrium elevations. Chioggia is characterized by more frequent high

winds (uw > 5 m/s) with respect to all the other stations, as shown in figure

2.9, leading to the lowest subtidal equilibrium elevation (figure 2.9a), because

of the greatest erosion rates. As the probability of exceedance of high winds

decreases (compare the Chioggia and S. Leonardo distributions) the elevation of

the subtidal platform increases (figure 2.9b), because a higher elevation reduces
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Figure 2.7: Probability density functions of Tidal levels for (a) observations at

“Murano”, (b) astronomic tide, (c) observations at “Saline”.
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Figure 2.8: Probability of exceedance of wind velocity according to the Tessera, S.

Andrea, S. Leonardo, and Chioggia anemometers. Inset: frequency distributions of
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the erosion flux thus restoring the balance with the deposition rate and the rate

of RSLR. Finally, it is worth noting that the winds measured at S. Andrea and

Tessera, which are characterized by quite similar probability distributions for

uw > 4 m/s (figure 2.8), lead to almost the same equilibrium elevation of the

subtidal platform (compare figures 2.9c and d).

2.4 Dynamic-vegetation modeling

We finally provide some examples of the model’s capability to describe the

fully coupled dynamics of the system based on the simultaneous solution of equa-

tions (2.1) and (2.2). For the sake of illustration we consider six different initial

elevations and biomass values, and force them with a sinusoidal tide, a constant

rate of RSLR and a constant sediment supply, to describe their evolution toward

a stable equilibrium, as jointly determined by physical and biological processes.

We first consider the case in which both the reproduction and mortality rates

vary as a function of marsh elevation (i.e. r(z) = −0.5 z/H + 1.0 yr−1 and

m(z) = 0.5 z/H yr−1). Figure 2.10 portrays the evolution of the system both
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in terms of variations in bottom elevations, z (figure 2.10a), and vegetation

biomass, B (figure 2.10b). The six different marshes considered in this exper-

iment will tend to the same marsh equilibrium elevation, zeq = 0.50 m above

MSL (figure 2.10a) at which the total accretion rate matches the imposed rate

of RSLR (figure 2.10c). Simultaneously, the value of the vegetation biomass

characterizing these marshes will tend to the same equilibrium value, B = 500

gm−2, at which dB/dt = 0 (figure 2.10b). This dynamic-vegetation modeling

experiment allows us to emphasize that during the transient phase, vegetation

is not necessarily in equilibrium with the current forcing and adapts to changes

in elevation according to its own characteristic timescale. Transient dynamics

can also be analyzed by considering the evolution of these six trajectories in the

phase-space (figure 2.10d). Often, when the system is far from equilibrium, the

paths followed in phase space to reach the equilibrium state are characterized

by nearly vertical trajectories. This occurs until the system attains the steady

state biomass, Bs(z) (black solid line in figure 2.10d), which is a function of ele-

vation (see eq. (2.11)). In subsequent stages the marsh evolves by varying both

biomass and elevation following the steady state biomass curve, Bs(z), until it

reaches equilibrium (figure 2.10d). We also consider a second scenario in which

the reproduction rate, r, is assumed to be constant and equal to 1 yr−1 (i.e., each

plant produces one daughter plant per year) and the mortality rate is assumed

to increase with marsh elevation, m(z) = z/H yr−1 (figure 2.11). According to

this scenario the equilibrium biomass Bs(z) (see eq. (2.11)) becomes a linearly

decreasing function of marsh elevation (e.g., Mudd et al., 2004; D’Alpaos et al.,

2007). Also in this case the system will tend to the same marsh equilibrium

elevation, zeq = 0.48 m above MSL, with an equilibrium biomass B = 350 gm−2

(figure 2.11a and b). Furthermore, also in this case the paths followed in phase

space to reach the equilibrium state are characterized by nearly vertical trajec-

tories (figure 2.11d). We also compute the time it takes for marsh elevations to

be within 3% of the equilibrium elevation starting from different initial condi-

tions, both with the “dynamic vegetation” model (i.e. by simultaneously solving
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equations (2.1) and (2.2)) and with the “equilibrium vegetation” model (e.g. by

considering the steady state biomass Bs(z) provided by eq. (2.11)) when the

birth and the mortality rates are assumed to vary with elevation (as in figure

2.10) and when the birth rate is kept constant and the mortality rate increases

with elevation (as in figure 2.11). Figure 2.12 shows a comparison between the

time lags required to reach equilibrium starting from different initial conditions

in the above cases, and emphasizes that differences in the time lags computed by

considering the “dynamic vegetation” and the “equilibrium vegetation” models,

are in the range 1-15%. Such a behavior further confirms that in many cases

one can realistically assume an instantaneous adaptation of vegetation to the

current platform elevation.

2.5 Observations

By generalizing a fully-coupled point model of marsh biogeomorphic evolu-

tion (Marani et al., 2007, 2010) we have further explored the stable equilibrium

states of tidal structures and their dependence, in terms of equilibrium types

and number, on biological processes and physical forcings. Model results em-

phasize the importance of accounting for the main interacting biological and

physical components in order to obtain realistic representations of the system

dynamics. Our numerical experiments allows us to point to the following main

observations:

i) The number and the elevation of the equilibrium states, both in the sub-

tidal and in the intertidal zones, depend, jointly, on a number of processes

of physical and biological nature, such as: the rate of relative sea level rise,

sediment supply, biomass productivity, wind climate, and the tidal range.

ii) Biomass productivity crucially affects both the equilibrium marsh eleva-

tion and marsh resilience to accelerations in RSLR, showing how a de-

tailed understanding of biological processes is required to understand the
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Figure 2.10: Evolution in time of (a) platform elevations, (b) vegetation biomass,

(c) accretion rates, and (d) phase portrait describing the dynamics of the system, for

different initial conditions. We considered the case of a Spartina-dominated system

forced with a sinusoidal tide with T = 12 hours, H = 0.75 m, C0 = 20 mg/l, and

R = 3.5 mm/yr, when both the reproduction and mortality rates vary as a function

of marsh elevation (i.e. r(z) = −0.5 z/H + 1.0 yr−1 and m(z) = 0.5 z/H yr−1). In

all panels the depicted stable state correspond to a vegetated marsh with z = 0.50 m

above MSL and B = 500 g/m2.
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Figure 2.11: Evolution in time of (a) platform elevations, (b) vegetation biomass,

(c) accretion rates, and (d) phase portrait describing the dynamics of the system, for

different initial conditions. We considered the case of a Spartina-dominated system

forced with a sinusoidal tide with T = 12 hours, H = 0.75 m, C0 = 20 mg/l, and

R = 3.5 mm/yr, when the reproduction is assumed to be constant (r = 1.0 yr−1)

and the mortality rate increases with marsh elevation (i.e. m(z) = z/H yr−1). In

all panels the depicted stable state correspond to a vegetated marsh with z = 0.48 m

above MSL and B = 350 g/m2.
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Figure 2.12: Time required for marsh elevations to reach within 3% of the equilib-

rium elevation starting from different initial conditions, with the “dynamic vegetation”

model (i.e. by solving equations (2.1) and (2.2)) and with the “equilibrium vegeta-

tion” model (e.g. based on eq. (2.11)) when the birth and the mortality rates are

assumed to vary with elevation (as in figure 2.10) and when the birth rate is constant

and the mortality rate increases with elevation (as in figure 2.11).

response of tidal bio-geomorphic systems to anthropogenic and natural

forcings.

iii) As the tidal amplitude increases, the intensity of erosion processes on the

subtidal platform decreases and the elevation of the marsh platform, rela-

tive to the tidal frame, increases. Bottom erosion due to the effects of wind

waves is more intense in microtidal settings than in meso- and macrotidal

environments. Marsh resilience to environmental changes, and in partic-

ular to increasing rates of RSLR, increases with the tidal range. Marshes

in macrotidal areas are therefore characterized by higher thresholds rates

of RSLR resulting in marsh drowning.

iv) The existence and characteristics of equilibrium states depend quite strongly

on the local tidal regime even within the same tidal system. In particu-

lar, the tide observed at different sites within the Venice lagoon, which

differ as a result of propagation and dissipation of the tidal wave, yield
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rather different equilibrium elevations. This circumstance also points to

the importance of the meteorological contribution to tidal levels, which

significantly alters the characters of the local tide, with important bio-

geomorphic implications.

v) In the sub-tidal range the effect of tidal fluctuations is linked to the fact

that more frequent high tidal levels increase the platform elevation at

which erosion by wind-waves is maximum. Consequently, the equilibrium

elevation at which erosion, deposition and sea level rise are in balance is

also correspondingly increased;

The effect of tidal fluctuations in the intertidal zone are entirely due to a

more effective transport of sediment at high elevations when tidal oscilla-

tions are increased. A broader probability distribution of tidal levels thus

produces higher marsh elevation values;

vi) The local wind regime very importantly affects the elevation of the sub-

tidal equilibrium state. Sub-tidal equilibria resulting from wind obser-

vations at sites separated by a few kilometers show, in fact, important

elevation differences.

vii) Vegetation dissipates wind-waves, such that marsh equilibria are not af-

fected by differences in wind regimes.



Chapter 3

Bio-morphological 1D model

In this Chapter we describe the 1D model developed to investigate the role

of the inorganic and organic accretion rates which shape the tidal shaping the

tidal landforms and develop of tidal patterns. As we did for the 0–D model,

here we present the two main parts according to which the model is developed:

the morphological/hydrodynamical and the biological part.

3.1 Deposition fluxes and climate change

The 1D biomorphodynamic model couples geomorphic dynamics and species

competition in a spatially extended setting. The model describes the long-

term biogeomorphic coupled evolution of sedimentation and vegetation patterns

along a salt-marsh transect, oriented in a direction perpendicular to the nearest

channel adjacent to the marsh platform (see figure 3.1).

The evolution in time of marsh topography is governed by the sediment

continuity equation which reads

∂z

∂t
= Qs(x, t) +Qo(x, t)−R (3.1)

where t is time; z(x, t) is the local bottom elevation (computed with re-

spect to mean sea level, hereinafter MSL); x is the spatial coordinate along the

transect; Qs(x, t) is the local annually-averaged inorganic sediment deposition
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Figure 3.1: Sketch of the salt-marsh transect considered in the proposed 1-D model.

The landscape-forming tide is assumed to be a sinusoidal tide with period T = 12

hours and amplitude H = 0.5 m. Bottom elevations, z(x, t), and water surface fluc-

tuations, zw(t), are computed with respect to the local mean sea level (MSL). The

sketch, which portrays the biogeomorphic patterns of actual marshes, emphasizes

the existence of intertwined vegetation and topographic patterns in which vegetation

patches are shown to develop at different marsh elevations. Although salt marshes are

commonly thought to as flat structures, field observations show the existence of small

elevation differences associated to the encroachment of different vegetation types.

rate; Qo(x, t) the local annually-averaged organic accretion rate; and R is the

rate of relative sea level rise (hereinafter RSLR), i.e., sea level variation plus

local subsidence. We neglect particle capture on plant stems and leaves, con-

sistently with recent findings of Marani et al. (2010) and Mudd et al. (2010)

who showed that particle settling largely dominates capture for flow velocities

commonly observed in tidal marshes (up to 0.05 m s-1). We also neglect the

erosion flux because neither tidal currents nor wind-waves usually produce bot-

tom shear stresses high enough to erode the vegetated marsh bottom, mainly

due to the presence of halophytes which both damp waves (Möller et al., 1999;

Augustin et al., 2009; Carniello et al., 2005) and protect the surface against ero-

sion by currents (Christiansen et al., 2001; Neumeier and Ciavola, 2004). It is

worth noting that because temporal variations in the bottom profile occur over

timescales typical of morphological changes, i.e. timescales of one to several

years, equation (3.1) need be regarded as the annually-averaged mass balance

equation, consistently with the presence of yearly-averaged sediment fluxes, Qs

and Qo, in the right-hand side of equation (3.1). The latter fluxes are obtained
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by averaging over a tidal cycle and by multiplying by the number of tidal cycles

in one year.

In equation (3.1), at any time during the evolution, the local inorganic sedi-

ment deposition rate, Qs(x, t), is computed as

Qs(x, t) =
ws

ρb

nT

T

∫

T

C(x, t)dt (3.2)

where C(x, t) is the local instantaneous suspended sediment concentration

(hereinafter, SSC) within the water column; T is the tidal period, over which the

averaging is performed (T = 12 hours); nT is the number of tidal periods in a

year; ws = 0.2 mm/s is the settling velocity (estimated on the basis of a typical

sediment size of 20 µm (Gibbs, 1985)); ρb = ρs · (1 − λ) is the bulk density,

with ρs = 2650 kg/m3 and porosity λ = 0.5. Equation (3.2) shows that the

local inorganic sediment deposition rate, Qs(x, t), can be determined only once

the local, instantaneous SSC, C(x, t), is know everywhere along the transect.

To this end we consider the following advection-dispersion equation along the

transect (which is solved at short time scales, i.e. one single tidal cycle)

∂(yC)

∂t
+

∂

∂x

(

uCy − kdy
∂C

∂x

)

= −wsC (3.3)

where y(x, t) = zw(t) − z(x, t) is the local instantaneous water depth; zw(t)

is the spatially uniform instantaneous water elevation obtained by assuming a

semidiurnal sinusoidal fluctuation of the tidal level (i.e., zw(t) = H · sin(2πt/T ),

with H = 0.5 m typical of microtidal settings); kd is the dispersion coefficient

(assumed here to be 1.5 m2/s (Elder, 1959)); and u(x, t) is the local instanta-

neous fluid advective velocity.

The flow field is obtained by considering a quasi-static propagation of tidal

levels along the transect and determining the advective velocity, u(x, t), from

the continuity equation
∂y

∂t
+

∂(yu)

∂x
= 0 (3.4)

Equations (3.3) and (3.4) make it possible to decouple are solved through

a finite volume numerical method over a tidal cycle, by setting the following
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boundary conditions: y(0, t) = zw(t) − z(0, t) and u = 0|x=L in equation (3.4);

and ∂C
∂x

∣

∣

x=L
= 0 and C(0, t) = C0 in equation (3.3). It is worth noting that

because bottom topography usually evolves on a much longer timescale than

the water motion does, the solution of the hydrodynamic field (equation (3.4))

and of sediment transport dynamics (equation (3.3)) during a tidal cycle are

decoupled from the morphological evolution (equation (3.1)).

The local organic accretion rate, Qo(x, t), is assumed to be proportional to

the local annually-averaged aboveground biomass, Bi(x, t) = Bi(z), of the veg-

etation species i, which colonizes the considered location, x, along the transect:

Qo(x, t) = γBi(z) (3.5)

where γ = 2.5 · 10−6 m3/yr/g incorporates both typical vegetation char-

acteristics and the density of the organic soil produced (Marani et al., 2010;

Mudd et al., 2009). Such an assumption (i.e. the production of organic matter,

Qo, proportional to the local annually averaged aboveground biomass, Bi(z)) is

commonly adopted in salt-marsh biomorphodynamic models (Randerson, 1979;

Morris et al., 2002; Mudd et al., 2004; D’Alpaos et al., 2006; Kirwan and Murray,

2007; Marani et al., 2007).

The local annually-averaged plant biomass of a given species, Bi(z), may, in

turn, be expressed through a fitness function, fi(z), that describes how species

i is adapted to different topographic elevations, z(x, t), and to the associated

edaphic conditions

Bi(z) = B0 · fi(z) (3.6)

where B0 is the maximum biomass density of a fully vegetated salt-marsh

area. The fitness function, fi(z), synthetically accounts for the physiological

characteristics of each species, because it describes biomass production rate,

and the reproductive ability, at different elevations.

Model simulations start with a random distribution of a few species whose

fitness functions cover in an approximately homogeneous manner elevations be-

tween MSL and mean high water level (hereinafter MHWL=H), and with an ini-

tial topographic profile (e.g. linearly decreasing from the channel to the divide,
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or horizontal. Different initial profiles have been explored leading to immaterial

differences in the eco-geomorphic properties of the final equilibrium configura-

tions).

For a given configuration of elevations and vegetation distribution along the

transect, relative to a given stage tj, the coupled biogeomorphic evolution is

performed according to the following rules:

1. At every instant of the tidal cycle, we determine the hydrodynamic field

from equation (3.4) and the local SSC, C(x, t). This allows us to com-

pute (from equation (3.3)) the annually-averaged inorganic deposition rate,

Qs(x, tj), for the current topographic profile (i.e. relative to time tj);

2. The organic deposition rate, Qo(x, tj), is therefore computed along the

transect by considering biomass production (related to the fitness func-

tion) of the species i that occupies the site x at the current stage of evo-

lution, tj;

3. The topographic profile is therefore updated, on the basis of Exner’s equa-

tion (3.1), according to the value of ∂z/∂t = Qs(x, tj) + Qo(x, tj) − R.

Everywhere along the transect the new elevation is determined as follows:

z(x, tj +∆t) = z(x, tj) + ∂z/∂t(x, tj) ·∆t (where ∆t = 1 year);

4. Finally the distribution of different vegetation species along the transect

is updated, to account for changed edaphic conditions and interspecific

competition or mutations. This occurs either through the “fittest-takes-

it-all” competition mechanism or the “stochastic competition” mechanism

(see Section 3.2.1) or the “mutation” mechanism (see Section 3.2.2).

Steps from 1 to 4 are repeated until no changes in elevation and species

distribution along the transect are found.
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3.2 Evolutionary vegetation model

We consider in the vegetation model a different number of species that ini-

tially randomly colonize the topography. The main physiological characteristics

of each species are described by the fitness function fi(z) (Marani et al., 2012).

It is commonly observed that the fitness function takes a maximum value at a

small range of elevations (characteristic of each plant) and decreases as eleva-

tion depart from this optimal range (Morris, 2006, 2007). This function describes

the biomass productivity depending on the bottom topographic elevation com-

puted with respect the local MSL and the associated edaphic conditions. Many

functions were taken into account to describe the different species properties:

discrete functions, continuous beta-distributions, continuous bi-exponential dis-

tributions, continuous hyperbolic secant functions. Here we focus on the de-

scription of the discrete functions (Section 3.2.3) used as an initial modeling

of the fitness function and secondly a more detailed description of the continu-

ous hyperbolic secant functions (Section 3.2.4), chosen in the model for further

analysis.

In the vegetation model we adopt two different evolution mechanisms to self

organize the species distribution over the salt marsh. The first one is a spatial

mechanism that consists in redistributing the species, following a competition

criterion among the “stronger” species (i.e. more adapted to different elevation–

conditions) (Section 3.2.1); the second one is a mutation mechanism (Section

3.2.2), according to which new species born from the existing ones and enter in

the competition cycle. These two evolution criteria (competition and mutation)

are studied in the model both separately and in order to emphasize the role of

the two mechanisms and their coupled effect.

3.2.1 Competition mechanism

Changes in the distribution of bottom elevations along the transect are cou-

pled in a two-way fashion to changes in species distribution which occur as a
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consequence of inter–specific spatial competition.

The species distributed over the salt marsh may compete with each other, to

conquer a small niche in the territory and establish. We account in the model

for two different ways in the competition process, i.e. two different possible

evolution strategies, namely, “fittest-takes-it-all” and “stochastic competition”.

When the “fittest-takes-it-all” competition mechanism is adopted we select,

at each site with coordinate xk, the species i for which fi(zk) is maximum; when

the “stochastic competition” mechanism is considered, we randomly select, at

each site with coordinate xk, a species with a probability proportional to fi(zk):

p(i, xk) =
fi(zk)

∑

j fj(zk)
(3.7)

to represent the several stochastic factors influencing the outcome of compe-

tition (e.g. local soil properties, microtopography, meteorological conditions,

etc.). From year to year natural selection by competition modifies the species

colonization.

3.2.2 Mutation mechanism

Mutation is a significant phenomenon in many aspects of life on Earth and is

one of the principal means by which evolutionary change takes place. Generally,

mutation indicates a response to an outside factor changing.

Mutation, in biology, is a sudden, random change in a gene, or unit of hered-

itary material, that can alter an inheritable characteristic. New mutations can

be deleterious, neutral, or advantageous. Most mutations are not beneficial,

since any change in the delicate balance of an organism, having a high level of

adaptation to its environment, tends to be disruptive, quickly eliminated. As

the environment changes, however, mutations can prove advantageous and thus

soon fixed by natural selection and contribute to evolutionary change in the

species (Mitchell-Olds and Clauss, 2002).

The mutation may interest the phenotype of the species, i.e. the composite

of an organism’s observable characteristics or traits such as its morphology,
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development, biochemical or physiological properties. In this case the mutations

may be frequent in time. Many recent studies have reported “rapid evolution”

in contemporary populations facing environmental change. We prefer the term

“contemporary evolution” in reference to evolutionary changes observable over

less than a few hundred years, few hundred generations, heritable trait evolution

observed in contemporary time (Stockwell et al., 2003). Such rates can indeed be

“rapid” but this assertion is empty without actually quantifying and comparing

evolutionary rates.

The mutation may also interest the genotype of the species, the inherited

instructions within its genetic code; in this case the frequency of mutation is

longer because many years are necessary to fix a different genotype character in

a species.

In Sections 3.2.3 and 3.2.4 we describe in detail how the evolution evolves

according to the different fitness functions used; however, the basic concept

consists in generating new species, modifying their basic characters.

3.2.3 Discrete fitness function

We discretized the marsh elevation in the tidal frame dividing it into elevation

classes. To every elevation discretized value, correspond a fitness value. The

values randomly span a range from 0 to 1, with the constraint that
∑

k

fi(zk) ≤ 1.

This constrain is assumed because vegetation species have in general limited own

resources and then they have to redistribute them satisfying the more limiting

needs.

In figure 3.2 we propose an example of four different discrete fitness functions.

These fitness may be more or less specialized to a narrow range of elevations z

and may have a different discretization degree.

As to the “mutation process”, how does it occur? Fixed the frequency of

mutation (every year, every 50, 100 years as example), we randomly choose a

site of the 1D marsh transect and randomly change a character of the “mother”

fitness function, generating a daughter species. Only if the general condition, i.e.
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Figure 3.2: Representative discrete fitness functions

∑

k

fi(zk) ≤ 1, the mutation, and accordingly the “daughter” species, is accepted

entering in the competition spatial process, otherwise, another random changes

are necessary to satisfy the constrain.

The use of the discrete function turned out to be unsuitable to exhaustively

describe the species characters; being discrete, the functions have proven to

be influenced by the discretization step. They are used in the initial model

analysis and later replaced with the continuous functions. Some of the results

show in fact that the number of species covering the salt marsh was influenced

by the discretization step, and also they are not as flexible as the continuous

functions. Despite of these observations, the discrete description is useful to

begin to interpret the initial model response.

3.2.4 Continuous fitness function

We finally adopt in the model the following analytical general expression for

the fitness function of the generic species i:

fi (ζ) =
2

exp (λR (ζ − ζi0)) + exp (−λL (ζ − ζi0))
(3.8)

where ζ = z/H, ζi0 = zi0/H is the adimensional elevation where the function
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is equal to one, and λ is the scale parameter, expressing the rate at which

the fitness function tends to zero (left and right) away from its maximum. A

prefactor P = (fi (ζiM))−1 allows to impose that fi (ζiM) = 1. ζiM = ζi0 +

ln(λL/λR)/(λL + λR) corresponds to the adimensional elevation where the the

fitness function assumes the maximum value. If the fitness function is symmetric,

λL = λR, ζiM = ζi0 and the prefactor P is not necessary because geometrically

the maximum is equal to one.

In this Thesis we assume the symmetric condition, but also other configura-

tions may be used.

Therefore, the fitness function expression becomes:

fi (ζ) =
2

exp (λi (ζ − ζi0)) + exp (−λi (ζ − ζi0))
(3.9)

Equation (3.9) is a flexible function to describe the different species prop-

erties (Morris, 2006) but other expressions were studied (e.g. beta continuous

functions, bi-exponential continuous functions) leading to very similar results.

When the scale parameter is large, the considered species is very specialized,

and therefore it is very fit in a narrow range of elevations. On the contrary,

when the scale parameter is small, the species is not specialized and it may be

well adapted over a large range of elevations.

We may also consider a prefactor C which multiply equation (3.9) accounting

that a species can or not produce the maximum biomass per unit area. 0 < C <

1, if C = 0 then there is no biomass productivity, if C = 1 then the species

produce the maximum areal biomass.

In figure 3.3 there are some representation of generic fitness functions, sym-

metric or not, with unitary maximum or not, with different modes.

Looking to the “mutation process”, and considering the continuous fitness,

the mutation dynamics are a little different, but basically the main concept is

the same. The possible way of mutations improve, because of the increasing in

the number of the parameters describing the continuous functions, and could be
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Figure 3.3: Representative continuous hyperbolic secant fitness functions. λ is the

scale parameter (left or right), C is an optional prefactor from 0 to 1, to impose

the maximum less or equal to one, index of the maximum possible areal biomass

productivity, zM is the function mode.

one of the following or a combination of these:

i) We may change just the mode of the function: in this sense, the fitness

shape remains the same during the process of mutation but the new species

generated is well adapted to a different range of elevation, keeping the same

shape of the mother species which generates it.

ii) Another way of mutation consists in a random changing of the maximum

possible areal biomass productivity (i.e. changing the parameter C);

iii) Random changing of the asymmetry of the function (not shown here) de-

fined as A = (λL − λR)/(λL + λR).

iv) Random changing of the variation of the function defined as V = 1/λR +

1/λL and in the case of symmetric function it becomes V = 2/λ. Changing

the variation we may assume that the “daughter” species is more or less

flat than the “mother”, i.e. more or less specialized.
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In figure 3.4 we show some schematic representation of different ways of

speciation, the most frequent adopted in our analysis.
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Figure 3.4: Schematic species mutations of the continuous fitness function describing

the species characteristic.



Chapter 4

1–D: marsh–scale biogeomophic

patterns formation

It is now interesting to explore the mechanisms that lead to the formation of

well–known smaller scale patterns associated with marsh vegetation species dis-

tributions. We find here that zonation is, in fact, a biogeomophological pattern,

rather than simply a biological one, and that it is the visible symptom of the

underlying feedbacks between biomass productivity and soil accretion. In the

first Section we present the emerging patterns using an initial discrete approach

in the biological description, in the following Sections we describe how different

species, adapted to different edaphic conditions, competing among them, lead

to a set of almost discrete equilibria. Thus, we analyze the robustness of marsh–

scale biogeomorphic features to changes in forcings, with implications for marsh

ecosystem resilience to anthropogenic pressures. Finally we explore a series of

analyzes that couple mutations to spatial competitions in the species evolution

dynamic.

4.1 Discrete fitness functions: analysis

In this Section we present some observations using a discrete description

of the fitness plant functions. We consider an initial case in which we assume
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a fixed linearly decreasing salt marsh topography: z = 0.40 m in x = 0 and

z = 0.30 m in x = L = 40 m. We assume an elevation discretization of 0.02 m

in the range 0-0.50 m above MSL which is the semi-tidal sinusoidal amplitude.

Starting from three randomly distributed and randomly generated species, we

allow two evolving mechanisms: the first one is the yearly spatial selection and

the second one is the yearly mutation mechanism.

The yearly spatial selection allows to redistribute the species following the

“fittest-takes-it-all” formulation; the mutation mechanism, instead, allows a ran-

domly speciation of a single species every year, changing one of the fitness func-

tion character. The constraints adopted are that fi(zk) ≤ 1 and
∑

k

fi(zk) ≤ 1,

indicating as i the different species, as k the different spatial sites and as z the

different elevations of each k site.

In figures 4.1 and 4.2 we show three time steps of the evolving fitness func-

tions and the spatial distribution of species over the constant linearly decreasing

topography (figure 4.1) or over an exponential linearly decreasing topography

(figure 4.2). The transect in figure 4.1 has a less steep topography than the one

in figure 4.2, especially next to the channel (left of the transect). Over time,

if the spatial gradient is small (i.e. small dz/dt), there is no an incentive for

the species to produce a lot of biomass at a large range of elevations; on the

other hand, looking to figure 4.2, where the spatial gradient is bigger (i.e. big

dz/dt), there the species, adapted to large ranges of elevations, are promoted.

Their fitness functions, in fact, are more flatt (i.e. less specialized to specific

elevations) than the fitness functions shown in figure 4.1. If hypothetically, we

consider a topography almost flat, we will observed few species very specialized.

Over time, all the species tend to maximize their own productivity, i.e. tend

to increase the maximum value of the fitness: when a new daughter species ap-

pears, it will survive only if it is better than the others alive above the transect,

otherwise, if less good than others, it is replaced .

We consider now a complete time evolution system (i.e. maximum-fitness
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Figure 4.1: Time constant topography linearly decreasing (left) and fitness function

representation (right). Each color identifies a different species (red color for species

adapted to high elevations, blue color for species adapted to low elevations). Spatial

yearly selection mechanism and yearly mutation on.
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Figure 4.2: Time constant topography exponentially decreasing (left) and fitness

function representation (right). Each color identifies a different species (red color for

species adapted to high elevations, blue color for species adapted to low elevations).

Spatial yearly selection mechanism and yearly mutation on.
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colonization mechanism plus mutation mechanism plus topography evolution

over time) (figure 4.3). We start from a constant topography and three ran-

domly distributed and generated species. As external conditions we assume a

sinusoidal tidal with semi-amplitude H = 0.50 m and period T = 12 hrs and a

sediment suspend concentration (SSC) C0 = 40 mg/l in the channel. Following

the spatial competition mechanism and the mutation mechanism, the system

is free to evolve with a mutual interaction from the topography condition to

the biomass condition and viceversa. Looking to figure 4.3, it is evident the

mutual relationship that appears in the bio-morphodynamic system. Entering

more deeply in this concept (we will talk more about it, with further details,

in Section 4.2), we can say that the topography condition influences the species

colonization and redistribution above the transect, but, from the species point

of view, they do not passively adapt to the morphology condition, rather, they

engineer the topography producing other organic sediment deposition, produc-

ing organic soil. The “dynamic” species seem to tune the topography with a

sort of an inverse feedback. The final topography in figure 4.3 appears quite flat

(series plotted with different scale axes) but some terraces-like structures appear

over it. This “terraces” are the result of the engineering species capability. The

marsh profile is characterized by mostly tabular areas, colonized by a single veg-

etation species. This is the first important result, but it is also the starting point

to develop other further analysis to explain the vegetation pattern formation.

Also in this case, the constraints adopted for the mutation mechanism are

that fi(zk) ≤ 1 and
∑

k

fi(zk) ≤ 1, indicating as i the different species, as k the

different spatial sites and as z the different elevations of each k site. However,

in this case we introduce a new parameter λ to control the fitness slopes. We

impose that
∑

k

fi(zk) ≤ (λ·dz)−1, dz = 0.02 m and λ = 50. Introducing this new

parameter, we are able to adjust the species specialization degree. Considering

lower values of λ, implicitly we allow the less specialization, i.e. more flat fitness

function.

figure 4.4 displays all the fitness shapes colonizing the sites of the transect,
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from the species well adapted to the low elevations (blue color), to the species

adapted to the high elevations (red color). The species do not maximize the

biomass production as we can see looking to the value of the biomass (bottom

right of figure 4.4), which reaches 500, 600 g/m2, fixed the maximum areal

biomass productivity equal to 1000 g/m2.
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Figure 4.3: Time topography evolution (left) and fitness function representation

(right). Starting constant topography condition. Each color identifies a different

species (red color for species adapted to high elevations, blue color for species adapted

to low elevations). Spatial yearly selection mechanism and yearly mutation on.
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Figure 4.4: Representation of the species fitness shape after one thousand years,

from species adapted to the low elevations (blue), to species adapted to high elevations

(red). At the bottom of figure there are the transect topography (left) and the biomass

production (right).
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4.2 Training of zonation: general model behav-

ior

We show here that zonation is, in fact, a biogeomorphological pattern, rather

than simply a biological one, and that it is a visible symptom of the underlying

feedbacks between biomass productivity and soil accretion (Da Lio et al., 2012).

Following (Marani et al., 2012), we first consider a reference case (figure 4.5a)

in which the platform is flooded by a tidal oscillation of period T = 12 hours

and amplitude H = 0.50 m, and is forced with a SSC C0 = 20 mg/l and a rate of

RSLR R = 3.5 mm/yr, the latter condition being representative of the local rate

of RSLR for the 20th Century in the Venice Lagoon (Carbognin et al., 2004;

Marani et al., 2007). Moreover, in the reference case, we consider continuous

fitness functions and the vegetation dynamics along the transect is modelled on

the basis of the the maximum-fitness colonization mechanism (“fittest-takes-it-

all”).

Starting from a configuration characterized by linealy decreasing elevations

from the channel towards the end of the transect, the marsh platform evolves

displaying, at equilibrium, the emergence of stable states characterized by sharp

transitions between neighboring bio-geomorphic terrace-like structures, as shown

in figure 4.5a. In the final marsh configuration, mostly tabular areas occur which

are colonized by a single vegetation species (as emphasized by the red, green, blue

colors in figure4.5a). These zonation patters are a typical feature of actual salt-

marsh landscapes and can be observed in the field although being characterized

by small differences in elevation, as we shall discuss in the following.

One then wonders what physical and biological processes are responsible for

the development of zonation patterns in salt-marsh landscapes. This can be

explained through the joint analysis of bottom elevations along the transect

(figure 4.5a), total accretion rates (∂z/∂t = Qs(z) + Qo(z) − R) as a function

of marsh elevation (figure 4.5b), and vegetation fitness functions (figure 4.5c)

which are proportional to vegetation biomass on the basis of eq. (3.6). In the
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reference case, we have considered three vegetation species with the same degree

of specialization, i.e. the same scale parameter (λ = 5), but displaying optimal

ranges at different elevations (z = 0.10 m above MSL for the blue species,

z = 0.25 m above MSL for the green species, and z = 0.45 m above MSL for the

red species.

The analysis of figure 4.5, together with the quantitative information pro-

vided by the governing equations (3.1 and 3.9), highlights that zonation struc-

tures emerge as a result of ecogeomorphic feedbacks involving inorganic de-

position and organic accretion (via biomass production), which lead to pairs

of stable and unstable equilibrium states. This can be illustrated by consid-

ering the middle species in figure 4.5a (species i = 2, in green) and in par-

ticular the lowest site within the patch occupied by this species (with coor-

dinate, say, x̂2), whose equilibrium elevation, ẑ2 = z(x̂2), corresponds to the

condition ∂z/∂t = Qs(ẑ2) + Qo(ẑ2) − R = 0. By recalling equations (3.5)

and (3.6), it follows that the above equilibrium condition can be rewritten as

f2(ẑ2) = (R−Qs(ẑ2))/(γ ·B0). The latter equation gives two solutions: a stable

equilibrium with elevation z
(s)
2 (above the maximum of f2(z), solid green cir-

cle in figure 4.5b,c) and an unstable equilibrium with elevation z
(u)
2 (below the

maximum of f2(z), open green circle). The numerical solutions of the Exner’s

equation (3.1), carried out for a set of transect configurations obtained by per-

turbing the elevation at x̂2 within a range of values around z
(s)
2 (figure 4.5b),

shows that this is a stable equilibrium. A perturbation which increases the ele-

vation at x̂2 above z
(s)
2 , generates a decrease in biomass production and in the

related organic accretion (figure 4.5c), together with a decrease in the inorganic

deposition rate, Qs, as a consequence of the increased local velocity. As a con-

sequence, the total accretion rate becomes negative, ∂z/∂t < 0 (figure 4.5b),

thus leading to a decrease in the elevation and bringing the system back to the

original equilibrium. Similarly, a perturbation which decreased the elevation at

x̂2 below z
(s)
2 would induce an increase in the biomass production and in the

related organic accretion rate (figure 4.5c), as well as an increase in Qs. The
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total accretion rate would therefore become positive, ∂z/∂t > 0 (figure 4.5b),

thus increasing the elevation at x̂2 and bringing the system back to the stable

equilibrium. This analysis can be summarized by noting that ∂/∂z(∂z/∂t) < 0

at z
(s)
2 , which defines the condition for a stable equilibrium. Note that the in-

organic deposition rate, Qs, varies along the transect, depending on the local

instantaneous SSC (see eq. 3.3), and therefore stable equilibrium elevations

at other sites within the same vegetation patch are slightly different from the

elevation at x̂2, z
(s)
2 , generating a mildly sloping geomorphic structure.

The second equilibrium solution, z
(u)
2 , is an unstable equilibrium (open green

circle in figure 4.5b, c). Let us, in fact, consider a site with elevation equal to

z
(u)
2 . A postive perturbation increasing the elevation of such a site, enhances the

organic accretion rate, Qo (figure 4.5c), while reducing inorganic deposition, Qs,

as a cosequence of a higher flow velocity. However, the increase in Qo outweighs

the decrease in Qs, thereby making ∂z/∂t > 0 (figure 4.5b) and driving the

elevation of the site away from z
(u)
2 towards z

(s)
2 . On the contrary, a perturbation

which acted to decrease the elevation of the site, would promote a decrease

in the organic accretion rate, Qo, stronger than the increase in the inorganic

deposition rate, Qs, thus making ∂z/∂t < 0 (figure 4.5b) and therefore pushing

the elevation to even lower values, towards the stable equilibrium, z
(s)
3 , of the

vegetation species i = 3 (blue solid circle in figure 4.5b).

We note that in the case of the “green” species (i = 2) (as well as for the

lower “blue” species) ∂Qs/∂z << ∂Qo/∂z and therefore the stability of this

equilibrium state is not influenced by variations in Qs induced by perturbations

of z because ∂/∂z(∂z/∂t) ∼= ∂Qo/∂z. In fact, the stability of these equilibria can

be established by studying fi(z) alone (we reacall that Qo(z) = γ · B0 · fi(z)),

the condition dfi/dz < 0 denoting a stable equilibrium. This is not the case

for the portion of the marsh nearest to the margin (red in figure 4.5a, b, c),

where the inorganic deposition rate, Qs, is very sensitive to changes in the local

elevation. We may, in fact, note that the equilibrium state in the upper marsh

zone (red in figure 4.5a, b, c) lies on the branch of the fitness function located
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Figure 4.5: Reference case. Zonation patterns generated by the model. (a) The

time evolution of transect topography was here started from a linear initial condition

but several other initial conditions were explored with analogous results. Monospecific

vegetation patches, very similar to observed zonation patterns (see inset), and terrace-

like topographic structures emerge as a result of multiple stable states defined by

∂z/∂t = 0 and ∂/∂z(∂z/∂t) < 0. (b) Sites with initial elevation comprised between

z
(u)
i and z

(s)
i move towards z

(s)
i , while sites whose initial elevation is located below z

(u)
i

move towards z
(s)
j , j being the species with optimal elevation located immediately

below that of species i. (c) Shows the fitness function of the species populating

the marsh, which defines the rate of organic soil production as Qo = γ · B0 · fi(z)

(γ incorporates typical vegetation characteristics and the density of the organic soil

produced, B0 is the biomass density of a fully vegetated marsh).

below the maximum, where dfi/dz > 0 (figure 4.5c), seemingly implying an

unstable equilibrium. However, because ∂Qs/∂z > ∂Qo/∂z here, the stability

of the equilibrium is controlled by inorganic deposition, which decreases with

elevation, determining a value ∂/∂z(∂z/∂t) < 0 and indicating an inorganic

sediment-controlled stable equilibrium.

In figure 4.6a we represent the accretion rate dz/dt = Qs(x, t)+Qo(x, t)−R

along the transect almost equal to 10−5, i.e. the equilibrium elevation state;

in figure 4.6b we can see the trend of the respective inorganic flux (continuous

line) and organic flux (dashed line). The sum of these two fluxes complement

the rate of the relative see level rise. The trends of the two fluxes are specular:

in primis we can see that there are three main trends that reflect the three
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Figure 4.6: Reference case. (a) Accretion rate dz/dt, function of elevation; (b)

organic (Qo(x, t)) and inorganic (Qs(x, t)) fluxes along the transect; (c) organic flux

compared with the inorganic one; (d) transect equilibrium topography
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Figure 4.7: Reference case. (a) Accretion rate, function of elevation. Solid circles

represent the stable elevation equilibria; (b) Shows the rate of inorganic soil production

as Qs almost linearly decreasing as the elevation increases. Solid circles represent the

stable elevation equilibria; (c) Shows the rate of organic soil production as Qo =

γ · B0 · fi(z) (γ incorporates typical vegetation characteristics and the density of the

organic soil produced, B0 is the biomass density of a fully vegetated marsh, fi(z) is

the fitness function). Solid circles represent the stable elevation equilibria

terraces structures developing over the salt marsh. You can see how each pattern

is similar to other: from the channel to the no flux boundary, the inorganic

flux decreases because of the moving away from the channel input sediment.

Respectively, the organic flux increases over each pattern because each elevation

terrace decreases: decreasing in elevation in fact, we tend to the maximum

value of the fitness function and thus an increasing of the organic production,

reaching the maximum value of Bo = 1000 g/m2 and Qo = 2.5 mm/yr. We can

also appreciate the ratio between the organic and the inorganic flux (figure 4.6c),

big at the end of the terraces sign that at the end of the terraces the organic

flux is predominant among the sediment fluxes. The last subplot (figure 4.6d)

represents the elevation topography like in figure 4.5a.

We note that, in all cases, the terrace-like structures lie for the most part

above the elevation for which maximum biomass production occurs (see fig-
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Figure 4.8: Reference case: frequency density of the fitness functions

ure 4.5c), suggesting that zonation patterns may be associated with a higher

morphological stability at the expense of a reduced productivity. In figure 4.8

we represent the frequency density of the fitness functions showing the sub-

optimality (the more frequent values are in the range 0.92− 0.94) of the organic

production in a stable state morphological condition and in figure 4.9 we show

the frequency of each species colored them with the three different colors.

Focusing now on the last node of the transect colonized by the red species,

we remember that it is a stable equilibrium, although it is located on the branch

of the fitness function below the maximum, where dfi/dz > 0 (figure 4.5c), seem-

ingly implying an unstable equilibrium. However, because ∂Qs/∂z > ∂Qo/∂z

here, the stability of the equilibrium is controlled by inorganic deposition, which

decreases with elevation, determining a value ∂/∂z(∂z/∂t) < 0 and indicating

an inorganic sediment-controlled stable equilibrium. The analysis presented in

figure 4.11 and 4.12 perturb the elevation of this node indicated with a red solid

circle; in figure 4.10 there is the reference case, already presented in figure 4.6b,

highlighting the node subjected to perturbation.
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Figure 4.9: Reference case: frequency density of each species (“blue”, “green”,

“red”) fitness functions
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Figure 4.10: Reference case. Inorganic and organic flux (left and right respectively);

the red solid circle represents the last site colonized by the red species.
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In the perturbation N◦1 we reduce by 5 cm z = zeq − 0.05 = 0.3907 m

the stable equilibrium elevation of the node#6 (zeq = 0.4407 m). Because of

this reduction, the inorganic sediment deposition increases from 1.026 mm/y

to 1.299 mm/yr (almost +27%) because the increased depth; conversely, the

organic deposition decreases from 2.489 mm/yr to 2.117 mm/yr.

In the perturbation N◦2 we increase by 5 cm z = zeq + 0.05 = 0.4907 m the

stable equilibrium elevation of the node#6 (zeq = 0.4407 m). This increase in

elevation produces a reduction of the inorganic flux from 1.026 mm/yr to 0.743

mm/yr (almost -38%) and an increase in organic flux from 2.489 mm/yr to 2.306

mm/yr. Looking to the mean sediment suspend concentration (SSC) over a tidal

cycle, we can appreciate that there is no an important variation among the three

cases analyzed: in the reference case the mean SSC over a tidal cycle is equal to

to 0.1536 mg/l, in the case “perturbation N◦1” equal to 0.1545 mg/l and in the

last case (“perturbation N◦2”) equal to 0.1497 mg/l. The difference among these

values is very small, but, despite this fact, the differences in terms of inorganic

sediment deposition flux, function of the SSC, are much bigger. In fact, the

model is written, requiring that at the end of a tidal cycle, all the suspended

sediment present, is instantly deposited at the bottom of salt marsh according to

Qs(x, t) = h(x, t) · C(x, t), where h(x, t) is the instant depth, because the water

basin becomes empty during the reflux tidal phase. As the depth increases, the

inorganic sediment deposition flux increases too, as we can read in Table 4.1

referring to the last tidal instant; the inorganic deposition over a tidal cycle

is almost the same in the three cases (see Table 4.1, tidal cycle*). figure 4.13

displays the mean SSC over a tidal cycle in the three different configurations

taken into account obviously decreasing by the continuous sediment charging of

the channel.
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Figure 4.11: Perturbation N◦1. Inorganic and organic flux (left and right respec-

tively); the red solid circle represents the last site colonized by the red species in the

case in which we perturb the site equilibrium elevation zeq from the equilibrium state

z = zeq − 0.05m decreasing the equilibrium elevation
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Figure 4.12: Perturbation N◦2. Inorganic and organic flux (left and right respec-

tively); the red solid circle represents the last site colonized by the red species in the

case in which we perturb the site equilibrium elevation zeq from the equilibrium state

z = zeq + 0.05m increasing the equilibrium elevation
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Figure 4.13: Mean suspend sediment concentration over a tidal cycle in three dif-

ferent elevation topography configuration. In red solid circle we indicate the site#6

of the salt marsh transect, subjected to perturbation
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Table 4.1: Inorganic deposition, organic deposition and mean SSC in three different

elevation topography configurations. We perturb the elevation of a site of the salt

marsh transect to see the effect on the deposition fluxes

Qs(#6)(mm/yr) Qo(#6)(mm/yr) mean SSC(#6)(mg/l)

zeq

1.026 2.489 0.1536

0.718 tidal cycle*

0.308 last ist.

zeq − 0.05m

1.299 2.117 0.1545

0.722 tidal cycle*

0.577 last ist.

zeq + 0.05m

0.743 2.306 0.1497

0.700 tidal cycle*

0.043 last ist.

* total inorganic deposition during all the instants of the tidal cycle

except the last time instant when the first salt mash node is uncovered

by the water
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4.3 The role of the rate of RSLR

We now analyse the bio-geomorphic patterns emerging when the marsh is

subjected to the same forcing considered in the reference case and to increas-

ing rates of RSLR, namely R = 5 mm/yr and R = 7 mm/yr. In the case of

R = 5 mm/yr, the bio-geomorphic features of the equilibrium patterns are qual-

itatively similar to those of the reference case, although some differences emerge

(figure 4.14a). The comparison of the two equilibrium profiles shows that as the

rate of RSLR increases, the equilibrium marsh elevations tend to decrease, in

agreement with the results of other modelling approaches (Kirwan et al., 2010;

Marani et al., 2007; Morris et al., 2002; D’Alpaos et al., 2011a,b). It should be

noted that, under increased RSLR conditions, the equilibria of the two highest

geomorphic structures (red and green in figure 4.14a) lie on the branch of the

fitness functions where dfi/dz > 0 and hence dQo/dz > 0, very close to the maxi-

mum value (figure 4.14c). Because ∂(∂z/∂t)/∂z < 0 (figure 4.14b), this suggests

that the stability of the equilibria are here governed by the inorganic deposition

flux, i.e. ∂Qs/∂z > ∂Qo/∂z. On the contrary, the equilibrium elevation in the

lowest patch belongs to the branch of the fitness curve where dQo/dz < 0 (figure

4.14c), and is therefore governed by the organic flux, as in the reference case

(i.e., ∂Qo/∂z > ∂Qs/∂z). Interestingly, the general lowering of the equilibrium

elevations induced by an increased rate of RSLR causes a sort of cascade effect,

in which areas that, for a lower value of R, belonged to higher elevation struc-

tures now abruptly transitioned to lower equilibrium states. As a result, the

area colonized by the species adapted to the lowest elevations is larger under

increased R, with a corresponding reduction in the area of the higher vegeta-

tion patches. A further increase in the rate of RSLR, however, may drastically

change marsh patterns, due to the lowest sites in the lowest patch becoming

unstable and switching abruptly to a lower yet (unvegetated) equilibrium state

(figure 4.14d, e, f).

Figures 4.15 and 4.16 show the deposition fluxes according to RSLR=5

mm/yr and RSLR=7 mm/yr respectively. In according to the previous re-
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sults, when the topography is lower than the MSL, i.e. there is a transition

from the salt marsh to tidal flat equilibria, the organic deposition is absent (see

figure 4.16) and the inorganic deposition balances the rate of the RSLR. When

RSLR=5 mm/yr is considered, the inorganic deposition is greater than the or-

ganic toward all the transect, different from the equilibrium–fluxes configuration

observed in the reference case (see figure 4.6b). This is due to the lower (on aver-

age) bottom elevations toward the transect. In fact, the inorganic flux Qs(z) is

founded (through numerical simulation) to be a monotonically decreasing func-

tion of z: as z increases, the amount of the “precipitable” suspended sediment

C ·D = C · (h−z) decreases, decreasing the flux of inorganic sediment deposited

during a tidal cycle (remember that C is the SSC, D is the water depth and h

is the instantaneous tidal water free surface).

4.4 The role of the sediment supply

We then analyzed the role of sediment supply in dictating the emerging

biogeomorphic patterns. When the SSC is reduced, compared to the reference

case, to C0 = 5 mg/l (figure 4.17a, b, c) we observe that only the portion of the

transect closest to the channel (distance < 10m) is able to keep pace with the

imposed rate of RSLR (3.5 mm/yrr in this case). On the contrary, because a

decrease in the available SSC leads to a decrease in the settling rate across the

transect, portions of the platform farthest from the channel progressively drown

below MSL reaching a subtidal equilibrium at elevations lower than MLWL. The

reduction in the SSC from C0 = 20 mg/l to Co = 5 mg/l has stronger effects

on marsh topography than the increase in the rate of RSLR from R = 3.5

mm/yr to R = 7 mm/yr (see figures 4.14d, e, f) and therefore the equilibrium

configuration is reached at elevations lower than MLWL, where the increased

settling rate can balance the imposed rate of RSLR. The first portion of the

transect is able to keep pace with the imposed rate of RSLR and displays the

formation of vegetation patches which are colonized by single vegetation species
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Figure 4.14: (a) Equilibrium topography; terrace structures develop due to the

existence of multiple stable states. As external forcings we assume C0 = 20 mg/l and

R = 5.0 mm/yr. The dashed line represents the equilibrium elevation state in figure

4.5a; (b) Accretion rate as a function of perturbations in the local elevation. Solid

circles represent the stable elevation equilibria, open circles the unstable equilibria.

External forcings assumed: C0 = 20 mg/l and R = 5.0 mm/yr; (c) Fitness functions

of the species populating the transect (scale parameter λ = 5) with C0 = 20 mg/l and

R = 5.0 mm/yr. Solid circles represent the stable elevation equilibria, open circles the

unstable equilibria; (d) The same as (a) except R = 7 mm/yr; (e) The same as (b)

except R = 7 mm/yr; (f) The same as (c) except R = 7 mm/yr;
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Figure 4.15: Case RSLR=5 mm/yr. Deposition fluxes (inorganic and organic) over

the salt marsh transect (left); relation between the organic and the inorganic flux

(right)

0 20 40
0

2

4

6

8

space (m)

d
e

p
o

si
ti

o
n

 (
m

m
/y

)

 

 

inorganic

organic

0 20 40
0

0.2

0.4

0.6

0.8

space (m)

Q
o

/Q
s

Figure 4.16: Case RSLR=7 mm/yr. Deposition fluxes (inorganic and organic) over

the salt marsh transect (left); relation between the organic and the inorganic flux

(right)
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and characterized by elevations that decrease towards the inner part of the

transect. We can appreciate the big spatial topography variability: with a so

poor sediment concentration in the channel (C0 = 5 mg/l), the entire transect

length is too much long to be able to be a salt marsh, so, what happens is that in

a part of it there’s a transaction from marsh stable equilibria to subtidal stable

equilibria in which there is no vegetation. This is similar to what happened

in the case with R = 7 mm/yr, but now the spatial topography variability is

more accentuated. Despite of this, the vegetation still imposes its balance to

the marsh topography, what changes is the spatial dimension where it is able to

do its influence. Figure 4.18 shows the inorganic and organic flux considering

C0 = 5 mg/l: the organic flux is null where the transect topography is lower

than the MSL and the inorganic flux, in a stable condition, is equal to the rate

of the RSLR.

If the forcing SSC is increased to C0 = 30 mg/l (figures 4.17d, e, f), or

C0 = 40 mg/l (figures 4.17g, h, i) or C0 = 50 mg/l (figures 4.17l, m, n) no

significant differences occur with respect to the reference case. This is probably

because with high SSC, the topography rises up very quickly and then obstructs

the sediment flux coming from the channel. Thus, organic and inorganic rate

in figures 4.19, 4.20 and 4.21 are very similar among them and to the reference

case rates, previously commented.

4.5 The role of vegetation specialization

We have shown that vegetation acts as a landscape engineer by produc-

ing particular morphological-biological patterns in salt-marsh ecosystems. One

might then wonder how vegetation characteristics influence the biogeomorphic

features of salt-marsh landscapes. To address this question, we have considered

vegetation species with different degrees of specialization, i.e. species capable

of adapting to narrower or broader ranges of marsh elevations, as represented

by different values of the scale parameter λ in equation (3.9). In particular,
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Figure 4.17: (a) Equilibrium topography for C0 = 5 mg/l and R = 3.5 mm/yr. The dashed

line represent the equilibrium topography for the reference case (figure 4.5a); (b) Accretion

rate as a function of perturbations in the local elevation. Solid circles represent the stable

elevation equilibria. (c) Fitness functions of the species assumed to populate the transect

(scale parameter λ = 5). Solid circles represent the stable elevation equilibria; (d), (g) and

(l) The same as (a) with C0 = 30, C0 = 40, C0 = 50 mg/l respectively; (e), (h) and (m) The

same as (b) with C0 = 30, C0 = 40, C0 = 50 mg/l respectively; (f), (i) and (n) The same as

(c) with C0 = 30, C0 = 40, C0 = 50 mg/l respectively;
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Figure 4.18: Case Co = 5 mg/l. Deposition fluxes (inorganic and organic) over the

salt marsh transect (left); relation between the organic and the inorganic flux (right)
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Figure 4.19: Case Co = 30 mg/l. Deposition fluxes (inorganic and organic) over the

salt marsh transect (left); relation between the organic and the inorganic flux (right)
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Figure 4.20: Case Co = 40 mg/l. Deposition fluxes (inorganic and organic) over the

salt marsh transect (left); relation between the organic and the inorganic flux (right)
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Figure 4.21: Case Co = 50 mg/l. Deposition fluxes (inorganic and organic) over the

salt marsh transect (left); relation between the organic and the inorganic flux (right)
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we consider here vegetation species which are both more specialized (λ = 10)

and less specialized (λ = 2) than the reference case (λ = 5). The maximum

productivity elevations are in all cases kept the same (z = 0.10, z = 0.25, and

z = 0.45 m above MSL).

Model results show that when vegetation species are assumed to be more

specialized (figures 4.22a, b, c) the emerging biogeomorphic structures are more

“focused” within narrow elevation ranges with smaller topographic gradients, the

evidence of a stronger vegetation control on morphodynamic processes. Such a

behaviour can be illustrated by comparing the slope of the fitness functions,

dfi/dz, for the reference case and the case of more specialized vegetation species

in figure 4.22c. As the degree of specialization increases, the slope of the fitness

function increases (compare dashed and solid lines in figure 4.22c). Therefore,

smaller variations in the topographic elevation are required to determine the

changes in Qo necessary to match the spatial gradients of Qs and balance the

rate of RSLR. When less specialized (i.e. λ = 2) vegetation species are consid-

ered topographies displaying smoother, and possibly more realistic, transitions

between patches are obtained (figure 4.22d, e, f). Interestingly, because of the re-

duced vegetation control on elevation, topographic gradients are greater for less

specialized vegetation, suggesting the possibility of reading the morphological

signature of vegetation physiological adaptations to environmental conditions.

Our results, in fact, suggest that the slope of a vegetation patch may be indica-

tive of the breadth of the range of elevations to which the colonizing vegetation

species is adapted.

Comparing figure 4.23 and figure 4.24, emerges that ∂Qo/∂x is greater in

the case of species very specialized than the case of species less specialized and

thus, considering λ = 10, the maximum organic productivity is just close to

the end of the “terraces” (especially for the “red” and “green” species), instead,

considering λ = 2, the organic productivity is close to its maximum value over

all the transect, always bigger than the inorganic rate.
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Figure 4.22: (a) Equilibrium topography with terrace structures developing. Mul-

tiple stable states emerge assuming C0 = 20 mg/l and R = 3.5 mm/yr. The dashed

line represent the equilibrium elevation state in figure 4.5a; (b) Accretion rate as a

function of perturbations in the local elevation. Solid circles represent the stable ele-

vation equilibria. External forcings assumed: C0 = 20 mg/l and R = 3.5 mm/yr; (c)

Fitness functions of the species populating the transect with scale parameter λ = 10,

C0 = 20 mg/l and R = 3.5 mm/yr. Solid circles represent the stable elevation equi-

libria; (d) The same as (a) considering the scale parameter λ = 2; (e) The same as

(b) considering the scale parameter λ = 2; (f) The same as (c) considering the scale

parameter λ = 2;
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Figure 4.23: Case λ = 10. Deposition fluxes (inorganic and organic) over the salt

marsh transect (left); relation between the organic and the inorganic flux (right)
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Figure 4.24: Case λ = 2. Deposition fluxes (inorganic and organic) over the salt

marsh transect (left); relation between the organic and the inorganic flux (right)
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4.6 The role of the initial topography condition

In this analysis we consider three different initial topographic conditions: i) a

constant initial topography at 0.20 m above the MSL (figure 4.25a); ii) a random

initial topography generated from a uniform distribution (figure 4.25d); iii) a

random initial topography, produced from a normal distribution withmean=0.20

m above MSL and st.dev.=0.05 m above MSL (figure 4.25g).

Starting from a very random topography, and in particular with very large

jumps of topography between neighboring nodes (see figure 4.25d), what hap-

pens is that very low elevations of nodes positioned at about half transect length,

gradually over time receive a limited contribution of inorganic sediment and be-

long to the branch of the stable organic curve ∂Qo/∂z < 0 (figure 4.25f). Fo-

cusing on these nodes, colonized by the “blue” species between “green” species,

and imaging that these elevations increase over time, possibly colonized by the

“green” species: if it happens (because of organic or inorganic contributions),

∂Qo/∂t < 0 because ∂Qo/∂z < 0 and ∂Qs/∂t < 0 because reducing depth. In

this sense being ∂z/∂t < 0, the elevations tends to decrease and remain colo-

nized by the “blue” species. Conversely, for the nodes positioned close to the

channel and colonized by the “blue” species at the beginning, receive a lot of

inorganic sediment and tend to increase their elevations, moving in the branch

of the fitness function “green” curve where ∂Qo/∂z > 0; in this sense if the

elevations increase, ∂Qo/∂t > 0 and ∂Qs/∂t < 0 because reducing depth, but,

|∂Qs/∂z| << |∂Qo/∂z| thus, ∂z/∂t > 0 till ∂/∂z(∂z/∂t) < 0, i.e. condition for

a stable equilibrium.

If we start the simulation with again a random topography, but with small

jumps between neighboring nodes (figure 4.25g), the inorganic deposition is more

homogeneous towards the transect and then, at the beginning, all the elevations

tend to increase their elevation. Over time the transect is first colonized by “red”

and “green” species, but then, the elevations for which ∂Qo/∂z > 0 (unstable

branch) with |∂Qs/∂z| << |∂Qo/∂z| (because far from the channel), move down

and become colonized by the “blue” species. In this case patches with mixed
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vegetation are not present.

The constant initial topography condition (figure 4.25a) produce a topogra-

phy almost similar to the reference case (figure 4.5a).

As usual we report the organic and the inorganic depositions towards the

transect in the equilibrium configuration for the three initial different topography

conditions (see Figures 4.26, 4.27, 4.28).

4.7 The role of the settling velocity

Considering (figure 4.29a,b,c) a settling velocity lower than the one adopted

in the reference case (see figure 4.5, ws = 0.2 mm/s), the sediment may reach

the end of the transect conveyed by the water flow. Taking ws = 0.1 mm/s,

allows the increasing in the elevation topography, especially at the end of the

transect, far from the channel. The increasing in terms of elevation, lead to the

disappearance of the “blue” species specialized at the low elevations. Almost all

of the transect is at 30 cm above the MSL, colonized by the “green” species. In

figure 4.30 there is the representation of the inorganic and organic fluxes after

having achieved the equilibrium configuration.

If we instead increase the settling velocity (ws = 0.4 mm/s) greater than

the reference case, the most of the sediment stops and settles at the beginning

of the transect without reaching the end of it. Accordingly, the elevation to-

pography quite decreases and the most of the transect moves from a salt marsh

environment to a subtidal environment. Furthermore in figure 4.31 the organic

flux is equal to zero in the above mentioned transect part, while the inorganic

flux balances the rate of the RSLR, leading to the equilibrium state, namely,

dz/dt = 0.
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Figure 4.25: (a) Equilibrium topography with terrace structures developing. Multiple

stable states emerge assuming C0 = 20 mg/l, R = 3.5 mm/yr and a constant (z = 0.20 m

above MSL) initial topography (black dashed line). Dashed line represent the equilibrium

topography (colour line) and the initial topography (black line) of the reference case; (b)

Accretion rate as a function of perturbations in the local elevation. Solid circles represent

the stable elevation equilibria; (c) Fitness functions of the species populating the transect

with scale parameter λ = 5. Solid circles represent the stable elevation equilibria; (d) and

(g) The same as (a) considering a random initial topography from a uniform distribution

and from a normal distribution respectively (black dashed line); (e) and (h) The same as

(b) considering a random initial topography from a uniform distribution and from a normal

distribution respectively (black dashed line); (f) and (i) The same as (c) considering a random

initial topography from a uniform distribution and from a normal distribution respectively

(black dashed line)
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Figure 4.26: Case constant initial topography. Deposition fluxes (inorganic and

organic) over the salt marsh transect (left); relation between the organic and the

inorganic flux (right)
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Figure 4.27: Case random initial topography from a uniform distribution. Deposi-

tion fluxes (inorganic and organic) over the salt marsh transect (left); relation between

the organic and the inorganic flux (right)
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Figure 4.28: Case random initial topography from a normal distribution. Deposition

fluxes (inorganic and organic) over the salt marsh transect (left); relation between the

organic and the inorganic flux (right)

4.8 The role of the maximum areal biomass

productivity

In the reference case we assumed a maximum biomass areal productivity

equal to B0 = 1000 g/m2. If we decrease this value and consider B0 = 500

g/m2, the maximum organic flux is equal to Qo max(x, t) = γ ·B0 · fi(zM) = 1.25

mm/yr, being zM the mode elevation of the fitness function and fi(zM) = 1.

In this case the organic flux is much lower than the inorganic flux (see figure

4.33) over the entire length of the transect unlike what was observed in the

reference case (figure 4.6c). Moreover, the first part of the transect colonized

by the “blue” species (figure 4.32a), in the reference case was colonized by the

“green” one. Considering B0 = 500 g/m2, in fact, at the end of the transect

there are an already reduced inorganic deposition because of the distance from

the channel plus a less organic deposition than the case “B0 = 1000 g/m2”.

Considering as second case the maximum areal biomass productivity equal

to B0 = 2000 g/m2, the topography shape changes a lot than the reference

case presented (figure4.5a). As we can observe in figure 4.32d, the elevations of

the sites close to the channel exceed the semi-tidal amplitude (H = 0.50 m):
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Figure 4.29: (a) Equilibrium topography with terrace structures developing. Multi-

ple stable states emerge assuming C0 = 20 mg/l, R = 3.5 mm/yr and ws = 0.1 mm/s.

In dashed line we represent the equilibrium elevation state in figure 4.5a; (b) Accretion

rate as a function of perturbations in the local elevation. Solid circles represent the

stable elevation equilibria. External forcings assumed: C0 = 20 mg/l, R = 3.5 mm/yr

and ws = 0.1 mm/s; (c) Fitness functions of the species populating the transect (scale

parameter λ = 5) with C0 = 20 mg/l, R = 3.5 mm/yr and ws = 0.1 mm/s. Solid

circles represent the stable elevation equilibria; (d) The same as (a) with ws = 0.4

mm/s; (e) The same as (b) with ws = 0.4 mm/s; (f) The same as (c) with ws = 0.4

mm/s;
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Figure 4.30: Case ws = 1 m/s. Deposition fluxes (inorganic and organic) over the

salt marsh transect (left); relation between the organic and the inorganic flux (right)
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Figure 4.31: Case ws = 4 m/s. Deposition fluxes (inorganic and organic) over the

salt marsh transect (left); relation between the organic and the inorganic flux (right)
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this fact obstructs the inflow of sediment conveyed by the channel, then the

inorganic sediment flux becomes equal to zero over all the transect. The only

deposition flux active on the system is the organic one. Because dz/dt > 0

when Qs becomes equal to zero, the elevations increase over time as long as the

organic deposition balances the rate of the RSLR. In fact, in figure 4.34, we

can see that Qs = 0 over all the transect, instead Qo = 3.5 mm/yr equal to

R, then dz/dt = 0 i.e. equilibrium state. According to the model the biomass

productivity above the high water level follows the fitness function as shown in

figure 4.32c. Two species colonize the transect in the equilibrium configuration.

4.9 The role of the tidal amplitude

Considering the influence of the sinusoidal tidal amplitude, we compare two

different values to the reference semi–tidal amplitude equal to H = 0.50 m. The

first value is half the reference one and the second value is 4 times it.

Referring to figure 4.35a, the maximum elevation obviously reaches the semi–

tidal value H = 0.25 m. The most of the transect shifts from salt marsh equilib-

ria to subtidal equilibria because the decrease of the tidal amplitude, decreases

the flooding period.

For a fixed bottom elevation, ẑ, the instant depth may be expressed as

D(ẑ, t) = η(t) − ẑ where η(t) is the water free surface. The flooding period

during which the bottom is submerged by the water may be calculated from the

solution of the equation (4.1)

D(ẑ, t) = η(t)− ẑ = 0 (4.1)

where η(t) = −H · cos(ωt).
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Figure 4.32: (a) Equilibrium topography with terrace structures developing. Multi-

ple stable states emerge assuming Co = 20 mg/l, R = 3.5 mm/yr and B0 = 500 g/m2.

Dashed line represent the equilibrium elevation state in figure 4.5a; (b) Accretion rate

as a function of perturbations in the local elevation. Solid circles represent the stable

topography. External forcings assumed: C0 = 20 mg/l, R = 3.5 mm/yr and B0 = 500

g/m2; (c) Fitness functions of the species populating the transect (scale parameter

λ = 5) with C0 = 20 mg/l, R = 3.5 mm/yr and B0 = 500 g/m2. Solid circles represent

the stable topography; (d) The same as (a) with B0 = 2000 g/m2; (e) The same as

(b) with B0 = 2000 g/m2; (f) The same as (c) with B0 = 2000 g/m2;
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Figure 4.33: Case Bo = 500 g/m2. Deposition fluxes (inorganic and organic) over

the salt marsh transect (left); relation between the organic and the inorganic flux

(right)
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Figure 4.34: Case Bo = 2000 g/m2. Deposition fluxes (inorganic and organic) over

the salt marsh transect (left); relation between the organic and the inorganic flux

(right)
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Figure 4.35: (a) Equilibrium topography with terrace structures developing. Multi-

ple stable states emerge assuming Co = 20 mg/l, R = 3.5 mm/yr and H = 0.25 m. In

dashed line we represent the equilibrium elevation state in figure 4.5a; (b) Accretion

rate as a function of perturbations in the local elevation. Solid circles represent the

stable elevation equilibria. External forcings assumed: C0 = 20 mg/l, R = 3.5 mm/yr

and H = 0.25 m; (c) Fitness functions of the species populating the transect (scale

parameter λ = 5) with C0 = 20 mg/l, R = 3.5 mm/yr and H = 0.25 m. Solid circles

represent the stable elevation equilibria; (d) The same as (a) with H = 2.00 m; (e)

The same as (b) with H = 2.00 m; (f) The same as (c) with H = 2.00 m;
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Figure 4.36: Time interval of submersion with different tidal amplitudes for a fixed

elevation ẑ (dashed line).

We have (see also figure 4.36):

if D = 0 ⇒ −H · cos(ωt) = ẑ

⇒ cos(ωt) = −ẑ
H

⇒ t1(ẑ) = arccos
(

−ẑ
H

)

· 1
ω
=

= arccos
(

−ẑ
H

)

· T
2π

⇒ t2(ẑ) = T − t1 =

= T − arccos
(

−ẑ
H

)

· T
2π

=

And then:

∆t(ẑ) = t2 − t1 =
T ·
(

π − arccos
(

−ẑ
H

))

π
(4.2)

The organic rate of deposition is null where the elevation is lower than the

MSL, therefore the inorganic rate Qs matches the rate of the RSLR (figure 4.37).

In general the vegetation still imposes its balance to the marsh topography

developing the characteristic terraces-like structures, what changes is the spatial

dimension where it is able to do its influence.

Considering H = 2.00 m, the period of submersion is greater than the period

we had with H = 0.50 m, as displayed in figure 4.36 (red line). The elevation

of the salt marsh may reaches the semi–tidal amplitude of 2.00 m above the
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Figure 4.37: Case H = 0.25 m. Deposition fluxes (inorganic and organic) over the

salt marsh transect (left); relation between the organic and the inorganic flux (right)

MSL close to the channel, and the other part of the transect is at almost 1.5

m above the MSL. Two species colonize the salt marsh and the phenomenon

of the zonation is still present. The fitness functions are rescaled according

to the semi–tidal amplitude: the ratio between the elevation where the fitness

function is maximum and the semi–tidal amplitude is kept constant. As we

did considering the semi–tidal amplitude equal to H = 0.25 m, the constant

ratios are the following: ζ
(1)
M = 0.20 (blue species), ζ

(2)
M = 0.5 (green species),

ζ
(3)
M = 0.90 (red species) and the relative elevation mode (in m above the MSL)

is equal to z
(i)
M = ζ(i) · H for i = 1 : n species considered. In figure 4.38 we

show the rate of the inorganic and organic flux: the second one is almost always

greater than the first one, especially at the beginning of the transect.

4.10 Stochastic competition formulation

We finally took into account the possible role of the various stochastic compo-

nents which influence the outcome of species competition, such as, e.g., hetero-

geneities of soil properties and marsh microtopography. The role of the hetero-

geneous geomorphological constraints on the bio-geomorphic emerging patterns

is therefore modeled on the basis of the “stochastic competition” mechanism,
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Figure 4.38: Case H = 2.00 m. Deposition fluxes (inorganic and organic) over the

salt marsh transect (left); relation between the organic and the inorganic flux (right)

almost more similar to the real interspecific competition. Figure 4.40a shows

that when the stochastic competition is adopted, more realistic dynamics and

less regular patterns are obtained. The resulting marsh topography, although

displaying decreasing elevations from the channel towards marsh interior, as in

the reference case, is characterized by a more irregular trend, whereas vegetation

patches populated by single species are replaced by patches of mixed vegetation

species.

The irregularity in the species distribution is reflected in the shape of the

organic rate (figure 4.39) towards the marsh.

The role of biogeomorphic feedbacks in forming the observed zonation pat-

terns may still be identified by studying the probability distribution of bottom

elevations along the transect. Figure 4.40b shows the frequency density of bot-

tom elevations encroached by different vegetation species, where color-coded

bars identify different species (the same species considered in the reference case

with their fitness functions). Each colored bar represents the most-abundant

species within each elevation interval. A multimodal distribution emerges which

suggests the existence of engineered preferential elevation ranges for the different

vegetation species: a clear signature of the governing feedback between biomass

productionand elevation even when vegetational and topographic patterns are
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Figure 4.39: Case “stochastic formulation”. Deposition fluxes (inorganic and or-

ganic) over the salt marsh transect (left); relation between the organic and the inor-

ganic flux (right)

significantly less visually evident (figure 4.40a).

Imaging in fact, to delete the organic contribution in the fluxes balance, but

maintain the stochastic spatial competition: the topography appears almost ex-

ponentially decreasing, with the disappearance of the characteristic “terraces”

structures (figure 4.41a). Furthermore, in figure 4.41b the multimodal charac-

teristic of the probability distribution of the bottom elevations is replaced with a

single mode (lower elevations are more frequent than the higher ones), signature

of the loss of the feedback between the elevations and the vegetation.

The sub-optimality, previously showed with the fittest-takes-it-all mecha-

nism, considering the stochastic competition among the species, is less evident,

because of the irregularity in the topography. figure 4.42 and figure 4.43 show the

frequency density of all the species fitness functions and of each fitness function

respectively, considering one year sample. Accounting the yearly morphology

changes because the species colonization changing, figure 4.44 shows a more

probable frequency density of the species fitness, considering ten years sample.

With a bigger years sample we can appreciate the different frequency trend, less

peaked than what represented in figure 4.42; this highlights that the majority

part of the values are probable, directly linked with the “stochastic competition”



4.10. STOCHASTIC COMPETITION FORMULATION 115

5 10 15 20 25 30 35 40

space (m)

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

0
0

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14

16

z (m above MSL)

fr
e

q
u

e
n

cy
 d

e
n

si
ty

 (
m

   
)

−
1

species 1

species 3
species 2

(a) (b)

“stochastic formulation”

Figure 4.40: (a) Multiple stable states assuming as external forcings C0 = 20 mg/l,

R = 3.5 mm/yr. “Stochastic formulation” is assumed as spatial competition mecha-

nism. In dashed line we indicate the topography reference case (figure 4.5a), where we

adopted the “fittest-takes-it-all formulation”; (b) Multimodal frequency distribution

of topographic elevations. Each peak (color-coded, according to the most abundant

species in each interval) is associated with the unique species that generates it;

mechanism, but the remarkable thing is that there is no a single mode close to

the maximum value of the fitness.

Similarly, we represent the frequency density of the fitness function of less

specialized species (i.e. λ = 2) considering one year sample (figure 4.45) or

ten years sample (figure 4.46) with the “stochastic competition” mechanism.

In figure 4.47 there are the frequencies of each species fitness functions. With

less specialized species, the frequency density of the fitness functions is more

“peaked” close to the maximum value (see Figures 4.45 and 4.46) because of

their lower slope where for a large elevation range, the fitness values are close

to the maximum value. This is also the reason why there is not a big different

trend between the Figures 4.45 and 4.46, like we saw considering more special-

ized species (i.e. λ = 5).

Our analyses show that zonation structures are largely determined by the

degree of species adaptation to varying elevations, inducing a tuning of marsh

elevation by vegetation. We now seek the signature of this bio-geomorphic cou-

pling in real marshes. We performed detailed marsh topographic observations
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Figure 4.41: (a) Multiple stable states assuming as external forcings C0 = 20 mg/l,

R = 3.5 mm/yr. “Stochastic formulation” is assumed as spatial competition mecha-

nism. In dashed line we indicate the topography reference case (figure 4.5a), where

we adopted the “fittest-takes-it-all formulation”; (b) Frequency distribution of topo-

graphic elevations considering no organic deposition flux. Each peak (color-coded,

according to the most abundant species in each interval) is associated with the unique

species that generates it.
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Figure 4.42: Case “stochastic competition”: frequency density of the fitness func-

tions considering one year sample
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Figure 4.43: Case “stochastic competition”: frequency density of each fitness func-

tions
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Figure 4.44: Case “stochastic competition”: frequency density of the fitness func-

tions considering ten years sample
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Figure 4.45: Case “stochastic competition” considering less specialized species (λ =

2): frequency density of the fitness functions considering one year sample
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Figure 4.46: Case “stochastic competition” considering less specialized species (λ =

2): frequency density of the fitness functions considering ten years sample
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Figure 4.47: Case “stochastic competition” considering less specialized species (λ =

2): frequency density of each fitness functions
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to support our analysis of coupled biogeomorphic dynamics as the determinant

of marsh zonation patterns (Figures 4.48 and 4.49). A detailed survey of marsh

elevations in the Venice lagoon, performed with a total station (i.e. an electronic

theodolite with accuracy better than 1 mm), indeed shows the presence of previ-

ously undetected multimodal distributions of topographic elevation. Each peak

in the elevation distribution is associated with a different species, a signature of

the biomass-elevation feedback locking the system into a set of almost discrete

preferential elevation ranges.
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Figure 4.48: PART I (a–b) Observed zonation patterns. An accurate topographic

survey (uncertainty smaller than 1 mm) reveals a multimodal frequency distribution

of soil elevation, highly suggestive of the major role played by the biomass-elevation

feedback in tuning marsh topography. Each bar is color-coded according to the vege-

tation species which is most abundant within the pertinent elevation interval, showing

that indeed elevation ranges are characteristic of the vegetation species (or of a typical

mix of species at high elevations) which maintain them.
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Figure 4.49: PART II (c–d) Observed zonation patterns. An accurate topographic

survey (uncertainty smaller than 1 mm) reveals a multimodal frequency distribution

of soil elevation, highly suggestive of the major role played by the biomass-elevation

feedback in tuning marsh topography. Each bar is color-coded according to the vege-

tation species which is most abundant within the pertinent elevation interval, showing

that indeed elevation ranges are characteristic of the vegetation species (or of a typical

mix of species at high elevations) which maintain them.
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4.11 Mutation coupled with spatial competi-

tion

In this Section we present some results obtained using the continuous fit-

ness function in the description of the species characteristics, and coupling the

competition spatial mechanism to the mutation mechanism in the species time

evolution. We experiment a lot of configurations: different initial conditions,

different sediment suspend concentration, different ways or frequencies of mu-

tation. The aim of these simulations is to observe the feedbacks between the

morphology and the biology, and moreover to allow the self developing of the

species: with the mutation mechanism, the species are able to reproduce them-

selves. These couple mechanisms show not only how the species colonize the

marsh, but also how the natural mutation develops and how it holds up over

time.

Despite the numerous attempts, we were not able to set up a stable config-

uration, namely, with the mutation mechanism working in the model, to obtain

a topography stable configuration. What in fact happens is that a small per-

turbation to a random elevation of the transect (influenced by the new species

generated), influences probably all the other transect elevations because of the

different inorganic flux. The sites far from the channel have the lowest inor-

ganic intake, accordingly a freeble equilibrium, compounded by the continuous

renewal of species upstream. According to the spatial selection, the new fittest

or one of the most new fit species, replaces the old species, producing more

organic matter and consequently changing the marsh elevation.

So far, we have not been able to find a valid method to ensure that the

mutation influenced not so onerous the entire topography feature.

In the following we present a collection of some of the most significant tests

examined, numbering them in numerical order. In all of the analysis, we set

R = 3.5 mm/yr, H = 0.50 m and also we assume that the mother species

competes with the daughter one: in the spacial competition, if the daughter
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is fitter that the mother, it replaces the mother, otherwise not. In general we

assume also the sediment suspend concentration C0 = 20 mg/l, except where it

is specified.

4.11.1 Analysis: 1

In this first analysis (see figure 4.50), in the mutation process we change

both the fitness function mode and its maximum value in a random way. The

mode changing is equal to zM(new) = zM(old) ± 20% zM(old) then, high elevations

change more that the low ones. The time step of mutation is equal to 50 years,

i.e. a mutation every 50 years. As usual, we start from a linearly decreasing

topography condition and three different species randomly distributed above

the marsh transect. We set symmetric fitness functions with λ1 = 20, λ2 = 30,

λ3 = 40 from low to high elevations, less specialized species at the low elevations

and Ci = 1 for the i species. The species also spatial compete following the

fittest-takes-it all rule, i.e. the fittest one is preferred.

As shown in figure 4.50, the species with the greater value of maximum are

preferred in the evolutionary dynamic, the number of species increase over time,

but as said above, this number is influenced by the instable marsh topography.

Just born a new species, if it is fitter than the others above the transect, replaces

them and changes the elevation of the sites. The quite big step of mutation

seems to change too quickly the topography and this probably contributes to

the instability displayed in figure 4.50 (bottom) at one thousand years.

All of the other time–configurations, not shown here, are in the supplemen-

tary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation50

4.11.2 Analysis: 2

In the second analysis (see figure 4.51), as the first case, in the mutation

process we change both the fitness function mode and its maximum value in a



4.11. MUTATION COUPLED WITH SPATIAL COMPETITION 125

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)
years: 1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)
!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 50000

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 100000

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

Figure 4.50: Analysis: 1. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness function

mode and the maximum value. More details in the supplementary material.
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random way every 10 years. The increasing (or decreasing) in the elevation mode

is a random value in the interval [−0.005;+0.005]m. Unlike the first case, the

mode moving is uniformly distributed both for the low and the high elevations,

thus, the species are more stable over time because of their reduced shift mode

and adaptation to different ranges of elevation.

We consider three initial species i whose scale parameter is equal to λi = 5

and it remains unchanged during the evolution process like Ci = 1. The species

also spatial compete following the fittest-takes-it all rule.

Supplementary material about this analysis:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation10_deltaz_fMax

4.11.3 Analysis: 3

The third analysis (see figure 4.52) consider as the previous analysis C0 = 20

mg/. In the mutation process we change both the fitness function mode and

its maximum value in a random way every 50 years like Analysis 1. The in-

creasing (or decreasing) in the elevation mode is a random value in the interval

[−0.005;+0.005]m. Unlike the first case, the mode moving is uniformly dis-

tributed both for the low and the high elevations. The low frequency of muta-

tion plus the low mode elevation changing, lead to very small variations both in

terms of species and of topography. The general evolution is so slowed, that’s

why the topography seems to be stable.

We consider three initial species i whose scale parameter is equal to λi = 5

and it remains unchanged during the evolution process. Spatial competition

following the fittest-takes-it all rule.

Supplementary material about this analysis:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation50_deltaz_fMax
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Figure 4.51: Analysis: 2. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 10 years. Mutation based on changing the fitness function

mode and the maximum value. More details in the supplementary material.
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Figure 4.52: Analysis: 3. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness func-

tion mode (different from Analysis 1) and the maximum value. More details in the

supplementary material
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4.11.4 Analysis: 4

In figure 4.53 we show three time step configurations. The data are the

same as in Analysis 3 except the initial species. Here we set, from low to

high elevations, λ1 = 5, λ2 = 10, λ3 = 20 (less specialized species at the low

elevations) and C1 = 0.3, C2 = 0.7, C3 = 0.6 as the maximum initial fitness

values (less biomass productivity at the low elevations). We remember that

Bi(x, t) = fi(z) · B0, i is the generic species, B0 is the maximum areal biomass

productivity equal to 1000 g/m2. The fittest species is chosen in the spatial

competition as before. In the mutation process we change both the fitness

function mode and its maximum value in a random way.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation50_deltaz_fMax_rndSPini

4.11.5 Analysis: 5

Analysis 5, 6 and 7 differ in the characteristic of the initial species adopted.

In figure 4.54 the mutation process changes both the fitness function mode and

its maximum value in a random way every 5 years. The increasing (or decreas-

ing) in the elevation mode is a random value in the interval [−0.02;+0.02]m,

greater than the one assumed in Analysis 2, 3, 4. Here we set, from low to

high elevations, λ1 = 10, λ2 = 10, λ3 = 5 (less specialized species at the high

elevations) and C1 = 0.7, C2 = 0.5, C3 = 0.3 as the maximum initial fitness

values (less biomass productivity at the high elevations).

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation5_deltazAUM_fMax_rndSPini_3
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Figure 4.53: Analysis: 4. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness function

mode and the maximum value. Initial species differ from Analysis 3. More details in

the supplementary material
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Figure 4.54: Analysis: 5. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 5 years. Mutation based on changing the fitness function

mode and the maximum value. More details in the supplementary material
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4.11.6 Analysis: 6

Analysis 6 (see figure 4.55) is the same as Analysis 5 except the fitness

functions shape. Here we set, from low to high elevations, λ1 = 5, λ2 = 10,

λ3 = 10 (less specialized species at the low elevations) and, as Analysis 5, C1 =

0.7, C2 = 0.5, C3 = 0.3 as the maximum initial fitness values (less biomass

productivity at the high elevations).

In the mutation process we change both the fitness function mode (as Anal-

ysis 5) and its maximum value in a random way from 0 to 1.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation5_deltazAUM_fMax_rndSPini_4

4.11.7 Analysis: 7

Analysis 7 (see figure 4.56) has the same characteristic as Analysis 5 and 6

except the fitness functions shape. Here we set, for all the species i, λi = 5 and

Ci = 0.3 as the maximum initial fitness values.

In the mutation process we change both the fitness function mode (as Anal-

ysis 5 and 6) and its maximum value in a random way from 0 to 1.

The salt marsh time instability is very quick (less then 5 hundred years) be-

cause the small biomass productivity chosen for the initial species; we remember

that Bi(x, t) = fi(z) · B0, B0 is the maximum areal biomass productivity equal

to 1000 g/m2, then the initial species produce just 300 g/m2.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation5_deltazAUM_fMax_rndSPini_6

4.11.8 Analysis: 8

Analysis 8 (see figure 4.57) has the same characteristic as Analysis 3 except

the way of speciation about the mode fitness elevation. In this Analysis we
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Figure 4.55: Analysis: 6. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 5 years. Mutation based on changing the fitness function

mode and the maximum value. Initial species differ from Analysis 5. More details in

the supplementary material
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Figure 4.56: Analysis: 7. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 5 years. Mutation based on changing the fitness function

mode and the maximum value. Initial species differ from Analysis 5 and 6. More

details in the supplementary material
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assume that the increasing (or decreasing) in the elevation mode is a random

value in the interval [−0.02;+0.02]m, instead in Analysis 3, we remember that

zM(new) = zM(old) ± 20% zM(old). Here we set, for all the species i, λi = 5 and

Ci = 1 as the maximum initial fitness values.

In the mutation process we change both the fitness function mode and its

maximum value in a random way from 0 to 1.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation50_deltazAUM_fMax

4.11.9 Analysis: 9

Analysis 9 (see figure 4.58) has the same characteristic as Analysis 8 except

the the value Ci assumed for the initial fitness functions. Here we set, for all the

species i, λi = 5 (like Analysis 8) and Ci = 0.3 as the maximum initial fitness

values.

In the mutation process we change both the fitness function mode and its

maximum value in a random way from 0 to 1.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation50_deltazAUM_fMax_rndSPini_5

4.11.10 Analysis: 10

In Analysis 10 (see figure 4.59) we assume a time interval of mutation equal

to 2 years. In this Analysis we assume that the increasing (or decreasing) in the

elevation mode is a random value in the interval [−0.005;+0.005]m. Here we

set, for all the species i, λi = 5 and Ci = 1 as the maximum initial fitness values.

The suspend sediment concentration here is equal to C0 = 40 mg/l, double than

the reference value used.

In the mutation process we change both the fitness function mode and its

maximum value in a random way from 0 to 1.
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Figure 4.57: Analysis: 8. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness function

mode (more than Analysis 3) and the maximum value. More details in the supple-

mentary material
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Figure 4.58: Analysis: 9. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness function

mode (like Analysis 8) and the maximum value. Initial species differ from Analysis 8.

More details in the supplementary material
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Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation2_deltaz_C040_CORRETTO

4.11.11 Analysis: 11

In Analysis 11 (see figure 4.60) is the same as Analysis 10 except the fre-

quency of mutation: here we assume a time interval equal to 10 years. For all

the species i, λi = 5 and Ci = 1 as the maximum initial fitness values. The

suspend sediment concentration (as Analysis 10) is equal to C0 = 40 mg/l.

In the mutation process we change both the fitness function mode and its

maximum value in a random way from 0 to 1.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation10_deltaz_C040_CORRETTO

4.11.12 Analysis: 12

In Analysis 12 (see figure 4.61), in the mutation process we change both the

fitness function mode and its maximum value in a random way every 50 years.

The increasing (or decreasing) in the elevation mode is a random value in the

interval [−0.005;+0.005]m.

We consider three initial species i whose scale parameter is equal to λi = 5

and Ci = 1. The species here, spatial compete randomly selecting a species with

a probability proportional to fi(zk): p(i, xk) = fi(zk)/
∑

j fj(zk) (“stochastic

competition” mechanism), k-site, x-spatial coordinate, z-elevation, i-, j-species.

At the beginning of the evolution process, the topography is quite irregular

and more similar to the real topography observed, but over time it becomes quite

flat, probably correlated with the way of changing the species (e.g. frequency of

mutation, elevation mode changing or type of competition mechanism).

Supplementary material:
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Figure 4.59: Analysis: 10. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 2 years. Mutation based on changing the fitness function

mode and the maximum value. C0 = 40 mg/l. More details in the supplementary

material
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Figure 4.60: Analysis: 11. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 10 years. Mutation based on changing the fitness function

mode and the maximum value. C0 = 40 mg/l. More details in the supplementary

material
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Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation50_deltaz_cumulata

4.11.13 Analysis: 13

In Analysis 13 (see figure 4.62), in the mutation process we change both the

fitness function mode and its maximum value in a random way every 50 years.

The increasing (or decreasing) in the elevation mode is a random value in the

interval [−0.005;+0.005]m.

We consider three initial species i whose scale parameter is equal to λi = 5

and Ci = 1. Differ from Analysis 12, here, the species spatial compete ran-

domly selecting a species with a probability proportional to fi(zk): p(i, xk) =

f 2
i (zk)/

∑

j f
2
j (zk) (non linear “stochastic competition” mechanism), k-site, x-

spatial coordinate, z-elevation, i-, j-species.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation50_deltaz_cumulata^2

4.11.14 Analysis: 14

Analysis 14 (see figure 4.63), is similar to Analysis 13 except the spatial

competition mechanism. Here, the species spatial compete randomly selecting

a species with a probability proportional to fi(zk): p(i, xk) = f 5
i (zk)/

∑

j f
5
j (zk)

(non linear “stochastic competition” mechanism), k-site, x-spatial coordinate,

z-elevation, i-, j-species. In this way, about the spatial competition, we tend to

maximize the big probability and minimize the small one. In fact, the terraces-

like structures reappear as when we adopt the “fittest-takes-it-all” competition

mechanism.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation50_deltaz_cumulata^5



142
CHAPTER 4. 1–D: MARSH–SCALE BIOGEOMOPHIC PATTERNS

FORMATION

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 500

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 25000

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 50000

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

Figure 4.61: Analysis: 12. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness function

mode and the maximum value. Linear stochastic formulation adopted in the spatial

competition. More details in the supplementary material



4.11. MUTATION COUPLED WITH SPATIAL COMPETITION 143

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 500

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 2500

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 25000

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

Figure 4.62: Analysis: 13. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness function

mode and the maximum value. Non-linear stochastic formulation adopted in the

spatial competition (differ from Analysis 12). More details in the supplementary

material
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Figure 4.63: Analysis: 14. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness function

mode and the maximum value. Non-linear stochastic formulation adopted in the spa-

tial competition (differ from Analysis 12 and 13). More details in the supplementary

material
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4.11.15 Analysis: 15

Analysis 15 (see figure 4.64), is similar to Analysis 13 and 14, except the

spatial competition mechanism.

Here, the species spatial compete randomly selecting a species with a probability

proportional to fi(zk): p(i, xk) = f 10
i (zk)/

∑

j f
10
j (zk) (non linear “stochastic

competition” mechanism), k-site, x-spatial coordinate, z-elevation, i-, j-species.

As in Analysis 14, we maximize the big probability and minimize the small one,

tending to the case in Analysis 3, where we select the species with the “fittest”

rule.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation50_deltaz_cumulata^10

4.11.16 Analysis: 16

In figure 4.65 the mutation process changes only the fitness function mode

every year. The mode changing is equal to zM(new) = zM(old) ± 20% zM(old)

then, high elevations change more than the low ones. Here we set, from low to

high elevations, λ1 = 20, λ2 = 30, λ3 = 40 (less specialized species at the low

elevations, but in general very specialized species) and Ci = 1, as the maximum

initial fitness values (constant during the simulation, not subjected to change

during the evolution process).

Being the frequency of mutation so high, what happens is that every year a

new species is able to colonize a small elevation niche in the topography shape

because the “daughter” species are very fruitful (C = 1 for all the species during

the simulation). This is why we observe a sort of continuous spectrum of species

perfect adapted both to the low elevations and to the high ones.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_3SPini_mother
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Figure 4.64: Analysis: 15. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness func-

tion mode and the maximum value. Non-linear stochastic formulation adopted in

the spatial competition (differ from Analysis 12, 13 and 14). More details in the

supplementary material
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Figure 4.65: Analysis: 16. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 1 years. Mutation based on changing the fitness function

mode. More details in the supplementary material
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4.11.17 Analysis: 17

In figure 4.66 the mutation process changes the fitness function mode and

the maximum value every year. The mode changing is equal to zM(new) =

zM(old) ± 20% zM(old) then, high elevations change more that the low ones. Here

we set, from low to high elevations, λ1 = 20, λ2 = 30, λ3 = 40 (as Analysis 16)

and Ci = 1 for the initial species.

Also in this Analysis, like the 16th, every year a new species is generated.

We observe a sort of continuous spectrum of species perfect adapted to the low

elevations as to the high ones, but, because of the “daughter” species could be

not so fruitful, like the case in which the maximum value of the “daughter”

species was equal to 1 (Analysis 16), here the species are not so good to colonize

a small elevation niche in the topography shape every year. This is why the salt

marsh topography is not time stable as in Analysis 16.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother

In figure 4.67 we present the time sequence when the elevation of the last

site goes down under the mean sea level.

4.11.18 Analysis: 18

Analysis 18 (see figure 4.68) is similar to Analysis1 except the time frequency

of mutation adopted. Here, the time step of mutation is equal to 100 years, i.e.

a new mutation every 100 years. In the mutation process we change both the

fitness function mode and its maximum value in a random way. The mode

changing is equal to zM(new) = zM(old)±20% zM(old) then, high elevations change

more than the low ones.

We set symmetric fitness functions with λ1 = 20, λ2 = 30, λ3 = 40 from low

to high elevations, less specialized species at the low elevations and Ci = 1 for

the i species. In the spatial competition, the fittest species is preferred in the

evolution theory.
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Figure 4.66: Analysis: 17. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 1 years. Mutation based on changing the fitness function

mode and the maximum value. More details in the supplementary material
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Figure 4.67: Analysis: 17 – time sequence. Time evolution of topography (left) and

species (right). Time sequence when the elevation of the last site goes down under

the mean sea level. More details in the supplementary material
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Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVfixed_C_3SPini_mother_Mutation100

4.11.19 Analysis: 19

In Analysis 19 we consider three coupled ways of mutation: every 100 year

we change the elevation mode of the fitness functions (like in Analysis 1), the

maximum value of them (uniformly random between 0 and 1) and finally we

generate a random value of the variation in the interval [0.05; 0.4], thus the

scale parameter in between the minimum value λ = 5 and the maximum one

λ = 40, remembering that V = 2/λ with symmetric fitness functions. Here

the simulation begin with three different species whose λ = 5 and C = 1. The

species also spatial compete following the fittest-takes-it all rule.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVvariable_C_3SPini_mother_Mutation50_lambda5

4.11.20 Analysis: 20

Analysis 20 is the same as Analysis 19 except the initial scale parameter

value. Here we assume λ = 20.

Supplementary material:

Analysis_cited\RUN_03_04_2012_AnnualSpec_allSel_40_050dx_sechlR=

lLVvariable_C_3SPini_mother_Mutation50_lambda20



152
CHAPTER 4. 1–D: MARSH–SCALE BIOGEOMOPHIC PATTERNS

FORMATION

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)
!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 30000

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

space (m)

z 
(m

 a
b

o
v

e
 M

S
L

)

years: 60000

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

z 
(m

 a
b

o
v

e
 M

S
L

)

!tness

species

Figure 4.68: Analysis: 18. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 100 years. Mutation based on changing the fitness function

mode and the maximum value. More details in the supplementary material
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Figure 4.69: Analysis: 19. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness function

mode, the maximum value and the variation value. More details in the supplementary

material
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Figure 4.70: Analysis: 20. Time evolution of topography (left) and species (right).

Rate of mutation adopted: 50 years. Mutation based on changing the fitness function

mode, the maximum value and the variation value. Initial species differ from Analysis

19. More details in the supplementary material
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4.12 Observations

Using a 1-D bio-geomorphological model, we explored the stable spatial equi-

librium states (inorganic–controlled or organic–controlled) of marsh tidal envi-

ronments. The 1-D model accounts the spatially environmental setting, the

spatial biological and interspecific dynamics between the halophytic plants that

live in the tidal environments, studies the biological-morphological interactions

between the vegetation species and the topography, forming striking vegeta-

tion patterns. Hence, we explored the response of intertidal geomorphologies to

different external forcings. Our analysis bring us to the following main observa-

tions:

i) A one-dimensional description of tidal biogeomorphology shows that bio-

geomorphic feedbacks are also responsible for the occurrence of smaller

scale patterns characterized by the spatial distribution of marsh vegeta-

tion. Zonation patterns are shown to emerge as a result of the feedbacks

between inorganic deposition and organic accretion, via biomass produc-

tion. We highlight the crucial role of vegetation in shaping the tidal land-

scape: marsh vegetation acts as a landscape engineer by tuning platform

elevation, leading to the formation of zonation structures.

ii) The tight feedback between primary productivity and topography suggests

the possibility of decoding the signature of physiological plant adaptations

in observed tidal marsh morphologies. In fact, we show here that spe-

cialized vegetation species, highly fit only within a narrow range of marsh

elevations, exert a strong control on topography and constrain elevation

within similarly narrow ranges. In contrast, vegetation species which are

relatively well adapted to a broader range of marsh elevations more loosely

tune the marsh landscape and produce more gradual transitions between

adjacent vegetation patches.

iii) Vegetation controls on topography also hold in the presence of more realis-

tic heterogeneous environmental forcings, such as soil properties and marsh
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microtopography. Biogeomorphic patterns are less sharply defined in this

case, but the underlying presence of multiple equilibria as the pattern-

generating mechanism can still be detected via the presence of multiple

peaks in the frequency distribution of topographic elevation. The one-

to-one correspondence between such peaks and species abundance is the

unique signature of vegetation as a landscape constructor.

iv) Possible biogeomorphic equilibria and the associated patterns are sensitive

to changes in the forcings. Changes in the rate of RSLR, as example, pro-

duce the migration of marsh biogeomorphic patterns, eventually leading

to their selective or complete disappearance when a critical rate of RSLR

is exceeded. Because of the external prohibitive forcings, a part of the salt

marsh could disappear but, in the remaining part, the stable salt marsh

terraces-structures are still present, sign that the vegetation still imposes

its balance on the marsh topography.

v) Even if, in this configuration, the model is not stable, the evolutionary

dynamic is further developed introducing the species speciation. Coupling

the spatial interspecific competition to the mutation mechanism, is inter-

esting to see that the patterns formation is a strong characteristic in the

evolutionary dynamic of tidal systems. We remark the crucial role of veg-

etation: marsh vegetation acts as a landscape engineer by tuning platform

elevation, even more, with the mutation mechanism introduction. The

species, able to compete among them, are free to evolve over time: this

implies that only the new fit species can survive and contribute to the

production of organic soil. In turn, the topography influences the kind

of species appointed to colonize a small niche in the space system. The

introduction of mutation allows not to prescribe the species a priori and

allows to create a system totally free to evolve with the clearly two–way

feedback between vegetation and topography discussed before.



Conclusions

We have analyzed the spatial distribution of biogeomorphic patterns charac-

terizing tidal environments over a wide range of scales. Our key result is that

multiple competing stable states, governed by two-way biogeomorphic feedbacks,

provide a unifying framework to explain the formation of patterns in tidal envi-

ronments from the system large–scale to the marsh small–scale.

In this Thesis we developed and applied a point coupled model which allows

the identification of equilibrium conditions and transient dynamics that charac-

terize marsh surfaces, tidal flats and subtidal platform. Model results emphasize

the importance of accounting for the main interacting biological and physical

components in order to obtain realistic representations of the system dynamics.

The number and the elevation of the equilibrium states, both in the sub-tidal

and in the intertidal zones, depend, jointly, on a number of processes of physical

and biological nature, such as: the rate of relative sea level rise, sediment supply,

biomass productivity, wind climate, and the tidal range.

We relaxed some of the previous simplifying assumptions and explored the

response of intertidal geomorphologies to realistic tidal forcings, time-varying

sediment suspended concentrations and wind characteristics obtained from ob-

servations in the Venice Lagoon in order to address the crucial role of actual

forcings on the equilibrium states.

Furthermore we developed a 1–D bio-geomorphic model accounting the spa-

tial competition among different vegetation species also allowing the “free” mu-

tation of species over time. Our model and observational analyses show that

widely occurring zonation patterns are largely the result of ecological engineer-
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ing performed by marsh vegetation species through the biomass-elevation feed-

back. When competition is assumed to operate according to a deterministic

fittest-take-it-all mechanism, i.e. selecting the species whose organic–elevation

productivity is maximum, the resulting bio-geomorphic zonation structures are

located within relatively narrow and well-separated elevation ranges, colonized

by single elevation species. Abrupt steps separate adjacent zonation patches in

this extreme end-member case. When stochasticity in competition processes is

accounted for, by assigning a probability of success proportional to the fitness

of each competing species, the emerging spatial bio-geomorphic structures be-

come less “quantized” and topographic and vegetational boundaries are more

blurred, similarly to what is observed in nature. However, we show that, even

when bio-geomorphic patterns become more subtle because of stochasticity, the

signs of the governing feedbacks can still be detected by studying the possible

presence of multimodality in the frequency distribution of marsh elevations. To-

pographic multimodality, in fact, can only arise if vegetation species tune soil

elevation within ranges dictated by the local inorganic sediment availability and

their preferred range of physiological adaptation.

We thus conclude that the existence of the competing stable states represents

the large–scale pattern formation mechanism for tidal landscapes. Moreover, at

marsh–scale, observed vegetation zonation structures are not simply induced by

topography, to which vegetation species passively adapt, but rather by an active

tuning of topography according to the elevational dependence of species fitness.
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