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Abstract 

The subject of this thesis is a family of anion transporters known as SulP/SLC26 

(Sulfate Permease/Solute Carrier 26) family, a large and ubiquitous family of membrane 

proteins capable of transporting a wide variety of monovalent and divalent anions, whose 

members were found in eubacteria, plants, fungi, and mammals. The clinical relevance of 

the SulP/SLC26 gene family has been highlighted with the identification of pathogenic 

mutations related to hereditary genetic human diseases with diverse symptoms that arise 

as a result of the different substrate specificities and tissue localizations of the different 

transporters, such as dystrophic dysplasia (SLC26A2), congenital chloride diarrhoea 

(SLC26A3) and Pendred syndrome (SLC26A4). The SulP/SLC26 family belongs to the 

APC (Amino Acid-Polyamine-Organocation) superfamily, one of the largest superfamily 

of secondary carriers. While some members of other families of the APC superfamily 

have been structurally characterized, very little is known about the molecular organization 

of the SulP/SLC26 proteins and no high-resolution three-dimensional structure of full-

length sequences is available. The SulP/SLC26 anion transporters share a common 

structural organization: a highly conserved transmembrane domain and a less conserved 

cytoplasmic C-terminal portion mainly composed of a STAS domain. The name STAS 

(Sulfate Transporter and Anti-Sigma factor antagonist) is due to a remote but statistically 

significant sequence similarity with bacterial ASA (Anti-Sigma factor Antagonist) 

proteins (Aravind and Koonin, 2000). The bacterial ASA proteins are functionally and 

structurally well characterized in their 3D structure both by NMR spectroscopy and X-ray 

crystallography. Unlike these proteins, the STAS domains present in anion transporters 

are poorly characterized in terms of both their function and structure. Despite the fact that 

their precise role is unclear, the STAS domains play a fundamental role in the 

function/regulation of SulP/SLC26 anion transporters. In particular, it has been proposed 

that the STAS domain, like ASA proteins, could have a role in protein/protein interaction; 

for instance the STAS domains of SCL26A3, -A4, -A6 and -A9 interact with the R 

domain of CFTR (Cystic Fibrosis Transmembrane conductance Regulator), the 

transmembrane protein involved in cystic fibrosis disease. So far three 3D structures of 

STAS domains from different species are available in literature, two from bacteria and 

one from mammalian, the latter solved during my Master Degree Thesis in the same 

laboratory where I've attended the PhD. The structural characterization of the full-length 
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SulP/SLC26 transporters and of their STAS domains is fundamental for the 

comprehension of their mode of action and it is an essential step for the understanding of 

the functional consequences of the mutations responsible for related pathologies.  

To address this issue, one part of my PhD project focused on the production and the 

structural characterization of STAS domains from different species, and mutants of the 

STAS domain whose 3D structure have been solved, in order to study the anion-binding 

site and the possible role of the STAS domain in the transport. We identified a 

fundamental residue for the proper function of the transporter, probably implicated in the 

anion translocation within the transmembrane domain. 

The other part of the project dealt with the production of a selection of full-length 

SulP/SLC26 transporters from different orthologs, both Prokaryotes and Eukaryotes. To 

this aim, in collaboration with Prof. Frank Bernhard at the Johann Wolfgang Goethe 

University of Frankfurt (Germany), I used the cell-free (CF) expression method, an 

emerging technique for the large-scale production of membrane proteins for structural 

studies. Sample properties after post-translational solubilization have been analyzed by 

evaluation of homogeneity and protein stability. This is the first quality evaluation of the 

SulP/SLC26 transporters produced by CF expression mode in quantities appropriate for 

structural approaches. 
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Riassunto 

Il soggetto di questa tesi è una famiglia di trasportatori di anioni nota come famiglia 

SulP/SLC26 (Sulfate Permease/Solute Carrier 26), una grande ed ubiquitaria famiglia di 

proteine di membrana in grado di trasportare un'ampia varietà di anioni monovalenti e 

divalenti, i cui membri sono stati trovati in eubatteri, piante, funghi, e mammiferi. La 

rilevanza clinica della famiglia genica SulP/SLC26 è stata evidenziata dall'identificazione 

di mutazioni patogene connesse a malattie umane genetiche ed ereditarie, con diversi 

sintomi che sorgono come risultato delle differenti specificità di substrato e localizzazioni 

tissutali dei differenti trasportatori, come la displasia distrofica (SLC26A2), la diarrea 

cloridrica congenita (SLC26A3) e la sindrome di Pendred (SLC26A4). La famiglia 

SulP/SLC26 appartiene alla superfamiglia APC (Amino Acid-Polyamine-Organocation), 

una delle più grandi superfamiglie di trasportatori secondari. Mentre alcuni membri di 

altre famiglie della superfamiglia APC sono stati caratterizzati strutturalmente, si sa molto 

poco riguardo l'organizzazione molecolare delle proteine SulP/SLC26 e non è disponibile 

nessuna struttura tridimensionale ad elevata risoluzione delle intere sequenze. I 

trasportatori di anioni SulP/SLC26 condividono un'organizzazione strutturale simile: un 

dominio transmembrana altamente conservato ed una porzione C-terminale meno 

conservata principalmente composta da un dominio STAS. Il nome STAS (Sulfate 

Transporter and Anti-Sigma factor antagonist) è dovuto ad una similarità di sequenza 

remota ma statisticamente significativa con le proteine batteriche ASA (Anti-Sigma factor 

Antagonist) (Aravind and Koonin, 2000). Le proteine batteriche ASA sono state ben 

caratterizzate funzionalmente e strutturalmente nella loro struttura 3D sia mediante la 

spettroscopia NMR sia mediante cristallografia a raggi X. A differenza di queste proteine, 

i domini STAS presenti nei trasportatori di anioni sono stati poco caratterizzati sia in 

termini della loro funzione, sia della loro struttura. Nonostante il fatto che il loro preciso 

ruolo non sia chiaro, i domini STAS svolgono un ruolo fondamentale nella 

funzione/regolazione dei trasportatori di anioni SulP/SLC26. In particolare, è stato 

proposto che il dominio STAS, come le proteine ASA, potesse svolgere un ruolo 

nell'interazione proteina/proteina; per esempio, domini STAS di SCL26A3, -A4, -A6 e -

A9 interagiscono con il dominio R di CFTR (Cystic Fibrosis Transmembrane 

conductance Regulator), la proteina transmembrana coinvolta nella fibrosi cistica. Finora 

tre strutture 3D di domini STAS provenienti da specie diverse sono disponibili in 
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letteratura, due da batteri ed una da mammifero, quest'ultima risolta durante la mia tesi di 

laurea specialistica nello stesso laboratorio dove ho frequentato il dottorato. La 

caratterizzazione strutturale degli interi trasportatori SulP/SLC26 e dei loro domini STAS 

è fondamentale per la comprensione del loro modo di azione ed è una fase essenziale per 

comprendere le conseguenze funzionali delle mutazioni responsabili delle patologie 

collegate. 

Per raggiungere questo obiettivo, una parte del mio progetto di dottorato si è 

focalizzata sulla produzione e caratterizzazione strutturale dei domini STAS provenienti 

da diverse specie, e mutanti del dominio STAS la cui struttura 3D è stata risolta per 

studiare il sito di legame dell'anione ed il possibile ruolo del dominio STAS nel trasporto. 

È stato identificato un residuo fondamentale per il corretto funzionamento del 

trasportatore, probabilmente implicato nella traslocazione dell'anione all'interno del 

dominio transmembrana. 

L'altra parte del progetto riguarda la produzione di una selezione di trasportatori 

SulP/SLC26 interi provenienti da diversi ortologhi, sia Procarioti che Eucarioti. Per 

questo scopo, in collaborazione con il Prof. Frank Bernhard presso l'università Johann 

Wolfgang Goethe di Francoforte (Germania), utilizzai il metodo di espressione cell-free 

(CF), una tecnica emergente per la produzione a larga scala di proteine di membrana per 

studi strutturali. Le proprietà dei campioni dopo la solubilizzazione post-traduzionale 

sono state analizzate mediante la valutazione di omogeneità e della stabilità della 

proteina. Questa è la prima valutazione della qualità dei trasportatori SulP/SLC26 prodotti 

mediante il modo di espressione CF in quantità appropriate per approcci strutturali. 
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1. Introduction 

1.1. The APC superfamily 

The Amino Acid-Polyamine-Organocation (APC) superfamily appears to be the 

second largest superfamily of secondary carriers and it is composed of 11 families 

displayed in the table 1.1 (Wong et al., 2012). 

Table 1.1 Families within the APC superfamily 

Families within the APC superfamily 3D structure 

2.A.3 Amino Acid-Polyamine-Organocation (APC) family SLC7, SLC12 AdiC, ApcT 

2.A.15 Betaine/Carnitine/Coline Transporter (BCCT) family  CaiT, BetP 

2.A.18 Amino Acid/Auxin Permease (AAAP) family SLC32, SLC36, 

SLC38 

 

2.A.21 Solute:Sodium Symporter (SSS) family SLC5 vSGLT 

2.A.22 Neurotransmitter:Sodium Symporter (NSS) family SLC6 LeuT 

2.A.25 Alanine or Glycine:Cation Symporter (AGCS) family   

2.A.30 Cation-Chloride Cotransporter (CCC) family   

2.A.39 Nucleobase:Cation Symporter-1 (NCS1) family  Mhp1 

2.A.40 Nucleobase-ascorbate transporter (NAT) / 

Nucleobase:Cation Symporter-2 (NCS2) family 

SLC23 UraA 

2.A.42 Hydroxy/Aromatic Amino Acid Permease (HAAAP) 

family 

  

2.A.53 Sulfate permease (SulP) family SLC26  

Based on www.TCDB.org. In the last column there are the transporters that have been 

structurally characterized. 

 

The APC superfamily includes members that function as solute:cation symporters 

and solute:solute antiporters; they occur in bacteria, archaea, yeast, fungi, unicellular 

eukaryotic protists, slime molds, plants and animals (Saier et al., 2000). They are 

predicted to possess 10-14 transmembrane α-helical spanners and they vary in length, 

being as small as 350 residues and as large as 850 residues; the smaller proteins are 

generally of prokaryotic origin while the larger ones are of eukaryotic origin. 

Some members of some families of the APC superfamily have been structurally 

characterized [LeuT (Yamashita et al., 2005), Mhp1 (Weyand et al., 2008), vSGLT 

(Faham et al., 2008), BetP (Ressl et al., 2009), AdiC (Gao et al., 2009), ApcT (Shaffer et 

al., 2009), CaiT (Schulze et al., 2010), UraA (Lu et al., 2011)], while very little is known 
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about the molecular organization of the SulP/SLC26 proteins and no high-resolution 3D 

structure of full-length sequences is available. 

According to the phylogenetic analysis (figure 1.1), the closest member to the 

SulP/SLC26 family whose 3D structure has been solved is the Escherichia coli uracil/H
+
 

symporter UraA (belonging to the NAT/NCS2 family), that shows a novel structural fold 

with 14 transmembrane segments divided into two inverted repeats (Lu et al., 2011). 

 

Figure 1.1 Phylogenetic tree for the APC superfamily using the proteins belonging to this 

superfamily in TCDB (Transporter Classification Database). Family abbreviations are presented 

with TC (Transporter Classification) family numbers in parentheses. Small numbers adjacent to 

the branches present the “bootstrap” values, indicating the reliability of the branching order 

(Wang et al., 2012). 

 

 

1.2. The SulP/SLC26 family 

The SulP/SLC26 family is a large and ubiquitous family of anion transporters, 

whose members were found in archea, bacteria, plants, fungi, and animals. The 

eukaryotic SulP/SLC26 transporters are large proteins comprised of 700-1000 amino 

acids, while prokaryotic are smaller (400-600 amino acids) and the individual family 

members have 21-43% amino acid identity. Many bacteria and eukaryotes possess 

multiple SulP/SLC26 family paralogues. The relatedness of the family members within 

and among species is depicted in the evolutionary tree shown in figure 1.2. Many of these 
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proteins have been functionally characterized as anion transporters or anion: anion 

exchangers that transport a wide variety of monovalent and divalent substrates, including 

sulfate (SO4
2-

), chloride (Cl
-
), bicarbonate (HCO3

-
), iodide (I

-
), oxalate, formate, 

hydroxyl, mannose and fructose (Felce and Saier, 2004; Detro-Dassen et al., 2008; 

Dorwart et al., 2008).  

 

Figure 1.2 Phylogenetic tree showing the relatedness of selections of SulP/SLC26 family 

members from diverse groupings (Price and Howitt, 2011). 

 

1.2.1. The transport function of the human SulP/SLC26 

transporters 

The human family of SulP/SLC26 transporters consists of 11 members that are 

expressed in polarized cells in organs such as the kidney, pancreas, intestine, and liver, 



1.2. The SulP/SLC26 family 

14 

where they mediate SO4
2-

, Cl
-
 and HCO3

-
 transport across the plasma membrane. 

SLC26A1 and -A2 transport SO4
2-

 (Markovich, 2012; Ohana et al., 2012), whereas 

SLC26A3, -A4, -A6 exchange Cl
-
 for a wide range of anions, including HCO3

-
, I

-
, 

oxalate, formate and SO4
2-

. SLC26A9 can function in three discrete physiological modes: 

n(Cl
-
)/HCO3

-
 exchanger, Cl

-
 channel, and Na

+
-anion cotransporter (Chang et al., 2009). 

SLC26A7 is a recently identified Cl
-
-base exchanger and/or Cl

-
 transporter (Xu et al., 

2009). Recently also SLC26A11 has been identified as an electrogenic n(Cl
-
)/HCO3

-
 

exchanger (Xu et al., 2011). To date, the protein products of SLC26A8 have poorly 

understood transport capabilities, and SLC26A10 is a pseudogene. The mammalian 

SLC26A5 is the motor protein in the outer hair cells of the cochlea (Zheng et al., 2000).  

Table 1.2 The Human SulP/SLC26 Gene Family 

Human 

Gene Name 

Protein 

name 

Predominant 

substrates 

Tissue distribution and 

cellular /subcellular 

expression 

Disease association 

SLC26A1 Sat-1 
SO4

2-
, HCO3

-
, 

oxalate 

Liver, kidney (basolateral), 

pancreas, brain 
 

SLC26A2 DTDST SO4
2-

, Cl
-
 Widespread 

Diastrophic dysplasia, 

atelosteogenesis type II, 

achondrogenesis type IB, 

multiple epiphyseal dysplasia 

type 4 

SLC26A3 DRA 
Cl

-
, SO4

2-
, HCO3

-

, oxalate 

Intestine, sweat gland, 

pancreas, prostate 

Congenital chloride diarrhoea 

(CCD) 

SLC26A4 pendrin 
Cl

-
, HCO3

-
, I

-
, 

formate 
Inner ear, kidney, thyroid 

Pendred syndrome, non-

syndromic deafness (DFNB4) 

SLC26A5 prestin  Inner ear  

SLC26A6 PAT-1 
SO4

2-
, Cl

-
, HCO3

-

, oxalate, formate 
Widespread  

SLC26A7  
SO4

2-
, Cl

-
, 

oxalate, HCO3
-
 

Kidney (basolateral)  

SLC26A8 Tat1 
SO4

2-
, Cl

-
, 

oxalate 
Testis (sperm)  

SLC26A9  
SO4

2-
, Cl

-
, 

oxalate 
Lung, stomach  

SLC26A10   pseudogene  

SLC26A11  SO4
2-

 Placenta, kidney, brain  

Based on www.bioparadigms.org/slc/menu.asp; original version (Mount and Romero 2004). 

 

1.2.2. Structural features of the SulP/SLC26 transporters 

The topology of SulP/SLC26 family members is not known and 10-14 

transmembrane helices have been predicted from hydropathy plots and predictive 

algorithms with intracellular N- and C-terminus (Figure 1.3).  
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Much of the homology between SulP/SLC26 exchangers is found within the 

hydrophobic core of transmembrane domains. One region of homology encompasses the 

22 amino-acid “sulfate transport” consensus signature (Prosite, PS01130), which was 

initially defined by the comparison of the first mammalian family members with 

homologs in lower organisms. There is a second cluster of invariant residues at the C-

terminal end of the hydrophobic core of the proteins, in a conserved segment defined as 

Saier motif (Saier et al., 1999). This region includes the triplet -NQE-, which is 

conservatively variable only in Slc26a8 (-NQD-). Many of the SulP/SLC26 proteins end 

with a class I PDZ (Post-synaptic density 95/Discs large/Zona occludens 1) interaction 

motif; the exceptions include human SLC26A1, -A2, -A4, -A5, and -A11 (Mount and 

Romero, 2004). 

The less conserved cytoplasmic C-terminal portion of the SulP/SLC26 anion 

transporters is mainly composed of a STAS (Sulfate Transporter and Anti-Sigma factor 

antagonist) domain, whose name is due to a remote but statistically significant sequence 

similarity with the bacterial AntiSigma-factor Antagonists (ASA) proteins, typified by 

Bacillus subtilis SpoIIAA (Aravind and Koonin, 2000). This homology suggests that the 

SpoIIAA proteins and the SulP/SLC26 STAS domains have similar structures. The 

physiological and/or mechanistic roles of the STAS domains in the SulP/SLC26 

exchangers are not still well known, whereas the function of SpoIIAA is well 

characterized (chapter 1.3.1). However the existence of disease-associated mutations in 

this domain underscores its importance.  

 

Figure 1.3 Predicted topology of a general SulP/SLC26 transporter (Compton et al., 2011). 

 

All SulP/SLC26 transporters appear to be assembled as dimers or tetramers 

composed of identical subunits (Detro-Dassen et al., 2008; Mio et al., 2008; Compton et 
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al., 2011). The so far unique low-resolution structures of SulP/SLC26 anion transporters 

available in literature are that of rat SLC26A5/prestin, solved by TEM (Transmission 

Electron Microscopy), and that of Yersinia enterocolitica Slc26A2 protein, solved by 

SANS (Small Angle Neutron Scattering). The first structure of purified prestin (Figure 

1.19) exhibits a bullet-shaped fourfold symmetric molecule with an inner cavity and 

suggests a tetrameric arrangement of subunits (Mio et al., 2008). While the structure of 

bacterial Slc26A2 protein (Figure 1.4) suggests that the protein forms a dimer stabilized 

via its transmembrane core and that the cytoplasmic STAS domain projects away from 

the transmembrane domain and is not involved in dimerization. It was hypothesized that 

large movements of the STAS domain underlie the conformational changes that occur 

during transport (Compton et al., 2011). 

 

Figure 1.4 Low-resolution model of Yersinia enterocolitica Slc26A2 generated by the program 

DAMMIN from the 5 mg/ml SANS data at the contrast match point of the Fos-choline-12 

detergent. The main bulk of the protein, encompassing the dimerization domain, lies mostly within 

a plane that corresponds to the depth of a membrane bilayer (30 Å) with two globular domains 

extending from this plane, thus revealing a multidomain organization. The model on the right is 

generated from the one on the left by a rotation of 90° around their long axes (Compton et al., 

2011). 

 

1.2.3. The SulP/SLC26 family in human diseases 

Mutations in some SulP/SLC26 members, including their STAS domains, result in 

human diseases with diverse symptoms that arise as a result of the different substrate 

specificities and tissue localizations of the different transporters. Mutations in SLC26A2 

lead to four autosomal recessively inherited chondrodysplasias (diastrophic dysplasia, 

atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia type 

4). SLC26A3/DRA is associated with congenital chloride diarrhoea (CCD), a rare 

autosomal recessive disorder with defective Cl
-
/HCO3

-
 exchange in the ileum and colon. 

SLC26A4 is associated with Pendred syndrome, a common form of hereditary hearing 

loss that manifests primarily as profound sensorineural deafness which results from 

disruption of cochlear endolymphatic fluid HCO3
-
 buffering, loss of the endocochlear 
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potential and subsequent oxidative stress; and non-syndromic deafness, DFNB4. These 

disorders highlight the important roles of SulP/SLC26 transporters, including their STAS 

domains, in normal human physiology (Dawson and Markovich, 2005). The above human 

disease phenotypes have been replicated in knockout mice. Mouse-specific pathological 

phenotypes have been observed in mice genetically deficient in other SulP/Slc26 gene 

products. These include severe hearing impairment observed in Slc26a5-/- mice, 

urolithiasis in Slc26a1-/- and Slc26a6-/- mice, gastric achlorhydria in Slc26a7-/-and 

Slc26a9-/- mice, distal renal tubular acidosis in Slc26a7-/- mice, and male infertility in 

Slc26a8-/- mice (Sharma et al., 2011). 

 

1.2.3.1. SulP/SLC26 and CFTR 

Cystic fibrosis is a chronic recessive disease caused by mutations in the gene 

encoding the CFTR, a member of the ABC (ATP-Binding Cassette) family of membrane 

transporters. CFTR functions as a cAMP regulated Cl
−
 channel that is regulated by PKA 

(Protein Kinase A) phosphorylation and it is expressed mainly in the apical plasma 

membrane of epithelial tissues, where it has a crucial role in regulating fluid secretion in 

the airways, salivary glands, intestine and genital tract. When CFTR fails to work 

properly, it produces an imbalance in salt and fluid transport that results in thickened 

secretions in all these tissues. In the airways there is an accumulation of sticky mucus that 

eventually results in respiratory failure (Gray, 2004).  

The primary defect in cystic fibrosis is a problem with HCO3
-
-driven fluid 

secretion, caused by the inability of mutant forms of CFTR to activate Cl
-
/HCO3

-
 

exchange (Choi et al., 2001). Subsequent studies from the same group (Ko et al., 2002) 

extended the link between CFTR and HCO3
-
 by demonstrating that CFTR specifically up-

regulated the activity of select SulP/SLC26 transporters (SLC26A3, -A4 and -A6). Later 

work (Ko et al., 2004) localized the relevant interacting regions to the R-domain of CFTR 

and the STAS domain of SulP/SLC26 transporters. This interaction is enhanced by 

phosphorylation of the R-domain by PKA and is modulated by PDZ binding scaffold 

proteins that tether the two transporters into a multimeric complex with other regulatory 

proteins (Figure 1.5). Furthermore, while the interaction between R-CFTR and the STAS 

domain of SLC26A3, -A4, -A6 increases their transport activity; the same interaction 

with SLC26A9 STAS domain inhibits transport (Chang et al., 2009 (2)). Recently it has 
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been reported that also prestin interacts with CFTR, but the functional role of this 

interaction and the interacting regions aren’t clear yet (Homma et al., 2010). 

 

Figure 1.5 Cartoon showing hypothesized apical macromolecular signaling complexes promoted 

by PDZ protein-facilitated interactions between the CFTR and SulP/SLC26 transporters. PDZ 

domain binding motif of SLC26A3, TKF, is shown in this figure; the counterpart for SLC26A6 is 

TRL. For CFTR, the motif is TRL as shown. This motif is lacking in SLC26A4, but the potential 

for regulation by STAS domain interactions with the R domain of CFTR is preserved (Fong 2012). 

 

1.3. The STAS domain 

The STAS domain is present throughout phylogeny from eubacteria onward as a 

conserved fold encoded by highly divergent amino acid sequences. STAS domain 

proteins include small STAS domain-only polypeptides and larger, multidomain 

polypeptides. The intramolecular partner domains present in these bacterial multidomain 

STAS proteins are remarkably diverse. In bacteria, STAS domain function has been 

intensively studied in the context of the regulation of the large family of sigma factors 

that bind to RNA polymerase to confer transcriptional target gene specificity (chapter 

1.3.1). Additional investigations have focused on STAS domain function in various 

signaling contexts such as blue light phototransduction (LOV-STAS, Light-Oxygen-

Voltage sensing, domains, chapter 1.3.2). More recently, STAS domains of SulP/SLC26 

anion transport proteins from bacteria and plants have been studied genetically and 

structurally, leading to new insights on STAS function. The first structure of an 

engineered mammalian SulP/SLC26 STAS domain (chapter 1.3.4.1) and growing 

numbers of SulP/SLC26 STAS domain structures (chapter 1.3.4.2 and 1.3.4.3) and 

interacting proteins has provided new contexts in which to evaluate STAS domain 

function. Most importantly, connections between intrinsic activities or interactions of 
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STAS domains and the regulation of anion transport function in SulP/SLC26 anion 

transporter polypeptides are emerging (Sharma et al., 2011). 

 

1.3.1. STAS domains as bacterial anti-σ factor antagonists: 

SpoIIAA 

One of the most extensively studied models of biological stress response is the 

sporulation of the soil bacterium Bacillus subtilis in response to nutrient deprivation.  

Early in sporulation, the cell divides asymmetrically to form two unequal 

compartments, the mother cell and the prespore (Figure 1.6 b). Differential gene 

expression occurs in these two compartments through the activation of specific 

transcription factors known as sigma factors. The prespore-specific sigma factor, σ
F
 or 

SpoIIAC, is the first of these to be activated, leading to a cascade of downstream 

activation of forespore-specific gene expression. The three proteins that regulate σ
F
 are 

SpoIIAA, which is a STAS domain protein, SpoIIAB and SpoIIE. SpoIIAB is an anti-σ 

factor, which can either bind to and inhibit σ
F
 (Figure 1.6 a.1), or act as a specific kinase 

for SpoIIAA, the anti-anti-σ factor, by transferring the γ-phosphate of ATP to Ser58 of 

SpoIIAA (Figure 1.6 a.2). Before asymmetric septation, SpoIIAA is in a phosphorylated 

state, which, under physiological conditions, does not interact with SpoIIAB, leaving the 

latter free to inhibit σ
F
. However, at the time of asymmetric septation, SpoIIE, the specific 

phosphatase for SpoIIAA-phosphate, becomes active in the prespore. The 

dephosphorylation of SpoIIAA (Figure 1.6 a.3) allows it to interact with SpoIIAB, 

thereby releasing σ
F
 activity (Figure 1.6 a.4).  

SpoIIAA binds and hydrolyzes GTP and, to a lesser degree, ATP. However, the 

GTP-binding and hydrolase activities of SpoIIAA have unclear physiological functions 

(Clarkson et al., 2003).  
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Figure 1.6 The interactions among SpoIIA (AA), SpoIIAB (AB) and SpoIIE (IIE and shaded 

circles in b) proteins in the regulation of σ
F
 activity (Seavers et al., 2001). 

 

The structures of SpoIIAA have been solved by heteronuclear NMR (Kovacs et al., 

1998) and X-ray crystallography (Figure 1.7) (Seavers et al., 2001) in phosphorylated and 

unphosphorylated forms, and in complex with SpoIIAB bound to either ADP or ATP 

(Masuda et al., 2004). Published structures of additional STAS domain proteins include 

the NMR solution structure of Thermotoga maritima putative anti-σ antagonist TM1442 

in phosphorylated and unphosphorylated states (Etezady-Esfarjani et al., 2006), the NMR 

and crystal structures of T. maritima putative anti-σ antagonist TM1081 (Serrano et al., 

2010), and the crystal structure of the putative stressosome component RsbS from 

Moorella thermoacetica (Quin et al., 2008). 

 

Figure 1.7 3D crystal structure of SpoIIAA from Bacillus sphaericus (PDB code = 1H4Y). The 

molecule contains five β strands (β1-β5) and four α helices (α1-α4) in the order β1-β2-α1-β3-α2-

β4-α3-β5-α4 (Seavers et al., 2001). 
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The SpoIIAA structure has a central β-sheet that is flanked by two α-helices on one 

side and by two small α-helices at the end of the β-sheet. An important difference 

between the SpoIIAA protein and the human SulP/SLC26 transporter STAS domains is a 

highly variable loop or InterVening Sequence (IVS) between the first predicted α-helix 

and the third β-strand of the SulP/SLC26 STAS domains (secondary structure 

nomenclature for ASAs, Figure 1.8). Secondary structure prediction algorithms suggest 

that the IVS is likely to be disordered in solution. This variable loop is the site of 

significant insertions in the mammalian SulP/SLC26 proteins, of as much as 150 amino 

acids in the case of SLC26A8. No such insertion is present in bacterial SulP/SLC26 

homologues, and this loop is also much shorter in SLC26A11 and in the Drosophila and 

C. elegans paralogs; how this variable loop contributes to paralog-specific function and/or 

regulation is not known. The functional significance of this region is currently unknown 

(Mount and Romero, 2004; Dorwart et al., 2008). 

 

Figure 1.8 Multiple alignment of a selected set of anti-sigma factor antagonists and SulP/SLC26 

anion transporters STAS domains. 14 mammalian STAS domains from human, rat and mouse 

(S26A) were aligned with 7 anti-sigma factor antagonist (SP2AA) from different bacteria and 12 

paralogous STAS domains of Sultr from A. thaliana (SUT). The sequences of the inserts in the 

variable loop are replaced by the number of amino acid residues (between curly brackets or 

arrows). The alignment was obtained with the program Jalview, using colour matrix ClustalW. 

 

1.3.2. STAS domains in phototransduction 

Sensing of (blue) light is essential for many organisms in order to be successful in 

their struggle for survival. Evolution has led to the emergence of four blue-light absorbing 

photoreceptor protein families, of which the LOV domain containing photoreceptors are 



1.3. The STAS domain 

22 

the most widely distributed. YtvA from Bacillus subtilis is a blue-light responsive, flavin-

binding photoreceptor, built of a light-sensing LOV domain and an NTP-binding STAS 

domain. Like other regulators of the stress responsive network in B. subtilis, YtvA bears a 

STAS domain that is supposed to be the effector part of the protein or a secondary switch. 

Both domains are connected by a linker polypeptide. Blue light is absorbed by the flavin 

mononucleotide chromophore of the LOV domain, triggering a local conformational 

change that is believed to be transmitted through the agency of the J linker to the STAS 

domain, which binds BODIPY-GTP (Nakasone and Hellingwerf, 2011). The near 

complete solution NMR backbone assignment of holo-YtvA in the dark state (Jurk et al., 

2011) has demonstrated a dimeric structure with LOV-LOV and STAS-STAS 

interactions, partially consistent with the proposed mechanism of light-induced 

conformational change (figure 1.9). 

 

Figure 1.9 A) B. subtilis YtvA electrostatic surface image from LOV domain crystal structure and 

from STAS domain (modelled on crystal structure of B. subtilis SpoIIAA). B) Light-induced 

conformational change of YtvA as imagined from holoprotein structure (Sharma et al., 2011). 

 

1.3.3. STAS domains in SulP/SLC26 anion transporters: function 

In bacteria, ASA proteins function and structure have been intensively studied. 

More recently, STAS domains of SulP/SLC26 anion transport proteins have been 

functionally and structurally studied, leading to new insights on STAS function.  



1. Introduction 

23 

The function of the STAS domain is not well understood but, like SpoIIAA, the 

SulP/SLC26 transporter STAS domains have been hypothesized to be protein-protein 

interaction domains. Indeed, the STAS domain of SLC26A8 can bind to MgcRacGAP 

(Tourè et al., 2001), that of SLC26A5 can bind to MAP1S (Bai et al., 2010), the STAS 

domains of SLC26A3, -A4, -A6, -A8 and -A9 interact with CFTR R-domain (Fong, 

2012) and the STAS domain of Sultr1;2 from A. thaliana interacts with OASTL (O-

AcetylSerine (Thiol)Lyase) (Shibagaki and Grossman, 2010). 

Additional information regarding the function of the STAS domains has come from 

genetic studies on the A. thaliana SulP/SLC26 transporters (Sultr). The Sultr1;2 STAS 

domain has been well functionally characterized as essential for activity, 

biosynthesis/stability of the transporter and for proper transporter localization (Shibagaki 

and Grossman, 2004; 2006; Rouached et al., 2005). As it has been shown for Sultr1;2, 

molecular truncation experiments have indicated that STAS domain integrity is required 

for optimal surface trafficking and functional expression also for SLC26A3 (Chernova et 

al., 2003).  

Trafficking impairment is noted with most of the examined disease mutations of the 

SulP/SLC26 STAS domains, which constitute a minority of all SulP/SLC26 human 

disease mutations. The largest number of distinct disease associated variants in STAS 

domains, as well as in holoproteins, is found in pendrin. Notably, among IVS sequences 

of SulP/SLC26 human disease genes, only the IVS of pendrin has been shown to date to 

harbor disease genes. 

 

1.3.4. STAS domains in SulP/SLC26 anion transporters: 

structure 

Structural information is available for STAS domains of SulP/SLC26 anion 

transporters of SLC26A5/prestin from Rattus norvegicus (Pasqualetto et al., 2010), YchM 

from Escherichia coli (Babu et al., 2010) and of Rv1739c from Mycobacterium 

tuberculosis (Sharma et al., 2010); their structures revealed a common global fold but 

there are significant differences at the N-terminus where SLC26A5 has an original 

structure. 
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1.3.4.1. SLC26A5/prestin STAS domain from Rattus norvegicus  

The X-ray crystal structure of the prestin STAS domain from Rattus norvegicus 

with an engineered central deletion of the IVS sequence was solved during my master 

degree thesis in the same laboratory where I attended the PhD, with the collaboration of 

Dr. Bellanda, at the Department of Chemical Sciences, University of Padova. Some rat 

prestin STAS domain constructs turned out to be insoluble when expressed in E. coli, and 

others had a strong tendency to aggregate in solution (Pasqualetto et al., 2008) while 

prestin STAS constructs without the variable loop, which is predicted to be mostly 

disordered, showed a better behaviour in solution, more suitable for structural studies.  

The core of the structure is composed of a β-sheet of six β-strands, named from β0 

to β5. The four C-terminal strands from β2 to β5 are surrounded by five α-helices (α1-

α5). The structure is stabilized by two extensive networks of hydrophobic residues, 

connecting each side of the β-sheet with the nearby helices. The main differences between 

the structure of prestin STAS and those of bacterial ASA are a long rigid insertion 

between β1 and β2 composed of a short β-strand (β0) and a series of tight β-turns in the 

N-terminal portion and in the direction of helix α1. Despite these differences in the N-

terminal portion and in helix α1, secondary structure elements β1, β2, β3, β4, β5, α2, α3, 

α4, and α5 of prestin STAS are structurally and topologically similar to those of bacterial 

ASA proteins, justifying also from a structural point of view the notion of STAS domains, 

linking anion transporters and SpoIIAA bacterial proteins.  

As the prestin STAS domain is located in the cytosolic portion of a membrane 

protein, in close proximity to the lipid bilayer, we have tried to identify which part of the 

molecule faces the membrane surface using a computational approach (PPM program) 

(Lomize et al., 2006). The program revealed the existence of a non-polar surface region, 

composed of residues Pro543, Tyr545, Tyr546, Phe651, and Val655 (highlighted in the 

figure 1.10) that shows a possibility of weak association with a lipid bilayer or with the 

hydrophobic surface of the protein transmembrane domain (Pasqualetto et al., 2010). 
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Figure 1.10 Crystal structure of SLC26A5 STAS domain from Rattus norvegicus (PDB ID code 

3LLO) exhibiting a secondary structural element sequence of β1-β0-β2-α1-β3-α2-β4-α3-α4-β5-α5 

and the proposed orientation of prestin STAS domain with respect to the membrane (small brown 

spheres). The side chains of the amino acids which have been detected interacting the lipid 

bilayer by the PPM program are in blue (Pasqualetto et al., 2010).  

 

1.3.4.2. YchM STAS domain from Escherichia coli 

In Escherichia coli, YchM is a C(4)-dicarboxylic acid transporter, an unexpected 

new function for a prokaryotic member of this transporter family (Karinou et al., 2012). 

The structure of the YchM STAS domain has been solved using X-ray crystallography. 

The STAS domain expressed in E. coli was found to copurify and cocrystallize in a 1:1 

complex with Acyl Carrier Protein (ACP), an essential component of the fatty acid 

biosynthetic apparatus. The ACP in the crystal was covalently attached to a malonyl-coA 

moiety which was situated at the ACP-STAS interface. The cocrystal structure showed a 

specific interaction between the STAS domain of YchM and ACP, suggesting that the 

STAS domain of YchM could play a role in sequestering ACP to the inner membrane, the 

site of phospholipid biosynthesis.  

The structure the STAS domain begins with β strand β1 antiparallel to the second β 

strand β2 followed by α1, β3, α2, β4, α3, β5 and α4. In comparison with SpoIIAA, the 

STAS domain of YchM contains an additional β strand onto its core four-stranded β 

sheet, with residues 532-541 of the YchM STAS domain creating part of a binding pocket 

to accommodate the 4’- PPa prosthetic group from ACP. The potential binding site for the 

SpoIIAB kinase on SpoIIAA does not overlap with its ACP interaction site on STAS 

Ser505 

Ala718 

Hydrophobic surface, 

possibly interacting 

with the TMD 
Tyr545 

Pro543 

Tyr546 
Phe651 

Val655 
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domain of YchM. This binding surface on the YchM STAS domain may provide an 

additional docking site for other interacting proteins. The structural core features of the 

STAS domain are likely common to highly related bacterial homologs and shared by 

other homologous members of the SulP/SLC26 family, including the human proteins that 

contain larger STAS domains. This conserved core structure is evident in the prestin 

STAS domain structure that retains a similar overall architecture to the STAS domain of 

YchM. The main differences with rat prestin STAS are its higher angle of divergence 

between helices α1 and α2 (Babu et al., 2010; Sharma et al., 2011). 

Babu and colleagues suggest that perhaps the reason for which the STAS domains 

from human SulP/SLC26 transporters have been difficult to crystallize and they were 

unable to crystallize the STAS domain of YchM on its own, is in part that STAS domains 

have intrinsically disordered regions in the absence of binding partners, a common theme 

in many signalling proteins (Babu et al., 2010). 

 

 

Figure 1.11 Crystal structure of YchM STAS domain from E. coli in complex with ACP, exhibiting 

a secondary structural element sequence of β1-β2-α1-β3-α2-β4-α3-β5-α4 (PDB ID code 3NY7) 

(Babu et al., 2010). 
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1.3.4.3. Rv1739c STAS domain from Mycobacterium tuberculosis 

The structure of Rv1739c STAS domain from M. tuberculosis has been solved 

using heteronuclear multidimensional NMR spectroscopy. The structure revealed a four-

stranded β-sheet with five interspersed α-helices, with the pattern β1-α1-β2-α2-β3-α3-α4-

β4-α5. The topological fold of Rv1739c STAS closely resembles that of the anti-σ factor 

antagonist and that of the rat prestin construct. A notable exception to this similarity is the 

absence of a β strand within the most N-terminal residues 1-14, observed in the anti-σ 

factor antagonist structures. The Rv1739c STAS domain construct lacks the 15-aa N-

terminal extension present in the crystal structure of the C-terminal truncated, IVS-

deleted rat prestin STAS structure. This 15-aa extension includes a “β1 strand” at its 

extreme N-terminus and a “β0 strand” in the immediately juxtaposed loop. Rat prestin 

STAS also differs from the STAS domains and Rv1739c in its higher angle of divergence 

between helices α1 and α2. Rv1739c differed significantly in its secondary structure as 

compared to YchM with relative reversal of α1 and β2 in the linear sequence and 

presence of helix α5 that is instead present in prestin STAS domain.  

NMR CSP studies and docking calculations suggest two possible nucleotide 

binding sites in Rv1739c STAS involved in binding GDP and/or GTP. Therefore 

Rv1739c STAS domain binds and maybe hydrolyzes guanine but the functional 

importance of these activities remains obscure for Rv1739c as well as for anti-anti-σ 

SpoIIAA of B. subtilis (Sharma et al., 2010; Sharma et al., 2011).  

 

Figure 1.12 Solution structure of Rv1739c STAS domain from M. tuberculosis exhibiting a 

secondary structural element sequence of β1-α1-β2-α2-β3-α3-α4-β4-α5 (PDB ID code 2KLN) 

(Sharma et al., 2010). 
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1.4. Selected SulP/SLC26 STAS domains and full-length 

transporters 

This PhD thesis focused on a selection of SulP/SLC26 transporters from different 

orthologs: 

- SLC26A5/prestin from Rattus norvegicus, Gallus gallus and Danio rerio 

(chapter 1.4.1), 

- SCL26A4/pendrin from Homo sapiens sapiens (chapter 1.4.2), 

- Sultr 1;2 from Arabidopsis thaliana (chapter 1.4.3), 

- Rv1739c from Mycobacterium tuberculosis (chapter 1.4.4), 

- BicA from Synechocystis sp. strain PCC 6803, Trichodesmium erythraeum 

IMS101 and Thermosynechococcus elongatus BP-1 (chapter 1.4.5). 

 

1.4.1. SLC26A5/prestin 

Mammalian prestin is a motor protein abundantly expressed in the lateral membrane 

of outer hair cells (OHCs) of the mammalian inner ear but it is very different from all the 

other molecular motors. In fact the linear motors, such as myosin, kinesin and dynein, 

generate motion by using nucleoside triphosphate hydrolysis to produce conformational 

changes in proteins. Other motors, such as helicases, ribosomal motors, chaperonins, etc., 

also require ATP hydrolysis for energy. Prestin, however, is a direct voltage-to-force 

converter and it is probably unique in the animal kingdom. Moreover prestin is implicated 

in the mechanism responsible for mammalian sound amplification (Dallos et al., 2006). 

 

1.4.1.1. SLC26A5/prestin and OHCs 

Mechanical amplification of acoustic signals is apparently a common feature of 

vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by 

stereociliary processes, related to the mechanotransducer channel complex and probably 

to the phenomenon of fast adaptation (Dallos, 2008). Though these standard stereocilia-

based mechanisms to promote amplification persist in mammals, an additional radically 

different mechanism, which resides in the organ of Corti, evolved: the so called somatic 

electromotility which refers to the elongation/contraction of the OHCs' cylindrical cell 

body in response to membrane hyperpolarization/depolarization cycles (Elgoyhen and 

Franchini, 2011). The organ of Corti, the sense organ of hearing in mammals, is a cellular 
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matrix that incorporates various supporting cells and two types of sensory receptor cell, 

the IHCs (inner hair cells) and the OHC (Figure 1.13).  

 

Figure 1.13 A cross section of the mammalian inner ear and of the cochlea illustrating the organ 

of Corti. The organ of Corti is a cellular matrix that incorporates various supporting cells and 

two types of sensory receptor cell. The latter consist of a single row of IHCs and 3-4 rows of 

OHCs (Dallos and Fakler, 2002). 

 

IHCs function as the sensory receptors of the hearing organ and convey essentially 

all auditory information to the brain. OHCs are cylindrical cells 15-70 μm long and have 

a distinctive hair (stereocilia) bundle, which is the mechanosensory input organelle of 

these cells. When mechanically stimulated by incoming sound waves, the ciliary bundle is 

deflected, and thereby triggers the opening and closing of mechanosensitive ion channels 

in the stereocilia membrane. Then OHCs translate the resulting changes in membrane 

potential into macroscopic changes in the length of their cylindrical cell bodies. 

Depolarization triggers cell contraction, whereas hyperpolarization results in cell 

elongation. This electrically driven cell motility generates the mechanical energy that is 

required for amplifying the sound-induced vibrations in the cochlea. 

Somatic electromotility in OHCs, as the basis for cochlear amplification, is a 

mammalian novelty and it is largely dependent upon the properties of the unique motor 

protein prestin. Prestin is thought to act as an area motor by alternating between two 

major conformations that occupy different cross-sectional areas within the membrane and 

were, therefore, termed “long” and “short states” (Dallos and Fakler, 2002). Joint 

conformational transitions of the tightly packed prestin motors in the plasma membrane 

of the OHC lead to length changes of the whole cell (Dallos and Fakler, 2002; Ashmore, 

2008; Dallos, 2008). The distribution between long and short conformations is 
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immediately voltage dependent, which inevitably requires a mobile charged particle 

acting as a voltage sensor. The protein was named “prestin” because it was able to confer 

on cells the ability to move presto (fast in Italian) (Zheng et al., 2000). Mechanistically, 

the electromotility of OHCs is similar to piezoelectric materials that change dimensions 

under the influence of voltage (Ashmore, 2008). 

Although we are still left without a clear picture of how these two mechanisms 

interact, stereocilia and somatic motility could provide alternative or complementary 

ways for cochlear amplification in mammalian hair cells (Elgoyhen and Franchini, 2011).  

 

1.4.1.2. SLC26A5/ prestin’s voltage sensor 

In any voltage-operated membrane system, such as voltage-gated ion channels or 

skeletal muscle, a rapid change in membrane potential is accompanied by transient 

current flow through the membrane. This current results from electrical charges that are 

translocated across the membrane under the influence of the electrical field. The moving 

charge is called the “gating charge”; the resulting current is known as the “gating 

current”. In ion channels, this gating current arises from the movement of an α-helix (S4 

helix) that contains several positively charged amino acids and serves as a voltage sensor. 

In OHCs, the gating current was also thought to arise from the charged moiety of prestin. 

Movement of this charged moiety (voltage sensor) is manifested as a measurable 

capacitance known as NonLinear Capacitance (NLC), which is voltage-dependent. 

Capacitance is defined as the derivative of charge with respect to voltage (see 

equation in figure 1.14.c). The total charge moved during the transient gating current is 

given as the integral of current over time (Figure 1.14.a). Ashmore (Ashmore, 2008) 

discovered that OHCs have NLC that shows a bell-shaped dependence on membrane 

potential, as in the bottom graph. The shape of the NLC curve reflects the probability of 

movable charges being translocated between two positions at opposite sides of the 

membrane. Therefore, capacitance peaks at the voltage that is most effective in producing 

a motile response.  

As NLC measurements can be easily and accurately made experimentally and they 

are highly correlated to motility (Figure 1.14.b), they are often used to characterize 

electromotility instead of directly measuring changes in cell length. Therefore it is 

generally accepted that NLC can serve as a “signature” of the electromotility of OHCs. 

(Dallos and Fakler, 2002). 
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Figure 1.14 a) When the current (i) is integrated (area under the curve, shown shaded), the total 

charge moved (q) is obtained. b) When the voltage- and time-dependence of the gating charge (in 

blue) are compared to that of electromotility in OHCs (in red), excellent correlation is found. c) 

Capacitance (c) is defined as the derivative of charge (q) with respect to voltage (V). d) OHCs 

have NLC that shows a bell-shaped dependence on membrane potential (Dallos and Fakler, 

2002). 

 

The nature of the voltage sensor was determined by Oliver and colleagues (Oliver et 

al., 2001). To identify the sensor, all the charged residues that are not conserved between 

prestin and SLC26A6, the SulP/SLC26 protein with the closest homology to prestin, were 

neutralized either alone or in combination and the resulting molecules were probed for 

NLC. As NLC was not abolished in any of these cases, the concept that charged particles 

that are extrinsic to the protein act as the voltage sensor was tested. Neither cations nor 

external anions had any effect on NLC. However, NLC and, concomitantly, 

electromotility were reversibly eliminated by removing Cl
-
 ions from the cytoplasm of 

cells containing prestin while they were unaffected by removal of external Cl
-
. Detailed 

analysis showed that the half-activating Cl
-
 concentration was 6 mM, matching the 

normal intracellular amount of this anion. Other monovalent anions were also found to be 

effective in promoting NLC, in the order I
-
 ≈ Br

-
 > NO3

-
 > Cl

-
 > HCO3

-
 > F

-
. Divalent 

anions (for example, SO4
2-

) were ineffective in functionally replacing their monovalent 
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d 



1.4. Selected SulP/SLC26 STAS domains and full-length transporters 

32 

counterparts. On the basis of these results, it was concluded that prestin uses an extrinsic 

voltage sensor (monovalent anions) available in the cytoplasm (Dallos and Fakler, 2002).  

Later contrasting experimental observations showed that a residual NLC remained 

in the absence of internal Cl
-
, which led to the proposal that the NLC was generated by an 

intrinsic voltage-sensor, and the dependence of the NLC on the concentration of the 

internal Cl
-
 was due to an allosteric action of Cl

-
 on prestin (Rybalchenko and Santos-

Sacchi, 2003; Muallem and Ashmore, 2006). 

Furthermore, Bai and co-workers identified an intrinsic voltage sensor in prestin: 

they mutated every charged residue in prestin that lies within or in very close proximity to 

the predicted transmembrane segments and identified a large number of charged residues 

within prestin’s transmembrane domains that are also conserved in SLC26a6, and that 

contribute to the generation of NLC (Bai et al., 2009). 

As yet, the nature of the NLC-generating transition is still not well known: NLC 

may derive from shuttling of Cl
-
 through the electric field (Oliver et al., 2001) or from 

movement of an intrinsic voltage sensor (Bai et al., 2009) or a combination of both. 

 

1.4.1.3. SLC26A5/ prestin’s molecular mode of action 

There are various models for prestin’s molecular mode of action, but the 

predominant view is that the conformational changes of the molecule depend on partial 

transmembrane movements of Cl
-
 ions. Unlike the other SulP/SLC26 transporters, in the 

case of mammalian prestin no significant unidirectional transport has been detected when 

monovalent (HCO3
-
, Cl

-
) or divalent (SO4

2-
) anions were tested (Oliver et al., 2001; 

Schaechinger and Oliver, 2007). In mammalian prestin monovalent anions (HCO3
-
, Cl

-
) 

have been proposed as forming the extrinsic voltage sensor in these proteins when they 

act as “incomplete” transporters, so that movement of these anions from the intracellular 

surface triggers changes in molecular conformation (Figure 1.15).  
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Figure 1.15 Model of the control of prestin by internal Cl
-
 ions. Left: In the absence of internal 

Cl
-
, the molecule is in its “short” state. Middle: The cell membrane is depolarized. Cl

-
 is bound to 

the molecule but remains at the cytoplasmic face of the membrane. Right: The cell membrane is 

hyperpolarized. Bound Cl
-
 is translocated across the molecule towards the external face (Dallos 

and Fakler, 2002). 

 

After binding to a site with millimolar affinity, these anions are translocated across 

the membrane in response to changes in the transmembrane voltage. They move towards 

the extracellular surface following hyperpolarization and towards the cytoplasmic side in 

response to depolarization. As a consequence, this translocation triggers conformational 

changes in the protein that ultimately alter its surface area in the plane of the plasma 

membrane. The area decreases when the anion is near the cytoplasmic face of the 

membrane (“short state”), and increases when the ion has crossed the membrane to the 

outer surface (“long state”). So, prestin acts as an incomplete transporter. It swings anions 

across the membrane, but does not allow these anions to dissociate and escape to the 

extracellular space. When monovalent anions are not present in the cytoplasm, all prestin 

molecules are in their “short” state, as the OHC is maximally contracted (Dallos and 

Fakler, 2002). 

Subsequently, a theoretical work suggests that many experimental data could be 

better explained if one assumes that prestin acts as an electrogenic anion exchanger, 

exchanging one Cl
-
 ion for one divalent or two monovalent anions. The authors suggested 

that prestin functions as a Cl
-
/ SO4

2-
 antiporter (Figure 1.16) (Muallem and Ashmore 

2006). 
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Figure 1.16 Anion antiporter models associated with intrinsic charge movement (Muallem and 

Ashmore 2006). 

 

Some recent experiments, in contrast to previous observations, suggest that prestin 

is able to transport anions, although not necessarily those implicated in normal 

physiological processes, such as formate and oxalate (Bai et al., 2009), SCN
−
 

(pseudohalide Thiocyanate) (Schanzler and Fahlke, 2012), HCO3
-
 and Cl

-
 with a 

stoichiometry of 2 HCO3
-
:1 Cl

-
 (Mistrík et al., 2012). The physiological significance of 

this supposed transport is still not clear. 

By creating recombinant prestins it has been shown that regions of the prestin 

amino acid sequence are implicated in transport and motility (Schaechinger et al., 2011; 

Tan et al., 2011); these regions were not located in the same region, but it is possible that 

there may be several areas in the prestin molecule that are important for 

electromechanical conversion. 

Schaechinger and co-workers also proposed a model in which the NLC-generating 

transition is embedded within an alternating-access transport cycle (Figure 1.17). 

 

Figure 1.17 Alternating-access model. Mammalian prestin may adopt only states in the non-

shaded area. NLC arises from fast voltage-dependent transitions between the states highlighted in 

yellow, EoCl (V, membrane potential) (Schaechinger et al., 2011). 
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The transport process may determine the occupancy of a structural conformation 

(“active state”) that enables the voltage-fuelled rapid elongation/contraction transition 

generating NLC and fast electromotility. This active state corresponds to a conformation 

in which a monovalent anion (Cl
-
) occupies a binding site within prestin’s permeation 

pathway, the Cl-bound state EoCl. The model predicts the suppressive effect of 

intracellular oxalate on NLC generated by rat prestin: because NLC is completely 

independent of extracellular Cl
-
 (Oliver et al., 2001), dissociation from and binding of Cl

-
 

to the outward-facing conformation must be impossible or greatly disfavoured (shaded in 

Figure 1.17). This is also consistent with the predominant view of the lack of transport 

activity in rat prestin (Schaechinger and Oliver, 2007; Tan et al., 2011). Hence, when 

binding of intracellular oxalate increases occupancy of EiOx, occupancy of EoCl and 

consequently NLC must decrease. Furthermore, loss of NLC upon removal of 

intracellular Cl
-
 is explained by accumulation of prestin in the Ei state that cannot 

promote NLC (Schaechinger et al., 2011). 

As yet, short of a tertiary structure for prestin, the relationship between 

electromotility and transport remains unclear and the prestin’s mode of action is still not 

well understood. 

 

1.4.1.4. SLC26A5/ prestin’s orthologs and evolution  

If prestin-driven electromotility was a key step for the evolution of sound 

amplification (and tuning) in the mammalian ear, prestin should either be a mammalian 

novelty or mammalian prestin should have acquired new functional features to serve as 

the OHC motor. A phylogenetic and evolutionary analysis showed that prestin orthologs 

are present in all vertebrate species analyzed, indicating that prestin is not a mammalian 

exclusive protein. Comparing the percentage of protein identity (% ID), defined as the 

percentage of identical amino acids, among Homo Sapiens prestin with placental mammal 

and non-mammalian vertebrate prestin orthologs it is obtained that, whereas human 

prestin sequence shares a very high % ID (95% and higher) with mammal vertebrate, 

there is a significant drop in identity (< 59%) when it is compared to those of non-

mammalian vertebrates. In addition, the analysis indicated that mammalian prestin % ID 

values are the highest among all members of the SulP/SLC26 family. Moreover, in the 

other SulP/SLC26 members the % ID values between mammals and non-mammalian 

vertebrate are much higher than for prestin. These results indicate that mammalian prestin 
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had a somewhat different evolutionary history when compared to other members of the 

family; it accumulated more amino acid changes in its primary sequence, most likely to 

accommodate a novel function (Elgoyhen and Franchini, 2011).  

Recent evidence suggests that prestin orthologs from zebrafish and chicken are 

electrogenic antiporters, exchanging sulfate or oxalate for chloride in a strictly coupled 

manner with a 1:1 stoichiometry (Schaechinger and Oliver, 2007), with no motor function 

(Albert et al., 2007). Moreover several aspects of mammalian prestin’s function show 

striking similarities when compared with non-mammalian prestin. 

1. Voltage sensitivity and the resultant conformational rearrangements of 

mammalian prestin depend on the presence of millimolar concentration of 

internal Cl
-
. Binding of the monovalent anion could be to the same binding sites 

involved in Cl
-
 transport by non-mammalian prestin (Oliver et al., 2001). 

2. Oliver and co-workers (Oliver et al., 2001) showed that salicylate, the active 

component of aspirin, acts as a competitive antagonist at the anion-binding site of 

prestin. The anionic salicylate is able to induce NLC. The amplitude of this NLC, 

however, is more than an order of magnitude lower than that found for the small 

Cl
-
 ion. Nevertheless, the binding affinity of salicylate is around 300-fold higher 

than that found for Cl
-
. This result provides a possible explanation for the 

significantly reduced OHC electromotility that probably underlies the hearing 

loss induced by large doses of aspirin (Dallos and Fakler, 2002). Salicylate block 

of mammalian prestin quantitatively equals the inhibition of non-mammalian 

transport. 

3. Prestin from D. rerio generates voltage-dependent charge movements (Albert et 

al., 2007) resembling the gating charge associated with electromotility. The 

presence of a small NLC in zebrafish and chicken prestins may suggest a 

common mechanism of charge movement seen in the mammalian prestins. 

However, lack of motor function in zebrafish and chicken prestins indicates that 

the charge movements and motor function may evolve independently, although 

the two are believed to be fully coupled in mammalian prestin (Tan et al., 2011). 

4. Mammalian and chicken isoforms share a substantial degree of sequence 

conservation, especially in the hydrophobic core region that presumably provides 

the structural basis for ion transport.  

5. Although zebrafish prestin is expressed in hair cells, it is distributed throughout 

the hair cells (Albert et al., 2007). This subcellular staining pattern contrasts with 
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the exclusive basolateral membrane localization of prestin in mammalian OHCs. 

The lack of membrane localization of zebrafish prestin most likely precludes its 

function as a molecular motor (Franchini and Elgoyhen, 2006; Elgoyhen and 

Franchini, 2011). 

These studies suggest that prestin’s unique function evolved as a modification of an 

anion exchange mechanism.  

 

1.4.1.5. SLC26A5/ prestin structure and quaternary organization 

The topology for SLC26A5/prestin is not known, but it is agreed that an even 

number of helices span the membrane as both NH2 terminal and COOH terminal ends lie 

within the cytoplasm (Zheng et al., 2000).  

 

 

 

Figure 1.18 Models of prestin’s transmembrane topology. A: 12 transmembrane α-helices (Zheng 

et al., 2000; Oliver et al., 2001); B: 10 α-helices inserting across the membrane with 2 

nonspanning helices present in the set of helices (Deák et al., 2005). C: 10 transmembrane α-

helices (Navaratnam et al., 2005). 
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Subsequent reports have been more definite and identified 12 transmembrane α-

helices (Figure 1.18.A) (Oliver et al., 2001), 10 α-helices inserting across the membrane 

with 2 nonspanning helices present in the set of helices (Figure 1.18.B) (Deák et al., 

2005) or 10 transmembrane helices alone (Figure 1.18.C) (Navaratnam et al., 2005).  

Morphological studies show that OHC membrane contains large protein particles 

with a diameter between 9 and 13 nm (Le Grimellec et al., 2002; Mio et al., 2008; 

Murakoshi et al., 2008; Kumano et al., 2009; Sinha et al., 2010). Correlation between the 

development of motility and particle density in developing OHCs suggests that the 

majority of the intramembrane particles (IMPs) are the motor protein prestin (He et al., 

2010). Prestin has 744 amino acids with a predicted molecular mass of 81.4 kDa. The 

predicted amino acid sequence and molecular mass of prestin monomer appear to be 

inadequate to account for the size of IMPs in the membrane. In fact the particles are 4-5 

times the expected size of prestin, but some biochemical studies suggest that prestin 

forms oligomers. FRET analyses of prestin coupled to fluorescent proteins suggested the 

existence of homo-oligomeric interaction, but did not provide any information on 

stoichiometry (Greeson et al., 2006; Navaratnam et al., 2005). A Western blot analysis of 

prestin purified from expression systems suggested dimer states and tetramer states 

formed from dimers connected via hydrophobic bonds (Zheng et al., 2006).  

A low-resolution electron density map of purified prestin exhibited a bullet-shaped 

fourfold symmetric molecule of 77 x 77 x 115 Å in size with an inner cavity (Figure 

1.19), suggesting a tetrameric arrangement of subunits (Mio et al., 2008).  

 

Figure 1.19 Images of prestin particles embedded in the plasma membrane of the OHCs, viewed 

from outside the cell (left) and across the membrane (right) (Mio et al., 2008). 
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On the other hand, Le Grimellec and colleagues (Le Grimellec et al., 2002) found 

structures with a central depression in the cytoplasmic side of the OHC plasma membrane 

by AFM. Murakoshi and co-workers (Murakoshi et al., 2008) detected prestin in the 

plasma membrane of prestin-transfected CHO cells using Qdots as topographic markers 

and observed ring-like structures, possibly prestin, by AFM. In agreement with these 

results also Kumano and colleagues (Kumano et al., 2010) demonstrated that prestin 

might form a ring-like structure with a diameter of about 11 nm (Figure 1.20). Thus, the 

structure of prestin is still a controversial issue. 

 

Figure 1.20 3D AFM height image of the prestin-reconstituted lipid bilayer. Representative 

examples of ring-like structures were digitally magnified and are shown (A and B) (Kumano et 

al., 2010). 

 

More recently other two works demonstrated that in cell membranes prestin 

oligomerizes to a tetramer (Wang et al., 2010; Hallworth and Nichols 2011). However, 

another study suggested that dimers were the normal configuration of prestin and some 

other SulP/Slc26 family members (Detro-Dassen et al., 2008). Therefore, it is still not 

clear whether prestin forms tetramers, trimers, or dimers, but it is possible that all these 

high-order oligomers can co-exist and are functional (He et al., 2010). 

 

1.4.1.6. SLC26A5 binding proteins 

It has been reported that prestin binds to and is potentiated by CFTR coexpression 

in HEK-293 cells, but the functional role of this interaction isn’t still clear (Homma et al., 

2010). 
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It has been discovered, through yeast two-hybrid interaction, that MAP1S bound to 

prestin. MAP1S interacts through a linker region between light and heavy chain domains 

with the proximal region of the STAS domain. The interaction leads to marked 

stimulation of prestin-mediated NLC in transiently transfected CHO cells in parallel with 

increased surface expression (Bai et al., 2010).  

The integral membrane protein VAPA (or VAP-33) was discovered as a prestin 

binding protein through a membrane-based yeast two-hybrid screen, and validated by co-

immunoprecipitation and immuno-colocalization in outer hair cells. OHCs from Slc26a5-

/- mice expressed VAPA at decreased abundance, suggesting a possible role for VAPA in 

vesicular trafficking of prestin (Sengupta et al., 2010).  

Additional, incompletely validated prestin-binding proteins identified in this 

membrane-based yeast two-hybrid screen include integrin-interacting proteins 

tetraspanins 6 and 29 (CD9) and β2-microglobulin, glycosylphosphoinositide-linked 

costimulatory molecule CD52/CAMPATH-1, the small conductance Ca
2+

-activated K
+
 

channel KCNN2/SK2, fatty acid binding protein FABp3, Wnt receptor frizzled-3, bone -

carboxyglutamate protein I, and dynein light chain Tctex-type I (Zheng et al., 2009).  

Prestin has also been shown to interact indirectly with βV-Spectrin, likely through 

the cytoskeletal proteins F-actin and protein 4.1. However, these intermediate proteins 

have themselves not yet been shown to bind directly to prestin (Legendre et al., 2008). 

 

1.4.1.7. SLC26A5 and genetic diseases 

Autosomal recessive deafness was initially attributed to biallelic mutations in the 

SLC26A5 gene (Liu et al., 2003) encoding prestin. However, subsequent studies 

established that the very few known prestin coding sequence variants found to date are 

variants also present in individuals with normal hearing (Minor et al., 2009), despite the 

severe hearing impairment observed in Slc26a5-/- mice. 

 

1.4.2. SLC26A4/ pendrin  

Pendrin is the fourth member of the SulP/SLC26 anion transporter family, which is 

involved in the transport of anions, including Cl
-
, HCO3

-
, OH

-
, I

-
, or formate, within the 

ear, thyroid, and kidney (Mount and Romero, 2004). In thyrocytes, I
-
 and Na

+
 are brought 

into the cells via the basolaterally located Na
+
-I

-
 symporter. Apically located pendrin 
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seems to be responsible for the efflux of iodide into the follicular lumen (Yoshida et al., 

2002). In the kidney, pendrin is suspected to mediate Cl
-
/HCO3

-
 exchange in the acid-base 

regulating β- and non-α-non-β-intercalated cells (Soleimani et al., 2001). Similarly, in the 

inner ear, pendrin is thought to mediate Cl
-
/HCO3

-
 exchange, and is therefore involved in 

the conditioning of endolymphatic fluid, presumably due to HCO3
-
 secretion 

(Wangemann et al., 2007). Malfunction of pendrin leads to Pendred syndrome (PS). PS 

(OMIM#274600) is an autosomal recessive disorder accounting for 4-10% of inherited 

hearing losses and involves two organ systems: the ear, and the thyroid gland. As regards 

the ear, impaired pendrin function i) promotes a progressive increase in endolymph 

volume followed by an enlargement of the membranous labyrinth and surrounding 

osseous structures, and ii) leads to degeneration of inner ear sensory cells (Everett et al., 

2001). The resulting phenotype is a severe/profound sensorineutral hearing loss (SNHL). 

While impaired pendrin function at the thyroid level can result in goiter, defects in iodide 

organification, and hypothyroidism.  

Structural information regarding membrane topology of pendrin is limited and 

controversial. There are different topology models in literature, among which 11 TM, 12 

TM and 13 TM models, but in a recent paper Dossena and co-workers proposed a new 

membrane topology model in which SLC26A4 would be formed by up to 15 TM helical 

segments (Figure 1.21) (Dossena et al., 2009). 

 

Figure 1.21 Putative 15 TM-segment model topology of human pendrin proposed by Dossena and 

co-workers. The amino terminus in this model would be located on the extracellular side, and the 

carboxy terminus would be located at the cytoplasmic side (Dossena et al., 2009). 
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1.4.3. Sultr1;2 

Most environmental sulfur exists in the oxidized form, primarily SO4
2-

, which is 

reduced and assimilated by plants. The sulfate ion (SO4
2-

) is transported into plant root 

cells by SO4
2-

 transporters and then mostly reduced to sulfide (S
2-

). The S
2-

 is then bonded 

to O-acetylserine (OAS) through the activity of cysteine synthase or OASTL to form 

cysteine, the first organic molecule of the SO4
2-

 assimilation pathway.  

In the plant Arabidopsis thaliana, at least 14 distinct SulP/Sultr genes in 5 classes 

encode plasmalemmal and intracellular membrane sulfate transporters. These transporters 

are expressed in distinct subcellular membranes in specific tissues and with 

developmental stage-specific patterns. Although most are SO4
2-

 transporters, some 

preferentially exhibit nM affinity uptake of molybdate and at least one has turned out to 

regulate cellular levels of phytic acid.  

The two best studied SulP/SLC26 proteins in plant are Sultr1;2 and Sultr1;1, two 

high affinity, root-localized SO4
2-

 transporters, that take up SO4
2-

 from the rhizosphere. 

Sultr1;2 transcript levels are high in sulfur-rich conditions and increase slightly upon 

sulfur deprivation, whereas the Sultr1;1 transcript levels increase by >100-fold during 

sulfur deprivation. In a recent paper Shibagaki and Grossman demonstrated that the 

STAS domain of Sultr1;2 physically interacts with OASTL, decreasing SO4
2-

 transport 

activity of Sultr1;2 and increasing OASTL activity. Based on these results they proposed 

a model for the regulation of SO4
2-

 assimilation by roots (Figure 1.22).  

 

Figure 1.22 A potential novel regulatory mechanism controlling SO4
2-

 transport into root cells 

that involves OAS/S
2-

-modulated interaction of OASTL with SULTR1;2 (Shibagaki and Grossman, 

2010). 

At high SO4
2-

 concentrations (Figure 1.22 A and B), when Sultr1;2 is the dominant 

transporter responsible for SO4
2-

 uptake from the soil, direct interaction of Sultr1;2 and 

OASTL helps coordinate SO4
2-

 transport with S
2-

 production and cysteine synthesis. 

Availability of S
2-

 in the cytoplasm of the root cells would be a major control feature of 
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this model. OASTL would associate with the STAS domain of Sultr1;2 when OAS rises, 

and this interaction inhibits transporter activity. As OAS is consumed in the synthesis of 

cysteine, under conditions where S
2-

 production begins to keep pace with OAS 

generation, OASTL would dissociate from Sultr1;2 releasing the transporter from 

inhibition. When SO4
2-

 is low (Figure 1.22 C), a conformational change in Sultr1;2 may 

lessen the STAS-OASTL interaction, allowing higher rates of SO4
2-

 transport activity 

despite potentially high OAS levels (Shibagaki and Grossman, 2010). 

 

1.4.4. Rv1739c 

Growth and virulence of mycobacteria requires sulfur uptake. Although genetic 

growth experiments in vitro suggest that mycobacterial sulfate assimilation is mediated 

entirely by the ABC-type sulfate permease CysTWA, with possible contributions of 

transport systems for thiosulfate and sulfur-containing amino acids, the sulfate 

assimilation systems employed by mycobacteria sequestered inside lysosomes are less 

well understood. Among candidate sulfate or anion transporters in the M. tuberculosis 

genome are three SulP/SLC26 genes of unknown function, among which Rv1739c. 

Zolotarev and co-workers demonstrated that induction of Rv1739c expression in E. 

coli increased bacterial uptake of sulfate. The increased sulfate uptake occurs by a 

mechanism requiring the cytoplasmic CysA subunit of the ABC sulfate permease. The 

transmembrane domain of Rv1739c suffices for this activity, therefore the function of the 

Rv1739c STAS domain remains unknown (Zolotarev et al., 2008). 

 

1.4.5. BicA 

Marine cyanobacteria generate as much as 25% of global primary productivity 

through efficient inorganic carbon fixation mechanisms. Cyanobacteria possess an 

environmental adaptation known as a CO2 concentrating mechanism (CCM) that evolved 

to improve photosynthetic performance, particularly under CO2-limiting conditions. The 

CCM functions to actively transport dissolved inorganic carbon species (Ci; HCO3
-
 and 

CO2) resulting in accumulation of a pool of HCO3
-
 within the cell that is then utilized to 

provide an elevated CO2 concentration around the primary CO2 fixing enzyme, ribulose 

bisphosphate carboxylaseoxygenase (Rubisco). Rubisco is encapsulated in unique micro-

compartments known as carboxysomes and also provides the location for elevated CO2 



1.4. Selected SulP/SLC26 STAS domains and full-length transporters 

44 

levels in the cell. Five distinct transport systems for active Ci uptake are known, including 

two types of Na
+
-dependent HCO3

-
 transporters (BicA and SbtA), one traffic ATPase 

(BCT1) for HCO3
-
 uptake and two CO2 uptake systems based on modified NADPH 

dehydrogenase complexes (NDH-I3 and NDH-I4) (Price 2010).  

BicA is a low- to medium affinity, high-flux, Na
+
-dependent HCO3

-
 transporter 

(probably a Na
+
/ HCO3

-
 symporter) belonging to the SulP/SLC26 family (Price et al., 

2004). Recently the transmembrane topography of BicA (from Synechococcus PCC 

7002) has been studied by progressive C-terminal truncation and fusion with alkaline 

phosphatase and β-lactamase, identifying 12 transmembrane helices and cytoplasmic N- 

and C-termini (figure 1.23) and yielding an experimentally derived topographical model 

for SulP/SLC26 anion transporter transmembrane domains (Shelden et al., 2010, Price 

and Howitt, 2011).  

 

Figure 1.23 The topology map for the Synechococcus PCC 7002 Na
+
-dependent HCO3

-
 

transporter, BicA. The inset shows a WebLogo (weblogo.berkeley.edu) representation of the 

second signature sequence identified by Saier et al., for the SulP/SLC26 family (Saier et al., 

2000); the most highly conserved subset, NSNKELIGQGLGN (279-291), is highlighted (Shelden 

et al., 2010). 

 

Concerning the cyanobacterial BicA proteins analyzed in this thesis, BicA from 

Synechocystis sp. strain PCC 6803 is a Na
+
-dependent HCO3

-
 transporter (Xu et al., 

2008); while the functions of BicA from Trichodesmium erythraeum IMS101 and from 

Thermosynechococcus elongatus BP-1, are still unknown, but maybe they act as sulfate 

transporters. 
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2. The project 

2.1. Aim of the project 

Most of the knowledge related to the SulP/SLC26 members has come from studies 

within the last decade and the interest in these transporters has expanded, as shown by the 

increasing number of publications within recent years. Despite the increasing interest in 

the SulP/SLC26 members, a substantial amount of research is needed to understand the 

roles of these transporters in human physiology. In particular, very little is known about 

the structural organization of the SulP/SLC26 transporters and of their STAS domains 

and no 3D structure of the full-length sequences is available. The structural 

characterization is fundamental for the comprehension of the mode of action of a protein 

and it is an essential step for the understanding of the functional consequences of the 

mutations responsible for related pathologies. In this context, the long-term task is to 

derive a model for the structural organization of these transporters, which will provide 

insights into the functional consequences of mutations linked to genetic diseases. Another 

task is to analyze the prestin STAS domain whose 3D structure has been solved during 

my Master Degree Thesis from a functional point of view, in order to understand its 

possible role in the transport. 

To this purpose the first part of the PhD project focused on the production and the 

structural characterization of STAS domains from different species and of mutants of the 

prestin STAS domain whose 3D structure have been solved. The second part of the 

project was more ambitious and concerned the production of the full-length SulP/SLC26 

transporters by cell-free expression system. 

 

2.2. The strategy 

The strategy followed during the PhD can be outlined in this way: 

1) Selection of full-length SulP/SLC26 transporters and STAS domains from different 

distance-related species. 

2) Production and characterization of different orthologs and mutants of the STAS 

domain: 
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a) Cloning of the coding regions for the STAS domains into the pET SUMO 

expression vector. 

b) Protein expression in bacterial systems (E. coli). 

c) Protein purification by chromatographic techniques as affinity chromatography 

(IMAC, immobilized-metal affinity chromatography) and size exclusion 

chromatography (SEC). 

d) Structural characterization by classical biophysical methods: circular dichroism 

spectroscopy (CD), dynamic light scattering (DLS), differential scanning 

fluorimetry (DSF).  

e) Crystallization screening with the most promising constructs. 

f) 3D structure determination through X-ray crystallography. 

g) Structure-function analysis. 

3) Production and characterization of full-length SulP/SLC26 anion transporters: 

a) Cloning of the coding regions for the full-length SulP/SLC26 anion transporters 

into the pET21cHx expression vector. 

b) Cell-free (CF) expression in the continuous-exchange (CECF) configuration in the 

precipitate-forming (P-CF) mode. 

c) Protein purification by chromatographic techniques as IMAC and SEC. 

d) Detergent screening, stability and size homogeneity analysis (SEC, CD, DSF). 

e) Crystallization screening with the most promising constructs. 

The structural information is then integrated with functional data that come from 

literature and international collaborations to understand the role of the STAS domains and 

of the full-length SulP/SCL26 transporters and the relationship between their mutations 

and the associated diseases. 

 

1) Selection of full-length SulP/SLC26 transporters and STAS domains from different 

distance-related species 

The following full-length SulP/SLC26 transporters from different distance-related 

species and their STAS domains were selected for the structural and biophysical 

characterization: 

- SLC26A5/ prestin from mammal (Rattus norvegicus) and non-mammals (Gallus 

gallus and Danio rerio) to have information about the protein evolution and their 

different functions in orthologous proteins. 
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- SLC26A4/ pendrin from Homo sapiens, interesting because mutations in this 

protein and in its STAS domain can cause genetic human diseases. 

- Sultr1;2 from Arabidopsis thaliana is an eukaryotic protein, but it is smaller than 

mammalian members and could constitute a reliable model system for the 

mammalian ones; furthermore it is well functionally characterized. 

- Bacterial members of the SulP/SLC26 family (Rv1739c from Mycobacterium 

tuberculosis, BicA from Synechocystis sp. PCC 6803, Trichodesmium erythraeum 

and Thermosynechococcus elongatus BP-1) that often provide good model 

systems for the study of structure and function because they could be more 

accessible to experimental techniques that are either not available or more difficult 

for eukaryotic proteins. 

This kind of approach has two main reasons: first, differences in the structures can 

shed light on the evolution of these proteins and on the different roles played by the 

various transporters; second, this approach can be instrumental to the final aims since it is 

well known that even similar polypeptides can have substantially different properties in 

terms of propensity to crystallize. 

 

2) Production and characterization of different orthologs and mutants of the STAS 

domain 

The accurate selection of the N- and C-termini is more critical for domains that are 

part of a larger protein, as it is the case of the SulP/SLC26 STAS domains, whose 

boundaries are not clearly defined by sequence alignments. To address this issue, 

constructs' ends were designed according to multiple sequence analyses between the 

construct whose 3D structure was solved, that corresponds to a compact single domain, 

and the C-terminal portion of selected SulP/SLC26 transporters from different species 

(figure 2.1). The main reason is the sequence similarity among the STAS domains of 

these transporters; therefore it is very likely that the ends of these domains correspond. 

The percent amino acid identity between the mammalian prestin STAS domain (R. 

norvegicus) and that of non-mammalian orthologs is rather high (G. gallus =60%, D. 

rerio =55%), while is lower in comparison with homologous transporters (SLC26A4 

from H. sapiens =36%; Sultr1;2 from A. thaliana =26%). The main difference between 

STAS domains from animals and that from lower organisms has been found in a long 

insertion, known as variable loop. No such insertion is present in bacterial SulP/SLC26 

homologues, and this loop is also much shorter in A. thaliana paralogs. The evolutionary 
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and functional role of this loop is still unknown; secondary structure predictions suggest 

that it is mostly unstructured in solution. To investigate the role of the variable loop, we 

designed the STAS domains from animals with and without variable loop (in the square, 

Figure 2.1), while the STAS domain from plant was designed with loop because it is very 

small, ~10 residues. 

 

A5 R.norvegicus 505 -SPSYTVLGQLPDTDVYIDIDAYEEVKEIPGIKIFQINAPIYYANSDLYSSALKRKTGVN 563 

A5 G.gallus     511 SRPQYRILGQIPDTDIYCDVEEYEEVKEYPGIKIFQANTSLYFANSESYTSALKKKTGVD 569 

A5 D.rerio      508 SRPKNVVLGQIPDTGLYFDVDEYEEAEECSGIKIFQSNSSIYFANSELYVKALKAKTGID 566 

A4 H.sapiens    515 SFPSWNGLGSIPSTDIYKSTKNYKNIEEPQGVKILRFSSPIFYGNVDGFKKCIKSTVGFD 573 

Sultr1;2        502 SRPRTAVLGNIPRTSVYRNIQQYPEATMVPGVLTIRVDSAIYFSNSNYVRERIQRWLHEE 560 

                      *    **.:* *.:* . . * :     *:  :: .:.:::.* :   . ::     : 

 

A5 R.norvegicus 563 PAIIMGARRKAMRKYAKEVGNAN---------IANATVVKVDAEVDGENATKPEEEDDEV 616 

A5 G.gallus     569 PCAILAARRKAQKKHAREIKKANKVKKKAVLKLVNSSTNDVEASVKHEIANDGLPANGKF 629 

A5 D.rerio      566 PEKLLDAKKLQLKYAKRDTEGTKTVNQGSLLKKNAVVLLDMELGVTHEVLNGPQKPKHVH 626 

A4 H.sapiens    573 AIRVYNKRLKALRKIQKLIKSGQ---------LRATKNGIISDAVSTNNAFEPDEDIEDL 624 

Sultr1;2        560 EEKVKAASLP-------------------------------------------------- 570 

                       :                                                         

 

A5 R.norvegicus 616 KFPPIVIKTTFPE-ELQRFLPQG-----ENIHTVILDFTQVNFMDSVGVKTLAGIVKEYG 671 

A5 G.gallus     629 AFVDAGVQDGSPD-ELEHFVEPK-----TNVHSLILDFAPVNFVDSVGAKTLKSVIKEYN 683 

A5 D.rerio      626 TNGQMTEKHIESESEDEFFLQRL-----TPIHSVILDFTPVNFIDSVGAKTIKSVIKEYA 681 

A4 H.sapiens    624 EELDIPTKEIEIQVDWNSELPVKVNVPKVPIHSLVLDCGAISFLDVVGVRSLRVIVKEFQ 684 

Sultr1;2        570 -----------------------------RIQFLIIEMSPVTDIDTSGIHALEDLYKSLQ 601 

                                                  :: ::::   :. :*  * :::  : *.   

 

A5 R.norvegicus 671 DVGIYVYLAGCSAQVVNDLTSNRFFENPALKELLFHSIHDAVLGSQ-VREA-- 718 

A5 G.gallus     683 EVGVCVCIASCSGPVMNELTRLNFFDNTVTRELLFHSIHDAVLACQ-GKDR-- 733 

A5 D.rerio      681 TVDVKVVLAGCSRTLLSELRTLQFFSEPVTPDLIFPTIHDAVLQCKRWRDLP- 733 

A4 H.sapiens    684 RIDVNVYFASLQDYVIEKLEQCGFFDDNIRKDTFFLTVHDAILYLQNQVKSQ- 736 

Sultr1;2        601 KRDIQLILANPGPLVIGKLHLS-HFADMLGQDNIYLTVADAVEACCPKLSNEV 653 

                      .: : :*.    :: .*    .* :    : :: :: **:       .    

Figure 2.1 Multiple sequence alignment of selected STAS domains using ClustalW tool, EMBL-

EBI. Variable loop is highlighted in the squares. 

 

In recent structures of the prestin STAS domain, whose 3D structure has been 

solved, in our laboratory (unpublished data), in presence of heavy atoms as I
-
 and Br

-
 an 

anion-binding site was identified. In order to study the anion-binding site and to 

investigate the possible role of the STAS domain in the transport, we designed some 

STAS domains’ mutants of single amino acids implicated in the anion-binding site 

(Figure 2.2 and 2.3). 
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Figure 2.2 Detail of the prestin STAS domain anion-binding site and of the residues mutated. 

 

Wild-type  505 SPSYTVLGQLPDTDVYIDIDAYEEVKEIPGIKIFQINAPIYYANSDLYSSALKRKTGVN 563 GS 

F651T      505 SPSYTVLGQLPDTDVYIDIDAYEEVKEIPGIKIFQINAPIYYANSDLYSSALKRKTGVN 563 GS 

M652I      505 SPSYTVLGQLPDTDVYIDIDAYEEVKEIPGIKIFQINAPIYYANSDLYSSALKRKTGVN 563 GS 

D653T      505 SPSYTVLGQLPDTDVYIDIDAYEEVKEIPGIKIFQINAPIYYANSDLYSSALKRKTGVN 563 GS 

Y545W      505 SPSYTVLGQLPDTDVYIDIDAYEEVKEIPGIKIFQINAPIWYANSDLYSSALKRKTGVN 563 GS 

 

Wild-type  637 ENIHTVILDFTQVNFMDSVGVKTLAGIVKEYGDVGIYVYLAGCSAQVVNDLTSNRFFEN 695 

F651T      637 ENIHTVILDFTQVNTMDSVGVKTLAGIVKEYGDVGIYVYLAGCSAQVVNDLTSNRFFEN 695 

M652I      637 ENIHTVILDFTQVNFIDSVGVKTLAGIVKEYGDVGIYVYLAGCSAQVVNDLTSNRFFEN 695 

D653T      637 ENIHTVILDFTQVNFMTSVGVKTLAGIVKEYGDVGIYVYLAGCSAQVVNDLTSNRFFEN 695 

Y545W      637 ENIHTVILDFTQVNFMDSVGVKTLAGIVKEYGDVGIYVYLAGCSAQVVNDLTSNRFFEN 695 

 

Wild-type  696 PALKELLFHSIHDAVLGSQVREA 718 

F651T      696 PALKELLFHSIHDAVLGSQVREA 718 

M652I      696 PALKELLFHSIHDAVLGSQVREA 718 

D653T      696 PALKELLFHSIHDAVLGSQVREA 718 

Y545W      696 PALKELLFHSIHDAVLGSQVREA 718 

Figure 2.3 Multiple sequence alignment among mutant and wild-type prestin STAS domains (the 

single amino acid mutated are highlighted in bold type and undelined). 

 

The derived structural information will help in a better understanding of the role 

played by the STAS domain in the activity of the transporters and of the mode of action 

of the full-length prestin. 
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3) Production and characterization of full-length SulP/SLC26 anion transporters 

The membrane proteins are one of the most difficult classes of protein to produce 

because of their hydrophobic nature, toxic effects and specific requirements for targeting 

and translocation systems. In particular their overexpression in E. coli can result into the 

accumulation of insoluble aggregated material, and indeed this is what we found for 

SulP/SLC26 proteins we preliminary tested. 

CF expression system has recently emerged as a promising and highly versatile 

technique for the general production of membrane proteins. CF expression reduces the 

high complexity of protein production known from living organisms to the basic 

translation process. Most toxic effects of synthesized proteins to the expression host are 

virtually eliminated and the speediness of CF expression is highly competitive. Those 

features render CF approaches often more reliable and reproducible if compared with 

many cell-based expression system. 

As for the STAS domain, some full-length SulP/SLC26 from different species were 

selected for CF expression; no truncated constructs were designed. The plan was to set-up 

an appropriate procedure for the production of selected SulP/SLC26 members by CF 

technique in sufficient amount for a further characterization. After CF production, 

samples were been evaluated for their quality, both in their biophysical and biochemical 

characteristics and in their activity and functional properties. When produced in sufficient 

amounts and quality, the transporters were been submitted to crystallization trials. 
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3. The STAS domain 

3.1. Methods 

3.1.1. Design of STAS domains variants 

Eight STAS domain variants from different distance-related species were designed 

according to the sequence of the construct whose 3D structure was solved (PDB code = 

3LLO, first row in the Table 3.1), that corresponds to a compact single domain. STAS 

domains of SulP/SLC26 transporters from animals were designed both with and without 

variable loop, while the STAS domain from plant was designed with loop because it is 

very small, ~10 residues. 

Table 3.1 Selection of SulP/SLC26 anion transporters STAS domains 

Protein Source organism Construct Loop 
Coding 

sequence (bp) 

Aa 

(residues) 
MW (kDa) 

SLC26A5/ 

prestin 
Rattus norvegicus 

[505-563] 

GS[637-718] 
without 429 143 15.7 

[505-718] with 642 214 23.7 

SLC26A5/ 

prestin 
Gallus gallus 

S[511-569] 

GS[652-733] 
without 432 144 16.0 

S[511-733] with 672 224 24.8 

SLC26A5/ 

prestin 
Danio rerio 

S[508-566] 

GS[650-733] 
without 438 146 16.2 

S[508-733] with 681 227 25.5 

SLC26A4/ 

pendrin 
Homo sapiens 

S[515-573] 

GS[653-736] 
without 438 146 16.5 

S[515-736] with 669 223 25.3 

Sultr1;2 
Arabidopsis 

thaliana 
S[502-653] with 816 272 30.6 

 

STAS domain mutagenesis of 3LLO construct was performed in order to study the 

anion-binding site and the possible role of the STAS domain in the transport. In recent 

structures of wt (wild type) STAS domain in presence of heavy atoms, such as I
-
 and Br

-
, 

a binding site has been identified (Figure 3.1). These anions were chosen, even if they are 

not implicated in normal physiological processes, because they have a higher affinity to 

prestin in comparison with Cl
-
 and HCO3

-
 (I

- 
≈ Br

- 
> NO3

- 
> Cl

- 
> HCO3

- 
>F

- 
) (Oliver et 

al., 2001) and, furthermore, they can be easily identified by diffraction measurements at 

the appropriate wavelength using the anomalous diffraction effect. This kind of strategy is 

widely used to identify the binding of physiological anions to protein sites, for instance in 
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Ile 544

Met652

Br¯

Tyr545
Asp653

Pro543

the cases of the glutamate-gated chloride channel α GluCl (Hibbs and Gouaux, 2011), and 

the Escherichia coli Cl
−
/H

+
 exchange-transporter CLC-ec1 (also denoted EcCLC) 

(Accardi et al., 2006; Lobet and Dutzler, 2006). 

 

Figure 3.1 Electron density map (blue lattice) and atomic model of the anion-binding site. The 

electron density map of the anomalous signal (pink lattice) detects the anion Br-‘s position. 

 

The Br
-
 anion occupies a cavity presents on the protein surface (Figure 3.2.a) 

predicted to face the membrane surface. The amino acids implicated in the binding site 

(highlighted in the figure 3.2.b) are: methionine 652, flexible and in double conformation, 

phenylalanine 651, tyrosine 545, proline 543, isoleucine 544 and aspartic acid 653, the 

only charged residue that forms a H-bond with tyrosine 545. 

 

Figure 3.2 a) The Br- anion (green sphere) occupies a cavity presents on the protein surface 

colored on the basis of the electrostatic potential. b) Detail of the anion-binding site and of the 

residues implicated. 

V649 

F651 

M652 

D653 

Y545 

V655 

G656 

a                                                                           b 
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Single-site mutations on amino acids implicated in the anion-binding site were 

analyzed by PoPMuSiC V2.1 tool (Prediction of Protein Mutations Stability Changes) 

that evaluates the changes in stability of a given protein under single-site mutations, on 

the basis of the protein's structure (Table 3.2) (Dehouck et al., 2009). 

Table 3.2 Stability changes resulting from given mutations predicted by PoPMuSiC tool 

Mutation ΔΔG (kcal/mol) Notes 

P543D 0.45 Negative charge near halogens 

Y545W 0.04 H-bond with D653 abolished 

Y545F 0.36 H-bond with D653 abolished 

F646E 4.02 Negative control 

F651T -0.28 Stabilizing mutation but likely it disturbs membrane interaction 

M652I 0.45 
Different shape of cavity because Met side chain is flexible while that 

of Ile is not 

D653T 0.23 Negative charge and H-bond with Y545 abolished 

V655R -0.33 Stabilizing mutation but likely it disturbs membrane interaction 

G656I 0.21 Smaller cavity 

L676E 4.79 Negative control 

 

Most of these mutations were tested in vitro on the full-length SLC26A5 transporter 

by Prof. Dominik Oliver’s laboratory at the Department of Neurophysiology, Institute of 

Physiology and Pathophysiology, Philipps-University, Marburg (Germany), in order to 

characterize them in terms of membrane localization and electromotility function, 

measuring NLC (Table 3.3). 

Table 3.3 Results on full-length SLC26A5 transporter mutants tested in vitro 

Mutation TM localization NLC 

P543D - - 

Y545F + + 

F646E - - 

F651T + - 

D653T + - 

V655R + + 

G656I - - 

L676E - - 

 

According to achieved results, it is possible to develop the following 

considerations: 

- F646E and L676E were predicted completely destabilizing the STAS structure 

(ΔΔG > +4) and indeed they cause mistrafficking probably by inducing 

misfolding. They are a sort of control of the reliability of the prediction ability 

of PoPMuSiC. 
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- Y545F and D653T: the negative charge of D653 is important for NLC while it 

is not the H-bond with Y545 (abolished by the Y545F mutation that retains 

localization and NLC). This supports the hypothesis that the D653 negative 

charge can have an important “gating” role on the anions binding or 

movement.  

- F651T: this stabilizing mutation (ΔΔG = -0.28) was predicted not to alter 

anion binding but possibly interfere with the interaction of the STAS with the 

membrane (or transmembrane portions of prestin). This seems the case, the 

membrane localization is correct but there is no NLC, indicating that this is a 

residue important for the proper functional interactions of prestin. 

- G656I and P543D: they were predicted to strongly interfere with anion 

binding (therefore with NLC in general) hopefully without affecting the 

protein localization (ΔΔG values not too destabilizing). However they cause 

more severe damages indicating that they are even more important than 

predicted.  

- V655R: it was predicted as a STAS stabilizing mutation that, however, could 

interfere with important functional interactions with the membrane. The last 

one is not the case because Arg can be accommodated in the lipid bilayer, 

possibly interacting with the negative charges of the membrane. 

Four STAS domain mutants were chosen: F651T, M652I, D653T and Y545W.  

The choice of F651T and D653T comes from Prof. Oliver’s data, since full-length 

SLC26A5 transporter’s folding in the transmembrane is correct, while its function is 

abolished. Therefore we expected that these mutations do not invalidate the overall 3D 

structure because of the correct membrane location, but that they determine some 

variations around the mutation in the anion-binding site that cause loss of function. 

M652I and Y545W mutations weren’t functionally analyzed, but the first could 

introduce less flexibility in the anion-binding site; while the second, since the loss of H-

bond with D653 doesn’t seem essential for function and mutation effect doesn’t seem 

destabilizing (ΔΔG = 0.04), it could be useful for fluorescence analysis. We expected that 

these mutations would not invalidate the overall 3D structure because they are predicted 

to be not destabilizing (ΔΔGM652I = 0.45; ΔΔGY545W = 0.04). 
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3.1.2. Cloning 

To design the STAS domain variants with the variable loop, the nucleotide 

sequences codifying the proteins of interest were amplified by PCR starting from the 

cDNA of the entire protein using the primer sets indicated in table 3.4. The final DNA 

sequences were inserted into the pET SUMO (small ubiquitin-like modifier; Invitrogen) 

vector in frame with an N-terminal poly(His)6 tag flanked by the SUMO protein, using a 

pET SUMO Cloning kit (Invitrogen).  

To design the STAS domain variants devoid of the variable loop, the nucleotide 

sequences before and after the loop were separately amplified by PCR starting from the 

cDNA of the entire protein using the primer sets indicated in the table 3.4 in order to 

insert a BamHI site. The two PCR products were ligated by means of a BamHI restriction 

site encoding for the dipeptide GlySer. This fragment was phosphorylated using T4 

Polynucleotide Kinase (New England BioLabs) and inserted into the pBluescript II SK 

(+/−) storage phagemid (Agilent Technologies) previously digested to create blunt ends 

by EcoRV restriction enzyme. The final DNA sequences were inserted into the pET 

SUMO (Invitrogen) vector in frame with an N-terminal poly(His)6 tag flanked by the 

SUMO protein, using a pET SUMO Cloning kit (Invitrogen).  

SUMO Protein expression system offers the following advantages:  

- may increase expression and solubility of recombinant fusion proteins;  

- allows generation of native protein using SUMO Protease with no extra amino 

acids added between the cleavage site and the start of the desired protein;  

- the tertiary structure of the SUMO protein is recognized by a cysteine 

protease, SUMO Protease, which specifically cleaves conjugated SUMO from 

target proteins;  

- SUMO fusion protein and SUMO Protease can be removal easily after 

cleavage by affinity chromatography on a nickel-chelating resin (Malakhov et 

al., 2004).  

To increment the efficiency of SUMO protease, a Serine residue was introduced at 

the N-terminal of all constructs. 
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Table 3.4 Oligonucleotide primers used for the indicated constructs 

Protein 
Source 

organism 
Construct Primer Sequence 

SLC26A5/ 

prestin 

Rattus 

norvegicus 
[505-718] 5'         

3' 

agtccgagctacacagtcc 

ctaattcgcctcacggacttgg 

SLC26A5/ 

prestin 
Gallus gallus 

S[511-733] 
5'         

3' 

agtagacctcaatatagaatccttg 

ctactacctgtctttcccttgg 

S[511-569] 

GS[652-733] 

5'         

3'          

5'         

3' 

agtagacctcaatatagaatccttg 

atggatccgtccactccagtct 

atggatccacaaatgtccactctt 

ctactacctgtctttcccttgg 

SLC26A5/ 

prestin 
Danio rerio 

S[508-733] 
5'         

3' 

agtcgccccaagaatgtcgttc 

ctactaaggaagatccctccaac 

S[508-566] 

GS[650-733] 

5'         

3'         

5'         

3' 

agtcgccccaagaatgtcgttc 

atggatccgtcaattccagtctt 

atggatccacccccattcactc 

ctactaaggaagatccctccaac 

SLC26A4/ 

pendrin 
Homo sapiens 

S[515-736] 
5'         

3' 

agttttccttcttggaatggc 

ctatcattgagatttcacttggt 

S[515-573] 

GS[653-736] 

5'         

3'         

5'         

3' 

agttttccttcttggaatggc 

taggatccatcaaatccaactg 

taggatccgtgccaatccata 

ctatcattgagatttcacttggt 

Sultr1;2 
Arabidopsis 

thaliana 
S[502-653] 

5'         

3' 

agtagacctagaactgcagttc 

ttatcagacctcgttggagag 

The Bam H1 restriction site is underlined; N-terminal Serine residue is in bold font.  

 

3.1.3. Mutagenesis 

Oligonucleotide-directed mutagenesis uses short mutagenic oligonucleotides that 

incorporate one or a few substitutions, short insertions or deletions. Single-site 

mutagenesis was performed starting from the construct whose 3D structure was solved, 

using QuickChange Site-Directed Mutagenesis kit (Stratagene) and PfuTurbo DNA 

polymerase. 

 

3.1.4. Protein expression  

The STAS domains were produced as fusion proteins with the SUMO system, 

which guarantees proteolytic cleavage without extraneous amino acids at the N-terminal 

end. 

E. coli BL21(DE3) cells, harboring the plasmid pET SUMO-STAS of the desired 

variant, were grown overnight (ON) at 37 °C in LB medium (10 g/l tryptone, 5 g/l yeast 

extract, and 10 g/l NaCl) supplemented with 50 μg/ml kanamycin. LB medium was 
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inoculated with this ON culture (ratio 1:50) and grown at 37 °C, in a suitable shaker. 

Protein expression was induced at an OD600 of 0.6 by adding 1 mM IPTG and prolonged 

for 4-5 h at 30 °C under vigorous shaking. Bacteria were harvested by centrifugation at 

8500 g for 15’.  

As regards the optimized expression protocol for SLC26A5/prestin STAS domain 

without variable loop from D. rerio, the protein expression was induced at an OD600 of 

0.6 by adding 0.5 mM IPTG and 1% glucose, and prolonged ON at 16 °C under vigorous 

shaking. Bacteria were harvested by centrifugation at 8500 g for 15’.  

SLC26A5/prestin STAS domain without variable loop from G. gallus was also 

purified as a 
15

N-labeled protein for NMR studies. E. coli BL21(DE3) cells, harboring the 

plasmid coding for this domain, were grown overnight (ON) at 37 °C in 
15

N-labeled M9 

minimal medium (Na2HPO4 47.75 mM, KH2PO4 22.04 mM, NaCl 8.55 mM, 
15

NH4Cl 

18.69 mM, C6H12O6 222 mM, MgSO4 2·10
−3

 mM, CaCl2 0.1·10
−3

 mM. Microelement 

mix in HCl 0.1 M: H3BO3 12.8·10
−6

 mM, MnCl2·4H2O 23.6·10
−6

 mM, ZnSO4·H2O 

17.4·10
−6

 mM, Na2MoO4·2H2O 8.3·10
−6

 mM, CoCl2 7.7·10
−6

 mM, FeSO4·7H2O 

26.3·10
−6

 mM, CuCl2·2H2O 2.8·10
−6

 mM. Vitamin mix: D-pantothenate·1/2Ca
2+

 

0.42·10
−3

 mM, Choline·Cl
−
 0.72·10

−3
 mM, Folic Acid·2H2O 0.21·10

−3
 mM, myo-Inositol 

1.1·10
−3

 mM, Nicotinamide 0.82·10
−3

 mM, Pyridoxine·HCl 0.49·10
−3

 mM, Riboflavin 

26.6·10
−6

 mM, Thiamine·HCl 0.29·10
−3

 mM) supplemented with 50 μg/ml kanamycin. 

15
N-labeled M9 minimal medium was inoculated with this ON culture (ratio 1:10) and 

grown at 37 °C, in a suitable shaker. Protein expression was induced at an OD600 of 0.9 

by adding 1 mM IPTG and prolonged for 4 h at 37 °C under vigorous shaking. Bacteria 

were harvested by centrifugation at 8500 g for 15’.  

 

3.1.5. Protein purification 

Bacteria were suspended in buffer A [50 mM Na2HPO4, 300 mM NaCl, and 10 mM 

β-mercaptoethanol (pH 8.0)] containing 10 mM imidazole, supplemented with protease 

inhibitors (Roche) and lysed with a French press (Thermo Spectronic) at high pressure. 

The lysate was centrifuged to remove cell debris at 27000 g for 30’ and applied 

onto a His-Trap column (GE Healthcare) equilibrated with buffer A containing 10 mM 

imidazole. After extensive washing with buffer A containing 20 mM imidazole, the 

fusion protein was eluted in a single peak increasing the concentration gradient of 

imidazole. Fractions containing the protein were pooled, diluted into buffer A, and 
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concentrated by ultrafiltration. For proteolytic cleavage of the (His)6-SUMO-tag, the 

sample was incubated with SUMO protease 1 (LifeSensors) ON at 4 °C. The proteolytic 

product was applied onto the His-Trap column and immediately recovered to separate the 

purified protein from the (His)6-SUMO-tag, the uncleaved fusion protein and the 

protease, retained in the column. The cleaved protein was further purified by SEC 

performed on an Äkta FPLC chromatographic system (GE Healthcare) using a Superdex 

75 prep-grade 16/60 column or a Superdex 75 10/300 GL column (GE Healthcare) 

equilibrated with 20 mM Tris-HCl, 150 mM NaCl, and 5 mM DTT (pH 7.5).  

The purification of the 
15

N-labeled SLC26A5/prestin STAS domain without 

variable loop from G. gallus follows the same steps for unlabeled proteins except for the 

buffer of SEC that is: K2HPO4 27 mM, KH2PO4 5 mM, NaCl 50 mM, EDTA 1 mM, DTT 

5 mM (pH 6.5). 

 

3.1.6. Dynamic light scattering 

DLS data were recorded on a Zetasizer NanoS instrument (Malvern Instruments 

Ltd.) at 20 °C, using a quartz cuvette and 20 μl of sample. Protein solutions were filtered 

using 0.22 μm filters. The data were recorded and analyzed with the Dispersion 

Technology Software (Malvern). 

 

3.1.7. CD spectroscopy  

CD data were recorded on a Jasco J-715 spectropolarimeter, using quartz cuvettes 

of 0.02 cm path-length. The spectra were determined as an average of 10 scans. The 

protein concentration was 1 mg/ml in 50 mM Na2HPO4 and 150 mM NaCl (pH 7.5). The 

data were recorded and analyzed with Spectra Manager Software (JASCO). 

 

3.1.8. Differential Scanning Fluorimetry 

To monitor thermal protein unfolding, the fluorescent dye Sypro orange (Sigma-

Aldrich) was used. Thermofluor assay was conducted on a Mini Opticon Real-Time PCR 

detection system (Bio-Rad). Solution of 1 μl of 10 mg/ml protein, 1 μl of Sypro orange 

100x and 18 μl of test compound were added to the 48-well low-profile plates (Bio-Rad). 
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The plates were spun and heated from 20 to 90 °C, with a heating rate of 0.5 °C/min. The 

data were recorded and analyzed with the CFX Manager Software (Bio-Rad).  

3.1.9. Protein crystallization 

Crystallization trials using commercial kits (Qiagen, Molecular Dimensions and 

Emerald Biosystems) based on sparse matrix, grid screen, and/or ionic sampling, were 

performed by vapor diffusion (with the sitting drop method) techniques, using the Oryx8 

automatic system (Douglas Instrument).  

Since the optimal solution conditions for nucleation of the crystals are not the ideal 

ones to support their subsequent growth, we also used the most popular technique for the 

separation of nucleation and growth, the so-called ‘seeding’. Seeding experiments fall in 

four general categories: (i) macroseeding (or seed transfer), (ii) microseeding, (iii) streak 

and (iv) cross-seeding and epitaxial (Bergfors, 2003; D'Arcy et al., 2007; Benvenuti and 

Mangani, 2007). Microseeding experiments, using microcrystalline precipitate, needles 

and spherulite, were performed both manually and automatically. As regards the rat 

STAS domain with variable loop, also cross-seeding experiments using crystals of the 

same STAS domain but devoid of the loop were tried. 

STAS domain mutants D653T and Y545W were concentrated to 17.9 mg/ml and 

15.5 mg/ml respectively for crystallization purposes. High-quality hexagonal crystals 

were grown at 20 °C, using the following precipitant solution: 2 M ammonium sulfate, 

5% (w/v) polyethylene glycol (PEG) 400, and 0.1 M 4-morpholineethanesulfonic acid 

(MES, pH 6.5) (Ammonium Sulfate Suite no. 87; Qiagen) adding 0.1% (w/v) octyl-β-D-

glucopyranoside (OG, Sigma). For anion-binding site studies were also added 180 mM 

KBr.  

 

3.1.10. Data collection, structure determination, and 

refinement 

Datasets at 0.91 Å wavelength (corresponding to the absorption edge of bromine) 

were collected at the ELETTRA-Synchrotron beamline XDR1 (Trieste, Italy). Datasets 

were measured at 100 K using the precipitant solution including 16% (v/v) glycerol as 

cryoprotectant. Crystals belong to space group P3121, with unit cell parameters reported 

in Table 3.5. Diffraction data were processed with XDS (Kabsch 2010) and with SCALA 

from the CCP4 suite (Evans 2005).  
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For mutant Y545W in absence of bromine atoms, structure was solved by molecular 

replacement (MR). For mutants Y545W and D653T in presence of bromine atoms, 

structures were solved both by MR and by SAD (Single-wavelength anomalous 

dispersion), in the last case using the anomalous signal of bromines. It is well known that, 

in general, structures solved by MR can be biased towards the search “phasing” model. In 

our case, structures from MR and SAD do not show any relevant difference once refined, 

reflecting the minimal sequence difference with the search model (only one single amino 

acid). 

For molecular replacement, Phaser (McCoy et al., 2007) (CCP4) rotation and 

translation searches were performed using as search model the coordinates of the wt 

STAS domain taken from PDB ID 3LLO. For SAD, Autosol and Autobuild (Phenix) 

(Adams et al., 2002) were used to identify the initial phases from the anomalous signal. 

Models were then refined alternating several cycles of automatic refinement and 

manual model building with Coot (Emsley and Cowtan, 2004). The refinement (with 

isotropic atomic B-factors) was performed in parallel with phenix.refine (Phenix) and 

with refmac5 (Murshudov et al., 1997), used independently, with almost identical final 

results. 

During refinement water molecules were added to the model, both automatically 

and manually, and those with final high B-factors were excluded. One molecule of OG 

for each structure was also introduced and refined. Br atoms were added and refined 

according to their positions clearly visible in anomalous difference maps. Finally also the 

TLSs (Translation/Libration/Screw parameterization) were added. Statistics of the 

refinements and final models are reported in table 3.5.  
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Table 3.5 Data collection and refinement statistics for D653T and Y545W mutants 

 D653T Y545W 

Phase problem resolution MR SAD MR SAD MR 

150 mM KBr YES YES YES YES NO 

Visible residues [505-553] 

[638-718] 

[506-550] 

[638-718] 

[506-553] 

[638-718] 

[506-550] 

[638-718] 

[506-550]           

[638-718] 

Data collection statistics ELETTRA beamline XDR1, λ=0.91 Å 

Space group P3121 

Cell dimensions                       

a, b, c (Å)                              

α, β, γ (°) 

62.02 62.02 66.73             

90.0 90.0 120.0 

62.04 62.04 66.70             

90.0 90.0 120.0 

61.67 61.67 66.68 

90.0 90.0 120.0 

Total number of observations 241,327 (33,977) 303,448 (44,948) 417,847 (61,195) 

Total number of unique 12,485 (1,777) 15,198 (2,152) 21,771 (3,137) 

Resolution (Å) 41.84-1.88 (1.98) 41.84-1.75 (1.84) 41.68-1.55 (1.63) 

Rmerge (%) 9.5 (88.7) 4.8 (84.3) 4.6 (148.0) 

Rmeas (%) 10.0 (93.5) 4.8 (88.4) 4.8 (151.9) 

Mn[I/σ(I)] 20.2 (3.9) 40.0 (4.1) 32.5 (2.4) 

Completeness (%) 100 (100) 99.0 (99.3) 100 (100) 

Anomalous completeness (%) 100 (100) 99.3 (98.6) - 

Multeplicity 19.3 (19.1) 20.0 (20.9) 19.2 (19.5) 

Anomalous multeplicity 10.3 (10.0) 10.6 (10.8) - 

Refinement statistics 

Rwork (%) 20.60 19.65 20.56 19.04 23.09 

Rfree (%) 24.74 23.30 24.40 21.00 25.68 
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3.2. Results 

3.2.1. STAS domains overview 

Eight STAS domain variants from different related-species and four STAS domain 

mutants of STAS domain whose 3D structure was solved (PDB code = 3LLO, first row in 

the Table 3.6) were cloned successfully in the pET SUMO expression vector. Table 3.6 

summarizes cloning, expression, purification, characterization and crystallization results 

for each of the selected constructs.  

Table 3.6 Summary of SulP/SLC26 anion transporters production and characterization 

Protein/ 

Source 

organism 

Sequence Loop Mutant Cloning 

Expression 

level/ 

Solubility 

Purifi-

cation 

Characte-

rization 

Crystal-

lization 

SLC26A5/ 

Rattus 

norvegicus 

[505-563] 

GS[637-718] 
W/O 

 - YES High/ High YES 
SEC, CD, 

DLS, DSF 
YES 

F651T YES High/ High YES 
SEC, CD, 

DLS, DSF 
In progress 

M652I YES High/ High YES 
SEC, CD, 

DLS, DSF 
In progress 

D653T YES High/ High YES 
SEC, CD, 

DLS, DSF 
YES 

Y545W YES High/ High YES 
SEC, CD, 

DLS, DSF 
YES 

[505-718] With  - YES 
Medium 

/High 
YES 

SEC, CD, 

DLS, DSF 
In progress 

SLC26A5/ 

Gallus 

gallus 

S[511-569] 

GS[652-733] 
W/O  - YES High/ High YES 

SEC, CD, 

DLS, DSF 
In progress 

S[511-733] With  - YES  -  -  -  -  

SLC26A5/ 

Danio rerio 

S[508-566] 

GS[650-733] 
W/O  - YES 

Medium/ 

Medium 
YES SEC  -  

S[508-733] With  - YES 
Medium/ 

Low 
 -  -  -  

SLC26A4/ 

Homo 

sapiens 

S[515-573] 

GS[653-736] 
W/O  - YES 

Medium/ 

Low 
YES  -  -  

S[515-736] With  - YES 
Medium/ 

Low 
YES  -  -  

Sultr1;2/ 

Arabidopsis 

thaliana 

S[502-653] With  - YES  -  -  -  -  

 

Some variants of the STAS domain, among which SLC26A5 from D. rerio with 

variable loop and SLC26A4 from H. sapiens both with and without variable loop, showed 

low solubility levels (Figure 3.3.A, lanes 3 and 4), despite the presence of the SUMO-tag 

that may increase the solubility of recombinant fusion proteins. Furthermore, after the 
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proteolytic cleavage, almost all the protein precipitated as insoluble aggregates (Figure 

3.3.B, lanes 2 and 3).   

 

 

Figure 3.3 Coomassie-stained SDS-PAGE of expression in BL21(DE3) of SLC26A4 STAS 

domains S[515-573]GS[653-736] from H. sapiens. (A) Lane 1: control, not induced bacterial 

cells. Lane 2: IPTG induced cells. Lane 3: soluble portion of bacterial lysate. Lane 4: insoluble 

fraction of bacterial lysate. Lane 5: flow through. Lane 6: low molecular weight protein markers 

in kDa. Lanes 7 and 8: fusion proteins eluted from the IMAC column. (B) Lane 1: fusion proteins 

eluted from the IMAC column before the proteolytic cleavage: (His)6-SUMO-STAS S[515-

573]GS[653-736] (29 kDa). Lane 2: soluble portion of the sample after the proteolytic cleavage 

by the SUMO protease: STAS S[515-573]GS[653-736] (16 kDa) and (His)6-SUMO (13 kDa). 

Lane 3: insoluble portion of the sample after the proteolytic cleavage: STAS S[515-573]GS[653-

736] and (His)6-SUMO. Lane 4: protein markers (kDa). 

 

The amount and the quality of these proteins were not sufficient for structural 

studies, despite we tried different protocols to increase the solubility, by lowering 

induction temperature and inductor concentration, by adding agents that may promote 

protein solubility like detergents, sugars, amino acids, salts, etc. (Bondos and Bicknell, 

2002; Vuillard et al., 1995; Hamada et al., 2009). We also tried to purify them from 

inclusion bodies following different refolding protocols, among which the on-column 

refolding procedure used for Rv1739c STAS domain from M. tuberculosis (Oganesyan et 

al., 2004; Sharma et al., 2009).  

Instead, as regards the SLC26A5 STAS domain from D. rerio without variable 

loop, the solubility level increased by lowering induction temperature and inductor 

concentration (Figure 3.5) but, despite this, the final yield was not sufficient for structural 

studies (this purification is reported in section 3.2.2).  

Furthermore, as regards the STAS domains of SLC26A4 from H. sapiens, both with 

and without variable loop, after IMAC purification and before the proteolytic cleavage, 

two main bands, a little higher than the SUMO tag, appeared in the SDS-PAGE (Figure 

(His)6-SUMO-
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3.3.A, lane 8 and Figure 3.3.B, lane 1). These bands disappeared after the cleavage with 

SUMO protease (Figure 3.3.B, lanes 2 and 3) therefore they were supposed to be owed to 

protein degradation maybe for the presence of a flexible loop between the STAS domain 

and SUMO. 

Other variants of the STAS domain, among which SLC26A5 from R. norvegicus 

with variable loop, SLC26A5 from G. gallus without variable loop and SLC26A5 

mutants from R. norvegicus without variable loop, were purified in milligrams quantities 

and characterized in solution by classical biophysical methods (SEC, CD, DLS, DSF). 

Two mutants of the STAS domain were successfully crystallized and the structural 

information has been integrated with functional data that come from international 

collaborations. The purification and characterization of SLC26A5 STAS from R. 

norvegicus with variable loop and from G. gallus without variable loop are reported in 

section 3.2.2. The purification, characterization and X-ray analysis of SLC26A5 STAS 

domain mutants of from R. norvegicus are described in details in section 3.2.3. 

 

3.2.2. SLC26A5 STAS domains from R. norvegicus, G. gallus 

and D. rerio 

The STAS domain corresponding to that whose 3D structure was solved, but 

supplied with the variable loop, was purified and compared by different biophysical 

techniques (CD, DSF, DLS) with the STAS domain variant devoid of the variable loop in 

order to structurally characterize the variable loop and to understand its possible role in 

SLC26A5 oligomerization and function. 

The SLC26A5 STAS domains from G. gallus and D. rerio devoid of the variable 

loop were purified and characterized to have information about STAS domain evolution 

and its different functions in different orthologs. 

 

3.2.2.1. Expression and purification 

SLC26A5 STAS domain with variable loop from R. norvegicus and that from its 

ortholog G. gallus but devoid of variable loop, cloned in the pET SUMO expression 

vector, were successfully overexpressed mainly in soluble forms in E. coli BL21(DE3) 

(Figure 3.4 lanes 3). 
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Figure 3.4 Coomassie-stained SDS-PAGE of expression in BL21(DE3) of (A) (His)6-SUMO-

STAS domain [505-718] of SLC26A5 from R. norvegicus (37 kDa) and of (B) (His)6-SUMO-STAS 

domain S[511-569]GS[652-733] of SLC26A5 from G. gallus (29 kDa). Lane 1: control, not 

induced bacterial cells. Lane 2: IPTG induced cells. Lane 3: soluble portion of bacterial lysate. 

Lane 4: insoluble fraction of bacterial lysate. Lane 5: protein markers (kDa). The proteins of 

interest are indicated by arrows. 

As regards the SLC26A5 STAS domain from D. rerio without variable loop, cloned 

in the pET SUMO expression vector, the solubility level of the protein expressed in E. 

coli BL21(DE3) was low (Figure 3.5.A lanes 3 and 4), but it was increased by lowering 

induction temperature and inductor concentration (Figure 3.5.B lanes 4 and 5). 

 

 

Figure 3.5 Coomassie-stained SDS-PAGE of expression in BL21(DE3) of (His)6-SUMO-STAS 

domains S[508-566]GS[650-733] of SLC26A5 from D. rerio (29 kDa). (A) Standard expression. 

(B) Expression with lower induction temperature and inductor concentration. Lane 1: control, not 

induced bacterial cells. Lane 2: IPTG induced cells. Lane 3: soluble portion of bacterial lysate. 

Lane 4: insoluble fraction of bacterial lysate. Lane 5: protein markers (kDa). The protein of 

interest is indicated by arrows. 

The soluble fractions of the (His)6-SUMO fusion proteins were purified by an 

IMAC affinity step followed by the proteolytic cleavage of the (His)6-SUMO-tag. After 
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an incubation at 4 °C ON, the cleavage with SUMO protease was very efficient for all the 

constructs, as shown in figure 3.6. 

 

 

 

 

Figure 3.6 Coomassie-stained SDS–PAGE of the proteolytic cleavage of the (His)6-SUMO tag 

from (A) SLC26A5 STAS domain [505-718] from R. norvegicus, (B) SLC26A5 STAS domain 

S[511-569]GS[652-733] from G. gallus and (C) SLC26A5 STAS domain S[508-566]GS[650-733] 

from D. rerio. Lane 1: fusion proteins eluted from the IMAC column before the proteolytic 

cleavage; (His)6-SUMO-STAS [505-718] (37 kDa), (His)6-SUMO-STAS S[511-569]GS[652-733] 

(29 kDa), (His)6-SUMO-STAS S[508-566]GS[650-733] (29 kDa). Lane 2: samples after the 

proteolytic cleavage by the SUMO protease; STAS [505-718] (24 kDa), (His)6-SUMO (13 kDa), 

STAS S[511-569]GS[652-733] (16 kDa), S[508-566]GS[650-733] (16 kDa). Lane 3: protein 

markers in kDa. 

The proteolytic products were purified by another nickel affinity chromatography to 

separate the STAS domain from (His)6-SUMO, the uncleaved fusion protein and the 

protease, followed by a gel permeation step. The elution profiles and final results of 

proteins concentration are shown in figure 3.7. 

Fractions corresponding to the main peak (Figure 3.7.A and 3.7.B) were collected 

and concentrated for the following characterization. The final yield of purified proteins 

were around 2 mg and 10 mg per liter of culture medium for STAS domain [505-718] 

from R. norvegicus and S[511-569]GS[652-733] from G. gallus, respectively.  

As regards the STAS domain from D. rerio (Figure 3.7.C), high molecular weight 

aggregates were present in solution, as pointed out by the gel permeation elution profile. 

In the SEC elution profile there are also two peaks, both corresponding to the STAS 

domain (data not shown). Maybe they correspond to a dimeric (MW predicted= 24 kDa) 

and a monomeric (MW predicted= 15 kDa) form. The final yield of purified protein was 

around <0.2 mg per liter of culture medium, too low for structural characterization. 
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Figure 3.7 SEC elution profiles and Coomassie–stained SDS–PAGEs after gel permeation 

chromatography of (A) SLC26A5 STAS domain [505-718] from R. norvegicus and (B) SLC26A5 

STAS domain S[511-569]GS[652-733] from G. gallus. Column: HiLoad 16/60 Superdex 75 prep 

grade (GE Healthcare) equilibrated with 20 mM Tris-HCl, 150 mM NaCl and 5 mM DTT (pH 

7,5). (C) SLC26A5 STAS domain S[508-566]GS[650-733] from D. rerio. Column: Superdex 75 

10/300 GL (GE Healthcare) equilibrated with 20 mM Tris-HCl, 150 mM NaCl and 5 mM DTT 

(pH 7,5). Coomassie–stained SDS–PAGEs; Lane 1: protein markers (kDa). Lane 2: purified 

proteins (A) STAS [505-718] (24 kDa), (B) STAS S[511-569]GS[652-733] (16 kDa) and (C) STAS 

S[508-566]GS[650-733] (16 kDa).The proteins are indicated by arrows. 
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3.2.2.2. Circular dichroism 

To verify if the purified STAS domains have defined structures, they were 

characterized by circular dichroism spectroscopy, and the resulting CD spectra were 

compared with that of STAS domain crystallized.  
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Figure 3.8 Far‐UV circular dichroism spectra of (A) SLC26A5 STAS domains from R. norvegicus 

with variable loop (in red) and without variable loop (in blue), and (B) SLC26A5 STAS domain 

S[511-569]GS[652-733] from G. gallus (in green). The proteins concentration was 1 mg/ml in 50 

mM Na2HPO4 and 150 mM NaCl (pH 7.5). 

 

Figure 3.8.A shows the comparison between STAS domains from R. norvegicus 

with (in red) and without (in blue) variable loop. Both domains have a mixed α/β 

secondary structure, but it is evident that the STAS domain devoid of loop has a higher 
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percentage of secondary structure, according to the secondary structure predictions that 

predict the variable loop as mostly unstructured in solution. 

The CD spectrum of the STAS domain from G. gallus devoid of loop (Figure 

3.8.B) shows two negative bands around 209 and 222 nm, indicative of the presence of α-

helices. The overall shape of the spectra and the difference in the intensity of the two 

negative bands indicate the presence also of a certain amount of β-structure. The 

secondary structure experimentally determined is in accordance with that of its ortholog 

without loop. 

 

3.2.2.3. Differential scanning fluorimetry (DSF) 

The fluorescence-based thermal stability assay (or Thermofluor, DSF) was 

developed by Pantoliano and coworkers (US patent 6,020,141) as a high-throughput 

screen for buffer optimization and ligand-induced stabilization of proteins. This assay can 

be used to estimate the temperature of melting (Tm) and to identify stabilizing additives 

to obtain increased success rates in crystallization experiments. The Tm of SLC26A5 

STAS domain from R. norvegicus without loop is higher (53 °C) than that of STAS 

domain with loop (40 °C) in the same buffer (20 mM Tris, pH 7.5), indicating that the 

deletion of this unstructured and flexible region makes more stable and structured the 

STAS devoid of loop. The Tm of SLC26A5 STAS domain from G. gallus is a little lower 

(44 °C) than that of its ortholog. Different buffers and salts were tested in order to 

improve the thermal stability, but no buffer or salt tested improved the Tm markedly.  

 

3.2.2.4. Dynamic light scattering 

It was reported that mammalian full-length SLC26A5 aggregates in living cells at 

the level of plasma membrane, forming stable dimers or tetramers that are supposed to be 

essential for the physiological function (Zheng et al., 2006; Detro-Dassen et al., 2008; 

Mio et al., 2008). The STAS domain of Sultr1;2 from A. thaliana homodimerizes, unlike 

that of the bacterial SulP/SLC26 transporters (Shibagaki et al., 2006). To investigate if the 

oligomerization is caused because of STAS domains interaction both STAS domains with 

loop and that devoid of loop were analyzed by Dynamic Light Scattering (DLS). The 

particle size distributions by number of SLC26A5 STAS domain from R. norvegicus with 

loop is showed in figure 3.9.A. The main form in solution is the monomeric one, as well 
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as for the STAS domain devoid of loop (data not shown), indicating that neither the loop, 

nor the STAS domain seem to cause the SLC26A5 oligomerization.  

 

 

Figure 3.9 Particle size distribution by number of (A) SLC26A5 STAS domains [505-718] from R. 

norvegicus and of (B) SLC26A5 STAS domain S[511-569]GS[652-733] from G. gallus. The 

proteins concentration was 5 mg/ml in 20 mM Tris-HCl, 150 mM NaCl and 5 mM DTT (pH 7.5). 

 

Zulauf and D’Arcy (Zulauf and D’Arcy, 1992) reported that monodispersity of 

proteins measured using DLS correlated well with crystallizability, in fact monodisperse 

preparations of macromolecules can be crystallized, whereas samples that aggregate 

randomly cannot. The STAS domain that was crystallized has a polydispersion of 32.2%; 

the polydispersion of the same STAS domain but with loop is higher (38.1%), while 

ortholog STAS domain has a lower polydispersion (23.1%, Figure 3.9.B). None of these 
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samples has high-molecular weight aggregates and the polydispersion is not too much 

high, therefore these constructs seem to be good candidates for crystallographic studies. 

 

3.2.2.5. NMR studies 

The biophysical analysis of the STAS domain from G. gallus was also integrated by 

NMR studies on the sample expressed in 
15

N-labeled M9 minimal medium. The protocol 

of purification of 
15

N-labeled STAS domain was the same of the unlabeled one, but with a 

less yield of protein purified, 5 mg per liter of culture medium. The two-dimensional 

HSQC spectrum obtained in collaboration with Dr. Bellanda, at the Department of 

Chemical Sciences, University of Padova, shows several peaks well separated, 

confirming that the protein is well folded and not aggregated. 

 

3.2.2.6. Crystallization trials  

Looking at the results of the characterization of the SLC26A5 STAS domains, we 

can affirm that they are good candidates for crystallographic studies. In fact they are well 

folded, structured, not aggregated and in conditions that assure a good thermal stability. 

Therefore several crystallization screenings were tested: The JCSG+ Suite, The MbClass 

Suite, The MbClass II Suite, The AmSO4 Suite, The PACT Suite (Qiagen) and Structure 

screen 1 and 2 (Molecular Dimensions) for the STAS domain from R. norvegicus and 

moreover also The Anions Suite, The Cations Suite, The MPD Suite, The PEGs II Suite 

(Qiagen), Precipitant Synergy (Emerald Biosystems) and Morpheus
TM

 (Molecular 

Dimensions) for the STAS domain from G. gallus. Different protein concentrations were 

also tested. Many small crystals were obtained to diffraction analysis to ELETTRA 

synchrotron (Trieste, Italy) or ESRF synchrotron (Grenoble, France) but images had few 

and very intense spots, typically generated by the diffraction of salts. Despite they were 

good candidates for crystallographic studies, it has not been possible to obtain crystals 

suitable for X-ray diffraction analysis. Probably the problem is due to the intrinsic low 

propensity of these STAS domains to build ordered aggregation forms, from which single 

crystals grow.  
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3.2.3. SLC26A5 STAS domain mutants  

STAS domain mutants of 3LLO construct were performed to study the anion-

binding site and the possible role of the STAS domain in the transport. Four STAS 

domain mutants of single amino acids involved in the anion-binding site were produced. 

Table 3.7 summarizes the characteristics of STAS domain mutants. 

 

Table 3.7 Characteristics of STAS domain mutants 

 Functional analysis Prediction 

F651T Membrane localization, loss of function Stabilizing mutation 

M652I - Not destabilizing 

D653T Membrane localization, loss of function Not destabilizing 

Y545W - Not destabilizing 

Functional analysis was performed in collaboration with Prof. Oliver on the full-length SLC26A5 

transporter. Prediction of stability changes was performed by PoPMuSiC V2.1 tool. 

 

All these four mutations were predicted to be not destabilizing by PoPMuSiC V2.1 

tool, therefore they shouldn’t invalidate the overall 3D structure and we expected that 3D 

structures of mutants resembled that of wt STAS domain. Furthermore F651T and D653T 

full-length SLC26A5 transporter mutants have a correct folding in the transmembrane 

while their function is abolished; therefore we hypothesized the presence of some 

variations causing loss of function in the anion-binding site around the mutation. 

 

3.2.3.1. Expression and purification 

The four SLC26A5 STAS domain mutants were produced following the protocol of 

QuickChange
TM 

Site-Directed Mutagenesis kit (Stratagene). The proteins were 

successfully overexpressed mainly in soluble form and were purified using the same 

protocol described in the chapter 3.2.2.1: an IMAC affinity step followed by the SUMO 

protease proteolytic cleavage, another IMAC affinity step and finally size exclusions 

chromatography. The elution profiles are shown in figure 3.10. 
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Figure 3.10 SEC elution profiles of SLC26A5 STAS domain [505-563]GS[637-718] mutants from 

R. norvegicus. Column: HiLoad 16/60 Superdex 75 prep grade (GE Healthcare) equilibrated with 

20 mM Tris-HCl, 150 mM NaCl and 5 mM DTT (pH 7.5). (a) F651T, (b) M652I, (c) D653T, (d) 

Y545W. 

 

The final yields of purified proteins were around 9 mg per liter of culture medium 

for F651T mutant, 10 mg for M652I, 5 mg for D653T and 9 mg for Y545W.  

 

3.2.3.2. Circular dichroism spectroscopy 

To verify if the mutations don’t affect the secondary structure, the purified mutants 

were characterized by circular dichroism in the far-UV region and the CD spectra were 

compared to that of the wt STAS domain. The comparison is showed in figure 3.11 and it 

is clearly evident that wt STAS domain and mutants have similar amount of mixed α/β 

secondary structure. 
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Figure 3.11 Far‐UV circular dichroism spectra of SLC26A5 STAS domain [505-563]GS[637-

718] mutants [F651T (yellow), M652I (red), D653T (green), Y545W (blue)] and wt (pink). 

Proteins concentration was 1 mg/ml in 50 mM Na2HPO4 and 150 mM NaCl (pH 7.5). 

 

3.2.3.3. Differential scanning fluorimetry 

To evaluate the effects of the mutations on the thermal stability, the temperatures of 

melting of the STAS domain mutants and that of the wt were measured by differential 

scanning fluorimetry in the same conditions (Figure 3.12). F651 mutant is more stable 

than wt, while M652I and D653T are less stable. Y545W mutant’s Tm resembles that of 

wt. 
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Figure 3.12 Results of differential scanning fluorimetry of STAS domain mutants [F651T 

(yellow), M652I (red), D653T (green), Y545W (blue)] and wt (pink). The temperature of melting 

(Tm) values are the mean of three measurements. Protein concentration was 0.5 mg/ml in 20 mM 

Tris-HCl (pH 7.5). 
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3.2.3.4. Dynamic light scattering  

In order to analyze the monodispersity of the STAS domain mutants, they were 

characterized by Dynamic Light Scattering measurements and the results are shown in 

figure 3.13. Since STAS domain mutants have a similar low polydispersion and there are 

no high molecular weight aggregates, we can conclude that they are in a monomeric form 

and that they are suitable for crystallization trials.  

 

Figure 3.13 Particle size distribution by volume and summarizing table of polydispersion (Pd) 

percentage of SLC26A5 STAS domains mutants: F651T (red), M652I (green), D653T (blue), 

Y545W (black). The proteins concentration was 5 mg/ml in 20 mM Tris-HCl, 150 mM NaCl and 5 

mM DTT (pH 7.5). 

 

3.2.3.5. Crystallization trials  

The first crystallization test was to try the same conditions wherein wt STAS 

domain crystallizes: The AmSO4 Suite n° 87 (1 M MES pH 6.5, 2 M Ammonium Sulfate, 

5% (w/v) PEG 400; Qiagen) adding 0.1% (w/v) OG (Sigma). In this condition, high-

quality hexagonal crystals, resembled those of wt, were grown for two mutants, D653T 

and Y545W (Figure 3.14). On the other hand, F651T and M652I didn’t crystallize in this 

condition and in any other condition, even if several crystallization screenings were 

tested: The JCSG+ Suite, The AmSO4 Suite, The MPD Suite (Qiagen), Structure Screen 1 

and 2 and Morpheus
TM

 (Molecular Dimensions). 

  Pd (%) 

 WT 32.2 

 F651T 33.1 

 M652I 24.1 

 D653T 48.4 

 Y545W 26.7 
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Figure 3.14 Crystals of STAS domain wt (A), D653T (B) and Y545W (C) mutants in the same 

crystallization conditions. 

 

Despite we expected that the 3D structure of STAS domain mutants could resemble 

that of wt, two of them (F651T and M652I) didn’t crystallize in the same condition of wt 

and in any other condition.  

Looking at the results of the structural characterization of the STAS domain 

mutants, by means of CD, DLS and DSF, we can affirm that there are no many 

differences between mutants and wt. To understand the reason of the failure of the 

crystallization in the same condition of wt, we looked at the position of these mutations in 

the crystal lattice (Figure 3.15).  

Regarding F651T mutation, Phenylalanine is in the contact’s area between a 

molecule and its symmetric one, according to the symmetry of the crystal space group. 

Modifying this residue, their interactions change and probably these changes make the 

packaging between molecules harder and hinder the crystallization. As regards M652I 

mutation, Methionine isn’t exposed directly toward the crystallographic contact but likely 

by changing it into Isoleucine, with a larger steric hindrance, this produces a movement of 

the closer amino acids, among which some exposed toward the crystallographic contact, 

making the crystal grown unfavorable. 

 

A                                               B                                             C 
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Figure 3.15 Crystallographic contacts between two STAS domains wt (blue and green) according 

to the symmetry of the crystal space group P3121. F651 and M652 residues of a molecule (blue) 

interact with H640, L711 and Q714 residues of its symmetric one (green). 

 

3.2.3.6. Structure determination 

The structures were solved both by molecular replacement starting from the 

coordinates of the wt STAS domain taken from PDB ID 3LLO, and by Single-wavelength 

Anomalous Dispersion (SAD) using the anomalous signal of Bromine (when present in 

the crystal). Statistics on data collections and refinement are reported in table 3.5. As wt, 

mutant proteins crystallized in the space group 3121 and some amino acids preceding the 

position of the variable loop were not visible in the electron density because disordered 

and were not included in the final model. The final crystallographic R-factors are listed in 

the two last rows of the table 3.5. 

 

3.2.3.7. D653T mutant 

As expected, the overall structure of D653T mutant resembles that of wt STAS 

domain (Figure 3.16.a) and also in the anion-binding site there are no significant 

differences in the position of the side chains of the residues around the mutation (Figure 

3.16.b). 

M652 

F651 

Q714 L711 

H640 



3.2. Results 

78 

 

Figure 3.16 a) 3D structure superposition of wt STAS domain (red) and D653T mutant (yellow). 

b) Detail of the anion-binding site and residues involved. 

 

D653T mutation of SLC26A5 STAS domain causes loss of OHCs electromotility in 

vitro. The electromotility is due by voltage-dependent conformational changes of prestin 

after two preliminary steps: (1) anion binding in the cytosolic portion and (2) the 

translocation of this voltage sensor within the transmembrane domain (Figure 3.17). The 

loss of function can be caused by either the loss anion binding or the mutation doesn’t 

influence the anion binding but the anion translocation within the transmembrane domain. 

 

Figure 3.17 Model of SLC26A5/prestin’s molecular mode of action (Dallos and Fakler 2002). 

 

Since the Br
-
 is still present in the anion-binding site whose characteristics are very 

similar to those of the wild-type STAS, the mutation doesn’t seem to significantly affect 

the anion binding, even if we cannot completely exclude a different affinity; so we can 

suppose that this mutation affects the anions translocation within the transmembrane 

domain. The loss of the negative charge of the Aspartic acid 653 residue could prevent 

I544 

P543 

Y545 

V655 

S654 D653T 

F651 
Br 

1                                 2 

 a                                                          b 
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the correct translocation of the anion within the transmembrane domain and could 

increase its permanence in the binding site. This hypothesis is supported by the predicted 

orientation of the STAS domain with respect to the membrane. In this model (Figure 

3.18) the residues involved in the binding are close to the lipid bilayer and to the 

transmembrane domain. 

 

Figure 3.18 Proposed orientation of SLC26A5 STAS domain with respect to the membrane. The 

side chains of the amino acids that have been predicted interacting the lipid bilayer and the 

transmembrane domain are shown (light blue). 

 

3.2.3.8. Y545W mutant 

As expected, there are no significant differences between the overall structure of 

Y545W mutant and that of the wt STAS domain (Figure 3.19.a). Looking at the anion-

binding site, while most of the residues doesn’t change, the Tryptophan 545 is flexible 

and its position seems to be different in comparison with that of Tyrosine in the wt STAS 

domain (Figure 3.19.b). The structure around the mutation is not well defined neither 

when it has been solved by MR nor by SAD.  
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Figure 3.19 a) 3D structure superposition of wt STAS domain (red), D653T mutant (yellow) and 

Y545W mutant (green). b) Detail of the anion-binding site and residues involved. 

 

In order to understand if the flexibility of Trp is due to a larger steric hindrance than 

Tyr or to the interaction with Br
-
, we prepared crystals of Y545W without KBr. In 

absence of Br
-
, the electronic density around the mutation is not as well defined as in the 

wild-type STAS; therefore the disordering effect around the binding site is caused by the 

mutation itself rather than by the anion binding. 

It could be interesting to evaluate the effect of this mutation in the full-length 

SLC26A5. 
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3.3. Conclusions 

With the final purpose to obtain structural and functional information on the 

SulP/SLC26 STAS domains, STAS domains of different transporters, from distance-

related species, were selected, produced in E. coli and characterized: SLC26A5/prestin 

from Rattus norvegicus, Gallus gallus and Danio rerio; SLC26A4 from Homo sapiens 

and Sultr 1;2 from Arabidopsis thaliana. STAS domains of SulP/SLC26 transporters 

from animals were designed with and without variable loop, while the STAS domain 

from plant was designed with loop. Four mutants of the STAS domain whose 3D 

structure has been solved were produced in order to study the anion-binding site and the 

possible role of the STAS domain in the transport. Among these, two variants of prestin 

STAS domain from R. norvegicus and G. gallus and all four STAS domain mutants were 

obtained in a soluble form. For each of these constructs, an optimized three-step 

purification protocol allowed obtaining a yield (2-10 mg of protein per liter of culture) 

sufficient for structural studies with high purity level. The proteins were characterized in 

solution by size exclusion chromatography and by classical biophysical methods, such as 

circular dichroism spectroscopy, dynamic light scattering and differential scanning 

fluorimetry. The purified constructs were submitted to extensive crystallization trials and 

two of them (D653T and Y545W mutants) were successfully crystallized and it was 

possible to determine their crystal structures by means of the SAD and MR technique. 

These structures can help to understand the important role of the STAS domain in the 

transport of full-length prestin. The structure-function analysis indicates that the Asp653 

residue is fundamental for NLC and, consequently, for OHCs electromotility probably 

because its negative charge repulses the negative charge of the anion in the binding site 

and permits the anion translocation within the transmembrane domain. Instead, the loss of 

Asp653’s negative charge could increase the permanence of the anion in the binding site, 

preventing the prestin’s function. 

To conclude, some STAS domains had a strong tendency to aggregate, preventing 

the purification in sufficient amount for structural studies, despite the presence of a 

SUMO-tag that may increase the solubility of recombinant fusion proteins. Also Rv1739c 

STAS domain precipitated as insoluble aggregates and Sharma and co-workers purified it 

from inclusion bodies following an on-column refolding procedure (Sharma et al., 2009). 

Furthermore, as regards the most of the purified STAS domains, it has not been possible 

to obtain crystals suitable for X-ray diffraction analysis despite they were good candidates 



3.3. Conclusions 

82 

for crystallographic studies (well-folded and structured single domain, not aggregated, 

and in conditions that assure a good thermal stability). Moreover, Babu and colleagues 

were unable to crystallize the STAS domain of YchM on its own, but only in complex 

with a protein (Babu et al., 2010). And we crystallized rat prestin STAS domain (mutants 

and wt) only in the presence of OG, visible in the 3D structure (Pasqualetto et al., 2010). 

Altogether these data indicate that isolated STAS domains excised from full transporters 

have generally a poor tendency to give origin to well diffracting crystals. 
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4. Full-length SulP/SLC26 transporters 

4.1. Introduction 

4.1.1. Membrane proteins 

Integral membrane proteins (MPs) play crucial roles in many aspects of biology by 

mediating the transfer of material and signals between cells and their environment. They 

comprise more than a quarter of all sequenced genomes, and a majority of the targets of 

currently marketed drugs. A detailed knowledge of their structure, function and 

dysfunction is essential to a wide range of biomedical and biotechnological applications 

but, yet (at January 2013), only around 380 unique polytopic structures have been 

elucidated (http://blanco.biomol.uci.edu/). These low MPs number is a reflection of the 

technical difficulties of working with membrane proteins (Sonoda et al., 2011). 

Efficient production of high quality samples in adequate quantities (in the order of 

milligrams) is a major bottleneck in structural approaches of MPs because of their 

hydrophobic nature, toxic effects and specific requirements for targeting and translocation 

systems. Particularly in Escherichia coli, the most commonly used heterologous 

expression host, overexpression of MPs can result into the accumulation of aggregated 

material.  

 

4.1.2. Cell-free expression 

Cell-free (CF) expression system has recently emerged as a promising and highly 

versatile technique for the general production of membrane proteins. A number of 

intrinsic key characteristics set CF expression clearly apart from any other traditional MP 

expression system. (1) Reaction volumes are small and ranging from μls to mls in 

preparative scales. Production efficiencies are very high, resulting in yields of mg protein 

per ml reaction. (2) The operator always has unlimited access to the reaction and 

stabilizing compounds, such as detergents or lipids, can be supplemented at any time 

point. This feature makes CF expression the most versatile expression system available. 

(3) Most intrinsic general problems of conventional cellular MP preparation, such as 

toxicity or efficient targeting, translocation and membrane extraction, are virtually 

http://blanco.biomol.uci.edu/
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eliminated and the speediness of CF expression is highly competitive. (4) The user can 

switch between different expression backgrounds by using cell extracts from either 

prokaryotic or eukaryotic sources (Junge et al., 2010; Schwarz et al., 2007; Schneider et 

al., 2010).  

Two different CF reaction configurations are commonly used: the one compartment 

batch reaction and the two compartments continuous-exchange (CECF) configuration 

(Figure 4.1.A). In the second configuration two compartments are separated by a 

semipermeable membrane of molecular weight cut-offs of 12–14 kDa. One compartment 

holds the reaction mixture (RM) containing the cell extract and all other high molecular 

weight compounds like enzymes and nucleic acid templates. Supplies of low-molecular 

weight precursors such as NTPs and energy sources are present in a feeding mixture (FM) 

in the second compartment. Vigorous shaking or stirring ensures an efficient exchange of 

substances between the two compartments. CF expression offers the opportunity to 

produce MPs in three new ways: in the precipitate forming (P-CF) mode, the detergent 

based (D-CF) mode or in the lipid based (L-CF) mode (Figure 4.1.B).  

In the P-CF mode, MP precipitation occurs immediately after translation as CF 

extracts are almost completely devoid of membranes. These precipitates can usually be 

solubilized efficiently by the addition of particular detergents within a few hours, without 

applying classical refolding procedures. In the D- CF mode, the MPs are inserted into 

micelles provided during or shortly after translation. After the reaction, the RM 

containing the MP proteomicelles can be applied instantly to the first purification column 

without any further treatment. In the L-CF mode, defined lipids or lipid mixtures are 

supplied into the RM and translated MPs may directly insert into the bilayers (Figure 

4.1.C) (Junge et al., 2010). 

CF expression and the first steps of production and functional characterization of 

the SulP/SLC26 transporters were performed in the laboratory of Prof. Dötsch, under 

supervision of Dr. Frank Bernhard at the Institute of Biophysical Chemistry, Centre of 

Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Frankfurt/Main 

(Germany), where I spent six months of my PhD. Then I’ve continued CF expression, 

purification and structural characterization at the University of Padova. 
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Figure 4.1 Versatility of the CF expression technique. (A) CF reaction configurations (CECF or 

batch). (B) Basic expression modes for the CF synthesis of MPs; the protein is either expressed 

without any hydrophobic agents (P-CF mode) or in the presence of detergents (D-CF mode) or 

lipids (L-CF mode). (C) Variety of primary MP samples resulting from the basic expression 

modes (Junge et al., 2010). 
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4.2. Methods 

4.2.1. Selection of the SulP/SLC26 proteins for CF expression 

The selected SulP/SLC26 proteins for CF expression are: SLC26A5/prestin from 

Rattus norvegicus, Gallus gallus and Danio rerio; Sultr 1;2 from Arabidopsis thaliana; 

Rv1739c from Mycobacterium tuberculosis and BicA from Synechocystis sp. PCC 6803, 

Trichodesmium erythraeum and Thermosynechococcus elongatus BP-1. For all the 

proteins only the full-length sequence were tested (Table 4.1). 

Table 4.1 Selection of SulP/SLC26 anion transporters for CF expression 

Protein Source organism 
Coding 

sequence (bp) 

aa 

(residues) 
MW (kDa) 

N-terminal 

tag 

C-terminal 

tag 

SLC26A5 Rattus norvegicus 2232 744 81.28 t7 poly(His)10 

SLC26A5 Gallus gallus 2226 742 81.11 t7 poly(His)10 

SLC26A5 Danio rerio 2217 739 81.40 t7 poly(His)10 

Sultr1;2 
Arabidopsis 

thaliana 
1959 653 71.71 t7 poly(His)10 

Rv1739c 
Mycobacterium 

tuberculosis 
1680 560 59.36 t7 poly(His)10 

BicA 
Synechocystis sp. 

PCC 6803 
1692 564 59.61 optimized poly(His)10 

BicA 
Trichodesmium 

erythraeum 
1722 574 60.43 optimized poly(His)10 

BicA 
Thermosynechococ

cus elongatus BP-1 
1683 561 59.92 optimized poly(His)10 

Optimized N-terminal tag =AAATATTATAAATATTAT 

 

4.2.2. Plasmid design and cloning of the SulP/SLC26 genes  

The cloning of BicA genes from different cyanobacteria was performed in 

collaboration with Dr. Elisabetta Bergantino, at the Department of Biology A. Vallisneri, 

University of Padova. 

The coding regions for BicA proteins were amplified by standard polymerase chain 

reaction (PCR) using Taq polymerase (Genespin) starting from genomic DNA for 

Trichodesmium erythraeum and Thermosynechococcus elongatus BP-1 and from 

supernatant of bacterial lysate for Synechocystis sp. PCC 6803. To be more precise, 

firstly, a region larger than the coding region was amplified using highly specific 
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oligonucleotide primers, that don’t had to have affinity with other genomic regions 

(external primers, Table 4.2); secondly, the coding region was amplified using primers 

containing restriction sites necessary for the following cloning into the vector (cloning 

primers, Table 4.2). To facilitate the digestion by restriction enzymes (NdeI and XhoI), 

the purified and phosphorylated PCR fragments were inserted into a linearized blunt-end 

vector (pBSK), subsequently digested by restriction enzymes. The digested and purified 

fragments were then inserted into the corresponding cloning site of the expression vector 

pET-21cHx, digested with the same enzymes. The plasmid is a derivative of the standard 

T7 promoter based vectors pET-21a(+) (Merck Biosciences) encoding for an extended C-

terminal poly(His)10 tag. The extended poly(His)10 tag at the C-terminus not only helps 

for efficient binding during purification but also to verify the full length expression. The 

low yield can be countered with an efficiently translated expression tag, such as T7 tag or 

an optimized tag at the N-terminal end. Haberstock and colleagues (Haberstock et al., 

2012) demonstrated the importance of high AT content and presence of a triple A 

sequence as second codon for the improvement of CF production efficiencies of 

membrane proteins. According to these findings, an optimized N-terminal tag 

(AAATATTATAAATATTAT) was added to the DNA fragments by PCR with suitable 

oligonucleotide primers (cloning primers, Table 4.2).  

Table 4.2 Oligonucleotide primers used for cyanobacteria SulP/SCL26 transporters, BicA 

External primers 

Constructs Primer  Sequence 

Synechocystis sp. PCC 

6803 

5'                  

3' 

gccaagctcgacagcagagcaccg 

agctgccagtcggccagcgg 

Trichodesmium 

erythraeum 

5'                  

3' 

ggctgccgtgacaagccactgt 

acgcatcaaggctttgcaacagaca 

Thermosynechococcus 

elongatus BP-1 

5'                  

3' 

cctcagggcgaggggttccccc 

ctcagcccgcccttgccgcc 

Cloning primers 

Constructs Primer  Sequence 

Synechocystis sp. PCC 

6803 

5'                  

3' 

aaacatatgAAATATTATAAATATTATcaaataactaacaaaattcattttag  

cttccgtccagaccacatacctccgaaaa 

Trichodesmium 

erythraeum 

5'                  

3' 

aaacatatgAAATATTATAAATATTATgctacgcaagttttcaataaaatac    

caatctgggattgataatattatcaaactccgaaaa 

Thermosynechococcus 

elongatus BP-1 

5'                  

3' 

aaacatatgAAATATTATAAATATTATttaagcaatttagttaatcgagttc     

gagctgacaacgggtagcctccgaaaa 

NdeI and XhoI restriction sites are underlined; optimized N-terminal tag is in upper-case letter. 

 

The others SulP/SLC26 transporters, SLC26A5/prestin from Rattus norvegicus, 

Gallus gallus and Danio rerio, Sultr 1;2 from Arabidopsis thaliana and Rv1739c from 
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Mycobacterium tuberculosis, were already been cloned into a pET-21cHx vector with an 

N-terminal T7 tag and a C-terminal poly(His)10 tag. 

The resulting plasmids were isolated with commercial kits (Qiagen) and used as 

templates for the CF expression. A high quality of template DNA at a concentration of  

0.15 μg/μl is of extreme importance. 

 

4.2.3. Western blot analysis 

For western blot analysis, the SDS-PAGE gels were transferred on a 0.45 μm 

Immobilion-P poly(vinylidene difluoride) membrane (Millipore) in a Hoefer TE22 (GE 

Healthcare) wet western blot apparatus for 35 min at 340 mA. The membrane was then 

blocked for 1 h at RT in blocking buffer containing PBS (8 mM Na2HPO4, 15 mM 

KH2PO4, 0.137 mM NaCl, 3 mM KCl, pH 7.4), 4% (w/v) skim milk powder and 0,05% 

(w/v) Tween. The first antibody, the anti His-tag antibody from mouse (Qiagen) diluited 

1:2000, was incubated ON at 4 °C with the membrane. The second antibody, the anti-

mouse antibody (Sigma Aldrich) diluted 1:5000 was incubated for 1 h at RT with the 

membrane. After extensive washing with PBS, 0.05% (w/v) Tween, the blots were 

analyzed by chemiluminescence in a Lumi-imager F1 (Roche Diagnostics). 

 

4.2.4. Preparation of CF lysates 

The cell extract preparation is one of the key steps in obtaining successful and 

reproducible results using the CF protein synthesis. Bacterial CF extracts were prepared 

from the E. coli strain A 19 according to the following the protocol optimized in the 

laboratory of Prof. Dötsch (Schneider et al., 2010; Schwarz et al., 2007).  

The cells were grown with good aeration until mid-log phase (OD600 of 

approximately 4-4.5) at 37 °C in 2x YTPG medium (per liter: 2.99 g KH2PO4, 6.97 g 

K2HPO4, 19.82 g glucose, 16 g tryptone, 10 g yeast extract, 5 g NaCl), chilled down 

rapidly and harvested by centrifugation. The cell pellet was resuspended and washed 

three times in ice cold S30-A buffer [10 mM Tris-acetate, 14 mM Mg(OAc)2, 0.6 mM 

KCl, 6 mM β-mercaptoethanol (pH 8.2)] and it was finally suspended in S30-B buffer [10 

mM Tris-acetate, 14 mM Mg(OAc)2, 0,6 mM KCl, 1 mM DTT, 0.1 mM PMSF (pH 8.2)] 

pre-cooled at 4 °C. The cells were disrupted by passing through a pre-cooled French-

Press. Cell-debris was removed by centrifugation at 30000 g at 4 °C for 30' and the 



4. Full-length SulP/SLC26 transporters 

89 

supernatant was transferred into a fresh vial. The centrifugation step and transfer of 

supernatant was repeated once. The supernatant was adjusted to a final concentration of 

400 mM NaCl follow by incubation at 42 °C for 45' in a water bath. This step is used to 

get rid of endogenous mRNA; the solution will become turbid after incubation. The turbid 

solution was filled into a dialysis tube (MWCO 14 kDa) and dialyzed at 4 °C against 100 

volumes of S30-C buffer [10 mM Tris-acetate, 14 mM Mg(OAc)2, 0.6 mM KOAc, 0.5 

mM DTT (pH 8.2)] with gentle stirring. After one further exchange of the dialysis buffer 

ON at 4 °C the E. coli S30-extract was harvested by centrifugation at 30000 g at 4 °C for 

30'. The clear supernatant was transferred in suitable aliquots and frozen in liquid 

nitrogen.  

 

4.2.5. CF expression: precipitate forming (P-CF) mode 

CF reactions are performed in analytical scales for optimization studies and in 

preparative scales for high-level production. The volume ratio of reaction mixture (RM): 

feeding mixture (FM) was generally kept at 1:14 for analytical scale reactions and 1:17 

for preparative scale reactions. For 55 μl analytical scale reactions, self-made Mini-CECF 

reactors were used with regenerated cellulose membranes with 14 kDa cut-off. The Mini-

CECF reactors were incubated in standard 24-well microplates and the cavities of the 

microplates were used as a FM compartment. Preparative scale reactions of 1 ml were 

performed with self-made Maxi-CECF reactors and with commercial Slide-A-Lyzer units 

(Pierce) as a RM container. Optimal concentration of Mg
2+

 for every S30 extract batch 

was analyzed in order to obtain higher yields. The reaction protocol is given in the table 

4.3. CF reactions were performed in the continuous exchange cell-free (CECF) 

configuration and incubated for 16 h at 30 °C with gentle shaking. CF expressed protein 

was harvested as precipitate (P-CF) by centrifugation; the synthesis of the protein was 

verified by immunodetection with antibodies directed against the poly(His)10 tag.  
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Table 4.3 Cell-free expression protocol 

 Final concentration in RM Final concentration in FM 

S30 extract 35%  -  

S30-C Buffer  -  35% 

Plasmid 15-20 μg/ml  -  

Rnasin 0.3 U/μl  -  

T7-RNA Polymerase 0.05 U/μl  -  

tRNA E. coli 0.5 mg/ml  -  

Pyruvate kinase 0.04 mg/ml  -  

Amino acids (RCWMDE) 1 mM 1 mM 

Amino acids mix 0.55 mM 0.55 mM 

Acetyl phosphate 20 mM 20 mM 

Phosphoenol pyruvate 20 mM 20 mM 

ATP 1.2 mM 1.2 mM 

CTP, GTP, UTP 0.8 mM 0.8 mM 

DTT 2 mM 2 mM 

Folinic acid 0.1 mg/ml 0.1 mg/ml 

Complete protease inhibitor 1x 1x 

Hepes-KOH pH 8 EDTA 100 mM 100 mM 

Mg(OAc)2 17 mM 17 mM 

KOAc  270 mM 270 mM 

PEG 8000 2% 2% 

NaN3 0.05% 0.05% 

Abbreviations: RM= reaction mixture; FM= feeding mixture. 

 

4.2.6. Detergent solubilization of precipitated proteins 

After expression in the absence of detergent, the precipitated protein was harvested 

from the RM by centrifugation. The pellet was suspended in one volume of washing 

buffer [20 mM Tris-HCl, 150 mM NaCl (pH 7.5)] and centrifuged. The washing step was 

repeated twice. The precipitate was then re-suspended in resuspension buffer [20 mM 

Tris-HCl, 150 mM NaCl (pH 7.5) supplemented with appropriate detergent]. SulP/SLC26 

solubilization was achieved by incubation for 1 h at 30 °C with gentle shaking; residual 

precipitate was removed by centrifugation. The protein in both fractions was quantified 

separately by western blot analysis. Routinely analyzed detergents for resolubilization 

are: 1% (w/v) FOS-12, 1% (w/v) LMPC, 1% (w/v) LPPG, 1% (w/v) LMPG, 1% (w/v) 

DDM, 1% (w/v), 1% (w/v) DHPC, 1% (w/v) FOS-16, 1% (w/v) OG, 5% (w/v) Nvoy, 1% 

(w/v) A8-35 (Table 4.4). A panel of non-ionic detergents (DDM, OG), zwitterionic 

(LMPC, FOS-12, FOS-16, DHPC) and negatively charged ones (LMPG, LPPG) was 

chosen. Many of them display typical phospholipid polar heads (LMPC, LMPG, LPPG, 

DHPC, FOS-12). 
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Table 4.4 Detergents for resolubilization of P-CF products 

Detergent Short name Detergent class CMC (H2O) 

n-dodecylphosphocholine FOS-12/ DPC zwitterionic ~ 1.5 mM (0.047%) 

1-myristoyl-2-hydroxy-sn-glycero-3-

phosphocholine 
LMPC zwitterionic 0.043 - 0.090 mM 

1-palmitoyl-2-hydroxy-sn-glycero-3-

[phospho-RAC-(1-glycerol)] 
LPPG ionic 0.6 mM 

lyso-myristoylphosphatidylglycerol LMPG ionic 0,05 mM 

n-dodecyl -D-maltoside DDM non ionic ~ 0.17 mM (0.0087%) 

l,2-diheptanoyl-sn-glycero-3-

phosphocholine 
DHPC zwitterionic 1.4 mM 

n-hexadecylphosphocholine FOS-16 zwitterionic 
~ 0.013 mM 

(0.00053%) 

n-Octyl--D-glucopyranoside OG non ionic ~ 18-20 mM (0.53%) 

Amphipol A8-35 A8-35  NA 

CMC= critical micelle concentration, the concentration of detergent above which monomers self-

assemble into non-covalent aggregates (called micelles). NA= not available. 

 

4.2.7. Protein purification 

Immobilized Metal Affinity Chromatography (IMAC) was applied for purification 

of the poly(His)10-tagged transporters and for the optional exchange of the first detergents 

used for solubilization against second detergents used for analysis.  

Resolubilized protein produced in the P-CF mode was centrifuged in order to 

remove precipitates. The supernatant containing the detergent-solubilized membrane 

protein was diluted in equilibration buffer [20 mM Tris–HCl, 150 mM NaCl, 10 mM 

imidazole, detergent at >2x CMC (pH 7.5)] and mixed with pre-equilibrated NTA-

agarose beads loaded with Ni
2+

 ions. The mixture was incubated for 1 h at RT followed 

by the application to an empty gravity flow column and washed with 2 washing buffers: 

washing buffer 1 [20 mM Tris–HCl, 150 mM NaCl, 50 mM imidazole, detergent at >2x 

CMC (pH 7.5)] and washing buffer 2 [20 mM Tris–HCl, 150 mM NaCl, 80 mM 

imidazole, detergent at >2x CMC (pH 7.5)]. Immobilized protein was finally eluted with 

300 mM imidazole in elution buffer [20 mM Tris–HCl, 150 mM NaCl, 300 mM 

imidazole, detergent at >2x CMC (pH 7.5)]. 

Size exclusion chromatography (SEC) was used in order to assess the homogeneity 

and the stability of SulP/SLC26 samples produced, solubilized and stored under different 

detergent conditions. Samples of solubilized transporter were separated on a pre-
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equilibrated analytical Superdex 200 5/150 GL column (GE Healthcare) at a flow rate of 

0.3 ml/min (bed volume = 3 ml). Routinely detergents for crystallization screenings are: 

0.1% (w/v) FOS-12, 0.05% (w/v) DDM, 0.06% (w/v) LDAO, 0.1% (w/v) UM, 0.2% 

(w/v) DM, 0.02% (w/v) DM NG, 0.4% (w/v) NG, 1% (w/v) OG (Table 4.5). 

Table 4.5 Detergents for crystallization screenings 

Detergent Short name Detergent class CMC (H2O) Micelle size 

n-dodecylphosphocholine FOS-12 zwitterionic ~ 1.5 mM (0.047%) ~ 19 kDa 

n-dodecyl beta-D-maltoside DDM non ionic ~ 0.17 mM (0.0087%) 

~ 40-76 

kDa 

n-Dodecyl-N,N-

Dimethylamine-N-Oxide LDAO zwitterionic ~ 1-2 mM (0.023%) 

17 -21.5 

kDa 

n-Undecyl-β-D-

Maltopyranoside UM non ionic ~ 0.59 mM (0.029%) ~ 35 kDa 

n-Decyl-β-D-Maltopyranoside DM non ionic ~ 1.8 mM (0.087%) ~ 33 kDa 

Decyl Maltose Neopentyl 

Glycol DM NG non ionic ~ 0.036 (0.0034%) NA 

n-Nonyl-β-D-Glucopyranoside NG non ionic ~ 6.5 mM (0.20%) ~ 41 kDa 

n-Octyl-β-D-glucopyranoside OG non ionic ~ 18-20 mM (0.53%) ~ 8-29 kDa 

 

4.2.8. CD spectroscopy  

CD data were recorded on a Jasco J-715 spectropolarimeter, using quartz cuvettes 

of 0.02 cm path-length. The spectra were determined as an average of 10 scans. The 

protein concentration was 1 mg/ml in 50 mM Na2HPO4, 150 mM NaCl, pH 7.5. The data 

were recorded and analyzed with Spectra Manager Software (JASCO). 

 

4.2.9. Protein crystallization 

Crystallization trials using commercial kits for membrane proteins (The MbClass 

Suite and The MbClass II Suite, Qiagen) based on sparse matrix were performed by vapor 

diffusion (with the sitting drop method) techniques, using the Oryx8 automatic system 

(Douglas Instrument). 
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4.2.10. CF expression in presence of lipids 

Lipids can be supplied into CF reactions in different formulations such as 

preformed liposomes of defined compositions, isolated fractions of cell membranes, 

detergent solubilized lipomicelles providing a mixed environment for MPs, bicelles 

consisting of planar bilayers surrounded by detergents, and nanolipid particles or 

nanodiscs (NDs) providing highly soluble and confined bilayer areas. The ND is a non-

covalent assembly of phospholipid and a genetically engineered membrane scaffold 

protein (MSP) which itself is based upon the sequence of human serum apolipoprotein 

AI. The phospholipid associates as a bilayer domain while two molecules of MSP wrap 

around the edges of the discoidal structure in a belt-like configuration, one MSP covering 

the hydrophobic alkyl chains of each leaflet (Figure 4.2) (Bayburt and Sligar, 2009). 

 

Figure 4.2 Illustration of the NDs structure shown. The two MSPs are colored orange and blue 

(Bayburt and Sligar, 2009). 

For functional studies, lipids and NDs were added to the reaction mixture at the 

final concentrations: phosphocholine (4 mg/ml), E. coli polar lipids (4 mg/ml), NDs (30-

40 μM). 

 

4.2.11. Stock lipids preparation: phosphocholine and polar 

lipids 

Chloroform solubilized lipids were applied to a rotary evaporator (Rotavapor 

RE120, Büchi) to remove chloroform. Each lipid was reconstituted in water or buffer at 

final concentrations of 40 mg/ml, and solubilized by vortexing and incubating at 37 °C in 

an ultrasonic water bath to form multilamellar vesicles. The multilamellar vesicle solution 

was passed at least 21 times through an Avanti Polar Lipids mini extruder holding a 0.45 

μm Whatman polycarbonate membrane filter (Florham Park, NJ) sandwiched with two 

filter supports on each side. The resulting unilamellar liposome solution were stored at 4 

°C or, for time long storage, at -80 °C and thawed on ice before usage. 
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4.2.12. Preparation of empty nanodiscs 

The membrane scaffold protein MSP1E3D1 has the follow features: the first α-helix 

is truncated (Δ1-11, indicated by D1) to give more stable discs and an additional three α-

helices (α-helix 4, 5, and 6) inserted into the sequence between α-helix 3 and α-helix 4 to 

make larger discs (~12.1 nm bilayer discs). MSP1E3D1 was expressed with an N-

terminal poly(His)6 tag and purified following the protocol of Bayburt and colleagues 

(Bayburt et al., 2002). Stocks of purified MSP1E3D1s were stored at -80 °C and thawed 

on ice before usage. Chloroform solubilized lipids were applied to a rotary evaporator 

(Rotavapor RE120, Büchi) to remove chloroform. Each lipid was resuspended in water at 

final concentrations of 50 mM and solubilized with Na
+
-cholate supported by vortexing 

or incubating at 37 °C in an ultrasonic water bath. Solubilization was complete when the 

suspension turned clear. Required Na
+
-cholate concentrations for complete solubility 

were 100 mM for DMPC and 300 mM for DMPG. MSP1E3D1 was combined with the 

selected lipids at a defined molar stoichiometry (MSP1E3D1:DMPC 1:115; 

MSP1E3D1:DMPG 1:110). The mixtures of MSP1E3D1, lipid and DPC 0.1% (w/v) were 

incubated at RT for 30'. NDs formation was initialized by dialysis against 5 l of dialysis 

buffer [40 mM Tris-HCl, 100 mM NaCl (pH 8.0)]. The first dialysis was performed over 

weekend at 4 °C, or for 2 h at RT and ON at 4 °C, followed by buffer exchange and 

further dialysis at RT for additional 3 h. This step was repeated twice.  

After dialysis, NDs were centrifuged (22000 g for 20') to remove residual 

aggregates and stored on ice before concentrating. The supernatant of ND assemblies 

were applied to Centriprep concentrator devices (10 kDa MWCO, Millipore, Merck) 

equilibrated with dialysis buffer. Centripreps were centrifuged at 4 °C and 2000 g and 

NDs were concentrated up to final MSP concentrations of 240 μM. ND stocks were 

centrifuged (22000 g for 20') and stored on ice before usage. For long time storage, NDs 

were flash frozen in liquid nitrogen and stored at -80 °C. 

 

4.2.13. Restriction-free (RF) cloning  

RF cloning is inspired by oligonucleotide-directed mutagenesis (QuickChange™, 

Stratagene) and provides a simple, universal method to precisely insert a DNA fragment 

into any desired location within a circular plasmid, independent of restriction sites, 

ligation, or alterations in either the vector or the gene of interest. The technique uses a 

PCR fragment encoding a gene of interest as a pair of primers in a linear amplification 
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reaction around a circular plasmid. The RF cloning was performed following a published 

protocol (van den Ent and Loewe, 2006). SLC26A5/prestin from Danio rerio and BicA 

from Synechocystis sp. PCC 6803 were inserted into a pET-21cHX plasmid coding for 

GFP, in frame with GFP (Table 4.6). The resulting plasmids were prepared for functional 

studies. 

Table 4.6 Oligonucleotide primers used for RF cloning 

Constructs Primer  Sequence 

BicA from 

Synechocystis sp. PCC 

6803 

5' 

 

3' 

 

TAACTTTAAGAAGGAGATATACATATGAAATATTATAAATAT

TATCAAAT 

AGTGAAAAGTTCTTCTCCTTTGCTCTCGAGGTATGTGGTCTGG

ACGGA 

SLC26A5/prestin 

from Danio rerio 

5' 

 

3' 

 

TAACTTTAAGAAGGAGATATACATATGGCTAGCATGACTGGT

GGACAGCA 

AGTGAAAAGTTCTTCTCCTTTGCTCTCGAGGTGGATGTTTGGG

TGGAC 
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4.3. Results 

4.3.1. Full-length SulP/SLC26 transporters 

Eight genes encoding selected SulP/SLC26 proteins were successfully cloned into a 

pET-21cHx plasmid and these proteins were expressed with a C-terminal poly(His)10 tag 

to facilitate subsequent detection and purification. 

 

4.3.2. CF expression screening of SulP/SLC26 transporters 

The primary problem of membrane protein production is the generation of sufficient 

protein yields in order to have enough starting material for subsequent structural analysis. 

The most productive reaction conditions are best evaluated in the P-CF expression mode. 

Purified plasmids DNA were added as template into the RM and the proteins were 

produced in the CECF configuration in the P-CF mode at 30 °C without added detergents. 

Critical parameter for CF protein production is optimal ion concentrations of Mg
2+

. After 

screening of Mg
2+

 ion concentrations in the P-CF expression mode in a range between 16-

22 mM, optima were determined at 17 mM Mg
2+

. All proteins, but SLC26A5 from G. 

gallus, could be detected by immunodetection of the terminal poly(His)10 tag after 

Western blotting. The expression level of SLC26A5 from R. norvegicus was low (≤ 200 

μg/ml), therefore the other six candidates were selected for further studies (Figure 4.3). In 

contrast, the conventional in vivo expression using different E. coli strains (BL21(DE3), 

C41/C43(DE3)) yielded no detectable expression of all SulP/SLC26 transporters by SDS-

PAGE and western blot analysis (data not shown). 
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Figure 4.3 P-CF expression screening of SulP/SLC26 transporters followed by Western blotting. 

P-CF produced precipitated SulP/SLC26 transporters were washed and suspended in H2O. 

Sample volumes of 2 μl were separated by 12% SDS-PAGE and identified by Western blotting 

with anti-His antibodies. Arrows indicate the synthesized SulP/SLC26 proteins. Lane 1: Marker 

proteins in kDa; Lane 2: SLC26A5 from R. norvegicus (81 kDa); Lane 3: SLC26A5 from G. 

gallus (81 kDa); Lane 4: SLC26A5 from D. rerio (81 kDa); Lane 5: Sultr 1.2 from A. thaliana (71 

kDa); Lane 6: Rv1739c from M. tuberculosis (59 kDa); Lane 7: BicA from Synechocystis sp. PCC 

6803 (60 kDa); Lane 8: BicA from Trichodesmium erythraeum (60 kDa); Lane 9: BicA from 

Thermosynechococcus elongatus BP-1 (60 kDa). 

 

4.3.3. Detergent resolubilization screening 

After insoluble expression of SulP/SLC26 transporters, selected detergents were 

tested for their efficiency in the resolubilization of the CF produced precipitates. The 

western blot analysis was used to quantify the protein in the soluble and insoluble 

fractions, after incubation with detergents for 1 h at 30 °C. An example of resolubilization 

screening result is displayed in figures 4.4 and 4.5. 

The solubilization of this cyanobacterial SulP/SLC26 protein (BicA from 

Synechocystis sp. PCC 6803) was apparently 100% efficient in LMPC. Solubilization in 

the other detergents was 95% in DPC and LMPC, 90% in LPPG and 85% in FOS-16, all 

the other detergents had no or minor resolubilization effects. The yield in presence of the 

long-chain phosphocholine FOS-16 seems to be higher than the other tested detergent 

(row 15, figure 4.4) therefore FOS-16 has been chosen as the best resolubilization 

detergent.  
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Figure 4.4 Resolubilization screening of a P-CF-produced cyanobacterial SulP/SLC26 protein.  

Sample volumes of 2 μl were analyzed by 12% SDS-PAGE. The solubilization efficiencies were 

determined by densitometry after immunoblotting using anti-His antibodies. Lane 1: Pellet not 

solubilized; Lane 2: SN DPC; Lane 3: PL DPC; Lane 4 Marker proteins in kDa; Lane 5: SN 

LMPC; Lane 6: PL LMPC; Lane 7: SN LPPG; Lane 8: PL LPPG; Lane 9: SN LMPG; Lane 

10:PL LMPG; Lane 11: SN DDM; Lane 12: PL DDM; Lane 13: SN DHPC; Lane 14: PL DHPC; 

Lane 15: SN FOS-16; Lane 16: PL FOS-16; Lane 17: SN OG; Lane 18: PL OG; Lane 19: SN 

NVoy; Lane 20: PL Nvoy; Lane 21: Marker proteins in kDa; Lane 22: SN A8-35; Lane 23: PL 

A8-35. The protein is indicated by an arrow (MW= 60 kDa). 
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Figure 4.5 Summary of resolubilization screening (SN= supernatant, PL= pellet). 

 

The western blot in figure 4.4 indicates a prominent ~50 kDa signal as the 

cyanobacterial SulP/SLC26 protein, BicA, monomer. In presence of some detergents 

(LMPC, DHPC, FOS-16, OG, A8-35), additional protein bands were detected by 

immunoblotting, that could correspond to BicA multimeric complexes (dimers, trimers 

and tetramers). 
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4.3.4. Purification of SulP/SLC26 transporters 

The resolubilized P-CF precipitates were purified by IMAC based on binding of the 

C-terminal poly(His)10 tag at Ni
2+

 loaded NTA-agarose beads, as described in chapter 

4.2.7. Furthermore, the immobilization of SulP/SLC26 proteins upon IMAC purification 

was used to modify the initially selected hydrophobic environment either by decreasing 

detergent concentrations or by exchanging the primary detergent with a second detergent 

having better properties for downstream processes. 

An example of IMAC result (of BicA from Synechocystis sp. PCC 6803) is 

displayed in figure 4.6, where the SulP/SLC26 transporter eluted from the column 

(fractions 25-30) is almost pure. 

 

 

Figure 4.6 SDS-PAGE of cyanobacterial transporter IMAC purification. Lane 1: PL; Lane 2: FT 

(flow through); Lane 3: Marker proteins in kDa; Lanes 4-10: equilibration buffer; Lanes 11-16: 

washing buffer 1; Lanes 17-24: washing buffer 2; Lane 19: Marker proteins in kDa; Lanes 25-30: 

elution buffer. The protein is indicated by an arrow (MW= 60 kDa). 

 

4.3.5. Evaluation of SulP/SLC26 transporters quality  

The homogeneity of SulP/SLC26 samples purified by Ni
2+

-NTA affinity 

chromatography was evaluated by SEC elution profiling to detect potential residual 

protein aggregates. Analyzing elution profiles of size exclusion columns is a first and 

general tool in order to detect aggregates or apparent heterogeneities in protein samples. 

Thus, a selection of detergents frequently used in crystallization screenings of membrane 

proteins was evaluated with respect to their effects on SulP/SLC26 transporters 

homogeneity; there is, in fact, a correlation between monodispersity and crystallizability. 

A single peak on the resulting chromatogram corresponds to a size-homogeneous protein 

and is often considered most suitable for crystallization. Additional peaks in the 
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chromatogram are usually an indicator of undesirable multimeric or aggregated target 

membrane protein or contaminants (Procedure 28-9490-13 AA, GE Healthcare, 2008). 

 

It has been reported that most transporters have been crystallized in DDM, that has 

a long alkyl chain, and consequently is relatively mild, but those structures solved in 

DDM are, on average, of lower resolution compared to short-chain detergents as DM, 

NM and OG (Sonoda et al., 2011). 

In presence of 0.05% (w/v) DDM a main peak was obtained close to the V0 

(indicated by arrows in the figure 4.7), indicating severe oligomerization or aggregation. 

Furthermore in presence of this detergent, Sultr1;2 and Rv1739c precipitated in very high 

molecular weight aggregates. 
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Figure 4.7 SEC elution profiles of selected SulP/SLC26 transporters in presence of DDM. 

Column: Superdex 200 5/150 GL (GE Healthcare) equilibrated with 20 mM Tris-HCl pH 7.5, 150 

mM NaCl, 0.05% (w/v) DDM. The arrows indicate the void volume of the column (V0). 

 

SulP/SLC26 transporters in 0.06% LDAO (Figure 4.8) showed a broad elution 

profile indicating a high degree of proteins heterogeneity. Furthermore, in presence of this 
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detergent BicA from Synechocystis sp. PCC 6803 and from Thermosynechococcus 

elongatus precipitated in very high molecular weight aggregates. 
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Figure 4.8 SEC elution profiles of selected SulP/SLC26 transporters in presence of LDAO. 

Column: Superdex 200 5/150 GL (GE Healthcare) equilibrated with 20 mM Tris-HCl pH 7.5, 150 

mM NaCl, 0.06% (w/v) LDAO. The arrows indicate the void volume of the column (V0). 

 

FOS-12 is not one of the detergents most frequently used in crystallization, but it 

was tested because we wanted to analyze the structure of selected SulP/SLC26 

transporters by SANS measurements in collaboration with Dr. Arnaud Javelle, at the 

Division of Molecular Microbiology, College of Life Sciences, University of Dundee, 

United Kingdom. Javelle and colleagues published the first low-resolution structure of a 

bacterial SulP/SLC26 transporter in presence of FOS-12 (Compton et al., 2011) and this 

detergent was preferred because they already knew the contrast match point (%D2O use 

to purify the protein). The final yield of the purified protein was 0.2 mg per 1 ml of CF 

expression, too low for SANS measurements (1-2 mg), but with a bigger preparation this 

analysis could be done. 
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In presence of 0.1% (w/v) FOS-12 (Figure 4.9), a small peak appeared close to the 

void volume (V0), indicating that oligomerization or aggregation appeared to a limited 

extent. Cyanobacterial transporters have a better behavior in comparison with eukaryotic 

proteins and Rv1739c, with only a small shoulder close to V0. 
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Figure 4.9 SEC elution profiles of selected SulP/SLC26 transporters in presence of FOS-12. 

Column: Superdex 200 5/150 GL (GE Healthcare) equilibrated with 20 mM Tris-HCl pH 7.5, 150 

mM NaCl, 0.1% (w/v) FOS-12. The arrows indicate the void volume of the column (V0). 
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DM NG detergent belongs to Neopentyl Glycol class detergents that are particularly 

beneficial in the crystallization process due to some unique properties conferred by a 

revolutionary new architecture. The amphiphilic molecule consists of a central quaternary 

carbon with two hydrophilic heads and two lipophilic tails, generating subtle constraints 

on overall conformational flexibility that allows the molecule to pack densely when 

forming a micelle. This dense packing increases thermal stability of the detergent/protein 

complex and most importantly, produces exceptionally low critical micelle concentrations 

and extreme water solubility.  

But, as in presence of DDM (Figure 4.7), in presence of 0.02% (w/v) DM NG 

(Figure 4.10) a main peak was obtained close to the V0, indicating severe oligomerization 

or aggregation. Furthermore, in presence of this detergent Sultr1;2 and Rv1739c had a 

strong tendency to aggregate. 

0

2

4

6

8

10

0,00 0,50 1,00 1,50 2,00 2,50 3,00

m
A

U

ml

SLC26A5 from R. norvegicus

-2

0

2

4

6

8

10

12

0,00 0,50 1,00 1,50 2,00 2,50 3,00

m
A

U

ml

BicA from S. PCC6803

 

0

10

20

30

40

50

0,00 0,50 1,00 1,50 2,00 2,50 3,00

m
A

U

ml

BicA from T. erithraeum

-2

0

2

4

6

8

10

12

14

16

0,00 0,50 1,00 1,50 2,00 2,50 3,00

m
A

U

ml

BicA from T. elongatus

 

Figure 4.10 SEC elution profiles of selected SulP/SLC26 transporters in presence of DM NG. 

Column: Superdex 200 5/150 GL (GE Healthcare) equilibrated with 20 mM Tris-HCl pH 7.5, 150 

mM NaCl, 0.02% (w/v) DM NG. The arrows indicate the void volume of the column (V0). 
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In presence of 0.4% NG the membrane protein UraA, a member of the NAT/NCS2 

family, the closer family to the SulP/SLC26 transporters belonging to the APC 

superfamily (Figure 1.1), was crystallized (Lu et al., 2011). 

A symmetric peak shape was obtained with the samples in 0.4% (w/v) NG (Figure 

4.11), indicating a homogenous protein under these conditions. SLC26A5, Sultr1;2 and 

Rv1739c haven’t been analyzed in this detergent yet. 
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Figure 4.8 SEC profiles of selected SulP/SLC26 transporters in presence of NG. Column: 

Superdex 200 5/150 GL (GE Healthcare) equilibrated with 20 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 0.4% (w/v) NG. The arrows indicate the void volume of the column (V0). 

 

The best elution profiles with the highest yield and the lowest degree of apparent 

transporter aggregation were achieved by cyanobacterial transporters BicA in NG. 

According to its SEC elution profile, 0.4% (w/v) NG was therefore chosen as most 

promising detergent for crystallization trials. 

 

In order to verify if the SulP/SLC26 transporters purified have defined structures, 

they were characterized by circular dichroism spectroscopy. Figure 4.12 displays an 
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example of a CD spectrum of a bacterial Sulp/SLC26 transporter, BicA from 

Synechocystis sp. PCC 6803, that shows two negative bands around 208 and 222 nm, 

indicative of a high content in α-helical structure, according to the secondary structure 

prediction (Shelden et al., 2009). 

 

Figure 4.9 Far‐UV circular dichroism spectra of a cyanobacterial SulP/SLC26 transporter, BicA. 

The protein concentration was 1 mg/ml in 50 mM Na2HPO4, 150 mM NaCl, pH 7.5, 0.1% (w/v) 

FOS-12. 

 

To understand how stable is a membrane protein in the most successful detergents 

selected by SEC profile, it is possible to measure its thermal stability, using a 

fluorescence-based thermal stability assay (or Differential Scanning Fluorimetry, DSF). 

In this assay the dye N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]-maleimide 

(CPM) principally becomes fluorescent upon reacting with free sulfhydryl groups. As 

most cysteines are predominantly located within transmembrane segments, cysteine 

accessibility is a good measure of protein unfolding (Alexandrov et al., 2008). Sonoda 

and co-workers demonstrated that membrane proteins with an unfolding rate longer than 

approximately 17 min at 40 °C are sufficiently stable for crystallization trials in that 

detergent (Sonoda et al., 2011). Some preliminary experiments have been tested out, but 

more work has to be done. 

 

4.3.6. Crystallization screenings 

SulP/SLC26 transporters in presence of the most promising detergent for 

crystallization, according to the SEC elution profile, have to be screened under different 



4.3. Results 

106 

crystallization conditions. Very preliminary results are small crystals of probably not 

well-ordered protein, unusable for structure determination. 

 

4.3.7. Functional analysis  

Lipids are the natural environment of MPs and often are essential modulators of 

folding, stability and function. Defined lipid environments are thus beneficial for 

functional studies. The L-CF expression mode in the presence of supplied lipids offers a 

new and unique option for the co-translational insertion of MPs. In order to functionally 

characterize the L-CF-produced SulP/SLC26 transporters two main techniques can be 

used: the patch clamp analysis of transporters reconstituted in proteoliposomes and the 

Solid Supported Membrane (SSM) based electrophysiology. 

 

4.3.7.1. Patch clamp analysis of proteoliposomes 

As regards prestin from Danio rerio, a patch clamp analysis of L-CF-produced 

proteoliposomes was performed in the Prof. Dominik Oliver laboratory at the University 

of Marburg (Germany), where the transport mode and stoichiometry of this transporter 

have been identified (Schaechinger and Oliver, 2007). But patch clamp analysis didn't 

work because proteoliposomes were too small for analysis and/or there were not enough 

protein inserted into liposomes. Possible solutions are the use of giant liposomes and to 

increase the insertion of protein into liposomes, following it by GFP fusion protein 

fluorescence. Selected SulP/SLC26 transporters were cloned successfully in frame with 

GFP coding sequence.  

Another approach to increase the insertion of the protein into liposomes is to 

produce the SulP/SLC26 transporters in P-CF mode and then insert them into lipids using 

the in-vitro reconstitution. 

 

4.3.7.2. SSM based electrophysiology 

Electrophysiological measurements based on solid supported membranes (SSM) 

have been used for the functional characterization of ion pumps and transporters. The 

SSM consists of an alkanethiol monolayer (Thiol) with a lipid monolayer (PC) on top. 

Proteoliposomes, membrane vesicles, or membrane fragments containing the transport 
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protein under investigation are adsorbed to an SSM and are activated using a rapid 

substrate concentration jump. Then transient currents corresponding to the electrogenic 

translocation of the substrates are measured (Schulz et al., 2008). We tried a new 

approach of this technique using nanodiscs (NDs) instead of proteoliposomes; nanodiscs 

are planar phospholipid bilayers surrounded by a protein belt, termed membrane scaffold 

protein. Nanodiscs were added to RM of CF expression system and the solubilization 

efficiency of selected SulP/SLC26 transporter was determined by densitometry after 

immunoblotting. In the example of NDs screening displayed in the figure 4.13, the best 

NDs concentration was evaluated between 30-40 μM (lanes 6 and 8). 

 

 

Figure 4.10 NDs screening of a cyanobacterial transporter, BicA. Sample volumes of 2 μl were 

analyzed by 12% SDS–PAGE and stained by immunoblotting using anti-His antibodies. Lane 1: 

SN 10 μM NDs; Lane 2: PL 10 μM NDs; Lane 3: Marker proteins in kDa; Lane 4: SN 20 μM 

NDs; Lane 5: PL 20 μM NDs; Lane 6: SN 30 μM NDs; Lane 7: PL 30 μM NDs; Lane 8: SN 40 

μM NDs; Lane 9: PL 40 μM NDs. The NDs used were assembled with DMPC. The protein is 

indicated by an arrow (MW= 60 kDa). 

 

Firstly, we tried this new approach using a model protein, LacY, a lactose permease 

from Escherichia coli well functionally characterized. SSM based electrophysiology 

analysis was performed in the Prof. Fendler laboratory, at the Department of Biophysical 

Chemistry, Max-Planck-Institut für Biophysik, Frankfurt. But this approach didn’t seem 

to work, and then the standard SSM-based electrophysiology could be tested out. 
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4.4. Conclusions 

With the final aim to obtain structural and functional information on the full-length 

SulP/SLC26 anion transporters, different proteins, from distance-related species, were 

selected, produced by CF expression system based on E. coli extracts, and characterized: 

SLC26A5/prestin from Rattus norvegicus, Gallus gallus and Danio rerio; Sultr 1;2 from 

Arabidopsis thaliana; Rv1739c from Mycobacterium tuberculosis and BicA from 

Synechocystis sp. PCC 6803, Trichodesmium erythraeum and Thermosynechococcus 

elongatus BP-1. Among these, the expression levels of only SLC26A5/prestin from 

Rattus norvegicus and Gallus gallus were considered too low for structural analysis. After 

the insoluble expression of SulP/SLC26 transporters, selected detergents were tested for 

their efficiency in the resolubilization of the CF produced precipitates. Once identified the 

best detergents for resolubilization, SulP/SLC26 transporters were purified by affinity 

chromatography. Analysis of SEC elution profiles is an established and widely accepted 

monitoring tool for initial estimation of protein aggregation and heterogeneity. Conditions 

were found that resulted in symmetrically shaped SulP/SLC26 elution peak profiles, 

indicating a relatively uniform particle size distribution. Resolubilization with FOS-16 

followed by exchange to NG was best suitable for P-CF produced cyanobacterial BicA 

precipitates. 

SulP/SLC26 transporters in presence of the most promising detergent for 

crystallization, according to the SEC elution profiles, have to be submitted to more 

extensive crystallization trials, also trying another useful method for membrane proteins 

crystallization, the in meso method, that makes use of a lipidic mesophase, the cubic 

phase, formed by homogenizing lipid, typically monoolein, and water in approximately 

equal parts (Caffrey et al., 2012). 

The most critical test for the proper folding of reconstituted membrane proteins is 

functionality; therefore, it will be important to confirm the transport activity of the P-CF-

produced SulP/SLC26 transporters by means of functional analysis or binding assays. 

To conclude, this is the first quality evaluation of a SulP/SLC26 transporters 

production by CF expression system and we demonstrate that these transporters can be 

produced by CF protocols, resulting in qualities apparently adequate for further functional 

and structural approaches. 
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