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Abstract Gesture and multimodal communication researchers typically annotate

video data manually, even though this can be a very time-consuming task. In the

present work, a method to detect gestures is proposed as a fundamental step towards

a semi-automatic gesture annotation tool. The proposed method can be applied to

RGB videos and requires annotations of part of a video as input. The technique

deploys a pose estimation method and active learning. In the experiment, it is shown

that if about 27% of the video is annotated, the remaining parts of the video can be

annotated automatically with an F-score of at least 0.85. Users can run this tool with

a small number of annotations first. If the predicted annotations for the remainder of

the video are not satisfactory, users can add further annotations and run the tool

again. The code has been released so that other researchers and practitioners can use

the results of this research. This tool has been confirmed to work in conjunction with

ELAN.
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1 Introduction

In this section, we provide some general background information about gesture

studies and the challenges we aim to address in this work (Sect. 1.1). After that, we

briefly describe the machine learning techniques used (Sect. 1.2).

2 Gesture research

Gesture research investigates how gestures are integrated with speech and how they

convey meaning in communication. Over the past decades scholars from different

disciplines have studied, for example, the relationship between gestures and speech

in terms of semantics, pragmatics, syntax, phonology, temporal alignment; the role

of gestures in social interaction and human cognition; the development of gestures

and language in children; the decay of gestures in language impairments; the

creation of codified/shared gestural forms from spontaneous gestures; the relation-

ship between gestures and signs; and the role of gestures in language origins and

evolution. The interest in these topics has led to the flourishing of experimental

studies that have had an impact on different fields such as cognitive science,

psychology, psycholinguistics, cognitive linguistics, developmental psychology and

linguistics, speech therapy, neuroscience, primatology, human communication, and

computational multimodal research (Church et al., 2017). More specifically, gesture

studies can have a wide range of applications, for example, in clinical settings with

regard to the possibility of assessing speech disorders or language development

impairments such as apraxia, Parkinson’s disease, autism spectrum disorders,

aphasia (among others, Goldenberg et al., 2003; Humphries et al., 2016; Özçalışkan
and Goldin-Meadow, 2005; Özçalışkan et al., 2016).

In gesture research, qualitative observations have been widely used, but in the

last decades, scholars have started to integrate more tools in their studies such as the

annotation software ANVIL (Kipp, 2001) or ELAN (Wittenburg et al., 2006) that

enable them to analyze their data quantitatively. For this purpose, technology such

as motion capture (e.g., Kinect) can be employed as a first step in the analysis of

visual data: this technology can be used to identify individual gestures and the

kinematic features on which manual annotators can perform further classifications

and analyses (Trujillo et al., 2019). The techniques that enable the temporal

properties of gesture kinematics to be quantified in combination with speech can be

both device-based motion capture techniques as well as video-based motion

tracking methods (i.e., pose estimation methods) (Pouw et al., 2020). However,

gesture annotation is generally done entirely manually through the annotation

software. This means that, in most cases, gestures need to be detected by the human

eye of a trained annotator who needs to manually mark their beginning and end

points. Moreover, to ensure objectivity, the process often involves more than one

annotator for a single dataset. This whole process is extremely time-consuming and

labor-intensive. Although different researchers annotate gestures in different ways

depending on their field, research purpose, and aims, in many cases, as a primary
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step, it is important to assess if and when the gesture occurs. More finely grained

types of analysis (e.g., alignment with speech) and gesture classification (e.g.,

gesture types, functions, etc.) can be conducted as a second step.

Developing a tool that provides researchers with semi-automatic gesture

annotation on RGB videos could be highly advantageous in accelerating at least

the primary steps of a wide range of studies and applications. This would

significantly contribute to advance multimodal communication research in general,

as well as to develop human–computer interaction applications. Also, a method that

enables movement tracking and gesture detection on simple RGB videos as input

could be applicable much more widely than using less accessible three-dimensional

(3D) visual data or device-based motion tracking techniques. It is often the case that

data of interest might have been collected for other purposes as simple RGB video

material, or it might be useful to collect data from the internet, depending on the

different research aims. Capitalizing on pose estimation methods currently available

via open-source tools can be a good and accessible way to improve research that

draws upon videos without any 3D information.

The present work proposes a method to detect gesture occurrences automatically

based on RGB videos that can be of use for researchers studying multimodal

communication. This method uses machine learning in the Active Learning (AL)

framework. It requires as input the manual annotation of only a small subset of the

videos, and it provides an automatic annotation of the remaining set. Figure 1 shows

how the resulting automatic annotation appears when imported in ELAN. Another

unique aspect of our research is that our target is gesticulations, which have not

been studied widely in the fields of machine learning and computer vision compared

Fig. 1 Output file of the released tool as read by ELAN. The ‘‘movement’’ tier includes manual
annotation; the ‘‘PREDICTED’’ tier shows predicted (automatic) annotation. The tool recommends the
user to annotate ‘‘query’’ in the ‘‘QUERY’’ tier if the automatic annotation is not satisfactory. This way,
the system will repeat predictions
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with other gestures (see Sect. 2). In fact, the term ‘‘gesture’’ has been used in

various ways in such fields, often as a synonym of hand movement, action, or sign.

In the next section, we clarify what it is meant by ‘‘gesture’’ in the field of gesture

research.

2.1 Gesture categorizations

Gestures have been defined and classified in many ways. In general, they can be

intended as body movements produced in communication exchanges (Kendon,

2004). This broad definition can be further specified in more detailed categoriza-

tions. Kendon’s continuum (McNeill, 1992, 2005) classifies gesture as in Table 1,

depending on different dimensions. Moving from left to right in the continuum, the

obligatory presence of speech decreases, and the stability of the meaning,

standardization and linguistic properties of the hand movement increase. ‘‘Gestic-

ulation’’ is the most pervasive type of gesture in that it is any motion produced

spontaneously together with speech in everyday communication (Kendon, 2004). It

mainly involves hand and arm movements, but it is not limited to these body parts

(shoulders, head, face, legs can be part of it). Gesticulations can also be referred to

as co-speech gestures, or often, for brevity, simply as gestures. Along the

continuum, ‘‘pantomimes’’ are (sequences of) gestures produced without speech that

can convey a whole narrative without being conventionalized or having any

linguistic properties. Next, ‘‘emblems’’ (Kendon, 1992) are those conventionalized

hand movements whose meaning is established and shared in a (linguistic)

community (e.g., the thumb up gesture that often stands for ‘‘OK’’ in American

English). What distinguishes emblems from gesticulations is that the former can be

understood in the absence of speech and have standards of well-formedness not

found in other types of gestures (McNeill, 2005). However, observations of how

people gesture spontaneously whilst speaking have highlighted that gesticulations

show some regularities in expressing a set of meanings through some specific hand

shapes and movement patterns (Müller, 2017) (see five types of gestures in

Sect. 3.1) but their form-meaning mapping is less rigid than in emblems. On the

rightmost side of the continuum, there are ‘‘sign languages’’, in which elements such

as handshape, movement, location, orientation, and non-manual elements are the

Table 2 The percentage of frames annotated as gesture (frames where gestures occurred) against the

entire video frames (gesture ratio) and the length of the video for the six videos in the first dataset

Gesture ratio (%) Video length (min s)

Negation 57.82 4024

Palm-up 41.92 4026

Pointing 28.14 4029

Me 38.12 4026

Precision grip 60.93 5025

Combination 45.85 8031
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main building blocks of the language phonological and morphosyntactic structures.

Importantly, Kendon’s continuum excludes movements such as self-adaptors (like

scratching one’s nose or touching one’s hair). Gesticulations or co-speech gestures

are the object of the present work.

2.2 Gesture temporal structure

It has been observed that gesticulations unfold by passing through a series of phases

(Kendon, 1980, 2004; McNeill, 2005). These phases are organized around the stroke
phase. The stroke is the ‘‘nucleus’’ of the gesture, it takes on the gesture’s

communicative role. It is the phase of the excursion in which the hand shape and

movement dynamics are manifested with greatest clarity (Kendon, 1980). It is by

observing the stroke phase that a gesture can be described and classified in terms of

types (Fig. 2). Any prototypical gesture, as described by Kendon (1980), starts with

a preparation phase. In the preparation phase, the hands start departing from a rest
position to reach the stroke phase. The hands can then return to a rest position again

(retraction phase). Together these phases constitute a gesture phrase. There might

not be a retraction phase if the speaker moves directly from a stroke to a new stroke.

When combined in sequence, different gesture phrases between two rest positions

are defined as a single Gesture unit (G-Unit). Gestures can be annotated differently

depending on the research purpose. However, this temporal structure is likely to be

the basis of most of the studies in gesture research.

2.3 Light gradient boosting machine and active learning

As discussed in the next section, machine learning techniques have been frequently

used for gesture detection and gesture recognition. The technique as the basis of the

semi-automatic annotation method proposed here is Light Gradient Boosting

Machine (LightGBM) (Ke et al., 2017). LightGBM is a machine learning

framework for gradient boosting based on the decision tree algorithm. In gradient

boosting, a decision tree is trained using the error between the actual values and the

estimates provided by the previous decision tree. There are several other methods of

Fig. 2 An example of each gesture (stroke phases). From left to right: negation; palm-up; pointing; me;
precision grip
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gradient boosting, such as XGBoost (Chen & Guestrin, 2016) and CatBoost

(Dorogush et al., 2018). LightGBM was chosen because it can be trained quickly

and with less memory than many other machine learning methods (this is why

LightGBM was named ‘‘Light’’). In fact, since the computational resources of the

user are unpredictable, it is preferable to use a light method. LightGBM reduces the

calculation cost by the following contrivances: firstly, training the decision tree leaf-

wise rather than level-wise; secondly, treating the continuous values as a histogram.

Amongst the many training methods available, semi-supervised learning is often

used for gesture detection. In semi-supervised learning, manual annotations of part

of a video are used as training data, and the rest of the video is then annotated

automatically, based on a model developed by using the training data as inputs to a

machine learning algorithm. To reduce the amount of manual annotation work, AL

can be used as an approach that is expected to require fewer annotations than semi-

supervised learning whilst adding informative data to the training data little by little.

The cycle of AL is as follows: (i) training the model with a few manually created

annotations (training data) and then estimating the remaining annotations; (ii)

asking an ‘‘oracle’’ (an instrument that tells the correct answer, a human annotator in

our case) for a true annotation of the ‘‘query’’ (frames that are most likely to

contribute to performance improvement); (iii) adding the annotation of the query to

the training data; (iv) training the model again (repeat steps (ii) to (iv) afterwards);

(v) finishing the cycle when a satisfactory result in terms of classification accuracy

is obtained. By using AL and a cycle of human–machine collaboration, our method

reduces the amount of manual annotation work required.

The following sections are structured as follows: in Sect. 2, related works are

briefly summarized; in Sect. 3, the datasets used to test our approach are described;

in Sect. 4, our approach to automatically detect gestures is explained in detail; in

Sect. 5, the approach is tested on different types of gestures to verify its accuracy

and robustness; in Sect. 6, a brief tutorial for using the published code of the

proposed method is provided; Sect. 7 summarizes the proposed method and the key

results, with a discussion of some future directions.

3 Related works

For automatic detection and recognition, research has been focused much more on

signs within given sign languages than on other types of gestures (Koller et al.,

2015; Ong & Ranganath, 2005; Sagawa & Takeuchi, 2000). In fact, sign language

research is likely to contribute directly to innovations that can be of use to deaf

people. A sign language wiki to check sign language lexicon in multiple languages

along with the movement of avatars (Efthimiou et al., 2012), and an interpreter

system for deaf people in a specific situation (hotel reception) have been developed

(López-Ludeña et al., 2014). Signs result from the combination of features (i.e.,

hand shape, orientation, location, and movement) that follow the linguistic rules

(i.e., grammar, syntax, morphology) of a given sign language. Therefore, it is

possible to build datasets with a set of predetermined signs that can be annotated

(Forster et al., 2014; Neidle & Vogler, 2012; Neidle et al., 2012; Von Agris et al.,
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2008). The construction of a dataset is essential for supervised learning and has

allowed Convolutional Neural Networks (CNN) to recognize signs accurately

(Camgoz et al., 2017; Cui et al., 2017; He et al., 2017).

The recognition of a set of predetermined hand shapes and movements designed

specifically for human–computer interaction has also been actively researched

(Jacob & Wachs, 2014; Park & Lee, 2011; Rautaray, 2012; Rautaray & Agrawal,

2015; Vardy et al., 1999). In this field, wrist-worn devices using sensors other than

cameras have been developed (Fukui et al., 2011; Kim et al., 2012; Rekimoto,

2001). Some specific gestures have been developed for human–robot control (Park

et al., 2005; Waldherr et al., 2000) or human–robot interaction (Droeschel et al.,

2011).

ChaLearn Looking at People Dataset is a recent RGB-D video dataset (Wan

et al., 2020). It is one of the largest and best-known datasets for gesture detection

and recognition. The dataset contains 249 gestures, including some specific signals

(e.g., helicopter/aviation signals, diving signals), pantomimes, and Italian emblems,

performed by 21 people (Wan et al., 2016). ChaLearn dataset does not include

spontaneous gesticulations. Previous works on this dataset showed that CNN was

able to recognize the 249 gestures contained in the dataset (Camgoz et al., 2016;

Pigou et al., 2017), or another machine learning method was able to recognize the

Italian emblems (Chen & Koskela, 2013). As in the case of ChaLearn dataset, other

existing datasets have focused on predetermined hand configurations and move-

ments, such as emblem-like gestures or pantomimes (i.e., imitation of actions)

(Negin et al., 2018) or as reviewed (Ruffieux et al., 2014).

As for previous studies that focused instead on gesticulations specifically, a

Support Vector Machine (SVM) was used for gesture units/phases recognition in

storytellers’ speeches recorded via Kinect (Madeo et al., 2016). By using a logistic

regression classifier with hand positions, orientations and velocities as inputs,

gesture strokes were detected in spontaneous speech (Gebre et al., 2012). The

possibility of using audio-visual features has been explored to improve gesture

recognition. For example, the recognition of some specific gestures occurring in TV

weather forecasts (i.e., pointing, area, and contour gestures) was improved by

feeding a Hidden Markov Model (HMM) with both spoken keywords and gesture

features (Sharma et al., 2000). An acoustic feature of speech, fundamental

frequency (F0), improved gesture phase recognition with an HMM and Bayesian

network (Kettebekov et al., 2005), and both F0 and intensity improved the

recognition of different types of beat gestures that align with speech prosodically in

an HMM-based formulation (Kettebekov, 2004). Spontaneous gestures produced in

storytelling were used to predict a set of selected co-occurring words from

spontaneous speech (Okada & Otsuka, 2017). The dataset used was the ‘‘Multi-

modal Storytelling Interaction Dataset’’ (Okada et al., 2013). In the dataset,

participants were asked to narrate an animated cartoon story from memory to

another participant. Motion data were acquired with an optical motion capture

system. After manual annotation of the dataset, machine learning methods were

used to detect gesture features (e.g., the total length of the gesture segments, gesture

phases, etc.). Then, spoken words were classified by using an HMM and SVM

trained on the gesture features. Alternatively, there are two possible approaches to
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detect gestures without machine learning methods: (1) detecting gestures depending

on whether the hand is moving (Ienaga et al., 2018; Ripperda et al., 2020; Schreer &

Masneri, 2014); (2) thresholding the distance between the hand and the rest position

(De Beugher et al., 2018; Peng et al., 2014). However, there are drawbacks to this

approach, such as the inability to respond flexibly to various situations (for example,

when there are multiple rest positions) and the requirement for many thresholds that

need to be tuned.

Finally, some studies have used AL in the classification of hand gestures, actions

and the detection of hands. Nine emblems (circle, come here, down, go away, point,

stop, up, horizontal wave, and vertical wave) were classified by ensemble learning

of a support vector regression, a multi-layer perceptron, and a polynomial classifier

(Schumacher et al., 2012). Hand positions, velocity values, and trajectory curvatures

in 3D space acquired by a multi-camera system were used as features. The study

also examined how the classification accuracy changed with the amount of training

data. The twenty kinds of daily human activities were classified by using an

acceleration obtained from wearable sensors attached to the hip and wrist (Liu et al.,

2010). The dataset included walking, sitting, working on a computer, standing,

eating or drinking, running, bicycling, vacuuming, folding laundry and so on. AL

was compared with a method of increasing the training data at random, and it was

shown that AL was more accurate. AL and a boosting algorithm were used

effectively for hand detection (Francke et al., 2007). A skin model to detect hands

was generated from the pixel values of the detected face area. Hands were detected

by cascade classifiers with the features of rectangular features and modified local

binary pattern. Finally, four handshapes (fist, palm, pointing, five) were classified by

the decision tree algorithm.

4 Datasets

Two different datasets are used to test the proposed method. The first dataset

(Sect. 3.1) was built for this study in a controlled setting (a single speaker gesturing,

gestures performed in a controlled manner, and a fixed camera angle facing the

speaker). To further validate the method, we also tested it on a second dataset

(Sect. 3.2) that was collected as part of a previous study (Cravotta et al. 2019). This

dataset is better representative of typical data used in gesture studies, consisting of

videos of different speakers speaking spontaneously during a storytelling task.

5 First dataset

To design and preliminarily test our method we built a dataset in a fairly controlled

setting. We decided to have a single speaker speaking and gesturing in a controlled

manner and to focus on a closed group of five possible gestures (or, rather, gesture

families) appearing in the videos. We focused on the following five gestures:

negation, palm-up, pointing, me and precision grip. These wide gesture categories

were selected because they occur frequently in a variety of discourse types and
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contexts (Müller, 2017), including public speeches (Streeck, 2008), and their use is

observed in many cultures. Figure 2 shows examples of the five gestures. Gestures

accompanying the wide semantic field of negation and negativity (Calbris 2003;

Inbar & Shor, 2019; Kendon, 2004; Bressem & Müller, 2014) have been observed to

be often performed with the palm held downwards or towards the interlocutor,

moving laterally. Such gestures show a common pattern of lateral movements and

are believed to derive from actions like sweeping or knocking aside unwanted

objects (Bressem & Müller, 2014). The palm-up gesture (Cooperrider et al., 2018;

Müller, 2004) is characterized by palms open upwards, and fingers extended more

or less loosely. Its meaning includes many nuances depending on motion patterns,

trajectories and other visual cues (shoulders, facial expressions, etc.). One possible

communicative function is to express an obvious perspective on a topic/entity or to

present/offer an idea for the interlocutor to share (presentational palm up, conduit

gesture) (Chu et al., 2014); but it can also express uncertainty (epistemic palm up,

lateral palm, palm revealing) (Kendon, 2004; Chu et al., 2014). The pointing gesture

directs the recipient’s attention to an object or a location in the space. This gesture

can also refer metaphorically to a point in time or an absent object (Kita, 2003).

What we refer to as me gesture appears as a special kind of pointing gesture that the

speaker directs towards themself. It can consist of one or two hands over the heart

[appearing also in absence of speech (Parzuchowski et al. 2014)] or a hand or index

finger-pointing to oneself. It may be used when sharing one’s beliefs and ideas, or

when talking about something one really cares about. The precision grip (Lempert,

2011; Streeck, 2008) is generally performed with the tip of the index finger and the

thumb touching one another and can have various hand configurations along these

lines. It is claimed to be used to convey specificity or precision in everyday

communication (Kendon, 2004), but it also highlights sharp argumentation, or, more

generally, information structure (Lempert, 2011) (e.g., new information or focus).

The dataset consists of six videos recorded at 25 fps. Five of them contained many

occurrences of only one type of gesture (either the negation, palm-up, pointing, me,

or precision grip gesture. Fig. 2), while the other video contained occurrences of all

five gesture types (combination). Table 2 shows summary information about the

videos.

The speaker appearing in the videos told improvised short stories in Italian freely

inspired by a few comic strips. To make speech and gestures as natural as possible,

the speaker associated gestures with the stories. For example, for the negation

gesture, the speaker tells the story by turning all story events negative (e.g., ‘‘the cat

did not climb up the tree’’); for the me gesture, the speaker told a personal story

about herself and cats. The gestures performed were to some extent controlled in

terms of structure and dynamics but allowed a certain variability, coherent with the

abovementioned well-established gesture phase descriptions and categorizations

(Kendon, 2004): (i) the gestures start from a rest position and the hands return to the

rest position at the end. The speaker’s hands rest in different rest positions (e.g.,

hands clenched on the chest, lower to the hips, or hands hanging beside the legs);

(ii) the gestures consist of only one stroke or multiple strokes; (iii) the gestures are

performed with one or both hands; (iv) the amplitude, speed, and position of the
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gestures vary, and patterns of gesture movements vary even for the same type of

gesture.

The detection of specific moments within a single gesture (i.e., gesture phases

such as ‘‘preparation’’ or ‘‘retraction’’ preceding or following the strokes) was out of

the scope of this work. Therefore, the gestures were annotated as movements

occurring between two rest positions (that is, G-Units, see Sect. 1.1.2), without

specific attention to where the strokes occurred or where the preparation or

retraction phase started/ended. Also, when multiple strokes were performed within a

single G-Unit, these were all of a single gesture type. For example, a single G-Unit

annotated might consist of a preparation phase, three negation gesture strokes and a

retraction phase. A linguist manually annotated the videos with ELAN. The

annotation labels were gesture (gestures happening between two consecutive rest

positions) and rest (the periods in which the hands and arms were still and held in a

rest position).

6 Second dataset

As a second step, we decided to test our method on a second dataset. This dataset is

better representative of a typical dataset used in gesture research, as it was built to

investigate gesture from a linguistic perspective (Cravotta et al., 2019). From this

dataset 195 videos were used, where 20 different speakers in total tell short stories

based on comic strips. Example frames are shown in Figs. 3 and 8. All instances of

gesture in the dataset were annotated to investigate the relationship between

gestures and prosodic features of speech by Cravotta et al. (2019). Therefore,

differently from the annotations made in the first dataset, where only the G-Units

were marked, these annotations were more finely grained, and marked all gesture

strokes singularly. Every single gesture stroke was also classified in terms of gesture

types. In this study, the strokes were annotated as either representational (gestures
that depict images of concrete (iconic gestures)—or abstract (metaphoric gestures)

entities or actions via hand shape or manner of execution, e.g., trajectory, direction)

or non-representational gestures (all other gestures, including pragmatic gestures

and interactive gestures, gestures with speech parsing functions, and epistemic

meaning etc.).

Fig. 3 Examples from the second dataset
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7 Comparison of datasets

Table 3 shows the comparison of the datasets and how the datasets were annotated.

There are some differences that should be noted. In the first dataset, gestures were

annotated in terms of G-units only; in the second dataset gestures were annotated in

terms of G-units as well as gesture strokes. In the first dataset there were no

instances of representational gestures (iconics or metaphorics), that instead were

pervasive in the second dataset, together with heterogeneous non-representational

gestures (including many instances of palm up gestures).

Table 4 gives additional information about how the different gesture types are

distributed in terms of occurrence in the two datasets. In the first dataset, four

instances of hand movements occurred accidentally and were not classifiable within

the five gesture types. These were annotated as ‘‘other type’’.

The following section describes the proposed automatic gesture annotation

method and how it was tested using both the first and second datasets described

above.

Table 4 Number of occurrences of each gesture type

Gesture type First dataset Second dataset

Pragmatic Deictic Other type Non-repr Representational

Iconics Metaphorics

Number of occurrences 85 69 4 1185 874 337

Fig. 4 An example of pose
estimation by OpenPose (Cao
et al., 2017). The keypoints of
body, hands, and face are drawn
in cyan, yellow, and magenta,
respectively. Eyes, ears, and
nose are also included in the
body keypoints
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8 Methods

In the proposed method, the keypoints of the speaker’s body are first detected in

each frame of the video using a pose estimation method. An input feature vector is

created for each frame based on the detected keypoints. LightGBM is then trained

on the feature vectors to predict annotation.

8.1 Feature vector based on acquired keypoints

The keypoint positions of the speaker in each frame of the input video are detected

by OpenPose (Cao et al., 2017). OpenPose is a CNN method for pose estimation for

multiple people in real-time and is available as an open-source program. An

example of pose estimation by OpenPose is shown in Fig. 4. OpenPose enables us to

obtain the two-dimensional (2D) position of the body, face, and hands along with a

confidence value (ranging from 0 to 1) in each frame. The keypoints for which the

confidence value is less than 0.5 are interpolated linearly between frames. The

number of keypoints used is 48: wrists (2); elbows (2); shoulders (2); hands (42).

Each hand has 21 keypoints, denoting the wrist, knuckles, finger and thumb joints,

and finger and thumb tips. In order to reduce the influence of the overall movement

of the speaker and to accommodate changes in the distance between the camera and

the speaker, keypoints are normalized in each frame by subtracting the neck position

and dividing by the distance between the right and left shoulders after the

interpolation.

For each frame the feature vector for LightGBM consists of position features and

distance features. The position features are the 96-dimensional (2D positions of 48

keypoints) averaged keypoint positions over a window of temporally consecutive

frames. The window size w is chosen to be an odd number. The distance features are

the averaged 2D Euclidean distances between the keypoints in the center frame of

the w frames and the corresponding keypoints in the neighbouring frames. Hence,

the dimension of the feature vector is 144 (96 ? 48).

9 Training LightGBM by AL

In this subsection, the way to train LightGBM by AL, based on the feature vector, is

described in detail. It is assumed that part of the input video has been annotated. The

annotated frames are divided into training data and validation data. When training

stops, the annotations for the remaining part (that has not been annotated) of the

video are predicted and the query (the next candidate frames to be annotated) are

determined. To select the query, uncertainty sampling is adopted in the proposed

method. Uncertainty sampling is a method of selecting the most uncertain data. The

idea is that the accuracy can be improved most effectively if the most uncertain data

are annotated (that is, the more uncertain, the more informative). The uncertainty is

calculated by the predicted probability p. When an annotator annotates a video, it is

very difficult to annotate only one frame. Hence a continuous sequence of frames

N. Ienaga et al.

123



from the unannotated parts should be selected as the query. The total uncertainty u
of a continuous sequence of n frames is calculated as follows:

u ¼
Xn�1

i¼0
pi

0

pi
0 ¼ 1� piðpi � 0:5Þ

piðotherwiseÞ

�

The consecutive frames with the highest u are selected as the query.

10 Experimental results and discussion

Three results are presented and discussed. The result of tenfold cross-validation

(CV) (AL is not used) is described in order to verify the gesture detection capability

of LightGBM. The method of increasing the training data by AL and the method of

adding frames from the beginning to the training data are compared. Furthermore,

we investigated whether the proposed method could be applied to gesture type

recognition in both datasets tested.

The evaluation indices, accuracy, F-score (macro), and recall (G) used in the

experiments are explained. Accuracy is the most intuitive evaluation index: it is the

proportion of video frames overall that are classified correctly. In the case of two-

class classification in Table 5, accuracy is formulated as (TG ? TR)/(TG ? FG ?

FR ? TF), where T and F denote ‘‘True’’ and ‘‘False’’, respectively, and G and R

denote ‘‘G-Unit’’ and ‘‘Rest’’, respectively. If the number of frames annotated as

gesture and rest are not approximately balanced, then accuracy may not be an

appropriate index. F-score is calculated from precision and recall. Precision (for

each predicted class) is the proportion of frames predicted to be from the class that

are actually from the class. Formulas (1) and (2) show how to calculate precision for

the gesture and rest classes, respectively. Recall (for each actual class) is the

proportion of frames actually from the class that are predicted to be from the class

(formulas (3) and (4) for gesture and rest, respectively). F-score is a harmonic mean

of precision and recall (formulas (5) and (6) for gesture and rest, respectively). F-

score (macro) is a mean value of F-score (G) and F-score (R). F-score (macro) can

be calculated as a mean value of F-score of each class even in the case of multiclass

Table 5 Confusion matrix of gesture vs rest. T and F denote ‘‘True’’ and ‘‘False’’, respectively, and G

and R denote ‘‘G-Unit’’ and ‘‘Rest’’, respectively

Predicted

Gesture Rest

Actual Gesture TG FG

Rest FR TR
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classification (See Sect. 5.3). F-score (macro) better evaluates the performance of

the proposed method than accuracy when the numbers of annotations of gesture and

rest differ significantly. The reason that we focus on recall (G) is that if recall (G) is

high, then the actual gestures are mainly annotated correctly, and so the user has

only to check the annotated area, reducing the effort of checking the entire video.

Precision Gð Þ ¼ TG

TGþ FR
ð1Þ

Precision Rð Þ ¼ TR

TRþ FG
ð2Þ

Recall Gð Þ ¼ TG

TGþ FG
ð3Þ

Recall Rð Þ ¼ TR

TRþ FR
ð4Þ

F� score Gð Þ ¼ 2 � Precision Gð Þ � Recall Gð Þ
Precision Gð Þ þ Recall Gð Þ ð5Þ

F� score Rð Þ ¼ 2 � PrecisionðRÞ � RecallðRÞ
Precision Rð Þ þ RecallðRÞ ð6Þ

10.1 Result of tenfold CV

Before considering the results obtained by using AL, we consider how accurately

gesture detection is possible with LightGBM. The parameters of LightGBM were

determined by a two-phase grid search. After a rough grid search over a wide area, a

fine grid search was done around the best parameters of the first grid search. The

Fig. 5 Confusion matrix of gesture (G-Unit) detection (left: first dataset, right: second dataset). The
values shown are for recall
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optimal parameters that give the highest F-score was searched in 225 combinations

of four parameters. In the grid search, the first and second datasets were combined.

In all experiments, the learning rate was 0.1, w was 13, and early stopping was used.

When training, weights were assigned according to the number of annotations of

each class.

Each of the first and second datasets was tested separately, using the optimal

parameters found by the grid search. For the second dataset, tenfold CV was carried

out with 10% of the videos as test data, 10% of the videos as validation data, and

80% of the videos as training data. For the first dataset, the frames of all videos were

shuffled and divided into test (10%), validation (10%), and training (80%) data since

each video contains only one type of gesture (other than the combination). Figure 5

is confusion matrices showing the result of tenfold CV. They represent recall of

each class with a total of 10 folds. Table 6 shows the mean and standard deviation of

10 folds of the evaluation indices. It can be seen that G-Units were detected with

very high accuracy in the first dataset, and with an accuracy of more than 86% for

the second dataset, which includes more natural scenes.

To verify that the proposed method is superior to a purely movement-based

approach, the proposed method was compared with a simpler method. In this

simpler method, only the distance features described in Sect. 4.1 are used. The mean

value of the 48-dimensional distance feature is thresholded (that is, gesture

detection was based only on whether the mean value exceeded the threshold). The

optimal threshold was calculated from each dataset. Table 6 shows the results of

Table 6 Mean (standard deviation) of accuracy/F-score/recall of gesture detection for each dataset and

method

Dataset/method First/proposed First/simple Second/proposed Second/simple

Accuracy 0.984 (0.001) 0.817 (0.050) 0.862 (0.082) 0.769 (0.112)

F-score (macro) 0.984 (0.001) 0.808 (0.054) 0.814 (0.103) 0.707 (0.123)

Recall (G) 0.982 (0.002) 0.805 (0.119) 0.871 (0.171) 0.788 (0.201)

Fig. 6 Averaged importance for
each keypoint
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comparing the proposed method and the simpler method for both the first and

second datasets. In any case, the proposed method is better, in both accuracy and F-

score, by approximately 10%.

LightGBM can also calculate the importance of each dimension of the input

feature. The higher the importance, the more the feature contributed to gesture

detection. 20 sets of importance values (10 folds for the two datasets) were

averaged, and Fig. 6 shows the averaged importance for each type of keypoint (i.e.,

the averaged importance values further averaged over each type of keypoint). In

particular, we see that the features related to the position of shoulders, elbows and

wrists contributed most significantly to the accuracy of the gesture (G-Unit)

detection.

Figure 7 is a bar plot showing the averaged F-score for each participant in the

second dataset. Overall, the F-scores are similar across the participants, but the F-

score for participant ‘‘vm’’ was particularly high, with low variance, and for

participant ‘‘fs’’ was particularly low, with high variance. These differences in the

F-scores can be attributed to the observations that ‘‘vm’’ almost always had her

hands in the same rest position, and her hands hardly moved in rest, whereas ‘‘fs’’

Fig. 7 Mean and standard deviation of F-scores for each participant in the second dataset

Fig. 8 Examples of non-gesture frames of participants with particularly high (‘‘vm’’, left side) and low
(‘‘fs’’, right side) F-scores
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often moved her hand even in rest (Fig. 8). This suggests the vulnerability of the

proposed method to movements other than gestures (e.g., self-adaptors (scratching

one’s leg)).

Furthermore, Fig. 9 shows the results of importing the predicted annotations with

ELAN. These are the annotations for a video of two participants (‘‘vm’’ and ‘‘av’’),

predicted by the LGBM model trained on the other three videos for each participant.

Some predictions were almost consistent with manual annotations (the first half on

the top). On the other hand, there was a tendency for a few seconds’ gap between

manual and predicted annotations in the start and the end of G-Units, and holds in

G-Units may be predicted as rest (not G-Unit) (the second half on the top). Short G-

Units were erroneously predicted in some places where there were no G-Units, and

multiple G-Units that occurred consecutively at short intervals were predicted as

one G-Unit (bottom). A more desirable result could be obtained by disabling short

annotations (Sect. 6). As a whole, the proposed method could roughly predict G-

Unit.

10.2 Results of AL

First of all, all videos were concatenated for each dataset, and then the video was

sectioned into units of equal length, with each unit containing 0.5% of the total

number of frames in the dataset. Two strategies were adopted, and the results are

compared here. In the first strategy, AL, one of the units was selected as the query

from the test data at each cycle by the method based on the measure of uncertainty

as described in Sect. 4.2. The training/validation data would thus increase by 0.5%.

In the second strategy, denoted outset, units from the test data were simply added to

the training/validation data one by one from the beginning. Both of the initial

training/validation data was the first unit. If either rest or G-Unit was included in the

first unit, the next unit was added to the initial training/validation data. We

continued to add units until both rest and G-Unit were included in the initial

training/validation data. The F-score and the computational times required to train

the LightGBM and to estimate the test data annotation for the AL method were

calculated at each cycle.

Fig. 9 Examples of predicted annotations. The top is a video of ‘‘vm’’, and the bottom is a video of ‘‘av’’.
The LGBM model trained in each of the other three videos predicted. The ‘‘manual’’ tier is a manual
annotation and the ‘‘predicted’’ tier is a predicted annotation
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Figure 10 shows the results for the AL and outset strategies. In most cases the F-

score for AL is above that for outset, demonstrating that annotation according to AL

is more efficient than simple annotation based on units of data from the beginning of

the video. For example, for the first dataset, if approximately 2% of the video were

annotated, the remaining parts of the video were annotated automatically with an F-

score of approximately 0.84; increasing the amount of annotation to 4.5% would

yield an improved F-score of 0.91. For the second dataset, it was possible to predict

annotations with F-score 0.80 using 3.5% annotation; to increase the F-score to 0.85

required approximately 27% annotation. Even if the predicted annotations were to

be corrected afterwards manually, it can be expected that annotation with AL would

require much less effort than fully manual annotation. Depending on the amount of

training data and computational resources, not more than 10 s were required for

training and prediction in any case with the parameters used this time (the CPU used

this time was Intel Xeon CPU E5-2690 v3 2.60 GHz 12 cores. There were 24 CPUs,

though we did not use any parameters related to the number of threads or

parallelization. Also, no GPU was used).

10.3 Gesture type classification

To further test our method, we conducted an experiment to verify whether the

proposed framework can be applied to gesture type classification. Parameter tuning,

and training and testing methods are the same as the experiment in Sect. 5.1.

However, the parameter tuning was done separately for the first and second datasets,

because the gesture types included in them were different (see Table 3). In the first

dataset: (1) Pragmatic gesture (includes negation, palm up and precision); (2)

Deictic (includes pointing and ‘‘me’’ gestures). In the second dataset: (1) Non-

representational (includes a broad variety of pragmatic gestures); (2) Iconics and (3)

Metaphorics (includes a variety of gestures depicting images of concrete or abstract

entities or actions via the shape of the gesture, manner of movement).

Fig. 10 F-scores for annotation prediction for both AL and outset strategies for first dataset (left) and
second dataset (right). The graphs show how the F-score and the computational time required for training/
prediction vary as the percentage of data used for training/validation increases. The total number of
frames used is shown in parentheses for each dataset
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Figure 11 presents confusion matrices and Table 7 shows the results of gesture

type classification. For a simple dataset (where the difference between gesture and

rest and the differences in movement for each gesture type are clear), such as the

first dataset, it is clear that the proposed method can classify gesture types with high

accuracy. However, the results for the second dataset suggest that the proposed

method, in its current form, cannot accurately classify gesture types when applied to

more complicated datasets. In the right-hand confusion matrix in Fig. 11, ‘‘Non-

stroke’’ denotes frames other than the frames annotated as stroke. As explained in

Table 3, gesture types in the second dataset were classified at the stroke level, unlike

in the first dataset, where only G-Units were considered. The non-stroke frames in

the second dataset accounted for more than 52% of the total. In addition,

preparation, retraction, and non-gesture movements (Fig. 8 right side) were

included in the non-stroke frames, so it is conceivable that the model often

confused parts of strokes with the preparation and retraction phases of the gesture,

leading to a high proportion of non-stroke frames being predicted.

Fig. 11 Confusion matrix of gesture type classification (top: first dataset, bottom: second dataset). The
values shown are for recall

Table 7 Mean (standard deviation) of accuracy and F-score of gesture type classification for each dataset

Dataset First Second

Accuracy 0.983 (0.002) 0.650 (0.115)

F-score 0.983 (0.006) 0.417 (0.109)
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11 Annotation tool: brief tutorial

The code has been released so that anyone can use the proposed method (https://

github.com/naotoienaga/annotation-tool). With this tool, an ELAN file with pre-

dicted annotations is automatically output as shown in Fig. 1. This tool has been

confirmed to work with the latest version of ELAN 6.0 (as of February 21, 2020).

Users can use this tool with the following steps (refer to Fig. 12 also):

1. Run OpenPose to detect keypoints of the speaker, and annotate part of the input

video. The annotation should include at least one rest and one gesture (any tier

name is acceptable other than PREDICTED and QUERY). Specify paths to the

zip file of json files generated by OpenPose and the ELAN file in the code (also

some parameters such as w can be changed as an advanced setting).

2. Run the code.

3. An ELAN file with predicted annotations will be generated, like Fig. 1. If the

result is not satisfactory, add more annotations and run the code again (delete

PREDICTED tier and QUERY tier).

Please refer to the URL above for further details and the implementation. In

Fig. 1, the manual annotations are included in the ‘‘movement’’ tier. The

annotations in the ‘‘PREDICTED’’ tier are predicted (the manual annotations will

be copied to ‘‘PREDICTED’’ tier). The annotation in the ‘‘QUERY’’ tier is query

selected by uncertainty sampling (as described in Sect. 4.2).

This tool can also modify short annotations. Annotations with a length within the

number of seconds specified by the user are modified taking into account

surrounding annotations. At the top of Fig. 13, it can be seen that the annotation

switches at very short intervals, especially at the boundaries of the annotations. The

short annotations were modified as shown at the bottom of Fig. 13. This is a

function to reduce the work of manual modification of the predicted annotation

rather than to improve accuracy.

Fig. 12 Flowchart of the use of
the released tool
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12 Conclusion

In this paper, we have proposed a method to semi-automatically annotate gestures in

any type of RGB videos without requiring use of 3D videos or device-based motion

capture techniques. The proposed system uses a state-of-the-art pose estimation

method which detects body keypoints that are used as features to train the machine

learning model. The method is based on machine learning and human collaboration;

active learning requires the manual annotation of a small subset of the data in order

to semi-automatically annotate gestures of the remaining subset to be annotated.

Also, if users are not satisfied with the accuracy of the automatic annotation

obtained, they can decide to increase the amount of manually annotated data

following the instruction of AL to improve accuracy efficiently. Since the program

is publicly available, anyone who is interested can try our gesture annotation system

on their own data. The program can run on the service that can execute Python from

a web browser without the need to build an environment, so the program can be

easily used. The output of the annotation tool can be read in ELAN for double-

checking, accuracy improvement, further analyses and making its use more

accessible to researchers across different fields.

The proposed method was tested on two datasets and performed gesture detection

with higher accuracy in both datasets than a method that simply thresholds the

distance moved by the keypoints. The first dataset contained a set of gesticulations

produced in a controlled setting. For the first dataset, both gesture (G-Unit)

detection and gesture type classification achieved an accuracy higher than 98%. The

second dataset contained 20 speakers, who gestured spontaneously. For this dataset,

the proposed method achieved 86% accuracy in gesture (G-Unit) detection but was

less accurate in gesture type classification.

As for gesture type classification, in the second dataset, we believe our system

was challenged for different reasons: speakers gestured in a spontaneous manner,

and variability was not controlled in any way. This led to an infinite variability in

terms of gestures performed; also, the number of non-meaningful (i.e., non-gesture

movements) is certainly higher in the second dataset compared to the first dataset, in

fact, as mentioned, the accuracy was lower for videos that included many non-

gesture movements. Also, it should be noticed that researchers evaluate gesture

types when having access to the accompanying speech as well, which can be a

fundamental cue to distinguish, for example, iconic gestures from metaphorics. For

these main reasons, we expected a decrease in the accuracy of gesture type

classification in the second dataset however, we believe that these results provide a

more realistic idea of how well our method performs on experimental (i.e., highly

Fig. 13 Results of disabling short annotation modification (top) and of modification of annotations
within 0.5 s (bottom)
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controlled) videos compared to corpus data. The results of gesture type classification

suggest that an improvement is needed in more challenging/naturalistic datasets and

further testing is a fundamental step to achieve improvement. In principle, we

believe that our method can be tested with any dataset. Gesture detection/

recognition can be done in videos of multiple people co-present in the scene or other

speaker types (e.g., children, infants, apes) as long as 2D body keypoints can be

extracted from the image. A possible evolution of our method could be to use 3D

information about the speaker, when available.

Despite some current limitations, we believe that our method can be a

fundamental step towards providing a semi-automatic gesture annotation tool. This

tool would significantly reduce the time-consuming work of annotators, by assisting

them in the first steps of the gesture annotation process. Also, we believe that our

method can boost significantly the capacity for gesture research in that it does not

require motion capture techniques (e.g., Kinect) that might not always be available;

this means that our method can be used on any videos that one wishes to annotate.

To conclude, our method contributes to making gesture annotation faster, easier and

more accessible. In the long term, this could increase the amount of annotated

gesture data (contributing to building larger video corpora) and would benefit the

study of multimodal communication and the development of human–computer

interaction applications.
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