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Summary  

The use of proteins or peptides as immunogens is attractive for the development of vaccines, 

especially cancer vaccines, but requires efficient and safe adjuvant formulations to overcome 

their intrinsic weak immunogenicity. Although dozens of different adjuvants have been shown to 

be effective in preclinical and clinical studies, alum remains the only one approved for human use 

in the USA and the most employed worldwide, but it turned out to be inefficient in cancer vaccine 

formulations. Indeed, the prerequisites for an ideal cancer adjuvant differ from conventional 

adjuvants. Since cancer vaccines target self-antigens, the ideal cancer adjuvant must be 

extremely potent to circumvent immune tolerance, but it must also be safe to avoid autoimmune 

reactions. Of note, recent studies indicate that effective therapeutic and preventive cancer 

vaccines require the induction of a more balanced T helper 1 (Th1)/Th2 immune response, 

characterized by the presence of a strong cytotoxic CD8+ T lymphocyte (CTL) activity, and the 

production of IgG subclasses with specific effector functions. For example, efficient tumor 

prevention in mice is associated with high levels of IgG2a and IgG2b subclasses, which are 

considered the most potent inducers of complement-dependent cytotoxicity (CDC) and antibody-

dependent cell-mediated cytotoxicity (ADCC) in rodents. To solve all these problems, new 

generation vaccines often incorporate toll-like receptors (TLRs) agonists. Among them, natural 

polymers (NPs) that can act as damage-associated molecular patterns (DAMPs) or pathogen-

associated molecular patterns (PAMPs), are emerging as a new efficient class of vaccine adjuvants 

due to their ability to orchestrate the cross-talk between innate and adaptive immunity. In 

particular, NPs induce the maturation of dendritic cells (DCs) and finely regulate the balance 

between Th1 and Th2 responses, thus inducing potent and long-lasting humoral and cellular 

responses. Moreover, they are biocompatible, biodegradable, non-toxic, non-immunogenic, and 

non-inflammatory. 

This project aimed at validating our NP, called NPX for patent constraints, as a new TLR agonist 

and carrier of immunogens for the design of more efficient and safer cancer vaccines, and 

comparing its adjuvanticity with alum. To this aim, NPX was chemically linked to the extracellular 

domain (ECD) of the rat form of the epidermal growth factor receptor (rHER2/neu), or to short 

peptide sequences derived from the ECD of rHER2/neu, and the resulting bioconjugates were 

used for immunization of both BALB/c and BALB-neuT transgenic mice.  

In this work, we demonstrated that NPX has an extremely satisfactory safety profile, as no local 

side effects were observed in vaccinated mice. Moreover, NPX induced strong antigen-specific 
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immune reactions very efficiently. In fact, even though both alum- and NPX-adjuvanted 

formulations induced high humoral immune responses against rHER2/neu, NPX-vaccinated 

BALB/c mice disclosed IgG titers that were about two-fold higher than those calculated for alum. 

Of note, only conjugation with NPX induced a detectable humoral response against rHER2/neu-

derived peptides. Both adjuvants induced high production of different IgG subclasses, but despite 

similar IgG1 titers NPX-vaccinated mice disclosed also higher IgG2a and IgG2b levels. The strong 

elicitation of the three IgG subclasses and the production of both Th1 and Th2-type cytokines 

such as IL-12p70, IFN-γ, IL-2, IL-6, and IL-10, confirmed the ability of NPX to induce a balanced 

Th1/Th2 response. Moreover, the different quality and quantity of IgG subclasses, and their 

superior ability to recognize rHER2/neu in its native conformation likely reflected on the better 

functionality of NPX-induced antibodies in triggering complement-mediated specific lysis of 

rHER2/neu-positive cells. Interestingly, NPX not only induced humoral responses that persisted 

over time, but also selected mature B cell clones secreting antibodies with an improved ability to 

bind rHER2/neu in its native conformation and to mediate effector functions. The robust immune 

responses induced by NPX proved to be effective in both the prophylactic and therapeutic 

settings; indeed, NPX-adjuvanted vaccine formulation prevented and significantly delayed tumor 

growth in tumor challenged mice. Interestingly, antitumor responses seemed in part to be 

mediated by NPX ability to induce also CTL responses, which were detected only in NPX-

vaccinated groups. Finally, while both alum- and NPX-adjuvanted vaccines proved to be 

successful in breaking tolerance against rHER2/neu in BALB-neuT transgenic mice, NPX-

vaccinated mice displayed IgG titers that were two-fold higher than those observed with alum. 

Interestingly, in transgenic mice NPX vaccination resulted in a better Th1/Th2 balance than in 

BALB/c mice. However, only NPX-induced antibodies were able to recognize rHER2/neu in its 

native conformation. This likely explains the capacity of NPX-based vaccination to protect from or 

delay the growth of spontaneous tumors in BALB-neuT mice, whereas alum completely failed to 

induce any protective response. 

Taken together, our data show that NPX is a safe and powerful adjuvant that could be exploited 

for the development of new HER2/neu vaccination strategies. In fact, NPX is effective in 

enhancing the magnitude, breadth, quality, and longevity of specific humoral and cellular 

immune responses to antigens, without causing toxicity. Importantly, these effects can be 

achieved even with a strongly reduced antigen dose.  
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Riassunto  

L’utilizzo di proteine o peptidi come immunogeni ha sempre rappresentato un’attrattiva per la 

creazione di vaccini, in particolare per i vaccini a scopo antitumorale; ciononostante, questo 

genere di formulazione richiede l’impiego di adiuvanti immunologici efficienti e sicuri che siano in 

grado di potenziare la scarsa immunogenicità degli antigeni stessi. Sebbene dozzine di adiuvanti 

si siano dimostrate efficienti in ambito preclinico e clinico, l’allume rimane il principale adiuvante 

ad uso umano impiegato in tutto il mondo, nonostante abbia dimostrato scarsa efficienza 

nell’ambito della vaccinazione antitumorale. I prerequisiti di un adiuvante antitumorale sono di 

fatto diversi da quelli dei classici adiuvanti. I vaccini antitumorali hanno infatti come target 

antigeni self, e dunque l’adiuvante antitumorale deve essere abbastanza potente da superarne la 

tolleranza immunologica, ma deve anche essere sicuro in modo da evitare fenomeni avversi di 

tipo autoimmune. Studi recenti hanno dimostrato che affinché i vaccini tumorali preventivi e 

terapeutici siano efficaci, si devono indurre risposte sia di tipo T helper 1 (Th1) che Th2, in grado 

di indurre sia una forte attività litica da parte dei linfociti CD8+ T citotossici (CTL) che la 

produzione di sottoclassi anticorpali capaci di mediare particolari funzioni effettrici. Ad esempio, 

nel topo è stata dimostrata una correlazione tra prevenzione tumorale e presenza di alti livelli di 

immunoglobuline IgG2a e IgG2b, considerate le più efficienti nell’induzione di citotossicità 

complemento-dipendente (CDC) e di citotossicità cellulo-mediata anticorpo-dipendente (ADCC). 

Per adempiere a tutte queste richieste, le nuove generazioni di vaccini spesso incorporano nella 

propria formulazione degli agonisti dei toll-like receptors (TLRs). Tra questi agonisti, i polimeri 

naturali (NP), che agiscono come damage-associated molecular patterns (DAMPs) o pathogen-

associated molecular patterns (PAMPs), stanno emergendo come una nuova classe di efficienti 

adiuvanti immunologici grazie alla loro capacità di mediare l’interazione tra il sistema 

immunitario innato e adattativo. In particolare, essi sono in grado di indurre la maturazione delle 

cellule dendritiche (DCs) e di regolare accuratamente il bilancio tra le risposte di tipo Th1 e Th2, 

al fine di indurre potenti e durature risposte umorali e cellulari. Gli NP sono inoltre 

biocompatibili, biodegradabili, non tossici, non immunogenici e non infiammatori. 

Questo progetto di ricerca si è focalizzato sulla validazione del polimero naturale da noi 

sviluppato, cui ci riferiamo col termine NPX a causa di vincoli brevettuali, come nuovo agonista di 

TLR e veicolo di immunogeni per la creazione di vaccini antitumorali più efficienti e sicuri, 

comparando il suo profilo di adiuvanticità con quello dell’allume. A questo scopo, abbiamo 

coniugato NPX con il dominio extracellulare (ECD) del recettore 2 per il fattore di crescita 
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epidermico di ratto (rHER2/neu) o con peptidi a breve sequenza amminoacidica derivati dall’ECD 

stesso. I bioconiugati così sintetizzati sono stati utilizzati per la vaccinazione di topi BALB/c e di 

topi transgenici BALB-neuT. 

In questo lavoro abbiamo innanzitutto dimostrato che NPX possiede un profilo d’azione 

estremamente sicuro, in quanto i topi immunizzati con tale adiuvante non hanno manifestato 

segni di tossicità a livello locale. NPX si è inoltre rivelato estremamente efficiente nell’indurre 

forti risposte immunitarie antigene-specifiche. Infatti, sebbene entrambi gli adiuvanti abbiano 

stimolato con successo elevate risposte umorali contro rHER2/neu, i topi BALB/c immunizzati con 

NPX hanno prodotto titoli di IgG doppi rispetto a quelli riscontrati nel gruppo trattato con 

l’allume. Inoltre solo NPX è riuscito a indurre la produzione di anticorpi in risposta alla 

vaccinazione con peptidi derivanti dalla porzione extracellulare del recettore. Entrambi gli 

adiuvanti hanno prodotto alti livelli delle differenti sottoclassi di anticorpi IgG; tuttavia, 

nonostante la produzione di IgG1 sia paragonabile, i livelli di IgG2a e IgG2b sono risultati 

nettamente maggiori negli animali vaccinati con NPX. Le elevate concentrazioni delle tre 

sottoclassi anticorpali e la produzione di citochine sia di tipo Th1, quali IL-12p70, IFN-γ e IL-2, che 

di tipo Th2, come IL-6 e IL-10, hanno confermato la capacità di NPX di indurre una risposta 

Th1/Th2 bilanciata. La differente qualità e quantità degli anticorpi prodotti e la loro migliore 

capacità di riconoscere il recettore nella sua conformazione nativa, probabilmente si riflettono 

nella migliore funzionalità degli anticorpi indotti da NPX nell’attivare la lisi cellulare rHER2/neu-

specifica mediata dal complemento. In particolare, NPX si è dimostrato efficace non solo 

nell’indurre risposte umorali durature, ma anche nel selezionare cloni maturi di linfociti B 

secernenti anticorpi dotati di una migliore capacità di riconoscere il recettore nella sua forma 

nativa e di mediare le proprie funzioni effettrici. Le elevate risposte immunitarie indotte da NPX 

si sono dimostrate efficienti nell’ambito sia della vaccinazione preventiva che terapeutica, 

prevenendo o ritardando in entrambi i contesti la crescita tumorale nei topi inoculati con il 

tumore. Tali risposte sembrano inoltre essere almeno in parte dovute all’azione dei CTL, la cui 

presenza è stata riscontrata solamente negli animali immunizzati con NPX. Sia la vaccinazione con 

NPX che quella con l’allume si sono dimostrate in grado di rompere la tolleranza contro il 

recettore espresso costitutivamente nei topi transgenici BALB-neuT. Il gruppo vaccinato con NPX 

ha prodotto titoli anticorpali doppi rispetto al gruppo allume e un profilo di risposta Th1/Th2 

ancora più bilanciato rispetto a quanto osservato nei topi BALB/c. Comunque, solo gli anticorpi 

indotti da NPX si sono dimostrati capaci di riconoscere il recettore nella sua conformazione 

nativa, e ciò spiegherebbe come questo tipo di vaccinazione riesca a conferire protezione o 
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indurre ritardo nella crescita tumorale spontanea nei topi BALB-neuT. Al contrario, la 

vaccinazione con l’allume ha completamente fallito nell’indurre una qualsiasi risposta tumorale 

protettiva. 

Nell’insieme, i risultati ottenuti indicano che NPX è un adiuvante sicuro ed efficace, 

potenzialmente utilizzabile per la creazione di vaccinazioni antitumorali HER2-specifiche. 

Abbiamo infatti dimostrato che NPX migliora l’entità, l’ampiezza, la qualità e la longevità delle 

risposte immunitarie umorali e cellulo-mediate rispetto all’allume, senza causare effetti tossici e 

permettendo inoltre di utilizzare dosi ridotte di antigene. 
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Introduction 

1. Cancer immunoediting: from immunosurveillance to tumor escape 

In 1909 Paul Ehrlich first proposed the idea that nascent transformed cells arise continuously in 

our bodies, and that the immune system scans for and eradicates these cells before they are 

manifested clinically, thus hypothesizing that the immune system could repress a potentially 

“overwhelming frequency” of carcinomas (Ehrlich, 1909). However, this idea was not pursued 

until the mid-50s. In those years, different works involving the use of outbred strains of mice 

demonstrated that transplantable tumor recognition and elimination was mediated by allograft 

rejection and not tumor specific-rejection mechanisms, thus challenging the idea of the existence 

of tumor antigens (Dunn, Bruce et al., 2002). Subsequently, the availability of inbred strains of 

mice led to the demonstration that mice could be immunized against syngeneic transplants of 

tumors induced by chemical carcinogens or viruses, thus proving the existence of tumor antigens 

(Old and Boyse, 1964; Klein, 1966). These advances provided the foundation upon which Burnet 

and Thomas built their “cancer immunosurveillance” theory, a concept that formally envisaged 

that adaptive immunity can be responsible for preventing cancer development in 

immunocompetent hosts (Burnet, 1957; Thomas, 1959). As a consequence, hosts with impaired 

immune systems would exhibit increased incidences of spontaneous or chemically-induced 

tumors. To test this hypothesis, early experimental approaches comprehended neonatal 

thymectomy, heterologous anti-lymphocyte serum administration, or pharmacologic approaches 

as methods to obtain immunosuppressed mouse models. However, results obtained were highly 

discordant and gave little support for Burnet and Thomas’ hypothesis (Burstein and Law, 1971; 

Stutman, 1975). Of particular note, some experiments showed that the cancer susceptibility of 

immunocompetent mice was similar to that of nude mice, which are now known to have major 

but not total immunologic defects (Stutman, 1974; Stutman 1979). Based on the limited 

understanding of these defects in the nude mouse available at that time, these results were 

highly convincing, and thus led to the abandonment of the immunosurveillance hypothesis.  

By the 1990s, the availability of improved immunodeficient mouse models on pure genetic 

backgrounds allowed the reassessment of the role of immunity in cancer control. Interest in 

cancer immunosurveillance was rekindled by two key discoveries. The first one was the 

importance of endogenously produced interferon-γ (IFN-γ) in protecting the host against the 

growth of transplanted tumors and the formation of primary chemically-induced and 
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spontaneous tumors (Dighe, Richards et al., 1994). Moreover, mice lacking either the IFN-γ 

receptor or the transcription factor that mediates IFN-γ receptor signaling, namely the signal 

transducer and activator of transcription 1 (STAT-1), were more susceptible to both carcinogen-

induced and spontaneous primary tumor formation (Kaplan, Shankaran et al., 1998). In fact, this 

cytokine promotes antitumor effector functions by stimulating the generation of CD4+ Th1 

lymphocytes and CTL, by activating macrophages, and by inducing major histocompatibility 

complex (MHC) class I expression on tumor cells (Bach, Aguet et al., 1997). The second finding 

was the observation that mice lacking perforin were more prone to chemically-induced tumor 

formation, when compared to their wild-type counterparts (van den Broek, Kägi et al., 1996; 

Street, Cretney et al., 2001). Perforin is a component of the cytolytic granules of CTL and natural 

killer (NK) cells, and mediates lymphocyte-dependent killing of many different targets, including 

tumor cells (Russel and Ley, 2002). The existence of a cancer immunosurveillance process that is 

dependent on both IFN-γ and lymphocytes was finally supported using mice lacking the 

recombination activating gene 1 (RAG-1) or RAG-2. These genes are normally expressed in the 

lymphoid compartment and codify for enzymes involved in T-cell (TCR) and B-cell (BCR) receptor 

recombination, and in the repair of double-stranded DNA breaks. Mice deficient for either of 

these genes fail to rearrange lymphocyte antigen receptors and thus completely lack T and B 

cells, being more susceptible to carcinogen-induced or spontaneous tumor formation (Shinkai, 

Rathbun et al., 1992; Shankaran, Ikeda et al., 2001). 

The immunosurveillance hypothesis also found evidences in humans. First, a correlation between 

the quantity and quality of tumor infiltrating lymphocytes (TILs) and a better prognosis was 

reported for a broad range of tumors, such as colon cancer (Naito, Saito et al., 1998), esophageal 

cancer (Yasunaga, Tabira et al., 2000), oral squamous cell carcinoma (Reichert, Day et al., 1998), 

breast cancer (Yoshimoto, Sakamoto et al., 1993), ovarian cancer (Sato, Olson et al., 2005), and 

malignant melanoma (Haanen, Baars et al., 2006). Of note, in all these studies the presence and 

location of CD8+ TIL within the tumor and not at the tumor margin, appeared to have an 

important influence in the clinical outcome. Another evidence for cancer immunosurveillance is 

the observation that tumors of both viral and non-viral etiology are likely to develop in individuals 

with severe deficits of immunity (e.g., immunosuppressive therapies, primary 

immunodeficiencies), a feature that provided a strong argument to support the hypothesis that 

adaptive immunity can prevent tumor occurrence (Penn, 1999; Boshoff and Weiss, 2002). Finally, 

a major advance to the field of tumor immunology came from the demonstration that cancer 

patients can develop high levels of antibody and T cell responses to antigens expressed by their 
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tumors (Dougan and Dranoff, 2009). However, these immune responses can be observed even in 

patients with progressive diseases, indicating that immune recognition of cancer does not always 

result in immune protection. 

Indeed, it has long been proposed that during tumor formation the immune system plays a dual 

role since it not only eliminates tumor cells, but also selects tumor variants that can better 

survive in an immunologically intact environment, as it happens with viruses, bacteria, and 

parasites (Dunn, Bruce et al., 2002). Experiments using tumors isolated from wild-type or RAG-2-/- 

mice and transplanted into RAG-2-/- recipients, have shown that cancers formed in the absence of 

an intact immune system are more immunogenic than tumors arising in immunocompetent hosts 

(Shankaran, Ikeda et al., 2001). Moreover, lymphomas derived from perforin-/- mice grew rapidly 

when transplanted into perforin-/- mice, but were rejected when transplanted into wild-type mice 

(Street, Trapani et al., 2002). Taken together, these and other results showed that tumors are 

“sculpted” by the immunologic environment in which they form. This imprinting process can 

often result in the generation of tumor variants that are able to withstand the tumor-suppressing 

actions of the immune system, such as variants of reduced immunogenicity or that have acquired 

other mechanisms to evade or suppress immune attack. The alterations that occur during the 

immunologic sculpting of a developing tumor are probably facilitated by the inherent genetic 

instability of tumors; this selection particularly involves genes encoding tumor antigens, 

components of the antigen processing and presentation machinery, or components of the IFN-γ 

receptor signaling pathway (Dunn, Bruce et al., 2002).  

The notion that the immune system not only protects the host against tumor formation but also 

shapes tumor immunogenicity is the basis of the “cancer immunoediting” hypothesis, which 

stresses the dual host-protective and tumor-promoting actions of innate and adaptive immunity 

on developing tumors (Dunn, Bruce et al., 2002; Dunn, Old et al., 2004). Cancer immunoediting 

comprises three phases: elimination, equilibrium, and escape (Fig. 1).  
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Figure 1. The cancer immunoediting concept. Cancer immunoediting is an extrinsic tumor suppressor 

mechanism that engages only after cellular transformation has occurred and intrinsic tumor suppressor 

mechanisms have failed. It consists of three sequential phases: elimination, equilibrium, and escape (from 

Schreiber, Old et al., 2011).  

The elimination phase is an updated version of cancer immunosurveillance, in which the innate 

and adaptive immune systems work together to detect the presence of a developing tumor and 

destroy it before it becomes clinically apparent (Dunn, Old et al., 2004; Schreiber, Old et al., 
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2011). The mechanism by which the immune system senses the presence of a developing tumor 

is not fully understood, but it seems in part due to danger signals such as type I IFNs, (Matzinger, 

1994), or to the local stromal remodeling during tumor development. This process leads to the 

release of different DAMPs from dying tumor cells, such as high motility group box 1 (HMGB1), or 

from extracellular matrix (ECM) derivatives, such as hyaluronan fragments (fHA) (Shi, Evans et al., 

Nature 2003; Powell and Horton, 2005).  

If not all tumor cells are finally destroyed, rare surviving tumor cell variants may enter the 

equilibrium phase. During equilibrium, the adaptive immune system prevents tumor cell 

outgrowth and sculpts the immunogenicity of cancer cells, maintaining them in a functional state 

of dormancy. This phase depends on adaptive immunity only, and specifically on interleukin 12 

(IL-12), IFN-γ, CD4+ and CD8+ T cells (Schreiber, Old et al., 2011); moreover, it is the longest of the 

three phases, sometimes occurring over a period of many years in humans (Dunn, Old et al., 

2004). 

In the escape phase, tumor cells that have acquired the ability to circumvent immune recognition 

and/or destruction emerge as progressively growing, visible tumors. Tumor cell escape can occur 

through different mechanisms, and likely reflects both reversible (e.g., epigenetic) and 

permanent (e.g. mutations and irreversible epigenetic) events.  

As summarized in Table 1, the principal tumor immunoescape mechanisms are represented by: 

a) loss of tumor antigen expression, through downregulation or mutation of the antigen itself, of 

MHC molecules, or of other antigen-processing molecules. These alterations impair the ability of 

tumor cells to efficiently present antigen-derived peptide to TILs, thus preventing recognition by 

CTL (Schreiber, Old et al., 2011); 

b) downregulation of costimulatory molecules in case of many hematopoietic malignancies, such as 

B7 family members, which induces a state of antigen-dependent anergy in responding effector 

cells (Rousseau, Hirschmann-Jax et al., 2001); 

c) secretion of immune inhibitors by tumor microenvironment or by tumor cells themselves, such as 

transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), interferons, 

prostaglandins, IL-10, and IL-6. VEGF plays a key role in recruiting immature myeloid cells from 

the bone marrow to the microenvironment, such as tumor-associated immature dendritic cells 

(TiDCs) and macrophages (TAMs) (Bellamy, Richter et al., 2001). Accumulation of TiDCs may cause 

DCs and T cells suppression through activation of indoleamine 2,3-dioxygenase (IDO). TGF-β and 

IL-10 can induce immunosuppressive regulatory DCs (DCregs) and T cells (Tregs). The latter are 

CD4+CD25highFOXP3+ T lymphocytes that inhibit the function of tumor-specific T cells by producing 
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immunosuppressive cytokines, express the negative costimulatory molecules cytotoxic T-

lymphocyte antigen-4 (CTLA-4), programmed cell death 1 (PD-1) and its ligand (PD-L1), and 

consume IL-2, a cytokine critical for the maintenance of CTL functions (Schreiber, Old et al., 

2011). Other regulatory cells induced by proinflammatory cytokines are myeloid-derived 

suppressor cells (MDSCs), which are heterogeneous populations of immature myeloid cells 

showing abilities to suppress T cell function, and identified in mice as Gr1+CD11b+ cells. T cell 

dysfunction induced by MDSCs is probably mediated by STAT-3 and nuclear factor-κB (NF-κB) 

(Yaguchi, Sumimoto et al., 2011). Of note, breast carcinoma can express mucins, such as 

DF3/MUC1, which inhibit the growth of activated T cells (Gimmi, Morrison et al., 1996). Some 

colon carcinomas overexpress DcR3, a decoy receptor that neutralizes Fas ligand (FasL) which is 

used by CTL and NK to induce apoptosis on target cells (Pitti, Marsters et al., 1998);  

d) qualitative or quantitative alterations in components of T-cell signaling pathways, such as in the ζ 

chain of TCR, in p56lck and p59fyn proteins, in zeta-chain-associated protein kinase 70 (ZAP-70), 

and in the expression and translocation of NF-κB, all features that globally diminish T-cell 

activation (Rousseau, Hirschmann-Jax et al., 2001; Kim, Emi et al., 2007); 

e) direct resistance to immune effector mechanisms by mutations in genes involved in triggering the 

apoptosis pathway (Müschen, Warskulat et al., 2000).  

Defects in antigen presentation 

Adhesion deficiency 

MHC molecules/pathway defects 

Defects in antigen processing/transport 

Defects in costimulatory pathways 

Antigenic variants 

Decoy receptors 

Microenvironment 

abnormalities 

Inhibitory cytokines/ligands 

Growth/survival factors, angiogenesis 

Latency-associated proteins encoded by oncogenic viruses such 

as Epstein-Barr virus (EBV), human papillomavirus (HPV), 

human T-cell lymphotropic virus (HTLV), which induces tumor 
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cell growth, angiogenesis and inhibit anti-tumor immune 

response 

T-cell defects 

Absence/deletion of specific T-cell precursors 

Anergy 

Downregulation of TCR ζ chain 

Mutation in signaling pathways 

Deletion/defect in helper T cell 

Defect in establishment of T-cell memory 

T-cell inhibitors 

Table 1. Mechanisms by which tumors can escape immune surveillance (adapted from Rousseau, 

Hirschmann-Jax et al., 2001). 

2. Tumor antigens and cancer immunotherapy 

The activation of the immune system against cancer has always been a major goal in immunology 

and oncology. Indeed, tumors express different types of proteins, called tumor antigens, which 

can be recognized by the immune system. Based on their pattern of expression, tumor antigens 

can be broadly divided into two categories: tumor-specific antigens (TSA), which are expressed 

only in tumor cells, and tumor-associated antigens (TAA), which instead can be expressed in 

tumor and normal cells.  

TSA are relatively rare and comprise two distinct groups:  

a) antigens derived from point mutations in oncogenes or tumor suppressor genes, such as p53 

which is detectable in a wide range of tumors such as breast (Miller, Smeds et al., 2005), lung 

(Ahrendt, Hu et al., 2003), and colorectal cancers (Rodrigues, Rowan et al., 1990), or ras in 

pancreatic, lung, and colorectal cancers (Minamoto, Mai et al., 2000); 

b) proteins derived from virally-induced tumors, such as the human papillomavirus oncoproteins E6 

and E7 (Duensing, Lee et al., 2000) that cause cervical carcinoma, or latency-associated proteins 

encoded by EBV (Murray, Kurilla et al., 1992), which is associated with post-transplant 

lymphoproliferative disease (PTLD), Burkitt lymphoma, non-Hodgkin lymphoma and 

nasopharyngeal carcinoma. Among latent proteins, EBV-encoded nuclear antigen 1 (EBNA1) is 
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now emerging as a new promising target antigen, as recently demonstrated in a clinical trial 

(Icheva, Kayser et al., 2013), after being neglected for a long time due to impaired MHC-I 

processing and presentation.  

TAA are more common antigens and can be grouped into four categories: 

a) antigens belonging to the cancer/testis family, which comprises genes normally expressed by 

male germ cells, but also reactivated in malignant cells. Examples of these antigens include the 

melanoma antigen (MAGE), B antigen (BAGE), and G antigen (GAGE) families (Dalerba, Frascella 

et al., 2001; Scanlan, Gure et al., 2002); 

b) antigens that are generally expressed during fetal development, but also reactivated in some 

tumors. For example, carcinoembryonic antigen (CEA), an oncofetal glycoprotein, is expressed in 

normal mucosal cells and overexpressed in adenocarcinoma, especially colorectal cancer, but also 

in other malignancies such as breast, lung, melanoma, bladder, and head and neck cancers 

(Hammaström, 1999). Alpha-fetoprotein (AFP) is a major fetal serum globulin found also in 

hepatocellular carcinoma (Soresi, Magliarisi et al., 2003) and more rarely in germ cell tumors of 

ovary (Maida, Kyo et al., 1998); 

c) altered forms of surface glycolipids and glycoproteins, such as gangliosides, blood group antigens, 

and mucins that are overexpressed in particular in melanoma, ovarian, and breast carcinomas. 

This class of TAA is a target for cancer therapy with specific antibodies (Abbas, Lichman et al., 

2011); 

d) unmutated self-proteins expressed at abnormally high levels. This group is very numerous and 

heterogeneous (see the database of the Academy of Cancer Immunology, 

http://cancerimmunity.org/peptide/overexpressed/). One of the best known example of this 

class of antigens is the human epidermal growth factor receptor 2 (HER2), which is overexpressed 

in breast, ovary, lung, pancreatic, prostate, and colon cancers (Srinivasan and Wolchok, 2004).  

The discovery and characterization of tumor antigens suggest that even though cancer cells are 

less immunogenic than pathogens, the immune system is capable of recognizing and eliminating 

tumor cells. However, as described by the cancer immunoediting hypothesis, tumors can easily 

interfere with the development and function of the immune responses. Thus, the challenge for 

cancer immunotherapy is to develop strategies that can effectively and safely augment antitumor 

responses and circumvent the escape mechanisms triggered by tumor cells and tumor 

microenvironment. Taken together, anticancer immune strategies comprise both passive and 

active immunotherapy. 

http://cancerimmunity.org/peptide/overexpressed/
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2.1 Passive immunotherapy 

Passive immunotherapy generally does not stimulate the patient’s immune system and bypasses 

the necessity of activating endogenous immunity. Anticancer passive immunotherapy consists in 

administration of immune stimulating cytokines, monoclonal antibodies (mAbs), and/or T cells 

(Wayteck, Breckpot et al., 2013).  

Among immunostimulating cytokines, one of the most employed is IL-2, a T cell growth factor 

that promotes activation, proliferation, survival, and effector functions of anti-tumor T cells. It is 

approved by Food and Drug Administration (FDA) as it has demonstrated to be effective in 

metastatic renal cancer and melanoma, with complete cancer regression in 8% of the tested 

patients (Rosenberg, Yang et al., 1998). Another group of cytokines approved as first line or 

adjuvant therapy for many types of cancer is the IFN family. IFNα-2b, a highly pleiotropic cytokine 

with immunomodulatory, antiproliferative, differentiation-inducing, apoptotic, and 

antiangiogenetic properties, is commonly used for the treatment of renal and kidney carcinoma, 

follicular lymphoma, hairy cell leukemia, and chronic myelogenous leukemia (Baxevanis, Perez et 

al., 2009). Despite the effectiveness of cytokines in anticancer therapeutic regimens, their side 

effects are severe and often dose-limiting, due to non-specific stimulation and modulation of the 

immune system. The common cytokine-induced symptoms mirror those of systemic infection, 

such as hypotension, vomiting, diarrhea, fever, and malaise (Dougan and Dranoff, 2009). 

Administration of mAbs has been employed with success in the clinic, thanks to their high 

specificity and long half-lives. Moreover, mAbs therapies are typically less toxic than conventional 

cytotoxic cancer chemotherapy, even if binding to nonmalignant cells can sometimes lead to 

significant adverse reactions (Hansel, Kropshofer et al., 2010). MAbs act through different 

mechanisms of action, in particular ADCC and CDC. ADCC involves the destruction of the 

antibody-coated cell by recruitment of effector cells such as NK, macrophages, and neutrophils, 

whereas CDC involves the activation of the complement cascade. Rituximab and ofatumumab, 

two CD20-specific mAbs approved for the treatment of hematological malignancies, mainly act 

through ADCC, while their activity is also partially dependent on CDC. By contrast, alemtuzumab, 

an anti-CD52 mAb, induces only CDC (Pillay, Gan et al., 2011). Other mAbs exert antitumor 

activities by blocking ligand binding to growth factor receptors, thus inhibiting signaling through 

these receptors. This leads to inhibition of proliferation, induction of apoptosis, and/or 

sensitization of cancer cells to chemotherapeutic agents. This is the case of cetuximab and 

panitumumab, two anti-epidermal growth factor receptor (EGFR) mAbs, or trastuzumab, an anti-
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HER2 mAb. Other mAbs at present in clinical development are agonists of death receptors. 

Mapatumumab is an agonistic human mAb that binds to the tumor necrosis factor-related 

apoptosis-inducing ligand receptor 1 (TRAIL-R1) and directly induces the death of cancer cells 

through apoptosis (Adams and Weiner, 2005). Other molecules display immunomodulating 

properties, like the FDA-approved mAb Ipilimumab, which targets CTLA-4 on the surface of Tregs 

and thus inhibits the development of peripheral immune tolerance. Similarly, tremelimumab has 

been tested in several phase I–II clinical studies to evaluate its pharmacological profile in 

metastatic melanoma and metastatic renal cell carcinoma (Ribatti, 2014). Finally, mAbs can be 

conjugated to radioisotopes, toxins, cytokines, enzymes or cytotoxic drugs to improve their 

delivery to tumor cells while reducing the side effects associated with systemic administration. Y-

90 ibritumomab tiuxetan and I-131 tositumomab, two radiolabeled mAbs specific for CD20 

antigen, are approved for the treatment of non-Hodgkin lymphoma, (Pillay, Gan et al., 2011). 

Gemtuzumab ozogamicin is a calicheamicin immunoconjugate targeting CD33 approved for the 

treatment of acute myeloid leukaemia (AML), but voluntarily withdrawn after a post-marketing 

phase III trial in 2010 because no real improvement in clinical benefit was observed 

(http://www.fda.gov/safety/medwatch/safetyinformation/safetyalertsforhumanmedicalproducts

/ucm216458.htm). Table 2 reports the main mAbs presently approved in oncology.  

Antibody Target FDA-approved indication 
Main mechanism 

of action 

Trastuzumab 

(Herceptin) 
HER2 

(a) HER2-positive breast cancer, as a single agent 

or in combination with chemotherapy for 

adjuvant or palliative treatment 

(b) HER2-positive gastric or gastroesophageal 

junction carcinoma, as first-line treatment in 

combination with cisplatin and capecitabine/5-

fluorouracil 

Inhibition of 

HER2 signaling; 

ADCC 

Bevacizumab 

(Avastin) 
VEGF 

Palliative treatment of colorectal cancer, non-

squamous non-small cell lung cancer, 

glioblastoma, or renal cell carcinoma 

Inhibition of 

VEGF signaling 

Cetuximab 

(Erbitux) 
EGFR 

(a) Initial treatment of locally or regionally 

advanced squamous cell cancer of the head and 

neck (SCCHN) in combination with radiation 

Inhibition of 

EGFR signaling; 

http://www.fda.gov/safety/medwatch/safetyinformation/safetyalertsforhumanmedicalproducts/ucm216458.htm
http://www.fda.gov/safety/medwatch/safetyinformation/safetyalertsforhumanmedicalproducts/ucm216458.htm
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therapy 

(b) Single agent for SCCHN patients who failed 

prior platinum-based therapy  

(c) Palliative treatment of pre-treated metastatic 

EGFR-positive colorectal cancer 

ADCC 

Panitumumab 

(Vectibix) 
EGFR 

Single palliative treatment of pre-treated EGFR-

expressing metastatic colorectal carcinoma 

Inhibition of 

EGFR signaling 

Ipilimumab 

(Yervoy) 
CTLA-4 

Treatment of unresectable or metastatic 

melanoma 

Inhibition of 

CTLA-4 signaling 

Rituximab 

(Rituxan® and 

Mabthera) 

CD20 

(a) Treatment of CD20-positive B cell non-

Hodgkin lymphoma (NHL) and chronic 

lymphocytic leukemia (CLL) 

(b) Maintenance therapy for untreated follicular 

CD20-positive NHL 

ADCC; direct 

induction of 

apoptosis; CDC 

Ofatumumab 

(Arzerra) 
CD20 

Treatment of patients with CLL refractory to 

fludarabine and alemtuzumab 
ADCC; CDC 

90Y-Ibritumomab 

Tiuxetan 

(Zevalin) 

CD20 

(a) Treatment of relapsed or refractory, low-

grade, or follicular B cell NHL 

(b) Previously untreated follicular NHL in patients 

who achieve a partial or complete response to 

first-line chemotherapy 

Delivery of the 

radio-isotope 

yttrium-90 

131I-Tositumumab 

(Bexxar) 
CD20 

Treatment of patients with CD20 antigen-

expressing relapsed or refractory low-grade, 

follicular, or transformed NHL 

Delivery of the 

radio-isotope 

iodine-131; 

ADCC; direct 

induction of 

apoptosis 

Brentuximab 

vedotin 

(Adcetris) 

CD30 
Treatment of relapsed or refractory Hodgkin 

lymphoma and systemic anaplastic lymphoma 

Delivery of toxic 

payload, 

auristatin toxin 
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Alemtuzumab 

(Campath) 
CD52 Single agent for the treatment of B cell CLL 

Direct induction 

of apoptosis; 

CDC 

Table 2. Characteristics of currently FDA-approved mAbs in oncology (adapted from Scott, Allison et al., 

2012). 

The treatment of cancer patients with T cell populations that have been previously expanded ex 

vivo is called adoptive T cell therapy (ACT). After re-infusion into the patient, T cells can traffic to 

the tumor and mediate its destruction (Restifo, Dudley et al., 2012). Two major sources of T 

lymphocytes for ACT are TILs and the peripheral blood of the patient. T cell harvesting from 

peripheral blood is technically easier, but this approach proved to be effective only when the 

frequency of tumor antigen-specific T cell precursors is relatively high. This is the case of EBV-

specific T cells, which can be easily expanded virtually from all EBV-positive subjects and have 

been infused in a relevant number of patients with virus-driven malignancies (Bollard, Rooney et 

al., 2012). TILs from the tumor mass or its adjacent lymph nodes contain an even higher 

frequency of tumor-reactive cells (Dougan and Dranoff, 2009). After isolation, TILs are generally 

cultured in vitro with IL-2, and the populations displaying the desired TCR specificity are selected 

and expanded (Rosenberg, Packard et al., 1988). Before re-infusion of T cells, patients are 

immunodepleted by chemotherapy alone or chemotherapy in combination with total-body 

irradiation. This non-myeloblative, lymphodepleting step is associated with enhanced persistence 

of the transferred T cells (Dudley, Wunderlich et al., 2005; Gattinoni, Powell et al., 2006). In spite 

of successful outcomes in metastatic melanoma patients, the protocol just described has its 

major limitation in the recruitment of sufficient numbers of TILs in other cancer histotypes than 

melanoma (Wayteck, Breckpot et al., 2013). Moreover, isolation and expansion of TILs can take 5 

to 6 weeks, making this treatment difficult for patients with progressive disease (Ito and Chang, 

2013). In order to overcome these problems, T cells can be genetically engineered using three 

different approaches represented in Fig. 2. The first strategy consists in engineering patient T 

cells to express TCRs that have been selected for tumor recognition (Fig. 2a). Successful 

responses have been observed in metastatic melanoma; however, TCR recognition of antigen is 

MHC-restricted, and thus engineered TCR can only be used in patients with the appropriate MHC 

allele (Morgan, Dudley et al., 2006). MHC restriction can be bypassed by engineering T cells to 

express novel chimeric antigen receptors (CARs) (Fig. 2b). CARs can be generated in a variety of 

ways. Most commonly, sequences encoding the variable regions of antibodies are engineered to 
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encode a single chain, which is genetically engrafted onto the TCR intracellular domains that are 

capable of activating T cells (Restifo, Dudley et al., 2012). The main advantage of CARs is 

represented by the ability to redirect T lymphocyte activity towards a selected, even non protein, 

target antigen in a non-MHC-restricted fashion, exploiting the antigen-binding properties of 

mAbs. The recognition of tumor antigens in a non-MHC-restricted manner enables CAR-

expressing cells to be not affected by down-regulation of human leukocyte antigen (HLA) class I 

antigens and by defects in the antigen-processing machinery of tumor cells (Baxevanis and 

Papamichail, 2004). Another approach is to isolate TCRs from humanized mice that have been 

primed to recognize tumor antigens (Fig. 2c). Mouse T cells specific for the MHC-restricted 

epitope of interest can be isolated, and their TCR genes cloned into recombinant vectors used to 

genetically engineer T cells collected from the patient (Restifo, Dudley et al., 2012).  

 

Figure 2. Approaches to confer specificity for tumor antigens by genetic engineering of T cells.  (a) T cells 

are harvested from the tumor of the patient and their TCRs can be cloned and inserted into retroviruses or 

lentiviruses in order to infect autologous T cells. (b) Alternatively, T cells are engineered to express CAR, 

and thus problems concerning the MHC-restricted TCR recognition of a tumor antigen can be 

circumvented. (c) TCR can be also obtained from humanized mice previously immunized with the antigen of 
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interest. Mouse T cells specific for the MHC-restricted epitope are isolated, their TCR cloned and used to 

genetically engineer T cell from the patient (from Baxevanis, Perez et al., 2009). 

2.2. Active immunotherapy: cancer vaccines  

Active immunotherapy approaches, namely cancer vaccination, consist of stimulating the 

patient’s own immune system to recognize and destroy malignant cells. The advantages of this 

strategy is the induction of a sustained anti-tumor response that can lead to immunological 

memory, thus insuring tumor protection against future relapses (Ito and Chang, 2013). Differently 

from active immunization for infectious disease, which triggers robust immune responses against 

foreign antigens, cancer vaccination has to deal with antigens perceived by the host’s immune 

system as self-proteins. Hence, the major challenge for cancer vaccines is to break the immune 

tolerance to the TAA of interest, mounting an effective and specific anti-tumor immune reaction 

against malignant cells (Mocellin, Rossi et al., 2004; Strioga, Darinskas et al., 2014). Current 

cancer vaccines attempt to improve tumor antigen presentation and host T lymphocyte activation 

by enhancing antigenic peptide-MHC molecule stability, by restoring costimulatory signals, and by 

amplifying recruitment of the patient’s immune effector cells (Rousseau, Hirschmann-Jax et al., 

2001). To achieve these goals, several vaccine formulations have been designed, which can be 

divided into seven main groups (Fig. 3): 
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Figure 3. Principal approaches investigated for cancer vaccination (from Mocellin, Mandruzzato et al., 

2004). 

a) Whole tumor cells or tumor cell lysates vaccines. The first types of antitumor vaccines were 

composed of either irradiated or lysated human autologous or allogenic tumor cells. Use of whole 

cells as antigen sources was appealing since these vaccines contain a large repertoire of tumor 

antigens and bypass the need for specific epitope identification (Mocellin, Mandruzzato et al., 

2004; Pejawar-Gaddy and Finn, 2008). Tumor cells can be also engineered to become more 

immunogenic, for example by inducing the expression of costimulatory molecules and/or 

cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-2, which 

recruit and activate antigen-presenting cells (APC) at the injection site, thus favoring the upload 

of tumor antigens and their presentation to T cells in secondary lymphoid organs (Pardoll, 1998; 

Mocellin, Mandruzzato et al., 2004). 

b) DC-based vaccines. Since DC are the most powerful activators of naїve T cells and play a crucial 

role in activating antigen-specific immune responses (Dougan and Dranoff, 2009; Lewis and 

Reizis, 2012), they are widely used in antitumor vaccination protocols. DCs can be directly 

isolated from peripheral blood or obtained through ex vivo culturing from peripheral blood 

precursors. In both cases, the cells are then loaded with tumor peptides, whole proteins, whole 



Introduction 

22 

 

necrotic or apoptotic tumor cells, tumor cell lysates and transfected or transduced with tumor-

derived DNA or mRNA and viral vectors containing the tumor antigen of interest, respectively. 

Alternatively, DCs can be fused with tumor cells (Gilboa, 2007; Pejawar-Gaddy and Finn, 2008). 

DC-based cancer vaccines appear promising in terms of efficacy, but this approach is afflicted by 

two main problems emerged in clinical trials, i.e. the need to define a standardized protocol and 

to minimize cost and time required for such treatments. The latter problem was in part solved by 

the direct delivery of antigens to DCs in vivo; however, a better understanding of DC biology in 

tumor environment will provide a rationale for choosing the best DC population and modulation 

method for optimized DC-based vaccination protocols (Palucka, Ueno et al., 2011). 

c) DNA or RNA-based vaccines. The use of naked DNA or RNA encoding the tumor antigen of 

interest as a vaccine has been extensively exploited because of their ease of production (Pejawar-

Gaddy and Finn, 2008). Administration of DNA or RNA by injection or gene gun introduces tumor 

antigen genes directly into DCs for endogenous processing and presentation to T and B cells, or 

into other host cells for cross-presentation by DCs (Rice, Ottensmeier et al., 2008). This 

vaccination strategy seems to mediate antibody and cellular immune responses in mice; however, 

some preclinical experiments have shown engagement of Th2-skewed responses, leading to 

inefficient CTL responses (Berzofsky, Terabe et al., 2004; Nava-Parada, Forni et al., 2007). To 

partly circumvent this problem, naked DNA or RNA can also contain specific sequences encoding 

for molecules such as oligo- cytosine phosphoguanosine (CpG), which are able to potentiate and 

regulate immune responses, and thus called immune potentiator or immune adjuvants (Mocellin, 

Mandruzzato et al., 2004).  

d) Recombinant viral and bacterial vaccines. Naked DNA and RNA can be made more immunogenic 

by incorporating them into viral or bacterial vectors. Both vectors are an attractive choice for 

antigen delivery because they mimic a natural infection, providing the necessary “danger signals” 

required for optimal activation of APCs (Pejawar-Gaddy and Finn, 2008). However, the possible 

preexisting immunity against viral vectors may attenuate antitumor responses (Saxena, Van et al., 

2013) and the immunodominance of viral or bacterial antigens over tumor antigens can lead to 

weak responses against the latter ones (Berzofsky, Terabe et al., 2004). 

e) Anti-idiotypic antibody-based vaccines. Administration of mouse mAbs specific for a tumor 

antigen induces the formation of autologous antibodies (Abs) against mAbs. Such Abs specific for 

determinants within the antigen binding site of the original mAb are called anti-idiotypic 

antibodies. The anti-idiotypic antibody could mimic the antigen that induced the original 

antibody, and thus it can function as a surrogate antigen able to stimulate specific immune 
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responses. The advantage of anti-idiotypic antibody vaccination is that it can confer protection 

against non-protein antigens, such as tumor specific sugars or lipids (Pejawar-Gaddy and Finn, 

2008; Gómez and Ardigo, 2012). 

f) Heat-shock protein-based vaccines. These ubiquitous intracellular proteins function as 

chaperones for peptides, including those derived from tumor antigens. All DCs express a specific 

receptor for heat-shock proteins, named CD91, whose engagement triggers immature DCs (iDCs) 

to become potent APC. Therefore, heat-shock proteins can be exploited as an endogenous signal 

and a vehicle for DCs to cross-present tumor antigens (Mocellin, Mandruzzato et al., 2004). The 

ability of heat-shock protein-peptide complexes to stimulate both innate and adaptive responses 

has recently shown promising results in patients with initial stages of melanoma and renal clear 

cell cancer (Ciocca, Cayado-Gutierrez et al., 2012). 

g) Recombinant proteins and antigenic peptides. Protein- and peptide-based antigen vaccines were 

among the first defined vaccines demonstrating both protective and therapeutic efficacy in 

animal models (Lollini, Cavallo et al., 2013). As TAA and, even more, TAA-derived peptides are in 

general poorly immunogenic, this strategy is usually based on the administration of these 

products with an appropriate immunological adjuvant in order to optimize antitumor responses. 

Protein-based vaccines represent an appealing type of cancer vaccination as some recombinant 

proteins are easily producible by recombinant technology and circumvent the need to know the 

sequence of immunogenic epitopes (Mocellin, Mandruzzato et al., 2004). With regard to anti-

HER2 positive breast cancer vaccination, it has been demonstrated that vaccination with whole 

HER2 protein, its intracellular domain (ICD) or ECD together with adjuvants or cytokines, 

displayed strong immune responses (Ladjemi, Jacot et al., 2010). In fact, proteins usually contain 

several MHC restricted epitopes recognized by both CTL and Th lymphocytes, and linear or 

conformational epitopes that can be recognized by Abs. However, for those recombinant proteins 

whose production is high cost and laborious, as regard also safety control (Lollini, Cavallo et al., 

2013), the use of peptide as vaccines represents a valid alternative option. Indeed, peptides are 

easier to produce and seem to be more specific and able to elicit stronger humoral and cellular 

responses according to the MHC type restriction of the epitope identified (Ladjemi, Jacot et al., 

2010). The first peptide vaccines investigated were composed of MHC class I-restricted epitopes, 

also defined as CTL epitopes, but immunological and clinical responses observed were limited. In 

fact, usually free peptides likely have poor pharmacokinetic properties, and due to a short half-

life, they may be rapidly cleared before being loaded onto DCs. Without any adjuvant, DCs might 

not mature and promote tolerance (Mellman, Coukos et al., 2011). Several approaches have been 
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tested to overcome these problems. For example, as preclinical studies have demonstrated that 

tumor-specific Th cells critically contribute to the development and efficacy of antitumor 

responses, CTL epitopes physically linked to Th epitopes were explored with successful results 

(Sotiriadou, Kallinteris et al., 2007). Alternatively, CTL epitopes can be conjugated to TLRs ligands, 

or to universal, non-specific MHC class II-restricted epitopes, such as pan-DR Th epitope (PADRE) 

(Baxevanis, Perez et al., 2009; Rescigno, Avogadri et al., 2007). Finally, another promising strategy 

to potentiate both protein- and peptide-based vaccines is the use of DC-activating adjuvants, in 

particular TLR ligands such as monophosphoryl lipid A (MPL) or poly-L-lysine and 

carboxymethylcellulose (poly-ICLC, Hiltonol) (Cluff, 2010; Kimura, McKolanis et al., 2013). 

All the approaches described above have been exploited in both therapeutic and prophylactic 

cancer vaccination strategies. 

The vast majority of cancer vaccines in development are therapeutic cancer vaccines, which are 

designed for the administration to patients already diagnosed with cancer. In particular, because 

many tumors can be surgically removed and there is often a latency period between removal and 

tumor recurrence, cancer vaccines have been proposed as an approach to elicit and/or boost 

antitumor immunity in patients with minimal residual disease, thereby preventing relapse or 

prolonging the time to recurrence (Finn, 2003). However, the success rate of therapeutic cancer 

vaccines is not impressive (Rosenberg, Yang et al., 2004). In 2010 the only one of the more than 

1000 therapeutic cancer vaccines tested in clinical trials that has been approved by FDA, named 

sipuleucel-T or Provenge (Dendreon) (Schreiber, Raez et al., 2010), had arose new interest in this 

therapeutic field. Provenge is approved for the treatment of patients with metastatic, castration-

resistant prostate cancer (CRPC), as it is designed to stimulate T cell immune responses against 

prostate acid phosphatase (PAP), an antigen highly expressed by prostate cancer cells but not by 

other tissues. Provenge consists of autologous APCs loaded with PAP linked to the 

immunostimulatory cytokine GM-CSF (Yaddanapudi, Mitchell et al., 2013). Despite the initial 

clamor for Provenge, clinical monitoring showed the weak efficacy of this treatment. The failure is 

probably attributable to an incomplete understanding of the relationship between tumor 

development, tumor microenvironment and immune system. In particular, therapeutic 

vaccination must bypass immune regulatory mechanisms that have already led to tumor 

tolerance (Dougan and Dranoff, 2009). The inability of therapeutic vaccination to eradicate 

tumors may be due to both the intratumoral and systemic suppressive milieu orchestrated by the 

tumor (Baxevanis, Perez et al., 2009), the so called tumor micro- and macroenvironment 

(Gabrilovich, Ostrand-Rosenberg et al, 2012). Consequently, clinical trials are planned to combine 
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Provenge with anti-CTLA-4 or anti-PD-1 treatments in order to improve its efficacy. To date, the 

combination of vaccination with antibodies, cytokines, chemokines, enzymes, or ligands of TLRs 

that implement and modulate antitumor responses is a common strategy (Berzofsky, 2011); 

however, this “push-pull” approach should be better investigated to compare risks to benefits. 

Indeed, the use of anti-CTLA-4 or anti-PD-1 mAbs can sometimes cause significant toxicities, 

namely autoimmune reactions, due to lack of specificity. Moreover, an important point that 

should not be ignored is the high cost of these treatments, plus the cost of hospitalization due to 

their administration and/or increased toxicity. Hence, new immunological adjuvants and delivery 

systems are now under development as potentially cheaper, safer, and more efficient strategies 

to improve anticancer vaccination protocols (Finn, 2014). 

Prophylactic vaccines have been used successfully for the prevention of cancers of viral etiology, 

such as hepatitis B virus (HBV) and HPV. In fact, HBV vaccines protect against HBV infection, and 

the potentially subsequent cirrhosis and hepatocellular carcinoma. The original anti-HBV vaccine, 

Heptavax (Merck), was approved in 1981, and was the first anticancer prophylactic vaccine to get 

into the clinic. The vaccine is based on nanoparticles containing the recombinant HBV surface 

antigen (HBsAg), which is highly immunogenic and able to convey lifelong immunity. The two 

FDA-approved HPV vaccines, Gardasil (Merck) and Cervarix (GlaxoSmithKline), disclose effective 

protection against cervical infection with the two main types of HPV (HPV type 16 and 18), which 

cause approximately 70% of all cases of cervical cancer worldwide (Yaddanapudi, Mitchell et al., 

2013). Moreover, these vaccines have been shown to prevent also vaginal, vulvar, and anal 

precancerous lesions (Ito and Chang, 2013). Similar to other vaccines for the prophylaxis of viral 

infections, the efficacy of Heptavax, Gardasil, and Cervarix relies on the generation of a strong 

neutralizing antibody response against immunodominant viral antigens (Yaddanapudi, Mitchell et 

al., 2013). However, the major challenge in prophylactic vaccination remains the design and 

validation of vaccines that specifically target cancers not associated to infectious agents. The 

decisive support for preventive anticancer vaccines had come from many years of experiments in 

animal models, which thanks to genetic engineering progressively better recapitulate human 

diseases. These preclinical studies have highlighted the high effectiveness and safety profile of 

prophylactic vaccination against various types of cancer antigens (Finn and Forni, 2002; Iinuma, 

Homma et al., 2004; Garcia-Hernandez, Gray et al., 2008). Indeed, prophylactic vaccination can 

elicit tumor-specific immunity and establish also long-term memory without causing autoimmune 

reactions, as widely demonstrated in the case of breast cancer vaccines (Disis, Gooley et al., 2002; 

Tanaka, Amos et al., 2003).  
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3. Vaccine immunology: from innate to adaptive immunity 

Long-term protection is a complex challenge for vaccine development. It requires the persistence 

of Abs and/or the generation of immune memory cells capable of rapid and effective reactivation 

upon subsequent antigen exposure. Parameters of immune memory induction, namely the 

presence of persisting Abs and immune memory cells, are thus essential to evaluate long-term 

vaccine efficacy (Plotkin, Orenstein et al., 2012).  

Vaccine-induced immune effectors are essentially Abs, capable of specific binding to toxins, 

pathogens and others extracellular antigens, and cytotoxic CD8+ T lymphocytes, which can limit 

the spread of diseases by recognizing and killing target cells directly or by secretion of specific 

cytokines (Pardoll, 2002; Plotkin, Orenstein et al., 2012). The generation and maintenance of both 

humoral and cellular responses are supported by growth factors and signals released by CD4+ T 

helper lymphocytes. According to their specific effector mechanisms, they are grouped into 

different subsets, Th1 and Th2 being the most common ones. These cells are controlled by Treg 

that are involved in maintaining immune tolerance (Bacchetta, Gregori et al., 2005). The 

induction of antigen-specific B and T cell responses requires activation through specific APCs, 

essentially DCs, which must be recruited into the site of antigen administration.  

Briefly, following vaccine injection, antigens and/or adjuvants must provide sufficient danger 

signals to attract to the site of injection cells of the innate immune system that trigger an 

inflammatory reaction (Lollini, Cavallo et al., 2006). Components of vaccine formulation of viral or 

bacterial origin trigger in general a classical inflammatory reaction; conversely, when the 

inflammation is not pathogen-induced, a reaction termed “sterile inflammation” arises. In both 

cases, the same host receptors mediate the immune responses, and have been collectively 

termed pattern recognition receptors (PRRs). These germline-encoded receptors are subdivided 

into five subclasses: a) TLRs, which are transmembrane proteins located at the cell surface or in 

endosomes; b) NOD-like receptors (NLRs), intracellular proteins that are primarily involved in 

antiviral responses; c) retinoic-inducible gene (RIG)-I-like receptors (RLRs), which are located 

intracellularly and are primarily involved in antiviral responses; d) C-type lectin receptors (CLRs), 

transmembrane receptors that are characterized by the presence of a carbohydrate-binding 

domain; e) absence in melanoma 2 (AIM2)-like receptors, characterized by the presence of a 

pyrin domain and a DNA-binding HIN domain involved in the detection of intracellular microbial 

DNA. PRRs recognize conserved structural moieties that are found in microorganisms, named 

PAMPs, and also non-infectious material that can cause tissue damage and endogenous 
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molecules that are released during cellular injury or cell death, called DAMPs. DAMPs have similar 

functions as PAMPs in terms of ability to activate proinflammatory pathways. While PAMPs are 

able to trigger classical inflammatory reactions, DAMPs are involved in sterile inflammations. In 

both cases, following ligand recognition PRRs activate downstream signaling pathways, such as 

NF-κB, mitogen-activated protein kinase (MAPK), and type I interferon pathways, resulting in the 

upregulation of proinflammatory cytokines and chemokines (Chen and Nuñez, 2010). Among 

PRRs, TLRs play a central role in sensing danger signals; moreover, as TLR subtypes senses 

different stimuli, every TLR-ligand triggers the secretion of different molecules, thus influencing 

and regulating the type of adaptive immune responses elicited (Pulendran, 2004). 

If an appropriate inflammatory microenvironment arises as a result of vaccine injection, 

extravasation and attraction of PRRs-expressing innate immune cells occur. In fact, these cells, 

such as iDCs, monocytes and neutrophils, recognize DAMPs or PAMPs from the 

microenvironment through their PRRs, become activated, and migrate along the lymphatic 

vessels to the draining lymph nodes where they in turn activate T and B lymphocytes (Plotkin, 

Orenstein et al., 2012). Among cells of the innate compartment, mature DCs (mDCs) play a crucial 

role in sensing foreign antigens, either directly or indirectly, and regulating the strength, quality, 

and persistence of the adaptive immune response. Thus, DCs are the bridge between innate and 

adaptive immunity (Pulendran and Ahmed, 2006; Schijns, Tartour et al., 2014). Antigen 

recognition, in particular through TLRs, triggers DCs maturation, which occurs during their 

migration toward the draining lymph nodes and is characterized by antigen processing and 

modification of the expression of homing receptors (Pardoll 2002). In fact, iDCs express low levels 

of MHC class I and II, costimulatory and adhesion molecules such as CD40, CD80 and CD86 and, 

hence, are poor stimulators of T cells. Upon recognition and internalization by DCs, exogenous 

antigens are degraded into small antigenic peptides in phagolysosomes and processed for 

presentation in the context of MHC-II molecules, while endogenous antigens are processed in 

proteasomes and presented in the context of MHC class I molecules. However, exogenous 

antigens can also be presented through MHC class I, and endogenous ones via MHC class II 

(Beverley, 2002). In the draining lymph nodes mDCs present antigenic peptides to naïve CD4+ T 

cells in the context of MHC class II, or to cytotoxic CD8+ T cells in the context of MHC class I. This 

process of T cell activation is primarily regulated by signaling events derived from MHC-peptide 

and TCR interaction (signal 1), and from costimulatory and adhesion molecules such as CD80, 

CD86, CD40, CD54, CD58 on mDCs (or other APCs) and CD28, CD154, CD2, CD11a on T cells (signal 

2). For example, CD80 and/or CD86-CD28 interactions provide important signals for T cell 
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activation and survival, while CD40-CD154 interactions are crucial for the development of CD4+ T-

dependent effector functions such as help for B cell differentiation and class switch. Additional 

signals are immunomodulatory cytokines (signal 3) produced by activated APCs that dictate the 

polarization of CD4+ T cells towards Th1 or Th2 subtypes: IL-12 has an important role in the 

differentiation of Th1 cells, while IL-4 is crucial for Th2 differentiation (Aimanianda, Haensler et 

al., 2009). Notably, in the absence of appropriate danger signals, DCs remain immature: upon 

contact with naïve T cells, T cells do not differentiate into immune effectors, but into Treg that 

maintain immune tolerance (Bacchetta, Gregori et al., 2005). Immune responses and consequent 

disease outcome are influenced by many factors, but Th1 and Th2 lymphocytes represents the 

key elements in controlling the functions of other immune cells. Many cytokines are produced by 

both Th subtypes, such as tumor necrosis factor α (TNFα), IL-3, IL-6, and GM-CSF; however, only 

Th1 effectors produce IL-2 and IFN-γ, which principally mediate cellular immunity characterized 

by CTL activity, while Th2 cells produce IL-4, IL-5, IL-10, and IL-13, thus triggering strong humoral 

responses capable of eradicating extracellular parasites or cancer cells through antibody-

dependent mechanisms, principally ADCC and CDC. Thus, the balance between Th1 and Th2 

responses is a critical step to be considered during vaccine formulation (Beverley, 2002).  

In experimental animal models, numerous factors have been shown to influence the preferential 

differentiation of CD4+ T cells towards Th1 or Th2 pathways. These determinants include:  

a) dose of antigen, as lower vaccine doses are classically associated with preferential Th1 responses;  

b) route of administration, which targets distinct populations of DCs. For example, skin DCs 

preferentially induce Th1 responses; 

c) the extent and type of DCs activation, which is the main determinant of CD4+ T cell differentiation 

(Plotkin, Orenstein et al., 2012; Beverley, 2002); 

d) the type of vaccine adjuvant, as for example alum induces Th2-skewed immune responses 

(Lambrecht, Kool et al., 2009). 

As regards B cells, these lymphocytes are activated in the lymph nodes or spleen that have been 

reached by vaccine antigens, upon diffusion and/or in association to migrating DCs. In fact, naïve 

B cells generated in the bone marrow circulate through the body until they encounter a protein 

antigen that their specific surface IgM receptor may bind. Antigen recognition triggers B cell 

activation and upregulation of C-C chemokine receptor type 7 (CCR7), that drives antigen-specific 

B cells towards the outer T cell zone of secondary lymphoid tissues where they are exposed to 

recently activated DCs and T cells (Förster, Davalos-Misslitz et al., 2008). These interactions 

provide B cell activating signals, which rapidly drive B cell differentiation into plasma cells 
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secreting low-affinity germline Abs, in what is called the extrafollicular reaction (MacLennan, 

Toellner et al., 2003). During this differentiation, immunoglobulin (Ig) class-switch recombination 

from IgM toward IgG, IgA, or IgE occurs, owing to CD4+ Th1 and/or Th2 cells essential helper 

function, as this process is dictated by the engagement of CD40L molecules on Th cells with CD40 

on B cells. While in humans the distinction is not completely clear, in rodents IFN-γ producing Th1 

T cells promote class-switch towards IgG2a, whereas Th2 cells support the generation of IgG1 and 

IgE via IL-4, and IgG2b and IgG3 via TGF-β (Deenick, Hasbold et al., 2005). The extrafollicular 

reaction is rapid and short-lived as most cells die from apoptosis within a few days, leading to the 

production of Abs of germline affinity, in particular IgM, detectable at low levels in the serum. 

When some of these antigen-specific B cells reach specialized structures in the lymph 

nodes/spleen called germinal center (GCs) their differentiation into plasma cells producing high-

affinity Abs takes place. In fact, B cells are attracted into GCs by antigen-specific T follicular helper 

(Tfh) cells that have upregulated C-X-C chemokine receptor type 5 (CXCR5), and by C-X-C motif 

chemokine 13 (CXCL13)-expressing follicular dendritic cells (FDCs). The interaction between B 

cells, Tfh and FDCs initiate the GC reaction, during which B cells receive additional activation and 

survival signals undergoing massive clonal proliferation. The intense proliferation is associated to 

two major events: Ig class-switch recombination from IgM towards IgG, IgA, or IgE, and 

maturation of the affinity for the specific antigen. This results into a massive production of Abs of 

a higher antigen binding ability. Since the development of the GC reaction generally requires a 

couple of weeks, hypermutated IgGs specific for protein antigens first appear in the blood 10-14 

days after priming, with peak value usually at 4 weeks after immunization. Feedback mechanisms 

terminate GC reaction within maximum 6 weeks, a period during which a large number of 

antigen-specific plasma cells have been generated. At the end of this reaction, some plasma cells 

exit the lymph nodes/spleen and migrate to the bone marrow, where they survive through signals 

provided by supporting stromal cells. In secondary immune responses, booster exposure to 

antigen reactivates immune memory and results in a rapid increase of IgG titer (Plotkin, Orenstein 

et al., 2012) (Fig. 4). 
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Figure 4. Correlation of IgG titers to the different phases of vaccine response. The first antigen exposure 

triggers an extrafollicular response (1) with production of Abs of germline affinity, with low levels of IgG. As 

B cells proliferate in GCs and differentiate into plasma cells, IgG titers reach a peak value (2); however, the 

short life span of these cells results in a rapid decline of the response (3), returning to baseline levels (4). In 

secondary immune responses, booster exposure to antigen reactivates immune memory B cells, resulting 

in a rapid increase of IgG titers (5). Short-lived plasma cells maintain peak of IgG levels (6) for a few weeks, 

which then decline initially with the same rapid kinetic observed with primary immunization (7), than 

slower as long-lived plasma cells that have reached survival niches in the bone marrow continue to produce 

antigen-specific Abs (8) (from Plotkin, Orenstein et al., 2012). 

The intensity and duration of antibody responses is a function of numerous determinants:  

a) the nature of the vaccine antigen and its intrinsic immunogenicity, which can be increased by 

vaccine adjuvants (Chowdhury and Ghosh, 2012); 

b) the use of an optimal dose of vaccine antigen, which can be lower employing the right 

immunological adjuvant (Coffman, Sher et al., 2010);  

c) genetic determinants (Plotkin, Orenstein et al., 2012);  

d) number of vaccine doses, as very few protein-, polysaccharides-, or inactivated microorganisms-

based vaccines induce high and sustained antibody responses after a single vaccine dose. The 

prime-boost strategy allows the presentation of high quantities of immunogen in the draining 

lymph nodes at several time points. The first dose initiates responses in which DCs and naїve 

immune cells are particularly involved, while boosts induce the activation of both effector and 
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memory cells (Wilson-Welder, Torres et al., 2009). Adjuvants permit immunization with fewer 

doses of vaccine (Coffman, Sher et al., 2010); 

e) antigen persistence, which influences the generation of both memory T and B cells. Also in this 

case, antigen persistence can be improved by vaccine adjuvants (Awate, Babiuk et al., 2013). 

3.1 Challenges and problems of cancer vaccines  

The design of cancer vaccines is a great challenge for immunologists. In addition to the choice of 

the right antigen and adjuvant, the induction of the right type of immune response is crucial for 

tumor eradication. As the events regulating homeostasis of the immune system and the 

development of a protective immune response are coordinated to a large extent by cytokines 

produced by Th1 and Th2 lymphocytes, the role of Th1/Th2 balance has been widely investigated 

in cancer vaccine protocols, along with CTL and Abs activity.  

Most clinical studies have demonstrated that alterations of Th1 and Th2 cytokine profile were 

usually characterized by decreased Th1/Th2 ratio in patients with different tumors including 

laryngo-pharyngeal HPV-positive (Bleotu, Chifiriuc et al., 2012), gastric (Ubukata, Motohashi et 

al., 2010), breast (Hong, Yao et al., 2013), bladder (Satyam, Singh et al., 2009), lung (Caras, 

Grigorescu et al., 2004), and pancreatic cancers (Tassi, Braga et al., 2009). Evidences obtained 

using a transgenic mouse model of breast cancer suggest that IL-4-mediated Th2 responses 

regulate the skewing of tumor-associated macrophages toward a type 2 (M2) phenotype 

(DeNardo, Barreto et al., 2009). In turn, M2 cells secrete immunosuppressive cytokines and 

promote tumor cell growth and invasion (Disis, 2010). 

Data from cancer vaccination in preclinical and clinical studies firmly support the idea that 

protective and therapeutic immune responses are mainly based on Th1 cytokines, in particular 

IFN-γ, with the induction of a potent CTL response. For example, when compared to DNA 

vaccination, which does not generate detectable CTL activity, better antitumor immune 

responses have been obtained in BALB-neuT transgenic mice vaccinated with a HER2 peptide and 

a TLR agonist as adjuvant, since tumor protection and eradication appeared to be mainly due to 

the activation of a strong CTL activity (Nava-Parada, Forni et al., 2007). Moreover, Th1-specific 

immunity and in particular CD8+ T cell recruitment have been demonstrated to correlate with 

better protective and therapeutic responses in patients with different tumor histotypes (Dredge, 

Marriott et al., 2002; Wang, Selleri et al., 2008).  
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Several data support the importance of the protective potential of Th1-isotype antibodies. In 

particular, in transgenic mouse models the IgG2a subclass appeared to play a pivotal role in 

tumor protection for anti-HER2 vaccination strategies, although it is still not clear whether the 

protective activity of IgG2a is dependent on complement-fixation activity, deprivation of HER2-

mediated growth signals and/or other mechanisms. Moreover, some vaccination protocols in 

CTL-depleted BALB-neuT mice demonstrated that tumor protection appeared to be primarily 

mediated by antibody production (Nanni, Landuzzi et al., 2004; Park, Terabe et al., 2005). Fig. 5 

summarizes this Th1-skewed preferred scenario of immune responses triggered by a vaccine 

against a membrane oncoantigen, the most targeted antigen type in prophylactic cancer 

vaccinations.  
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Figure 5. Vaccine-triggered Th1 immune responses against membrane oncoantigens. Administration of 

antigen and adjuvant triggers an inflammatory reaction that attracts polymorphonuclear cells (PMNs), 

macrophages, and DCs, which capture and process the antigen in order to present it to Th cells at the site 

of vaccine injection and/or in the draining lymph nodes. The activation of Th1 cells causes the release of 

IFN-γ that contributes to CTL activation and differentiation of B cells into plasma cells, which in turn 

produce different Abs and in particular IgG2a (in rodents). Th cells and CTLs migrate from the lymph nodes 

and infiltrate the precancerous lesion, recruiting activated PMNs and macrophages, and releasing TNFα and 

IFN-γ. These cytokines are cytostatic for tumor cells and increase MHC class I expression on both normal 

and tumor cells; moreover, IFN-γ blocks the tumor-driven angiogenesis and inhibits tumor invasion. Abs 

that recognize tumor antigen can trigger CDC, ADCC, antigen internalization and degradation, inhibit cell 

signaling, and/or block cell proliferation (from Lollini, Cavallo et al., 2006).  
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However, despite the importance of Th1-skewed responses in tumor vaccination, even Th2 

cytokines and Abs can partly contribute to antitumor immunity (Ellyard, Simson et al., 2007). For 

example, although IL-10 is considered an inhibitor agent of TAA presentation by DCs, several 

preclinical models have shown that this Th2-type cytokine can also mediate tumor regression by 

stimulating NK cells and CTL activity (Mocellin, Marincola et al., 2004). Possibly, successful 

antitumor prevention and rejection reside in a fine balance between Th1 and Th2 responses, as 

recently demonstrated in a comparative study of the two HPV-vaccines Gardasil and Cervarix. 

This study has shown that even if both formulations efficiently induce protective immunity and 

diminish the associated cervical intraepithelial neoplasia in young women, Cervarix produces 

significantly higher titers (about 3.7-fold) of neutralizing Abs to HPV type 16 than does Gardasil, 

as well as more memory cells. Indeed, Gardasil contains only alum, with consequent Th2-skewed 

immune responses, while Cervarix contains AS04, an immune potentiator composed of alum and 

3-O-desacyl-42-monophosphoryl lipid A (MPL), a TLR4 ligand that instead induces Th1 immunity 

(Giannini, Hannon et al., 2006). Hence, the design of more efficient and safer cancer vaccines 

requires further studies to better understand how Th1 and Th2 immunity are involved in 

immune-mediated tumor rejection.  

Potential side effects represent another problem concerning cancer vaccines (Fig. 6).  
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Figure 6. Side effects of cancer vaccination. Vaccination against tumor antigens can elicit undesired 

immune responses in the host. Degradation of vaccine components is accompanied by local inflammation 

whose degree is predominantly dependent on the type of immune adjuvant employed. Indeed, adjuvants 

determine the magnitude and type of both local reactions, which are mediated by infiltrating leukocytes, as 

well as systemic inflammation, which instead is provoked by cytokines that have reached the bloodstream. 

Mild adenopathy can develop in the draining lymph nodes as a consequence of antigen presentation, cell 

migration, and proliferation. Autoimmunity is the most severe side effect associated with vaccines 
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targeting antigens that are also expressed by normal tissues. Autoimmune reactions can be directed also 

against normal components antigenically related to the antigen but not included in the vaccine, a 

phenomenon called antigen spreading (from Lollini, Cavallo et al., 2006).  

Although, in general, vaccines are among the safest products of modern medicine, they are 

constantly the subject of suspicious and apprehension (Ritvo, Wilson et al., 2005). In a patient 

with a life-threatening cancer, side effects of treatments are in general balanced by the antitumor 

benefits achieved; however, these effects are not acceptable for preventive vaccines, which are 

given to healthy people for long periods of their life. Inflammatory reactions that follow vaccine 

injection are usually local and transient. The release of proinflammatory cytokines such as IFN-γ 

or TNFα can sometimes induce a mild, systemic flu-like syndrome, characterized by fever, 

headache, fatigue, and musculoskeletal pain. The major cause of these side effects are adjuvants, 

in particular those employed for cancer vaccine protocols, which are much more potent, and thus 

much more toxic than those utilized for prevention of infectious diseases (Petrovsky and Aguilar, 

2004; Lollini, Cavallo et al., 2006). However, repeated administrations of vaccine taper off this 

kind of side effects. The major problem concerning cancer vaccines is the fact that they target 

self-antigens and consequently they may induce autoimmune responses, which are dependent on 

both the type of targeted tumor antigen and of immune response elicited. Nevertheless, 

overexpression of oncoantigens by cancer cells and elicitation of low-avidity reactions in tolerant 

hosts render the immune reaction selective and reduce risks. For these reasons, preventive 

cancer vaccination strategies generally target oncoantigens, such as HER2. In fact, different 

preclinical and clinical studies confirm that no signs of autoimmunity were found after HER2-

vaccination, supporting the evidences that low-avidity responses might be crucial in 

discriminating differences in HER2 expression between normal and tumor cells (Lo Iacono, Cavallo 

et al., 2005; Schiffman and Disis, 2010; Norell, Poschke et al., 2010). 

Finally, as already mentioned, the additional challenge for therapeutic cancer vaccination is 

represented by ageing- and tumor-induced immunosuppression and immune evasion 

mechanisms. With few exceptions, patients with diagnosed cancer are of advanced age. 

Unfortunately, it has been demonstrated that a progressive immune deterioration occurs during 

ageing, and consequently the capacity to generate primary and memory immune responses is 

extremely compromised (Lu and Cerny, 2002; Fulop, Le Page et al., 2014). The immune 

impairment is mainly due to the age-dependent thymic involution that determines a defect of 

both T-cell mediated and T-cell dependent functions. Some strategies have been designed to 

overcome age-related problems, but with few results. For example, engagement of the 

http://www.ncbi.nlm.nih.gov/pubmed?term=Petrovsky%20N%5BAuthor%5D&cauthor=true&cauthor_uid=15479434
http://www.ncbi.nlm.nih.gov/pubmed?term=Aguilar%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=15479434
http://www.ncbi.nlm.nih.gov/pubmed?term=Aguilar%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=15479434
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costimulatory molecule CD137 has shown to amplify T-cell responses in aged mice (Bansal-Pakala 

and Croft, 2002); moreover, some adjuvants may better stimulate immune responses in older, 

such in the case of the TLR ligand CpG, which seems to enhance Th1-cellular and humoral 

immunity in old mice (Maletto, Rópolo et al., 2005).  

Immune suppression and immune evasion mechanisms are common problems that cancer 

vaccination has to deal with. The type and magnitude of the immune response generated by 

cancer vaccines is essential for avoiding such undesired mechanisms. As explained by the cancer 

immunoediting theory, the selective pressure exerted by the immune system, whether activated 

spontaneously or by vaccination, leads to the selection of tumor clones that are poorly 

immunogenic. Thus, an immune response that is not strong enough to eradicate a tumor, leads to 

the selection of tumor variants that are less sensitive to immune responses (Dunn, Bruce et al., 

2002). In particular, when a therapeutic vaccination is administered all these mechanisms have 

already been established, and can be induced not only by tumor, but also by chemotherapy and 

age. The efficacy of preventive vaccines respect to the therapeutic ones is due to the fact that 

tumor cells have not accumulated enough genetic “hits” to evade immune system (Finn, 2014). In 

particular, vaccines targeting an oncoantigen that has not yet triggered tumorigenesis or is 

expressed only in a precancerous lesion can successful eradicate cells that proliferate at low rate, 

thus avoiding the possibility of clone selection and inhibiting lesion growth before complete 

neoplastic transformation takes place. Oncoantigens are suitable targets for tumor prevention as 

they permit to avoid tumor selection and escape, in particular because they regulate and control 

tumorigenesis. As the neoplastic process is dependent on these molecules, the probability of 

selection of tumor clones that have lost their expression is markedly reduced. Moreover, 

oncoantigens are expressed on the cell surface and are not impaired by down-modulation of 

MHC class I glycoproteins, a common mechanism by which tumor escape immune surveillance 

(Lollini, Cavallo et al., 2006). 

4. Vaccine adjuvants 

Very few antigens are intrinsically immunogenic and thus the majority of vaccine formulations 

requires adjuvants. Indeed, without a component able to engage both innate and adaptive 

immune cells, most non-adjuvanted and highly purified antigens induce tolerance rather than 

immunity (Matzinger, 1994). The word adjuvant comes from the Latin term “adjuvare”, which 

means “to help” or “to enhance”; in fact, vaccine adjuvants are molecules, compounds or 

macromolecular complexes that enhance the magnitude, breadth, quality, and longevity of 
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specific immune responses to antigens, causing minimal toxicity or long lasting immune effects on 

their own. The addition of adjuvants to vaccines permits to reduce the amount of antigen and/or 

number of immunizations required to achieve and modulate the desired immune responses, 

improving also the efficacy in poor responder populations including newborns, 

immunocompromised individuals, and elderly (Petrovsky and Aguilar, 2004; Dubensky and Reed, 

2010). Adjuvants have limited efficacy unless properly formulated and therefore both adjuvant 

components and formulation are crucial for enhancing vaccine potency (Reed, Bertholet et al., 

2009).  

The first observation of immune potentiation by adjuvants was made in 1893, when Coley 

observed that administration of killed bacteria (Coley’s toxins) could in some cases cure certain 

forms of cancer. Only in the 1990s it was determined that this effect was due to immune 

stimulation mediated via bacterial DNA (Plotkin, Orenstein et al., 2012). It took another two 

decades to recognize the potential of adjuvants in enhancing humoral immunity, when in 1925 

the French veterinarian Gaston Ramon noticed that the administration of diphtheria toxoid to 

horses with a variety of substances, including starch, plant extracts, or fish oils, increased vaccine 

efficacy, producing a more robust immune response than that obtained with the antigen alone 

(Ramon, 1925). A year later, Alexander Glenny and coworkers observed a similar effect with 

aluminum potassium sulfate, or alum (Glenny, Pope et al., 1926). Alum was used thereafter as an 

adjuvant in a wide number of human vaccines, and today in the form of aluminum oxyhydroxide 

or hydroxyphosphase is the only adjuvant approved for human use in the USA (Tritto, Mosca et 

al., 2009). Surprisingly, despite the wide use of alum and other adjuvants in human and animal 

formulations, their mechanisms of action are not fully characterized and this fact makes the 

adjuvants “the immunologists’ dirty little secret” (Janeway, 1989). However, recent advances in 

immunobiological research have revealed several mechanisms by which adjuvants act, which are 

represented in Fig. 7. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Petrovsky%20N%5BAuthor%5D&cauthor=true&cauthor_uid=15479434
http://www.ncbi.nlm.nih.gov/pubmed?term=Aguilar%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=15479434
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Figure 7. Proposed mechanisms of action of vaccine adjuvants. Adjuvants can mediate their activity 

through different mechanisms of action. Many adjuvants form a depot at the site of injection, which is 

associated with a slow release of antigen, and a persistent and more efficient presentation by APCs. 

Adjuvants can also create a proinflammatory microenvironment at the injection site with transient 

production of cytokines and chemokines, leading to recruitment of cells of the innate immune 

compartment. These cells express various PRR both on the surface and intracellularly, and after ligation of 

adjuvants to these receptors, they become mature and activated. Among recruited cells, DCs play a pivotal 

role in enhancing and influencing antigen-specific immune responses. In fact, DCs are influenced by 

adjuvants to upregulate the production of some cytokines and chemokines, with a concomitant 

downregulation of others, globally influencing the balance between Th1 and Th2 responses. Inflammasome 

activation has also been implicated as a mechanism of action for some adjuvants, leading to the production 

of proinflammatory cytokines IL-1β and IL-18 (adapted from Reed, Orr et al., 2013). 

a) Sustained release of antigen at the site of injection (depot effect). The formation of a depot at the 

site of injection is the first and most widely recognized mechanism of action of vaccine adjuvants. 
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Antigen trapping and slow release at the inoculation site ensure a slow clearance of the antigen 

from the body, and a constant and more efficient stimulation of the immune system (Awate, 

Babiuk et al., 2013; Wilson-Welder, Torres et al., 2009). This can be achieved as a short-term or 

long-term depot, the latter giving either a continuous or pulsed release. Short-term depots are 

formed by aluminum salts and water-in-oil (w/o) emulsions, such as incomplete Freund’s 

adjuvant (IFA), where antigen is trapped at the injection site and cannot be lost by liver clearance. 

Long-term depots are achieved through synthetic polymers such as polylactide coglycolide (PLG) 

injection, producing microspheres that degrade to yield a pulsed delivery (Cox and Coulter, 1997). 

b) Cellular recruitment at the site of injection. Adjuvants create a local proinflammatory 

environment, with a consequent production of cytokines and chemokines that trigger the 

recruitment and activation of innate immune cells (Awate, Babiuk et al., 2013). For example, after 

intramuscular (i.m.) administration in mice, both alum and MF59 adjuvants strongly and rapidly 

recruit neutrophils, followed by monocytes, eosinophils, and DCs. Neutrophils are the most 

numerous cells to be recruited after vaccine injection; however, ablation of these cells appeared 

not to affect the immunogenicity of MF59 (Calabro, Tortoli et al., 2011). In contrast, the depletion 

of CD11c+ monocytes and DCs during immunization with an alum-based vaccine abrogated both 

antibody and cellular responses, suggesting that these cells play a central role in immune 

response induction (Lambrecht, Kool et al., 2009). Similar to MF59, administration of AS03, a 

squalene-based oil-in-water (o/w) adjuvant, leads to enhanced recruitment at the site of injection 

of neutrophils, monocytes, and eosinophils, which take up antigens and traffic towards the 

draining lymph nodes (Morel, Didierlaurent et al., 2011). 

c) Immunomodulation. This word refers to the ability of many adjuvants to modify the cytokine 

network, influencing the balance between Th1 and Th2 responses, and the polarization of T cell 

responses towards cellular or humoral responses. In fact, immunomodulation may result in a 

general activation of the entire immune system; however, depending on the type of adjuvant, it 

induces upregulation of certain cytokines and chemokines and a concomitant downregulation of 

others. Therefore, selection of the appropriate immunomodulatory adjuvant will not only lead to 

enhanced immune response but will also determine the isotype of IgG and the magnitude of cell-

mediated immunity generated (Cox and Coulter, 1997; Reed, Orr et al., 2013). The most notable 

example of Th-skewed response is induce by alum, which in humans promotes more than 90% of 

Th2-type immune responses, resulting in robust antibody production (Cox and Coulter, 1997; 

Reed, Bertholet et al., 2009). The majority of current licensed vaccines are not able to induce Th1-
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type immune responses without generating at the same time undesirable toxic side effects 

(Wilson-Welder, Torres et al., 2009). 

d) Increased antigen uptake and presentation by APC. Induction of a potent immune response 

requires an efficient antigen presentation by APCs (Awate, Babiuk et al., 2013). Many adjuvants 

such as alum and oil-based emulsions act targeting antigens to APCs, resulting in enhanced 

antigen presentation by MHC (Awate, Babiuk et al., 2013). In fact, it has been shown that antigen 

adsorption on alum results in an increased internalization of the antigen itself (Morefield, 

Sokolovska et al., 2005); however, alum does not enter DCs directly, but probably delivers the 

antigen via abortive phagocytosis, after interaction with membrane lipids on DCs and recruitment 

of immunoreceptor tyrosine-based activation motif (ITAM) containing molecules (Flach, Ng et al., 

2011).  

e) Activation and maturation of APCs. Activation of APCs, in particular DCs, is essential for induction 

of adaptive immune responses, and results in an increased expression of MHC class II, activation 

marker CD68, and maturation marker CD83, which lead to enhanced ability to induce T 

lymphocyte activation and differentiation (Coyle and Gutierrez-Ramos, 2001). As already 

described, antigen recognition through PRRs, and in particular TLRs, triggers DCs maturation 

(Pardoll 2002), and consequently most studies are focused on improving vaccine formulations by 

the addition of TLR ligands as adjuvants. For example, AS04 has been shown to interact with 

TLR4, inducing maturation of DCs, which then traffic to the draining lymph nodes to activate 

antigen-specific T cells (Didierlaurent, Morel et al., 2009). Interestingly, in vitro studies on human 

cells have shown that both alum and MF59 failed to directly activate DCs, but enhanced the 

surface expression of MHC class II and costimulatory molecules on monocytes, macrophages, and 

granulocytes, thus resulting in an increased proliferation of responding T cells (Seubert, Monaci et 

al., 2008). However, using a transgenic mouse model for diphtheria toxin-mediated DC ablation, it 

has been found that DCs are indispensable for alum adjuvanticity (Kool, Soullié et al., 2008). 

These observations suggested that both adjuvants may act upstream of dendritic cells and impact 

instead on monocytes recruitment and monocytes-to-DC differentiation (Seubert, Monaci et al., 

2008; Calabro, Tortoli et al., 2011). 

f) Activation of inflammasomes. Inflammasomes are multiprotein complexes that contain a PRR, 

typically a member of the NLR family, which after sensing its agonist oligomerizes and recruits the 

apoptosis-related speck-like protein containing a caspase activation and recruitment domain 

(CARD) (ASC protein). ASC protein can recruit caspase 1, thereby linking the PRR to caspase 1 

activation and production of IL-1β and IL-18 that are potent stimulators of the adaptive immunity. 
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There are currently four characterized inflammasomes, named by the PRRs that form them: 

NLPR1 (NOD-, leucine-rich repeat (LRR)- and pyrin domain-containing 1), NLRP3, NLRC4 (NOD-, 

LRR- and CARD-containing 4), and AIM2 inflammasomes. Among them, NLRP3 and AIM2 sense 

also DAMPs (Chen and Nuñez, 2010). In particular, it was proposed that at the site of alum 

injection a catabolic product of host DNA, uric acid, and ATP released after cell damage or 

necrosis act as danger signals for activation of NLRP3. In fact, secretion of uric acid forms 

monosodium ureate crystals whose phagocytosis result in phagosomal destabilization and 

lysosomal rupture, releasing the protease cathepsin B in the cytosol, which in turns activate 

NLRP3 (Hormung, Bauernfeind et al., 2008). Similarly, ATP released by damaged cell has been 

shown to directly activate NLRP3 (Pétrilli, Papin et al., 2007). Although in vitro data supporting 

NLRP3 inflammasome activation by alum are convincing, there is controversy about the role of 

this pathway in vivo (Bergmann-Leitner and Leitner, 2014). 

Most of licensed adjuvants were developed using empirical methods, thus they are not optimal 

for many of the challenges of vaccination, especially in the oncologic field. In particular, the 

historical emphasis on humoral responses has favored the development of adjuvants with the 

ability to mainly enhance antibody production. Consequently, most of the licensed adjuvants are 

effective in enhancing antibody titers, but do not elicit strong Th1 and/or CTL responses (Pashine, 

Valiante et al., 2005; Levitz and Golenbock, 2012). To solve this problem, new generation vaccines 

often incorporate agonists of TLRs and/or other innate immune receptors to facilitate the 

generation of cellular responses (Reed, Orr et al., 2013). Table 3 summarizes the main 

characteristics of adjuvants licensed for human use or that are in advanced stage of clinical 

development. 

Adjuvant name 

(year licensed) 
Formulation 

Mechanism of 

action 

Type of 

immune 

response 

Licensed 

product 

name/type of 

vaccine in 

clinical trials 

Licensed human adjuvants 

Alum 

(1924) 

Mineral salts: 

aluminum 

phosphate or 

hydroxide 

Nalp3, ITAM, 

antigen depot, 

antigen delivery, 

cellular recruitment 

Abs,  

Th1 (+/-) 

Th2 (+++) 

Various, e.g., 

HBV, HPV, 

tetanus, 

diphteria 
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MF59 

(Novartis, 1997) 

o/w emulsion: 

squalene, 

polysorbate 80 

(Tween 80), 

sorbitan trioleate 

85 (Span 85) 

 

No antigen depot 

effect, cell 

recruitment, antigen 

uptake 

Abs, 

Th1 (+), 

Th2 (++) 

Fluad 

(seasonal 

influenza), 

Focetria 

(pandemic 

influenza), 

Aflunov 

(pre-pandemic 

influenza) 

AS03 

(GlaxoSmithKline, 2009) 

o/w emulsion: 

squalene, Tween 

80, α-tocopherol 

Cell recruitment, 

antigen 

presentation, 

antigen uptake  

Abs, 

Th1 (+), 

Th2 (++) 

 

Pandremix 

(pandemic 

influenza), 

Prepandrix 

(pre-pandemic 

influenza) 

Virosomes 

(Berna Biotech, 2000) 

Liposomes: lipids, 

hemagglutinin 

PAMP signals, 

binding to APCs and 

inducement of 

receptor-mediated 

endocytosis, antigen 

presentation via 

MHC class I and II 

Abs, 

balanced 

Th1 and 

Th2 

Inflexal 

(seasonal 

influenza), 

Epaxal 

(hepatitis A) 

AS04 

(GlaxoSmithKline, 2005) 

Alum-adsorbed 

TLR4 agonist: 

aluminum 

hydroxide, MPL 

TLR4 agonist, 

activation of 

NF-κB pathway, cell 

recruitment 

Abs,  

Th1 (++), 

Th2 (+) 

Fendrix (HBV), 

Cervarix (HPV) 

Adjuvants in advanced stage of clinical development 

CpG-

oligodeoxynucleotides 

(ODN) 

(CpG 7909; CpG 1018) 

CpG ODN alone or 

combined with 

alum/emulsions 

TLR9 agonist 

Abs,  

Th1,  

CD8+ cells 

if 

conjugated 

Seasonal 

influenza, 

HBV, 

melanoma 
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Polyiosinic:polycytidylic 

acid [Poly(I:C)] 

Double-stranded 

RNA (dsRNA) 

analogues 

TLR3 agonist 

Abs,  

Th1,  

CD8+ cells 

Melanoma, 

prostate and 

triple-negative 

breast cancers 

Imidazoquinolines 

(imiquimod, 

resiquimoid) 

Small molecules 
TLR7 and TLR8 

agonists 

Abs,  

Th1 
Melanoma 

AS01 
Liposome, MPL, 

saponin (QS21) 

QS21: unknown 

MPL: TLR4 agonist 

Abs, 

Th1,  

CD8+ cells 

Malaria, HIV, 

breast, 

prostate, lung 

cancers 

AS02 

o/w emulsion; 

MPL, saponin 

(QS21) 

QS21: unknown 

MPL: TLR4 agonist 

Abs,  

Th1 

Malaria, 

tuberculosis, 

non-small-cell 

lung cancer, 

melanoma 

Immunostimulatory 

complexes (ISCOMs) 

and ISCOMATRIX 

Saponin, 

cholesterol, 

dipalmitoylphosph

atidylcholine 

Unknown, probably 

independent from 

PRRs 

Abs, 

balanced 

Th1 and 

Th2,  

CD8+ cells 

Pandemic 

influenza, HIV, 

HBV, malaria, 

melanoma 

Table 3. Formulation, mechanisms of action, and applications of adjuvants that are worldwide currently 

licensed for use in humans or that are in clinical development (adapted from Reed, Bertholet et al., 2009; 

Coffman, Sher et al., 2010; Nicholls, Madera et al., 2010; Rappuoli, Mandl et al., 2011; Awate, Babiuk et al., 

2013; Reed, Orr et al., 2013). 

4.1 Aluminum adjuvants 

Aluminum salts-based adjuvants, generally referred to as alum, are non-crystalline gels based on 

aluminium oxyhydroxide (aluminium hydroxide gel), aluminium hydroxyphosphate (aluminium 

phosphate gel), or various proprietary salts such as aluminium hydroxyl-sulfate. These adjuvants 

are components of several licensed vaccines, including vaccines against diphtheria-pertussis-

tetanus, diphtheria-tetanus (DT), DT combined with HBV, Haemophilus influenzae B or inactivated 

polio virus, Hepatitis A, Streptococcus pneumoniae, Neisseria meningitidis and HPV (Reed, 
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Bertholet et al., 2009; Mbow, De Gregorio et al., 2010). The alum-based vaccine formulation is 

prepared by suspending the antigen in a phosphate buffered solution and then allowing it to 

adsorb to the aluminium hydrogel. The amount of antigen that adsorbs onto alum depends upon 

the forces within the antigen, and between the antigen and the alum, including hydrophobic 

interactions, van der Waals forces, ionic charges, and hydrogen bonding (Wilson-Welder, Torres 

et al., 2009). 

Despite alum has long been used in vaccines and thus its activity and safety profile is extensively 

documented, its multiple potential mechanisms of action are only now beginning to be 

elucidated, with sometimes conflicting evidences. In 2008, De Gregorio et al. firmly supported the 

idea that alum enhances antigen uptake by DCs, cell recruitment at the injection site, and 

stimulation of immune cells via inflammasome. However, there were disputes on the specifics of 

NLRP3 inflammasome activation and its central role in alum adjuvanticity, with additional 

discrepancies between in vitro and in vivo responses (De Gregorio, Tritto et al., 2008), as already 

described above. In 2011 Marichal et al. proposed that alum adjuvanticity is specifically related to 

the release of DNA from necrotic cells exposed to alum (Marichal, Ohata et al., 2011). Despite 

these divergences, it has been widely accepted that one of the possible reasons for alum Th2-

biased responses might be the NALP3-dependent induction of IL-1β, IL-18, and possibly IL-33 

(Lambrecht, Kool et al., 2009). Other mechanisms of action of alum have been proposed during 

the last years, including the already mentioned observations of Flach et al. (Flach, Ng et al., 2011). 

Moreover, the study of Shah et al. showed that type II NKT cells are involved in alum adjuvant 

activity in a CD1d-dependent manner and mediated by Th2 cytokine production (Shah, Devera et 

al., 2012), while the work of Wang et al. confirmed the integral role of inflammasomes, but 

suggested that this response is mediated by heat shock protein 70, thus indicating that alum acts 

as a stress-inducing agent (Wang, Rahman et al., 2012). The interpretation of all these reports is 

complicated by the lack of uniformity in the available reagents classified as aluminum salts, the 

animal models used, the antigen dose, and the immunization regimens (Reed, Orr et al., 2013; 

Bergmann-Leitner and Leitner, 2014). However, taken together, some common themes do 

emerge: alum affects antigen uptake, induces danger signals, recruits various types of immune 

cells, and elicit powerful Th2-biased humoral responses (Reed, Orr et al., 2013).  

The major limitations of aluminum adjuvants include their inability to elicit cell-mediated Th1 or 

CTL responses that are required to control most intracellular pathogens such as those that cause 

tuberculosis, malaria, leshmaniasis, AIDS, and other pathologies such as cancer (Reed, Bertholet 

et al., 2009). Indeed, alum is not ideal for small peptide vaccines or for use with recombinant 
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proteins due to their inherent low immunogenicity. In addition, alum cannot be employed for oral 

or intranasal immunization, and vaccines containing this adjuvant cannot be lyophilized or frozen 

because this leads to loss of potency, thus limiting vaccines shelf life and storage conditions. 

Finally, alum has been associated with severe tissue reactions such as erythema, subcutaneous 

nodules, granulomas, and has been thought to induce hypersensitivity and macrophagic 

myofasciitis. Moreover, alum-based vaccines can induce IgE and IL-4, which are associated with 

allergy and type I immediate hypersensitivity (Wilson-Welder, Torres et al., 2009; Adams and 

Mallapragada, 2014). However, IgE-mediated allergic reactions to aluminum-adjuvanted antigens 

have been rarely reported in vaccinated individuals and, by contrast, aluminum hydroxide has 

been used in allergen immunotherapy to reduce allergen-specific IgE responses (Aimanianda, 

Haensler et al., 2009).  

4.2 Squalene-based adjuvants: MF59 and AS03 

MF59 consists of an o/w nano-emulsion composed of <250 nm droplets. MF59 contains squalene, 

which derives from biodegradable plant oil, and Tween 80 and Span 85 as stabilizers (Wilson-

Welder, Torres et al., 2009). It has been used in Europe as an adjuvant in influenza vaccines for its 

capacity to increase flu immunogenicity in the elderly and young children (Mbow, De Gregorio et 

al., 2010). Overall, MF59 has an acceptable safety profile, and generates higher antibody titers 

with more balanced IgG1:IgG2a responses than those obtained with alum. However, as for alum, 

MF59 stimulates strong Th2-biased immune responses, and therefore it may not be suitable for 

vaccines requiring cell-mediated immunity for protection. The mechanisms of MF59 adjuvanticity, 

similarly to alum, seems to be in part due to direct delivery of immunogens to APCs in vivo; 

however, it has been demonstrated that antigen biodistribution and clearance from the site of 

injection are not influenced by MF59, suggesting that the adjuvant does not induce any antigen 

depot (Dupuis, McDonald et al., 1999). MF59 is not able to directly activate DCs, but its 

intramuscular administration triggers infiltration and activation of mature macrophages, which 

engulf and transport the antigen to the draining lymph nodes, thus resulting in a more efficient T 

cell priming (Dupuis, Denis-Mize et al., 2001). Additionally, MF59 triggers a local 

immunostimulatory microenvironment characterized by the expression of several cytokines, 

which may enhance and accelerate the differentiation of monocytes towards DCs (Tritto, Mosca 

et al., 2009). Interestingly, the adjuvanticity of MF59 seems to be due to the o/w formulation, 

and not to the individual components, suggesting that the formulation itself plays a pivotal role in 

eliciting strong immune responses. Indeed, all components are necessary to create the stable 
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small emulsion droplets that are necessary for an effective MF59 adjuvant, since the elimination 

of any individual component induces an evident decrease in the adjuvant effect (Calabro, Tritto et 

al., 2013). 

AS03, another squalene-based o/w emulsion, differs from MF59 as it contains α-tocopherol, 

whose presence modulates the cytokine response at the injection site and cell recruitment to the 

draining lymph nodes, resulting in an enhanced antibody response. Comparing o/w emulsion with 

alum, MF59 and AS03 turned out to be superior in terms of induction of protective Abs, increased 

sero-conversion, and cross-protection (Schwarz, Horacek et al., 2009). MF59- and AS03-

adjuvanted influenza vaccines have been approved for use in Europe and Canada, and both 

adjuvants allow antigen sparing, an important factor particularly during pandemics (Levitz and 

Golenbock, 2012).  

4.3 Virosomes  

Virosomes are particles composed of stabilized membrane lipids and functional viral fusion 

proteins that can be used to deliver vaccine antigens (Wilson-Welder, Torres et al., 2009). The 

majority of virosomes comprises influenza hemagglutinin (HA) and neuraminidase proteins, and 

can be generated by inserting the viral fusion proteins and antigen into small phospholipid 

vesicles or by separation and reconstitution of viral envelopes with the vaccine antigen. 

Virosomes maintain the receptor binding ability and mimic infectivity of the native virus, but 

without the risks associated with the virus itself; moreover, they can directly deliver the antigen 

into the cytosol of target cells, in particular through HA receptor-mediated endocytosis by APCs. 

Indeed, this technique permits the induction of both humoral and cellular responses because 

some of the virosome-delivered antigens have the potential to be presented via MHC II following 

endosomal processing; alternatively, virosomes that enter the cytosol will be presented via MHC I 

(Wilson-Welder, Torres et al., 2009; Reed, Bertholet et al., 2009). 

4.4 Saponin-based adjuvants, ISCOMs and ISCOMATRIX 

Saponins are natural detergent-like molecules that can induce both humoral and cellular 

immunity, but can also be haemolytic and cytotoxic towards human cells (Nicholls, Madera et al., 

2010). Quil A is composed of different saponins from the bark of the South American tree Quillaja 

saponaria, and has shown good promise in veterinary vaccination protocols; however, it is still 

too toxic for use in humans (Sun, Xie et al., 2009). The saponin derivative QS21 is far less toxic 

than Quil A, and is a good inducer of Th1 responses; moreover, it seems to improve antigen 
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presentation and promote cell-mediated immunity. As a result of promising preclinical data, 

GlaxoSmithKline has developed two adjuvants formulations, AS01 and AS02, which both 

incorporate QS21 and are now evaluated in different clinical trials (Tagliabue and Rappuoli, 2008).  

ISCOMs are cage-like nanoparticles composed of saponins purified from Quillaja saponaria, 

formulated with cholesterol, phospholipid, and antigen. The classical ISCOM technology required 

incorporation of vaccine antigens into the structure, which not only restricted the types of 

antigens that could be used, but was also a laborious process difficult to control. For these 

reasons, most current applications employ a mixture of soluble antigens and the antigen-free 

particle, such as ISCOMATRIX (Coffman, Sher et al., 2010). The mechanism of adjuvanticity of 

ISCOMs and ISCOMATRIX is still unclear; however, it seems to be independent from PRRs 

interaction. Probably, ISCOMs act by enhancing antigen uptake and prolonging retention of DCs 

in draining lymph nodes, inducing activation of DCs, thus leading to strong antibody and T cell 

responses (Maraskovsky, Schnurr et al., 2009). Of note, unlike most other adjuvants, ISCOMs and 

ISCOMATRIX enable substantial MHC class I and II presentation and induce both CD4+ and CD8+ T 

cell responses to different types of soluble protein antigens in humans (Davis, Chen et al., 2004; 

Morelli, Becher et al., 2012).  

4.5 The ideal vaccine adjuvant 

An ideal vaccine adjuvant must bridge the gap between innate and adaptive immunity, in order to 

promptly engage the immune system, and elicit a robust protective and/or therapeutic response 

also against future infections and disease relapses (Adams and Mallapragada, 2014). The ideal 

adjuvant must be safe, stable before administration under a broad spectrum of storage 

time/temperature/pH conditions, readily biodegraded and eliminated in order to decrease the 

risk of late adverse effects. Moreover, it must be also chemically and physically defined to ensure 

reproducible manufacturing and activity, and inexpensive to produce (Reed, Bertholet et al., 

2009). Dose sparing is also required, in particular for antigens difficult to manufacture or that 

must be prepared on short notice, along with dosage sparing, which carries the great challenge of 

reaching complete immune protection with a single dose. Finally, the ideal vaccine adjuvant must 

overcome immune tolerance and senescence, two critical problems in the case of anticancer 

vaccines (Alving, Peachman et al., 2012).  

None of the commercial adjuvants is able to fulfill all the characteristics of the ideal adjuvant 

(listed in Fig. 8), and the development of new vaccine adjuvants have been the focus of intense 

research efforts. In recent years, increasing evidence demonstrates that TLR ligands are safe and 
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effective compounds that can be exploited in the antitumor vaccination field (Smyth, Garcia et al., 

2013).  

 

Figure 8. Schematic diagram showing the most important hallmarks of an ideal vaccine adjuvant 

(modified from Chowdhury and Ghosh, 2012). 

4.6 TLR agonists: a new promising vaccine adjuvants group 

TLR ligation was found to activate and modulate immune responses by increasing the crosstalk 

between innate and adaptive immunity, and to play an important role in antitumor immunity. 

Therefore, a new class of immunological adjuvants that targets the TLR pathways is emerging as 

an important element in the design of more effective and safer vaccine formulations (Ito and 

Chang, 2013).  

Indeed, many successful vaccines contain motifs that are now known to stimulate TLR pathways 

(Mbow, De Gregorio et al., 2010). TLRs regulate immune responses through activation of 

different immune cell signaling. For example, the yellow fever vaccine, one of the most effective 

vaccines, activates multiple subsets of DCs by signaling through TLR2, 7, 8, and 9 (Querec, 

Bennouna et al., 2006). In B cells, TLR signaling induces upregulation of different surface markers 

involved in cross talk with T cells, namely MHC-I and -II, CD40, CD80, and CD86, thus ultimately 

enhancing antigen-specific antibody production. Moreover, TLR signaling is involved in induction 
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of B- and T-cell memory. In APCs, TLR activation enhances secretion of both pro- and anti-

inflammatory mediators that drive development of Th cell subsets into Th1, Th2 or Treg 

responses, depending on the type of TLR involved (Fig. 9). Thus, TLR activation pathways can be 

exploited in the context of vaccination to favor antigen-specific Th-skewed immune responses 

(Smyth, Garcia et al., 2013; Toussi and Massari, 2014). Of note, TLR signaling can lead to either 

Treg functional activation or suppression, depending on the type of TLR and ligand involved, and 

thus Treg-mediated peripheral tolerance can be overcome by stimulation of TLRs, in particular 

those expressed by DCs (van Duin, Medzhitov et al., 2006). In fact, different studies have shown 

that TLR-mediated upregulation of costimulatory molecules play a pivotal role in the reversal of 

peripheral tolerance, thus leading to efficient CTL responses against tumor cells (Pasare and 

Medzhitov, 2003; Yang, Huang et al., 2004; Peng, Guo et al., 2005; Tacken, Zeelenberg et al., 

2011). 

 

Figure 9. Regulation of adaptive immune responses by TLRs after interaction with their ligands. Triggering 

DCs through TLRs results in the induction of distinct adaptive immune responses. DCs triggering via TLRs 9, 
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7, 8, and 3 induces strong Th1 and CTL responses, while via TLR4 only Th1 responses. Activation of TLR5 

enhances T cell and antibody responses without altering the Th1/Th2 balance. In some cases, TLR5 ligands 

induce also CTL responses. Conversely, DCs triggered via TLR2 heterodimers produce high levels of IL-10 

and shift the balance towards the Th2/Treg spectrum; however, some ligands of TLR2 induce strong 

antibody responses without altering the Th1/Th2 balance (Coffman, Sher et al., 2010; Pulendran, 2004; 

Baxevanis, Voutsas et al., 2013. Adapted from Pulendran, 2004).  

It has also been reported that the physical association of antigen and TLR agonist may be 

important for optimal antigen-specific immune responses, as DCs seem to preferentially process 

and present antigens from compartments that also contain TLR ligands (Blander and Medzhitov, 

2006). Finally, combinations of TLR agonists can have synergistic effects, resulting in greater and 

more durable responses to antigens, and therefore in dose sparing (Levitz and Golenbock, 2012). 

A number of these agonists are now in clinical or advanced preclinical stages of development for 

application as vaccine adjuvants (Cheng, Jain et al., 2011; Offersen, Melchjorsen et al., 2012; 

Ghose, Verhagen et al., 2013; Tougan, Aoshi et al., 2013; Orr, Beebe et al., 2014), and have been 

extensively investigated to clarify the basis of their adjuvant activity (Coffman, Sher et al., 2010). 

Among TLR agonists, NPs and their derivatives from plants, animals, and microbes that can act as 

PAMPs or DAMPs, have been studied for many years as adjuvants since they offer a unique set of 

advantages over conventional adjuvants. In fact, NPs have been already widely employed in 

different clinical settings for long-acting delivery of nucleotide, peptide, and protein therapeutics, 

showing to be cheap, biocompatible, biodegradable, non-toxic, non-immunogenic and non-

inflammatory (Adams and Mallapragada, 2014). As vaccine adjuvants, NPs have showed the 

ability to efficiently activate DCs, resulting in long lasting humoral and cellular immune responses, 

thus being promising for the development of single dose vaccines due to their ability to sustain 

the release of the antigen over an extended period of time. Among NPs, zymosan, chitosan, 

mannan, and poly-γ-glutamic acid are showing good promise as vaccine adjuvants, and MPL has 

been approved for human use in different types of vaccine formulations, such as the anti-HBV 

vaccine Fendrix, and the anti-HPV vaccine Cervarix (Shakya and Nandakumar, 2012; Wilson-

Welder, Torres et al., 2009). 

4.6.1 TLR4 agonists: from LPS to MPL and AS04 

It is widely known that lipopolysaccharide (LPS) is able to directly induce DC maturation and also 

strongly stimulates a variety of cells to produce cytokines and chemokines that control DC 

trafficking and maturation (Banchereau and Steinman, 1998). In particular, LPS stimulates robust 
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IL-12 production in DCs in vitro, and thus it would be predicted to promote Th1-type responses in 

vivo (Brightbill, Libraty et al., 1999). However, despite its potency, LPS has been used only as an 

experimental adjuvant in animal studies because of its toxicity and pyrogenicity in humans. Most 

of the immunomodulatory effects of LPS derives from its lipid A portion, which is located in the 

outer membrane of gram-negative bacteria (Persing, Coler et al., 2002). To solve this issue, a non-

toxic derivative of the lipid A portion of LPS of Salmonella minnesota, namely MPL, was obtained 

by removing a phosphate group, the sugar moiety, and an ester-linked fatty acid group. MPL has 

been shown to possess many adjuvant properties of LPS, as it interacts with TLR4 on APCs, 

triggers the synthesis of IL-1β, IL-12 and IFN-γ, and induces DCs maturation, migration, and 

efficient priming of naїve T cells (Wilson-Welder, Torres et al., 2009; Tritto, Mosca et al., 2009). In 

animal studies, MPL demonstrated to be a potent stimulator of Th1 and CTL responses. 

Moreover, MPL enhances the production of complement-fixing Abs and secretory IgA 

immunoglobulins (McNeela and Mills, 2001). 

MPL adsorbed to alum, known as AS04, is approved for use in vaccines against HBV and HPV. It 

induces a transient and local activation of NF-κB activity and cytokine production, thus providing 

an innate immune signal for optimal activation of APCs (Mbow, De Gregorio et al., 2010). 

Interestingly, AS04 stimulates a polarized Th1 cell response in contrast to the strong Th2 response 

induced by alum alone (Casella and Mitchell, 2008; Didierlaurent, Morel et al., 2009). No 

synergistic effect between MPL and alum was in general observed; however, Didierlaurent et al. 

suggested that alum might prolong the cytokine response induced by MPL at the injection site 

(Didierlaurent, Morel et al., 2009). 

MPL is also a component of two experimental adjuvants, AS01 and AS02: the first contains 

liposomes, MPL and QS21, whereas AS02 is an o/w emulsion containing MPL and QS21. AS02 

shows promise in cancer vaccination strategies, since it elicits both humoral and cell–mediated 

immune responses, by mediating both high antibody titers and IFN-γ production. AS01 promotes 

a stronger Th1 response, by inducing a transient stimulation of the innate immune system that 

leads to the generation of high number of efficient antigen-presenting DCs, as it has been 

demonstrated in clinical trials (Garçon, Chomez et al., 2007).  

4.6.2 TLR9 agonists: CpG ODN 

TLR9 agonists represent one of the most advanced candidates as vaccine adjuvants, since TLR9 

engagement efficiently induces INF-γ production by T cells, thereby resulting in strong antibody 

and Th1-biased T cell responses (Dougan and Dranoff, 2009; Mbow, De Gregorio et al., 2010; 
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Levitz and Golenbock, 2012). In humans, TLR9 is expressed on plasmacytoid dendritic cells (pDCs) 

and B cells. Moreover, TLR9 is the only endosomal PRR specific for DNA and mediates a potent 

innate response to bacterial and viral DNA (Blasius and Beutler, 2010). A variety of synthetic TLR9 

agonists have been developed, and are under investigation against a wide range of tumors 

(Dougan and Dranoff, 2009). In particular, synthetic immunostimulatory sequences (ISS) 

containing 15-20 base ODN with optimized repeated sequences of CpG, named CpG-ODN, have 

been studied extensively as adjuvants, either soluble or embedded in nanoparticles or virus-like 

particles (Marshall, Higgins et al., 2004; Jennings and Bachmann, 2009). CpG-ODN enhance 

antibody responses in a strongly Th1-biased manner; moreover, DC-specific deletion of TLR 

signaling in mice indicates that its interaction with DCs and in particular myeloid DCs is a cardinal 

feature for the antibody-enhancing activity (Hou, Reizis et al., 2008). Nevertheless, in primates 

myeloid DCs are TLR9 negative, suggesting that pDCs are sufficient for the adjuvant effect of CpG-

ODN, or that myeloid DCs become indirectly activated in the lymph nodes (Teleshova, Kenney et 

al., 2006).  

4.6.3 TLR3 agonists: dsRNA analogues 

The discovery that viral dsRNA is a potent activator of innate immunity through TLR3 interaction, 

has paved the way for extensive studies about synthetic analogues, such as Poly(I:C), as new 

vaccine adjuvants. Viral or synthetic dsRNA activates TLR3 in endosomes or through cytosolic RNA 

helicases, such as RIG-I and melanoma differentiation associated gene 5 (MDA5) (Coffman, Sher 

et al., 2010). TLR3 activation in DCs induces IL-12 and type I IFNs and improves MHC class II 

expression and cross-presentation, whereas stimulation of MDA5, most notably in non-

hematopoietic cells, strongly augments the production of type I IFNs, which enhances T and B cell 

immunity through different mechanisms including activation of DCs, NK cells, and direct effects 

on T cells (Longhi, Trumpfheller et al., 2009). In a murine model of influenza virus infection, 

intranasal administration of Poly(I:C) with an hemagglutinin-based influenza vaccine induced a 

strong antibody response against hemagglutinin, whereas vaccination without this TLR agonist 

displayed little effect. Moreover, the addition of Poly(I:C) protected mice from lethal nasal or 

pulmonary viral challenge (Ichinohe, Watanabe et al., 2005). Other studies in murine models have 

shown that Poly(I:C) can enhance the efficacy of peptide-based cancer vaccines by promoting 

tumor-specific T cell responses (Currie, van der Most et al., 2008; Salem, Kadima et al., 2005; 

Ammi, De Waele et al., 2014). 
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4.6.4 TLR7 and 8 agonists: imidazoquinolines 

TLR7 and 8 are phylogenetically and structurally related (Heil, Hemmi et al., 2004), and are 

localized to the endosomal compartments of human immune cells including DCs, monocytes, 

macrophages, lymphocytes, Langerhans cells, and NK cells. The interaction between these two 

TLRs and their cognate ligands activates DCs, by inducing the upregulation of costimulatory 

molecules and MHC class I and II, and their production of proinflammatory cytokines such as 

IFNα, TNFα, and IL-12, thus inducing Th1 immune responses. In addition, TLR7 and 8 stimulate 

both B cells to secrete Abs and produce cytokines, and T cells to proliferate and produce IFN-γ, IL-

2, and IL-10 (Steinhagen, Kinjo et al., 2011). A new group of TLR7/8 agonists are two synthetic 

low-molecular weight imidazoquinolines, imiquimod and resiquimod, where the first interacts 

only with TLR7, while the second acts as ligand for both receptors (Gibson, Lindh et al., 2002). 

Preclinical studies have shown that imidazoquinolines can improve both the magnitude and 

quality of antigen-specific T cell and Ab responses (Steinhagen, Kinjo et al., 2011). For example, in 

a genetically engineered mouse model, an imiquimod-adjuvanted DNA vaccine encoding for rat 

HER2/neu significantly delayed the development of spontaneous tumors and reduced their 

incidence by 65% when compared to DNA vaccine alone (Smorlesi, Papalini et al., 2005). 

Imiquimod is currently approved by FDA as topical medication to treat warts caused by HPV, 

basal cell carcinoma, and actinic keratosis (Tetif and Serra, 2011; Steinhagen, Kinjo et al., 2011).  

5. The human epidermal growth factor receptor family  

The human epidermal growth factor receptor family consists of four members that belong to the 

ErbB lineage of proteins, namely HER1 (EGFR, ErbB1), HER2 (HER2, HER2/neu, ErbB2), HER3 

(ErbB3), and HER4 (ErbB4). Each of this type I transmembrane protein comprises a heavily 

glycosylated and disulfide-bonded ectodomain that provides a ligand-binding site, a single 

transmembrane domain, and a large cytoplasmatic region with a tyrosine kinase activity and 

multiple phosphorylation sites. The ECD is divided into four regions arranged as a tandem repeat 

of two types of subdomains: the first and third domains are homologous and have been 

designated domains I and III or ligand-domain 1 (LD1) and LD2, as they form the ligand-binding 

site; the second and fourth domains are also homologous and have been designated domains II 

and IV or cysteine-rich 1 (CR1) and CR2, as nearly 50 conserved cysteines are found in these two 

regions (Linggi and Carpenter, 2006; Leahy, 2004).  

The ErbB receptors recognize 11 different but structurally related growth factors (Table 4), which 

are soluble, small proteins of about 6-10 kDa that share an EGF-like motif of three disulfide 
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bonds. These ligands are produced through proteolysis of transmembrane precursors at the cell 

surface by members of the ADAM family of metalloproteases. The activity of these enzymes is a 

point of fine regulation of ErbB receptors activation, but the molecular regulatory mechanisms 

are still not clear (Linggi and Carpenter, 2006).  

Ligand 
Receptor 

HER1 HER2 HER3 HER4 

EGF + - - - 

TGF-α + - - - 

Heparin-binding (HB)-EGF + - - + 

Amphiregulin + - - - 

Betacellulin + - - + 

Epigen + - - - 

Epiregulin + - - + 

Neuregulin-1 - - + + 

Neuregulin-2 - - + + 

Neuregulin-3 - - - + 

Neuregulin-4 - - - + 

Table 4. Specificity of interaction between growth factors and ErbB receptors. Several ligands interact 

with the ErbB family members with different affinity, thus contributing to activate well-defined signaling 

pathways that in normal conditions lead to cell growth, differentiation, motility, and adhesion. No ligand 

has been yet identified for HER2 (from Linggi and Carpenter, 2006). 

In the absence of a ligand, HER receptors exist as monomers; however, upon ligand binding, they 

form ten different dimers, which may be homodimers or heterodimers (Baxevanis, Sotiropoulou, 

et al., 2004). In general, in normal cells, HER dimers start a network of different signaling 

pathways that control normal cell growth, differentiation, motility, adhesion, and apoptosis 

(Yarden and Sliwkowski, 2001). Moreover, they are implicated in cardiovascular, respiratory, 

gastrointestinal, integumentary, and nervous system development, since knockout of any of the 

ErbB receptors is lethal in the mouse embryos (Leahy, 2004). Within a cellular context, the level 

of activated ErbB receptors is modulated by an increasing number of negative regulators and is 

positively influenced by other cellular components, such as adhesion molecules (Linggi and 

Carpenter, 2006). As shown in Table 4, HER2 does not bind to known ligands but instead 

functions as a co-receptor for each of the other three. In fact, even if receptor dimerization 
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includes both homo- and heterodimerization, ErbB2 is the preferred partner for 

heterodimerization for all others ErbB receptors. Moreover, because ErbB3 does not contain an 

active tyrosine kinase, it relies on interaction with ErbB2 for signaling transduction (Linggi and 

Carpenter, 2006; Roskoski Jr, 2014). The explanation of the tendency of ErbB receptors to 

preferentially dimerize with HER2 lies in their structure (Fig. 10). In fact, in the unbound state, 

ErbB1, ErbB3, and ErbB4 exist in a tethered intramolecular conformation, in which the 

dimerization arm of domain II interacts with domain IV. Ligand binding alters this interaction, thus 

resulting in the exposure of the dimerization arm (Dawson, Bu et al., 2007; Roskoski Jr, 2014). 

Conversely, HER2 does not adopt an auto-inhibited conformation, being constantly in the “active-

like” state in the absence of any ligand. This constantly activated conformation makes HER2 the 

preferred heterodimerization partner among HER receptors, in particular in cancer, as described 

later (Leahy, 2004). 

 

Figure 10. Structures (a) and models (b) of unbound ErbB1, ErbB3, or ErbB4 (left) and ligand-bound ErbB 

dimers (right). In the unbound state, ErbB receptors adopt a constrained structure in which an extended 

hairpin loop from domain II (green) binds to a pocket at the C-terminus of domain IV (red). This 

conformation results in a large separation between domain I (blue) and III (yellow), which together form 

the ligand binding site. For ligand to bind, the domains II-IV interaction must be broken and a 130° rotation 
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of the domains I-II pair relative to the domains III-IV pair must occur. This change brings together domains I 

and III to form a complete binding site, exposing the extended domain II loop that is now free to mediate 

dimerization (adapted from Dawson, Bu et al., 2007). 

5.1 HER2 and neu: role in tumorigenesis and current therapies 

HER2 and neu are the human and rodent homologues of an oncogenic growth factor receptor 

that was identified from human and rodent models respectively, and named independently in the 

early 1980s, but soon found to be homologues (Slamon, Clark et al., 1987). In fact, the aminoacid 

sequence of the receptor is highly conserved in mammals (Deng, Zheng et al., 2014), and the 

human and rat proteins show a homology of about 89%. While the term ErbB2 refers to the gene 

across both human and rodent species, HER2 is used in reference to the human gene and gene 

product, and neu is used for its rodent counterparts (Moasser, 2007). In this thesis rat neu will be 

mentioned as rHER2/neu for simplification.  

The neu oncogene was first described as a transforming oncogene discovered in N-ethyl-N-

nitrourea chemically induced neuroblastomas and glioblastomas in rats (Padhy, Shih et al., 1982; 

Drebin, Stern et al., 1984), and was shown to transform NIH/3T3 fibroblast cells (Shih, Padhy et 

al., 1981). After cloning of the normal neu allele, it was demonstrated that the transforming 

function in the neu oncogene was conferred by a point mutation within the transmembrane 

domain resulting in a V664E-mutated protein named neuT (Bargmann, Hung et al., 1986). This 

mutation promotes receptor dimerization and enhanced tyrosine kinase activity (Weiner, Liu et 

al., 1989). While rodent neu seems to require mutational activation and overexpression for 

tumorigenicity, human HER2 appears to hold tumorigenic potential through overexpression 

alone. In fact, mutations neither within the transmembrane domain nor in the ECD of HER2 have 

ever been reported in naturally occurring human cancers, which appear to be always 

characterized by overexpression of wild-type HER2 (Moasser, 2007). Indeed, overexpression of 

HER2 protein, through either gene amplification or transcriptional deregulation, occurs 

approximately in 25-30% of breast and ovarian cancers, 35-45% of pancreatic adenocarcinomas, 

and up to 90% of colorectal carcinomas, and its overexpression represents a marker of poor 

prognosis (Slamon, Clark et al., 1987; Baxevanis, Sotiropoulou, et al., 2004). In fact, breast cancers 

can present up to 25-50 copies of the HER2 gene and up to 40- to 100-fold increase in HER2 

protein expression, resulting in up to 2 million receptors expressed per cell in malignant tissues, 

instead of 20,000 to 50,000 molecules per normal cell (Venter, Tuzi et al., 1987; Slamon, 2000; 

Lohrisch and Piccart, 2001). HER2-amplified breast cancers show biological features that 
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distinguish them from other types of breast cancers, which are sensitivity to certain cytotoxic 

chemotherapeutic agents, resistance to anti-estrogen therapies, and increased propensity to 

metastasize to the brain (Ross, Fletcher et al., 2003; Gabos, Sinha et al., 2006). 

HER2 overexpression can skew the composition of HER family dimers toward HER2-containing 

heterodimers and HER2 homodimers, thus leading to deregulation in cell polarity and cell 

adhesion. For example, HER2 overexpression influences the biological behavior of EGFR. In fact, 

this receptor is unique among the HER family, as it undergoes endocytic degradation after ligand-

mediated activation and homodimerization, in contrast to the other HER members, which 

undergo endocytic recycling (Baulida, Kraus et al., 1996). EGFR-HER2 heterodimers similarly 

evade endocytic degradation in favor of the recycling pathway and have increased signaling 

duration and potency, which are even more enhanced when HER2 is overexpressed. Accordingly, 

HER2-overexpressing cells have significantly prolonged activation of downstream MAPK and c-jun 

following stimulation with EGFR, thus acquiring proliferative and invasive functions (Karunagaran, 

Tzahar et al., 1996).  

The HER2-HER3 heterodimer is the most potent mitogenic combination and is the predominant 

heterodimer in carcinoma cells (Baxevanis, Sotiropoulou, et al., 2004), since it leads to the 

activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Akt lies at 

the crossroads of multiple signal transduction pathways that regulate numerous critical cellular 

functions, such as cell proliferation and survival, cell size and response to nutrient availability, 

glucose metabolism, epithelial-mesenchymal transition and cell invasiveness, genome stability, 

and angiogenesis (Testa and Bellacosa, 2001).  

Moreover, the formation of HER2 homodimers is characteristic of HER2-positive cancer cells. In 

normal cells, HER2 does not homodimerize; nevertheless, ligand-less HER2 homodimerization 

spontaneously occurs in cancer cells overexpressing the receptor, due to the large number of 

molecules present on the cell surface. This fact reflects on high levels of basal tyrosine 

phosphorylation in human HER2-positive breast and ovarian cancer cells, and the degree of this 

phosphorylation generally correlates with effects on cellular transformation in a dose-dependent 

fashion (Reese and Slamon, 1997). Interestingly, in about 15-30% of patients, HER2 undergoes 

proteolytic cleavage of its ECD (Codony-Servat, Albanell et al., 1999), and serum HER2 ECD levels 

directly correlated with a worse prognosis and insensitivity to endocrine and chemotherapeutic 

treatments (Molina, Jo et al., 1999; Anido, Scaltriti et al., 2006).  

HER2 status of breast cancers is commonly determined by fluorescence in situ hybridization 

(FISH) to assess HER2 gene amplification, and immunohistochemistry (IHC) to assess HER2 protein 
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overexpression, which are both performed at the time of initial diagnosis of primary breast 

cancer or when a metastatic lesion is biopsied; finally, enzyme-linked immunosorbent assay 

(ELISA) is used for detection of the biomarker HER2 ECD (Fornier, Seidman et al., 2005).  

HER2 can represent not only a marker but also a suitable target for cancer therapies. In fact, the 

receptor constitutes an ideal therapeutic target for breast cancer because: a) the amount of HER2 

expressed on cancer cells is much higher than in normal tissues (Press, Cordon-Cardo et al., 

1990); b) tumors with a high expression of HER2 often show homogeneous and intense IHC 

staining, thus HER2-specific therapies would successfully target the whole tumor mass (Paik, 

Hazan et al., 1990); c) HER2 is overexpressed both in primary and metastatic lesions, suggesting 

that HER2-target therapy may be effective in all disease stages (Niehans, Singleton et al., 1993); 

d) both humoral and cellular immune responses against the self-protein HER2 have been 

observed without autoimmunity in early-stage breast cancer patients, indicating that it is possible 

to circumvent tolerance to HER2, and that these immune responses do not seem to recognize 

normal cells expressing basal levels of this receptor (Disis, Calenoff et al., 1994; Disis, Pupa et al., 

1997; Disis Knutson et al., 2000). Moreover, different T- and B-cell epitopes able to induce 

immune responses have been identified (Ercolini, Machiels et al., 2003; Jacob, Radkevich, et al. 

2006; Conrad, Gebhard et al., 2008). Taken together, these studies suggest that HER2 is a suitable 

target for cancer immunotherapy, especially for vaccination strategies.  

The possibility of blocking HER2-associated cancer progression is confirmed by the documented 

efficacy of two current therapies employing the humanized mAbs trastuzumab and pertuzumab. 

Trastuzumab bind the extracellular subdomain IV of HER2, thus impeding homodimerization of 

HER2, but not its heterodimerization with other members of HER family. The mechanism of 

action of trastuzumab is not yet well elucidated; however, its antiproliferative and proapoptotic 

effects are associated with induction of ADCC, CDC, and inhibition of the PI3K pathway and of 

angiogenesis (Gennari, Menard et al., 2004; Vu and Claret, 2012). Current treatment protocols 

combine trastuzumab with chemotherapy regimens to successfully increase time to tumor 

progression, and survival of patients. Despite the impressive clinical results with this mAb, 

positive response is observed in only one third of patients (Kaptain, Tan et al., 2001; Bartsch, 

Wenzel et al., 2007), while other patients develop resistance to this mAb (Hynes and Lane, 2005). 

Finally, the major side effect of trastuzumab is cardiotoxicity, occurring as asymptomatic left 

ventricular ejection fraction reduction or overt heart failure (Cardinale, Colombo et al., 2010). 

Through binding to the extracellular domain II of HER2, pertuzumab sterically hinders HER2 

dimerization with other receptors of the family, thus effectively blocking ligand–activated 
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signaling from the HER2/HER1 and HER2/HER3 heterodimers (Sakai, Yokote et al., 2007). Since 

pertuzumab and trastuzumab recognize different sites of HER2 and cause distinct downstream 

effects, they have displayed a synergistic antitumor effect in combination therapies (Fuentes, 

Scaltriti et al., 2011). However, despite their efficacy in a subset of cancer patients, trastuzumab 

and pertuzumab are not always sufficient for tumor eradication. Therefore, alternative strategies 

are currently being investigated, among which HER2-based vaccines seem the most promising in 

both preventive and therapeutic approaches. In fact, vaccination would stimulate antigen-specific 

immune responses and immunologic memory, resulting in avoidance of side effects and 

prevention of relapse, as the risk of recurrence in HER2-positive ovarian and breast cancer 

patients is extremely high (Gonzalez-Angulo, Litton et al., 2009). Finally, HER2-based vaccines 

could also be exploited in combination therapies with trastuzumab and other therapeutics for the 

design of better personalized anticancer therapies. 
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Aim of the project  

TLR ligands are emerging as a new class of adjuvants for vaccines, and in particular for cancer 

vaccines. Indeed, cancer vaccine adjuvants need to be more potent than those for prophylactic 

vaccines, but the majority of new adjuvants developed resulted too toxic for use in the clinical 

setting. TLR ligands have already proved to be extremely efficient in promoting the cross-talk 

between innate and adaptive immune responses, thus playing an important role in antitumor 

immunity. Of note, TLR ligation can be exploited to reverse peripheral tolerance, and to finely 

tune the balance between Th1 and Th2 antigen-specific immune responses, thus potentially 

inducing both humoral and CTL responses. Among TLR agonists, NPs that act as DAMPs or PAMPs 

have been studied for many years since they offer the advantages conferred by their ability to 

interact with TLRs, and also are cheap, biocompatible, biodegradable, non-toxic, non-

immunogenic, and non-inflammatory. As vaccine adjuvants, they have shown to efficiently 

activate DCs and confer long-lasting immune responses without any sign of toxicity.  

A NP able to interact with two different TLRs, called NPX for patent constraints, has been 

previously identified in our laboratory as a new promising vaccine adjuvant. The adjuvanticity of 

NPX was assessed in a variety of model antigens such as ovalbumin (OVA), influenza A virus 

subtype H5N1 HA, RNase, human growth hormone (hGH), and superoxide dismutase (SOD). 

Interestingly, NPX boosted strong and sustained immune responses against all the mentioned 

antigens, provided that it was chemically conjugated to them.  

These preliminary data suggested us to employ NPX as adjuvant for anticancer vaccine 

formulations. Thus, this research project aimed at exploring the potentiality of NPX as new TLR 

agonist and carrier of cancer immunogens for the induction of safer, more efficient, and durable 

antitumor immune responses. To this end, the ECD of the rat form of the prototypic oncoantigen 

HER2/neu was chemically linked to NPX, and the resulting bioconjugate (rHER/neu-NPX) was used 

for immunization of mice. NPX adjuvanticity profile was evaluated and compared with that of 

alum, the most common adjuvant for human use. 

We focused our attention on the i.m. route of administration, since it allowed us to compare our 

adjuvant to alum, but also to other commercial adjuvants, whose characteristics are extensively 

reported in literature. Moreover, since the conjugation with NPX confers solubility in water to the 

antigen, we investigated and reported preliminary data regarding an innovative route of 

administration of vaccines, namely the intravenous route, which could have never been exploited 

before by available adjuvants.  
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First, we assessed the local safety profile of the adjuvant administered through the i.m. route, by 

evaluating both muscle integrity and the presence of local inflammatory reactions through 

histological analysis of tibialis anterior (TA) muscles of immunized mice. Subsequently, BALB/c 

mice were immunized with different doses and immunization protocols, and the breadth, quality, 

and persistence of antigen-specific humoral immune responses were monitored for 1 year by 

ELISA and flow cytometry analysis of mouse sera. Moreover, ELISA test assessment of IgG 

subclasses and cytokine production of immunized animals allowed us to characterize the T helper 

profile of immune responses elicited by both adjuvants. Effector immune responses were 

quantified by using 51Cr release assay. In particular, we evaluated the presence and specificity of 

CTL responses and the ability of vaccine-induced antibodies to specifically mediate complement-

dependent lysis of target cells. Finally, the efficiency of NPX adjuvant in both preventive and 

therapeutic vaccination settings was assessed through tumor challenge experiments in i.m.-

immunized BALB/c mice.  

Although mouse models involving tumor cell grafts have contributed to shed light on the efficacy 

of cancer vaccines, such models do not fully reflect human cancer development that occurs in an 

immunologically tolerant milieu. Hence, we assessed the ability of rHER2/neu-NPX in breaking the 

tolerance against the receptor by immunizing i.m. BALB-neuT mice (a transgenic mouse model 

that constitutively express the receptor), and evaluated whether the immune responses induced 

can confer protection against spontaneous tumor growth.  

Finally, the efficacy of NPX was also assessed in peptide vaccine formulations. We identified and 

synthesized three potentially immunogenic peptides derived from the ECD of rHER2/neu protein. 

Peptides were then conjugated to NPX, and the resulting bioconjugates were used for mice 

immunization. The peptide that gave the best humoral response was conjugated to the PADRE 

universal Th cell epitope, and NPX adjuvanticity was assessed again in terms of ability to induce 

antigen-specific humoral responses by ELISA and cytometry analysis. 



Materials and Methods 

63 

 

Materials and Methods 

1. Mice 

All mouse strains were housed in our Specific Pathogen Free (SPF) animal facility. Procedures 

involving animals and their care were in conformity with institutional guidelines that comply with 

national and international laws and policies (D.L.116/92 and subsequent implementing circulars). 

The experimental protocols were approved by the local Ethical Committee of Padua University 

(CEASA). Mouse strains used for this study are reported as follows: 

BALB/c mice. Six to eight week-old female BALB/c mice (H-2d) were purchased from Charles River 

Laboratories (Calco, Como, Italy). 

BALB-neuT mice. Inbred male BALB/c mice carrying the rat ErbB2 transgene under the control of 

the mouse mammary tumor virus (MMTV) promoter (BALB-neuT; H-2d) were purchased from 

Biogem s.c.a.r.l. (Ariano Irpino, Avellino, Italy). Heterozygous female BALB-neuT mice were 

obtained from the mating of BALB-neuT male mice with wild-type BALB/c females. Progenies 

were confirmed for the presence of the transgene by PCR, as described below. Eight week-old 

virgin female BALB-neuT mice were used in our studies. 

2. Screening of BALB-neuT mice 

Genomic DNA was obtained from young mouse phalanx and ear tissues, and purified using KAPA 

mouse genotyping kit (Kapa Biosystems, Boston, Massachusetts, United States). Cell lysis, 

nucleases and proteins degradation, and DNA release were performed by mixing tissues with 

PCR-grade water, 1 U/µl of KAPA Express Extract Enzyme, and KAPA Express Extract Buffer 10X 

(both from Kapa Biosystems), and incubating samples in a standard thermocycler for 10 min at 

75° C. Inactivation of proteases was performed by incubating the samples for 5 min at 95°C. 

Finally, samples were centrifuged at high speed for 1 min to pellet debris, and DNA-containing 

supernatants were recovered. 

Genomic DNA samples were then tested by PCR.  

The following primers were used:  

a) Neu FOR: 5’-GTAACACAGGCAGATGTAGGA-3’  

b) Neu REV: 5’-ATCGGTGATGTCGGCGATAT-3’ 

c) bCasein FOR: 5’-GATGTGCTCCAGGCTAAAGTT-3’ 

d) bCasein REV: 5’-AGAAACGGAATGTTGTGGAGT-3’ 
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PCR conditions were the following: 

1) 95°C 5 min; 

2) 94°C 1 min; 

3) 58°C 45 sec; 

4) 72°C 1 min; 

Steps from 2 to 4 were repeated for 35 cycles; 

5) 72°C 5 min; 

6) 14°C hold. 

PCR-amplified DNA samples were then electrophoretically run on a 1.7% agarose gel. The 

expected fragment lenghts were 525 bp corresponding to βcasein gene, and 230 bp 

corresponding to neu gene. Only double-positive virgin female BALB-neuT mice were then used 

for in vivo studies. 

3. Tumor cell lines 

The following murine tumor cell lines were used: 

TUBO is a cloned cell line derived from a lobular carcinoma that arose spontaneously in a female 

BALB-neuT mouse, thus overexpressing rHER2/neu protein on the cell membrane. This cell line 

was a generous gift from Professor F. Cavallo, University of Turin, Turin, Italy. TUBO cells were 

cultured in DMEM (Gibco BRL, Monza, Italy) supplemented with 20% heat-inactivated fetal 

bovine serum (FBS, Gibco), 10 mM HEPES Buffer, 2 mM L-Glutamine, 100 U/ml Streptomycin, and 

100 U/ml Penicillin (all from Lonza, Milan, Italy). 

NIH/3T3 is a BALB/c-derived fibroblast cell line. These cells were cultured in DMEM 

supplemented with 10% heat-inactivated FBS, 10 mM HEPES Buffer, 2 mM L-Glutamine, 100 U/ml 

Streptomycin and 100 U/ml Penicillin, hereafter referred to as DMEM complete medium. 

3T3/NKB is a BALB/c NIH/3T3 fibroblast cell line (kindly provided by Dr. W.-Z. Wei, Karmanos 

Cancer Institute, Detroit, MI, USA) stably cotransfected with rat HER2 and mouse class I H-2Kd and 

B7.1 genes (Wei, Jacob et al., 2005). The cell line was maintained in the same medium of TUBO 

cells, supplemented with 0.8 mg/mL of G418 (Geneticin, Lonza) and 0.8 mg/mL of Zeocin 

(Invitrogen, San Giuliano Milanese, Italy).  

4. rHER2/neu protein and peptides synthesis 

The recombinant rHER2/neu ECD (from Methionine 4 to Threonine 656) was purchased from Sino 

Biological Inc. (Beijing, China) and hereafter referred to as rHER2/neu protein for simplification.  
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rHER2 sequence was analyzed using bioinformatics tools in collaboration with Professor O. Marin, 

Department of Biomedical Sciences, University of Padua, Italy. The main goal was to identify the 

most immunogenic peptides spanning the exposed protein domains. We identified and 

synthesized 3 main epitopes: 

A1: VLDNRDPQDNVAAST 

A2: PALVTYNTDTFESMHNPEGRYTFGASC 

A3: RNPHQALLHSGNRPEED 

To enhance humoral antigen-specific immune responses, we covalently conjugated the last 

alanine of PADRE universal Th cell epitope (Alexander, Sidney et al., 1994; Alexander, del Guercio 

et al., 2004) to the first arginine of A3 sequence. The resulting sequence was: 

PADRE-A3: AKFVAAWTLKAAARNPHQALLHSGNRPEED 

5. Conjugation of rHER2 and rHER2 peptides to NPX 

The conjugation of NPX adjuvant to the C-terminus of rHER2, A1, A2, A3, and PADRE-A3 peptides 

was performed by Professor G. Pasut, Department of Pharmaceutical Sciences, University of 

Padua, Italy. Both the nature of NPX and the specifics of its chemical conjugation to antigens are 

not reported in this thesis due to patent constraints.  

Notably, the chemical ligation of antigens to NPX always resulted in elimination of LPS 

contaminant and conferred antigen solubility in water.  

6. Hystological assessment of NPX biocompatibility 

NPX biocompatibility was compared with that of Imject Alum adjuvant (alum; Thermo Scientific, 

Milan, Italy), which is a formulation of aluminum hydroxide and magnesium hydroxide, at 

different time points post injection. To this end, BALB/c mice (three animals per group) were 

injected i.m. with 5 μg of rHER2/neu conjugated to NPX, or emulsified with alum, or the antigen 

alone solubilized in phosphate buffered saline (PBS; Sigma-Aldrich, Milan, Italy). This specific 

concentration was chosen due to antigen solubilization properties. The final volume was 200 μl 

for TA muscle injection, which is the maximum administrable volume for a single i.m. injection. TA 

muscles were harvested at 24 h, 72 h, or 1 week after injection; tissue samples were formalin-

fixed (1%, Thermo Scientific) for 1 h, paraffin-embedded, and stained with hematoxylin and eosin 

(H&E) for histologic evaluation. The H&E staining was performed in collaboration with Melanoma 

and Sarcoma Diagnostics Section, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy. 
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7. Mice immunization protocols and serum collection 

BALB/c mice were immunized i.m. with both 10 (5 μg per muscle) or 1 μg of rHER2/neu-NPX or 

the same amounts of protein emulsified in alum, or the protein alone in PBS as controls, and i.v. 

with 10 or 1 μg of the bioconjugate or free protein in PBS (six mice per group).  

To investigate the ability of NPX to induce immune responses against rHER2 peptides, BALB/c 

mice were immunized i.m. with 30 μg of A1, A2, A3, or PADRE-A3 peptides, or 100 μg of A3 

peptide, which were all administered either conjugated to NPX, or emulsified with alum, or alone 

in PBS (three mice per group).  

To assess the ability of NPX vaccination to break immune tolerance against rHER2/neu, BALB-

neuT mice were immunized i.m. with 10 μg of rHER2-NPX or the same amount of protein 

adsorbed to alum (four mice per group), before the appearance of palpable tumors.  

For both mouse strains, the immunization schedule consisted in a priming step at day 0, followed 

by two boosts at days 14 and 21. Mice that were injected i.v. with 10 μg of bioconjugate or free 

protein received only the priming step. The relative sera were collected at day 0 as basal control, 

immediately before every subsequent immunization, and thereafter every 30 days up to six 

months, with a final time point at 1 year. 

8. Serum IgG and IgG subclasses titration: ELISA test 

Individual sera were titrated for protein or peptide-specific IgG and IgG subclasses (IgG1, IgG2a, 

and IgG2b) content by ELISA test. Three μg/ml of rHER2/neu protein or 10 μg/ml of A1, A2, or A3 

peptides were coated overnight at 4°C on a 96-well plate half area (Corning Life Sciences, NY, 

USA) in 0.005 M sodium carbonate/bicarbonate buffer pH 9.6 (Sigma-Aldrich). The plate was 

washed 5 times with 100 μl/well PBS, and incubated for 2 h at room temperature (RT) with 100 

μl/well of milk 2% (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) diluted in PBS. The plate was 

washed 5 times with 100 μl /well PBS and incubated for 1 h at RT with 25 μl/well of sequential 

dilutions of mouse sera in milk 2%, starting from 1:50 to 1:6400. Negative controls were milk 2% 

alone and sera at day 0 diluted 1:50 in milk 2%. The plate was washed 5 times with 100 μl/well 

PBS and incubated for 1 h at RT with secondary HRP-conjugated goat polyclonal anti-mouse total 

IgG (IgG-heavy and light chain antibody), IgG1, IgG2a, or IgG2b antibodies (all from Bethyl 

Laboratories, Inc., Montgomery, TX, USA), at the final concentration of 0.02 μg/ml in PBS-0.05% 

Tween 20 (Sigma-Aldrich). The plate was washed 5 times with 100 μl/well PBS, and 60 μl/well of 

substrate OPD solution (o-Phenylenediamine dihydrochloride, Sigma-Aldrich) were added for 10 
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min at RT in the dark. Reaction was stopped with 30 μl/well of HCl 3N (Carlo Erba, Milan, Italy), 

and the absorbance was read at 490 nm using VictorX4 Multilabel Plate Reader (PerkinElmer, 

Boston, MA, USA).  

Quantification of IgG and IgG subclasses content was assessed by performing titration curves. 

Briefly, 5 μg/ml of goat anti-mouse polyvalent immunoglobulins (Sigma-Aldrich) were coated 

overnight at 4°C on a 96-well plate half area in 0.005 M sodium carbonate/bicarbonate buffer pH 

9.6 (Sigma-Aldrich). The plate was washed 5 times with 100 μl/well PBS, blocked for 2 h with milk 

2%, and washed again with 100 μl/well PBS. The plate was then incubated for 1 h at RT with 25 

μl/well of sequential dilutions (from 1:25600 to 1:8192000) of IgG from mouse serum (Sigma-

Aldrich) or previously purified and quantified IgG1 (2.3 mg/ml), IgG2a (5.3 mg/ml), and IgG2b (1 

mg/ml) mAbs. The plate was then treated as described above, and the correlation between 

absorbance and IgG or IgG subclasses concentration was analyzed by linear regression analysis. 

9. Cell staining and flow cytometry analysis  

The same sera used in the ELISA assays were analyzed for their ability to specifically recognize 

rHER2/neu in its native conformation; 2x105 rHER2/neu-positive TUBO and 3T3/NKB cells, and 

rHER2-negative NIH/3T3 cells were labeled for 30 min in ice with 50 μl of 0, 14, 30, 90, 150, or 

360-day pooled sera, at a final dilution of 1:100 in staining buffer. As positive control, cells were 

incubated with mouse anti-rHER2/neu mAb (Ab4, clone 7.16.4, Calbiochem, San Diego, CA, USA), 

at a final concentration of 0.16 μg/ml in buffer for 30 min in ice. Cells were then washed and 

labeled with secondary APC goat anti-mouse IgG (clone poly4053, BioLegend, London, UK), 1 μl in 

50 μl of buffer for 30 min in ice in the dark. Finally, cells were washed and resuspended in 250 μl 

of PBS. Cells were then analyzed using FACSCalibur flow cytometer (Becton Dickinson, Franklin 

Lakes, NJ, USA) and FlowJo software (TreeStar Inc., Olten, Switzerland), and mean fluorescence 

intensity (MFI) was calculated. A standard curve for rHER2/neu binding was generated as 

performed by Piechocki et al. (Piechocki, Pilon et al., 2002) with few modifications. Briefly, 

3T3/NKB cells were incubated with scalar concentrations of anti-rHER2/neu Ab4 mAb, starting 

from 1:1000 to 1:20000 in 50 μl of buffer for 30 min in ice. Cells were then treated as described 

above. Results were expressed as MFI and the correlation between MFI and IgG concentration 

was analyzed by linear regression analysis. 
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10. Complement-Dependent Cytotoxicity  

Target cells (1x106 3T3/NKB and NIH/3T3 cells) were labeled with 100 μCi Na2
51CrO4 (DuPont, 

Boston, MA, USA) for 1 h at 37°C. Cells were then washed twice and resuspended in DMEM 3% 

FBS. Radiolabeled cells were seeded at 2x103 cells/well in triplicates in round-bottom 96-well 

plate (Sarstedt, Verona, Italy), and incubated for 1.5 h at 4°C with individual sera diluted 1:50 in 

DMEM 3% FBS, in a final volume of 50 μl/well. After washing with 100 μl/well of PBS, 

supernatants were discarded and cells were resuspended in 200 μl/well of DMEM 20% Rabbit 

Complement (Low-Tox-H Rabbit Complement, Cedarlane, Burlington, Canada), for 1.5 hour at 

37°C. As negative control (spontaneous release), cells were incubated with DMEM 3% FBS and 

then with rabbit complement, while for positive control (maximum release) cells were treated 

with 200 μl/well of Triton 5% (Sigma-Aldrich). At the end of incubation, 30 μl of supernatants 

were transferred in a 96-well solid scintillator coated plate (LumaPlate-96, PerkinElmer) and 

radioactivity was evaluated using a γ-ray counter (TopCount NXT, PerkinElmer). The cytotoxicity 

index was evaluated as follows: 

release sspontaneou cpm - release maximum cpm

release sspontaneou cpm - test cpm
100.. xIC   

11. Cytokine production 

To define the Th1/Th2 profile induced by NPX-vaccination, BALB/c mice were vaccinated i.m. with 

10 μg of rHER2/neu-NPX or rHER2/neu emulsified with alum as control as described above, while 

untreated mice were used as negative control (three mice per group). At day 30, mice were 

sacrificed and spleens removed. A total of 106 splenocytes /well were plated in triplicates in flat-

bottom 96 well plates, and stimulated with 105 syngeneic irradiated (60 Gy) TUBO, 3T3/NKB, and 

NIH/3T3 cells, or 1 μg/ml of rHER2/neu protein, or medium alone (basal cytokine release), in a 

final volume of 200 μl of DMEM complete medium. Plates were maintained at 37°C and 5% CO2, 

and supernatants were harvested at 24 and 72 h. Samples were analyzed for their cytokine 

content (IFN-γ, IL-1β, IL-2, IL-6, IL-10, IL-12p70, IL-17,and TNFα) by ELISA test using Ciraplex 

Mouse Cytokine 1 8-plex array kit (Aushon BioSystems, Inc., MA, USA), according to the 

manufacturer’s instructions.  
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12. Prophylactic and therapeutic models of TUBO challenge  

For the prophylactic model of vaccination, BALB/c mice (six animals per group) were vaccinated 

i.m. as described above, and then challenged at day 30 with 1x105 TUBO cells injected into the 

mammary fat pad, to compare the protective activity of rHER2/neu-NPX vaccination strategy with 

that induced by the protein emulsified in alum. Control group was represented by mice that were 

not vaccinated and received only TUBO injection. Mice were observed 3 times per week to 

monitor tumor growth by measuring maximum and minimum diameter. Tumor mass was 

calculated applying the formula: 

2

2 Dd
Tmass


  , 

where d and D are minimum and maximum diameter, respectively.  

To determine whether the immune response deriving from anti-rHER2/neu vaccination resulted 

in memory induction, mice that survived from tumor challenge were evaluated for long-term 

protection by rechallenge with 1x106 TUBO cells about 3 months after the first challenge. Control 

group was represented by mice that received only TUBO injection. Mice were observed 3 times 

per week and tumor mass was calculated as described. 

For the therapeutic model of vaccination, BALB/c mice (six animals per group) were first injected 

into the mammary fat pad with 1x105 TUBO cells, and when all mice had an established tumor of 

~3 mm in diameter, they were vaccinated i.m. with 10 or 1 μg of rHER2/neu conjugated with NPX 

or emulsified with alum at day 12 (priming), and then at days 19 and 26 (boosts). Control group 

was represented by mice that received only TUBO injection. 

In these experiments, measurable masses >2 mm diameter were regarded as tumors. When 

tumor volumes were >400 mm3 (for the preventive model of TUBO challenge and rechallenge), or 

>1000 mm3 (for the therapeutic model of TUBO challenge), or when skin ulceration occurred, 

mice were sacrificed by CO2 inhalation, according to the guidelines of the UK Coordinating 

Committee Cancer Research (UKCCCR) (Cancer Metastasis 1989, “UKCCCR guidelines to the 

welfare of animals in experimental neoplasia”). 

13. Mixed Leukocyte Tumor Cell cultures (MLTC)  

Spleens of BALB/c mice immunized i.m. with 10 μg of rHER2/neu-NPX or rHER2/neu emulsified 

with alum as described above, and spleens of TUBO-challenged/rechallenged mice in the 
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prophylactic vaccination model, were collected at day 30 or at sacrifice, respectively. MLTC 

cultures were set up by in vitro restimulation of 25x106 splenocytes with 106 syngeneic irradiated 

(60 Gy) rHER2/neu-positive TUBO and 3T3/NKB cells, or rHER2/neu-negative NIH/3T3 cells as 

control. Cell cultures were maintained in DMEM complete medium, in 25-cm2 tissue culture flasks 

(Falcon, Becton Dickinson) for 5 days at 37°C, 5% CO2, and finally tested for lytic activity in a 51Cr-

release assay. 

14. Cytotoxicity assay  

The cytotoxic activity of MLTC was assessed in a 4h 51Cr-release assay after 5 days of culture. 

Briefly, TUBO, 3T3/NKB, and NIH/3T3 cells (target cells) were labeled for 1 h at 37°C with 100 μCi 

Na2
51CrO4, washed twice and added to the effectors cells plated in 1:3 serial dilutions, starting 

from an effector/target (E/T) ratio of 100:1. Triplicates for each assay condition were set in 

round-bottom 96 well plates (Sarstedt) in a final volume of 200 μl/well of DMEM 3% FBS. As 

negative control (spontaneous release), cells were incubated with DMEM 3% FBS alone, while for 

positive control (maximum release) cells were treated with 200 μl/well of Triton 5%. After a 4 h-

incubation at 37°C and 5% CO2, 30 μl of supernatants were transferred in a 96-well solid 

scintillator coated plate (LumaPlate-96, PerkinElmer) and radioactivity was evaluated using 

TopCount NXT γ-ray counter (PerkinElmer). The cytotoxicity index was evaluated as previously 

described. 

15. Prevention of spontaneous tumor growth in BALB-neuT mice 

To assess the ability of NPX vaccination to prevent or delay the occurrence of spontaneous HER2-

positive mammary neoplasms, eight week-old virgin female BALB-neuT mice were immunized as 

described above, while control group was represented by BALB-neuT that did not received 

immunization. Appearance of spontaneous tumors was monitored by manual inspection of 

mammary pads 3 times per week. Data are reported as tumor multiplicity (cumulative number of 

tumors per number of mice in each group). Measurable/palpable masses >2 mm in diameter 

were regarded as tumors. Also in this experiment, when tumor volumes were >1000 mm3 or 

when skin ulceration occurred, mice were sacrificed by CO2 inhalation, according to the guidelines 

of the UKCCCR.  
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16. Statistical analysis  

For the kinetics data, the ANOVA test for repeated measurements was performed to determine 

differences between the tumor growth in control and vaccinated groups. P<0.05 was considered 

to be statistically significant. Kaplan–Meier product-limit method was carried out to estimate the 

survival curves, and comparison of survival between groups was performed using the log-rank 

test. Statistical differences between percentage of CDC-mediated cell lysis in 51Cr-release assays, 

antibody titers, and cytokines production evaluated by ELISA test were calculated with the 

Student t test for independent samples. All statistical analysis were performed using MedCalc, 

version 12.1.0. 
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Results 

1. Hystological assessment of NPX biocompatibility 

All effective vaccines stimulate the innate immune system to produce cytokines and chemokines 

for the development of adaptive immune responses. These inflammatory reactions are usually 

local and transient, but, in some cases, severe side effects can occur, with uncontrolled release of 

tissue damage-associated danger signals. Therefore, the investigation of local reactions following 

vaccine administration is essential to understand the safety profile of vaccine adjuvants. To this 

purpose, we immunized BALB/c mice with a single i.m. injection of rHER2/neu recombinant 

protein conjugated to NPX, emulsified with alum, or alone as negative control. TA muscles were 

harvested at different time points thereafter, and the presence of local inflammatory reactions 

and muscle integrity were evaluated by H&E staining (Fig. 1).  

As expected (Kashiwagi, Maeda et al., 2014), in mice immunized with alum a typical local 

inflammatory reaction at the site of injection occurred, with a massive recruitment of neutrophils 

and monocytes, which were already detectable 24 h after immunization. The number of 

inflammatory cells increased over time, and at 72 h macrophages were the most represented 

immune cells, characterized by ballooned cytoplasm with peripherally localized nuclei. 

Aggregates of macrophages were even more evident 1 week after immunization. Conversely, 

neither NPX nor the protein alone induced any histological changes indicative of inflammation; as 

a result, muscle integrity was totally preserved. Therefore, NPX appeared to be extremely safe, 

and to act differently from classical immunological adjuvants that trigger strong inflammatory 

responses at the site of injection. 
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Figure 1. Histological analyses of tibialis anterior muscles from vaccinated BALB/c mice. BALB/c mice 

were immunized i.m. with 5 μg of rHER2/neu-NPX, rHER2/neu emulsified with alum, or the protein alone. 

Muscles were harvested at 24 h, 72 h, or 1 week after injection and stained with H&E for histologic 

evaluation. Histological analyses are reported at (A) 3X, and (B) 20X magnification of the framed areas in A. 
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2. Assessment of humoral responses: serum IgG and IgG subclasses 

titration 

To compare the breadth and quality of antigen-specific humoral immune responses induced by 

NPX- or alum-adjuvanted vaccination, we immunized i.m. BALB/c mice at days 0, 14, and 21 with 

10 or 1 μg of rHER2/neu emulsified with alum or conjugated to NPX. Since rHER2/neu is a 

xenogeneic protein in normal mice, albeit only 6% of the amino acid residues differ from the 

mouse ErbB2, additional control mice were immunized with the same amounts of protein alone, 

according to the same protocol. 

As regards the i.v. route of immunization, preliminary data obtained in our laboratory and 

involving the OVA model antigen, showed that NPX is extremely efficient in inducing high antigen-

specific IgG titers, thus requiring lower number of vaccination doses or lower amounts of antigen 

per dose. In particular, i.v. administration of a single dose of 10 μg OVA-NPX demonstrated to be 

sufficient to induce strong humoral responses. Encouraged by these results, we immunized 

further BALB/c mice i.v. at day 0, 14, 21 with 1 μg of rHER2/neu-NPX or with a single dose of 10 

μg of the bioconjugate at day 0. As the i.v. route cannot be exploited by commercially available 

adjuvants, control groups were represented by BALB/c mice immunized with the same amounts 

of rHER2/neu alone.     

Adjuvanticity of NPX and alum was evaluated in terms of quantity, quality and persistence of the 

humoral immune responses induced. For this purpose, other than total IgG, IgG1, IgG2a, and 

IgG2b subclass titers were evaluated and monitored over time. This allowed us to indirectly 

estimate the involvement of Th cells responsible for isotype switching, and the balance between 

Th1 and Th2 responses. 

The immunization with protein alone did not induce any detectable response, while NPX for both 

routes of administration and alum induced strong anti-rHER2/neu humoral responses, which 

persisted over time being still detectable at 1 year after priming (Fig. 2). Notably, mice immunized 

with rHER2/neu-NPX disclosed increased IgG titers in comparison to control groups. In particular, 

for both routes of administration, these humoral responses were already detectable after priming 

at day 14, except for mice immunized i.v. with 1 μg of the bioconjugate whose IgG production 

was detectable after 1 boost (day 21). Conversely, alum-vaccinated mice always required 1 or 2 

boosts of 10 or 1 µg of rHER2/neu, respectively, to induce any detectable response. Moreover, 

while both adjuvants elicited strong IgG1 responses, the bioconjugate clearly disclosed higher 

IgG2a and IgG2b titers, which were also detectable for the i.v. route of administration. Taken 
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together, these data demonstrate the superiority of NPX adjuvanticity over alum, since NPX-

based vaccinations require not only lower number of doses but also lower amounts of antigen 

per dose to induce detectable humoral responses. 
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Figure 2. Total IgG and IgG subclass contents in sera from vaccinated BALB/c mice. BALB/c mice were 

immunized i.m. with 10 or 1 μg rHER2/neu conjugated to NPX or emulsified with alum, or i.v. with 10 μg or 

1 μg of the bioconjugate or the protein alone (6 mice/group). Immunization protocol consisted in a prime 

dose at day 0, followed by 2 boosts at days 14 and 21, except for i.v. administration of 10 μg of the 

bioconjugate, which consisted in the priming only. Sera were collected at day 0, as basal control, 

immediately before every subsequent immunization, and thereafter every 30 days up to six months, with a 

final time point at 1 year (time point not available for 10 μg i.v. immunization). IgG and IgG subclass content 

was quantified by ELISA test. Where concentration values are not reported, IgG and IgG subclasses content 

was below the detection threshold level for this method. * P<0.05; ** P<0.005; *** P<0.001, Student’s t 

test for independent samples. 
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The induction of these various IgG subclasses is suggestive of the Th cell polarization promoted by 

either adjuvants. In particular, in mice immunized with alum IgG1 subclass dominated the 

immune response as clearly indicated by the IgG2a/IgG1 ratio (Table 1), thus confirming that 

alum induced a Th2-skewed immune response. Conversely, rHER2/neu-NPX stimulated a more 

balanced IgG2a/IgG1 humoral response. In particular, mice immunized i.m. with the bioconjugate 

disclosed a more balanced Th1/Th2 immune response, while i.v. administration of the 

bioconjugate seemed to preferentially boost Th2-skewed responses.  

Time point 

of serum 

collection 

IgG2a : IgG1 ratio IgG2a : IgG1 ratio IgG2a : IgG1 ratio 

10 μg i.m. 1 μg i.m. 10 μg i.v. 1 μg i.v. 

 rHER2/neu-NPX rHER2/neu+alum  rHER2/neu-NPX rHER2/neu+alum  rHER2/neu-NPX  rHER2/neu-NPX 

14 1.40 : 1 / IgG2a only / 1 : 13.42 / 

21 1 : 1.53 1 : 3.65 9.55 : 1 / 1 : 6.18 1 : 2.07 

30 1 : 3.55 1 : 19.84 1 : 2.73 

IgG1 only 

1 : 5.02 1 : 5.18 

60 1: 10.24 1 : 43.38 1 : 13.97 1 : 6.42 1 : 8.75 

90 1 : 7.36 1 : 28.18 1 : 19.17 1 : 13.57 1 : 18.12 

120 1 : 5.48 1 : 25.26 1 : 14.32 1 : 37.38 1 : 21.12 

150 1 : 5.11 1 : 34.44 

IgG1 only 
IgG1 only 

1 : 41.78 

180 1 : 6.47 1 : 27.81 
IgG1 only 

360 1 : 2.61 IgG1 only not available 

Table 1. IgG2a/IgG1 ratio in sera from vaccinated BALB/c mice. The IgG2a/IgG1 ratio was calculated from 

the mean value of IgG1 and IgG2a content (μg/ml) of sera collected at different time points from BALB/c 

mice immunized i.m. with 10 μg or 1 μg of rHER2/neu conjugated to NPX or emulsified with alum, or i.v. 

with 10 μg or 1 μg of the bioconjugate (6 mice/group).  

The induction of strong antigen-specific humoral responses is a great challenge for peptide 

vaccination. In general, short peptides are poorly immunogenic and commercially available 

adjuvants often failed to induce any detectable immune response. In collaboration with Prof. O. 

Marin, we identified and synthesized three potentially immunogenic peptides from the ECD of 

rHER2/neu protein, named A1, A2, and A3. We therefore immunized i.m. BALB/c mice according 

to the standard schedule (priming and two boosts), with 30 μg of these peptides conjugated to 

NPX or emulsified with alum, and evaluated IgG titers. A1 and A2 peptides did not induce any 

detectable humoral response (data not shown); conversely, mice immunized with A3-NPX 
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developed peptide-specific IgG, whereas alum completely failed to induce any detectable 

response (Fig. 3, left panel). 
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Figure 3. IgG content of sera from BALB/c mice immunized i.m. with A3 peptide conjugated to NPX. 

BALB/c mice were immunized i.m. at day 0, 14, and 21 with 30 μg (left panel) or 100 μg (right panel) of A3 

peptide conjugated to NPX or emulsified with alum (3 mice/group). Sera were collected at day 0, as basal 

control, before every subsequent immunization, and at day 30. IgG content was calculated by ELISA test. 

Where concentration values are not reported, IgG content was below the detection threshold level for this 

method. 

To strengthen A3-specific humoral response, mice were immunized i.m. with 100 μg of A3-NPX or 

A3 emulsified with alum. Again, only mice immunized with the bioconjugate produced detectable 

amounts of IgG (Fig. 3, right panel). Since the conjugation of small peptides to the PADRE 

universal Th cell epitope proved to enhance humoral antigen-specific immune responses in mice 

(Alexander, Sidney et al., 1994; Alexander, del Guercio et al., 2004), we covalently conjugated the 

last alanine of PADRE peptide to the first arginine of A3 sequence. Thirty μg of the resulting 

PADRE-A3 peptide conjugated to NPX or emulsified with alum, were then administered i.m. to 

BALB/c mice according to our standard vaccination schedule. The bioconjugate provided a strong 

boost for humoral response for all IgG subclasses, while mice immunized with alum developed a 

very low antibody response (Fig. 4).  
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Figure 4. Total IgG and IgG subclass content of sera from BALB/c mice immunized i.m. with PADRE-A3 

conjugated to NPX.  BALB/c mice were immunized i.m. at day 0, 14, and 21 with 30 μg of PADRE-A3 

conjugated to NPX or emulsified with alum (3 mice/group). Sera were collected at day 0, as basal control, 

before every subsequent immunization, and at day 30. IgG and IgG subclass content was calculated by 

ELISA test. Where concentration values are not reported, immunoglobulins content was below the 

detection threshold level for this method. *** P<0.001, Student’s t test for independent samples.  

As previously described, also in this case the different IgG subclasses elicited mirrored the 

differential Th cell polarization promoted by alum and NPX adjuvants, with a complete Th2-

skewed immune response induced in alum-vaccinated mice (Table 2). Conversely, in mice 

immunized with PADRE-A3-NPX the presence of both Th1 and Th2 immune responses was 

observed. 

Time point of 

serum collection 

IgG2a : IgG1 ratio 

PADRE-A3 30 μg i.m. 

PADRE-A3-NPX PADRE-A3+alum 

14 / / 

21 3.52 : 1 / 

30 1 : 1.53 IgG1 only 

Table 2. IgG2a/IgG1 ratio of sera from BALB/c mice immunized i.m. with PADRE-A3 conjugated to NPX. 

The IgG2a/IgG1 ratio was calculated from the mean value of IgG2a and IgG1 content (μg/ml) of sera from 

BALB/c mice immunized i.m. with 30 μg of PADRE-A3 conjugated to NPX or emulsified with alum (3 

mice/group). 

Another great challenge for the generation of efficient cancer vaccines is represented by the need 

to break tolerance against self tumor-associated antigens. In this regard, transgenic BALB-neuT 
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mice are tolerant to the rHER2/neu protein because they express the transgene in the thymus 

early in life. To assess the ability of NPX to break immune tolerance against rHER2/neu, female 

BALB-neuT mice were immunized i.m. with 10 μg of rHER2/neu protein conjugated to NPX or 

emulsified with alum, as this dosage proved to elicit the highest IgG titers in BALB/c mice. To 

verify if Abs production occurred spontaneously in this mouse strain, sera from non-immunized 

animals were collected at the same time points of vaccinated groups, and evaluated for their IgG 

content. Both vaccine adjuvants succeeded in breaking tolerance against rHER2/neu and eliciting 

strong antibody titers (Fig. 5), while non-vaccinated BALB-neuT mice did not mount any 

detectable spontaneous humoral response (data not shown). Notably, NPX-vaccinated animals 

exhibited IgG titers that were about two-fold higher than those observed with alum. 
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Figure 5. Total IgG and IgG subclass content of sera from vaccinated BALB-neuT mice. BALB-neuT mice 

were immunized i.m. with 10 μg of rHER2/neu conjugated to NPX or emulsified with alum (4 mice/group). 

Immunization protocol consisted in a priming at day 0, followed by 2 boosts at days 14 and 21. Sera were 

collected at day 0, as basal control, before every subsequent immunization, and at days 30 and 60. Titration 

of IgG and IgG subclasses was performed by ELISA test. * P<0.05; *** P<0.001, Student’s t test for 

independent samples. 

All three IgG subclasses were produced by vaccinated groups albeit to a different extent, but 

interestingly in transgenic mice NPX vaccination resulted in a more balanced Th1/Th2 ratio when 

compared to immune responses in BALB/c mice, whereas alum-vaccinated group still displayed a 

Th2-skewed immune response, even though less pronounced (Table 3).  
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Time point 

of serum 

collection 

IgG2a : IgG1 ratio 

rHER2/neu 10 μg i.m. 

rHER2/neu-NPX   rHER2/neu+alum 

14 1.74 : 1 / 

21 1 : 1.01 1 : 6.85 

30 1 : 1.54 1 : 8.59 

60 1 : 1.34 1 : 22.59 

Table 3. IgG2a/IgG1 ratio from sera collected from vaccinated BALB-neuT mice. IgG2a/IgG1 ratio was 

calculated from the mean value of IgG2a and IgG1 content (μg/ml) of sera collected at different time points 

from BALB-neuT mice immunized i.m. with 10 μg of rHER2/neu conjugated to NPX or emulsified with alum 

(4 mice/group). 

3. Antigen-specific IgG binding: flow cytometry analysis  

Since protein- and peptide-based vaccinations induce antibodies that have seldom showed high 

affinity for the native protein (Dakappagari, Douglas et al., 2000), we evaluated by flow cytometry 

the ability of the same sera analyzed by ELISA test to recognize and bind rHER2/neu in its native 

conformation. First, the expression of rHER2/neu on TUBO and 3T3/NKB cells (positive controls) 

and on NIH/3T3 cells (negative control) was assessed by staining with the commercial anti-

rHER2/neu Ab4 mAb (Fig. 6), and then IgG sera were used to stain the same panel of cells (Fig. 7). 

 

Figure 6. Expression of rHER2/neu receptor on 3T3/NKB, TUBO and NIH/3T3 cell lines. rHER2/neu-positive 

(3T3/NKB and TUBO) and negative (NIH/3T3) cell lines were stained with the commercial anti-rHER2/neu 

Ab4 mAb (light blue curves, rHER2/neu staining; grey plot, isotype control). Numbers reported indicate MFI 

of Ab4 staining. 
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As expected on the basis of ELISA analysis, sera from mice immunized with protein alone did not 

stain rHER2/neu-expressing cell lines. Conversely, mice immunized with alum or NPX from both 

routes of administration disclosed strong and persistent humoral responses, still able to 

specifically recognize rHER2/neu at 1 year after priming (Fig. 7).  

 

Figure 7. Flow cytometry analysis of rHER2/neu-positive and negative cell lines, stained with pooled sera 

from vaccinated BALB/c mice. rHER2/neu-positive TUBO and 3T3/NKB cell lines and rHER2/neu-negative 

NIH/3T3 cells were stained with pooled sera collected at different time points from BALB/c mice immunized 

i.m. with 10 or 1 μg of rHER2/neu conjugated to NPX or emulsified with alum, or i.v. with 10 or 1 μg of the 

bioconjugate or the protein alone (6 mice per group). One year time point is not available for 10 μg i.v. 

immunization. Numbers in the upper right corners indicate MFI of sera staining. 

We therefore were able to calculate antigen-specific IgG concentration by flow cytometry, based 

on a standard curve created by incubating 3T3/NKB with scalar concentrations of the Ab4 mAb 

(Fig. 8). Results are reported in Table 4. Again, these data demonstrate the superiority of NPX 

adjuvanticity over alum, since not only NPX-based vaccination strategies produced higher IgG 

titers, but also strong humoral responses were detectable with lower amount of antigen, as 1 μg 

of bioconjugate administered i.m. was sufficient to generate IgG titers comparable to those 

obtained with 10 μg of rHER2/neu emulsified with alum. 

We could not perform a similar quantification with TUBO cells, since rHER2/neu expression on 

this cell line is not stable over time; moreover, we were not able to discriminate TUBO staining at 
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low concentrations of Ab4 mAb, as from the dilution of 0.050 μg/ml of Ab4 overlapping staining 

curves were detected (data not shown).  

 

Figure 8. Example of standard curve generated for rHER2/neu-specific IgG titration. 3T3/NKB cells were 

incubated with scalar concentrations of the anti-rHER2/neu commercial Ab4 mAb, and the correlation 

between MFI and Ab4 concentration was analyzed as detailed in Materials and Methods section.  

Dosage and route 

 of administration 
Sample 

IgG concentration [μg/ml] of sera  

at the indicated time points (days) 

0 14 30 90 150 360 

10 μg i.m. 
rHER2/neu+alum 0.817 0.955 5.536 4.221 2.645 1.271 

rHER2/neu-NPX 0.795 1.059 8.298 5.930 5.043 3.188 

1 μg i.m. 
rHER2/neu+alum 0.813 0.940 2.655 2.527 1.511 1.023 

rHER2/neu-NPX 0.808 0.995 5.306 2.465 1.758 1.353 

10 μg i.v. 
rHER2/neu 0.632 0.673 0.772 0.772 0.723 / 

rHER2/neu-NPX 0.616 1.233 1.777 1.582 1.480 / 

1 μg i.v. 
rHER2/neu 0.611 0.656 0.660 0.678 0.614 0.675 

rHER2/neu-NPX 0.607 0.957 2.719 1.592 1.471 1.283 

Table 4. Quantification of rHER2/neu-specific IgG concentration by flow cytometry. Sera were collected 

from BALB/c mice that had been previously immunized i.m. with 10 or 1 μg of rHER2/neu conjugated to 

NPX or emulsified with alum, or i.v. with 10 or 1 μg of the bioconjugate or the protein alone. Serum IgG 

quantification was carried out as detailed in Materials and Methods section. 

In contrast to what observed in ELISA test, vaccination of mice with PADRE-A3 conjugated to NPX 

or emulsified with alum induced humoral responses with a reduced capacity to bind the receptor 
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in its native conformation (Fig. 9). This result suggests that A3 peptide represents a good 

candidate for anti-rHER2/neu vaccination, but probably both A3 sequence and the vaccination 

protocol should be improved.  

 

Figure 9. Flow cytometry analysis of rHER2/neu-positive or negative cell lines, stained with pooled sera 

from BALB/c mice immunized i.m. with NPX-conjugated PADRE-A3 peptide. rHER2/neu-positive TUBO 

and 3T3/NKB cell lines, and rHER2/neu-negative NIH/3T3 cells were stained with pooled sera collected 

from BALB/c mice immunized i.m. with 30 μg of PADRE-A3 peptide conjugated to NPX or emulsified with 

alum and analyzed by flow cytometry. Numbers in the upper right corners indicate MFI of sera staining. 

Flow cytometry analysis confirmed the ability of alum and NPX-vaccination strategies to break 

tolerance against rHER2/neu in BALB-neuT mice (Fig. 10). Interestingly, only sera from NPX-

vaccinated mice showed affinity for BALB-neuT-derived TUBO cell line. Moreover, as quantified 

by flow cytometry (Table 5), at day 30 NPX-vaccinated group displayed IgG titers that were 2-fold 

higher than those of the alum-vaccinated counterpart.  
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Figure 10. Flow cytometry analysis of TUBO, 3T3/NKB, and NIH/3T3 cells stained with pooled sera from 

vaccinated BALB-neuT mice. TUBO, 3T3/NKB, and NIH/3T3 cells were stained with pooled sera collected 

from BALB-neuT mice immunized i.m. with 10 μg of rHER2/neu conjugated to NPX or emulsified with alum 

as control. Numbers in the upper right corners indicate MFI of sera staining. 

Dosage and route  

of administration 
Sample 

IgG concentration [μg/ml]  

at the indicated time points 

(days) 

0 14 30 

10 μg i.m. 
rHER2/neu+alum 0.302 0.365 0.591 

rHER2/neu-NPX 0.291 0.495 1.300 

Table 5. Concentration of pooled sera IgG antibodies as quantified by flow cytometry. Sera were collected 

from BALB-neuT mice that had been previously immunized i.m. with 10 of rHER2/neu conjugated to NPX or 

emulsified with alum. Serum IgG quantification was carried out as detailed in Materials and Methods 

section. 

4. Complement-Dependent Cytotoxicity  

Since tumor protection in both BALB/c and BALB-neuT mice is partly mediated through CDC 

(Rovero, Amici et al., 2000, Hartman, Wei et al., 2011), we investigated the ability of vaccine-

induced antibodies to specifically mediate complement-dependent lysis of 3T3/NKB cell line. 

NPX- and alum-induced immunoglobulines from both BALB/c and BALB-neuT mice showed a 

great ability to trigger CDC-mediated 3T3/NKB lysis (Fig. 11), whereas viability of rHER2/neu-

negative NIH/3T3 cells was not affected (data not shown), thus demonstrating the specific 

recognition of the receptor. Interestingly, Abs from NPX-immunized mice led to levels of 3T3/NKB 
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lysis that were two to three times greater than those observed with sera from alum-vaccinated 

groups, suggesting that rHER2/neu-NPX induced more efficient effector immune responses. The 

difference in CDC functionality are likely due to the difference in IgG subtypes content of mouse 

sera, and in particular in IgG2a and IgG2b subclasses that are considered the most potent inducer 

of CDC in mice (Wittman, Woodburn et al., 2006; Chabner and Longo, 2011).  

Despite the low concentration detected for total IgG content, sera from vaccinated BALB/c mice 

displayed an improved capacity to trigger CDC activity at 1 year after priming, in particular for 

NPX groups. Indeed, at this time point sera from mice vaccinated i.m. with 10 μg of bioconjugate 

mediated up to 90% of specific cell lysis, suggesting that NPX-vaccination strategies can efficiently 

stimulate and “mature” antibody-mediated effector functions. 

 

Figure 11. CDC-mediated 3T3/NKB lysis by sera from BALB/c and BALB-neuT vaccinated mice. Sera were 

collected at different time points from BALB/c and BALB-neuT vaccinated mice (6 and 4 mice per group, 

respectively). rHER2/neu-positive, 51Cr-labeled 3T3/NKB cells were incubated with 1:100 dilutions of 

individual sera collected at different time points from rHER2/neu-immunized mice. Then, rabbit 

complement was added and cell lysis was evaluated in a 51Cr release assay, as detailed in Materials and 

Methods section. * P<0.05; ** P<0.005; *** P<0.001, Student’s t test for independent samples. 
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5. Cytokine production 

IgG subclasses content suggested that i.m. administration of rHER2/neu-NPX induced both Th1 

and Th2 immune responses, whereas alum resulted in a Th2-skewed immune response. To assess 

this hypothesis, we evaluated the cytokine production by splenocytes from BALB/c mice 

vaccinated i.m. with 10 μg of rHER2/neu conjugated to NPX or emulsified with alum, according to 

our standard vaccination protocol. Control group was represented by non-vaccinated BALB/c 

mice. Splenocytes were harvested at day 30 and stimulated in vitro with rHER2/neu protein, 

rHER2/neu-expressing TUBO and 3T3/NKB cells as positive controls, or with NIH/3T3 cells or 

medium alone as negative controls. Supernatants were harvested after 24 and 72 h, and their 

cytokine content (IFN-γ, IL-1β, IL-2, IL-6, IL-10, IL-12p70, IL-17, and TNFα) was analyzed by ELISA 

test.  

Splenocytes from vaccinated mice incubated with NIH/3T3 cells or medium alone, and spleen 

cells from non-vaccinated mice produced negligible levels of cytokines (data not shown), thus 

demonstrating that cytokine production was exquisitely rHER2/neu-specific. Of note, splenocytes 

of mice immunized with alum produced typical Th2-type cytokines, namely IL-6 and IL-10 (Fig. 

12). In addition, high levels of TNFα, INF-γ and IL-1β were detected, suggesting the probable 

activation of the NLRP3 inflammasome by alum, which triggered the production of these 

inflammatory cytokines (Fig. 13). Spleen cells from NPX-vaccinated mice disclosed high levels of 

all tested cytokines. In particular, NPX elicited stronger titers of the Th1-type cytokines IL-12p70, 

IFN-γ and IL-2, thus suggesting that NPX might also stimulate the differentiation and expansion of 

CTL effectors. Interestingly, no statistical difference was observed in the production of IL-6 and IL-

10 between the two adjuvants, confirming that NPX stimulated also a strong Th2-type immune 

response. Indeed, stimulations of TLRs activates common pathways characterized by the 

production of both Th1- and Th2-type cytokines (Fig. 13). The un/balance between the two 

responses relies on the type and number of TLRs that are engaged, since the simultaneous 

stimulation of two or more TLRs can give rise to synergistic, antagonistic, or additive effects 

(Mäkelä, Strengell et al., 2009). NPX exerts its adjuvanticity by activating two types of TLRs: as a 

result, strong, synergistic and very balanced boost for both Th1 and Th2 immune responses is 

elicited.  
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Figure 12. Cytokine production by spleen cells collected at day 30 from vaccinated BALB/c mice. 

Splenocytes were collected at day 30 from BALB/c mice immunized i.m. with 10 μg of rHER2/neu-NPX or 

rHER2/neu emulsified in alum (3 mice per group). Splenocytes were restimulated for 24 or 72 h with 1 

μg/ml of rHER2/neu protein, with TUBO or 3T3/NKB cell lines. The ratio of splenocytes to APC was 10:1. 

Cytokine content was assessed by ELISA test. Where concentration values are not reported, cytokine 

content was below the detection threshold level for this method. * P<0.05; ** P<0.005; *** P<0.001, 

Student’s t test for independent samples. 

 

Figure 13. Cytokine production induced by alum and TLR ligands. Alum adjuvanticity seems to principally 

reside in the activation of the NLRP3 inflammasome and consequently of caspase 1, which in turn activates 

precursors of the IL-1 family, including the proinflammatory cytokine IL-1β. (McKnee, Munks et al., 2009). 

IL-1β supports the proliferation and expansion of Th cell precursors, and induce T cell production of IFN-γ, 

TNFα and IL-17, but also IL-4, which is involved in the differentiation of naïve T cells into Th2 cells. Th2 

responses are characterized by the production of IL-4, IL-5, IL-6, and IL-10 (Hebel, Rudolph et al., 2011). 

Stimulation of TLRs activates a common signaling pathway that culminates in the induction of inflammatory 

cytokines such as TNFα, IL-6, IL-1β, and IL-12p70. This latter cytokine drives the differentiation of naïve T 

cells into Th1 cells, characterized by the production of IL-2 and IFN-γ, which in turn stimulate the 

differentiation and expansion of CTL effectors. The balance between Th1 and Th2 responses depends on 

the type and number of TLRs activated (Kawai and Akira, 2006; Mäkelä, Strengell et al., 2009).  
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6. Prophylactic and therapeutic models of vaccination: TUBO 

challenge in BALB/c mice 

To investigate whether vaccination with rHER2/neu-NPX induces antitumoral immunity and 

protects animals from tumor growth, BALB/c mice were vaccinated i.m. at day 0, 14, and 21 with 

10 or 1 μg of rHER2/neu-NPX or rHER2/neu emulsified in alum, and challenged at day 30 with 

1x105 TUBO cells. Control group consisted of mice that received only TUBO injection. NPX 

vaccination strategies effectively prevented tumor growth, since all animals vaccinated with 10 μg 

of the bioconjugate remained tumor free (Fig. 14 A), while only two mice immunized with the 

lower dose of rHER2/neu-NPX developed tumors (data not shown). Nonetheless, vaccination 

significantly increased their survival when compared to control and alum-vaccinated groups (Fig. 

14 C). By contrast, alum failed to confer protection against TUBO cells. Indeed, all animals in these 

groups developed continuously growing tumors, even though with a delayed tumor growth 

kinetics when compared to controls. However, this preventive effect did not significantly increase 

survival since all alum-vaccinated and control mice had to be sacrificed within 5 weeks (Fig. 14 A 

and C). 

To determine whether the protective immune response elicited by rHER2/neu-NPX vaccination 

resulted in memory induction and hence long-term protection, mice that survived from tumor 

challenge were rechallenged with 1x106 TUBO cells 3 months after the first challenge. Control 

group was represented by mice that received only TUBO injection. Impressively, rHER2/neu-NPX 

vaccination succeeded in conferring long-term protection. Of note, the majority (4/6) of mice 

vaccinated with 10 μg of the bioconjugate rejected the tumors, while both dosages significantly 

delayed tumor onset and growth (Fig. 14 B and D). 

These data strongly supports the concept that NPX-adjuvanted vaccination is able to induce 

strong immune responses and long-term immune memory capable of protecting the host from 

tumor relapse. 
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Figure 14. Prophylactic model of vaccination. (A and C) BALB/c mice (6 animals per group) were vaccinated 

i.m. at day 0, 14, and 21 with 10 or 1 μg of rHER2/neu-NPX or rHER2/neu emulsified in alum, and 

challenged at day 30 with 1x105 TUBO cells. (B and D) Mice that survived from tumor challenge were 

evaluated for long-term protection by rechallenge with 1x106 TUBO cells 3 months after the first tumor cell 

inoculation. In both experiments, control groups were represented by untreated mice that receive only 

TUBO injection. Tumor growth was monitored three times per week, and when tumor volumes were >400 

mm3 mice were sacrificed. Kinetics of tumor growth (left panels) and survival of mice (right panels) are 

represented.  

To assess if NPX vaccination is also effective in the therapeutic setting, BALB/c mice were first 

challenged with 1x105 TUBO cells, and when they all had an established tumor of ~3 mm in 

diameter (day 12), were vaccinated i.m. at day 12, 19, and 26 with 10 or 1 μg of rHER2/neu 

conjugated with NPX or emulsified with alum. Control group was represented by mice that were 

only challenged with tumor. Both NPX- and alum-adjuvanted vaccinations elicited therapeutic 

antitumor effects, since tumor growth in vaccinated mice was substantially reduced as compared 

to control group; nevertheless, these effects were more pronounced and were statistically 

significant only for NPX-vaccinated mice. Interestingly, 1 μg of the bioconjugate was sufficient to 

elicit antitumor immune responses able to prolong survival of treated mice (Fig. 15). 
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Figure 15. Therapeutic model of vaccination. BALB/c mice (6 animals per group) were challenged with 

1x105 TUBO cells, and when all tumors were ~3 mm in the largest diameter mice were vaccinated i.m. at 

day 12, 19, and 26 with 10 or 1 μg of rHER2/neu-NPX or rHER2/neu emulsified in alum. Control group was 

represented by untreated mice that receive only TUBO injection. Tumor growth was monitored three times 

per week, and when tumor volumes were >1000 mm3 mice were sacrificed. Kinetics of tumor growth (left 

panels) and survival of mice (right panels) are reported.  

7. Evaluation of CTL responses  

Recent studies indicate that the induction of CTL responses, which are required for efficient 

antitumor activity, can be finely stimulated by TLR ligands. Thus, we explored the NPX ability to 

induce antigen-specific CTL responses and to assess if this cell population contributes to tumor 

protection. To this end, we isolated splenocytes of BALB/c mice immunized i.m. with 10 or 1 μg of 

rHER2/neu emulsified in alum or conjugated to NPX, and also from all animals (vaccinated and 

control groups) that were monitored in the previously described experiments of prophylactic 

model of TUBO challenge and rechallenge. Following in vitro restimulation with TUBO, 3T3/NKB, 

and NIH/3T3 cells, the potentiality of spleen lymphocytes to specifically kill rHER2/neu-expressing 

cells was determined by using a 51Cr release assay. The results reported in Fig. 16 are represented 

as percentage of specific lysis at different effector:target (E:T) ratios. 
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No CTL response was observed in mice that were only immunized with the two adjuvants, in 

spleens stimulated with NIH/3T3, and in both alum-vaccinated and control challenged groups 

(data not shown). By contrast, a strong CTL activity was detected in NPX-vaccinated animals that 

developed tumors during TUBO challenge experiments (Fig. 16, orange lines) or that survived 

from both tumor inoculations (Fig. 16, blue lines). Cell lysis was high for both rHER2/neu-NPX 

dosages, and the specificity of the response was verified by the inhability of splenocytes to lyse 

the rHER2/neu-negative NIH/3T3 cell line (data not shown). Interestingly, tumor-bearing mice of 

TUBO rechallenge experiments did not developed any detectable CTL response (Fig. 16, black 

lines). 
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Figure 16. Cytotoxic T cell responses from NPX-vaccinated and TUBO challenged BALB/c mice. BALB/c 

mice (6 per group) were vaccinated i.m. at day 0, 14, and 21 with 10 or 1 μg of rHER2/neu-NPX. At day 30 

they were challenged with 1x105 TUBO cells. Mice that survived were rechallenged with 1x106 TUBO cells 3 

months after the first tumor cell inoculation. Spleen cells of mice that did not survived to TUBO challenge 

(orange lines), TUBO rechallenge (black lines), or that were tumor-free at the end of the experiments (blue 

lines) were restimulated in vitro with TUBO or 3T3/NKB cells, and evaluated for their rHER2/neu-specific 

lytic activity against the same cell lines by 51Cr release assay. T: target cells; E: effector cells. 

The discrepancy between CTL responses observed in only vaccinated and tumor challenged 

groups suggests that NPX-based vaccination may promote the differentiation of a quite limited 

population of CD8+ effectors, which expanded after the strong boost conferred by challenge with 

rHER2/neu-positive TUBO cells. CTL activity seems to contribute to tumor protection or tumor 

growth delay, as the only groups that survived from tumor inoculation or that developed tumors 

with a slow growth rate were those vaccinated with NPX (Fig. 14). However, additional 

experiments are required to better understand the role of CTL activity in these responses, since 

probably tumor protection is conferred by a fine cross-talk between humoral and cellular 

responses. Indeed, CTL activity alone may not be sufficient to induce protection, since tumor 

growth was observed despite the presence of detectable CTL responses for some NPX-vaccinated 

animals (Fig. 16, orange lines). On the other hand, CD8+ T cell activity may significantly contribute 

to tumor prevention, since the long-term protection observed in mice that survived from tumor 

rechallenge seemed at least in part due to the induction of memory CTL responses (Fig. 16, blue 

lines). The absence of detectable CTL activity observed in mice that survived to tumor challenge 

but not to tumor rechallenge is controversial (Fig. 16, black lines). A plausible explanation is that 

these mice generated CTL responses able to protect them from the first challenge, but then they 

failed to establish CTL memory. These mice may also have developed immune-suppressive 

mechanisms that inhibited CTL activity during tumor rechallenge. On the other hand, antigen-

specific T cells can be undergone activation-induced cell death (AICD) due to the overwhelming 

antigen load encountered during rechallenge. 

8. Prevention of spontaneous tumor growth: BALB-neuT monitoring  

Although mouse models based on tumor cell grafts are useful to assess the efficacy and 

functionality of cancer vaccines, such models do not fully recapitulate the situation of human 

cancers, which arise in an immunological environment characterized by central and peripheral 

tolerance toward the tumor antigen. Hence, we investigated the ability of NPX-based vaccination 

to confer tumor protection also in BALB-neuT mice, which represent an immunotolerant model of 
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spontaneous and aggressive rHER2/neu-positive cancer. Thus, 8 week-old female BALB-neuT mice 

were immunized i.m. with 10 μg of rHER2/neu-NPX or rHER2/neu emulsified with alum according 

to our standard protocol, and appearance of spontaneous tumors was monitored three times per 

week. Control group was represented by non-vaccinated BALB-neuT mice.  

By week 15 of age all control mice exhibited the first measurable tumors, and by week 25 invasive 

tumors in all 10 mammary glands were detectable (Fig. 17, left panel). Alum completely failed to 

confer any tumor protection, since both tumor multiplicity and tumor-free survival curves 

overlapped those of the control group. By contrast, NPX vaccination resulted in a significant 

increase in tumor-free survival (Fig. 17, right panel), in a marked delay (about 3 weeks) in the 

appearance of macroscopically detectable tumors in the mammary glands, and in a much lower 

number of mammary glands involved as compared with alum-vaccinated and control groups (Fig. 

17, left panel). Of note, all NPX-immunized animals had significantly smaller tumors compared to 

those of the counterparts (data not shown). 

 

Figure 17. Prevention of spontaneous tumors by NPX-based vaccination. Eight week-old female BALB-

neuT mice (4 animals per group) were vaccinated i.m. at week 8, 10, and 11 of age with 10 μg of 

rHER2/neu-NPX or rHER2/neu emulsified in alum. Control group was represented by untreated mice. All 

animals were monitored for tumor appearance by manual examination of the mammary glands 3 times per 

week. Measurable masses >2 mm in diameter were regarded as tumors. Data are reported as tumor 

multiplicity (cumulative number of tumors per number of mice in each group) per week of age (left panel), 

and as percentage of tumor-free mice (right panel). 
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Discussion  

The use of proteins or peptides as immunogens is attractive for the development of vaccines, 

and in particular for cancer vaccines, but requires efficient and safe adjuvant formulations to 

overcome their weak immunogenicity (Miconnet, Coste et al., 2001). Indeed, antibodies elicited 

in animals have generally shown low affinity for the native protein (Dakappagari, Douglas et al., 

2000), and the stimulated cellular and humoral responses seldom protected animals against 

tumor challenge (Buhrman, Jordan et al., 2013). Thus, adjuvants for cancer vaccines need to be 

more potent than for prophylactic vaccines, but most of them have resulted excessively toxic for 

clinical use (Mesa and Fernández, 2004). Moreover, the majority of commercially available 

adjuvants proved to be ineffective in inducing successful antitumor effects, since they 

preferentially stimulate Th2-skewed immune responses, without promoting CTL activity (Nava-

Parada, Forni et al., 2007). Indeed, recent studies indicate that efficient antitumor effects 

require balanced Th1 and Th2 immune responses, characterized by the presence of a strong CTL 

activity, and the production of IgG subclasses with specific effector functions (Ellyard, Simson et 

al., 2007; Mocellin, Marincola et al., 2004). For example, tumor prevention in mice is associated 

with high levels of IgG2a and IgG2b subclasses, which are considered the most potent inducers 

of CDC and ADCC in rodents (Wittman, Woodburn et al., 2006; Chabner and Longo, 2011).  

TLR ligands are emerging as a new class of vaccine adjuvants due to their ability to orchestrate 

the cross-talk between innate and adaptive immunity. In particular, TLR agonists induce the 

maturation of DCs and finely regulate the Th1/Th2 balance, thus promoting potent and long-

lasting humoral and cellular responses (Ito and Chang, 2013). Among TLR agonists, NPs and their 

derivatives originating from plants, animals, and microbes have been studied for many years as 

they offer a unique set of advantages over conventional adjuvants. In fact, by acting as DAMPs 

or PAMPs, they induce specific antitumor immune responses due to their ability to interact with 

TLR, and are also biocompatible, biodegradable, non-toxic, non-immunogenic, and non-

inflammatory (Adams and Mallapragada, 2014). 

In this work, we showed that the natural polymer we developed (NPX) can be regarded as a 

good adjuvant candidate for the design of safe and efficient anticancer vaccine formulations, as 

demonstrated by results obtained against the rat form of HER2/neu oncoantigen. In fact, NPX 

displayed a very good safety profile as no local side effects occurred in vaccinated mice; in 

particular, unlike alum, it did not triggered any visible uncontrolled inflammatory reaction at the 

site of injection, thus preserving muscle integrity.  
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Both alum and NPX-adjuvanted formulations fostered high humoral immune responses against 

rHER2/neu, and the robustness of the antibody response induced in vaccinated groups was 

evaluated in terms of isotype switching, a process that involves Th cell engagement. In this 

regard, both adjuvants induced high production of different IgG subclasses; however, despite 

similar IgG1 levels in both groups, NPX-vaccinated mice disclosed higher IgG2a and IgG2b titers 

for both the i.m. and i.v. administration routes. The superiority of NPX as an adjuvant was also 

demonstrated in mice vaccinated with the rHER2/neu-derived A3 peptide. Indeed, while this 

bioconjugate elicited a strong boost for IgG production, alum completely failed in enhancing 

peptide immunogenicity.  

The strong elicitation of the three IgG subclasses observed in NPX-vaccinated mice suggested 

that NPX likely promotes both Th1 and Th2 responses in mice. In fact, the IgG2a/IgG1 ratio 

clearly demonstrated that alum induced a typical Th2-skewed immune response, while mice 

immunized with the bioconjugate displayed more balanced Th1 and Th2 responses. Cytokine 

production confirmed these data, as NPX elicited higher titers of the Th1-type cytokines IL-

12p70, IFN-γ and IL-2, indicating that this adjuvant may also stimulate the differentiation and 

expansion of CTL effectors. Moreover, both adjuvants boosted the production of the Th2-related 

IL-6 and IL-10 cytokines.  

The different quality and quantity of IgG subclasses and their superior ability to recognize 

rHER2/neu in its native conformation, likely reflected on the better capability of NPX-induced 

antibodies in triggering complement-mediated specific lysis of rHER2/neu-positive cells. In fact, 

NPX very effectively induced humoral responses that persisted over time, and also selected 

mature B cell clones secreting antibodies that mediate improved effector functions. 

NPX-adjuvanted vaccination showed to be effective in both the prophylactic and therapeutic 

settings; indeed, the immune responses elicited prevented or significantly delayed tumor 

growth. Of note, in prophylactic vaccination 10 µg of rHER2/neu-NPX were sufficient to elicit a 

protective long-term immune response in mice, as shown by tumor rechallenge experiments. 

Interestingly, antitumor responses appeared in part to be mediated by NPX ability to induce cell-

mediated responses, since alum-vaccinated groups, which did not display any detectable CTL 

activity, completely failed to protect mice from tumor challenge. Nevertheless, future 

experiments with CD8+ or CD4+ T cell-depleted or knock-out mice will be instrumental to better 

elucidate the role played by these populations in the antitumor responses observed. 

Finally, both alum- and NPX-adjuvanted vaccines proved to be effective in breaking immune 

tolerance against rHER2/neu in transgenic mice, with NPX-vaccinated mice displaying IgG titers 
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that were at least two-fold higher than those observed with alum. All of the three IgG subclasses 

were produced by vaccinated groups; interestingly, NPX vaccination resulted in more balanced 

Th1 and Th2 responses in transgenic mice than in BALB/c animals. Of note, only NPX-induced 

antibodies were able to bind rHER2/neu in its native conformation. This probably reflected on 

the ability of the bioconjugate to successfully protect mice from spontaneous tumor growth, and 

to significantly prolong tumor-free survival. By contrast, alum-based vaccination failed to confer 

tumor protection in BALB-neuT mice.  

Taken together, our data show that NPX is a safe and powerful adjuvant that could be exploited 

for the development of new HER2/neu vaccination strategies. In fact, NPX efficiently enhanced 

the magnitude, breadth, quality, and longevity of specific humoral and cellular immune 

responses to antigens, without causing toxicity. Importantly, these effects can be achieved even 

with a strongly reduced antigen dose.  

Experiments are currently underway to compare the immunogenicity of NPX with that of other 

clinical-grade adjuvants, such as MF59, and to better assess its mechanism of action. Moreover, 

alternative vaccination protocols are under development in order to further improve tumor 

protection in BALB-neuT mice. 
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Abbreviations 

A 

Abs: antibodies 

ACT: adoptive T cell therapy 

ADCC: antibody-dependent cell cytotoxicity 

AFP: alpha-fetoprotein 

AICD: activation-induced cell death 

AIM2: absence in melanoma 2-like receptor 

Akt: protein kinase B 

AML: acute myeloid leukaemia 

APC: antigen-presenting cells 

ASC protein: apoptosis-related speck-like protein containing a CARD domain 

B 

BAGE: B antigen family 

BCR: B-cell receptor 

C 

CARs: chimeric antigens receptors 

CARD: caspase activation and recruitment domain 

CCR7: C-C chemokine receptor type 7 

CDC: complement-dependent cytotoxicity 

CEA: carcinoembryonic antigen 

CLL: chronic lymphocytic leukemia 

CLRs: C-type lectin receptors 

CpG: cytosine phosphoguanosine 

CR: cysteine-rich 

CRPC: castration-resistant prostate cancer 
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CTL: cytotoxic CD8+ T lymphocytes 

CTLA-4: cytotoxic T-lymphocyte antigen-4 

CXCL13: C-X-C motif chemokine 13 

CXCR5: C-X-C chemokine receptor type 5 

D 

DAMPs: damage-associated molecular patterns  

DCs: dendritic cells 

DCregs: regulatory dendritic cells 

dsRNA: double-stranded RNA 

DT: diphtheria-tetanus 

E 

EBV: Epstein-Barr virus 

EBNA: EBV-encoded nuclear antigen 

ECD: extracellular domain 

ECM: extracellular matrix 

EGFR: epidermal growth factor receptor 

ELISA: enzyme-linked immunosorbent assay 

F 

FasL: Fas ligand 

FBS: fetal bovine serum 

FDA: Food and Drug Administration 

FDCs: follicular dendritic cells  

fHA: hyaluronan fragments 

FISH: fluorescence in situ hybridization 

G 

GAGE: G antigen family 
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GCs: germinal centers 

GM-CSF: granulocyte-macrophage colony-stimulating factor 

H 

HA: haemagglutinin 

HB: heparin-binding 

HBsAg: recombinant HBV surface antigen 

HBV: hepatitis B virus 

HER2: human epidermal growth factor receptor 2 

hGH: human growth hormone 

HLA: human leukocyte antigen 

HMGB1: high motility group box 1 

HPV: human papillomavirus 

HTLV: human T-cell lymphotropic virus 

I 

ICD: intracellular domain 

iDCs: immature dendritic cells 

IDO: indoleamine 2,3-dioxygenase 

IFA: incomplete Freund’s adjuvant 

IFN: interferon 

Ig: immunoglobuline 

IHC: immunohistochemistry 

IL: interleukin 

i.m.: intramuscular 

ISCOMs: immunostimulatory complexes 

ISS: immunostimulatory sequences 

ITAM: immunoreceptor tyrosine-based activation motif 
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L 

LD: ligand-domain 

LPS: lipopolysaccharide  

LRR: leucine-rich repeated  

M 

M2: macrophage type 2 

mAbs: monoclonal antibodies 

MAGE: melanoma antigen family 

MAPK: mitogen-activated protein kinase 

MDA5: melanoma differentiation associated gene 5 

mDCs: mature dendritic cells 

MDSCs: myeloid-derived suppressor cells 

MHC: major histocompatibility complex 

MMTV: mouse mammary tumor virus 

MPL: 3-O-desacyl-42-monophosphoryl lipid A 

N 

NF-κB: nuclear factor-κB 

NHL: non-Hodgkin lymphoma 

NK: natural killer  

NLRs: NOD-like receptors 

NPs: natural polymers 

O 

ODN: oligodeoxynucleotides 

OVA: ovalbumin 

o/w: oil-in-water 

P 
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PADRE: pan-DR Th epitope 

PAMPs: pathogen-associated molecular patterns 

PAP: prostate acid phosphatase 

PBS: phosphate buffered saline 

PD-1: programmed cell death 1 

PD-L1: programmed death-ligand 1 

pDC: plasmacytoid dendritic cells 

PI3K: phosphatidylinositol 3-kinase 

PLG: polylactide coglycolide 

PMNs: polymorphonuclear cells 

Poly(I:C): polyiosinic:polycytidylic acid 

Poly-ICLC: poly-L-lysine and carboxymethylcellulose 

PRRs: pattern recognition receptors 

PTLD: post-transplant lymphoproliferative disease 

R 

RAG: recombination activating gene 

RIG-I: retinoic-inducible gene-1 

RLRs : RIG-I-like receptors  

S 

SCCHN: squamous cell cancer of the head and neck 

SOD: superoxide dismutase 

Span 85: sorbitan trioleate 85 

SPF: Specific Pathogen Free 

STAT: signal transducer and activator of transcription  

T 

TA: tibialis anterior 
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TAA: tumor-associated antigen 

TAMs: tumor-associated macrophages 

TCR: T-cell receptor 

Tfh: CD4+ T follicular helper lymphocytes 

TGF: transforming growth factor 

Th: CD4+ T helper lymphocytes 

TiDCs: tumor-associated immature dendritic cells 

TILs: tumor infiltrating lymphocytes 

TLRs: Toll-like receptors 

TNF: tumor necrosis factor 

TRAIL-R1: tumor necrosis factor-releated apoptosis-inucing ligand receptor 1 

Tregs: CD4+CD25+FOXP3+ regulatory T lymphocytes 

TSA: tumor-specific antigens 

Tween 80: polysorbate 80 

V 

VEGF: vascular endothelial growth factor 

W 

w/o: water-in-oil 

Z 

ZAP-70: zeta-chain-associated protein kinase 70 
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