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ABSTRACT 

 

Red blood cells (RBCs) are a-nucleated cells particularly exposed to different 

stimuli, among which circulating hormones and intra/extra-cellular derivatives 

from oxidization processes. In addition, our previous studies showed that in the 

case of inflammatory diseases with GSH content alterations, RBCs were much 

more sensitive to diamide, a mild oxidant able to trigger tyrosine-phosphorylation 

(Tyr-P) of membrane proteins, mainly band 3.  

Aldosterone (Aldo), mineralocorticoid hormone, has been shown to induce many 

effects other than the common diuretic process regulation and involving the 

expression and activation of the superoxide generating enzyme NADPH oxidase, 

thus potentially explaining the increased plasma markers of oxidative stress (OS) 

like isoprostanes in primary aldosteronism (PA), disease characterized by 

excessive Aldo secretion. This well-known Aldo action is mediated by the 

activation of a cytosolic specific receptor, the mineralocorticoid receptor (MR), in 

the so called genomic pathway, which distinguishes from the direct effect of Aldo 

on many proteins and enzymes in the second mechanism, also known as non-

genomic pathway. 

Starting from these evidences, if a direct Aldo involvement in the triggering of 

inflammatory-related oxidative status of the cells was evolving, RBCs were the 

eligible cells for the investigation of the non-genomic Aldo pathway. 

The study involved PA patients and healthy control (HC) and consisted with three 

phases: i) a first approach was carried out to evidence potential alterations in PA 

RBCs followed by an in vitro deepening to assess the effective direct/indirect 

involvement of Aldo in these alterations; ii) once identified as responsible of the 

RBCs alterations found in PA, Aldo pathway within HC RBCs cytosol was 

investigated; iii) at last, Aldo-related pathway in RBCs was studied with particular 

attention to the mechanism leading to membrane band 3 alterations starting from 

Aldo induced receptor activation. 

In the first part, PA RBCs were showed to have oxidative-like alterations such as 

band 3 protein increase of both Tyr-P level and clustering, thus suggesting that PA 
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could be linked to other inflammatory diseases. The effects of Aldo, cortisol 

(Cort) and canrenone (Can) (added as agonist and inhibitor, respectively) were 

compared and Aldo was confirmed as the only responsible of the alterations 

previously observed in PA RBCs. Furthermore, Aldo was shown to trigger RBCs 

membrane alterations leading to autologous IgG binding in a sort of premature 

ageing of the cells. 

The second part of the study analyzed the mechanism of Aldo action: for the first 

time MR was identified in RBCs cytosol as a soluble multi-protein complex, 

differently regulated by the effector utilized. In facts, in the presence of Aldo, MR 

broke away from the complex to form dimers which were promptly proteolysed in 

a sort of turn off signaling. Can or Cort were not able to trigger similar events, 

thus explaining the different alterations found on RBCs membranes. 

However, since to now no direct evidence was found about the possibility that 

Aldo induced an increase of oxidation status in RBCs, oxidization level in both 

membranes and cytosol was addressed in the third and last part of the study. 

Results showed no difference in GSH and GSSP contents and carbonic anhydrase 

(CA) monomerization and activity between HC and PA RBCs. In contrast, 

preliminary data would confirm a sort of oxidative-related increase of band 3 

disulfide bond formation, thus suggesting a new intriguing mechanism leading to 

band 3 increased oxidative status without changing the common anti-oxidative 

cellular defenses. Further investigations addressing this mechanism are in 

progress. 

In conclusion, we found that in PA RBCs Aldo is responsible for the membrane 

alterations leading to a potential premature removal of the cells from circulation. 

Aldo exerts its effect through the activation of the soluble MR complex, which 

participates in the modulation of the Aldo signaling through the possibility of 

being differently affected by other steroids or Aldo inhibitors (Can). Further 

studies are in progress to explore both nature and potential mediators of the Aldo-

induced alterations in the band 3 dimer formation. 
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RIASSUNTO 

 

Gli eritrociti (RBCs) sono cellule non nucleate particolarmente esposte a differenti 

stimoli, tra i quali l’effetto degli ormoni circolanti nel sangue e i derivati dei 

processi di ossidazione intra o extracellulari. Studi precedenti condotti nel nostro 

laboratorio hanno dimostrato che, nel caso di malattie infiammatorie con 

alterazione del contenuto di GSH rispetto ai controlli, gli eritrociti erano molto più 

sensibili alla diamide, un blando ossidante in grado di innescare la tirosin-

fosforilazione (Tyr-P) delle proteine di membrana, principalmente della proteina 

banda 3. 

L’aldosterone (Aldo), ormone mineralocorticoide, oltre alla sua classica azione 

regolatoria dei processi diuretici, è in grado di indurre molti altri effetti tra i quali 

l’espressione e l’attivazione dell’enzima NADPH ossidasi, generatore di anione 

superossido. Questo fatto potrebbe potenzialmente spiegare l’incremento di 

marker plasmatici di stress ossidativo (OS) come gli isoprostani, 

nell’aldosteronismo primitivo (PA), patologia caratterizzata da un’eccessiva 

secrezione di Aldo. 

Partendo da queste evidenze, gli RBCs erano cellule ottimali per studiare se 

l’Aldo potesse indurre un aumentato stato di ossidazione determinato da una sua 

azione diretta sui processi infiammatori. Infatti, in queste cellule non nucleate, un 

eventuale coinvolgimento dell’Aldo nei meccanismi infiammatori, mediante 

un’azione non-genomica, sarebbe stato univocamente dimostrato. 

Lo studio ha coinvolto sia pazienti con PA che controlli sani (HC) e si è svolto in 

tre fasi: i) in un approccio iniziale abbiamo valutato se esistessero potenziali 

alterazioni negli RBCs dei pazienti, procedendo, poi, con un approfondimento in 

vitro condotto sugli RBCs di HC per confermare o meno un diretto 

coinvolgimento dell’Aldo nell’indurre queste alterazioni; ii) una volta identificato 

come responsabile effettivo delle alterazioni riscontrate, abbiamo cercato di 

chiarire il meccanismo di azione dell’Aldo a livello citosolico; iii) infine, partendo 

dall’evidenza che l’azione dell’Aldo veniva mediata dall’attivazione del recettore 
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citosolico, abbiamo cercato di capire il meccanismo attraverso cui questa 

attivazione si trasmettesse, a livello delle membrane. 

Nella prima parte, abbiano dimostrato che negli RBCs dei pazienti erano presenti 

delle alterazioni quali un incremento sia della Tyr-P della banda 3 che una sua 

aggregazione, suggerendo, così, che la patologia potesse essere correlata ad uno 

stress ossidativo come dimostrato in altre malattie infiammatorie. Inoltre, dopo 

aver comparato gli effetti di Aldo, cortisolo (Cort) e canrenone (Can) (aggiunti 

rispettivamente come agonista ed inibitore), abbiamo confermato che era proprio 

l’Aldo il diretto responsabile delle alterazione che, in ultima, portavano ad un 

aumento della quantità degli anticorpi autologhi legati alla membrana, 

rispecchiando una prematuro invecchiamento cellulare.  

Nella seconda parte dello studio, abbiamo dimostrato, per la prima volta, la 

presenza a livello citosolico del recettore dei mineralocorticoidi (MR), che risulta 

essere presente in un complesso multi-proteico di elevato peso molecolare. 

Inoltre, abbiamo evidenziato come solo l’Aldo inducesse la liberazione dell’MR 

dal complesso a formare dimeri prontamente proteolizzati in una sorta di 

spegnimento del segnale. Al contrario, né Cort né Can erano in grado di indurre 

l’attivazione del recettore. 

Tuttavia, poiché finora non è mai stato dimostrato se l’Aldo potesse indurre un 

aumento delle stato ossidativo dell’eritrocita, nella terza parte dello studio 

abbiamo analizzato alcuni markers di ossidazione sia a livello di membrana che di 

citosol. I nostri risultati indicano che nessuna modifica del contenuto di GSH o di 

proteine glutationilate (GSSP) era presente nei pazienti rispetto ai controlli, come 

nessuna alterazione nella monomerizzazione e attivazione della anidrasi carbonica 

(CA), nuovo parametro nella valutazione di un aumentato stato di ossidazione. 

Tuttavia, i nostri risultati mostrano che la proteina banda 3 risulta effettivamente 

sottoposta ad uno stress ossidativo che ne induce l’aggregazione attraverso la 

formazione di ponti disolfuro. Risultato, questo, che merita ulteriori indagini ed 

approfondimenti. 

In conclusione, abbiamo trovato che negli RBCs dei pazienti con PA l’Aldo è 

responsabile di alterazioni di membrana che portano ad una potenziale prematura 

rimozione delle cellule dalla circolazione. L’azione dell’Aldo viene mediata a 
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livello citosolico dall’MR, ma non dal Cort. Ulteriori studi sono in corso per 

esplorare sia la natura che il meccanismo di potenziali mediatori dell’effetto 

dell’Aldo-MR a livello delle membrane eritrocitarie. 
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INTRODUCTION 

 

1. HUMAN RED BLOOD CELLS 

Red blood cells (RBCs), also called erythrocytes, are the most common type of 

blood cell. During their lifetime, RBCs travel through blood vessels of various 

sizes, taking up oxygen in the lungs and releasing it into tissues while undergoing 

large passive deformations during repeated passage through the narrow capillaries 

of the microvasculature (Mohandas and Gallagher, 2008). Human RBCs take on 

average 20 seconds to complete one cycle of circulation. Survival of practically all 

other cells in the body depends upon the proper functioning of RBCs. 

In humans, mature RBCs are non-nucleated cells, flexible and oval biconcave 

disks with a diameter of approximately 6.2–8.2 µm and a thickness at the thickest 

point of 2–2.5 µm and a minimum thickness in the center of 0.8–1 µm, being 

much smaller than most other human cells.  

 

Figure 1. Schematic representation of red blood cell. 

 

A normal RBC is a biconcave disk to achieve a maximum surface area to 

cytoplasmic volume ratio. 

The cytoplasm of RBCs is rich in hemoglobin (Hb), an iron-containing 

biomolecule that can bind oxygen and is responsible for the red color of the cells. 
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The cell membrane is composed of proteins and lipids, and this structure provides 

properties essential for physiological cell function such as deformability and 

stability while traversing the circulatory system and specifically the capillary 

network. 

Mature RBCs in mammals lack a cell nucleus and most organelles, in order to 

accommodate maximum space for Hb. The cells develop in the bone marrow and 

circulate for about 100–120 days in the body before their components are recycled 

by macrophages. 

 

1.1. Life cycle of RBCs 

Human RBCs are produced through a process named erythropoiesis, developing 

from stem cells to mature erythrocytes in about 7 days. Through this process 

RBCs are continuously produced in the red bone marrow of large bones and this 

production can be stimulated by the hormone erythropoietin (EPO), synthesized 

by the kidney. Normal adult humans produce and release into the circulation 

approximately 2×10
11

 new RBCs each day. The newly produced cells have 

extruded their nuclei in the bone marrow before they are released into the blood. 

However, these cells are irregularly shaped, have residual surface proteins of 

erythroblasts, and retain internal organelles including ribosomes, endoplasmic 

reticulum and mitochondria. Circulating reticulocytes are from 24 to 35% larger 

than the other erythrocytes in the blood so that during their 1–2 day maturation 

they lose about one-quarter of their volume and the residual internal organelles are 

degraded by multiple cellular processes including proteasomal degradation, 

autophagy, and vesicle exocytosis. Once a reticulocyte matures into a biconcave 

RBC, it will normally circulate for more than 110-120 days, but it will gradually 

lose about another 20% of its membrane and associated cytoplasm through 

exocytosis of vesicles that contain concentrated amounts of chemically modified 

Hb, including oxidized and glycated forms. (Koury, 2014) 

At the end of their lifespan, they become senescent, and are removed from 

circulation. The aging RBCs undergoes changes in its plasma membrane, making 

it susceptible to selective recognition by macrophages and subsequent 
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phagocytosis in the mononuclear phagocyte system. This process is termed 

eryptosis and normally occurs at the same rate of production by erythropoiesis. 

(Lang and Qadri, 2012) 

The spleen filters a portion of the RBCs through its red pulp, which contains 

capillary-like structures composed of macrophages that cull abnormally shaped or 

immunologically recognized RBCs from the filtered erythrocyte population before 

further transit through the red pulp space and reentry through slits in basement 

membranes of a large network of venous sinuses. (Koury, 2014) 

Eryptosis is increased in a wide variety of diseases including sepsis, haemolytic 

uremic syndrome, malaria, sickle cell anemia, beta-thalassemia, glucose-6-

phosphate dehydrogenase deficiency, phosphate depletion, iron deficiency and 

Wilson's disease. Eryptosis can be elicited by osmotic shock, oxidative stress, 

energy depletion as well as a wide variety of endogenous mediators and 

xenobiotics. (Lang and Qadri, 2012) 

 

1.2. RBCs functions 

RBCs cytosol consist mainly of hemoglobin (Hb), a complex metalloprotein 

containing heme groups whose iron atoms temporarily bind to oxygen molecules 

(O2) in the lungs and release them throughout the body. Oxygen can easily diffuse 

through the RBCs plasma membrane. Hb in the RBCs also carries some of the 

waste product carbon dioxide back from the tissues; most waste carbon dioxide, 

however, is transported back to the pulmonary capillaries of the lungs as 

bicarbonate (HCO3
-
) dissolved in the blood plasma.  

The blood plasma alone is straw-colored, but the red blood cells change color 

depending on the state of the Hb: when combined with oxygen the resulting 

oxyhemoglobin is scarlet, and when oxygen has been released the resulting 

deoxyhemoglobin is of a dark red color. Hb also has a very high affinity for 

carbon monoxide, forming carboxyhaemoglobin which is a very bright red in 

color.  
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1.2.1. Oxygen transport 

Hb is an allosteric oxygen-transport protein. In adult humans the Hb molecule 

consists of four subunits, each having one polypeptide chain and one heme group. 

All Hbs carry the same prosthetic heme group iron protoporphyrin IX associated 

with a polypeptide chain of 141 (alpha) and 146 (beta) amino acid residues. The 

ferrous ion of the heme is linked to the N atom of a histidine. The porphyrin ring 

is wedged into its pocket by a phenylalanine of its polypeptide chain. The 

polypeptide chains of adult Hb themselves are of two kinds, known as alpha and 

beta chains, similar in length but differing in amino acid sequence. The alpha 

chain of all human Hb, embryonic and adult, is the same. The non-alpha chains 

include the beta chain of normal adult Hb (α2β2). Oxygen binds reversibly to the 

ferrous iron atom in each heme group. The heme group that has become oxygen 

bound varies with the partial pressure of oxygen. The sigmoid shape of the 

oxygen equilibrium curve shows that there is cooperative interaction between 

oxygen binding sites. Hence, as oxygen action proceeds, combination with further 

molecules of oxygen is made easier. (Marengo-Rowe, 2006) 

Hb function as an oxygen-carrier in the blood is fundamentally linked to the 

equilibrium between the two main states of its quaternary structure. Hb exists in 

two different conformational states, the T state being dominant in the absence of 

the ligand and the R state when the protein is fully saturated. The unliganded 

(deoxy) form is called the "T" (for "tense") state because it contains extra 

stabilizing interactions between the subunits. In the high-affinity R-state 

conformation the interactions which oppose oxygen binding and stabilize the 

tetramer are somewhat weaker or "relaxed". (Bellelli and Brunori, 2011) 

Under the conditions of lower temperature, higher pH, and increased oxygen 

pressure in the capillaries of the lungs, the reaction proceeds to the right. The 

purple-red deoxygenated hemoglobin of the venous blood becomes the bright-red 

oxyhemoglobin of the arterial blood. Under the conditions of higher temperature, 

lower pH, and lower oxygen pressure in the tissues, the reverse reaction is 

promoted and oxyhemoglobin gives up its oxygen. (Bellelli and Brunori, 2011) 
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Although the oxygen transported by RBCs make possible cellular respiration 

throughout the body, RBCs lack mitochondria and so cannot perform cellular 

respiration themselves and must subsist on glycolysis.  

 

1.2.2. Carbon dioxide transport 

Carbon dioxide (CO2) is generated in the tissues, but only about 5% of the CO2 

dissolves directly in the blood plasma. The 95% of the CO2 coming from the 

tissues is carried in the RBCs. It enters and then leaves the cell by diffusion 

through the plasma membrane. Once inside, about one-half of the CO2 is directly 

bound to Hb (at a different site from the one that binds oxygen).  

The rest is converted by the enzyme carbonic anhydrase (CA) in carbonic acid, 

which dissociates into a hydrogen ion (H
+
) and a bicarbonate ion: 

 

CO2 + H2O ↔ H2CO3 ↔ H
+
 + HCO3

−
 

  

Bicarbonate resulting from CA action, is transported into the plasma in exchange 

for extracellular chloride by band 3, the key protein for the blood’s capacity to 

carry CO2. When the RBCs reach the lungs, these reactions are reversed and CO2 

is released to the air of the alveoli. (Geers and Gros, 2000) 

CAs are ubiquitous metalloenzymes participating in a variety of physiological and 

pathological processes that involve pH regulation, CO2 and HCO3
- 
transport, ion 

transport, biosynthetic reactions, bone resorption and tumorigenicity. 

In mammals, 16 isozymes have been identified that differ in catalytic activity, 

subcellular localization and tissue distribution. RBCs typically express both (fast) 

CA II and higher concentrations of (slow) CA I. (Gilmour, 2010) 

The biological functions of CAs are of great interest, as their contribution to the 

development of complications in some pathologies is not yet completely clarified. 

CA II plays an important role in the production of aqueous humour and much 

attention has been focused on the synthesis and characterization of CA II 

inhibitors, particularly in the treatment of glaucoma (Weiwei and Hu, 2009).  
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1.3. RBCs membrane: structure and function 

The membrane of the RBCs plays many roles that aid in regulating their surface 

deformability, flexibility, adhesion to other cells and immune recognition. These 

functions are highly dependent on its composition, which defines its properties. 

The RBCs membrane is composed of 3 layers: the glycocalyx on the exterior, 

which is rich in carbohydrates; the lipid bilayer which contains many 

transmembrane proteins, besides its lipidic main constituents; and the membrane 

skeleton, a structural network of proteins located on the inner surface of the lipid 

bilayer. Half of the membrane mass in human RBCs are lipids and the other half 

are proteins. (Yazdanbakhsh et al., 2000) 

 

1.3.1. Lipide domain 

The main lipids are cholesterol and phospholipids. The RBCs membrane 

comprises a typical lipid bilayer, similar to what can be found in virtually all 

human cells. The lipid composition is important as it defines many physical 

properties such as membrane permeability and fluidity and also the activity of 

many membrane proteins is regulated by interactions with lipids in the bilayer. 

Although cholesterol seems equally distributed between the two halves or leaflets 

of the lipid bilayer, the other lipids are asymmetrically distributed. Glycolipids, 

phosphatidylcholine and sphingomyelin are located in the outer half of the 

bilayer; phosphatidylinositols (PIs), phosphatidylethanolamine (PE) and 

phosphatidylserine (PS) occur in the interior layer facing the cytoplasm. (Smith, 

1987) 

This asymmetric phospholipid distribution among the bilayer is the result of the 

function of several energy-dependent and energy-independent phospholipid 

transport proteins. Proteins called “Flippases” move phospholipids from the outer 

to the inner monolayer, while others called “floppases” do the opposite operation, 

against a concentration gradient in an energy dependent manner. Additionally, 

there are also “scramblase” proteins that move phospholipids in both directions at 

the same time, down their concentration gradients in an energy independent 

manner. (Mohandas and Gallagher, 2008) 
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The maintenance of an asymmetric phospholipid distribution in the bilayer (such 

as an exclusive localization of PS and PIs in the inner monolayer) is critical for 

the cell integrity and function due to several reasons. Macrophages recognize and 

phagocytose RBCs that expose PS at their outer surface. Thus the confinement of 

PS in the inner monolayer is essential if the cell is to survive its frequent 

encounters with macrophages, especially in the spleen. (Mohandas and Gallagher, 

2008) 

An exposure of PS can potentiate adhesion of RBCs to vascular endothelial cells, 

effectively preventing normal transit through the microvasculature. Thus it is 

important that PS is maintained only in the inner leaflet of the bilayer to ensure 

normal blood flow in microcirculation. Both PS and phosphatidylinositol-4,5-

bisphosphate (PIP2) can regulate membrane mechanical function, due to their 

interactions with proteins such as spectrin and protein 4.1R, modulating the 

linkage of the bilayer to the membrane skeleton. 

Proteins in the lipid domain usually extend from the inside of the erythrocyte to 

the outside. These membrane proteins can be divided structurally into an internal 

hydrophilic portion, a membrane hydrophobic portion, and an external 

hydrophilic portion with attached carbohydrates. (Smith, 1987) 

Integral proteins include several glycophorins, aquaporins and  protein band 3.  

The glycophorins (2% of RBC membrane proteins) are glycosylated in their 

extracellular domain and imparts a negative charge to the cell, reducing 

interaction with other cells/ endothelium.  

The aquaporins are selective pores for water transport and allow RBCs to remain 

in osmotic equilibrium with extracellular fluid.  

The membrane protein band 3 serves simultaneously as an anion exchanger 

(plays a critical role in the CO2 transport system), an anchor for the cytoskeleton, 

Hb and glycolytic enzymes and as a senescence antigen. 

 

1.3.2. Cytoskeleton 

Membrane-associated cytoskeletal protein networks are involved in the control of 

cell shape, attachments to other cells and to the substrate, and in organization of 
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specialized membrane domains. Cytoskeletal proteins interact with integral 

proteins and lipids of the bilayer to maintain membrane integrity. 

The cytoskeleton of RBCs form a filamentous network under the lipid bilayer and 

consists of several proteins such as spectrin, ankyrin, actin, and protein 4.1.  

Spectrin is the most prominent component of the RBCs membrane cytoskeleton. 

It is a fibrous polypeptide constituted by two isoforms, alpha (260 kDa) and beta 

(225 kDa). Both proteins are long, flexible structures that are twisted together to 

form heterodimers (Smith, 1987). Tetramers, and possibly higher order oligomers, 

are formed by a “head-to-head” interaction of heterodimers. Two alpha-beta 

helixes are linked end to end to form a single tetramer, which has binding sites for 

several other proteins, including other spectrin molecules. The spectrin tetramers 

are organized into a meshwork that is fixed to the membrane by the protein 

ankyrin. Actin binds to the “tail” of several heterodimers to generate a series of 

polygons (mostly hexagons), with spectrin tetramers as the sides. (Luna and Hitt, 

1992) 

Ankyrin is itself connected to a transmembrane protein band 3. The purpose of 

band 4.2 (palladin, 72 kDa) may be to stabilize the link between ankyrin and the 

anion exchanger. Spectrin is also linked to a transmembrane protein called 

glycophorin C (25 kDa) by the protein known as band 4.1. Thus the meshwork is 

anchored to the membrane at multiple sites. (Luna and Hitt, 1992) 

Actin subunits (subunit mass of 43 kDa), actually form short microfilaments 

consisting of filamentous actin and tropomyosin (isoforms of 27 and 29 kD). The 

protein tropomodulin is also associated with filamentous actin. Band 4.9 protein, 

known also as dematin (48 kDa) may crosslink some of the actin microfilaments 

to make bundles of f (filamentous) actin. 

Membrane protein Band 4.1 (78 kDa) promotes and stabilizes the association of 

spectrin with actin as does the protein adducin. (Luna and Hitt, 1992) 

 

1.4. Protein Band 3 

Band 3 is a multifunctional transmembrane protein, which is the most abundant 

protein in the RBCs plasma membrane (1.2×l0
6 

copies per cell, about of 25% of 
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the total membrane protein) (Low, 1986). The protein band 3 is an anion 

exchanger (Anion Exchanger 1- AE1, SLC4A1), expressed in erythroid cells and 

the kidney, but also serves as a protein anchor, connecting soluble cytoplasmic 

proteins and components of the cytoskeleton to the membrane, hemoglobin, and 

glycolitic enzymes, as well as a senescence antigen (Tanner, 2002) 

This integral protein (911 amino acid; 95 kDa) has three distinct functional 

domains: the large N-terminal domain and short C-terminal tail of the protein are 

both located in the cytoplasm and the transmembrane domain (Fig. 2). 

 

 

Figure 2. Structural domains of RBCs protein band 3. 

 

The N-terminal domain (Cdb3) (residue l-360; molecular weight of 43 kDa) not 

only anchors the RBCs skeleton by association with ankyrin and protein 4.1 but 

also binds an array of other proteins, including protein 4.2, the glycolytic enzymes 

glyceraldehyde 3-phosphate dehydrogenase, aldolase and phosphofructokinase the 

tyrosine kinase p72syk and deoxyhemoglobin.  

The C-terminal domain (amino acids 361–911; 52 kDa) comprises 12–14 

transmembrane (TM) segments with a short (33 amino acid) cytoplasmic tail. The 

C-terminal tail harbors a binding site for carbonic anhydrase II (CA II), essential 

for the erythrocyte-based system that moves carbon dioxide from the tissues to the 

lungs. The central integral membrane domain performs chloride-bicarbonate 
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exchange, also contains a single N-linked glycosylation site on its extracellular 

surface that is not required for transport. (Van den Akker et al., 2010) 

 

The main functions of band 3 may be summed up into: anion exchanger, anchor 

of proteins and marker of senescence. 

Band 3 multi-spanning integral membrane domain has an anion exchanger 

function and plays a critical role in the CO2 transport system. Since the solubility 

of carbon dioxide in the blood is rather low, the CO2 molecule which diffuses into 

the RBCs through the plasma membrane is converted into HCO3
-
 by cytosolic 

carbonic anhydrase. The bicarbonate anion is then transported out of the cell by 

the band 3 protein in exchange for a Cl
-
 anion. When the blood reaches the lung, 

the above exchange process is reversed as a result of a CO2 pressure gradient 

between the blood and the lung alveoli. One site of band 3 expression is in the 

kidney where its anion exchange activity may have a role in pH regulation of 

blood. (Jennings, 1985; Wang, 1994; Jay, 1996) 

 

 

Figure 3. The interactions of band 3 in cell shape, anion exchange, 

and pH regulation. (Jay, 1996) 

 

Band 3, also serves as a protein anchor, connecting soluble cytoplasmic proteins 

and components of the cytoskeleton to the membrane. Spectrin binds to band 3 via 
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ankyrin and band 4.1 (Fig. 3). These interactions with cytoskeletal proteins make 

band 3 essential for maintaining cell shape and mechanical strength. 

It is also known that this protein guarantees glycolysis regulation through 

protein/enzymes binding to its cytoplasmic tail (Ferru et al., 2011) and provides 

binding sites for Hb, hemichrome (Fig. 4). (Wang, 1994; Pantaleo et al., 2008) 

  

 

Figure 4. (Pantaleo et al., 2008) 

 

Band 3 also has a third function. The external RBCs surface is non-immunogenic 

and non-adhesive, to avoid adhesion to endothelia and phagocytosis by spleen, 

liver and bone marrow macrophages, ready to eliminate any cell showing even 

subtle membrane alterations. Internally, the continuous formation of oxidant 

species during the oxygenation-deoxygenation cycles of Hb are opposed by 

powerful detoxication and protection mechanisms of RBCs. What determines the 

RBCs demise is not its fragmentation but its rapid transformation into a non-self 

cell, recognized as such by the phagocytic system and removed. This 

transformation is likely due to rather subtle modifications of the RBCs membrane 

and expression of neo-antigenic sites that lead to opsonization or direct 

recognition by phagocytes. The protein band 3 acts as a senescence antigen for 

aged and damaged red cells. Clustering of band 3 in the RBCs membrane triggers 

binding of antibodies to an extracellular part of the protein (Fig. 4) and causes the 

removal of aged or damaged red cells. (Pantaleo et al., 2008; Arese et al., 2005) 
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1.4.1. Band 3 and membrane proteins interaction 

The membrane integral proteins establish linkages with cytoskeletal proteins and 

may play an important role in regulating cohesion between the lipid bilayer and 

cytoskeleton, likely enabling the RBCs to maintain its favorable membrane 

surface area by preventing the membrane from collapsing (vesiculating). 

 

 

 

Figure 5: Schematic representation of two types of multiprotein complexes in the 

red cell membrane. (Salomao et al., 2008) 

 

Protein complex (Left side of Fig. 5) attached to spectrin near the center of the 

tetramer (dimer–dimer interaction site). Tetrameric band 3 is bound to ankyrin, 

which is bound to spectrin. The membrane skeletal protein 4.2 has binding sites 

for band 3 and for ankyrin. Transmembrane glycoproteins GPA, Rh, and RhAG 

bind to band 3, and CD47 and LW associate with Rh/RhAG. The two cytoplasmic 

domains of band 3 contain binding sites for soluble proteins, the short C-terminal 

domain for cytosolic carbonic anhydrase II (CA II), the large N-terminal domain 

for deoxyhemoglobin and for glycolytic enzymes, aldolase, phosphofructokinase 

(PFK), and glyceraldehyde 3′-phosphate dehydrogenase (GAPDH).  

The right side of the Fig. 5 shows protein complex at membrane cytoskeletal 

junctions. The junctions contain the ternary complex of spectrin, F-actin, and 

4.1R, as well as the actin-binding proteins tropomyosin, tropomodulin, adducin, 

and dematin. 4.1R enters into an additional ternary interaction with the 
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transmembrane protein GPC and p55 and is taken also to bind to band 3, in the 

form of a dimer, which also carries GPA. (Salomao et al., 2008).  

 

1.4.2. Band 3 tyrosine-phosphorylation 

Phosphorylation/dephosphorylation of protein tyrosine residues (Tyr) has been 

implicated in the regulation of several RBCs functions, including metabolic 

pathways (Harrison et al., 1991; Low et al., 1993; De Neef et al., 1996) membrane 

transport (De Franceschi et al., 1997; Musch et al., 1999) and cellular volume and 

shape (Musch et al., 1999; Bordin et al., 1995; Minetti et al., 1998). 

Protein tyrosine kinases (PTKs) identified to date in RBCs include insulin 

receptor tyrosine kinase (Herzberg et al., 1980) and the Syk (Harrison et al., 1994; 

Brunati et al., 1996) and Src-like non-receptor tyrosine kinases (Brunati et al., 

1996; De Franceschi et al., 1997). Among the Src-like tyrosine kinases detected in 

human RBCs, Lyn and Fgr are expressed predominantly, with Hck being found at 

a lower levels (De Franceschi et al., 1997). The attempt at purifying the native 

protein tyrosine kinases from RBCs led to the isolation of substantial amounts of 

only the 2 tyrosine kinases, Syk and Lyn. (Brunati et al., 1996)  

The PTKs belonging to the Src family share a high degree of structural similarity, 

with a common domain architecture and regulatory mechanisms. The Src 

sequence consists of a poorly conserved N-terminal segment, 2 conserved 

domains termed Src homology 3 (SH3) and SH2, followed by the catalytic 

domain, SH1 (Brown and Cooper, 1996). The SH3 and SH2 domains interact with 

protein sequences containing polyproline II helices and phospho-Tyr residues, 

respectively, and play a dual role in Src regulation, because they are both required 

for keeping Src kinase in an inactive state and targeting the enzyme to specific 

substrates (Xu et al., 1997). 

The activity of Src-related kinases is modulated by phosphorylation of 2 tyrosine  

residues: autophosphorylation of Tyr 416 (c-Src numbering), located inside the 

catalytic domain, correlates with enzyme activation,14,18-20 while Csk-mediated 

phosphorylation of the C-terminal Tyr 527 gives rise to inactive forms of Src 

kinases. Indeed, phosphorylated Tyr 527 interacts with the SH2 domain of the Src 
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molecule, thus triggering a reorganization of the enzyme structure that forces the 

kinase to adopt a locked and down-regulated conformation (Xu et al., 1997). 

Syk (p72syk) which is comprised of two tandemly arranged SH2 domains, a 

linker region that is postulated to bind cellular effectors, a catalytic domain that 

includes autophosphorylation sites, and a short carboxyl-terminal extension.  

SHP-2 is a non-transmembrane protein tyrosine phosphatases (PTPs) involved 

in the signaling pathway of a variety of growth factors and cytokines and plays an 

important role in relaying signals from the cell surface to the nucleus. It is 

expressed in human RBCs, where it is mostly present in the cytosol. SHP-2 

containing 2 SH2 domains and interacts with many proteins by recognizing 

specific Tyr-phosphorylated motifs through its amino-terminal SH2 domain 

(Donella-Deana et al., 1998). This protein–protein interaction enhances SHP-2 

activity by relieving the inhibitory intramolecular interactions between the amino-

terminal SH2 domain and the catalytic phosphatase domain. Thus, the SH2 

domains play a crucial role both in the recruitment of cellular substrates and in the 

modulation of the enzyme catalytic activity (Brunati et al., 2000).  

The Tyr-phosphorylated state of cellular proteins reflects the balance between the 

competing activities of PTKs and PTPs. Because the activity of PTPs is much 

higher than that of PTKs, basal levels of protein Tyr-phosphorylation (Tyr-P) in 

cells are very low (Brautigan, 1992; Walton and Dixon, 1993).  

Treatment of human RBCs with pervanadate, diamide, or N-ethylmaleimide 

(NEM), which act as both oxidizing agents and PTPs inhibitors, induces an 

increase in protein Tyr-P. Under these conditions, the multifunctional 

transmembrane band 3 has been demonstrated to represent the main Tyr-

phosphorylated protein (Harrison et al., 1994; Brunati et al., 2000). 

Band 3 has four Tyr-phosphorylatable sites (Fig. 6): Tyr 8, located in the highly 

acidic cytoplasmic domain, has been identified as the major Tyr-P site in vitro; 

Tyr 21, Tyr 359 and Tyr 904 have also been reported to be phosphorylated in 

vitro. (Yannoukakos et al., 1991). 
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Figure 6. Schematic representation of band 3 Tyr-phosphorylatable sites. 

 

Two well characterized protein kinases, Syk (p72syk) and Lyn (p53/56lyn), are 

thought to be responsible for the vast majority of band 3 tyrosine phosphorylation 

(Harrison et al., 1994). Protein tyrosine kinase Syk catalyzes the so-called 

“primary phosphorylation” of band 3 at Tyr 8 and 21 within the cytoplasmic 

domain of the polypeptide (Fig. 7). (Bordin et al., 2005a) 

 

 

Figure 7. Sequential steps underlying the mechanism of phosphorylation and 

dephosphorylation of protein tyrosine residues (Tyr) of band 3 in treated human 

RBCs. 

 

Subsequently, Lyn, recruited to band 3 through an interaction between its SH2 

domain and one of the above mentioned phospho-Tyr, catalyzes the “secondary 

phosphorylation” of band 3 at Tyr 359 and 904 (Brunati et al., 2000). The 

localization of Lyn next to its phosphorylation sites can be easily explained by its 

binding to phosphorylated tyrosines 8 and 21 of band 3, which are positioned in 

the crystal structure adjacent to both Tyr359 and the membrane-spanning domain 
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of band 3.SHP-2, located in the RBCs cytosol, is recruited to the membrane when 

there is increased of band 3 Tyr-P. Band 3 is both anchoring protein and substrate 

for the SHP-2 (Bordin et al., 2002). Upon binding of the N-terminal SH2 domain 

to a specific P-Y359 target, the enzyme adopts an “open” active conformation and 

catalyzes band 3 dephosphorylation on residues Tyr 8, Tyr 21, and Tyr 904 

(Bordin et al., 2002). 

 

1.5. RBCs and oxidative stress 

Reactive oxygen species (ROS) are chemically reactive molecules containing 

oxygen. ROS form as a natural product of the normal metabolism of oxygen and 

have important roles in cell signalling and homeostasis. Effects of ROS on cell 

metabolism include roles in apoptosis, positive effects such as the induction of 

host defence genes and mobilisation of ion transport systems.  

Normally, cells defend themselves against ROS damage with enzymes such as 

superoxide dismutases, catalases, lactoperoxidases, glutathione peroxidases and 

peroxiredoxins. Small molecule antioxidants such as ascorbic acid (vitamin C), 

tocopherol (vitamin E), uric acid and glutathione also play important roles as 

cellular antioxidants. In similar manner, polyphenol antioxidants assist in 

preventing ROS damage by scavenging free radicals.  

Oxidative stress (OS) reflects an imbalance between the generation of ROS and a 

biological system's ability to readily detoxify the reactive intermediates or to 

repair the resulting damage. Chemically, OS is associated with increased 

production of oxidizing species or a significant decrease in the effectiveness of 

antioxidant defences. In general, harmful effects of ROS on the cell are most 

often: damage of DNA, lipid peroxidation, oxidations of amino acids in proteins, 

inactivation of specific enzymes by oxidation of co-factors and disruptions in 

normal mechanisms of cellular signalling. 

RBCs are cells circulating in direct contact with plasma containing steroids, 

proteins or inflammation-related products, such as ROS. 

Many proteins are susceptible to attack by ROS, especially on sulfhydryl groups 

which are among the most easily oxidized protein residues. Oxidation can lead to 
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inter- and/or intra-molecular cross linking thus inducing protein degradation 

(Stadtman and Levine, 2000;  Pacifici and Davies, 1990), clustering (Bordin et al., 

2010a) and enzyme inactivation (Bordin et al., 2010a; Bordin et al., 2005b). 

S-Glutathionylation is the post-translational modification of protein cysteine 

residues by the addition of glutathione, the most abundant and important low-

molecular-mass thiol within most cell types. This post-translational process occurs 

through the reversible addition of a proximal donor of glutathione to thiolate 

anions of cysteines in target proteins, where the modification alters molecular 

mass, charge, and structure/function and/or prevents degradation from sulfhydryl 

overoxidation or proteolysis. For translational application, S-glutathionylated 

proteins may be useful as biomarkers in individuals exposed to agents that cause 

oxidative or nitrosative stress. (Grek et al., 2013) 

 

When treated with diamide, a mild oxidant which induces cysteine disulfide bond 

formation and inhibits tyrosine (Tyr)-protein phosphatase activities (Bordin et al., 

2005a; Bordin et al., 2006), RBCs show a well-defined Tyr-P level of membrane 

proteins, particularly of band 3 (Bordin et al., 2006). This protein has long been 

involved in the senescent process of human RBCs (Lutz et al., 1988; Bosman et 

al., 2005), through mechanisms of either proteolytic fragmentation (Bosman et al., 

2010) or clustering (Bordin et al., 2010a; Bosman et al., 2005), both triggering 

IgG recognition and binding (Bordin et al., 2010a; Lutz et al., 1988). This, in turn, 

allows further recognition and phagocytosis by macrophages which eliminate 

senescent/altered RBCs. (Lutz et al., 1988; Bosman et al., 2005; Bosman et al., 

2010; Bratosin et al., 1998) 

Alterations in diamide-induced band 3 Tyr-P levels represent pre-existing 

membrane status modifications, like those observed in glucose-6-phosphate 

dehydrogenase (G6PD)-deficient patients (Bordin et al., 2010a; Bordin et al., 

2005b), suffering chronic impairment of antioxidant defenses, or in patients with 

endometriosis (Bordin et al., 2010b) or polycystic ovary syndrome (PCOs) (Donà 

et al., 2012), with systemic inflammation. Diamide triggers band 3 Tyr-P (Bordin 

et al., 2005a; Bordin et al., 2005b; Bordin et al., 2006) and aggregation in high 
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molecular weight aggregates (HMWA), both useful parameters in the evaluation 

of oxidation-related damage to cells (Bordin et al., 2010a; Bordin et al., 2006).  

 

 

2. ALDOSTERONE 

Aldosterone (Aldo) is a steroid hormone (mineralocorticoid family) produced by 

the outer section of the cortex (zona glomerulosa) in the adrenal gland.  

As the name of this class of hormones implies, the mineralocorticoids control the 

excretion of electrolytes.  

 

 

Figure 8. Molecular structure of aldosterone. 

 

 

Aldo plays a central role in the regulation of blood pressure mainly by acting on 

the distal tubules and collecting ducts of the nephron, increasing reabsorption of 

sodium and water in the kidney, potassium secretion and sustains a constant extra 

cellular fluid volume (Funder, 2010). However, the action of Aldo is exerted on 

sweat glands, stomach, and salivary glands to the same effect, i.e. sodium 

reabsorption. This action is accompanied by the retention of chloride and water 

resulting in the expansion of extracellular volume.  

 

2.1. Aldosterone synthesis and regulation 

The corticosteroids are synthesized from cholesterol within the zona glomerulosa 

of adrenal cortex. Many of the enzymes of adrenal steroid hormone synthesis are 

of the class called cytochrome P450 (CYP).  

Aldosterone and corticosterone share the first part of their biosynthetic pathways.  
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Figure 9. Aldosterone biosynthesis from cholesterol. 

 

In order for cholesterol to be converted to pregnenolone in the adrenal cortex it 

must be transported into the mitochondria where CYP11A1 resides. This transport 

process is mediated by steroidogenic acute regulatory protein (StAR) and it is the 

rate-limiting step in steroidogenesis. 

Conversion of pregnenolone to progesterone requires the enzyme 3β-

hydroxysteroid-dehydrogenase type 1 (gene symbol HSD3B2) and the enzyme 

11β-hydroxylase (CYP11B1) transforms 11-deoxycorticosterone in 

corticosterone. 

Zona glomerulosa cells are unique in the adrenal cortex in containing the enzyme 

responsible for converting corticosterone to aldosterone, the principal and most 

potent mineralocorticoid. This enzyme is CYP11B2, also called aldosterone 

synthase. (Connell and Davies, 2005) 

 

2.1.1. The role of the renin-angiotensin system 

Renin is synthesized and released by the juxtaglomerular cells in the afferent 

arteriole of the kidney in response to a decrease in intravascular volume detected 
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by baroreceptors. Pressure-sensitive baroreceptors are found in the vessel walls of 

nearly all large arteries in the thorax and neck, in particular in carotid arteries and 

in the aorta. These specialized receptors are sensitive to changes in mean arterial 

pressure and detect low blood pressure or low blood volume. In response to 

hypotension, renin is released by the kidney and cleaves angiotensinogen into 

angiotensin I, which is converted to angiotensin II by angiotensin converting 

enzyme (ACE). Angiotensin II acts on vascular smooth muscle to cause 

vasoconstriction, and on the adrenal zona glomerulosa to stimulate aldosterone 

production. The adrenal response to Ang II occurs within minutes, a time course 

that implies that no new protein synthesis is required (Connell and Davies, 2005). 

Angiotensin II and a variety of secondary factors (potassium and sodium 

concentrations, adrenocorticotropic hormone (ACTH) and vasopressin) induce 

Aldo synthesis in adrenal zona glomerulosa cells. Aldo is released to the 

circulation, promotes sodium retention in the kidney, and exerts direct effects in 

the heart and other organs (Spat and Hunyady, 2004).  

 

2.1.2. Other regulator factors 

Aldo has an essential role in maintaining extracellular fluid and thereby 

circulation and  its secretion is controlled by several factors. Most or all increases 

in Aldo secretion may be attributable to increased activity of the renin-angiotensin 

system and/or increased plasma level of K
+
. 

Under physiological conditions the control of secretion is probably confined to the 

stimulatory factors ACTH, angiotensin II (ANG II), and K+ concentration.  

Aldo secretion is also increased during acute or chronic sodium depletion, fluid or 

blood loss, erect postural position, dietary potassium loading, tissue damage 

leading to hyperkalemia and pregnancy. 

When sodium or fluid loss is severe, ACTH is also secreted and synergizes with 

ANG II or K
+
 in stimulating glomerulosa cells. Inhibitory factor atrial natriuretic 

hormone (ANP) secretion is increased in response to sodium and/or water loading, 

and it in turn inhibits aldosterone secretion. (Hattangady et al., 2012) 
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The aldosterone production is also affected to one extent or another by nervous 

control, which integrates the inverse of carotid artery pressure, pain, posture and 

probably emotion.  

 

2.2. Aldosterone functions  

The steroid hormone Aldo controls sodium and potassium balance and also 

influences acid-base homeostasis of the vertebrate organism. 

Its major physiological targets are the epithelial cells, of which the most important 

are located in the distal nephron. Aldo augments Na
+
 reabsorption as well as K

+
 

and H
+
 excretion, acting on the nuclear mineralocorticoid receptors (MR) within 

the cells of the distal tubule and the collecting duct of the kidney nephron. In these 

cells Aldo upregulates and activates the basolateral Na
+
/K

+
 pumps and this in turn 

results in reabsorption of sodium (Na+) ions and water (which follows sodium) 

into the blood and secretion of potassium (K+) ions into the urine (Briet and 

Schiffrin, 2011). 

Aldo upregulates also epithelial sodium channels (ENaCs), increasing apical 

membrane permeability for Na
+
. Cl

−
 is reabsorbed in conjunction with sodium 

cations to maintain the system's electrochemical balance. Through changes in 

sodium balance, Aldo influences the extracellular fluids and blood pressure.  

In addition to its epithelial actions, Aldo influences the function of various non-

epithelial tissues, particularly the cardiovascular system and central nervous 

system (CNS). In contrast to its established effects on electrolyte balance in 

epithelial tissue, Aldo in the cardiovascular system promotes cardiac hypertrophy, 

fibrosis and abnormal vascular endothelial function. In the CNS, it appears to 

regulate blood pressure, salt appetite and sympathetic tone. (Connell and Davies, 

2005). 
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2.3. Genomic and non-genomic pathway 

Aldo exerts its function by binding to classical mineralocorticoid receptor (MR) 

acting as ligand-dependent transcription factor (Robert-Nicoud et al., 2001; Yang 

and Fuller, 2012). Over the last decade, there has been an increasing amount of 

evidence showing the dual effect of Aldo. In the first pathway, termed “genomic”, 

Aldo binds to the MR which, being linked to several other proteins in a cytosolic 

complex, dissociates and translocates to the nucleus to regulate target gene 

expression (Yang et al., 2011).  

The MR is expressed in renal epithelial cells and also in non-epithelial tissue such 

as the heart and the brain. Aldosterone exerts its effects on water homeostasis by 

transcriptional regulation of serum-glucocorticoid regulated kinase 1 (Sgk1), 

epithelial sodium channels (ENaC), sodium-potassium-ATPase, and other entities 

in renal collecting duct cells. (Lother et al., 2014) 

In the second pathway, Aldo elicits rapid “non-genomic” effects on second 

messenger systems and signaling cascades of different tissues (Boldyreff and 

Wehling, 2003; Dooley et al., 2012). Aldo mediates rapid effects such as the 

activation of protein kinase C (PKC), protein kinase D (PKD), extracellular 

signal-regulated kinase (ERK1/2) and mitogen-activated protein kinase (MAPK) 

cascades through the transactivation of the epidermal growth factor receptor 

(EGFR), via the non-receptor tyrosine kinase, c-Src. Signalling cascades coupled 

to EGFR transactivation either directly modulate membrane targets through their 

phosphorylation or alternatively modulate the expression of membrane targets 

through the phosphorylation of transcription factors such as CREB or MR. 

(Dooley et al., 2012) 
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Figure 10. Genomic and nongenomic actions of aldosterone and interaction with the 

mineralocorticoid receptor. (Lastra et al., 2010) 

 

Inappropriately high plasma level of Aldo contribute to progressive organ damage 

to the heart (Reil et al., 2012; Funder, 2010; Funder, 2011), vasculature (Rocha et 

al., 1998) and kidney (Shibata and Fujita, 2012; Egido, 1996; Berl et al., 1978), 

promoting myocardial (Swynghedauw, 1999; Qin et al., 2003; Nakamura et al., 

2009) and vascular fibrosis (Tylicki et al., 2008), oxidative stress (Patni et al., 

2007; Pu et al., 2003) and perivascular inflammation (Pu et al., 2003). 

 

 

2.4. Aldosterone and oxidative stress 

The hypothesis of Aldo induced oxidative stress was confirmed in patients with 

chronic heart failure since they showed increased amounts of plasma markers of 

oxidative stress, e.g. oxidized low-density lipoprotein and 8-isoprostane (Kotlyar 

et al., 2006; Yamaji et al., 2009). Macrophages isolated from these patients, after 

treatment with the MR blocker spironolactone, exhibited lower levels of 

superoxide release and lipid peroxides than macrophages taken before the 

spironolactone treatment (Keidar et al., 2005), revealing an important systemic 

source of MR-induced oxidative stress. Also, in patients with essential 

hypertension, who often present criteria of hyperaldosteronism, plasma markers of 
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oxidative stress (OS) like isoprostanes were elevated (Laffer et al., 2006; Stehr et 

al., 2010). 

A first investigation of Aldo-mediated effects on human cells was conducted on 

cells isolated from an adrenal adenoma in comparison to cells from normal 

adrenal tissue. In the adenoma cells, which had been exposed to high 

concentrations of the locally produced Aldo, the expressions of anti-oxidative 

proteins as well as the expression of the superoxide generating enzyme NADPH 

oxidase were increased (Calò et al., 2010). 

 

 

3. MINERALOCORTICOID RECEPTOR  

The mineralocorticoid receptor (MR) derived from the NR3C2 gene, belongs to 

the steroid/thyroid hormone receptor super-family including glucocorticoid (GR), 

thyroid (THRA, THRB), retinoic acid (RAR), vitamin D (VDR) and other orphan 

receptors. In humans, the NR3C2 gene located in the locus 4q31.1, encodes for a 

984 amino acids (aa) protein that makes MR the largest steroid receptor (Faresse, 

2014). As all the nuclear receptors, the MR protein structure is divided in three 

domains; a N-terminal domain (NTD) of 602 aa involved in the control of the 

transcriptional activity of the receptor; the central DNA-binding domain (DBD) of 

66 aa involved in the binding of the specific response element found on the 

promoter of MR target genes; and finally a ligand-binding domain (LBD) of 251 

aa responsible for the selectivity of hormone binding (Faresse, 2014). The high 

homology of MR LBD with GR LBD, allows MR to bind two types of hormones: 

the mineralocorticoids, represented principally by aldosterone, and the 

glucocorticoids represented by and cortisol in humans (Baker et al., 2013). 

Upon hormonal activation, MR is translocated into the nucleus, where it binds to 

transcriptional co-factors to regulate the expression of target genes. The nuclear 

translocation of MR can be achieved either as a homodimer, or associated to GR 

as a heterodimer. 

The ligand-dependent transcription, also called the late response (after 30 min to 

1h), is well characterized and induces the regulation of hundreds of target genes. 
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These genes present a palindromic DNA sequence common for GR and MR 

called glucocorticoid response element within their promoter (Fuller et al., 2000). 

A unique response element specific for MR has not been yet identified. In 

addition to the late response, an early response has been also described. This early 

phase occurs within minutes after ligand treatment and activates a variety of 

second messengers (Grossmann and Gekle, 2009). 

The MR-positive tissues can be divided in two groups: the epithelial and non-

epithelial tissues. Given the high concentration of circulating glucocorticoids 

(100–1000 fold higher than Aldo) it was proposed that glucocorticoids are the 

principal ligand of MR in these tissues (Connell and Davies, 2005). 

However, in epithelial tissues, such as nephron, colon, trachea or salivary glands, 

MR expression is always associated with the 11-β-hydroxysteroid dehydrogenase 

2 (11-β-HSD2) that allows the selectivity of MR binding to Aldo by converting 

the glucocorticoids to their inactive forms (Albiston et al., 1994; Baker et al., 

2013).  

The regulation of MR signaling can occur at different levels: the amount of 

hormone available locally, the interacting proteins in the cytoplasm and in the 

nucleus as transcriptional co-factors, the regulation of the nucleo-cytoplasmic 

shuttling, the cross-talk with other signaling pathways and finally the post-

translational modifications (PTMs) of the receptor. Numerous modifications have 

been characterized including phosphorylation, glycosylation, ubiquitylation, 

neddylation, nitrosylation, methylation, acetylation, sumoylation and lipidation. 

These PTMs are able to regulate all aspects of normal cell biology and 

pathogenesis (Faresse 2014). 

 

 

4. PRIMARY ALDOSTERONISM 

Primary Aldosteronism (PA) is the most common form of endocrine hypertension 

characterized by excessive Aldo secretion by the adrenal glands, relatively 

autonomous of the renin-angiotensin system (RAS).  
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This overproduction of Aldo is not a consequence of excessive renin stimulation 

but results from autonomous secretion from the adrenal cortex. It is caused in the 

majority of cases by a unilateral aldosterone producing adenoma or bilateral 

adrenal hyperplasia and is often accompanied by hypokalemia (Zennaro et al., 

2014).  

Only a minority of the PA cases are familial and due to known 

(CYP11B2/CYP11B1 chimeric gene or mutations in the KCNJ5 gene) or 

unknown causes (Lenzini and Rossi, 2014). 

Although Aldo excess is directly linked to the development of hypertension 

through renal sodium and water retention it also induces tissue inflammation with 

subsequent fibrosis and remodeling in organs such as the kidney (Shibata and 

Fujita, 2012; Egidio, 1996), heart and vasculature (Reil et al., 2012; Funder, 2010; 

Rocha et al., 1998). As a consequence, PA leads to the development of renal 

impairment, atrial fibrillation (Reil et al., 2012), stroke and myocardial infarction 

(Funder, 2010; Rocha et al., 1998). 

However, due to the absence of PA related specific symptoms and signs there is 

substantial delay in establishing the diagnosis that may affect the response to 

treatment and overall prognosis. Thus, early diagnosis is of paramount importance 

in order to initiate specific treatment by either surgical removal of the 

hyperfunctioning adrenal lesion(s) or administration of targeted medical treatment 

with mineralocorticoid receptor antagonists (Zennaro et al., 2014).  
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AIM OF THE STUDY 

 

In previous studies (Bordin et al., 2005b; Donà et al., 2012; Bordin et al., 2010b; 

Andrisani et al., 2014), we identified in the Tyr-P process of RBC membrane band 

3 an important parameter able to discriminate between normal volunteers and 

patients with inflammatory diseases, such as glucose 6 phosphate dehydrogenase 

deficiency (G6PDd), polycystic ovary syndrome (PCOs) and endometriosis. In all 

these pathologies the common feature was an impairment of the GSH-related 

antioxidant activities, situation leading to RBCs membrane alterations. In un-

treated conditions, no difference between healthy controls and patients may be 

seen, but, in the presence of diamide, blind oxidant, enhanced Tyr-P levels in 

patients are clearly found. More interestingly, the increases of Tyr-P in 

membranes are directly proportional to the extent of the oxidizing-related 

parameters, such as lowering of the cytosolic glutathione following diamide 

treatment and increase in glutathionylated membrane proteins. 

Aldosterone (Aldo), besides regulating fluid and electrolyte homeostasis by 

stimulating gene expression of proteins involved in Na+ and K+ regulation and 

reabsorption in renal tissues, can also induce oxidative stress (Patni et al., 2007) 

and perivascular inflammation (Pu et al., 2003) by directly activating or inducing 

gene expression of NADPH oxidase system. For this reason, patients with high 

plasma Aldo content as in Primary Aldosteronism (PA) could have similar if not 

identical alterations as those evidenced in the inflammatory diseases described 

above.  

The aim of this study was, at first, to ascertain if in PA RBCs were effectively 

altered as in other inflammatory diseases, and, then, to investigate how Aldo 

effects could induce eventual membrane alterations since a genomic way was to 

be ruled out in these cells and direct effect on enzymes such as protein kinases, 

phosphatases and structural protein have not yet been established in these cells. 
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MATERIALS AND METHODS 

 

1. MATERIALS 

Anti-phospho-tyrosine (P-Tyr) (PY20) mouse monoclonal antibody was obtained 

from Biosource-Invitrogen (Camarillo, CA, USA). The protease inhibitor cocktail 

and anti-actin mouse monoclonal antibody came from Calbiochem (Darmstadt, 

Germany). Anti-mouse, anti-rabbit and anti-sheep secondary antibodies 

conjugated with horseradish peroxidase (HRP) were obtained from Merck 

Millipore (Darmstadt, Germany). 

Anti-Carbonic Anhydrase (CA) 2 cross reacting also with CA1 sheep polyclonal 

antibody was obtained from Abcam (Cambridge, United Kingdom). Anti-GSH 

was obtained from Virogen (Watertown, MA USA). 

Antibodies anti-SHP2, anti-HSP90 and anti-GAPDH were purchased from Santa-

Cruz Biotechnology, Inc. (CA, USA); anti-Syk and anti-phospho-Src (Tyr416) 

came from Millipore (Temecula, CA, USA). 

Antibody anti-MR (MCR H-300), raised against aminoacids 1-300 of the C-

terminal region of MR was purchased from Santa-Cruz Biotechnology, Inc.; anti-

MR (MA 1-620), produced with aldosterone-3 as immunogen, came from Thermo 

Scientific (Rockford, IL, USA); protein prestained standards from Bio-Rad 

(Milan, Italy). Anti-band 3 antibody, molecular weight markers and any other 

reagents were purchased from Sigma (Milan, Italy).  

 

 

2. STUDY PROTOCOL 

Twenty-two untreated patients affected by PA by serum Aldo levels (intra- and 

inter-assay variations 5.3% and 7.0 %), aldosterone/renin ratio (ARR) and plasma 

renin activity (PRA) and 12 (6 males and 6 females) healthy volunteers as control 
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(HC) were enrolled at the Department of Medicine - Endocrinology of the 

University of Padova, Italy. 

Diagnosis of PA was defined by the presence of aldosterone-renin ratio (ARR) > 

30 (ng/dL)/(ng/mL/h), the lack of aldosterone suppression (<5 ng/dL) following 

an intravenous saline load (2 L of 0.9% saline infused over 4 hours) and the 

persistence of ARR > 30 (ng/dL)/(ng/mL/h) 90 minutes after the administration of 

50 mg of captopril orally. Every patient underwent also an adrenal computed 

tomography (CT) scan and an adrenal venous sampling for subtype classification 

of PA. Before the study, all patients had stopped anti-hypertensive drugs 

interfering with the renin-angiotensin-aldosterone system for 4 weeks. The anti-

hypertensive therapy was switched to an alpha-blocker (doxazosin) and/or 

calcium channel blocker (amlodipine). Patients with hypokalemia have continued 

with oral potassium supplementation. All the subjects were following an 

unrestricted normocaloric diet and undertook a normal physical activity; their 

sodium intake was not restricted and it was calculated at about 150 mmol/day. 

None of the patients were affected by chronic inflammatory disease. 

 

      

Parameter 
Normal 

range 

PA Patients 

(n=22) 

Age (yr) - 55.4±11.3 

BMI (kg/m²) - 27.5±3.4 

Blood pressure 

(mmHg)   

     Systolic <120 155.3 ± 14.1 

     Diastolic <80 97.5± 13.2 

Sodium (mEq/L) 135-145 141.9±1.9 

Potassium (mEq/L) 3.5-4.5 3.3±0.5 

Aldosterone (ng/dL) 3.5-30 44.1±12 

PRA (ug/L/h) 1.3-5.2 0.7±0.3 

ARR < 30 123.4±66.5 

 

Table 1. Baseline clinical characteristics and haematochemical parameters of PA 

patients. Data are means ±SD. 
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At study entry, blood samples were collected from each subject to measure 

sodium, potassium, serum Aldo and PRA in upright position. Citrated blood 

samples were also collected for experimental procedures. During the same visit, 

anthropometric (weight, height and body mass index (BMI)) and clinical (heart 

rate, systolic and diastolic blood pressure) measurements were taken for all 

subjects. Clinical characteristics and biochemical parameters determined in the 

group of PA patients are listed in the Table 1.The Ethics Committee for Research 

and Clinical Trials of our University was notified and all participants gave their 

informed written consent prior to sample collection, according to the Declaration 

of Helsinki. 

 

 

3. METHODS 

3.1. Treatment of RBCs 

Fresh blood, collected from patients and healthy volunteers, was centrifuged at 

3750×g for 3 min.  

 

After removal of supernatant, packed RBC were washed three times at 3750×g for 

3 min in 5 volumes of Dulbecco’s Phosphate Buffered Saline (D-PBS). Packed 

cells (50 µl) were resuspended (at 20% hematocrit) in D-PBS and treated at 35°C 

for 30 min in absence (Basal) or presence (Diamide) of 1.5 mM diamide (dissolved in 

D-PBS) (Bordin et al., 2005b; Bordin et al., 2010b; Donà et al., 2012).  

When the effect of Aldo was evaluated in vitro, only blood from HCs (n=12) was 

centrifuged at 3750×g for 3 min and plasma, not contaminated by leukocytes, was 
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further centrifuged at 1000×g for 20 min to obtain platelet-poor plasma (PPP) 

(Bordin et al., 2013). In order to remove small molecular weight macromolecules 

such as steroid and peptide hormones, dextran-coated charcoal was prepared 

(Bordin et al., 2013) by adding 500 mg of charcoal into the solution containing 50 

mg of dextran and 100 mL D-PBS. The dextran-coated charcoal, or an equal 

volume of the same solution containing only dextran as control, was mixed with 

PPP (1:1). After stirring overnight at 4
o
C, charcoal was removed by centrifugation 

and the Charcoal-stripped (CS-PPP) and unstripped (PPP) were obtained. The 

following day fresh RBC were obtained by the same volunteers who underwent a 

second blood sampling and RBC were purified as described above. RBC were 

washed three times in D-PBS as described above and packed cells were pre-

incubated at 37
o
C for 1 or 24h with PPP or CS-PPP at 20% hematocrit in absence 

(C) or presence of increasing concentrations of aldosterone (Aldo) with or without 

1 µM canrenone (Can) or 5 µM cortisol (Cort) for 1h at 37°C. Stock solutions of 

500 M Aldo and Can were prepared in ethanol and further diluted in D-PBS to 

500 nM and 50 M, respectively, before use.  

At the end of pre-incubation, samples were further incubated in the presence or 

absence of 1.5 mM diamide for 30 min and then recovered by centrifuging at 

800×g for 3 min. 

An aliquot of each sample was successively hemolysed in 30 volumes of 

hypotonic buffer (5 mM sodium phosphate, pH 8, 0.02 % sodium azide, 1 mM 

sodium orthovanadate, and a protease inhibitor cocktail). Membranes were 

separated from the cytosol by centrifugation (16100×g for 20 min in an Eppendorf 

centrifuge) and washed once in hypotonic buffer.  

Both cytosol and membranes were submitted to sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting, 

immunostained with the appropriate antibodies and bands were densitometrically 

scanned. 
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3.2. SDS-PAGE  

Aliquots of membranes (10 µg) or cytosol were submitted to SDS-PAGE (8% 

gels). Samples were diluted into suitable quantity of sample buffer (2.5% SDS, 

10% glycerol, 0.004% pyronin) and reduced/denaturated by heating to 100°C for 

5 min with 1 M β-mercaptoethanol before run. When required, β-mercaptoethanol 

was avoided to analyze samples in non-reducing conditions. Separation was 

performed at constant current (50 mA) in running buffer (50 mM Tris-HCl pH 

8.4, 0.38 M glycine, 5mM EDTA, 3.4 mM SDS in H2O). 

 

3.3. Western blotting and immuno-detection 

Gel-separated samples were electro-transferred on nitrocellulose membrane at 350 

mA constant current for 2 h and 30 min into blotting buffer (25 mM Tris-HCl, 192 

mM glycine, 20% v/v methanol and SDS 0.1%, pH 8.0). Immunological detection 

was then performed using appropriate primary antibodies and HRP-conjugated 

anti-rabbit and anti-mouse secondary antibodies. All washes were done with 

washing buffer (Tris-HCl 50 mM, pH 7.5, NaCl 150 mM, Tween 0.1%), 

saturation with Tris-HCl 50 mM, pH 7.5, NaCl 150 mM, bovine serum albumin 

(BSA) 3% and antibodies were diluted with Tris-HCl 50 mM, pH 7.5, NaCl 150 

mM, BSA 1%.  

Detection was done with freshly prepared solution by Amersham and 

densitometric analysis of immunoblots was obtained by the Image Station 4000 

MM PRO (KODAK). 

 

3.4. Determination of parameter variation 

Band 3 variation (VTyr-P ): Band 3 Tyr-P levels were evaluated densitometrically. 

The Tyr-P value of diamide-treated RBC from PA patients or Aldo-treated 

samples (Tyr-Px) was calculated as the ratio to the Tyr-PC, i.e. Tyr-P level of 

diamide-treated RBC obtained in HC or in PPP 0 (0 nM Aldo) or in CS-PPP 0 

(chosen as arbitrary comparison unit, experimentally determined as value±SD), 

according to the following formula: 
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VTyr-P  = (Tyr-PX/Tyr-PC)-1. 

 

HMWA variation (VHMWA): membranes (1 g), were analysed by SDS-PAGE 

(8%) in non-reducing conditions, immunostained with anti-band 3 antibody and 

bands were densitometrically scanned. Amount of band 3 HMWA in control cells 

(HC or in unstimulated conditions) was chosen as arbitrary unit. Results represent 

means  SD of six separate experiments in duplicate. The formula for VHMWA 

calculation was: 

VHMWA = (HMWAX/HMWAC)-1 

 

IgG variation (VIgG): membranes (8 g) from diamide-untreated RBC were 

analysed by SDS-PAGE (8%), immunostained with anti-human IgG antibody and 

bands were densitometrically scanned. Amount of IgG in control cells (IgGC) was 

chosen as arbitrary unit. Results represent means  SD of six separate experiments 

in duplicate. IgG variation (VIgG) was obtained with the formula: 

VIgG  = (IgGx/IgGc)-1. 

 

3.5. Glycerol gradient sedimentation 

Aliquots of 300 l of cytosol were loaded on a 3.9 ml glycerol (10%-40%) linear 

gradient in 25 mM N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid, pH 7.4, 

1 mM ethylenediaminetetraacetic acid. The tubes were centrifuged 18 hours at 

100 000×g in an SW60Ti rotor (Beckman Coulter, Fullerton, CA) at 4°C and 

fractionated from the top into 18 fractions, and subjected to Western blotting 

analysis under denaturing conditions. Sedimentation markers run in parallel was 

formed by albumin (66 kDa), alcohol dehydrogenase (150 kDa) and amylase 

(200 kDa), apoferritin (443 kDa). 

 

3.6. Anti-MR immunoprecipitations (IP) 

Cytosol from untreated RBCs, obtained as described above was precleared with 

protein A-Sepharose, and then incubated for 5 h at 4°C with anti-MR antibody 
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bound to protein A-Sepharose. Immune complexes were washed three times in 50 

mM Tris–HCl pH 7.5, 1 mM vanadate and protease inhibitor cocktail, and 

subjected to Western blot analysis by immunostaining with anti-MR antibody 

(Santa Cruz). 

 

3.7. Anti-MR evaluation at confocal microscopy 

Aliquots of untreated purified RBCs were washed with PBS, fixed with 2% (w/v) 

paraformaldehyde and incubated on slides pre-coated with poly-L-lysine. Slides 

were rinsed twice with PBS, treated with Triton X-100 and incubated with anti-

MR in a humid chamber. Slides were washed three times with PBS, stained with 

anti-rabbit IgG- Tetramethyl Rhodamine Isothiocyanate (TRITC) conjugate in a 

humid chamber in the dark and mounted. Fluorescence was detected with the 

UltraView LCI confocal system (Perkin Elmer, Waltham, MA, USA). Staining 

without primary antibody was used as negative control. 

 

3.8. Quantitative determination of total glutathione 

content in RBCs cytosol 

Total glutathione in cytosol was determined according to the Tietze method 

(Tietze, 1979). Briefly, 10 l of cytosol from HC and PA RBCs or from in vitro 

samples, were added to 2 ml of reaction mixture containing 1.9 ml of phosphate 

0.1 M/ EDTA 0.6 mM buffer, pH 7.4, 30 l of 5,5’-dithio-bis(2nitrobenzoic acid) 

(DTNB) 10 mM, 100 l of NADPH 5 mM. After a 3 min equilibration period at 

room temperature, the reaction was started by the addition of 10 g glutathione 

reductase (GR). Product formation was recorded spectrophotometrically at 412 

nm, for 4 min at room temperature.  

To assess any impairment in the antioxidant capacity of the erythrocytes, we 

treated RBCs of HC, PA or in vitro samples with diamide, and analysed cytosol 

glutathione content. 

Previous study (Bordin et al., 2010b) demonstrated that after diamide treatment 

total glutathione in RBCs of patients with oxidative stress, dropped considerably 
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but did not significantly change in healthy controls. This suggested the hypothesis 

that the drop in total glutathione in patients was due to irreversible oxidation of 

glutathione, which remains bound to another protein, forming permanent 

disulphide bonds that GR could affect with minor efficacy.  

For this reason we calculated the total decrease in glutathione content after 

diamide treatment (GSH), expressed as 1-(GSH(D)/GSH(B)), GSH(D) being 

change of absorbance in the sample with diamide treatment and GSH(B) that in 

untreated cells. 

 

3.9. Determination of glutathione-protein mixed 

disulphide (GSSP) in RBCs 

GSSP determination was carried out as previously described (Di Simplicio et al., 

1998). Briefly, membranes, obtained as described above, were deproteinized by 

the addition of trichloroacetic acid (TCA) (5% final concentration) and kept on ice 

for 3 min. After centrifugation for 3 min at 16100×g, the pellet was resuspended 

with 0.4 ml basic solution containing 9 vol 0.1 M phosphate buffer (pH 7.4) and 1 

vol 0.25 N NaOH, and stirred for 30 min at room temperature. Thirty microliters 

of 60% TCA was then added to cause precipitation and the amount of released 

GSH was determined enzymatically in the supernatant of centrifuged samples (as 

described above). Under these conditions thiols bound by mixed disulfides are 

easily removed.  

The increase in glutathione released from membranes of RBCs after diamide 

treatment (D), representative of the increase in glutathionylated protein content 

(GSSP), was expressed as (GSSP(D)/GSSP(B))-1. 

 

3.10. Esterase activity assay 

The activity of carbonic anhydrase was assayed by following the change in 

absorbance at 348 nm of 4-nitrophenylacetate (NPA) to 4-nitrophenylate (PNP) 

ion over a period of 10 min at 25 °C with a spectrophotometer (CHEBIOS UV–

VIS) according to the method described by Verpoorte (Verpoorte et al., 1967). 
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Briefly, the enzymatic reaction was carried out in a total volume of 3.0 mL, 

containing 1.4 mL 0.05 M Tris–SO4 buffer (pH 7.4), 1 mL 3 mM NPA, 0.5 mL 

H2O and 0.1 mL diluted cytosol. A reference measurement was obtained by 

preparing the same cuvette with sample solution in the absence of incubation. 

One unit of CA activity was defined as the amount of enzyme which catalyses the 

formation of 1 pmol PNP/min in standard conditions of incubation. The mixture 

was incubated for 10 min at room temperature, and the following formula 

incorporating the extinction coefficient was used to calculate: CA units x10
-3

/ l 

packed RBCs = OD × sample dilution factor /(min × 667), with an extinction 

coefficient of 667. 

 

3.11. Tyr-protein kinase activity assays 

Tyr-phosphorylation assays of membrane proteins were performed by incubating 

RBCs membranes (10 µg) for 10 min at 30ºC in 30-µl reaction mixtures 

containing 50 mM Tris–HCl, pH 7.5, 10 mM MnCl2, 20 µM [γ-
33

P]ATP (3×10
6
 

cpm/nmol) and 0.1 mM vanadate and 200 µM cdc2 peptide, which served as 

specific substrates for Src family tyrosine kinases. Reactions were stopped by the 

addition of 2% SDS and 1% β-mercaptoethanol (final concentrations) incubated 

for 5 min at 100ºC, and analyzed by SDS- PAGE and revealed by a Cyclone 

Storage Phosphor Imager. (Tibaldi et al., 2008) 

 

3.12. Tyr-protein phosphatase activity assays 

Phosphatase activity was measured at 30°C using 10 nM nitrophenyl phosphate 

(pNPP) as substrate in 100 mM tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 

mM 2-mercaptoethanol, and samples membranes (10 µg). After 10 min at 30°C, 

the reaction was quenched with 950 μl of 1 M NaOH. Absorbance at 405 nm was 

measured. Results are expressed as percentage of activity compared to the 

controls. 

 

 



46 

 

3.13. Statistical analysis 

Data are expressed as means ± SD. Comparisons were obtained with Student’s t-

test and statistical significance was set at p<0.05 (two-tailed). Any relationships 

between pairs of variables were tested by least-squares linear regression. 

Pearson’s correlation coefficient r was used to quantify the strength of the 

relationships. The statistical significance of r was determined by ANOVA; a p 

value of less than 0.05 was considered statistically significant (two-tailed). 

Comparison between the slope of regression lines was performed with Student’s t-

test. 
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RESULTS 

1. PART 1: identification and characterization of 

the RBCs alterations in PA patients 

 

1.1. Evaluation of Band 3 Tyr-P level and HMWA 

content in PA patients 

To examine RBCs membrane status, diamide-related band 3 Tyr-P levels were 

determined in patients’ RBCs. Although in the absence of diamide stimulation 

Tyr-P could not be detected in RBCs from either controls or patients (Fig. 1A, 

lanes a, b), when PA RBCs were incubated with diamide, membranes showed 

higher band 3 Tyr-P levels in comparison with RBCs from HCs (Fig. 1A, lane d 

compared with lane c). 

 

 

 

Figure 1. Panel A: Tyr levels in healthy controls (HCs) (lanes a, c) and in patients 

with primary aldosteronism (PA) (lanes b, d). RBCs, isolated as described in Methods, 

were incubated in the absence (lanes a, b) or presence (lanes c, d) of 1.5 mM diamide. 

Membranes, obtained as described in Methods, underwent Western blotting and were 
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immunostained with anti-P-Tyr, or anti-actin antibodies as a loading control. The figure is 

representative of more than 12 separate experiments. 

Panel B: Linear regression between plasma Aldo and the band 3 Tyr-P level (after 

diamide treatment) (C) or HMWA formation (in the absence or presence of diamide 

treatment) (D). The Tyr-P value of diamide-treated RBC was calculated as the ratio to the 

Tyr-P level of diamide-treated RBC obtained in HCs (chosen as arbitrary comparison 

unit, experimentally determined as 99±2 mean value±SD). 

 

 

Due to the wide range of the values obtained by the densitometrical evaluation of 

the band 3 Tyr-P levels in PA RBCs (Fig. 1A, Tyr-P increase of 93±43 %,  

p<0.001), we analyzed PA patients on the basis of their Aldo plasma level and a 

significant correlation (r=0.9640, p<0.0001) was found between plasma content of 

Aldo and band 3 Tyr-P level (Fig. 1B). 

This Aldo-related increased response to diamide was further investigated by 

analyzing RBCs membrane status. Band 3 aggregates in high molecular weight 

(HMWA) complexes in a way that is directly dependent to the redox state of the 

cells (Bordin et al., 2010a; Bordin et al., 2006). 

In Fig. 2 we reported band 3 HMWA pattern of membranes from PA patients 

(panel A, lanes a, b) and HCs (lanes c, d). Interestingly, PA patients (lane a) 

clearly showed higher HMWA content compared to HCs (lane c), even in the 

absence of diamide. Diamide addition induced further aggregation of band 3 both 

in PA patients (lane b) and in HCs (lane d) as expected due to diamide-induced 

disulfide bond formation between cysteine residues of band 3 (Lutz et al., 1988). 
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Figure 2. Panel A: Band 3 HMWA contents in PA patients (lanes a, b) and in HCs 

(lanes c, d). RBCs, isolated as described in Methods, were incubated with (lanes b, d) and 

without (lanes a, c) diamide. RBCs membranes, underwent Western blotting in non-

reducing conditions, and were revealed with anti-band 3 antibodies. The figure is 

representative of 12 separate experiments.  

Panel B: The HMWA values of both diamide treated (+Diam) and untreated (-Diam) 

RBCs from patients with PA were obtained as the ratio to the HMWA content of RBCs 

from HCs, respectively, in the presence or absence of diamide (chosen as arbitrary 

comparison units). 

 

 

Upon densitometric analysis of HMWA content, a significant correlation with the 

plasma Aldo content of patients with PA (Figure 2B) was detected, both in the 

absence or in the presence of diamide (r=0.8596, p<0.0005 and r=0.7474, 

p<0.005, respectively). The slope of the 2 regression lines was not statistically 

different (p=0.6862), indicating that the 2 lines are parallel, thus confirming that 

both in the absence and presence of diamide, a similar correlation between plasma 

Aldo and HMWA content exists. 

 

 

 



50 

 

1.2. Evaluation of Aldo effects on Band 3 Tyr-P level 

and HMWA content in HC RBCs in in vitro 

treatments 

To better evaluate whether the alterations seen in RBCs from patients with PA 

were due to increased plasma Aldo concentrations, we performed in vitro 

experiments with blood from HCs. As described in Methods, RBCs were pre-

incubated for 1 hour or 24 hours at 35°C in CS-PPP or PPP with increasing Aldo 

concentrations, Can (1 µM), Cort (5 µM), both Aldo (5 nM) and Can (1 µM), or 

both Aldo (5 nM) and Cort (5 µM) and successively incubated in the presence or 

absence of 1.5 mM diamide. Membranes were analyzed by Western blotting with 

appropriate antibodies, and immunostained blots were evaluated 

densitometrically. 

The band 3 Tyr-P level (Fig. 3) in RBCs pretreated in PPP 0 (0 nM Aldo), ie, in 

the absence of Aldo and other hormones, was chosen as a reference value for the 

PPP treatment and represented HCs conditions. Addition of increasing Aldo 

concentrations resembled RBCs environments in patients with PA. Can or Cort 

was added as an Aldo competitor. Samples incubated for 1 hour with PPP showed 

no detectable Tyr-P level in the absence of diamide. When added to PPP-

pretreated RBCs, diamide triggered band 3 Tyr-P with an Aldo dose and time-

dependent increase, peaking at 5 nM Aldo and rapidly decreasing at 10 nM, with a 

rise of band 3 Tyr-P ranging from 4±7 (1 hour) to 27±3 (24 hours) of band 3 Tyr-

P variation (VTyr-P, see legend of Fig. 3), compared with the control (ie, in absence 

of Aldo). When RBCs pretreatment was performed with either Can or Cort in the 

absence of Aldo, band 3 Tyr-P level induced by diamide was not affected and 

remained at control levels. However, when pretreatment with Aldo (5 nM) was 

performed in the co-presence of Can or Cort, the consequent diamide-induced 

band 3 Tyr-P level was significantly reduced compared with the peak obtained 

with 5 nM Aldo (VTyr-P of 8±3 and 3±3 for Can and Cort, respectively, at 24 

hours).  

 



51 

 

 

Figure 3. Effect of Aldo and 1 µM canrenone (Can) or 5 µM cortisol (Cort) on RBC 

Tyr-P in non-stripped (PPP) or charcoal-stripped (CS-PPP) plasmas at 1 and 24 

hours of incubation.  Data, expressed as variation compared with the respective controls 

in the absence  of Aldo, Can, or Cort, are the mean±SD of 6 different experiments in 

duplicate. VTyr-P is the band 3 Tyr-P variation, evaluated densitometrically. To better 

appreciate the variations obtained in different samples, we evaluated the Tyr-P level in 

relation to the corresponding controls (absence of Aldo). Therefore, the Tyr-P value of 

diamide-treated RBC from Aldo- Can-, and Cort-treated or co-treated samples (Tyr-PX) 

was calculated as the ratio to the correspondent Tyr-PC, ie, the Tyr-P level of diamide-

treated RBCs obtained in PPP 0 (0 nM Aldo) or in CS-PPP 0, according to the following 

formula: VTyr-P =(Tyr-PX/Tyr-PC)-1. 

* p<0.05; *** p<0.001, comparison between 1 and 24 hours.  

† p<0.05; †† p<0.01; ††† p<0.001, comparison with the respective basal value (Aldo 0 

nM).  

a p<0.001, comparison of (5 nM Aldo) vs (5 nM Aldo+Can), or (5 nM Aldo) vs (5 nM 

Aldo+Cort), within each respective experimental condition. 

 

 

To ascertain that the effects shown with Aldo pretreatment were effectively due to 

Aldo, we incubated RBCs in CS-PPP, ie, in plasma stripped of steroid hormones. 

Diamide addition to CS-PPP RBCs pretreated with increasing concentrations of 



52 

 

Aldo induced high Tyr-P, peaking at 5 nM and resembling those reported for 

patients with PA (Fig. 1B). In fact, 5 nM Aldo pretreatment-induced VTyr-P was 

about 17±5 after 1 hour (p<0.001), but reached 120±10 after 24 hours (p<0.001) 

(Fig. 3). Interestingly, in this case also, further increasing the Aldo concentration 

to 10 nM induced a reduction in the extent of the Tyr-P level. When Aldo was 

replaced by Can or Cort, the diamide-induced band 3 Tyr-P level remained at the 

control level and when 5 nM Aldo was added in association with Can or Cort, 

diamide- P-Tyr levels were strongly reduced.  

 

The HMWA content of RBCs incubated with Aldo in PPP in the absence of 

diamide reached an VHMWA of 11±5 (at 1 hours) and 23±3 (at 24 hours), compared 

with the control (absence of Aldo pretreatment) (Fig. 4). Can or Cort did not 

induce any alteration in the above parameters, but when added with Aldo 

prevented Aldo-related effects. Interestingly, no decrease was shown by further 

increasing the Aldo concentration to 10 nM, either at 1 hour or 24. When HMWA 

formation was evaluated after CS-PPP pretreatment with increasing Aldo 

concentrations, a dose- and time-dependent effect of Aldo was seen, peaking at 5 

nM with a maximal VHMWA never exceeding 21±3 after 1 hour (p<0.001) and 

63±3 after 24 hours (p<0.001) and followed by a slight decrease at 10 nM at both 

incubation times.  
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Figure 4. Effect of Aldo, 5 µM canrenone (Can) or 5 µM cortisol (Cort) on band 3 

high molecular weight aggregates (HMWA) and IgG binding in in non-stripped 

(PPP) or charcoal-stripped (CS-PPP) plasmas. Data, expressed as variations compared 

with the respective control incubated in the absence of Aldo, Can, or Cort, are the 

means±SD of 6 different experiments in duplicate.  

HMWA variation (VHMWA): Membranes (1 µg) from RBCs treated for 1 hour or 24 

hours with Aldo, 1 µM Can, or 5 µM Cort in PPP or CS-PPP, were analyzed by SDS-

PAGE (8%) in non-reducing conditions and immunostained with anti-band 3 antibody 

and bands were scanned densitometrically. The amount of band 3 HMWAs in 

unstimulated conditions (HMWAC: Aldo 0 in PPP, at 1 h) was arbitrarily chosen as unity. 

The formula for VHMWA calculation was VHMWA=(HMWAX/HMWAC)-1. 

* p< 0.05; ** p< 0.01; *** p<0.001, comparison with the respective basal value (0 nM 

Aldo). 

b p< 0.01; a  p< 0.001, comparison (5 nM Aldo) vs (5 nM Aldo+Can) or (5 nM Aldo) vs 

(5 nM Aldo+Cort), within each respective experimental condition. 

 

 

To evaluate the possible involvement of Aldo pre-incubation in altering RBCs life 

span, membranes obtained from the samples described above were analyzed for 
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their IgG content (Fig. 5). In this case also, Aldo pretreatment induced a marked 

increase in autologous IgG binding, plateauing at 5 nM in both PPP and CS-PPP 

samples, which was completely prevented by Can or Cort co-addition. 

 

 
Figure 5. Effect of Aldo, 5 µM canrenone (Can) or 5 µM cortisol (Cort) on IgG 

binding in in non-stripped (PPP) or charcoal-stripped (CS-PPP) plasmas. Data, 

expressed as variations compared with the respective control incubated in the absence of 

Aldo, Can, or Cort, are the means±SD of 6 different experiments in duplicate.  

IgG variation (VIgG): Membranes (8 µg) from RBCs treated for 24 hours with Aldo, 5 

µM Can, or 5 µM Cort in PPP or CS-PPP were analyzed by SDS-PAGE (8%) and 

immunostained with anti-human IgG antibody and bands were densitometrically scanned. 

The amount of IgG in Aldo 0 in PPP (IgGC) was chosen as an arbitrary unit. VIgG was 

obtained with the formula: VIgG= (IgGX/IgGC)-1. 

** p< 0.01; *** p<0.001, comparison with the respective basal value (0 nM Aldo). 

a  p< 0.001, comparison (5 nM Aldo) vs (5 nM Aldo+Can) or (5 nM Aldo) vs (5 nM 

Aldo+Cort), within each respective experimental condition. 
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2. PART 2: ALDO-MR PATHWAY 

2.1. MR detection in human RBCs cytosol 

In the first part of the study it has been hypothesized that Aldo affected 

membranes through a pathway involving MR, due to the inhibitory effect of Can 

that almost completely prevented Aldo-induced membrane alterations. To 

investigate the presence of MR, both cytosol and membranes of HC RBCs were 

analyzed by Western blotting and revealed with anti-MR antibodies (Fig. 6, panel 

B). 

Immunodetection showed bands at 100, 80, 50-53 and additional bands at 20-25 

kDa in cytosol (lane b) but when membranes were analyzed, no trace was evident 

(lane a). 

RBCs immunocytochemistry analysis with anti-MR (MCR H-300) antibodies 

revealed homogeneous diffuse fluorescence, confirming the presence of the 

receptor within the cell (panel A). 

Due to the fact that the aggregation of steroid receptors in multiprotein complexes 

generally involves the chaperone protein HSP90 (Mjahed et al., 2012), we 

analyzed its potential presence in the cytosol of human RBCs. Immuno-blotting 

with anti-HSP90 antibodies confirmed that HSP90 was present in both cytosol 

(panel C, lane a) and, although partially proteolysed, also in membranes (lane b). 

Interestingly, anti-MR IP also exhibited a consistent band of anti-HSP90, co-

immuno-precipitating with MR (lane c). 

These results prompted us to separately investigate cytosol and membranes to 

better understand the mechanism of action and regulation of MR in the cytosol 

and the related pathway leading to membrane alterations. 
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Figure 6. Identification and localization of mineralocorticoid receptor (MR) in 

human RBCs. Panel A: Anti-MR detection by immunofluorescence cytochemistry of 

untreated RBCs from healthy controls (HCs); corresponding phase-contrast images are 

shown. Panel B: Anti-MR Western blotting. Untreated RBCs from HCs, isolated as 

described in Methods, underwent haemolysis. Membranes (lane a) and cytosol (lane b) 

obtained as described in Methods, underwent Western blotting and were immunostained 

with anti-MR antibody. Panel C. Anti-HSP90 Western blotting. Cytosol (lane a), 

membranes (lane b) and anti-MR immunoprecipitate (MR-IP, lane c) obtained from 

cytosol were analysed by  Western blotting and immunorevealed with anti HSP90 

antibody. The figure is representative of five separate experiments. 

 

 

2.2. MR gradient sedimentation in human RBCs 

cytosol: MR activation by Aldo 

After RBCs hemolysis, cytosol was further processed by glycerol gradient 

sedimentation, and sedimentation profiles were analysed by Western blotting to 
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ascertain whether MR was present as a monomer or a dimer/polymer (Fig. 7). In 

the control C, RBCs cytosol immunodetection with anti-MR showed that MR was 

stratified into a large number of glycerol fractions, from 3 to 10, i.e., over a wide 

range of molecular weights, probably due to its interaction with other proteins. In 

addition, within each fraction, MR itself was present as different isoforms, 

simplified in two main regions: one, at 20-25 kDa (panel B) involved two bands 

which were more evident in fractions 4-6 (corresponding to glycerol 

sedimentation weight ranging from about 80 to 130 kDa); and the other involving 

bands from 50 to 80 kDa (panel A), visible only from fraction 5 to 10 

(corresponding to the 100-400 kDa range of sedimentation weights). In fractions 

5-7 only bands of 50-53 kDa were well distinguishable; in fractions 8-10, a new 

band at about 60 kDa appeared but those at 50-53 kDa disappeared (panel A, 

sample C). 

The addition of 5 nM Aldo induced net rearrangement of the band at 60 kDa, 

which almost disappeared from fractions 8-10, whereas the 50-53 kDa band 

increased in fractions 4-9 (Fig. 7, panel A sample C compared with sample Aldo). 

Concomitantly, Aldo also induced the appearance of the 80 kDa isoform in 

fractions 5-7 and shifting of the 20-25- kDa bands from fractions 4-6 in sample C 

to fractions 3-6 in sample Aldo (Fig. 7, panel B). 

Surprisingly, when the same fractions were immuno-detected with anti-MR (MA 

1-620) antibody produced with aldosterone-3 as immunogen, MR was detected 

only in fractions 6-10, whereas no trace was appreciable in the other fractions, in 

either C or Aldo samples (not shown). This discrepancy with MR (MCR H-300) 

detections (Fig. 7) suggests that Aldo-MR binding is not reversible since Aldo 

remains entrapped in the MR pocket even after MR proteolysis and the complex 

Aldo-MR is no longer detectable by MA 1-620 antibody, as indicated by the 

corresponding datasheet (not shown). 

 



58 

 

 

Figure 7. MR gradient sedimentation. RBCs from 12 healthy volunteers, purified as 

described in supplementary section methods, were incubated at 37
°
C for 1h in absence 

(C) or presence of 5 nM aldosterone (Aldo) or 5 M cortisol (Cort) in charcoal-stripped 

plasma to remove small molecular weight macromolecules such as steroid and peptide 

hormones. Incubated RBCs were hemolysed and 300 l of diluted cytosol was loaded on 

top of a linear glycerol gradient and centrifuged for 18 hours at 100 000×g. Eighteen 

fractions (200 μL each) were collected from top, analysed by Western blotting and 

immuno-detected with anti-MR antibody (MCR H-300) raised against aminoacids 1-300. 

Panels A and B: bands corresponding to 50-80- and 20-25-kDa regions of gels. Data are 

means ± SD of duplicate measurements from 12 healthy volunteers. Densitometric 

analysis of anti-MR Western blots of 50-80- and 20-25-kDa bands (panels A and B, top 

panels) were quantified; data are expressed as % of total amount of 50-80- or 20-25-kDa 

bands, respectively, in all fractions, according to MR-bandsfraction/MR-bandstotal. 

Statistical analysis showed significant difference at peak values between control and Aldo 

conditions (‡  p<0.0001, ANOVA, comparison C vs Aldo). 

Arrows at the bottom of panels: position of molecular weight standards on glycerol 

gradients, albumin (66 kDa), alcohol dehydrogenase (150 kDa), -amylase (200kDa) and 

apoferritin (443 kDa), to estimate molecular weight of protein complexes on parallel 

gradient runs. 

 

Densitometrical analysis of the bands in the 50-80 kDa region (panel A diagram) 

of C sample peaked in fractions 7-10. The same MR isoforms as in the Aldo 

sample (dotted lines) were shifted to fractions 5-8, whereas Cort did not induce 

any change in the location of the MR peak which remained similar to that of 

controls. These results showed that Aldo treatment induced MR to break away 

from the multiprotein complex, and MR dimers were formed, as indicated by the 

appearance of 80-kDa bands in the region of 90-170 kDa range of the gradient. In 
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addition, the increase in low molecular weight bands (20-25 kDa) in fractions 3-6 

(panel B) showed the degradation of MR (again demonstrated by a shift of peak 

position) triggered by treatment with Aldo, but not by Cort. 

The addition of Can, either alone or in association with Aldo, did not alter the MR 

situation, which was similar to that of controls (data not shown). Similar results 

were obtained when RBC were co-treated with Aldo and Cort (data not shown). 

When Western blotted glycerol fractions were immuno-detected with anti-HSP90 

antibodies, a major band at 90 kDa and a proteolysed isoform of about 60 kDa 

were mainly sedimented  in fractions 6-10. Other treatments did not induce 

appreciable movements of trend-lines compared with controls (data not shown). 

 

2.2.1. Effect of Aldo or Cort on MR fragmentation 

The presence of low molecular bands (20-25 kDa) raised the possibility that a 

proteolytic process regulates the MR pathway. Low weight MR bands were 

collected in a large number of fractions (3-9), suggesting that the 20-25 kDa 

isoforms were both part of multi-complex proteins (fractions 8-10) or derived 

from a single monomer of MR (fractions 3-5). In addition, a band of less than 10 

kDa was found in C samples from fractions 4-7, suggesting the occurrence of 

further proteolytic digestion mainly in the monomeric and dimeric forms of MR 

(data not shown). 

Glycerol gradient fractions were thus analyzed by Western blotting in non-

reducing conditions to highlight any fragments broken away from the multi-

protein complex. Figure 8 compares the anti-MR patterns obtained with non-

reducing (NR) Western blotting of Aldo- and Cort-treated samples. Anti-MR 

bands at 50-60 kDa, present in fractions 5-10 of reducing (R)-WB (Fig. 7, panels 

A), were no longer be detected, whereas two sets of bands were evidenced. The 

first showed a band at high molecular weight (HMW) which did not change in any 

of the conditions (data not shown) and the second set was composed by bands 

corresponding to 20-25 and < 10 kDa bands (Fig. 8, panels A and B). Aldo 

induced both the formation of bands in the region  ≤ 25 kDa in fractions 3-4 and 

net shifting of bands <10 kDa to fractions 3-8. Cort did not affect the number of 

low- weight bands which remained at the level of controls (panel B). 
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Figure 8. RBCs from 12 healthy volunteers, incubated at 37
°
C for increasing times (10, 

30, 45, 60 min) in absence (C) or presence of 5 nM aldosterone (Aldo) or 5M cortisol 

(Cort), were hemolysed and 300 l of diluted cytosol were loaded on top of a linear 

glycerol gradient and centrifuged for 18 hours at 100 000×g. Fractions (200 μL each) 

from top were analysed by Western blotting in non-reducing conditions and immune-

detected with anti-MR antibody. Panels A and B: bands corresponding to 20-25 and <10 

kDa regions of gels of samples Aldo and Cort incubated for 60 min.  

Panels C and D: values from samples incubated for increasing times with Aldo and Cort. 

Bands were densitometrically analysed and compared with corresponding controls: 

highest band in C for each molecular weight region was taken as comparison unit. Same 

fraction as in C containing  highest band was considered as comparison in other samples.  

*: values significantly different between C and 60-min curves (ANOVA, p<0.001). 

 

The intriguing involvement of a proteolytic process degrading MR after addition 

of Aldo but not of Cort was further investigated in experiments carried out at 

increasing incubation times. 



61 

 

Samples were treated in the absence (C) or presence of Aldo or Cort for 10, 30, 45 

and 60 min and cytosols were analyzed by glycerol gradient sedimentation. In the 

NR-WB of fractions MR bands corresponding to 20-25 and <10 kDa which were 

densitometrically evaluated and separately counted and reported in panels C 

(Aldo) and D (Cort). Aldo addition resulted in time-dependent MR fragmentation 

starting from the first 10 min of incubation in both 20-25 and <10 kDa regions. 

Interestingly, in the Cort-treated samples, MR only showed a slight shift to 

fraction 3 of the proteolytic fragments. When bands at 50-80 kDa were examined 

in R-WB (not shown) Cort induced a light shifting to fractions 3 and 4 in the first 

10 min but, after 60 min MR bands were recovered in the same fractions as the 

control, as if re-adjustment of Cort-MR were compatible with re-aggregation of 

MR in the multi-protein complex. Conversely, Aldo effect confirmed a time-

dependent shift to the first fractions. 

 

2.2.2. MR association in multiprotein complexes 

Further study of MR-multiprotein complex dissociation was carried out in the 

cytosol of untreated RBC and fractions 8-10 from the glycerol gradients were 

pooled. In these fractions, MR was part of the multi-protein complex and present 

in the highest isoforms (Fig. 7, panel A). The pooled fractions were then divided 

into five aliquots and treated at 0°C for 30 min in the absence (controls) (Fig. 9, 

panel A, lane a) or presence of 5 M Cort (lane b), 1 M Can (lane c), 2 or 5nM 

Aldo (lanes d and e) in order to allow the ligands to bind to the receptor, which 

was then immuno-precipitated by the addition of anti-MR. MR-immuno-

precipitates (IP) from control- and Can- treated aliquots only showed traces of 

MR (lanes a, c), as revealed by WB with anti-MR antibody (MCR H-300). In the 

Cort-treated aliquot, the MR band was more than three times that of the control 

(+315% lane b vs lane a, p<0.0001) whereas Aldo treatment induced a dose-

dependent decrease in the MR-IP band (-25 and -55%, lanes d and e, respectively, 

vs lane a, p<0.0001). To better characterize the complex ligand-receptor, 

supernatant recovered from the previous IP were re-immuno-precipitated (Re-IP) 

in the presence of DTT, a reducing agent, and immuno-detected with anti-MR 
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(panel B: Re-IP). The amount of MR recovered from Aldo-treated samples 

increased greatly compared with that recovered from the control (+30 and +60 % 

lanes d and e, vs lane a, p<0.0001), whereas from the Cor- treated sample the Re-

IP MR band was -90% (lane b; p<0.0001) compared with controls. Re-IP from 

Can-treated samples yielded the same band as controls (lane c vs lane a). 

 

 

Figure 9. Fractions 8-10 from the C sample glycerol gradients were collected, divided 

into 5 aliquots and treated at 0°C for 30 min in absence (control) (lane a) or presence of 5 

M Cort (lane b), 1 M Can (lane c), 2 or 5 nM Aldo (lanes d and e). Panel A: MR was 

then immunoprecipitated by anti-MR (MCR H-300) and MR-IPs were analysed by 

Western blotting with anti-MR antibody. Panel B: supernatants recovered after MR-IP as 

described above were re-immunoprecipitated in presence of 5 mM dithiothreitol (DTT) 

and MR-IPs were analysed by Western blotting with anti-MR antibody. Panel C: 

fractions 8-10 from C sample glycerol gradients were collected, divided into 5 aliquots 

and treated at 0°C for 30 min with Gelda 100 nM in absence (control) (lane a) or presence 

of 5 M Cort (lane b), 1 M Can (lane c), 2 or 5nM Aldo (lanes d and e). MR was then 

immunoprecipitated by anti-MR (MCR H-300) and MR-IPs were analysed by Western 

blotting with anti-MR antibody.Bands were densitometrically analysed and reported on 

the right of the corresponding panel. 

* p<0.0001 vs control (lane a). 

 

DTT induced increase in further MR re-immuno-precipitations from almost all 

samples, except Cort-treated ones, is due to the fact that the N terminal (1-300) 

region of MR, recognized by the antibody, was involved in dimer/complex 

formation, thus preventing MR immuno-precipitation. The decrease of MR-IP in 

Aldo-treated samples was due to Aldo-MR dimer formation, as shown by the 
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shifting of the MR-recovering curve in glycerol gradient sedimentation (Fig. 7). In 

the MR dimer, binding was more stable than in the complex (Fig. 9, lane a), 

meaning that the antibody was less capable of recognizing the N-terminal region 

compared with controls. Instead, Cort treatment induced MR release from the 

complex but not dimer formation, thus making the MR-N-terminus recognizable 

by the antibody. Reducing conditions may dissociate MR from both dimer and 

complex, as indicated by the increase in the MR-band in Re-IP assays of controls 

and Aldo-treated samples (Fig. 9, panel B, lanes a, d, e). Can did not alter the 

structure of the MR-complex, which remained at control level. 

For further confirmation, the addition of Geldanamycin (Gelda), an apoptotic 

compound which inhibits HSP90 and disrupts the cytosol-multiprotein complex 

(Stebbins et al., 1997), prevented Aldo-induced dimer formation, as demonstrated 

by complete recovery of MR from all samples (panel C, lanes a-e) and the absence 

of MR in the Re-IP assay in reducing conditions (data not shown).  

 

2.2.3. MR-complex involvement in Aldo signaling 

When HC RBCs were pre-incubated in CS-PPP in the presence of Geldanamycin 

and successively incubated with Aldo, both HMWA formation (data not shown) 

and IgG binding were completely prevented (Fig. 10, lane e compared to lane d), 

thus confirming the involvement of HSP90 in the maintaining the correct MR 

conformation for Aldo binding and the successive MR activation.  
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Fig. 10. IgG binding to RBCs membrane. HC RBCs were pre-incubated (20 min at 

37°C) in CS-PPP in absence (lanes b, d and f) or presence of Geldanamycin (lanes c, e 

and g) and successively incubated at 37°C for 1 h, without (lanes b and c) or with 5 nM 

Aldo (lanes d and e) or 5 µM Cort (lanes f and g). After incubation, all samples were 

haemolysed in hypotonic buffer. Membranes of HC RBCs, washed and haemolysed 

without incubation, were used as negative control (lane a). RBCs membranes (2 µg), 

obtained as described in Methods, were then analysed by SDS-PAGE (8%) and 

immunostained with anti-Human IgG antibody and anti-actin, as loading control. 
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3. PART 3: Partial characterization of the Aldo-

induced alterations in PA RBCs 

 

3.1. Parameters of the cellular oxidative status  

Due to the evidence that Aldo induced membrane alterations leading to band 3 

HMWA formation and diamide-induced high Tyr-P level are similar to those 

previously reported in inflammatory related increased oxidative stress conditions 

(Bordin et al., 2010b; Donà et al., 2012), HC and PA RBCs membranes were 

analysed by Western blotting and immuno-revealed with anti-GSH antibody (Fig. 

11 and Table 1). Significantly, no difference was evident between PA and HC 

RBCs membranes.  

 

 

Figure 11. Panel A: GSH in RBCs membrane from HC, PA and In vitro samples. 

RBCs were isolated from fresh blood collected from controls (HC) (n=12) and patients 

(PA) (n=22) and isolated as described in Methods. For in vitro treatment, only blood from 
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HC was utilized, and RBCs, were incubated at 37°C for 1h in absence (C) or presence of 

5 nM aldosterone (Aldo) or 5 µM cortisol (Cort) or both (Aldo+Cort), in charcoal-

stripped plasma to remove small molecular weight macromolecules such as steroid and 

peptide hormones. Membranes (10 g), obtained as described in Methods, underwent 

Western blotting in non-reducing conditions and were immunostained with anti-GSH 

antibody, or anti-actin antibody as loading control. Figure is representative of the study 

population. 

Panel B: Determination of glutathione-protein mixed disulfide (GSSP) in RBCs. 

Membranes, obtained from HC, PA and In vitro samples (C, Aldo, Cort and Aldo+Cort) 

as described in Methods, were TCA-deproteinized and alkalinized, and the amount of 

GSH released from proteins was determined enzymatically in the supernatants, as 

described in Methods. 

The increase in glutathione released from RBCs membranes after diamide (1.5 mM) 

treatment, representing increase in glutathionylated protein content (GSSP), is expressed 

as (GSSP(D)/GSSP(B))-1. 

Data show the means ±SD. Comparison HC vs PA and for in vitro experiments, C vs 

Aldo, Cort and Aldo+Cort. Student’s t test  reveals no statistical significance. 

 

This result was further investigated by extracting the total glutathione bound to 

the membrane proteins (GSSP). No detectable difference in the content of GSSP 

was present between the two groups. Diamide treatment has been shown to 

emphasize eventual pre-existent alterations related to an enhanced oxidative status 

by increasing the amount of GSH irreversibly bound to membranes (Donà et al., 

2012; Andrisani et al., 2014). The difference between GSH contents in the 

absence and presence of diamide (GSSP) was representative of the redox state of 

membranes (Donà et al., 2012). When analysed for GSSP, no variation in the 

content of GSH bound to membrane proteins was evidenced, thus confirming that 

both HC and PA membranes shared the same redox conditions (Table 1). 

Concomitantly GSH content was evaluated also in the cytosol in absence and 

presence of diamide, and the relative GSH calculated. Also cytosol showed no 

alteration in the redox state (Table 1). 

To characterize the effect of Aldo while avoiding the potential interference of 

other circulating steroid hormones, plasma was treated overnight with charcoal, 

which can bind and strip steroids and other small molecules (Bordin et al., 2013). 

RBCs were then pre-incubated for 1h at 37°C in charcoal-stripped (CS-PPP) 

plasma with 5 nM Aldo, 5 M Cort, 1 M Can, alone or in association (Aldo and 
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Cort, or Aldo and Can), and cytosol and membranes recovered as described in 

Methods. 

As indicated in Table 1, also in in vitro experiments, Aldo did not induce any 

increase in protein glutathionylation of membrane, nor in the redox state as 

indicated by the GSSP (Donà et al., 2012). When cytosol was analysed for GSH 

and GSSG content, no alteration was induced by Aldo treatment, thus confirming 

that Aldo-induced alterations were not mediated by oxidative assault involving 

GSH dependent defense. 

 

Samples 
ΔGSH ΔGSSP 

HC 0.09±0.03 0.08±0.03 

PA 0.11±0.02 0.1±0.03 

    

In
 v

it
ro

 

C 0.1±0.04 0.09±0.04 

2 nM Aldo 0.08±0.03 0.12±0.02 

5 nM Aldo 0.09±0.02 0.11±0.02 

5 µM Cort 0.11±0.02 0.08±0.04 

Aldo + Cort 0.08±0.04 0.11±0.03 

1 µM Can 0.07±0.02 0.09±0.03 

Aldo + Can 0.1±0.03 0.11±0.02 

 

Table 1. Determination of GSSP, GSH in HC, PA and in vitro treated RBCs. 

Fresh blood was collected from HC and PA. For in vitro treatment, only blood from HC 

was utilized, and RBCs, were incubated at 37°C for 1h in absence (C) or presence of 2 or 

5 nM aldosterone (Aldo) or 5 µM cortisol (Cort) or 1 µM canrenon (Can), alone or in 

association (Aldo+Cort or Aldo+Can), in charcoal-stripped plasma to remove small 

molecular weight macromolecules such as steroid and peptide hormones. After 

incubation, RBCs underwent hemolysis in hypotonic buffer.  

GSSP: Membranes, obtained from HC, PA and In vitro samples as described in 

Methods, were TCA-deproteinized and alkalinized, and the amount of GSH released from 

proteins was determined enzymatically in the supernatants, as described in Methods. The 

increase in glutathione released from RBCs membranes after diamide (1.5 mM) 

treatment, representing increase in glutathionylated protein content (GSSP), is expressed 

as (GSSP(D)/GSSP(B))-1. 

GSH: 10 l of cytosol, obtained from HC, PA and In vitro samples as described in 

Methods, were analysed. Total glutathione was determined enzymatically and analysed 

spectrophotometrically at 412 nm. The total decrease in glutathione content after diamide 

treatment (GSH) was expressed as 1-(GSH(D)/GSH(B)), being GSHD glutathione content 

after diamide treatment and GSHB that in untreated cells. 
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Being GSH only a part of the antioxidant defenses of the cell, cytosol was also 

investigate for CA activity and monomerization, both factors particularly sensitive 

to the oxidative state of the cell (Andrisani et al., 2014).  

CA is a family of metallo-enzymes which catalyse the conversion of CO2 to 

HCO3
-
 and H

+
, and is involved in many physiological processes such as acid–base 

balance homeostasis, respiration, carbon dioxide and ion transport, and bone 

resorption (Henry, 1996; Sly and Hu, 1995). This enzyme was also relevant for its 

sensitiveness to an increased oxidative status. In fact, when cytosol from untreated 

HC RBCs was analysed for CA detection by Western blotting (Fig. 12 A) and 

activity (Fig. 12 B) in the absence (lane a) or presence of 1.5 mM diamide for 10 

(lane b) or 20 min (lane c), CA, present as dimer at 60 kDa, was shown to 

monomerize in time-dependent way and to increase its catalytic activity up to nine 

folds.  

 

 

Figure 12. Panel A: Diamide-induced CA monomerization in HC RBCs cytosol. Fresh 

blood was collected from HC RBCs, isolated as described in Methods, and incubated with 

and without 1.5 mM diamide for 10 or 20 min. Diluted cytosol, obtained as described in 

Methods, underwent Western blotting in non-reducing conditions and was 

immunostained with anti-CA antibody.  

Panel B: CA activity from 300 l of diluted cytosol from HC RBCs incubated with and 

without 1.5 mM diamide for 10 or 20 min. CA activity calculated as ratio to activity 

observed in untreated cells (chosen as arbitrary comparison unit, experimentally 

determined as 1±0.21, mean value ± SD). Data show the means±SD of n=12 separate 

experiments.  

* p<0.0001, comparison of CA activity, before and after diamide treatment, Student’s t-

test. 
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This was further confirmed in the previous study with endometriotic patients (EP) 

showing a net increase in CA activity compared to healthy controls (Andrisani et 

al., 2014). In this case, EP RBCs were also characterised by high degree of 

membrane glutathionylation and cytosolic GSH decrease, both parameters of a 

remarkable oxidative stress (Andrisani et al., 2014). 

This analysis was extended to HC, PA and in vitro treated RBCs. No variation 

was found between HC and PA, nor in the differently in vitro treated HC RBCs 

(Table 2). 

 

          

 

Carbonic anhydrase 

Samples 

Activity 
(mUnits /µl 

packed RBC) 
30 KDa % 60 KDa % 

HC 0.21±0.04 14±2 86±2 

PA 0.22±0.03 17±6 83±6 

     

In
 v

it
ro

 

C 0.19±0.06 15±3 85±3 

2 nM Aldo 0.20±0.05 16±2 84±2 

5 nM Aldo 0.18±0.05 18±4 82±4 

5 µM Cort 0.20±0.03 16±3 84±3 

Aldo + Cort 0.19±0.07 19±2 81±2 

1 µM Can 0.22±0.4 15±3 85±3 

Aldo + Can 0.17±0.07 13±3 87±3 

     Table 2. Determination of CA content and activity in HC, PA and in vitro treated 

RBCs. Fresh blood was collected from HC and PA. For in vitro treatment, only blood 

from HC was utilized, and RBCs, were incubated at 37°C for 1h in absence (C) or 

presence of 2 or 5 nM aldosterone (Aldo) or 5 µM cortisol (Cort) or 1 µM canrenone 

(Can), alone or in association (Aldo+Cort or Aldo+Can), in charcoal-stripped plasma to 

remove small molecular weight macromolecules such as steroid and peptide hormones. 

After incubation, RBCs underwent hemolysis in hypotonic buffer.  

CA content in RBCs cytosol: Diluted cytosol from 1 l of packed cells, obtained as 

described in Methods, underwent Western blotting in non-reducing conditions and was 

immunostained with anti-CA antibody. Densitometrical analysis of cytosol CA bands in 

HC, PA and in vitro samples RBCs was performed. Sum of 30 and 60 kDa bands 

arbitrarily calculated as 100%, taking into account that amount of proteolytic 30 kDa 

bands accounts for half the larger bands.  

CA activity: 300 l of diluted cytosol from RBCs of HC, PA and in vitro samples were 

analysed. The activity of carbonic anhydrase was assayed spectrophotometrically as 
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described in Methods. One unit of CA activity was defined as the amount of enzyme 

which catalyzes the formation of 1 pmol PNP/min in standard conditions of incubation. 

The mixture was incubated for 10 min at room temperature, and the following formula 

incorporating the extinction coefficient was used to calculate: CA Units x10
-3

/ µl packed 

RBCs = OD × sample dilution factor /(min × 667), with an extinction coefficient of 667. 

Values expressed as means±SD. Comparison HC vs PA and for in vitro experiments, C 

vs Aldo, Cort, Can, Aldo+Cort Aldo+Can. Student’s t test reveals no statistical 

significance. 

 

Taken together these data assess that PA RBCs seemed not to be subjected to 

increased oxidative stress, nor Aldo seemed to induce any alteration in the main 

parameters representative of the oxidative status, such as GSSG, GSSP, and CA. 

 

3.2. Tyr-protein kinase and phosphatase assays  

To further assess RBCs membrane status from both HC and PA patients and after 

in vitro treatments, Tyr-protein kinases and phosphatases distribution and 

activation were analysed. Previous studies demonstrated that diamide-induced 

Tyr-P of membrane band 3 involved the combined action of two different Tyr-

kinases, Syk and Lyn, together with the counteracting activity of a Tyr-protein 

phosphatase, SHP2, responsible of the band 3 dephosphorylating process (Brunati 

et al., 2000; Bordin et al., 2002). Diamide, by oxidizing the catalytic cysteine 

residue of the Tyr-phosphatases, almost completely inhibited dephosphorylating 

process, thus evidencing phosphorylated residues. The differences showed in the 

band 3 Tyr-P level between HC and PA, as well as in the in vitro treatments, 

could be due to an imbalance between these two opposite activities. 

Membranes, from HC, PA and in vitro treated RBCs were analysed by Western 

blotting and revealed with anti-Syk, anti-SHP-2 or anti-P-Src antibodies. Nor Syk 

or SHP-2 resulted differently recruited to membranes (data not shown), indicating 

no constitutive alteration of the different membranes. Interestingly, anti-P-Src 

evidenced a net increase of the phosphorylated activated isoform of the Src family 

members in the PA group compared to HC (145±5% compared to 100±3%), and 

further confirmed in the in vitro experiments by Aldo addition (Table 3).  
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Samples 

pSrc (%) 
PTK Activity 

(%) 

PTP Activity 

(%) 

HC 100±3 100±2 100±4 

PA 145±5 * 115±3 * 103±5 

     

In
 v

it
ro

 

C 102±2 101±3 101±3 

2 nM Aldo 134±4 * 108±5 * 104±3 

5 nM Aldo 167±4 * 126±4 * 105±4 

5 µM Cort 104±3 103±2 104±4 

Aldo + Cort 109±5 107±4 103±2 

1 µM Can 101±3 101±3 99±5 

Aldo + Can 103±2 103±4 101±3 

 

Table 3. P-Src contents, protein tyrosin kinases (PTK) and protein tyrosin 

phosphatases (PTP) activity in HC, PA or in vitro treated RBCs. Fresh blood was 

collected from HC and PA and RBCs were isolated as described in Methods. For in vitro 

treatment, only blood from HC was utilized, and RBCs, were incubated at 37°C for 24 h 

in absence (C) or presence of 2 or 5 nM aldosterone (Aldo) or 5 µM cortisol (Cort) or 1 

µM canrenone (Can), alone or in association (Aldo+Cort or Aldo+Can), in charcoal-

stripped plasma to remove small molecular weight macromolecules such as steroid and 

peptide hormones. After incubation, RBCs underwent hemolysis in hypotonic buffer.  

P-Src content: RBCs membranes underwent Western blotting and were revealed with 

anti-P-Src or anti-actin antibody as loading control. Bands were scanned 

densitometrically. The values were obtained as the ratio percentage to the P-Src content 

of RBCs from HCs (chosen as arbitrary comparison units). The figure is representative of 

12 separate experiments. 

PTK and PTP activity: membranes were analyzed for PTK and PTP activity as 

described in Methods. The values were obtained as the ratio percentage to PTK or PTP 

activity of RBCs from HCs (chosen as arbitrary comparison units). The figure is 

representative of 12 separate experiments. 

* p<0.001, comparison of p-Src, PTK or PTP % of HC vs PA; for in vitro experiments 

comparison of C vs all other samples; Student’s t-test. 

 

 

When both Tyr-kinase and phosphatase assays were performed in membranes 

from RBC incubated in the absence of diamide, a 15% increase of the Tyr-kinase 

activity, but not of the Tyr-phosphatase counterpart, was substantiated in PA 

group, reaching the 25% in Aldo-treated RBCs (Table 3). When the same assay 

was performed in membrane from diamide-treated RBCs, PTK resulted similar if 
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not identical to that of diamide-untreated RBC (not shown), whereas PTPase 

activity was almost completely inhibited by diamide, as expected (not showon). 

This slight increase of the Tyr-kinase activity, however, was not sufficient to 

induce a net imbalance in the Tyr-phosphorylation process of membranes from 

RBCs not incubated with diamide, as indicated by the absence of phosphorylation 

in both PA and Aldo-treated RBCs, which remained similar to HC RBCs.  

 

3.3. Evaluation of the redox-related band 3 

aggregates formation 

To evidence if membrane band 3 aggregation was under redox regulation, we 

subjected membranes to Western blotting in both non reducing and reducing 

conditions. Results showed that membranes from HC RBC incubated with Aldo 

increasing concentrations contained increasing band 3 aggregates (Fig. 13) which 

were promptly and completely  reversed in the presence of β-mercaptoethanol, the 

reducing  effector. 

  

 

Figure 13. Band 3 HMWA contents in vitro treated RBCs. HC RBCs, isolated as 

described in Methods, were incubated at 37°C for 24 h in absence (C) or presence of 2 or 

5 nM aldosterone (Aldo) in charcoal-stripped plasma. After incubation, RBCs underwent 

hemolysis in hypotonic buffer. RBCs membranes underwent Western blotting in non-

reducing conditions (lane a, b and c) or in reducing conditions (addition of β-
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mercaptoethanol; lane d, e and f) and were revealed with anti-band 3 or anti-actin 

antibody as loading control. The figure is representative of 12 separate experiments.  

 

 

Similar results were also obtained when PA RBC membranes were analyzed, and 

the comparison among the different conditions were reported in Table 4. 

 

        

Samples 

Band 3 HMWA 

NR R 

HC 1.00±0.04 1.00±0.02 

PA 1.97±0.12 * 1.02±0.06 

    

In
 v

it
ro

 

C 1.02±0.03 0.99±0.04 

2 nM Aldo 1.32±0.19 * 1.04±0.03 

5 nM Aldo 1.78±0.15 * 0.98±0.05 

 

Table 4. Band 3 HMWA contents in HC, PA or in vitro treated RBCs. Fresh blood 

was collected from HC and PA and RBCs were isolated as described in Methods. For in 

vitro treatment, only blood from HC was utilized, and RBCs, were incubated at 37°C for 

24 h in absence (C) or presence of 2 or 5 nM aldosterone (Aldo) in charcoal-stripped 

plasma. After incubation, RBCs underwent hemolysis in hypotonic buffer. RBCs 

membranes underwent Western blotting in non-reducing conditions (NR) or in reducing 

conditions (R) and were revealed with anti-band 3 or anti-actin antibody as loading 

control. Bands were scanned densitometrically. Band 3 HMWA values were obtained as 

the ratio to the HMWA content of RBCs from HCs (chosen as arbitrary comparison 

units), respectively, in non-reducing or reducing conditions. The figure is representative 

of 12 separate experiments. 

* p<0.001, comparison of band 3 HMWA of HC vs PA and, for in vitro experiments, 

comparison of C vs all other samples, respectively in non-reducing or reducing 

conditions, Student’s t-test. 

 

 

 

 

 

 

 

 



74 

 

 

 

 

 

 

 

 

 



75 

 

DISCUSSION 

 

MR activity has long been related to the genomic response occurring after half/an 

hour from Aldo addition and involving Aldo-MR shifting to the nucleus to 

regulate gene transcription. Recently, growing evidences of an early non-genomic 

response have been related to direct Aldo effects on protein kinases, Na+/H+ 

exchangers and NADPH oxidase (Dooley et al., 2012; Hayashi et al., 2008). In 

fact, beside the essential role of Aldo in regulating hydro/saline homeostasis, 

recent studies have emphasized its involvement in the occurrence of inflammatory 

status, both local (Hayashi et al., 2008) and general (Calò et al., 2004). Aldo 

promotes tissue inflammation, leading to fibrosis and tissue remodeling in the 

heart, vascular system, and kidney (Shibata and Fujita, 2012; Egido, 1996; Berl et 

al., 1978). It also contributes to generalized inflammatory status by activating 

circulating mononuclear cells, as shown by the Aldo-induced expression of PAI1 

and p22phox (Calò et al., 2004) and, non-genomically, by directly activating 

NADPH-oxidase dependent oxidative species production (Hayashi et al., 2008). 

We demonstrated that RBCs from PA patients display as similar membrane 

alterations to those previously observed in other inflammation diseases, such as 

endometriosis and PCOs (Bordin et al., 2010b; Donà et al., 2012), two clinical 

situations where Aldo or Aldo/PRA ratio are higher than in controls. These 

alterations can be observed in the presence of an adjunctive stress, such as that 

induced by diamide, which can trigger band 3 Tyr-P to a remarkably higher level 

in patients, as compared to HCs (Fig. 1). This could be due to an unbalance of the 

antithetic activities of Tyr-protein kinases and phosphatases, or to membrane 

reorganization, exposing band 3 target differently to the above activities. The 

higher HMWA content found in PA RBCs (Fig. 2) indicates a sensible alteration 

of the target band 3 and, hence, of the membranes, since band 3, as integral 

protein, is responsible for the interaction between the bilayer and the underlying 

cytoskeleton. 
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Similar results were obtained in vitro by incubating CS-PPP RBCs from HCs in 

the presence of Aldo, showing that a non-genomic effect of Aldo in RBCs is 

mediated by the classic MR, which was evidenced in RBCs cytosol. MR 

involvement in the Aldo-related signaling was further confirmed by the findings 

that both Can and Cort prevented Aldo-induced alterations. 

Moreover Aldo dose and time dependently increases band 3 HMWA formation 

and augments RBCs IgG binding, consistent with an involvement of Aldo in 

premature RBC aging. To date and to our knowledge, no evidence has been 

reported about a clear antagonistic effect of Cort in the non-genomic signaling of 

Aldo-MR. (Published in : Bordin et al., 2013) 

Further investigations regarding the possible role of Cort in RBCs from patients 

with PA also would be helpful in the comprehension of steroid hormone 

signaling. 

 

 

To completion of the previous study, we demonstrated the presence of MR in the 

RBC cytosol (Fig. 6), thus giving a clear explanation to the antagonistic/blocking 

effects of Cort or Can co-incubation with Aldo in in vitro experiments. To 

investigate the effective pathway involved, we further investigated cytosol where 

we found that, in non-activated conditions, such as in the absence of Aldo and 

other steroid hormones (CS-PPP), MR is mainly complexed in a multiprotein 

aggregate, which ensures it has the correct conformation for binding effectors. 

When Aldo is added, it binds to MR, causes it to break away from the complex, as 

shown by the shifting of the molecular weight of MR in the glycerol gradient, and 

induces it to form dimers (Fig. 7). Aldo-MR dimers have a short life-span, as 

shown by the time-dependent increase of MR destruction in low molecular weight 

fragments (Figs. 7 and 8) thus ensuring signal shutdown and sequestration of Aldo 

in the proteolysed fragments (data not shown), in a sort of Aldo scavenging from 

circulation.  

Concomitantly, in the membranes, Aldo induced alterations were mainly 

detectable after 24 h of incubation in a dose- and time-dependent manner (Figs. 4 
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and 5), and consisted of band 3 aggregation and circulating IgG binding (Bordin 

et al., 2013). 

 

When Aldo is replaced by Cort, MR shifted slightly from the gradient area of the 

MR complex in the early 30 min of incubation (data not shown), after which MR 

reconstituted its initial complex (Fig. 7). This is in line with the fact that Cort did 

not induce alterations in RBC membranes but, when added with Aldo, prevented 

Aldo-mediated alterations (Bordin et al., 2013). 

Can did not cause any alteration in the complex, but completely avoided Aldo-

induced disaggregation and alterations in membranes (Bordin et al., 2013). 

Interestingly, in both Aldo-MR dimer and MR-complex, MR binding is regulated 

by redox conditions, as shown by the differences in reducing and non-reducing 

conditions (compare Figs. 7 and 8). In addition, the observation that the anti-MR 

antibody used for the immunoprecipitation, recognizing the N-terminal region (aa. 

1-300) of the MR, did not bind to MR when dimerised or complexed, suggests 

that this region is involved in dimer/complex formation (Fig. 9). This was further 

confirmed by Cort inducing MR release but not dimerization. In this way, the N-

terminal region of Cort-MR remains free: a) to be recognized by the antibody; b) 

to re-associate with the multi-protein complex, by releasing Cort, thus maintaining 

the correct conformation for potential later Aldo binding. In addition, MR re-

association prevents MR degradation, which was only slightly higher than in 

controls, thus contributing to MR reserve maintenance. 

As determinant part of the complex, the chaperone protein HSP90 has a central 

role in the MR activation. Gelda, which binds to the N-terminal domain ATP 

binding site of HSP90 and inhibits the chaperone activity of the HSP90 (Stebbins 

et al., 1997), succeeded in releasing MR from the complex completely but 

prevented Aldo-induced MR dimerization, thus confirming that the multi-protein 

complex is fundamental in maintaining MR in the correct conformation for later 

Aldo binding. This was further demonstrated by the fact that when HC RBCs 

were pre-incubation with Gelda, Aldo failed to evoke membrane alterations 

leading to IgG binding (Fig. 10), thus confirming that intact complex is needed for 

the correct Aldo MR response. 
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HSP90 is known to be involved in cell proteostasis by chaperoning native proteins 

into multiprotein complex to prevent misfolding and turn over. HSP90 associates 

with a number of signaling proteins (Mjahed et al., 2012) ensuring their stability 

and correct functioning in the regulation of the programmed cell death. The 

involvement of cytosolic HSP90-multiprotein complex in the development of cell 

patho-physiology has been recently assessed in B-cell chronic lymphocytic 

leukemia where HSP90 association with Lyn's dysregulated expression, activity, 

and localization supported abnormal cell survival by inhibiting an early player of 

apoptotic signaling. (Contri et al., 2005; Zonta et al., 2014).  

 

 

Figure 14. MR regulation by Cort, Aldo, Can and HSP90 inhibitor. 

 

In conclusion, our data demonstrate that in human RBCs a genomic-like Aldo 

signaling involves MR activation, dimerization and proteolysis but avoids gene 

transcription and oxidative intermediates. This MR-mediated response involves 
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ligand specificity, with Aldo inducing MR activation leading to RBCs membrane 

alterations and IgG binding (Bordin et al., 2013) and Cort preventing MR 

activation. This different ligand-dependent recruitment of MR has not yet been 

demonstrated in other tissues where MR specificity for Aldo was tightly related to 

the expression of 11-beta-hydroxysteroid dehydrogenase 2, which transforms Cort 

to cortisone thus preventing MR inappropriate activation (Albiston et al., 1994). 

The evidence that Aldo-induced activation/dimerization is regulated by oxide-

reductive conditions and HSP90-chaperoned complex integrity may be also useful 

for the better comprehension of potential complications in PA.  

 

At last, due to the reported pro-oxidative effect of Aldo (Pu et al., 2003; Kotlyar et 

al., 2006; Patni et al., 2007; Yamaji et al., 2009; Calò et al., 2010; Stehr et al., 

2010), our investigations focuses on potential traces of oxidative intermediates 

generated by the Aldo-induced MR activation and acting at membrane level. 

The redox state of the cell was evaluated by assessing the contents of both 

cytosolic GSH and that of glutathionylated proteins (GSSP) in the absence or 

presence of diamide. In facts, as previously shown in other inflammatory diseases, 

diamide treatment enhances eventual pre-existent alterations of the cell membrane 

proteins, by inducing disulfide bond formations between GSH and the SH group 

of protein cysteine residues to form GS-SP. When GSH content was tested in 

cytosol or membranes from RBC previously incubated in the absence or presence 

of diamide, the addition of glutathione reductase, which should reduce disulfide 

and reconstituted the initial condition in the same extent in patients and in 

controls. 

 

The difference between the GSH content without and with diamide may be 

directly related to the oxidative state of membrane proteins (Bordin et al., 2010b). 

Neither GSSG nor GSSP were altered in either PA patients or in in vitro 

experiments with increasing concentrations of Aldo (Table 1), thus excluding an 

oxidative process involving glutathione-mediated processes in the Aldo-related 

alterations.  
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However, cells contain complex systems of multiple types of antioxidants, such as 

vitamins as well as enzymes such as catalase, superoxide dismutase and various 

peroxidases, all able to counteract specifically different forms of oxidative assault. 

To obviate the need to test each of the above anti-oxidants, we monitored a 

cytosolic protein, CA, which we demonstrated to be particularly sensitive to high 

oxidative status. In fact, we demonstrated that this enzyme, generally present in 

dimeric 60 kDa isomer, is particularly sensitive to oxidative-related 

transformation, yielding a 30 kDa isomer which is much more active than the 

larger one. CA activity is mainly and directly related to the amount of 30 kDa 

monomer available in the cellular compartment, as also demonstrated by diamide-

induced monomerization and activation (Fig. 12). CA activity and 

monomerization showed no differences between HC and PA groups, nor any 

alteration was detectable in in vitro experiments with increasing Aldo 

concentrations (Table 2), thus further confirming that Aldo did not induce 

membrane alterations through a common oxidative-related way, but through a 

different signaling pathway.  

 

To better understand membrane alterations inducing band 3 aggregation, we 

compared membranes in both reducing and non-reducing conditions. Whereas in 

non-reducing conditions band 3 aggregated mostly in PA RBCs as well as in Aldo 

treated cells, as previously demonstrated (part 1; Bordin et al., 2013), in reducing 

conditions band 3 HMWA content was almost completely identical both 

comparing HC and PA groups, and HC RBCs incubated in the presence of 

increasing Aldo concentrations. That no difference was detectable in membranes 

of patients or after Aldo treatment suggests that band 3 aggregation was 

dependent on the oxidation of SH-groups, since -mercaptoethanol, reducing 

effector used to induce reducing conditions, affects principally protein disulfide 

bonds. That this clusterization may be due to an oxidative process or membrane 

alterations, leading to band 3 aggregation, was at the basis of a successive 

cysteine auto-oxidation was not investigated and would be further addressed in 

forthcoming studies. Anyway, in the first case, it should be ruled out that Aldo-

MR signaling involves a “mediator”, able to oxidize band 3 cysteines, whereas, in 
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the second case, it triggers a “mediator” able to induce such membrane alterations 

that band 3 clusters thus leading to successive auto-oxidation. The common factor 

remains Aldo-MR activation as further demonstrated by the successive results. In 

facts, in in vitro experiments, when Aldo was added in association with Gelda, an 

inhibitor of the HSP90 protein, neither HMWA nor IgG binding was observed, 

thus confirming once more that Aldo effects were mediated by the activation of 

the cytosolic MR, which needs the association in the HSP90 multiprotein complex 

to be kept in the correct conformation for the eventual activation. 

 

In conclusion, we found that in PA RBCs Aldo is responsible for the membrane 

alterations leading to a potential premature removal of the cells from circulation. 

Aldo exerts its effect through the activation of the soluble MR complex, which 

participates in the modulation of the Aldo signaling through the possibility of 

being differently affected by other steroids or Aldo inhibitors (Can). In addition, 

membrane alterations are related to band 3 aggregation through disulfide bond 

formation, though no common parameter of oxidative assault was evidenced. 

Further studies are in progress to explore both nature and potential mediators of 

the Aldo-induced alterations in the band 3 dimer formation. 
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Other studies carried out during PhD program 

 

During my PhD I also collaborated with Professor Decio Armanini and his 

working group at Department of Medicine – Endocrinology (University of 

Padova),  participating in various projects. 

The oxidization processes, at the basis of my investigations, and their biological 

impacts were also evaluated in RBC from patients with other inflammatory 

diseases (polycystic ovary syndrome and endometriosis) and in other cells 

(spermatozoa).  

 

PCOs and Endometriosis 

Polycystic ovary syndrome (PCOs) and endometriosis are two different 

pathologies which I demonstrated to share a common denominator: an oxidative-

related increase in glutathionylation of membrane proteins with an enhanced band 

3 aggregates and Tyr-phosphorylation process (Donà et al., 2012; Andrisani et al., 

2014). 

 

Spermatozoa 

I began sperm investigations before my PhD training and occasionally I addressed 

again to better comprehend the involvement of ROS and oxidative assault in the 

membrane alterations and Tyr-phosphorylation. 

By the time-dependent evaluation of sperm ROS production as a simple method 

for rapid clinical estimation of the fertilizing ability of these cells, I evaluated 

different commercial buffers commonly used to induce sperm capacitation. This 

process, strictly related to membrane alterations and Tyr-phosphorylation of 

sperm head, would predispose sperm to the best conditions for the following 

intrauterine insemination (IUI) or in vitro fecundation (IVF), by far increasing 

reproductive success. After reporting what was the best medium for capacitating 

the highest number of cells and preventing time-dependent apoptosis (Andrisani et 

al., 2014), I investigated potential effectors able to ameliorate patients’ sperm by 

regulating endogenous ROS productions. I found that astaxanthin (Asta), a photo-
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protective red pigment synthesized by the microalgae and belonging to the 

carotenoid family, was able to perturb sperm membrane organization by inserting 

into the membrane bilayer without altering/scavenging superoxides. In this way, 

Asta may set free proteins involved in the following Tyr-phosphorylation process 

and related acrosome reaction, even in the absence of additional stimuli, such as 

ROS lipid peroxidation (Donà et al., 2013).  
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