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Abstract 

 

Neurofibromatosis 1 (NF1) is an autosomal dominant condition characterized by 

neuro-cutaneous involvement and a predisposition to tumour development. The 

most common NF1-associated central nervous system tumour is optic pathway 

glioma (OPG), affecting about 15% of NF1 patients and characterized by an 

unpredictable evolution with no clear prognostic factors identified so far.  

Resting-state fMRI has recently emerged as a powerful tool for functional brain 

analysis, allowing the examination of brain functional networks. 

The aim of our study was to analyze through resting-state fMRI the possible 

functional modifications of the visual network in patients affected by NF1 and 

OPG. 

We enrolled 57 patients with NF1 (31 females and 16 males; mean age at brain 

MRI scan 13.31 ± 6.07). Of them 35 presented OPG: in 15 (42.8%) patients it 

involved only the optic nerves, in 20 (57.2%) also the chiasmatic area; of the 

latter, 5 (25%) patients also the posterior optic pathways. Eleven (19.3%) of our 

patients with NF1 presented altered visual acuity. All of them underwent resting-

state brain fMRI to analyze the visual network. Nineteen subjects non-affected by 

NF1 were used as controls 

Our data revealed a reduced connectivity in patients with NF1 and OPG limited to 

the optic nerves in the medial visual network in the area of paramedian cuneus 

bilaterally in the occipital lobe. No other significant difference were found in 

visual network connectivity between patients with larger OPG vs control or 

between patients with altered visual acuity vs. control. 

In our study we analyzed the impact of OPG on the visual network in patients 

with NF1; we expected to find more significant abnormalities in patients affected 

with OPG involving largely the optic pathways, yet we detected a significant 

reduction of the network connectivity only in patients with OPG limited in the 

optic nerves. These findings may be secondary to the relatively small number of 

patients enrolled and to the indolent evolution of the OPG in our cohort of 

subjects. A follow-up study with a larger number of enrolled patients may help us 

clarify the possible predictive role of visual network connectivity in the OPG 

prognosis. 

 



 

Riassunto 

 

La Neurofibromatosi di tipo 1 (NF1), è una malattia neurocutanea monogenica 

caratterizzata dalla predisposizione allo sviluppo di tumori del sistema nervoso, 

sia benigni che maligni. Il glioma delle vie ottiche (OPG) è il tumore più comune 

in questi pazienti, con una prevalenza del 15% e un’evoluzione spesso 

imprevedibile; a tutt’oggi non sono stati individuati sicuri fattori prognostici. 

L’obbiettivo del nostro studio è stato l’indagine tramite Risonanza Magnetica 

funzionale (fMRI) dell’impatto di OPG sulle reti neurali visive dei pazienti con 

NF1. 

Sono stati selezionati 46 pazienti affetti da NF1 seguiti presso il nostro 

Dipartimento e 11 pazienti affetti da NF1 seguiti presso l’Ospedale Pediatrico di 

Genova (31 femmine e 16 maschi; età media alla fMRI 13.31 ± 6.07); 19 soggetti 

sani sono stati arruolati come controlli. I soggetti stati tutti sottoposti a Risonanza 

Magnetica con acquisizione di sequenze per lo studio funzionale e a valutazione 

oculistica con particolare attenzione all’acuità visiva. 

Dei pazienti con NF1 35 presentavano OPG: in 15 (42.8%) coinvolgeva solo i 

nervi ottici, in 20 (57.2%) anche il chiasma e le vie retro-chiasmatiche; tra questi, 

in 5 (25%) casi erano coinvolti anche i tratti posteriori. Undici (19.3%) dei 

pazienti con NF1 presentavano acuità visiva alterata. 

E’ stata confrontata con fMRI la connettività della rete neurale visiva in pazienti 

con NF1 e OPG con diversa estensione e nei controlli. 

Si è rilevata una riduzione della connettività della rete neurale visiva  

statisticamente significativa tra i pazienti con NF1 e glioma delle vie ottiche 

limitato ai nervi ottici e controlli, nell’area corrispondente al cuneo paramediano 

bilaterale. Non sono emerse differenze significative tra gli altri gruppi. 

La mancanza di chiari fattori prognostici noti per quanto riguarda l’OPG ci ha 

spinto a valutare le differenze funzionali delle reti neurali visive in pazienti affetti. 

I risultati ottenuti dimostrano inaspettatamente una differente connettività solo in 

coloro affetti da OPG limitato ai nervi ottici; uno studio di follow-up, effettuato su 

una popolazione di numerosità maggiore ci potrà aiutare a chiarire questi dati.  

 

 



 

1. BACKGROUND 

 

1.1 NEUROFIBROMATOSIS TYPE 1  

Neurofibromatosis type 1 (NF1) is a monogenic hereditary disease caused by 

mutations in the onco-suppressor gene NF1. It has an incidence of 1: 2500-3500 

and a prevalence of 1:4000-5000 (Ferner, 2010); it is transmitted in an autosomal 

dominant manner, yet half of the patients present a de novo mutation.  

NF1 is a neurocutaneous condition whose hallmark is the predisposition to the 

development of both benign and malignant tumours involving peripheral and 

central nervous system.  

Penetrance is age-dependent and usually is completed by the 8 years of age; 

diagnosis may be achieved in the 95% of the patients at the age of 6 accordingly 

to the international diagnostic criteria established at NIH consensus conference 

1987 (NIH Consensus Dev Conference, 1988). 

Patients affected by NF1 show a wide range of clinical phenotypes with high 

intra- and inter-familiar variability.  

Main clinical features have been classified as major and minor clinical signs and 

other clinical features (Huson, 2008): 

 

major signs 

- café-au-lait spot (CAL) 

- atypical freckling 

- Lisch nodules 

- neurofibromas 

 

minor signs 

- macrocephaly 

- short stature 

- pectus excavtus 

 

other frequent clinical features  

- learning disabilities 

- optic pathway glioma 

- malignant tumours 



- bones abnormalities 

- cardiovascular manifestations  

 

 

1.1.1 Diagnostic Criteria  

 

The international diagnostic criteria for NF1were defined in 1987 by the National 

Institute of Health, showing high sensitivity and specificity in adult subjects 

(Table I). On the other hand, due to the age-dependent onset of NF1 signs, they 

result less sensitive in children with a clinical suspicion of NF1. A modification to 

these criteria were suggested in 2008 by Huson with the insertion of the 

identification of a pathogenic mutation to improve the criteria sensitivity when 

clinical signs are not yet recognizable (Table 1). 

More recently also other modifications to established criteria have been 

suggested, including molecular analysis of NF1gene and less frequent cutaneous 

and extra-cutaneous signs, in the attempt to hasten NF1 diagnosis (Tadini et al., 

2014).  

 

Table I National Institute of Health 1987 NF1 criteria* 

 

2 or more of the following: 

6 or more CALs or hyperpigmented maculae ≥5 mm in diameter in prepubertal 

children and 15 mm postpubertal  

axillary or inguinal freckles (>2 freckles) 

2 or more typical neurofibromas or one plexiform neurofibroma 

optic pathway glioma 

2 or more iris hamartomas (Lisch nodules) 

sphenoid dysplasia or typical long-bone abnormalities such as pseudarthrosis 

first-degree relative (eg, mother, father) with NF1 ** 

 

* criteria must be satisfy with widespread body involvement to exclude a 

segmental form of NF1 (Huson, 2008) 

** two affected siblings with clinically unaffected parents might be affected by 

mismatch repair deficiency syndrome (Huson, 2008) 



 

 

1.1.2  Neurofibromatosis type 1: segmental form 

 

Segmental form of NF1 is characterized by the presence of typical cutaneous 

signs, such as CALs, atypical freckling and neurofibromas, confined to one or 

more defined body areas (Huson, 2008) 

This condition is secondary to somatic mosaicism due to a post-zigotic mutation 

of the NF1gene. In these patients molecular analyses performed on blood samples 

frequently result negative for NF1 mutations while tests on DNA extracted from 

samples of skin cells taken from CALs or Schwann cells taken from 

neurofibromas show biallelic inactivation of the gene (Maertens et al., 2007). 

Patients affected with segmental NF1 usually present with a smaller number of 

clinical manifestations and a lower risk of transmitting the mutation to the 

offspring, although this may be possible in case of gonadic mosaicism.  

Rare cases of pure gonadal mosaicism have also been reported, in which patients  

without any clinical signs and NF1 mutation limited to gonadic cells have 

transmitted the condition to the offspring (Trevisson et al., 2014). 

 

 

1.1.3 Differential diagnosis 

 

Diseases presenting with skins alterations or tumours that might be misidentified 

as CALs or neurofibromas must be clinically excluded in diagnosing NF1 (Table 

II, Ferner et al., 2007). 

 

Table II NF1 Differential diagnosis 

 

Condition Clinical features 

Other neurofibromatosis 

Neurofibromatosis type II bilateral vestibular Schwannoma, other cranial and 

peripheral nerves Schwannomas; cutaneous 

Schwannomas; Meningiomas; juvenile posterior 

subcapsular cataract 



Schwannomatosis  multiple cranial, spinal and peripheral nerves 

Schwannomas without vestibular, cutaneous or ocular 

manifestations 

Conditions with CALs or similar cutaneous manifestations 

McCune-Albright 

syndrome 

large and irregular CALs, bone fibrous dysplasia, 

precocious puberty and other endocrinopathies  

phenotype with multiple 

CALs 

condition inherited with autosomal dominant 

transmission without other NF1 manifestations 

mismatch repair 

deficiency 

syndrome 

multiple CALs, axillary freckling, cutaneous 

neurofibromas, paediatric tumours, brain tumours, 

malignant haematological disorders, early-onset 

colorectal cancer 

LEOPARD syndrome freckling, hypertelorism, sensorineural hearing loss, 

pulmonary stenosis, cardiac arrhythmias, growth 

delay 

Peutz Jegers syndrome perioral, conjunctival and genital mucosae freckling, 

intestinal hamartomatous polyps, cancer involving 

gastro-intestinal tract, pancreas, breast, ovaries and 

uterus  

Legius syndrome condition inherited with autosomal dominant 

transmission, multiple CALs, atypical freckling, 

macrocephalia without Lisch nodules, neurofibromas 

and brain tumours 

Piebald trait altered pigmentation areas, white forelock 

Conditions presenting with neurofibromas-like tumours 

Bannayan- Riley-

Ruvalcaba syndrome 

multiple lipomas and haemangiomas, macrocephalia, 

glandis pigmented spot, growth delay 

Familial multiple 

lipomatosis 

multiple cutaneous lipomas involving trunk and limbs 

Juvenile hyaline 

fibromatosis 

multiple cutaneous tumours, gingival hyperplasia 

Multiple endocrine 

neoplasia type 2B 

mucosae and conjunctival neuromas, 

pheochromocytoma, thyroid medullary carcinoma, 

ganglioneuromatosis of the gastrointestinal tract, 



marfanoid habitus 

Conditions with localized overgrowth 

Klippel-Trenaunay-Weber 

syndrome 

cutaneous haemangiomas, arteriovenous fistulas and 

emihypertrophy 

Proteous syndrome hamartomatous overgrowth of multiple tissues, 

epidermal and connectival nevi, hyperostosis 

Congenital generalized 

fibromatosis 

multiple tumours of cutaneous and subcutaneous 

layers, of skeletal muscles, bones and viscera 

 

The main disorders that must be considered as differential diagnoses in evaluating 

a patient with possible NF1 are Legius syndrome, McCune-Albright syndrome 

and LEOPARD syndrome. 

Legius syndrome is caused by mutations of the SPRED1 gene (15q13.2) and is 

clinically characterized by multiple CALs, atypical freckling and facial 

dysmorphic features such as macrocephalia and hypertelorism. Although sharing 

these clinical features with NF1, Legius syndrome phenotype does not include 

Lisch nodule, optic pathway gliomas, neurofibromas or higher risk of tumour 

development. 

Also patients with McCune-Albright syndrome present CALs but these are 

generally larger and irregular than those in NF1, and they are associated with 

fibrous dysplasia and endocrinopathies. 

Finally, LEOPARD syndrome must be considered as a possible differential 

diagnosis since it is characterized by widespread freckling, hypertelorism, facial 

dysmorphism, genital abnormalities, pulmonary stenosis, cardiac arrhythmias and 

growth delay. 

 

 

1.1.4 Clinical severity 

 

Clinical severity in NF1 may be classified according to Riccardi scale (Riccardi, 

1992) in minimal, mild, moderate and severe (Table III). NF1 severity is defined 

considering the presence of typical clinical signs, complications, life quality and 

expectancy reduction. 

 



Table III  NF1 severity classification according to Riccardi 

 

I grade (minimal) presence of signs without symptoms or 

clinical relevance such as CALs, 

freckling and Lisch nodules 

II grade (mild) asymptomatic lesions associated with 

lesions with aesthetic impairment such 

as facial neurofibromas  

III grade (moderate) symptomatic but treatable lesions 

without reduction of life expectancy  

IV grade (severe) presence of life-threatening lesion with 

reduction of life expectancy 

 

Around 75% of patients present a phenotype with mostly cutaneous involvement 

while the remaining 25%  of subjects develop at least one complications.  

NF1 phenotype is characterized by a marked inter- and intra-familiar variability. 

This variability might be secondary to the involvement of contiguous genes, the 

role of modifying genes, somatic mutations, epigenetic factors such as 

methylation and ambient factors. Allelic heterogeneity seems on the other hand 

not to contribute since there is little correlation between genotype and phenotype 

in NF1 and NF1 mutations are usually inactivating. 

Stochastic factors, particularly the somatic mutations of the second NF1allele, 

known also as “second hit”, may explain the unpredictable natural history of the 

disease. 

 

Life expectancy of patients with NF1 results shorter than in non-affected 

population with around 20 years of difference if patients of all age are considered; 

the difference results to be of only 10 years if only patients over 40 years of age 

are included, showing how NF1 reduces life expectancy especially in younger 

subjects. First causes of death seem to be the development of both peripheral and 

central nervous system malignant tumours (Masocco et al., 2011; Rasmussen et 

al., 2001). 

 



 



 

1.2 The NF1 gene 

 

The NF1 gene maps on 17q11.2 (Viskochil et al., 1990; Wallace et al., 1990); it is 

composed of 350 kb of basis and 61 exons that encode a transcript of 11-13 kb. In 

this a Open Reading Frame (ORF) of  8457 bp is included, which is entirely 

translate in neurofibromin, a protein composed of 2818 amino acids, with a 

molecular weight of 327 kDa (Viskochil et al., 1993). 

Three small codifying genes EVI2A, EVI2B e OMGP (Upadhyaya et al., 1994). 

are located in intron 27b. EVI2A e EVI2B (ecotropic viral integration site) are 

expressed, respectively, in brain, bone marrow and peripheral blood and in bone 

marrow and peripheral blood; OMGP (oligodendrocyte myelin glycoprotein) is 

expressed in Schwann cells and oligodendrocytes during myelination.  

EVI2B and OMGP seem to have both oncosoppressor roles (Pasmant et al., 

2011). 

 

 

1.2.2 Neurofibromin functions 

 

Neurofibromin is a protein ubiquitously expressed in neurons, Schwann cells, 

oligodendrocytes, astrocytes, medullar layer of suprarenal gland and leukocytes. 

(Shen et al., 1996). 

It is a negative regulator of the ras signal transduction pathway. 

A central dominion, analogous to catalytic domain of GTPase activating protein, 

presents a ras-GAP activity in vitro and in vivo and it is called GAP-related 

domain (GRD) (Hattori et al., 1992). 

Different isoforms of neurofibromin develop from alternative splicing and they 

are differently expressed according to tissues and age of development. 

The neurofibromin GRD domain reduces the activity of protein p21ras by 

inhibiting cellular proliferation by enzymatic conversion to inactive form and by 

binding membrane protein Cav-1 that is involved in p21ras and growth factors 

receptors regulation (Boyanapalli et al., 2006). 

Another distinct domain, called cysteine-serine rich domain (CSRD) (Izawa et al., 

1996) seems to be involved in the interaction between neurofibromin and 

microtubules (Fahsold et al., 2000) that contributes to the regulation of cellular 



proliferation after stimulation by growth factors (Mangoura et al., 2005). 

Therefore the NF1 gene is considered an onco-suppressor gene; the loss of 

neurofibromin function is associated with higher levels of the activated form of 

p21ras and mutations that activate ras are found in more than 30 % of human 

tumours (Viskochil et al., 1993). 

Many mutations in the GRD region of NF1 are present in different malignant 

tumours associated to NF1 (Garicochea et al., 1998) 

According to the "two hits" theory (Knudson, 1971), the inactivation of both 

alleles of an onco-suppressor gene, as two distinct events, is necessary for the 

development of a malignancy. 

In patients with NF1, without mosaicism, all cells already present a mutated allele 

of NF1, hence only another one somatic mutation is necessary to develop a 

tumour phenotype. 

The loss of heterozygosity, frequently secondary to somatic rearrangements, 

genetic deletions and recombination, is associated with the allele that does not 

segregate with the disease (Upadhyaya et al., 2004). 

 

 

1.2.3 Gene mutations 

 

The NF1 gene has a very elevate mutational rate and de novo mutations cause 

around the half of NF1 cases. So far over 1300 gene mutations have been 

identified: they are heterogeneous in dimension and type, ranging from massive 

deletion to single-base substitution. 

Around 5-10% of NF1 patients present a pathogenic mutation constituted by a 

heterozygous deletion involving the NF1 gene and a variable number of 

contiguous genes, called microdeletion (Kluwe et al., 2004).  

 

 

1.2.4 Genotype and phenotype correlations 

 

Many studies have investigated possible correlations between a single NF1 gene 

mutation and its associated clinical picture, but so far only three genotype-

phenotype correlations have been identified. 



In subjects presenting microdeletions, NF1 clinical picture seems to be more 

severe. 

The microdeletion syndrome is characterized by: 

- craniofacial dismorphisms: in these patients they are significantly more frequent 

than in those without microdeletion (75% vs.15%) (Mautner et al., 2010); 

- intellective deficit: IQ is lower than in other NF1 patients, with an higher 

incidence or intellective retardation (38% vs. 6-8%) (Mautner et al., 2010), 

probably secondarily to an alteration of  brain development (Venturin et al., 

2004); 

- bones abnormalities: scoliosis, pectus escavatum and brachydactyly are more 

recurrent (Spiegel et al., 2005); 

 - congenital heart defects: pulmunary artery stenosis, interatrial and 

interventricular septal defects, valvular abnormalities, hypetrophic 

cardiomyopathy and patent ductus arteriosus have higher prevalence in these 

patients (Tinschert, 2008); 

- cutaneous and plexiform neurofibromas: they develop precociously and in 

elevated number in these patients (Riva et al., 1996; Tonsgard et al., 1997); they 

also present an higher incidence of malignant peripheral nerve sheet tumours with 

a lifetime risk of 16-26% (vs. 8-13%)(De Raedt et al., 2003); 

- acceleration in bone maturation: they usually present a 1-2 year older bone age 

(Tinschert, 2008). 

 

Also in patients with microdeletion syndrome there is yet a phenotypic variability, 

which may be related to the different length of gene portion deleted and to the 

different roles played by contiguous genes involved. 

The second identified genotype-phenotype correlation is between an inframe 

deletion of 3 bp in exon 17 of the NF1 gene, and a milder clinical picture, 

presenting only with CALS and without neurofibromas or other signs 

development (Upadhyaya et al., 2007).  

Recently p.Arg1809Cys substitution has been associated with a mild phenotype 

characterized by CALs and freckling, without neurofibromas, Lisch nodules and 

NF1-associated malignancies. 

 





 

1.3 NF1 CLINICAL MANIFESTATIONS 

 

1.3.1 Skin changes 

 

Cafè au lait spot, CALs 

CALs are round or ovoidal skin spot with an homogenous pigmentation and net 

borders. They are asymptomatic and their areas may vary from a few millimeter 

square to tens of centimeters square and  their colour changes with the patient skin 

colour.  

They are the most common clinical signs of NF1, affecting more than 95% of 

patients and their pathogenesis seem to be related to mutations in the second allele 

of the NF1 gene in melanocytes (De Schepper et al., 2007). 

 There is not recognized correlation between the number of CALs and the disease 

severity (Emery & Rimoin, 2002), nor between CALs site and site where other 

manifestations are more likely to appear. 

CALs may be present at birth or appear in the first months of life and then they 

grow in number and dimension until puberty. During adulthood they usually 

decolorate and become less recognizable. 

Although they constitute a diagnostic criterium when they are present in a number 

larger than 5 and with a diameter superior to 0.5 cm before puberty and 1.5 cm 

after puberty, they are not a pathognomonic sign of NF1. One CAL may be 

present in around 2.5% of newborns and in 25% of young children, yet the 

development of CALs after the age of 6 years is less frequent. 

On the other hand the presence of 6 or more CALs, even without the association 

of other signs, is highly suggestive of NF1 and an high percentage of children 

presenting 6 or more CALs will develop other NF1 signs in the following years, 

justifying the planning of an annual follow-up (Nunley et al., 2009). 

CALs may also be present in subjects affected with McCune-Albright syndrome 

and LEOPARD syndrome, hence other signs have to be investigated carefully. 

 

Freckling 

Freckling are multiple small pigmented spots, with a 1 to 3 mm diameter, that 

look like smaller CALs. They appear at around 4 years of age (Friedman, 2002) in 

around 90% of NF1 patients, in the axillary or groin region. They may also 



involve the neck, intermammillary and perioral areas and the trunk. They are 

considered "atypical" since they involve sun-unexposed skin and they appear 

darker and larger than in normal subjects; they are pathognomonic of NF1. 

 

Juvenile xanthogranuloma 

Juvenile xanthogranulomas are more frequently observed in children affected with 

NF1 than in normal subjects with a prevalence of 1:5 or 1:6. They are clinically 

different from those in subjects not affected with NF1; they appear in early 

childhood (within the age of 2), they are small yellow papulae, with a diameter of 

few millimetres, varying in number and involving primarily the head skin. They 

usually present a spontaneous regression.  

A correlation between juvenile xanthogranulomas and juvenile myelomonocytic 

leukemia has been suggested (Zvulunuv et al., 1995), but these findings seem to 

be inconsistent (Burgdorf et al., 2004). 

 

1.3.2 Ocular manifestations 

 

Lisch nodules 

Lisch nodules are hyperpigmented maculas of iris surface, also known as 

hamartomas. They are asymptomatic, with no impact on visual function and no 

need for treatment. They have been first described at the beginning of XX century 

(Snell & Treacher Collins, 1903) and later associated to NF1 (Goldstein & 

Wexler, 1930; Lisch, 1937; Sakurai, 1935). They are easily detected with 

slit lamp examination as small, gelatinous, defined elements on iris surface. They 

are frequently pigmented and usually placed bilaterally in the lower hemifield due 

to the sun-protective effect of the upper eyelid (Ragge et al., 1993). 

Lisch nodule prevalence increases gradually with age: they appear at around the 

age of 2 and they are recognizable in the 50% of paediatric subjects with NF1 and 

90% in adults (Cassiman et al., 2013). They usually appear later than CALs but 

before than neurofibromas and they are a useful diagnostic criteria in paediatric 

patients with negative NF1 familiar history. 

They are constituted, as neurofibromas, by pigmented cells, fibroblastic-like cells 

and mast cells (Richetta et al., 2004). 

 



Optic pathway glioma 

Optic pathway gliomas (OPGs) will be treated in section 1.4. 

 

 

1.3.3 Tumours 

 

Patients affected with NF1present a predisposition to tumours development, 

particularly concerning peripheral and central nervous system. 

 

Neurofibromas 

Neurofibromas are non-malignant tumours originating from peripheral nerves 

sheet; they are composed by Schwann cells, which are considered the main 

neoplastic cell in neurofibromas, but also fibroblasts, perineural cells and mast 

cells. 

They are divided in cutaneous, sub-cutaneous, plexiform and spinal. Their number 

and localization is unpredictable. 

Cutaneous neurofibromas are pigmented, soft skin growths that may be sessile or 

pedunculated. They appear during puberty and reach a prevalence of 99% in 

adulthood (Ferner et al., 2007); they grow in number and size during pregnancy. 

They are usually more frequently localized in the trunk but they may appear in 

every site. They do not grow significantly in size (diameter varying usually from 

2 mm to 3 cm) and do not undergo into malignant transformation, but they may 

represent a severe aesthaetical issue for patients. 

Sub-cutaneous or nodular neurofibromas are less common. They are harder and 

though they are usually asymptomatic, in case of compression they may also 

manifest with paraesthesias and pain irradiating in nerve territory. 

They may present malignant transformation. 

Neurofibromas causing discomfort or aesthaetical problems may be surgically 

removed; they may nevertheless reform or cause hypertrophic scars. 

Plexiform neurofibromas grow along nerves courses and they are usually 

congenital. They are present in around 30% of patients and may clinically 

manifest at birth, during childhood and adulthood although some of them, deeply 

localized, are asymptomatic. 



Their development in unpredictable; they may undergo very fast growth, 

especially during puberty and stop growing also for a long time (Ferner et al., 

2007). 

Due to their development along nerve trunks or plexuses, they may cause severe 

neurological deficits and physical deformity. 

Superficial plexiform neurofibromas present as sub-cutaneous, usually multi-

nodular, poorly defined swellings, whose size may vary from a few centimeters of 

extension to the involvement of whole body districts. They are frequently 

associated with skin hyperpigmentation of the area and/or hypertrichosis and they 

may be misdiagnosed as congenital melanocytic nevus. 

Deep, large plexiform neurofibromas may remain asymptomatic for  a long time 

before presenting with neurological deficits or as space-occupying lesions. 

Diagnosis is clinical, yet MRI is a necessary diagnostic investigation. 

Disfiguring facial plexiform neurofibromas appear before the age of 3 years; 

surgery removal of the lesion is technically difficult due to the infiltration of nerve 

trunks and of near-by structures and to their high vascularization. These issues 

bring along a high risk of massive bleeding during surgery and of neurological 

deficit after surgery (Ferner et al., 2007). 

Schwann cells in plexiform neurofibromas present a biallelic loss of the NF1 

gene, while the other tumours cells as fibroblasts, mast cells and endothelial cells 

are heterozygous for NF1 mutations. 

Since mast cells may produce cytokines and growth factors, they might contribute 

to the creation of  tumour microenvironment (Yang et al., 2012), yet Schwann 

cells play a crucial role in the onset and the development of neurofibromas. 

Around 10% of plexiform neurofibromas undergo malignant transformation in  

malignant peripheral nerve sheath tumour (MPNST) yet the biallelic mutation of 

the NF1 gene is necessary for the transformation (Jouhilahti et al., 2011) and the 

mutation timing is crucial for tumour development (Larizza et al., 2009).  

 

 

Malignant peripheral nerve sheath tumours: MPNST 

Malignant peripheral nerve sheath tumours (MPNST) are the most frequently 

NF1-associated malignant tumours. NF1 patients present a risk of developing 

MPNS 100 times higher than general population (Walker et al., 2006). 



MPNST incidence per year is 0.16% in NF1 patients and around 1-2% of them 

develops MPSNT during lifetime (0.001% in general population) with a 

cumulative risk of 8-13% (Evans et al., 2002). 

Mean onset age, 20-35 years, is significantly lower than in subject non-affected by 

NF1 (62 years) and so is survival rate (21% vs 42% respectively). 

Lower survival rate is partially due to diagnostic delay secondary to the earlier 

discovery of a rapidly growing swelling in non-NF1 subjects (Evans et al., 2002) 

and to the higher aggressive behavior with metastatic spreading of NF1-realted 

MPNST (39% vs. 16%) (Ducatman et al., 1986). 

In NF1 patients, MPNSTs usually, but not exclusively, develop from a plexiform 

neurofibroma (Evans et al., 2002). 

MPNST development should be suspected when a plexiform or sub-cutaneous 

neurofibroma becomes persistently and intensely painful, when it grows or 

changes texture rapidly and when neurological deficits appear (Ferner et al., 

2007). 

Patients with familiar or personal history of cancer, NF1 gene deletion, OPG, an 

high number of deep or sub-cutaneous neurofibroma or who previously 

underwent radiotherapy should be strictly monitored for MPNST. 

PET scan with 18FDG is an highly specific and sensitive test that may help in 

differentiating MPNST from plexiform neurofibroma. 

MPNST treatment is surgical, adjuvant radiotherapy is used when the tumour 

present a diameter larger than 5 cm, it is an high grade lesion or when surgical 

removal is incomplete. Chemotherapy is applied as neo-adjuvant treatment or 

when metastases are present. 

In MPSNT, the cellular cycle is altered with P53 mutations that are responsible of 

malignant progression of this tumour  (Larizza et al., 2009). 

 

Gastrointestinal stromal tumours (GIST) 

Gastrointestinal stromal tumors (GIST) affect 3.9 to 25% of NF1 patients, being 

the most common gastrointestinal tumours in NF1. Compared to sporadic form, 

GIST appear at younger age, they usually develop in duodenum and small 

intestine and they are multiple. They are frequently diagnosed incidentally, they 

usually show a non-aggressive behaviour. yet in some cases they may give 

metastasis (Miettinen and Lasota, 2011). 



 

Pheochromocytoma 

Pheochromocytoma affects up to 14.6% of NF1 patients  (Zinnamosca et al., 

2011) and 20-30% of NF1 patients with high blood pressure. Mean onset age is 

around 40 years of age; they have a benign progression, they are usually localized 

in suprarenal glands and their treatment is surgical. 

 

Brest cancer 

Women affected with NF1 present a 5 times higher risk of breast cancer than non-

NF1 women, in particular at age younger than 50 years (Sharif et al., 2007). They 

also present an higher mortality rate (Evans et al., 2011). An imaging screening 

has been hence suggested in high risk population (Madanikia et al.,2012). 

 

Juvenile myelomonocytic leukaemia (JMML) 

Juvenile myelomonocytic leukaemia (JMML) is a chronic myeloproliferative 

disorder affecting typically young children: more than 95% of cases are diagnosed 

before age 4. Patients affected with NF1 present a 200-300 times higher risk of 

developing JMML (Side et al., 1998). 

 

 

1.3.4 Neuroradiological signs 

 

Brain areas with altered-signal called unidentified bright objects (UBOs) are 

revealed by MRI scan in at least 60% of NF1 patients. They are hyperintense in 

T2-weighted images, they do not present a compressive effect on surrounding 

structures and they do not show a post Gadolinium enhancement. 

Frequently, they are localized in the globus pallidus, thalamus and cerebellum; 

more rarely, in subcortical white matter, cortex, hippocampus and amigdala 

(Hsieh,et al., 2011). 

UBOs are patognomonic signs in NF1and are asymptomatic. Histologically they 

seem to be caused by vacuolar change of myelin and intramyelinic edema 

associated to glial proliferation with hyperplastic or dysplastic features (Dipaolo 

et al., 1995). 

They appear during childhood, they do not present consistent changes in number, 



sites and size during puberty, and then they disappear around 20 years of age 

(Kraut et al., 2004). Their correlation with learning disabilities has been 

investigated but without consistent results (Ozonoff, 1999). 

 

 

1.3.5 Bones alteration 

 

Short stature and macrocephalia are common signs in children with NF1, 

affecting respectively 13% and 24% of subjects (considering abnormal features 

those beyond 2 standard deviation from the mean value adjusted for age) (Szudek 

et al., 2000). 

Scoliosis affects 10-26% of patients, involving more frequently cervical thoracic 

spine. It is divided in dystrophic and idiopathic. 

Dystrophic scoliosis is usually associated to kyphosis, it has a precocious onset 

(before the age of 10) and it involves 4 to 6 segments and causes distortion of 

vertebrae and ribs. It is rapidly progressive and may request early surgical 

correction (Alwan et al., 2005); it may be associated to an underlying plexiform 

neurofibroma and in most severe cases it brings along respiratory difficulties 

(Ferner et al., 2007).  

Neurological complication may occur, secondary to spinal cord compression 

(Williams et al., 2009). 

Idiopathic scoliosis onsets during puberty, it is not progressive, it involves usually 

8 to 10 segments and it clinically similar to non NF1-assocaited scoliosis. It may 

progress to a dystrophic form; clinical and imaging follow-up is hence mandatory. 

Sphenoid dysplasia involves more commonly the greater wing that results 

partially or totally absent; it is usually asymptomatic and it is diagnosed by 

clinical and radiological examination. It is frequently associated to a periorbiral 

plexiform neurofibroma and some patients may present a pulsating exophthalmos. 

Long bones dysplasia is present in around 2% of NF1 patients and it involves 

mainly the tibial bone with deformity and thinning of cortical layer; omolateral 

fibulae may also be involved. Also femoral, radial, ulnar, homeral and clavicular 

bones may be affected.  

It usually onsets during the first months of life and it is associated with 

pathological fractures with complicated and delayed healings that may need 



surgical treatment and in most severe cases also amputation. 

Patient with dysplasia without fractures may uses orthesis as a prophylactic 

measure until complete skeletal growth, when fractures are less probable (Alwan 

et al., 2005).  

Early tibial dysplasia may allow a precocious diagnosis of NF1 (Morcaldi et al., 

2013). 

 

 

1.3.6 Epilepsy and other neurological manifestations 

 

Epilepsy prevalence in NF1 subjects is 4.2 to 6%, two times higher than in the 

general population, with a 9.5% of prevalence of non-provoked seizures 

(Ostendorf et al., 2013). 

Crisis are usually focal and a 75% of epileptic patients present focal EEG 

abnormalities (Ostendorf et al., 2013). 

This increased epileptic risk may be due to neurofibromin expression in 

cerebral cortex during embryonic development that is involved in 

neurotransmission and synapses formation. Hence abnormal neurofibromin 

expression may cause the development of an altered neural network with a 

lowered epileptic threshold (Hsieh et al., 2011). 

Epilepsy in NF1 is usually well-controlled with pharmacological therapy, 

unlike epilepsy associated with other neurocutaneous diseases such as 

Tuberous sclerosis and Sturge-Weber syndrome (Kulkantrakorn and Geller, 

1998). 

Children with NF1 are more frequently affected by attention deficit 

hyperactivity disorder (ADHD), autism, behavioural and psycho-social 

problems.  

ADHD, diagnosed according to DSM-IV criteria, is 3 times more frequent in 

NF1 children than in their relatives and general population (Williams et al., 

2009). 

Mean Intelligence Quotient (QI) in NF1 subjects is frequently lower than 

general population (Ferner et al., 2007,  Schrimsher et al., 2003, Levine et al., 

2006). A severe intellective deficit (IQ <70) is present in 4-8% of NF1 subjects 

vs. 3% in general population (Hyman et al., 2005). 



Learning disabilities of different degrees are present in 30-60% of NF1 

children  (Cutting and Levine, 2010; Hyman et al., 2005; Ozonoff, 1999). 

Learning disabilities are diagnosed when the child cannot develop an academic 

potential independently from his social-economical and cultural background 

and in absence of neurological or other medical issues. IQ may be normal in 

these patients and learning disabilities may concern writing and reading 

difficulties, visuospatial problems, working memory impairment and attention 

deficits  (Ferner et al., 2007). 

 

 

 

1.3.7 Cardiovascular abnormalities 

 

Cardiovascular abnormalities are present in 2% of NF1 patients, though the 

incidence could be higher if an ultrasound screening was performed in all 

subjects (Tedesco et al., 2002). 

The most common cardiac alteration is pulmonary artery stenosis that 

represents 25% of all cardiac abnormalities in NF1. 

Vasculopathies in NF1 included stenosis, aneurisms, dysplasias and 

arteriovenous malformation and they represent the second more frequent death 

cause in NF1. The most frequent vasculopathy is renal artery stenosis, which 

affects around 1% of NF1 patients. Other vessel abnormalities may involve 

cerebral arteries such as internal carotid, middle or anterior cerebral artery and 

may cause ectasia, stenosis, aneurisms and Moyamoya phenomenon and may 

bring along parenchyma ischaemic alterations and clinical neurological 

manifestations. 

Arterial hypertension is a cause of morbidity and mortality and must be closely 

followed-up every year. It is frequently secondary to renal artery stenosis, 

particularly in children, but also to pheochromocytoma and coarctation 

(Williams et al., 2009) 





 

1.4 OPTIC PATHWAY GLIOMAS 

 

1.4.1 Epidemiology  and clinical manifestations 

 

OPG affect up to 20% of children affected with NF1 (DeBella K, et al., 2000) and 

usually manifests during the first decade of life, though later onset is well 

documented (Listernick R, et al., 2004).  

They are grade I pilocytic astrocytoma, not different histologically from other 

gliomas or gliomas in subjects not affected by NF1. 

OPG in NF1 present usually a more indolent course compared to sporadic ones 

(Guillamo JS et al., 2003) but it may present a hazardous evolution with severe 

impairment of visual function and potentially life-threatening behaviour (Balcer et 

al., 2001) 

Around the 50% of OPG is symptomatic; it usually presents with impairment of 

visual acuity, papillary abnomarmalities, visual field reductions, atrophy or 

aedema of optic nerve, proptosis or strabismus. In more severe cases, especially 

when OPG involves the chiasmatic region, neurological symptoms may surface, 

such as neurological deficits, hydrocephalus, development delay, precocious 

puberty (Cassiman et al,. 2013), intracranial hypertension and also death. 

Since visual function impairment seems to constitute the first sign of OPG onset, 

patients with NF1 should undergo ophthalmologic screening examination every 6-

12 months, especially since young children are not reliable in referring visual 

acuity impairment. 

Screening planning may vary with age and clinical picture and examination 

includes visual acuity and visual field assessment, colour vision test, ocular 

motility and fundus oculi evaluation and slit lamp examination (Listernick et 

al.,1997) according to the subject compliance (around one third of the patients can 

not undergo a reliable visual acuity assessment due to young age or cognitive 

disabilities).  

Since the compliance-related reliability of the ocular examination, new test as 

optical coherence tomography (OCT) has been recently applied as screening tool. 

OCT allows the measurement of the optic nerve fibers layer thickness in the 

retina. It has been shown that the thickness of this layer is reduced in NF1 patients 

with OPG and a recent work (Parrozzani et al., 2013) has revealed that this 



thinning of the layer precede the onset of ocular clinical manifestations. NF1 

patients without OPG present no OCT alteration. 

 

 

1.4.2 Neuroradiological classifications 

 

OPG are classified according to the MRI involvement of the pre-chiasmatic tracts 

of optic nerves, monolaterally or bilaterally, or also the chiasmatic-ipothalamic 

region and the posterior optic pathway (Taylor T  et al., 2008). 

No consistent data seem to indicate a correlation between site and tumour 

progression and no other prognostic factors of OPG behaviour have been clearly 

identified; tumour evolution hence remains unpredictable so far (Segal et al., 

2010; Astrup et al,. 2003; King et al., 2003; Lama et al., 2007; Thiagalingam et 

al., 2004) 

 

 

1.4.4 Current treatments 

 

Although most OPGs present an indolent behavior, treatment is indicated in 

presence of neuroradiological and/or clinical progression. Therapy options include 

chemotherapy and surgery. Chemotherapy is usually based on vincristine and 

carboplatin combinations, that results well-tolerated and presents a moderately 

low neurotoxicity.  

Surgery is applied only in cases of obstructive hydrocephalus or severe proptosis. 

Radiotherapy was once used but it is not more applied due to cerebro-vascular 

complications, collateral effects on intellective abilities and the significantly 

increased risk of a second tumor development in the involved area (Listernick et 

al., 2007).



1.5 FUNCTIONAL MRI 

 

The functional magnetic resonance imaging (fMRI) is a non-invasive imaging 

tool which allows the measurement of blood oxygen level dependent (BOLD) 

signal in different brain areas during resting state or during the performance of 

specific cognitive tasks. 

Although task-based approaches on fMRI have been more explored in a first time, 

resting-state fMRI has recently emerged as a powerful tool for functional brain 

analysis since it allows the examination of multiple functional circuits 

simultaneously, without the requirement of selecting a priori hypothesis. 

 

fMRI in resting state 

Imaging the brain during resting state, characterized by the absence of tasks to 

perform,reveals large-amplitude spontaneous low-frequency (<0.1 Hz) 

fluctuations in the fMRI signal that are temporally correlated across functionally 

related areas (Biswal et al., 1995; Fox et al., 2007; Margulies et al., 2007; Smith et 

al., 2009)Different brain areas connected in functional networks are hence 

identified due to temporal synchrony and inherent coherence of BOLD in the 

activation or resting state. 

These neural networks with synchronous activity result altered in cases of cortical 

dysfunction (Assaf et al, 2010). 

 

The images obtained by fMRI must undergo preprocessing including motion 

correction and spatial filtering (Biswal et al, 2010)  and then, to identify the 

different major functional networks, an independent component analysis (ICA) 

may be applied using temporal concatenation to find independent patterns in 

multivariate data.  

Among the better defined brain functional networks is the visual network (Smith 

et al. 2009), that involves medial, occipital pole, and lateral visual areas. 





 

2. AIM OF THE STUDY 

 

 

The aim of our study was to analyze the possible functional modifications of the 

visual network in patients affected by NF1 and OPG.  

For this purpose, we investigated through fMRI the visual networks in NF1 

patients with OPG, in NF1 patients without OPG and in healthy controls. In 

addition, NF1 patients were subdivided according to OPG size and localization 

and according to the impairment of visual function 



 



 

3. PATIENTS AND METHODS 

 

3.1 Cohort selection 

 

We included in our study patients affected byNF1 diagnosed accordingly to the 

National Institute of Health criteria National Institutes of Health Consensus 

Development Conference, 1988). 

Ethical committee approval was obtained before the beginning of the study; all 

our patients, or their parents or tutors in cases of minors, gave written informed 

consent. 

All patients were regularly attending our NF1 Clinic in the Clinical Genetics Unit 

of the Department of Woman and Child Health of the University of  Padova or the 

Paediatric Neuro-Oncology Unit of the University of Genova. 

 

We selected patients affected with NF1 who already presented an indication to 

perform brain MRI, who did not required pharmacological sedation during the 

scan and who had not undergone any therapy for OPG.  

All patients with OPG were submitted to brain MRI for follow-up purposes while 

patients without OPG underwent brain MRI for the onset of headache or the 

investigation of learning disabilities, facial plexiform neurofibroma or ocular 

abnormalities. 

 

Fifty-seven patients were enrolled (mean age at brain MRI scan 13.31 ± 6.07 

years, range 3-34; 31 females). 

Patients were further subdivided between those with and without 

neuroradiological evidence of OPG.  

Patients with OPG were subdivided accordingly to the anatomical Dodge 

classification (Dodge et al., 1958): one group including patients with OPG 

involving only the optic nerves, one group with OPG involving the optic nerves 

and the chiasmatic region (including also the hypothalamus) and one group with 

OPG involving also the posterior optic pathways (including all post-geniculate 

structures).  

 

Among the 57 NF1 patients, 35 harbored an OPG.  



Of the 35 patients with OPG (mean age 12.9±5.6, 19 female and 16 male), the 

OPG involved: 

- in 15 (42.8%) only the optic nerves (mean age 13.3±7.5, 6 female and 9 male); 

- in 20 (57.2%) also the chiasmatic area (mean age 12.6±3.2, 13 female and 7 

male) 

Of the latter, 5 NF1 patients also reached the posterior optic pathways (lateral 

geniculate bodies and optic radiation). 

 

Eleven (19.3%) NF1 patients OPG (mean age 13.9±5.9, 6 female) presented 

altered visual acuity while 46 (80.7%) NF1 patients (mean age 10.4±4.2, 25 

female) had normal visual acuity. 

 

Table IV Cohort of NF1 patients 

Pt.  sex age (yrs) OPG site visual acuity 

1 male 15 chiasmatic normal 

2 female 13,3 no glioma normal 

3 male 9 chiasmatic altered 

4 female 6,45 optic nerves normal 

5 male 10,3 optic nerves normal 

6 female 7,8 optic nerves altered 

7 male 13,1 no glioma normal 

8 male 8,4 no glioma normal 

9 male 14,3 no glioma normal 

10 female 14,3 no glioma normal 

11 female 8,9 no glioma normal 

12 female 10,4 chiasmatic altered 

13 male 7,2 no glioma normal 

14 female 8 no glioma normal 

15 male 4 chiasmatic normal 

16 female 10,6 chiasmatic normal 

17 male 34,5 optic nerves normal 

18 male 12,6 chiasmatic normal 

19 female 16,4 no glioma normal 

20 male 15,6 optic nerves normal 

21 female 16,9 chiasmatic normal 



22 male 3,3 no glioma normal 

23 female 9,5 chiasmatic altered 

24 female 5,7 optic nerves normal 

25 female 14,3 chiasmatic altered 

26 female 15,5 chiasmatic normal 

27 female 9,8 chiasmatic normal 

28 female 11,8 optic nerves normal 

29 female 14,2 chiasmatic normal 

30 female 22,6 no glioma normal 

31 male 8,3 no glioma normal 

32 male 14,5 chiasmatic normal 

33 female 14,2 chiasmatic normal 

34 female 9 no glioma normal 

35 male 13,3 optic nerves altered 

36 female 10,6 chiasmatic altered 

37 male 15,5 chiasmatic normal 

38 male 31,3 no glioma normal 

39 male 15 optic nerves normal 

40 female 13,7 optic nerves normal 

41 male 6,6 chiasmatic altered 

42 male 8,8 optic nerves altered 

43 female 17,8 chiasmatic normal 

44 female 25,8 no glioma normal 

45 female 14,9 chiasmatic normal 

46 female 16,6 chiasmatic normal 

47 female 17,2 optic nerves altered 

48 male 2,8 optic nerves altered 

49 male 9,3 no glioma normal 

50 female 11,7 no glioma normal 

51 male 15,9 no glioma normal 

52 female 25,2 no glioma normal 

53 male 11,9 no glioma normal 

54 female 12,5 no glioma normal 

55 female 10,4 no glioma normal 

56 male 17,8 optic nerves normal 

57 male 18,3 optic nerves normal 



 

Brain MRI scans of 19 patients non-affected by NF1 and without any evidence of 

brain parenchymal abnormalities (11 females and 8 males; mean age at brain MRI 

scan 11.23±3.92) were used as control subjects. 

 

Clinical data were collected for all patients with particular focus on visual acuity 

measurement at the last ophthalmological follow-up evaluation.  

  

 

3.2 Resting state functional MRI  

 

Patients and controls underwent brain MRI scans with a 1.5T MRI (Achieva; 

Philips Medical Systems,Best, the Netherlands) with a standard quadrature head 

coil. Different imaging sequences were acquired during the scan to achieve 

images useful both for the clinical management of the patients and the analysis of 

the optic pathway. 

The MR imaging study protocol included: 

- 3D T1-weighted imaging (TR/TE, 20/3.8 ms; flip angle, 20°;section thickness, 1 

mm; acquired voxel size, 1x1 mm; reconstructed voxel size, 0.66x0.66 mm; 

acquisition matrix,212x210; reconstructed matrix, 320x320; acquisition time, 

approximately 7 minutes); 

- Fluid-attenuated inversion-recovery (TR/TE/TI, 10,000/140/2800 ms; echo-train 

length, 53; flip-angle, 90°; section thickness,5 mm; acquisition voxel, 0.90x1.15 

mm; reconstructed voxel, 0.9x0.9 mm; acquisition time, 3 minutes 20 seconds); 

- Diffusion tensor images acquired with single-shot echo-planar diffusion-

weighted imaging (TR/TE, 11,114/80 ms; acquisition matrix, 112x110; echo-train 

length, 59; reconstructed matrix, 128x128; acquisition voxel, 2x2 mm; 

reconstructed voxel, 1.75x1.75x2 mm; sensitivity encoding p reduction,2; section-

thickness, 2 mm without gap; NEX, 2; acquisition time, 12 minutes 24 seconds). 

The axial sections covered the whole brain including the cerebellum. The 

diffusion-sensitizing gradients were applied along 32 non collinear gradient-

encoding directions with maximum b=800 s/mm2. One additional image without 

diffusion gradients (b=0 s/mm2) was also acquired. 

- Resting-state fMRI data with 250 continuous functional volumes(TR/TE, 



2216/50 ms; flip angle, 90°; 21 axial sections; acquisition matrix, 96x96; 

reconstructed matrix, 128x128;acquisition voxel, 2.4x2.4 mm; reconstructed 

voxel, 1.8x1.8 mm; section thickness, 5.5 mm; gap between sections, 0.5mm; 

acquisition time; 8 minutes 27 seconds).  

During the scan, subjects were requested to remain still, stay awake, and keep 

their eyes open. 

 

 

3.3 fMRI data processing  

 

Resting-state scans were preprocessed by using both Analysis of Functional 

Neuro- Images (version AFNI_2010_10_19_1028; http://afni.nimh.nih.gov/afni) 

and fMRI of the Brain Software Library (FSL, Version 4.1.9; http:/ www. fmrib. 

ox.ac.uk/fsl). Preprocessing was performed as described by Biswal (Biswalet al, 

2010) and in Neuroimaging Informatics Tools and Resources 

Clearinghouse(www.nitrc.org/projects/fcon_1000).  

The first 5 volumes of every scan were discarded to remove possible stabilization 

effects. Preprocessing consisted of motion correction by using Fourier 

interpolation (volume registration by using least-squares alignment of 3 

translational and 3rotational parameters); spatial smoothing by using a 6-mm full 

width at half maximum Gaussian kernel; mean-based intensity normalization of 

all volumes; linear and quadratic detrending; and spatial normalization via 

estimation of a linear transformation from the individual functional space to 

Montreal NeurologicalInstitute-152 (MNI152) standard brain space according to 

each individual’s high-resolution anatomic image.  

A high-pass filter setting of 200 seconds (<0.005 Hz) was used to reduce very 

low-frequency artifacts such as scanner draft.  

Five patients with NF1 and 4 control subjects displayed a single brief movement 

of head displacement >3mm or 3° during scanning. We decided to remove the 

interested volumes (about20–30 volumes in each patient) before undergoing 

preprocessing, to prevent issues in the identification of the networks. 

We then decide to exclude these 9 subjects from the ICA, but not from the dual 

regression analyses [http://en.pudn.com/downloads226/sourcecode/math/ 

detail1062122_e].  

http://www.nitrc.org/


Temporal-concatenation group ICA analysis was used to generate 25 group-level 

components of the dataset by Multivariate Exploratory Linear Optimized 

Decomposition into Independent Components (MELODIC, FSL) (Zuo et al., 

2010) in the group of controls. We decided to consider only the control subjects to 

better identify the networks, since we speculated that the presence of parenchymal 

alterations due to OPG might hinder the correct network recognition.  

Before statistical inference, we identified correctly the medial (Figure 1) and 

ventral (Figure 2) visual network, corresponding to medial, occipital 

pole, and lateral visual areas, by visual inspection and by comparison with 

available maps in the literature (Oakes et al., 2007).  

 

Figure 1 fMRI image of medial visual network 

 

 

 



Figure 2 fMRI image of ventral visual network 

 

 

 

The dual-regression approach was used to obtain a connectivity map for each of 

the 2 components and for each subject.  

The standardized maps obtained by dual regression were used to perform group 

comparisons. 

Nonparametric permutation testing (5000 permutations) was used for statistical 

analysis of spatial maps, by the TFCE method for multiple comparisons and 

thresholding at P<0.05.  

Group comparisons were performed between: 

- NF1 patients vs. controls 

- NF1 patients with OPG vs. controls 

- NF1 patients without OPG vs. controls 

- NF1 patients with OPG limited to the optic nerves vs. controls 

- NF1 patients with OPG involving the optic nerves and the chiasmatic region vs. 

controls 

- NF1 patients with OPG involving also posterior optic pathways vs. controls 

- NF1 patients with normal visual acuity vs. controls 

- NF1 patients with altered visual acuity vs. controls 

 





4. RESULTS 

 

4.1 OPG and visual network 

 

Comparing the connectivity of medial and ventral visual networks among NF1 

patient subgroups and control subjects, we found a reduced connectivity in NF1 

patients with OPG limited to the optic nerves (one cluster, size 87 voxels, peak 

27, 18, 26) in the medial visual network. The area of reduced connectivity 

involved the paramedian cuneus bilaterally in the occipital lobe (Figure 3). 

 

Figure 3 area of reduced connectivity in the medial visual network of NF1 

patients with OPG limited to optic nerves 

  

 

 

No significant difference could be indentified in these patients when considering 

the ventral visual network. 

No significant differences were found comparing NF1 patients vs. controls, NF1 

patients with OPG vs. controls, NF1 patients without OPG vs. controls and NF1 

patients with OPG involving the optic nerves and the chiasmatic region, including 

or not also the posterior optic pathways vs. controls. 

 

4.2 Visual acuity and visual network 

 

The connectivity of medial and ventral visual network in patients with NF1 with 

or without visual impairment presented no significant difference when compared 

with control subjects, all with no visual abnormalities. 



 



 

5. DISCUSSION 

 

OPG is the most common NF1-associated central nervous system tumour, 

affecting about 15% of patients. Although it usually shows a more indolent course 

in NF1 subjects compared to sporadic cases (Balcer et al., 2001),  it may present a 

hazardous evolution with severe impairment of visual function and potentially 

life-threatening behaviour. 

Possible prognostic factors have been repeatedly investigated (Astrup, 2003; King 

et al., 2003; Thiagalingam et al., 2004; Lama et al., 2007; Taylor et al., 2008; 

Segal et al., 2010) but none has been identify consistently so far. 

In this study, we analyzed the possible impact of OPG on the visual network in 

patients with NF1; to our knowledge, visual network had never been investigated 

with fMRI in patients with NF1 before. 

De Blank et al (2013) examined via diffusion tensor imaging the white matter 

tract integrity of the visual pathway in patients with NF1 and OPG. Their data 

seem to indicate a correlation between a decrease of the fractional anisotropy in 

optic radiations and abnormal visual acuity; this also seem to be predictive of 

visual acuity loss during the following year. No correlation was found between 

the integrity of the pre-chiasmatic optic pathways and the visual acuity. 

In our cohort we detected a significant reduction of the network connectivity only 

in patients with OPG limited to the optic nerves. Moreover, there was no 

correlation between the impairment of visual acuity and connectivity of the visual 

networks.  

Actually, more significant abnormalities were expected in patients affected with 

OPG involving largely the optic pathways, particularly the post-geniculate tracts.  



Previous studies detected significant remodelling of the medial visual network in 

blind patients affected by Alstrom syndrome, suggesting that visual 

deafferentation can impact on the neural connectivity of the primary visual cortex 

(Manara et a.l, 2014). These findings were not replicated in NF1 patients with 

chiasmatic or retrochiasmatic OPG, probably due to the relatively mild visual 

impairment in our cohort, as the patients affected with more aggressive OPG with 

severe visual impairment and hence indication for treatment, were excluded due to 

previous chemotherapy. In contrast, NF1 patients with OPG showed visual 

network changes only when the optic nerves were primarily involved. 

Interestingly, the majority of optic nerve OPG (12/15 cases) presented 

monolateral involvement. Since optic nerves fibres cross over in the optic 

chiasma, each nerve is connected bilaterally to the primary visual cortex; hence a 

monolateral damage of optic nerves should imply less deafferentation of the 

visual cortex compared to bilateral OPG. Yet, considering the absence of 

connectivity alterations in patients with chiasmatic (bilateral) region involvement, 

the unbalance in the bilateral afference to the visual cortex may have caused more 

alteration then the deafferentation itself. 

Similar alterations have in fact have been found in patients with asymmetric or 

unilateral optic neuritis (Lopes et al., 2015), even if in that case an increased 

connectivity was found in patients visual cortex vs. control, possibly due to the 

different nature of nerve damage. A reduced connectivity was instead found in 

patients with asymmetric glaucoma (Dai et al. 2013) confirming that the 

monolateral eye involvement might impact more severely the primary visual 

network. 

A follow-up study will help us clarify the possible predictive role of an altered 

visual network connectivity in the OPG prognosis. 
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