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“Dans la vie, rien n'est à craindre, tout est à comprendre.”  

”In life, nothing is to be afraid, everything is to be understood” 

Marie Curie Sklodowska 
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Abbreviations 

 

A- Angiotensin and angiotensin receptors 

ACE1: angiotensin converting enzyme 1 

ACE2: angiotensin converting enzyme 2 

Ang: angiotensin  

AT1R: angiotensin II type 1 receptor 

AT2R: angiotensin II type 2 receptor 

MasR: angiotensin-(1-7) receptor 

MrgprD or MrgD: alamandine receptor 

B- Adrenal tissue 

AGP: adrenogonadal primordium 

APA: aldosterone-producing adenoma 

NAG: normal adrenal tissue/cortex 

ZG : zona glomerulosa 

ZF : zona fasciculata 

ZR : zona reticularis 

C- Housekeeping genes 

GAPDH: glyceraldehyde-3-phosphate dehydrogenase 

PBGD: porphobilinogendeaminase 

D- Receptors 

GPCR: G-protein-coupled receptor 

GR: glucocorticoid receptor 

MR: mineralocorticoid receptor 
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E- Diverse 

11βHSD: 11β-hydroxysteroid dehydrogenase 

C21: compound 21 

CAMK: calcium/calmodulin-dependent protein kinase 

CRH: corticotropin release hormone 

DIZE: diminazene aceturate 

FH: familial hypertension 

IL: interleukine 

IP3: inositol 1,4,5-triphosphate 

Irbe: irbesartan 

KCNJ5: G-protein-activated inward rectifier potassium channel 

KDa: kilo Dalton 

Ki: inhibitory constant 

KI: kinase inhibitor 

KO: knock-out 

LV: left ventricular 

MC2R: ACTH receptor 

NO: nitric oxide 

PA: primary aldosteronism  

PAC: plasma aldosterone concentration 

PKC: protein kinase C 

RAS: renin-angiotensin system 

SER: smooth-endoplasmic reticulum 

SF1: steroidogenic factor 1 
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SHR: spontaneous hypertensive rat  

StAR: steroidogenic acute regulatory protein 

TGF: transforming growth factor 

VSMC: vascular smooth muscle cells 

WT: wild type 
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Abstract 

 

Background: Angiotensin II (Ang-II) regulates aldosterone and cortisol secretion via type 1 

angiotensin II receptor (AT1R) in the adrenal cortex.  Although the type 2 angiotensin II 

receptor (AT2R) and Mas receptor (MasR), form an important part of the so-called protective 

renin-angiotensin system (RAS), and counter regulate AT1R-mediated effects in various 

tissues, their function in the adrenal cortex remains largely unknown.  Furthermore, the 

angiotensin-converting enzyme 2 (ACE2), another component of the protective RAS, cleaves 

Ang II and is also known to regulate effects of AT1R in several tissues.  

Aim:  Therefore, our aim was to investigate:   

- the presence of AT2R, MasR, and ACE2 in human adrenocortical tissue and in 

aldosterone-producing adenoma (APA);  

- the role of Ang-(1-7) and compound 21 (C21), an AT2R agonist, and diminazene 

aceturate (DIZE) in modulation of aldosterone and cortisol production in humans.                              

Methods: We detected AT2R, MasR, and ACE2 by immunoblotting and RT-PCR. 

Furthermore, using immunohistochemistry we localized AT2R and MasR in aldosterone-

producing adenoma (APA) and in normal adrenal glang (NAG).  We used Ang-(1-7) to 

stimulate MasR, C21 to stimulate AT2R, Ang II to stimulate AT1R and AT2R, and DIZE to 

activate ACE2.  Irbesartan and A779 were used as blockers for AT1R and MasR respectively. 

RT-PCR was used to quantify CYP11B1/CYP11B2 genes expression at baseline and after 

stimulation. 

Results: AT2R and MasR were found to be heterogeneously express in human adrenal cortex 

and in APA.  At low concentrations [nM], Ang-(1-7) had no effect on CYP11B1 and CYP11B2 

gene expression, but at high concentrations [μM] it increased them.  A779 did not significantly 

decrease the Ang-(1-7) effects, whereas irbesartan blunted them.  

In human adrenocortical cell lines (HAC15 and NCI-H295R), the AT2R-agonist C21 had no 

effect at low concentrations [nM], but at high concentrations [μM] it increased CYP11B1 and 

CYP11B2 expression.  Irbesartan blunted these effects 

Finally, DIZE effect was no potent in CYP11B1 and CYP11B2 gene expression, but it may be 

involved in ACE2 gene expression increase.  
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Conclusions:  The expression of AT2R and MasR in the human adrenal cortex is, respectively 

10-fold and 150-fold lower than AT1R.  Moreover, whereas AT1R and MasR genes are 

expressed at the same level in the healthy adrenal cortex and in APA, AT2R gene expression is 

significantly lower in APA.  The secretagogue effect of Ang-(1-7) and C21 on aldosterone and 

cortisol production seen with high concentrations likely occurs via AT1R.  Thus, Ang-(1-7) and 

C21 may not be used as therapeutically tool to decrease aldosterone and cortisol production in 

human. 
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Riassunto 

 
 

Background: L'angiotensina II (Ang-II) regola aldosterone e secrezione di cortisolo via di tipo 

1 del recettore dell'angiotensina II (AT1R) nella corteccia surrenale. Anche se il tipo 2 del 

recettore dell'angiotensina II (AT2R) e del recettore Mas (Masr), costituiscono parte importante 

del cosiddetto sistema renina-angiotensina protettivo (RAS), e il contatore di regolare effetti 

AT1R mediata in vari tessuti, la loro funzione nel corteccia surrenale rimane in gran parte 

sconosciuta. Inoltre, l'enzima di conversione dell'angiotensina 2 (ACE2), un altro componente 

della RAS di protezione, si unirà Ang II ed è noto anche per regolare gli effetti di AT1R in 

diversi tessuti. 

Obiettivo: Pertanto, il nostro obiettivo era quello di indagare: 

 - La presenza di AT2R, Masr e ACE2 nel tessuto adrenocorticale umana e aldosterone 

adenoma (APA); 

 - Il ruolo di Ang (1-7) e composto di 21 (C21), un agonista AT2R, e Diminazene 

aceturato (Dize) nella modulazione di aldosterone e cortisolo produzione negli esseri umani. 

Metodi: Abbiamo rilevato AT2R, Masr, e ACE2 da immunoblotting e RT-PCR. Inoltre, 

utilizzando l'immunoistochimica abbiamo localizzato AT2R e Masr in aldosterone producono 

adenoma (APA) e in normale gLang surrene (NAG). Abbiamo usato Ang (1-7) per stimolare 

Masr, C21 per stimolare AT2R, Ang II per stimolare AT1R e AT2R, e Dize di attivare ACE2. 

Irbesartan e A779 sono state usate come bloccanti rispettivamente per AT1R e Masr. RT-PCR 

è stato utilizzato per quantificare l'espressione dei geni CYP11B1 / CYP11B2 al basale e dopo 

stimolazione. 

Risultati: AT2R e Masr sono risultati essere eterogeneo espressa in corteccia surrenale umana 

e in APA. A basse concentrazioni [Nm], Ang (1-7) non ha avuto effetti sulla espressione genica 

e CYP11B1/CYP11B2, ma ad alte concentrazioni [mM] li aumenta. A779 non è diminuito in 

modo significativo il Ang (1-7) gli effetti, mentre irbesartan loro smussati. 

In linee cellulari umane surrenalici (HAC15 e NCI-H295R), il AT2R-agonisti C21 non ha avuto 

effetto a basse concentrazioni [Nm], ma ad alte concentrazioni [micron] è aumentata CYP11B1 

e CYP11B2 espressione. Irbesartan smussati questi effetti 

Infine, effetto Dize non era potente nel CYP11B1 e l'espressione genica CYP11B2, ma può 

essere coinvolto in aumento dell'espressione genica ACE2. 
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Conclusioni: L'espressione di AT2R e Masr nella corteccia surrenale umano è, rispettivamente 

di 10 volte e 150 volte inferiori rispetto AT1R. Inoltre, mentre AT1R e Masr geni sono espressi 

allo stesso livello nel sano corteccia surrenale e in APA, AT2R espressione genica è 

significativamente più bassa in APA. L'effetto secretagogo di Ang (1-7) e C21 sulla aldosterone 

e cortisolo produzione visto con alte concentrazioni probabilmente avviene attraverso AT1R. 

Così, Ang (1-7) e C21 non possono essere utilizzate come strumento terapeutico per diminuire 

aldosterone e cortisolo. 
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I- Anatomy and zonation of human Adrenal gland 

 

I-1 Structure of adult adrenal cortex 

The adult adrenal glands are a pair of triangular or round bodies located at the superior pole of 

each kidney (Figure 1), which display a combined weight of about 10–15 g in humans.  They 

have anatomically been described by Barthlomeo Eustachi in 1563 (Bestetti RB et al., 2014), 

but the first report of it physiological role was presented almost three centuries later by Thomas 

Addison in 1855, and the first histologically description dated of 1866.   

In mammalian the adrenal gland is characterized by its anatomic zonation (Figure 1), which can 

be appreciated at the microscopic level, where each zone can be recognized and distinguished 

from one another based on structural and anatomic characteristics (Belloni AS et al., 1987).  

The most outer layer is the ZG composed of ovoid shaped cells and are arranged in irregular 

cords.  In particular, ZG contains outer undifferentiated small cells and inner well-differentiated 

larger elements, which display mitochondria with tubule-laminar cristae, abundant smooth 

endoplasmic reticulum (SER) and sparse lipid droplets (Belloni AS et al., 1987).  The ZF 

constitutes the majority of the adrenal cortex, sitting directly under the ZG. ZF cells are bigger 

than ZG cells and are organized into bundles, which led to its name “fascicles”.  The innermost 

of the cortex, between the ZF and the adrenal medulla, is the ZR. ZR cells are arranged like 

cords that project in different directions, resulting in the net-like appearance that gives the zone 

its name (Xing Y et al., 2015; Belloni AS et al., 1987) (Figure 1). 

In rodent, the adrenal cortex is also divided into three morphologically and functionally zones.  

However, in 1994 it has been noticed the presence of a fourth zone between ZG and ZF (Mitani 

F et al., 1994).  This zone has no immunoreactivity with anti-CYP11B1 and anti-CYP11B2 

antibodies and appears like a white ring surrounding ZF suggesting the absence of both 

CYP11B1 and CYP11B2 (Mitani F et al., 1994).  The newly found zone can be characterized 

as lacking adrenal androgen synthesis.  Thus, the cells in this zone appeared to have no 

significant endocrine function specific to zones of the adrenal cortex and, therefore, could be 

regarded as undifferentiated cells with respect to corticosteroidogenesis (Mitani F et al,. 2014). 

This zone is designated as the “undifferentiated cell zone” and is considered to be a 

stem/progenitor cell zone in the adrenal cortex.    
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Figure 1: Anatomy of human adrenal gland 

 

The adrenal medulla is composed of neural crest cells known as chromaffin cells, medullary 

cells or pheochromocytes cells.  They are arranged in small nests and cords separated by 

prominent vasculature.  They comprise large polygonal cells with poorly outlined borders, 

abundant granular and usually basophilic cytoplasm.  Surrounded by a meshwork of blood 

vessels called venous sinusoids, the chromaffin cells secrete into the sinusoids noradrenaline 

and adrenaline, which are delivered to the rest of the body via the bloodstream.  However, 

specific immunostaining for the neuroendocrine protein chromogranin-A unambiguously 

showed that adrenomedullary chromaffin cells are in all three zones of the human adrenal cortex 

(Bornstein SR et al., 1990; Bornstein SR et al., 1992).  Medullary cells, especially in the ZG, 

frequently spread into the subcapsular region, forming large nests of chromaffin cells 

(Bornstein SR et al., 1990; Bornstein SR et al., 1992).  Chromaffin cells produce a wide variety 

of autocrine/paracrine regulatory factors, including neuropeptides, classic neurotransmitters, 

and cytokines that stimulate adrenocortical steroidogenesis (Ehrhart-Bornstein M et al., 1998; 

Nussdorfer GG et al., 1996; Nussdorfer et al., 1986).  Furthermore, a local corticotropin-

releasing hormone (CRH)-corticotropin system in the adrenal medulla participates in the intra-

adrenal regulation of steroidogenesis (Nussdorfer GG et al., 1996). 

To note, after the functional adult adrenocortical zones are established, they are maintained by 

stem or progenitor cells (Xing Y et al., 2015).  Several studies showed that most of proliferating 

cells are located in the outer layer of the matural adrenal gland, the so called “cambium layer”, 
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while most cell death occurs near the boundary of cortex and medulla (Stachowiak A et al., 

1990; Sasano H et al., 1995; Morley SD et al., 1996). 

 

 

I-2 Fetal and early adult development of the adrenal cortex 

The adrenal glands develop from two separate embryological tissues: the medulla is derived 

from neural crest cells, while the cortex originates from the intermediate mesoderm (Gruenwald 

P et al., 1946; Mitani F et al., 2014; Xing Y et al., 2015).  At 28-30 days post coitum, the 

embryonic adrenal gland appears as “adrenogonadal primordium” (AGP), and is marked by the 

expression of steroidogenic factor 1 (SF1), which is a nuclear receptor essential for adrenal 

development and steroidogenesis (Figure 1) (Hatano O et al., 1996; Luo X et al., 1994).  AGP 

appears first between the urogenital ridge and the dorsal mesentery, and contains a mixed 

population of adrenocortical and somatic gonadal progenitor cells.  SF1-positive AGP cells 

delaminate from the epithelium and invade the underlying mesenchyme of the intermediate 

mesoderm (Morohashi K, 1997).  After delamination, the majority of AGP cells migrate 

dorsolaterally to form the gonadal anlagen, whereas AGP cells that express higher levels of 

SF1 migrate dorsomedially to form the adrenal anlagen (adrenal primordial) (Hatano O et al., 

1996).  At about 48 days post coitum neural crest cells migrate to the area where the adrenal 

primordial is developing (Le Douarin NM et al., 1974).  Neural crest cells persist as discrete 

islands spread all around the embryonic adrenal until birth and ultimately differentiate into the 

catecholamine-producing chromaffin cells of the adrenal medulla (Doupe AJ et al., 1985; 

Hillarp NB et al., 1953).  At the same time the adrenal gland starts to separate from surrounding 

mesenchym and becomes encapsulated.  The encapsulation phase is largely complete by 52 

days post coitum (Figure 2) (Xing T et al., 2015; Keegan CE et al., 2002), and when it is over, 

the embryonic adrenal cortex expands rapidly.  At term, the fetal adrenal is one of the largest 

organs with 80% of the gland composed of fetal zone (FZ) cells (Johannisson E et al., 1968).  

Steroidogenic cells of the fetal adrenal robustly express cytochrome P450 17 alpha (CYP17), 

and so produce high quantity of dehydroepiandrosterone (DHEA) and DHEA-S, that are then 

converted by the placenta into oestrogens for the maintenance of normal pregnancy (Xing Y et 

al., 2015).  During encapsulation, by the 8th week of gestation, new adrenocortical cells emerge 

between the capsule and FZ, forming the definitive zone (DZ) which will develop into the adult 

cortex. Moreover, as gestation advances, inner cells of the DZ form arched cords with finger-
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like columns of cells reaching the outer rim of the FZ.  The cells of this cord will continue to 

expand and will begin to produce cortisol under the regulation of adrenocorticotropin hormone 

(ACTH).  This zone is the future Zona Fasciculata (ZF) of the adult adrenal cortex (Xing Y et 

al., 2015).  

As for several others tissues, the adrenal gland continues to undergo significant remodeling 

during neonatal and pubertal periods.  Immediately after birth, under the influence of 

angiotensin II (Ang II) and ACTH, zona glomerulosa (ZG) and fasciculata (ZF) mature in 

parallel with an involution of the remaining FZ (Ishimoto H et al., 2011).  Later, between 6 to 

9 years old, the zona reticularis (ZR) begins to form between the ZF and the medulla (Havelock 

J et al., 2004).  This phenomenon, which is characterized by increased proliferation and 

production of adrenal androgens is known under the name of adrenarche. 

Figure 2: Development and zonation of human adrenal gland                                                  

(adapted from Xing Y et al., 2015) 
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II- Steroidognesis 

 

Like other steroidogenic tissues, each adrenal cortex zone synthesizes its steroid products from 

the same substrate: cholesterol; the high cholesterol content give them a yellowish colour. 

Steroidogenic cholesterol can arise from endogenous cholesterol stores, from serum derived 

lipoprotein or by de novo synthesis.  

The rate-limiting step in steroid hormone biosynthesis is the translocation of substrate 

cholesterol from the outer mitochondrial membrane to cytochrome P450 side-chain cleavage 

(P450ssc) enzyme (Privalle CT et al., 1983).  P450ssc is the first enzyme in the steroidogenic 

pathway, it is located on the matrix side of the inner mitochondrial membrane (Farkash Y et 

al., 1986).  The steroidogenic acute regulatory protein (StAR) gene was cloned in Stocco 

laboratory in 1994.  This enzyme mediates the transfer of cholesterol from the outer 

mitochondria membrane to the inner membrane through the aqueous intermembrane space 

(Stocco DM et al., 2001).  However, the mechanisms promoting the specific StAR gene 

expression, in both temporal and spatial manner, and the transfer of cholesterol to the inner 

mitochondrial membrane, are yet poorly understood. 

Within the human adrenal cortex, steroid synthesis involves the coordinated actions of five 

forms of cytochrome P450 and the enzyme 3-β-hydroxysteroid dehydrogenase (3βHSD) 

(Figure 3), which are respectively in the inner membrane of mitochondria and in endoplasmic 

reticulum.  It is the differential expression of these enzymes within the three adrenocortical 

zones that allows for the wide array of steroid hormones secreted by this gland. 

Once at the inner mitochondrial membrane cholesterol is converted to pregnelonone by 

P45011A1 (P450scc).  P45011A1 catalyzes three separate reactions, 20 α-hydroxylation, and 

C20-22 bond scissions, converting the C27 cholesterol to the C21 pregnenolone.  Once 

pregnenolone is formed, it can be 17 β-hydroxylated by P450c17 to form 17 α-

hydroxyprenenolone or converted to progesterone by 3-β-hydroxysteroid dehydrogenase (3 β-

HSD), the only non-P450 enzyme in the pathways.  P450c17 can also form 17 β-

hydroxyprogesterone from progesterone. P450 17α also catalyzes a 17-20 lyase reaction on 17-

hydroxypregenolone and 17-hydroxyprogesterone to form the adrenal androgens 

dehydroepiandrosterone and androstenedione, respectively.  Both progesterone and 17-

hydroxyprogesterone can be 21-hydroxylated by P450 C21 to yield deoxycorticosterone and 
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11-deoxycortisol, respectively.  The final reactions in adrenocortical steroid hormone 

biosynthesis involve the hydroxylation of 11-deoxycortisol and deoxycorticosterone by 

P45011B1 to form cortisol and coorticosterone, respectively.  Corticosterone, in 

zonaglomerulosa, can then be converted to aldosterone by P45011B2 (CYP11B2 or aldosterone 

synthase) in a series of hydroxylation steps (Miller WL and Auchus RJ, 2011). 

Figure 3: Steroidogenesis pathways (from Han TS et al,. 2013) 
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III- Aldosterone biosynthesis regulation and role 

 in cardiovascular disease 

 

III-1 Biosynthesis regulation of aldosterone 

Mllions years ago, when life forms moved from salty to fresh water, and finally to 

predominantly terrestrial existence, some mechanisms have emerged to conserve salt and water 

under this evolutionary pressure.  The mineralocorticoid pathway and its prototype hormone, 

aldosterone, came out as vital axes for survival of several land forms, including Homo sapiens 

(Xanthakis V et al., 2013).  However, our prehistoric ancestors were hunter-gatherers who ate 

a sodium-restricted, potassium-enriched diet consisting of fruits and vegetables.  Moreover, 

they also lived in arid environment, and they were losing volume and sodium through swearing, 

exsanguinating hemorrhage, or diarrheal disorders. Thus, mechanisms for conserving sodium 

and water and excreting potassium was vital, and the renin-angiotensin-aldosterone system 

(RAS), with aldosterone as final product, emerged as the much needed mechanism for survival.  

Aldosterone is the least hormone of the adrenal cortex, and is made exclusively in the ZG where 

aldosterone synthase is located (Hattangady NG, 2012; Natsukawa N et al., 1990; Shibata I et 

al., 1991; Foster RH et al., 1997; Conley AJ et al., 1997).  The biosynthesis of aldosterone is 

regulated by more than a dozen factors.  Among them dopamine (Missale C et al,. 1988; Missale 

C et al,. 1989; Missale C et al,. 1998; Wu KD et al,. 2001; Pivonello R et al,. 2004; Chang HW 

et al,. 2008), vasopressin (Perraudin V et al,. 1993; Guillon G et al,. 1995; Gallo-Payet N and 

Guilon G, 1998 ; Perraudin V et al,. 2006), endothelin-1 (Nussdorfer GG et al,. 1999 ; Rossi 

GP et al,. 1997 ; Rossi GP et al,. 2003 ; Hu CW et al,. 2004), urotensin II (Feuilloley M et al,. 

1994 ; Takahashi K et al,. 2001 ; Albertin G et al,. 2006 ; Giuliani L et al,. 2009), AT1R auto-

antibody (Wallukat G et al,. 1999 ; Rossito G et al,. 2012 ; Yang J et al,. 2015).  However, the 

three main secretagogues that can modify aldosterone secretion are angiotensin II (Ang II), 

potassium (K+), and circulating adrenocorticotrophic hormone (ACTH).  Furthermore, the 

regulation of aldosterone biosynthesis is divided into two key events in the steroidogenic 

pathway (Clark AJ et al., 1992; Müller J et al., 1998) (Figure 4).  The acute aldosterone 

production is controlled by rapid signaling pathways that increase the movement of cholesterol 

into the mitochondria where it is converted to pregnenolone. This “early regulatory step” is 

mediated by phosphorylation of the StAR protein (Arkane F et al., 1997; Cherradi N et al., 
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1998; Fleury A et al., 2004).  The “late regulatory step” modulates the chronic aldosterone 

production (from hours to days) at the enzymatic expression level (Bassett MH et al., 2004).  

To note, the chronic mechanisms involve changes in the glomerulosa cell ability to produce 

aldosterone as well as the size of the zona glomerulosa. 

 

 

III-1 A) Acute effects of Ang II 

After binding to angiotensin II type 1 receptor (AT1R), Ang II activates three different 

pathways.  The first one, is a phosphoinositide-specific phospholipase C (PLC), which 

hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two second messengers: 

the inositol 1,4,5-triphosphate (IP3) and the diacylglycerol (DAG) (Barrett PQ et al., 1989; Bird 

IM et al., 1993; Bollag WB et al., 1991; Farese RV et al., 1981; Ganguly A et al., 1994; 

Hunyady L et al., 1990; Kijima I et al., 1984).  Whereas IP3 initiates aldosterone secretion by 

eliciting a transient increase in the cytosolic calcium-concentration and activating 

calcium/calmodulin-dependent protein kinases (CaMK) (Ganguly A et al., 1992; Pezzi V et al., 

1996; Spät A and Hunyady L, 2004), DAG stimulates protein kinase C (PKC) (Bollag WB et 

al., 1991; Bollag WB et al., 1992; Kapas S et al., 1995).   

A second pathway involves an increase in calcium influx, in part through CaM kinase II and 

GTP-binding proteins.  This calcium enhancement acts synergistically with PKC-activating 

agents to stimulate secretion (Barrett PQ et al., 2000; Lu HK et al., 1994; Yao J et al., 2006). 

Calcium influx occurs through two main mechanisms: first, through the voltage-dependent 

calcium transient (T)-and long-lasting (L)-type channels, whose activities are maintained 

through appropriate membrane polarization (Spät A and Hunyady L, 2004; Aptel HB et al., 

1999; Burnay MM et al., 1998); and second, from store-operated calcium channels (Hattangady 

NG, 2012; Spät A and Hunyady L, 2004).  Using pharmacological agents, it has been shown 

that the two parts of this pathway are needed (Kojima I et al,.1984; Bollag WB et al,. 1990; 

Kijima I et al,. 1985; Barrett PQ et al,. 1986) (Figure 4).  

The last signaling pathway activated by Ang II is phospholipase D (PLD), which can also 

indirectly increase DAG (Bollag WB et al,. 1990; Zheng X et al,. 2003).  PLD (2 mammals 

isoforms: PLD1 and PLD2) hydrolyzes phospholipids to yield phosphatidic acid 

(phosphorylated DAG), which can be then converted into DAG by the action of lipid phosphate 
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phosphatases (Bollag WB et al,. 2007; Qin H et al,. 2010).  Phosphatidic acid is an important 

element in several pathways.  It can directly be a second messenger acting as a slow-release 

reservoir of DAG for sustained cellular responses (Bollag WB et al,. 1990; Bollag WB et al,. 

2007; Bollag WB et al,. 2008).  Moreover, it can also be deacylated by phospholipase A2 to 

produce lysophosphatidic acid (LPA) which activates G protein-coupled LPA receptors 

(Hattangady NG, 2012).  The most important for our purpose, Phosphatidic acid can also be 

metabolized to additional lipid signals known to stimulate aldosterone secretion (Natarajan R 

et al,. 1988; Natarajan R et al,. 1990). Besides, it has been demonstrated in bovine glomerulosa 

cells that PLD activity may be sufficient to stimulate aldosterone secretion (Bollag WB et al,. 

1990).  Furthermore, the overexpression of wild-type PLD1 or PLD2 in human adrenocortical 

cells (NCI-H295R), allowed to prove that PLD2 is the isoform mediating aldosterone secretion 

in response to Ang II (Qin H et al,. 2010).  

 

 

III-1 B) Acute effects of potassium 

Similar to Ang II, small increases in extracellular potassium levels also stimulate calcium 

influx, via depolarization of the glomerulosa cell plasma membrane and activation of the 

voltage-dependent calcium channels (L or T-type) (Kojima I et al,. 1984), with ensuing an 

influx, which is required for the response to potassium.  Others signaling pathways have been 

proposed but are still controversial.  For instance, some investigators have observed an ability 

of potassium to increase cAMP levels (Fujita K et al,. 1979; Ganguly A et al,. 1990).  Others 

reported that potassium can stimulate PLD activity through voltage-dependent calcium 

channels in bovine glomerulosa cells (Betancourt-Cale S et al,. 2001).  
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III-1 C) Acute effect of ACTH 

ACTH stimulates acutely aldosterone production by binding to the ACTH receptor (MC2R) 

which activates adenylate cyclase via the heterotrimeric G protein, Gs.  Adenylate cyclase 

produces the second messenger cAMP, thereby stimulating the activity of cAMP-dependent 

protein kinase or protein kinase A (PKA).  The latter can then phosphorylate and activate StAR 

(Betancourt-Cale S et al,. 2001) leading to increase cholesterol delivery to the inner 

mitochondria membrane. Furthermore, PKA can regulate the transcriptional activity of CREB 

transcription factor family and so rapidly increases expression of StAR and further enhances 

acute steroid production (Jo Y et al,. 2005; Johannessen M et al,. 2007).  In addition, ACTH is 

capable to promoting calcium influx, likely through PKA-mediated phosphorylation of L-type 

calcium channels (Sculptoreanu A et al,. 1953).  This influx increases cytosolic calcium 

concentration and further enhances adenylate cyclase production of cAMP and aldosterone 

secretion (Gallo-Payet N et al,. 1996).  Finally, the involvement of the guanine nucleotide 

exchange factor is probably involved in ACTH pathway (Gambaryan S et al,. 2006). 

Figure 4: Acute actions of Ang II, K+ and ACTH on adrenal glomerulosa cell aldosterone 

production (adapted from (Hattangady NG, 2012) 
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III-1 D) Chronic effects of Ang II 

Ang II increases the expression of enzymes required for aldosterone synthesis, particularly 

CYP11B2.  

Several in vivo experiments, notably using sodium restriction indicated that activation of the 

renin-angiotensin system (RAS) induces the expression of CYP11B2 in glomerulosa cells 

without affecting CYP11B1 (Adler GK et al,. 1993; Holland OB et al,. 1993; Tremblay A et 

al,. 1992). This result confirms the ability of Ang II to specifically increase the production of 

aldosterone but not glucocorticoid secretion (Holland OB et al,. 1993; Tremblay A et al,. 1992). 

This zone-specific effect is due to the greater expression of AT1R in ZG versus ZF (Breault L 

et al,. 1996).  However, these data are challenged by recent studies (Oki K et al,.2013).  Besides, 

it is widely admitted that Ang II can also increase CYP11B2 expression by increasing 

glomerulosa cell sensitivity to Ang II through up-regulation of its own receptor (AT1R) (Du Y 

et al,. 1996; Wang DH et al,. 1995).  

In addition to these in vivo models, some in vitro models have also been developed in order to 

understand intracellular mechanisms involved in chronic Ang II effects.  And as for acute 

stimulation, it appeared that one of the main pathway leading to aldosterone production is the 

PLC-mediated generation of DAG and IP3, which increases intracellular calcium and acts via 

CaMK (Pezzi V et al,. 1997).  Furthermore, Ang II increases CYP11B2 expression through the 

activation of its transcription.  Several studies have revealed that cis-elements in the CYP11B2 

promoter are essential for both the basal and the AngII-mediated CYP11B2 promoter activity 

(for review see Hattangady NG, 2012). Among these three key regulatory cis-elements: one 

cAMP response element (CRE)/Ad1 and two distal cis-element (Ad5 and NBRE) (Bassett MH 

et al,. 2004a; Bassett MH et al,. 2004b; Romero DG et al,. 2010; Szekeres M et al,. 2010).  Of 

note, the overexpression of one such transcription factors, NURR1, is implicated in the 

development of aldosterone-producing tumors (Lu L et al,. 2004).  

Finally, Ang II also increases aldosterone production by expansion of the ZG via hypertrophy 

and hyperplasia.  This effect has been shown in vivo and in vitro (McEwan PE et al,. 1999; Tian 

Y et al,. 1998), and may be attributed to the ability of Ang II to induce the expression of cyclin 

D1 (Watanabe G et al,. 1996).  This phenomenon allows the hypothesis that the side effects of 

Ang II on cardiovascular system is not only due to the secretion of aldosterone, but also to 

glomerulosa cells hyperplasia.  
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III-1 E) Chronic effects of potassium 

Potassium induces “early events” and regulates chronic events.  Nowadays, it is widely 

admitted that high potassium diets in rats increase the expression of aldosterone synthase 

(CYP11B2) and aldosterone production.  

As mentioned before, potassium increases calcium influx via depolarization of the cells leading 

to extracellular calcium influx through the T-and L-type calcium channels. This increase in 

calcium influx through the binding of calcium to calmodulin upregulates CYP11B2 expression.  

The calcium-calmodulin complex activates several enzymes and kinases, many of which are 

expressed in a tissue-specific manner. Among the different CaMK, two types (I and IV), are 

the most likely involved in chronic stimulation of Ang II and potassium (Condon JC et al,. 

2002), and were found to be differentially expressed in APA (Lenzini L et al,. 2007).  

Furthermore, as Ang II, potassium is able to activate several transcription factors, such as 

NURR1, ATF1, ATF2 or CREB, which bind the proximal promoter of CYP11B2 at key cis-

elements to enhance transcription (Bassett MH et al,. 2004a; Bassett MH et al,. 2004b; 

Nogueira EF et al,. 2010). 

In addition, it has been observed in rats that a high potassium diet leads to an upregulation of 

several genes as Mtus 1, Smoc 1, and Grp 48. The latest, is associated with a down-regulation 

of the cyclin-dependent kinase inhibitor p27 (Kip1) (Gao Y et al,. 2006). This upregulation is 

correlated to an increase in the thickness of the ZG (Dierks A et al,. 2010). 

 

 

III-1 F) Chronic effects of ACTH 

During decades, ACTH was thought to be a cortisol regulator and only a secondary stimulus 

for aldosterone.  However, it has been shown, and is now well accepted, that ACTH can acutely 

stimulate aldosterone secretion.  Nevertheless, over time ACTH causes cultured glomerulosa 

cells to switch their phenotype from an aldosterone producing to that of a cortisol-producing 

fasciculata cell phenotype (Crivello JF et al,. 1983).  Thus, chronically ACTH decreases 

aldosterone secretion.  In agreement with this first observation, it has been demonstrated that 

in isolated rat glomerulosa, ACTH causes an initial increase in mRNA levels of CYP11B2 in 

the first 3 hours and a decrease of CYP11B2 when infused chronically (Holland OB et al,. 
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1993).  Moreover, in vivo ablation of the pituitary pre-pro-opiomelanocortin-secreting cells that 

produce ACTH, and the resultant low ACTH level, was accompanied by an acute decrease in 

the transcript levels of CYP11B1, but not of CYP11B2 (Allen RG et al,. 1995).  

However, the mechanism by which ACTH downregulates CYP11B2 when infused chronically 

remains unknown.  One hypothesis is a possible hormone direct induction of CYP11B1 and 

CYP17, whose activities direct the precursors of the steroidogenic pathway away from the 

production of aldosterone and toward that of cortisol (Hattangady NG, 2012; Xanthakis V et 

al,. 2013). 

Figure 5: Chronic aldosterone regulation with angiotensin II, K+ and ACTH                              

(adapted from (Hattangady NG, 2012) 
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III-2 Aldosterone role in cardiovascular disease 

Aldosterone binds to the mineralocorticoid receptors (MR) in the epithelial cells in the distal 

convoluted tubule and the collecting duct of the nephrons (Xanthakis V et al,. 2013; Briet M 

and Schiffrin EL, 2012; Shibata H and Itoh H, 2012).  By up-regulating the basolateral sodium-

potassium exchange pump, the epithelial sodium channel (ENaC), and the outer medullary renal 

potassium channels, aldosterone promotes sodium and water retention, which contributes 

directly to increase blood pressure, via genomic and nongenomic mechanisms (Xanthakis V et 

al,. 2013; Shibata H and Itoh H, 2012; Hattangady NG, 2012).  The genomic mechanisms 

increase the transcription of genes regulating these channels and the exchange pump.  The 

nongenomic effects are mediated either by intracellular receptors (G protein coupled receptor 

30) or via non-receptor second messenger pathways that can alter intracellular ionic 

concentrations (including the sodium-hydrogen exchanger) (Xanthakis V et al,. 2013; Briet M 

and Schiffrin EL, 2012).  

Figure 6: Adverse cardiovascular effects of aldosterone (adapted from Stowasswer M, 2011; 

Gaddam KK et al,. 2013) 

 BR= baroreceptor, LVH: left ventricular hypertrophy. 

 

Nonetheless, some years ago it has been demonstrated that the physiological effects of 

aldosterone are not limited to the MR on the renal epithelial cells (Shibata H and Itoh H, 2012; 

Hattangady NG, 2012). MR is also present on several nonepithelial cells, including 

cardiomyocytes, cardiac fibroblasts and vascular smooth muscle cells.  In the myocardium 
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aldosterone elicits a fibrotic response.  In the vasculature this hormone leads to a profibrotic, 

an hypertrophic and inflammatory response.  Moreover, it also reduces nitric oxide bioactivity 

thereby promoting endothelial dysfunction (Xanthakis V et al,. 2013; Hattangady NG, 2012).  

Aldosterone influences endothelial cell function adversely by causing the cells to swell and 

become stiff due to its effect on the antioxidant enzyme glucose-6-phosphate dehydrogenase 

and epidermal growth factor, mostly by activating phospholipase C.  

Other possible effects of aldosterone that may contribute to the pathogenesis of cardiovascular 

disease include increase in sympathetic activation, impairment of baroreflex function, and 

increase in thrombogenesis (Gaddam KK et al,. 2013) (Figure 6). 
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IV- Cortisol dysregulation 

 

Cortisol is key for maintaining physiologic homeostasis; it is involved in many metabolic and 

immune processes, but also in the diurnal sleep-wake cycle, in the human stress response, and 

in blood pressure regulation (Baudrand R and Vaidya A, 2015).  

With evolutionary pressure, different cortisol regulatory mechanisms and modes of action were 

established, including: input from the brain and hypothalamic-pituitary apparatus, a highly 

specific circadian secretagogue pattern, some intricate adrenal steroidogenic pathways, but also 

tissue specific conversion enzymes such as 11β-hydroxysteroid dehydrogenases, or the capacity 

to activate more than one steroid (mineralocorticoid and glucocorticoid) receptor. Several 

environmental factors, mainly in western countries, can disturb these established cortisol 

regulatory and effector pathways, resulting in, or aggravating some human diseases. Among 

them, obesity may be one of the best example of a disease state as a consequence of our modern 

life style.  Indeed, increased availability and consumption of high caloric foods in combination 

with decreased physical activity and sleep lead to cardiometabolic disorders as type 2 diabetes 

milletius or hypertension (Cronise RJ et al,. 2014).  

A growing body of evidences suggests that metabolic and cardiovascular morbidities in obesity 

may be partially explained by a dysregulation in cortisol physiology (Shulman GI et al,. 2014; 

Baudrand R et al,. 2011; Varughese AG et al,. 2014; Stomby A et al,. 2014). Glucocorticoid 

secretion not only depends on the hypothalamic-pituitary-adrenal (HPA) circadian rhythm, but, 

as mentioned before, also on the pre-receptor intracellular regulation of cortisol by 11β-

hydroxysteroid dehydrogenases (11 β-HSD) (Cooper MS et al,. 2009).  This local regulation 

due to 11 β-HSD is important because it represents a key tissue-level source of cortisol, and a 

potential ligand of both the GR and MR, that may not be reflect circulating cortisol levels alone.  

Furthermore, one isoform of this enzyme, 11 β-HSD1, is expressed in adipose tissue and, thus, 

could be an important component of excessive GR and/or MR activation (Cooper MS et al,. 

2009; Baudrand R et al,. 2010; Valsamakis G et al,. 2004).  In contrast, another isoform, 11 β-

HSD2, inactivates cortisol into the inactive metabolite cortisone, thereby reducing the 

activation of the GR and improving the selectivity of the MR for aldosterone, which generally 

circulates in a 100-to-1000 concentration fold lower than cortisol.  Thus, a local balance exists, 
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which regulates cortisol action.  The latter can play a role in metabolic disorders if it is tilted 

towards increased local-tissue cortisol production (Baudrand R et al,. 2015; Stamby A et al,. 

2014).  Therefore, the possible influence of cortisol in obesity relies on interplay between 

adrenocortical cortisol secretion in response to the HPA axis, and local cortisol activation or 

inactivation in adipose and other tissues.  

Based on available information it has been proposed that cortisol is a double-face hormone; 

acting mainly as a glucocorticoid but also a mineralocorticoid.  In epithelial tissues, the enzyme 

11βHSD2 converts cortisol to corticosterone leading to a cortisol binding inhibition to the MR.  

At this stage, aldosterone is so the only steroid binding the MR.  However, when intracellular 

redox state changed by inhibition of the 11βHSD2, cortisol is not metabolized and can bind to 

MR (Funder JW, 2005).  Thus, the MR can be activated by both aldosterone and cortisol.  In 

addition, excess adiposity and obesity are known to be associated with the development of 

elevated blood and urinary aldosterone levels and increased renin-angiotensin system activity 

(Bentley-Lewis R et al,. 2007; Byrd JB and Brook RD, 2014), as well as a lack of normal 

suppressibility and stimulation of adrenal aldosterone secretion (Vaidya A et al,. 2013).  The 

explanation for this excess of aldosterone level is probably a combination of inappropriate 

adrenal aldosterone secretion, local adipose-tissue aldosterone production (Briones AM et al,. 

2012), and the result of adipose-derived adrenal aldosterone secretagogues (Byrd JB and Brook 

RD, 2014; Pojoga LH et al,. 2013).  

 

 

 

 

 

 

 

 

 

 



34 

 

V- Endocrine hypertension and primary aldosteronism 

 

V-1 Definition and diagnosis of primary aldosteronism 

Hypertension, defined as a systolic and diastolic blood pressure respectively superior to 140 

mmHg and 90 mmHg, is a physical consequence reflecting a variety of genetic and 

environmental factors, including renal sodium retention and increased vascular resistance.  In 

the majority of cases, hypertension is primary (idiopathic or essential), but an important 

subgroup has secondary hypertension. 

Secondary hypertension, a term used for the hypertension for which there is an identifiable 

cause, account for 10% of all patients with hypertension in general practice (Vega J, Bisognano 

JD, 2014; Velasco A and Vongpatanasin W, 2014; Thomas RM et al,. 2015), but up to 50% at 

referred centers (Azizi M et al,. 2015).  The endocrine conditions causing hypertension are 

primary aldosteronism, pheochromocytoma, Cushing’s syndrome, acromegaly, 

hyperparathyroidism, congenital adrenal hyperplasia, hypothyroidism, hyperthyroidism, and 

renin-secreting tumors (Thomas RM et al,. 2015).  

Primary aldosteronism (PA) is one of the most common causes of secondary hypertension with 

an estimated prevalence from 6 to 12% (11,2% in PAPY study) in referred patients, 4,8% in 

primary care, and as high as 20% in patients with resistant hypertension (Hannemann A et al,. 

2012; Bakris G et al,. 2002; Boulkroun S et al,. 2015; Rossi GP et al,. 2006; Calhoun D, 2016).  

PA exists in two main forms: idiopathic hyperaldosteronism (IHA) and aldosterone-producing 

adenoma (APA), which is a benign adrenocortical tumor.  IHA involves both adrenals and 

accounts for an estimated 60 (57,2% in PAPY study) of diagnosis.  The second one, discovered 

by Conn over 60 years ago (Conn JW et al,. 1964), is a unilateral adrenal adenoma and is 

responsible for the majority of remaining cases of PA (42,8% in PAPY study) (Young WF et 

al,. 2004; Young WF et al,. 2007).  Nevertheless, the subtypes vary depending on the access to 

confirmatory testing, notably adrenal vein sampling (AVS): more patients are diagnosed with 

bilateral than unilateral disease if there was no access to AVS and vice versa (see below).  For 

instance, in PAPY study, if centers into those with and without AVS are splitted, the results 

obtained are the opposite: around 60% APA and 40% IHA (Rossi GP et al,. 2006). 
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The typical patient with PA presents hypertension with elevated plasma aldosterone and low 

plasma renin levels, often associated with hypokalemia (Boulkroun S et al,. 2015).  If severe, 

hypokalemia may be accompanied by muscle weakness, cramping, headaches, palpitations, and 

polyuria (Thomas RM et al,. 2015).  Further, hypokalemia must be unmasked with the addition 

of diuretics.  In addition, patients with PA have been reported to exhibit more severe left 

ventricular hypertrophy and diastolic dysfunction than patients with essential hypertension and 

a high prevalence of myocardial infarction, stroke, and atrial fibrillation (Boulkroun S et al,. 

2015; Mulatero P et al,. 2013; Savard S et al,. 2013). Patients with PA tend to be younger and 

present severe symptoms in terms of degree and frequency of hypertension and hypokalemia 

respectively.  Biochemical analysis reveals high plasma concentration aldosterone (PAC) 

usually 15 ng/dL) (Phillips JL et al,. 2000; Espiner EA et al,. 2003).  

The diagnosis for PA traditionally includes the following three steps: screening (case detection), 

confirmation, and diagnosis subtype (Young WF et al,. 2007) (Figure 6).  

According to the last Endocrine Society Guidelines (Funder JW et al,. 2016), screening for PA 

should be considered for hypertensive patients presenting spontaneous or diuretics-induced 

hypokalemia, or those with adrenal incidentaloma, or those with sleep apnea, or with a family 

history of early onset hypertension or cerebrovascular events at less than 40 years, and all 

hypertensive first degree relatives of patients with PA (Funder JW et al,. 2016; Thomas RM et 

al,. 2015).  Initial screening of patients suspected to have hyperaldosteronism should be 

conducted with a morning plasma aldosterone and renin values.  Following the Endocrine 

Society guidelines, for proper interpretation, aldosterone and renin testing should be performed 

in the morning on a seated ambulatory patient.  To note the tests are, in general, affected by 

medications, including many antihypertensive agents, renal function, upright posture, age, sex 

and pregnancy (Stowasser M et al,. 2012; Tomaschit A et al,. 2010).  Ideally, to avoid 

interference with screening test, hypertensive drugs interfering with renin and aldosterone 

measurements should be discontinued at least 2 weeks prior to laboratory testing.  Nevertheless, 

because it could be unsafe in much cases, the Endocrine Society suggest the following 

medications: verapamil, hydralazine, prazosin hydrochloride, doxazosin and terazosin as 

alternatives during screening because of their minimal impact on screening assays (Funder JW 

et al,. 2016). 

Even if an increased ratio of plasma aldosterone to plasma renin is highly suggestive of the 

diagnosis, some experts advocate for confirmatory testing.  Currently there are no gold standard 
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confirmatory tests.  Previous Endocrine Society guidelines suggested the following ones as 

potential confirmatory test: oral sodium loading test, saline infusion test, fludrocortisone 

suppression test, and the captopril challenge test.  The selection of a confirmatory test should 

be based on cost, time, morbidity and conflicting data on sensitivity and specificity of the test 

(Aronova A et al,. 2014).  

The last step is the subtyping classification.  To reach this goal, three modalities can be used: 

CT imaging, scintigraphy, and, when feasible and desired by the patient, adrenal vein sampling 

(AVS).  Among them, AVS is the most reliable technique used to distinguish a true unilateral 

adenoma (APA) from bilateral disease (Stowasser A et al,. 2004; Rossi GP et al,. 2014).  

Shortly, in AVS adrenal veins are accessed via the femoral vein.  Blood sample are taken from 

both adrenal veins and compared to that found in the inferior vena cava (IVC) at the level below 

the renal veins.  

Finally, the diagnosis of APA, the unique clinical form of PA identifiable with certainly, is 

established when the following “four corners criteria” are satisfied (Funder JW et al,. 2016; 

Rossi GP et al,. 2007; Rossi GP et al,. 2008): 

1- Evidence of PA at the biochemical screening test (serum creatinine, serum and urine 

Na+ and K+ levels, plasma renin activity (PRA), aldosterone, cortisol, and glomerular filtration 

rate); 

2- Lateralization of aldosterone secretion of AVS or at 131-I-norcholesterol 

dexamethasone-suppressed adrenocortical scintigraphy; 

3- Evidence of adenoma at computed tomography, and/or magnetic resonance, and/or 

surgery, and/or pathology; 

4- Demonstration of normokalemia and HT cure, or improvement, at follow-up after 

adrenalectomy 
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Figure 7: Algorithm for the detection, confirmation, subtype testin, and treatment of PA 

(from Funder JW et al,. 2016). 

 

 

V-2 Morphological aspect of Aldosterone-Producing Adenoma and Molecular pathways  

V-2 A) Morphological aspect 

The great majority of APA is macroscopically a single, unilateral and well-circumscribed tumor 

with or without encapsulation.  The size of APA varies from 0,5 cm to 6,0 cm, and usually 

appears to be with golden-yellow color on the surface (Nakamura Y et al,. 2014).  

Microscopically, APA is composed mainly of clear cortical cells resembling to the ZF-like cells 

showing round to oval vesicular nuclei, often with small nucleus and lipid-laden cytoplasms, 

which gives the tumor its characteristic golden-yellow cut surface (Nakamura Y et al,. 2014; 

Neville AM et al,. 1966). Compact cells resembling the ZG-like may also be seen in APA in 

various ratio among APA cases.  On the other hand, microadenoma is sometimes difficult to 

distinguish from non-neoplasic micronodular change in the adrenal cortex caused by localized 

ischemia and compensatory cortical cell hypertrophy (Nakamura Y et al,. 2014).  
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Interestingly, APA tissues express in general relatively high levels of CYP11B2, but StAR 

mRNA expression is usually not elevated in these tumor tissues (Bassett MH et al,. 2005).  

Moreover, it has been demonstrated that APA is generally composed of a heterogeneous 

mixture of cortical cells from different adrenal zones, which could explain the particular tumor 

tissue expression patterns: presence of CYP11B2, CYP11B1 and CYP17 (Azizan EA et al,. 

2012), which indicated that the same APA tumor cells could secrete cortisol as well as 

aldosterone (Hiraishi K et al,. 2011; Fallo F et al,. 2011; Konosu-Fukaya S et al,. 2015). 

 

 

V-2 B) Molecular pathways 

The regulation of cell membrane potential of the ZG is crucial to maintain the cell in a 

hyperpolarized state in the absence of a secretagogue stimulus.  The ZG cell membrane is 

selectively permeable to K+ due to the expression of a large number of potassium channels 

(Nakamura Y et al,. 2014). 

 During the last decade, several somatic KCNJ5 (G protein-activated inward rectifier potassium 

channel 4) mutations were identified (Choi M et al,. 2011).  Some of these mutations are 

localized near or within the selective filter of the channel (as p.Gly151Arg or p.Leu168Arg). 

Furthermore, mutations in or surrounding the selectivity filter (i.e. p.Ile157Ser, p.Gly151Glu) 

have been identified (Charmandari E et al,. 2012; Murthy M et al,. 2012; Kuppusamy M et al,. 

2014; Akerstrom T et al,. 2012).  This kind of mutation results in a significant decrease in K+ 

selectivity and permeability to Mg2+ with ensuing greater influx of Na+ into the cell, resulting 

in chronic cell depolarization. Thus is followed by opening of voltage-dependent calcium 

channels and activation of calcium signaling and aldosterone production (Nakamura Y et al,. 

2014; Oki K et al,. 2012; Monticone S et al,. 2012).  In addition, more recently, others somatic 

mutations have been found in genes coding for ATPases, namely ATP1A1 (Azizan EA et 

al,.2013 Beuschlein F et al,. 2013), ATP2B3 (Beuschlein F et al,. 2013), and the Cav1.3 

calcium channel, CACNA1D (Azizan EA et al,.2013; Scholl UI et al,. 2013).  Although 

mutations in KCNJ5 channel and ATP1A1 ATPase affect adrenal ZG cell membrane potential 

and intracellular ionic homeostasis, with chronic depolarization leading to opening of voltage-

dependent calcium channels and activation of calcium signaling and aldosterone production 

(Oki K et al,. 2012; Azizan EA et al,. 2013; Beuschlein F et al,. 2013), mutations in ATP2B3 
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and CACNA1D directly modify intracellular calcium equilibrium, also leading to an activation 

of calcium signaling and aldosterone production (Nakamura Y et al,. 2014; Oki K et al,. 2012; 

Azizan EA et al,. 2013; Beuschlein F et al,. 2013) (Figure 8).  Furthermore, germline KCNJ5 

mutations were also identified as a causative event of familial hyperaldosteronism type III (FH-

III) (Geller DS et al,. 2008; Gomez-Sanchez CE et al,. 2016).  

Interestingly, KCNJ5 mutations are the most frequent genetic abnormalities reported in APA 

with a prevalence of ~ 40% in Caucasian population, and as high as 70% in series from Japan 

(Boulkroun S et al,. 2012; Rossi GP et al,. 2014; Kitamoto T et al,. 2014; Taguchi R et al,. 

2012).  The less frequent are mutations affecting ATP1A1 and ATP2B3 genes, whereas 

mutations in the calcium voltage-gated channel subunit alpha1 D (CACNA1D), and in the 

calcium voltage-gated subunit alpha1 H (CACNA1H) genes are more frequent (Scholl UI et 

al,. 2015).  

Even though the role of all these mutations in abnormal aldosterone secretion has been clearly 

established, their impact in adenoma formation and in abnormal cell proliferation is not well 

completely understood.  Some elements of the response came at the beginning of the decade 

with the investigation of mouse models in which TASK1 and/or TASK3 potassium channels 

were invalidated to determine the contributions of TASK channels to background K+ currents 

in adrenal ZG and their role in the control of aldosterone production (Davies LA et al,. 2008; 

Heitzmann D et al,. 2008).  TASK1 and TASK3 are two-pore domain K+ channels.  In mouse 

adrenal cortex, whereas TASK1 expression is found throughout both the ZF and the ZG, 

TASK3 is solely present in the ZG (Davies LA et al,. 2008). Deletions, in vivo, of TASK1 and 

TASK3, respectively, lead to the development of hyperaldosteronism or low-renin hypertension 

(Davies LA et al,. 2008; Heitzmann D et al,. 2008; Penton D et al,. 2012; Guagliardo NA et 

al,. 2012).  This hyperaldosteronism is due to abnormal depolarization of the ZG cell membrane 

resulting in increased intracellular Ca2+ concentration and stimulation of aldosterone 

biosynthesis.  Nevertheless, formation of adrenal tumors has never been observed in these 

models indicating that other mechanisms are required to promote increased cell proliferation in 

APA (Nakamura Y et al,. 2014).  Moreover, a reduced expression of TASK2, encoded by 

KCNK5, has been recently described in APA compared with normal adrenal gland, and the 

expression in NCI-H295R cells of a TASK2 dominant-negative mutant resulted in increased 

aldosterone production and CYP11B2 and StAR expression (Lenzini L et al,. 2014).  Moreover, 

comparison of gene expression profiles of adrenal glands from TASK1-/- female and male mice 
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allowed the identification of a cluster of genes closely associated with hyperaldosteronism, 

among them dicckkopf3 (dkk3), a member of the dickkopf family of Wnt signaling modulators 

(Wakil A et al,. 2012).  Inactivation of dkk3 in TASK1-/- mice resulted in the extension of the 

phenotype of hyperaldosteronism to male animals (Wakil A et al,. 2012); suggesting that 

Wnt/β-catenin pathway could play a role in the development of APA.  

Briefly, the “canonical” Wnt signaling pathway acts through the regulation of the amount of 

the transcriptional regulator β-catenin, which controls the expression of specific genes involved 

in development.  The “non-canonical” Wnt signaling pathway is independent of β-catenin.  It 

implicates small GTPases/jun N-terminal kinase (JNK) and intracellular calcium signaling 

(Nakamura Y et al,. 2014; Rao TP et al,. 2010).  It has been demonstrated that Wnt/β-catenin 

pathway is a key signaling pathway in adrenal gland development during embryonic phase.  In 

human adult adrenal gland, while β-catenin expression was found in the entire cortex, its 

activated form was restricted to ZG cells (Boulkroun S et al,. 2011).  One major component of 

this pathway, Wnt4, which plays a central role in differentiation of the definitive zone of the 

adrenal cortex (Jeays-Ward K et al,. 2003), is higher expressed in APA than in normal adult 

adrenocortical cells (Kuulasmaa T et al,. 2008).  This overexpression leads to an increase of 

aldosterone biosynthesis.  The activation of β-catenin pathway has also been recently reported 

in two-thirds of APA (Boulkroun S et al,. 2011; Kuulasmaa T et al,. 2008), but at variance with 

adrenocortical tumors and adrenocortical adenoma, only few mutations of β-catenin pathway 

were found in APA (Nakamura Y et al,. 2014; Tadjine M et al,. 2008), strongly suggesting that 

the activation of this pathway is not associated with the presence of mutations (Tissier F et al,. 

2005; Gaujoux S et al,. 2005).  Additionally, in adrenocortical carcinoma, the activation of β-

catenin pathway is associated with a poor prognostic, whereas in APA it is not associated with 

specific tumor characteristics (Gaujoux S et al,. 2011).  Hence, activation of this pathway differs 

between APA and adrenal cortex carcinoma and contributes to aldosterone hypersecretion 

rather than to cell proliferation (Berthon A et al,. 2014).  

Cell proliferation is due to another pathway: the Sonic HedgeHog signaling (shh).  As β-catenin 

pathway, shh pathway is essential for adrenal gland development and maintenance (Nakamura 

Y et al,. 2014).  To make a long story short, shh encodes a secreted signal that belongs to the 

Hedgehog family.  The activation of shh signaling occurs through its binding to a receptor 

complex formed by the protein patched-1 and the G-protein coupled receptor Smoothened. In 

human adult adrenals gland, the expression of SHH is restricted to few cells of the “cambium 
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layer” (Boulkroun S et al,. 2011; Kim AC et al,. 2009).  Using mice shh-/-, it has been shown 

that shh is essential for expansion of the adrenal cortex but not for zonation and differentiation 

(Huang CC et al,. 2010).  Interestingly, the expression of shh has been found in APA as well as 

in the entire hyperplastic ZG (Boulkroum S et al,. 2011).  The activation of this pathway in 

APA was confirmed by transcriptomic analysis (Boulkroum S et al,. 2011).  All these results 

suggest that APA have acquired some characteristics of stem/precursor cells or, alternatively, 

that reexpression of fetal markers from the definitive zone in the adrenal cortex could underlie 

excessive proliferation and APA formation (Nakamura Y et al,. 2014; Boulkroum S et al,. 

2011).  

Figure 8: Regulation of aldosterone biosynthesis under normal (in blue) and pathological 

conditions (in pink) (adapted from Nakamura Y et al,. 2014). 
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VI- The Renin-angiotensin-aldosterone system 

 

VI-1 From renin to angiotensin 

Over a century ago after the identification of a “renin-like” activity in the canine kidney by 

Tigerstdtedt and Bergman, and more than 50 years after the purification of the vasoactive 

peptide angiotensin II (Ang II), carried out independently by Page and Braun-Menendez et al., 

the characterization of the renin-angiotensin system (RAS) continues relentless.  Thus is 

broadening our understanding of the function of this key hormonal system, which has 

paramount clinical and therapeutic implications.  The RAS is currently regarded as both an 

endocrine and a paracrine system (Rocha R and Stier CT,Jr, 2001).  The circulating RAS entails 

a coordinated hormonal cascade, which begins with the biosynthesis of pro-hormone (pro-

renin) that undergoes proteolytic cleavage of the prosegment N-terminus peptide to give the 

bioactive renin.  The latter is a secretory glycoprotein mainly made by the juxtaglomerular cells 

(JG) that line the afferent arteriole of the renal glomerulus (Atlas SA, 2007).  Renin is stored in 

granules of the JG cells and released first into the renal circulation, and then systemically, 

through a highly regulated exocytic process.  Besides and in parallel to this, the kidney 

constitutively releases pro-renin, which can be activated at the level of the pro-(renin) receptor 

(Rocha R and Stier CT,Jr, 2001). Compelling evidence now indicates that the RAS also acts as 

a paracrine system, which is directly involved in regulating the function of many organs, as the 

adrenal gland, the reproductive system, the visceral adipose tissue, the vascular tissue, the eyes, 

the heart, and the brain.  

Control of renin secretion is a key determinant of the RAS activity, because renin regulates the 

initial and rate-limiting step of the RAS by cleaving the N-terminal portion of the renin substrate 

(angiotensinogen) to form the biologically inert decapeptide angiotensin I (Ang I).  Although 

mainly produced in the liver, angiotensinogen is also synthesized locally in tissues, as the vessel 

wall and adipocytes.  These sites might attain importance in disease conditions, as shown by 

the observation that adipocyte angiotensinogen deficiency, while not affecting plasma 

angiotensinogen levels under normal conditions, greatly reduced circulating Ang II under high 

fat diets.  
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Ang I, the inactive decapeptide formed by renin, is hydrolyzed by the angiotensin-converting 

enzyme type 1 (ACE 1), which removes the C-terminal His-Leu dipeptide to form the 

octapeptideAng II (Ang 1-8), which, alongside aldosterone, is the major mediator of the RAS 

(Miura S and Karnik SS, 1999; Lautner RQ et al,. 2013; Hrenak J et al,. 2016) (Table 1).  

Name Amino-acids sequence 

Angiotensin I (1-10) H2N-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-COOH 

Angiotensin II (1-8) H2N-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-COOH 

Angiotensin III (2-8) H2N-Arg-Val-Tyr-Ile-His-Pro-Phe-COOH 

Angiotensin IV (3-8) H2N-Val-Tyr-Ile-His-Pro-Phe-COOH 

Angiotensin-(1-9) H2N-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-COOH 

Angiotensin-(1-7) H2N-Asp-Arg-Val-Tyr-Ile-His-Pro-COOH 

Angiotensin A H2N-Ala-Arg-Val-Tyr-Ile-His-Pro-Phe-COOH 

Alamandine H2N-Ala-Arg-Val-Tyr-Ile-His-Pro-COOH 

Table 1: Amino-acid sequences of angiotensin peptides (adapted from Miura S and Karnik 

SS, 1999; Lautner RQ et al,. 2013; Hrenak J et al,. 2016) 

 

VI-2 The angiotensin II type 2 receptor (AT2R) 

VI-2 A) Knowledge before Compound 21 revolution 

As mentioned before, the octapeptide hormone Ang II is an important mediator of RAS 

functions.  Most of the physiological effects attributed to Ang II, such as regulation of mean 

arterial blood pressure, water-electrolyte balance, vasoconstriction, catecholamine release, 

aldosterone production, sodium and water reabsorption, cell growth and cardiac hypertrophy, 

are mediated by the AT1 receptor (AT1R) (Timmermans PB et al,. 1993; Kaschina E and Unger 

T, 2003).  Nevertheless, another cell surface receptor, AT2R, can mediate physiological effect 

of Ang II.  
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As AT1R, AT2R is a 7-transmembrane G-protein-coupled receptor.  It is composed of 363 

amino acids for a molecular weight of 41,220 KDa, and shares 34% of sequence homology with 

AT1R (Padia AH and Carey RM, 2013; Miura S and Karnik SS, 1999).  The sequence 

homology between the receptors occurs mainly in the transmembrane hydrophobic regions of 

the molecules which form their 7-transmembrane helical columns (De Gasparo M et al,. 2000).  

Interestingly, Ang II binds to AT1R and AT2R through different types of epitope recognition 

(Miura S and Karnik SS, 1999).   

AT2R is expressed ubiquitously at very high levels in the fetus, where it plays a major role in 

organ development.  For example, in human fetal adrenal gland, it leads to apoptosis (Chamoux 

E et al,. 1999), and antagonizes the stereoidogenic actions of AT1R in ovine fetal adrenal gland 

(Moritz KM et al,. 1999).  In most tissues, AT2R expression dramatically decreases after birth, 

being restricted to few organs, including kidney, adrenal cortex, heart, vasculature, uterus, 

ovary, and discrete areas of the brain.  However, recent data using immunobloting to measure 

total AT2R protein level in tissue, showed that adult rats exhibited a higher AT2R protein level 

compared with fetus or neonates’ brainstem, liver and kidney tissue (Yu L et al,. 2010).  

Notwithstanding this, its role in adult animals and humans remained uncertain for decades, 

owing to the fact that specific agonists for AT2R were not available.  Therefore, concomitant 

stimulation of AT1R could not be avoided when using the AT2R natural ligand Ang II, which 

binds to AT1R and AT2R with almost equal affinity (Table 2).  Hence, given the higher 

abundance of AT1R in many organs Ang II usually induces predominant AT1R effects.  

Moreover, the synthetic peptide CGP42112A, which was used to identify the AT2R, was 

thereafter found to have AT2R agonistic and antagonistic effects depending on its concentration 

(Kaschina E and Unger T, 2003; De Gasparo M et al,. 2000; Unger T et al,. 2010; Foulquier F 

et al,. 2012), pulling down difficulties to interpret results.  In the late 1990’s, generation of 

AT2R knockout animals leads to some progress in the understanding its role in adult.  First, 

anatomical, target deletion of AT2R is followed by anomalies of the kidney and urinary tract, 

a malformation caused by delayed apoptosis of undifferentiated mesenchymal cells (Nishimura 

H et al,. 1999).  Moreover, AT2R-/- mice have slightly elevated blood pressure as well as low 

basal levels of renal bradykinin, cGMP, and a low index of nitric oxide (NO) production (Siragy 

HM et al,. 1999).  Notably, the loss of AT2R abolished left ventricular hypertrophy and cardiac 

fibrosis in mice with Ang II-induced hypertension (Ichihara S et al,. 2001).  Interestingly, 

AT2R-deficient mice have increased sensitivity to pain and decreased levels of β-endorphin 
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(Sakagawa T et al,. 2000).  This observation leads to hypothesize that AT2R may be involved 

in the regulation of the pain threshold.  Unfortunately, in spite of these results, AT2R-knockout 

mice did not shed enough light on the various enigmata of this receptor, since the ensuing 

phenotype did not fully reveal its secrets (Unger T et al,. 2010).  

An important step has been done in 2004 with the design and synthesis of compound 21 (C21) 

by the groups of Mathias Alterman and Anders Hallberg (Wan Y et al,. 2004).  C21 is the first, 

and still unique, non-peptide orally active AT2R agonist.  C21 Ki value is 25000 fold higher 

for the AT1R than for the AT2R (respectively 0.4 nM (2 nM in human receptor) and >10 µM) 

(Bosnyak S et al,. 2011) (Table 2).  Unlike to CGP42112A, C21 can be used both in vitro and 

in vivo.  For the first time Compound 21 gave opportunity to selectively stimulate the AT2R 

under several experimental conditions, and allowed important discoveries about role of AT2R.  

 

Angiotensin II type 1 

receptor (AT1R) 

Angiotensin II type 2 

receptor (AT2R) 
AT2R selectivity 

Peptide ligand 

IC50 value 

(M) 

Relative affinity 

to AngII (100%) 

IC50 value 

(M) 

Relative affinity 

to AngII (100%) 
AT1R/AT2R 

Foldselectivity 

Ang II 7,92 x 10-9 100 5,22 x 10-10 100 1,18 15 

Ang-(1-7) 1,00 x 10-5 > 1000 2,46 x 10-7 0,21 1,61 41 

A-779 1,00 x 10-5 > 1000 1,00 x 10-5 > 1000 / / 

Candesartan 1,56 x 10-9 507 1,00 x 10-5 > 1000 3,81 6402 

CGP42112 1,00 x 10-5 > 1000 2,33 x 10-10 224 4,63 42863 

Compound 21 (C21) 1,00 x 10-5 > 1000 2,29 x 10-9 23 3,64 4367 

Table 2: Affinity of several agonists and antagonists for angiotensin receptors (adapted from 

Bosnyak S et al,. 2011) 

 

At this time, it is well established that expression of AT2R is upregulated in various 

pathological conditions associated with tissue remodelling or inflammation including 

hypertension, atherosclerosis, heart failure, myocardial infarction, tissue ischaemia, and 

diabetes mellitus (Miura S and Karnikk SS, 2000; Levy BI et al,. 1996; Matsubara H et al,. 
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1998; Savoia C et al,. 2007), suggesting that it serves a counter-regulatory role when over 

activation of the AT1R occurs.  

 

 

V-2 B) Vascular tone and blood pressure 

Concerning the control of vascular tone, there is now overwhelming evidence that AT2R 

opposes the AT1R-mediated vasoconstrictor action of Ang II.  This regulation has been 

demonstrated in small arteries of the mesenteric, uterine, adrenal, coronary and peripheral 

circulations, both in animal models and in humans (Padia SH and Carey RM, 2013; Siragy HM 

et al,. 1999a; Siragy HM et al, 1999b; Carey RM et al,. 2001; Katada J et al,. 2002; Widdop 

RE et al,. 2002; Hannan RE et al,. 2004; Batenburg WW et al,. 2004; Bergaya S et al,. 2004; 

Savoia C et al,. 2006; Savoia C et al,. 2007).  It also been determined in high capacitance vessels 

such as the aorta (Hiyoshi H et al,. 2004; Yayama K et al,. 2004), and in the fetal circulation 

(Gauthier KM et al,. 2005).  The vasodilatator effect of AT2R is due to the release of nitric 

oxide (NO) via bradykinin production (Figure 9) (Katada J and Majima M, 2002; Lemarie CA 

and Schiffrin EL, 2010; Wiemer G et al,. 1993; Seyedi N et al,. 1995). Furthermore, the AT2R-

mediated vasodilator action of Ang II is most easily demonstrated when AT1R have been 

inhibited using an AT1R blocker (Siragy HM and Carey RM, 1999; Carey RM et al,. 2001; 

Katada J and Majima M, 2002; Widdop RE et al,. 2002; Carey RM, 2005).  Besides, it has been 

shown that the vasodilator and hypotensive effects of AT2R activation are both acute and long 

term, and are not associated with desensitization, making AT2R a potential therapeutic target 

in hypertension (Katada J and Majima M, 2002; Widdop RE et al,. 2002).  Some studies have 

also demonstrated that the blood pressure-lowering effects of AT1R blockade might be 

mediated, at least in part by AT2R activation (Siragy HM et al,. 1999; Carey RM et al,. 2001).  

Along this line, others studies performed with C21 administration in rat demonstrated that an 

AT2R-mediated decrease in blood pressure occurred only when there was a concomitant low-

dose blockade of AT1R (Foulquier S et al,. 2012; Carey RM et al,. 2001; Barber MN et al,. 

1999; Unger T et al,. 2013).  The observation that AT2R stimulation lowers BP only in the 

presence of low-level AT1R blockade indicates that in vivo, an AT1R-mediated tone 

predominates over any vasodilatory effect of AT2R.  Consequently, it would seem unlikely that 
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AT2R agonists will become antihypertensive drugs suitable for monotherapy (Unger T et al,. 

2013; McCarthy CA et al,. 2013).  

Figure 9: Interaction between the angiotensin II type 2 receptor and the                                

kinin/bradykinin type 2 receptor (adapted from Lemarie CA et al,. 2010) 

 

 

V-2 C) Renal actions 

As mentioned before, abnormalities in anatomy and kidney functions have been observed in 

AT2R knockout mice (Nishimura H et al,. 1999; Danyel LA et al,. 2013).  Compared to wild-

type, these mice experience, inter alia, aggravated glomerular damage and impairment of renal 

function, a high albuminuria, and an increase of renal macrophage infiltration of glomerulus 

and interstitium.  These states may result from a persistent impairment in renal function that 

evolved during fetal development, due to the absence of the AT2R, and may not represent 

missing counter-regulatory actions of the receptor itself in the adult organism.  

In adult, AT2R is expressed throughout the kidney in both the vasculature and the tubular 

structures and are heavily expressed in renal proximal tubule cells (Ozono R et al,. 1997; Miyata 
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N et al,. 1999).  With the use of the technique of direct renal interstitial microinfusion of 

pharmacological agents (Ang II and Ang III) (Padia AH et al,. 2007a; Padia SH et al,. 2007b; 

Salomone LJ et al,. 2007), and C21 in rats (Danyel LA et al,. 2013; Pulgar VM et al,. 2011) it 

has been strongly evidenced that AT2R mediates natriuresis.  Furthermore, these studies 

showed that Ang III is the natural and preferred AT2R agonist in the regulation of renal Na+ 

excretion.  Mechanistically, renal AT2R mediates natriuresis mostly via a NO/cGMP signaling 

cascade operating in the renal proximal tubule (Kemp BA et al,. 2012).  In addition, using the 

5/6 nephrectomy mice, model of renal injury, it has been shown that AT2R protects the kidney 

from ischemic damage (Hashimoto N et al,. 2004; Vazquez E et al,. 2005).  Additionally, with 

the use of C21, the kidneys protective effect from inflammation of AT2R has been strongly 

demonstrated (Matavelli LC et al,. 2011; Abadir PM et al,. 2011).  Last but not least, it is well 

admitted now that AT2R suppress renin biosynthesis and secretion in response to high Ang II 

levels (Carey RM et al,. 2013; Siragy HM et al,. 2005).  

 

 

V-2 D) Vascular remodeling and anti-inflammatory effects 

Chronically elevated BP triggers an inflammatory response followed by an excess synthesis 

and accumulation of extracellular matrix mainly in the left ventricle (LV), the kidney, and the 

vascular wall.  This fibrotic response to hypertension leads to deteriorated organ function and 

resulting in heart failure, renal disease, or vascular stiffening (Danyel LA et al,. 2013).  On top 

of that, renal disease and vascular stiffening reinforce the development of hypertension.  The 

first studies showed a positive effect of AT2R due to an indirect stimulation of this receptor 

(Jones ES et al,. 2004; Tea BS et al,. 2000). Here too, the beneficial effects of AT1R blocker 

were, at least in part, due to indirect AT2R stimulation. 

The proof of a direct beneficial role of AT2R on hypertension-induced vascular remodeling 

was separately obtained by two teams (Paulis L et al,. 2012; Rehman A et al,. 2012).  With a 

chronic infusion of C21 in Nω-nitro-L-arginine-methyl-ester hydrochloride-induced 

hypertension and in stroke-prone spontaneously hypertensive rats (SHR-SP) respectively, they 

demonstrated that AT2R agonist prevented the development of vascular hypertrophy and 
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fibrosis.  Remarkably, in both studies, this reversal of hypertension-induced pathology was 

achieved without any significant effect on blood pressure.  

Figure 10: Canonical and non-canonical (also named protective pathway) pathway of the 

renin-angiotensin system - In blue: genes; in red: date of discovery 

 

For decades it has been though that AT2R could play a role against inflammation, but this 

function remained uncertain.  However, with C21 this effect has been evidenced in different 

models.  For example, in a model of myocardial infarction (MI), treatment with C21 improved 

cardiac function and decreased scar size after 7 days of treatment (Kaschina E et al,. 2008).  In 

a model of hypertension-induced renal dysfunction (salt-loaded SHR-SP), C21 delayed the 

occurrence of brain damage and reduced proteinuria, and attenuated the inflammatory and the 

fibrotic processes in the kidneys (Gelosa P et al,. 2009).  In another rat model of hypertension 
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(two-kidney-one-clip model) presenting an upregulated inflammatory status, C21 significantly 

decreased several inflammatory markers as Interleukine-6, tumor necrosis factor-α or TGF-β1 

(Matavelli LC et al,. 2011).  The role of AT2R in decreasing inflammatory markers has been 

also shown in vitro (Rompe F et al,. 2010; Menk M et al,. 2015). 

Finally, AT2R is one component of the protective RAS, a new pathway discovered less than 2 

decades ago (Figure 10).  Another important component of this RAS non-canonical pathway is 

angiotensin-(1-7) receptor (MasR), which often acts in association with AT2R. 

 

 

V-3 Angiotensin-(1-7) and Mas receptor 

V-3 A) Mas receptor  

As the two other angiotensin receptors described before, Mas receptor (MasR) is a GPCR 

discovered in 1986 and initially misidentified as a proto-oncogene (Westermeier F et al,. 2015; 

Sharif M et al,. 1994; Young D et al,. 1986).  The human MasR is a 325 amino acid polypeptide 

and was, in 2003 (Santos RA et al,. 2003), the first member identified of the Mas-related GPCR 

protein (Bader M et al,. 2014), which also include the alamandine receptor.  MasR is highly 

expressed in brain and testis tissues and to a less expand in the heart, kidney, lung, liver, spleen, 

tongue and skeletal muscle (Alenina N et al,. 2008).  Interestingly, as AT2R, MasR is 

differentially expressed in different cardiac physiological and pathological states (Dias-Peixoto 

MF et al,. 2012).  Functionally, MasR was thought to be an Ang II receptor for decades (Jackson 

TR et al,. 1988).  It has been completely identified as Ang-(1-7) receptor using radioligand 

assays and functional analyses (Santos RA et al,. 2003).  

Ang-(1-7) binding to MasR exerts different actions, and therefore, activates diverse intracellular 

pathways, of which the most relevant one is probably activation of the phospholipase A2 

(PLA2)/arachidonic acid (AA) pathway.  The relaxing properties of Ang-(1-7) on blood vessels 

is possibly due to this pathway (Westermeier F et al,. 2015).  The second important one is the 

activation of the PI3K/Akt cascade.  Through this pathway, MasR signaling induces eNOS 

phosphorylation and activation, and the concomitant NO release in several models (Sampaio 

WO et al,. 2007; Zhao J et al,. 2014).  Furthermore, through this pathway, Ang-(1-7) increases 

PPARϒ activity promoting adipogenesis (Than A et al,. 2013).  Additionally, in several tissues 

and cells MasR is related to insulin signaling and modifies the phosphorylation state of 



51 

 

JAK/STAT, PI3K/Akt, and IRS proteins signaling networks, thus increasing insulin sensitivity 

and tissue glucose uptake (Giani JF et al,. 2007; Munoz MC et al,. 2010; Verano-Braga T et 

al,. 2012).  Finally, MasR induces intracellular Ca2+ signals that are activated in response to the 

coupling of the receptor to Gq/G11 proteins, stimulating the activation of PKC, which in turn 

increases the expression of AT1R (Canals M et al,. 2006). 

 

 

V-3 B) Cardiovascular effects of MasR/Ang-(1-7) axis 

A cardiovascular effect of Ang-(1-7) on cardiovascular biology was observed for the first time 

in dog hearts thirteen years before the MasR discovery (Santos RA et al,. 1990).  After the 

identification of MasR, the cardiovascular protective effect of Ang-(1-7) has been strongly 

demonstrated.   MasR KO mice exhibited reduced heart function (Simoes AC et al,. 2016; Gava 

E et al,. 2012; Dias-Peixoto et al,. 2008) associated with smaller peak of Ca2+ and slower uptake 

of Ca2+, probably due to a decreased SERCA2 expression in cardiomyocytes (Simoes AC et 

al,. 2016; Gomes ER et al,. 2012).  Moreover, the NO production is increased in parallel with 

a high significant increase in the expression of caveolin 3 and a decrease in heat shock protein 

90 (Dias-Peixoto MF et al,. 2008).  Because caveolin 3 prevents calmodulin interaction with 

NO synthase and heart shock protein 90 acts as a scaffold protein for the recruitment of Akt to 

the endothelial NO synthase complex, these effects reduce the activity of endothelial NO 

synthase (Wu KK et al,. 2002; Takahashi S et al,. 2003).  

Notably, chronic infusion of Ang-(1-7) prevented the development of heart failure after 

experimental myocardial infarction (Chamsi-Pasha MA et al,. 2014) and also cardiac 

dysfunction in spontaneously hypertensive rats.  It also reduced NF-κB activity and the 

expression of Nalp12, caspase 1, and several interleukines IL-1β and IL-6, in response to acute 

ischemia-reperfusion injury (Al-Maghrebi M et al,. 2009).  Incidentally, in mice with genetic 

deletion of ACE2, Ang-(1-7) administration in a pressure overloaded induced heart failure 

model suppressed NADPH oxidase, reduced cardiac hypertrophy and recovered systolic 

dysfunction (Patel VB et al,. 2012). Additionally, Ang-(1-7) reduced pathological cardiac 

remodeling by attenuating interstitial and perivascular fibrosis (McCollum LT et al,. 2012).   

In addition to its cardiac effects, it has been shown that Ang-(1-7) and MasR have a positive 

role on renal diseases in different animal models (Simoes AC et al,. 2016).  In experimental 
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glomerulonephritis, the infusion of Ang-(1-7) reduced glomerulosclerosis (Simoes AC et al,. 

2016).   In adriamycin-induced nephropathy, oral administration of AVE 0991, a potent MasR 

agonist, improved renal function parameters, reduced urinary protein loss, and attenuated 

histological changes (Silveira KD et al,. 2013).  Furthermore, in a mice model of acute renal 

injury, administration of AVE 0991 decreased kidney dysfunction, histological damage and 

tissue inflammation (Barroso LC et al,. 2012).  In 5/6 nephrectomized mice, chronic treatment 

with Ang-(1-7) improved heart and renal function, and reduced blood pressure and left 

ventricular (Li Y et al,. 2009).  In type 2 diabetes models as the kk-Ay/Ta mouse, the treatment 

with Ang-(1-7) counteregulated the effects of Ang II by reducing glomerulosclerosis, oxidative 

stress and cell proliferation, and mesangial expansion, TGF-β, fibronectin mRNA and NOX 

activity (Moon JY et al,. 2011).  Moreover, in Zucker diabetic fatty rats, 2 weeks infusion of 

Ang-(1-7) lead to a recovery of creatinine clearance and to a reduction of systolic blood 

pressure, plasma triglycerides and urinary protein loss (Giani JF et al,. 2012).   

Nevertheless, in spite of these beneficial effects, according to few studies Ang-(1-7) would 

exacerbate renal injury in certain experimental conditions (Shao Y et al,. 2008; Esteban V et 

al,. 2009; Velkoska E et al,. 2011): in these three studies, the infusion of Ang-(1-7) worsened 

renal function in diabetic rats (Shao Y et al,. 2008), elicited an inflammatory response in wild-

type mice (Esteban V et al,. 2009) and was associated with deleterious effects on blood pressure 

and heart function in 5/6 nephrectomized rats (Velkoska E et al,. 2011). These side effects could 

be due to the dose of Ang-(1-7), the route of administration, the state of local RAS activation, 

the cell-specific signaling or the non-Mas-mediated pathways in the kidney (Zimmerman D et 

al,. 2012).  For instance, Ang-(1-7) displays growth inhibitory properties and antagonizes the 

effects of Ang II in the proximal tubule (Su Z et al,. 2006), whereas in human mesanglial cells, 

the heptapeptide was described to stimulate cell growth pathways (Zimpelmann J et al,. 2009).  

 

 

V-3 C) Non-cardiovascular effects of MasR/Ang-(1-7) axis.  

Beyond its cardio-renal effects, the Ang-(1-7)/MasR axis regulates several others pathways in 

different tissues (Figure 11) (Passos-Silva DG et al,. 2013).  Mostly in cellular proliferation and 

in inflammation. 
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Treatment with Ang-(1-7) inhibits the growth of several lung cancer cells in vitro (Gallagher 

PE et al,. 2004).  This effect can be explained, at least in part, as a consequence of the ERK 

(MAPK) signal transduction pathway inhibition, or by the reduction in cyclo-oxygenase 2 

(COX-2) (Gallagher PE et al,. 2004; Menon J et al,. 2007).  Indeed, the two pathways have a 

central role in lung cancer cell proliferation.  Furthermore, Ang-(1-7) is also involved in the 

volume reduction of orthopic human breast tumours by decreasing the growth of cancer in 

associated fibroblasts and fibrosis (Cook KL et al,. 2010).  Additionally, Ang-(1-7) desactivates 

the histone deacetylase 1 (HDAC1), overexpressed in solid tumours and known for its role in 

tumorigenesis, through the dephosphorylation of its regulatory sites (Verano-Braga T et al,. 

2012).  On the other hand, Ang-(1-7) is able to induce the activation of the transcriptional factor 

FOXO1, via the dephosphorylation of its regulatory site, which led to the activation of genes 

involved in apoptosis, cell-cycle arrest and oxidative stress resistance (Verano-Braga T et al,. 

2012 ; Calnan DR and Brunet A, 2008). Moreover, in a mouse sponge model of angiogenesis 

daily injection of Ang-(1-7) was shown to significantly inhibit angiogenesis via NO release 

(Calnan DR and Brunet A, 2008).  

More importantly, Ang-(1-7) can also counter-regulate the AT1R-mediated inflammatory 

effects.  For instance, mouse peritoneal macrophages treated with Ang-(1-7) presented a 

reduction in pro-inflammatory cytokines expression as TNF-α or IL-6 after lipopolysaccharide 

stimulation (Souza LL et al,. 2012).  

Nonetheless, Ang-(1-7)/MasR axis plays a beneficial role in atherosclerosis, another clinically 

important inflammatory condition, which is characterized by endothelial dysfunction, vascular 

inflammation, and the accumulation of lipids within the intima of the vessel wall (Corrado E et 

al,. 2010).  In the atherosclerotic model alipoprotein E-/- (ApoE-/-) KO mice, chronic 

incubation with Ang-(1-7) improved endothelial function and attenuated the lesion progression 

as shown by a reduction in fatty deposits and intima/media ratio (Tesanovic S et al,. 2010). This 

could be due to the inhibition of NADPH oxidase expression, which is involved in production 

of reactive oxygen species (ROS) and in the co-stimulatory molecules on antigen-presenting 

cells’ expression diminution (Jawien J et al,. 2012).  

Finally, the effects of Ang-(1-7) have also been evaluated in inflammatory conditions of the 

respiratory tract.  For example, a mouse model of allergic asthma challenged with ovalbumin 

and treated with Ang-(1-7) resulted in attenuation of ovalbumin-induced perivascular and 

peribronchial inflammation and fibrosis (Matavelli LC et al,. 2011), probably via the 
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diminution of ERK1 and IκBα (inhibitor of NF-κB) phosphorylation induced by ovalbumine 

(El-Hashim AZ et al,. 2012).  Interestingly, it is abolished by the use of the MasR antagonist 

A779.  

To note, in the kidney conflicting results have been observed concerning the effect of Ang-(1-

7) on inflammation (Esteban V et al,. 2009; Zimmerman D et al,. 2012).  

 

 

V-3 D) Interplays between AT1R and MasR 

In addition to these positive effects of Ang-(1-7) via the MasR, Ang-(1-7) can also counter-

regulate the side effects of Ang II through a direct antagonism of AT1R (Santos RA et al,. 

2013).  

Before MasR was discovered it was shown  that Ang(1-7) caused a concentration-related 

rightward displacement of the Ang II curve and depressed the maximum response to Ang II in 

rabbit isolated endothelium intact aortic rings (Mahon JM et al,. 1994), indicating that at very 

high concentration (from 10 to 100 µg/kg/min) Ang-(1-7) can bind to AT1R. This observation 

has been done in rat brain, in which at a concentration superior to 106 mol/L, Ang-(1-7) binds 

to AT1R (Rowe BP et al,. 1995).  Later, using human embryonic kidney (HEK-293) cells stably 

transfected with either AT1R or AT2R binding affinities of all the major angiotensin peptides 

were calculated (Bosnyak S et al,. 2011) (Table 2).  This study demonstrated that up to 10 µM 

Ang-(1-7) could bind AT1R.  Nevertheless, it has also been reported that Ang-(1-7) may 

compete for the binding of AT1R with high affinity in kidney slices (Ki = 8,0 ± 3,2 nM) 

(Gironacci MM et al,. 1999).  

Therefore, Ang-(1-7) can modulate Ang II actions through an effect on AT1R mRNA synthesis 

and/or translation (Santos RA et al,. 2013).  Indeed, the AT1R expression has been shown to 

be downregulated in Chinese hamster ovary (CHO) cells stably expressing ectopic AT1a 

receptor and pretreated with 1 or 10 µM Ang-(1-7) (Clark MA et al,. 2001), but also in rat aortic 

vascular smooth muscle cells (VSMC) (Clark MA et al,. 2001), and in the cortical tubule-

interstitial area of the kidney (Clark MA et al,. 2003).  However, two others studies presented 

opposite results:  the first showed that Ang-(1-7) upregulates the mRNA expression of AT1R 
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in VSMC (Neves LA et al,. 2000), while the second indicated the same effects in 

overexpressing MasR (Canals M et al,. 2006).   

Finally, it has been reported in few studies that MasR co-expressed with the AT1R (Kostenis E 

et al,. 2005; Lyngso C et al,. 2009).  To assess whether the functional interaction could result 

from dimerization, a series of Bioluminescence Resonance Energy Transfer (BRET) 

experiments were performed leading to the conclusion of heterodimerization between AT1R 

and MasR (Kostenis E et al,. 2005).  However, two years later it was shown that their control 

was not appropriate (Marullo S et al,. 2007). Studying the functional interaction between the 

two receptors, another team reported that MasR expression also results in a decreased AT1R 

coupling G-protein accompanied by a simultaneous increase in the receptor surface expression 

(Canals M et al,. 2006).  Yet, these data do not indicate a dimerization but rather are consistent 

with a constitutive activity of the MasR (Lyngso C et al,. 2009).  Later, with the use of wild 

types (WT) and mutants AT1R- and MasR-transfected CHO cells, Santos El et al,. 

demonstrated that MasR expression uncoupled the WT AT1R from the G-protein to a similar 

extent to previous reports (Santos EL et al,. 2007).  Furthermore, they observed that MasR can 

result in a gain-of-function of the mutant AT1R.  Indeed, this mutant receptor does not travel 

to the cell surface when it is expressed alone, but surface expression, ligand binding and G-

protein coupling is restored to AT1R WT levels upon MasR expression (Santos EL et al,. 2007).  

What is more, they also reported that the two receptors co-localize and therefore might form 

dimers.  

 

 

V-3 E) Interplays between AT2R and MasR 

AT2R and MasR share only 31% identical sequence homology and are localized on different 

chromosomes (Villela D et al,. 2015).  Notwithstanding this structural difference, they have 

very similar physiological and pathophysiological actions.  As described above, AT2R and 

MasR activate phosphatases, in particular Src homology 2 domain-containing protein tyrosine 

phosphatase SHP-1 and SHP-2 leading to inhibition of MAPKs or NF-κB. Moreover, both 

receptors increase NO synthesis and subsequent accumulation of cGMP, which mediates the 

vasodilatory effects with activation of both receptors. Secondly, Ang-(1-7) can bind AT2R 

(Table 2).  For example, it has been shown that Ang-(1-7)-induced vasorelaxation in 
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preparations of rat thoracic aortic rings (Roks AJM et al,. 2004) or in porcine coronary arteries 

(Gorelik G et al,. 1998) could be blocked by PD123319, an AT2R antagonist.  The Ang-(1-7) 

effects inhibition with AT2R antagonist was observed in vitro and in vivo.  Interestingly, the 

reverse is also true: in male Sprague-Dawley rats stroke was induced by injection of endothelin-

1 (ET-1) into the vicinity of the right middle cerebral artery, causing transient occlusion of this 

vessel.  Cerebral infarct size and neurological deficit were significantly ameliorated 3 days after 

occlusion by C21 (Gorelik G et al,. 1998).  This effect of C21 was abolished by central 

administration of A779.  

One of the hypothesis to explain the blockade of Ang-(1-7) actions by AT2R antagonists and 

vice versa is the dimerization of AT2R and MasR, which has been observed in HEK 293 cells, 

with fluorescence resonance energy transfer (FRET) method (Villela D et al,. 2015).  

Nevertheless, this observation need confirmation.  

Figure 11: Main non cardiovascular effects of angiotensin-(1-7) via its receptor in different 

tissues and processes (adapted from Passos-Silva DG et al,. 2013). 

 

V-4 Angiotensin converting enzyme 2 (ACE2) and diminazeneaceturate (DIZE) 

The other key element of the so-called “protective RAS” is the angiotensin-converting enzyme 

isoform 2 (ACE2).  
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Angiotensin converting enzyme 2 (ACE2) is the first known homologue of ACE, and is an 

integral cell membrane protein with its catalytic domain on the extracellular surface exposed to 

vasoactive peptides (Velkoska E et al,. 2016; Donoghue M et al,. 2000).  ACE2 is a 

monocarboxypeptidase and cleaved Ang I to form Ang-(1-9) and Ang II to form Ang-(1-7) 

(Figure 10).  Strikingly, its catalytic efficiency is 400-higher with Ang II as a substrate than 

with Ang I (Patel VB et al,. 2016).  ACE2 was initially thought to be expressed only in heart, 

kidney and testis (Tipnis SR et al,. 2000), but is currently known to be widely expressed in 

various organ systems including the cardiovascular system, kidneys, lungs, and brain, where it 

exerts important actions to maintain cardiovascular homeostasis (Hamming I et al,. 2004; Paizis 

G et al,. 2005; Doobay MF et al,. 2007; Wong DW et al,. 2007; Kuba K et al,. 2006; Gembardt 

F et al,. 2005).  In the heart, ACE2 is localized in cardiomyocytes, cardiac fibroblasts, and the 

coronary vascular endothelium (Patel VB et al,. 2013; Patel VB et al,. 2014).  

The cardiovascular regulatory effects of ACE2 mostly involve and result in the cleavage of Ang 

II, leading to the formation of Ang-(1-7).  Whether the positive effects of ACE2 are due to Ang-

(1-7) increase or to Ang II decrease remains to be determined (Ferrario CM, 2011). However, 

it is now widely accepted that an alteration of ACE2 levels can affect not only blood pressure, 

but also cardiac structure and function.  In first, it has been demonstrated that targeted disruption 

of ACE2 resulted in increased Ang II levels and impaired cardiac function (Crackower MA et 

al,. 2002).  Moreover, in spontaneous hypertensive rats (SHR) ACE2 overexpression attenuated 

left ventricular hypertrophy and myocardial fibrosis (Diez-Freire C et al,. 2006).  Furthermore, 

reduced levels of cardiac ACE2 have been reported in hypertension, diabetic heart disease, Ang 

II-induced cardiac dysfunction, and with the development of kidney disease (Patel VB et al,. 

2013; Diez-Freire C et al,. 2006; Ferreira AJ et al,. 2011; Tikellis C et al,. 2012; Burrell LM et 

al,. 2012).  Further, serum ACE2 activity was higher in hypertensive patients compared to 

healthy individuals (Patel VB et al,. 2016).  In addition, in hypertensive patients with type 1 

diabetes mellitus, serum ACE2 activity was positively correlated with systolic blood pressure 

improvement (Soro-paavonen A et al,. 2012).  Based on these observations, it has been 

hypothesized that elevated ACE2 may be a compensatory response to hypertension.  Likeness, 

in heart cells ACE2 expression is highly affected by pathological disease conditions (Gallagher 

PE et al,. 2008), suggesting that ACE2 plays a counter-regulatory role in the development of 

cardiac diseases.  Interestingly, in human population, genetic variations in ACE2 gene correlate 

with susceptibility to cardiovascular disease.  Indeed, single-nucleotide polymorphisms of 
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ACE2 are associated with variation in septal wall thickness (Lieb W et al,. 2006), ventricular 

hypertrophy, and coronary artery disease (Keidar S et al,. 2007).  

Hence, as activation of ACE2 might represent an important therapeutic approach in 

cardiovascular disease.  Three possible strategies are currently having investigated: 

recombinant ACE2, orally available ACE2 and specific compounds that activate endogenous 

ACE2.  The last strategy seems to be the most promising and, therefore, will be detailed below. 

An in silico screening strategy has been used to identify ACE2 activators (Hernandez Prada JA 

et al,. 2008).  The first activator found is xantherone (XNT).  Acute administration of XNT in 

spontaneous hypertensive rats (SHR) resulted in reduced blood pressure, whereas chronic 

infusion reversed cardiac and renal fibrosis (Hernandez Prada JA et al,. 2008).  Furthermore, 

XNT infusion increased cardiac gene and protein ACE2 levels in SHR.  With the same in silico 

screening, other existing compounds that would enhance the catalysis of ACE2, were 

discovered. Diminazeneaceturate (DIZE), already used as anti-trypanosomal drug since 

decades (Kulemina LV et al,. 2011), is the most effective and is structurally similar to XNT 

(Velkoska E et al,. 2016).  In spite of its structural similarities, DIZE has a greater 

bioavailability than XNT, is pharmacologically more effective, and has better physiochemical 

characteristics (Da Silva Oliveira GL et al,. 2015).  

While XNT is hypotensive compound, whether DIZE affects blood pressure is controversial.  

Indeed, its effects are dose, mode of injection and model-dependent (Velkoska E et al,. 2016). 

However, several studies reported that DIZE reduced cardiac hypertrophy, cardiac fibrosis, and 

reduced proinflammatory cytokines effects (Shenoy V et al,. 2013; Rigatto K et al,. 2013).  

Furthermore, it has been strongly evidenced in rat model of ischemic stroke a decrease of infarct 

volume and an improvement of the neurological deficit of ischemic stroke with infusion of 

DIZE (Mecca AP et al,. 2011; Bennion DM et al,. 2015).  As abolished with A779 

administration, these effects are a consequence of Ang-(1-7) formation.  Furthermore, in 

atherosclerosis model, DIZE enhanced plague stability but did not reduce atherosclerotic lesion 

size (Fraga-Silva RA et al,. 2015).  DIZE has also beneficial effects in hyperglycemic rat model 

induced by streptozotocin by improving cardiac electrical function in these rats, whereas, it 

does not reverse hyperglycemia in diabetic rats (Coutinho DC et al,. 2014). 

Finally, ACE2 is a main component of the “protective RAS”.  Although, it is difficult to 

stimulate its activity. The best therapeutically approach is to use chemical ACE2 activators.  
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Until now, DIZE is the most potent activator of ACE2 even though conflicting results regarding 

its effects. 

 

V-5 Alamandine/MrgD axis 

Alamandine has been discovered three years ago (2013) by Lautner RQ et al,. (Lautner RQ et 

al,. 2013).  Using mass spectrometry analysis they observed that alamandine circulates in 

human blood and can be formed from angiotensin-(1–7), through decarboxylation of N-

terminal aspartate amino acid residue, in the heart.  Alamandine is also product from Ang A via 

ACE2 which hydrolyzes the C-terminal amino acid (Etelvino GM et al,. 2014).  Little is known 

about alamandine degradation, but ACE may remove the N-terminus-Ala residue, leading to 

the formation of Ang-(2-7) considered as an inactive peptide (Paula RD et al,. 1999).   

Alamandine is structurally closed to Ang-(1-7), but it binds to a distinct receptor: the Mas-

related receptor type D (MrgD), a G-protein coupled receptor (Lautner RQ et al,. 2013; Etelvino 

GM et al,. 2014).  MrgD is widely expressed in sensory neurons of the dorsal root spinal ganglia 

(Dong X et al,. 2001; Zylka MJ et al,. 2003; Shinohara T et al,. 2004). Moreover, it has been 

found, in lower levels, in testis, urinary bladder, arteries, uterus, brain, cerebellum, eyeball, 

spinal cord, trachea, thymus, heart, lung, diaphragm, peritoneum, gastrointestinal tract, skeletal 

muscle, prostate, seminal vesicle, and write and brown adipose tissue (Lautner RQ et al,. 2013; 

Zylka MJ et al,. 2003; Zhang L et al,. 2005).  

It is quite understandable that the effects of alamandine are not well known. Nonetheless, some 

studies demonstrated that alamandine has protective effects in several pathologies (Hrenak J et 

al,. 2016).  In FVB/N mice aortic rings, alamandine induced endothelial-dependent 

vasorelaxation similar to the effect of Ang-(1-7) (Lautner RQ et al,. 2013; Le Tran Y et al,. 

1997).  Though, contrary to Ang-(1-7), alamandine can counteract the vasoconstriction induced 

by Ang A without affecting Ang II-induced vasoconstriction (Habiyakare B et al,. 2014).  

Furthermore, alamandine increases the bioavailability of acethycholine and, thus promotes 

acethylcholine-mediated vasodilation in the thoracic aorta and iliac artery (Le Tran Y et al,. 

1997).  This effect was not observed in carotid artery.  Furthermore, in MasR knockout-mice, 

alamandine induces vasorelaxation, indicating a signaling pathway distinct from the Ang-(1-

7)/MasR axis (Lautner RQ et al,. 2013).  Moreover, alamandine induced-release in MrgD-

transfected cells but not in MasR-transfected cells (Villela DC et al,. 2014).  Interestingly, in 

spontaneous hypertensive rats, a single dose of alamandine/β-hydroxypropylcyclodextrin 
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compound decreased blood pressure for a long-term period (Lautner RQ et al,. 2013).  Finally, 

alamandine seems to exert antiremodeling effects. Indeed, a chronic administration of 

alamandine to isoproterenol-treated Wistar rats was associated with a decreased accumulation 

of collagen I, collagen III, and fibronectin in the heart (Lautner RQ et al,. 2013; Mendoza-

Torres E et al,. 2015).  

Nowadays, alamandine is seen as a potential therapeutic compound to treat hypertension. 
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VII- In vitro models to study steroidogenesis in human 

 

As mentioned before, the adrenal gland is an endocrine gland compound composed of two 

developmentally unrelated tissues: the adrenal medulla and the adrenal cortex.  The adrenal 

cortex is divided into three concentric zones which have distinct roles in steroid hormone 

production.  The regulation of adrenocortical function is extremely complex and the 

mechanisms regulating production of steroids from each zone are different.  This complexity 

has made the development of in vitro cell models an attractive alternative to studies using whole 

animals.  Several in vitro systems, mostly with rat cells, have been investigated as cell 

suspensions from acutely dispersed tissue (Kloppenborg PW et al,. 1968; Swallow RL et al,. 

1969), primary cultures from normal adrenal glands and adrenal tumors (Buanassisi V et al,. 

1962; O’Hare MJ et al,. 1973; Gospodarowicz D et al,. 1977), cell lines from tumors (Yasumura 

Y et al,. 1966; Rodriquez H et al,. 1997), or from immortalized cells (Auersperg N et al,. 1990; 

Mellon SH et al,. 1994; Pan J et al,. 1995; Mukai K et al,. 2002).  

One of the first, and still routinely used, adrenocortical human cell line is the NCI-H295.  In 

1980, an adrenocortical carcinoma was identified in a 48-year-old, black female patient (Gazdar 

AF et al,. 1990; Rainey WE et al,. 2003).  The large excised tumor has been used to establish 

the original NCI-H295 cell line.  Of the 30 steroids detected, approximately 20 were identified.  

Based on secreted steroids, these cells appeared to contain all of the adrenocortical enzyme 

systems which presumably were present in the original tumor, including CYP11A, HSD3B2, 

CYP11B1, CYP21, CYP17, CYP11B2, 3β-hydroxy-steroidsulfo-transferase, and low levels of 

aromatase (CYP19) (Rainey WE et al,. 2003).  

Later, other substrains have been adapted from the original NCI-H295 cell line using alternative 

growth conditions.  The goal, reached, was to encourage substrate attachment and shorter cell 

cycle times.  To get into details, NCI-H295 demonstrated increased growth rate, but the cells 

continued to grow as floating aggregates or weakly attached cells (McAllister JM et al,. 1988).  

Over a three-month period, during which culture medium was changed three times a week and 

unattached cells were discarded, cells were selected for attachment to plastic culture dishes.  

After it characterization, this adapted strain was designated as H295R (NCI-H295R) to 

differentiate it from the original cells (Rainey WE et al,. 2003).  Compared to the primordial 

H295 cell line, H295R cells grow as a tightly adherent monolayer with a population doubling 
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time reduced from five to two days.  To note, this strain will be more or less sensitive to 

angiotensin II and potassium stimuli, depending on the serum used.  Moreover, using the same 

method for isolation, a new stain has been selected.  NCI-H295A cells grow as a monolayer 

while removing non-attached cells with medium changes (Rodriquez H et al,. 1997). In spite 

of the lack of steroidogenesis status characterization of this strain, NCI-H295A are used to study 

mechanisms affecting steroidogenesis pathway (Rainey WE et al,. 2003).  Furthermore, the 

original strain is a model for adrenal cell proliferation. 

Basically, the first study done in NCI-H295R was the regulation of angiotensin II type 1 

receptor (AT1R), because it exhibits readily detectable levels of AT1R mRNA (Bird IM et al,. 

1993a; Bird IM et al,. 1993b).  In addition, K+ increases intracellular calcium levels in NCI-

H295R cells which appears to be the mechanism to increase aldosterone biosynthesis (Rainey 

WE et al,. 1994; Pezzi V et al,. 1996).  Studies shown 15 years ago demonstrated that K+ 

stimulation increases the production of both angiotensin I and II, suggesting that these cells 

may provide a model to study the hypothesis that local (i.e. intra adrenal) renin/angiotensin 

system exists (Hilbers U et al,. 1999).  Nowadays, NCI-H295R is the most often cell line used 

to study steroidogenesis and hyperaldosteroidism (Lichtenauer UD et al,. 2012; Nakamura Y 

et al,. 2015), because it is considered to be an appropriate model to study several of the major 

and minor physiologic regulators of aldosterone biosynthesis (Rainey WE et al,. 2003).  Indeed, 

there are strongly sensitive to angiotensin II, K+, and, important point, to parathormone (PTH) 

(Lichtenauer UD et al,. 2012; Nakamura Y et al,. 2015).   However, this cell line is only mildly 

responsive to adrenocorticotropic hormone (ACTH), which is an important regulator of 

steroidogenesis (Staels B et al,. 1993).  

That is why, in 2008, a new cell line has been created (Rainey WE et al,. 2008).  Human 

adrenocortical carcinoma (HAC) cells were isolated after surgical removal of an adrenocortical 

carcinoma from an 11-month-old female with hypertension and hirsutism (Rainey WE et al,. 

2008).  Conversely, HAC cells are sensitive to ACTH (Rainey WE et al,. 2008).   The most 

sensitive clone to this ACTH stimuli was clone 15 (HAC15) (Rainey WE et al,. 2008; Wang T 

and Rainey WE, 2012).  Thus, HAC15 cells are sensitive to K+, angiotensin II, forskoline, and 

ACTH.  Compared to NCI-H295 cells, HAC cell clones are monoclonal and may provide a 

more stable steroidogenic phenotype.  In addition, it has been shown that these cells can be 

stimulated with angiotensin III (Oki K et al,. 2013).  But, qRT-PCR analysis showed that the 

NCI-H295 cell line had higher expression levels of CYP11B2.  In the NCI-295 cell line, mRNA 
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expression of CYP11B2 was almost two-fold compared to that was observed in the HAC 15 

cell line (Wang T et al,. 2012).  However, aldosterone production was lower than in other cell 

lines, including the HAC 15 cell line, because of the lower expression of HSD3B2 observed in 

the NCI-H295 cell line (Wang T et al,. 2012).  When all is said and done, HAC15 are a 

promising model to study steroidogenesis pathways.  
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Aims 

 

My PhD work was set out to answer the following questions: 

1- Are the main components of the protective renin-angiotensin system (RAS) present in the 

human adrenal cortex and in aldosterone-producing adenoma? 

2- If these components are expressed what role do they play in the regulation of aldosterone 

and cortisol? 

3- What are the effects of angiotensin-(1-7), compound 21 and diminazene aceturate on 

aldosterone and cortisol production in human adrenocortical cell lines (HAC15 and NCI-

H295R), in normal adrenal gland (NAG), and in aldosterone-producing adenoma (APA) under 

baseline conditions and when aldosterone production is up-regulated? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 

 

Materials and methods 

 

Cells 

NCI-H295R were grown in RPMI medium supplemented with 10% Fetal Bovine Serum (FBS), 

1% glutamine, and 1% antibiotic/antimycotic mixture.  HAC15 were grown in Dulbecco’s 

Modified Eagle Medium (DMEM F12) supplemented with 10 % Cosmic Calf serum (CCS), 

1% glutamine, and 1% antibiotic/antimycotic mixture. 

 For the experiments, they were seeded in 12-well plates at 20. 104 cells per well and grown to 

subconfluence (80%).  Before treatment, cells were starved for 24 hours with RPMI/DMEM 

F12 medium supplemented with 0,5 % FBS/CCS, 1% glutamine, and 1% 

antibiotic/antimycotic.  This deprivated medium is also used for the stimulation.  

After starvation, the cells were treated with stimuli alone and/or with selective antagonists for 

12 hours.  When receptor antagonists were used, they were added in fresh media 30 minutes 

before stimulation. Antagonists are irbesartan (from Sigma-Aldrich) and A779 (from Abcam). 

 

 

Tissues 

We obtained aldosterone-producing adenoma (APA) tissue, and APA-adjacent tissue from 

patients.  The diagnosis of APA was confirmed by the “4 corner criteria” described before.  All 

tissues were obtained under sterile conditions in the operating room immediately after excision. 

Small pieces were frozen and stored in liquid nitrogen.  The creation of a biobank of human 

adrenal tissues was approved by the Ethics Committee; informed consent was obtained from 

each patient. 

Pieces enough large were cut into slices of 20 mg in average.  Slices are put in well of a 24-

wells plate and starved with DMEM F12 stravation medium for 6 hours.  Then each piece is 

stimulated with stimuli alone and/or with selective antagonists for 12 hours. 
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RNA extraction and quantitative real-time PCR 

After stimulation, with angiotensin-(1-7) (from Sigma), Compound 21 (from Vicore), and 

Diminazene Aceturate (from Sigma), the supernatant was stored at -20°C.  RNA from cell was 

extracted with the Roche RNeasy kit, and RNA from tissue with Qiagen RNA extraction kit 

following the manufacter’s protocol.  The quantity and quality were also determined by 

spectrophotometric readings at 260/280/230 nm.  

One µg of total RNA from cells, and 300 ng total RNA from tissues, were reverse transcribed 

in a final volume of 20 μL, using the iScriptTMcDNA Synthesis kit (Bio-Rad, Milan, Italy), and 

following the manufacter’s recommendations.  The RT-PCR reactions were performed in 

Delphi 1000TM Thermal Cycler (Oracle Biosystems). 

Table 3: Primers sequences 

The relative expression levels of aldosterone synthase (CYP11B2 gene), cortisol synthase 

(CYP11B1gene) mRNAs were measured with a real time RT-PCR.  Primers and probes 

(Universal ProbeLibrary, Roche, Monza, Italy) for the amplification of the genes of interest 

 Name and gene code Sequences 

A
n
g
io

te
n
si

n
re

ce
p
to

rs
 AT1R 

NM_000685.4 

For : 5’-atgattccagcgcctgac- 3’ 

Rev : 5’- ggtccagacgtcctgtcact- 3’ 

AT2R 

NM_000686.4 

For: 5’- ggtttctagcatatacatcttcaacct- 3’ 

Rev: 5’- ttgcccatagaggaagagtagc- 3’ 

MasR 

NM_002377.2 

For: 5’- ttcgctatgcccatgagact- 3’ 

Rev: 5’- tggtgtaggttcccaaaggt- 3’ 

MrgD 

NM_198923.2 

For: 5’- cgtggaccttgtcagtggta- 3’ 

Rev: 5’- ttcctcttcagcatggcttc- 3’ 

A
n
g
io

te
n
si

n

co
n
v
er

ti
n
g
  
  
  
  
  
  
  
  
  
  
  

en
zy

m
es

 ACE 1 

NM_000789.3 

For: 5’- aggagcagaaccagcagaac- 3’ 

Rev: 5’- tcagcctcatcagtcaccag- 3’ 

ACE 2 

NM_021804.2 

For: 5’- aaagtggtgggagatgaagc- 3’ 

Rev: 5’- gagatgcggggtcacagtat- 3’ 

S
te

ro
id

 

g
en

es
 CYP11B2 

NM_000498.3 

For: 5’-gtgaccgcaggttgcttt-3’ 

Rev: 5’-cccttattcctttcccatgc-3’ 

CYP11B1 

NM_000497.3 

For: 5’- ttcagccgccctcaaca- 3’ 

Rev: 5’- ggatgttcactgatgctgg- 3’ 

H
o
u
se

k
ee

p
in

g
 

g
en

es
 

PBGD 

NM_000190.3 

For: 5’-tgccctggagaagaatgaag-3’ 

Rev: 5’- agatggctccgatggtga -3 

GAPDH 

NM_001256799.2 

For: 5’ gggaaggtgaaggtcggagtc- 3’ 

Rev: 5’- sgcagagggggcagagatgat- 3’ 

β-actin 

NM_001101.3 

For: 5’- tggcaatgagcggttcc- 3’ 

Rev: 5’- gatgccacaggactcca- 3’ 
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were designed using ProbeFinder Software (Roche, Monza, Italy, www.lc480.it).  Sequences 

are shown in table 3. 

The reaction efficiency was optimized by preliminarily performed standard curves.  After 

treatment, CYP11B2 and CYP11B1 gene expression were calculated by the comparative Ct (2-

ΔΔCt) method (Livak KJ and Schmittgen TD, 2001): each sample was quantified against its 

housekeeping gene transcript content and normalized to the control group. Each experiment 

was repeated at least 3 times in duplicate, and the results are presented as mean percentage fold 

increase +/- SD.  Moreover, for each experimental condition, three housekeeping genes 

(porphobilinogendeaminase (PBGD), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

and β-actin) were preliminary tested to determine the more efficient.  

Figure 12: Flow-chart summarizing the experimental procedure 

http://www.lc480.it/


69 

 

 

To quantify gene expression of angiotensin receptors (AT1R, AT2R, MasR), alamandine 

receptor, and angiotensin converting enzyme 1 and 2, the same RT-PCR protocol described 

above has been used. 

 

 

Immunoblotting 

Immunoblotting for AT1R, AT2R, and MasR, and ACE2 was performed following standard 

protocol.  In brief, cells were homogenized in lysis buffer (Thermo Scientific, Italy) and protein 

concentration was determined in the soluble supernatant with BCA (Thermo Scientific, Italy). 

Lysate fraction (50 µg) was separated in a polyacrylamide gel and then electro-blotted onto 

nitrocellulose or polyvinyldene fluoride (PVDF) membrane (Hybond ECL-Amersham 

Biosciences Europe, Germany).  The membranes were blocked for 30 minutes at room 

temperature in 5% non-fat dry Blocking Milk or with 5% bovine serum albumin (BSA) and 

thereafter incubated overnight at 4°C with a primary rabbit monoclonal antibody against human 

AT1R (diluted 1/700), AT2R (diluted 1/500), MasR (diluted 1/1000), and ACE2 (diluted 

1/500).  All antibodies are from NovusBio (1 mg/mL size). After washing, the membrane was 

incubated 1 hour with an anti-rabbit secondary antibody.  Then, band intensity were measured 

with VersaDoc Imaging System (Biorad). 

Protein samples were obtained from APA tissues (n = 3) and the adjacent normal adrenal gland 

(n = 3).  Images were analyzed by Image Processing and Analysis in Java (Image J- NIH). 

Bands for AT1R, AT2R, MasR, and ACE2 were normalized to glyceraldehyde 3-phosphate 

dehydrogenase.  

HAC15 adrenocortical cells or immortalized proximal tubule epithelial cell line from normal 

adult human kidney (HK2) proteins were used as positive controls.   
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Aldosterone measurement 

Aldosterone levels were quantified with the Aldosterone Elisa kit (Alpha Diagnostic 

International) following the manufacter’s protocol.  Briefly, a total of 50 μL of cell medium 

was added to aldosterone-coated wells following producer’s protocol, and the signal was 

detected in an ELISA Reader (PerkinElmer).  Aldosterone levels were normalized to the amount 

of cell RNA content. 

 

 

Immunohistochemistry 

We performed immunohistochemistry using AT1, AT2, and Mas receptors antibodies.  

As for immunoblot, human adrenal tissues are from patients.  The three tissues choose were 

already used in a previous study and immunostained with CYP11B1 and CYP11B2 antibodies 

to determine aldosterone and cortisol secretion zones (Gioco F et al,.2015). 

Paraffin-embedded adrenal was cut at 5 m and the sections dried and then melted at 56°C for 

at least 3 hours.  After deparaffination through alcohols, slides were subjected to antigen 

retrieval using Trilogy (Cell Marque Corp) in autoclave, 15 minutes at 121°C, and then treated 

with phenylhydrazine 0.1% for 20 minutes to inhibit endogenous peroxidases.  Slides were 

blocked with Tris0.1 M, goat serum 5%, or horse serum 5%, SDS 0.5% (pH 7.4) for 1 hour, 

and then incubated with angiotensin receptors antibodies (AT1R diluted 1/150, AT2R diluted 

1/100, and MasR diluted 1/200) overnight at 4°C.  After washing, slides were incubated with 

secondary antibodies for 1 hour at room temperature.Slides were developed using 

diaminobenzidine and HighDef green immunohistochemistry chromogen AP (Enzo Life 

Sciences).  All the samples were counterstained with Meyer hematoxylin (Vector Laboratories) 

before mounting. 

Negative control was immunostained only with secondary antibody.  Kidney tissue was used 

as positive control for AT1R and MasR. Placenta tissue was used as positive control for MasR.  
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Statistical analysis 

Statistical analysis were performed with PrisGraphPad Software, version 7.  

Each group was compared with non-parametric Mann Whitney test.  Moreover, results from 

ELISA assay were compared with one-way ANOVA test.  
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I- Presence of the main components of the protective renin-angiotensin system in human 

normal adrenal gland (NAG) and in aldosterone-producing adenoma (APA) 

 

I-1 Gene expression level 

To determine the presence of angiotensin receptors in human adrenal (NAG) and in 

aldosterone-producing adenoma (APA), we firstly checked gene expression with RT-PCR. 

 Angiotensin II type 1 (AT1R), type 2 (AT2R) and angiotensin-(1-7) receptor (MasR) genes are 

expressed in both NAG and in APA.  Of note, AT1R and MasR gene expression did not differ 

significantly in NAG and in APA (Figure 1), while that of the AT2R gene was significantly 

lower in APA than in NAG (Figure 1). 

Figure 1: Gene expression of angiotensin II type 1 receptor, type 2 receptor, and angiotensin-

(1-7) receptor in normal adrenal cortex (n=3) and in aldosterone-producing adenoma (n=6)            

(in arbitrary units) 

AT1R= angiotensin II-type 1 receptor; AT2R= angiotensin II-type 2 receptor;                             

MasR= angiotensin-(1-7) receptor; NAG= normal adrenal gland;                                                             

APA = aldosterone-producing adenoma 

 

As regards the amount of the different angiotensin receptor mRNA the AT1R gene was 

significantly more expressed in NAG and in APA than the AT2R gene and the MasR gene. 

Moreover, the AT2R gene is also significantly more expressed in both tissue than MasR gene 
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(Figure 2).  On average, AT2R gene is 10-fold less expressed than AT1R and MasR 150-fold 

less.  

 

Figure 2: Relative gene expression of angiotensin II type 1 receptor, type 2 receptor, and 

angiotensin-(1-7) receptor in normal adrenal cortex (n=3)                                                                   

and in aldosterone-producing adenoma (n=6) 

AT1R= angiotensin II-type 1 receptor; AT2R= angiotensin II-type 2 receptor;                                   

MasR= angiotensin-(1-7) receptor; NAG= normal adrenal gland;                                                                

APA = aldosterone-producing adenoma 

 

Furthermore, alamandine receptor gene (MrgD) is also expressed in NAG and in APA. 

Eventhough, it is not differentially expressed in NAG and APA.  However, as for AT2R and 

MasR genes, MrgD gene is significantly lower expressed than AT1R in both tissue (Figure 3). 

Its expression is, on average, at the same level than AT2R gene expression.  
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Figure 3: Relative gene expression of angiotensin II type 1 receptor and alamandine receptor 

in normal adrenal gland (n=4) and in aldosterone-producing adenoma (n =3)                                  

AT1R= angiotensin II-type 1 receptor; MrgD= alamandine receptor                                              

NAG= normal adrenal gland; APA = aldosterone-producing adenoma 

 

Finally, the genes of the two converting enzymes (ACE and ACE2) were found to be expressed 

in NAG and in APA, without significant differences between tissues (Figure 4).  Furthermore, 

no significant difference between ACE and ACE2 gene expression in both tissues were found.  

Thus, ACE/ACE2 ratio was found to be close to 1.  Nevertheless, this ratio was quite impossible 

to calculate because of the heterogeneity of gene expression in these tissues.  This variation in 

expression level was found in all the genes studied.  

 

Figure 4: Relative gene expression of angiotensin converting enzyme 1 and 2, in normal 

adrenal gland (n=4) and in aldosterone-producing adenoma (n=3) 

ACE = angiotensin converting enzyme 1; ACE2 = angiotensin converting enzyme 2; NAG= 

normal adrenal gland; APA = aldosterone-producing adenoma 
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I-2 Protein expression level 

After determination of gene expression, we performed immunoblots to verify the expression of 

the three angiotensin receptors and the angiotensin converting enzyme at the protein level, and 

immunohistochemistries to evaluate their intracellular localization. 

As expected, all three angiotensin receptors as well as angiotensin converting enzyme 2 (ACE2) 

were found to be expressed at the protein level in both NAG and in APA as shown in figure 5.  

Figure 5: Detection of angiotensin receptors and angiotensin-converting enzyme protein with 

immunoblot 

AT1R= angiotensin II type 1 receptor; AT2R= angiotensin II type 2 receptor;                              

MasR = angiotensin-(1-7) receptor; HAC15/H295R= human adrenocortical cells;                           

HK2= human kidney cells 
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For immunohistochemistry, tissues were obtained as described in methods.  For all, APA and 

APA-adjacent tissue were visible. 

Negative control is tissue immunostained only with the secondary antibody. As shown in figure 

6, no positive staining was found. 

Positive controls are tissues already published to contain AT1R, AT2R, or MasR.  Kidney tissue 

was used as a positive control for AT1R (figure 6- B) and MasR (figure 6- D), and placenta 

tissue for AT2R (figure 6- C). 

Figure 6: Representative immunohistochemical staining for angiotensin receptors positive    

and negative controls. 

Panel A: negative control; Panel B: positive control for angiotensin II type 1 receptor 

(AT1R); Panel C: positive control for angiotensin II type 2 receptor (AT2R);                         

Panel D: positive control for angiotensin-(1-7) receptor (MasR) 
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The immunohistochemistry experiments showed that the three receptors were expressed in 

NAG and in APA, but were heterogeneously distributed in both tissues (Figures 7 and 8).   

Nevertheless, AT1R staining was much stronger in glomerulosa layer than in fasciculata 

(Figure 7-F).  Moreover, with a 20-fold magnification we observed that all angiotensin 

receptors were expressed in cellular membrane (Figure 8- L, M, N, O, P, Q).  

Figure 7: Representative immunohistochemical staining for angiotensin receptors expression 

in normal adrenal tissue and in aldosterone-producing adenoma 

Panel E: tissue immunostained with CYP11B2 antibody. Panels F,G,H: angiotensin receptors 

immunostaining 

AT1R= angiotensin II-type 1 receptor; AT2R= angiotensin II-type 2 receptor;                               

MasR= angiotensin-(1-7) receptor; NAG= normal adrenal gland;                                                                

APA = aldosterone-producing adenoma 
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Figure 8: Representative immunohistochemical staining for angiotensin receptors expression 

in normal adrenal tissue and in aldosterone-producing adenoma 

Panels I, J ,K: angiotensin receptors immunostaining at a 5-fold magnification in NAG.                             

Panels L, M, N: angiotensin receptors immunostaing at a 10-fold magnification in NAG.                         

Panels O, P, Q: angiotensin receptors immunostaining at a 20-fold magnification in NAG.        

AT1R= angiotensin II-type 1 receptor; AT2R= angiotensin II-type 2 receptor;                             

MasR= angiotensin-(1-7) receptor; NAG= normal adrenal gland;                                                                

APA = aldosterone-producing adenoma 
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II- Effects of angiotensin-(1-7) on CYP11B1 and CYP11B2 gene expression, and in 

aldosterone production in human adrenocortical cells (H295R and HAC15).  

 

Before stimulation we checked gene and protein expression level of AT1R, AT2R, MasR, and 

ACE2 in the two human adrenocortical cell lines (Figure 5).  Moreover, we compared the 

CYP11B1 and CYP11B2 gene expression in both cells (Figure 9).  HAC15 significantly 

expressed more CYP11B2 gene than H295R.  

Figure 9: Relative CYP11B2 and CYP11B1gene in human adrenocortical cell lines. 

To clarify the effects of angiotensin-(1-7) on aldosterone and cortisol production, we 

performed, a set of stimulation with angiotensin-(1-7) in H295R cells with a range of 

concentrations from 100 nM to 600 nM (Figure 10). At these low concentrations no effect was 

detected in CYP11B1 and CYP11B2 gene expression.  

Because of the lack of effect of angiotensin-(1-7) at low concentrations, we next decided to 

increase concentration of angiotensin-(1-7) up to 100 µM. 

On both cells we observed a significant increase in CYP11B1 and CYP11B2 gene expression, 

albeit with differences between the cell lines (Figure 11): in the H295R cells there was a 

concentration-dependent stimulation with a significant increase in gene expression level from 

10 µM (Figure 11).  In the HAC15 cells we noted a decrease at this concentration (Figure 11).  
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Of note, HAC15 cells producing more aldosterone at baseline, weakly responds to angiotensin 

stimuli.  That is why, we decided to continue the study with H295R cells only. 

Figure 10: CYP11B2 and CYP11B1 gene expression in H295R cells after stimulation with 

angiotensin-(1-7) (n= 2) 

 

Figure 11: CYP11B2 and CYP11B1 expression in HAC15 and H295R cells                              

after stimulation with angiotensin-(1-7) (respectively n= 3 and n= 5) 
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Angiotensin-(1-7) only at a concentration of 100 µM significantly affected the effects of 

angiotensin II (10 µM) on CYP11B2 gene expression (Figure 12).  

Figure 12: CYP11B2 and CYP11B1 expression in H295R cells after stimulation with 

angiotensin-(1-7) and angiotensin II (n= 3) 

 

In regard to these first results, we hypothesized a binding of angiotensin-(1-7) on AT1R.   

To challenge the hypothesis that angiotensin-(1-7) effects at 100 µM on CYP11B2 gene 

expression involved an off target acting via the AT1R, we used irbesartan, a strong AT1R 

antagonist.  We also used A779 a potent MasR antagonist.  We incubated cells with antagonists 

30 minutes before to add angiotensin-(1-7) as previously reported (oki K et al., 2013).  

Irbesartan was used at 10 µM concentration and A779 at 100 nM.  

Irbesartan blunted the effect of angiotensin-(1-7), whereas A779 has not a significant effect 

(Figure 13).  
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Figure 13: CYP11B2 and CYP11B1 expression in H295R cells after stimulation with 

angiotensin-(1-7) and angiotensin receptors inhibitors (n=3) 

Irbesartan= angiotensin II type 1 receptor antagonist; A779= angiotensin-(1-7) receptor 

anatagonist 

 

Furthermore, the effect of angiotensin-(1-7) in CYP11B2 gene expression has been searched in 

aldosterone secretion. As shown in figure 14, a trend is observed. However, the absence of 

statistical significance can be due to the short time of stimulation and to aldosterone degradation 

in vitro.  

Figure 14: Offset of stimulation with angiotensin-(1-7) on aldosterone production in                  

H295R cells (n= 3) 

One way ANOVA:  P= 0,48. 
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Finally, to determine the effect of angiotensin-(1-7) on ACE2 gene expression, we checked the 

ACE2 gene expression after stimulation.  In H295R cells this peptide has not significant effect 

on ACE2 gene expression (Figure 15).  

Figure 15: Relative angiotensin converting enzyme gene expression after angiotensin-(1-7) 

stimulation in H295R cells (n= 3) 

 

 

III- Effects of compound 21 (C21) on CYP11B1 and CYP11B2 gene expression, and in 

aldosterone production in human adrenocortical cells (H295R and HAC15).  

To study the role of AT2R in aldosterone and cortisol secretion we used compound 21 (C21).  

To achieve this, we stimulated human adrenocortical cell lines with a range of concentration of 

C21 from 10 nM to 10 µM according to previous study (Menk M et al., 2015).   

In both cell lines, C21 had not effect on CYP11B1 and CYP11B2 gene expression at low 

concentration but has a significant effect at 10 µM.  Angiotensin II (100 nM) was used as a 

positive control (Figure 16). 
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Figure 16: CYP11B1 and CYP11B2 gene expression in HAC15 and NCI-H295R after 

stimulation with C21 (n= 3) 

 

In order to determine the effects of AT2R under high aldosterone production, we used 

angiotensin II at 100 nM.  C21 significantly increased the effect of angiotensin II in CYP11B1 

and CYP11B2 gene expression at high concentration (10 µM) in HAC15 (Figure 17), but not in 

H295R. 

Figure 17:  CYP11B1 and CYP11B2 gene expression in HAC15 and in H295R cells after 

stimulation with C21 and Ang II (100 nM) (n= 3) 

 

C21 had increased the CYP11B1 and CYP11B2 gene expression at 10 µM.  As for angiotensin-

(1-7), we hypothesized that at this high concentration C21 can lose its specificity for AT2R and 

bind to AT1R. 

To test this hypothesis we used irbesartan, like we did for angiotensin-(1-7). 
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In both HAC15 and in H295R cells, irbesartan completely blunted the effect of C21 (Figure 

18).  Angiotensin II (100 nM) is used as a positive control.  

Figure 18:  CYP11B2 and CYP11B1 expression in HAC15 and in H295R cells after 

stimulation with C21 and irbesartan at 10 µM (n= 3) 

 

After stimulation with C21, we checked the aldosterone secretion in both cells (Figure 19).  In 

HAC159 C21 increased aldosterone secretion at 10 µM. 

Figure 19:  Offset of stimulation with C21 on aldosterone production in HAC15 and H295R 

(n=3).   

One way ANOVA P= 0,23 for HAC15 cells and P= 0,38 for H295R cells. 

 

As aldosterone secretion physiologically results from diverse stimulus: angiotensin II, 

potassium and ACTH, we wished to determine the effect of C21 on aldosterone and cortisol 



87 

 

secretion driven by potassium.  Hence, we stimulated H295R cells, which are known to be 

sensitive to potassium unlike HAC15, with potassium at 10 mM and 20 mM (Figure 20). 

C21 did not regulates the potassium effect on CYP11B1 and CYP11B2 gene expression (Figure 

20).  

Figure 20: CYP11B2 and CYP11B1 expression in H295R after stimulation with C21 and K+ 

(n= 4) 

 

It has been demonstrated in some models that C21 sometimes presented regulatory effects only 

when administrated with low dose of AT1 receptor antagonist (for brief review see Foulquier 

S et al,. 2012).  To determine the effects of AT2R on aldosterone and cortisol production under 

AT1 receptor blockade we stimulated H295R cells with low doses of C21 coupled with 

irbesartan (Figure 21).  

C21 significantly increased CYP11B2 gene expression at 1nM.  This increase is blunted by 

irbesartan.  Moreover, no differences were found in CYP11B2 gene expression when C21 was 

administrated with irbesartan (Figure 21).  However, at 100 nM C21 increased CYP11B1 gene 

expression under a blockade of AT1 receptor.  To evaluate if this effect is AT2R-dependent, 

the AT2 receptor antagonist PD123319 will be used.    
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Figure 21: CYP11B2 and CYP11B1 expression in H295R cells after stimulation with C21 and 

irbesartan (n= 3). 

 

 

IV- Effects of compound 21 (C21) on CYP11B1 and CYP11B2 gene expression, and in 

aldosterone-producing adenoma (APA) and in normal adrenal gland (NAG). 

Stimulation of aldosterone and cortisol production can be studied ex vivo with adrenal tissue 

from patient.  Nevertheless, contrary to cells, these tissues heterogeneously expressed 

angiotensin receptors and cytochromes.  These differences account for high heterogeneous 

response to stimuli.  

In APA, C21 did not significantly affect CYP11B1 and CYP11B2 gene expression (Figure 22).  
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Figure 22: CYP11B2 and CYP11B1 expression in aldosterone-producing adenoma                          

after stimulation with C21 (n= 3). 

 

Of note, whereas C21 did not affect gene expression in APA, in NAG it significantly decreased 

CYP11B1 gene expression at 10 µM (Figure 23). 

Figure 23: CYP11B2 and CYP11B1 expression in normal adrenal gland after stimulation with 

C21 at 10 µM (n= 4) 
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Moreover, preliminaries data, showed an increase of aldosterone production in normal adrenal 

tissue after a stimulation with C21 at 10 µM (Figure 24).   

Figure 24: Offset of stimulation with C21 on aldosterone production in NAG (n= 2) 

 

As we did in cells, we used angiotensin II to stimulate aldosterone and cortisol production.  We 

did not observed any significant effect of C21 when co-incubated with angiotensin II (100 nM) 

in CYP11B1 and CYP11B2 gene expression in both tissues (Figure 25). 

Figure 25: CYP11B2 and CYP11B1 expression in NAG (n= 4) and APA (n= 3) after 

stimulation with C21 and Ang II 

NAG = normal adrenal tissue, APA = Aldosterone-producing adenoma 
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Of note, in APA and NAG tissues from these patients, AT2R gene expression is significantly 

lower in APA compared to NAG (Figure 26).  

Figure 26: Relative angiotensin II type 2 gene expression in NAG (n= 3) and in APA (n= 4) 

NAG= normal adrenal gland; APA= aldosterone-producing adenoma 

 

V- Effects of ACE2 activation on CYP11B1 and CYP11B2 gene expression in human 

adrenocortical cell lines (H295R). 

As previously described in introduction, the angiotensin converting enzyme 2 (ACE2) converts 

angiotensin II to angiotensin-(1-7).  We already demonstrated the presence of ACE2 in NAG 

and in APA, and we liked to determine whether DIZE, an ACE2 activator, may be involved in 

aldosterone and cortisol production regulation.   

Following previous in vitro study (Tao L et al., 2016), we used DIZE at a range of 

concentrations from 100 nM to 100 µM.  Angiotensin II is used, in one hand, to stimulate 

aldosterone and cortisol production, and, in a second hand, as a substrate for DIZE. 

We first verified if DIZE can increased ACE2 gene expression in human adrenocortical cells at 

high concentrations.  
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Angiotensin II increased ACE2 gene expression (Figure 27).  Moreover, when co-incubated 

with angiotensin II, at 1 µM DIZE increased ACE2 gene expression (Figure 27).  However, to 

determine if this increase is due to a potentialisation of angiotensin II effect or to a direct effect 

of DIZE, we will performed stimulations with DIZE alone.   

Figure 27: Relative gene expression of angiotensin converting enzyme 2 after stimulation 

with diminazene aceturate and angiotensin II in H295R cells (n= 4) 

 

We hypothesized a decrease of cell viability to explain the absence of effect at 10 µM and 100 

µM.   To test this hypothesis we evaluated the toxicity of DIZE at high concentrations on H295 

cells (Figure 28).  DIZE was found to be not toxic for human adrenocortical cells.  

 

 

 

 

Figure 28: Effect of diminazene aceturate on H295 cells viability (n= 2) 

 

Moreover, DIZE had not effect on CYP11B1 and CYP11B2 gene expression after a stimulation 

with angiotensin II (Figure 29).  

Treatment Cell viability (in %) 

vehicle  91  ± 0 

DIZE 10 µM 85  ± 1 

DIZE 100 µM 83  ± 5 
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Figure 29: CYP11B2 and CYP11B1 expression in H295R cells after stimulation                      

with diminazene aceturate and angiotensin II (n= 4) 
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Discussion 
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At a stage when the non-canonical pathway of the RAS is emerging as a protective arm of the 

system and targets for pharmacological interventions are being considered and actually 

developed, it seemed appropriate and timely to investigate the consequences of these novel 

strategies on the function of the human adrenal cortex.  The latter is the main site of production 

of key hormones for the regulation of sodium, water, and blood pressure balance as cortisol and 

aldosterone.  The latter, when produced in excess, is known to contribute substantially to 

cardiovascular pathologies and events, notably arterial hypertension and heart failure, but also 

in other conditions (Cesari M et al,. 2016).  Hence, in these conditions the probability of 

developing strategies to blunt aldosterone secretion would seem much desirable.  Likewise 

desirable is to known the effects on aldosterone and cortisol of agents that stimulate the 

receptors/pathways involved in the protective arm of the RAS as angiotensin II type 2 receptor 

(AT2R), angiotensin-(1-7) receptor (MasR), and alamandine receptor (MrgD).  

First and foremost, we investigated gene expression of AT1R, AT2R, MasR, MrgD, ACE, and 

ACE2 in human adrenal gland and in aldosterone-producing adenoma (APA).  We found the 

mRNA of the above mentioned components of the RAS.  In line with earlier studies 

(Pawlikowski M et al,. 2008; Herada K et al,. 2010; Wu Z et al,. 2010), we found a prevalence 

of AT1R gene expression compared to AT2R gene expression in both tissue.  Furthermore, 

compared to AT2R gene expression, MrgD gene is expressed at the same level, whereas MasR 

gene is more than 15-fold lower expressed.  Moreover, we observed a significant decrease of 

AT2R gene expression in APA compared to NAG.  In addition, ACE and ACE2 gene are equally 

expressed in healthy adrenal gland and in APA.   

Since this does not prove that the protein are made, we investigated the protein with immunoblot 

and immunohistochemistry.  For immunohistochemistry we used APA and the direct adjacent-

tissue.  Although not clearly normal, this APA-adjacent tissue is composed of the three cortex 

layers, whereas APA is solely made of a zona fasciculata a zona glomerulosa (Nakamura Y et 

al,. 2014).  With immunoblots and immunohistochemistries we strongly demonstrated the 

presence of AT1R, AT2R, MasR, MrgD, ACE, and ACE2 in both tissues.  Additionally, we 

observed a stronger positive staining of AT1R in zona glomerulosa compared to the two others 

layers of the adrenal cortex.  AT1R can be used as a marker for zona glomerulosa.  

To the best of our knowledge this study is the first to demonstrate the presence of MasR, MrgD 

and ACE2 in human adrenal cortex.  Indeed, it was known since years that AT1R and AT2R 

were expressed in human adrenal tissue and in APA (Tanabe A et al,. 1998; Allen AM et al,. 
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2000; Herada K et al,. 2010; Wu Z et al,. 2010), whereas the presence of MasR has been 

demonstrated, but only recently, in rats (Shefer G et al. 2016).   

Having found the protein of the above mentioned components of the RAS, we investigated their 

functions using a pharmacological approach.  

In compliance with preceding studies, and notably some performed in HAC15 cells, (Yatabe J 

et al,. 2011; Oki K et al,. 2013), aldosterone and cortisol secretion were not impacted by acute 

stimulation with low doses of Ang-(1-7) (< 1 µM), not even when the aldosterone production 

is upregulated.  However, at a concentration higher than 1 µM, Ang-(1-7) bound to AT1R and 

acted as an agonist.  To our knowledge, agonist effect of Ang-(1-7) through AT1R was only 

observed once (Caruso-Neves C et al,. 2000).  Indeed, even if Ang-(1-7) is affine for AT1R at 

high concentration (Table 2) (Bosnyak S et al,. 2011), it has been reported that at high dose, 

Ang-(1-7) acts most often as an AT1R-antagonist (Mahon JM et al,. 1994).  To explain ours 

results only two hypothesis can be proposed.  First, as observed in other tissues (Lyngso C et 

al,. 2009), AT1R and MasR can heterodimerized in human adrenal gland, and it is not yet clear 

how it can affect the signal transduction.  To note, we did not explored this hypothesis.  The 

second one relies on a difference in the intracellular pathway activated, despite a binding of 

Ang-(1-7) on the Ang II-binding site.  In this hypothesis, Ang-(1-7) and Ang II would be in 

competition for the same AT1R-binding site.  One of the methodology to demonstrate this 

hypothesis is the crystallography technique.   

What’s more, as mentioned above, MasR was found in rat adrenal tissue.  In fructose-fed rat 

model, used to study the metabolic syndrome, Yonit Marcus et al observed a chronic regulatory 

effect of Ang-(1-7) treatment on circulating aldosterone and plasma renin  (Marcus Y et al,. 

2013).  Later, to determine whether MasR can be involved in this regulation, they demonstrated 

its expression in zona glomerulosa, and stimulated these cells with increasing concentrations of 

Ang II, potassium, and ACTH concomitantly with Ang-(1-7) at 1 µM (Shefer G et al,. 2016).  

Despite an absence of effect on baseline aldosterone secretion, Ang-(1-7) significantly 

decreased aldosterone production due to Ang II and ACTH.  However, it did not affect 

potassium effect.  Using the MasR antagonist A779 at high concentration (1 µM), which 

blunted Ang-(1-7) effect, they concluded that MasR counter-regulates Ang II and ACTH 

aldosterone secretion in rat.  This observation is opposite to ours.  These differences can be 

explain with different comments.  First of all, the species are different.  And it is known since 

decades that angiotensin II receptors are not the same in rodent and in human.  Whereas AT1R 
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exists under two isoforms on rodents (AT1Ra and AT1Rb), only one isoform is expressed in 

human.  Furthermore, they did not determine the relative quantity of the three main angiotensin 

receptors: AT1R, AT2R, and MasR.  Of course, nothing is still known about MasR quantity in 

rat adrenal gland, but a prior study (Herada K et al,. 2010) proved, via RT-PCR and 

immunoblot, that AT2R is ten-fold more expressed in rat adrenal cortex than in adrenal medulla, 

whereas in human AT2R is two-fold more present in adrenal medulla than in adrenal cortex.  

Finally, they did not investigate the possible AT2R/MasR heterodimerization.  Thus, we 

concluded that the effects observed in rats could be not relevant in human pathophysiology.  

Furthermore, considering the relative quantity of AT2R in rat adrenal cortex compared with 

adrenal medulla, the regulatory role of Ang-(1-7) could be an effect of its binding to AT2R.  

Indeed, they did not use AT2R antagonist, so beyond AT1R effects, AT2R activation remains 

a possible explanation.  

Regarding C21, we found the same agonist effects than Ang-(1-7) in our in vitro models. 

Indeed, in human adrenocortical cell lines, HAC15 and NCI-H295R, at high doses (from 10 

µM) C21 binds to AT1R and acutely acts as a secretagogue for aldosterone and cortisol.  As 

for Ang-(1-7), it has been shown that C21 is affine for AT1R with an IC50 of 10 µM (Bosnyak 

S et al,. 2011). However, unlike Ang-(1-7), it has already been observed, in vivo, that C21 can 

play a role as an AT1R agonist at high dose (Danyel LA et al,. 2013; Verdonk K et al,. 2012).  

To note, in our experiments, C21 did not counter-regulate the secretagogue effect of Ang II and 

potassium.  This last observation is interesting because it allows us to conclude that the effect 

of C21 is aldosterone and cortisol concentration-independent.  

As discussed above, acute stimulation with Ang-(1-7) and C21 increased aldosterone and 

cortisol secretion, because MasR and AT2R were significantly less expressed than AT1R.  And 

in our in vitro models, i.e human adrenocortical cell lines, the respective proportion of the three 

angiotensin receptors is respected.  Thus, it is a useful model to study the role of the non-

canonical RAS in human adrenal cortex.   

By the way, in addition to cell lines, we also used tissues directly from patients to study C21 

effect.  Even if it is known that APA has a low sensitivity to Ang II (Nakamura Y et al,. 2014), 

this model is efficient to study the effect of several compounds on aldosterone and cortisol 

secretion in human.  To be sure of the availability of AT1R, tissue-slices were starved in serum-

free medium for 6 hours. Another method could consist to wash tissue with a Krebs solution.  
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Nonetheless, the heterogeneity of response is a limitation of this model.  To have clear results 

an important number of experiments has to be performed.   

Besides, we have to take in consideration the significant down-regulation of AT2R gene in APA 

compared to NAG.  Indeed, it has been strongly demonstrated that the AT1R-opposed actions 

of AT2R are not only determined by specific signaling pathways but also by the levels of AT2R 

expression within a given tissue (Foulquier S et al,. 2012).  Thus, AT2R could have a 

physiological effect in healthy adrenal tissue, but probably not in APA. 

Furthermore, we stimulated human adrenocortical cells with an ACE2 activator, DIZE which 

has been co-incubated with Ang II.  Firstly, we observed an increase of ACE2 gene expression 

under stimulation with Ang II.  Moreover, this gene expression was significantly increased 

when Ang II was coupled with DIZE at 1 µM.  To determine if this effect is only due to DIZE 

or to a potentialisation of Ang II effect, stimulations with DIZE alone will be performed. 

Nevertheless, DIZE was not effective to decrease aldosterone and cortisol production in human 

adrenocortical cells.   

ACE2 plays a critical role in maintaining the balance between the canonical and the non-

canonical pathways of the RAS.  In our models, Ang-(1-7) had no effect on ACE2 gene 

expression, whereas Ang II increased it.  Thus it may exist a feed-back loop which can be 

overstimulated with DIZE.  However, we did not know if ACE2 is functional in human adrenal 

cortex.  Moreover, we did not quantify Ang-(1-7) concentration in human adrenal cortex.  

Finally, we clarified the role of Ang II on cortisol production.  This effect is still controversial 

(Seyedi N et al,. 1995; Carey RM et al,. 2005).  We strongly demonstrated that Ang II and 

potassium are mediators for cortisol secretion in vitro. 
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Since two decades, and the first observation of AT2R-counter-regulatory effect, the non-

canonical RAS pathway is extensively studied.  However, nothing was investigated in human 

adrenal gland and in aldosterone-producing adenoma (APA). 

We clearly demonstrated the presence of the main protective RAS pathway components in 

human adrenal and in APA.  The pharmacological approach used showed that Ang-(1-7) did 

not affect aldosterone and cortisol production at low concentration not even in case of 

aldosterone upregulation.  C21 had similar effect.  Both acted only at high concentrations when 

they lose their specificity.  We concluded that AT2R and MasR are too lowly expressed in 

human adrenal cortex and could not be considered as therapeutic targets to decrease aldosterone 

and cortisol secretion.  However, as we determined the loss of Ang-(1-7) and C21 specificity at 

high concentrations, our results are useful for pharmaceutical industry, particularly for Vicore 

Pharma which kindly provides us C21.  More interestingly, we showed the effect of Ang II and 

DIZE in ACE2 gene expression.  The stimulation of this enzyme will be study more extensively.   

Finally, in this work, we did not study the possible role of alamandine in aldosterone and 

cortisol production.  Furthermore, it remains to investigate a possible AT1R/MasR, and 

AT2R/MasR heterodimerization, that could be an interesting possibility to decrease cell 

proliferation in APA.  
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Conclusion figure: Proposed model. 

The angiotensin receptors studied were found in healthy adrenal cells and in aldosterone-

producing adenoma.  Furthermore, Angiotensin-(1-7) binds to MasR and AT1R, but is 

effective on aldosterone and cortisol secretion only via AT1R.  The same effect was shown 

with C21.  DIZE probably increased ACE2 gene expression. 

AT1R= angiotensin II type 1 receptor; AT2R = angiotensin II type 2 receptor; MasR= 

angiotensin-(1-7) receptor; MrgprD= alamandine receptor; ACE2= angiotensin converting 

enzyme 2; DIZE = diminazene aceturate; Ang-(1-7)= angiotensin-(1-7)  
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