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A B S T R A C T

The increasing number of human objects in space has laid the foundation of a

novel class of orbital missions for servicing and maintenance. The main goal of

this thesis is the development, building and testing of a robotic manipulator for

the simulation of orbital maneuvers, with particular attention to Active Debris

Removal (ADR) and On-Orbit Servicing (OOS).

There are currently very few ways to reproduce microgravity in a non-orbital

environment: among the main techniques, it is worth mentioning parabolic flights,

pool simulations and robotic facilities. Parabolic flights allow to reproduce orbital

conditions quite faithfully, but simulation conditions are very constraining. Pool

simulations, on the other hand, have fewer constrictions in terms of cost, but the

drag induced by the water negatively affects the simulated microgravity. Robotic

facilities, finally, permit to reproduce indirectly (that is, with an appropriate con-

trol system) the physics of microgravity. State of the art on 3D robotic simulations

is nowadays limited to industrial robots facilities, that bear conspicuous costs,

both in terms of hardware and maintenance.

This project proposes a viable alternative to these costly structures. Through

dedicated algorithms, the system is able to compute in real time the consequences

of these contacts in terms of trajectory modifications, which are then fed to the

hardware in the loop (HIL) control system. Moreover, the governing software can

be commanded to perform active maneuvers and relocations: as a consequence,

the manipulator can be used as the testing bench not only for orbital servicing

operations but also for attitude control systems, providing a faithful, real-time

simulation of the zero-gravity behavior.

Furthermore, with the aid of dynamic scaling laws, the potentialities of the

facility can be exponentially increased: the simulation environment is not longer

bounded to be as big as the robot workspace, but could be several orders of mag-

nitude bigger, allowing for the reproduction of otherwise preposterous scenarios.
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The thesis describes the detailed mechanical design of the facility, corrobo-

rated by structural modeling, static and vibrational finite element verification. A

strategy for the simulation of impedance-matched contacts is presented and an an-

alytical control analysis defines the set of allowable inertial properties of the sim-

ulated entities. Focusing on the simulation scenarios, an innovative information

theoretic approach for simultaneous localization and docking has been designed

and applied for the first time to a 3D rendezvous scenario.

Finally, in order to instrument the facility’s end effector with a consistent sen-

sor suite, the design and manufacturing of an innovative Sun sensor is proposed.
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I N T R O D U C T I O N

1.1 the history of robotics

The image of the robot as a mechanical artifact has its origins in the 1940s,

when writer Isaac Asimov conceived the robot as an automaton of human

looks but without emotions. Asimov describes the term robotics as the

science committed to the study of robots, founded on three fundamental

laws [1]:

1. A robot may not injure a human being or, through inaction, allow a

human being to come to harm.

2. A robot must obey the orders given by human beings, except when

such orders would conflict with the first law.

3. A robot must protect its own existence, as long as such protection

does not conflict with the first or second law.

It is not until the 1960s that robots started to be seen as viable manufac-

turing devices for the industry, along with CAD and CAM systems, which

later influenced conspicuously the advances of technology. The principal

milestones of modern automation can be summarized as follows [2]:

1947 - first electric powered teleoperator is developed

1956 - George Devol and Joseph Engelberger form the worlds first

robotics company, Unimation.

1
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1961 - Unimate, the worlds first industrial robot, goes to work on a

General Motors assembly line

1966 - the Stanford Research Center begins development of Shakey,

the first mobile robot

1978 - Unimation develops the PUMA robot

1979 - the SCARA robot design is introduced in Japan

1989- chess playing robot HiTech defeats chess master Arnold Denker

1997 - Sojourner rover performs semi-autonomous operations on Mars

2000 - Hondas humanoid robot ASIMO steps onto the stage.

2001 - Canadarm2 was launched into orbit and attached to the ISS

2004 - Cornell University revealed a robot capable of self-replication

1.2 state of the art

In the aerospace industry, robotics has its leading edge applications. The

two principal macroareas of interest are the Orbital Robotics and the Plan-

etary Rovers [3].

Orbital Robotics consists in the implementation of manipulation and

mobility for orbital operations and servicing scenarios. Planetary Rovers,

on the other hand, address planetary exploration and surface manipula-

tion.

Orbital robotics, due to space environment (radiation, micro-gravity,

thermal stresses, etc.) poses unique challenges to robot and robot algo-

rithms, and sets the need for new and innovative autonomous systems.

The design of servicing operations and devices is probably one of the

most important research field in space robotics. Servicing operations range
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from simple inspection to upgrade of components and refueling [4]. Histor-

ical analysis indicates that the combination of the 5% failure rate of launch

vehicles coupled with 9% failure rate of satellites during their operational

lives will cause the failing of 1/7 of the satellites before the expected end

of life (EOL) [5]. Nowadays, the usual approach in trying to avoid these

failures is to use proven (usually a synonymous for obsolete) technology

and to incorporate massive redundancy. Although the use of consolidated

technology helps to mitigate mission risk, it also has the negative effect of

limiting satellite performances.

The increase of costs associated with growing complexity of payloads

have led to the need of augmenting satellite design lifetimes in order to ob-

tain a sufficient investment return. One downside of this increased lifetime

is the inability to update the hardware and software with modern avionics,

in an era governed by Moores law1. This slowdown limits the agility of

satellite operators in capturing emergent terrestrial markets [6].

All these limitations and the substantial absence of a maintenance pro-

gram for satellites are pushing hard for the development of on-orbit servic-

ing (OOS). Among the main operations that fall under the acronym OOS,

the most important are:

• Inspection: the observation of a space object in order to gather infor-

mation about its status.

• Relocation: the external movimentation of an object that has attitude

problems and the on-board systems are not able to finalize the correct

operational configuration.

• Augmentation: in the case of a modular satellite, it is the upgrading of

the obsolete hardware in favor of state of art technology.

1 Moore law’s affirms that there is a doubling of the processing speed of new computer

chips every 18÷24 months.
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• Assembling: the merging of mating modules to construct space sys-

tems that wouldn’t be possible otherwise.

• Restoration: the refueling, docking, station keeping providing, repair-

ing and replacing hardware.

Being able to fix and/or refurbish an out-of-order satellite with un-

manned vessels might give rise to a multi millionaire business: NASA

estimated the costs of a single Hubble servicing mission at $2 billion. If

a robotic servicing satellite was to be sent instead, the economic savings

would be enormous, not to mention the avoidance of human losses (which

is not an unlikely scenario in a manned mission). Nowadays, a lot of space

agencies and private companies are pushing in this direction.

The Canadian aerospace firm MacDonald, Dettwiler and Associates, for

example, is developing the Space Infrastructure Servicing (SIS), a space-

craft for refueling of communication satellites in GEO orbits [7]. SIS is

being designed to carry a toolkit able to open most of the ∼40 types of

on-orbit fueling systems. Intelsat, which owns a 52 communications satel-

lites fleet as of November 2016 [8], has shown a keen interest on the project,

founding and sponsoring the inaugural mission with an investment of $280

millions [9].

NASA, on the other hand, has already developed and launched a demon-

stration technology named Robotic Refueling Mission (RRM). The servic-

ing satellite has successfully performed an extensive series of robotically

actuated fuel transfer on the ISS (2011) with the aid of the Canadarm ma-

nipulator. The long term goal of NASA for this project is to transfer this

technology to the commercial market.
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1.2.1 The need for relative attitude operations

Close-approach operations fall under the acronym of OOS: regardless of

the operation to be carried out, it is necessary to be able to predict and

control the chaser-target relative motion. The simulation of orbital opera-

tions presents a substantial difficulty in the research community, since the

dynamics to which an object is subjected in space can not be fully repro-

duced on earth.

The are different types of facilities that focus on the reproduction of a

micro-gravity condition in a laboratory setting, and each one has its ad-

vantages and disadvantages according to the phenomena that are under

analysis. Among these facilities there are water pools, low friction tables,

parabolic flights and robotic manipulators.

The focus of this thesis is on the latter category, since it is the only one

among the ones mentioned that allow to have 6 degrees of freedom and an

imposed microgravity behavior. Water pools, for example, take advantage

of neutral buoyancy to achieve a pseudo weightlessness condition; this,

however, can be heavily disturbed by drag force that the water exerts on

the object.

Low friction table, on the other hand, if the setup is adequate (balanced

platform and controlled planarity of the surface), allow to simulate micro-

gravity; the only caveat is constituted by the limited dexterity of the system,

which guarantees only 2 of the 3 translational degrees of freedom.

Parabolic flights enable to reproduce orbital conditions quite faithfully,

but simulation conditions are very constraining. Moreover, this is clearly

an expensive solution, not suitable for every-day testing campaigns.

Robotic manipulators, ultimately, can be controlled to dynamically be-

have as an object in space. That is, the zero-gravity condition is obtained

via software by imposing the motion characterized by the desired dynam-

ics; the software can also perform orbital operations in which contact dy-
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namics is present (docking, berthing, manipulation, etc.) and react dynam-

ically with a compliant system [10, 11].

As of 2016, there exist very few facilities that are capable of performing

microgravity experiments. One the most important is the EPOS European

Proximity Operations Simulator experiment conducted by the Deutsches Zen-

trum für Luft und Raumfahrt (DLR) [12].

The original EPOS was designed as a joint-venture between DLR and

ESA in the late 1980s, as the need for a rendezvous and docking (RvD)

testing facility arose. In 1991, the facility began operations, and was consti-

tuted by three subsystems: a 6 DOF gantry, able to host a 100 kg payload

at the end effector, a structure carrying the target object and an auxiliary

illumination system to achieve realistic lighting conditions.

This system served for testing for almost 20 years and was renewed

due to the demand for better RvD simulation accuracy. The current fa-

cility was built in 2009 and it’s a joint effort between the DLR’s GSOC

and DLR’s Robotics and Mechatronics Institute, which contributed to the

robotic technology, on behalf of their solid background on the subject. The

approaching vehicles are simulated via two anthropomorphic industrial

robots, with the target robot fixed on the ground and the chaser mounted

on a 25 m rail for extra mobility.

An industrial PC feeds in synchronous trajectories via a Simulink
® in-

terface and the control and measuring systems allow for a position and

angular accuracy of respectively 2 mm and 0.2ą. All the trajectory simu-

lation are carried out via an implementation of Clohessy-Wiltshire coordi-

nate system.
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(a)

(b)

(c)

Figure 1: EPOS RvD simulation facility: laboratory configurations (a), (b) and

conceptual operating diagram (c)
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1.3 thesis motivation

This project proposes a viable alternative to the huge and costly structures

described in the pervious paragraph; through dedicated algorithms, the

system will be able to simulate microgravity in a laboratory setting. More-

over, the governing software can be commanded to perform active maneu-

vers and relocations: as a consequence, the manipulator can be used as

the testing bench for rendezvous scenario and orbital operations. Further-

more, with the aid of dynamic scaling laws, the potentialities of the facility

can be exponentially increased: the simulation environment is not longer

bounded to be as big as the robot workspace, but could be several orders of

magnitude bigger, allowing for the reproduction of otherwise preposterous

scenarios in a laboratory environment.

Finally, the robot itself can be used as part of the simulated maneuvers.

Berthing operations and uncooperative target docking, for example, can

be performed. This latter research field, uncooperative docking, as long

with RvD rendezvous and docking operations, are under study at CISAS

research center for Active Debris Removal as well as for on-orbit servicing:

the manipulator presented in this thesis could serve as the main testing

facility for the simulation and the verification of theoretical and numerical

analysis.

The work done in the doctorate years will comprise the development

and design of the robotic facility, the software simulation of collision and

contacts, the detailed modeling of the arm mechanics and vibrational modes,

the design and manufacturing of a novel attitude sun sensor and the de-

velopment of an innovative information theoretic scenario for close range

inspection and localization.



2

P R E L I M I N A R I E S

2.0.1 Overview

Before embarking in the kinematic and dynamic analysis, it is necessary

to identify the main components of a robotic system. Even for a complex

architecture, it is always possible to identify a general block diagram [13]:

Figure 2: Robotic system components.

The core component is the mechanical system, made up of a manipula-

tion apparatus (arms, links, end effectors, artificial hands) and a movement

apparatus (wheels, crawlers, legs). The capability to execute a task is made

possible by the actuators block, which provides motion to the manipulation

and movement apparatus.

The connection with the outside world is made possible by the presence

of sensors, enabling the acquirement of data on the internal status (propri-

oceptive sensors, such as encoders) and on the external status (exteroceptive

sensors, such as force sensors or vision system)

9
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Finally, the control block permits to make the whole system an har-

monic working machine, reading data from the sensors and commanding

the actuators with well-tuned control laws.

2.0.2 Mechanical structure

The main distinction between different robots concerns their mechanical

structure. That is, the way in which the links are connected and the way

in which they move with respect to each other. A robot manipulator is a

sequence of rigid bodies (called links) which are connected by joints. The

configuration is most of the times that of an open kinematic chain; usually,

at the end of the manipulator, there is the end-effector, which provides the

needed dexterity for the execution of tasks.

The mobility is ensured by the presence of joints, which can be of dif-

ferent type and can introduce one or multiples degrees of freedom1.

Mechanical design considerations when building robots have narrowed

the joint choices to two main types: revolute or prismatic. In a revolute

joint, the connected bodies rotate with respect to a common axis, whereas

in a prismatic joint they slide without rotation. Both of these configurations

have a single degree of freedom. When more than one degree of freedom

is needed, other less used joint options are available (Fig. 3).

For simplicity, industrial robots have usually single degree of freedom

links. The number of DOF characterizes the mobility of the robot in the

operational space: in order to arbitrarily position the end effector in 3D

space, 6 DOF are required (excluding for the moment the singularities), 3

being translational and 3 rotational.

When a robot has less than 6 DOF, it will have some limitations on the

end effector orientation in his working space; when, on the other hand,

1 Note that, in the special case of singularity, they do not provide any contribution to the

overall number of degrees of freedom.
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Figure 3: Joint configuration types

there are more than 6 DOF, the robot is kinematically redundant, and the

same position in space can be obtained via several configurations.

Among the main robot configurations choices, there exist cartesian,

cylindrical, spherical, SCARA, anthropomorphic [13]. In our case, since we

are looking for the maximum dexterity, the anthropomorphic manipulator

seems to be the best choice.

Among the requirements that need to be satisfied in this project, there is

the workspace: the manipulator, in fact, has to have sufficient dexterity in

a cube whose volume is at least 0.5 m×0.5 m×0.5 m. In the sizing analysis,

the link lengths will be chosen in order to fulfill this requirement.

We summarize in the following sections the main results obtained in the

kinematics and dynamics of the arm from a previous work by this author

[10], which will serve as the starting point for all the further analysis.
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Figure 4: Link and joint notation schematic

2.1 kinematics review

Kinematics studies of the motion of a body that considers the object with-

out taking into account the dynamics causing the movement. This branch

of robotics accounts for the study of the position and its higher order

derivatives2 (velocity, acceleration, jerk etc). The links are numbered start-

ing from the base of the arm, which is fixed and is numbered as link 0. The

first moving link is link 1, and so on, until the last link, which is link n.

Each link presents several characteristics that need to be considered

during the design process, but as long as kinematics is concerned, we only

need information about the relationship between the two neighboring joint

axes. Here, the links will be treated as rigid bodies.

2 Taken with respect to time or other variables.
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Figure 5: Frame configuration obtained via DH procedure.

2.2 denavit-hartenberg convention

In order to describe the manipulator and to accomplish the kinematic and

dynamic analysis it is necessary to implement a solid and recursive nota-

tion. The Denavit-Hartenberg convention defines the relative position and

orientation of two consecutive links by determining the reference frames at-

tached to each link and computing the coordinate transformations among

them. The notation used in this work is presented in Fig. 4; for the com-

plete description of the notation, the reader should refer to [10].

The first three frames of the robot, using the DH framework, can be

visualized for a random configuration in Fig 5. As far as the end effector is

concerned, the frames will have the same origin, and they are oriented as

shown in Fig 6.

Once all the frames are defined, their characteristic parameters are
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Figure 6: Frame configuration for end-effector structure.

stored in a matrix. For this application, the parameters are summarized

in Tab. 1.

Joint (i) αi−1 ai−1 di θi

1 0 0 0 θ1

2
π
2 0 -d2 θ2

3 0 l2 -d3 θ3

4 -π
2 l3 -d4 θ4

5 -π
2 0 0 θ5

6 -π
2 0 0 θ6

Table 1: DH matrix containing the parameters for the frame definition.

Concluding the DH framework definition, the roto-translation matrices

for the manipulator are:

0
1T =


cθ1 −sθ1 0 0

sθ1 cθ1 0 0

0 0 1 0

0 0 0 1

 1
2T =


cθ2 −sθ2 0 0

0 0 −1 d2

sθ2 cθ2 0 0

0 0 0 1


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2
3T =


cθ3 −sθ3 0 l2
sθ3 cθ3 0 0

0 0 1 −d3

0 0 0 1

 3
4T =


cθ4 −sθ4 0 l3
0 0 1 −d4

−sθ4 −cθ4 0 0

0 0 0 1



4
5T =


c(θ5 − π

2 ) −s(θ5 − π
2 ) 0 0

0 0 1 0

−s(θ5 − π
2 ) −c(θ5 − π

2 ) 0 0

0 0 0 1

 5
6T =


cθ6 −sθ6 0 0

0 0 1 0

−sθ6 −cθ6 0 0

0 0 0 1



These matrices are a function of the joint variables only. Note that the

last two transform-matrices present the same 4th column: this means that

the translation with respect to the previous frame is zero, and there is only

a rotational transformation. This is due to the fact that the same origin was

chosen for these frames (Pieper’s hypothesis [10, 14]).

2.3 direct kinematics

With these matrices computed, we can introduce the direct kinematics prob-

lem (DK). Direct kinematics allows for the knowledge of the cartesian posi-

tion of each link of a kinematic chain once the joint variables q = [q1 . . . qn]

are know.

In a manipulator, the most important result that the DK procedure pro-

vides is certainly the knowledge of the Cartesian position and orientation

of the end effector.

This is done by simply taking the product of the transforms:

0
NT(q) = 0

1T(q1) 1
2T(q2) ...N−1

NT(qN) (1)
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If the cartesian position is needed (in terms of [px, py, pz]), we recall the

general expression of a rototransitional matrix:

0
NT(q) =


r11 r12 r13

0px,N

r21 r22 r23
0py,N

r31 r32 r33
0pz,N

0 0 0 1

 (2)

In this fashion, it is possible to instantly know the position of each joint

in the Cartesian space:
0pj = 0

jT(1 : 3, 4) (3)

Where 0pj is the position of the j-th joint with respect to the origin. The

orientation can be obtained in a similar way from from Eq 2:

0
jR(q) = 0

jT(1 : 3, 1 : 3) (4)

2.4 inverse kinematics

Inverse kinematics (IK) consists in the solution of the Cartesian-to-joint

variables problem. The solution to this problem is less straightforward

than the direct kinematics case, and it is strictly linked to the geometrical

configuration of the manipulator. Not for all cases, in fact, there exists an

analytical solution; moreover, for those cases whose analytical solution is

available, this is usually difficult and time consuming. However, some con-

figurations might provide large simplifications for the inverse kinematics

problem. A 6 DOF robot, for example, does not have a closed form solu-

tion in general. However, if three consecutive axes intersect at a point, then

Piepers solution can be applied [14, 13].

In this thesis, the last three axes of the manipulator intersec: the origins

of frames 3
4T, 4

5T, 5
6T, in fact, are coincident. The merging point can be
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calculated in base coordinates as:

0p4 = 0
1T 1

2T 2
3T 3p4 =


px

py

pz

1

 (5)

from which:

0p4 = 0
1T 1

2T 2
3T


a3

−d4sα3

d4cα3

1

 (6)

we can also state that:

0p4 = 0
1T 1

2T


f1(θ3)

f2(θ3)

f3(θ3)

1

 (7)

where we defined: 
f1(θ3)

f2(θ3)

f3(θ3)

1

 = 2
3T


a3

−d4sα3

d4cα3

1

 (8)

Using 2
3T, the following expressions for f can be obtained:

f1 = a3c3 + d4sα3sα3 + a2

f2 = a3cα2s3 − d4sα3cα2c3 − d4sα2cα3 − d3sα2

f3 = a3sα2s3 − d4sα3sα2c3 + d4cα2cα3 + d3cα2
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We define also the following parameters:
g1 = c2 f1 − s2 f2 + a1

g2 = f1cα1s2 + f2cα1c2 − f3sα1 − d2sα1

g3 = f1sα1s2 + f2sα1c2 + f3cα1 + d2cα1

And we can write, with some algebra:

0p4 =


c1g1 − s1g2

s1g1 + c1g2

g3

1

 (9)

The square magnitude of 0p4, using Eq. 9, is:

r = f 2
1 + f 2

2 + f 2
3 + a2

1 + d2
2 + 2d2 f3 + 2a1(c2 f1 − s2 f2) (10)

We define some simplifying parameters:

k1 = f1

k2 = − f2

k3 = f 2
1 + f 2

2 + f 2
3 + a2

1 + d2
2 + 2d2 f3

k4 = f3cα1 + d2cα1

And we finally state: r = (k1c2 + k2s2)2a1 + k3

z = (k1s2 − k2c2)sα1 + k4

It can be noted that the dependence on θ1 has been eliminated and the

dependence from θ2 has been drastically simplified. The first step is to

consider the solution for θ3. We distinguish three cases:

1. If a1 = 0, then r = k3. Since k3 is a function of θ3 only, we can obtain a

quadratic equation in tan θ3
2 which yields the solution for θ3
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2. If sα1 = 0, then z = k4. We can obtain a quadratic equation and solve

for θ3

3. If a1 ̸= 0 and sα1 ̸= 0, we can eliminate with an auxiliary equation

s2 and c2, and we end up with a 4th degree equation, which will be

solved for θ3

In our particular case, a1 = 0 and we can compute θ3 referring to the first

bullet point. We then focus on the solution of θ2 and θ1 which is trivial. At

this point, we know θ1, θ2 and θ3. Since the three last axis are intersecting,

it is possible to compute the remaining angles with the aid of elementary

matrix transform algebra.

In the real case scenario, a required attitude will have to be obtained the

end effector with reference to the base frame, which is 0
6Tatt. From Pieper’s

solution, 0
3T can be computed:

0
4T = 0

1T(q1) 1
2T(q2) 2

3T(q3) (11)

The desired orientation, 0
6T, differs from the actual orientation 0

3T only

due to the action of the last three joints, whose contribution is described

by the following matrix:

3
6T(q4, q5, q6) = 0

3T
−1 0

6T (12)

From this matrix, the computation of the angle is straightforward, and

we proceed algebraically from the symbolic expression of 3
6T, containing

the DH parameters and trigonometric functions of q4, q5, q6.

2.5 differential kinematics

The relationship between joint velocities and end effector velocities is pro-

vided by the Jacobian matrix. With the knowledge of this matrix and the

end effector desired trajectory (expressed in terms of velocities), the kine-
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matic problem can be solved: joint velocities can be directly obtained and

then, with a numerical integration, also their instantaneous position.

The computation of the Jacobian is done with the geometric approach

[10, 14], by computing the contributions of each joint velocity to the com-

ponents of the end-effector cartesian linear and angular velocities.

2.5.1 Geometric approach

From solid mechanics, we recall that the velocity of point P belonging to a

rigid body moving in 3D space, with respect to frame A, can by expressed

as [13, 15]:
AVP = AVB + A

BR BVP (13)

Where B is a reference matrix fixed to the body. In this case we consider

the motion of frame B as a pure translation. If a rotation is present, Eq. 15

becomes:
AVP = AVB + A

BR BVP + AΩB × A
B

BP (14)

Where AΩB is the angular velocity of the body with respect to frame A.

By using this equation and its derivatives we can approach the Jacobian

matrix derivation as well as the dynamics. For the solution of differential

kinematics, the velocities of each link (linear and angular) are needed: a

technique called velocity propagation will be used in order to obtain a

recursive and implementable sequence. We start from the base: frame 0

will be considered the fixed, reference frame. We define vi as the linear

velocity of the origin of the frame attached to link i; same notation applies

to wi. The superscript on the left of a parameter represents the frame in

which it is expressed.

We compute the velocities in order, from the base to the end effector.
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Figure 7: Velocity vectors for two adjoining links.

Referring to Fig. 7, velocity of link i+1 will be the one of link i with the

addition of a contribution from joint i+1. That is:

ivi+1 = ivi + iωi × iPi+1 (15)

Where iPi+1 is the vector connecting the two links. There is no need to

calculate this, since the i
i+1T matrices have this information stored in their

fourth column. To get the velocity of link i+1 expressed in frame i+1, we

rearrange the previous equation:

i+1vi+1 = i+1
iR (ivi + iωi × iPi+1) (16)

Adjusting the reference frames, we have:

iwi+1 = iwi + i
i+1R θ̇i+1

i+1k̂i+1 (17)

Where:

θ̇i+1
i+1k̂i+1 = i+1


0

0

θ̇i+1

 (18)
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The same equation expressed in frame i+1 becomes:

i+1wi+1 = i+1
iR

iwi + θ̇i+1
i+1k̂i+1 (19)

We can finally write the system of equations that will be used to propagate

the velocities from i = 0, the base frame, to i = N, which corresponds to the

velocities (linear and angular) of the end effector.i+1vi+1 = i+1
iR (ivi + iωi × iPi+1)

i+1wi+1 = i+1
iR

iwi + θ̇i+1
i+1 ˆki+1

For a 6 DOF manipulator, the joint and end effector velocities relationship

can be written as: [
v

ω

]
=

[
JP

JO

]
·
[
q̇
]

(20)

Where the Jacobian can be written as:[
JP

JO

]
=

[
zi × (pe − pi)

zi

]
(21)

Which, in our case, becomes:[
JP

JO

]
=

[
z1 × p̃1 z2 × p̃2 z3 × p̃3 z4 × p̃4 z5 × p̃5 z6 × p̃6

z1 z2 z3 z4 z5 z6

]
(22)

Where p̃i = pe − pi. The elements of the matrix are thoroughly explained

in [10, 14]. Equations 22 can be easily solved with the aid of a Matlab
®

code; the value of J depends on the instantaneous configuration and its

symbolic expression is available in the Appendix of a previous publication

by this author [10].

2.5.2 Inverse differential kinematics

The inverse kinematics problem is:

q̇ = J−1(q̄) · v (23)



2.5 differential kinematics 23

From this vector, since v is known from the trajectory planning, we can

obtain the joint variable position using an integration:

q(t) =
T∫

0

q(t) dt + q(0) (24)

The initial position q(t = 0) can be obtained with the inverse kinematics

method presented in the previous section.

Eq. 24 is implemented in the code as a discrete linear expression, using

Heun’s numerical integration, which ultimately yields:

q(ti+1) = q(ti) + q̇(ti) ∆t q(ti+1) (25)

At this point, it is possible to summarize the procedure with a block

diagram (Fig. 8). If we insert the integration method, then the solution pro-

cedure can be represented by the blocks in Fig. 9. In the diagram, Euler’s

integration method is implemented.

Figure 8: Inverse differential kinematics diagram.
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Figure 9: Inverse differential kinematics diagram with integration method.

2.6 dynamics

This section deals with the study of the forces required to cause the mo-

tion. In the field of robotics, two main approaches are available: the Euler-

Newton and the Euler-Lagrange [13, 16]. They both lead to the same re-

sults, but they are indeed different, both conceptually and computationally.

2.6.1 Euler-Lagrange method

Euler-Lagrange method is an energy based approach. With this technique,

the equations of motion can be obtained in a systematic way independently

of the reference frame. By choosing a set of generalized coordinates de-

scribing the link positions (the q = [q1 . . . qn] are the natural choice), it is

possible to define the Lagrangian of the structure:

L = T − U (26)

Where T and U are the kinetic and potential energy. Lagrange equations

is given by:
d
dt

(
∂L
∂q̇

)
−
(

∂L
∂q

)
= τ (27)
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Where τ are the generalized forces, or non-conservative forces acting on

the links: they are mainly given by the actuator torques and the joint fric-

tion torques. From this equation it is possible to examine the relationship

between the joint positions and the generalized forces.

However, although the formulation is fairly easy to understand, its im-

plementation is actually troublesome. The equations of the kinetic and the

potential energy are, in fact:

T =
1
2

n

∑
i=1

n

∑
j=1

bij(q)q̇iq̇j =
1
2

q̇TB(q)q̇ (28)

Where B(q) represents:

B(q) =
n

∑
i=1

(mliJPi
TJPi + JOi

TRiIliRi
TJOi + mmi JPm

TJPm + JOmi
TRmiImiRmi

TJOmi)

(29)

And, for the potential energy:

U =
n

∑
i=1

(Uli + Umi) = −
n

∑
i=1

(mli g0
Tpli + mmi g0

Tpmi) (30)

These equations do not have an easy solution: Eq. 28, for example, is highly

non linear, and the B(q) matrix is made up of several nested components

that are not well suited for a quick, recursive approach. Moreover, the pres-

ence of partial derivatives and the fact that we need to deal with symbolic

quantities complicates the problem.

Thus, even tough this approach is good for having a sense of the physics

involved in the problem, it does not appear to be a viable method for a real

time code simulation.

2.6.2 Euler-Newton method

Euler-Newton approach is based on the balance of all the forces and torques

acting on the generic link of the manipulator. The solution of this problem

is well suited for a recursive approach, thus making this our choice for
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the dynamics simulation. The approach starts from the classic Newton’s

formula:

F = m v̇C (31)

From solid mechanics, we can recall that the moment acting on a rotating

body of inertia C I is given by:

N = C Iω̇ + ω × C Iω (32)

Where ω is the angular velocity and ω̇ is the angular acceleration. By know-

ing the trajectory to be followed, we then know the position, velocity and

acceleration of the joints (that is, q, q̇ and q̈). With these information and

with data about the mass distribution of each joint (mass and inertia ten-

sor), we can calculate the joint torques required at each link. This approach

is much more computationally-friendly, and its equations are suited for a

simple recursive technique. Thus, in this thesis we analyze dynamics with

the Euler-Newton method.

2.6.3 The Euler-Newton routine

Equations can be implemented by following Luh-Walker method, devel-

oped in 1980 [17]. It is made up of two parts: the outward and the inward

iteration. The first part consists on the calculation of ω, ω̇, v̇ v̇cm for all the

links of structure. These computations are propagated from link 1 to link N

of the chain, hence the name outward.

Outward part

Recalling the expression introduced in the kinematics section, the propaga-

tion of the rotational velocity is obtained as:

i+1wi+1 = i+1
iR

iwi + θ̇i+1
i+1k̂i+1 (33)
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Derivation of rotational velocity implies the derivation of the trasformation

matrix as well. We get:

i+1ẇi+1 = i+1
iR

iẇi + i+1
iR

iwi × θ̇i+1 + θ̈i+1
i+1k̂i+1 (34)

The linear acceleration is:

i+1v̇i+1 = i+1
iR [ iv̇i + iω̇i × iPi+1 + iωi × (iωi × iPi+1) ] (35)

The linear acceleration of center of mass of link i+1, expressed in Frame i+1,

is expressed by:

iv̇Ci = iv̇i + iω̇i × iPCi + iωi × (iωi × iPCi) (36)

Note that iPCi represents the distance from the i joint to the center of mass

of link i. As far as concerns the forces and torques acting on the link, we

can apply Eq. 31 and 32:

Fi = m v̇Ci (37)

Ni = C
i Iω̇i + ωi × C

i Iωi (38)

Summing up, the outward part of the solution process is then constituted

by solution of the following set of equations, starting from i=0 and arriving

to i=N-1:

i+1ẇi+1 = i+1
iR

iẇi + i+1
iR

iwi × θ̇i+1 + θ̈i+1
i+1k̂i+1

i+1v̇i+1 = i+1
iR [ iv̇i + iω̇i × iPi+1 + iωi × (iωi × iPi+1) ]

iv̇Ci = iv̇i + iω̇i × iPCi + iωi × (iωi × iPCi)

Fi = m v̇Ci

Ni = C
i I ω̇i + ωi × C

i I ωi

(39)

Inward part

The second part comprises the use of Newton Euler equations (Eq. 31 and

32) to obtain the inertial forces and torques acting on the links’ centers of

mass. Then, referring to the free body diagram of Fig. 10, the force and
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Figure 10: Free body diagram of link i, with force balance

moment balance equations need to be considered in order to extract the

joint torques.

Every link experiences inertial force and torque in addition to forces and

torques exerted on it by the adjoining links. From the free body diagram,

the force and torque equilibrium yield the following balance equations:

iFi = i fi − i
i+1Ri+1 fi+1 (40)

iNi = ini − ini+1 + (−iPCi) ×
i fi − (iPi+1 − iPi) × i fi+1 (41)

Where the following notation was used:

• fi is the force exerted by link i-1 on link i

• ni is the torque exerted by link i-1 on link i

Equation 41 can be rearranged with the aid of rotational matrices and the

results from Eq. 40:

iNi = ini − i
i+1Ri+1ni+1 − iPCi ×

iFi − iPi+1 × i
i+1Ri+1 fi+1 (42)
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Reordering Eq. 40 and Eq. 42, we can finally obtain the iterative expressions

needed. This time the index count for the solution will start from N and

decreases to 1.
i fi = iFi + i

i+1Ri+1 fi+1
ini = iNi + i

i+1Ri+1ni+1 + iPCi × iFi + iPi+1 × i
i+1Ri+1 fi+1

τi = inT
i Ẑi

(43)

Since the calculations start from the end effector and end at the first link,

this second part of the routine is called inward.

Initial conditions

For both inward and outward iterations, we need some starting conditions.

Referring to equations block 39, the computation process starts for i=0. This

means that some of the parameters need to be known: ω0, ω̇0, v̇0. These

have to be set in this fashion:

ω0 =


0

0

0

 ω̇0 =


0

0

0

 v̇0 = k ·


0

0

g

 (44)

Where k is zero if gravity is not considered, 1 if it is considered. Obvi-

ously, if the base is connected to ground, ω0 and ω̇0 will be zero.

The initial conditions concerning equations block 43 are related to the dy-

namic effects present at the end effector; these effects can be due to im-

pacts/contacts or to the presence of a tool or a load (i.e. industrial ma-

nipulators). In this case, we suppose these components to be zero, that

is, we suppose an unloaded robot, subjected only to its dynamics with no

external contributions (apart from gravity). Thus, the initial conditions are:

7 f7 =


0

0

0

 7n7 =


0

0

0

 (45)
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This algorithm is at the core of the robotic manipulator control and has

been thoroughly described and numerically verified in a previous work by

this author [10]. For details on the simulations please refer to [10, 11, 14].



3

P R E L I M I N A RY D E S I G N

3.1 master thesis results summary

A preliminary analysis of the design of the platform was performed by

the author in the Master Thesis "Design of a Robotic Arm for Laboratory

Simulations of Spacecraft Proximity Navigation and Docking" [Antonello,

2013].

In this work, an iterative approach was presented to solve the sizing

issue. It was found that several combinations of the parameters satisfy the

requirements.

Figure 11: Block diagram representing the iterative sizing process.

It is possible to draw a generic block diagram, presented in Fig. 11, that

represents the logic process on which the sizing procedure is based. In

31
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the picture, the blue writings represents the requirements, and are needed

for the calculation of the different steps, whereas the dotted lines are the

parameters that need to be assumed and then back-checked in a trial-error

type of procedure.

3.1.1 Original requirements and constraints

The preliminary choices for the robot sizing were based on the required

workspace of at least 0.5 × 0.5 × 0.5 m. The following lengths for the first

three links were chosen:

l1 = 0.7 m l2 = 0.7 m l3 = 0.6 m (46)

The material choice is fairly straightforward: what is needed is a mate-

rial with a high resistance-to-weight (RtoW) ratio. Weight saving is a must

in order to limit the size and cost of the motors. Extruded aluminium pro-

files proved to be the most favorable solution [10]: they presents a good

RtoW ratio, they are very easy to machine and there are a lot of section

choices which are relatively cheap due to the simple process (extrusion)

used in their production.

In the second iteration of this design process, a new set of leghts for the

links was defined:

l1 = 1 m l2 = 0.7 m l3 = 0.7 m (47)

This slight modification is due to a backiteration rising from the new re-

quirements on the end-effector payload, which has now been set at 2.5

kg. With this data, the chosen motors allowed for a slight increase in the

lengths of the links. In particular, link1 was increased of 40% due to the

foreseen docking and OOS applications; this, in turn, resulted in a newly

designed base joint for the satisfaction of the more demanding force and

torque constraints.
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The availability of a rough general design from [10] allowed to perform

fine tuning iterations in the choice of the link extruded sections and the me-

chanical components. The motors and gearings previously selected have

hence been accurately verified under the light of this fine tuning.

3.2 motor selection

The key parameters to seek for when choosing a motor are:

• high power-to-weight ratio

• low mass and inertia

• high rotational speed

• low backlash (e.g. high precision)

• low torque ripple

• (if available) accurate built-in sensors

The most common DC electric actuators can be further divided into

two classes: permanent-magnet DC servomotors and brushless DC servo-

motors [18].

In the brushless type, the rotor (made of ferromagnetic material) gen-

erates the magnetic flux, whereas the fixed external armature (stator) has

the windings. The commutation is provided by a position sensor placed

on the shaft, which generates the feed sequence for the windings.

It is clear that in the latter case, because of the absence of physical

contact between the rotor and the stator, the performances are definitely

superior. First of all, with no contact, the mechanical losses due to friction

are minimized. The elimination of brushes eliminates also the electric loss

due to voltage drops at the contact of brushes and plates. Moreover, with

no contact there is also less material wear, and the motor life is increased.
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3.2.1 Motors: torque requirements

The motor choice main driver is the torque required in the worst opera-

tional case. Three contributions need to be taken into account:

1. the torques needed for supporting the weight of the structure

2. the torques needed for withstanding the dynamic effects

3. the overall efficiency

For this application, the first contribution accounts for most of the

torque that needs to be provided. Due to the low velocity of this applica-

tion, the added dynamic effects due to the trajectory tracking will be taken

into account in the form of a correction factor chosen accordingly to the typ-

ical torques calculated in the dynamics simulations. Since this parameter is

evidently dependent from the simulated trajectory under analysis, it is not

possible to design an architecture that will satisfy all the conditions before-

hand. On the contrary, the correction factor will define an operative range

in terms of payload loading and acceleration of the end effector, which will

have to be respected every time a simulation scenario is designed by the

control block.

We start by analyzing the static situation: the motor torques depend

on the configuration, that is, on the values of the generalized coordinates

q̄ = [q1 . . . qn]. However, it is immediate to note that θ1 does not have any

relevance in changing the configurations loads. For the same reason, θ6 has

no influence neither.

The remaining coordinates θ2, θ3, θ4 and θ5 affect the torques needed for

static equilibrium. The situation can be further simplified by noting that

the end effector can be considered as a single body, thus arriving at the

conclusion that only θ2 and θ3 are playing a significant role in the variation

of the static torque. (With this simplification, the static torque analysis for

joint 1 and 6 is momentarily ignored).
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Figure 12: Simplified model of the robot structure.

3.2.2 Load analysis

When working with slender bodies, it is key to worry about their rigidity

in order to avoid bending and buckling [19]. In this case, due to the way

loads are applied, it is unlikely for buckling to occur for link 2 and link

3, whereas bending could be a serious issue. Moreover, a flimsy structure

might cause vibrations and disturbances. Link 1, on the other hand, could

be subjected to both buckling and bending.

To avoid these phenomena, proper sections need to be chosen. We

first analyze a simplified 2D structure with the arm fully extended. The

diagram in Fig. 12 schematizes the problem.

In the figure, FM is the weight of the motor and Fpay is the weight of

the payload. The latter accounts not only for the object attached at the

tip of the end effector, but also for the weight of the last three links. The

distributed loads represent the weight of the links.

This structure can be analyzed analytically in order to obtain the mo-

ment, shear and normal force distribution along the links. A qualitative
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Figure 13: Moment, shear and normal force behavior of robot’s simplified

structure.

plot of the general behavior is presented in Fig. 13.

It is clear that link 1 is subjected to the highest load, in terms of moment

(which is constant along its span) and normal force. The normal force

acting on this first link may create buckling: this situation has been already

analyzed in [10] and the selected link proved to be safe from buckling

phenomena.

Moving on towards the end effector, we can see that link 2 is subjected

to a bending moment that has the highest value at joint 2 and decreases in

a parabolic fashion until the end effector. The shear force acting on link 2

is linear.

The presence of a concentrated force at joint 3, induced by the weight of

the motor, changes the slope of the moment profile, which keeps decreas-

ing till zero at the end effector. On the other hand, there is a discontinuity

of the shear profile due to the concentrated load Fm (note that this offset is

equal to the value of the force), which decreases linearly from joint 2 to the

end effector, where its value is Fpay.

The sizing of the links, once the length is known, starts from the dis-

placement analysis. It is possible to set a requirement on the maximum

vertical displacement in the worst case configuration: this happens when

the manipulator is fully stretched (Fig. 12).
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With a simple analytical procedure, this approach led to the calculation

of the minimum moment of inertia Ix required for the links’ sections in [10].

The commercial link choice is then quite straightforward. The iterative

process for the selection of the links can be summarized as follows:

1. The motor and payload weights are accounted with a safety factor of

1.2

2. A maximum tip displacement of 4 mm is set

3. The displacement analysis is executed: this yields the product E · I

4. Knowing the material properties (and E), the value of I is obtained

5. A profile having this I and the previously estimated linear weight is

searched among the commercially available sections

6. If commercial profiles present higher weight for that I, the estimated

weight has to be increased. Analysis is executed again with these

modifications.

7. If commercial profiles present lower weight for that I, the estimated

weight has to be decreased. Analysis is executed again with these

modifications.

8. If there exists a commercial profile with the parameters used, then

the problem is solved and the procedure ends.

After the definition of the first-try parameters, we need to calculate the

displacement. From beam theory [20], the formula relating the moment

and the curvature induced on a beam is:Mx = −EIxyu′′ − EIxxv′′

My = −EIyyu′′ − EIxyv′′
(48)
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Figure 14: Load decomposition for structural analysis.

Since we assume to work with symmetric profiles, Ixy = 0. Moreover, in the

2D model, My = 0. We are left with the formula for the vertical displace-

ment:

v′′(x) = −Mx(x)
EIxx

(49)

Integrating twice this formula, it is possible to obtain the displacement of

the beam as a function of x. The main problem is to obtain the Mx(x) func-

tion. This can be easily accomplished remembering that we are analyzing

a linear elastic problem, and the superposition of effects is valid.

Therefore, the problem in Fig. 12 can be decomposed in three parts (we

initially assume the distributed weight to be constant, that is, link 2 and

link 3 to have the same profile): we obtain the three cases presented in

Fig. 14. The computation of the moments derives from static equilibrium,

and yields, for the three cases (referring to Fig. 12, we set the x axis as

starting from joint 2 and going right-wise, and L = L2 + L3):
M1(x) =

q
2

(L − x)2 if 0 ≤ x ≤ L,

M2(x) = Fm(L − x) if 0 ≤ x ≤ L2,

M3(x) = Fpay(L − x) if 0 ≤ x ≤ L

(50)

The moment diagrams are presented in Fig. 15. From these expressions,

we can obtain the corresponding displacements [20]:
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Figure 15: Moment diagrams for the three decomposed cases.

Case 1

EIv′′1 = −M1(x) (51a)

EIv′′1 = −q
2

(L − x)2 (51b)

EIv′1 = −q
2

[
L2x +

x3

3
− Lx2

]
+ C1 (51c)

EIv1 = −q
2

[
L2 x2

2
+

x4

12
− L

x3

3

]
+ C1x + C2 (51d)

From which, using the assumption of a fixed constraint at joint 2, v′(x = 0) = 0

and v′(x = 0) = 0. Thus, C1 = C2 = 0. The final expression for v1(x) is:

v1(x) = − q
24 EI

[
6L2x2 + x4 − 4Lx3

]
(52)

Case 2

EIv′′2 = −M2(x) (53a)

EIv′′2 = −Fm(L2 − x) (53b)

EIv′2 = −Fm

(
L2x − x2

2

)
+ C1 (53c)

EIv2 = −Fm

(
L2

x2

2
− x3

6

)
+ C1x + C2 (53d)

From which, using the assumption of a fixed constraint at joint 2, v′(x = 0) = 0

and v′(x = 0) = 0. Thus, C1 = C2 = 0. The final expression for v2(x) is:

v2(0 ≤ x ≤ L2) = − Fm

6 EI

[
3L2x2 − z3

]
(54)
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Since the load is effective till x = L2, the slope of the curvature past L2 will

remain constant, and the deformed curve will be a segment. Since we can

calculate the value of the displacement and its derivative in L2, the line

equation1 yields the formula for v2(x) when L2 ≤ x ≤ L:

v2(L2 ≤ x ≤ L) = − Fm

6 EI

[
3L2

2x − L3
1

]
(55)

Case 3

EIv′′3 = −M3(x) (56a)

EIv′′3 = −Fpay(L − x) (56b)

EIv′3 = −Fpay

(
Lx − x2

2

)
+ C1 (56c)

EIv3 = −Fpay

(
L

x2

2
− x3

6

)
+ C1x + C2 (56d)

From which, using the assumption of a fixed constraint at joint 2, v′(x = 0) = 0

and v′(x = 0) = 0. Thus, C1 = C2 = 0. The final expression for v2(x) is:

v3(x) = −
Fpay

6 EI

[
3Lx2 − z3

]
(57)

Putting together the three case, we can obtain the equation describing

the total displacement as the sum of v1, v2, v3:

v(x) =



1
6 EI{q[6L2x2 + x4 − 4Lx3]+

−4[Fm(3L2x2 − z3) + Fpay(3Lx2 − z3)]} if 0 ≤ x ≤ L2

1
6 EI{q[6L2x2 + x4 − 4Lx3]+

−4[Fm(3L2
2x − L3

1) + Fpay(3Lx2 − z3)]} if L2 ≤ x ≤ L

(58)

1 We can write the line equation as v2(x) = v′2(L2)(x − L2) + v2(L2), where v2(L2) = − Fm
3EI L3

1

and v′2(L2) = − Fm
2EI L2

1.
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Figure 16: Vertical displacement versus Ix value.

Finally, the tip displacement can be obtained by evaluating Eq. 58 for

x = L. This yields:

vtip = − qL4

8EI
−

FmL2
1(3L − L1) + 3FpayL3

6EI
(59)

The requirement set for the displacement is vtip. Since we are looking

for the value of I, Eq. 59 can be rewritten extracting EI:

EI = − 1
vtip

[3qL4 + 4FmL2
1(3L − L1) + 12FpayL3] (60)

The parameter E, Young’s modulus, is material dependent and is known:

for aluminium, E = 70 GPa. We are left with I, which can be easily com-

puted. The relationship between the required vtip and the minimum I

needed can be expressed with a plot (Fig. 16). It can be seen that the

smaller the requirement for the displacement becomes, the steeper the rise

in I is.
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The procedure now is straightforward: with the requirements and the

given values for the loads, I is computed. From commercial available pro-

files, the sections with a similar I are pinpointed, and the specific mass for

unit length is compared to the one imposed at the beginning (q).

If these values are close to each other, in a ±10% range, the assumptions

were good and the sections are readily available. If, on the other hand, this

is not happening, we need to re-iterate the process. Two parameters can

be changed: the requirement on the displacement and/or the weight for

unit length q. If, for example, the computed I is typical of profiles with

higher mass per unit length, the simulation will be repeated increasing the

presumed q. This tuning will finally provide a compatible solution. In our

case, the sizing parameters were chosen as follows:

Fm = 30 (61a)

Fpay = 50 kg (61b)

E = 70 GPa (61c)

q = 2 kg/m (61d)

vtip = 4 mm (61e)

With these data, Eq. 60 yields the value for the x moment of inertia:

Ix = 11.4 cm4

From commercial catalogues, we can find some typical extruded aluminium

profiles: for profiles with a linear weight similar to the one we chose, the

moment of inertia abundantly satisfies the computed value. In this case,

selection started by satisfying the minimal requirements presented in the

previous page. This resulted in the selection of the 30x60 Bosch Rexroth

profile, which has the following specifications:

Ix = 19.6 cm4 (62a)

Iy = 5.1 cm4 (62b)

q = 1.5 kg/m (62c)
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Figure 17: Bosch rexroth 30x60 extruded profile

Once this section was selected, we had to perform an additional iteration in

order to update the parameters of the simulations: weight requirement will

decrease from 2 kg/m to ∼1.5 kg/m. Since we have the moment of inertia of

the section, we solve equation Eq. 59 for the maximum displacement. This

yields:

vmax
tip = 3.63 mm (63)

Which satisfies the requirement set at the beginning. With this initial draft

of the robot structure, we proceed to the following stage of the design, in-

troduced in the following pages, in which we add detail to the mechanical

model and we perform a differentiated selection of the links for each of the

arm sections.

3.3 stiffness-based positioning precision map

The static analysis presented in the previous section provided an engineer-

ing model to define the section properties for the links. The problem can

be restated if we assume that the geometrical properties are known: it is

interesting to note, in fact, that once the design is completed, it is possible
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Figure 18: Complete diagram of efforts acting on the manipulator.

to create a 3D map of the effects of the assembly’s flexibility in terms of

end-effector displacement.

In applications in which high positioning precision is of outmost impor-

tance, a model that takes into account the intrinsic mechanical limitation

due to the non-infinite rigidity could be applied to the control system to

adaptively correct the commanding angles of the joints. In order to design

such a model, we generalize the problem by parametrizing the characteris-

tics of the system.

In addition, we now take into account the first link flexibility and the

horizontal displacement it generates, which was ignored in the first level

computations of the previous section.

Supposing that the last three links can be accounted for as a concen-

trated force, we obtain the diagram presented in Fig. 18.

Once the moment diagram is computed in the general case, we can use

beam deflection theory to obtain the displacements. Since we suppose to

have symmetric sections:

v′′(x) = −Mz(x)
EIxx

(64)

In order to find the displacement at the end effector, we need to extract the



3.3 stiffness-based positioning precision map 45

Figure 19: Total diagrams for a) normal force, shear and b) bending mo-

ment.

position and attitude in an sequential fashion, and use the superposition of

effects to compute the end result. The iterative algorithm can be described

as follows (with x being the coordinate along the direction of the beam):
x

y

θ


i+1

=


x

y

θ


i

+ R ·


li+1∫∫ Mz(x)

EIxx∫ Mz(x)
EIxx


i+1

(65)

Where the rotation matrix R ensures the correctness of the sum in the case

of non parallel links.

In this case, the moments to which the links are subject, expressed in

the local reference frame of the i − th link, are:

M1(x) = M1 = F2 l2 + F3 (l2 + l3) + q2 ·
l2
2
2

+ q3 l3 ·
(

l2 +
l3
2

)
(66)

M2(x) = q2
l2
2
2
−q2 l2 x + q2

x2

2
+ q3 l2 l3 + q3

l2
3
2
− q3 l3 x

+ (F2 + F3) l2 + F3 l3 − (F2 + F3)x
(67)

M3(x) = q3
(l2 + l3)2

2
+ q3

x2
2

2
− q3(l2 + l3)x + F3(l2 + l3) − F3x (68)
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The angular deflection and y-displacement caused by these bending

moments are:

v′1(x1) =
1

EI1
· M1x1 (69)

v′2(x2) =
1

EI2

(
q2

l2
2
2
− q2 l2

x2

2
+ q2

x3

6
+ q3 l2 l3 + q3

l2
3
2
− q3 l3

x2

2

+ (F2 + F3) l2 + F3 l3 − (F2 + F3)
x2

2

) (70)

v′3(x3) =
1

EI2

(
q2

l2
3
2

x +
x3

3
− 2

x2l3
2

+ F3 l3x − F3
x2

2

)
(71)

v1(x1) =
1

2 EI1
· M1x2

1 (72)

v2(x2) =
1

EI2

(
q2

l2
2
2
− q2 l2

x3

6
+ q2

x4

12
+ q3 l2 l3 + q3

l2
3
2
− q3 l3

x3

6

+ (F2 + F3) l2 + F3 l3 − (F2 + F3)
x2

2

) (73)

v3(x3) =
1

EI2

(
q2

l2
3
4

x2 +
x4

12
− x3l3

3
+ F3 l3

x2

2
− F3

x3

6

)
(74)

In terms of tip deflection, if we assume the base of the first link to be

the origin of a 2D cartesian reference frame, the composite equation to

compute it is:

vee = v1 + v2 + v3 (75)

vee =

[
v1

l1

]
+

[
cos(v′1) sin(v′1)

− sin(v′1) cos(v′1)

] [
l2
v2

]
+

[
cos(v′2) sin(v′2)

− sin(v′2) cos(v′2)

] [
l3
v3

]
(76)
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This approach can be extended to the computation of the end effector dis-

placement for each joint configuration.

The equations need to take into account the general coordinates θ2 and

θ3 and are independent from θ1. A way to approach the problem would be

to scale the distributed loads and the concentrated forces according to the

configuration under analysis, that is:

q†
2 = q2 cos(θ2) q†

3 = q3 cos(θ3) (77a)

F†
2 = F2 cos(θ2) F†

3 = F3 cos(θ3) (77b)

Naturally, the rotation matrices will contain also the rotation due to the

configuration. This, ultimately, allows to obtain a map of the entire manip-

ulator’s workspace which describes the positioning error due to the link

flexibility and payload loading.

The complete expressions in this case are the same of Eq. 71, 73, 74,

with the only caveat of the modified loading. The visualization of this per-

formance parameter is shown for different joint configurations in Fig. 20,

where the norm of the displacement error is represented for the angular

set [θ2; θ3] spanning from −π to +π.

In more detail, the same plot is separated in Fig. 21-25 into the x, y

components of the resulting end effector displacement. In these plots, the

parameters being used are:

E = 70 · 109 Pa (78a)

I = 19.60 · 10−8 m4 (78b)

l1 = 1 m (78c)

l2 = 0.7 m (78d)

l3 = 0.7 m (78e)

With the loads being:

F1 = 100 N (79a)
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Figure 20: End effector deflection, norm

F2 = 50 N (79b)

F3 = 30 N (79c)

q = 1.50 kg/m (79d)

Which are derived from the previous section. From the plot, it is pos-

sible to start a refinement process of the current architecture: first of all,

it can be seen by comparing the x and y displacement, that most of the

displacement happens in the x-axis; this can be greatly improved by in-

creasing the stiffness of the first link. Since the weight of link 1 will be

unloaded by a proper bearing structure, the added weight will not influ-

ence the sizing of the motors (apart from the added rotational inertia). To
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Figure 21: End effector deflection, x-component
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Figure 22: End effector deflection, y-component
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Figure 23: End effector deflection, norm. Contour plot
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Figure 24: End effector deflection, x-component. Contour plot
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Figure 25: End effector deflection, y-component. Contour plot



3.3 stiffness-based positioning precision map 54

this extent, we modify the choice of link 1 with a more suitable profile: in

this case, the Bosch 90x90L was selected:

Ix = 211.1 cm4 (was 19.6 cm4) (80a)

Iy = 211.1 cm4 (was 5.1 cm4) (80b)

q = 6.5 kg/m (was 1.5 kg/m) (80c)

Then, for the selection of the next two links, we started from the baseline

Bosch 30x60 configuration selected in the previous chapter and applied a

tapered approach: we increased progressively the second link section until

we reached a reasonable tradeoff between the increased stiffness and the

increased weight (which will naturally influence the selection of motor 2).

Finally, we selected the Bosch 45x90SL profile, where SL stands for

super − light. These are the specifications:

Ix = 73.40 cm4 (was 19.6 cm4) (81a)

Iy = 9.1 cm4 (was 5.1 cm4) (81b)

q = 2.4 kg/m (was 1.5 kg/m) (81c)

The last link is kept unchanged and is a Bosch 30x60 profile. Before pro-

ceeding with FEM analysis, the new design was tested for tip displacement.

The results are shown in Fig. 27-32: as expected, this new configuration

drastically reduced the norm of the displacement, with a mean reduction

of 54%. The highest displacement, happening when the arm is fully ex-

tended, is reduced to:

vmax
tip = 1.41 mm (82)

The data used in the plots is summarized in the following:

E = 70 · 109 Pa (83a)

I1 = 211.1 · 10−8 m4 (83b)

I2 = 73.40 · 10−8 m4 (83c)

I3 = 19.60 · 10−8 m4 (83d)
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Figure 26: Bosch profiles chosen for link 1, 2 and 3 respectively.

l1 = 1 m (83e)

l2 = 0.7 m (83f)

l3 = 0.7 m (83g)

With the updated loads being:

F1 = 100 N (84a)

F2 = 50 N (84b)

F3 = 30 N (84c)

q1 = 6.5 kg/m (84d)

q2 = 2.4 kg/m (84e)

q3 = 1.50 kg/m (84f)

Reassuming the results obtained in this section, the links’ sizing param-

eters are:

length [m] area [cm2] Ix[cm4] Iy[cm4] q [kg/m] mass [kg]

link 1 1 24.1 211.1 211.1 6.5 6.5

link 2 0.7 9.04 73.4 18.1 2.44 1.71

link 3 0.7 5.5 19.6 5.1 1.5 1.05
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Figure 27: End effector deflection, modified designed, norm.
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Figure 28: End effector deflection, modified designed, x-component.
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Figure 29: End effector deflection, modified designed, y-component.
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Figure 30: End effector deflection, modified designed, norm. Contour plot
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Figure 31: End effector deflection, modified designed, x-component. Con-

tour plot
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Figure 32: End effector deflection, modified designed, y-component. Con-

tour plot
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Figure 33: Torque profiles for different arm configurations, 3D plot.

3.4 motors and gears selection

Using the results obtained in the previous paragraph, it is now possible to

plot the torque required at joints 2 and 3 for the chosen links for each of

the arm configurations in the workspace. Fig. 33 and 34 allow the determi-

nation of the required motor torques, by taking into account the efficiency

and the correction factor to account for the dynamic loading during typical

trajectory simulations.

When the arm is fully stretched, there is a maximum of the torque to

be provided at joint 2. The torques required in the dynamic case [10] are

in the +10÷12% range of the static torque. A good design strategy shall be

to multiply the maximum values obtained from Fig. 33, 34 by a dynamic

correction coefficient of 1.2. Moreover, in addition to the dynamic effects,

we need to take into account also friction and all the additional hardware

and harness weight needed in the installation.

An additional safety factor (SF) of 1.1 can be reasonably introduced.
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Figure 34: Torque profiles for different arm configurations, 2D plot.

Besides, this allows to still have some authority margin when the critical

conditions are reached.

As far as joint 1 is concerned, it can be seen that, ideally, there are

no torque requirements for static equilibrium: since the axis of rotation is

parallel to the gravity vector, the vectorial moment acting on joint 1 due

to gravity can not be handled by joint 1. Consequently, an appropriate

bearing attached to joint 1 will be needed in order to handle this load.

In this case, the only torque contribution for the sizing of motor 1 is

given by inertial and dynamic loads, which can be inferred from [10]. A

sizing torque of 10 Nm seems to be a reasonable choice. We again multiply

this value by the usual safety factor SF.

The last three joints are clearly not subjected to high torque values. Joint

4 experiences the maximum static torque in the case in which link 3 is

parallel to the z0 direction and link 4 is perpendicular to link 3. Maximum

torque for joint 5 happens when link 5 and its axis of revolution lie on the

ground plane.

Joint 6 maximum torque takes into account only dynamic related torques:

as long as link 6 and the objects connected to it are axial-symmetric, there
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are no acting torques for static equilibrium.

From [10] we can see that for the fastest trajectory simulated, a torque

value of 7·10−6 Nm is needed. However, we are in the approximation of an

axialsymmetric body connected to the shaft whose axis of giration is coinci-

dent with the shafts axis. Since other bodies, non necessarily axialsymmet-

ric, might be attached to it for testing, and due to possible misalignments

between the axis, the torque required could be bigger. In order to stay away

from saturation, we can think of increasing the requirements: a commer-

cial motor in the 0.1÷0.2 Nm range appears to be more than sufficient to

withstand misalignments and (limited) extra weight.

The following table summarizes the maximum torque required by each

motor (all values are in Nm):

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Static torque / 85.9 20.3 0.8 0.7 /

Dynamic correction 10 103.1 24.4 1.02 0.84 0.2

SF correction 12 113.9 26.8 1.12 0.92 0.22

There are no problems in finding a motor that satisfies the torque re-

quirement for joint 6. Problems arise when looking at the other joints. The

maximum output torque for an average commercial motor is usually on

the order of ∼1 Nm: a transmission gear is obviously needed.

This kind of device allows to up-size/down-size a motor in terms of

torque; the consequence is a proportional change in the revolution speed,

according to the following laws:

θ̇out =
1
η
· θ̇in (85)

τout = η · τin (86)

From which:

θ̇in · τout = θ̇out · τin (87)
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Where η is the gear ratio. However, this is an ideal law: in the real case

mechanical losses are present. Clearly, a good performing transmission, in

terms of efficiency, is what we are looking for. The reduction ratio should

be as high as possible, as long as the minimum rotational speed require-

ment is satisfied.

Moreover, a high reduction rate means usually a longer series of re-

duction stages, which decrease the efficiency and increase the backlash.

Among the cohort of available gear drives, planetary gears represent a

good solution for this application. Although their performances dwarf if

compared to harmonic drives, their quality-to-price ratio is extremely high,

and the backlash is still very limited.

For this application, the motor choice was Maxon
®, since a factory

integrated gearing can be requested. In order to satisfy the requirements,

the following pages describe the parts that were selected for the simulator.

As far as the motors are concerned:

Joint 1 2 3 4 5 6

Motor model EC 45 EC 60 EC 90 EC 45 EC 45 EC 32

Nominal voltage [V] 24 48 48 12 12 12

Nominal current [A] 3.21 5.94 2.27 2.02 2.02 1

Nominal speed [rpm] 4860 2670 1610 2940 2940 2790

Nominal torque [mNm] 128 859 533 55 55 25.1

Power [W] 70 400 90 30 30 15

Max efficiency [%] 85 88 85 76 76 73

Weight [g] 141 2400 600 75 75 46

Model number 397172 167131 244879 200142 200142 339268

Table 2: Selected Maxon
® motors for the manipulator.

As far as the gearings are concerned, the selected parts are listed in

Tab. 3.
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Joint 1 2 3 4 5 6

Gear model GP 42C GP 81A GP 52C GS 45A GS 45A GS 38A

Reduction factor 126:1 308:1 113:1 47:1 47:1 30:1

Stages 3 3 3 3 3 3

Max efficiency [%] 72 70 68 76 76 73

Weight [g] 460 3700 770 224 224 60

Model number 203127 110413 223095 301171 301171 110454

Table 3: Selected Maxon
® gearings for the manipulator.

3.5 control electronics and sensors

The sensors for the motor control are constituted by in-built encoders,

which have the following characteristics:

Joint 1 2 3 4 5

Encoder model M 256 HEDL 9140 M 512 M 256 M 256

Counts per turn 2048 500 6400 2048 2048

Frequency [kHz] 500 100 500 500 500

Channels 2 3 2 2 2

Model number 462005 137959 411966 462005 462005

Table 4: Selected Maxon
® encoders for the manipulator.

In order to control the motors, the electronics has been chosen from the

Maxon
® catalogue, and consists of the following boards, each dedicated

to a single motor:

Joint 1 2 3 4 5 6

Board model EP 24.5 EP 70.10 EP 70.10 EP 24.5 EP 24.5 EP 24.2

Table 5: Selected Maxon
® controllers for the manipulator.
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The final torques, obtained combining the motor and gear assemblies,

and taking into account their respective efficiencies, are:

Joint 1 2 3 4 5 6

Gross torque [Nm] 16.13 264.6 60.23 2.59 2.59 0.75

Net torque [Nm] 11.61 162.98 34.81 1.49 1.49 0.41

Required torque [Nm] 12 113.9 26.8 1.12 0.92 0.22

Compound efficiency [%] 61 62 58 58 58 53

Compound weight [g] 601 6100 1370 299 299 106

Table 6: Final motor performances.

3.6 interface design

In order to properly transfer the required torque, it is mandatory to design

adequate interfaces between the motors and the links. The main problem

arising when designing a rotative system is the innate presence of uncer-

tainties in the manufacturing and assembling that might lead to unaccept-

able tolerances in the shaft connections. If these misalignments are not

adequately accounted for, the shaft can experience excessive torques and

forces that could eventually damage the system.

A wise design principle when transmitting rotative motion, especially

with high torques, is to insert a decoupling element that takes care of the

misalignments, being these linear or angular, while maintaining torsional

rigidity. Also, the addition of this element allows to unload the shaft of the

motor, which is not designed to carry continuos axial/radial loading.

Easy-to-implent solutions are belts and/or pinions design. The main

problem that these components bear are the introduction of a) control non

linearities and b) mechanical backlash. The addition of a flexible element

in the form of a belt, in fact, modifies the dynamic response of the system
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thus affecting the performances of the control architecture: in addition, the

effective contribution of these modifications is difficult to estimate prop-

erly.

The preferred solution is to add a flexible coupling: in this way, we

can accommodate varying degrees of misalignment and some parallel mis-

alignment. In this application, all the transmissions between motor and

link are mediated with a flexible coupling with high torsional rigidity: the

only exceptions, due to the low level of torque to which they are subject,

are joints 5 and 6, which are connected directly. The shafts are then un-

loaded through the use of two bearings properly spaced: this permits to

avoid radial shaft loading and to limit the moment induced by the links.

The solutions for links 2 and 3 are conceptually identical, whereas links 1

and 4 differ due to the vertical shaft configuration: in these cases, the shaft

is tapered in order to sit on the upper bearing and properly unload the

axial force and bending moment; the second bearing unloads the radial

force.

In Fig. 35-37 the solutions for the horizontal and vertical shafts are illus-

trated for joints 1, 2 and 4.
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Figure 35: Section view of joint 1.
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Figure 36: Section view of joint 2.
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Figure 37: Section view of joint 4.
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3.7 final design

The following section summarizes the inertial characteristics of the final

system. The inertia tensors, due to the relative complexity of the struc-

tures, are calculated with the aid of SolidWorks
® "Mass properties" tool.

The frames used in this calculation are centered in the center of rotations

defined with Denavit-Hartenberg’s notation (Fig. 38-39). A wireframe pic-

ture allows for easier identification of the assembly under analysis.

SOLIDWORKS Educational Product. Solo per uso didattico.

Figure 38: Frame 1 and 2 (x=green, y=red, z=blue).
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SOLIDWORKS Educational Product. Solo per uso didattico.

SOLIDWORKS Educational Product. Solo per uso didattico.

Figure 39: Frame 3, 4 and 5 (x=green, y=red, z=blue).
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3.8 inertial properties

• Assembly 1: link, motor, support structure, hardware fasteners

m1 = 15387.08 g (88)

−−→
Com1 =


−78.18

−0.00

−369.55

 mm (89)

I1 =


4.93 · 109 −5.37 · 103 2.2199 · 106

−5.37 · 103 5.232 · 109 7.747 · 104

2.2199 · 106 7.747 · 104 3.1078 · 108

 g · mm2 (90)

• Assembly 2: link, motor, support structure, hardware fasteners

m2 = 4896.27 g (91)

−−→
Com2 =


491.45

0.03

−24.96

 mm (92)

I2 =


3.3917 · 107 1.8840 · 104 −1.4974 · 108

1.8840 · 104 1.7614 · 109 −5.4241 · 103

−1.4974 · 108 −5.4241 · 103 1.732 · 109

 g · mm2 (93)

• Assembly 3: link, motor, support structure, hardware fasteners

m3 = 2299.15 g (94)
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−−→
Com3 =


409.64

7.25

13.04

 mm (95)

I3 =


4.9254 · 106 1.3251 · 107 8.4872 · 105

1.3251 · 107 6.1623 · 108 6.2855 · 103

8.4872 · 105 6.2855 · 103 6.1545 · 108

 g · mm2 (96)

• Assembly 4: link, motor, support structure, hardware fasteners

m4 = 486.74 g (97)

−−→
Com4 =


0.36

103.31

40.97

 mm (98)

I4 =


9.182 · 106 1.335 · 103 2.243 · 103

1.335 · 103 2.4517 · 106 6.6737 · 105

2.243 · 103 6.6737 · 105 6.8299 · 106

 g · mm2 (99)

• Assembly 5: link, motor, support structure, hardware fasteners

m5 = 210.98 g (100)

−−→
Com5 =


5.55

16.98

30.06

 mm (101)

I5 =


6.842 · 105 1.9588 · 104 1.4696 · 104

1.9588 · 104 6.162 · 105 1.2017 · 105

1.4696 · 104 1.2017 · 105 1.311 · 105

 g · mm2 (102)
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Finally, the assembled structure has the following characteristics:

• Total weight: 34.405 kg (without harness)

• Maximum extension of the arm: 1680 m

• Maximum height of the arm: 3170 m (with basement)

SOLIDWORKS Educational Product. Solo per uso didattico.

Figure 40: Base.

SOLIDWORKS Educational Product. Solo per uso didattico.

Figure 41: Joint block 1.
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SOLIDWORKS Educational Product. Solo per uso didattico.

Figure 42: Joint block 2.

SOLIDWORKS Educational Product. Solo per uso didattico.

Figure 43: Joint block 3.

SOLIDWORKS Educational Product. Solo per uso didattico.

SOLIDWORKS Educational Product. Solo per uso didattico.

Figure 44: Joint block 4 and 5.
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3.9 solidworks renders

In this section the graphical rendering of the manipulator is presented.

First, each link assembly (link, motor, support structure, hardware fasten-

ers) is displayed; subsequently, the whole structure is rendered in different

positions and configurations.

Figure 45: Render, base.
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Figure 46: Render, joint 2.
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Figure 47: Render, joint 3.
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Figure 48: Render, joint 2. Detail.
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Figure 49: Render, joint 3. Detail.
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Figure 50: Render, end effector.
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Figure 51: Render, complete arm.
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Figure 52: Render, complete arm with mounted Sun sensor.
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3.10 manufacturing , procurement and assembling

In this section the hardware for the manipulator facility is presented. The

motors have been procured from the company Maxon
® Motors and the in-

terfaces are custom manufactured. The pictures show the procured pieces

and the assembled joints. Fasteners used for this application are metric

standard. Additional details are available upon request.

Figure 53: Motors with attached gearings, Maxon
®.



3.10 manufacturing , procurement and assembling 87

Figure 54: Mechanical parts for joint 1, Aluminum Alloy 6082.
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Figure 55: Mechanical parts for joint 2, A.A. 6082 and Stainless Steel 304.

Figure 56: Mechanical parts for joint 3, A. A. 6082 and Stainless Steel 304.



3.10 manufacturing , procurement and assembling 89

Figure 57: Mechanical parts for joint 4 and 5, Aluminum Alloy 6082.
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Figure 58: Joint 1 assembly, no motor installed.
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Figure 59: Detail of link 1 with shaft holder. Bottom view.
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Figure 60: Joint 2 assembly, no motor installed. The black component is the

dual bearings shaft holder.
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Figure 61: Joint 3 assembly, motor installed. The silver component is the

dual bearings shaft holder
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Figure 62: Link 3 assembly, detail of the shaft-link interface. No shaft holder

installed.

Figure 63: Joint 4 assembly, mounted on link 3, with motor installed.
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Figure 64: Link 3 shaft-link interface assembly, shaft holder installed.

Figure 65: Joint 5 assembly, mounted on link 4, with motor installed.
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Figure 66: Joint 6 assembly, mounted on link 5, with motor installed.

Figure 67: Global view of the assembled components as of November 2016.
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3.10.1 Motor and rack wiring

In the following figures the rack assembly with the controllers and switch-

ing power supply unit, along with the wired motors are presented. The

pictures were taken while performing the parameter tuning of the motors.

Figure 68: Motor 2 under parameter tuning and closeup of custom break-

out board.
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Figure 69: Motor 3 under parameter tuning.

Figure 70: Motor 4 under parameter tuning.
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Figure 71: Rack assembly under construction. Controller are placed on the

top shelf and power supply on the lower part.



4

F I N I T E E L E M E N T S A N A LY S I S

4.1 problem definition

Once the CAD model of the facility has been finalized (refer to the previ-

ous chapter), it is possible to perform further inspection of the mechanical

performances.

In this chapter, the static performances are analyzed and compared to

the previous results obtained with the simplified Matlab
® model. This

ultimately proved the validity of the model, which is in accordance with

the FEM simulations: a slight difference in the results is detected due to

the presence of the interfaces, which add some flexibility to the system.

In addition, after the correctness of the model was verified for the static

case, attention was given to the modal analysis of the multi-body system,

in order to inspect the vibration modes and the effect of the elasticity of

the bodies. Modal analysis is needed in order to investigate the dynamics

of the contacts that can be simulated by the facility without incurring into

excessive vibration or resonance: this can be ultimately used to design a

range of contact experiments in terms of characteristics of the contact force

(frequency, amplitude and direction).

A classic approach to solve elastodynamics problem uses the Finite El-

ement Method (FEM), based on the discretization of the system in smaller

slabs with elastic and inertia properties [21].

Most research omits the analysis of the dependency of the shift of the

modal frequencies with respect to the joint configuration; this is funda-

mental for the development of an optimal control aimed to the reduction

100
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of vibrations [22].

A FEM model designed in Ansys
®

17 allowed for the simulations of the

modal behavior in a discrete number of points inside the workspace. After-

wards, with the aid of interpolation, using nonlinear regression tools, the

spatial modal continuous distribution was estimated: the designed model

provided a goodness of fit of R2=0.93.

Finally, using the information that the modal analysis provided, slight

mechanical modifications took place in order to augment the rigidity of the

system without modifying significantly the compound mass.

4.2 static loading verification

In order to compare the FEM model against the Matlab
® simulations for

the deflection, we performed a cohort of different loading and configura-

tion scenarios. We present below an extract of the verification campaign

[10].
First of all, the unloaded case was taken into account. Configurations

compared are, in terms of joint angles:

• θ2 = 0◦; θ3 = 0◦

• θ2 = 30◦; θ3 = −60◦

• θ2 = 80◦; θ3 = −160◦

After the unloaded case, a fictious weight was added to both model, Mat-

lab
® and Ansys

®: this represents the payload at the robot tip, which

will be typically represented by a mockup of a CubeSat and/or a docking

interface. In order to take into account a realistic weight (frame, electron-

ics, sensors, harness, etc.), the simulation campaign was performed with

a loading of 1 kg [10]. In the following pages, printouts from Matlab
®

and Ansys
® are presented: the black dot in the contour plots indicates the
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configuration-specific deflection. On the other hand, the maximum value

in the Ansys
® plots can be found in the left-hand color-bar.
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4.2.1 Case 1.0: unloaded end effector, θ2 = θ3 = 0◦

Figure 72: Unloaded robot, θ2=θ3=0
◦, Matlab

® model and Ansys
® model.

In this case, the angles for joints 2 and 3 are θ2 = θ3 = 0◦ respectively:

the end effector is not loaded with any payload. The comparison between

the Matlab
® model and the Ansys

® simulation yielded the following

results for the displacement:

Matlab
®: 2.74 mm

Ansys
®: 2.89 mm → ∆ = 5.5%
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4.2.2 Case 2.0: unloaded end effector, θ2 = 50◦, θ3 = −100◦

Figure 73: Unloaded case, θ2 = 50◦, θ3 = −100◦, Matlab
® and Ansys

® model.

In this case, the angles for joints 2 and 3 are θ2 = 50◦, θ3 = −100◦ respectively:

the end effector is not loaded with any payload. The comparison between the

Matlab
® model and the Ansys

® simulation yielded the following results for the

displacement:

Matlab
®: 1.31 mm

Ansys
®: 1.37 mm → ∆ = 4.6%
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4.2.3 Case 3.0: unloaded end effector, θ2 = 80◦, θ3 = −95◦

Figure 74: Unloaded case, θ2 = 80◦, θ3 = −950◦, Matlab
® and Ansys

® model.

In this case, the angles for joints 2 and 3 are θ2 = 80◦, θ3 = −95◦ respectively:

the end effector is not loaded with any payload. The comparison between the

Matlab
® model and the Ansys

® simulation yielded the following results for the

displacement:

Matlab
®: 2.03 mm

Ansys
®: 2.12 mm → ∆ = 4.4%
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4.2.4 Case 1.1: loaded e. e., θ2 = θ3 = 0◦, payload = 1 kg

Figure 75: Loaded robot, θ2=θ3=0
◦, Matlab

® and Ansys
® model.

In this case, the angles for joints 2 and 3 are θ2 = θ3 = 0◦ respectively: the

end effector is now loaded with a 1 kg payload. The comparison between the

Matlab
® model and the Ansys

® simulation yielded the following results for the

displacement:

Matlab
®: 3.89 mm

Ansys
®: 4.14 mm → ∆ = 6.4%
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4.2.5 Case 2.1: loaded e. e., θ2 = 50◦, θ3 = −100◦, p/l = 1 kg

Figure 76: Loaded robot, θ2 = 50◦, θ3 = −100◦, Matlab
® and Ansys

® model.

In this case, the angles for joints 2 and 3 are θ2 = 50◦, θ3 = −100◦ respectively:

the end effector is now loaded with a 1 kg payload. The comparison between the

Matlab
® model and the Ansys

® simulation yielded the following results for the

displacement:

Matlab
®: 1.95 mm

Ansys
®: 2.04 mm → ∆ = 4.6%
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4.2.6 Case 3.1: loaded e. e., θ2 = 80◦, θ3 = −95◦, p/l = 1 kg

Figure 77: Loaded robot, θ2 = 80◦, θ3 = −95◦, Matlab
® and Ansys

® model.

In this case, the angles for joints 2 and 3 are θ2 = 80◦, θ3 = −95◦ respectively:

the end effector is now loaded with a 1 kg payload. The comparison between the

Matlab
® model and the Ansys

® simulation yielded the following results for the

displacement:

Matlab
®: 3.02 mm

Ansys
®: 3.13 mm → ∆ = 3.6%
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4.2.7 Static verification summary

The following table represents the percent error that the FEM model showed

with respect to the Matlab
® simulation.

θ2 [deg] θ3 [deg] Load [kg] Matlab
® [mm] Ansys

® [mm] ∆, %

Case 1.0 0 0 NO 2.74 2.89 5.5

Case 2.0 50 -100 NO 1.31 1.37 4.6

Case 3.0 80 -95 NO 2.03 2.12 4.4

Case 1.1 0 0 1 3.89 4.14 6.4

Case 2.1 50 -100 1 1.95 2.04 4.6

Case 3.1 80 -95 1 3.02 3.13 3.6

Average Error 4.9

Table 7: Static FEM analysis: results.

It can be seen that the error is on average 4.9%; in addition, it is possible

to observe that the error is slightly larger when the robotic arm is fully

extended. This discrepancy between the results can be traced down to the

fact that the Matlab
® model doesn’t take into account the contribution

of the interface flexibility; moreover, this explanation is also in accordance

with the fact that the error increases when the angles are zeros, condition

for which the effect of the interface flexibility is at a maximum.

After the static analysis, which verified the correctness of the model and

allowed to establish a realistic FEM framework, the software Ansys
® was

used to investigate the modal response of the arm in different configura-

tions.
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4.3 modal analysis

This section contains the frequency response analysis of the system. The

material is divided in three parts according to the following logic:

1. Firstly, a full 10 modes analysis is presented (Fig. 78–87). This pro-

vides a general idea of the vibration modes of the manipulator in the

extended configuration.

2. Iterating the process in 1) for several configurations, a lookup table

is created and an empirical model of the frequency response for the

first 4 modes is generated by interpolating the discrete data.

3. Using the information of the analyses, slight mechanical modifica-

tions were performed in order to improve the performances in terms

of frequency response.

The following pages, with the aid of printouts from Ansys
®, provide

a detailed account of the mentioned steps; due to limited space, only a

selection of the performed simulations is inserted.



4.3 modal analysis 111

Figure 78: Modal analysis 1. Mode 1.

Figure 79: Modal analysis 1. Mode 2.
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Figure 80: Modal analysis 1. Mode 3.

Figure 81: Modal analysis 1. Mode 4.
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Figure 82: Modal analysis 1. Mode 5.

Figure 83: Modal analysis 1. Mode 6.
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Figure 84: Modal analysis 1. Mode 7.

Figure 85: Modal analysis 1. Mode 8.
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Figure 86: Modal analysis 1. Mode 9.

Figure 87: Modal analysis 1. Mode 10.
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4.3.1 Lookup table for modal response

In order to design a continuous model of the frequency response, a lookup

table has been created using some selected configurations that are likely

to be used in a laboratory scenario and which are compatible with the

manipulator angular limits.

The following table summarizes the frequency response of the first 4

vibrating modes of the system for 16 different angular configurations. The

behaviors are represented in Fig. 88–91.

θ2 [deg] θ3 [deg] Mode 1 [Hz] Mode 2 [Hz] Mode 3 [Hz] Mode 4 [Hz]

0 0 7.03 8.38 15.8 18.25

0 -30 6.54 8.17 14.83 15.50

0 -60 7.21 9.31 13.57 15.07

0 -90 7.59 10.52 11.89 14.33

30 0 6.53 7.73 15.19 17.12

30 -30 6.56 7.87 14.56 14.96

30 -60 6.91 8.78 12.67 14.34

30 -90 7.33 10.20 11.07 13.68

60 0 6.32 7.54 14.79 16.91

60 -30 6.31 7.38 14.19 14.69

60 -60 6.55 8.08 12.45 13.93

60 -90 7.28 9.41 11.78 13.94

60 0 6.22 7.09 14.96 16.67

60 -30 6.21 7.46 14.19 15.47

60 -60 6.69 7.98 12.96 14.09

60 -90 7.16 9.03 11.65 13.62

Table 8: Frequency response of the first 4 vibrating modes.
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Figure 88: Modal analysis, 4 different configurations for θ2 = 0◦
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Figure 89: Modal analysis, 4 different configurations for θ2 = 30◦



4.3 modal analysis 119

a
) 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

b
) 

c)
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
 d

) 

Figure 90: Modal analysis, 4 different configurations for θ2 = 60◦
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Figure 91: Modal analysis, 4 different configurations for θ2 = 90◦
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4.3.2 Analytical model of the configuration dependent modes

By using the data available in the previous chapter it is possible to use non-

linear regression techniques to find a fitting equation in the independent

parameters θ2 and Θ3 (where, for simplicity, we take Θ3 as the absolute

value of θ3 in our angular convention). The expression that was found to

best fit the simulation data for the calculation of the resonating frequency

ν is:

ν = a1 · Θ3
2 + a2 · Θ3 + a3 · θ2 + a4 (109)

where:

a1 = 1.714 · 10−4

a2 = −5.844 · 10−3

a3 = −5.922 · 10−3

a4 = 6.6766 · 100

The resulting model, even though it is obtained using a limited number

of points, shows good performances in terms of goodness of fit, with the

uncertainties of the parameters being:

σa1 = 3.903 · 10−5

σa2 = 3.665 · 10−3

σa3 = 1.047 · 10−3

σa4 = 8.312 · 10−2

The resulting R2 of the model is 0.9283. Ultimately, the analytical model,

plotted against the actual simulated points, is presented in Fig. 92 (a). The

residuals are expressed in terms of percentage error and are plot in Fig. 92

(b).
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Figure 92: Regression model: fitting surface and percentage errors.



4.4 mechanical modifications 123

4.4 mechanical modifications

From the modal analysis presented at the beginning of the chapter, it can

be noted that the flexibility of the links is the cause of the first four modes.

The characteristic of the joint blocks, on the other hand, have an effect on

the remaining modes. Since it is not desirable at this point of the design

process to modify the link design, the analysis was used to perform some

mechanical modification to the joint blocks. In particular, the goal was

to improve the rigidity of the system (in terms of the increase of the first

modal response) with the tradeoff of not increasing the system’s mass.

This resulted in the following minor mechanical modifications:

1. Interface joint block triangles for joint 2 and 3 have been augmented

to a thickness of 2 mm from an original 0.5 mm

2. End effector sheet metal thickness has been increased from 1.5 mm to

2 mm

3. Diameter of the shaft connecting link 1 to the base joint has been

changed to 25 mm from the original 20 mm

4. Additional fixtures have been added to the triangles connecting the

base interface to the motor flange in joint 2 and 3, from an original

number of 4xM5 to 8xM6

The immediate effect of this change was the improvement of the modal

response related to the joint blocks, but this modification influenced also

the first modal frequency of the entire system. In the following tables it is

possible to appreciate the improvement in the modal profiles for the cases

with θ2 = 0. The results are compared with the original design. Fig. 93–96

depict the simulations for these selected cases.
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Modal response pre-modifications

θ2 [deg] θ3 [deg] Mode 1 [Hz] Mode 2 [Hz] Mode 3 [Hz] Mode 4 [Hz]

0 0 7.03 8.38 15.8 18.25

0 -30 6.54 8.17 14.83 15.50

0 -60 7.21 9.31 13.57 15.07

0 -90 7.59 10.52 11.89 14.33

Modal response post-modifications

θ2 [deg] θ3 [deg] Mode 1 [Hz] Mode 2 [Hz] Mode 3 [Hz] Mode 4 [Hz]

0 0 8.37 9.79 29.96 38.06

0 -30 9.44 11.14 32.04 42.01

0 -60 9.77 11.12 32.18 39.89

0 -90 9.31 10.89 31.84 38.71

Figure 93: Reinforced structure, configuration θ2 = 0, θ3 = 0. Mode 1.
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Figure 94: Reinforced structure, configuration θ2 = 0, θ3 = −30. Mode 1.

Figure 95: Reinforced structure, configuration θ2 = 0, θ3 = −60. Mode 1.
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Figure 96: Reinforced structure, configuration θ2 = 0, θ3 = −90. Mode 1.



5

I N S T R U M E N T I N G T H E E N D

E F F E C T O R F O R R E A L I S T I C O R B I TA L

O P E R AT I O N S

5.1 embedding an attitude determination system

on the end effector

Following the mechanical design chapter, the focus will be now directed

on the assessment of the capabilities of the end effector.

State of the art solutions in terms of robotic facilities for the simulation

of OOS do not comprise sensors for the determination of attitude. The

EPOS experiment from DLR, for example, provides realistic simulations

of environmental conditions (e.g. sun illumination effects) but does not

currently perform self-attitude determination.

Attitude information, that need to be used during the manipulator’s

maneuver, can be provided to the algorithm in two ways: via software

or via hardware. In this application, the hardware-in-the-loop solution

was chosen and was believed to be the most appropriate in order to have

a realistic system with its realistic cohort of related peculiarities (sensing

noise, delay, outliers measures). Having a real system for the measurement

of the attitude allowed for the further development of the Cross Entropy

theory detailed in Chapter .

The robotic facility presented in the previous chapter has been designed

with the goal of performing not only realistic OOS, but to serve as a bench-

127
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mark for navigation and docking technologies, both software and hard-

ware. Our team at CISAS Research Center from the University of Padova

has provided a consistent contribution to this research field in recent years

[23, 24, 25, 26, 27].

The technology presented in this chapter has been designed to fill a

gap in the CubeSat attitude determination sensors segment, and which

ultimately led to the manufacturing of a sensor that will enlarge the capa-

bilities of the final robotic facility.

5.2 development of a sun sensor for cubesats

In the flourishing small satellites market various solutions for sun sensors

are available, most of them derived and miniaturized from larger satellites

hardware. Such components are therefore not totally optimized for small

spacecraft, and present heavy requirements and high cost (up to several

thousands of Euro) that are not always balanced with good accuracy and

precision. In particular, one of the best off-the-shelf sensors reaches an

accuracy of 0.3◦and a precision of 0.05
◦, with a size of 40x30 mm and a

weight of 25 g [28].

A simplified classification of sun sensors solutions is here briefly reported:

1-D sensors are able to give a single angular information regarding the sun

direction, and their measure can be performed with an analog [29] or a

digital system [30, 31] with a theoretical resolution of up to 0.07
◦[31]. To

obtain a complete information of the sun relative position (i.e. the sun

vector) it is possible to use two 1-D elements or to implement 2-D sensors,

usually employing a photo-sensible surface instead of a linear array of pho-

todiodes. Their working principle is simple: Sun rays passing through a

mask mounted in front of the photo-sensible sensor illuminate a spot that

can be detected, allowing the reconstruction of the Sun vector [32, 33]. In

the cited case, average accuracy can reach less than 0.01
◦, but with a mass
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Figure 97: Sensor working principle: Sun rays passing through the mask

illuminate a spot on the CMOS surface.

of 2 kg [34].

In the framework of its investigation on CubeSat technologies, the Univer-

sity of Padova is developing a cohort of sensors for absolute and relative

attitude and position determination. To this day, relative navigation sen-

sors have been developed, and a new sun sensor is under investigation

[35] The idea behind the proposed device is to have a small yet precise atti-

tude sensor which can be place on a CubeSat with a very limited footprint.

The main philosophy behind the project is to use off-the-shelf components

and custom software to obtain a reliable piece of equipment that could

be feasible for a multitude of applications, from miniaturized commercial

spacecraft to academic demonstrators.

The layout and the working principle of the proposed sensor are visible

Fig. 97: the sun rays can filtrate through a circular hole on the front mask,

to be detected by an active pixel sensor (based CMOS technology) behind

it. By knowing the coordinates of the spot on the CMOS and the sensor

geometry, it is possible to use simple trigonometry in order to infer the

sun vector in terms of the azimuth and elevation angles with respect to the

CMOS plane.
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Figure 98: Sensor reference geometry: the Sun vector with respect to the

reference plane XY is defined by azimuth Φ and elevation α. The illumi-

nated spot centre coordinates is xp, yp.

5.3 geometrical model and simulations

In Fig. 98 the geometrical model of the proposed sensor is reported, with

the reference frames on the mask (blue) and the CMOS-plane (orange).

The direction of the Sun vector (i.e the relative direction of the Sun in

the field of view, in red in Fig. 98) can be defined both with the two

angles of azimuth Φ and elevation α or with the related unit vector v =

(cos Φ cos α, sin Φ cos α, sin α). Both formulations can be derived knowing

the light spot position (xp,CMOS, yp,CMOS) with respect to the CMOS centre,

as the distance h between the mask and the CMOS is noted:

v =
(xCMOS, yCMOS, h)√

xCMOS
2 + yCMOS

2 + h2
(112)

The formulation reported in Eq. 112 has the advantage of not involv-

ing any trigonometric function; furthermore, an unique and real solution

exists for any position of the light spot on the CMOS. Knowing the size
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Figure 99: The sensor field of view, represented by the dashed blue ellip-

soid, can be described by the two view angles θ1 and θ2.

of the CMOS and the mask mounting distance it is possible to define the

sensor theoretical field of view, considering an ideal mask with negligible

thickness and no diffraction. For the sensor described in this work, the

two field of view angles α1 and α2 represented in Fig. 99 are respectively

of 66.2◦and 51.1◦.

5.3.1 Simulations

In this section the aforementioned geometrical description is implemented

to develop three different sensor models of increasing sophistication, as

reported in Fig. 101.

In the ideal case of a mask with negligible thickness (Fig. 101, left), the

projected light spot has the exact size and shape of the mask hole: the Sun

vector can be directly calculated by measuring the light spot centre. Due
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Figure 100: Effect of the mask thickness on the light spot: the incoming

sunlight can be partially obstructed by the mask

to miniaturization constraints, the employed mask thickness is comparable

to the hole diameter and part of the incoming radiation is stopped by the

mask border (Fig. 100), modifying the shape of the light spot detected by

the CMOS (Fig. 101, centre). Comparing the new shape with the circle from

the previous model (no thickness effect), it is possible to note a translation

of the light spot centre.

The geometrical problem, reported in Fig. 102, can be simplified due

to its axial-symmetry. The centers of the two light-spot circles sections

(x0, y0) (i.e. the negligible thickness light-spot circle center, caused by the

mask upper surface shading) and (x1, y1) (caused by the mask lower surface

shade) can be defined knowing the two angles ϕ and θ, as well as the

distance h between the mask and the CMOS:x0 = (t + h) · tan(π/2 − θ) · cos(ϕ + π)

y0 = (t + h) · tan(π/2 − θ) · sin(ϕ + π)x1 = h · tan(π/2 − θ) · cos(ϕ + π)

y1 = h · tan(π/2 − θ) · sin(ϕ + π)



5.3 geometrical model and simulations 133

The two points distance from the CMOS reference frame origin is:
RC0 =

√
x2

0 + y2
0 = (t + h) tan

(π

2
− θ
)

RC1 =
√

x2
1 + y2

1 = h tan
(π

2
− θ
)

The distance between the two arcs centers can therefore be defined as re-

ported:

∆C = h tan
(π

2
− α

)
The piecewise equation describing the shape of the projected sunspot, in

polar coordinates (further expressed in terms of pinhole diameter d, az-

imuth Phi and elevation Theta), where r = x2 + y2 is:

R2
C0 − 2RC0(x cos Φ + y sin Φ) + x2 + y2 = d2/4

f or RC0 −
d
2
< r < RC0 +

∆C
2

R2
C1 − 2RC1(x cos Φ + y sin Φ) + x2 + y2 = d2/4

f or RC1 −
∆C
2

< r < RC1 +
d
2

Both of the aforementioned models have been developed using an ideal

punctiform light source at near-infinite distance: the incident rays have

been simulated as parallel. However, in near-Earth orbit and on ground the

Sun angular diameter is not negligible and presents an incoming radiation

aperture of about 0.5◦. The third model considers such effect, yielding the

results visible in Fig. 101 on the left: the spot is consistently larger than the

previous one, and the center translation with respect to the first model is

still visible.

The centre translation due to the aforementioned effects can be evalu-

ated: the maximum bias is of about 5 pixels, which is equivalent to 0.12
◦;

the sensor’s software will be designed to evaluate the translation and cal-

culate the right value of the Sun vector.
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Figure 101: Sun sensor simulations, the three different models: from left

to right, the spot projection considering (a) no mask thickness, (b) mask

thickness, and (c) the effect of the Sun angular diameter with respect to a

punctiform origin.
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Figure 102: Schematic representation of the effects that the mask thickness

has in the perturbation of the projected light spot.

5.3.2 Resolution

The sensor resolution is driven by the pixel size, which, for the chosen

sensor, is 1.4 µm. A simulation has been performed in order to get an

insight of the performances of the system across the CMOS surface. The

angular accuracy, expressed in polar coordinates, is:

a(r, α) = a(r) .= tan−1
( r

t + h

)
− tan−1

(
r − px
t + h

)
(113)

where h is the CMOS-mask distance, r is the distance from the pinhole

center, px is the size of a pixel, t is the thickness of the mask. Fig. 103

depicts the resolutions expressed in terms of arcminutes. It can be seen that

the maximum resolution uncertainty occurs in the proximity of the center

of the sensor (under the hypothesis that this is collinear with the pinhole

center). The maximum value is 1.55 arcmins, which, with the current setup,

corresponds to a maximum resolution uncertainty of 0.023
◦. This value
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could be eventually lowered by decreasing the distance between the sensor

and the CMOS and by using a sensor with a smaller pixel size.

5.4 experimental setup

When it comes to active pixels sensors, two choices are available: CCDs

and CMOS. Nowadays, CMOS represent the commercial standard, they

are less expensive and have a limited power consumption when compared

to CCDs. On the other hand, CCDs have better SNR profiles and are much

simpler to handle and to interface with the acquisition hardware. For this

sensor, we chose a commercial camera module based on CMOS technology

(Raspberry Pi Camera Module), whose characteristics (in terms of pixel

size and footprint) are suited to our application.

The experimental setup is composed by:

• acquisition PC (2.4 GHz i5, 8GB RAM)

• interfacing board (Raspberry PI 2 Model B)

• CMOS sensor (Raspberry PI Camera Module)

• pinhole aperture (Edmund Optics)

• enclosing hardware (3D printed)

This type of camera, however, is commercially distributed with a mounted

lens. In order for the device to be used, the optics was removed, leaving an

exposed CMOS. Then, by using a 3D printed custom adapter, the pinhole

was placed on top of the CMOS, at a distance of 3 mm from the active

surface. The pinhole, which is a commercial device manufactured by Ed-

mund Optics, consists of a thin metal film (25 µm) on which a circular hole

of diameter 20 µm has been etched (Fig. 106). The circularity and size of

the hole has been verified through microscopy. The complete assembly is

pictured in Fig. 104.
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Figure 103: Resolution characteristics of the CMOS sensor under analysis.

Three dimensional plot and contour line plot.

5.4.1 Precision

In order to obtain the metrological characteristics of the system, several

tests were performed. The precision of the sensor has been obtained exper-

imentally in order to get an insight of the reproducibility. To simulate in a

laboratory environment the emittance of the Sun, we used an array of high

power white LEDs arranged in a square pattern, whose emittance was com-

puted to be close to 1200 W/m2 in the area invested by the light. By using

such a device, placed 2 meters from the pinhole aperture, perpendicular to

the CMOS-plane, we took 300 measures to investigate the accuracy of the

sensor, Fig. 107: the scatter plot has been offset to the mean value of the

acquisition and 90%, 95% and 99% confidence ellipses have been plotted.

By analyzing the eigenvectors of the covariance matrix scaled by the

square root of the corresponding eigenvalue we can state that there is no

evident correlation between the two pixel axes. The 99% confidence el-

lipse has semi axis lengths of [1.21; 1.14] px. This corresponds to a preci-

sion, translated into meters, of [1.69; 1.59] µm in the x-y directions respec-

tively. In terms of angular displacement, this means an average precision
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Figure 104: Sun-sensor prototype.

of ±0.024
◦.

5.4.2 Acquisition strategy

The sunspot projection on the CMOS sensor constitutes a very small foot-

print with respect to the entire sensing area. In addition, for a non-spinning

satellite, the position of the sunspot can be considered quasi-fixed from one

image acquisition to the next. This suggests for the implementation of a

tracking algorithm in the image processing, in order to optimize the re-

sources and boost the performances. In the case of a spinning satellite, this

observation still holds if the image analysis is corroborated with informa-

tion regarding the vehicle’s attitude.

We assume the CMOS pictures come in a row-major format, that is, each

pixel lies in memory next to its left and right neighbours, whereas the top

and bottom neighbours are one row width of pixels away. Since memory

bandwidth represents the limiting factor for simple operations on data, it’s

always important to minimize the times new memory is fetched: data in

the CPU registers can be directly used for calculations, whereas data in the

RAM may take several hundred of multiplications worth of CPU time in



5.4 experimental setup 139

Figure 105: Image analysis: original image (a), noise reduction and surface

defects elimination (b), thresholding (c) and light-spot center computation

(d).

Figure 106: Pinhole aperture in mounted position and under SEM mi-

croscopy to verify circularity and diameter.
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order to get loaded. In the following paragraphs, we take advantage of the

intermediate RAM cache in the CPU to perform efficient image analysis.

First of all, the algorithm performs an engaging routine: the image is

converted into a grayscale array; then, the brightest pixel(s) are searched in

the first row; a variable stores both the value (which is needed for search-

ing) and the index of that pixel (column); also, the sum of the pixels is

stored; at the end of the row, the sum and the index of the brightest pixel

are stored. The procedure is repeated for all the rows. In order to fur-

ther improve the success of the engaging routine in the identification of

the active pixels, the initial grayscale image is the result of a burst of N

pictures averaged to obtain a single array. Averaging multiple shots allow

to remove the background noise and to detect defects on the surface of

the CMOS (such as dust or other debris). In Fig. 105 it is possible to no-

tice how the algorithm removes some dust particles that were purposely

added to the surface of the sensor; in addition, the image is filtered and

noise is reduced. This allows to discard any disturbance due, for example,

to reflections inside the casing of the sensor The engaging routine termi-

nates with the identification of the Region of Interest (ROI), discarding the

noisy pixels. By having the brightest pixel column indices and by knowing

in which rows that happened, region of interest is known in linear time,

without thrashing the CPU cache.

5.4.3 Region of Interest tracking

Once the Region of Interest has been identified in terms of pixel coordi-

nates, we propose a strategy to perform the tracking. The light track on

the CMOS can be described with the stochastic process:

dxc = f(xc)δt + g(x)dw (114)

where x ∈ R2 represents the sunspot center coordinates and w ∈ R2 is a

zero-mean Gaussian process with covariance Σw.
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Figure 107: Calibration acquisition results, with 90%, 95% and 99% confi-

dence ellipses.
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The function f(xc) contains the velocity of the sun projection on the

CMOS and is determined by the satellite orbit, attitude and sensor instal-

lation. In our case, for Earth testing, f(xc) is determined analytically by

knowing the Ephemeris relative to the test location.

Granted that f(xc) is a known function, it is possible to outline a track-

ing strategy: the image acquisition will be concentrated on a circular area

whose center is determined by:dx(t)

dy(t)

 =

vx

vy

dt + I2dw(t) (115)

Since the shape of the projection is a function of the sunspot location on the

CMOS, the circular radius can be defined as a function of the azimuth and

elevation. In other words, the circular area to be searched for bright pixels

changes according to the location. On the other hand, since manufacturing

uncertainty is present and the shape of the projection is afflicted by noise

(CMOS, dust, diffraction, etc.), a proposed strategy for the search radius is

based on the measured data:

ri = γ · max(hi, wi) (116)

where hi and wi are defined as the observed maximum height and

width of the pixel cluster (see Fig. 108), premultiplied by a constant γ that

adds some extra outer pixels for safety. In addition, we designed a watch-

dog procedure that is extremely light in terms of computation burden but

prevents bright pixel from being ignored by an incorrect radius-center tu-

ple: this consists of 4 pixels, placed 90
◦apart from each other at r̃ = β r,

β < 1. At the beginning of the acquisition, these 4 pixels are checked: if

they are measured as bright, the algorithm increases the search radius r,

Fig. 108 c); the procedure is repeated until all the watchdog pixels return a

dark state.
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Figure 108: Sunspot adaptive identification strategy.

Further development will entail the addition of an Extend Kalman Filter

or a Particle Filter to track the sunspot and integrate the measurements

with the prediction model.

5.4.4 Led matrix calibration

One of the driving dimension for the computation of the radiation inci-

dence angle is represented by the standoff between the CMOS surface and

the pinhole, referred to as h in Fig. 102. Due to tolerances in the manufac-

turing of the casing, it is mandatory to verify this distance. A proposed

solution consists in the acquisition of the light coming from an array of

high brightness LEDs: the purpose of this test is twofold. First of all, by

knowing the array dimensions and the distance from the mask k, the dis-
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Figure 109: Calibration LED matrix, as acquired from the CMOS.

tance h (or focal length) can be measured by using the perspective camera

equation: xpx

ypx

 = −1
k

h 0

0 h

xled

yled

 (117)

which maps the points in the led matrix, xled into their projection in the

CMOS, xpx. In addition, the LED matrix is used for the exposure parameter

calibration in the native camera firmware. An example of the acquisition

during the calibration is shown in Fig. 109.

5.4.5 Image post-processing

After the noise background removal and the defects correction (operations

performed at the beginning of each acquisition), the next part of the pro-

cessing algorithm computes the center of the projected sunspot. This is

done by first converting the acquisition into a gray scale image; then, by

setting a custom threshold (which is a function of the camera exposure set-

tings), the image is further converted into a binary color matrix, resulting
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Figure 110: Measured and predicted sun trace on CMOS (a), zoomed (b). Resid-

ual errors plot and 95% bounds (c).
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Linear model: f (x) = p1x2 + p2x + p3

Coefficients 95% confidence bounds

p1 = -9.216e-05 (-1.033e-04, -6.002e-05)

p2 = 0.8456 (0.7905, 0.8132)

p3 = -329.6 (-3336.4, -310.2)

Table 9: Linear model

in the final projected sunspot ellipse (Fig. 105); the center of this ellipse (xc,

yc) is then computed by simply averaging the xi and yj coordinates of the

ellipse’s pixels: xc

yc

 =


∑ellipse xi

nx
∑ellipse yi

ny

 (118)

5.4.6 Accuracy

In order to estimate the accuracy, we performed several test by exposing

the sensor under direct sunlight in clear sky conditions. By knowing the

ephemeris of the Sun and by measuring the position and orientation of the

sensor with respect to the Earth, it was possible to compare the predicted

Sun trace with the measured one. We present here a sample acquisition

obtained with the device. Total acquisition time is 125 minutes.

The predicted trajectory can be expressed with a polynomial model and

has the following characteristics:

The experimental data, when fitted with the model, provided the fol-

lowing regression parameters, showing extremely good accordance with

the prediction.

It can be seen that the residual orthogonal errors between the projected

track and the experimental points are bounded in a ±0.7 px band at 95%
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Regression parameters

SSE 23.22

R-square 0.9999

Adjusted R-square 0.9998

RMSE 0.3525

Table 10: Regression parameters

confidence. This means that experimental accuracy obtainable with the

current setup is ±0.02◦, provided that the mounting process does not in-

troduce alignment uncertainties and that, if these are present, a calibration

procedure with the aid of a known light source can offset them.

5.5 self-power assessment

One of the design drivers in the development of the sensor is represented

by the power budget, that is constrained to the low resources available on

CubeSats and small satellites. First, the CMOS technology was preferred as

it is demonstrated to consume less power than CCDs; a further reduction

is expected with the technology evolution.

The camera selected for the first prototype has low power requirements

(5V, 200 mA), and further reduction is expected using new-generation sen-

sors; the goal is to make it possible to self-power the whole sensor with

dedicated solar cells mounted on the pin-hole frame. Commercial multi-

junction solar cells for space applications have reached an efficiency of

more than 30%, with a net power production of about 400 W/m2 (330 W/m2

at the Sun sensor FOV limits) in Earth orbit; experimental cells reached up

to 35% in 2014 [36] and the research is constantly increasing these values.

Considering a surface of about 3x3 cm, the current technologies can furnish

0.3 W.
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This result is encouraging, as the aforementioned expected trend of cells

efficiency and CMOS power consumption reduction will make it possible

to self-power the sensor with commercial cells in about 5-10 years.

5.6 robotic arm implementation

The finalized sensor has been designed to be mounted on the end effector

5
th link flange of the robotic arm. The acquired attitude information will be

used to perform proximity navigation with a feedback on the attitude: the

most immediate integration of the sensor in the HIL control loop will be

by inserting the measurements in an Extend Kalman Filter. The complete

end effector, with the addition of the sensor, can be appreciated in Fig. 111.

Figure 111: Render of the end effector with mounted sun sensor.
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C O N T R O L A R C H I T E C T U R E

6.1 the control problem

The problem of controlling a robot can be formulated as that to determine

the time history of the generalized forces (forces or torques) to be devel-

oped by the joint actuators, in order to guarantee the execution of the

predefined tasks.

The problem of motion control of a manipulator is the topic of this

chapter and is the natural extension of the previous work by this author

[10]. Several techniques are available, and their main distinction is due

to the way the operate: joint space or operational space. The most com-

mon techniques, due to their simplicity, belong to the first category and

can be further divided according to the approach taken towards the dy-

namic contributions. In the following paragraph, both families of control

are presented, with a particular focus on joint space procedures

6.2 joint space control

In joint space techniques, the control is focused on the q(t) values to track

the reference inputs, calculated from the desired trajectory with the aid of

an inverse kinematics procedure. However, the drawback of this solution

is that a joint space control does not have effects on the operational space

variables, which are controlled in an open-loop fashion through the manip-

ulator mechanical structure. It follows that any uncertainty in the structure

149
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(backlash, play, stiffness, added end effector weight) or any discrepancy be-

tween the known geometric data and the real ones causes a decrease of the

accuracy on the operational space trajectory.

In a control system design process, several parameters are required in

order to come up with a correct model of the system. First of all, it is

mandatory to know the mechanical design of the structure.

Furthermore, the way the motion is transferred through the joints has

its influence as well; if the motors, for example, are coupled with high-ratio

reduction gears, it is possible to linearize the problem. This means that the

analysis of the joints can take advantage of the superposition of the effects

principle, and the solution is dramatically simplified. The disadvantage of

this approximation is that all the nonlinear effects (such as friction, back-

lashes, elasticity) might affect the performances of the control.

6.2.1 Decentralized control

In our case, all the motors come with a reduction gear, whose transmission

ratio is relatively high (refer to the Mechanical Design chapter). Under this

property, a linear approximation can take place: a control of this type is

often referred to as decentralized control [2], since each linked is analyzed as

a SISO independent system.

We recall, from dynamics, the differential equations describing the mo-

tion of a n degrees of freedom robot [15].

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (119)

This represents the dynamics of an multi-body system when some general-

ized forces τ are acting. These torques are produced by an actuator, which

can be electric, hydraulic or pneumatic. An armature controlled DC motor

presents the following electric diagram [2]:
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Due to the presence of a movable rotor inside the stator (which creates

a radial magnetic flux Φ), if there is a current ia flowing, there will be a

torque on the rotor:

τm = K1 Φ ia (120)

When the rotor starts to rotate, however, an electromagnetic field arises

(back emf), trying to oppose the current flow in the conductor. This can be

expressed with:

Vb = K2 Φ ωm (121)

The differential equation for the armature current is:

L
dia

dt
+ R ia = V − Vb (122)

Since the flux Φ is constant, we can rewrite τm as (where Km is the torque

constant of the motor):

τm = K1 Φ ia = Km ia (123)

From Eq. 121, with Kb being the back emf constant, we have:

Vb = K2 Φ ωm = Kb ωm = Kb
dθm

dt
(124)

When the motor stalls, the corresponding torque is denoted with τ0; evalu-

ating Eq. 122 for Vb=0 and dia
dt =0:

Vr = R ia =
T τ0

Km
(125)
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Figure 112: Block diagram of DC motor.

Which yields:

Km =
R τ0

Vr
(126)

If we couple the motor with a gear train, the differential equation describ-

ing the assemby is:

Jm
d2θm

dt2 + Bm
dθm

dt
= τm − r τl (127)

Where Im = Ia + Ig, that is, the sum of the actuator and the gear-train

inertias. The torque at the output of the gear is τl. The block diagram of

the DC motor is pictured in Fig. 112.

At this point, we can switch from the time domain to the Laplace do-

main, and rewrite Eq. 124 and Eq. 127 as:

(Ls + R) Ia(s) = V(s) − Kb s Θm(s) (128)

(Jm s2 + Bm s) Θm(s) = Ki Ia(s) − r τl(s) (129)

It is straightforward to obtain the transfer function between the armature

voltage V(s) and the angle Θm(s) (imposing τl = 0):

Θ(s)
V(s)

=
Km

s[(L s + R)(Jm s + Bm) + Kb Km]
(130)

If V = 0, the transfer function between the torque τl and Θm(s) is:

Θ(s)
τl(s)

=
−r (L s + R)

s[(L s + R)(Jm s + Bm) + Kb Km]
(131)
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Dividing everything by R and assuming that the electrical constant L/R

is much smaller than the mechanical constant Jm/Bm, we approximate the

previous expressions to:

Θ(s)
V(s)

=
Km/R

s
(

Jm s + Bm +
Kb Km

R

) (132)

And:
Θ(s)
τl(s)

= − r

s
(

Jm s + Bm +
Kb Km

R

) (133)

Returning for a moment to the time domain, Eq. 133 and 134 can be ex-

pressed, using the superposition of the effects, with the following differen-

tial linear equation:

Jm θ̈m(t) + (Bm + Kb Km/R) θ̇m(t) = (Km/R) V(t) − r τl(t) (134)

At this point, we need to provide further assumptions and simplifications

in order to obtain the solution. Since the output of the gear is directly

connected to the link, then the generalized coordinate qi is given by (with

ri being the i-th reduction ratio):

qi = ri θmi (135)

It follows that the torques provided by the actuators and the load torques

of the actuators share the following relationship:

τli = τi (136)

Finally, the equations of motion of the manipulator become:

n

∑
j=1

dji(q)q̈j +
n

∑
j,k=1

cjki(q)q̇jq̇k + gi(q) = τi (137)

Jm θ̈mi + (Bm + Kb Km/R) θ̇mi = (Km/R) Vi − ri τli (138)
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If we take a closer look to the last two equations, we can note that the

first one represents the nonlinear inertial, Coriolis, centripetal and gravita-

tional coupling contributions due to the motion of the robot, whereas the

second one models the actuator dynamics.

If we have to control this kind of system, a first good consideration

would be to treat the nonlinear term τi as a disturbance entering into

Eq. 138: this is extremely convenient, since Eq. 138 is linear.

After this substitution, however, the term r2
i dii(q) appears in the coefficient

Θ̈mi , which hence becomes:

Jm + r2
i dii(q) (139)

That is, this coefficient is configuration dependent. For the purpose of the

control, however, we can approximate this value with an effective value,

called effective inertia Je f f . For the moment, we can suppose Je f f to be the

simple mean average between the value of the inertia at its minimum (Jmin)

and at its maximum (Jmax), that is:

Je f f =
Jmin + Jmax

2
(140)

We also define Be f f as:

Be f f = Bm + Kb Km/R (141)

K =
Km

R
(142)

Thus, Eq. 138 becomes:

Je f f θ̈mi + Be f f θ̇mi = K Vi − ri di (143)

In which di is taken as a disturbance and is made up by:

di :=
n

∑
j ̸=i

djiq̈j +
n

∑
j,k

cjikq̇jq̇k + gi (144)
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Translating this result into a block diagram, we finally obtain the scheme

of Fig. 113, which is clearly an open loop system.

Figure 113: Open loop block diagram of manipulator link.

6.2.2 Design of the PD compensator

The open loop transfer function in the Laplace domain can be obtained as

[37]:

s2 Je f f Θ(s) + s Be f f Θ(s) = K V(s) − r D(s) (145)

The input V(s) can be substituted by a PD control law:

V(s) = Kp [Θr(s) − Θ(s)] − s Kd [Θ(s)] (146)

Where Θr(s) is the reference command that needs to be followed by the

system. Combining these two expressions, we get:

Θm(s) =
K Kp

α(s)
Θr(s) − r

α(s)
D(s) (147)

With α(s) being the characteristic equation:

α(s) = Je f f s2 + (Be f f + K Kd) s + K Kp (148)

The feedback control loop can then be described by the block in Fig. 114.
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Figure 114: Block diagram of PD control system.

6.2.3 Design of the PID compensator

The PD controller described in the previous section is sensitive to exter-

nal disturbances and high gains are typically needed in order to limit the

steady state error [10, 37].

A typical upgrade to the previous system is the addition of an integral

term to the PD compensator law C(s):

C(s) = Kp + Kd s +
Ki

s
(149)

As far as concerns the closed loop expression, we have:

Θm(s) =
Kd s2 + Kp s + Ki

β(s)
Θr(s) − r s

β(s)
D(s) (150)

The characteristic equation, in this case, is the following 3
rd order polyno-

mial:

β(s) = Je f f s3 + (Be f f + K Kd) s2 + K Kp s + K Ki (151)

And the modified block diagram is pictured in Fig. 115. Note the addition

of the feedforward integral part.
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Figure 115: Block diagram of PDI control system.

Stability analysis

Stability can be inferred from the characteristic equation by using Routh-

Hurwitz criterion. For a third order system, whose generic equation is:

q(s) = a0 + a1 s + a2 s2 + a3 s3 (152)

We have that the Routh array is:

s3 a3 a1

s2 a2 a0

s1 b1 0

s0 c1 0

(153)

Where:

b1 =
a2 a1 − a0 a3

a2
c1 =

b1 a0

b1
= a0

∣∣∣∣∣∣a2 a0

a1 0

∣∣∣∣∣∣ = a0 (154)

It follows that, since stability occurs when all the elements of Routh ma-

trix’s first column are positive, the system is stable if:

a2 a1 > a0 a3 (155)
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Hence:

Ki <
(Be f f + K Kd)

Je f f
· Kp (156)

for such a controller, it can be seen that, after the overshoot, the response

tends to the imposed set-point. The error at steady state, hence, is zero.

The addition of the integral part to the control law is mandatory if we

are looking for a system which is able to reject external disturbances (that

are always present).

6.2.4 Extension to a multibody system

The previous analysis of the PD and PID control system concerned the

control of a single link. In the case of a multi-body structure, as in our

case, the problem can be solved by invoking the linearity of the model (if

the hypotheses on the high gear ratio and the slow dynamics are fulfilled

[10]).

This extension is fairly straightforward, since any dependency among

the bodies has been removed. Hence, every link will be modeled by follow-

ing the approach explained in the previous paragraphs, and the gains will

be tuned in order to obtain the best overall performances.

With these simplifications, the only actual way to verify the perfor-

mances of system would be to simulate a control and to post-analyze the

results; this is due, first of all, to the fact that the inertia seen by each link

has been approximated with the effective inertia Je f f , even if this parameter

is clearly configuration dependent.

Moreover, the input disturbance, that should take into account all the

nonlinear effects, cannot be known exactly at each step, and an educated

guess on its value has to be made, introducing another relevant source of

uncertainties. Note that, again, the slower the dynamics of the object, the

better this simplified model will control the system adequately.
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6.3 operational space control

The operational space control enables the manipulator to obtain a greater

degree of precision in the cartesian space: that is, the end effector position

is actively controlled and is not longer a byproduct of the accuracy with

which the geometry of the manipulator is known.

However, this global approach requires a greater complexity; notice, in

fact, that the inverse kinematics algorithm is now embedded into the feed-

back control loop. This slows down the algorithm and requires higher com-

putational performances. Moreover, the afore-mentioned advantage on the

end effector position presents actually an obvious limit. The measurement

of the cartesian variables, in fact, is not always1 performed directly, but via

the application of the direct kinematic algorithm to the encoders’ readings.

Hence, since this technique does not clear the need of a having good

knowledge of the robot parameters, it doesn’t makes sense to go to the trou-

ble of implementing such a cumbersome and CPU consuming control law.

The need for the extra computing power to run the model at a sufficient

rate might not be worthwhile.

The most common industrial robots, for economic reasons, do not use

this technique: instead, present-day manipulators are controlled with very

simple control laws that generally are just error driven.

For all the above reasons, in this section we are just going to introduce

the schematics of the principal control blocks without diving too deep into

the details, leaving any further analysis to the appropriate references [13,

16, 38, 14].
1 This is not valid if there exists a cartesian sensor which avoids the need for the direct

kinematics transformation: for example, cameras or vision sensors.
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Figure 116: Block diagram of a general cartesian based control loop.

6.3.1 An overview

The general scheme of a control based on operational space techniques is

presented in Fig. 116. The input to the close loop block is not longer the

generalized coordinate q(t), but it’s simply the cartesian trajectory needed.

Thus, all the cartesian transformation into the joint space variables need

to be performed inside the loop; this is an important drawback, that results

in a lower sampling frequency if compared to joint based controls, degrad-

ing the stability and the disturbance-rejection ability of the loop [14].

Note that, even if we are talking about a cartesian control, the conver-

sion to the joint space is necessary at some point for the calculation of the

joint torques.

The procedure starts from the reading of the position sensors in order

to gain information on the θ(t) values. With the aid of simple direct kine-

matics, the angles are converted to the actual position of the end effector.

By knowing the goal coordinates Xd, we can obtain cartesian errors δX:

δX = Xd − X

From these errors, with the aid of a coordinate conversion and some ap-

propriate gains, the torques are then computed and provided to the joints.

The most important part of the block diagram in Fig. 116 is the Coordi-

nate conversion and gains block. In the literature, there are several ways of
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Figure 117: The inverse-Jacobian cartesian control block.

Figure 118: The transpose-Jacobian cartesian control block.

practically implementing this block [13, 16, 38, 14].

One the most common strategies is to use a Jacobian-type algorithm. If

the time step is sufficiently small, in fact, we can map the cartesian error δX

into the corresponding displacement δθ in the joint space. The δθ errors are

then multiplied by the appropriate gains to compute the torques that will

presumably reduce the errors. This approach takes the name of inverse-

Jacobian controller and is presented in Fig. 117 [14].

Another viable solution, that is strictly related to the previous one, is

presented in Fig. 118. In this case, we compute the cartesian error δX and

we multiply it by a gain block to obtain a force vector F in the cartesian

space. We can think of this force as the vector that, if applied to the end

effector, would reduce the error δX. From this vector, we can again use the

differential kinematics theory to obtain the solution: F gets multiplied by

the transpose of Jacobian, JT, and the torques are obtained. This approach
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Figure 119: Absolute and relative position vectors

is referred to as transpose-Jacobian controller.

Although the block diagrams look neat and simple, the exact dynamics

of these systems is cumbersome. It has been shown that both schemes

will work, meaning that it is possible, with the appropriate gains, to make

the loop stable. This partial success, however, is obscured by the need for

adaptive laws: it is not possible to choose some fixed gains and have fixed

closed loop poles in all the points of the workspace. The dynamics of these

controllers, in fact, is influenced by the arm configuration.

6.4 impact modeling

6.4.1 Trajectory framework: relative motion in orbit

In close approach maneuvers, generally, one object (the target) is passive

and non-maneuvering, whereas the other (the chaser), is active and trying

to approach the target.

Referring to Fig. 119, the position of the target in the geocentric frame
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is given by r0. The target represents also the origin of the moving frame,

whose x axis is along the r0 direction, y points in the local horizon of the

target’s orbit and z is chosen to complete a right handed frame.

In order to analyze the motion, we recall the formulas for relative veloc-

ity and acceleration [39]:

v = v0 + vrel + Ω × rrel (157)

a = a0 + arel + Ω̇ × rrel + Ω × (Ω × rrel) + 2 Ω × vrel (158)

In these equations, the terms Ω and Ω̇ need to be computed. The angular

moment of the orbit can be calculated as:

h = r0 × v0 = (r0 Ω) ẑ = r2
0 Ω (159)

From which, the angular velocity of the moving frame is:

Ω =
r0 × v0

r2
0

(160)

As far as concerns the acceleration Ω̇, we derive the previous equation:

Ω̇ =
1
r2

0
(ṙ0 × v0 + r0 × v̇0) − 2

r3
0

ṙ0(r0 × v0) (161)

Which yields (recalling that ṙ0 × v0 = 0 and r0 × v̇0 = 02):

Ω̇ = − 2
r0

ṙ0Ω (162)

Finally, since ṙ0 = v0 · r0/r0:

Ω̇ = −2(r0 × v0)
r2

0
Ω (163)

By substituting equations Eq. 160 and 163 in Eq. 157 and 158, one can

calculate the relative velocity and accelerations of an object measured along

the frame centered in the target.
2 Note that ṙ0 × v0 = v0 × v0 = 0. As far as concerns the second equation: v̇0 = − µ

r3
0
r0.

Hence: r0 × v̇0 = r0 ×
(
− µ

r3
0
r0

)
= − µ

r3
0
(r0 × r0) = 0.
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Linearization

We start by recalling that the inertial acceleration of the chaser is given by:

r̈ = −µ
r
r3 (164)

From this, since r = r0 + rrel, we can write that:

r̈rel = −r̈0 − µ
r0 + rrel

r3 . (165)

Referring to Fig. 119, if rrel is much smaller than r0 (which is the case of a

close approach maneuver), then Eq. 165 can be linearized as follows:

r̈rel = − µ

r3
0

[
rrel −

3
r2

0
(r0 · rrel)r0

]
(166)

Since R = R k̂ and rrel = δxî + δyĵ + δzk̂, we can further simplify Eq. 166:

r̈rel = − µ

r3
0

(−2δxî + δyĵ + δzk̂) (167)

To avoid confusion, note that this is the linearized acceleration of the chaser

with respect to the geocentric frame; our goal, on the other hand, is to ob-

tain the motion equations with reference to the target centered frame. This

means plugging Eq. 167 into Eq. 158.

Omitting the tedious algebraic calculations, we can write the final expres-

sion for the relative acceleration:

δarel = − µ

r3
0

(−2δxî + δyĵ + δzk̂)− 2(V · r0)h
r4

0
(δyî− δxĵ) +

h2

r4
0

(δxî + δyĵ)− 2
h
r2

0
(δẋĵ− δẏî)

(168)

Its components are then:

δẍ −
(

2µ

r3
0

+
h2

r4
0

)
δx +

2(V · r0)h
r4

0
δy − 2

h
r2

0
δẏ = 0

δÿ −
(

µ

r3
0
− h2

r4
0

)
δy − 2(V · r0)h

r4
0

δx + 2
h
r2

0
δẋ = 0

δz̈ +
µ

r3
0

δz = 0

(169)
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Clohessy-Wiltshire equations

Equations 169 describe the relative motion of the chaser in the target frame,

which has a generic elliptical orbit around the center body. If this orbit is

circular, then:

V · r0 = 0 h =
√

µ r0 (170)

And Eq. 169 become: 

δẍ − 3
µ

r3
0

δx − 2
√

µ

r3
0

δẏ = 0

δÿ + 2
√

µ

r3
0

δẋ = 0

δz̈ +
µ

r3
0

δz = 0

(171)

These are called Clohessy-Wiltshire (CW) equations and they are relatively

simple to solve. With a simple analytical integration, we can obtain the

velocity and the position equations:


δẋ = 3n sin(nt)δx0 + cos(nt)δẋ0 + 2 sin(nt)δẏ0

δẏ = 6n[cos(nt) − 1]δx0 − 2 sin(nt)δẋ0 + [4 cos(nt) − 3]δẏ0

δż = −n sin(nt)δz0 + cos(nt)δż0

(172)


δx = [4 − 3 cos(nt)]δx0 +

sin(nt)
n

δẋ0 +
2
n

[1 − cos(nt)]δẏ0

δy = 6[sin(nt) − nt]δx0 + δy0 +
2
n

δ[cos(nt) − 1]δẋ0 +
1
n

[4 sin(nt) − 3nt]δẏ0

δz = cos(nt)δz0 +
1
n

sin(nt)δż0

(173)
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In order to improve the relative motion analysis, the handling of CW equa-

tions is made easier with the a matrix notation. First of all, we define:

δr(t) =


δx(t)

δy(t)

δz(t)


δv(t) =


δẋ(t)

δẏ(t)

δż(t)


(174)

Whose corresponding initial values, for t = 0 are:

δr0 =


δx0

δy0

δz0


δv0 =


δẋ0

δẏ0

δż0


(175)

Then, the position and velocity of the chaser at instant t is given by:δr(t)

δv(t)

 =

Ψrr(t) Ψrv(t)

Ψvr(t) Ψvv(t)

 ·

δr0

δv0

 (176)

Or:

{δr(t)} = [Ψrr(t)]{δr0} + [Ψrv(t)]{δv0} (177)

{δv(t)} = [Ψvr(t)]{δr0} + [Ψvv(t)]{δv0} (178)

Where:

Ψrr(t) =


4 − 3cos(nt) 0 0

6[sin(nt) − 1] 1 0

0 0 cos(nt)

 (179)

Ψrv(t) =
1
n


sin(nt) 2[1 − cos(nt)] 0

[cos(nt) − 1] [4sin(nt) − 3nt] 0

0 0 sin(nt)

 (180)
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Ψvr(t) =


3n sin(nt) 0 0

6n[cos(nt) − 1] 0 0

0 0 −n sin(nt)

 (181)

Ψvv(t) =


cos(nt) 2sin(nt) 0

−2sin(nt) 4cos(nt) − 3 0

0 0 cos(nt)

 (182)

When using a robotic facility for the simulation of orbital maneuvers,

it is fundamental to reproduce the contact dynamics. Given that the rela-

tive motion is simulated correctly with the aid of the CW expressions, the

dynamic response of the satellites is strictly dependent on the inertial prop-

erties of the bodies: the simulated system, in general, will have different

inertial properties and will consequently behave with its own, characteris-

tic dynamics; since the robotic system cannot be subjected to drastic inertial

modifications, a software strategy has to be implemented.

6.4.2 Impact definition

First of all, it is mandatory to model the dynamics of the contact3. Along

the years, several techniques have been proposed: one of the most used is

certainly the spring-dashpot model [40], that models the contact between

satellites as a parallel spring-damper system, as pictured in Fig. 120, where

mT and mC are the target and chaser mass respectively. The differential

equations describing the system are:mT 0

0 mC

 ·

ẍT

ẍC

 +

 1

−1

 · f (t) = 0 (183)

3 For this preliminary analysis, we will focus on a 1D model, which can then be extended

to a more general 3D case.
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Figure 120: Spring-dashpot model.
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Figure 121: Lumped parameters laboratory model and its approximation.

where, if we define the relative position x = xC − xT, the force is ex-

pressed by:

f (t) = −kx − bẋ (184)

By using the equivalent mass m, the system becomes4:

mẍ(t) = kx + bẋ (185)

This fully defines the 1D approximated orbital behavior of the impact.

In the laboratory case, however, the impact force will be characterized by

4 The equivalent mass is defined as: m =
mCmT

mC + mT
.
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Figure 122: Virtual-force based control loop for contact dynamics simula-

tion.
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different parameters, kL and bL: these parameters are hardware dependent,

and represent the facility’s equivalent stiffness and damping (in the hy-

pothesis of a 2nd order approximation of the system). Referring to Fig. 121,

the laboratory installation has been modeled with 4 main blocks: A rep-

resents the spring-dashpot impact model (which depends on the mockup

of the docking system mounted on the end effector), B is a compliance

system that will be further discussed, C is the stiffness of the force/torque

(F/T) sensor and D is the manipulator (whose 2nd order lumped parame-

ters are a function of the both mechanics and of the control architecture).

The compliance stiffness B is introduced in order to simplify the analysis:

in a mechanical system, the dominant frequency of the contact is governed

by the most compliant part. Thus, the insertion of a spring with a stiff-

ness kspr << min{kC, kT/F, kR} allows the system’s overall stiffness to be

approximated with that of the spring. This hypothesis is certainly true for

kT/F (typical values for F/T sensors are on the 106 ÷ 107N/m range); also,

in this preliminary analysis, we suppose that the robot is infinitely rigid

and presents no damping. As far as concerns kC, its value depends on the

docking interface mockup and no valid approximation can be made upon

it. The simplified system is represented in the circled area of Fig. 121. The

force, in this case, has the following expression:

fL(t) = −kLx − bL ẋ (186)

where:

kL = kC + kspr (187)

bL = bC (188)

In order to simulate the actual orbital impact force (Eq. 184) in a laboratory

environment (which is clearly subjected to a different dynamics, Eq. 186)

it is mandatory to introduce a software artifice. With reference to [41], it is
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possible to implement a virtual force fV(t) in order to satisfy the following:

f (t) = fL(t) + fV(t) (189)

Expliciting the lumped parameters, we have:

f (t) = −(kL + kV)x − (bL + bV)ẋ (190)

Hence, the value of the virtual parameters can be computed as:

kV = k − kL (191)

bV = b − bL + ϵ (192)

These parameters are computed upfront5 and can be finely tuned in order

for the laboratory dynamics to be a truthful representation of the orbital

scenario.

The concept of the contact simulation technique is represented in Fig. 122

(a): note that both the inverse dynamics loop and the actuation phase are

simulated as delays (∆1 and ∆2 respectively). The total delay block, with

∆ = ∆1 + ∆2, can be approximated with a rational Pade’s function in order

to perform a frequency response analysis. In this case, we chose Pade’s

first order approximation [42]:

e−s∆ ≈
1 − ∆

2
s

1 +
∆
2

s
(193)

Moreover, the sensors transfer functions were inserted in the diagram: for a

preliminary analysis, however, since the dynamics of the system is largely

within their cut-off frequency, these blocks can be ignored. Hence, the

5 Since the damping coefficient is influenced by the delay ∆ of the simulation system, the

parameter ϵ(∆) is introduced in Eq. 192.
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overall system can be simplified as the one pictured in Fig. 122 (b), where

the Eq. 190 allowed for further compactness.

We then performed a frequency analysis of the system: its transfer func-

tion, for a generic input U(t), is:

T(s) =
Xr(s)
U(s)

=
1

2 + s∆
2 − s∆

ms2 + bs + k
(194)

The characteristic equation is:

∆ · ms3 + (2m − b · ∆)s2 + (2b − k · ∆)s + 2k = 0 (195)

According to Routh-Hurwitz’s criterion [37], the system is stable if:{
m − b

∆
2

, b − k
∆
2

,
(

m − b
∆
2

)
·
(

b − k
∆
2

)
− km∆

}
> 0 (196)

Which yields the following two conditions:

∆ < min
{

2m
b

,
2b
k

}
(197)

4mb − 4mk∆ − 2b2∆ + kb∆2 > 0 (198)

From these equations, by fixing one of the 4 parameters (m, b, k, ∆), 3D

plots can be extracted for the system design; for example, by fixing ∆

(which is known once the robot control architecture has been tested), we

can get the minimum mass m required for simulation stability (Fig. 123),

which is analytically defined as:

m > max
{

b∆
2

,
2b2∆ − kb∆2

4b − 4k∆

}
(199)
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Figure 123: Minimum mass required for simulation stability, for

∆ = {5, 10, 15} ms

6.5 complete trajectory analysis

In order to simulate the complete trajectory, three different phases must be

simulated: the initial trajectory, the impact and the consequent trajectory

(in the hypothesis of a non-zero coefficient of restitution6, γ ̸= 0). The

first part has been discussed in the trajectory section, and allows for the

simulation up to the impact point. Then, with the technique presented in

section regarding the impact, if the stability conditions (Eq. 196) are met,

the impact can then be simulated; this translates into the knowledge of

6 The coefficient of restitution γ of two colliding objects is a positive real number between 0

and 1 representing the ratio of speeds after and before an impact, taken along the line of

the impact. Pairs of objects with γ = 1 collide elastically, while objects with γ < 1 collide

inelastically. For γ = 0, the objects effectively "stop" at the collision, not bouncing at all.
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Figure 124: Control systems based on Euler-Newton and Lagrange-Euler dy-

namic models respectively. Note that it is possible to switch from the two

Lagrange-Euler based systems by setting the switch block SW of Fig. 122 to 0

for gravity only, and to 1 to gravity and inertia.
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Figure 125: Joint errors for the simulated trajectory presented in the previous

section. The control loops are: Lagrange-Euler with M and G for the 1
st row,

Lagrange-Euler with G only for the 2
nd row, Newton-Euler for the 3

rd row.
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the impact force, or, in other words, of the coefficient of restitution γ of

the contact. Hence, the computation of the ∆v caused by the impact is

straightforward.

∆v =
∫

timp

|F|
m

· dt (200)

By plugging this into Eq. 196 and supposing that within the duration of the

impact the relative position of the spacecrafts has not changed, it is possible

to compute the third part of the trajectory, which is trivial. The procedure,

in fact, is the same of the one used for the computation of the initial trajec-

tory. In the future, we are planning to implement an autonomous control

system that computes, if γ ̸= 0, the new approaching trajectory after the

impact, optimizing time schedule and fuel consumption.

6.6 control techniques for impact analysis

In this section several control techniques tailored to impact simulations

are analyzed: the first technique, based on Newton-Euler dynamics, is the

most correct in the sense that no approximations are taking place7. How-

ever, this approach requires a relatively long computation time, leading to

delays that could eventually give rise to instability to the discrete digital

loop. In order to find a trade-off between the correctness of the model

and the computation time, we analyzed approximate controls based on La-

grange’s equation. While Newton-Euler’s formulation, due to its iterative,

non intuitive form, is not easy to manipulate, Lagrange’s expression, on the

other hand, thanks to an immediate physical meaning of its components, is

definitely more prone to tailoring and approximations. A SimMechanics®

model was used to simulate the trajectory and to compute the joint errors,

which are displayed in Fig. 125. The system block diagrams are presented

in Fig. 124. The presence of computation delays is taken into account by

7 In the hypothesis of a perfect knowledge of the geometrical and inertial parameters.
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feeding the simulated system with a quantized torque, whose step-size is

equal to the self iteration time. The gains used for these simulation are

constant and equal to Kp = 50 and Kd = 0.01.

6.6.1 Newton-Euler feedforward control

This control technique (Fig. 124 (a)), provides the actuators with the exact

torque vector τ computed with Newton-Euler’s approach. Though this sys-

tem could theoretically work in an open chain fashion, there is, nonetheless,

a feedback compensator that rejects external disturbances.

The reference trajectory to be followed is calculated from CW equa-

tions and is instantaneously expressed as a Cartesian vector of position

and velocity that is further converted into general coordinates q and q̇ by

using the differential kinematics technique. The average iteration time8 is

∼2.3 ms. Although this technique is certainly not the fastest (it is almost

two times longer than approach B), the controller allows for an optimal

rejection of noise and system uncertainties, with a maximum error of 0.2◦

at Joint 4 (Fig. 125).

6.6.2 Lagrange-Euler (gravity compensation) feedforward con-

trol

This approach consists in the calculation of Lagrange equation’s gravity

term only, G(q). This means ignoring the effect of the inertia and of the

centrifugal and Coriolis acceleration. For relatively slow dynamics (like a

docking approach maneuver), the gravity term accounts for most of the

torque that needs to be produced by the motors for a correct trajectory

8 This has been calculated using an Intel® Core i7-3770, CPU @ 3,40 GHz, 8 GB RAM

computer.
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tracking. Since the gravitational term is the most straightforward and less

time-consuming part to be calculated in Lagrange’s equation, a feedfor-

ward control that uses only G(q) has been designed, and can be seen in

Fig. 124 (a) (with the switch block value SW=0). The average iteration time

is ∼1.1 ms. Though this is the fastest technique, the neglectance of the

inertia and centrifugal terms gives rise to important errors, especially at

Joint 1, where a drift of 1◦ was observed (Fig. 125).

6.6.3 Lagrange-Euler (inertia and gravity compensation) feed-

forward control

This technique can be seen as the natural evolution of the gravity compen-

sation feedforward control. In addition, in fact, the inertia contribution

M(q) is considered. At a price of an additional term to be computed, this

system is able to track more faithfully trajectories in which the kinematics

gives rise to consistent inertial forces. The system can be seen in Fig. 124 (b)

(with the switch block value SW=1). The average iteration time is ∼2.1 ms.

With respect to the previous system, errors are clearly mitigated, but the

performances are still worse than Newton-Euler’s approach (Fig. 125).

6.7 contact analysis summary

In the previous sections, we discussed a step-to-step approach to the simu-

lation of rendezvous and docking maneuvers, from the kinematics analysis

to the modeling of the contact.

By adopting a spring-dashpot model, it was possible to analyze the

dynamics of the impact and to implement, using the virtual force ap-

proach [41], a control loop for the simulation of the orbital scenario. By

inspecting the system stability with Routh-Hurwitz’s criterion, analytical
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conditions relating the facility performances and the scenarios that can be

possibly simulated have been extracted. These expressions take into ac-

count the facility delay ∆ and the satellites parameters mT , mC, k, b.

As far as the control system is concerned, results showed that the most

efficient technique is based on Newton-Euler feedforward control, allowing

to obtain an angular joint error < 0.1◦ with a computation time of ∼2.3 ms.

By implementing the code in a C++ environment, we expect to drastically

improve this Matlab
® based result.

For the simulation of impacts, the parameters of Fig. 121 will be fully

characterized and the approximations will be verified once the manipulator

has been built and the control software implemented.

6.8 hardware implementation

Hardware implementation will be described in this section using the se-

lected parts presented in the Mechanical Design chapter. The choice of

the control architecture is strictly dependent from the hardware and com-

munication standards available. In our case, we selected EPOS drivers,

which have the capability of being controlled in a wide variety of operating

modes: this permits flexible configuration of the drive systems by using po-

sitioning, speed or current regulation. The communication standards used

in automation for the control of multiple actuators can be divided in two

main categories: EtherCAT® and CANOpen. For this application, the

CANOpen standard will be used.

CANOpen, for the selected Maxon
® drivers, allows PID position con-

trol but also feedforward compensation. The feedforward compensation

provides faster setpoint following in applications with higher load inertia

and accelerations and in applications with considerable speed-dependent

load (as with friction-afflicted drives). In this facility, high load inertia and

friction affected drives will be present, hence the usage of the CANOpen
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Figure 126: Controller architecture for Maxon
® EPOS drivers [Maxon

®,

2016]

standard seems to be appropriate.

The CANOpen controller architecture contains three builtin loops, rep-

resented in Fig. 126: 1) current regulation is used in all modes; 2) posi-

tion and velocity controllers are only used in position-based, respectively

velocity-based modes; 3) current control loop receives as input the position

and the output of the velocity controller. The different regulation methods

are depicted in Fig. 127.

These schemes can be particularized in the case of a motor+gear cou-

pling, in which the associated elasticity and backlash of the gear create an

effect of compliance as well as a delay in the drive chain. This delay influ-

ences the stability and may have a dramatic impact on the performances

(dynamic behavior and precision of the system). To overcome these limi-

tations and to combine a motor/gear system with a precise and high dy-

namic regulation, it will be necessary to control the motor movement as

well as the load movement. This results in a new control structure called
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Figure 127: Different regulation methods for the selected Maxon
® hard-

ware [Maxon
®, 2016].

"dual loop", featuring two individual encoders, one directly mounted to

the motor, the another mounted at the gear or linear slide or directly on/n-

ear to the load [Maxon
®, 2016]. An update of the previous schematics

with the addition of the extra loop is presented in Fig. 128

In this application, the selected strategy is position control with feedfor-
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Figure 128: Dual loop control architectures: velocity and position regula-

tions with feedforward [Maxon
®, 2016]

ward. The choice of using a feedforward compensator arises for two rea-

sons: 1) velocity feedforward provides additional current in cases where

the load increases with speed, such as speed-dependent friction and 2)

acceleration feedforward provides additional current in cases of high accel-

eration and/or high load inertias.

In terms of hardware configuration and connections, each motor is con-

nected to a controller; the controllers are wired as the nodes of the CANBus

and are connected to the CANOpen master (Fig. 129). The single controller-

motor block is pictured in Fig. 130 in which all the harness is shown.

A Simulink
® schematic of the control system using position control

is presented in Fig. 131. The performances of the controller and the PID
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Figure 129: CANOpen multi-motor configuration [Maxon
®, 2016]

Figure 130: Single controller-motor connections
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Figure 131: Simulink
® model of the positioning controller [Maxon

®,

2016]

tuning procedure for the single motors is detailed in the hardware chapter.

6.9 architecture solutions

If the CANOpen communication standard is chosen, it is necessary to have

a master to control the slaves, in this case constituted by the Maxon
®

native controllers. The CANOpen master can be either implemented on

a computer running a real-time operating system in order to assure real-

time performances or can be constituted by a physical unit (a PLC) which

is wired to a computer through an Ethernet connection. For this facility, the

master unity chosen is a PLC by B&R Automation®. The controllers are

powered by individual switching power supply units; in order to monitor

the instantaneous power consumption of the system, six dedicated amme-

ters provided the current absorbed by the motors.

The final electric schematic of the facility is pictured in Fig. 132.
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Figure 132: Electric and wiring schematic of the robotic facility.
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6.10 motor tuning

In this section, the tuning of the brushless motors is presented and dis-

cussed. The parameters obtained from the process are further implemented

in the PLC controller as discusses in the dedicated chapter regarding the

facility’s control.

The Maxon
® EPOS2 controller are able to tune the actuators accord-

ing to three different controller strategies: current controllers, speed con-

trollers, and position controllers.

The tuning parameters obtained are summarised in Tab. 11. In Fig. 133-

137 the responses to the autotuning step inputs for the 6 motors are pre-

sented.

Joint 1 2 3 4 5

Motor model EC 45 EC 60 EC 90 EC 45 EC 45

Current gain 227 200 227 200 200

Velocity gain 276 389 275 413 390

Position gain 6400 2048 6400 2048 2048

Table 11: Tuning parameters obtained with Maxon
® EPOS2 autotuner.
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Figure 133: Motor 1 parameter tuning.
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Figure 134: Motor 2 parameter tuning.
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Figure 135: Motor 3 parameter tuning.
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Figure 136: Motor 4 parameter tuning.
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Figure 137: Motor 5 parameter tuning.



7

S I M U L AT I O N S C E N A R I O

5.1 Following the chapter on the control design of the platform, we intro-

duce in this section a framework of simulations that can be performed with

this facility.

The main goal of the robotic arm, due to the availability of 6 degrees of

freedom, is to perform OOS with the correct orbital dynamics in a labora-

tory environment. In the previous pages, care was given to the modeling

of the contact in docking scenarios. The idea behind the work presented

in this chapter (which resulted from a 10 months period spent between

MIT and the Georgia Institute of Technology), is to provide the reader

with a broader picture of the possibilities of the facility: this thesis presents

not only a detailed design for specific operations (analysis of the contact

forces, docking procedures, impacts, etc.) but yearns to provide a much

wider framework in which the facility could be used as the main investiga-

tion tool.

7.1 state of the art facilities for on orbit servic-

ing simulations

As discussed in the introduction, only a limited class of facilities are avail-

able for the simulation of OOS. Among these, 5 DOF simulators on low

friction tables (in which the z coordinate is constrained) have been devel-

oped by different research institutions in recent years [43, 44, 45].

One of the largest facilities is certainly the ASTROS platform devel-

192
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Figure 138: ASTROS facility at the Georgia Institute of Technology

oped at the Dynamics and Control Systems Laboratory under the direction

of Prof. P. Tsiotras at Georgia Institute of Technology, which can be

seen in Fig. 138 and 139 [46, 47]. The platform is divided in an upper and

a lower stage: the lower stage consists of four high-pressure air storage

vessels, three linear air-bearing pads, a hemispherical air-bearing and ded-

icated electronics that drive the solenoid valves for each air-bearing. The

total volume of the external containers 3000 in3, while the volume of the in-

ternal one is 360 in3. The vessels are connected in series and are filled with

compressed air at 3295 psi to provide air to both the linear and hemispher-

ical air-bearings [46]. The upper stage simulates a typical spacecraft "bus"

and has 12 thrusters in clusters of three, installed on the platform in a 3x4

configuration, each thruster providing a maximum of 5 N of force; in ad-

dition, four Variable-Speed CMGs (VSCMGs), arranged in a conventional

inverted pyramid configuration, are used to provide fine attitude control.
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Figure 1. 5-dof Spacecraft Simulator for Autonomous Rendezvous and Docking (SSARD) model illustration.

3 of 20

American Institute of Aeronautics and Astronautics

Figure 139: The ASTROS facility at the Georgia Institute of Technology,

drawing.
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The main objective of ASTROS is to test vision-based pose estimation,

localization and relative navigation algorithms for proximity operations in

space. In this framework, the author had the opportunity to work on a

joint project with the Georgia Institute of Technology which resulted

in the development of a novel proximity operation algorithm.

This algorithm is currently under implementation on the ASTROS plat-

form and will serve as a the main GNC tool in OOS performed by the

robotic arm facility.

7.2 simulation : baseline analysis

Once the mechanics of the facility has been finalized, it is possible to sim-

ulate some trial trajectories [10]. These will constitute an initial campaign

package to be performed by the arm; in addition, the results obtained from

this first maneuvers have been used in an iterative fashion for the choice

of the robot. That is, the initial mechanical designs were used to compute

the required torque for the maneuvers that follow this introduction; hence,

knowing the effort required in terms of torques and accelerations, the struc-

ture and actuators were corrected until an optimum (compatibly with the

commercially available products) was found.

7.2.1 Rectilinear trajectory

The first trajectory to be simulated is a line in 3D space. According to the

thorough derivation presented by this author in another work [10], this

path needs only the starting and ending points (pi, p f ) for its complete

definition. As far as concerns the motion law, we suppose a 5
th degree

polynomial with zero acceleration at the extremities.

Moreover, we need to define how the end effector orientation changes

during the trajectory; since we have no particular requirements at this
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point, we impose the orientation to be coherent with a random attitude

frame described using Euler angles ϕatt, θatt, ψatt.

For sake of simplicity, we simulate a line parallel to the x-axis. The

parameters used to initialize the code are:

xin = [0.4 1.1 0.2] [m]

vin = [0 0 0] [m]

ψatt = −20

θatt = 90

ϕatt = 45

As far as concerns the trajectory, we have:

x(t) =


a5t5 + a4t4 + a3t3 + a0

1.1

0.2

 (202)

ẋ(t) =


5a5t4 + 4a4t3 + 3a3t2

0

0

 (203)

Where:

a0 = −0.4

a1 = 0

a2 = 0

a3 = −0.008

a4 = 0.0012

a5 = −4.8 · 10−5

t ∈ [0; 10] s

dt = 0.01 s
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With the following boundary conditions on velocity and acceleration:

ẋ(0) = ẋ(T) =


0

0

0

 (205)

ẍ(0) = ẍ(T) =


0

0

0

 (206)

Notice that, in the kinematics simulations, no information about the mass

and inertial properties of the links are needed. In Fig. 140 the position,

velocity and acceleration of the six joints are plotted.

The last frame of the Matlab
® animation is proposed in Fig. 141 (a).

The end effector is represented as a concentrated mass, and its orientation

is expressed by the frame attached to it. To verify to correctness of the end

effector orientation, the goal frame is plotted in the system’s origin: it can

be seen that they have the same attitude as predicted. The red line in the

figure represents the actual trajectory, which follows very well the ideal

path (represented with a blue segment, here hidden by the red line).

The importance of the time step choice can be seen in Fig. 141 (b): in

this case, the only parameter that was changed in the simulation is the

time-step, which was increased to dt = 0.1 s. In this picture, the divergence

between the red and the blue line is visibly increasing with time.

Following the dynamic analysis, it is straightforward to derive the re-

quired torques for these trajectories 142. The geometric parameters (mass,

center of mass, inertia tensor) of each link are obtained from SolidWorks
®

and are listed at the end of the mechanical design chapter. Two simulations

are presented for the same trajectory, executed in T=10 s and T=1 s.
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(a) q(t), q̇(t), q̈(t) for joints 1, 2, 3.

(b) q(t), q̇(t), q̈(t) for joints 4, 5, 6.

Figure 140: Kinematics analysis for linear trajectory, T=10 s
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Figure 141: Linear trajectory: 3D simulation in Matlab
® native environ-

ment. Time steps of dt = 0.01 s (left) and dt = 0.1 s (right)

7.2.2 Circular trajectory

For simulating a circular trajectory, we can follow the afore mentioned

procedure. According to the analytical description in [10], a circular path

is characterized by the radius, the center vector, the normal vector (i.e. the

perpendicular to the circumference plane) and a starting point. In this

example, the analysis was carried out with the following parameters:

xin = x f in = [0.9 0.7 0.3] [m]

xc = [0.9 − R 0.7 0.3] [m]

n̄ = [0 0 1]

R = 0.4 m

ψatt = 0

θatt = 45
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(a) T=10 s

(b) T=1 s

Figure 142: Torques required in the case of a circular trajectory, T=10 s and

T=1 s
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ϕatt = 0

As far as the trajectory is concerned, we utilize a 5
th order polynomial for

the angular law, that is:

Θ(t) =a5t5 + a4t4 + a3t3

Θ̇(t) =5a5t4 + 4a4t3 + 3a3t2

Θ̈(t) =20a5t3 + 12a4t26 + a3t

Where:

a0 =0

a1 =0

a2 =0

a3 =62.83

a4 = −94.25

a5 =37.69

t ∈ [0; 1] s

dt = 0.001 s

With the following boundary conditions on velocity and acceleration:

ẋ(0) = ẋ(T) =


0

0

0



ẍ(0) = ẍ(T) =


0

0

0


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Figure 143: Circular trajectory: 3D simulation in Matlab
®’s native envi-

ronment. Time steps of dt = 0.001 s (left) and dt = 0.005 s (right)
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(a) q(t), q̇(t), q̈(t) for joints 1, 2, 3.

(b) q(t), q̇(t), q̈(t) for joints 4, 5, 6.

Figure 144: Kinematics analysis for circular trajectory, T=10 s
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The cartesian position and velocity, then, are:

x(t) =


R cos Θ(t)

R sin Θ(t)

0.3

 =


0.4 cos(a5t5 + a4t4 + a3t3)

0.4 sin(a5t5 + a4t4 + a3t3)

0.3

 (210)

ẋ(t) =


−R sin Θ(t) · Θ̇(t)

R cos Θ(t) · Θ̇(t)

0

 =


−0.4 sin(a5t5 + a4t4 + a3t3)(5a5t4 + 4a4t3 + 3a3t2)

0.4 cos(a5t5 + a4t4 + a3t3)(5a5t4 + 4a4t3 + 3a3t2)

0


(211)

In Fig 144 the position, velocity and acceleration of the six joints are plotted.

Finally, we propose a screenshot of the animation carried out in this

case. As usual, the red trajectory represents the actual position of the

end effector, whereas the blue line is the goal trajectory. To stress the

importance of the step size choice, two simulations are pictured. In the

first one, Fig. 143 (a), step size is dt = 0.001; in the second one Fig. 143

(b), the value was increased to dt = 0.005. Note that also in this case the

end effector attitude frame was plotted. In both picture, they are clearly

coherent with the predefined attitude frame.

Again, it is straightforward to derive the required torques for this cir-

cular path 145. Two simulations are presented for the same trajectory, exe-

cuted in T=10 s and T=3 s. All these results have been used directly in the

aforementioned sizing process.

7.3 proximity operations and the need for self-lo-

calization

Following from the previous section, we now focus on the application of

the facility’s capabilities to the problem of realistic simulations of OOS.

Recent advantages in the field of computing hardware, coupled with the
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(a) T=10 s

(b) T=3 s

Figure 145: Torques required in the case of a circular trajectory, T=10 s and

T=3 s
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enhancement of sensor performance, have paved the way for autonomous

navigation to become a reality. In this framework, map generation and lo-

calization are the key for successful autonomous operation and navigation

of robots. This is particularly true in the case of orbiting vehicles, in which

autonomous formation flying and docking could enable new designs of

space systems and enable OOS [48].

Autonomy depends on the capability for a satellite to accurately esti-

mate its position with respect to another object. State-of-the-art proximity-

navigation policies solve the problem of control and estimation separately.

That is, the mutual effects the controller induces on the estimator (and vice

versa) are not considered [49, 50, 51, 52, 53].

In the following pages, we depart from the separation principle of

stochastic control, and integrate planning and stochastic optimization with

localization in order to perform control of an autonomous spacecraft under

uncertainty conditions.

Firstly, we approach the problem of a chaser satellite circumnavigating

a target satellite in a simplified two-dimensional orbit. The chaser has a

vision sensor and observes a set of landmarks on the target: its goal is

to obtain a detailed map of these features. The control acts on the yaw-

rotation of the sensor in order to maximize the time allocated to landmark

observation.

A certain cost function (e.g., the estimation accuracy of the detected

landmarks) drives which feature to be selected next, and hence also drives

the next control action. An Extended Kalman Filter (EKF) provides the

state uncertainty, which can then be used to design the cost function. Since

the optimization problem is difficult to solve, we resort to cross-entropy

(CE) minimization, which iteratively searches for the near-optimal control

action. The final result is a trajectory that achieves the predefined goal in

the state space and reduces total localization uncertainty, while limiting

actuation cost.

Three different cost functions are proposed and simulated, and their
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Figure 146: Problem set up and frame of reference definition

performances compared with the case of a fixed, nadir-pointing camera.

Eventually, we extended the analysis to more realistic case of a 3D sce-

nario. In this part, the orbit will no longer be circular, but will be described

by Clohessy Wiltshires equations (CW). For the sake of simulations, we con-

sider the landmarks as single 3D points randomly located in a bounded box

inside the relative orbit. In addition, the sensor will have a more realistic

tridimensional field of view.

7.4 problem formulation

7.4.1 Relative Navigation in Orbit

We consider an observer and a chaser satellite circumnavigating along a

circular trajectory of radius Rorb having linear velocity V and orbital veloc-

ity ωϕ = V/Rorb. Typical relative orbits of two satellites flying in formation

would result in an elliptical orbit [54].

The objective of the chaser satellite is to obtain a map of a certain set
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of landmarks that are present on the target satellite. These are features

such as edges, patches, arrays of LEDs, etc. In this part, we are considering

the landmarks as single points distributed in the xy plane. The process

of gathering information on the landmark positions is achieved through

the application of a Simultaneous Localization and Mapping Algorithm

(SLAM), which also allows for the simultaneous improvement of the chaser

localization.

The satellite has an onboard sensor which is free to rotate around the

axis that is normal to the xy plane going through its center of mass. Ac-

cording to the notation in Fig. 146, frame {G} denotes the Global Frame1,

{R} the Local non Rotating Frame attached to the chaser and {S} the Local

Rotating Frame attached to the satellite sensor. In addition, we define the

angles ϕ and θ, which respectively represent the heading direction of the

satellite and the sensor bearing. Note that in this notation, frame {S} has

a positive π/2 angular offset with respect to {R}: that is, when the sensor

points to Nadir, the bearing is set to zero.

Detection of the landmarks — whose number and locations are to be

determined — can be obtained with the aid of various sensors, i.e., sonars,

lasers, LIDARs, cameras, ecc. Here, we use a range and bearing sensor,

which outputs the distance and angular displacement of the detected fea-

ture in the {S} reference frame.

The sensor is a faithful representation of a real device, having a limited

field of view, a fixed angular span and maximum angular acceleration.

1 For example, {G} could represent the base frame of a Clohessy-Wilthshire transformation

for a relative navigation problem.
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7.4.2 State Model

The state model of the orbiting satellite, augmented with the position of

the landmarks and expressed in differential form, is the following:

dx(t)

dy(t)

dϕ(t)

dθ(t)

dp1(t)
...

dpN(t)


=



V cos ϕ(t)dt

V sin ϕ(t)dt

ωϕ(t)dt

ωθ(t)dt

0
...

0


+

 I4

02N×4

dw(t) (212)

where x and y indicate the position of the chaser satellite in the {G} frame,

whereas angles ϕ and θ are the rotation of the chaser and the sensor ex-

pressed in frames {G} and {R} respectively. The landmark positions are

expressed in the global frame, and yield an augmented state x ∈ R2N+4.

In the model, dw ∈ R4 represents Wiener process noise, with covari-

ance matrix Σw = diag(σ2
1 , σ2

2 , σ2
3 , σ2

4 ).

In the simulations, a discrete-time state model derived from Eq. 212

using Euler discretization will be used:

xk+1

yk+1

ϕk+1

θk+1

p1k+1
...

pNk+1


=



xk

yk

ϕk

θk

p1k
...

pNk


+



V cos(ϕk) δt

V sin(ϕk) δt

ωϕk δt

ωθk δt

0
...

0


+

 I4

02N×4

w(tk) (213)

where δt is the discretization step and w(tk) denotes white Gaussian noise.

In this model, the only control parameter is the angular velocity of the
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sensor ωθk at time tk. Since the sensor has a limited field of view, the capa-

bility of controlling ωθk may have a significant influence on the uncertainty

reduction of the state estimate. We now introduce the Extend Kalman Filter

that will be used in the algorithm [55, 56, 57, 58].

7.5 design of the kalman filter

We break up the analysis of the filter into the prediction and update parts.

Let’s first introduce the structure of the state vector and covariance matrix,

where N is the number of landmarks:

As far as the prediction is concerned, we start by rewriting the predicted

state of the system. We use just the first 4 rows of the state:

x̂tk+1 = f(x̂tk) (214)

this equation contains just the robot pose. The explicit state prediction

equation is:

x̂tk+1 = x̂tk + g(x, y, ϕ, θ) · δt (215)


x̂tk+1

ŷtk+1

ϕ̂tk+1

θ̂tk+1

 =


x̂tk

ŷtk

ϕ̂tk

θ̂tk

 +


V cos(ϕ̂tk)

V sin(ϕ̂tk)

ωϕ

ωθ

 · δt (216)



7.5 design of the kalman filter 211

The real state is simulated with the following expression:

xtk+1 = xtk + g(x, y, ϕ, θ) · δt + w(t) (217)


xtk+1

ytk+1

ϕtk+1

θtk+1

 =


xtk

ytk

ϕtk

θtk

 +


V cos(ϕ̂tk)

V sin(ϕ̂tk)

ωϕ

ωθ

 · δt +
√

Σw · rnd(4, 1) (218)

Where Σw =diag(σ2
1 , σ2

2 , σ2
3 , σ2

4 ) is the covariance matrix of the process.

7.5.1 Covariance computation

To complete the prediction part of the EKF, the covariance matrix needs to

be computed. The following diagram shows which parts of the covariance

matrix are being updated:

We update the covariance matrix first by starting with the 4×4 robot

block (dark grey).

Σ4×4
RR = GmotΣ

4×4
RR GT

mot + I4×4 · Σw · I4×4 (219)
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The Gmot block is the Jacobian of the f(x, y, ϕ, θ) function.

Gmot =


∂ f1

∂x
∂ f1

∂y
∂ f1

∂ϕ

∂ f1

∂θ

. . . . . . . . . . . .
∂ f4

∂x
∂ f4

∂y
∂ f4

∂ϕ

∂ f4

∂θ

 (220)

Gmot =
∂

∂(x, y, ϕ, θ)




x

y

ϕ

θ

 +


V cos(ϕ) · δt

V sin(ϕ) · δt

ωϕ · δt

ωθ · δt




(221)

The explitic Jacobian is then:

Gmot =


1 0 −V sin(ϕ) · δt 0

0 1 V cos(ϕ) · δt 0

0 0 1 0

0 0 0 1

 (222)

The light-grey blocks of the covariance matrix concern the cross covariances

between the robot state and the landmark locations. They are updated as

follows:

Σ4×2N
RL = Gmot · Σ4×2N

RL (223)

Σ2N×4
LR = (Σ4×2N

RL )T (224)
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7.5.2 Measurement model

Detection of the landmarks occurs only if they are within the field of view

and range of the sensor. When a feature is detected, the sensor outputs z =

(r, α), where r is the range and α is the bearing of the observed landmark.

The measurement model, expressed in continuous form, is given by:

z(t) = S
RR(θ(t))R

GR(ϕ(t))(pi(t) − pR(t)) + v(t) (225)

where pi = (pxi , pyi) and pR = (x, y) are the position of the landmarks and

the observer satellite, respectively. The term v(t) corresponds to the obser-

vation noise of the sensor which is considered zero-mean Gaussian with

covariance matrix Σv = diag(σ2
I , σ2

II). The matrices S
RR(θ(t)) and R

GR(ϕ(t)) ex-

press rotational transformations from the global {G} to the observer frame

of reference {R} and from {R} to the sensor reference frame {S}, respectively.

In compact form the observation model is written as:

z(t) = h(x(t)) + v(t). (226)

However, in a real scenario, measurements will be taken discretely, ac-

cording to the sampling strategy adopted. The measurement model, in

discrete time form, can therefore be expressed as:

zk = h(xk) + vk, (227)

where h(xk) is given by:

h(xk) =


√

(xL − xk)2 + (yL − yk)2

tan−1
(

yL − yk
xL − xk

)
− ϕk − θk

 (228)

A matrix contains the location and a reference numbering of the N land-

marks. As the simulation goes by, an extra row is added to this vector, con-

taining a new progressive numbering which augments whenever a new

landmark is detected. For example, if at step k the landmarks that have
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been observed are, in order of appearance, 4, 10, and 2, the matrix will

look like the following:

map =


x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

· 3 · 1 · · · · · 2

 (229)

And the state will be:

x̂ =



x

y

ϕ

θ

x̂L4

ŷL4

x̂L10

ŷL10

x̂L2

ŷL2



(230)

Every time a landmark that has never been seen before is detected by the

sensor, the state and the covariance matrices are augmented:
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The state is augmented by plugging in the inverse measurement model

χ the new measurement z = [r, α] along with the predicted state x̂:

µLi+1 =

xLi+1

yLi+1

 = χ(x̂, [r, α]) =

x̂

ŷ

 +

r cos(α + ϕ̂ + θ̂)

r sin(α + ϕ̂ + θ̂)

 (231)

The Jacobians of this model are:

Gr =
∂χ

∂(x, y, ϕ, θ)
(232)

G2×4
r =

1 0 −r sin(α + ϕ + θ) −r sin(α + ϕ + θ)

0 1 r cos(α + ϕ + θ) r cos(α + ϕ + θ)

 (233)

Gy =
∂χ

∂(r, α)
(234)

G2×2
y =

cos(α + ϕ + θ) −r sin(α + ϕ + θ)

sin(α + ϕ + θ) r cos(α + ϕ + θ)

 (235)

The updated matrix is then:

Σ =

 Σold Σ′
x,Li+1

Σx,Li+1 ΣLi+1

 (236)

If the landmark has previously been detected and added to the state, an

algorithm compares the new measurement to the previous one stored in

the state. Let’s suppose we are measuring landmark j. The update code is

as follows: δx

δy

 =

x̂Lj − x̂

ŷLj − ŷ

 (237)

r =
√

δx2 + δy2 (238)

ẑtk =


√

δx2 + δy2

atan2
(

δy
δx

)
− ϕ − θ

 (239)
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Let’s compute the Jacobian of the observation model with respect to the

robot pose and the observed landmark coordinates. For observation i, the

Jacobian becomes2:

H2×size(X̂)
i =

∂ z
∂(x, y, ϕ, θ, xL,i, yL,i)

(240)

Hi =


∂ f1

∂x
∂ f1

∂y
∂ f1

∂ϕ

∂ f1

∂θ
. . .

∂ f1

∂xL,i

∂ f1

∂yL,i
. . .

∂ f2

∂x
∂ f2

∂y
∂ f2

∂ϕ

∂ f2

∂θ
. . .

∂ f2

∂xL,i

∂ f2

∂yL,i
. . .

 (241)

Using the previously defined δx, δy and r, the Jacobian becomes:

Hi =


−δx

r
δy
r

0 0 . . . −δx
r

δy
r

. . .

δy
r2 −δx

r2 −1 1 . . . −δy
r2

δx
r2 . . .

 (242)

In brief:

Hi =
[
Hr,i . . . −Hr,i . . .

]
(243)

Let’s suppose we observe at time t landmarks 4 and 2 (or 1 and 3 in the

new numbering of the example in the previous pages). Hence, since in this

case size(z) = 2, the stacked Jacobian will be of the form3:

H2·|z|×|x̂| =

 Hr,1 −Hr,1 0 0

Hr,3 0 0 −Hr,3

 (244)

For each measure, we build the vector v, which stacks together the innova-

tion vectors vi = zi − ẑi for all the current available landmarks:

v2·|z| =

{zi,1 − ẑi,1}
{zi,3 − ẑi,3}


2 Index i represents the progressive numbering of the discovered landmarks: in Eq. 230,

landmark 4 will have i=1, landmark 10 will have 2 and so on. Index i is then equal to the

size of the state minus the robot state, in this case 4

3 We simplify the notation of size(z) with |z|
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The Kalman gain is defined as:

Z = H2·|z|×|x̂| · Σ|x̂|×|x̂| · HT
|x̂|×2·|z| + R 2·{|z|×|z|} (245)

K|x̂|×2·|z| = Σ|x̂|×|x̂| · HT
|x̂|×2·|z| · Z−1

2·{|z|×|z|} (246)

In which:

R 2·{|z|×|z|} =

Σv
2×2

0

0 Σv
2×2


The update step of the EKF is then:

x̂new = x̂ + K|x̂|×2·|z| · v2·|z| (247)

Σnew = Σ − K|x̂|×2·|z| · Z · KT
2·|z|×|x̂| (248)

7.6 main problem

We want to estimate the position of the landmarks by evaluating the mea-

surements taken by the sensor. To do this, we control the rotation of the

sensor in the x-y plane to maximize the performance over a finite time

horizon. The objective is to minimize a cost function that encloses both the

final uncertainty of the estimate and the actuation cost. The cost function

can be written as:

L(x, u) = ∥e2(tN)∥+
∫ tN

0

(
Q(x) +

1
2

uTRu
)

dt (249)

where ∥e2(tN)∥ is the terminal cost at a certain time horizon setpoint T = tN.

Since we do not know this error, a strategy for its approximation needs to

be designed.

This strategy is obtained by approximating the error with a measure

of the estimation uncertainty. We introduce a strategy based on the covari-

ance matrix trace, along with alternative strategies based deriving from the
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observation of the landmarks. All these strategies evaluate both the termi-

nal performances of the piecewise control trajectory and the actuation cost

needed to achieve it.

7.6.1 Trace of the covariance matrix (TCM)

The first strategy uses the trace of the covariance matrix as a measure of

the uncertainty for the state estimate given by an Extended Kalman Filter

(EKF) [55, 56, 57, 58]:

L(x, u) = ψ1(xtN ) +
N

∑
k=0

(
Q(xtN ) +

1
2

u(tk)TRu(tk)
)

(250)

in which the terminal cost is:

ψ1(xtN ) = trace(Σ(tN)). (251)

For simplicity, let in the following Q(x) = 0 to obtain:

Ltcm = trace(Σ(tN)) +
N

∑
k=0

(
1
2

u(tk)TRu(tk)
)

(252)

7.6.2 Time under observation (TUO)

In this second strategy, the cost is defined as the time under observation

of the landmarks by the sensor. For each sampled trajectory, we count the

number of landmarks seen by the sensor at each iteration (Ti). The total

number of observed landmarks is then summed:

ψ2(xtN ) =
N

∑
i=1

Ti (253)

The complete function, taking into account the actuation cost, is then:

Ltuo = ∑
i

Ti +
N

∑
k=0

(
1
2

u(tk)TRu(tk)
)

(254)
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7.6.3 Modified Time under observation (MTUO)

The previous strategy maximizes the time under observation of the target,

but may lead to overlooking features in relatively remote areas of the work-

ing space. In order to avoid this situation, we modify Eq. 256 by defining

the trajectory cost based not only on the TUO, but also on the number of

different landmarks observed. That is, we count the TUO and the number

of different landmarks observed for each iteration (Nlndi) and we define

MTUO as the normalized sum:

ψ3(xtN ) = ∑
i

(T̂i + N̂lndi) (255)

Normalization is mandatory in order to correctly compare and sum the

two partial costs. We normalize the two terms as follows:

T̂i =
Ti − Ti,min

Ti,max − Ti,min

N̂lndi =
Nlndi − Nlndi,min

Nlndi,max − Nlndi,min

So that {T̂i, N̂lndi} ∈ [0, 1] and the new cost Lmtuo ∈ [0, 2].

The complete function, taking into account the actuation cost, is then:

Lmtuo = ∑
i

[T̂i + N̂lndi] +
N

∑
k=0

(
1
2

u(tk)TRu(tk)
)

(256)

7.6.4 Cross Entropy Minimization

We now present the Cross Entropy minimization algorithm, and show how

it can be used to solve a certain class of stochastic optimal control problems.

Assume that the following stochastic dynamics system is given:

dx = f(x, u)δt + g(x)dw (257)
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Figure 147: Recognition phase (a-c) and Cross Entropy minimization (d-f) at

different time-steps: note the progressive numbering assigned to the landmarks

by the algorithm. The uncertainty is displayed as a covariance ellipse.

where x ∈ Rn is the state of the system, u ∈ Rp is the control input, and

w ∈ Rl is a zero-mean Gaussian Wiener process with covariance Σw. Our

objective is to minimize a cost function of the form:

min Ep[L(x, u)], (258)

where the expectation in Eq. 258 is with respect to the trajectories of Eq. 257.

Assuming that u(t) depends on a parameter vector λ ∈ Rm, we can rewrite

the control input as u(t; λ). The result of this parametrization is that we will

minimize the cost function with respect to the finite dimensional parame-
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ters vector λ. According to the CE minimization method [59], we rewrite

the cost function as follows:

J(λ) = Ep [L(λ)] =
∫

p(λ) L(λ)dλ (259)

where p(λ) is the probability density function corresponding to sampling

trajectories based on Eq. 257. Under a parameterization of the baseline

probability density, we have that p(λ) = p(λ; µ). We perform importance

sampling from a proposal probability density q(λ) and evaluate the expec-

tation in Eq. 259 as follows:

J (λ) =
∫ p(λ; µ)

q(λ)
L(λ) q(λ)dλ = Ep

[
p(λ; µ)

q(λ)
L(λ)

]
The expression above can be approximated numerically from

Ĵ (λ) ≈ 1
Ns

∑
[

p(λ; µ)
q(λ)

L(λ)
]

(260)

with Ĵ being an unbiased estimator and Ns the number of samples drawn.

The probability density that minimizes the variance of the estimator Ĵ is:

q∗(λ) = argmin
q

Var
[

p(λ; µ)
q(λ)

L(λ)
]

=
[

p(λ; µ)L(λ)
J (λ)

]
(261)

and it is the optimal (with respect to variance) importance sampling den-

sity. The goal of CE is to find the parameters ψ ∈ Ψ in the parametric class

of pdfs p(λ; ψ), such that the probability distribution p(λ; ψ) approaches

the optimal distribution q∗(λ) given in Eq. 261.

The optimal parameters can be approximated numerically using the

Kullback-Leibler divergence as a distance metric between q∗(λ) and p(λ; ψ)

yields

D(q∗(λ)||p(λ; ψ)) =
∫

q∗(λ) ln[q∗(λ)] dλ −
∫

q∗(λ) ln[p(λ; ψ)] dλ (262)
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The minimization problem can now be formulated as follows:

ψ∗ = argmin
ψ

D(q∗(λ)||p(λ; ψ))

= argmax
ψ

∫
q∗(λ) ln[p(λ; ψ)] dλ

= argmax
ψ

∫ p(λ; µ) L(λ)
J (λ)

ln[p(λ; ψ)] dλ

= argmax
ψ

∫
p(λ; µ) L(λ) ln[p(λ; ψ)] dλ

= argmax
ψ

Ep(λ;µ) [L(x) ln[p(λ; ψ)]

Based on the previous equation, the optimal parameters can be approxi-

mated numerically as:

ψ∗ ≈ argmax
ψ

1
Ns

∑L(λ) ln[p(λ; ψ)] (263)

We want to compute the value of λ that satisfies the following equation:

P(L ≤ ϵ) = Ep(λ;µ)[I{L≤ϵ}] (264)

where ϵ is a small constant and I is the indicator function. Using Eq. 260,

this probability can be numerically approximated:

P̂(L ≤ ϵ) ≈ 1
Ns

∑
[

p(λi; µ)
p(λi; ψ)

I{L(λi)≤ϵ}

]
where λi are i.i.d samples drawn from p(λ; ψ). Based on Eq. 263, the goal

is to find the optimal ψ∗, which is defined as:

ψ∗ ≈ argmax
ψ

1
Ns

∑ I{L(λi)≤ϵ} ln[p(λi; ψ)], (265)

where now the samples λi are generated according to probability density

p(λ; µ). In order to estimate the above probability, it is infeasible to use

a brute force method, e.g. Monte-Carlo [60]: this is because the event
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{L ≤ ϵ} is rare. An alternative is to start with ϵ1 > ϵ for which the prob-

ability of the event {L ≤ ϵ1} is equal to some ρ > 0. Thus, the value ϵ1 is

set to the ρ-th quantile of L(λ) which means that ϵ1 is the largest number

for which:

P(L(λ) ≤ ϵ1) = ρ.

The parameter ϵ1 can be found by sorting the samples according to their

cost in increasing order and setting ϵ1 = LρN. The optimal parameter ψ1 for

the level ϵ1 is calculated according to Eq. 265 using the value ϵ1. This iter-

ative procedure terminates when ϵk ≤ ϵ, in which case the corresponding

parameter ψk is the optimal one and thus ψ∗ = ψk.

To summarize, in order to find the optimal trajectory λ∗ and the cor-

responding optimal parameters ψk, the process of estimating rare event

probabilities is iterated until ϵ → ϵ∗, where ϵ∗ = minL(ϵ). Since ϵ∗ is

not known a priori, we choose as ϵ∗ the value of ϵ for which no further

improvement within a predefined tolerance in the iterative process is ob-

served. The overall problem is summarized in the table below.

The proposed algorithm consists of two phases:

• the recognition phase, during which the first orbit the measurements

taken by the chaser provide a first estimation of all the landmarks,

• the incremental estimation phase, during which the chaser keeps taking

measurements in order to improve the overall state estimation.

The recognition phase is necessary, since the chaser does not know the

number and the position of the landmarks and, in turn, the dimension

of the overall system state. During the recognition phase the chaser runs

the aforementioned Extended Kalman filter algorithm whose state is aug-

mented whenever a measurement related to a new landmark is collected

[55, 56, 57, 58].
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7.6.5 Recognition Phase

Let Ñ be the number of landmarks recognized up to the time instant k so

the current state of the EKF is given by:

x(Ñ)
k =

[
xk yk ϕk θk p(1)

k p(2)
k . . . p(Ñ)

k

]T
.

We divide the design of the EKF into prediction and update steps.

Prediction step

The update equation is

x̂k+1|k

ŷk+1|k

ϕ̂k+1|k

θ̂k+1|k

p̂(1)
k+1|k

p̂(2)
k+1|k
...

p̂(Ñ)
k+1|k



=



x̂k|k

ŷk|k

ϕ̂k|k

θ̂k|k

p̂(1)
k|k

p̂(2)
k|k
...

p̂(Ñ)
k|k



+



V cos(θ̂k|k)δt

V sin(θ̂k|k)δt

ωϕk δt

ωθk δt

0

0
...

0



,

or, in a more compact form,

x̂(Ñ)
k+1|k = f(x̂(Ñ)

k|k , ωϕk , ωθk).

The update of the covariance matrix is given by

P(Ñ)
k+1|k = FkP(Ñ)

k|k FT
k + Qk, (266)

where

Fk =
∂f
∂x

. (267)
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The matrix Fk has the following structure

F =

Fmot
k 0

0 IÑ

 , (268)

where Fmot
k is given by the following expression

Fmot
k =


∂ f1

∂x
∂ f1

∂y
∂ f1

∂ϕ

∂ f1

∂θ

. . . . . . . . . . . .
∂ f4

∂x
∂ f4

∂y
∂ f4

∂ϕ

∂ f4

∂θ



=


1 0 −V sin(ϕ̂k|k)δt 0

0 1 V cos(ϕ̂k|k)δt 0

0 0 1 0

0 0 0 1

 .

(269)

Finally the matrix Qk is of the form

Qk =

Σw 0

0 0N

 ,

where 0N is a null matrix of dimension N.

Update step

Assuming we have the information provided by the range and bearing sen-

sor z = [r, α], we collect multiple measurements at the same time instant

k + 1, e.g. z̄k+1. This vector can be divided in two components, the first

component z(1)
k+1 which is given by all the measurements collected from

already seen landmarks, and the second z(2)
k+1 which represents measure-

ments collected by observing new landmarks. The measurement model

can be written as

z̄k+1 =

z(1)
k+1

z(2)
k+1

 =

h(1)(x̂k+1) + v(1)
k+1

h(2)(x̂k+1) + v(2)
k+1

 .
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Let us compute the Jacobian of the observation model with respect to the

robot pose and the observed landmark coordinates. At iteration k + 1 we

obtain

Hk+1 =
∂h(1)

k+1

∂x(Ñ)

∣∣∣∣∣
x̂k+1|k

(270)

With the output matrix Hk+1 we can update the state related to all chaser

attitute and all the already seen landmarks

Kk+1 = P(Ñ)
k+1|kHT

k+1

(
Hk+1P(Ñ)

k+1|kHT
k+1 + Rk+1

)−1

x(Ñ)
k+1|k+1 = x(Ñ)

k+1|k + Kk+1z(1)
k+1.

P(Ñ)
k+1|k+1 = (I − Kk+1Hk+1)P(Ñ)

k+1|k

Without loss of generality, suppose that z(2)
k+1 refers to just one new land-

mark p(Ñ+1), then we have that

p̂(Ñ+1)
k+1|k+1 =

x̂k+1|k

ŷk+1|k

 +

r cos(α + ϕ̂k+1|k + θ̂k+1|k)

r sin(α + ϕ̂k+1|k + θ̂k+1|k)

 .

Then we can extend the state

x(Ñ+1)
k+1|k+1 =

x(Ñ)
k+1|k+1

p̂(Ñ+1)
k+1|k+1

 ,

and the covariance matrix

P(Ñ+1)
k+1|k+1 =

 P(Ñ)
k+1|k+1 P(Ñ,Ñ+1)

P(Ñ+1,Ñ) P(Ñ+1)

 ,
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Figure 148: Discretization strategy for cross-entropy algorithm

where

P(Ñ+1,Ñ) =
(

P(Ñ,Ñ+1)
)T

=



∂ p̂(Ñ+1)
k+1|k+1

∂xk
∂ p̂(Ñ+1)

k+1|k+1

∂yk

∂ p̂(Ñ+1)
k+1|k+1

∂ϕk

∂ p̂(Ñ+1)
k+1|k+1

∂θk



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(x̂k+1|k ,z̄k+1)

.

and

P(Ñ+1) =
∂ p̂(Ñ+1)

k+1|k+1

∂zk+1

∣∣∣∣∣∣
(x̂k+1|k ,z̄k+1)

.
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7.6.6 Incremental Estimation Phase

After the recognition phase an initial guess of the landmark’s position is

stored in the state of the system. At this point the core of the algorithm

runs to improve the estimate of the state, and this information is exploited

to control the vision sensor.

Specifically, for any orbit the following steps are repeated:

1. We draw Ntraj random possible acceleration trajectories for the sensor,

λ = {λ1, λ2, . . . , λNtraj}, from a Gaussian distribution with parameter

vi .

2. For all λ we simulate the behavior of the camera running an Extended

Kalman filter.

3. Once the state has been estimated at any time instant we can evaluate

one of the cost function presented in Section 7.6 and perform the CE

algorithm. Basically we have to select the ρ − th best performing

percentile, i.e. the trajectories with an associated lower cost.

4. From these reduced subset of samples the new parameters for the dis-

tribution are inferred. The aforementioned procedure is repeated up

to the convergence of the cross entropy method and then the optimal

solution is applied.

7.6.7 Controller

The controller acts on the angular velocity of the sensor, ωθ. Recalling

Eq. 254, we can rewrite the discretized cost as:

L̂(x, u) ≈ ψ(xN) +
1
2

R
N

∑
k=0

ω2
θk

, (271)
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Figure 149: Cross Entropy optimization for the proposed cost policies. The

solid black line represents the null cost. In this case, NCE = 15.
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where in Eq. 250 we let Q(x) = 0 and ψ(xN) = ∥e2(N)∥. The control law is

parametrized as follows:

ωθk = u(ωθk−1 , η(k − 1; λ))

= ωθk−1 + η(k − 1; λ)δt
(272)

where η(k − 1; λ) is the rotational acceleration, which is parameterized as

a piecewise trajectory composed by m constant pieces. The choice of pa-

rameterizing the acceleration allows to have smooth (at least of class C1)

angular trajectories.

Each constant acceleration ηm is being applied for a constant duration

δti, where tsect = ∑m
i=1 δti. The sum of all time intervals is fixed and equal

to the time horizon corresponding to the duration of each sector s (refer

to the table in Section 7.10). The parameter vector λ is defined as λT =

(t1, η1, . . . , tm, ηm) ∈ R2m.

Each parameter vector λ corresponds to a unique control vector u,

which generates a trajectory x = [x1, x2, . . . , xtN ].

In the numerical simulations, and without loss of generality, we main-

tain the controller timestep constant δti = δtm = tsect/m. The accelerations

ηi are initially obtained from a uniform distribution U ([ηmin, ηmax]), where

the bounds are dictated by the specifics of the sensor.
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7.6.8 Algorithm Set Up

Problem Algorithm

1: for s = 1 to total sectors per turn do

2: Selected initial distribution parameters v0

3: for i = 1 to total CE optimization steps do

4: Draw Ntraj random acceleration vectors λ ∈ Rm from distribution

with parameters vi

5: for j = 1 to Ntraj do

6: Run a simulated EKF with the input N j
traj

7: Evaluate the cost function 250 and store the value

8: end for

9: Sort all the cost function values in ascending order

10: Take the ρ-th quantile Run the cross entropy optimization in

Eq. 265 and extract the new distribution parameters vi+1

11: end for

12: Apply the obtained near optimal control law λ ∈ Rm to sector s.

13: end for

To evaluate the proposed control policies, we consider the scenario of

a satellite circumnavigating another satellite in orbit, while observing a

set of feature points (landmarks) on the target satellite. The objective of

observing the satellite is to accurately localize the landmarks.

The optimization step follows a first full orbit around the object in

which the chaser satellite observes the landmarks in a recognition mode:

in this first part, no control is applied to the sensor, which, for example,

points towards the center of the orbit at all times.

After a first turn has been completed, and the state vector x has been

augmented to dimension R 4+2×N through landmark observations4, the CE

4 We have that N ≤ N
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routine is implemented.

Since the trajectory simulated in the EFK prediction routine is depen-

dent on the intrinsic uncertainty of the sensor, a long time horizon will

result in a build up of errors and uncertainties. The CE routine is then

applied to a finite time horizon, equal to a fraction of the orbital period.

In this simulation, the orbit has been divided in s sectors: each sector

is divided in m sampling boxes, where m is the size of the control action

vector λ. Depending on the implemented discretization, each box consists

of l iterations. That is, for each box mi, constant control parameters λi

are applied for l number of iterations of the box. Fig. 148 illustrates the

discretization strategy.

The cross entropy control strategy for the simulation is listed in the

Problem Algorithm routine: Ntraj random control laws are drawn by using

the starting distribution parameters v0. An EKF simulation is then run

for each of the Ntraj control laws, leading to different trajectories; these are

ordered according to their respective cost and a quantile q − th is selected.

The best q − th quantile provides the new parameters vi from which the

next Ntraj control laws are drawn. The process iterates for the NCE cross-

entropy optimization steps. The output of the algorithm is the near-optimal

control law λ ∈ Rm with m being the number of boxes in which the si sector

is divided.

7.7 simulation results

We present in this section the results for the three proposed cost policies.

All the simulations, in order to maintain consistency, comprise the same

number and location of landmarks, with the same orbit and sensor charac-

teristics. The simulation parameters are listed in Table 12.

The position of the landmarks is obtained by randomly extracting Nlnd ×
2 values in N (0, R

2 ).
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Table 12: Simulation parameters

Orbit

Orbit radius R 5

Angular velocity ω 0.2

Set up

Sectors per turn s 6

Boxes per sector m 10

Iterations per box l 20

Number of landmarks Nlnd 10

Sensor

Range r 4.7

Bearing α 5ą

Max acceleration amax 2

Noise

Model σω 0.002

Measurement σv 0.002

The simulation starts with a first orbit in recognition mode, during which

the sensor is kept Nadir-pointing (that is, x(4) = θ = 0). Data regarding

the landmarks is collected, along with the uncertainty of the EKF estimate.

Graphically, the uncertainty can be represented with covariance ellipses.

In Fig. 147 (a-c), the recognition mode simulation is illustrated at different

steps during the first turn. Initial uncertainty is dictated by the simulation

and sensor noise and is influenced by the number of measurements taken.

After this first initial turn, the cross entropy control is applied. The

algorithm’s ability to drastically reduce the uncertainty and to improve the

mutual localization has been demonstrated for all three different control

strategies.

In Fig. 147 (d–f), the cross entropy minimization orbit is depicted at

three different steps, in which the shrinking in the size of the covariance

matrix ellipses can be clearly seen (in this particular case, the cost strategy

based on Ltcm has been implemented). Note that the beam points always

towards a group of landmarks, whereas in the recognition mode the sensor

is kept pointed at the center of the orbit.

Analysis of the proposed optimization strategies is presented in Fig. 149.
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Figure 150: Trace of the covariance matrix in the uncontrolled and

controlled cases.
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Figure 151: Landmark observations’ potential map in the uncontrolled

and controlled cases.
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Figure 152: Cumulative landmark detection in he uncontrolled and

controlled cases.
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These plots represent the average and maximum cost associated with the

parameter vector λi for i = 1 . . . NCE, for different sectors s along the circu-

lar orbit. Due to the design of the cost policies, the objective is to find the

minimum for Ltrace and the maxima for Ltuo,Lmtuo.

The cost strategy based on the trace of the covariance matrix enables

the top λi quantile to converge almost immediately to the optimal trajec-

tory (blue line in Fig. 149 (a)). On the contrary, the costs based on the

landmark observation inferences (Ltuo and Lmtuo) show a slower conver-

gence rate towards the optimal value, albeit the latter is always reached

without significant oscillations (Fig. 149 (b-c)). In all the performed sim-

ulations, the proposed cost strategies outperform the non controlled case

(solid horizontal line in Fig. 149).

A further analysis to gain an insight of the performance takes into ac-

count the overall uncertainty reduction made possible with the proposed

cost strategies. A good estimate of this uncertainty is again the trace of

the covariance matrix: in Fig. 150 the trace behavior is plotted for the non

controlled and the controlled cases. The trace increase in the first leg of the

curve is due to the landmark acquisition and population of the (initially

empty) covariance matrix during the first orbit. Since ωθ = 0 during the

recognition phase, this first part is identical (with the obvious differences

due to noise) for all cases.

The second part of the curve is influenced by the strategy under anal-

ysis. As expected, the decay of trace(Σ(tN)) is faster in the controlled case

(Ltcm, Ltuo and Lmtuo) compared to the non-controlled scenario (Fig. 150

(a)). In particular, the cost Ltcm allows for the best performance in terms

of uncertainty reduction, with Ltuo and Lmtuo performing very similarly

(Fig. 150 (c-d)).

Finally, we studied how the different costs lead to differences in land-

mark detection. To do this, we represented the time spent under observa-

tion as the potential map in Fig. 149, in which the color intensity represents

the number of times each landmark has been measured in the same orbital
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portion. The scatter plot has then been interpolated and a 3D surface was

computed. As expected, in the non controlled case most observations hap-

pen in the proximity of the orbit’s center, Fig. 149 (a). The cost based on

the trace, Fig. 149 (b), presents fairly good performances in terms of du-

ration and distribution of the observations. Cost strategies based on Ltuo

and Lmtuo present a very similar shape in terms of observed landmarks:

however, the cost Lmtuo allows for an even distribution of the observations.

This is due to the additional term in Eq. 256, which takes also into account

the number of different features: in the potential plot, this is confirmed by

the more uniform gradient among the landmarks.

Overall, strategies based on Ltuo and Lmtuo allow for a higher number

of observed features: we present another performance indicator for the

algorithm. In Fig. 152, the cumulative landmark observations are shown

with the aid of bar charts: each bar represents a landmark and the height

of each bar represents the number of detection during a turn.

It is interesting to note how the non-controlled case, Fig. 152 (a), per-

forms poorly, both in terms of number of detected landmarks and distribu-

tion (some landmarks, for example, are never detected). The first control

policy, based on Ltcm, allows for a significant performance increase, both

in terms of number and frequency of the observations (Fig. 152 (b)). Cases

Ltuo and Lmtuo show again a similar structure in the observation frequency,

but with the substantial difference of a much more even distribution in the

case of Lmtuo.

In conclusion, based on the potential and cumulative analyses, the mod-

ified Lmtuo allows for more frequent and more even observations if com-

pared to the performance of Ltcm.
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7.8 cross entropy 3d extension

7.8.1 Relative Navigation in Orbit

In this section, we extend the work presented in the previous pages to the

general case of a target and a chaser satellite in a 3D orbital scenario. The

relative orbit will be described with Clohessy-Wiltshire’s equations (CW).

The satellite has again an onboard sensor, which is free to rotate around

the axis normal to the orbital plane. In order to describe the relative motion

between the chaser and the target, we start by analyzing Hill’s equations.

7.8.2 Clohessy-Wiltshire Reference Frame

The Clohessy-Wiltshire framework allows for the description of orbital rel-

ative motion, in which the target is in a circular orbit, and the chaser is in

an elliptical (or circular) orbit. This model is a first-order approximation of

the actual chaser’s motion in a target-centered coordinate system.

Hill’s differential equations in Cartesian coordinates and in the non

homogeneous form can be written as follows [61, 62]:
ẍ − 3n2x − 2nẏ = fx

ÿ + 2nẋ = fy

z̈ + n2z = fz
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The CW equations can be obtained solving Hill’s differential unforced

equations with the standard Laplace transform, which yields:

x(t) = x0[4 − 3 cos(nt)] +
sin(nt)

n
ẋ0 +

2ẏ0

n
[1 − cos(nt)]

y(t) = y0 −
2ẋ0

n
− 3(2nx0 + ẏ0)t + 2(3x0 +

2ẏ0

n
) sin(nt)

+
2ẋ0

n
cos(nt)

z(t) = z0 cos(nt) +
ż0

n
sin(nt)

One interesting property of these equations is that, although the equations

describing the in-plane motion are coupled, the out-of-plane motion is de-

coupled.

Even though the chaser does not actually orbit around the target satel-

lite, the instantaneous motion is elliptical [63]. The term (2nx0 + ẏ0)t in the

y-equation represents the secular drift between the chaser and the target

due to differences in the orbital periods. If this term is set to zero by choos-

ing the appropriate initial conditions, ẏ0 + 2nx0 = 0, then the linearized

relative orbit will have a bounded motion.

Assuming this constraint is satisfied, then the HCW equations can be

rewritten as follows [54]:
x(t) = α sin(nt + ϕ1)

y(t) = 2α cos(nt + ϕ1) + ∆y

z(t) = β sin(nt + ϕ2)

where the parameters α, β, ∆y, ϕ1 and ϕ2 are determined through the rela-

tive orbit initial conditions:

α =

√
x2

0 +
ẋ2

0
n2 , β =

√
z2

0 +
ż2

0
n2 (273)

∆y = y0 − 2
ẋ0

n
(274)
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ϕ1 = tan−1
(

nx0

ẋ0

)
, ϕ2 = tan−1

(
nz0

ż0

)
(275)

In order to simplify the analysis, we may impose a target-centered orbit by

driving ∆y to zero, that is let y0 = 2(ẋ0/n). The case ∆y ̸= 0 is trivial and

does not add any significant novelty. One finally obtains:
x(t) = α sin(nt + ϕ1)

y(t) = 2α cos(nt + ϕ1)

z(t) = β sin(nt + ϕ2)


ẋ(t) = α cos(nt + ϕ1)n

ẏ(t) = −2α sin(nt + ϕ1)n

ż(t) = β cos(nt + ϕ2)n

The unit vector normal to the osculating plane can be derived as the

unity momentum:

n̂ =
x × ẋ

∥x × ẋ∥ (276)

A new frame of reference attached to the Hill’s orbit is defined, {H},

with the x-axis and y-axis lying on the osculating plane and directed to-

wards the apsis and periapsis respectively. The direction is chosen to

form a right-handed frame {îH , ĵH , k̂H} with the z-axis, represented by

n̂. Frames {G} and {H} have the same null origin by definition since

y0 = 2(ẋ0/n).
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7.8.3 State Model

In this case, the state model changes with respect to the one used in the 2D

case, and can be expressed as:

dx(t)

dy(t)

dz(t)

dϕ(t)

dθ(t)

dp1(t)
...

dpN(t)



=



α cos(ϕ + ϕ1)n

−2α sin(ϕ + ϕ1)n

β cos(ϕ + ϕ2)n

ωϕ(t)dt

ωθ(t)dt

0
...

0



+

 I5

03N×5

dw(t) (277)

where x, y, z indicate the position of the chaser satellite in the {G} frame,

and the angles ϕ and θ are the rotation of the chaser and the sensor ex-

pressed in frames {H} and {R} respectively; note that ϕ(t) = nt is the cumu-

lative angle: that is, we suppose that in the baseline case (with no control

applied), the chaser rotates with an angular velocity vector perpendicular

to the relative orbital plane and with magnitude equal to the mean motion

(ωϕk = n).

The landmark positions p1, . . . pN are expressed in the global frame,

and yield an augmented state x ∈ R3N+5.

In the model, dw ∈ R5 represents a Wiener process with covariance

matrix Σw = diag(σ2
1 , σ2

2 , σ2
3 , σ2

4 , σ2
5 ).



7.8 cross entropy 3d extension 243

Figure 153: Problem set up and simulated sensing scenario.

In discrete form, the model becomes:

xk+1

yk+1

zk+1

ϕk+1

θk+1

p1k+1
...

pNk+1



=



xk + α cos(ϕk + ϕ1)nδt

yk − 2α sin(ϕk + ϕ1)nδt

zk + β cos(ϕk + ϕ2)nδt

ϕk + ωϕk δt

θk + ωθk δt

p1k
...

pNk



+

 I5

03N×5

w(tk) (278)

7.8.4 Measurement Model

Detection of the landmarks occurs only if they are within the field of

view and range of the sensor, depicted as the yellow truncated pyramid

in Fig. 153. When a feature is detected, the sensor outputs this time the

augmented vector z = (r, α, β), where r is the range and the tuple (α, β) are

the azimuth and elevation angles (see Fig. 154).
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Figure 154: Measurement model definition.

The measurement model, expressed in continuous form, is the follow-

ing:

z(t) = S
RR(θ(t))R

HR(ϕ(t))H
G R(pi(t) − pR(t)) + v(t) (279)

where pi = (pxi , pyi , pzi) and pR = (x, y, z) are the position of the landmarks

and the observer satellite, respectively, expressed in the base frame. The

term v(t) corresponds to the observation noise of the sensor which is con-

sidered zero-mean Gaussian with covariance matrix Σv = diag(σ2
I , σ2

II, σ2
III).

The matrices H
G R, S

RR(θ(t)) and R
HR(ϕ(t)) express rotational transformations

from the base frame {G} to the orbit {H}, from {H} to the observer frame

{R} and from {R} to the sensor frame {S}, respectively. In compact form, the

observation model is then written as:

z(t) = h(x(t)) + v(t) (280)

Or, in discrete time form:

zk = h(xk) + vk (281)
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Referring to Fig. 154, the measurement model mapping function can be

described as:

h(x) =


√

(xL − x)2 + (yL − y)2 + (zL − z)2

tan−1
(

y∗L − yG

x∗L − xG

)
− ϕ − θ

tan−1
(

sgn((xL − x∗L) · n) ∥xL − x∗L∥
∥x∗L − x∥

)
 (282)

The projected vector x∗L can be further expressed as a function of the

state by knowing the transformation map between frames {G} and {H},

which remains constant throughout the simulation:

x∗L = xL − (xL · n)n (283)

The measurement model can then be written as:

h(x) =



√
(xL − x)2 + (yL − y)2 + (zL − z)2

tan−1
(

(xL − (xL · n)n − x) · jH
(xL − (xL · n)n − x) · iH

)
− ϕ − θ

tan−1
(

sgn(((xL · n)n) · n) ∥(xL · n)n∥
∥xL − (xL · n)n − x∥

)


(284)

7.9 design of the algorithm

The proposed algorithm is still composed by two phases, described thor-

oughly in the previous sections:

• the recognition phase,

• the incremental estimation phase

Although the EKF structure remains the same, the details change due to

the added dimensionality of the problem; the following sections explains

these changes.
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7.9.1 Recognition Phase

With Ñ being the number of landmarks recognized up to the time instant

k, we write:

x(Ñ)
k =

[
xk yk zk ϕk θk p(1)

k p(2)
k . . . p(Ñ)

k

]T
.

Prediction step

The augmented state is:

x̂k+1|k

ŷk+1|k

ẑk+1|k

ϕ̂k+1|k

θ̂k+1|k

p̂(1)
k+1|k

p̂(2)
k+1|k
...

p̂(Ñ)
k+1|k



=



x̂k|k

ŷk|k

ẑk|k

ϕ̂k|k

θ̂k|k

p̂(1)
k|k

p̂(2)
k|k
...

p̂(Ñ)
k|k



+



α cos(ϕk|k + ϕ1)nδt

−2α sin(ϕk|k + ϕ1)nδt

β cos(ϕk|k + ϕ2)nδt

ωϕk δt

ωθk δt

0

0
...

0


or, in a more compact form:

x̂(Ñ)
k+1|k = f(x̂(Ñ)

k|k , ωϕk , ωθk).

The update of the covariance matrix is given by

P(Ñ)
k+1|k = FkP(Ñ)

k|k FT
k + Qk, (285)

where

Fk =
∂f
∂x

. (286)

The matrix Fk has the following structure

F =

Fmot
k 0

0 IÑ

 , (287)
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where Fmot
k is given by the following:

Fmot
k =


∂ f1

∂x
∂ f1

∂y
∂ f1

∂z
∂ f1

∂ϕ

∂ f1

∂θ

. . . . . . . . . . . . . . .
∂ f5

∂x
∂ f5

∂y
∂ f5

∂z
∂ f5

∂ϕ

∂ f5

∂θ



=



1 0 0 −α sin(ϕk|k + ϕ1)nδt 0

0 1 0 −2α cos(ϕk|k + ϕ1)nδt 0

0 0 1 −β sin(ϕk|k + ϕ2)nδt 0

0 0 0 1 0

0 0 0 0 1


.

(288)

where 0N is a null matrix of dimension N.

Update step

We assume to have the information provided by the range and bearing

sensor z = [r, α, β]. Furthermore, we assume that we collect multiple mea-

surements at the same time instant k + 1, e.g. z̄k+1. This vector can be

divided in two components, the first component z(1)
k+1 which is given by all

the measurements associated to already seen landmarks and the second

component z(2)
k+1 which represents measurements associated to new land-

marks. The measurement model can be written as

z̄k+1 =

z(1)
k+1

z(2)
k+1

 =

h(1)(x̂k+1) + v(1)
k+1

h(2)(x̂k+1) + v(2)
k+1

 .

We proceed with the computation of the Jacobian of the observation model

with respect to the robot pose and the observed landmark coordinates. At

iteration k + 1 we get

Hk+1 =
∂h(1)

k+1

∂x(Ñ)

∣∣∣∣∣
x̂k+1|k

(289)
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By having the output matrix Hk+1 we can update the state related to all

chaser attitude and all the already seen landmarks

Kk+1 = P(Ñ)
k+1|kHT

k+1

(
Hk+1P(Ñ)

k+1|kHT
k+1 + Rk+1

)−1

x(Ñ)
k+1|k+1 = x(Ñ)

k+1|k + Kk+1z(1)
k+1

P(Ñ)
k+1|k+1 = (I − Kk+1Hk+1)P(Ñ)

k+1|k

Without loss of generality, suppose that z(2)
k+1 refers to just one new land-

mark p(Ñ+1), then we have that

p̂(Ñ+1)
k+1|k+1 =


x̂k+1|k

ŷk+1|k

ẑk+1|k

 + R
HR


r cos(β) cos(α + ϕ̂k+1|k + θ̂k+1|k)

r cos(β) sin(α + ϕ̂k+1|k + θ̂k+1|k)

r sin(β)

 .

Then we can extend the state

x(Ñ+1)
k+1|k+1 =

x(Ñ)
k+1|k+1

p̂(Ñ+1)
k+1|k+1

 ,

and the covariance matrix

P(Ñ+1)
k+1|k+1 =

 P(Ñ)
k+1|k+1 P(Ñ,Ñ+1)

P(Ñ+1,Ñ) P(Ñ+1)

 ,

where

P(Ñ+1,Ñ) =
(

P(Ñ,Ñ+1)
)T

=



∂ p̂(Ñ+1)
k+1|k+1

∂xk
∂ p̂(Ñ+1)

k+1|k+1

∂yk

∂ p̂(Ñ+1)
k+1|k+1

∂ϕk

∂ p̂(Ñ+1)
k+1|k+1

∂θk



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(x̂k+1|k ,z̄k+1)

.

and

P(Ñ+1) =
∂ p̂(Ñ+1)

k+1|k+1

∂zk+1

∣∣∣∣∣∣
(x̂k+1|k ,z̄k+1)

.
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7.9.2 Incremental Estimation Phase

The incremental estimation phase is derived directly from the 2D case:

1. We draw Ntraj random possible acceleration trajectories for the sensor,

λ = {λ1, λ2, . . . , λNtraj}, from a Gaussian distribution with parameter

vi.

2. For all λ we simulate the behavior of the camera running an Extended

Kalman filter.

3. Once the state has been estimated at any time instant we can evaluate

the cost function and perform the CE algorithm. We have to select

the ρ − th best performing percentile, i.e. the trajectories with an

associated lower cost.

4. From these reduced subset of samples the new parameters for the

distribution are inferred. The aforementioned procedure is repeated

up to the convergence of the Cross Entropy method and then the

optimal solution is applied.

7.9.3 Cross Entropy optimization for orbital self-localization

Even in the 3D case, the controller acts on the angular velocity of the sensor,

ωθ. Recalling Eq. 250, we can rewrite the discrete cost as:

L̂(x, u) ≈ ψ(xtN ) +
N

∑
k=0

(
1
2

u(tk)TRu(tk)
)

, (290)

where in Eq. 250 we let Q(x) = 0 and ψ(xtN ) = ∥e2(tN)∥. The control law is

parametrized as follows:

ωθ(tk) = u(ωθ(tk−1), η(tk−1; λ)) (291)
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ωθ(tk) = ωθ(tk−1) + η(tk−1; λ)δt, (292)

In these simulations, and without loss of generality, we maintain the con-

troller time-step constant δti = δtm = tsect/m. The accelerations ηi are

initially obtained from a uniform distribution U ([ηmin, ηmax]), where the

bounds are dictated by the specifics of the sensor.

7.9.4 Algorithm Set Up

Control in this scenario means that the active rotation of the spacecraft

about one of its axes is such that the sensor points to the landmarks de-

tected in a previous time step. A certain cost function (e.g. the estimation

accuracy of the detected features or the cumulative number of features

seen) drives which feature(s) to be observed next, and hence also drives

the control action. The control and estimation steps are therefore coupled.

On the contrary, existing work in proximity operations solve the problem

of control and estimation independently [53, 52].

7.10 simulation results

This updated proposed algorithm has been used to simulate the acquisition

and tracking of a set of landmarks on a virtual object located in the centroid

of the closed Hill orbit.

In both cases, in order not to lose generality, landmarks are randomly

placed according to a uniform distribution, so that the presence of partic-

ular geometrical properties/symmetries will not affect performance. The

landmarks are thus generated according to the following distribution:

p = U (0, [α, β, γ])
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e)d)

b)a) c)

f)

Figure 155: Reconnaissance orbit: the sensor is fixed with respect to the

satellite (ωθ = 0).

The distribution coefficient can be chosen to mimic the primitive shape a

particular object. In this case, we chose α = β = γ = 0.2 dmin, with dmin

being the semi-minor axis of the relative CW orbit. In Table 12 we report

the characteristics of the simulated scenario. We treat the case of a single

reconnaissance orbit followed by a single optimization orbit.

The first orbit allows for the recognition of all the landmarks that fall

in the field of view of the sensor: they are stored in the state and they are

assigned a progressive number. The first orbit, during which no control

is applied (ωθ = 0), is represented in Fig. 155. The sensor rotates together

with the spacecraft, whose angular velocity is equal to the mean motion of

the relative orbit. That is, the satellite completes a full revolution around

its axis for each orbit. Due to the elliptical shape of the orbit, the uncon-

trolled sensor spends a substantial amount of the orbit without acquiring

any landmarks, even though its range would allow for potential observa-

tions (Fig. 155). In the figures, the observed landmarks are represented as

green circles: note that, since the landmarks are positioned in 3D space,
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Figure 156: Visualization framework for the optimized results: cost vector

against CE iterations

e)d)

b)a) c)

f)

Figure 157: Controlled orbit through CE optimization: the uncontrolled

sensor is represented as the ghost dashed shape.
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some of them are not detected even if they appear in the 2D projection of

the sensor’s field of view in Fig. 155. After the first orbit is completed, the

Cross-Entropy routine is applied, starting from the first sector. In reference

[64], an optimization strategy based on the trace of the covariance matrix

was presented and successfully simulated; in this section, we present the

results obtained by applying the cost function based on the time under

observation.

Although the CE routine can be computationally expensive if a fine

trajectory quantization is seeked, the nature of this method allows for par-

allelization. The optimization algorithm, in fact, can be run as soon as the

satellite has completed the acquisition of first sector’s landmarks (begin-

ning of the first orbit), in parallel with the acquisition of the upcoming

sectors.

Since the time required for the CE algorithm to minimize the objective

cost can be tailored by tuning the discretization step, the number of trial

trajectories, CE iteration, etc., the optimized orbit can run in real time,

keeping the sensor under control at all times. That is, by the time the

satellite enters the second orbit, the optimized parameter vector pertaining

the first sector, λ1, is readily available.

The behavior of the satellite in the CE controlled orbit is shown in

Fig. 157. The controlled sensor’s FOV is the green triangular projection,

whereas the dashed triangle represents the sensor’s behavior when no con-

trolled is applied. It is clearly noted that the controlled sensor is kept

pointing at the landmarks at all times, maximizing the time under observa-

tion.

Apart from being limited in the acceleration profile, the sensor has to

be also limited in terms of angular displacement. A switching control

has been designed to avoid unrealistic trajectories: the parameters vectors

λi drawn from the normal distribution are screened and discarded if the

control vector generates a trajectory such that |max(θi)|≤ θmax.

A policy to limit the actuation cost has been used in order to prevent
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Figure 158: Controlled orbit through CE optimization: ordered cost vectors

Li plotted against the CE progressive optimization steps.
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Figure 159: Cost performances for the CE progressive optimization.

unnecessary control. At the beginning of each CE optimization, the null

cost L0,s is computed for sector s. This is the cost in the case no control is

being applied, i.e., the sensor kinematics is governed merely by the angular

velocity at the previous time-step ωs−1,m.

The null cost is used as a reference to compare with the performance

of the optimization routine. The plots in Fig. 158 represent the cost vector

optimization process.

For each CE iteration (in this case NCE = 15), the cost vector LNCE is

computed and ordered: the stacking of the subsequent cost vectors creates

the three-dimensional surfaces in the figures. The horizontal red plane

depicts the null cost performance: when the surface is above the plane, the

CE performances are superior than the non controlled case.

As can be seen from these results, even the lowest L-vector percentiles

are risen above the null-cost plane in the first two-to-three CE iterations. In

all cases, the top percentiles are always above the null cost starting from
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the initial CE iteration [64].

In general, the CE optimization allows convergence to the optimal solu-

tion by progressively reducing the difference between the lower and upper

percentiles of the cost vectors L.

In Fig. 159, the maximum and minimum cost for each CE optimization

step is represented: the strategy is capable of finding the maximum cost

very early in the process (red lines). Then, the method takes 7-to-10 it-

erations to even out (in most cases monotonically) the range between the

minimum and maximum cost vectors (blu lines). The solid black lines rep-

resent the null cost case, which is substantially outperformed in each of

the orbital sectors.

7.11 results discussion

This chapter presented a novel approach for solving the active self localiza-

tion problem during relative navigation in orbit using Cross Entropy (CE)

minimization, expanding the previous work in a 2D framework [64]. Using

the Clohessy-Wiltshire model, a real case chaser-target orbital scenario was

presented.

By jointly considering the planning, control and estimation problems it

was possible to balance the control actuation costs and the obtainable local-

ization uncertainty: this has been obtained by incorporating an uncertainty

measure in the cost functions, which is then utilized to select near-optimal

trajectories in terms of estimation uncertainty. Results for the cost function

based on the time under observation confirmed the validity of the method.

It is well known [65] that the main drawback of Cross Entropy imple-

mentation in control design is due to the substantial computational efforts

required during optimization: to overcome this issue, by discretizing the or-

bit in a finite time horizon sectors, it was possible to use parallelization and

to hence design a real-time controller. In our approach, the optimization
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Figure 160: Example of a target pattern as seen by the camera onboard the

ASTROS platform.

is run in parallel with landmark acquisition and no hold-time is needed

for computation. Future work will focus on the validation of the presented

method through the aid of experimental data, and high-fidelity simulation

using the robotic simulator and a realistic orbital scenario.

7.12 application of the algorithm to the robotic

facility

Currently, the ASTROS platform has been used, with the aid of a satellite

mockup, for several relative navigation simulations. The main idea behind

this chapter is to apply the Cross Entropy technique to the robotic facility.

Since the base of the robot is not free to translate as in the case of

the ASTROS platform, the architecture of the simulations will have to be

different.

A way to overcome this limited dexterity is to transfer the orbital mo-
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tion of the chaser satellite to the target. That is, the target will move with

its own tumbling dynamics (if present) with the addition of the relative mo-

tion of the target with respect to the chaser (represented by the robot end

effector). The robotic facility will hence be responsible for the simulation

of the sensor controls and for the eventual rendezvous maneuver.

The diagram in Fig. 161 represents the operating principle of an AS-

TROS simulation: the target is typically fixed and the platform, using

the low friction surface, translates as if it was in orbit. A sensor/camera

mounted on the platform (represented by the yellow cone) can then be con-

trolled using the algorithm under analysis to detect some target (Fig. 160)

and eventually perform proximity operations.

In the case of the robotic arm facility, the simulation principle is shown

in Fig. 162. The target, represented by the satellite mockup, is fixed in

terms of translation but has available the three rotative degrees of free-

dom. To this extent, the University of Padova - CISAS is developing, as

of November 2016, a facility that is similar to the upper stages of a 5DOF

simulator, using an air bearing joint to provide the rotational degrees of

freedom. This will ultimately become the target part of the entire facility

and will allow complete OOS simulation capabilities. Regarding the Cross

Entropy algorithm, as depicted in the figure, the arm is capable of simulat-

ing the motion of the controlled sensor, thus isolating the attitude of the

chaser from the control of the sensor itself; in addition, due to the dexterity

in the z direction, the arm is able to simulate the approach maneuver up

to the docking phase. In the case of a 5DOF platform, this is typically diffi-

cult to accomplish since the z coordinate is fixed and limits the rendezvous

simulations to a plane.
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Figure 161: Typical stroboscopic simulation for the ASTROS platform.
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Figure 162: Possible stroboscopic simulation for the robotic arm facility.



8
C O N C L U S I O N S

In this chapter, the results of the doctoral work are summarized and the

near and long term future goals are discussed. The thesis goal was to

develop a robotic facility for the simulation of orbital servicing operations,

from the mechanical design of the anthropomorphic arm to the simulation

scenarios to be performed.

The logical process behind thesis was to follow the main research path

defined at the beginning of the curriculum, while simultaneously produce

original work both in terms of software and hardware, not necessarily

niche to the actual facility under study. This vision, which is analyzed

in detail in the following paragraphs, has been successfully fulfilled by the

author, and led to the development of three main original hardware devices

(the robotic facility, a haptic force sensor and a miniaturized attitude sen-

sor) and an information theoretic technique for the performing of SLAM in

a rendezvous scenario. The main results obtained are chapter specific and

are summarized within the respective section. In synthesis, the findings

can be grouped as follows:

The initial modeling, developed in a previous work by this author, was

used as the baseline working package from which the subsequent research

originated. For this reason, the author did not analyzed the kinematics

and dynamics of the arm in depth, since the complete analysis can be

found in [10]: however, the dynamics results in terms of torque efforts

were accurately revised for the expected simulation maneuvers and were

used to adequately size the facility.

A preliminary concept was laid out as a first iteration of the mechani-

261
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cal design. By defining some requirements on the rigidity of the system,

a close loop logical process was established in order to find the optimal

trade-off among all the mandatory, user defined design parameters. To this

extent, an extensive structural model was created ex-novo and the analysis

of the key loading configurations led to the choice of the mechanical parts

that satisfied the requirements. As a by-product of this analysis, a software

for the computation of the flexibility-induced end effector-displacement

was coded and cross-verified with several finite element simulations

A cohort of FEM static simulations, performed for different joint angles,

led to the final verification of the system. In addition, in order to assess

the modal response for the application to contact operations, a frequency

simulation campaign was performed. Using the results of the modeler,

nonlinear regression led to the creation of a continuous model, in terms

of possible arm configurations, for the empirical modal response of the

facility.

Regarding the control system, a general discussion for the possible

strategies conducted the researcher to the choice of a decentralized control.

In order to characterize the facility for simulations in which a contact at the

end effector is expected to happen (i.e. docking and berthing operations),

a novel approach for the impedance matching was presented. This tech-

nique, which is based on the virtual force method, enables the facility to

extend its capabilities not only to the reproduction of faithful orbital trajec-

tory (already discussed in [10]) but also to perform realistic maneuvers in

which the dynamics induced by the contact is simulated according to the

(software defined) inertial characteristic of the target-chaser tuple. Thus,

this enables to detach the cohort of possible scenarios from the limited in-

ertial combinations obtainable without impedance matching. The control

system design chapter introduces ultimately the hardware and software

chosen for this application, compatibly with the motor controllers, and de-

fines the bus protocols that will be implemented for the communication

with the actuators. Future work consists in the experimental verification of
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the control software performances.

The simulation scenarios chapter discusses in depth the set of trajecto-

ries that the arm will perform, strictly linking the results of the maneuvers

with the mechanical design in terms of torque efforts. After a preliminary

assessment of the baseline operations (rectilinear and circular trajectories),

the chapter focuses on navigation strategies to be applied to the facility; the

work originates from a wider simulation framework, in which the applica-

tion is not limited to the manipulator arm but strives to design a technique

to be implemented in synergy with an air bearing platform currently under

development at the University of Padova.

An information theoretic approach enabled to solve the rare probabil-

ity event of simultaneous localization and mapping in a 2D circumnaviga-

tion scenario; subsequently, the method was extended to a fully 3D orbital

scenario and proved to have promising performances in terms of rate of

convergence to the near-optimum. This approach outperformed existing

rare-probability techniques (e.g. Montecarlo) and classical PID controllers.

Future goal (currently being performed as of November 2016) is the exper-

imental validation of the technique in a relevant environment: following

a collaboration with the Georgia Institute of Technology, a simulation

campaign is to be carried out on the ASTROS 5DOF simulator at the Dy-

namics and Control Systems Laboratory [46].

Finally, attention was given to the end effector sensing capabilities, with

the aim of creating a facility which is independent from external attitude

measurements. That is, the goal was to the enable the bodies under analy-

sis to acquire independent measurements on their state; under this frame-

work, several sensors combinations have been investigated and led to the

research and development of a force and attitude sensor. The first one,

jointly developed with MIT, is a force sensor based on the GelSight® tech-

nology and has not been presented in this thesis due to undergoing intel-

lectual property screenings. The second one, developed at the University

of Padova, is an attitude sensor tailored to the rising market segment of
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small sized vehicles (CubeSats and nanosats). The device, whose work-

ing principle is derived from traditional Sun sensors, has been designed

to be a low cost, low power, lightweight and high performance sensor and

ultimately led to the manufacturing of a working prototype (TRL 4 as of

October 2016). The measured performances proved to be consistent with

the simulations and an order of magnitude superior with respect to the

current academic and commercial state-of-the-art devices.

Future work (currently being performed as of November 2016), will

consist in the miniaturization of the prototype and in the increase of the

actual maturity level by testing the device in a relevant environment.
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128 112 108 134
3.21 2.36 1.93 0.936
1460 1170 1100 915
39.5 25.8 20.7 6.97
85 84 83 84

0.608 1.16 1.74 6.89
0.463 0.691 0.966 5.85
36.9 45.1 53.3 131
259 212 179 72.7
4.26 5.44 5.85 3.82
8.07 10.3 11.1 7.24
181 181 181 181

M 1:2

397172

70 W

25 50 75 125 150

1.0 2.0 3.0 4.0

397172 402685 402686 402687

 3.56 K/W
 4.1 K/W
 29.6 s
 178 s
 -40 ... +100°C
 +125°C

   < 4.0 N 0 mm 
  > 4.0 N 0.14 mm

 3.8 N
 50 N 

  1000 N
 21 N

 8
 3
 141 g

ESCON 36/3 EC 379 
ESCON Mod. 50/4 EC-S 379
ESCON Module 50/5 379
ESCON 50/5 380
DEC Module 50/5 382
EPOS2 Module 36/2 386
EPOS2 24/5, 50/5 387
EPOS2 P 24/5 390
EPOS3 70/10 EtherCAT 393
MAXPOS 50/5 396

November 2015 edition / subject to change  maxon EC motor 

Stock program
Standard program
Special program (on request)

Part Numbers

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible wind-
ing temperature will be reached during continuous  
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System  Overview on page 20–25

EC 45 flat  �42.8 mm, brushless, 70 Watt

Motor Data (provisional)

Values at nominal voltage
1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque) mNm
6 Nominal current (max. continuous current) A
7 Stall torque mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance phase to phase :
11 Terminal inductance phase to phase mH
12 Torque constant mNm / A
13 Speed constant rpm / V
14 Speed / torque gradient rpm / mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

 Thermal data 
17 Thermal resistance housing-ambient 
18 Thermal resistance winding-housing 
19 Thermal time constant winding 
20 Thermal time constant motor 
21 Ambient temperature 
22 Max. winding temperature 

 Mechanical data (preloaded ball bearings)
23 Max. speed 10 000 rpm
24 Axial play at axial load   

  
25 Radial play preloaded
26 Max. axial load (dynamic) 
27 Max. force for press fits (static)  

(static, shaft supported)  
28 Max. radial load, 5 mm from flange 

 Other specifications
29 Number of pole pairs 
30 Number of phases 
31 Weight of motor 

 Values listed in the table are nominal.

 Connection
 Pin 1 Hall sensor 1*
 Pin 2 Hall sensor 2*
 Pin 3 VHall 4.5 ... 18 VDC
 Pin 4 Motor winding 3
 Pin 5 Hall sensor 3*
 Pin 6 GND
 Pin 7 Motor winding 1
 Pin 8 Motor winding 2
 *Internal pull-up (7 … 13 k:) on pin 3
 Wiring diagram for Hall sensors see p. 35

 Cable
 Connection cable Universal, L = 500 mm 339380
 Connection cable to EPOS, L = 500 mm 354045

Recommended Electronics:
Notes Page 24

with Hall sensors

Planetary Gearhead
�42 mm
3 - 15 Nm
Page 316
Spur Gearhead
�45 mm
0.5 - 2.0 Nm
Page 317

Connector: 
39-28-1083 Molex

Option
With Cable and Connector 
(Ambient temperature -20 ... +100°C)

Encoder MILE
256 - 2048 CPT,
2 channels
Page 342

1 x 397172
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5380 3100
449 194

4940 2670
810 859
9.84 5.94

11800 6820
139 46.4
89 88

0.345 1.03
0.273 0.82
84.9 147
113 65

0.457 0.457
3.98 3.98
831 831

M 1:4

167132 167131

167131

 1.3 K/W
 0.5 K/W
 33.9 s
 1200 s
 -20…+100°C
 +125°C

   < 30 N 0 mm 
  > 30 N max. 0.14 mm

 24 N
 390 N
 6000 N
 240 N

 1
 3
 2400 g
 IP54*

ESCON Mod. 50/5 379
ESCON Mod. 50/4 EC-S 379
ESCON 50/5 380
ESCON 70/10 380
DEC Module 50/5 382
EPOS2 50/5, 70/10 387
EPOS3 70/10 EtherCAT 393
MAXPOS 50/5 396

  maxon EC motor November 2015 edition / subject to change

Stock program
Standard program
Special program (on request)

Part Numbers

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible wind-
ing temperature will be reached during continuous  
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System  Overview on page 20–25

EC 60  �60 mm, brushless, 400 Watt

Values at nominal voltage
1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque) mNm
6 Nominal current (max. continuous current) A
7 Stall torque mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance phase to phase :
11 Terminal inductance phase to phase mH
12 Torque constant mNm/A
13 Speed constant rpm/V
14 Speed/torque gradient rpm/mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

 Thermal data
17 Thermal resistance housing-ambient 
18 Thermal resistance winding-housing 
19 Thermal time constant winding 
20 Thermal time constant motor 
21 Ambient temperature 
22 Max. winding temperature 

 Mechanical data (preloaded ball bearings)
23 Max. speed 7000 rpm
24 Axial play at axial load  

  
25 Radial play preloaded
26 Max. axial load (dynamic) 
27 Max. force for press fits (static) 
 (static, shaft supported) 
28 Max. radial load, 5 mm from flange 

 Other specifications
29 Number of pole pairs 
30 Number of phases 
31 Weight of motor 
 Protection to 
 Values listed in the table are nominal.
 Connection motor (Cable AWG 16)
 Cable 1 Motor winding 1
 Cable 2 Motor winding 2
 Cable 3 Motor winding 3
 Connection sensors (Cable AWG 24)1)

 white Hall sensor 3
 brown Hall sensor 2
 green Hall sensor 1
 yellow GND
 grey VHall 4.5 … 24 VDC
 blue Temperature sensor (PTC)
 pink Temperature sensor (PTC)
 1) Not lead through in combination with resolver.
 Temperature monitoring, PTC resistance Micropille 

110°C, R 25°C < 0.5 k:, R 105°C = 1.2…1.5 k:, 
R 115°C = 7…13 k:, R 120°C = 18…35 k: 
Wiring diagram for Hall sensors see p. 33

Planetary Gearhead
�81 mm
20 - 120 Nm
Page 321

Motor Data

Recommended Electronics:
Notes Page 24

Encoder HEDL 9140
500 CPT, 
3 channels
Page 368
Resolver Res
�26 mm
10 V
Page 374
Brake AB 41
24 VDC
2.0 Nm
Page 411

* Protection level only when 
installed with flange-side seal.

1 x 167131
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24 36 48
3190 3120 2080
544 348 135
2590 2510 1610
444 560 533
6.06 4.76 2.27
4940 7480 4570

70 69 21.1
84 87 85

0.343 0.522 2.28
0.264 0.625 2.5
70.5 109 217
135 88 44

0.659 0.423 0.462
21.1 13.6 14.8
3060 3060 3060

M 1:2

323772 429271 244879

 1.91 K/W
 2.6 K/W
 46 s
 283 s
 -40…+100°C
 +125°C

 
    < 15 N 0 mm 

  > 15 N 0.14 mm

 12 N
 183 N 

  8000 N
 68 N

 12
 3
 600 g

ESCON Mod. 50/4 EC-S 379
ESCON Mod. 50/5 379
ESCON 50/5 380
ESCON 70/10 380
DEC Module 50/5 382
EPOS2 24/5, 50/5, 70/10 387
EPOS2 P 24/5 390
EPOS3 70/10 EtherCAT 393
MAXPOS 50/5 396

November 2015 edition / subject to change  maxon EC motor 

Stock program
Standard program
Special program (on request)

Part Numbers

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible wind-
ing temperature will be reached during continuous  
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System  Overview on page 20–25

EC 90 flat  ∅90 mm, brushless, 90 Watt

Motor Data
Values at nominal voltage

1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque) mNm
6 Nominal current (max. continuous current) A
7 Stall torque mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance phase to phase W
11 Terminal inductance phase to phase mH
12 Torque constant mNm/A
13 Speed constant rpm/V
14 Speed/torque gradient rpm/mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

 Thermal data
17 Thermal resistance housing-ambient 
18 Thermal resistance winding-housing 
19 Thermal time constant winding 
20 Thermal time constant motor 
21 Ambient temperature 
22 Max. winding temperature 

 Mechanical data (preloaded ball bearings)
23 Max. speed 5000 rpm
24 Axial play at axial load   

  
25 Radial play  preloaded
26 Max. axial load (dynamic) 
27 Max. force for press fits (static)  

(static, shaft supported) 
28 Max. radial load, 5 mm from flange 

 Other specifications
29 Number of pole pairs 
30 Number of phases 
31 Weight of motor 

 Values listed in the table are nominal.

 Connection
 Pin 1 Hall sensor 1
 Pin 2 Hall sensor 2
 Pin 3 VHall 4.5…18 VDC
 Pin 4 Motor winding 3
 Pin 5 Hall sensor 3
 Pin 6 GND
 Pin 7 Motor winding 1
 Pin 8 Motor winding 2
 Wiring diagram for Hall sensors see p. 35

 Cable
 Connection cable Universal, L = 500 mm 339380
 Connection cable to EPOS2, L = 500 mm 354045

Recommended Electronics:
Notes Page 24

with Hall sensors

Planetary Gearhead
∅52 mm
4 - 30 Nm
Page 319

Connector: 
39-28-1083 
Molex

Encoder MILE
512 - 6400 CPT,
2 channels
Page 344

2 x 323772
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4370 4350 4360 4380 4750 4760
163 163 81.4 73 61.6 55.3

2940 2800 2940 2900 3290 3270
55 54.7 54.8 55.2 66 66.6

2.02 2.02 1.01 1.01 0.847 0.849
255 219 253 243 380 369
10 8.58 4.97 4.77 5.38 5.22
76 75 76 77 80 81

1.2 1.4 4.83 5.03 6.69 6.89
0.56 0.56 2.24 2.24 4.29 4.29
25.5 25.5 51 51 70.6 70.6
374 374 187 187 135 135
17.6 20.5 17.7 18.5 12.8 13.2
17.1 19.9 17.2 17.9 12.4 12.8
92.5 92.5 92.5 92.5 92.5 92.5

M 1:2

200142 339281 339282
200189 339283 339284

 6.69 K/W
 3.92 K/W
 11.4 s
 295 s
 -40…+100°C
 +125°C

    < 5.0 N 0 mm 
  > 5.0 N typ. 0.14 mm

 4.8 N
 53 N 

  1000 N
 18 N

 8
 3
 75 g

ESCON Module 24/2 378
ESCON 36/3 EC 379 
ESCON Mod. 50/4 EC-S 379
ESCON Module 50/5 379
ESCON 50/5 380
DEC Module 24/2 382 
DEC Module 50/5 382
EPOS2 24/2, Module 36/2 386
EPOS2 24/5, 50/5 387
EPOS2 P 24/5 390
EPOS3 70/10 EtherCAT 393
MAXPOS 50/5 396

November 2015 edition / subject to change  maxon EC motor 

Stock program
Standard program
Special program (on request)

Part Numbers

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible wind-
ing temperature will be reached during continuous  
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System  Overview on page 20–25

EC 45 flat  ∅42.9 mm, brushless, 30 Watt

Motor Data
Values at nominal voltage

1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque) mNm
6 Nominal current (max. continuous current) A
7 Stall torque mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance phase to phase W
11 Terminal inductance phase to phase mH
12 Torque constant mNm/A
13 Speed constant rpm/V
14 Speed/torque gradient rpm/mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

 Thermal data
17 Thermal resistance housing-ambient 
18 Thermal resistance winding-housing 
19 Thermal time constant winding 
20 Thermal time constant motor 
21 Ambient temperature 
22 Max. winding temperature 

 Mechanical data (preloaded ball bearings)
23 Max. speed 10 000 rpm
24 Axial play at axial load   

  
25 Radial play  preloaded
26 Max. axial load (dynamic) 
27 Max. force for press fits (static)  

(static, shaft supported)  
28 Max. radial load, 5 mm from flange 

 Other specifications
29 Number of pole pairs 
30 Number of phases 
31 Weight of motor 

 Values listed in the table are nominal.

 Connection with Hall sensors sensorless
 Pin 1 VHall 4.5…18 VDC Motor winding 1
 Pin 2 Hall sensor 3* Motor winding 2
 Pin 3 Hall sensor 1* Motor winding 3
 Pin 4 Hall sensor 2*  neutral point
 Pin 5 GND
 Pin 6 Motor winding 3
 Pin 7 Motor winding 2
 Pin 8 Motor winding 1
 *Internal pull-up (7…13 kW) on pin 1
 Wiring diagram for Hall sensors see p. 35
 Adapter Part number Part number
 see p. 398 220300  220310
 Connector Part number Part number
 Tyco 1-84953-1 84953-4
 Molex 52207-1133 52207-0433
 Molex 52089-1119 52089-0419
 Pin for design with Hall sensors: 
 FPC, 11-pol, Pitch 1.0 mm, top contact style

Recommended Electronics:
Notes Page 24

A with Hall sensors
B sensorless

Planetary Gearhead
∅42 mm
3 - 15 Nm
Page 316
Spur Gearhead
∅45 mm
0.5 - 2.0 Nm
Page 317

A with Hall sensors B sensorless

Option
With Cable and Connector  
(Motor length +1.3 mm, 
Ambient temperature -20…+100°C)

Encoder MILE
256 - 2048 CPT,
2 channels
Page 342

2 x 200142
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9 12 24 48
3720 4610 4530 4780
74.7 75.7 36.9 19.9
2090 2810 2760 2940
24.6 25.1 25.5 24.7
1.06 1 0.5 0.257
70 84.1 85.8 84.1

3.13 3.49 1.75 0.906
72 73 74 73

2.87 3.43 13.7 53
1.61 1.87 7.73 27.8
22.4 24.1 49 92.8
427 397 195 103
54.9 56.6 54.5 58.7
20.1 20.7 20 21.5
35 35 35 35

M 1:2

339267 339268 267121 339269
339271 339272 226006 339273

 10.8 K/W
 4.99 K/W
 8.78 s
 120 s
 -40…+100°C
 +125°C

    < 5.0 N 0 mm 
  > 5.0 N typ. 0.6 mm

 4.8 N
 45 N 

 1000 N
 14 N

 4
 3
 46 g

ESCON Module 24/2 378
ESCON 36/3 EC  379
ESCON Mod. 50/4 EC-S 379
ESCON Module 50/5 379
ESCON 50/5 380
DEC Module 24/2 382
DEC Module 50/5 382
EPOS2 24/2, 50/5 386
EPOS2 Module 36/2 386
EPOS3 70/10 EtherCAT 393
MAXPOS 50/5 396

  maxon EC motor November 2015 edition / subject to change

Stock program
Standard program
Special program (on request)

Part Numbers

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible wind-
ing temperature will be reached during continuous  
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System  Overview on page 20–25

EC 32 flat  �32 mm, brushless, 15 Watt

Motor Data
Values at nominal voltage

1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque) mNm
6 Nominal current (max. continuous current) A
7 Stall torque mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance phase to phase :
11 Terminal inductance phase to phase mH
12 Torque constant mNm/A
13 Speed constant rpm/V
14 Speed/torque gradient rpm/mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

 Thermal data
17 Thermal resistance housing-ambient 
18 Thermal resistance winding-housing 
19 Thermal time constant winding 
20 Thermal time constant motor 
21 Ambient temperature 
22 Max. winding temperature 

 Mechanical data (preloaded ball bearings)
23 Max. speed 10 000 rpm
24 Axial play at axial load   

  
25 Radial play preloaded
26 Max. axial load (dynamic) 
27 Max. force for press fits (static)  

(static, shaft supported)  
28 Max. radial load, 5 mm from flange 

 Other specifications
29 Number of pole pairs 
30 Number of phases 
31 Weight of motor 

 Values listed in the table are nominal.

 Connection with Hall sensors sensorless
 Pin 1 VHall 3.5…24 VDC Motor winding 1
 Pin 2 Hall sensor 3 Motor winding 2
 Pin 3 Hall sensor 1 Motor winding 3
 Pin 4 Hall sensor 2  neutral point
 Pin 5 GND
 Pin 6 Motor winding 3
 Pin 7 Motor winding 2
 Pin 8 Motor winding 1
 Adapter Part number Part number
 see p. 398  220300  220310
 Connector Part number Part number
 Tyco 1-84953-1 84953-4
 Molex 52207-1133 52207-0433
 Molex 52089-1119 52089-0419
 Pin for design with Hall sensors:
 FPC, 11-pol, Pitch 1.0 mm, top contact style
 Wiring diagram for Hall sensors see p. 35

Recommended Electronics:
Notes Page 24

A with Hall sensors
B sensorless

Planetary Gearhead
�32 mm
0.75 - 6 Nm
Page 305–308
Spur Gearhead
�38 mm
0.1 - 0.6 Nm
Page 313
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M 1:2

RE 35, 90 W 140 112.1 126.6 126.6 141.1 141.1 141.1 155.6 155.6 155.6 155.6
RE 35, 90 W 140 MR 356 123.5 138.0 138.0 152.5 152.5 152.5 167.0 167.0 167.0 167.0
RE 35, 90 W 140 HED_ 5540 362/364 132.8 147.3 147.3 161.8 161.8 161.8 176.3 176.3 176.3 176.3
RE 35, 90 W 140 DCT 22 373 130.2 144.7 144.7 159.2 159.2 159.2 173.7 173.7 173.7 173.7
RE 35, 90 W 140 AB 28 408 148.2 162.7 162.7 177.2 177.2 177.2 191.7 191.7 191.7 191.7
RE 35, 90 W 140 HED_ 5540 362/364 AB 28 408 165.4 179.9 179.9 194.4 194.4 194.4 208.9 208.9 208.9 208.9
RE 40, 150 W 142 112.1 126.6 126.6 141.1 141.1 141.1 155.6 155.6 155.6 155.6
RE 40, 150 W 142 MR 356 123.5 138.0 138.0 152.5 152.5 152.5 167.0 167.0 167.0 167.0
RE 40, 150 W 142 HED_ 5540 362/365 132.8 147.3 147.3 161.8 161.8 161.8 176.3 176.3 176.3 176.3
RE 40, 150 W 142 HEDL 9140 368 166.2 180.7 180.7 195.2 195.2 195.2 209.7 209.7 209.7 209.7
RE 40, 150 W 142 AB 28 408 148.2 162.7 162.7 177.2 177.2 177.2 191.7 191.7 191.7 191.7
RE 40, 150 W 142 AB 28 409 156.2 170.7 170.7 185.2 185.2 185.2 199.7 199.7 199.7 199.7
RE 40, 150 W 142 HED_ 5540 362/365 AB 28 408 165.4 179.9 179.9 194.4 194.4 194.4 208.9 208.9 208.9 208.9
RE 40, 150 W 142 HEDL 9140 368 AB 28 409 176.7 191.2 191.2 205.7 205.7 205.7 220.2 220.2 220.2 220.2
EC 40, 170 W 215 121.1 135.6 135.6 150.1 150.1 150.1 164.6 164.6 164.6 164.6
EC 40, 170 W 215 HED_ 5540 363/366 144.5 159.0 159.0 175.5 175.5 175.5 188.0 188.0 188.0 188.0
EC 40, 170 W 215 Res 26 374 148.3 162.8 162.8 177.3 177.3 177.3 191.8 191.8 191.8 191.8
EC 40, 170 W 215 AB 32 410 163.8 178.3 178.3 192.8 192.8 192.8 207.3 207.3 207.3 207.3
EC 40, 170 W 215 HED_ 5540 363/366 AB 32 410 182.2 196.7 196.7 211.2 211.2 211.2 225.7 225.7 225.7 225.7
EC 45, 150 W 216 152.3 166.8 166.8 181.3 181.3 181.3 195.8 195.8 195.8 195.8
EC 45, 150 W 216 HEDL 9140 368 167.9 182.4 182.4 196.9 196.9 196.9 211.4 211.4 211.4 211.4
EC 45, 150 W 216 Res 26 374 152.3 166.8 166.8 181.3 181.3 181.3 195.8 195.8 195.8 195.8
EC 45, 150 W 216 AB 28 409 159.7 174.2 174.2 188.7 188.7 188.7 203.2 203.2 203.2 203.2
EC 45, 150 W 216 HEDL 9140 368 AB 28 409 176.7 191.2 191.2 205.7 205.7 205.7 220.2 220.2 220.2 220.2
EC 45, 250 W 217 185.1 199.6 199.6 214.1 214.1 214.1 228.6 228.6 228.6 228.6
EC 45, 250 W 217 HEDL 9140 368 200.7 215.2 215.2 229.7 229.7 229.7 244.2 244.2 244.2 244.2
EC 45, 250 W 217 Res 26 374 185.1 199.6 199.6 214.1 214.1 214.1 228.6 228.6 228.6 228.6
EC 45, 250 W 217 AB 28 409 192.5 207.0 207.0 221.5 221.5 221.5 236.0 236.0 236.0 236.0
EC 45, 250 W 217 HEDL 9140 368 AB 28 409 209.5 224.0 224.0 238.5 238.5 238.5 253.0 253.0 253.0 253.0

203113 203115 203119 203120 203124 203129 203128 203133 203137 203141

3.5 : 1 12 : 1 26 : 1 43 : 1 81 : 1 156 : 1 150 : 1 285 : 1 441 : 1 756 : 1
7⁄2 49⁄4 26 343⁄8 2197⁄27 156 2401⁄16

15379⁄54 441 756
14 15 9.1 15 9.4 9.1 15 15 14 14
10 10 8 10 8 8 10 10 10 10

203114 203116 260552* 203121 203125 260553* 203130 203134 203138 203142
4.3 : 1 15 : 1 36 : 1 53 : 1 91 : 1 216 : 1 186 : 1 319 : 1 488 : 1 936 : 1

13⁄3 91⁄6 36⁄1 637⁄12 91 216⁄1 4459⁄24
637⁄2 4394⁄9 936

9.1 15 5.0 15 15 5.0 15 15 9.4 9.1
8 10 4 10 10 4 10 10 8 8

260551* 203117 203122 203126 203131 203135 203139 260554*
6 : 1 19 : 1 66 : 1 113 : 1 230 : 1 353 :1 546 : 1 1296 : 1

6⁄1 169⁄9 1183⁄18
338⁄3 8281⁄36

28561⁄81 546 1296⁄1
4.9 9.4 15 9.4 15 9.4 14 5.0
4 8 10 8 10 8 10 4

203118 203123 203127 203132 203136 203140
21 : 1 74 : 1 126 : 1 257 : 1 394 : 1 676 : 1
21 147⁄2 126 1029⁄4 1183⁄3 676
14 15 14 15 15 9.1
10 10 10 10 10 8

1 2 2 3 3 3 4 4 4 4
3.0 7.5 7.5 15.0 15.0 15.0 15.0 15.0 15.0 15.0
4.5 11.3 11.3 22.5 22.5 22.5 22.5 22.5 22.5 22.5
90 81 81 72 72 72 64 64 64 64

260 360 360 460 460 460 560 560 560 560
0.6 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
41.0 55.5 55.5 70.0 70.0 70.0 84.5 84.5 84.5 84.5

  maxon gear October 2015 edition / subject to change

Stock program
Standard program
Special program (on request)

overall length overall length

maxon Modular System
+ Motor Page + Sensor Page Brake Page Overall length [mm] = Motor length + gearhead length + (sensor/brake) + assembly parts

Technical Data
Planetary Gearhead  straight teeth
Output shaft  stainless steel
Bearing at output  preloaded ball bearings
Radial play, 12 mm from flange max. 0.06 mm
Axial play at axial load < 5 N 0 mm
  > 5 N max. 0.3 mm
Max. axial load (dynamic) 150 N
Max. force for press fits 300 N
Direction of rotation, drive to output =
Max. continuous input speed 8000 rpm
Recommended temperature range -40…+100°C
Number of stages  1 2 3 4
Max. radial load, 12 mm
 from flange  120 N 240 N 360 N 360 N

Planetary Gearhead GP 42 C  �42 mm, 3–15 Nm
Ceramic Version

Part Numbers

Gearhead Data
 1  Reduction
 2  Absolute reduction   
 10 Mass inertia   gcm2

 3  Max. motor shaft diameter   mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia   gcm2

 3  Max. motor shaft diameter   mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia   gcm2

 3  Max. motor shaft diameter   mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia   gcm2

 3  Max. motor shaft diameter   mm
 4  Number of stages
 5  Max. continuous torque   Nm
 6  Max. intermittent torque at gear output   Nm
 7  Max. efficiency   %
 8  Weight   g
 9  Average backlash no load   °
 11  Gearhead length L1  mm

*no combination with EC 45 (150 W and 250 W)

1x203127
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M 1:4

RE 65, 250 W 144 223.5 245.2 245.2 266.8 266.8 266.8
RE 65, 250 W 144 HEDS 5540 363 249.4 271.1 271.1 292.7 292.7 292.7
RE 65, 250 W 144 HEDL 5540 365 249.4 271.1 271.1 292.7 292.7 292.7
RE 65, 250 W 144 HEDL 9140 369 279.6 301.3 301.3 322.9 322.9 322.9
RE 65, 250 W 144 AB 44 412 279.6 301.3 301.3 322.9 322.9 322.9
RE 65, 250 W 144 HEDL 9140 369 AB 44 412 297.6 319.3 319.3 340.9 340.9 340.9
EC 60, 400 W 218 269.4 291.1 291.1 312.7 312.7 312.7
EC 60, 400 W 218 HEDL 9140 368 269.4 291.1 291.1 312.7 312.7 312.7
EC 60, 400 W 218 Res 26 374 269.4 291.1 291.1 312.7 312.7 312.7
EC 60, 400 W 218 AB 41 411 283.0 304.7 304.7 326.3 326.3 326.3
EC 60, 400 W 218 HEDL 9140 368 AB 41 411 307.0 328.7 328.7 350.3 350.3 350.3

110408 110409 110410 110411 110412 110413

3.7 : 1 14 : 1 25 : 1 51 : 1 93 : 1 308 : 1
63⁄17

3969⁄289
1701⁄68

250047⁄4913
107163⁄1156

19683⁄64

14 14 14 14 14 14
1 2 2 3 3 3

20 60 60 120 120 120
30 90 90 180 180 180
80 75 75 70 70 70

2300 3000 3000 3700 3700 3700
0.5 0.55 0.55 0.6 0.6 0.6
165 155 125 88 154 89
92.0 113.7 113.7 135.3 135.3 135.3

October 2015 edition / subject to change  maxon gear 

Stock program
Standard program
Special program (on request)

overall length overall length

maxon Modular System
+ Motor Page + Sensor Page Brake Page Overall length [mm] = Motor length + gearhead length + (sensor/brake) + assembly parts

Technical Data
Planetary Gearhead  straight teeth
Output shaft steel
Bearing at output  ball bearing
Radial play, 8 mm from flange max. 0.1 mm
Axial play max. 1 mm
Max. force for press fits 1500 N
Direction of rotation, drive to output =
Max. continuous input speed 3000 rpm
Recommended temperature range -30…+140°C
Number of stages  1 2 3
Max. radial load, 24 mm
 from flange 400 N 600 N 1000 N
Max. axial load (dynamic) 80 N 120 N 200 N

Planetary Gearhead GP 81 A  �81 mm, 20–120 Nm

Part Numbers

Gearhead Data
 1  Reduction
 2  Absolute reduction   
 3  Max. motor shaft diameter  mm
 4  Number of stages
 5  Max. continuous torque  Nm
 6  Max. intermittent torque at gear output  Nm
 7  Max. efficiency  %
 8  Weight  g
 9  Average backlash no load  °
 10  Mass inertia  gcm2

 11  Gearhead length L1 mm

1x110413
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RE 40, 150 W 142 120.1 136.1 149.6 149.6 163.1 163.1 163.1
RE 40, 150 W 142 MR 356 131.5 147.5 161.0 161.0 174.5 174.5 174.5
RE 40, 150 W 142 HED_ 5540 362/365 140.8 156.8 170.3 170.3 183.8 183.8 183.8
RE 40, 150 W 142 HEDL 9140 368 174.1 190.1 203.6 203.6 217.1 217.1 217.1
RE 40, 150 W 142 AB 28 408 156.2 172.2 185.7 185.7 199.2 199.2 199.2
RE 40, 150 W 142 AB 28 409 164.2 180.2 193.7 193.7 207.2 207.2 207.2
RE 40, 150 W 142 HED_ 5540 362/365 AB 28 408 173.4 189.4 202.9 202.9 216.4 216.4 216.4
RE 40, 150 W 142 HEDL 9140 368 AB 28 409 184.6 200.6 214.1 214.1 227.6 227.6 227.6
RE 50, 200 W 143 157.1 173.1 186.6 186.6 200.1 200.1 200.1
RE 50, 200 W 143 HED_5540 363/365 177.8 193.8 207.3 207.3 220.8 220.8 220.8
RE 50, 200 W 143 HEDL 9140 369 219.5 235.5 249.0 249.0 262.5 262.5 262.5
RE 50, 200 W 143 AB 44 412 219.5 235.5 249.0 249.0 262.5 262.5 262.5
RE 50, 200 W 143 HEDL 9140 369 AB 44 412 232.5 248.5 262.0 262.0 275.5 275.5 275.5
EC 40, 170 W 215 129.1 145.1 158.6 158.6 172.1 172.1 172.1
EC 40, 170 W 215 HED_5540 363/366 152.5 168.5 182.0 182.0 195.5 195.5 195.5
EC 40, 170 W 215 Res 26 374 156.3 172.3 185.8 185.8 199.3 199.3 199.3
EC 40, 170 W 215 AB 32 410 171.8 187.8 201.3 201.3 214.8 214.8 214.8
EC 40, 170 W 215 HED_5540 363/366 AB 32 410 190.2 206.2 219.7 219.7 233.2 233.2 233.2

223080 223083 223089 223094 223097 223104 223109

3.5 : 1 12 : 1  43 : 1 91 : 1 150 : 1 319 : 1 546 : 1
7⁄2 49⁄4 343⁄8 91 2401⁄16

637⁄2 546
20.7 17.6 17.3 16.7 17.3 16.8 16.4
10 10 10 10 10 10 10

223081 223084 223090 223095 223099 223105 223110
4.3 : 1 15 : 1  53 : 1 113 : 1 186 : 1 353 :1 676 : 1

13⁄3 91⁄6 637⁄12
338⁄3 4459⁄24

28561⁄81 676
12 16.8 17.2 9.3 17.3 9.4 9.1
8 10 10 8 10 8 8

223085 223091 223096 223101 223106 223111
19 : 1 66 : 1 126 : 1 230 : 1 394 : 1 756 : 1
169⁄9 1183⁄18 126 8281⁄36

1183⁄3 756
9.5 16.7 16.4 16.8 16.7 16.4
8 10 10 10 10 10

223086 223092 223098 223102 223107 223112
21 : 1 74 : 1 156 : 1 257 : 1 441 : 1 936 : 1
21 147⁄2 156 1029⁄4 441 936

16.5 17.2 9.1 17.3 16.5 9.1
10 10 8 10 10 8

223087 223093 223103 223108
26 : 1 81 : 1 285 : 1 488 : 1
26 2197⁄27 15379⁄54 4394⁄9
9.1 9.4 16.7 9.4
8 8 10 8

1 2 3 3 4 4 4
4 15 30 30 30 30 30
6 22.5 45 45 45 45 45
91 83 75 75 68 68 68

460 620 770 770 920 920 920
0.6 0.8 1.0 1.0 1.0 1.0 1.0

49.0 65.0 78.5 78.5 92.0 92.0 92.0

M 1:4

  maxon gear October 2015 edition / subject to change

Stock program
Standard program
Special program (on request)

overall length overall length

maxon Modular System
+ Motor Page + Sensor Page Brake Page Overall length [mm] = Motor length + gearhead length + (sensor/brake) + assembly parts

Technical Data
Planetary Gearhead  straight teeth
Output shaft  stainless steel
Bearing at output  preloaded ball bearings
Radial play, 12 mm from flange max. 0.06 mm
Axial play at axial load < 5 N 0 mm
  > 5 N max. 0.3 mm
Max. axial load (dynamic) 200 N
Max. force for press fits 500 N
Direction of rotation, drive to output =
Max. continuous input speed 6000 rpm
Recommended temperature range -15…+80°C
 Extended range as option -40…+100°C
Number of stages  1 2 3 4
Max. radial load, 12 mm
 from flange  420 N 630 N 900 N 900 N

Planetary Gearhead GP 52 C  ∅52 mm, 4–30 Nm
Ceramic Version

Part Numbers

Gearhead Data
 1  Reduction
 2  Absolute reduction   
 10 Mass inertia   gcm2

 3  Max. motor shaft diameter   mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia   gcm2

 3  Max. motor shaft diameter   mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia   gcm2

 3  Max. motor shaft diameter   mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia   gcm2

 3  Max. motor shaft diameter   mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia   gcm2

 3  Max. motor shaft diameter   mm
 4  Number of stages
 5  Max. continuous torque   Nm
 6  Max. intermittent torque at gear output   Nm
 7  Max. efficiency   %
 8  Weight   g
 9  Average backlash no load   °
 11  Gearhead length L1   mm

1x223095
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EC 45 flat, 30 W 261 40.0 40.0 43.4 46.9 50.3
EC 45 flat, 30 W 261 MILE 342 43.0 43.0 46.4 49.9 53.3
EC 45 flat, 50 W 262 44.9 44.9 48.3 51.8 55.2
EC 45 flat, 50 W 262 MILE 342 46.2 46.2 49.6 53.1 56.5
EC 45 flat, 70 W 263 50.3 50.3 53.7 57.2 60.6
EC 45 flat, 70 W 263 MILE 342 52.0 52.0 55.4 58.9 62.3
EC 45 flat, IE, IP 00 264 59.2 59.2 62.6 66.1 69.5
EC 45 flat, IE, IP 40 264 61.4 61.4 64.8 68.3 71.7
EC 45 flat, IE, IP 00 265 64.2 64.2 67.6 71.1 74.5
EC 45 flat, IE, IP 40 265 66.4 66.4 69.8 73.3 76.7

301177 301175 301181 301186 301191

5 : 1 18 : 1  61 : 1  212 : 1  732 : 1
51⁄10

459⁄26
20655⁄338

125862⁄595
492790⁄673

3.7 1.6 1.0 0.8 0.8
3 3 3 3 3

301178 301173 301182 301187 301192
7 : 1 26 : 1  89 : 1  310 : 1 1072 : 1

209⁄28
9405⁄364

66632⁄ 745
183281⁄592

307572⁄287

3.1 1.4 1.0 0.8 0.8
3 3 3 3 3

301179 266595 301184 301188 301193
9 : 1 32 : 1  111 : 1 385 : 1 1334 : 1

2295⁄247
8523⁄265

334⁄3 173808⁄451
198769⁄149

2.1 1.4 0.6 0.5 0.4
3 3 3 3 3

301180 301171 301185 301189 301194
14 : 1 47 : 1  163 : 1 564 : 1 1952 : 1

2475⁄182
6221⁄132

141157⁄861
161880⁄287

1929023⁄988

2.2 0.9 0.5 0.5 0.4
3 3 3 3 3
2 3 4 5 6

0.5 2.0 2.0 2.0 2.0
0.75 2.5 2.5 2.5 2.5

= ≠ = ≠ =
87 76 66 59 53

224 224 255 287 313
1.6 2.0 2.4 2.8 3.2

23.5 23.5 26.9 30.4 33.8

M 1:2

October 2015 edition / subject to change  maxon gear 

Stock program
Standard program
Special program (on request)

overall length overall length

maxon Modular System
+ Motor Page + Sensor/Brake Page Overall length [mm] = Motor length + gearhead length + (sensor/brake) + assembly parts

Technical Data
Spur Gearhead  straight teeth
Output shaft  stainless steel, hardened
Bearing at output  ball bearing
Radial play, 10 mm from flange max. 0.15 mm
Axial play 0.02–0.2 mm
Max. axial load (dynamic) 60 N
Max. force for press fits 60 N
Max. continuous input speed 6000 rpm
Recommended temperature range -15…+80°C
Number of stages  2 3 4 5 6
Max. radial load, 10 mm
 from flange 120 N 180 N 190 N 190 N  190 N

Spur Gearhead GS 45 A  ∅45 mm, 0.5–2.0 Nm

Part Numbers

Gearhead Data
 1  Reduction
 2  Absolute reduction   
 10 Mass inertia  gcm2

 3  Max. motor shaft diameter  mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia  gcm2

 3  Max. motor shaft diameter  mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia  gcm2

 3  Max. motor shaft diameter  mm
Part Numbers

 1  Reduction
 2  Absolute reduction   
 10 Mass inertia  gcm2

 3  Max. motor shaft diameter  mm
 4  Number of stages
 5  Max. continuous torque  Nm
 6  Max. intermittent torque at gear output  Nm
 12 Direction of rotation, drive to output
 7  Max. efficiency  %
 8  Weight  g
 9  Average backlash no load  °
 11  Gearhead length L1* mm

*for EC 45 flat, IE, L1 is max. + 4.0 mm

2x301171
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A-max 26 161-168 65.4 65.4 67.9 67.9 70.4 70.4 72.9 75.4 75.4
A-max 26 162-168 MEnc 13 372 72.5 72.5 75.0 75.0 77.5 77.5 80.0 82.5 82.5
A-max 26 162-168 MR 355 74.2 74.2 76.7 76.7 79.2 79.2 81.7 84.2 84.2
A-max 26 162-168 Enc 22 361 79.8 79.8 82.3 82.3 84.8 84.8 87.3 89.8 89.8
A-max 26 162-168 HED_ 5540 363/365 83.8 83.8 86.3 86.3 88.8 88.8 91.3 93.8 93.8
A-max 32 169/171 83.6 83.6 86.1 86.1 88.6 88.6 91.1 93.6 93.6
A-max 32 170/172 82.2 82.2 84.7 84.7 87.2 87.2 89.7 92.2 92.2
A-max 32 170/172 MR 356 93.4 93.4 95.9 95.9 98.4 98.4 100.9 103.4 103.4
A-max 32 170/172 HED_ 5540 363/365 103.0 103.0 105.5 105.5 108.0 108.0 110.5 113.0 113.0
RE-max 21 179/180 49.6 49.6 52.1 52.1 54.6 54.6 57.1 59.6 59.6
RE-max 21, 3.5 W 180 MR 352/354 54.7 54.7 57.2 57.2 59.7 59.7 62.2 64.7 64.7
RE-max 21 181/182 52.2 52.2 54.7 54.7 57.2 57.2 59.7 62.2 62.2
RE-max 21, 6 W 182 MR 352/354 56.5 56.5 59.0 59.0 61.5 61.5 64.0 66.5 66.5
EC 32 flat, 15 W 258 38.6 38.6 41.1 41.1 43.6 43.6 46.1 48.6 48.6
EC 32 flat, IE, IP 00 259 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7
EC 32 flat, IE, IP 40 259 50.4 50.4 52.9 52.9 55.4 55.4 57.9 60.4 60.4

110451 110452 110453 110454 110455 110456 110457 110458 110459

6 : 1 10 : 1 18 : 1 30 : 1 60 : 1 100 : 1 200 : 1 500 : 1 900 : 1
6 10 18 30 60 100 200 500 900
3 3 3 3 3 3 3 3 3
2 2 3 3 4 4 5 6 6

0.1 0.1 0.2 0.2 0.3 0.3 0.6 0.6 0.6
0.3 0.3 0.6 0.6 0.9 0.9 1.8 1.8 1.8
= = z z = = z = =
81 81 73 73 66 66 59 53 53
55 55 60 60 65 65 70 75 75
1.0 1.0 1.5 1.5 2.0 2.0 2.5 3.0 3.0
0.7 0.6 0.4 0.4 0.3 0.3 0.2 0.2 0.2

20.6 20.6 23.1 23.1 25.6 25.6 28.1 30.6 30.6

M 1:2

October 2015 edition / subject to change  maxon gear 

Stock program
Standard program
Special program (on request)

overall length overall length

maxon Modular System
+ Motor Page + Sensor/Brake Page Overall length [mm] = Motor length + gearhead length + (sensor/brake) + assembly parts

Technical Data
Spur Gearhead  straight teeth
Output shaft  stainless steel
Bearing at output  sleeve bearing
Radial play, 12 mm from flange max. 0.1 mm
Axial play 0.03–0.2 mm
Max. axial load (dynamic) 30 N
Max. force for press fits 500 N
Max. continuous input speed 5000 rpm
Recommended temperature range -5…+80°C
Number of stages  1 2 3 4 5
Max. radial load, 12 mm
 from flange 50 N 50 N 50 N 50 N  50 N

Spur Gearhead GS 38 A  �38 mm, 0.1–0.6 Nm

Part Numbers

Gearhead Data
 1  Reduction
 2  Absolute reduction   
 3  Max. motor shaft diameter  mm
 4  Number of stages
 5  Max. continuous torque  Nm
 6  Max. intermittent torque at gear output  Nm
 12 Direction of rotation, drive to output 
 7  Max. efficiency  %
 8  Weight  g
 9  Average backlash no load  °
 10  Mass inertia  gcm2

 11  Gearhead length L1*  mm
*for EC 32 flat L1 is + 2.0 mm
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EC 45 flat, 30 W 261 19.4 19.4 19.4 19.4
EC 45 flat, 30 W 261 GP 42, 3 - 15 Nm 316 • • • •
EC 45 flat, 30 W 261 GS 45, 0.5 - 2.0 Nm 317 • • • •
EC 45 flat, 50 W 262 22.6 22.6 22.6 22.6
EC 45 flat, 50 W 262 GP 42, 3 - 15 Nm 316 • • • •
EC 45 flat, 50 W 262 GS 45, 0.5 - 2.0 Nm 317 • • • •
EC 45 flat, 70 W 263 28.4 28.4 28.4 28.4
EC 45 flat, 70 W 263 GP 42, 3 - 15 Nm 316 • • • •
EC 45 flat, 70 W 263 GS 45, 0.5 - 2.0 Nm 317 • • • •

462002 462003 462004 462005

256 512 1024 2048
2 2 2 2

500 500 500 500
10 000 10 000 10 000 10 000

M 1:3

  maxon sensor November 2015 edition / subject to change

Stock program
Standard program
Special program (on request)

overall length overall length

Encoder MILE 256–2048 CPT, 2 Channels, with Line Driver
Integrated into motor

maxon Modular System
+ Motor Page + Gearhead Page + Brake Page Overall length [mm] / • see Gearhead

Article Numbers

Type
Counts per turn
Number of channels
Max. operating frequency (kHz)
Max. speed (rpm)

Direction of rotation cw (definition cw p. 106)

Technical Data Pin Allocation Connection example
Supply voltage VCC  5 V ± 10%
Output signal  CMOS and TTL compatible
State length sn 90°e (1000 rpm) 45…135°e
Signal rise time 
(typically, at CL = 25 pF, RL = 1 kW, 25 °C) 100 ns
Signal fall time 
(typically, at CL = 25 pF, RL = 1 kW, 25 °C) 100 ns
Operating temperature range -40…+100 °C
Moment of inertia of code wheel  ≤ 3.5 gcm2

Output current per channel  max. 4 mA
Open collector output of the Hall sensors  
with integrated pull-up resistor    10 kΩ ± 20%
Wiring diagram for Hall sensors see p. 35

Additional information can be found Opt. terminal resistance R = typical 120 W
under ‘Downloads’ in the maxon online shop. Capacitor C ≥ 0.1 nF per m line length

Connection motor
Pin 1 Hall sensor 1*
Pin 2 Hall sensor 2*
Pin 3 VHall 4.5...18 VDC
Pin 4 Motor winding 3
Pin 5 Hall sensor 3*
Pin 6 GND
Pin 7 Motor winding 1
Pin 8 Motor winding 2

*Internal pull-up (10 kW) on pin 3 
(VHall)

Connection Encoder
Pin  1 N.C.
Pin  2 VCC

Pin  3 GND
Pin  4 N.C.
Pin  5 Channel A
Pin  6 Channel A
Pin  7 Channel B
Pin  8 Channel B
Pin  9 Do not connect
Pin 10 Do not connect

Connector: 
39-28-1083 Molex 
DIN 41651/EN 60603-13

Note: Pull-down resistors < 100 kΩ on the encoder 
outputs are not permitted. Pull-up resistors are permit-
ted, but not required.

R

C

R

C

Line receiver
Recommended IC's:
- MC 3486
- SN 75175
- AM 26 LS 32

Channel B

Channel B

Channel A

Channel A

GND

VCC

E
nc

od
er

, L
in

e 
D

riv
er

s∆ 45°e<
s2 s      = 90°e1..4s1s4s3

90°e

Channel A

Channel B

Cycle C = 360°e

Pulse P = 180°e

Phase shift
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RE 40, 150 W 142 125.1
RE 40, 150 W 142 GP 42, 3 - 15 Nm 314 •
RE 40, 150 W 142 GP 52, 4 - 30 Nm 318 •
RE 40, 150 W 142 AB 28 409 135.6
RE 40, 150 W 142 GP 42, 3 - 15 Nm 314 AB 28 409 •
RE 40, 150 W 142 GP 52, 4 - 30 Nm 318 AB 28 409 •
EC 45, 150 W 216 126.8
EC 45, 150 W 216 GP 42, 3 - 15 Nm 314 •
EC 45, 150 W 216 GP 52, 4 - 30 Nm 318 •
EC 45, 150 W 216 AB 28 409 135.6
EC 45, 150 W 216 GP 42, 3 - 15 Nm 314 AB 28 409 •
EC 45, 150 W 216 GP 52, 4 - 30 Nm 318 AB 28 409 •
EC 45, 250 W 217 159.6
EC 45, 250 W 217 GP 42, 3 - 15 Nm 315 •
EC 45, 250 W 217 GP 52, 4 - 30 Nm 318 •
EC 45, 250 W 217 GP 62, 8 - 50 Nm 320 •
EC 45, 250 W 217 AB 28 409 168.4
EC 45, 250 W 217 GP 42, 3 - 15 Nm 315 AB 28 409 •
EC 45, 250 W 217 GP 52, 4 - 30 Nm 318 AB 28 409 •
EC 45, 250 W 217 GP 62, 8 - 50 Nm 320 AB 28 409 •
EC 60, 400 W 218 177.3
EC 60, 400 W 218 GP 81, 20 - 120 Nm 321 •
EC 60, 400 W 218 AB 41 411 214.9
EC 60, 400 W 218 GP 81, 20 - 120 Nm 321 AB 41 411 •

137959

500
3

100 
12 000

  maxon sensor November 2015 edition / subject to change

Stock program
Standard program
Special program (on request)

Encoder HEDL 9140 500 CPT, 3 Channels, with Line Driver RS 422

Direction of rotation cw (definition cw p. 106)

Technical Data Pin Allocation Connection example
Supply voltage VCC  5 V ± 10%
Output signal EIA Standard RS 422 
driver used: DS26LS31
Phase shift Φ  90°e ± 45°e
Signal rise time 
(typically, at CL = 25 pF, RL = 11 kW, 25 °C) 180 ns
Signal fall time 
(typically, at CL = 25 pF, RL = 11 kW, 25 °C) 40 ns
Index pulse width 90°e
Operating temperature range  -40…+85 °C
Moment of inertia of code wheel  ≤ 0.6 gcm2

Max. angular acceleration  250 000 rad s-2

Output current per channel  min. -20 mA, max. 20 mA

The index signal I is synchronized with channel A or B.  Terminal resistance R = typical 120 W

Cable white =  2 VCC 5 VDC
Cable brown =  3 GND
Cable green =  5 Channel A 
Cable yellow =  6 Channel A
Cable grey =  7 Channel B
Cable pink =  8 Channel B
Cable blue =  9 Channel I (Index)
Cable red = 10 Channel I (Index)

Cable size 8 × 0.25 mm2

maxon Modular System
+ Motor Page + Gearhead Page + Brake Page Overall length [mm] / • see Gearhead

Part Numbers

Type
Counts per turn
Number of channels
Max. operating frequency (kHz)
Max. speed (rpm)

R

R

R

Line receiver
Recommended IC's:
- MC 3486
- SN 75175
- AM 26 LS 32

Channel B

Channel B

Channel A

Channel A

Channel I

Channel I

GND

VCC

E
nc

od
er

, L
in

e 
D

riv
er

, D
S

26
LS

31

s' 45°e�
s2 s      = 90°e1..4s1s4s3

U

U

U

U

U

U

High

High

High

Low

Low

Low

90°e

Kanal A

Kanal B

Kanal I

Zyklus C = 360°e

Puls P = 180°e

Phasenverschiebung

overall length overall length
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EC 90 flat 267 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2
EC 90 flat 267 GP 52, 4 - 30 Nm 319 • • • • • • • •

453234 409996 453233 411964 453232 411965 453231 411966

512 800 1024 1600 2048 3200 4096 6400
2 2 2 2 2 2 2 2

500 500 500 500 500 500 500 500
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  maxon sensor November 2015 edition / subject to change

Stock program
Standard program
Special program (on request)

overall length overall length

Encoder MILE 512–6400 CPT, 2 Channels, with Line Driver RS 422
Integrated into motor

maxon Modular System
+ Motor Page + Gearhead Page + Brake Page Overall length [mm] / • see Gearhead

Technical Data Pin Allocation Connection example
Supply voltage VCC  5 V ± 10%
Output signal EIA Standard RS422 
driver used: AM26C31QD
State length sn (500 rpm) 90°e ± <45°e
Signal rise and fall times 
(typically, at CL = 120 pF, RL = 100 Ω) 20 ns
Operating temperature range  -40…+100 °C
Moment of inertia of code wheel ≤ 65 gcm2

Output current per channel min. -20 mA, max. 20 mA
Wiring diagram for Hall sensors see p. 35

Additional information can be found
under ‘Downloads’ in the maxon online shop. Opt. terminal resistance R = typical 120 Ω

Connection motor
Pin 1 Hall sensor 1*
Pin 2 Hall sensor 2*
Pin 3 VHall 4.5...18 VDC
Pin 4 Motor winding 3
Pin 5 Hall sensor 3*
Pin 6 GND
Pin 7 Motor winding 1
Pin 8 Motor winding 2

*Internal pull-up (10 kW) on pin 3 
(VHall)

Part Numbers

Type
Counts per turn
Number of channels
Max. operating frequency (kHz)
Max. speed (rpm)

Direction of rotation cw (definition cw p. 106)

Connection Encoder
Pin  1 N.C.
Pin  2 VCC

Pin  3 GND
Pin  4 N.C.
Pin  5 Channel A
Pin  6 Channel A
Pin  7 Channel B
Pin  8 Channel B
Pin  9 Do not connect
Pin 10 Do not connect

Connector: 
39-28-1083 Molex 
DIN 41651/EN 60603-13

R

R

Line receiver
Recommended IC's:
- MC 3486
- SN 75175
- AM 26 LS 32

Channel B
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Channel A
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Cycle C = 360°e

Pulse P = 180°e

Phase shift
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