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Summary 

Peridynamics, a recently proposed non-local continuum theory, is particularly 

suitable to describe fracture phenomena in a wide range of materials. One of most 

common techniques for its numerical implementation is based on a mesh-free 

approach, in which the whole body is discretized with a uniform grid and a 

constant horizon, the latter related to the length-scale of the material and/or of the 

phenomenon analysed. As a consequence of that, computational resources may 

not be used efficiently. The present work proposes adaptive refinement/scaling 

algorithms for 2D and 3D peridynamic grids, to reduce the computational cost of 

peridynamic based software. Adaptive refinement/scaling is here applied to the 

study of dynamic crack propagation in brittle materials. Refinement is activated 

by using a new trigger concept based on the damage state of the material, coupled 

with the more traditional energy based trigger, already proposed in the literature. 

The use of a varying horizon and grid spacing over the grid may introduce some 

anomalies on the numerical peridynamic solution, such anomalies are investigated 

in detail through static and dynamic analyses. Moreover, while the scientific 

community is working to assess the full potential of peridynamics, few 

researchers have observed indirectly that the evolution of crack paths can follow, 

in an unphysical way, the axes of symmetry of the grid. The main parameter 

affecting such a numerical phenomenon seems to be the value of the m ratio, 

namely the ratio between the horizon and the grid spacing. The dependence of the 

crack path on the grid orientation would be a serious drawback for peridynamic 

based software since it would undermine what is believed to be one of its most 

important advantages over other computational methods, i.e. its capability to 

simulate (multiple) crack nucleation,  propagation, branching and interaction in 

solids in a simple way. Finally, in order to show the effectiveness of the proposed 

approach, several examples of crack propagation in both 2D and 3D problems are 

presented. Then, the results obtained are compared with those obtained with other 

numerical methods and with experimental data. 



 

 

 

 

 
 

 

 

 

 

 



7 

 

Sommario 

La Peridynamica, una teoria non locale del continuo proposta recentemente, è 

particolarmente adatta a descrivere fenomeni di frattura in una vasta gamma di 

materiali. Una delle tecniche più comuni per la sua implementazione numerica è 

basata su un approccio senza mesh, in cui l'intero corpo viene discretizzato con 

una griglia uniforme e un orizzonte costante, essendo quest'ultimo in relazione 

con la lunghezza di scala del materiale e/o del fenomeno analizzato. Di 

conseguenza le risorse computazionali possono non essere utilizzate in modo 

efficiente. Il presente lavoro si propone di sviluppare gli algoritmi per 

l’implementazione dell’adaptive grid refinement and scaling per griglie 

peridinamiche 2D e 3D, con lo scopo di ridurre il costo computazionale dei 

software basati sulla peridynamica. Questo approccio viene applicato allo studio 

della propagazione dinamica di cricche in materiali fragili. Il refinement viene 

attivato utilizzando un nuovo concetto di “innesco” che si basa sullo stato di 

danneggiamento del materiale, accoppiato con il più tradizionale innesco basato 

su un criterio energetico, già proposto in letteratura. L' utilizzo di un orizzonte e di 

un passo di griglia variabile può introdurre nella soluzione numerica della 

peridynamica alcune anomalie, che vengono analizzate dettagliatamente tramite 

analisi statiche e dinamiche. Inoltre, mentre la maggior parte della comunità 

scientifica sta lavorando per valutare a pieno le potenzialità della peridynamica, 

solo alcuni ricercatori hanno osservato indirettamente come il percorso della 

cricca possa seguire, in modo chiaramente non realistico, gli assi di simmetria 

della griglia. Il principale parametro che influisce su tale comportamento sembra 

essere il valore assunto dal rapporto m, definito come il rapporto tra l'orizzonte e il 

passo della griglia. La dipendenza del percorso della cricca dall'orientamento della 

griglia sarebbe un grave ostacolo per lo sviluppo di un software basato sulla 

peridynamica, poiché ciò porterebbe a pregiudicare quella che si ritiene essere uno 

dei suoi vantaggi più importanti rispetto ad altri metodi di calcolo, ossia la sua 

capacità di simulare la nucleazione (anche multipla), la propagazione, la 

ramificazione e l’interazione di cricche in materiali solidi in modo semplice. 

Successivamente, al fine di dimostrare l'efficacia del metodo proposto, vengono 

presentati alcuni esempi di propagazione di cricche per problemi 2D e 3D. Infine, 
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i risultati ottenuti sono confrontati con quelli ottenuti con altri metodi numerici e 

con dati sperimentali. 
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1. Introduction 

1.1.  Motivation and objectives 

Failure of engineering structures is a phenomenon which is often caused by a 

decrease in structure strength due to the presence of cracks. Cracks can be 

originated in different ways, such as localized damage caused by accidental loads 

or defects resulting from manufacturing fabrication. Such cracks may grow for 

different causes, stress-corrosion, thermal-stresses, fatigue, impacts and so on; 

depending on the type of material and of structure, the fracture can rapidly lead to 

the collapse of the whole structure. The study of quasi-static fracture in linear 

elastic materials is usually based on the work of Griffith [1]. The dynamics of 

crack propagation in brittle materials, referred as “dynamic” for the important role 

that inertial effects have on crack propagation, is still a challenge [2]. Several 

theories and numerical methods have been proposed and developed in the last 

century with the target to predict the dynamics of crack propagation. Existing 

methods within the classical theory of mechanics are based on partial differential 

equations, which suffer from the inherent limitation that spatial derivatives are not 

defined at discontinuities. Supplemental kinetic relations that dictate crack growth 

and ad-hoc damage criteria have to be adopted in order to overcome this 

limitation. The new non-local theory of continuum called “Peridynamics” [3] 

removes such a drawback by replacing in the equation of motion the spatial 

derivatives with an integral operator. Peridynamics is non-local because each 

material point of a body described with it does interact with all surrounding points 

within a spherical finite volume, the radius of which is called horizon. This 

internal length can be related to the length-scale of the material or phenomena 

under investigation [4]. By doing so, the presence of every type of discontinuities, 

i.e. cracks or voids, can be easily treated with no need of additional equations and 

criteria to decide if the crack should nucleate and in which direction should 

propagate. If on the one hand peridynamics is showing to be very suitable for 

dealing with dynamic crack propagation, on the other hand, its numerical 

implementation is computationally expensive, especially for cases of large-scale 

3D simulations. An interesting technique referred as “Adaptive Grid Refinement 

and Scaling” (AGRS), seems to be a promising candidate to increase its 

computational efficiency by reducing both the grid spacing of the grid and the 



28 

 

horizon in the region where the crack should propagate. In particular, with the 

term “refinement” we mean the reduction of the grid spacing, while the term 

“scaling” means to change the size of the horizon. Therefore, we developed the 

algorithms to implement the AGRS with the following objectives: 

 Developing a robust algorithm by the introduction of an additional 

trigger for the AGRS with respect to that energy based proposed in the 

literature. The new trigger is damage based and allows to manage in a 

more efficient way the AGRS activation in the considered domain. 

 Investigating the anomalies in the numerical peridynamic solutions 

introduced by the use of a varying grid spacing and horizon length over 

the domain. This is done by performing static and dynamic analyses. 

 Investigating the possible dependence of crack propagation on grid 

orientation introduced by the type of discretization currently adopted by 

the peridynamic community. 

 Applying to 2D/3D problems of dynamic crack propagation in brittle 

materials, the AGRS algorithm autonomously activates the grid 

refinement at the crack tip during crack propagation and in the regions 

where crack nucleation is likely.  

1.2.  Organization of the Thesis 

This thesis is organized in seven chapters and one appendix. After the present 

first chapter, which gives a brief introduction to fracture mechanics and 

motivation for this research, in chapter two an overview of peridynamic 

fundamentals is given. In chapter three we introduce the working principle of the 

adaptive grid refinement and scaling algorithm applied to peridynamic theory. 

The use of a varying grid spacing and horizon length leads to introduce some 

anomalies in the numerical peridynamic solution: hence in chapter four its effects 

on peridynamic solutions are evaluated by carrying out specific static and 

dynamic analyses followed by a discussion of the results. Further, in chapter five 

the issue regarding the dependence of crack propagation on grid orientation is 

addressed, which would be a serious drawback for the numerical peridynamic 

solution. Finally, for verifying the effectiveness of the proposed technique, in 

chapter six several benchmark problems are treated and compared with the results 
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given in the literature, followed by a summary of the main conclusions derived 

from this work in chapter seven. Appendix provides extensions and technical 

clarifications of the work presented in this dissertation.  

1.3.  Fracture mechanics 

1.3.1. Brief overview of historical perspective 

Looking back through the history of the engineering structures, it is easy to 

realize how many injuries and financial loss have been caused by fracture failure. 

The Industrial Revolution led to change the design of the structures since iron and 

steel materials allowed to remove the earlier restrictions on design. In fact, unlike 

the brick and mortar adopted in pre-Industrial Revolution architectures, which 

work mainly in compression, such relatively ductile materials can carry tensile 

stresses. One of the most famous failures caused by the unexpected fracture 

failure regards the “Boston Molasses Disaster” occurred on January 15, 1919, in 

which the rupture of a molasses tank took a wave of molasses to rush through the 

streets killing and injuring many people (see Fig. 1.1). Although the designers 

adopted safety factors of 10 or more with respect to the tensile strength of the 

material, the structure collapsed. An explanation of the cause that led to that 

disaster can be given taking into account of the qualitative studies performed by 

Leonardo da Vinci several centuries earlier, who pointed out that the strength of a 

wire made of iron varies inversely with its length. This implies that a longer wire 

has a higher probability of containing flaws with respect of a shorter one. A 

quantitative study on the relationship between flaws and fracture stresses was first 

performed by Griffith in 1920 [1], showing through a stress analysis of an 

elliptical hole that the fracture failure can occur as a consequence of the unstable 

growth of the flaw. He invoked the first principle of thermodynamics to formulate 

a fracture theory which is based on an energy balance, unfortunately, this model 

can capture the relationship between the fracture strength and flaws of ideally 

brittle materials only. Only later in 1948, Irwin (leader of the fracture mechanics 

research group of Naval Research Laboratory in Washington, DC) gave the first 

significant extension of Griffith’s model to the fracture of metals.  
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Fig. 1.1: Photograph of the aftermath of “Boston Molasses Disaster” (Photograph taken from Wikipedia). 

In more recent years, the “Challenger Space Shuttle disaster” occurred on 

January 28, 1986, in which after 73 seconds of the take-off, Shuttle exploded 

killing all crew members. The embrittlement of the O-ring seal in one of the solid 

rocket boosters caused the disaster, since it was not designed to fly under 

unusually cold weather. In particular, due to the low temperature the O-ring seal 

stiffened, leading to the fracture of the rocket joint in consequence of the external 

walls expansion of its chamber.  Its fracture failure caused a breach in the booster 

joint, taking the pressurized burning gas generated by the solid fuel outside and 

then leading to damage the external tank of liquid fuel. Although the engineers at 

NASA advised their managers to postpone the date of the launch, the available 

data was not enough to support their position. Almost 17 years after the 

“Challenger Space Shuttle disaster”, the Space Shuttle Columbia burst during the 

re-entry phase in consequence of the impact of a piece of foam insulation which 

struck the left wing of Shuttle. This incident caused a fracture damage of the 

thermal wing insulation making the orbiter vulnerable for the re-entry in which 

high temperature can be reached (1650°C).  

Several reasons may lead to a catastrophic fracture failure of an engineering 

structure. In the field of aeronautical and aerospace structures, the fatigue 

mechanism has been recognised as the most powerful threat to the reliability and 

safety of the aircraft.  Fatigue is the weakening of the material caused by the 

action of loads applied repeatedly, if the loads are above a certain threshold, 

microscopic cracks may begin to form in the areas of stress concentration. 
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Eventually, if the cracks reache a critical size, they will propagate dynamically 

leading to the collapse of the structure.  

a) 

 

b) 

 

c) 
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d) 

 

Fig. 1.2: Photographs of in-service failure components of aircraft, a) landing gear door up-lock operation 

lever, b) pivot bracket, c) helicopter rotor blade extrusion, d) helicopter rotor drive yoke (Images taken from 

[5]). 

In the last decades, several procedures and methods have been developed for the 

design, testing and routine inspections in order to prevent failure, especially when 

cracks are found in the primary structure of the airframe. In any case, nowadays 

the routine inspections made during the aircraft service remain the main procedure 

for detecting the presence of cracks and keeping their growth under control. Fig. 

1.2 shows few photographs of some components failed in service, due to the 

fatigue phenomena, which have caused the complete loss of an aircraft or serious 

damage to the main structure. The photographs clearly show that the damage is 

always originated from areas characterized by stress concentrations, like holes or 

rivet holes, bolts, cut-outs, and from flaws in the material and imperfections of 

welded joints.  

 

Fig. 1.3: The three fracture modes, a) Opening mode (Mode 1), b) Sliding mode (Mode 2), c) Tearing mode 

(Mode 3).  

Basically, as shown in Fig. 1.3, we can identify three fracture modes depending 

on the way of applying the force at the crack: Opening mode (Mode 1) in which 
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the load is applied normal to the crack plane, Sliding mode (Mode 2) in which an 

in-plane shear load leads one crack face to slide with respect to the other one and 

Tearing mode (Mode 3) in which shear load acting parallel to the plane of the 

crack and parallel to the crack front. Fracture mechanics can be divided in three 

main families (see Fig. 1.4):  

1. Linear Elastic Fracture Mechanics (LEFM) 

2. elastic-plastic fracture mechanics 

3. dynamic, viscoelastic and viscoplastic fracture mechanics. 

While the LEFM is mainly applicable to linear elastic materials under quasi-static 

conditions (even if recent advances in research allowed to incorporate the 

behaviour of other materials), the elastic-plastic theory also includes plastic 

deformation (non-linear behaviour). Both are time-independent since time 

variable is not included. While dynamic, viscoelastic and viscoplastic fracture 

mechanics include time as a variable. The dashed line in Fig. 1.4 indicates the 

connection between the LEFM and the Dynamic Fracture Mechanics (DFM), in 

particular, the dynamic version of LEFM is termed “elastodynamic fracture 

mechanics”, as it will be discussed in Section 1.3.3.  

 

Fig. 1.4: Main families of fracture mechanics (Image taken from [6]). 

1.3.2. Linear Elastic Fracture Mechanics 

The effort made by the pioneers Inglis [7] and Griffith [1] paved the way for 

the fundamentals of fracture mechanics through the introduction of LEFM. 

Although LEFM is mainly applicable to materials that obey Hooke’s law, its 
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formulation can be extended to deal with crack propagation characterized  by a 

small-scale plasticity deformation at the crack tip of structures with a global linear 

elastic behaviour. This theory introduced the concepts of energy release rate and 

stress intensity parameters. According to the first law of thermodynamic, a crack 

under a static load condition propagates if the energy available for crack growth is 

sufficient to overcome the resistance of the material. In particular, the critical 

stress (fracture stress) is defined at the condition with no net change in total 

energy. Let us consider a case regarding the fracture mechanics of Mode 1, an 

infinitely wide plate of thickness B with a crack of length 2a and subjected to a 

remote uniform tensile stress 𝜎 (see Fig. 1.5).  

 

Fig. 1.5: Infinitely wide plate with a crack subjected to a remote tensile stress (Image taken from [6]). 

The incremental increase in the crack area dA, under the condition of equilibrium, 

can be expressed as: 

𝑑𝐸

𝑑𝐴
=
𝑑Π

𝑑𝐴
+
𝑑𝑊𝑠
𝑑𝐴

= 0 (1.1) 

where E is the total energy, Π is the potential energy supplied by the external 

forces and the internal strain energy and Ws the work required to create new 

surfaces. Regarding the particular case shown in Fig. 1.5, the potential energy can 

be expressed as: 
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Π − Π0 = −
𝜋𝜎2𝑎2𝛣

𝛦
 

(1.2) 

with Π0 the potential energy of an uncracked plate. The work required for the 

creation of two new surfaces is given by 𝑊𝑠 = 4𝑎𝐵𝛾𝑠, where 𝛾𝑠 is the surface 

energy of the material,  thus:  

𝑑Π

𝑑𝐴
= −

𝜋𝜎2𝑎

𝛦
 

(1.3) 

and 

𝑑𝑊𝑠
𝑑𝐴

= 2𝛾𝑠 (1.4) 

Therefore, substituting Eq. (1.3) and Eq. (1.4) in Eq. (1.1) and solving for the 

stress gives: 

𝜎𝑓 = (
2𝐸𝛾𝑠
𝜋𝑎

)

1
2⁄

 (1.5) 

with 𝜎𝑓 defined fracture stress, then a tensile 𝜎 ≥ 𝜎𝑓 will take the crack to 

propagate. Irwin’s approach, which is more convenient for solving engineering 

problems, defines the concept of energy release rate G as a measure of the rate of 

change in potential energy with the crack area, even referred as the crack driving 

force. With reference to the specific case of Fig. 1.5, G is defined as follows:  

−
𝑑Π

𝑑𝐴
=
𝜋𝜎2𝑎

𝛦
 

(1.6) 

Hence, the propagation of the crack occurs if the energy release rate reaches the 

critical value 𝐺𝑐 defined as: 

𝐺𝑐 =
𝑑𝑊𝑠
𝑑𝐴

= 2𝛾𝑠 
(1.7) 

which it is a measure of the fracture toughness of the material. 
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1.3.3. Elastodynamic Fracture Mechanics 

The dynamic version of LEFM is termed elastodynamic fracture mechanics, it 

considers the inertia forces and the reflected stress waves neglecting the nonlinear 

response of the material. Failure criteria for dynamic problems of brittle materials 

can be considered as an extension of Griffith’s ideas in which, as suggested by 

Mott [8], the kinetic energy must be incorporated in the energy balance. Let us 

consider a crack in an unbounded 2D body which is propagating at constant speed 

v (see Fig. 1.6), namely steady-state crack growth.  

 

Fig. 1.6: Crack tip contour for evaluating the energy balance of a crack which is propagating at constant 

velocity v. 

Let �̇� define the rate of change of the stored elastic energy and �̇� the rate of 

change in the kinetic energy, then: 

�̇� + �̇� = ∫
1

2
[𝜎𝛼𝛽휀𝛼𝛽 + 𝜌�̇�𝛼�̇�𝛽]𝑑𝐴

 

𝑅−RΓ

 (1.8) 

with 𝛼 = 1,2, 𝛽 = 1,2 indicate the directions of a Cartesian reference system (X1, 

X2), u the displacement component, 𝜎 the stress component, 휀 the strain 

component, dA the infinitesimal area. R is the region near the crack tip bounded 

by the curve 𝜕𝑅 and 𝑅Γ the small region enclosed by the contour Γ. The small 

region 𝑅Γ excludes the singularity of the stress and strain fields at the crack tip. 

Let us consider that the contour Γ translates with the same speed of crack 

propagation; invoking Reynolds transport theorem of Eq. (1.8) to the limit Γ → 0: 
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�̇� + �̇� = lim
Γ→0

∫ [𝜎𝛼𝛽�̇�𝛼,𝛽 + 𝜌�̇�𝛼�̈�𝛼]𝑑𝐴
 

𝑅−RΓ

+ lim
Γ→0

∫
1

2
[𝜌�̇�𝛼�̇�𝛼 + 𝜎𝛼𝛽𝑢𝛼,𝛽]𝑣𝑛1𝑑𝑠

 

Γ

 

(1.9) 

with n1 the component of the unit vector outward normal to the contour Γ aligned 

in the direction of crack propagation and ds the infinitesimal length. The 

subscripts α, β indicate the partial differentiation of the α component with respect 

to the coordinate identified by the index β. The application of divergence theorem 

to the first integral of Eq. (1.9) yields:  

lim
Γ→0

∫ [𝜎𝛼𝛽�̇�𝛼,𝛽 + 𝜌�̇�𝛼�̈�𝛼]𝑑𝐴
 

𝑅−RΓ

=  ∫ 𝜎𝛼𝛽�̇�𝛼𝑛𝛼𝑑𝑠
 

𝜕𝑅

+ lim
Γ→0

∫𝜎𝛼𝛽�̇�𝛼𝑛𝛼𝑑𝑠
 

Γ

 

(1.10) 

Being the newly created crack surfaces traction free, the first term of Eq. (1.10) 

represents the power P of the external forces, then:  

𝑃 − �̇� + �̇� = lim
Γ→0

∫ [𝜎𝛼𝛽�̇�𝛼𝑛𝛼 +
1

2
(𝜎𝛼𝛽휀𝛼𝛽 + 𝜌�̇�𝛼�̇�𝛽)𝑣𝑛1] 𝑑𝑠

 

Γ

 (1.11) 

The integral of Eq. (1.11) is defined as energy flux integral at the crack tip and 

represents the amount of energy flowing out of the region R and into the crack tip 

through the contour Γ. Then, the energy flux integral is defined as: 

𝐹 =  ∫ [𝜎𝛼𝛽�̇�𝛼𝑛𝛼 +
1

2
(𝜎𝛼𝛽휀𝛼𝛽 + 𝜌�̇�𝛼�̇�𝛽)𝑣𝑛1] 𝑑𝑠

 

Γ

 (1.12) 

Defining 𝛾 as the fracture energy per unit extension of the crack, and D as the 

total dissipation of energy in the fracture process, then the rate of change of D is 

defined as: 

𝑑𝐷

𝑑𝑡
= 𝑣 

𝑑𝐷

𝑑𝑎
 (1.13) 

with a the crack length, hence in analogy with the LEFM we can define the 

dynamic energy release G as follows: 
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𝐺 = 𝑣−1𝐹 = 𝛾 (1.14) 

Note that fracture energy 𝛾 can include the surface energy 𝛾𝑠 introduced by 

Griffith (see Section 1.3.2) as well as the dissipated energy due to all the 

dissipative phenomena which can be observed in dynamic crack propagation. Eq. 

(1.14) highlights that the dynamic release energy rate is the energy released per 

unit area of crack extension into the region around the crack tip and has to be 

equal to the dissipated energy. As opposed to quasi-static fracture in which the 

physical quantity 𝐺𝑐 finds application as fracture criterion for defining the 

condition of crack initiation of the crack growth [6], 𝐺 can provide the crack 

growth law in dynamic problems.    

1.4.  Theories for treating dynamic fracture 

1.4.1. Methods based on classic mechanics 

The primary assumption of the classic theory of mechanics is the locality of the 

interaction between material points since the interaction is restricted to 

neighbours. Therefore, the stress tensor [𝝈] at any material point of the body 𝒙 

depends on the deformation tensor [𝜺] at that point only. Classical mechanics 

assumes the hypothesis that a body has to remain continuous even after its 

deformation, hence the equation  of motion at any material point is defined by 

means of spatial partial differential equations, as follows: 

𝜌�̈�𝑘 =
𝜕𝜎𝑘𝑋
𝜕𝑋

+
𝜕𝜎𝑘𝑌
𝜕𝑌

+
𝜕𝜎𝑘𝑍
𝜕𝑍

+ 𝑏𝑘 (1.15) 

where k = (X, Y, Z) indicates the directions of the cartesian reference system, ρ the 

mass density and �̈�𝑘 the kth-component of the acceleration. It is known that the 

spatial  partial differential terms in Eq. (1.15)  are not defined at discontinuities, 

hence the governing equations of classic theory lose their meaning due to the 

presence of discontinuities, such as cracks or voids. The Finite Element Method 

(FEM) is one of the most robust numerical methods based on classic theory, it 

allows to model complex geometries calculating stress fields due to the 

application of general boundary conditions with a good level of approximation. 

However, when a problem with cracks has to be modelled, FEM requires the use 
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of special types of elements to capture correctly the singularities at the crack tip; 

redefining the body when the crack propagates since the crack surface is treated as 

a new boundary. In addition to this shortcoming, supplementary kinetic equations 

have to be employed in order to decide the evolution of the crack growth, which 

are concerned mainly with the propagation of existing cracks rather than their 

nucleation. During the last century, numerous studies have been performed aiming 

to overcome the shortcomings of the FEM, as a first study, the concept of 

cohesive zone introduced by Dugdale [9] and Barenblatt [10] paved the way to 

develop the Cohesive Zone Elements (CZE). Basically, methods based on CZE 

[11, 12, 13] adopt interface elements placed along the elements boundaries and 

equipped with a traction-separation law for which the tractions are zero when the 

relative displacements overcome a critical value. Usually, such elements are 

inserted along the potential crack path, in addition, the crack growth is sensitive to 

the texture and alignment of the regular elements of the mesh. A remeshing 

technique was proposed by Camacho and Ortiz [14] to address problems in which 

the crack paths are unknown a priori, but it still suffers from a certain dependence 

of crack propagation direction on local mesh orientation, since the crack is not 

completely free to propagate in the medium [15]. In order to remove these 

limitations, the eXtended Finite Element Method (XFEM) [16] was introduced to 

allow the crack to propagate within the regular elements of the mesh, in this way 

the crack can grow in any direction regardless of the texture of the mesh. The 

basic idea originally introduced in [17] is based on the use of the partition of unity 

finite elements, using an enrichment of discontinuous displacement functions to 

add degrees of freedom to the standard finite element approximation. 

Nevertheless, ‘the formulation becomes cumbersome with increasing number of 

cracks and crack branches’ [18]. Moreover, XFEM suffers (in practice) from the 

absence of reliable crack branching criteria [18]. Reference [19] proposed an 

approximation scheme for variational models of Griffith’s theory [20] based on 

the notion of eigendeformation which are extensively used in mechanics as 

approach to describe the deformation modes that cost no local energy. Basically, 

such an approach assumes two fields, the displacement field  and an 

eigendeformation field that describes discontinuities, such as cracks, which may 

be present in the body. By doing so, the displacement field can develop jumps at 

no cost in local elastic energy. Based on the work proposed in [19], the 
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eigenerosion approach [21, 22] has been originally developed for dealing with 

brittle fracture. The main idea is to restrict the eingendeformations in a binary 

sense: they assume a value equal to zero if the local behavior is elastic or a value 

equal to the local displacement gradient, in which case the corresponding material 

neighborhood is eroded. This scheme can be combined with different methods. 

For instance, combining it with the FEM, depending on the value assumed by the 

eingendeformation, the regular elements of the mesh can have the usual elastic 

behavior or be eroded, in the sense that they do not have load bearing capacity 

anymore. Recently, alternative methods for the numerical simulation of fracture 

problems have emerged such as the phase-field method [23, 24, 25].  Whereas 

other methods require the use of complex algorithms to track the fracture surfaces 

since discontinuities are introduced into the solid, the phase-field method  treats 

the discontinuities approximating the fracture surface by a phase-field, smoothing  

the boundary of the crack over a small region. In this way, the evolution of the 

phase field is used to capture the trajectory of the crack. However, this new 

approach treats mainly brittle fracture, in addition, it shows to be sensitive to the 

phase field parameters, hence they have to be chosen very carefully. 

1.4.2. Nonlocal Theories and Methods  

Let us consider that the understanding and prediction of material failure 

process is governed by the presence of a wide variety of mechanics associated 

with dislocations, micro-flaws, grain boundaries which play an important role at 

specific length-scales. Methods based on classic local theory of mechanics suffer 

from the lack of an internal length parameter. The difficulties encountered in such 

methods utilizing classical continuum mechanics can be overcome by adopting 

numerical methods based on non-local approaches like the atomistic model [26], 

describing fracture as a rupture of inter-atomic forces. They are certainly able to 

capture in a realistic way the mechanisms which occur in fracture phenomena, 

giving important contribution to the understanding of the physical processes that 

lead to the nucleation and propagation of cracks. On the other side, because of the 

large computational resources that such methods require, their application is 

limited to the qualitative understanding of fracture rather than to the prediction of 

it. As an example, the largest-scale atomistic simulation performed in [27] used 
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320 billion atoms to model a copper cube with an edge length of 1.56 μm, not 

enough for dealing with real-life problems. This drawback can be overcome by 

coupling atomistic models with other methods computationally more efficient 

such as FEM. The coupling has to make use of multi-scale approaches [28], which 

need rather complex strategies for a correct transfer of the forces between models 

of different scale. Besides, the coupling between local and non-local models often 

generates the artifact called spurious forces or ghost forces [29] that strongly 

affect equilibrium in the transition zone between the two different models. The 

connection between the classic theory of continuum and the atomistic models is 

established by the nonlocal theories of the continuum. Unlike the classic theory of 

continuum, in the nonlocal theories the state of material points is influenced by 

material point enclosed inside a region of finite length. Therefore, the stress at a 

given point does not only depend on that local strain but also on the strain of the 

points enclosed in its neighbourhood [18]. [30] suggests several reasons why to 

use a nonlocal theory rather than a local one, i.e. capturing the effects of 

microstructural heterogeneities or the influence of microcracking growth in the 

proximity of the crack tip on crack propagation. Several different types of non-

local theories have been proposed in the past, as the nonlocal elasticity theory 

introduced by Eringen and Edelen [31] which defines the equation of motion by 

means of a nonlocal balance of thermodynamic statements. Another type is the 

gradient enhanced models [32], referred as weakly nonlocal models since based 

on differential equations, it assumes higher order spatial derivatives in the 

formulation allowing the material point to account for the field in its vicinity. 

However, all these nonlocal theories suffer from the difficulty to deal with 

discontinuities in the domain since are based on spatial derivatives. Another type 

of nonlocal theory that allowed to circumvent this difficulty has been introduced 

by Kunin [33, 34] and Rogula [35] using displacement fields rather than their 

derivatives. Some shortcomings of this theory can be identified in the lack of a 

formulation to address 2D/3D models, damage included in the material response 

and a nonlinear material response with respect to displacements. 
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1.4.3. Peridynamics 

Recently, in order to overcome the limitations related to the differential 

formulation of methods commonly based on classic theory of continuum as well 

on the nonlocal theories developed in the past, the nonlocal PeriDynamic theory 

(PD) has been proposed by Silling [3] and Silling et al. [36]. PD is an alternative 

nonlocal formulation of continuum mechanics which defines the equation of 

motion by substituting the divergence of the stress tensor, that is the partial 

differential term of Eq. (1.15), with an integral operator.  In this way, the equation 

of motion does not suffer from the presence of discontinuities over the domain. 

The main concept introduced by Silling is based on the assumption that material 

points can interact with each other if located inside a region of finite length. That 

is the reason why the Greek roots of the words near and force were proposed to 

call such a formulation “peridynamics”. The interaction between material points is 

defined bond, which contains all of the constitutive law for defining the response 

of the material. In addition, the damage model is included in the constitutive law 

so that an unambiguous definition of local damage at a material point of the 

continuum domain can be defined. Then, the peridynamic governing equations 

can be defined at crack surfaces without the need to employ special techniques 

such as the use of interface elements and enrichment discontinuous functions in 

order to treat the fracture. These attributes make peridynamics suitable to deal 

with complex problems characterized by simultaneous multi-crack propagations 

and interactions by simple integration of equation of motion. Another important 

attribute of peridynamics is the length scale referred as horizon δ introduced by its 

formulation. The horizon defines the size of the region of nonlocal interaction and 

can be linked to the characteristic length-scale of the material and/or of the 

considered phenomenon [4, 37]. Then it is possible to capture the material 

response on different length scales, from the macroscale to the nanoscale, since 

the horizon can be controlled. 

Two main formulations for peridynamic models have been introduced: the first 

which is the original form of peridynamic model is termed Bond-Based 

PeriDynamic (BB-PD) [3], while the second one is termed State-Based 

PeriDynamic (SB-PD) [36]. BB-PD assumes that any pair of particles enclosed 
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inside the nonlocal region interact only through a central force potential [38], 

namely the interaction between a couple of nodes is completely independent of all 

the others. As already demonstrated in [38], under this assumption, Poisson’s ratio 

is constrained to assume the value of 1/4 for 3D and 2D plane strain cases and 1/3 

for 2D plane stress cases for isotropic materials. Also, it cannot distinguish the 

volumetric deformation from the distortional one, therefore it is not suitable to 

capture the response of materials with different mechanical properties, i.e. 

materials with plastic incompressibility response. Reference [39] proposed a 

strategy called micropolar peridynamic model to remove the limitation of 

Poisson’s ratio, but it is not clear if such an approach can capture the plastic 

behaviour. Therefore, in order to remove such a drawback Silling et. al. [36] 

introduced the new general formulation referred as State-Based-PD, defining the 

concept of “state” as infinite dimensional arrays containing information regarding 

the bonds. In particular, there are two different formulations of SB-PD: the 

ordinary SB-PD and the non-ordinary SB-PD. In ordinary SB-PD the forces 

between two material points act along the vector connecting the points in the 

deformed configuration, while in non-ordinary SB-PD the forces can act in 

different directions with respect to that of the vector connecting the points. In 

spite of the notable advantages introduced by PD, some drawbacks arise out of the 

integro-differential peridynamic formulation even in the SB versions. First, the 

application of the boundary conditions is completely different from that of the 

classical theory, since point and surface boundary conditions have to be applied 

over a volume [40].  In addition, due to the nonlocality of the theory, the material 

stiffness near the free surfaces and the interfaces between different material 

regions can be over- or under-estimated, leading to an error in the PD solution. 

Other shortcomings of PD are related to its numerical discretization, as presented 

in the following paragraph. 

The PD solution can be obtained through the implementation of different 

numerical methods [41], however, one of the most popular methods for 

implementing PD theory is based on a meshfree approach [42], in which the 

whole body is discretized with a uniform structured grid of nodes and a constant 

horizon. A wide variety of problems can be solved with a peridynamic approach 

for the description of material failure and damage: for predicting crack 
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propagation and branching in brittle materials [43, 44, 45], damage in concrete 

[46, 47], fracture in composite materials [48, 49, 50], fatigue damage [51, 52], 

corrosion damage and stress corrosion cracking [53, 54], among others. Although 

PD shows to capture damage and fracture phenomena successfully, its application 

to real-life structures still requires a considerable amount of computational 

resources, especially if it is compared with methods such as FEM. Numerous 

approaches have been proposed with the goal to restrict the use of peridynamics to 

regions where crack should take place, while adopting models based on classic 

theory in domains characterized by smooth displacement fields, for instance [55, 

56] have proposed the coupling between PD models and FEM. Whereas staying 

within the PD framework, the authors in [57, 58] proposed the use of the 

technique based on adaptive refinement/coarsening and scaling as a strategy to 

reduce both sizes of grid spacing and horizon length in the proximity of the crack 

tip. Only the strategy based on adaptive refinement and scaling has been applied 

in [59, 60] to capture the dynamic crack propagation in brittle materials. The 

development of such a strategy could allow in the future to pave the way for an 

efficient concurrent multi-scale modelling in the framework of PD. In fact, by this 

strategy,  it will be possible to reduce the horizon length to the wanted length-

scale near the crack tip, by adopting a size convenient for the computational 

efficiency far from the crack tip. 
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2. Overview of peridynamics  

2.1.  Fundamentals 

Peridynamics is a recently proposed non-local theory of continuum [3, 36, 61] 

which assumes that each material point of a given body Ɓ can interact with all 

surrounding points within a finite distance δ named horizon. The equation of 

motion at any instant in time t for a material point of coordinate 𝒙𝑖 (referred as 

source node) is defined by means of the following integro-differential expression: 

with 𝜌(𝒙𝑖) the mass density field at the initial configuration of the body, u the 

displacement field, 𝑻[𝒙𝑖, 𝑡]〈𝒙
 
𝑗 − 𝒙𝑖〉 the force vector state field which represents 

the force density vector that a point 𝒙 𝑗 (referred as family node) exerts on point 

𝒙𝑖, b the body density force field and the integration domain 𝐻(𝒙𝑗) ∈ Ɓ referred 

as neighborhood of the point  𝒙𝑖 which is defined as: 

𝐻(𝒙𝑖) ≔ {𝒙 𝑗 ∈  ℝ
𝐷: ‖𝒙𝑗

 − 𝒙𝑖‖ ≤ 𝛿} (2.2) 

with D = 1, 2, 3 the dimension of the treated problem. Therefore, the 

neighbourhood can have the geometric shape of a line segment, a disk or a sphere 

of radius/length δ centred at point 𝒙𝑖. The interaction between any 𝒙𝑖 and 𝒙𝑗point 

is called bond. Let 𝝃 = 𝒙𝑗 − 𝒙𝑖 define the notion of relative position vector in the 

reference configuration of a bond connected to the point 𝒙𝑗, then the vector state is 

an object which allows mapping vectors (bonds) into vectors and a scalar state to 

map vectors (bonds) into scalars; the angle brackets 〈 ∙ 〉 enclose the bond vector. 

As an example, consider the case of vector state, let 𝒕𝑖,𝑗 = 𝑻[𝒙𝑖, 𝑡]〈𝒙
 
𝑗 − 𝒙𝑖〉 

define the force density vector acting on 𝒙𝑖 as a consequence of all the collective 

deformations of the bonds enclosed in its neighbourhood 𝐻(𝒙𝑖), and 𝒕𝑗,𝑖 =

𝑻[𝒙𝑗 , 𝑡]〈𝒙
 
𝑖 − 𝒙𝑗〉 the force density vector acting on 𝒙𝑗 as a consequence of all the 

collective deformations of the bonds enclosed in its neighbourhood 𝐻(𝒙𝑗). By 

𝜌(𝒙𝑖)�̈�(𝒙𝑖, 𝑡) = ∫ {𝐓[𝒙𝑖, 𝑡]〈𝒙𝑗
 − 𝒙𝑖〉 − 𝐓[𝒙𝑗

 , 𝑡]〈𝒙𝑖 − 𝒙𝑗〉}
 

𝐻(𝒙)

𝑑𝑉𝒙𝑗

+ 𝒃(𝒙𝑖, 𝑡),   ∀𝒙𝑗 ∈ 𝐻(𝒙𝑖) 
(2.1) 
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using the concept of vector state, the force density can be stored in the vectors 

states (see Eq. (2.1)) as follows: 

𝑻[𝒙𝑖, 𝑡] = {
⋮
𝒕𝑖,𝑗
⋮

}     and   𝑻[𝒙𝑗 , 𝑡] = {
⋮
𝒕𝑗,𝑖
⋮

} (2.3) 

If we express with 𝒚(𝒙𝑖, 𝑡)  =  𝒙𝑖  +  𝒖(𝒙𝑖, 𝑡) the current position at time t of the 

material point 𝒙𝑖, the deformation vector state is defined as: 

which maps each bond connected with the material point 𝒙𝑖 into its deformed 

image.  

The following hypotheses are assumed:  

1. the force state depends only on the deformation state (the material is referred 

as simple) 

2. the material is ordinary, which means that the force density vector is parallel 

to the direction of the deformed bond (see Fig. 2.1a) 

3. the material is homogeneous.  

Under these hypotheses, peridynamics is referred as Ordinary State-Based 

PeriDynamic (OSB-PD), hence the force vector state takes the form: 

where 𝑡[𝒙𝑖, 𝑡]〈∙〉: ℝ
𝐷

 
→ℝ  is the force scalar state and depends on the constitutive 

law of the material. As demonstrated in [61], the form of Eq. (2.5) leads to satisfy 

for any bounded body Ɓ both the balance of linear and angular momentum. In 

particular, as Fig. 2.1a shows, it is evident that for an ordinary material the 

balance of angular momentum is always satisfied due to the alignment of the 

forces along the direction of the deformed bonds. By assuming the constitutive 

model referred as Linear Peridynamic Solid (LPS) [61], a macro-elastic potential 

density energy function 𝑊(𝜃, 𝑒𝑑) can be defined as follows: 

𝒀[𝒙𝑖 , 𝑡]〈𝝃〉 = 𝒚(𝒙
 
𝑗, 𝑡) − 𝒚(𝒙𝑖, 𝑡)     (2.4) 

𝑻[𝒙𝑖, 𝑡]〈𝝃〉 = 𝑡[𝒙𝑖, 𝑡]〈𝝃〉
𝒀[𝒙𝑖, 𝑡]〈𝝃〉

‖𝒀[𝒙𝑖, 𝑡]〈𝝃〉‖
 (2.5) 
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𝑊(𝜃, 𝑒𝑑) =
𝑘 ′𝜃2

2
+
𝛼

2
(𝜔𝑒𝑑) • 𝑒𝑑 (2.6) 

 

where 𝜃 is the volume dilatation of the neighborhood 𝐻(𝒙𝑖) of the material point 

𝒙𝑖,  𝑒
𝑑 = 𝑒 −

𝜃𝑥

3
 the scalar deviatoric state component of the single bond 

elongation 𝑒〈𝝃〉 defined as: 

𝑒〈𝝃〉 = ‖𝒚(𝒙𝑗 , 𝑡) − 𝒚(𝒙𝑖, 𝑡)‖ − ‖𝝃‖ (2.7) 

where 𝑥 is the scalar state defined by 𝑥〈𝝃〉 = ‖𝝃‖.  𝜔 is the scalar state of the 

influence function which associates a weight to each bond. If the influence 

function is spherical, then the material is isotropic; this assumption will be 

considered in the whole dissertation. The constants 𝑘′ and 𝛼 are positive scalars to 

be related to the material properties [36, 62], which are defined by: 

𝑘′ = 𝑘                            ,        𝛼 =
15𝜇

𝑞
 3D cases (2.8a) 

𝑘′ = 𝑘 +
𝜇

9

(𝜈 + 1)2

(2𝜈 − 1)2
,        𝛼 =

8𝜇

𝑞
 2D plane stress cases (2.8b) 

𝑘′ = 𝑘 +
𝜇

9
                   ,        𝛼 =

8𝜇

𝑞
 2D plane strain cases (2.8c) 

with 𝑘 and 𝜇 the bulk and shear modulus of the medium, respectively. The 

weighted volume 𝑞 is a scalar defined by:  

𝑞 = (𝜔𝑥) • 𝑥 = ∫𝜔〈‖𝝃‖〉‖𝝃‖2𝑑𝑉 

 

𝐻

 (2.9) 

The force scalar state is consequently calculated by means of Fréchet [36] 

derivative of the potential density energy function as: 

𝑡[𝒙𝑖] =
3𝑘′𝜃

𝑞
𝜔𝑥 + 𝛼𝜔𝑒𝑑 3D cases (2.10a) 

𝑡[𝒙𝑖] =
2(2𝜈 − 1)

𝜈 − 1
[𝑘′𝜃 +

𝛼

3
(𝜔𝑒𝑑) • 𝑥]

𝜔𝑥

𝑞
+ 𝛼𝜔𝑒𝑑 2D plane 

stress cases 
(2.10b) 

𝑡[𝒙𝑖] = 2 [𝑘
′𝜃 −

𝛼

3
(𝜔𝑒𝑑) • 𝑥]

𝜔𝑥

𝑞
+ 𝛼𝜔𝑒𝑑 2D plane 

strain cases 
(2.10c) 
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As stated in Section 1.4.3, a special version of the formulation given by OSB-PD 

is referred as BB-PD [3] since the interaction is restricted between couple of 

material points. In such cases the behaviour of a bond is completely independent 

of all the others.  

 

Fig. 2.1: a) Deformation of the bond between points x and x’ and the vector forces developed between them 

in the OSB-PD formulation. b) Deformation of the bond between points x and x’ and the vector forces 

developed between them in the BB-PD formulation. c) linear-failure constitutive law of a bond. 

This assumption implies that the force density that a point 𝒙𝑗  exerts on point 𝒙𝑖 

and that is exerted by 𝒙𝑖 on 𝒙𝑗 are parallel to the direction of the deformed bond 

and equal in magnitude (see Fig. 2.1b). Therefore, the force scalar state takes the 

form: 

𝑡[𝒙𝑖] =
9𝑘′′

𝑞
𝜔𝑒   (2.11) 

 

with 𝑘′′constant to be related to the material properties. Let 𝑠 the stretch of the 

bond be defined as 𝑠 = 𝑒〈𝝃〉/‖𝝃‖, Eq. (2.11) can be written for the image of a 

bond as: 

𝑡[𝒙𝑖]〈𝝃〉 = 𝑓(𝜼, 𝝃) = 𝑐𝜔〈𝝃〉𝑠 (2.12) 

 

with 𝑓(𝜼, 𝝃) called pairwise force function and c is the micromodulus (stiffness of 

the bond). Assuming 𝜔〈𝝃〉 = 1, the micromodulus derived by equating the density 
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of potential energy of classical mechanics with that of peridynamics [3, 42, 46] 

takes the form: 

with tb the thickness of the body. With reference to the BB-PD, Eq. (2.6) of the 

density of potential energy at each point 𝒙𝑖 and time t can be rewritten as: 

𝑊(𝒙𝑖 , 𝑡) =
1

2
∫𝑤(𝜼, 𝝃, 𝑡)𝑑𝑉𝒙𝑗 

 

𝐻𝒙𝑖

=
1

2
∫
𝑐𝜔〈𝝃〉𝑠(𝑡)2𝜉

2
 𝑑𝑉𝒙𝑗  

 

𝐻𝒙𝑖

 (2.14) 

where for simplicity’s sake 𝜉 = ‖𝝃‖, 𝑤(𝜼, 𝝃, 𝑡) is referred as micropotential 

energy which is the energy in a single bond (dimensions of energy per unit 

volume squared). The concept of local damage as degradation of the mechanical 

response of a particle of material of the body can easily be introduced in 

peridynamics by using the constitutive law referred as Prototype Microelastic 

Brittle (PMB) model. According to this model, every bond breaks if its stretch 

overcomes a given limit value s0 called critical stretch, which is a function of the 

critical fracture energy release rate of the material G0 [42]. The critical stretch s0 is 

given, for different cases, by the following expressions: 

𝑠0 = √
5𝐺0
6𝐸𝛿

 3D cases (2.15a) 

𝑠0 = √
4𝜋𝐺0
9𝐸𝛿

 
2D plane stress 

cases 
(2.15b) 

𝑠0 = √
5𝜋𝐺0
12𝐸𝛿

         
2D plane strain 

cases 
(2.15c) 

𝑐 =
12𝐸

𝜋𝛿4
 3D cases (2.13a) 

𝑐 =
9𝐸

𝜋𝛿3𝑡𝑏
 2D plane stress cases (2.13b) 

𝑐 =
48𝐸

5𝜋𝛿3
 2D plane strain cases (2.13c) 

𝑐 =
3𝐸

𝛿2
 1D cases (2.13d) 
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Moreover, the rupture of the bond is irreversible so that the constitutive model is 

history-dependent, as shown in Fig. 2.1c, therefore, a binary scalar-valued 

function 𝜇(𝜉) has to be introduced to take into account the structural health state 

of the bond; 𝜇(𝜉) = 1 means that the bond is active and 𝜇(𝜉) = 0 that it is 

broken. Then, the force scalar state assumes the form as: 

𝑡[𝒙𝑖]〈𝝃〉 = 𝑐𝜔〈𝝃〉𝜇(𝜉)𝑠 (2.16) 

The local damage level 𝜙 at a given material point 𝒙𝑖 at time t can then be defined 

as: 

𝜙(𝒙𝑖 , 𝑡) = 1 −
∫ 𝜇(𝑡, 𝜉)𝑑𝑉𝒙𝑗
 

𝐻𝒙𝑖

∫ 𝑑𝑉𝒙𝑗
 

𝐻𝑥

 (2.17) 

where 0 ≤ 𝜙 ≤ 1, 0 represents the pristine state of the material and 1 the complete 

separation of the material point from all surrounding points within its horizon. As 

the classic theory of mechanics, the equation of motion of peridynamics can be 

linearized when the hypothesis of small deformations are assumed. Under this 

assumption, Eq.(2.1) reduces to a linear integral equation [61].  Let ℓ be defined 

as: 

then the displacement field is said to be small if the condition  ℓ ≪ 𝛿 is satisfied. 

We want to underline that, unlike the classic theory, the definition of small 

displacements in peridynamics does not restrict rigid translations of the body, 

while does restrict rigid body rotations to small angles [61]. Moreover, it allows 

for possible small discontinuities in the displacement field, which is one of the 

key difference between PD and the classic theory. Therefore, the linearized 

version of Eq. (2.1) assumes the form: 

𝜌(𝒙𝑖)�̈�(𝒙𝑖, 𝑡) = ∫ 𝑪0(𝒙𝑖, 𝒙𝑗
 )(𝒖(𝒙𝑗, 𝑡) − 𝒖(𝒙𝑖, 𝑡))

 

𝐻𝒙𝑖

𝑑𝑉𝒙𝑗 

+ 𝒃(𝒙𝑖, 𝑡),           ∀𝒙𝑗 ∈ 𝐻(𝒙𝑖) 
(2.19) 

with 𝑪0 is called micromodulus tensor field and is defined for the case of BB-PD 

as follows: 

ℓ = sup
‖𝒙𝑗

 −𝒙𝑖‖

‖𝒖(𝒙𝑗
 , 𝑡) − 𝒖(𝒙𝑖, 𝑡)‖ (2.18) 
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𝑪0 =
𝑐𝜔〈𝝃〉

𝜉2
𝝃⨂𝝃 (2.20) 

2.2.  Surface Effect 

The non-locality of peridynamic formulation leads to the called “surface 

effect”, which is also known with the term “skin effect”. Basically, peridynamic 

material parameters, such as the micromodulus of the bonds (see Eq. (2.13)), are 

derived by assuming that the neighborhood 𝐻(𝒙𝑖) of a point 𝒙𝑖 is fully embedded 

in the domain. Such an assumption is not valid if point 𝒙𝑖is close to the boundary 

of the domain, since the neighborhood 𝐻(𝒙𝑖) has a truncated shape, as shown in 

Fig. 2.2. 

 

Fig. 2.2: Material point 𝒙𝑖  in a 2D domain with a truncated neighbourhood if located near the external surface 

and with the full disk shape if located in the bulk.   

For instance, if the domain shown in Fig. 2.2 is stretched with a constant strain, 

the potential energy density (see Eq. 2.14) of a material point near the external 

surface is lower than in the bulk. This results in a reduction of the material 

stiffness near the boundaries of the domain of interest, leading to the introduction 

of an error in the PD solution. Numerous methods have been applied to reduce the 

surface effect, i.e. see [55, 63, 64, 65], the method adopted in this dissertation (see 

Section 4.1) is based on the potential energy approach [66]. 

2.3.  Refinement and scaling 

The idea of introducing the adaptive grid refinement and scaling as a strategy 

to reduce automatically both the grid spacing and horizon in a peridynamic model 

was first introduced in [57, 58], with the goal to overcome the drawbacks shown 
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by this theory when discretized with a uniform grid of nodes and a constant 

horizon [42]. In fact, it is clear that the adoption of such a grid does not allow 

optimizing its computational efficiency, which is an essential feature if real-life 

structures have to be analysed. Reference [37] has underlined how the horizon δ 

can be linked to the characteristic length-scale of the material or of the phenomena 

under investigation, especially with reference to damage and fracture phenomena 

related to the crack propagation [4]. As shown in [59], in the future it will be 

possible to use the AGRS to capture the desired length-scale into the regions in 

which the crack propagation should take place, by adopting an horizon size 

convenient for computational efficiency far from those regions. By doing so, the 

potentialities shown by peridynamics could be adopted in order to obtain a 

concurrent multi-scale model in a unique framework. Of course, the use of a 

varying horizon in the peridynamic domain needs to be addressed since, as stated 

in [58]: “The original formulation of peridynamics [3] and the subsequent state-

based formulation [36] are based on the implicit assumption that the horizon is 

constant over the domain”. In order to perform this mixed description of a 

material using two horizons with a different length, scaling concept in 

peridynamics has been introduced [57, 67]. Let δ and ε define two different 

horizon radii, the scaling requires the change of the micropotential function 

defined by means of the following  expressions: 

𝑤 (𝜼, 𝝃) = 𝛾3𝑤𝛿(𝛾𝜼, 𝛾𝝃) 3D cases (2.21a) 

𝑤 (𝜼, 𝝃) = 𝛾2𝑤𝛿(𝛾𝜼, 𝛾𝝃) 2D cases (2.21b) 

𝑤 (𝜼, 𝝃) = 𝛾  𝑤𝛿(𝛾𝜼, 𝛾𝝃) 1D cases (2.21c) 

where γ = δ/ε is defined the geometrical scaling of the horizon size. In this way the 

deformation energy of a body characterized by a uniform stretch has to be 

constant in the whole domain regardless the changing of the horizon length, as 

demonstrated, i.e. for the 2D case, by the insertion of Eq. (2.21b) in Eq. (2.14): 

𝑊𝛿(𝒙𝑖) =
𝑡𝑏
2
∫ 𝑤𝛿(𝛾𝜼, 𝛾𝝃)𝑑(𝛾

2𝐴)
 

𝐻𝛿

=
𝑡𝑏
2
∫

1

𝛾2
𝑤 (𝜼, 𝝃)𝛾2𝑑𝐴 = 𝑊 (𝒙𝑖)

 

𝐻

 

(2.22) 
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in which dA represents the infinitesimal area of the disk centered at point 𝒙𝑖. 

According to the scaling concept, the change of the horizon induces the change of 

the micromodulus (see Eqs. (2.13)), moreover, by this strategy all the bonds inside 

the horizon of the source node have the same micromodulus calculated by using 

its horizon in Eq. (2.13). As done with the micromodulus, the same strategy of 

scaling suggested in [57] can be extended for the critical bond stretch calculated 

by using Eq. (2.15). Another issue arises when the horizon size varies over the 

domain; Fig. 2.3 clearly shows that the change of the horizon size leads to loose 

some peridynamic bonds. Let us consider the case showed in Fig. 2.3a: if the 

family point j is located inside the neighbourhood of the point i, Eq. (2.1) defined 

on source node i includes the bond between the source node and its family node j. 

Whereas, considering the reverse case in which j is the source node, it is clear 

from Fig. 2.3b that Eq. (2.1) does not include the bond anymore, then the bond is 

basically “lost”.  

 

Fig. 2.3: Two points i and j with a different horizon length, the double narrow segment line indicates the bond 

(interaction) between the two points, a) the interaction exists (continuous line) when the point j is inside the 

horizon of the point i, b) the interaction is lost (dashed line) when point i is not inside the horizon of the point 

j. 

The loss of bonds leads to the presence of the ghost forces [67], which introduces 

anomalies in the displacement field of the PD solution. Such an artifact is 

originated by the disequilibrium of the equation of motion imposed at the nodes 

with a variable horizon [60]. Reference [60] shows that the use of Eq. (2.1) 

originally introduced by peridynamics does not satisfy the conservation of linear 

momentum [60]. The authors in [67] point out that even if the equilibrium is not 

satisfied, there is not a net force on the body since the ghost forces are self-

equilibrated. Moreover, they show that such an artifact in the displacement field 

may be neglected when the horizon length varies smoothly in the medium.  
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Otherwise, in applications where we have discontinuous jumps of the horizon size 

which may lead to have big errors, two methods [67] referred as “partial stress” 

and “splice” are proposed to eliminate the presence of ghost forces. Due to the 

complexity of such strategies, an alternative approach has been proposed in [60] 

introducing the concept of dual-horizon, as discussed in next Section 2.4. 

2.4.  Dual-horizon concept 

As stated in the Section 2.3, an alternative strategy introduced with the aim of 

eliminating the ghost forces is given in [60]. When a varying horizon size is 

adopted in the domain, we shall address the issue if the conservation of linear and 

angular momentum are still satisfied by using the original equation of motion of 

peridynamics (see Eq. (2.1)). Reference [60] demonstrated that the balance of 

linear momentum can be respected by introducing the concept of dual-horizon, 

which is defined for a point of coordinate 𝒙𝑖
  as a set of points 𝒙𝑗

 whose horizons 

include it, denoted as: 

𝐻′(𝒙𝑖) 
 = {𝒙𝑗

 : 𝒙𝑖 ∈ 𝐻(𝒙𝑗
 )} (2.23) 

with the superscript prime to indicate dual. As a results to introducing the dual-

horizon concept, Eq.(2.1) can be rearranged as follows: 

𝜌(𝒙𝑖)�̈�(𝒙𝑖, 𝑡) = ∫ 𝐓[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉
 

𝐻′(𝒙𝑖)

𝑑𝑉𝒙𝑗 − 

                         −∫ 𝐓[𝒙𝑗 , 𝑡]〈𝒙𝑖 − 𝒙𝑗〉𝑑𝑉𝒙𝑗

 

𝐻(𝒙𝑖)

+ 𝒃(𝒙𝑖, 𝑡) ,

𝒙𝑗 ∈ 𝐻(𝒙𝑖),     𝒙𝑗 ∈ 𝐻
′(𝒙𝑖) 

(2.24) 

We can observe from Eq.(2.24) as the original Eq.(2.1) has been split into two 

distinct integral parts, the first one corresponding to the region of integration 

𝐻′(𝒙𝑖) 
  and the second one to the region of integration 𝐻(𝒙𝑖) 

 . The former can be 

called the integral of the active forces since the integrand represents the force 

density exerted by the points 𝒙𝑗 ∈ 𝐻
′(𝒙𝑖) on point 𝒙𝑖

 , while the latter can be 

called the integral of passive forces since represents the undertaken reaction force 

density of the active forces exerted by 𝒙𝑖 on the family nodes 𝒙𝑗 ∈ 𝐻(𝒙𝑖), as a 

consequence of Newton’s third law. It is clear that when the horizons are set 

constant, namely 𝐻(𝒙𝑖) = 𝐻′(𝒙𝑖), Eq. (2.24) reduces to Eq. (2.1). Moreover, let 
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us emphasize the fact that the horizon has a physical meaning which allows 

relating the micromodulus to the mechanical properties of the material (see Eq. 

(2.13)), whereas the dual-horizon is only a set of points which allows satisfying 

Newton’s third law in the ‘overlap’ regions characterized by a varying horizon. 

Unlike the conservation of the linear momentum, the balance of the angular 

momentum is satisfied even if the horizon varies over the domain, as a 

consequence the dual-horizon is not involved. Having always in mind the BB-PD, 

let 𝑐(𝛿𝒙𝑖 ) and 𝑐(𝛿𝒙𝑗 ) denote the micromoduli based on 𝛿𝒙𝑖  and 𝛿𝒙𝑗  calculated 

from Eq. (2.13), then the pairwise force functions are computed by the following 

expressions: 

𝒇𝒙𝑖 𝒙𝑗 = 𝐓[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 = 

           =
𝑐(𝛿𝒙𝑗)

2
𝑠
𝒚(𝒙𝑗 , 𝑡) − 𝒚(𝒙𝑖, 𝑡)

‖𝒚(𝒙𝑗, 𝑡) − 𝒚(𝒙𝑖, 𝑡)‖
,           ∀𝒙𝑗 ∈ 𝐻

′(𝒙𝑖) 
(2.25a) 

𝒇𝒙𝑗 𝒙𝑖 = 𝐓[𝒙𝑗, 𝑡]〈𝒙𝑖 − 𝒙𝑗〉 = 

           =
𝑐(𝛿𝒙𝑖)

2
𝑠
𝒚(𝒙𝑖, 𝑡) − 𝒚(𝒙𝑗, 𝑡)

‖𝒚(𝒙𝑗, 𝑡) − 𝒚(𝒙𝑖, 𝑡)‖
,           ∀ 𝒙𝑗 ∈ 𝐻(𝒙𝑖)   

(2.25b) 

in which the subscripts 𝒙𝑖𝒙𝑗 of the pairwise force function indicate the active 

force exerted by 𝒙𝑗on 𝒙𝑖
 and 𝒙𝑗𝒙𝑖

 the reaction force exerted by 𝒙𝑖
 on 𝒙𝑗

 . The 

same considerations can be applied to the more general formulation of 

peridynamics, such as OSB-PD and non-ordinary SB-PD (see [60] for further 

details). The concepts of dual-horizon presented in this section will be used in 

chapter 4.1 in order to investigate the possible benefits on the numerical PD 

solution when the ghost forces are completely removed from the analyzed 

domain. 
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3. Numerical discretization and algorithms  

In the following, the methods employed in this work to implement numerically 

peridynamics and the adaptive grid refinement and scaling approach are 

introduced. As a first step, the numerical method adopted when the domain is 

discretized with a structured uniform grid of nodes will be shown, then the 

algorithms developed for the application of the adaptive grid refinement and 

scaling in the peridynamic model will be presented and discussed as well. All the 

codes developed in this work have been written by using the software Matlab®, 

especially the structure of the code has been designed with the target to optimize 

the time of the simulations. 

3.1.  Mesh-free method 

Even if peridynamic theory can be implemented with different numerical 

methods [41], one of the most popular and widely used, due basically to its 

implementation simplicity, is based on a mesh-free approach [42], in which the 

whole domain is discretized with a uniform regular grid of nodes and a constant 

horizon. The nodes are equally spaced in both the X, Y  and Z direction, therefore 

the grid spacing is uniform so that ΔX = ΔY = ΔZ. To each node a square cell of 

volume ΔV=ΔX
3
 is assigned, such that the node is located at the center of its cell. 

These nodes are referred to as source nodes (or source cell with reference to its 

corresponding cells), while the cells whose nodes interact with its horizon and 

dual-horizon will be referred as family cells and dual-family cells, respectively. 

By adopting the one-point Gauss quadrature rule for the space integration, the 

discretized form of Eq. (2.1) is expressed as: 

𝜌�̈�𝑖
𝑛 =∑{𝑻[𝒙𝑖

𝑛]〈𝒙𝑗
𝑛 − 𝒙𝑖

𝑛〉 − 𝑻[𝒙𝑗
𝑛]〈𝒙𝑖

𝑛 − 𝒙𝑗
𝑛〉}𝛽𝑗∆𝑉𝑗

𝑗

+ 𝒃𝑖
𝑛        ∀ 𝒙𝑗 ∈ 𝐻𝑥𝑖 

OSB-PD 

(3.1a) 

𝜌�̈�𝑖
𝑛 =∑𝒇(

𝑗

𝒖𝑗
𝑛 − 𝒖𝑖

𝑛, 𝒙𝑗 − 𝒙𝑖)𝛽𝑗∆𝑉𝑗

+ 𝒃𝑖
𝑛                                     ∀ 𝒙𝑗 ∈ 𝐻𝑥𝑖 

BB-PD 

(3.1b) 
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for the ordinary state-based and bond-based, respectively. While, for the case of 

bond-based Dual-Horizon PeriDynamics (DHPD), the discretized form of 

Eq.(2.24) is expressed as: 

𝜌�̈� 
 
𝑖
𝑛 =∑𝒇(𝒖𝑘

𝑛 − 𝒖𝑖
𝑛, 𝒙𝑘 − 𝒙𝑖

′) 𝛽𝑖∆𝑉𝑘 +

𝑘

 
 BB-

DHPD  

(3.1c) −∑𝒇(

𝑗

𝒖𝑗
𝑛 − 𝒖𝑖

𝑛, 𝒙𝑗 − 𝒙𝑖)𝛽𝑗∆𝑉𝑗 + 𝒃𝑖
𝑛 ,   ∀ 𝒙𝑘 ∈ 𝐻𝒙𝑖

′  , ∀ 𝒙𝑗 ∈ 𝐻𝒙𝑖 

In Eqs. (3.1) n is the time step number, 𝒙𝑖
   the coordinate of the source node, 𝒙𝑗

  
 

the centroid coordinate of the family cell, 𝒙𝑘
  the central coordinate of the dual-

family cell, and 𝒙𝑖
′  the centroid coordinate of the source cell seen by the horizon 

of its dual-family cell. The weighting factors (also called volume correction 

factors) 𝛽𝑖 and 𝛽𝑗 are multiplied by the corresponding volume cell  ∆𝑉 in order to 

define the effective volume included in the neighborhood 𝐻𝒙𝑖. Several numerical 

algorithms have been introduced in order to calculate both the locations of Gauss 

points of the cells and their corresponding weighting factors, as presented in [68]. 

In particular, two algorithms will be employed in this work: the first one is 

referred as Partial Area - PDLAMMPS algorithm (PA-PDLAMMPS) based on the 

commonly used PD software PDLAMMPS [69], while the second is called IPA-

Hybrid (Improvement Partial Area) introduced by Seleson in [68]. According to 

the PA-PDLAMMPS algorithm the source node interacts with the nodes located 

inside the horizon, the Gauss quadrature points coincide with the geometrical 

center of cells, even if the cell is intersected by the horizon of the source node, 

and the weighting volume of such cells is calculated by means of a linear 

interpolation expression (see Fig. 3.1a). Whereas, the IPA-Hybrid extends the 

number of interactions between the source and the family nodes even to those 

nodes outside the horizon whose cells are partially located inside the 

neighborhood of the source node. This algorithm is based on analytical 

calculations of the portion of volume of cells partially covered by the 

neighborhood of the source node, while the corresponding geometrical centroids 

of such portions are estimated by means of a linear interpolation expression (see 

Fig. 3.1b).  
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Fig. 3.1: Example of application of different algorithms in order to calculate Gauss quadrature points and the 

corresponding coefficient correction factors in a uniform grid of nodes: a) PA-PDLAMMPS algorithm [69], 

b) IPA-Hybrid [68]. 

We remark as the IPA-Hybrid algorithm has only been developed for 2D grids. 

The numerical discretization of peridynamics introduces a parameter called m 

ratio defined as the ratio between the horizon and the grid spacing. This parameter 

is usually chosen as a tradeoff between accuracy and computational efficiency of 

the solution, even if it shall be carefully chosen when we are dealing with a crack 

propagation problem, as discussed in Chapter 5. The three parameters horizon δ, 

grid spacing ΔX and ratio m play a crucial role in determining the type of 

convergence of the peridynamic numerical solution either to the exact 

peridynamic solution or to that of the classical elasticity theory [44].  Two types 

of basic numerical convergence can be identified: 

 the δ-convergence: δ→0 and m ratio is kept constant or is increased at a 

slower rate with respect to the decreasing of δ 

 the m-convergence: δ is kept constant and m ratio → ∞. 

By the combination of these numerical convergences we can obtain the δm-

convergence, namely δ→0 while the m ratio is increased faster than the 

decreasing of δ. Eqs. (3.1) are solved in time by means of an explicit solver as the 

Velocity-Verlet scheme [70], which is robust, reliable and simple: 

�̇�
𝑛+

1
2
= �̇�𝑛 +

∆𝑡

2
�̈�𝑛 (3.2) 
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𝒖𝑛+1 = 𝒖𝑛 + ∆𝑡�̇�𝑛+1
2
 

�̇�𝑛+1 = �̇�
𝑛+

1
2
+
∆𝑡

2
�̈�𝑛+1 

where Δt is the constant time step which is chosen smaller than the critical time 

step Δtc=ξmin/cm, being ξmin the smallest bond length (namely ΔX for a regular grid) 

and cm the speed of the longitudinal wave in the medium.  

3.2.  Adaptive grid refinement and scaling algorithms 

Several examples of application of remeshing techniques can be found in the 

literature. For instance, in FE analyses [71] such a technique is used to 

automatically activate the size reduction of the elements of the mesh and stopped 

when the approximation error of a particular physical quantity of the field 

analysed is below a given threshold. One of the most popular algorithms to 

generate new elements in FEM applications is based on a recursive decomposition 

using quadtrees in two dimensions or octrees in three dimensions [72, 73], as 

shown in Fig. 3.2 in the case of quadrilateral elements. Such a technique has 

generally been adopted in FEM applications in order to split the selected elements 

of the mesh, called parent elements, in more sub-elements called child elements. 

Then, by a recursive splitting of the generated elements different levels of 

refinement can be reached, as shown in Fig. 3.2. As done in FEM applications, in 

the mesh-free method we apply a similar approach generating new nodes (called 

child nodes) from the nodes belonging to the initial grid (called parent nodes) .  

 

Fig. 3.2: Quadtree structure for square elements. 
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In FE analyses such a technique is used to automatically activate the size 

reduction of the elements of the mesh and it is stopped when the approximation 

error is below a given threshold [71, 74]; In the present work grid refinement is 

activated if the value of a physical quantity (trigger) associated to the nodes 

overcomes a given threshold value. Moreover, the refinement level is 

predetermined by the user. In the following we present the triggers used to 

activate the refinement and scaling, while in Appendix A the pseudo-codes of the 

employed AGRS algorithm are given.   

3.2.1. Trigger based on potential energy 

In [58] a trigger based on the density of potential energy has been proposed, 

see Eq.(2.14), so that a node of the initial grid 𝒙𝑖
   is selected for the activation of 

the refinement if 𝑊(𝒙𝑖) ≥ 𝑊𝑡ℎ𝑟𝑒𝑠, the suggested threshold value is chosen as 

𝑊𝑡ℎ𝑟𝑒𝑠 = 0.4𝑊𝑚𝑎𝑥, where 𝑊𝑚𝑎𝑥 is the maximum value of the density of potential 

energy in the grid at that instant in time. Such a threshold value is considered a 

good compromise between accuracy of the numerical solution and efficiency of 

the computational procedure. However, the refinement in [58] was applied only to 

linear elastic analyses, in the present work the AGRS is applied to dynamic crack 

propagation in brittle materials. In this case a trigger based only on the density of 

potential energy of the nodes exhibits two important weaknesses: 

 It is not immediately possible to indicate a unique optimal threshold value 

since 𝑊𝑡ℎ𝑟𝑒𝑠 depends on the type and the complexity of the analysis 

 If in the domain several cracks are simultaneously present the energy density 

trigger cannot guarantee an efficient activation of the AGRS, the refined 

regions may be too large, and cover the entire domain, or too small.  

In certain cases very high levels of energy are concentrated in a limited zone of 

the domain in such a way that the energy density trigger misses other zones of the 

grid which would require a refinement, as shown in Sect. 6.2 about the case of the 

benchmark problem of the Kalthoff–Winkler experiment. The problem can be 

overcome by adopting lower threshold values, but the risk would be to have 

refined regions far too large and a consequent loss of efficiency. Fig. 3.3 shows 

the flow chart of the working principle of energy based trigger, in Appendix A the 

pseudo-code employed to implement the algorithm is given (see Algorithm A.1). 
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Fig. 3.3: Flow-chart of the energy based trigger. 

3.2.2 Trigger based on damage 

In the present work a new approach is proposed, two activation criteria are 

used simultaneously, a new trigger based on the damage state of the nodes is 

coupled to the energy density trigger: the nodes are chosen for the AGRS if 

∆𝜙 = 𝜙 − 𝜙0 > 0, where 𝜙0 is the initial damage state of the nodes (see Eq. 

(2.17) for the definition of damage). In Appendix A the pseudo-code employed to 

implement the damage based trigger is given (see Algorithm A.2). Fig. 3.4 shows 

how the two triggers work in order to activate the AGRS. The joint use of the two 

criteria makes more robust the AGRS activation, in particular the use of the 

damage trigger improves two important aspects in the numerical solution: 

 It keeps the refinement active at the tip of the crack during its propagation 

in a region refined in previous instants of time. 

 It activates the refinement in a coarse region where a crack is going to 

nucleate whenever the energy trigger fails: it is important to observe that 



63 

 

in the adopted approach all bond failures should happen in a refined 

region. 

The working principle of the algorithm developed by employing the energy and 

damage based triggers is given as follows: at each time step of the analysis, the 

damage based trigger verifies if any of the coarse nodes has an incremented 

damage level and, if so, the analysis is repeated after having refined the coarse 

region around the identified node at the previous time step.  

 

Fig. 3.4: Structure of the algorithm to implement the AGRS. 
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If no incremental damage is detected, then the analysis proceeds according to the 

flow chart shown in Fig. 3.4. If the identified node belongs to the original grid 

then it is added to the list of nodes to be refined, otherwise a search function is 

activated to find the coarse nodes close to the identified refined node, which had 

been generated by a previous refinement. It is clear that when we are dealing with 

a dynamic analysis, the AGRS cannot be started at the beginning of the 

simulation, since the energy density associated to each grid point is zero and 

therefore the whole grid would be refined. For this reason a starting time 𝑡𝑠𝑡 has to 

be determined by carrying out a preliminary analysis on the coarse grid, long 

enough to generate an inhomogeneous distribution of energy. The simulation 

duration of the preliminary analysis 𝑡𝑝𝑟 can be simply determined by evaluating 

analytically the time that elastic waves take to propagate in the whole domain. An 

upper limit to 𝑡𝑝𝑟 can be estimated by using the expression 𝑑𝑚𝑎𝑥 𝑐𝑚⁄ , with 𝑑𝑚𝑎𝑥 

the ‘maximum distance’ in the discretised domain (i.e. the diagonal in a rectangle 

domain). As a result of using this simple strategy, the user does not have to run 

the whole analysis, which may take too much time. Finally, 𝑡𝑠𝑡 is determined 

empirically by the user who examines the solution of the preliminary analysis. 

3.2.3 Node generation and updating properties 

The generation of the new nodes can be obtained by adopting different 

techniques, in the following the strategies adopted in this work are reported, with 

their advantages and disadvantages:  

A. The new nodes are inserted at the midpoints of the lines connecting 

adjacent nodes that have the same ‘degree of kinship’, namely between 

nodes belonging to the same level of refinement; i.e. with reference to 2D 

cases, a single parent node leads to generate nine child nodes included the 

parent node which switches to child node, as shown in Fig. 3.5a. This 

approach is fast, simple and easy to implement since the parent nodes do 

not have to be removed from the list of nodes of the grid, hence when the 

grid matrix (see Eq. (A.1) in Appendix A) is updated as a consequence of 

adding new nodes in the grid, the node ID number will not have to be 

changed. In this way, search operations of the nodes for which the new ID 

number should be reassigned can be avoided, reducing the computational 
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time of the analysis. Nevertheless, this approach requires the area 

modification of the nodes at interface with the nodes belonging to a 

different level of refinement, as shown in Fig. 3.5. In fact, this approach 

leads to modify the shape and the size of the area associated to the 

interface node. Moreover, some of the nodes are no more at the centre of 

their volume; that causes a loss of accuracy of the spatial integration since 

the motion equations are solved with a mid-point integration in space (see 

Eqs. (3.1)). Let level = 0,1,…i identify the refinement level of the nodes; 

then the initial grid spacing  ΔX0  will be split in half as shown by the 

following expression: 

∆𝑋𝑙𝑒𝑣𝑒𝑙 =
∆𝑋0

(2𝑙𝑒𝑣𝑒𝑙)
 (3.3) 

then the volume 𝑉𝑙𝑒𝑣𝑒𝑙 = 𝑡𝑏∆𝑋𝑙𝑒𝑣𝑒𝑙
2  associated to each node has to be 

corrected according to the following expressions: 

𝑉𝑙𝑒𝑣𝑒𝑙,𝑖𝑛𝑡 =

{
 
 

 
 
𝑉𝑙𝑒𝑣𝑒𝑙 −𝑉(𝑙𝑒𝑣𝑒𝑙+1) 4⁄  

  𝑉𝑙𝑒𝑣𝑒𝑙 − 3𝑉(𝑙𝑒𝑣𝑒𝑙+1) 4⁄  

𝑉𝑙𝑒𝑣𝑒𝑙 −𝑉(𝑙𝑒𝑣𝑒𝑙+1)       

 𝑉𝑙𝑒𝑣𝑒𝑙 − 3𝑉(𝑙𝑒𝑣𝑒𝑙+1) 2 ⁄

 𝑉𝑙𝑒𝑣𝑒𝑙 − 7𝑉(𝑙𝑒𝑣𝑒𝑙+1) 4 ⁄

     

,     j = 1 (3.4) 

,     j = 2  

,     j = 3  

,     j = 4  

,     j = 5  

with j the number of nodes of the ith
 
level adjacent to the nodes of the ith-

1 level, as shown in Eqs. (3.4) j can vary between 1 and 5 depending on 

the number of nodes of the ith
 
level the distance of which is not bigger 

than the diagonal 𝑑 = √2∆𝑥(𝑙𝑒𝑣𝑒𝑙−1) of the grid spacing of the nodes with 

the lower level of refinement.  

 

B. The new nodes are generated by splitting the volume assigned to the node of 

the same ‘degree of kinship’ in more sub-volumes, i.e. in four sub-volumes 

for 2D cases as shown in Fig. 3.5b. Then, the new nodes are located at the 

center of the corresponding sub-volumes. Unlike the previous approach, the 

parent node has to be removed from the grid because of its null contribution 

to the analysis. As a result of doing this, the current list of nodes (see Eq. 

(A.1)) of the grid should be updated at each step in which new nodes are 

added in the grid. Anyway, this drawback can be overcome by keeping the 
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removed nodes from the grid stored in the data structure of Eq. (A.1); we 

suggest as a strategy to detect such nodes by setting to zero their volume as 

well as material ID number. Besides, another useful strategy is to set their ID 

number used for detecting the level of refinement as 𝐼𝐷 =  −(𝑙𝑒𝑣𝑒𝑙𝑐ℎ𝑖𝑙𝑑 − 1) 

of the child nodes generated, in this way the removed parent nodes can be 

easily identify. 

 

 

Fig. 3.5: Parent node with the assigned area: a) child nodes generated by using the A approach, b) child nodes 

generated by using the B approach. 

The size of the area to be refined around each node identified by the triggers is 

determined according to the visibility criterion introduced in [57] which suggests 

that the refined zone has to be such that the horizon of the coarsest interface nodes 

has not to include the identified node. Therefore, all the family nodes within the 

horizon of the identified source node are refined, i.e. Fig. 3.6 shows both the 1
st
 

and 3
rd

  level of refinement produced by the activation of the AGRS of a single 

node in the case of m = 3. One can notice from Fig. 3.6c that successive 

refinements are ’self-similar’ since the same procedure is used to generate 1
st
 level 

nodes from 0 level nodes, 2
nd

 level nodes from 1
st
 level nodes and so on. In 

particular, Fig. 3.6 shows the case of refinement in which the δ-convergence 

strategy is adopted, being both the initial grid spacing and horizon lengths divided 

by two for each level of refinement and scaling applied. We can notice that the 

grid spacing gradually varies  from the coarsest region to the most refined region, 

this approach is in accord with what highlighted in [75, 76] for FEM and [57]  for 

BB-PD about the fact that spurious wave reflections can be mitigated by only 
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adopting such a variation of refinement. Fig. 3.7 shows that the shape of the 

refined area depends on the value of the parameter m.  

a) b) c) 

   

Fig. 3.6: Application of the visibility criterion for the grid refinement around a single node identified by the 

trigger when the δ-convergence strategy is applied (with m =3): a) coarse grid, identified node with its 

horizon, b) 1st level of refinement, c) 3rd level of refinement. 

a) b) c) 

   

Fig. 3.7: Shape of the refined zone generated around a single node for various values of m: a) m =3.5, b) m 

=3.7, c) m =4. 

 

Fig. 3.8: Examples of application of different refinement types: a) node selected by trigger, b) refinement of 

1st level obtained by keeping constant the horizon length, c) refinement obtained with simultaneous variation 

of horizon and m. 

As stated in Sect. 3.1, different types of numerical convergences of peridynamic 

theory to the classic theory of mechanics have been originally identified in [57], 
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which can be implemented by reducing opportunely the horizon length with 

respect to that one of grid spacing, as shown in Fig. 3.8 for the case of m-

convergence as well as δm-convergence. As it will be discussed in Sect. 5.3.2, 

such numerical convergences may be really incisive as well as useful to solve 

problems related to the grid sensitivity shown by peridynamics when discretized 

with a uniform grid of nodes. Appendix A gives the skeleton of the pseudo-codes 

employed to generate the new nodes with the approach B (see Algorithm A.3), a 

similar algorithm structure is adopted when the approach A is implemented. Fig. 

3.9 shows the flow chart of the working principle of Algorithm A.3. 

 

Fig. 3.9: Flow-chart of the algorithm to generate the refinement. 

The addition of new nodes in the grid requires the updating of data such as the list 

of bonds of the model (see Eq. (A.3) in Appendix A) and the volume correction 

factor matrix (Eq. (A.5) in Appendix A). The simplest way to update them, but 

inefficient from the computational point of view, it is to apply the required 

algorithm on the whole grid, updating properties of regions of the grid in which 

no refinement has been applied. Another approach, which surely allows using the 
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computational resources in an efficient way, is to restrict the updating of the 

properties to a window of the just the refined area. Anyway, the former approach 

is adopted in this work since easier to implement. As it has been introduced in 

Sect. 3.1, the volume correction factor algorithms allow to compute the 

approximated weighted volumes and integration point coordinates to be inserted 

in Eqs. (3.1) for improving the accuracy of the space integration. Such algorithms 

have been originally developed for a uniform arrangement of the nodes, hence 

some adaptations have to be applied when a non-uniform grid is adopted. Let us 

consider the PA-PDLAMMPS algorithm [68], in which only the nodes enclosed 

inside the horizon define the set of family nodes, it is possible to notice from Fig. 

3.10a that some of the interface nodes belonging to the refined region are affected 

by a loss of volume computed inside the horizon. We suggest as a strategy to 

reduce this loss of volume defining the horizon length of such nodes as a multiple 

of the distance between the node and the closest node with the lower level of 

refinement. It is apparent that such a distance can be different from any grid 

spacing present in the model, (see Fig. 3.10b), the multiplying factor is the 

adopted value of m of the coarse grid. Such correction implies an increased 

horizon for some interface nodes (see Fig. 3.10b), and therefore an increased 

volume taking part in the computation of the force acting on the node itself. In this 

way it is possible to drastically reduce distortion phenomena of the energy flux 

going through a zone with non-uniform grid, this will be described in Sect.4.2. 

a) b) 

  

Fig. 3.10: Volume losses affecting interface nodes, the black colour indicates the lost volumes :a) examples of 

volume losses for constant m, b) examples of volume losses for variable m. 

Unlike the PA-PDLAMMPS algorithm, the IPA-Hybrid algorithm does not 

require such a strategy for reducing the losses of volume since the exact 
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computation of the partial volume of the family cells  is calculated by means of 

analytical expressions [68]. 

 

Fig. 3.11: Example of computation of the integration points of family cells with the assigned volume 

correction factors when the IPA-Hybrid algorithm is adopted in the refined interface regions. 

Although the analytical expressions have been devised to be applied in cases in 

which the nodes are uniformly arranged with a constant grid spacing, they can be 

easily applied in the regions characterized by a varying grid spacing. This is done 

by using like parameters in the equations given in [68] the horizon of the source 

node and then the grid spacing associated to the family nodes taken into account 

for the computation of its volume correction factor. Fig. 3.11 shows an example 

about the estimation of the integration point of the family cells and corresponding 

volume correction factors. Anyway, let us consider that the PA-PDLAMMPS 

algorithm is computationally more efficient than the IPA-Hybrid algorithm. 

3.2.4. Interpolation of  physical quantities 

After the updating of the properties of new nodes inserted into the grid, 

physical quantities such as the displacement, velocity and acceleration have to be 

assigned by the interpolation of the quantities of the nodes belonging to the 

previous grid. Which nodes should be involved to interpolate such quantities 

depends on the method of interpolation employed. Matlab software offers several 

useful functions for interpolating values of a function at specific query points. 
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Different interpolation methods can been chosen, in particular we adopt the linear 

interpolation for which four nodes for the 2D case (eight nodes for the 3D one) 

closest to the query point are used.  Knowing the field of the relevant quantities at 

each time step of the simulation, it is easy to obtain the interpolated values by 

inserting only the coordinates of the new nodes generated in the input variable of 

the function. Although this approach is easy and fast to be applied, we point out 

that such a interpolation offered by Matlab has some limitations when applied in 

this context. First, its use is restricted to a regular and structured arrangement of 

the sampling nodes, hence only the initial nodes of the grid can be adopted for 

interpolating the values. Therefore, in case of an expanding refined region, the 

interpolated values of the new nodes cannot get the benefits from the higher 

accuracy of the refined function field close to them. It is clear that such a 

interpolation can only be applied when the method A of generation of the new 

nodes is employed, being that the parent nodes of the grid are not removed from 

the analysis (see Sect. 3.2.3). Another function offered by Matlab which can 

remove this limitation performs interpolation on scattered data set by using an 

approach based on the Delaunay triangulation. However, when such a function is 

used in problems in which symmetrical results are supposed to be obtained, it may 

be a source of asymmetries on the trend of the interpolated functions due to the 

random generation of the Delaunay triangulation. Finally, let us consider the fact 

that when we are treating problems dominated by displacement jumps due to the 

presence of initial cracks within the domain, we shall ask questions about which 

set of nodes should be used to approximate the function value when new nodes 

are added in the proximity of the pre-crack tip. In fact, sometimes it can happen 

that using the default set of nodes adopted by Matlab functions, some bonds in the 

proximity of the pre-crack tip may break as a consequence of an uncorrected 

interpolation, leading the crack to a premature propagation. Such cases could be 

avoided by introducing a new data structure to select the right set of nodes, which 

may lead to reduce the computational efficiency.  

An interesting interpolation method that can remove all the drawbacks of the 

interpolation methods offered by Matlab is known as the PIM (Point Interpolation 

Method), such a method is frequently used for the creation of the shape functions 

adopted in mesh-free methods [77]. Let 𝑢 (𝒙) be an unknown component of the 
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displacement field at any point x within the problem domain, then its function 

value can be expressed as: 

𝑢(𝒙) =∑𝜙𝑖(𝒙)𝑢𝑖 = 𝚽(𝒙)𝑼𝑠

𝑘

𝑖=𝑖

 (3.5) 

with k the number of nodes included in a “local domain” of the point x defined by 

the user, 𝑢𝑖the known component of the displacement at the ith node in the local 

domain and 𝜙𝑖(𝒙) the shape function of the ith node determined using all the 

nodes included in the local domain. Both the shape functions and the components 

of the displacement can be collected in the array form 𝚽(𝒙) and 𝑼𝑠, respectively. 

The number of nodes involved to approximate the function value at the point x is 

determined from the size of the local domain. Several local domain shapes can be 

used, i.e. circular and rectangular are most often used, and its dimension can 

change for different nodes. One of the advantages to use such a method in 

peridynamics derives from the possibility to adopt the horizon for defining the 

size of the local domain of interpolation. As a result, the local domain of 

interpolation coincides with the non-local region H(x) introduced by 

peridynamics. Moreover, as previously stated, in order to avoid the premature 

failure of the bonds in the proximity of the crack tip, we propose to adopt for 

simplicity of implementation the truncated local domain, known as visibility 

criterion in the context of mesh free methods [78]. Basically, the nodes included 

in the local domain coincide with the current list of family nodes belonging at that 

point x, this information can be easily obtained from the bond history list (see 

Appendix A). The shape functions 𝜙𝑖(𝒙) in Eq. (3.5) are built by adopting the 

PIM method based on polynomial basis functions [77], according to the proposed 

strategy its formulation starts with the following finite series expression:   

𝑢ℎ(𝒙, 𝒙𝑞) =∑𝑝𝑖(𝒙)𝑎𝑖(𝒙𝑞)

𝑘

𝑖=1

= 𝒑𝑡(𝒙)𝒂(𝒙𝑞) (3.6) 

where 𝑢ℎ(𝒙, 𝒙𝑞) represents the approximation of the function 𝑢 (𝒙) using the 

values of the family nodes enclosed inside the horizon H(xq) of the point 𝒙𝑞, k is 

the number of family nodes, 𝑎𝑖(𝒙𝑞) is the coefficient associated with the 
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monomial 𝑝𝑖(𝒙) corresponding to the point 𝒙𝑞. Assuming the hypothesis of linear 

interpolation, the vector 𝒑 (𝒙) of the basis function of monomials in a 2D domain 

is expressed as: 

𝒑 𝑡(𝑋, 𝑌) = [1, 𝑋, 𝑌] (3.7) 

Introducing the matrix form of the basis functions 𝑷𝑄called moment matrix: 

  

(3.8) 

and collecting the 𝑢 (𝒙𝑖) of a component of the displacement field in the vector 

form 𝑼𝑠 of all the family nodes: 

 

(3.9) 

then the coefficients collected in the vector form 𝒂 are calculated by enforcing 

that Eq. (3.14) be satisfied at the k nodes, as follows: 

𝒂 = 𝑷𝑄
−1𝑼𝑠 (3.10) 

assuming that the inverse 𝑷𝑄 exists, see [77] for a detailed explanation of the 

conditions for which the moment matrix is not invertible. Therefore, if the Eq. 

(3.10) is substituted into Eq. (3.6), we obtain: 

𝑢ℎ(𝒙, 𝒙𝑞) = 𝒑
𝑡(𝒙)𝑷𝑄

−1𝑼𝑠 = 𝚽(𝒙)𝑼𝑠 (3.11) 

The code used for implementing the PIM in order to interpolate the nodal 

displacement values in the case of a 2D domain is given in Appendix A (see 

Algorithm A.4). The same procedure is applied to interpolate the velocity and 

acceleration values.  
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Finally, we remark that specific tests have not been carried out to check if the 

interpolated quantities satisfy the conservation of quantities such as the kinetic 

energy, linear and angular momentum. Such tests shall be performed in the future 

application of AGRS.  
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4. Tests to evaluate the performance of a non-uniform 

grid 

As stated in Sections 2.3-2.4, the use of a varying horizon size and grid spacing 

may introduce some anomalies in the displacement field of the PD numerical 

solution. The possible reasons of such anomalies can be essentially identified in 

the following points: 

 the numerical noise introduced by the change of grid spacing over the 

discretized domain as a result of the change of space integration 

accuracy 

 effects on PD solution introduced by the loss of bonds through the 

transition region where the horizon varies (see Section 2.3), then the 

presence of ghost forces which affect the local equilibrium through that 

region (see Section 2.4) 

 the change of dispersion response of the material due to the change of 

non-locality (change of the horizon size) over the domain. 

It has been well known for a long time that when elastic waves cross regions 

discretized with elements of different size in FEM meshes [75, 76], spurious 

reflections can occur due to the numerical errors and noise which affect the 

transition zone. Such a phenomenon was also observed in non-uniform  

peridynamic grids in 1D/2D problems [57, 58]. Let us consider that, unlike the 

methods based on classical mechanics, which are devoid of an intrinsic length-

scale, the change of the non-locality over the domain introduces an additional 

error in numerical PD solutions, especially in the case of dynamic simulations. 

Taking into account that the dispersion of the material is related to the size of the 

horizon length [3], the change of the horizon length leads to have regions 

characterized by a different dispersion law of elastic waves [79, 80]. Strategies to 

mitigate the spurious wave reflections introduced by the change of non-locality 

over the domain are proposed in [81]. This chapter aims to provide an estimation 

of the numerical errors introduced by the use of a non-uniform and scaling grid in 

PD solutions. In particular, we are interested to answer the following questions: 
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1. how much do the ghost forces influence the error in numerical PD 

solution? 

2. in the absence of ghost forces, is the solution still affected by the 

presence of anomalies in the displacement field? 

3. do such anomalies affect the PD solution in the regions far from the 

transition zone? 

4. How much do the refinement and scaling affect the propagation of 

elastic waves? 

For answering these issues, static analyses are first performed by comparing the 

2D numerical PD solution with the analytical solution of an elastic linear problem. 

By static analyses, the additional effects introduced by dispersion of the model 

can be avoided, allowing to better understand the origin of such anomalies 

introduced by the refinement and scaling. Then, dynamic analyses concerning the 

propagation of a continuum elastic wave in a 2D plate are performed in order to 

evaluate the spurious waves and wave distortions generated by the refinement and 

scaling. 

4.1. Static analyses 

A 2D static example is addressed through the comparison of the numerical 

peridynamic solution with the analytical solution of a linear elastic problem. The 

same problem has been proposed in [66], using a uniform grid of nodes and 

constant horizon. The model (see Fig. 4.1) is a rectangular plate of size 1x0.5 m
2
 

and thickness t = 0.01 m subjected  to a uniform uniaxial tension of magnitude p = 

200 MPa. The mechanical properties of the material are: E = 200 GPa, v = 1/3 

(plane stress case). The numerical solutions are obtained by using the linearized 

formulation of the equation of motion of BB-PD (see Eq. (2.19)), while the static 

solution is numerically solved by means of the stiffness matrix, see in [82] for a 

detailed explanation of the method adopted for its assembly. The spatial 

integration is carried out using the IPA-Hybrid algorithm (see Section 3.1) for 

computing the volume correction factor. In order to investigate the anomalies 

introduced by the use of a non-uniform grid of nodes and a varying horizon size in 

numerical peridynamic solution, we analyze several models which differ in the 

configuration of the  refined region. As a first step, only the left side of the model 
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(see Fig. 4.1) is refined by keeping constant the m ratio and reducing the horizon 

according to the δ-convergence strategy (see Section 3.1), the grid spacing is 

reduced according to Eq. (3.3),   

 

Fig. 4.1: Setup of the problem, uniform model of the plate subjected to a uniform tension, the triangle 

markers indicates the support constraints. 

The load is applied to one only row of nodes, while Fig. 4.1 shows how the 

boundary conditions are set along the symmetry axes of the uniform coarse 

model. In particolar, the support constraints are set along the horizontal line to 

restrain uY and along the vertical line to restrain uX. We can notice from Fig. 4.1 

that only the X axis on the right side of the model is constrained due to the lack of 

nodes on the refined side. This set of constraints has been chosen in order to keep 

the ill-conditioning of the stiffness matrix to a minimum. The method B (see 

Section 3.2.3) is adopted as a method of generation of the nodes.  

The initial uniform grid has the following peridynamic parameters: ΔX0 = 10 

mm, δ0 = 30.15 mm and consequently m = 3.015. Three models are implemented, 

for sake of clarity they will be called model A, B and C, in which the first, second 

and third level of refinement and scaling are implemented, respectively. In Fig. 

4.2 the models are shown, while Table 4.1 provides the values of the main 

peridynamics parameters adopted. The refined models have been obtained 

applying the visibility criterion introduced in [57] (as explained in Sect.3.2.3), as 

shown from the close-up view of the transition zone in Fig. 4.2c. 
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Model Level of refinement ΔX = ΔY (mm) δ (mm) 

A 1
st
   5.00   15.075 

B  2
nd

   2.50   7.537 

C 3
rd

   1.25   3.768 

Table 4.1: Values of the peridynamic parameters regarding the model A, B and C. 

a) Model A 

 
b) Model B 

     
c) Model C 

 

Fig. 4.2: Non-uniform grids obtained by applying the refinement and scaling on the left half of the uniform 

model: a) Model A with the 1st level of refinement, b) Model B with the 2nd level of refinement, c) Model C 

with the 3rd level of refinement and a close-up view of the interface zone to show the effect of the visibility 

criterion. 
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As a consequence, the coarse particles can interact with the particles belonging to 

the most refined region. As a first step, we are interested to compare the numerical 

solutions obtained by adopting both the scaling & DH (see Eq.(3.1c)) and scaling 

PD formulations (see Eq. (3.1b)) with the analytical solution given by means of 

the following expressions: 

𝑢𝑋(𝑋, 𝑌) =
𝑝

𝐸
𝑋 (4.1a) 

𝑢𝑦(𝑋, 𝑌) = −𝜐
𝑝

𝐸
𝑌 (4.1b) 

 

Fig. 4.3: Close-up views of a portion of Model B: a node located in the most refined region and close to the 

interface zone, a) nodes belonging to its horizon, b) nodes belonging to its dual-horizon. (The numbers close 

to the particles indicate the volume correction factors). 

a) 

 
b) 
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As stated in Section 2.4, we want to highlight that unlike the non-local region 

H(x) defined with a specific shape and dimension, the dual-horizon is only a set of 

nodes with no predefined shape whose dimension depends on the number of 

nodes enclosed in it, i.e. Fig. 4.3 shows the sets of nodes belonging to the horizon 

and dual-horizon of a refined node with the associated volume correction factors. 

As shown in Eqs. (3.1c), the volume correction factors are those associated to the 

portion of source cell covered by the horizon of its dual-family nodes.  

Fig. 4.4 and Fig. 4.5 show the graphs of the relative error of the displacements 

of the PD solution evaluated along the lines displayed in Fig. 4.2a. It can be 

noticed from figures that the error has a null value at coordinate X=Y=0, being that 

the displacements are clamped (see Fig. 4.1). The solutions shown in the graphs 

reveal important aspects that have to be discussed: although Fig. 4.4a (model A) 

shows that the application of the scaling & DH formulation leads to slightly 

improve the accuracy of the numerical solution, the graphs of Fig. 4.4b and Fig. 

4.4c show a completely opposite trend. In fact, the curves appear to be almost 

overlapped. Such a behaviour suggests that the anomalies on the displacement 

field introduced by varying the size of the horizon may not be due to the presence 

of ghost forces but to an improper scaling formulation. Consider that the scaling 

approach, initially proposed in [57] for the BB-PD and then formulated later in 

[67] for the general peridynamic formulation, computes the micromodulus of the 

bonds using Eq. 2.13. This equation has been originally formulated assuming 

implicitly that the horizon is constant over the domain. It is clear that such an 

issue should be further investigated. 

Comparing the trend of the displacement field uX of the models obtained with 

the scaling & DH formulation ( Fig. 4.4), it is possible to notice that the anomalies 

introduced by the refinement and scaling seem to be confined into the interface 

region. In particular, the highest numerical relative error of about 31.5 % takes 

place in the coarse interface zone regardless of the level of refinement applied. 

Such a trend suggests that the numerical error in the interface region is not so 

sensitive to the level of refinement and scaling applied. 
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a) Model A 

 

b) Model B 

 

c) Model C 

 

Fig. 4.4: Relative error of the displacements evaluated along the horizontal line: a) model A with the 1st level 

of refinement, b) model B with the 2nd level of refinement, c) model C with the 3rd level of refinement. 
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a) Model A 

 

b) Model B 

 

c) Model C 

 

Fig. 4.5: Relative error of the displacements evaluated along the vertical lines: a) model A with the 1st level of 

refinement, b) model B with the 2nd level of refinement, c) model C with the 3rd level of refinement. 
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Another issue concerns the results evaluated far from the the boundary of the 

different peridynamic regions. The solution in the refined region should be 

supposed to have a higher level of accuracy than the solution of the coarse region. 

For instance, regarding uX, the average relative error of the plateau trend on the 

refined side is about 7%, which is higher than the avarage error of about 5% on 

the coarse side.  

 

Fig. 4.6: Comparison of the relative error of the ux displacements component with the scaling & DH 

formulation evaluated along the horizontal line of the three models. 

The reason of that can be explained as follows: PD grids suffer from surface effect 

(see Section 2.2) which leads to have material softening in the regions close to the 

boundaries of the domain, the skin effect is worse if the horizon size is bigger. As 

shown in [58], the skin effect does not only affect the deformation in the 

proximity of the boundaries, but also in the bulk material. Taking into account 

that the forces between the refined and coarse sides are spread through the central 

vertical line (where uX are clamped) as a consequence of the non-local nature of 

PD theory, the deformations in the different regions are mutually affected by the 

skin effect. As shown in Fig. 4.7, this effect can be reduced by the application of 

the surface correction factor. By adopting the surface correction factor, the 

average error on the refined side is 1.5%, lower than 2% on the coarse region. 
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Fig. 4.7: Comparison of the relative error of the ux displacements component evaluated with the scaling & DH 

formulation and surface correction factor along the central horizontal line of the three models. 

In order to evaluate the sensitivity of PD solutions with respect to the m ratio, 

other analyses are performed by applying the m-convergence strategy (see Section 

3.1). The models are built refining the grid and keeping constant the horizon 

lengths of the models implemented with m =3.015 (see Table 4.1 for the horizon 

lengths). As a result, the m-ratio increase from 1.515 to 5.015,  Fig. 4.8 and Fig. 

4.10 show that the increase of the m-ratio takes the numerical PD solution to 

converge to the analytical solution given in Eq. (4.1). However, the anomalies in 

the proximity of the interface region still persist. The L2 error norm of the 

displacement components is computed to measure the average difference between 

the PD and the analytical solutions, the general expression is given as: 

𝐿2 𝑒𝑟𝑟𝑜𝑟 =
1

𝑞

√∑ (𝑢𝑖
𝑃𝐷 − 𝑢𝑖

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
)2

𝑗
𝑖=1

√∑ ( 𝑢𝑖
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

 )2
𝑗
𝑖=1

 (4.2) 

where j=1,2 (2D cases) indicates the component X and Y of the displacement field 

and q the number of nodes involved to calculate it; Fig. 4.11 compares the 

convergence rates of L2 error of the displacement components evaluated along 

some rows of nodes located in both the refined and coarse regions (as specified in 

Fig. 4.11). Although the average error of uX in the coarse region is lower than the 

error in the refined region, we can note that the rate of convergence of the error in 

the refined region is 2.2·10
-2

 which is one order of magnitude higher than the rate 

0.3·10
-2

 in the coarse region. Besides, Fig. 4.11 shows that unlike the linear rate of 

convergence of uX, the rate of convergence of uY is non-linear. 
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Fig. 4.8: Sensitivity study on m ratio of the relative error of ux evaluated along the horizontal line for the 

model B. 

 

Fig. 4.9: Sensitivity study on m ratio of the relative error of uy evaluated along the refined vertical line of the 

model B. 

 

Fig. 4.10: Sensitivity study on m ratio of the relative error of uy evaluated along the coarse vertical line of the 

model B. 
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Fig. 4.11: Convergence rates of L2 error between analytical solution and PD solution for uX and uY evaluated 

along the specified sample lines. 

So far we have analysed the case of refinement and scaling applied on the left 

side of the coarse model in order to investigate the effect of the mutual influence 

between the coarse and refined regions on the PD solution. Another configuration 

that may give us a useful understanding of the influence of refinement and scaling 

on PD solutions concerns its application on the upper side of the plate. As shown 

in Fig. 4.13, three models called models D, E and F have been built using the 

same set of peridynamic parameters adopted in the cases analysed previously (see 

Table 4.1). The boundary conditions are always set along the symmetry axes of 

the coarse region with the same strategy proposed in the previous model, see Fig. 

4.12.  

 

Fig. 4.12: Setup of the problem, uniform model of the plate subjected to a uniform tension, the triangle 

markers indicates the support constraints. 
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a) Model D 

 
b) Model E 

 
c) Model F 

 
Fig. 4.13: Non-uniform grids obtained by applying the refinement and scaling on the upper half of the model: 

a) model D with the 1st level of refinement, b) model E with the 2nd level of refinement, c) model F with the 

3rd level of refinement. 
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The PD solutions are compared with the analytical solutions given in Eqs. 

(4.1): Fig. 4.14, Fig. 4.15 and Fig. 4.16 display the relative error of uX and uY 

evaluated along the lines shown in Fig. 4.13a. Fig. 4.16 shows that the anomalies 

in the displacement field still persist, with a maximum relative error of  about 

15% observed on the side of the refined region.  

 

Fig. 4.14: Relative error of the uX displacement component evaluated along the refined horizontal line. 

 

   

Fig. 4.15: Relative error of the uX displacement component evaluated along the coarse horizontal line. 
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Fig. 4.16: Relative error of the uy displacement component evaluated along the vertical line. 

By carrying out a convergence study on m-ratio parameter with the same strategy 

adopted in the previous case, see Fig. 4.19, we can observe that the maximum 

error of the uY changes from a value of 23% with m = 1.515 to a value of 31% 

with m = 5.015. In addition, the side of the grid in which there is the maximum 

error changes depending on the m parameter. It is clear that this strange behaviour 

should be investigated further. Anyway, the trends of the convergence rates 

shown in Fig. 4.20 reveal that the PD solution in the refined region converges to 

the analytical solution faster than in the coarse region, having the former a rate of 

3.6·10
-2 

in comparison with the rate of 5.8·10
-3

. Finally,  Fig. 4.21 shows uX  

displacements of the models along a vertical line of coordinate (X=0.20, Y). We 

can observe that, with this model configuration, the mutual interaction between 

the two regions of the grid results in a small in-plane bending of the plate, being 

the value of uX  in the coarse region higher than that in the refined region. 

  

Fig. 4.17: Sensitivity study on m ratio of the relative error of ux displacements evaluated along the refined  

horizontal line for the model E. 
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Fig. 4.18: Sensitivity study on m ratio of the relative error of ux displacements evaluated along the coarse 

horizontal for the model E. 

 

Fig. 4.19: Sensitivity study on m ratio of the relative error of uY displacements evaluated along the vertical 

line for the model E. 

 

Fig. 4.20: Convergence rates of L2 error for uX and uY evaluated along the specified sample lines. 
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Fig. 4.21: Comparison between the analytical and numerical uX displacements along the vertical line of 

coordinates (X = 0.2, Y) for the implemented models, m = 3.015. 

The results of the static simulations carried out in this section reveal important 

aspects that should be further investigated with other numerical examples. The 

first interesting aspect concerns the effect of the ghost forces in PD solutions. The 

same order of magnitude of the error in the displacement field can be observed, 

regardless of the presence of the ghost forces in the interface zone. Let us remind 

that the ghost forces are originated by the disequilibrium of the equation of 

motion imposed at the nodes with a variable horizon [60, 67]. These results 

suggest that such anomalies are likely due to the scaling formulation, namely the 

peridynamic properties assigned to the bonds such as the micromodulus. These 

properties are calculated by means of equations (see Eq. (2.13)) derived from the 

continuum formulation of peridynamic which implicitly assumes that the horizon 

is constant over the domain.  

Another interesting aspect concerns the magnitude of the error on the coarse 

side of the interface zone, which seems to be independent of the level of 

refinement adopted in the grid. Finally, although the results show that the 

anomalies introduced by refinement and scaling are confined into the interface 

region, the mutual interaction between regions characterized by a different surface 

effect can lead to unexpected results in the refined region. The problem can be 

solved by adopting strategies based on the surface correction factor, such as that 

adopted in this section (see [66] for further details of this strategy).  
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4.2.  Dynamic analyses 

We investigate the effects of using a non-uniform grid on the propagation of a 

(initially plane) Gauss wave which propagates in a 2D model of a plate. As a first 

step, we treat the problem by only considering the refinement of first level applied 

to a model of rectangular plate with size 0.1×0.04 m
2
 (see Fig. 4.22a) in which all 

edges are free, while the assigned mechanical properties are: Young modulus E = 

1 and mass density ρ = 1, the micromodulus is computed according to Eq. (2.13b) 

(υ = 1/3 plane stress case). The solution is obtained by means of Eq. (3.1b) of the 

linearized Eq. (2.19) solved in time with the Velocity-Verlet scheme (see Eq. 

(3.2)), having used the PA-PDLAMMPS as algorithm for the space integration. 

The initial shape of the wave is given by the following expression: 

𝑢0(𝑋, 𝑌) = 0.2𝑒𝑥𝑝 [− (
𝑋

0.01
)
2

]

 

      ,       𝑣0(𝑋, 𝑌) = 0   (4.1) 

𝑢 is the displacement in the X direction and 𝑣 in the Y direction. In order to reduce 

the non-local dispersion, the wave length adopted is much larger than the horizon 

used in the models [57]. Three different models (see Fig. 4.23) are considered 

with the aim of evaluating the effect of the non-uniform grid on the propagation of 

the wave, Table 4.2 provides the values of grid spacing and horizon: model A has 

a constant horizon, model B a constant m ratio, in model C the horizon of 

interface nodes can have different dimensions (see Sect. 3.2.3). The original grid 

is characterised by m = 3, in the central zone of the plate a limited area is refined 

as shown in Fig. 4.22. Solutions obtained with the three different models are 

compared with the solution provided by the model with uniform coarse grid. The 

time integration is sufficient for the wave to cross the refined zone, but it is 

interrupted before reflected waves are produced by the free edges. A first 

comparison is carried out between the longitudinal profiles of the potential energy 

density, see Eq. 2.14, at time t = 0.0582 s when the pick of potential energy is in 

the refined zone, as shown in Fig. 4.24. Fig. 4.22b shows the lines along which the 

profiles of the potential energy density are recorded. 
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a) b) 

  

Fig. 4.22: 2D plate model in which a contour plot of the initial displacement field with indication of the 

refined region is shown. 

a) b) c) 

   

Fig. 4.23: a) Model A: same horizon for all nodes, b) model B: horizon δ =m·ΔX for all nodes, c) model C: 

horizon δ =m·ΔX’ where ΔX’ can be different from the grid spacing ΔX, for interface nodes, whereas for all 

other nodes ΔX’ = ΔX. 

Model ΔX = ΔY  δ (×10
-3

) 

A 
0.0005 coarse 

0.00025 refined 

1.5 

B 1.5/0.75 

C 1.5/1.06/0.75 

Table 4.2: Values of the peridynamic parameters for the three models. 

The results show that model A is characterized by a considerable loss in accuracy 

of the numerical integration which generates an energy reduction, bigger at the 

border of the refined zone. Model B exhibits an even bigger energy reduction, this 

is probably due to an excessive loss of volume in the application of Eq. (3.1b), as 

shown in Fig. 4.24. In this case, the numerical errors are so big that they generate 

a distortion of the energy distribution even in the nodes of the coarse zone near 

the refined region (see Fig. 4.24b). Results of model C show that the strategy 

suggested in Sect. 3.2.3 significantly reduces the energy flux distortion, moreover, 

differently from models A and B, the external nodes exhibit a small increase in 

energy. Fig. 4.25 presents the relative reduction of the density of potential energy 
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in the refined zone during the whole simulation, while Table 4.3 summarizes 

maximum, ΔWmax, ΔKmax, and minimum, ΔWmin, ΔKmin, values of the reduction of 

the density of potential and kinetic energy for a single node. Always in Table 4.3, 

the maximum relative reduction of the total energy ΔEtot for the whole grid of the 

three models is also given. In model A the area of the refined region affected by 

high energy reductions is rather large, on the contrary, it is much smaller in model 

B, in which however, energy losses reach values of 71.7%. In model C such losses 

are lower, up to 21.6% and they mainly affect only a few nodes, as shown in Fig. 

4.25c. 

a) 

 

b) 

 

c) 

 

Fig. 4.24: Longitudinal profiles of the potential energy density, numerical values are normalised with respect 

to the maximum value of the uniform grid solution: a) model A, b) model B, c) model C. 
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a) b) 

  

                               c) 

 

Fig. 4.25: Contour plot of the reduction of the density of potential energy in the nodes of the refined zone: a) 

model A, b) model B, c) model C. 

Model ΔWmax (%) ΔWmin (%) ΔKmax (%) ΔKmin (%) ΔEtot (%) Δu (%) 

A 19.21 0.89 12.40 1.26 0.12 0.76 

B 71.67 4.35 21.91 1.74 0.44 1.64 

C 21.62 2.26 8.68 1.66 0.05 0.44 

Table 4.3: Maximum and minimum values of the variations of various quantities with respect to the same 

value of the uniform grid solution (ΔEtot is the total energy of the model, while Δu is the amplitude of the 

reflected wave with respect to that of the incident wave). 

Numerical results presented in Chapter 6 seem to suggest that such localized 

losses have a negligible effect on crack propagation. The displacement of a 

sample node in the coarse part of the grid, of coordinates X = 0.034 and Y =0.02 

(see Fig. 4.22a), is monitored in time. The point is located near the central part of 

the refined zone. The displacement values in time in the cases of uniform and non-

uniform grids are compared. All models show that the refined portion of the grid 

generates a reflected wave with a maximum pick at time t = 0.072s. The amplitude 

of the reflected wave with respect to that of the incident wave is given as a percent 

value Δu in Table 4.3. However, the reflected wave is small, in particular in model 

C and its effects are in general negligible. The order of magnitude of our results is 

similar to that shown in [57] where a Gaussian wave propagates in a 1D beam 

model. After having analysed the effects of the first level of refinement on the 
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propagation of a continuous wave by using strategies of numerical convergence 

such as the m-convergence and δ-convergence, as a second step, a similar problem 

is investigated by adopting higher levels of refinement as well as the more general 

mδ-convergence. Fig. 4.26 shows the model of a rectangular plate with size 

0.3×0.04 m
2
 and all edges are free; the contour plot of the wavefront of total 

energy density (potential plus kinetic) generated of the initial half wave (it is 

normalized with respect to half of its maximum value) is displayed as well. The 

problem is numerically solved by adopting the same method applied in the 

previous problem, the same is done for the mechanical properties of the model. 

The initial displacements field is defined by the following expression: 

𝑢0(𝑋, 𝑌) = 0.2𝑒𝑥𝑝 [− (
𝑋

0.03
)
2

]

 

      ,       𝑣0(𝑋, 𝑌) = 0   (4.2) 

Table 4.4 and Table 4.5 show the parameters of the implemented models, 

obtained changing the refinement level and the type of numerical convergence; 

the coarse grid spacing is ΔX0 = 0.001. As far as the obtained models are 

concerned adopting the δ-convergence in which, as previously seen, the interface 

nodes show a significant loss of integrating volume in the calculation of Eq. 

(3.1b); therefore, as done in the previous example, in order to minimize such loss 

the horizon length is increased by an appropriate amount.  

 

Fig. 4.26: Grid employed for analysis: a) contour plot of total energy density flux, b) example of 

refined region of 3
rd

 level. 

Level 

Refinement 
δ (×10

-3
) m 

0 3.0 3 

1 1.5 - 2.1 3 - 4.2 

2 0.75 - 1.06 3 - 4.2 

3 0.375 - 0.53 3 - 4.2 

Table 4.4: Characteristic parameters for the models with δ-convergence, the values in bold 

correspond to the interface nodes with modified horizon. 
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In Fig. 4.27 and Fig. 4.28, the longitudinal contours (they are taken at the 

coordinate X=0.1 and Y=0.04) of the wavefront of the total energy density flux are 

compared at the moment in which the maximum energy peak is located in the 

refined region. It is evident how the energy flux is subjected to a distortion while 

crossing the refined region; such distortion is more noticeable for those models in 

which the δm-convergence is applied. To evaluate the distortion, in Table 4.6 the 

maximum (ΔEmax) and the minimum (ΔEmin) percentage variations of the total 

energy density in the refined region when it is crossed by the energy flux are 

listed.  

Level 

Refinement 
δ (×10

-3
) m 

0 3.0 3 

1 2.0 4 

2 1.25 5 

3 0.75 6 

Table 4.5: Characteristic parameters for the models with δm-convergence 

 

 

Fig. 4.27: Wavefront of the total energy density for the non-uniform/multiscale models when a δ-

convergence is adopted. 

 

Fig. 4.28: Wavefront of the total energy density for the non-uniform/multiscale models when a δm- 

convergence is adopted. 
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Such variations are computed with respect to the solution obtained with the 

uniform/monoscale model; in Fig. 4.29a the energy reduction contours are plotted 

for one of the analyzed models (which is representative of the behavior of the 

other models as well). It is highlighted that the interface nodes show a 

conspicuous energy decrease due to the volume loss in the calculation of Eqs. 

(3.1b); this effect can be reduced by modifying the horizon length as it was done 

for the interface nodes of the δ-convergence models. In Fig. 4.29b the longitudinal 

contour of wavefront is plotted for the δ-convergence model without modification 

of the horizon length of interface nodes, these manifest energy reductions of the 

37.4%. 

Convergence 
Level 

Refinement 
ΔEmin [%] ΔEmax [%] Δu [%] 

δ 

1 9.83 5.86 0.24 

2 11.00 5.23 0.31 

3 11.63 5.88 0.35 

δm 

1 17.10 4.38 0.58 

2 18.96 6.25 0.87 

3 20.81 7.27 1.03 

Table 4.6: Total energy density variations of the refined region’s nodes and maximum displacement variation 

of node of coordinates X = 0.1, Y = 0.04. 

a) b) 

  

Fig. 4.29: a) Total energy density percentage reduction in the 3rd level refined region within a δ-convergence 

model, b) Wavefront’s distortion without modification of the horizon length of interface nodes. 

It is shown that the size of the energy decrease is bigger than the energy increase 

and that the amount increases as the refinement level goes up. Strategies in order 

to investigate how to minimize such distortions and how to properly transmit 

stress waves between regions with different grid spacing and length scale are 

being developed. This is important since the crack path is determined by the 
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interaction of the stress wave on the crack tip during its propagation. As far as 

spurious reflections are concerned, the maximum displacement magnitude of the 

node located at X=0.1 and Y=0.04 is reported in Table 4.6 (it is expressed as a 

percentage of the amplitude of the Gaussian wave). The amplitude of the reflected 

wave increases as the refinement level increases, but this reflection amplitude is of 

small entity (1% of the Gaussian wave), hence it is negligible. 

These examples highlight two important aspects which have to be taken into 

account when dealing with dynamic analyses. First, when a continuum elastic 

wave is moving through the refined and scaling region, significant distortions of 

the elastic waves can be detected in the interface regions. Such distortions are 

mainly due to the inaccurate calculation of the volume enclosed in the horizon 

belonging to the interface nodes. This problem can be mitigated by changing the 

size of their horizon, so that the volume losses are drastically reduced. Of course, 

consider that the simulations are carried out by using the PA-PDLAMMPS 

algorithm (see Section 3.1), which does not include the volume of the cells 

partially located inside the neighborhood of the source node. This shortcoming 

leads to an underestimation of the volume, limitation that can be overcome by 

using the IPA-Hybrid algorithm (see Section 3.1) which calculates the exact 

volume enclosed in the neighborhood. Lastly, the results show that spurious 

reflections arise when the elastic wave crosses the boundary between the coarse 

and the refined regions. However, we can conclude that the amplitude of the 

reflections can be neglected since they have no significant effect on the crack 

propagation. This aspect will be clear from the benchmark problems treated in 

Chapter 6. 
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5. Dependence of the crack paths on grid orientation 

Few researchers have observed indirectly [69, 80, 83] that the evolution of 

crack paths can follow, in an unphysical way, the axes of symmetry of the grid. 

The main parameter affecting such a numerical phenomenon seems to be the 

value of the m-ratio. The dependence of the crack path on the grid orientation 

would be a serious drawback for peridynamic based software since it would 

undermine what is believed to be one of its most important advantages over other 

computational methods, i.e. its capability to simulate multiple, mutually 

interacting dynamic fractures with branching in 2D as well as in 3D solids in a 

simple way. As a natural consequence of such a description it is shown that this 

deficiency can be drastically reduced by adopting higher m ratio values in the 

whole discretized domain. Such a strategy implies a considerable computational 

cost, therefore it is a natural candidate for the use of the AGRS to manage with 

more efficiency the simulations. It is remarked that all the results presented in the 

following have been obtained by using the IPA-Hybrid algorithm (see Sect.3.1) 

for the computation of the volume correction factors and the PIM algorithm (see 

Sect. 3.2.4) for interpolating the physical quantities.  

5.1.  Description of the problem 

As a first step, a problem of dynamic crack propagation in 2D will be presented 

to make clear that in peridynamics the direction of crack propagation is affected 

by the grid orientation. In particular, a plate model with a size of 0.25x0.25m
2
 and 

an initial horizontal crack of length 0.05m subjected to a tensile load is 

investigated, as shown in Fig. 5.1a. In the following, the results obtained when the 

load is applied dynamically and quasi-statically are presented 

5.1.1. Dynamic load case 

We assume plane stress conditions and two different materials for the BB-PD 

and OSB-PD model: Young’s modulus E = 73.4 GPa, Poisson’s ratio v = 0.33 and 

mass density ρ = 2440 kg/m
3
 for the BB-PD, Young’s modulus E = 100 GPa, 

Poisson’s ratio v = 0.15 and mass density ρ = 4000 kg/m
3
 for the OSB-PD. The 

load is applied suddenly to the upper and lower edges of the plate, uniform along 

the edges and kept constant in time. Its intensity is 0.8 MPa for the BB-PD case 
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and of 0.7 MPa for the OSB-PD model. The plate and its load are symmetric with 

respect to the horizontal line along which the initial crack is located so that, for 

symmetry reasons, the crack has to grow along the same line or branch from it in 

a symmetric way. This behavior is correctly captured by a peridynamic model of 

the plate in which the material points of the grid are aligned along the vertical and 

the horizontal directions, as shown in Fig. 5.1b, this grid is the 0° grid. The 

direction of the crack in the numerical model does not change if important grid 

parameters such as the grid spacing, the horizon and the m-ratio are varied. 

 

Fig. 5.1: a) Plate, load condition and initial crack. b) Propagation of the crack in the regular 0° grid. The insert 

shows how the initial crack is described in the discretization by removing all bonds that would intersect it. 

The aim of this section is to compare the results obtained when the plate is 

modelled with a uniform grid rotated with respect to the direction of the initial 

crack; various grids with an inclination of 5°, 10°, 20°, 30° and 40° with respect to 

the 0° grid, have been employed. We can see in Fig. 5.2b the influence of a 

rotated grid on the modelling of the initial crack, which is obtained by removing 

all bonds which cross the crack line. It appears slightly irregular, but such an 

irregularity has a negligible influence on the direction of crack propagation. This 

issue will be further clarified in Appendix B. A grid spacing ΔX = 1 mm has been 

chosen which leads to have an average number of 62,500 nodes for all the 

simulated models. The simulations have been carried out assuming an m ratio of 

3, this choice is in accordance to the value often used in the existing literature as a 

good tradeoff between the computational efficiency and the accuracy of the 
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solution. The failure stretches used are s03 = 2.1070∙10
-4

 for the BB-PD and s03 = 

10
-4

 for the OSB-PD, in which the subscript 3 expresses that the failure stretch is 

associated to the grid characterized by m = 3; the time step of Δt = 100 ns has 

been adopted being lower than the critical time step [84]. The total simulation 

time is 560 µs and 400 µs for the BB-PD and OSB-PD, respectively. 

 

Fig. 5.2: a) Example of plate discretised with a rotated grid. b) Example of the initial crack modelled  by 

removing all bonds which cross the crack line. 

Fig. 5.3 shows four examples of cracks propagated in rotated grids with the 

relevant grid orientation. Two of the examples were obtained with a BB-PD 

formulation and the other two with a OSB-PD formulation. It is apparent that the 

grid orientation considerably affects the direction in which cracks propagate, 

which is an undesirable feature for a computational method such as the one 

adopted in the present work. Moreover, Fig. 5.3 shows that the results obtained 

with BB-PD and OSB-PD are very similar regardless of the material properties 

used and the peridynamic formulation adopted. For this reason, all following 

results have been obtained by using the BB-PD formulation, which requires lower 

computing times with respect to the one based on the OSB-PD. Fig. 5.4 represents 

the crack paths for all considered BB-PD grid orientations. It is worth to highlight 

that if the plate is discretized with a uniform grid characterized by an orientation 

different from the horizontal one, as shown in Fig. 5.2a, in general the edges of 

the plate will not be exactly described by the grid. The irregularity of the 

boundaries and that of the initial crack profile makes the problem asymmetric so 

that some form of asymmetry of the solution has to be accepted. In particular, the 

elastic waves due to the sudden application of the load can affect, in part, the 

direction of the crack propagation. However all these ‘noisy’ perturbations should 

not excessively affect the results produced by a robust computational technique. 
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Fig. 5.3: Crack paths obtained with different grid orientations and m=3. a) Model with the grid at 10° 

implemented with the BB-PD. b) Model with the grid at 40° implemented with the BB-PD. c) Model with the 

grid at 10° implemented with the OSB-PD. d) Model with the grid at 40° implemented with the OSB-PD. 

 

Fig. 5.4: Crack paths obtained with different rotated grids with m = 3. 

One could be induced to think that the dependence of the crack direction on the 

grid orientation is a problem of the grid spacing. To clarify this aspect the 

example is proposed again by using  a uniform more refined grid, characterized by 
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ΔX = 0.5 mm. The problem is simulated using m=3 and m=5. The relative failure 

elongation s03 = 2.9795∙10
-4

 has been used for the case of m=3 while Eq. (2.15b) 

has used to evaluate s05. The time step is Δt = 50 ns while an average number of 

250,000 nodes for all the models simulated has been adopted. It is clear from the 

results shown in Fig. 5.5 and Fig. 5.6 that the refinement of the grid with 

unchanged m does not improve the direction of the cracks. However, in the next 

section 5.1.2. the case of the plate with quasi-static load is considered to assess the 

relevance of the waves generated by the sudden application of the load on the 

crack direction.   

 

Fig. 5.5: Crack paths obtained with different rotated grids with m = 3 and reduced ΔX. 

 

Fig. 5.6: Crack paths obtained with different rotated grids with m = 5 and reduced ΔX. 

5.1.2. Quasi-static load case 

The quasi-static application of the load is considered in the present section. The 

applied load is increased linearly in time in a way to guarantee that the inertial 

forces and kinetic energy effects on the solution are negligible, the load has been 
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increased from zero to its maximum value in a time interval of 3ms. In particular, 

the maximum magnitude of the load is enough to activate crack propagation. The 

analysis are carried out using m=3; Fig. 5.7 shows the crack path for different grid 

orientations. It is possible to observe as the deviation of crack path from the 

horizontal direction still persists although, as expected, the crack paths are 

different from the ones obtained in the dynamic load case. 

 

Fig. 5.7: Crack paths obtained with different rotated grids with m = 3. 

5.2.   Understanding of the problem 

In order to explain with clarity the cause of the dependence of crack path on 

grid orientation, Fig. 5.8 provides an example of a source node connected with all 

its family nodes for a grid characterized by m=2.51: continuous lines represent 

active bonds, dotted lines represent broken bonds, dashed lines represent possible 

directions of crack propagation. From the Fig. 5.8 it is clear that a crack 

propagating in the horizontal direction (crack path 1) intersects, and therefore has 

to break, a given set of bonds (eleven of the bonds connected to the source node), 

whereas a crack propagating in a slightly inclined direction (crack path 2) 

intersects, and therefore has to break, an increasing set of bonds (all previous 

eleven bonds plus three more horizontal bonds to the left of the source node). 

Therefore, it is easier for the crack in the peridynamic grid to propagate in the 

horizontal direction than in other directions close to it. A similar reasoning applies 

to all directions parallel to the bonds: for example a crack propagating at 45° has 

to break twelve bonds whereas if it propagates at (45°±°) (with ° small) it has to 

break (12+2) bonds.  
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Fig. 5.8: a) Source node connected to its family nodes for m=2.51. A crack path at 0° (b) ‘breaks’ less bonds 

than a crack path slightly inclined (c). 0° is a weaker direction with respect to neighboring directions. 

 

Fig. 5.9: Bond directions in the plane of a grid with m = 3. The figure shows as well the area Aj associated to 

the family nodes on the bonds at 26.565° and 18.435°. 

So we can conclude that the discrete distribution of bonds in the peridynamic grid 

introduces a set of directions (the bond directions called as well weaker directions 

below) in which the crack can propagate by breaking a smaller number of bonds 

with respect to the surrounding directions. More precisely, in order to propagate 

cracks have to break fourteen bonds, for m=2.51, in all directions of the plane 

except in the directions parallel to the bonds, for which a smaller number of bonds 

has to be broken. We observe that in the discretized continuum the value of the 

damage would correspond to the theoretical value of 0.5 for cracks propagating in 

all directions except the bond directions. With reference to the case addressed in 

Section 5.1.1 with m=3, the weaker directions are distributed as shown in Fig. 5.9 

and they correspond to the following angles: 0°,18.435°, tan
-1

(0.5) = 26.565°, 

30.964°, 45°, 59.036°, tan
-1 

(2.0) = 63.435, 71.565°, 90°. 
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Fig. 5.10: Comparison of the crack propagation paths with the weaker directions for m=3 and different grid 

inclinations. a) Grid at 5°. b) Grid at 10°. c) Grid at 20°. d) Grid at 30°. e) Grid at 40°. 

Fig. 5.10 compares the crack paths shown in Fig. 5.4 with the weaker directions of 

a grid with m=3. Fig. 5.10 suggests that often cracks propagate along the weaker 

direction closest to the correct direction but the same figure shows as well that 

exceptions can take place. In particular, in Fig. 5.10c the crack is aligned with the 
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bonds at -26.565° rather than with those at -18.435°, which would be closer to the 

correct direction. This is probably due to the fact that the crack at -26.565° does 

not break the bond with the same inclination but the one at -18.435°, since the 

latter requires a smaller failure force which is proportional to the volume Vj 

assigned to the family node of the bond (see Fig. 5.9). A similar remark applies as 

well to the case of Fig. 5.10d. 

5.3.  Solution to the problem 

A possible way to reduce the problem of the dependence of crack direction on 

grid orientation is to increase the number of weaker directions, in this way cracks 

will be attracted most probably by a bond direction sufficiently close to the 

correct direction of crack propagation. From what was said in the previous section 

it is clear that can be achieved by increasing the number of bond directions. Fig. 

5.11 shows that the number of bond directions can be increased by increasing the 

number m.  

 

Fig. 5.11: Bond directions for different values of the m ratio, a) m = 3, b) m = 5, c) m = 8, d) m = 20. 

Fig. 5.11 clearly shows that increasing the bonds in a uniform grid does not 

increase the number of bond directions uniformly in the plane. There exist angles 

in the plane, in particular close to 0°, 45° and 90° where bond directions remain 
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‘rare’ and therefore where the error on crack direction remains somehow larger 

than in other zones of the plane. 

5.3.1. Increasing the m-ratio with a uniform grid 

The simplest approach is to adopt a uniform grid with constant value for m. 

Fig. 5.12 and Fig. 5.13, which concern the worst case of grid at 10°, show how the 

direction of the crack varies as the value of m is increased, while keeping constant 

the grid spacing.  

 

 

Fig. 5.12: Comparison of the crack paths when the load is applied dynamically, grid at10° for different values 

of m ratio. 

 

Fig. 5.13: Comparison of the crack paths when the load is applied quasi-statically, grid at10° for different 

values of m ratio. 



111 

 

 

Fig. 5.14: Comparison of the crack paths when the load is applied dynamically, grid at 5° for different values 

of m ratio. 

 

Fig. 5.15: Comparison of the crack paths when the load is applied quasi-statically, grid at 5° for different 

values of m ratio. 

The corresponding critical stretches s0m are obtained by applying the following 

expression derived by using Eq. (2.15). Fig. 5.14 and Fig. 5.15 show the evolution 

of crack paths for increasing values of m when the inclination of the grid is 5°. 

The results show that higher values of m are required in this case than when the 

grid is inclined at 10°. Such an indication is consistent with what shown in Fig. 

5.11: larger values of m are necessary to correct wrong crack paths if the grid 

inclination is small, i.e. close to 0° where the density of ‘weaker’ directions 

remains low. It is apparent that the increase of the m-ratio improves the accuracy 

of the direction of crack propagation but, at the same time, greatly increases the 

computational cost of the simulations (see Table 5.2 reported in Sect. 5.3.2). In 

order to reduce such a drawback in an efficient way the AGRS algorithm can be 

adopted. 
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5.3.2. Increasing the m-ratio with the AGRS 

As stated at the introduction of this Chapter, the AGRS is a good candidate to 

eliminate the dependence of crack propagation on the grid orientation. The idea is 

to apply the AGRS in order to increase automatically the m-ratio only in the 

proximity of the crack tip by keeping a low value of the m-ratio far from the 

region where the crack may propagate, by doing so the computing resources will 

be managed more efficiently. This result can be achieved through the application 

of different strategies, i.e. by using the numerical m-convergence for increasing 

the m-ratio and keeping constant the horizon length, otherwise, when the problem 

requires to reach the desired length scale [4], the δm-convergence for increasing 

the m-ratio shrinking the horizon length may be a good choice. Both strategies are 

applied in the following.  

Refined Model ΔX0 [mm] m0 ratio ΔXmr [mm] mmr ratio 

grid at 5° 2.0 3.5   1.0 7.0 

grid at 10° 1.0 3.0 0.5 6.0 

grid at 10° 2.0 3.0 0.5 6.0 

Table 5.1: Peridynamic parameters used in the adaptive refined models, the subscript “mr” indicates the 

parameters defined on the most refined region. 

 

Fig. 5.16: Comparison of damage state of the plate with grid rotated of 10°: a) refined uniform model with 

Δx0 = 0.001m (62,502 nodes) and m0 = 6, b) adaptively refined model (15,600 nodes at the beginning of the 

simulation, 19,062 nodes at the end). 
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Fig. 5.17: Comparison of damage state of the plate with grid rotated of 10°: a) refined uniform model with 

ΔX0 = 0.0005m (250,002 nodes) and m = 6, b) adaptively refined model (15,600 nodes at the beginning of the 

simulation, 26,778 nodes at the end). 

 

Fig. 5.18: Comparison of the crack paths obtained with the uniform and adaptively refined grids at different 

inclinations. 

We remark that the aim of applying such strategies is to increase the m-ratio in the 

region where the crack propagation takes place rather than to reach the 

convergence of the numerical solution to that analytical one (see Sect. 3.1). In 

Table 5.1 the main peridynamic parameters used for the adaptive models are 

given. With respect to the case of grid rotated of 10°, Fig. 5.16 shows the contour 

plot of the final crack path obtained by adopting the m-convergence strategy, 

while Fig. 5.17 shows that obtained with the δm-convergence strategy. The results 

are more clearly shown in Fig. 5.18 where some of the crack paths obtained with 

uniform grid are compared to those obtained with adaptively refined grid. It can 

be noted that the dependence of crack propagation on grid orientation can be 



114 

 

eliminated through the use of the adaptive refined grid. Table 5.2 presents the 

CPU time of the simulations carried out for the analyzed cases, it shows that the 

use of the AGRS algorithm is crucial to reduce the computational cost of the 

simulations. 

Model ΔX0 [mm] m-ratio 
 CPU-time 

[hour] 

Crack 

direction 

Uniform  

(grid at 5°) 
1 

3 0.83 deviated 

7 2.90 horizontal 

Uniform  

(grid at 10°) 
0.5 

3 7.08 deviated 

6 16.09 horizontal 

Adaptive single 

level refinement 

(grid at 5°) 

2 3.5 → 7  2.20 horizontal 

Adaptive double 

level refinement 

(grid at 10°) 

2 3 → 6  3.52 horizontal 

Table 5.2: Comparison of CPU-times required by uniform and adaptive models for the grid rotated of 5° and 

10°. 

5.4.  Conclusions about grid sensitivity in peridynamics 

After having clearly stated that regular peridynamic grids suffer from 

dependence of crack paths on grid orientation, the present chapter has shown that 

for 2D examples such dependence is due to the existence in the discrete grid of 

directions along which the peridynamic material offers preferential paths for crack 

propagation. The ‘weaker’ directions coincide with those of the bonds, both in 

regular bond based and ordinary state based grids. In particular, cracks often 

propagate along the weaker direction closest to the correct direction. Exceptions 

to that have been discussed. It has been shown that such dependence persists 

regardless of the nature, dynamic or quasi-static, of the load. In general, the 

deviation of the crack path from the correct direction is larger for the case of 

dynamic load application. That seems to be mainly due to the interaction between 

the waves generated by the dynamic load and the growing crack. A possible way 

to reduce the dependence of crack path on grid orientation is to increase the 

number of weaker directions by increasing the value of the m-ratio. Values of m as 

high as 6-7 seem to provide reasonably accurate solutions. Higher values of m are 
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required to accurately describe cracks propagating at angles close to 0°, 45° and 

90° with respect to the grid orientation. Adopting such a high values of m in the 

whole grid would greatly increase the computational cost of peridynamic based 

simulations and therefore the adoption of suitable algorithms like the AGRS 

developed in this work does considerably improve the computational efficiency 

by limiting the use of the high m values only to the regions where cracks are 

propagating.  We believe that the issues discussed in this work are relevant as well 

for 3D cases. The bonds connected to a central node will most probably define in 

space planes along which cracks can propagate by intersecting, and therefore 

breaking, a given set of bonds, whereas a crack propagating in a slightly inclined 

direction would intersect a larger set of bonds. Therefore, it is easier for the crack 

in the regular 3D peridynamic grid to propagate along a weaker plane than in 

other directions close to it. It is reasonable to assume that increasing the value of 

m in a 3D regular grid would reduce the dependence of the crack pattern on the 

grid orientation. 
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6. Numerical examples 

 It is well known that the study and simulation of dynamic brittle fracture is 

still a challenging problem due to the complexity of all the mechanisms which 

involve a wide range of length scales of the medium. In order to test the 

effectiveness of the proposed AGRS to deal with such phenomena,  in the present 

sections three crack propagation cases will be treated, which represent 

benchmarks commonly used in the scientific literature about brittle dynamic 

fracture [85, 86, 87]. They represent all 2D samples with an initial crack, the 

material is in all cases homogeneous and isotropic, while the adopted constitutive 

model is the PMB (see Section 2.1). We remark that all the simulations have been 

performed with in-house Matlab codes by using the double-precision 

computation. Moreover, all simulations have been carried out through the 

application of the BB-PD formulation, while the space integration is performed by 

means of the PA-PDLAMMPS algorithm (see Section 3.1). The strategy proposed 

in Section 3.2.3 is adopted in order to mitigate the volume losses affecting 

interface nodes (see Fig. 3.10). 

6.1.  Crack branching 

The first example presents a crack branching in a plate with an initial crack and 

an applied step load as shown in Fig. 6.1. The load is kept constant for the whole 

duration of the simulation. A similar case has been simulated in [43, 44] with BB-

PD and in [88] with XFEM. In both cases a uniform grid was used. The same 

problem has been solved with different grids with the aim to verify the 

effectiveness of the proposed AGRS method. Three grids were used; two uniform 

grids, one with grid spacing of level zero refinement (ΔX = 1mm)  and the other 

with the 1
st
 level of refinement of the whole grid (ΔX = 0.5mm). The third grid is 

obtained by applying the proposed AGRS method and therefore its grid spacing is 

not uniform (cfr. Table 6.1). The mechanical properties of the material of the plate 

(Soda-Lime Glass) are E = 72 GPa, ρ = 2,440 kg/m
3
 and G0 =135 J/m

2 
is the 

fracture energy at branching [43]. In Table 6.1 the relevant data for the 

peridynamic grid for the two refinement levels are reported. The plane stress 

condition of the cases imposes a Poisson coefficient υ = 1/3. The tensile stress is 

applied only to the nodes of the upper and lower borders, as shown in Fig. 6.1. 
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The initial crack is modelled by removing the broken bonds. In all simulations the 

applied stress is 22MPa, for a duration of t = 50µs, the time step of the numerical 

integration is Δt =50ns; Fig. 6.2 shows a few images of the temporal evolution of 

the damage state of the adaptive model. One can notice that the refined region is 

generated in front of the crack which develops from the tip of the initial crack, 

since this region is characterised by a high level of elastic energy density. The 

refinement is activated with the energy trigger W ≥ 0.7Wmax applied from time tst = 

5.7µs. 

 

Fig. 6.1: Setup of the pre-cracked plate under traction load. 

Level ΔX (mm) δ (mm) co  [10
18

·N/m
6
] 10

-3
·so 

0 1.00 3.00 7.64 0.93 

1 0.50 1.50 – 2.10 61.10 – 21.60 1.32 – 1.11 

Table 6.1: Peridynamic grid parameters (values in bold character are those of the interface nodes with 

modified horizon). 

The grid refinement generates 2,293 additional nodes. Fig. 6.3 compares the 

contour plots of the damage levels obtained by the three models, in Table 6.2 

some of the main features of the crack morphologies are compared as well as a 

few data on the timing of the crack phenomena: the length of the crack before 

branching lb, the inclination of the initial and final branches of the crack θi and θf , 

the time instants at which the crack starts propagating ti and branching tb (see Fig. 

6.3b). Fig. 6.3 and Table 6.2 show that the model with the adaptive grid provides 

results very similar to those of the homogeneous fine grid. Another important 
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information which BB-PP can provide is an estimate of the propagation speed of 

the crack. 

  

  

  

Fig. 6.2: Six snap-shots showing the temporal evolution of the damage level in the adaptive model. The 

darker region around the crack is the refined zone. 

As suggested in [43], the time history of the crack tip position can be identified by 

monitoring at each time step the position of the farthest node with a damage level 

above 0.35. The speed estimate is given by the following expression: 

𝑉𝑙−1/2 =
‖𝒙𝑙 − 𝒙𝑙−1‖

𝑡𝑙 − 𝑡𝑙−1
 (6.1) 

where  xl  e  xl-1  are the positions of the crack tip at times tl and tl-1 respectively; 

due to the discrete nature of both the special and temporal solutions, the 

evaluation of the crack speed at each time step is characterised by wide 

oscillations; this is the reason why the crack propagation speed is computed by 

taking into account a time interval of 2μs. Fig. 6.4 shows a comparison between 

the experimental measurement of the crack propagation speed [85] and the three 

numerical evaluations, the three average values of the computed speed are given 

in Table 6.3. It is interesting to notice that all models seem capable to capture 

what has been experimentally observed in [86] on the trend of the crack 
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propagation speed just before branching. One can notice in Fig. 6.4 that the 

maximum speed is reached immediately before the start of the crack branching 

(≈22µs, see Table 6.2), whereas a speed reduction is observed during the crack 

bifurcation. The efficiency of the AGRS is demonstrated in Table 6.4 where the 

computational times required by the three different models are given. The 

hardware and software features of the computer are: 

 Intel® Core™ i7-3770 CPU @ 3.40 GHz 

 RAM: 32 GB 

 OS: Windows 8 Pro 64 bit  

a) b) 

  

                                       c) 

 

Fig. 6.3: Comparison of the crack shape at time t = 50µs: a) uniform coarse grid (grid size 0 level), b) uniform 

refined grid (grid size 1st level), c) adaptive grid. 

Model N° nodes ti (μs) tb (μs) 
lb 

(mm) 
Θi [°] Θf [°] 

Uniform 4,000 (0 level) 6.05 21.85 17.0 26.0÷27.0 11.0÷12.0 

Adaptive 4,000 ÷ 6,293 6.00 21.83 16.5 31.0÷32.0 15.0÷16.0 

Uniform 16,000 (1
st
 level) 6.00 20.85 15.0 33.0÷34.0 15.0÷16.0 

Table 6.2: Parameter values of the crack for the implemented models. 
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Fig. 6.4: Comparison of the crack tip propagation speed estimated with the implemented models, 1,580m/s is 

the maximum speed measured experimentally by Bowden et al. [85]. 

Model  Vmean [m/s] 

Uniform (4,000 nodes) 1,319 

Adaptive (4,000 - 6,293 nodes) 1,308 

Uniform (16,000 nodes) 1,344 

Table 6.3: Average crack tip propagation speed estimated with the three models. 

Model  CPU-time [hours] 

Uniform (4,000 nodes) 5,294 

Adaptive (4,000 - 6,293 nodes) 12,233 

Uniform (16,000 nodes) 34,090 

Table 6.4: Comparison of the running times of the three different models. 

We want to remark that the focus of the present work is not on computational 

efficiency but on the effects of refining the grid and reducing the horizon length 

on the numerical solution of the problem. In spite of that, the use of the AGRS 

reduces by 64.1% the solution time with respect to a fine grid. So far the problem 

proposed in this section has been treated by using 2D models, therefore, in order 

to check the effectiveness of the AGRS to capture crack branching in 3D domains, 

its application is extended in a 3D grid.  
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Fig. 6.5: Three snap-shots showing the temporal evolution of the damage level in the adaptive 3D model, a) at 

time t=25μs, b) at time t=50μs, c) a time t=70μs. 
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The mechanical properties of the material of the plate (Duran 50 glass) are E = 65 

GPa, ρ = 2,235 kg/m
3
 and G0 =204 J/m

2 
is the fracture energy at branching [43]. 

The plate has a thickness of tb = 3mm and subjected to a step load of 6MPa. The 

initial coarse grid has a uniform grid spacing of ΔX = ΔY = ΔZ = 1mm, resulting 

in an initial grid of 12000 nodes; the m-ratio is set equal to 3. The total time t of 

simulation is 70µs with a time step of Δt =50ns. Let us consider that the low 

number of nodes through the thickness of the plate surely leads to increase the 

surface effect on the crack propagation. Regardless, we remark that we are 

interested in verifying if AGRS can capture the crack branching. The refinement 

and scaling of 1
st
 level, which is activated with the energy trigger W ≥ 0.7Wmax at 

time tst = 7.5µs, generates 14,644 new nodes. Besides, the δ-convergence strategy 

is adopted to reduce the size of the horizon length. In Fig. 6.5 three snap-shots of 

the temporal evolution of the crack propagation are shown, demonstrating as the 

proposed AGRS algorithm can be easily applied to 3D models. 

6.2.  Kalthoff –Winkler’s experiment 

Another well know study of fracture dynamics is the Kalthoff–Winkler 

experiment [89] in which a pre-cracked steel plate is hit laterally from a projectile 

as shown in Fig. 6.6; such an experiment shows that the fracture type depends on 

the impact speed.  

 

Fig. 6.6: Kalthoff–Winkler’s experimental setup. 
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If the plate is made of steel 18Ni1900, an impact speed of v0 =32m/s causes a 

brittle fracture mainly in mode I [89] leading the crack fracture to propagate with 

an angle of approximately 70° with respect to the horizontal direction. A coarse 

model with 5,000 nodes is the starting point for the AGRS simulation, the input 

parameters are given in Table 6.5. As a first step, only the AGRS of the first level 

is applied. The problem is symmetric so that symmetry conditions could be used 

to speed up the numerical solution [88, 90], however, our model represents the 

entire plate. The properties of the material are E = 190 GPa, ρ = 8,000 kg/m
3
 and 

G0 = 22,170 J/m
2
, plane strain conditions are assumed so that Poisson’s ratio is υ 

=0.25. The impact is simulated by imposing to the nodes on the left surface of the 

sample between the two cracks an initial speed of vi = 16.5 m/s in the horizontal 

direction, in this way we assume that the materials of the projectile and of the 

plate have the same elastic impedance, all other borders are free. The simulation 

duration is t = 90µs and a time step Δt =70 ns is chosen. The refinement is 

activated with both energy trigger 𝑊 ≥  0.7 𝑊𝑚𝑎𝑥 and damage trigger 𝛥𝜙 >  0 

applied from time tst = 15.3µs. Fig. 6.7 shows a sequence of frames of the 

damaged plate, the use of AGR generates 4,453 new nodes. The primary fracture 

starts propagating at about time ti = 24µs along an almost straight line inclined of 

68° with respect to the horizontal axis, a value very close to that determined 

experimentally. Two fracture paths are visible: a primary fracture which originates 

from the pre-existing cracks, and a secondary fracture that is generated at the side 

of the plate opposite to the impacted side. A similar morphology was observed as 

well in references [88, 90], as shown in Fig. 6.8a,b. The last frame of Fig. 6.7 

shows that some damage appears as well on the impacted side of the sample, 

similar results were found as well in [88, 91] (see Fig. 6.8b-c). However, there 

was no reported evidence of a secondary crack in the experiment [89]; reference 

[88] points out that for finer grids such a fracture is not observed. In the adaptive 

model some limited asymmetries are present, as a non-perfectly symmetric 

distribution of the refined zones. The loss of symmetry of peridynamic solutions 

has already been observed, for example in [44] and it is probably caused by a 

variation in truncation errors due to the sequential order with which operations are 

carried out for the computation of the integral in Eq. (3.1b). Another important 

quantity which has to be checked is the crack propagation speed.  
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Level node ΔX (m) δ (mm) co  (10
18

·N/m
6
) 10

-3
·so 

0 2.00 6.00 2.69 5.05 

1 1.00 3.00 – 4.20 21.50 – 7.60 7.13 – 6.00 

Table 6.5: Peridynamic grid parameters for the nodes of the grid (values in bold character are those of the 

interface nodes with modified horizon). 

   

   

Fig. 6.7: Six snap-shots showing the temporal evolution of the damage level in the adaptive mode with the 

first level of refinement and scaling. 

(a) (b) (c) 

   
Fig. 6.8: Crack paths estimated by: a) truss-like discreet element method 2D [90], b) XFEM with loss of 

hyperbolicity criterion 2D [88], c) BBP with uniform/monoscale grid 3D and material X2 NiCoMo 18 9 5 

[91]. 
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Fig. 6.9: Trend of the crack propagation speed of the primary crack. 

Reference [92] states that it cannot be higher than Rayleigh’s speed, which for the 

material under exam is cr = 2,799.2 m/s. Fig. 6.9 shows the evolution of the crack 

propagation speed, computed with Eq. (6.1) with an interval of 1.82µs. The 

maximum computed crack propagation speed is vmax = 1,981m/s, equal to 

approximately 71% of Rayleigh’s speed, and very close to the value of 75% given 

in [88]. So far only the first level of refinement and scaling has been applied, 

hence in order to verify if an higher level of refinement and scaling of the AGRS 

is able to capture the angle experimentally observed in Kalthoff-Winkler’s 

benchmark, another adaptive model is implemented. The initial grid always has 

the same peridynamic parameters given in Table 6.5, while keeping constant the 

m-ratio the horizon has been shrunk to 1.5 mm. The simulation duration is t = 

54µs and a time step Δt =35 ns is chosen. Both the damage (𝛥𝜙 >  0) and energy 

(𝑊 ≥  0.7 𝑊𝑚𝑎𝑥) based triggers are activated from time tst = 15.3µs leading to 

generate 6,902 new nodes at the end of the simulation. Fig. 6.10 shows how the 

crack still propagates straight and with an inclination of approximately 68°, which 

is close to that experimentally observed. We underline that the use of a refinement 

trigger based only on the deformation energy would require threshold values very 

low in order to activate the AGRS procedure at the crack tip, especially in the 

presence of high deformations due, for example to the impact. The refined region 

would be too large and consequently, the numerical procedure would be 

inefficient. Fig. 6.11 shows the results obtained by carrying out the previous 

simulations with only the energy based trigger set to Wthres = 0.3Wmax. As it can be 

clearly seen from the solution obtained, the only energy criterion would lead to 
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generate a very large refined zone, not interested by cracks, and, at the same time, 

would miss the activation of the refinement in the area where the secondary crack 

is going to be generated. To capture the secondary crack an even lower value of 

Wthres would be necessary, which would further increase the size of the refined 

zone. 

 

Fig. 6.10: Snap-shot of damage state of the model with applied the 2nd level of AGRS at time 54 µs. 

a) b) 

 
 

Fig. 6.11: Refined zone of the adaptive models in which only the energy-based trigger is used, a) model with 

the 1st level of refinement/scaling, b) model with the 2nd level of refinement/scaling. 
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6.3. Traction of pre-cracked plate with a hole  

The case under examination has been considered by various authors: reference 

[93] used the FEM based method called Arbitrary Local Mesh Replacement, 

reference [94] used the explicit FEM code DYNA3D, whereas [90] used the 

Truss-Like Discrete Element Method. The problem is about a rectangular plate 

with a lateral pre-crack  and a circular hole, as shown in Fig. 6.12a. The bottom 

side of the plate is clamped and on the opposite upper side a distributed traction is 

applied. The aim of the simulations is to examine how the crack path is affected 

by the presence of the hole as the distance between pre-crack and hole is varied. 

Such distance is measured by the quantity h shown in Fig. 6.12a. Three different 

configurations are analysed: h = 0.015m (model A), h = 0.01m (model B) and h = 

0.005m (model C). The BB-PD models contain a 2D grid of 1,238 nodes (see Fig. 

6.12b). The mechanical properties of the material are E = 71.4GPa, ρ = 2,700 

kg/m
3
 and G0 = 1,000 J/m

2
, while other input parameters for the two refinement 

levels are given in Table 6.6. Plain strain conditions are assumed [93] and the 

external load is applied as a load step kept constant during the whole simulation 

duration.  

a) b) 

 
 

Fig. 6.12: a) Setup of the pre-cracked plate with a hole, b) visualisation of the bonds of model C. 
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Level  ΔX (mm) δ (mm) co  [10
18

·N/m
6
] 10

-3
·so 

0 1.00 3.00 8.08 2.47 

1 0.50 1.50 – 2.1 64.7 – 22.90 3.50–2.94 

Table 6.6: Peridynamic grid parameters for the nodes of the grid (values in bold character are those of the 

interface nodes with modified horizon). 

a) 

 

b) 

 

c) 

 

Fig. 6.13: Three snap-shots showing the temporal evolution of the damage level in the adaptive models: a) 

model A with 1,238–1,860 nodes (h =0.015m), b) model B with 1,238–2,340 nodes (h =0.010m), c) model C 

with 1,238–2,522 nodes (h =0.005m). 
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a) b) c) 

   
Fig. 6.14: The crack path according to [94]: a) model A (h =0.015m), b) model B (h =0.010m), c) model C (h 

=0.005m). 

Due to the lack of available data about the load used in this numerical example, 

the tractions applied to the upper side have been chosen in order to induce crack 

propagation in the three models: 22MPa for case A, 26MPa for case B and 28MPa 

for case C. The time step Δt = 40ns is chosen, the refinement is activated with 

both energy trigger 𝑊 ≥  0.5𝑊𝑚𝑎𝑥 and damage trigger 𝛥𝜙 >  0 applied from 

time tst = 1.92µs for the models A–C and tst =1.80µs for the model B. As 

mentioned in Sect. 3.2.2, tst is determined by carrying out a preliminary analysis 

on the coarse grid. In this numerical example the preliminary analysis has been 

run for a duration of tpr =9.9µs, a small fraction of the solution time duration given 

in Fig. 6.13 which shows a few images of the progression of the damage in the 

plate for the three cases. The figures show that the AGRS is activated precisely 

where the strain gradient is bigger, around the hole, and at the tip of the crack 

which is followed by the refined zone along its path. Fig. 6.14 shows the results 

obtained in [94] the overall features of Fig. 6.13 are similar to those of Fig. 6.14 

although some differences can be noted. However, it has to be observed that in 

our models the hole is not represented accurately because the grid is rather coarse. 

As a consequence of that the distribution of the ‘stress’ concentration in the grid 

might be slightly inaccurate. A better description of the hole without a dramatic 

increase of the node number would require an irregular grid which is not a topic 

of the present work. 
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7. Conclusions 

The application of adaptive grid refinement and scaling to Peridynamic to 

analyse dynamic crack propagation in brittle materials shows that this technique 

allows for a considerable reduction in the use of computational resources with 

respect to those required by uniform grids. This aspect is of fundamental 

importance for peridynamics, because, being nonlocal, it requires much more 

resources than the discretized implementations of the classical theory, such as the 

Finite Element Method. 

The adaptive refinement is activated in the regions where energy 

concentrations occur and the damage is likely to increase. A new refinement 

trigger based on the damage state of the coarse grid is coupled with the  energy 

based trigger, previously proposed in literature. The energy trigger plays a 

fundamental role in the activation of the refinement in regions where damage does 

not take place but high gradients of strain energy are present. However, the 

introduction of the damage based trigger enables the activation of the refinement 

process whenever the energy trigger fails to identify a region as a reasonable area 

for the crack propagation. This situation may happen, for example, when several 

cracks are simultaneously present in the analysed domain and different energy 

concentrations are associated to each crack. 

One of the proposed numerical examples (see Section 6.2) shows that the 

coupled triggers help reducing the size of the refined region and therefore improve 

the efficiency of the method. The examples presented in the dissertation (see 

Section 6.1) show that the adaptive refinement and scaling correctly capture 

complex phenomena such as crack branching in both 2D and 3D models, and 

reduce the CPU time with respect to that required by a uniform grid providing a 

similar accuracy. Results are in good agreement with those obtained with other 

computational methods or in experimental tests.  

Problems arising from the use of the refinement/scaling technique are 

addressed. They are related to the anomalies introduced in the numerical 

peridynamic solution due to the varying horizon and grid spacing over the 

domain. Moreover the use of AGRS can improve the efficiency  of the numerical 
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procedures proposed to reduce the dependence of crack propagation on grid 

orientation. 

Regarding the numerical errors, static analyses have been performed and the 

numerical peridynamic solutions have been compared to the linear elastic solution 

(see Section 4.1). These analyses reveal an important aspect concerning the role 

played by ghost forces in PD solutions. In fact, the results suggest that the 

anomalies in the displacement field are not strictly related to the presence of the 

ghost forces. They may be introduced by the formulation used to derive the 

material peridynamic parameters associated to a varying horizon over the domain. 

This topic requires further investigations. In addition, dynamic analyses regarding 

the propagation of continuum waves in 2D plates have been carried out (see 

Section 4.2). The analyses reveal the presence of spurious reflections and 

distortions of the elastic waves exhibited when they pass through the boundary 

region between areas of the discretized grid with different grid spacing and 

horizon. Some ideas have been presented on how to reduce such a spurious 

reflections and distortions, for instance, assigning a variable horizon to the 

interface nodes. 

The second problem concerns the dependence of crack propagation on grid 

orientation, which could be a strong shortcoming for a software based on 

peridynamics (see Chapter 5). The problem has been investigated by means of a 

benchmark 2D example of crack propagation, showing that regular peridynamic 

grids suffer from dependence of crack paths on grid orientation. Such dependence 

is due to the existence in the discretized grid of directions along which the 

peridynamic material shows preferred paths for crack propagation. In particular, 

cracks often propagate along the weaker direction closest to the expected 

direction. It has been shown that such dependence persists regardless of the 

nature, either dynamic or quasi-static, of the load. In general, the deviation of the 

crack path from the correct direction is bigger for dynamic load applications. This 

seems to be mainly due to the interaction between the waves generated by the 

dynamic load and the growing crack. A possible way to reduce the dependence of 

crack path on grid orientation is to adopt an m-ratio of 6-7, which seems to 

provide reasonably accurate solutions for the analysed systems. The use of the 
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adaptive grid refinement and scaling algorithm considerably improves the 

computational efficiency by limiting the use of high m values only to regions 

where cracks are actually propagating. 

7.1.  Future developments 

It must be pointed out that several future activities should be carried out in 

order to: 

 improve the robustness and the efficiency of the adaptive grid refinement 

and scaling algorithm; 

 investigate the problems which arise when a non-uniform grid with a 

varying horizon is employed for numerically implementing peridynamics.  

It would be useful to develop an algorithm based on a refinement and 

coarsening technique. In fact, the refinement strategy reduces the grid spacing in 

the regions of interest by adding permanently new nodes as soon as the refinement 

is activated during the simulation. As a result of doing that, the areas of the grid 

behind the crack tip are kept refined throughout the simulation, leading to an 

increase in the computational cost of the overall simulation. On the contrary, the 

refinement and coarsening technique is based on the concept of refining the region 

around the crack tip, removing the nodes left behind at every update of the grid. 

Intuitively, due to the non-locality of the peridynamic formulation, several issues 

arise when the coarse nodes near the crack path are recovered in the grid. As an 

example, we should take into account the influence of the change of the horizon 

size close to the boundary of the crack path on the crack propagation: for example, 

an increase of the horizon size leads to an increase in the softening of the material 

due to the skin effect. Therefore, it would be interesting to evaluate the effect of 

the interaction between the elastic waves and the coarse boundaries of the crack 

on peridynamic solution. However, before removing the refined nodes from the 

region in which the crack takes place, a specific function to keep track of the 

refined crack path should be adopted. Refinement and coarsening are both 

affected by the need to define displacements, velocities, masses and other physical 

quantities in previously non-existing nodes. Interpolation techniques, which play a 

crucial role in that, should be further investigated. 
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Some results of static analyses presented in this dissertation highlight that the 

use of a varying horizon over the domain introduces anomalies in the 

displacement field, regardless of whether the local equilibrium is satisfied in the 

region in which the horizon size varies (see Section 4.1). Hence, further 

investigations concerning the origin of such anomalies should be carried out. It 

should be noticed that the scaling formulation proposed in the literature defines 

the peridynamic properties to be assigned to the bonds by means of expressions 

derived in the original peridynamic formulation, which implicitly assumes that the 

horizon is constant over the domain. Therefore, specific mathematical relations 

should be introduced in order to reduce or eliminate such anomalies.  

One of the potentialities offered by peridynamics is the possibility to capture 

the material response at different length-scales of the material or of the analysed 

phenomena. The adaptive grid refinement and scaling pave the way to concurrent 

multi-scale models in a unique framework by automatically reducing the length-

scale in those regions where the crack propagation takes place. For instance, this 

strategy would allow to capture microscopic processes that control dynamic 

fracture in brittle materials, such as microcracking phenomena. This process is 

one of the main mechanisms of energy dissipation in the zones near the crack tip 

observed experimentally which controls dynamic crack propagation. Using a 

uniform grid with a constant horizon would require a big amount of computational 

resources. 

Another problem that should be examined thoroughly concerns the dependence 

of crack propagation on grid orientation in 3D models. As stated previously, the 

issues arose by carrying out 2D analysis are expected to be relevant for 3D cases 

as well. As a matter of fact, in 3D the bonds connected to a central node will most 

probably define planes along which cracks can propagate by intersecting, and 

therefore breaking, a given set of bonds, whereas a crack propagating in a slightly 

inclined direction would intersect a larger set of bonds. Therefore, it is easier for 

the crack in the regular 3D peridynamic grid to propagate along a weaker plane 

than in other directions close to it. It is reasonable to assume that increasing the 

value of m in a 3D regular grid would reduce the dependence of the crack pattern 

on the grid orientation. Anyway, further 3D benchmark problems regarding both 
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static and dynamic fracture should be carried out in order to validate this 

hypothesis.  

Finally, another possible future development regards the extension of the 

adaptive refinement and scaling technique to the application of non-uniform 

unstructured grids, which are more suitable to model complex geometries. 
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Appendix A 

Adaptive grid refinement and scaling algorithms 

In this Appendix, we present the pseudo-codes of the algorithms developed to 

implement the AGRS. Initially, a brief overview of the main data structure is 

given in the following: 

 The “Grid matrix” stores the geometrical properties of the nodes such as their 

absolute position with respect to the reference system, the assigned volume, 

the ID number to identify the type of material of the volume assigned to the 

node, the horizon length and finally the ID number to detect the level of 

refinement of the node, as shown in the following for 2D cases: 

 

(A.1) 

with N the number of nodes of the grid. We can note that there is no need to 

store the ID number of the nodes since they are identified by the index of 

their corresponding row, in this way it is possible to save memory space. The 

number of columns of the grid matrix may vary between 6 columns and 7 

depending on whether we are dealing with 2D or 3D analysis, respectively. In 

the latter case the Z coordinates of the nodes are added in the 3
rd

 column. 

Taking into account that the grid matrix has to be updated at each step of the 

analysis in which new nodes are added to the grid, we propose the following 

strategy: if Ni represents the initial number of nodes of the grid, and Nf  the 

number of nodes of the grid at the end of the analysis, including activated and 

deactivated nodes (see Sect. 3.2.3), then the row size N will vary between Ni 

and Nf. The addition of new nodes involves the updating of the properties of 

the corresponding parent nodes, such as the volume, the horizon and the level 

of refinement assigned to them, therefore, at each updating the new properties 
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in the grid matrix are overwritten on the previous one. As a consequence, 

three matrixes referred as “volume updating”, “horizon updating” and “level 

updating” are adopted in order to keep track of the history of the properties 

required to display the results during the post-processing phase. As an 

example, the volume updating matrix assumes the form: 

 

(A.2) 

 The “bond matrix” stores the list of the ID numbers of the family nodes in the 

initial configuration of the model associated with the corresponding source 

nodes of the grid, the data structure takes the form: 

 

(A.3) 

with M the maximum row index whose value can be different from the 

maximum row index N of the grid matrix, while the maximum column index 

is given by the maximum number of bonds of the domain analyzed. Unlike 

the data structure of the grid matrix, in the bond matrix the source ID 

numbers are stored in the 1
st
 column, the reason of that is clear by reading 

Sect. 3.2.3. It can be noted that the null elements are replaced with the source 

ID numbers in those rows in which the number of the family nodes is lower 

than the maximum column index of the matrix. As explained in [82], such a 

structure allows to take advantage of the matrix operations offered by Matlab 

rather than managing single sequences of operations like “if” conditions.  
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 The “bond history matrix”, which will be called Hbond in the following, keeps 

track of the history of the health state of the bonds storing the time step for 

which the bonds breaks. The data structure is the same as that of the bond 

matrix, with the difference that the number ID of the nodes are replaced with 

0 for unbroken bonds and with the time step number for the broken bonds.  

 The “Bond length component matrix” stores the components with respect to 

the reference system of the relative distance between the family nodes and the 

corresponding source nodes. Two or three matrixes are separately built to 

store (X,Y) components for 2D cases and (X,Y,Z) components for 3D cases, 

respectively. For instance, with reference to 2D cases, the matrixes assume 

the following form: 

 

(A.4a) 

 

(A.4b) 

The subscripts (IDsource,IDfamily) indicate the relative position between the 

centroid of the family cell and its source node. Where the family ID number 

is replaced with the source ID number the components are null, being null the 

relative distance between them. By comparing Eq. (A.3) with Eqs. (A.4) it is 

clear to observe that the assigned properties in Eqs. (A.4) are exactly located 

in the position of the corresponding family and source nodes listed in Eq. 

(A.3), since the latter is used as a reference matrix. Then the matrixes in Eqs. 

(A.4) have the same size of the matrix in Eq. (A.3). 
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 The “Volume correction factor matrix” stores the correction factors (see 

Eq. (3.1) in Section 3.1)  to be multiplied to the volume of corresponding 

family nodes, the data structure assumes the same structure of Eq. (A.3), 

as follows: 

 

(A.5) 

The volume correction factors assigned to the volume of the source nodes 

are set to zero. 

 In order to store the interested quantities such as the displacement space 

field, the density of potential energy space field and the damage space 

field at each time step of the analysis, the data structure of the 

“displacement field matrix” assumes for 2D cases the following form:    

 

 

(A.6) 

while for the “density of potential energy matrix”: 

 

(A.7) 
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The “damage matrix” D is not given since its structure is the same as the 

structure of Eq. (A.7). 

 The “Parent and child structure array” allows to keep track of the 

relationship between the parent nodes and the generated child nodes.  In 

Matlab language the “structure array” is a particular type of array data 

structure in which multiple fields can be stored, for each field the value 

input argument can be any data type with different sizes. In the following, 

an example of a such data structure is given for 2D cases and when the 2
nd

 

level of refinement is adopted: 

 

 

(A.8) 

 

The algorithms developed take advantage of some useful built-in functions of 

Matlab® (see manual of Matlab® for a detailed description), such as: 

 find(A): it finds indices and values of nonzero elements of the array A 

 ismember(A,B): it returns a logic array containing 1 (true) where the data 

in A is found in B, elsewhere, it returns 0 (false) 

 sum(A): it returns the sum of the elements of A along the first array 

dimension whose size does not equal 1 

 unique(A): it returns the same data as in A, but with no repetitions 

 reshape(A,sz): it reshapes the array A using the size vector sz by keeping 

the total number of elements constant 

 numel(A): it returns the number of elements of the array A 
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 “.” : operator which allows to compute the element-wise operations on 

arrays, for instance, A.*B computes the element-wise multiplication 

between the arrays A and B  

 pinv(A): it returns the Penrose pseudo-inverse of matrix A.  

Algorithm A.1: Implementation of the energy based trigger, see Section 3.2.1. 

1: {Set up the threshold value of the density of potential energy} 

2: 𝑊𝑡ℎ𝑟𝑒𝑠 = % ∙ max (𝑊(: , 𝑛)) 

3: {Identify the nodes of the coarse grid whose the density of potential energy 

is higher than the threshold value} 

4: 𝑛𝑜𝑑𝑒𝑐𝑜𝑎𝑟𝑠𝑒 = 𝑓𝑖𝑛𝑑(𝑊 (: , 𝑛) ≥  𝑊𝑡ℎ𝑟𝑒𝑠 𝑎𝑛𝑑 𝑔𝑟𝑖𝑑(: ,6) = 0) 

 {Initialize the internal variable to store temporarily the parent nodes         

belonging to the child nodes} 

  𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡 = [] 

5: {Identify the coarse parent nodes of the grid whose the density of potential 

energy of their child nodes is higher than the threshold value} 

6: for 𝑖 = level𝑚𝑎𝑥: −1: 1 

7:       𝑛𝑜𝑑𝑒𝑐ℎ𝑖𝑙𝑑,𝑖 = 𝑓𝑖𝑛𝑑(𝑊 (: , 𝑛) ≥  𝑊𝑡ℎ𝑟𝑒𝑠 𝑎𝑛𝑑 𝑔𝑟𝑖𝑑(: ,6) = 𝑖) 

8:       {Add to the list of child nodes identified in row 7 the list of the   

        corresponding parent nodes} 

9:       𝑙𝑖𝑠𝑡 = [ 𝑛𝑜𝑑𝑒𝑐ℎ𝑖𝑙𝑑,𝑖, 𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡]) 

10:      {Find the indexes of the rows in which the parent nodes are stored} 

11:       𝑙𝑜𝑔𝑖𝑐𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(𝑃𝐶(𝑖). 𝑖𝑛𝑑𝑒𝑥𝑠(: ,2: 𝑒𝑛𝑑), 𝑙𝑖𝑠𝑡) 

12:       𝑟𝑜𝑤𝑠 = 𝑠𝑢𝑚(𝑙𝑜𝑔𝑖𝑐𝑣𝑒𝑐𝑡𝑜𝑟 , 2) > 0 

13:       𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢𝑛𝑖𝑞𝑢𝑒(𝑃𝐶(𝑖). 𝑖𝑛𝑑𝑒𝑥𝑠(𝑟𝑜𝑤𝑠, 1)) 

14: end 

15: {Store in the output variable the list of nodes identified} 

16: 𝑛𝑜𝑑𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 = [𝑛𝑜𝑑𝑒𝑐𝑜𝑎𝑟𝑠𝑒 , 𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡] 

Algorithm A.2: Implementation of damage based trigger, see Section 3.2.2 

1: {Identify the nodes of the coarse grid whose damage is higher than the 

initial damage} 

2: 𝑛𝑜𝑑𝑒𝑐𝑜𝑎𝑟𝑠𝑒 = 𝑓𝑖𝑛𝑑(𝐷 (: , 𝑛) ≥  𝐷 (: ,1) & 𝑔𝑟𝑖𝑑(: ,6) == 0) 
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 {Initialize the internal variable to store temporarily the parent nodes 

belonging to the child nodes} 

  𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡 = [] 

3: {Identify the coarse parent nodes of the grid whose child nodes are 

damaged} 

4: for 𝑖 = level𝑚𝑎𝑥: −1: 1 

5:       𝑛𝑜𝑑𝑒𝑐ℎ𝑖𝑙𝑑,𝑖 = 𝑓𝑖𝑛𝑑(𝐷 (: , 𝑛) ≥  𝐷 (: ,1)  &  𝑔𝑟𝑖𝑑(: ,6) == 𝑖) 

6:       {Add to the list of child nodes identified in the row 7 the list of the    

        corresponding parent nodes} 

7:       𝑙𝑖𝑠𝑡 = [ 𝑛𝑜𝑑𝑒𝑐ℎ𝑖𝑙𝑑,𝑖, 𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡]) 

8:      {Find the indexes of the rows in which the parent nodes are stored} 

9:       𝑙𝑜𝑔𝑖𝑐𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(𝑃𝐶(𝑖). 𝑖𝑛𝑑𝑒𝑥𝑠(: ,2: 𝑒𝑛𝑑), 𝑙𝑖𝑠𝑡) 

10:           𝑟𝑜𝑤𝑠 = 𝑠𝑢𝑚(𝑙𝑜𝑔𝑖𝑐𝑣𝑒𝑐𝑡𝑜𝑟 , 2) > 0 

11:       𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢𝑛𝑖𝑞𝑢𝑒(𝑃𝐶(𝑖). 𝑖𝑛𝑑𝑒𝑥𝑠(𝑟𝑜𝑤𝑠, 1)) 

12: end 

13: {Store in the output variable the list of nodes identified} 

14: 𝑛𝑜𝑑𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 = [𝑛𝑜𝑑𝑒𝑐𝑜𝑎𝑟𝑠𝑒 , 𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡] 

Algorithm A.3: Implementation of the code for generating new nodes to add 

in the grid by using Method B (2D version), see Section 3.2.3. 

1: {Copy the previous geometric matrix, list of bonds matrix, the initial    

   horizon and grid spacing in temporary arrays} 

2: 𝑔𝑟𝑖𝑑𝑡𝑒𝑚 = 𝑔𝑟𝑖𝑑𝑜𝑙𝑑 

3: 𝐼𝑏𝑜𝑛𝑑,𝑡𝑒𝑚 = 𝐼𝑏𝑜𝑛𝑑,𝑜𝑙𝑑 

4: Δ𝑋𝑡𝑒𝑚 = Δ𝑥0 

5: Δ𝑌𝑡𝑒𝑚 = Δ𝑦0 

6: δ𝑡𝑒𝑚 = δ0 

7: {Generate the child nodes for each level of refinement by starting from the  

   lowest level} 

8: for 𝑖 = 1: level𝑚𝑎𝑥 

9:       {As a first step , find the nodes which has to be refined} 

10:       {Proceed in a different way depending on the maximum level of  

        refinement adopted in the analysis} 
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11:       if  level𝑚𝑎𝑥 > 1 

12:           𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑛𝑜𝑑𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦     

13:           {Find the child nodes of i-th level belonging to the parent nodes    

            identified by the trigger} 

14:           for 𝑗 = 1: (𝑖 − 1) 

15:                  𝑟𝑜𝑤𝑠 = 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(𝑃𝐶(𝑗). 𝑖𝑛𝑑𝑒𝑥𝑠(: ,1), 𝑛𝑜𝑑𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦) 

16:                 𝑛𝑜𝑑𝑒𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢𝑛𝑖𝑞𝑢𝑒(𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑃𝐶(𝑗). 𝑖𝑛𝑑𝑒𝑥𝑠(𝑟𝑜𝑤𝑠, 2: 𝑒𝑛𝑑), 

                                                            4 ∗ 𝑠𝑢𝑚(𝑟𝑜𝑤𝑠), 1)          

17:           end 

18:       else 

19:           𝑛𝑜𝑑𝑒𝑠 = 𝑛𝑜𝑑𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 

20:      end 

21:       𝑟𝑜𝑤𝑠1 = 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(𝐼𝑏𝑜𝑛𝑑,𝑡𝑒𝑚(: ,1), 𝑛𝑜𝑑𝑒𝑠) 

22:      {Select all the family nodes belonging to the identified source parent  

       nodes} 

23:      𝑛𝑜𝑑𝑒𝑠𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢𝑛𝑖𝑞𝑢𝑒(𝐼𝑏𝑜𝑛𝑑(𝑟𝑜𝑤1, : )) 

24:      {As a second step, generate the new nodes by computing a loop for  

       each parent node identified} 

25:      {Define counters to increase the row sizes of geometric matrix and  

       parent and child structure array in the loop} 

26:      𝑘 = 𝑛𝑢𝑚𝑒𝑙(𝑔𝑟𝑖𝑑𝑡𝑒𝑚(: ,1)) + 1; 

27:      𝑘𝑘 = 𝑛𝑢𝑚𝑒𝑙(𝑃𝐶. (𝑖)𝑖𝑛𝑑𝑒𝑥(: ,1)); 

28:      for 𝑗 = 1: numel (𝑛𝑜𝑑𝑒𝑠𝑝𝑎𝑟𝑒𝑛𝑡) 

29:            𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡   = 𝑔𝑟𝑖𝑑𝑡𝑒𝑚(1: 2, 𝑛𝑜𝑑𝑒𝑠𝑝𝑎𝑟𝑒𝑛𝑡(𝑗))           

30:            {Compute the corner coordinates of the area assigned to the parent            

             node} 

31:            𝑋𝑌𝑐𝑜𝑟𝑛𝑒𝑟𝑠 = [𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(1) −
Δ𝑋𝑡𝑒𝑚

2
, 𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(2) −

Δ𝑌𝑡𝑒𝑚

2
; … 

     

                                  𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(1) +
Δ𝑋𝑡𝑒𝑚

2
, 𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(2) −

Δ𝑌𝑡𝑒𝑚

2
; … 

                                  𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(1) +
Δ𝑋𝑡𝑒𝑚

2
, 𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(2) +

Δ𝑌𝑡𝑒𝑚

2
; … 

                                  𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(1) −
Δ𝑋𝑡𝑒𝑚

2
, 𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(2) +

Δ𝑌𝑡𝑒𝑚

2
] 
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32:           {Compute the coordinates of the new child nodes} 

33:           𝑋𝑌𝑐ℎ𝑖𝑙𝑑   = [𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(1) + 𝑋𝑌𝑐𝑜𝑟𝑛𝑒𝑟𝑠(: ,1)./2, … 

                               𝑋𝑌𝑝𝑎𝑟𝑒𝑛𝑡(2) + 𝑋𝑌𝑐𝑜𝑟𝑛𝑒𝑟𝑠(: ,2)./2] 

34:           {Store all the properties belonging to the new nodes in the geometric  

            matrix} 

35:           𝑔𝑟𝑖𝑑𝑡𝑒𝑚(𝑘: 𝑘 + 3,1: 2) = 𝑋𝑌𝑐ℎ𝑖𝑙𝑑 

36:           𝑔𝑟𝑖𝑑𝑡𝑒𝑚(𝑘: 𝑘 + 3,3) =
Δ𝑥𝑡𝑒𝑚∙Δ𝑦𝑡𝑒𝑚

4
 

37:           𝑔𝑟𝑖𝑑𝑡𝑒𝑚(𝑘: 𝑘 + 3,4) = 1 

38:           𝑔𝑟𝑖𝑑𝑡𝑒𝑚(𝑘: 𝑘 + 3,5) = 𝛿𝑡𝑒𝑚/2 

39:           𝑔𝑟𝑖𝑑𝑡𝑒𝑚(𝑘: 𝑘 + 3,6) = 𝑖 

40: 
          {Store the ID numbers of both the parent and child nodes in the  

            parent and child array} 

41:           𝑃𝐶. (𝑖)𝑖𝑛𝑑𝑒𝑥(𝑘𝑘 + 𝑗, : ) = [ 𝑛𝑜𝑑𝑒𝑠𝑝𝑎𝑟𝑒𝑛𝑡(𝑗), 𝑘: 𝑘 + 3] 

42:      end 

43:      {Update the properties of the parent nodes eliminated}  

44:      𝑔𝑟𝑖𝑑𝑡𝑒𝑚(𝑛𝑜𝑑𝑒𝑠𝑝𝑎𝑟𝑒𝑛𝑡, 3) = 0 

45:      𝑔𝑟𝑖𝑑𝑡𝑒𝑚(𝑛𝑜𝑑𝑒𝑠𝑝𝑎𝑟𝑒𝑛𝑡, 4) = 0 

46:      𝑔𝑟𝑖𝑑𝑡𝑒𝑚(𝑛𝑜𝑑𝑒𝑠𝑝𝑎𝑟𝑒𝑛𝑡, 6) = −𝑖 

47:      {Update temporary variables} 

48:       if  𝑖 ≤ 𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥  − 1 

49:           Δ𝑋𝑡𝑒𝑚 = Δ𝑥0/2
𝑖 

50:           Δ𝑌𝑡𝑒𝑚 = Δ𝑥0/2
𝑖 

51:           δ𝑡𝑒𝑚 = δ0/2
𝑖 

52:           {Built the list of bonds only for the nodes with the same ‘degree 

            kinship’} 

53:           𝐼𝑏𝑜𝑛𝑑,𝑡𝑒𝑚 = 𝑓(𝑔𝑟𝑖𝑑𝑡𝑒𝑚, 𝑖) 

54:       end 

55: end 

56: 𝑔𝑟𝑖𝑑𝑛𝑒𝑤 = 𝑔𝑟𝑖𝑑𝑡𝑒𝑚 
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Algorithm A4: Implementation of the PIM to interpolate the nodal 

displacement values in a 2D domain, the new nodes are generated by using 

the method B, see both Section 3.2.3 and Section 3.2.4.  

1: {Calculate the difference between the level of refinement of the previous 

grid with that new one, in order to detect the parent nodes which has just 

generated new child nodes} 

2: 𝑑𝑖𝑓𝑓 = 𝑔𝑟𝑖𝑑𝑜𝑙𝑑(: ,6) − 𝑔𝑟𝑖𝑑𝑛𝑒𝑤(: ,6) 

3: {Compute a loop for each level of refinement applied} 

4: for 𝑖 = 1: level𝑚𝑎𝑥 

5: 
     {As a first step, identify the child nodes generated by the parent nodes  

       which are not in the previous grid 

6:       𝑙𝑜𝑔𝑖𝑐 = (𝑑𝑖𝑓𝑓 == (2𝑖 − 1)) 

7:      {Proceed if previous parent nodes have been found) 

8:        if 𝑠𝑢𝑚(𝑙𝑜𝑔𝑖𝑐) ≥ 1 

9:            𝐼𝑛𝑑𝑒𝑥𝑟𝑜𝑤 = 1: 𝑛𝑢𝑚𝑒𝑙(𝑔𝑟𝑖𝑔𝑙𝑖𝑎𝑜𝑙𝑑(: ,1)) 

10:            𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡 = 𝐼𝑛𝑑𝑒𝑥𝑟𝑜𝑤(𝑙𝑜𝑔𝑖𝑐) 

11:            𝑙𝑜𝑔𝑖𝑐1 = 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(𝑃𝐶(𝑖). 𝑖𝑛𝑑𝑒𝑥(: ,1), 𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡) 

12:            𝐼𝑛𝑑𝑒𝑥1,𝑟𝑜𝑤 = 1: 𝑛𝑢𝑚𝑒𝑙(𝑃𝐶(𝑖). 𝑖𝑛𝑑𝑒𝑥(: ,1)) 

13:            𝐼𝐷𝑐ℎ𝑖𝑙𝑑 = 𝑃𝐶(𝑖). 𝑖𝑛𝑑𝑒𝑥(𝐼𝑛𝑑𝑒𝑥1,𝑟𝑜𝑤(𝑙𝑜𝑔𝑖𝑐1), 2: 𝑒𝑛𝑑) 

14:          {Compute a loop for each identified parent node} 

15:            for 𝑗 = 1: numel(𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡) 

16:                 𝑙𝑜𝑔𝑖𝑐2 = 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(𝑃𝐶(𝑖). 𝑖𝑛𝑑𝑒𝑥(: ,1), 𝐼𝐷𝑝𝑎𝑟𝑒𝑛𝑡(𝑗)) 

17:                {Find the list of the family nodes at the previous time step} 
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18:                 𝑛𝑜𝑑𝑒𝑠𝑓𝑎𝑚𝑖𝑙𝑦 = 𝐼𝑏𝑜𝑛𝑑,𝑜𝑙𝑑(𝑙𝑜𝑔𝑖𝑐2, 𝐻𝑏𝑜𝑛𝑑(𝑙𝑜𝑔𝑖𝑐2, : ) == 0) 

19: 
               {Store into displacement matrix the family nodal displacements} 

20:                 𝑈𝑠 = 𝑈𝑛−1(𝑛𝑜𝑑𝑒𝑠𝑓𝑎𝑚𝑖𝑙𝑦, (2𝑛 − 1): (2𝑛))  

21: 
               {Select the child nodes from the list of child nodes which are still  

                 active}  

22: 
                𝑙𝑜𝑔𝑖𝑐2 = (𝑔𝑟𝑖𝑑𝑛𝑒𝑤( 𝐼𝐷𝑐ℎ𝑖𝑙𝑑(𝑗, : ), 6) > 0) 

23:                 𝐼𝐷𝑎𝑐𝑡𝑖𝑣𝑒,𝑐ℎ𝑖𝑙𝑑 = (𝑔𝑟𝑖𝑑𝑛𝑒𝑤( 𝐼𝐷𝑐ℎ𝑖𝑙𝑑(𝑗, : ), 6) > 0) 

24: 
               {As a second step, which is only applied in the case of i =1,  

                  identify the child nodes generated by the parent nodes which  

                  are not in the previous grid} 

25: 
               {Proceed with the second step if no active child nodes have been  

                 found} 

26:                 if  𝑎𝑛𝑦(𝑙𝑜𝑔𝑖𝑐2 == 0) & (𝑖 == 1)  

27:                     𝐼𝐷𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒,𝑐ℎ𝑖𝑙𝑑 =  𝐼𝐷𝑐ℎ𝑖𝑙𝑑(𝑗, 𝑙𝑜𝑔𝑖𝑐2 == 1) 

28:                 for 𝑗𝑗 = 2: level𝑚𝑎𝑥 

29:                       𝑙𝑜𝑔𝑖𝑐3 = 𝑖𝑠𝑚𝑒𝑚𝑏𝑒𝑟(𝑃𝐶(𝑗𝑗). 𝑖𝑛𝑑𝑒𝑥(: ,1), 𝐼𝐷𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒,𝑐ℎ𝑖𝑙𝑑) 

30:                       𝐼𝐷𝑛𝑜𝑑𝑒𝑠 = 𝑢𝑛𝑖𝑞𝑢𝑒(𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑃𝐶(𝑗𝑗). 𝑖𝑛𝑑𝑒𝑥( 𝑙𝑜𝑔𝑖𝑐3, 2: 𝑒𝑛𝑑), 

𝑠𝑢𝑚(𝑙𝑜𝑔𝑖𝑐3) ∙ 4,1) 

31:                       𝑙𝑜𝑔𝑖𝑐4 = (𝑔𝑟𝑖𝑑𝑛𝑒𝑤(𝐼𝐷𝑛𝑜𝑑𝑒𝑠, 6) > 0) 

32:                       𝐼𝐷𝑎𝑐𝑡𝑖𝑣𝑒,𝑐ℎ𝑖𝑙𝑑 = [𝐼𝐷𝑎𝑐𝑡𝑖𝑣𝑒,𝑐ℎ𝑖𝑙𝑑, 𝐼𝐷𝑛𝑜𝑑𝑒𝑠 (𝑙𝑜𝑔𝑖𝑐4)] 

33:                       𝐼𝐷𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒,𝑐ℎ𝑖𝑙𝑑 = 𝐼𝐷𝑛𝑜𝑑𝑒𝑠(𝑙𝑜𝑔𝑖𝑐4 == 0) 

34:               end 

35:           end 
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36:           {Built the moment matrix} 

37:           𝑃𝑄 = [𝑜𝑛𝑒𝑠(𝑛𝑢𝑚𝑒𝑙(𝑛𝑜𝑑𝑒𝑠𝑓𝑎𝑚𝑖𝑙𝑦), 1), 𝑔𝑟𝑖𝑑𝑜𝑙𝑑(𝑛𝑜𝑑𝑒𝑠𝑓𝑎𝑚𝑖𝑙𝑦, 1: 2)] 

38:          {Compute the inverse of the moment matrix} 

39:           𝑃𝑄,𝑖𝑛𝑣 = 𝑝𝑖𝑛𝑣(𝑃𝑄) 

40:          {Built the vector of the basis function of monomials} 

41:           𝑝𝑐ℎ𝑖𝑙𝑑 = [𝑜𝑛𝑒𝑠(𝑛𝑢𝑚𝑒𝑙(𝐼𝐷𝑎𝑐𝑡𝑖𝑣𝑒,𝑐ℎ𝑖𝑙𝑑), 1), … 

𝑔𝑟𝑖𝑑𝑜𝑙𝑑(𝐼𝐷𝑎𝑐𝑡𝑖𝑣𝑒,𝑐ℎ𝑖𝑙𝑑, 1: 2)] 

42:          {Interpolate the displacement values of the new nodes } 

43:          𝑈𝑛 (𝐼𝐷𝑎𝑐𝑡𝑖𝑣𝑒,𝑐ℎ𝑖𝑙𝑑, (2𝑛 − 1): (2𝑛)) = (𝑝𝑐ℎ𝑖𝑙𝑑 ∗ 𝑃𝑄,𝑖𝑛𝑣) ∗ 𝑈𝑠 

44:     end 

45:    end 

46: end 

 


