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Summary

Peridynamics, a recently proposed non-local continuum theory, is particularly
suitable to describe fracture phenomena in a wide range of materials. One of most
common techniques for its numerical implementation is based on a mesh-free
approach, in which the whole body is discretized with a uniform grid and a
constant horizon, the latter related to the length-scale of the material and/or of the
phenomenon analysed. As a consequence of that, computational resources may
not be used efficiently. The present work proposes adaptive refinement/scaling
algorithms for 2D and 3D peridynamic grids, to reduce the computational cost of
peridynamic based software. Adaptive refinement/scaling is here applied to the
study of dynamic crack propagation in brittle materials. Refinement is activated
by using a new trigger concept based on the damage state of the material, coupled
with the more traditional energy based trigger, already proposed in the literature.
The use of a varying horizon and grid spacing over the grid may introduce some
anomalies on the numerical peridynamic solution, such anomalies are investigated
in detail through static and dynamic analyses. Moreover, while the scientific
community is working to assess the full potential of peridynamics, few
researchers have observed indirectly that the evolution of crack paths can follow,
in an unphysical way, the axes of symmetry of the grid. The main parameter
affecting such a numerical phenomenon seems to be the value of the m ratio,
namely the ratio between the horizon and the grid spacing. The dependence of the
crack path on the grid orientation would be a serious drawback for peridynamic
based software since it would undermine what is believed to be one of its most
important advantages over other computational methods, i.e. its capability to
simulate (multiple) crack nucleation, propagation, branching and interaction in
solids in a simple way. Finally, in order to show the effectiveness of the proposed
approach, several examples of crack propagation in both 2D and 3D problems are
presented. Then, the results obtained are compared with those obtained with other

numerical methods and with experimental data.






Sommario

La Peridynamica, una teoria non locale del continuo proposta recentemente, ¢
particolarmente adatta a descrivere fenomeni di frattura in una vasta gamma di
materiali. Una delle tecniche pit comuni per la sua implementazione numerica ¢
basata su un approccio senza mesh, in cui l'intero corpo viene discretizzato con
una griglia uniforme e un orizzonte costante, essendo quest'ultimo in relazione
con la lunghezza di scala del materiale e/o del fenomeno analizzato. Di
conseguenza le risorse computazionali possono non essere utilizzate in modo
efficiente. Il presente lavoro si propone di sviluppare gli algoritmi per
I’implementazione dell’adaptive grid refinement and scaling per griglie
peridinamiche 2D e 3D, con lo scopo di ridurre il costo computazionale dei
software basati sulla peridynamica. Questo approccio viene applicato allo studio
della propagazione dinamica di cricche in materiali fragili. Il refinement viene
attivato utilizzando un nuovo concetto di “innesco” che si basa sullo stato di
danneggiamento del materiale, accoppiato con il piu tradizionale innesco basato
su un criterio energetico, gia proposto in letteratura. L' utilizzo di un orizzonte e di
un passo di griglia variabile pud introdurre nella soluzione numerica della
peridynamica alcune anomalie, che vengono analizzate dettagliatamente tramite
analisi statiche e dinamiche. Inoltre, mentre la maggior parte della comunita
scientifica sta lavorando per valutare a pieno le potenzialita della peridynamica,
solo alcuni ricercatori hanno osservato indirettamente come il percorso della
cricca possa seguire, in modo chiaramente non realistico, gli assi di simmetria
della griglia. Il principale parametro che influisce su tale comportamento sembra
essere il valore assunto dal rapporto m, definito come il rapporto tra I'orizzonte e il
passo della griglia. La dipendenza del percorso della cricca dall'orientamento della
griglia sarebbe un grave ostacolo per lo sviluppo di un software basato sulla
peridynamica, poiché cio porterebbe a pregiudicare quella che si ritiene essere uno
dei suoi vantaggi piu importanti rispetto ad altri metodi di calcolo, ossia la sua
capacita di simulare la nucleazione (anche multipla), la propagazione, la
ramificazione e l’interazione di cricche in materiali solidi in modo semplice.
Successivamente, al fine di dimostrare l'efficacia del metodo proposto, vengono

presentati alcuni esempi di propagazione di cricche per problemi 2D e 3D. Infine,



1 risultati ottenuti sono confrontati con quelli ottenuti con altri metodi numerici e

con dati sperimentali.
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1. Introduction

1.1. Motivation and objectives

Failure of engineering structures is a phenomenon which is often caused by a
decrease in structure strength due to the presence of cracks. Cracks can be
originated in different ways, such as localized damage caused by accidental loads
or defects resulting from manufacturing fabrication. Such cracks may grow for
different causes, stress-corrosion, thermal-stresses, fatigue, impacts and so on;
depending on the type of material and of structure, the fracture can rapidly lead to
the collapse of the whole structure. The study of quasi-static fracture in linear
elastic materials is usually based on the work of Griffith [1]. The dynamics of
crack propagation in brittle materials, referred as “dynamic” for the important role
that inertial effects have on crack propagation, is still a challenge [2]. Several
theories and numerical methods have been proposed and developed in the last
century with the target to predict the dynamics of crack propagation. Existing
methods within the classical theory of mechanics are based on partial differential
equations, which suffer from the inherent limitation that spatial derivatives are not
defined at discontinuities. Supplemental kinetic relations that dictate crack growth
and ad-hoc damage criteria have to be adopted in order to overcome this
limitation. The new non-local theory of continuum called “Peridynamics™ [3]
removes such a drawback by replacing in the equation of motion the spatial
derivatives with an integral operator. Peridynamics is non-local because each
material point of a body described with it does interact with all surrounding points
within a spherical finite volume, the radius of which is called horizon. This
internal length can be related to the length-scale of the material or phenomena
under investigation [4]. By doing so, the presence of every type of discontinuities,
1.e. cracks or voids, can be easily treated with no need of additional equations and
criteria to decide if the crack should nucleate and in which direction should
propagate. If on the one hand peridynamics is showing to be very suitable for
dealing with dynamic crack propagation, on the other hand, its numerical
implementation is computationally expensive, especially for cases of large-scale
3D simulations. An interesting technique referred as “Adaptive Grid Refinement
and Scaling” (AGRS), seems to be a promising candidate to increase its

computational efficiency by reducing both the grid spacing of the grid and the
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horizon in the region where the crack should propagate. In particular, with the
term “refinement” we mean the reduction of the grid spacing, while the term
“scaling” means to change the size of the horizon. Therefore, we developed the

algorithms to implement the AGRS with the following objectives:

e Developing a robust algorithm by the introduction of an additional
trigger for the AGRS with respect to that energy based proposed in the
literature. The new trigger is damage based and allows to manage in a
more efficient way the AGRS activation in the considered domain.

e Investigating the anomalies in the numerical peridynamic solutions
introduced by the use of a varying grid spacing and horizon length over
the domain. This is done by performing static and dynamic analyses.

e Investigating the possible dependence of crack propagation on grid
orientation introduced by the type of discretization currently adopted by
the peridynamic community.

e Applying to 2D/3D problems of dynamic crack propagation in brittle
materials, the AGRS algorithm autonomously activates the grid
refinement at the crack tip during crack propagation and in the regions

where crack nucleation is likely.

1.2. Organization of the Thesis

This thesis is organized in seven chapters and one appendix. After the present
first chapter, which gives a brief introduction to fracture mechanics and
motivation for this research, in chapter two an overview of peridynamic
fundamentals is given. In chapter three we introduce the working principle of the
adaptive grid refinement and scaling algorithm applied to peridynamic theory.
The use of a varying grid spacing and horizon length leads to introduce some
anomalies in the numerical peridynamic solution: hence in chapter four its effects
on peridynamic solutions are evaluated by carrying out specific static and
dynamic analyses followed by a discussion of the results. Further, in chapter five
the issue regarding the dependence of crack propagation on grid orientation is
addressed, which would be a serious drawback for the numerical peridynamic
solution. Finally, for verifying the effectiveness of the proposed technique, in

chapter six several benchmark problems are treated and compared with the results
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given in the literature, followed by a summary of the main conclusions derived
from this work in chapter seven. Appendix provides extensions and technical

clarifications of the work presented in this dissertation.

1.3. Fracture mechanics

1.3.1. Brief overview of historical perspective

Looking back through the history of the engineering structures, it is easy to
realize how many injuries and financial loss have been caused by fracture failure.
The Industrial Revolution led to change the design of the structures since iron and
steel materials allowed to remove the earlier restrictions on design. In fact, unlike
the brick and mortar adopted in pre-Industrial Revolution architectures, which
work mainly in compression, such relatively ductile materials can carry tensile
stresses. One of the most famous failures caused by the unexpected fracture
failure regards the “Boston Molasses Disaster” occurred on January 15, 1919, in
which the rupture of a molasses tank took a wave of molasses to rush through the
streets killing and injuring many people (see Fig. 1.1). Although the designers
adopted safety factors of 10 or more with respect to the tensile strength of the
material, the structure collapsed. An explanation of the cause that led to that
disaster can be given taking into account of the qualitative studies performed by
Leonardo da Vinci several centuries earlier, who pointed out that the strength of a
wire made of iron varies inversely with its length. This implies that a longer wire
has a higher probability of containing flaws with respect of a shorter one. A
quantitative study on the relationship between flaws and fracture stresses was first
performed by Griffith in 1920 [1], showing through a stress analysis of an
elliptical hole that the fracture failure can occur as a consequence of the unstable
growth of the flaw. He invoked the first principle of thermodynamics to formulate
a fracture theory which is based on an energy balance, unfortunately, this model
can capture the relationship between the fracture strength and flaws of ideally
brittle materials only. Only later in 1948, Irwin (leader of the fracture mechanics
research group of Naval Research Laboratory in Washington, DC) gave the first

significant extension of Griffith’s model to the fracture of metals.
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Fig. 1.1: Photograph of the aftermath of “Boston Molasses Disaster” (Photograph taken from Wikipedia).

In more recent years, the “Challenger Space Shuttle disaster” occurred on
January 28, 1986, in which after 73 seconds of the take-off, Shuttle exploded
killing all crew members. The embrittlement of the O-ring seal in one of the solid
rocket boosters caused the disaster, since it was not designed to fly under
unusually cold weather. In particular, due to the low temperature the O-ring seal
stiffened, leading to the fracture of the rocket joint in consequence of the external
walls expansion of its chamber. Its fracture failure caused a breach in the booster
joint, taking the pressurized burning gas generated by the solid fuel outside and
then leading to damage the external tank of liquid fuel. Although the engineers at
NASA advised their managers to postpone the date of the launch, the available
data was not enough to support their position. Almost 17 years after the
“Challenger Space Shuttle disaster”, the Space Shuttle Columbia burst during the
re-entry phase in consequence of the impact of a piece of foam insulation which
struck the left wing of Shuttle. This incident caused a fracture damage of the
thermal wing insulation making the orbiter vulnerable for the re-entry in which

high temperature can be reached (1650°C).

Several reasons may lead to a catastrophic fracture failure of an engineering
structure. In the field of aeronautical and aerospace structures, the fatigue
mechanism has been recognised as the most powerful threat to the reliability and
safety of the aircraft. Fatigue is the weakening of the material caused by the
action of loads applied repeatedly, if the loads are above a certain threshold,

microscopic cracks may begin to form in the areas of stress concentration.
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Eventually, if the cracks reache a critical size, they will propagate dynamically

leading to the collapse of the structure.

a)
b)
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Fig. 1.2: Photographs of in-service failure components of aircraft, a) landing gear door up-lock operation
lever, b) pivot bracket, c) helicopter rotor blade extrusion, d) helicopter rotor drive yoke (Images taken from

[5D-
In the last decades, several procedures and methods have been developed for the
design, testing and routine inspections in order to prevent failure, especially when
cracks are found in the primary structure of the airframe. In any case, nowadays
the routine inspections made during the aircraft service remain the main procedure
for detecting the presence of cracks and keeping their growth under control. Fig.
1.2 shows few photographs of some components failed in service, due to the
fatigue phenomena, which have caused the complete loss of an aircraft or serious
damage to the main structure. The photographs clearly show that the damage is
always originated from areas characterized by stress concentrations, like holes or
rivet holes, bolts, cut-outs, and from flaws in the material and imperfections of

welded joints.

a) b 9
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Fig. 1.3: The three fracture modes, a) Opening mode (Mode 1), b) Sliding mode (Mode 2), ¢) Tearing mode
(Mode 3).

Basically, as shown in Fig. 1.3, we can identify three fracture modes depending

on the way of applying the force at the crack: Opening mode (Mode 1) in which
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the load is applied normal to the crack plane, Sliding mode (Mode 2) in which an
in-plane shear load leads one crack face to slide with respect to the other one and
Tearing mode (Mode 3) in which shear load acting parallel to the plane of the
crack and parallel to the crack front. Fracture mechanics can be divided in three

main families (see Fig. 1.4):

1. Linear Elastic Fracture Mechanics (LEFM)
2. elastic-plastic fracture mechanics

3. dynamic, viscoelastic and viscoplastic fracture mechanics.

While the LEFM is mainly applicable to linear elastic materials under quasi-static
conditions (even if recent advances in research allowed to incorporate the
behaviour of other materials), the elastic-plastic theory also includes plastic
deformation (non-linear behaviour). Both are time-independent since time
variable is not included. While dynamic, viscoelastic and viscoplastic fracture
mechanics include time as a variable. The dashed line in Fig. 1.4 indicates the
connection between the LEFM and the Dynamic Fracture Mechanics (DFM), in
particular, the dynamic version of LEFM is termed “elastodynamic fracture

mechanics”, as it will be discussed in Section 1.3.3.

Linear Elastic
1 Fracture
Mechanics

Ty

/ T .
2 Elastic-Plastic
/ Fracture
/ Mechanics
" *
3 Dynamic Viscoelastic Viscoplastic
Fracture Fracture Fracture

Mechanics Mechanics Mechanics

Fig. 1.4: Main families of fracture mechanics (Image taken from [6]).

1.3.2. Linear Elastic Fracture Mechanics

The effort made by the pioneers Inglis [7] and Griffith [1] paved the way for
the fundamentals of fracture mechanics through the introduction of LEFM.

Although LEFM is mainly applicable to materials that obey Hooke’s law, its
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formulation can be extended to deal with crack propagation characterized by a
small-scale plasticity deformation at the crack tip of structures with a global linear
elastic behaviour. This theory introduced the concepts of energy release rate and
stress intensity parameters. According to the first law of thermodynamic, a crack
under a static load condition propagates if the energy available for crack growth is
sufficient to overcome the resistance of the material. In particular, the critical
stress (fracture stress) is defined at the condition with no net change in total
energy. Let us consider a case regarding the fracture mechanics of Mode 1, an
infinitely wide plate of thickness B with a crack of length 2a and subjected to a

remote uniform tensile stress o (see Fig. 1.5).

Fig. 1.5: Infinitely wide plate with a crack subjected to a remote tensile stress (Image taken from [6]).
The incremental increase in the crack area dA4, under the condition of equilibrium,

can be expressed as:

dE_dH+dWS_
dA~ dA  dA

0 (1.1)

where E is the total energy, Il is the potential energy supplied by the external
forces and the internal strain energy and W, the work required to create new
surfaces. Regarding the particular case shown in Fig. 1.5, the potential energy can

be expressed as:
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wo?a’B (1.2)

with I, the potential energy of an uncracked plate. The work required for the
creation of two new surfaces is given by W; = 4aBy,, where y; is the surface

energy of the material, thus:

dil nola (1.3)
dA E
and
AW
— 1.4
74 2Ys (1.4)

Therefore, substituting Eq. (1.3) and Eq. (1.4) in Eq. (1.1) and solving for the

stress gives:

=)

with oy defined fracture stress, then a tensile o = oy will take the crack to
propagate. Irwin’s approach, which is more convenient for solving engineering
problems, defines the concept of energy release rate G as a measure of the rate of
change in potential energy with the crack area, even referred as the crack driving

force. With reference to the specific case of Fig. 1.5, G is defined as follows:

dll _mo’a (1.6)
dA E

Hence, the propagation of the crack occurs if the energy release rate reaches the

critical value G, defined as:

aw, (1.7)

G = dA = 2¥s

which it is a measure of the fracture toughness of the material.
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1.3.3. Elastodynamic Fracture Mechanics

The dynamic version of LEFM is termed elastodynamic fracture mechanics, it
considers the inertia forces and the reflected stress waves neglecting the nonlinear
response of the material. Failure criteria for dynamic problems of brittle materials
can be considered as an extension of Griffith’s ideas in which, as suggested by
Mott [8], the kinetic energy must be incorporated in the energy balance. Let us
consider a crack in an unbounded 2D body which is propagating at constant speed

v (see Fig. 1.6), namely steady-state crack growth.

Fig. 1.6: Crack tip contour for evaluating the energy balance of a crack which is propagating at constant
velocity v.
Let U define the rate of change of the stored elastic energy and K the rate of

change in the kinetic energy, then:

o 1
U+T = j 5 [0ap€ap + pliatig|dA (1.8)
R—-Rr

with ¢ = 1,2, f = 1,2 indicate the directions of a Cartesian reference system (X,
X>), u the displacement component, o the stress component, & the strain
component, d4 the infinitesimal area. R is the region near the crack tip bounded
by the curve dR and Rr the small region enclosed by the contour I'. The small
region Rp excludes the singularity of the stress and strain fields at the crack tip.
Let us consider that the contour I' translates with the same speed of crack

propagation; invoking Reynolds transport theorem of Eq. (1.8) to the limit I' = O:
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U+T= lim [6aptiap + pliyiiy]dA
Y JR-R
r (1.9)

: 10 ..
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with n; the component of the unit vector outward normal to the contour I" aligned
in the direction of crack propagation and ds the infinitesimal length. The
subscripts a, f indicate the partial differentiation of the a component with respect
to the coordinate identified by the index f. The application of divergence theorem

to the first integral of Eq. (1.9) yields:

lim [6aptiap + pllgiiy]dA
r-o0 R—Rp

(1.10)
= f OqplUaNeds + limfaaﬁuanads
AR r-o0 r

Being the newly created crack surfaces traction free, the first term of Eq. (1.10)

represents the power P of the external forces, then:

o . 1 o
P-U+T-= 1L1£1r(1)jr [aaﬁuana +5 (0apeap + puauﬁ)vnl] ds (1.11)

The integral of Eq. (1.11) is defined as energy flux integral at the crack tip and
represents the amount of energy flowing out of the region R and into the crack tip

through the contour I'. Then, the energy flux integral is defined as:

1
F = ] [aaﬁuana + E(aaﬁeaﬁ + puauﬁ)vnl] ds (1.12)
r

Defining y as the fracture energy per unit extension of the crack, and D as the

total dissipation of energy in the fracture process, then the rate of change of D is

defined as:
dD dD
2 1.13
dt ' da (1.13)

with a the crack length, hence in analogy with the LEFM we can define the

dynamic energy release G as follows:
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G=v1F=y (1.14)

Note that fracture energy y can include the surface energy y, introduced by
Griffith (see Section 1.3.2) as well as the dissipated energy due to all the
dissipative phenomena which can be observed in dynamic crack propagation. Eq.
(1.14) highlights that the dynamic release energy rate is the energy released per
unit area of crack extension into the region around the crack tip and has to be
equal to the dissipated energy. As opposed to quasi-static fracture in which the
physical quantity G, finds application as fracture criterion for defining the
condition of crack initiation of the crack growth [6], G can provide the crack

growth law in dynamic problems.

1.4. Theories for treating dynamic fracture

1.4.1. Methods based on classic mechanics

The primary assumption of the classic theory of mechanics is the locality of the
interaction between material points since the interaction is restricted to
neighbours. Therefore, the stress tensor [o] at any material point of the body x
depends on the deformation tensor [g] at that point only. Classical mechanics
assumes the hypothesis that a body has to remain continuous even after its
deformation, hence the equation of motion at any material point is defined by

means of spatial partial differential equations, as follows:

. Oogx  Oopy 0Ooyz
P ="5x T oy T oz

+ by, (1.15)

where k = (X, Y, Z) indicates the directions of the cartesian reference system, p the
mass density and iij, the kAth-component of the acceleration. It is known that the
spatial partial differential terms in Eq. (1.15) are not defined at discontinuities,
hence the governing equations of classic theory lose their meaning due to the
presence of discontinuities, such as cracks or voids. The Finite Element Method
(FEM) is one of the most robust numerical methods based on classic theory, it
allows to model complex geometries calculating stress fields due to the
application of general boundary conditions with a good level of approximation.

However, when a problem with cracks has to be modelled, FEM requires the use
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of special types of elements to capture correctly the singularities at the crack tip;
redefining the body when the crack propagates since the crack surface is treated as
a new boundary. In addition to this shortcoming, supplementary kinetic equations
have to be employed in order to decide the evolution of the crack growth, which
are concerned mainly with the propagation of existing cracks rather than their
nucleation. During the last century, numerous studies have been performed aiming
to overcome the shortcomings of the FEM, as a first study, the concept of
cohesive zone introduced by Dugdale [9] and Barenblatt [10] paved the way to
develop the Cohesive Zone Elements (CZE). Basically, methods based on CZE
[11, 12, 13] adopt interface elements placed along the elements boundaries and
equipped with a traction-separation law for which the tractions are zero when the
relative displacements overcome a critical value. Usually, such elements are
inserted along the potential crack path, in addition, the crack growth is sensitive to
the texture and alignment of the regular elements of the mesh. A remeshing
technique was proposed by Camacho and Ortiz [14] to address problems in which
the crack paths are unknown a priori, but it still suffers from a certain dependence
of crack propagation direction on local mesh orientation, since the crack is not
completely free to propagate in the medium [15]. In order to remove these
limitations, the eXtended Finite Element Method (XFEM) [16] was introduced to
allow the crack to propagate within the regular elements of the mesh, in this way
the crack can grow in any direction regardless of the texture of the mesh. The
basic idea originally introduced in [17] is based on the use of the partition of unity
finite elements, using an enrichment of discontinuous displacement functions to
add degrees of freedom to the standard finite element approximation.
Nevertheless, ‘the formulation becomes cumbersome with increasing number of
cracks and crack branches’ [18]. Moreover, XFEM suffers (in practice) from the
absence of reliable crack branching criteria [18]. Reference [19] proposed an
approximation scheme for variational models of Griffith’s theory [20] based on
the notion of eigendeformation which are extensively used in mechanics as
approach to describe the deformation modes that cost no local energy. Basically,
such an approach assumes two fields, the displacement field and an
eigendeformation field that describes discontinuities, such as cracks, which may
be present in the body. By doing so, the displacement field can develop jumps at

no cost in local elastic energy. Based on the work proposed in [19], the
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eigenerosion approach [21, 22] has been originally developed for dealing with
brittle fracture. The main idea is to restrict the eingendeformations in a binary
sense: they assume a value equal to zero if the local behavior is elastic or a value
equal to the local displacement gradient, in which case the corresponding material
neighborhood is eroded. This scheme can be combined with different methods.
For instance, combining it with the FEM, depending on the value assumed by the
eingendeformation, the regular elements of the mesh can have the usual elastic
behavior or be eroded, in the sense that they do not have load bearing capacity
anymore. Recently, alternative methods for the numerical simulation of fracture
problems have emerged such as the phase-field method (23, 24, 25]. Whereas
other methods require the use of complex algorithms to track the fracture surfaces
since discontinuities are introduced into the solid, the phase-field method treats
the discontinuities approximating the fracture surface by a phase-field, smoothing
the boundary of the crack over a small region. In this way, the evolution of the
phase field is used to capture the trajectory of the crack. However, this new
approach treats mainly brittle fracture, in addition, it shows to be sensitive to the

phase field parameters, hence they have to be chosen very carefully.

1.4.2. Nonlocal Theories and Methods

Let us consider that the understanding and prediction of material failure
process is governed by the presence of a wide variety of mechanics associated
with dislocations, micro-flaws, grain boundaries which play an important role at
specific length-scales. Methods based on classic local theory of mechanics suffer
from the lack of an internal length parameter. The difficulties encountered in such
methods utilizing classical continuum mechanics can be overcome by adopting
numerical methods based on non-local approaches like the atomistic model [26],
describing fracture as a rupture of inter-atomic forces. They are certainly able to
capture in a realistic way the mechanisms which occur in fracture phenomena,
giving important contribution to the understanding of the physical processes that
lead to the nucleation and propagation of cracks. On the other side, because of the
large computational resources that such methods require, their application is
limited to the qualitative understanding of fracture rather than to the prediction of

it. As an example, the largest-scale atomistic simulation performed in [27] used
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320 billion atoms to model a copper cube with an edge length of 1.56 um, not
enough for dealing with real-life problems. This drawback can be overcome by
coupling atomistic models with other methods computationally more efficient
such as FEM. The coupling has to make use of multi-scale approaches [28], which
need rather complex strategies for a correct transfer of the forces between models
of different scale. Besides, the coupling between local and non-local models often
generates the artifact called spurious forces or ghost forces [29] that strongly
affect equilibrium in the transition zone between the two different models. The
connection between the classic theory of continuum and the atomistic models is
established by the nonlocal theories of the continuum. Unlike the classic theory of
continuum, in the nonlocal theories the state of material points is influenced by
material point enclosed inside a region of finite length. Therefore, the stress at a
given point does not only depend on that local strain but also on the strain of the
points enclosed in its neighbourhood [18]. [30] suggests several reasons why to
use a nonlocal theory rather than a local one, i.e. capturing the effects of
microstructural heterogeneities or the influence of microcracking growth in the
proximity of the crack tip on crack propagation. Several different types of non-
local theories have been proposed in the past, as the nonlocal elasticity theory
introduced by Eringen and Edelen [31] which defines the equation of motion by
means of a nonlocal balance of thermodynamic statements. Another type is the
gradient enhanced models [32], referred as weakly nonlocal models since based
on differential equations, it assumes higher order spatial derivatives in the
formulation allowing the material point to account for the field in its vicinity.
However, all these nonlocal theories suffer from the difficulty to deal with
discontinuities in the domain since are based on spatial derivatives. Another type
of nonlocal theory that allowed to circumvent this difficulty has been introduced
by Kunin [33, 34] and Rogula [35] using displacement fields rather than their
derivatives. Some shortcomings of this theory can be identified in the lack of a
formulation to address 2D/3D models, damage included in the material response

and a nonlinear material response with respect to displacements.
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1.4.3. Peridynamics

Recently, in order to overcome the limitations related to the differential
formulation of methods commonly based on classic theory of continuum as well
on the nonlocal theories developed in the past, the nonlocal PeriDynamic theory
(PD) has been proposed by Silling [3] and Silling et al. [36]. PD is an alternative
nonlocal formulation of continuum mechanics which defines the equation of
motion by substituting the divergence of the stress tensor, that is the partial
differential term of Eq. (1.15), with an integral operator. In this way, the equation
of motion does not suffer from the presence of discontinuities over the domain.
The main concept introduced by Silling is based on the assumption that material
points can interact with each other if located inside a region of finite length. That
is the reason why the Greek roots of the words near and force were proposed to
call such a formulation “peridynamics”. The interaction between material points is
defined bond, which contains all of the constitutive law for defining the response
of the material. In addition, the damage model is included in the constitutive law
so that an unambiguous definition of local damage at a material point of the
continuum domain can be defined. Then, the peridynamic governing equations
can be defined at crack surfaces without the need to employ special techniques
such as the use of interface elements and enrichment discontinuous functions in
order to treat the fracture. These attributes make peridynamics suitable to deal
with complex problems characterized by simultaneous multi-crack propagations
and interactions by simple integration of equation of motion. Another important
attribute of peridynamics is the length scale referred as horizon ¢ introduced by its
formulation. The horizon defines the size of the region of nonlocal interaction and
can be linked to the characteristic length-scale of the material and/or of the
considered phenomenon [4, 37]. Then it is possible to capture the material
response on different length scales, from the macroscale to the nanoscale, since

the horizon can be controlled.

Two main formulations for peridynamic models have been introduced: the first
which is the original form of peridynamic model is termed Bond-Based
PeriDynamic (BB-PD) [3], while the second one is termed State-Based
PeriDynamic (SB-PD) [36]. BB-PD assumes that any pair of particles enclosed
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inside the nonlocal region interact only through a central force potential [38],
namely the interaction between a couple of nodes is completely independent of all
the others. As already demonstrated in [38], under this assumption, Poisson’s ratio
is constrained to assume the value of 1/4 for 3D and 2D plane strain cases and 1/3
for 2D plane stress cases for isotropic materials. Also, it cannot distinguish the
volumetric deformation from the distortional one, therefore it is not suitable to
capture the response of materials with different mechanical properties, i.e.
materials with plastic incompressibility response. Reference [39] proposed a
strategy called micropolar peridynamic model to remove the limitation of
Poisson’s ratio, but it is not clear if such an approach can capture the plastic
behaviour. Therefore, in order to remove such a drawback Silling et. al. [36]
introduced the new general formulation referred as State-Based-PD, defining the
concept of “state” as infinite dimensional arrays containing information regarding
the bonds. In particular, there are two different formulations of SB-PD: the
ordinary SB-PD and the non-ordinary SB-PD. In ordinary SB-PD the forces
between two material points act along the vector connecting the points in the
deformed configuration, while in non-ordinary SB-PD the forces can act in
different directions with respect to that of the vector connecting the points. In
spite of the notable advantages introduced by PD, some drawbacks arise out of the
integro-differential peridynamic formulation even in the SB versions. First, the
application of the boundary conditions is completely different from that of the
classical theory, since point and surface boundary conditions have to be applied
over a volume [40]. In addition, due to the nonlocality of the theory, the material
stiffness near the free surfaces and the interfaces between different material
regions can be over- or under-estimated, leading to an error in the PD solution.
Other shortcomings of PD are related to its numerical discretization, as presented

in the following paragraph.

The PD solution can be obtained through the implementation of different
numerical methods [41], however, one of the most popular methods for
implementing PD theory is based on a meshfree approach [42], in which the
whole body is discretized with a uniform structured grid of nodes and a constant
horizon. A wide variety of problems can be solved with a peridynamic approach

for the description of material failure and damage: for predicting crack

43



propagation and branching in brittle materials [43, 44, 45], damage in concrete
[46, 47], fracture in composite materials [48, 49, 50], fatigue damage [51, 52],
corrosion damage and stress corrosion cracking [53, 54], among others. Although
PD shows to capture damage and fracture phenomena successfully, its application
to real-life structures still requires a considerable amount of computational
resources, especially if it is compared with methods such as FEM. Numerous
approaches have been proposed with the goal to restrict the use of peridynamics to
regions where crack should take place, while adopting models based on classic
theory in domains characterized by smooth displacement fields, for instance [55,
56] have proposed the coupling between PD models and FEM. Whereas staying
within the PD framework, the authors in [57, 58] proposed the use of the
technique based on adaptive refinement/coarsening and scaling as a strategy to
reduce both sizes of grid spacing and horizon length in the proximity of the crack
tip. Only the strategy based on adaptive refinement and scaling has been applied
in [59, 60] to capture the dynamic crack propagation in brittle materials. The
development of such a strategy could allow in the future to pave the way for an
efficient concurrent multi-scale modelling in the framework of PD. In fact, by this
strategy, it will be possible to reduce the horizon length to the wanted length-
scale near the crack tip, by adopting a size convenient for the computational

efficiency far from the crack tip.
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2. Overview of peridynamics

2.1. Fundamentals

Peridynamics is a recently proposed non-local theory of continuum [3, 36, 61]
which assumes that each material point of a given body B can interact with all
surrounding points within a finite distance ¢ named horizon. The equation of
motion at any instant in time ¢ for a material point of coordinate x; (referred as

source node) is defined by means of the following integro-differential expression:

p(x)i(x;, t) = {Tlxy, thx; — x:) = T, t](x; — x)} d Vi,
e 2.1)
+ b(xi, t), ij € H(xl-)

with p(x;) the mass density field at the initial configuration of the body, u the
displacement field, T[x;, t]{(x ; — x;) the force vector state field which represents
the force density vector that a point x ; (referred as family node) exerts on point
X;, b the body density force field and the integration domain H(x;) € B referred

as neighborhood of the point x; which is defined as:
H(x;) = {x; € RP:||x; —x;|| < &} (2.2)

with D = 1, 2, 3 the dimension of the treated problem. Therefore, the
neighbourhood can have the geometric shape of a line segment, a disk or a sphere

of radius/length ¢ centred at point x;. The interaction between any x; and x;point
is called bond. Let § = x; — x; define the notion of relative position vector in the
reference configuration of a bond connected to the point x;, then the vector state is
an object which allows mapping vectors (bonds) into vectors and a scalar state to
map vectors (bonds) into scalars; the angle brackets ( - ) enclose the bond vector.
As an example, consider the case of vector state, let t;; = T[x;, t]{(x; — x;)
define the force density vector acting on x; as a consequence of all the collective
deformations of the bonds enclosed in its neighbourhood H(x;), and ¢;; =
T[x;, t]{x; — x;) the force density vector acting on x; as a consequence of all the

collective deformations of the bonds enclosed in its neighbourhood H(x;). By
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using the concept of vector state, the force density can be stored in the vectors

states (see Eq. (2.1)) as follows:

T[x;, t] = {tl ,-} and T[x;t] = {t]} (2.3)

If we express with y(x;,t) = x; + u(x;, t) the current position at time ¢ of the

material point x;, the deformation vector state is defined as:

X[xi; t](f) = y(xjr t) - y(xi' t) (24)

which maps each bond connected with the material point x; into its deformed

image.
The following hypotheses are assumed:

1. the force state depends only on the deformation state (the material is referred
as simple)

2. the material is ordinary, which means that the force density vector is parallel
to the direction of the deformed bond (see Fig. 2.1a)

3. the material is homogeneous.

Under these hypotheses, peridynamics is referred as Ordinary State-Based
PeriDynamic (OSB-PD), hence the force vector state takes the form:

Y[x;, t)($)

Tl t1) = el &

(2.5)

where t[x;, t](-): RP - R is the force scalar state and depends on the constitutive

law of the material. As demonstrated in [61], the form of Eq. (2.5) leads to satisfy
for any bounded body B both the balance of linear and angular momentum. In
particular, as Fig. 2.1a shows, it is evident that for an ordinary material the
balance of angular momentum is always satisfied due to the alignment of the
forces along the direction of the deformed bonds. By assuming the constitutive
model referred as Linear Peridynamic Solid (LPS) [61], a macro-elastic potential

density energy function W (6, e%) can be defined as follows:
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k'0?

W(e‘gd) = 2

+5 (we) - e .6

where 6 is the volume dilatation of the neighborhood H(x;) of the material point

ed

6 oL .
x;, e“=e —?& the scalar deviatoric state component of the single bond

elongation e(§) defined as:
e(®) = |ly(x, ) — y(x, O = 1]l 2.7)

where x is the scalar state defined by x(§) = [[¢||. w is the scalar state of the
influence function which associates a weight to each bond. If the influence
function is spherical, then the material is isotropic; this assumption will be
considered in the whole dissertation. The constants k' and a are positive scalars to

be related to the material properties [36, 62], which are defined by:

15u
k' =k , a = T 3D cases (2.8a)
+1)?
k'=k+ g((;/T))Z’ a = ?'u 2D plane stress cases (2.8b)
k' =k+ 9 , a = 7 2D plane strain cases (2.8¢)

with k and p the bulk and shear modulus of the medium, respectively. The

weighted volume q is a scalar defined by:

1= (wx) 2= [ o(lgDIgIaY 2.9)
H

The force scalar state is consequently calculated by means of Fréchet [36]

derivative of the potential density energy function as:

3k'0 .
tlx;] = Tw_x + awe 3D cases (2.10a)
22v—1 a wx
tlx;] = 2@v-1) [k’B +=(we?) e x| =+ awe? 2D plane (2.10b)
v—1 3 q stress cases :
a WX
tlx;] =2|k'0 — = (we?) e x| = + awe* 2D plane
ol [ 3 (_ ) —q _ strain cases (2.10¢)
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As stated in Section 1.4.3, a special version of the formulation given by OSB-PD
is referred as BB-PD [3] since the interaction is restricted between couple of
material points. In such cases the behaviour of a bond is completely independent

of all the others.

u=0

Fig. 2.1: a) Deformation of the bond between points x and x’ and the vector forces developed between them
in the OSB-PD formulation. b) Deformation of the bond between points x and x” and the vector forces
developed between them in the BB-PD formulation. c¢) linear-failure constitutive law of a bond.

This assumption implies that the force density that a point x; exerts on point x;
and that is exerted by x; on x; are parallel to the direction of the deformed bond

and equal in magnitude (see Fig. 2.1b). Therefore, the force scalar state takes the

form:

9kll
tx] == —we @.11)

with k" constant to be related to the material properties. Let s the stretch of the
bond be defined as s = e(§)/||§]l, Eq. (2.11) can be written for the image of a

bond as:
tx (&) = fF(n,§) = cw($)s (2.12)

with f(n, &) called pairwise force function and c is the micromodulus (stiffness of

the bond). Assuming w(§) = 1, the micromodulus derived by equating the density
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of potential energy of classical mechanics with that of peridynamics [3, 42, 46]

takes the form:

_12E

= 3D cases 2.13a
€T et ( )
_ % 2D pl t 2.13b
c= —ETS plane stress cases (2.13b)
c= ﬂ 2D plane strain cases (2.13¢)
5163
3E
c= 5z 1D cases (2.13d)

with ¢, the thickness of the body. With reference to the BB-PD, Eq. (2.6) of the

density of potential energy at each point x; and time # can be rewritten as:

1 1 2
W(x;,t) = 5 fw(n, $0dVy; =7 f@@éﬂ dVy; (2.14)

Hy,

. Hy,

1

where for simplicity’s sake & = |[|&]l, w(n, &, t) is referred as micropotential
energy which is the energy in a single bond (dimensions of energy per unit
volume squared). The concept of local damage as degradation of the mechanical
response of a particle of material of the body can easily be introduced in
peridynamics by using the constitutive law referred as Prototype Microelastic
Brittle (PMB) model. According to this model, every bond breaks if its stretch
overcomes a given limit value s called critical stretch, which is a function of the
critical fracture energy release rate of the material Gy [42]. The critical stretch s is

given, for different cases, by the following expressions:

5G,
So = 6ES 3D cases (2.152)

5o = 4G, 2D plane stress (2.15b)
9ES cases

5o = 516G 2D plane strain (2.15¢)
12E6 cases
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Moreover, the rupture of the bond is irreversible so that the constitutive model is
history-dependent, as shown in Fig. 2.1c, therefore, a binary scalar-valued
function u(§) has to be introduced to take into account the structural health state
of the bond; u(é) =1 means that the bond is active and (&) = 0 that it is

broken. Then, the force scalar state assumes the form as:

tlx:1(§) = cw(Hu(é)s (2.16)

The local damage level ¢ at a given material point x; at time ¢ can then be defined
as:

fi, 12 OV,
T @

d(x;,t)=1- (2.17)
where 0 < ¢p < 1, 0 represents the pristine state of the material and 1 the complete
separation of the material point from all surrounding points within its horizon. As
the classic theory of mechanics, the equation of motion of peridynamics can be
linearized when the hypothesis of small deformations are assumed. Under this
assumption, Eq.(2.1) reduces to a linear integral equation [61]. Let £ be defined
as:

2= sup |lu(x;,t) —u(x,t)| (2.18)

[l =il

then the displacement field is said to be small if the condition ¢ < § is satisfied.
We want to underline that, unlike the classic theory, the definition of small
displacements in peridynamics does not restrict rigid translations of the body,
while does restrict rigid body rotations to small angles [61]. Moreover, it allows
for possible small discontinuities in the displacement field, which is one of the
key difference between PD and the classic theory. Therefore, the linearized

version of Eq. (2.1) assumes the form:

pOxiCen 0) = | ol ;) (u(1) - uCxi 00 ¥,
Hy.
' (2.19)
+ b(xl-, t), Vx] € H(xi)

with €y is called micromodulus tensor field and is defined for the case of BB-PD
as follows:
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Co = cg{f)

$®¢ (2.20)

2.2. Surface Effect

The non-locality of peridynamic formulation leads to the called “surface
effect”, which is also known with the term “skin effect”. Basically, peridynamic
material parameters, such as the micromodulus of the bonds (see Eq. (2.13)), are
derived by assuming that the neighborhood H(x;) of a point x; is fully embedded
in the domain. Such an assumption is not valid if point x;is close to the boundary
of the domain, since the neighborhood H(x;) has a truncated shape, as shown in

Fig. 2.2.

[ ol |

Hix)

\ Hoo)

Fig. 2.2: Material point x; in a 2D domain with a truncated neighbourhood if located near the external surface
and with the full disk shape if located in the bulk.
For instance, if the domain shown in Fig. 2.2 is stretched with a constant strain,
the potential energy density (see Eq. 2.14) of a material point near the external
surface is lower than in the bulk. This results in a reduction of the material
stiffness near the boundaries of the domain of interest, leading to the introduction
of an error in the PD solution. Numerous methods have been applied to reduce the
surface effect, i.e. see [55, 63, 64, 65], the method adopted in this dissertation (see

Section 4.1) 1s based on the potential energy approach [66].

2.3. Refinement and scaling

The idea of introducing the adaptive grid refinement and scaling as a strategy
to reduce automatically both the grid spacing and horizon in a peridynamic model

was first introduced in [57, 58], with the goal to overcome the drawbacks shown
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by this theory when discretized with a uniform grid of nodes and a constant
horizon [42]. In fact, it is clear that the adoption of such a grid does not allow
optimizing its computational efficiency, which is an essential feature if real-life
structures have to be analysed. Reference [37] has underlined how the horizon 0
can be linked to the characteristic length-scale of the material or of the phenomena
under investigation, especially with reference to damage and fracture phenomena
related to the crack propagation [4]. As shown in [59], in the future it will be
possible to use the AGRS to capture the desired length-scale into the regions in
which the crack propagation should take place, by adopting an horizon size
convenient for computational efficiency far from those regions. By doing so, the
potentialities shown by peridynamics could be adopted in order to obtain a
concurrent multi-scale model in a unique framework. Of course, the use of a
varying horizon in the peridynamic domain needs to be addressed since, as stated
in [58]: “The original formulation of peridynamics [3] and the subsequent state-
based formulation [36] are based on the implicit assumption that the horizon is
constant over the domain”. In order to perform this mixed description of a
material using two horizons with a different length, scaling concept in
peridynamics has been introduced [57, 67]. Let 6 and ¢ define two different
horizon radii, the scaling requires the change of the micropotential function

defined by means of the following expressions:

we(m, &) = y3*ws(yn, v$) 3D cases (2.21a)
we(1, &) = y*ws(yn,v$) 2D cases (2.21b)
w:(m, &) =y ws(yn,v§) 1D cases (2.21¢)

where y = d/¢ is defined the geometrical scaling of the horizon size. In this way the
deformation energy of a body characterized by a uniform stretch has to be
constant in the whole domain regardless the changing of the horizon length, as

demonstrated, i.e. for the 2D case, by the insertion of Eq. (2.21b) in Eq. (2.14):

Wy =2 | wsmrOdGA)

_5 L, (2.22)

1
> ﬁWs(ﬂ, §y*dA = W.(xy)

Hg
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in which dA4 represents the infinitesimal area of the disk centered at point x;.
According to the scaling concept, the change of the horizon induces the change of
the micromodulus (see Egs. (2.13)), moreover, by this strategy all the bonds inside
the horizon of the source node have the same micromodulus calculated by using
its horizon in Eq. (2.13). As done with the micromodulus, the same strategy of
scaling suggested in [57] can be extended for the critical bond stretch calculated
by using Eq. (2.15). Another issue arises when the horizon size varies over the
domain; Fig. 2.3 clearly shows that the change of the horizon size leads to loose
some peridynamic bonds. Let us consider the case showed in Fig. 2.3a: if the
family point j is located inside the neighbourhood of the point i, Eq. (2.1) defined
on source node i includes the bond between the source node and its family node ;.
Whereas, considering the reverse case in which j is the source node, it is clear
from Fig. 2.3b that Eq. (2.1) does not include the bond anymore, then the bond is

basically “lost”.

a)

Fig. 2.3: Two points 7 and j with a different horizon length, the double narrow segment line indicates the bond
(interaction) between the two points, a) the interaction exists (continuous line) when the point j is inside the
horizon of the point i, b) the interaction is lost (dashed line) when point i is not inside the horizon of the point
J.

The loss of bonds leads to the presence of the ghost forces [67], which introduces
anomalies in the displacement field of the PD solution. Such an artifact is
originated by the disequilibrium of the equation of motion imposed at the nodes
with a variable horizon [60]. Reference [60] shows that the use of Eq. (2.1)
originally introduced by peridynamics does not satisfy the conservation of linear
momentum [60]. The authors in [67] point out that even if the equilibrium is not
satisfied, there is not a net force on the body since the ghost forces are self-

equilibrated. Moreover, they show that such an artifact in the displacement field

may be neglected when the horizon length varies smoothly in the medium.
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Otherwise, in applications where we have discontinuous jumps of the horizon size
which may lead to have big errors, two methods [67] referred as “partial stress”
and “splice” are proposed to eliminate the presence of ghost forces. Due to the
complexity of such strategies, an alternative approach has been proposed in [60]

introducing the concept of dual-horizon, as discussed in next Section 2.4.

2.4. Dual-horizon concept

As stated in the Section 2.3, an alternative strategy introduced with the aim of
eliminating the ghost forces is given in [60]. When a varying horizon size is
adopted in the domain, we shall address the issue if the conservation of linear and
angular momentum are still satisfied by using the original equation of motion of
peridynamics (see Eq. (2.1)). Reference [60] demonstrated that the balance of
linear momentum can be respected by introducing the concept of dual-horizon,

which is defined for a point of coordinate x; as a set of points x; whose horizons

include it, denoted as:

H'(x;) ={xj:x; € H(x;)} (2.23)

with the superscript prime to indicate dual. As a results to introducing the dual-

horizon concept, Eq.(2.1) can be rearranged as follows:

pOiCe ) = | Thxy e10xy = x) dig,
H'(xy)

- ] Tl ] x; — )V, + b(x;,0), (2.24)
H(x;)

x] € H(xi)l x] € H,(xi)

We can observe from Eq.(2.24) as the original Eq.(2.1) has been split into two
distinct integral parts, the first one corresponding to the region of integration
H'(x;) and the second one to the region of integration H(x;) . The former can be
called the integral of the active forces since the integrand represents the force
density exerted by the points x; € H'(x;) on point x;, while the latter can be
called the integral of passive forces since represents the undertaken reaction force
density of the active forces exerted by x; on the family nodes x; € H(x;), as a
consequence of Newton’s third law. It is clear that when the horizons are set

constant, namely H(x;) = H'(x;), Eq. (2.24) reduces to Eq. (2.1). Moreover, let
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us emphasize the fact that the horizon has a physical meaning which allows
relating the micromodulus to the mechanical properties of the material (see Eq.
(2.13)), whereas the dual-horizon is only a set of points which allows satisfying
Newton’s third law in the ‘overlap’ regions characterized by a varying horizon.
Unlike the conservation of the linear momentum, the balance of the angular
momentum is satisfied even if the horizon varies over the domain, as a
consequence the dual-horizon is not involved. Having always in mind the BB-PD,

let c(by,) and C(ij) denote the micromoduli based on &y, and 6xj calculated

from Eq. (2.13), then the pairwise force functions are computed by the following

expressions:

frix; = Tlx;, tl(x; — x;) =

Oy. t) — 0 '
_0x) ¥y, 0~y 1) v e (2.252)
2 ”y(le t) _y(xil t)”
ijxi = I[xjr t](xi - xj) =
_c(0x)  y(xit) —y(x5,t) v € Hx,) (2.25b)
= ] l

s ,
2 ly(x;, 0) — y(xi, 0|

in which the subscripts x;x; of the pairwise force function indicate the active
force exerted by xjon x; and x;x; the reaction force exerted by x; on x;. The
same considerations can be applied to the more general formulation of
peridynamics, such as OSB-PD and non-ordinary SB-PD (see [60] for further
details). The concepts of dual-horizon presented in this section will be used in
chapter 4.1 in order to investigate the possible benefits on the numerical PD
solution when the ghost forces are completely removed from the analyzed

domain.
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3. Numerical discretization and algorithms

In the following, the methods employed in this work to implement numerically
peridynamics and the adaptive grid refinement and scaling approach are
introduced. As a first step, the numerical method adopted when the domain is
discretized with a structured uniform grid of nodes will be shown, then the
algorithms developed for the application of the adaptive grid refinement and
scaling in the peridynamic model will be presented and discussed as well. All the
codes developed in this work have been written by using the software Matlab®,
especially the structure of the code has been designed with the target to optimize

the time of the simulations.

3.1. Mesh-free method

Even if peridynamic theory can be implemented with different numerical
methods [41], one of the most popular and widely used, due basically to its
implementation simplicity, is based on a mesh-free approach [42], in which the
whole domain is discretized with a uniform regular grid of nodes and a constant
horizon. The nodes are equally spaced in both the X, ¥ and Z direction, therefore
the grid spacing is uniform so that AX = AY = AZ. To each node a square cell of
volume AV=A4X" is assigned, such that the node is located at the center of its cell.
These nodes are referred to as source nodes (or source cell with reference to its
corresponding cells), while the cells whose nodes interact with its horizon and
dual-horizon will be referred as family cells and dual-family cells, respectively.
By adopting the one-point Gauss quadrature rule for the space integration, the

discretized form of Eq. (2.1) is expressed as:

pitf = > (T[N — x7) - T 1 — X))y,
j

OSB-PD
+B} v eH, (.12)
pit = f(u = ul, x; — x)B;AV;
7 BB-PD
+ b? V x; € Hy, (3.1b)
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for the ordinary state-based and bond-based, respectively. While, for the case of
bond-based Dual-Horizon PeriDynamics (DHPD), the discretized form of
Eq.(2.24) is expressed as:

pit] = Zf(u}: —ui, x, — x;) AV + BB

K

DHPD
—Zf(u}l —ui, x; — x))B;AV; + b', V x € Hy, ,V x; € Hy, (3.1¢)
J

In Egs. (3.1) n is the time step number, X; the coordinate of the source node, x;
the centroid coordinate of the family cell, x; the central coordinate of the dual-
family cell, and x; the centroid coordinate of the source cell seen by the horizon
of its dual-family cell. The weighting factors (also called volume correction
factors) B; and f3; are multiplied by the corresponding volume cell AV in order to
define the effective volume included in the neighborhood Hy,. Several numerical

algorithms have been introduced in order to calculate both the locations of Gauss
points of the cells and their corresponding weighting factors, as presented in [68].
In particular, two algorithms will be employed in this work: the first one is
referred as Partial Area - PDLAMMPS algorithm (PA-PDLAMMPS) based on the
commonly used PD software PDLAMMPS [69], while the second is called IPA-
Hybrid (Improvement Partial Area) introduced by Seleson in [68]. According to
the PA-PDLAMMPS algorithm the source node interacts with the nodes located
inside the horizon, the Gauss quadrature points coincide with the geometrical
center of cells, even if the cell is intersected by the horizon of the source node,
and the weighting volume of such cells is calculated by means of a linear
interpolation expression (see Fig. 3.1a). Whereas, the IPA-Hybrid extends the
number of interactions between the source and the family nodes even to those
nodes outside the horizon whose cells are partially located inside the
neighborhood of the source node. This algorithm is based on analytical
calculations of the portion of volume of cells partially covered by the
neighborhood of the source node, while the corresponding geometrical centroids
of such portions are estimated by means of a linear interpolation expression (see

Fig. 3.1b).
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Fig. 3.1: Example of application of different algorithms in order to calculate Gauss quadrature points and the
corresponding coefficient correction factors in a uniform grid of nodes: a) PA-PDLAMMPS algorithm [69],
b) IPA-Hybrid [68].

We remark as the IPA-Hybrid algorithm has only been developed for 2D grids.
The numerical discretization of peridynamics introduces a parameter called m
ratio defined as the ratio between the horizon and the grid spacing. This parameter
is usually chosen as a tradeoff between accuracy and computational efficiency of
the solution, even if it shall be carefully chosen when we are dealing with a crack
propagation problem, as discussed in Chapter 5. The three parameters horizon o,
grid spacing 4X and ratio m play a crucial role in determining the type of
convergence of the peridynamic numerical solution either to the exact
peridynamic solution or to that of the classical elasticity theory [44]. Two types

of basic numerical convergence can be identified:

e the J-convergence: 0—0 and m ratio is kept constant or is increased at a
slower rate with respect to the decreasing of 0

e the m-convergence: 0 is kept constant and m ratio — .

By the combination of these numerical convergences we can obtain the om-
convergence, namely 0—0 while the m ratio is increased faster than the
decreasing of J. Egs. (3.1) are solved in time by means of an explicit solver as the

Velocity-Verlet scheme [70], which is robust, reliable and simple:

. . At
un+% =u, + >

it,, (3.2)
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Upep = Uy + Atitn+1
2

. . At .
Upi1 = un+% + ?un+1
where A¢ is the constant time step which is chosen smaller than the critical time

step At.=Epinlcmy being &y the smallest bond length (namely 4X for a regular grid)

and ¢,, the speed of the longitudinal wave in the medium.

3.2. Adaptive grid refinement and scaling algorithms

Several examples of application of remeshing techniques can be found in the
literature. For instance, in FE analyses [71] such a technique is used to
automatically activate the size reduction of the elements of the mesh and stopped
when the approximation error of a particular physical quantity of the field
analysed is below a given threshold. One of the most popular algorithms to
generate new elements in FEM applications is based on a recursive decomposition
using quadtrees in two dimensions or octrees in three dimensions [72, 73], as
shown in Fig. 3.2 in the case of quadrilateral elements. Such a technique has
generally been adopted in FEM applications in order to split the selected elements
of the mesh, called parent elements, in more sub-elements called child elements.
Then, by a recursive splitting of the generated elements different levels of
refinement can be reached, as shown in Fig. 3.2. As done in FEM applications, in
the mesh-free method we apply a similar approach generating new nodes (called

child nodes) from the nodes belonging to the initial grid (called parent nodes) .

—_—— level O
10 11
1]
120 | 121 _— —— level 1
13
122 | 125
————— level 2
2 5
——- level 3
120 121 122 123

Fig. 3.2: Quadtree structure for square elements.
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In FE analyses such a technique is used to automatically activate the size
reduction of the elements of the mesh and it is stopped when the approximation
error is below a given threshold [71, 74]; In the present work grid refinement is
activated if the value of a physical quantity (trigger) associated to the nodes
overcomes a given threshold value. Moreover, the refinement level is
predetermined by the user. In the following we present the triggers used to
activate the refinement and scaling, while in Appendix A the pseudo-codes of the

employed AGRS algorithm are given.

3.2.1. Trigger based on potential energy

In [58] a trigger based on the density of potential energy has been proposed,
see Eq.(2.14), so that a node of the initial grid x; is selected for the activation of
the refinement if W (x;) = Wi es, the suggested threshold value is chosen as
Winres = 0.4Wy, 0y, Where Wy, ., 1s the maximum value of the density of potential
energy in the grid at that instant in time. Such a threshold value is considered a
good compromise between accuracy of the numerical solution and efficiency of
the computational procedure. However, the refinement in [58] was applied only to
linear elastic analyses, in the present work the AGRS is applied to dynamic crack
propagation in brittle materials. In this case a trigger based only on the density of

potential energy of the nodes exhibits two important weaknesses:

e It is not immediately possible to indicate a unique optimal threshold value
since Wip.es depends on the type and the complexity of the analysis

e [fin the domain several cracks are simultaneously present the energy density
trigger cannot guarantee an efficient activation of the AGRS, the refined

regions may be too large, and cover the entire domain, or too small.

In certain cases very high levels of energy are concentrated in a limited zone of
the domain in such a way that the energy density trigger misses other zones of the
grid which would require a refinement, as shown in Sect. 6.2 about the case of the
benchmark problem of the Kalthoff-Winkler experiment. The problem can be
overcome by adopting lower threshold values, but the risk would be to have
refined regions far too large and a consequent loss of efficiency. Fig. 3.3 shows
the flow chart of the working principle of energy based trigger, in Appendix A the
pseudo-code employed to implement the algorithm is given (see Algorithm A.1).
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- Waeo= Maximun density of potential energy in the grid at current time step
- levelgs:= Maximun level of refinement set by the user

|

Compute the threshold value Wi
as a percentage of Wos,

l

- ldentify nodes of the grid for which: W »= W
- Define a counter k=level,.

. ;B
4 lf 3
~ k>=10 > NO—] END ]
£ W 4 _/
YES
v

Find ID numbers of the nodes of level
of refinement equal to k

h 4

Recover the ID numbers of the coarse parent nodes of the
child nodes of k-th level of refinement

!

k= k1 " Store the found ID numbers in the list
e of the nodes to be refined

Fig. 3.3: Flow-chart of the energy based trigger.

3.2.2 Trigger based on damage

In the present work a new approach is proposed, two activation criteria are
used simultaneously, a new trigger based on the damage state of the nodes is
coupled to the energy density trigger: the nodes are chosen for the AGRS if
Ap = ¢ — ¢y > 0, where ¢, is the initial damage state of the nodes (see Eq.
(2.17) for the definition of damage). In Appendix A the pseudo-code employed to
implement the damage based trigger is given (see Algorithm A.2). Fig. 3.4 shows
how the two triggers work in order to activate the AGRS. The joint use of the two
criteria makes more robust the AGRS activation, in particular the use of the

damage trigger improves two important aspects in the numerical solution:

o [t keeps the refinement active at the tip of the crack during its propagation

in a region refined in previous instants of time.
e [t activates the refinement in a coarse region where a crack is going to

nucleate whenever the energy trigger fails: it is important to observe that
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in the adopted approach all bond failures should happen in a refined

region.

The working principle of the algorithm developed by employing the energy and
damage based triggers is given as follows: at each time step of the analysis, the
damage based trigger verifies if any of the coarse nodes has an incremented
damage level and, if so, the analysis is repeated after having refined the coarse

region around the identified node at the previous time step.

Pre-Processing

Temporal Integration
t < total time

Space Integration
- Displacement
- Velocity
- Acceleration
- Density of Potential Energy
- Damage

!

DAMAGE TRIGGER
Ap>0

Activation AGR in previous step
- Nodes generation with "visibility criterion”
- Updating the nodal areas and horizon
- Interpolation phisical quantites

Is Ap >0
of the coarse node?

NO

|

ENERGY TRIGGER
W >= Wirecnon

Was node refined
in previous step?

>

z

YES

Activation AGR
- Nodes generation with "visibility criterion”
- Updating the nodal areas and horizon
- Interpolation phisical quantites

Fig. 3.4: Structure of the algorithm to implement the AGRS.
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If no incremental damage is detected, then the analysis proceeds according to the
flow chart shown in Fig. 3.4. If the identified node belongs to the original grid
then it is added to the list of nodes to be refined, otherwise a search function is
activated to find the coarse nodes close to the identified refined node, which had
been generated by a previous refinement. It is clear that when we are dealing with
a dynamic analysis, the AGRS cannot be started at the beginning of the
simulation, since the energy density associated to each grid point is zero and
therefore the whole grid would be refined. For this reason a starting time tg; has to
be determined by carrying out a preliminary analysis on the coarse grid, long
enough to generate an inhomogeneous distribution of energy. The simulation
duration of the preliminary analysis t,, can be simply determined by evaluating
analytically the time that elastic waves take to propagate in the whole domain. An
upper limit to t,,,. can be estimated by using the expression dpqy/Cm, With dpgx
the ‘maximum distance’ in the discretised domain (i.e. the diagonal in a rectangle
domain). As a result of using this simple strategy, the user does not have to run
the whole analysis, which may take too much time. Finally, ty, is determined

empirically by the user who examines the solution of the preliminary analysis.

3.2.3 Node generation and updating properties

The generation of the new nodes can be obtained by adopting different
techniques, in the following the strategies adopted in this work are reported, with

their advantages and disadvantages:

A. The new nodes are inserted at the midpoints of the lines connecting
adjacent nodes that have the same ‘degree of kinship’, namely between
nodes belonging to the same level of refinement; i.e. with reference to 2D
cases, a single parent node leads to generate nine child nodes included the
parent node which switches to child node, as shown in Fig. 3.5a. This
approach is fast, simple and easy to implement since the parent nodes do
not have to be removed from the list of nodes of the grid, hence when the
grid matrix (see Eq. (A.1) in Appendix A) is updated as a consequence of
adding new nodes in the grid, the node ID number will not have to be
changed. In this way, search operations of the nodes for which the new ID

number should be reassigned can be avoided, reducing the computational
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time of the analysis. Nevertheless, this approach requires the area
modification of the nodes at interface with the nodes belonging to a
different level of refinement, as shown in Fig. 3.5. In fact, this approach
leads to modify the shape and the size of the area associated to the
interface node. Moreover, some of the nodes are no more at the centre of
their volume; that causes a loss of accuracy of the spatial integration since
the motion equations are solved with a mid-point integration in space (see
Egs. (3.1)). Let level = 0,1,...i identify the refinement level of the nodes;
then the initial grid spacing 4X, will be split in half as shown by the

following expression:

AX,

AXjever = D)

(3.3)

then the volume Vippe = tpAXE,e associated to each node has to be

corrected according to the following expressions:

( Vlevel - V(level+1)/4‘
| Vlevel - 3V(level+1)/4‘
Vievetint = Vievel — V(level+1)
Viever — 3 V(level+1)/2
Vlevel -7 V(level+1)/4'

(3.4)

Il
WD A W =

with j the number of nodes of the ith level adjacent to the nodes of the ith-
1 level, as shown in Egs. (3.4) j can vary between 1 and 5 depending on

the number of nodes of the ith level the distance of which is not bigger
than the diagonal d = \/EAx(level_l) of the grid spacing of the nodes with

the lower level of refinement.

B. The new nodes are generated by splitting the volume assigned to the node of
the same ‘degree of kinship’ in more sub-volumes, i.e. in four sub-volumes
for 2D cases as shown in Fig. 3.5b. Then, the new nodes are located at the
center of the corresponding sub-volumes. Unlike the previous approach, the
parent node has to be removed from the grid because of its null contribution
to the analysis. As a result of doing this, the current list of nodes (see Eq.
(A.1)) of the grid should be updated at each step in which new nodes are
added in the grid. Anyway, this drawback can be overcome by keeping the
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removed nodes from the grid stored in the data structure of Eq. (A.1); we
suggest as a strategy to detect such nodes by setting to zero their volume as
well as material ID number. Besides, another useful strategy is to set their ID
number used for detecting the level of refinement as ID = —(level g — 1)

of the child nodes generated, in this way the removed parent nodes can be

easily identify.
@® parent node
®  parent node switched to child node
® parent node removed from the grid a b
L] - .

Fig. 3.5: Parent node with the assigned area: a) child nodes generated by using the A approach, b) child nodes
generated by using the B approach.
The size of the area to be refined around each node identified by the triggers is
determined according to the visibility criterion introduced in [57] which suggests
that the refined zone has to be such that the horizon of the coarsest interface nodes
has not to include the identified node. Therefore, all the family nodes within the
horizon of the identified source node are refined, i.e. Fig. 3.6 shows both the 1*
and 3" level of refinement produced by the activation of the AGRS of a single
node in the case of m = 3. One can notice from Fig. 3.6¢c that successive
refinements are ’self-similar’ since the same procedure is used to generate 1% level
nodes from 0 level nodes, 2™ Jevel nodes from 1% level nodes and so on. In
particular, Fig. 3.6 shows the case of refinement in which the J-convergence
strategy is adopted, being both the initial grid spacing and horizon lengths divided
by two for each level of refinement and scaling applied. We can notice that the
grid spacing gradually varies from the coarsest region to the most refined region,
this approach is in accord with what highlighted in [75, 76] for FEM and [57] for

BB-PD about the fact that spurious wave reflections can be mitigated by only
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adopting such a variation of refinement. Fig. 3.7 shows that the shape of the

refined area depends on the value of the parameter m.

a) b) ©)
[-1- L
T 6D ==
/ \ . IR L Ll N
( o[ -UH ] LEHEEREEE [ | | anoiy|
\ AR : . el 85
ST i =
] 1]

Fig. 3.6: Application of the visibility criterion for the grid refinement around a single node identified by the
trigger when the J-convergence strategy is applied (with m =3): a) coarse grid, identified node with its
horizon, b) 1 level of refinement, c) 3 level of refinement.
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Fig. 3.7: Shape of the refined zone generated around a single node for various values of m: a) m =3.5, b) m
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Fig. 3.8: Examples of application of different refinement types: a) node selected by trigger, b) refinement of
1% level obtained by keeping constant the horizon length, c) refinement obtained with simultaneous variation
of horizon and m.

As stated in Sect. 3.1, different types of numerical convergences of peridynamic

theory to the classic theory of mechanics have been originally identified in [57],
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which can be implemented by reducing opportunely the horizon length with
respect to that one of grid spacing, as shown in Fig. 3.8 for the case of m-
convergence as well as dm-convergence. As it will be discussed in Sect. 5.3.2,
such numerical convergences may be really incisive as well as useful to solve
problems related to the grid sensitivity shown by peridynamics when discretized
with a uniform grid of nodes. Appendix A gives the skeleton of the pseudo-codes
employed to generate the new nodes with the approach B (see Algorithm A.3), a
similar algorithm structure is adopted when the approach A is implemented. Fig.

3.9 shows the flow chart of the working principle of Algorithm A.3.

- Coordinate of the nodes

- List of bonds

- ID numbers of the coarse node identify by triggers

- levelys:=Maximum level of refinement set by the user

v

Define a counter k=1

— ¥ @
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i
A R
i Did the node — - N
enerate a child node? .~
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- Generate coordinate of the new nodes T
- Assign peridynamic properties to the nodes YES
- Update List of bonds ¥

g

+ Find ID numbers of their child nodes

with the level of refinement equal to k

l

Identify ID numbers of the family nodes
beloniging the node identified

F 3

Fig. 3.9: Flow-chart of the algorithm to generate the refinement.

The addition of new nodes in the grid requires the updating of data such as the list
of bonds of the model (see Eq. (A.3) in Appendix A) and the volume correction
factor matrix (Eq. (A.5) in Appendix A). The simplest way to update them, but
inefficient from the computational point of view, it is to apply the required
algorithm on the whole grid, updating properties of regions of the grid in which

no refinement has been applied. Another approach, which surely allows using the
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computational resources in an efficient way, is to restrict the updating of the
properties to a window of the just the refined area. Anyway, the former approach
is adopted in this work since easier to implement. As it has been introduced in
Sect. 3.1, the volume correction factor algorithms allow to compute the
approximated weighted volumes and integration point coordinates to be inserted
in Egs. (3.1) for improving the accuracy of the space integration. Such algorithms
have been originally developed for a uniform arrangement of the nodes, hence
some adaptations have to be applied when a non-uniform grid is adopted. Let us
consider the PA-PDLAMMPS algorithm [68], in which only the nodes enclosed
inside the horizon define the set of family nodes, it is possible to notice from Fig.
3.10a that some of the interface nodes belonging to the refined region are affected
by a loss of volume computed inside the horizon. We suggest as a strategy to
reduce this loss of volume defining the horizon length of such nodes as a multiple
of the distance between the node and the closest node with the lower level of
refinement. It is apparent that such a distance can be different from any grid
spacing present in the model, (see Fig. 3.10b), the multiplying factor is the
adopted value of m of the coarse grid. Such correction implies an increased
horizon for some interface nodes (see Fig. 3.10b), and therefore an increased
volume taking part in the computation of the force acting on the node itself. In this
way it is possible to drastically reduce distortion phenomena of the energy flux

going through a zone with non-uniform grid, this will be described in Sect.4.2.

a) b)

Fig. 3.10: Volume losses affecting interface nodes, the black colour indicates the lost volumes :a) examples of
volume losses for constant mz, b) examples of volume losses for variable m.

Unlike the PA-PDLAMMPS algorithm, the IPA-Hybrid algorithm does not

require such a strategy for reducing the losses of volume since the exact
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computation of the partial volume of the family cells is calculated by means of

analytical expressions [68].
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Fig. 3.11: Example of computation of the integration points of family cells with the assigned volume
correction factors when the IPA-Hybrid algorithm is adopted in the refined interface regions.
Although the analytical expressions have been devised to be applied in cases in
which the nodes are uniformly arranged with a constant grid spacing, they can be
easily applied in the regions characterized by a varying grid spacing. This is done
by using like parameters in the equations given in [68] the horizon of the source
node and then the grid spacing associated to the family nodes taken into account
for the computation of its volume correction factor. Fig. 3.11 shows an example
about the estimation of the integration point of the family cells and corresponding
volume correction factors. Anyway, let us consider that the PA-PDLAMMPS

algorithm is computationally more efficient than the I[PA-Hybrid algorithm.

3.2.4. Interpolation of physical quantities

After the updating of the properties of new nodes inserted into the grid,
physical quantities such as the displacement, velocity and acceleration have to be
assigned by the interpolation of the quantities of the nodes belonging to the
previous grid. Which nodes should be involved to interpolate such quantities
depends on the method of interpolation employed. Matlab software offers several

useful functions for interpolating values of a function at specific query points.
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Different interpolation methods can been chosen, in particular we adopt the linear
interpolation for which four nodes for the 2D case (eight nodes for the 3D one)
closest to the query point are used. Knowing the field of the relevant quantities at
each time step of the simulation, it is easy to obtain the interpolated values by
inserting only the coordinates of the new nodes generated in the input variable of
the function. Although this approach is easy and fast to be applied, we point out
that such a interpolation offered by Matlab has some limitations when applied in
this context. First, its use is restricted to a regular and structured arrangement of
the sampling nodes, hence only the initial nodes of the grid can be adopted for
interpolating the values. Therefore, in case of an expanding refined region, the
interpolated values of the new nodes cannot get the benefits from the higher
accuracy of the refined function field close to them. It is clear that such a
interpolation can only be applied when the method A of generation of the new
nodes is employed, being that the parent nodes of the grid are not removed from
the analysis (see Sect. 3.2.3). Another function offered by Matlab which can
remove this limitation performs interpolation on scattered data set by using an
approach based on the Delaunay triangulation. However, when such a function is
used in problems in which symmetrical results are supposed to be obtained, it may
be a source of asymmetries on the trend of the interpolated functions due to the
random generation of the Delaunay triangulation. Finally, let us consider the fact
that when we are treating problems dominated by displacement jumps due to the
presence of initial cracks within the domain, we shall ask questions about which
set of nodes should be used to approximate the function value when new nodes
are added in the proximity of the pre-crack tip. In fact, sometimes it can happen
that using the default set of nodes adopted by Matlab functions, some bonds in the
proximity of the pre-crack tip may break as a consequence of an uncorrected
interpolation, leading the crack to a premature propagation. Such cases could be
avoided by introducing a new data structure to select the right set of nodes, which

may lead to reduce the computational efficiency.

An interesting interpolation method that can remove all the drawbacks of the
interpolation methods offered by Matlab is known as the PIM (Point Interpolation
Method), such a method is frequently used for the creation of the shape functions

adopted in mesh-free methods [77]. Let u (x) be an unknown component of the
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displacement field at any point x within the problem domain, then its function

value can be expressed as:

k
u() = ) i@ = BV, (3.5)

with & the number of nodes included in a “/ocal domain” of the point x defined by
the user, u;the known component of the displacement at the ith node in the local
domain and ¢;(x) the shape function of the ith node determined using all the
nodes included in the local domain. Both the shape functions and the components
of the displacement can be collected in the array form @ (x) and Ug, respectively.
The number of nodes involved to approximate the function value at the point x is
determined from the size of the local domain. Several local domain shapes can be
used, i.e. circular and rectangular are most often used, and its dimension can
change for different nodes. One of the advantages to use such a method in
peridynamics derives from the possibility to adopt the horizon for defining the
size of the local domain of interpolation. As a result, the local domain of
interpolation coincides with the non-local region H(x) introduced by
peridynamics. Moreover, as previously stated, in order to avoid the premature
failure of the bonds in the proximity of the crack tip, we propose to adopt for
simplicity of implementation the truncated local domain, known as visibility
criterion in the context of mesh free methods [78]. Basically, the nodes included
in the local domain coincide with the current list of family nodes belonging at that
point x, this information can be easily obtained from the bond history list (see
Appendix A). The shape functions ¢;(x) in Eq. (3.5) are built by adopting the
PIM method based on polynomial basis functions [77], according to the proposed

strategy its formulation starts with the following finite series expression:

k
u"(x, %) = Z pi(0)a;(xg) = pt(x)alx,) (3.6)

where uh(x, xq) represents the approximation of the function u (x) using the
values of the family nodes enclosed inside the horizon H(x,) of the point x4, & is

the number of family nodes, a;(x;) is the coefficient associated with the
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monomial p;(x) corresponding to the point x,. Assuming the hypothesis of linear
interpolation, the vector p (x) of the basis function of monomials in a 2D domain

is expressed as:
piX,Y) =[1X,Y] (3.7)

Introducing the matrix form of the basis functions P ,called moment matrix:

LX, ¥,
1 X, Y,

By=|. :2 :2 (3-8)
_1 X, Y

and collecting the u (x;) of a component of the displacement field in the vector

form U of all the family nodes:

u(x)) |

U = M(TZ) (3.9)

L u(x,) |

then the coefficients collected in the vector form a are calculated by enforcing

that Eq. (3.14) be satisfied at the £ nodes, as follows:
a=P, U (3.10)

assuming that the inverse P, exists, see [77] for a detailed explanation of the

conditions for which the moment matrix is not invertible. Therefore, if the Eq.

(3.10) is substituted into Eq. (3.6), we obtain:

ul(x,x,) = p* ()P, U = @ (XU (3.11)

The code used for implementing the PIM in order to interpolate the nodal
displacement values in the case of a 2D domain is given in Appendix A (see
Algorithm A.4). The same procedure is applied to interpolate the velocity and

acceleration values.
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Finally, we remark that specific tests have not been carried out to check if the
interpolated quantities satisfy the conservation of quantities such as the kinetic
energy, linear and angular momentum. Such tests shall be performed in the future

application of AGRS.
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4. Tests to evaluate the performance of a non-uniform
grid

As stated in Sections 2.3-2.4, the use of a varying horizon size and grid spacing
may introduce some anomalies in the displacement field of the PD numerical
solution. The possible reasons of such anomalies can be essentially identified in

the following points:

e the numerical noise introduced by the change of grid spacing over the
discretized domain as a result of the change of space integration
accuracy

e cffects on PD solution introduced by the loss of bonds through the
transition region where the horizon varies (see Section 2.3), then the
presence of ghost forces which affect the local equilibrium through that
region (see Section 2.4)

e the change of dispersion response of the material due to the change of

non-locality (change of the horizon size) over the domain.

It has been well known for a long time that when elastic waves cross regions
discretized with elements of different size in FEM meshes [75, 76], spurious
reflections can occur due to the numerical errors and noise which affect the
transition zone. Such a phenomenon was also observed in non-uniform
peridynamic grids in 1D/2D problems [57, 58]. Let us consider that, unlike the
methods based on classical mechanics, which are devoid of an intrinsic length-
scale, the change of the non-locality over the domain introduces an additional
error in numerical PD solutions, especially in the case of dynamic simulations.
Taking into account that the dispersion of the material is related to the size of the
horizon length [3], the change of the horizon length leads to have regions
characterized by a different dispersion law of elastic waves [79, 80]. Strategies to
mitigate the spurious wave reflections introduced by the change of non-locality
over the domain are proposed in [81]. This chapter aims to provide an estimation
of the numerical errors introduced by the use of a non-uniform and scaling grid in

PD solutions. In particular, we are interested to answer the following questions:
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1. how much do the ghost forces influence the error in numerical PD
solution?

2. in the absence of ghost forces, is the solution still affected by the
presence of anomalies in the displacement field?

3. do such anomalies affect the PD solution in the regions far from the
transition zone?

4. How much do the refinement and scaling affect the propagation of

elastic waves?

For answering these issues, static analyses are first performed by comparing the
2D numerical PD solution with the analytical solution of an elastic linear problem.
By static analyses, the additional effects introduced by dispersion of the model
can be avoided, allowing to better understand the origin of such anomalies
introduced by the refinement and scaling. Then, dynamic analyses concerning the
propagation of a continuum elastic wave in a 2D plate are performed in order to
evaluate the spurious waves and wave distortions generated by the refinement and

scaling.

4.1.Static analyses

A 2D static example is addressed through the comparison of the numerical
peridynamic solution with the analytical solution of a linear elastic problem. The
same problem has been proposed in [66], using a uniform grid of nodes and
constant horizon. The model (see Fig. 4.1) is a rectangular plate of size 1x0.5 m’
and thickness 1 = 0.01 m subjected to a uniform uniaxial tension of magnitude p =
200 MPa. The mechanical properties of the material are: £ = 200 GPa, v = 1/3
(plane stress case). The numerical solutions are obtained by using the linearized
formulation of the equation of motion of BB-PD (see Eq. (2.19)), while the static
solution is numerically solved by means of the stiffness matrix, see in [82] for a
detailed explanation of the method adopted for its assembly. The spatial
integration is carried out using the IPA-Hybrid algorithm (see Section 3.1) for
computing the volume correction factor. In order to investigate the anomalies
introduced by the use of a non-uniform grid of nodes and a varying horizon size in
numerical peridynamic solution, we analyze several models which differ in the

configuration of the refined region. As a first step, only the left side of the model
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(see Fig. 4.1) is refined by keeping constant the m ratio a