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Thesis abstract 

The overall aim of this thesis was to determine the feasibility of breeding for 

improved milk quality and in particular protein fractions, free amino acids (FAA) and 

milk colour. To breed for a characteristic such as milk quality it must be; (i) economically 

or socially important (ii) exhibit genetic variation (i.e be heritable), and (iii) be 

measurable or genetically correlated with a measurable trait. Gold standard data was 

determined from 715 milk samples. Spectral data used consisted of ~ 95,000 milk 

samples from seven research herds and ~ 40,000 milk samples (morning and evening 

milk samples combined) from 69 commercial herds. The greatest correlation coefficients 

of external validation obtained for protein fractions, FAA and milk colour were 0.74 

(total casein), 0.75 (glycine) and 0.72 (yellowness), respectively. Milk protein fractions 

and FAA change across calendar months of the year, stage of lactation and parity. A peak 

in the concentration of all casein fractions was evident in the months of August, 

September and October. The concentration of glutamic acid was greatest during the 

months of February, March, April and June when adjusted for milk yield. Changes in 

individual milk protein fractions and FAA across calendar months of the year and across 

stages of lactation could provide useful input parameters for decision support tools in the 

management of product portfolios by processors over time. Heritability of the predicted 

protein fractions and FAA ranged from 0.04 (beta casein) to 0.61 (total lactoglobulin) and 

from 0.05 (aspartic acid) to 0.58 (serine), respectively. The coefficient of genetic 

variation of gold standard protein fractions and FAA ranged from 3.01 (alpha 

lactalbumin) to 22.98 (total lactoglobulin) and from 1.01 (glutamic acid) to 25.65 (serine), 

respectively. Milk colour traits were low to moderately heritable ranging from 0.29 

(lightness) to 0.35 (yellowness), respectively. The coefficient of genetic variation of milk 

colour ranged from 0.37 (lightness) to 1.72 (greeness), respectively. Results from this 

thesis clearly show that some protein fractions, some FAA and milk colour are 

predictable from MIRS and these predictions exhibit genetic variation and thus breeding 

for improved milk quality is feasible. The outcome of this thesis is primarily that the 

prediction of these traits by MIRS could benefit the dairy breeding industry worldwide 

through genetic selection of animals with higher quality milk and allowing for the more 

accurate selection of milk for human consumption, infant milk formula, and cheese 

production. The generated predictions could also be useful for herd and processor 

management strategies. 
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Riassunto della tesi  

L’obiettivo generale della presente tesi è stato quello di determinare la possibilità 

di poter migliorare, tramite in programmi di selezione genetica, la qualità del latte e in 

particolare le frazioni proteiche, gli amino acidi liberi (FAA) e il colore. Per essere 

migliorato geneticamente un carattere (incluso la qualità del latte) deve: i) essere di 

importanza, sia essa economica o anche sociale; ii) esibire variabilità genetica, ossia deve 

essere ereditabile; iii) essere misurabile o correlato geneticamente con un carattere che sia 

misurabile. Le analisi di riferimento per i suddetti parametri di qualità del latte sono state 

determinate su 715 campioni di latte. Il dataset di spettri includeva misurazioni infrarosse 

su circa 95 000 campioni di latte raccolti in sette aziende sperimentali, mentre altri circa 

40 000 spettri (determinati su campioni di latte di entrambe le mungiture giornaliere) 

erano provenienti da 69 aziende commerciali. I più alti coefficienti di correlazione, in 

validazione esterna, ottenuti per frazioni proteiche, FAA e colore del latte sono stati 

rispettivamente di 0.74 (caseine totali), 0.74 (glicina) e 0.72 (indice del giallo). Le 

frazioni proteiche del latte e gli FFA hanno dimostrato variazioni tra mesi dell’anno, tra 

stadi di lattazione e tra ordini di parto. Un picco nella concentrazione di tutte le frazioni 

caseiniche è stato evidente nei mesi di Agosto, Settembre ed Ottobre. La concentrazione 

di acido glutammico è stata maggiore nei mesi di Febbraio, Marzo, Aprile e Giugno a 

parità di produzione di latte giornaliera. Le variazioni di frazioni proteiche e FAA 

attraverso mesi dell’anno e stadi di lattazione possono fornire all’industria di 

trasformazione lattiero-casearia uno strumento per gestire il proprio portafoglio prodotti 

lungo uno specifico periodo produttivo. I valori di ereditabilità dei fenotipi predetti hanno 

avuto un minimo di 0.04 (beta caseina) ed un massimo di 0.61 (lattoglobulina totale) per 

le frazioni proteiche, mentre per quanto riguarda gli FAA hanno variato tra 0.05 (acido 

aspartico) e 0.58 (serina). Il coefficiente di variazione genetico per frazioni proteiche 

misurate ha variato tra 3.01% (alfa lattoalbumina) e 22.98% (lattoglobulina totale), 

mentre per gli FFA misurati ha variato tra 1.01% (acido glutammico) e 25.65% (serina). 

Il caratteri di colore del latte hanno dimostrato una ereditabilità medio-bassa, con un 

range compreso tra 0.29 (luminosità) e 0.35 (indice del giallo). Il coefficiente di 

variazione genetico del colore del latte ha avuto un minimo di 0.37% (luminosità) ad un 

massimo di 6.68% (indice del giallo). I risultati della presente tesi dimostrano 

chiaramente che alcune frazioni proteiche, alcuni FAA e il colore del latte sono di 

possibile predizione attraverso la tecnologia nel medio-infrarosso, e tali fenotipi predetti 
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hanno variabilità genetica il che implica che programmi di selezione per migliorare la 

qualità del latte sono possibili. I risultati principali di questa tesi sono che le predizioni di 

questi caratteri usando la spettroscopia nel medio infrarosso possono rappresentare un 

beneficio per gli allevatori di vacche da latte attraverso la selezione genetica di animali 

con una migliore qualità del latte. Inoltre, questa tesi offre delle opportunità per una 

selezione più accurata del latte destinato al consumo umano, alla produzione di latte per 

neonati e alla produzione di formaggio. Inoltre, tali predizioni possono rappresentare dlle 

opportunità per il management aziendale e industriale.   
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1.1 Infrared spectroscopy  

Electromagnetic radiation is a form of energy that is propagated through free 

space or through a material medium in the form of electromagnetic waves. As shown in 

Figure 1.1 different types of electromagnetic waves exist which differ in wavelength. The 

wavelength is the distance between one wave crest to the next. From the shortest 

wavelength to the longest, they are classified as following: 

1) Gamma rays 

2) X-rays 

3) Ultraviolet visible light 

4) Infrared, which is further categorised into: 

a. Near infrared waves 

b. Mid-infrared waves (short, medium and long waves) 

c. Far infrared waves 

5) Microwaves 

6) Radio waves 

             

 
Figure 1.1 Regions of the electromagnetic spectrum (Pellizon Birelli and Fazio, 2005). 

 

Infrared (IR) spectroscopy is the analysis of infrared light interacting with a 

molecule and it is based on the capability of every molecule to reflect, transmit or absorb 

part of the energy when this light hits it. The amount of energy absorbed (absorbance) is 

directly proportional to the amount of the absorbent molecule in the sample (Lambert-

Beer law). 
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1.1.1 Advantages and disadvantages of infrared spectroscopy 

Some of the advantages of IR spectroscopy technology (Williams, 2007) include that:  

1) It is quick and efficient, yielding a response in real-time 

2) It can study samples in almost any state, including liquids, solutions, pastes, 

powders, films, fibres, gases, and surfaces 

3) It is precise and accurate (accuracy is equivalent to primary reference 

methods) 

4) It is practical  

5) It is inexpensive to operate (low labour requirements) 

6) It is environmentally friendly 

7) It is durable (approximately 10-year lifespan) 

8) It is simple and safe to operate 

9) It facilitates simultaneous analysis of several traits 

10) It does not destroy the sample during the analysis 

Some of the disadvantages of IR technology (Williams, 2007) include that: 

1) Separate calibration is required for each product and constituent 

2) Accuracy and reproducibility must be monitored  

3) Equipment can be expensive to purchase 

4) Training is required to operate instruments most efficiently 

One of the complications of IR analyses of solutions is the tendency for common 

solvents such as water to strongly absorb infrared light therefore adding noise to the 

analyses. Noise is defined as any electronic signal that reaches the spectral detector that is 

not directly related to the actual absorption bands required for analysis. Water is a 

particularly poor solvent for use in the infrared region, as the spectral bands associated 

with O-H vibrations are very strong and broad. Essentially, water is able to "blank out" 

large regions of the spectrum, deleting important information and reducing accuracy. This 

is a disadvantage, as many biological, forensic, and clinical samples occur naturally in 

aqueous solutions; for example, bovine milk is 87.7% water. To deal with that 

inconvenience spectra can be manipulated to diminish noise by a smoothing process, 

which helps with the spectra interpretation. 
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1.1.2 History and development of infrared spectroscopy 

One of the most significant historical events for IR spectroscopy was the 

development of the Fourier Transform in the 1700s; prior to this mathematical 

transformation was enhanced by the use of interferometer (e.g., Herschel and Michelson 

in 1800; Coblentz, Wright and Hersher, Barer, Fellgett, Jacquinot, Cooley, and Tuckey in 

the first half of 1900). The first Fourier Transform infrared spectrophotometer with a 

dedicated minicomputeron was sold in 1969 by Digilab, and was later modified in 1983, 

by the same company (Spectra-Tech). From the 1980s onwards, Fourier Transform 

infrared spectrophotometers were amalgamated with personal computers and this 

technique of analysis became popular because of its efficiency and cost-effectiveness.  

 Infrared spectroscopy is presently used in a wide range of scientific fields such 

as biology (Chang et al., 2001) and agriculture (Williams et al., 2007). Fourier Transform 

spectrometers are commonly used in chemistry to analyse organic and inorganic 

molecules, as well as polymers (Siesler et al., 2008) and in agriculture, animal production 

and food science to analyse meat quality, milk composition, forage, manure, and wine 

(Williams et al., 2007). 

1.2 Near-infrared spectroscopy 

Near-infrared spectroscopy (NIRS) is based on the absorption of electromagnetic 

radiation in the region from 750 to 1400 nm. The analysis of water by NIRS was the first 

successful application of this rapid technology, which has developed over the past 30 

years into a routine method for many agricultural commodities and food constituents. In 

agriculture, NIRS is used to analyse soil (Cecillon et al., 2009), forage (Cozzolino and 

Moron, 2004), manure (Reeves and Van Kessel, 2000), wine (Cozzolino et al., 2008), 

milk (Albanell et al., 2003) and animal meat (Mitsumoto et al., 1991) composition. 

Therefore, agricultural applications of NIRS include farm management (Kawasaki et al., 

2008), plant breeding (Cozzolino et al., 2000), flour milling (Osborne et al., 2007), and 

grain handling (Mohan et al., 2005). Other applications of NIRS are found in medical, 

biomedical studies, food science, forestry, pharmaceutical and petroleum industries. 

1.3 Mid-infrared spectroscopy 

Mid-infrared spectroscopy (MIRS) is a technique that studies the interactions 

between light and matter within the mid-infrared region of the electromagnetic spectrum 

(1,400-15,000 nm). Mid-infrared spectroscopy is widely used in the pharmaceutical 
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industry in chemical structural confirmation, to identify suspect counterfeit samples, and 

for the identification of active pharmaceutical ingredients in drug products (Dziki and 

Doddi, 2008). Agricultural applications of MIRS include quantification of product 

composition (including bovine milk; Dousseau et al., 1989), sugar, sugarcane, and 

beetroot (Mehrotra and Siesler, 2003). Mid-infrared spectroscopy is routinely used by 

milk recording organisations worldwide to quantify milk protein, casein (CN), fat and 

lactose content and has practical application both in milk payment schemes and in 

monitoring individual animal performance to aid animal management and breeding 

decisions.  

1.3 Milk quality 

Milk quality parameters include somatic cell count (SCC), total bacterial count, 

fat content and composition, mineral content and composition, protein content and 

composition, free amino acid (FAA) composition and milk colour . Milk quality 

influences the manufacturing process, yield, and consistency, affecting profit margins and 

market access. It is known that milk protein composition is important as it affects both 

yield and characteristics of cheese and plays a vital role in the production of all cheese 

types (De Marchi et al., 2009a). 

Some of the desired milk quality parameters depends on the target market; for 

example, Irish consumers prefer a more yellower creamier milk with a higher fat content, 

whereas a yellower colour milk are considered an unfavourable attribute in Middle 

Eastern dairy markets (Keen and Wilson, 1992). The milk payment scheme in the 

majority of countries is partially based on specific milk quality parameters. Tiered milk 

payment penalises dairy producers for poor quality milk (high milk SCC and total 

bacterial) and it is now becoming increasingly common for producers to be financially 

rewarded on a range of different milk quality parameters including fat and protein 

content. Thus, the provision of premium quality milk is in the interest of all sectors. 

 Milk production in Ireland is generally grass based and therefore seasonal, with 

a peak: trough ratio of total milk yield of 7:1 (May vs. January). However, demand for 

liquid milk and other dairy products is constant year round (Department of Agriculture 

and Food, CSO, 2002). Ireland’s grass based production system enables the production of 

high quality milk, as grass has a high energy and protein content (Teagasc, 2014). 

Currently, Ireland produces about 5.5 billion litres of milk per year and exports 85% of its 

liquid milk and milk products (ICOS, 2016). Given the recent abolishment of the milk 
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quota, there is an expected increase in milk supply of 50% by 2020 (Food Harvest, 2020). 

Marketing Irish milk as high quality milk produced on a grass-based system could give 

Ireland a competitive advantage over other countries. However, this requires detailed 

knowledge on the milk quality of the national herd, which is not feasible using currently 

available milk quality data.   
Infant formula production is the fastest growing sector in the world dairy market 

(FAOSTAT, 2014) and the international market for infant milk formula is worth 

approximately US$5-6 billion annually. Ireland is the largest exporter of infant formula in 

Europe. Irish based companies trade approximately 15% of the infant milk formula 

tonnage internationally and it is anticipated that this will increase further to 20% in the 

coming years (Teagasc Annual Report, 2011) as global demand for infant and follow-on 

formula continues to rise in line with population growth. Currently, infant formula 

production contributes €620 million to the value of Irish dairy exports, which is greater 

than the contribution of either cheese (€600 million) or butter (€542 million) (Teagasc 

Publication, 2014).  

Detailed milk product quality is not considered in the Irish national dairy cow-

breeding objective, at present, despite its fundamental importance to potentially add value 

to the Irish agri-food industry. This is largely due to lack of routine access to data on 

detailed milk quality parameters, possibly owing to the expense of generating such data 

using currently available gold standard methods. Consideration of milk quality 

parameters in national breeding goals is particularly important for exporting countries 

such as Ireland to consistently achieve a high-quality product suitable for value-added 

international markets. 

1.4 Milk protein composition 

The high nutritional value of milk is partly due to its protein composition. Milk 

protein is a complex group of peptides in which over 200 different molecules have been 

characterised (Ng-Kwai-Hang, 2002). Bovine milk generally consists of about 3.3% 

protein, of which 78% is comprised of casein (CN), 17-18% of whey protein and the 

remaining 4-5% of non-protein nitrogen. Milk CN consists of alpha-s1-casein (αs1-CN), 

alpha-s2-casein (αs2-CN), beta-casein (β-CN), kappa-casein (κ-CN) (in approximate 

proportions of 4:1:4:1) and gamma-casein which is a product of degradation of β-CN 

(Ostersen et al. 1997; Miller et al. 1990). The three main whey proteins are beta 

lactoglobulin (β-LG), of α-lactalbumin (α-LA) and blood serum albumin, representing 
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approximately 50, 20 and 10% of total whey proteins, respectively. The remaining part of 

protein consists of non-protein nitrogen including immunoglobulins and trace amounts of 

several other proteins, including enzymes and growth factors (Fox and McSweeney, 

1998).  

Human and bovine milk have significantly different composition. Total whey to 

total casein protein ratio varies from 60:40 in human milk to 20:80 in bovine milk. Albeit 

infant formulas have been modified to have a ratio of total whey to total casein close to 

that expected in human milk, the concentration of α-LA is still relatively low in infant 

formula, whereas β-lactoglobulin A (β-LG A) (which is not present in human milk) is 

present in the greatest amount in bovine milk and is considered a major milk allergen 

(Jabed et al., 2012). In recent years, whey supplementation has allowed the development 

of infant formula with a greater concentration of α-LA and reduced concentration of β-LG 

A. Although whey-based formulas have a whey to casein protein ratio more similar to 

human milk than traditional milk formulas, the proportion of α-LA and β-LG A still 

substantially differ to the proportion in human milk (Lien, 2003).   

Milk caseins are fundamental to the cheese making process as they form the gel 

network that captures the other constituents of cheese. Numerous studies have 

investigated the effects of milk protein polymorphisms, in particular those of CN on 

cheese yield (Wedholm et al., 2006; Bonfatti et al., 2011a). Wedholm et al. (2006) stated 

that the concentration of CN in milk protein had a favourable effect on the quantity of 

protein transferred from milk into cheese curd and high concentrations of αs1-, β-, and κ-

CN, and of β-LG B were found to significantly increase cheese yield. 

Protein plays an important role in the immunity, growth and development of 

infants (Lönnerdal, 2003). Casein fractions supply essential amino acids and are carriers 

of phosphate and calcium, whereas, whey proteins are of nutritional benefit as they have a 

high concentration of essential amino acids such as methionine and cysteine (De Wit, 

1998). Milk protein stimulates muscle synthesis, and some proteins and peptides in milk 

have positive health effects on blood pressure, inflammation, oxidation and tissue 

development (Haug et al., 2007). For example, the lactoferrin protein plays an important 

role in immune system maintenance due to its antibacterial, antifungal, and antiviral 

properties (Farnaud and Evans, 2003; Baker and Baker, 2005). 
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Table 1.1 Mean and standard deviation (SD) for protein composition from three different studies (two populations of Simmental cows and a 
population of Holstein-Friesian cows). 

    Bonfatti et al. 2011a De Marchi et al. 2009b 
 

Rutten et al. 2011 

  
n=1336 Simmentals 

 
n=2167 Simmentals 

 
n=5545 Holstein Friesians 

Trait  
Mean SD 

 
Mean SD 

 
Mean SD 

Protein, g/L 40.68 4.50 
 

40.12 0.12 
 

35.10 0.30 

Casein, g/L  
35.61 3.95 

 
35.10 0.12 

 
75.19 1.73 

Whey protein, g/L 5.06 0.71 
 

- - 
 

- - 

Casein number, % 87.55 1.08 
 

- - 
 

- - 

Casein, g/L  
- - 

 
- - 

 
- - 

Alpha s1 casein  
12.63 1.51 

 
12.54 0.12 

 
33.65 1.68 

Alpha s2 casein  
13.24 0.67 

 
4.32 0.17 

 
10.37 1.40 

Beta casein  
3.70 1.99 

 
14.79 0.15 

 
27.14 1.58 

Gamma casein  
4.37 0.42 

 
- - 

 
- - 

Kappa casein  
1.59 0.88 

 
3.71 0.24 

 
4.02 0.58 

Glyco kappa casein 1.76 0.59 
 

- - 
 

- - 

Whey protein, g/L - - 
 

5.01 0.15 
 

10.78 1.22 

Alpha lactalbumin  
1.29 0.22 

 
1.30 0.18 

 
2.44 0.32 

Beta lactoglobulin   3.76 0.61 
 

3.71 0.17 
 

8.34 1.19 
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1.4.1 Milk protein determination 

A range of methods exist to quantify milk protein composition including 

electrophoretic techniques (Ng-Kwai-Hang, 1984; Kroeker, 1985; Kim and Jimenez-

Florez.,1994), isoelectric focusing (Kim and Jimenez-Florez., 1994), high performance 

liquid chromatography (HPLC) by ion exchange (Hollar et al., 1991), hydrophobic 

interactions (Bramanti et al., 2002), reversed-phase methods (Visser et al., 1991), and 

more recently capillary zone electrophoresis (Recio et al., 1997), mass spectrometry 

(Miralles et al., 2003) or these methods combined (Mollé and Léonil, 2005). Above all 

the reference methods, HPLC enables rapid and automated analysis, characterised by 

good separations, high resolutions and accurate, reproducible results. 

1.5 Free amino acid composition 

Free amino acids (FAA) in milk are amino acids (AA) resulting from milk 

protein denaturation and therefore do not contribute to the total protein of milk. Because 

FAA in milk processing arise from protein hydrolysis, it indicates poor quality milk.  

1.5.1 Functions of amino acids 

Amino acids play a role in muscle protein synthesis (valine; Ha et al., 2003), 

muscle growth (valine; Ha et al., 2003), antiviral activity (lysine; Habuka et al., 1989), 

protein methylation (lysine; Nakayama et al., 2001), transport of sulphur (cysteine; 

Stipanuk, 2004), haemoglobin structure and function (histidine; Lukin and Ho, 2004), and 

gene expression and immune function (glutamine; Curi et al., 2007); thus amino acids are 

often given as human nutritional supplements (Wu, 2009).  

Human and bovine milk have different FAA content and composition, with 

bovine milk generally having a lesser concentration of FAA than human milk (Roucher et 

al., 2013; Agostoni et al., 2000; Sawar et al., 1997; Armstrong et al., 1963) and thus 

infant formula is supplemented with additional amino acids. Valine, histidine, and 

glutamic acid are essential in the production of infant formula (Koletzko et al., 2005). 

The human body can produce glutamine from glutamic acid; however when under stress, 

body requirements for glutamine may surpass the ability of the body to produce sufficient 

amounts of glutamine. Consequently, some studies have suggested that glutamine may 

become a “conditionally essential” amino acid in the critically ill (Andrews and Griffiths 

2002; Askanazi et al. 1980). 
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1.5.2 Free amino acid determination 

The determination of FAA in milk can be difficult as FAA are normally only 

present in small quantities in the milk and are hard to detect in their natural forms. 

Common methods to quantify the FAA in bovine milk include; 

1) Microchip Electrophoresis-Laser Induced Fluorescence Detection (MCE-LIF) (Wu et 

al., 2012). Advantages of this technique include that it is quick and inexpensive. A 

disadvantage of MCE-LIF that it has a low reproducibility.  

2) Cation Exchange HPLC (Schwarz et al., 2005; Mounier et al., 2007). Advantages of 

Cation Exchange HPLC include that it enables rapid and automated analysis, 

characterised by good separations, high resolutions and accurate results. 

Disadvantages of Cation Exchange HPLC include low reproducibility and low 

sensitivity. 

1.6 Milk colour 

Raw milk colour influences the colour of subsequent dairy products and by-

products (Descalzo et al., 2012) thereby influencing the attractiveness of the milk for 

different markets. A yellow colour of dairy products is considered unfavourable in 

Middle Eastern dairy markets (Keen and Wilson, 1992), but in Europe, a yellow colour is 

favourable in high fat dairy products such as butter and full fat cheeses (Hutchings 1994, 

Casalis et al., 1972). The yellow colour of bovine milk is related to the level of β-carotene 

and fat content in milk; a greater milk fat and β-carotene content results in an increase in 

the yellowness of milk (Tian et al., 2010) and of dairy products, because there is minimal 

loss of carotenoids when transforming milk to butter and cheese.  

The white colour of milk is a function of the milk’s physical structure; the 

dispersion of both casein micelles and fat globules in milk is responsible for the diffusion 

of incident light and is related to lightness (L*) (Raty et al., 1999). The natural 

pigmentations from carotenoids, protein and riboflavin are also associated with the white 

colour of milk. Milk with a low carotenoid, high protein and high riboflavin content tends 

to be whiter (Solah et al., 2007).  

 Feeding and selective breeding of cows may alter the carotenoid level and thus 

the colour of dairy products (Norieze et al., 2006a). Cows fed grass silage tend to produce 

milk with yellower fat and greater β-carotene content than milk produced by cows on a 

hay diet (Noziere et al., 2006b; Calderon et al., 2007). Breeds of cows such as Jerseys, 
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which produce milk with a greater carotenoid and fat content, produce more yellow 

colour milk than breeds such as Holstein-Friesians or Montbelliardes (Lucas et al., 2006). 

Differences in milk colour can also be related to the presence of abnormalities in milk; for 

example, mastitis attributable to S. esculine infection causes milk to have a more 

reddish/yellowish colour (Espada et al., 2002). 

1.6.1 Milk colour determination 

The two reference methods commonly used to determine colour include a visual 

colour system and a mathematical colour system. The visual colour system uses actual 

physical colour samples in a certain arrangement. An example of a physical colour system 

is the Munsell system, where milk is measured using a photometer or more recently 

spectrometers such as the Beckman (Nelson, 1948). Mathematical colour systems are 

used with a spectrophotometer and milk colour is related to precise descriptions of the 

light source, object and a standard observer (Welsh, 1993). Examples of mathematical 

colour systems are the Chroma Meter CR400 (Konica Minolta Sensing Europe, 

Edisonbaan 14-F, NE) or a NH310 Colour Meter Milk and Liquid Colour Test Machine 

(Shenzhen 3nh Technology Co., Ltd, China). Results from these systems are expressed 

according to the CIE Lab (L*a*b* colour space). The CIE Lab identifies colours by 

plotting the co-ordinates in a uniform colour space and by reporting values for lightness 

(L*), redness and greenness (a*), and yellowness and blueness (b*) (CIE, 1978). The L* 

coefficient ranges from black (L* = 0) to white (L*=100).  The colour coefficients a* and 

b* represent true neutral gray values at a* = 0 and b* = 0. The colours red and green are 

represented along the a* axis, with green at negative a* values and red at positive a* 

values. The colours yellow and blue are represented along the b* axis, with blue at 

negative b* values and yellow at positive b* values.   

1.7 Use of mid-infrared spectroscopy to phenotype milk 

Traditionally used to predict total milk fat and protein content, MIRS has gained 

momentum as a potential tool to collect many more milk phenotypes in recent years. The 

number of peer-reviewed published manuscripts per year on the application of MIRS to 

predict milk related traits between 2006 to 2016 inclusive is provided in Figure 1.3. The 

rapid increase in manuscripts on the topic of MIRS emphasises the increasing interest in 

the topic. Such publications include studies on the use of MIRS to predict novel milk 

quality characteristics such as; milk fatty acid composition (Soyeurt et al., 2006, 2008, 
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2011; Rutten et al., 2009; De Marchi et al., 2011; Ferrand et al., 2011; Maurice-Van 

Eijndhoven et al., 2012),  milk protein and CN percentage (Luginbuhl et al., 2002; 

Sorensen et al., 2003; Etzion et al., 2004) milk protein composition (De Marchi et al., 

2009b; Bonfatti et al., 2011a; Rutten et al., 2011) milk coagulation properties (MCP; Dal 

Zotto et al., 2008; De Marchi et al., 2009a, 2013; Visentin et al., 2015), and milk acidity 

(De Marchi et al., 2009a). The usefulness of MIRS to predict animal-level characteristics 

such as energy balance (McParland et al., 2011, 2012),  feed intake (McParland et al., 

2011, 2012, 2014), feed efficiency (McParland et al., 2014) and methane emissions 

(Dehareng et al., 2012) have also been recently highlighted. The use of MIRS as a milk 

phenotyping tool has been the basis of several large-scale internationally collaborative 

research projects in recent times. Examples include Robustmilk 

(http://www.robustmilk.eu) and Optimir (http://www.optimir.eu). 

 

Figure 1.2 Published papers retrieved from ISI Web of Science on milk composition 
predicted by mid-infrared spectroscopy from 2006 to 2016. 

1.7.1 Use of mid-infrared spectroscopy to predict protein composition 

Studies that have investigated the use of MIRS to predict protein and CN 

composition of milk indicated excellent coefficient of determination (R2) and root mean 

square error values of cross validation. Mean values for CN fractions varied across 

studies, for example mean values for αS1-CN ranged from 12.63 g/L to 33.65 g/L (Table 

1.1). Limited studies exist evaluating the effectiveness of MIRS in predicting milk protein 

fractions (Luginbuhl, 2002; Sorensen et al., 2003; Etzion et al., 2004; De Marchi et al., 

2009b; Bonfatti et al., 2011a; Rutten et al., 2011). Prediction accuracies for CN fractions 
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ranged in value from an R2 of 0.13 for β-CN (Bonfatti et al., 2011a; expressed as a 

percentage of protein) to an R2 of 0.66 for αS1-CN (De Marchi et al., 2009b; expressed as 

g/L of milk) (Table 1.2). The whey protein, α-LA, had the lowest R2 value (0.20) (Rutten 

et al., 2011; using untreated spectra) and β-LG had the highest R2 value (0.64) (Bonfatti et 

al., 2011a; using treated spectra). Regarding total whey protein and whey protein 

fractions, very similar accuracy of predictions were obtained by De Marchi et al. (2009b), 

Bonfatti et al. (2011a), and Rutten et al. (2011) (Table 1.3). 

1.7.2 Factors influencing phenotyping of milk by MIRS 

1.7.2.1 Reference method 

On average, CN fractions were predicted more accurately from MIRS when the 

reference method was reversed-phase HPLC rather than capillary zone electrophoresis 

(De Marchi et al., 2009b; Bonfatti et al., 2011; Rutten et al., 2011), as HPLC is a more 

accurate reference method (Jimidar et al., 1993). The accuracy was greater using HPLC 

with milk samples having a lower standard deviation and achieving lower detection limits 

than capillary zone electrophoresis. In addition, the condition of the capillary can be 

difficult to keep constant between days of analysis in capillary zone electrophoresis. 

1.7.2.2 Unit of measurement 

 Higher coefficient of determination values were obtained when protein fractions 

were expressed in absolute concentration (grams per litre of milk) rather than on a relative 

scale (percentage of protein or casein). Bonfatti et al. (2011a) obtained unsatisfactory 

results predicting CN fractions using relative values compared to traits expressed per unit 

of milk (Table 1.2), which verifies previous findings for MIRS prediction of fatty acid 

(FA) composition (Soyeurt et al., 2006). Similarly, MIRS prediction accuracies of whey 

fractions were greater when traits were expressed per g/L of milk (Bonfatti et al., 2011a).  

1.7.2.3 Quantity of the gold standard and predict 

Prediction accuracies were greater for total proteins compared to individual 

proteins, as total proteins were present in greater concentrations (De Marchi et al., 

2009b). Soyeurt et al. (2006, 2011) and Rutten et al. (2009), who both attempted to 

predict milk FA content using MIRS, also reported greater accuracy of predictions for the 

components in greater concentration in milk. 
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Table 1.2 Unit of measurement and coefficient of determination (prediction error in parentheses) from cross validation of MIRS models to 
predict protein, casein, and casein fractions. 

1PRT=Protein 
2CN=Casein 
3αs1-CN = Alpha s1 casein 
4αs2-CN = Alpha s2  casein 
5β-CN = Beta casein 
6κ-CN = Kappa casein 

    
 

Sorensen et 
al. (2003)  

Etzion et al. 
(2004)  

De Marchi et 
al. (2009b)  

Bonfatti et al. (2011a) 
 

Rutten et al. 
(2011) 

Unit   
% 

 
% 

 
g/l of milk 

 
g/l of milk % PRT % CN 

 
g/100g of milk 

PRT1   
- 

 
0.94 (0.08) 

 
0.58 (3.11) 

 
0.78 (2.13) - - 

 
- 

CN2   
0.97 (0.03) 

 
- 

 
0.58 (2.76) 

 
0.77 (1.91) - - 

 
0.25 (1.50) 

αs1-CN3   
- 

 
- 

 
0.50 (1.07) 

 
0.66 (0.89) 0.23 (1.95) 0.20 (2.34) 

 
0.18 (1.52) 

αs2-CN4   
- 

 
- 

 
0.35 (0.58) 

 
0.49 (0.48) 0.17 (1.08) 0.19 (1.25) 

 
0.26 (1.20) 

β-CN5   
- 

 
- 

 
0.33 (1.77) 

 
0.53 (1.37) 0.13 (2.42) 0.16 (2.63) 

 
0.19 (1.42) 

κ-CN6   
 

- 
 

- 
 

0.44 (0.68) 
 

0.63 (0.55) 0.36 (1.44) 0.36 (1.62) 
 

0.28 (0.49) 
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Table 1.3 Unit of measurement, spectral pre-treatment applied1, coefficient of determination, and prediction error (in parentheses) of cross 
validation procedures for MIRS prediction models of whey protein and whey fractions2 

  
 De Marchi et al. 

(2009a)  
Lopez-Villalobos et 

al. (2009)  
Bonfatti et al. (2011)  

Rutten et al. 
(2011) 

Spectra  

Untreated 
 

Untreated 
 

SNV, De, MSC, 1D, 2D 
 

Untreated  Pre-
treatment 

 
 

Unit  g/L of milk 
 

mg/L of milk 
 

g/L of milk % PRT % Whey PRT 
 

g/100 g of milk 

Whey protein  0.53 (0.51) 
 

- 
 

0.61 (0.45) - - 
 

0.53 (0.84) 

α-LA  0.29 (0.19) 
 

- 
 

0.31 (0.18) 0.31 (0.42) - 
 

0.20 (0.29) 

β-Lg  0.55 (0.43) 
 

- 
 

0.64 (0.37) 0.42 (0.74) 0.36 (3.02) 
 

0.56 (0.79) 
1SNV = Standard normal variate, DE = Detrend, MSC = Multiplicative scatter correction, 1D = First order derivative, 2D = Second order 
derivative 
2α -LA = Alpha lactalbumin, β-LG = Beta lactoglobulin A, PRT=Protein 
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1.7.2.4 Variability of reference sample 

Milk samples from different breeds of cows, parities, stages of lactation, milking 

times, test dates and herds could reduce prediction accuracy as it increases the variability 

in the dataset, and traits are then harder to predict by partial least square regression. 

However, it will make the equations more applicable and not just applicable to the dataset 

that the equations were developed on. Therefore, the ultimate aim using MIRS is to 

develop prediction equations on a dataset with a large amount of variation but still obtain 

high prediction accuracies, thus the prediction equations can be used in dairy industry. 

1.8 Analysis of mid-infrared spectroscopy data 

1.8.1 Mathematical pre-treatments 

Derivatives are among the most common signal pre-treatments applied to 

spectral data. Principally, derivatives are used to resolve peak overlap (or enhance 

resolution) and to bring all spectra to a common baseline. The use of spectral 

mathematical pre-treatments such as the first and second derivative in IR spectroscopy, 

make it more feasible to determine chemical composition and correlated compounds 

(Figure 1.4). Use of higher derivatives is not advantageous for calibration model 

development because as the derivative increases from one to four, so will the associated 

noise; therefore, the first and second derivatives are the most frequently used. Spectral 

derivatives are calculated by obtaining the differences between two consecutive 

absorbance points, or between pre-defined gap distances. The first derivative is simply the 

slope of the absorbance spectra and uses two wavelengths points. The following equation 

(Eq.1) shows how the first derivative is calculated (Williams, 2007). The second 

derivative uses three wavelength points. Twice the values of the data at point B are 

subtracted from the data at point A, and the data from the point C are added to the result. 

The following equation (Eq. 2) demonstrates how it is calculated. 

Eq.1  1st Derivative = Absorbance of wavelength 1 - Absorbance of wavelength 2 

Eq.2  2nd Derivative = Absorbance of wavelength 3 – [(2 x Absorbance of wavelength 2) + 
Absorbance of wavelength 1] 

First derivatives remove the effect of baseline shifts caused by variable packing 

density and particle size. Models based on the first derivative may give better results than 

the second derivative as they are developed from the sides of absorption bands, but the 



 

17 
 

spectra can be difficult to interpret. Noise is defined as any electronic signal that reaches 

the detector that is not directly related to the actual absorption bands required for 

calibration and subsequent analysis. Second derivatives orientate bands downwards and 

are helpful in detecting what may be causing the main absorption, as it sharpens the 

absorption bands, which makes it easier to identify bands that have overlapping 

absorptions. However, the amount of noise increases as the derivative increases leading to 

poorer prediction accuracies (Williams, 2007). 

1.8.2 Principal component analysis 

Principal component analysis (PCA) is a statistical multivariate analysis 

technique, which captures the correlation among variables and represents data as a new 

set of fewer variables explaining the maximum variance. These variables are denoted as 

principal components (PCs) and each PC is a linear combination of the original variables 

(Jolliffe, 2002). The aim of principal component analysis is to explain the maximum 

amount of variance with the fewest number of PCs, for easy exploration and further 

analysis, such as regression, clustering, and discriminant analysis. It is concerned with 

explaining the variance-covariance structure of a set of variables through a few new 

variables. All principal components have three important properties (Amnarttrakul and 

Thongteeraparp, 2011), which are: 

1) The PCs are uncorrelated. 

2) The first PC explains the greatest variance; the second PC explains the second greatest 
variance, etc. 

3) The total variation of all PCs combined is equal to the total variation of the original 
variables. 

Observations that are outliers with respect to the first few PCS or the major PCs 

usually correspond to outliers on one or more of the original variables. Outliers in the 

original variables can be detected by making a bivariate scatterplot of the first and second 

PCs. 
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Figure 1.3 Example of untreated, first derivative and second derivate spectra (De March 
et al., 2014). 

1.8.3 Partial least square regression 

Partial least squares (PLS) regression is a recent technique that generalises and 

combines features from PC analysis and multiple regression (Helland, 1990). It is 

particularly useful to predict a set of dependent variables from a large set of independent 
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variables (i.e., predictors). The PLS regression is a method of constructing predictive 

models when they are many factors that are highly collinear. It can be a useful tool when 

prediction is the goal of analysis and there is no need to limit the number of measured 

factors. 

The goal of PLS regression is to predict Y from X and to describe their common 

structure. When the number of predictors is large compared to the number of 

observations, X is likely to be singular and the ordinary multiple regression approach is 

no longer feasible (i.e., because of multicollinearity). PLS regression finds components 

from X that are also relevant for Y. Precisely, PLS regression looks for a set of 

components that performs a simultaneous breakdown of X and Y with the constraint that 

these components explain the maximum amount of the covariance between X and Y. This 

is followed by a regression step where the breakdown of X is used to predict Y (Abdi et 

al., 2003). Some of the software programmes commonly used to handle MIRS data 

include: SAS (SAS Institute Inc., Cary, NC), Unscrambler (Camo, Norway), simca-p 

(mks, Sweden), Winisi (Foss Electronic A/S, Hillerød, Denmark) and PLS toolbox 

(Eigenvector Research, Inc., Manson). 

1.9 Factors associated with protein fractions and free amino acids 

The ratio of protein fractions in milk affect various processing attributes of the 

milk including, rennet coagulating time (Ikonen et al., 2004; Joudo et al., 2008), curd 

firmness (Ikonen et al., 2004; Wedholm et al., 2006, Joudo et al., 2008), pH (Ikonen et al., 

2004; Joudo et al., 2008) and cheese yield (Wedholm et al., 2006; Bonfatti et al., 2011a). 

Both genetic and management factors influence the quantity of individual milk proteins 

and FAA of bovine milk. Very few studies have investigated factors associated with FAA 

in milk. 

 

 

1.9.1 Animal characteristics influencing milk quality 

1.9.1.1 Parity 

Younger animals had a greater concentration of αS-CN compared to their older 

contemporaries and β-CN decreased as parity number increased (Kroeker et al., 1985). 

Younger animals also had a greater concentration of the whey fraction β-LG compared to 
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their older contemporaries (Ng-Kwai-Hang et al., 1987). To our knowledge, no previous 

study exists which investigated the association of parity with FAA or provided estimates 

of heterosis for FAA. 

1.9.1.2 Stage of lactation 

Stage of lactation also influenced the content of individual protein fractions in 

milk (Ng-Kwai-Hang et al., 1987; Kroeker et al., 1984; Ostersen et al., 1977). The protein 

fractions of αS-CN, β-CN and κ-CN, β-LG decreased in early lactation followed by an 

increase throughout the remainder of lactation. Changes in proportions of αS-CN, β-CN 

and κ-CN, β-CN, β-LG and α-LA in total milk protein content according to stage of 

lactation have also been demonstrated (Kroeker et al., 1985). The concentration of total 

FAA has been shown to be greatest in early and late lactation (Auldist et al., 1995), when 

milk bovine quality is poorest (Davis et al., 1994).  

1.9.1.3 Breed 

 Significant breed differences existed for milk protein, CN and protein fractions 

(Cerbulis et al., 1975; McLean et al., 1984; Auldist et al., 2004; Joudu et al., 2008; Lopez-

Villalobos 2012). Breeds analysed included Jersey, Holstein Friesian, Brown Swiss, 

Guernsey, Ayrshire, and Milking Shorthorn. Regarding protein percentage, breeds ranked 

from highest to lowest: Jersey (4.07%), Brown Swiss (3.84%), Guernsey (3.56%), 

Ayrshire (3.30%), Milking Shorthorn (3.17%), and Holstein (3.07%) (Cerbulis et al., 

1975). Breeds differed in all other components and in milk yield with Brown Swiss 

ranked highest in yield of milk (6064kg), protein (233kg per lactation) and CN (191kg 

per lactation). Jersey breed had lower milk yields compared to Holstein Friesian breed 

(15.22 kg vs 21.71kg) but higher protein fraction contents (14.32g/kg vs 12.87g/kg for β-

CN; Mc Lean et al., 1984).  

 

 

1.9.1.4 Heterosis 

Heterosis is defined as the increased performance of crossbred animals compared 

with the average of both purebred parental breeds (Sorensen et al., 2008). Previous 

studies have also demonstrated that heterosis had a significant positive effect on total 

protein content (Dechow et al., 2007; Bryant et al., 2007). A study by Back and Lopez–
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Villalobos (2007) showed that heterosis had a negative effect on ĸ-CN and a positive 

effect on α-LA (P<0.05).  

1.9.1.5 Recombination 

Recombination loss is defined as the disintegration of epistatic effects to form 

nonparent inter-loci combinations of alleles in crossbred animals (Cassady et al., 2002). A 

study by Dechow et al. (2007) demonstrated that recombination had an unfavourable 

effect on protein (-3.31%).  

1.10 Genetic parameters of milk quality 

1.10.1 Heritability estimates 

Heritability is the proportion of variance in a trait in a population that is 

attributable to genetic variation (Wray and Visscher, 2008) and is calculated as the ratio 

of additive genetic variance to phenotypic variance. Heritability estimates for milk protein 

fractions have increased in recent years and results differed across studies depending on 

the gold standard method, breeds, and sample size used (Schopen et al., 2009). 

Heritability estimates for total protein, CN, and CN fractions are shown in Table 1.5. In 

general, heritability estimates for protein fractions expressed as a percentage of total 

protein were greater than those for protein fraction contents expressed as a total amount in 

the milk (Bonfatti et al., 2011a).  

Heritability has been estimated for milk production traits across DIM and 

parities, showing that fat and protein contents were more heritable in mid to late lactation, 

and more heritable in first parities compared to later parities (Bastin et al., 2011; 2012). 

To our knowledge, there is no study that estimates heritability for proteins predicted by 

MIRS, or for FAA with either gold standard determination or MIRS prediction. 
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Table 1.4 Differences in concentration of proteins in milk from Friesian and Jersey cows obtained in various studies (Lopez-Villalobos 2012). 

  
Auldist et al. (2004)  Back and Lopez-Villalobos (2007)  McLean et al. (1984) 

  
Friesian Jersey  Friesian Jersey  Friesian Jersey 

Trait1 

 
(N=29) (N=29)  (N=20) (N=20)  (N=238) (N=262) 

Milk  yield (kg)   
 21.71 15.22**  31.77 31.68 

Protein (g/kg) 35.50 39.80**  35.70 40.60**  31.60 39.90** 

Casein (g/kg) 27.40 31.20**  27.50 32.20**  24.50 31.20** 

Casein: Protein 0.771 0.785**  0.77 0.793**  0.775 0.782 

αs1-CN (g/kg) 8.50 10.00*  
  

 
  

as2-CN (g/kg) 2.80 4.00  
  

 
  

a-CN (g/kg) 11.50 11.90  16.67 19.97**  
  

β-CN (g/kg) 11.00 13.50**  12.87 14.32**  8.90 10.80* 

ĸ-CN (g/kg) 3.80 4.10*  4.17 5.55**  2.60 3.90** 

γ-CN (g/kg) 1.90 2.50  
  

 
  

α-La (g/kg) 1.30 1.50  0.90 1.02*  0.95 1.13 

β-Lg  (g/kg) 4.90 5.30*  4.64 5.03**  2.96 3.67 
1αs1-CN = Alpha s1  casein, αs2-CN = Alpha s2  casein, a-CN = Alpha s1  casein + alpha s2  casein, β-CN = Beta casein, κ-CN = Kappa casein, γ-
CN = Gamma casein, α-la = Alpha lactalbumin, β-LG = Beta lactoglobulin (A + B) 
2* = P< 0.05 concentration of proteins in milk from Friesian and Jersey within a study significantly different to each other 

 ** = P<0.01 concentration of proteins in milk from Friesian and Jersey within a study significantly different to each other



 

23 
 

 

Table 1.5 Estimates of heritability for milk protein fractions (Lopez-Villalobos 2012) 

 Kreoker et 
al., 19851 

Bobe et al., 
19991 

Graml and Pirchner 
20031 

Schopen et al., 
20091 

Bonfatti et al., 
2011b1 

Huang et al., 
20123 Trait 

Kappa casein 0.01 0.28 0.22-0.28 0.64 0.63 0.66 

Αlpha s2  casein - 0.01 0.17 0.73 0.28 - 

Αlpha s1  casein 0.02 0.18 0.27-0.37 0.47 0.68 0.33 

Beta casein 0.03 0.01 0.32-0.34 0.25 0.69 0.33 

Αlpha lactalbumin 0.14 0.00 0.22-0.26 0.55 - 0.33 

Βeta lactoglobulin 0.24 0.36 0.26-0.35 0.80 0.34 0.69 

Casein2 - - - 0.41 - - 

Whey3 - - - 0.71 - - 

Casein index4 - - - 0.70 - - 
1 Protein fractions were expressed as a percentage of the total protein 
2Casein = alpha s1 casein + alpha s2 casein + beta casein + kappa casein; Whey = alpha lactalbumin + beta lactoglobulin; Casein index = casein/ 
(casein + whey) x 100 
3Proteins fractions expressed as mg/100µL of milk 
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Figure 1.4 The strength of the correlation between two traits; a) a strong positive 
correlation, b) a strong negative correlation and c) no correlation exists. 
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1.10.2 Genetic correlations between protein fractions and between free 

amino acids 

A correlation measures the strength of the linear relationship between two 

variables. Correlations are unit-less and constrained to between -1 and +1 (Figure 1.4). A 

positive correlation indicates that as one trait increases the second trait also increases and 

a negative correlation indicates that as one trait increases the second trait decreases (Van 

Vleck et al., 1987). A genetic correlation is a correlation between an animal’s breeding 

value for one trait and the same animal’s breeding value for another trait (Searle, 1961). 

Due to the gold standard method for protein composition determination being 

complicated, laborious, and expensive, only 9 studies to date have attempted to quantify 

genetic variation in milk proteins (summarised by Bobe et al., 1999; Graml and Pirchner, 

2003; Schopen et al., 2009). Only five of these studies reported estimates of genetic 

correlations for milk protein composition (Renner and Kosmack, 1975; Schopen et al., 

2009). Schopen et al. (2009) found that most of the genetic correlations among major 

milk proteins in Dutch Holstein Friesians were weak and that β-LG concentration was 

strongly negatively correlated with the proportion of CN in milk; CN is imperative for 

cheese production. Bonfatti et al. (2011b) reported low genetic correlations among CN 

fractions, and between CN and whey protein fractions in Simmental cattle. Genetic 

correlations between five CN fractions (expressed in g/L) ranged from -0.14 (γ-CN and 

as2-CN) to 0.56 (γ-CN and В-CN), however, when fractions were expressed as a 

percentage of total CN, genetic correlations ranged from -0.68 (αs1-CN% and β-CN%) to 

0.38 (αs2-CN% and γ-CN%) (Bonfatti et al., 2011b). These results disagreed with those 

obtained by Schopen et al. (2009) who reported that the strongest genetic correlations 

were the ones between αs1-CN% and αs2-CN% and between αs1-CN% and κ-CN%. 

However, actual differences between phenotypes in the studies were not large for 

example, Bonfatti et al. (2011b) reported an average value of 35.61% (SD, 2.65) for αs1-

CN% and Schopen et al. (2009) obtained a similar mean of 33.62% (SD, 1.70). 

Findings by Bonfatti et al. (2011b) showed that selecting for increased total CN, 

increased the relative proportion of β-CN and decreased the proportion of αs1-CN and 

αs2-CN in milk. The estimated genetic correlations among milk protein fractions 

noticeably increased and many became significant when the statistical model accounted 

for protein gene effects. The genetic correlations among protein fractions αs1-CN, β-CN, 

and κ-CN changed from a low or slightly negative correlation (-0.14) to a large and 
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positive correlation (0.95). This suggested that synthesis of all protein fractions undergo a 

shared regulation and that weak genetic relationships may arise from a differential 

transcriptional regulation (Bevilacqua et al., 2006).  

In the literature, estimates for genetic relationships between milk coagulating 

properties, protein and CN percentage vary. Lindstrom et al. (1984) demonstrated that 

short coagulation time correlated with high protein percentage; however, in other studies 

short coagulation time correlated with low protein and CN percentage (Oloffs et al., 1992; 

Ikonen et al., 1999), or no correlation existed, between coagulation time and protein 

percentage (Oloffs et al., 1992, for Angler cows). According to Oloffs et al. (1992), high 

values for curd firmness correlated with high protein and CN percentage, whereas Ikonen 

et al. (1999) demonstrated that high values for curd firmness correlated with low protein 

and casein percentage. In a later study by Ikonen et al. (2004), the correlations between 

curd firmness and protein percentage and between curd firmness and CN percentage were 

negligible.  

Results from Bonfatti et al. (2011b) demonstrated that a low milk pH correlated 

with favourable MCP, consistent with the findings of Ikonen et al. (2004). Rennet 

coagulating time was positively genetically correlated with αs1- and αs2-CN in CN, but 

was negatively correlated with the proportion of β-CN in CN (Bonfatti et al., 2011b). 

Weak curds were genetically related to increased proportions of αs1-CN and αs2-CN and 

decreased proportions of κ-CN in CN (Bonfatti et al., 2011b). Therefore, the use of 

selective breeding to increase the level of β-CN and κ-CN in milk, while decreasing the 

level of αs1-CN and αs2-CN in milk and milk pH, could have beneficial effects on MCP. 

1.11 Gaps in knowledge 

Gaps in knowledge that will be examined as part of this thesis include: 

1) Effectiveness of MIRS in predicting milk protein fractions, FAA and colour in 

milk. 

2) Cow level and other factors associated with protein fractions, FAA and colour 

in milk from grazing dairy cows. 

3) Genetic parameters for protein fractions, FAA and colour in milk from grazing 

dairy cows. 
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2.1 Abstract 

The aim of this study was to evaluate the effectiveness of MIRS in predicting 

milk protein and free amino acid composition in bovine milk. Milk samples were 

collected from seven Irish research herds and represented cows from a range of breeds, 

parities, and stages of lactation. Mid-infrared spectral data in the range of 900-5,000 cm-1 

were available for 715 milk samples; gold standard methods were used to quantify 

individual protein fractions and FAA of these samples with a view to predicting these 

gold standard protein fractions and FAA levels with available mid-infrared spectroscopy 

data. Separate prediction equations were developed for each trait using partial least 

squares regression; accuracy of prediction was assessed using both cross validation on a 

calibration data (n=400 to 591 samples) and external validation on an independent data 

set (n=143 to 294 samples). The accuracy of prediction in external validation was the 

same irrespective of whether undertaken on the entire external validation dataset or just 

within the Holstein-Friesian breed. The strongest coefficient of correlation obtained for 

protein fractions in external validation was 0.74, 0.69, and 0.67 for total casein, total beta 

lactoglobulin, and beta casein, respectively. Total proteins (i.e., total casein, total whey 

and total lactoglobulin) were predicted with greater accuracy then their respective 

component traits; prediction accuracy using the infrared spectrum was superior to 

prediction using just milk protein concentration. Weak to moderate prediction accuracies 

were observed for FAA. The greatest coefficient of correlation in both cross validation 

and external validation was for Gly (0.75), indicating a moderate accuracy of prediction. 

Overall, the FAA prediction models over-predicted the gold standard values. Near unity 

correlations existed between total casein and beta-casein irrespective of whether the traits 

were based on the gold standard (0.92) or mid-infrared spectroscopy predictions (0.95). 

Weaker correlations among FAA were observed than the correlations among the protein 

fractions. Pearson correlations between gold standard protein fractions and the milk 

processing characteristics of rennet coagulation time, curd firming time, curd firmness, 

heat coagulating time, pH and casein micelle size were weak to moderate and ranged 

from -0.48 (protein and pH) to 0.50 (total casein and a30). Pearson correlations between 

gold standard FAA and these milk processing characteristics were also weak to moderate 

and ranged from -0.60 (Valine and pH) to 0.49 (Valine and K20). Results from this study 

indicate that mid-infrared spectroscopy has the potential to predict protein fractions and 

some FAA in milk at a population level. 
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2.2 Introduction 

Detailed milk product quality is not considered in the Irish national dairy cow 

breeding objective, at present, despite its fundamental importance for adding value to the 

Irish Agri-food industry. This is simply due to lack of routine access to data on detailed 

milk quality parameters, possibly owing to the expense of generating such data using gold 

standard methods. Consideration of milk quality parameters in national breeding goals is 

particularly important for exporting countries such as Ireland to consistently achieve a 

high quality product, suitable for value added international markets. 

The concentration of protein and the composition of protein fractions in milk 

influence the production efficiency of cheese, infant milk formula, and both casein and 

whey protein supplements. Wedholm et al. (2006) stated that the concentration of casein 

in milk protein has a favourable effect on the quantity of protein transferred from milk 

into cheese curd and high concentrations of αS1-, β-, and κ-CN and of β-LG B were found 

to significantly increase cheese yield. Elofsson et al. (1996) demonstrated a low β-Lg 

concentration reduces the fouling rate of heating equipment. Beta lactoglobulin, which is 

not present in human milk, is a major milk allergen and therefore efforts have been made 

to reduce the level of this protein in cow milk (Jabed et al., 2012). Therefore, milk protein 

composition is of increasing importance to the dairy industry due to the expected global 

demand for cheese (FAO, 2014). Protein plays an important role in immunity, growth and 

development of infants (Lönnerdal, 2003). Therefore, milk protein composition is 

particularly important for infant formula production (De Wit, 1998) as the composition of 

bovine milk is different to human milk (Jensen, 1995). Infant formula production is the 

fastest growing sector in the world dairy market (FAO 2014) and the international market 

for infant milk formula is worth approximately US$5-6 billion annually. Protein 

composition also affects milk processing characteristics such as the heat coagulating time 

of bovine milk (Singh, 2004). 

Regarding milk processing ability, high free amino acid levels indicate poor 

quality milk as they arise from protein hydrolysis and are generally in greatest 

concentration in early and late lactation milk (Davis et al., 1994), when milk quality is 

poorest (Auldist et al., 1995). Human and bovine milk have different FAA content and 

composition, with bovine milk generally having a lesser concentration of FAA than 

human milk (Armstrong et al., 1963; Sawar et al., 1997; Agostoni et al., 2000; Roucher et 

al., 2013). Therefore for nutritional reasons, supplementation of infant formula with the 
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required FAA may be of interest in infant formula production. Achieving a milk FAA 

profile in bovine milk, similar to that of human milk through breeding may be an 

alternative strategy. The FAA profile of milk is therefore of interest to dairy farmers, as 

milk processors may pay higher prices for milk based on its FAA composition. 

Milk compositional traits such as protein fractions have a major influence on 

milk processing ability-related traits such as rennet coagulating time (Auldist et al., 2004; 

Ikonen et al., 2004; Wedholm et al., 2006). It is well documented that milk composition 

and milk coagulation properties are affected by environmental factors including stage of 

lactation (Heck et al., 2009; Ostersen et al., 1997).   Auldist et al. (1995) documented a 

stage of lactation effect on both cheese yield and quality. The majority of milk production 

in Ireland is seasonal (Berry et al., 2006), as most dairy cows calve in spring (Berry et al., 

2013). Therefore, it may be of interest to milk processors on how the correlations between 

milk compositional traits and processing ability characteristics differ in different stages of 

lactation. 

Despite the importance of quantifying individual proteins and FAA in milk, no 

inexpensive and efficient method of measuring these components in milk is available. 

Mid–infrared spectroscopy (MIRS) is a technique that studies the interactions between 

light and matter at wavelengths in the spectral range of 900 to 5000cm−1. It is based on 

the capability of molecules to reflect, transmit or absorb part of the electromagnetic 

radiation when exposed to light. According to the Beer-Lambert law (Swinehart, 1962), 

the quantity of the electromagnetic radiation absorbed is directly proportional to the 

amount of the absorbent molecule in the sample. Mid–infrared spectroscopy is an 

efficient method currently used by milk recording organizations worldwide to predict 

milk fat, protein, and lactose and has recently been used to predict more detailed milk 

composition traits such as fatty acids (Soyeurt et al., 2011; De Marchi et al., 2011), 

coagulation traits (De Marchi et al., 2013) as well as animal-level characteristics such as 

energy balance (McParland et al., 2011, 2012) and feed efficiency (McParland et al., 

2014). Limited studies exist evaluating the effectiveness of MIRS in predicting milk 

protein fractions (Bonfatti et al., 2011a; Rutten et al., 2011; De Marchi et al., 2010). The 

gold standard method used in both the studies of Bonfatti et al. (2011a) and De Marchi et 

al. (2010) was high performance liquid chromatography (HPLC); however Rutten et al. 

(2011) used capillary zone electrophoresis. In the studies of Bonfatti et al. (2011a) and 

Rutten et al. (2011), the ratio performance deviation ranged from 1.04 (gamma casein) to 
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2.12 (protein) and from 0.48 (beta casein) to 1.06 (total whey), respectively. Across 

studies (Bonfatti et al. 2011a; Rutten et al. 2011), the coefficient of determination for 

cross validation ranged from 0.08 (gamma casein) to 0.80 (protein). However, De Marchi 

et al. (2009) expressed protein fractions as grams per litre, whereas Rutten et al. (2011) 

expressed them on a protein percentage basis (g/100g) and Bonfatti et al. (2011a) 

expressed them in both forms. Higher coefficient of determination values were obtained 

when protein fractions were expressed in grams per litre rather than on a percentage basis. 

The aim of this study was to quantify the effectiveness of MIRS to predict individual milk 

proteins and FAA as well as to estimate the association between these MIRS-predicted 

traits and other phenotypic characteristics of milk including rennet coagulating time 

(RCT), curd firming time (k20), curd firmness (a30) heat coagulation Time (HCT) and pH. 

The use of MIRS as a tool to predict detailed milk quality traits is attractive since the 

MIR spectrum of individual milk samples is available at a negligible cost to routine milk 

recording. 

2.3 Materials and methods 

2.3.1 Milk sample collection 

Milk samples were obtained from seven research farms operated by the Teagasc 

Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork 

between August 2013 and August 2014, inclusive. Cows were milked daily at 07:00 h 

(AM) and 15:00 h (PM) and milk composition was recorded weekly using a MilkoScan 

FT6000 (Foss Electronic A/S, Hillerød, Denmark). The resulting spectrum, containing 

1,060 transmittance data in the mid-infrared region between 900 and 5,000 cm-1, was 

stored. Following composition analysis, 505 AM and 225 PM milk samples were 

preserved with Broad Spectrum Microtabs II containing 8 mg of Bronopol and 0.3 mg of 

Natamycin (D&F Control Systems Inc., Norwood, MA, USA) and stored at 4 °C for 

further analysis. Samples were selected to maximise diversity of breed [Holstein Friesian 

(n=454), Jersey (n=117), Norwegian Red (n=15) and Holstein Freisian, Jersey and 

Norweigan Red crossbreds (n=144)], stage of lactation, milking time (i.e AM or PM 

milking), parity and MIR spectrum and represented 621 animals; animals had a maximum 

of three records each. 
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2.3.2 Gold standard methodologies 

2.3.2.1 Milk protein determination 

Total protein was predicted by MIRS and calibrated using the Kjeldahl method. 

Milk protein fractions were also determined for 557 samples within 48 hours of sample 

collection. Milk protein fractions were quantified using reversed phase High Performance 

Liquid Chromatography (RP-HPLC).  Samples including the Sigma Aldrich standards 

were prepared in denaturing buffer (7 M urea + 20 mM Bis-tris propane, pH 7.5) to which 

5 ul∕mL Mercaptoethanol was added to give a final protein concentration of approx. 2 

mg/ml. The samples were then incubated for 1 hour at room temperature before filtering 

through a 0.22 filter. Protein composition was determined by reverse-phase high-

performance liquid chromatography using an adaptation of the method of Visser et al. 

(1991). Separation was performed using an Agilent Poroshell 300SB C18 column (2.1 

mm × 75 mm; Agilent Technologies UK Ltd.). The HPLC system consisted of an Agilent 

1200 Separation Module with MWD Detector and Agilent Chemstation Software. 

Gradient elution and peak detection were performed according to Reid et al. (2015) and 

Mounsey and O’Kennedy (2009). All casein and whey standards were supplied by 

Sigma-Aldrich. 

Total CN was calculated as the sum of alpha S2 casein (αS2-CN), alpha S1 casein 

(αS1-CN), beta casein (β-CN) and kappa casein (k-CN); total whey was calculated as the 

sum of alpha lactalbumin (α-La), beta lactoglobulin A (β-Lg-A), beta lactoglobulin B (β-

Lg-B). 

Protein fractions were expressed as g/L of milk, but were also expressed as a 

percentage of total protein or casein, by dividing the yield of each protein fraction by the 

total protein or casein content of the milk sample. 

2.3.2.2 Free amino acid determination 

The FAA, Lys, Val, Glu, Gly, Asp, Arg and Ser were quantified in 715 milk 

samples using Cation exchange HPLC coupled with post column ninhydrin detection as 

described by Mounier et al. (2007). Seven hundred and fifty microliters of each milk 

sample was deproteinised by mixing with 750 µl of 24% (w/v) tri-chloroacetic acid and 

left to stand for 10 mins. Samples were subsequently centrifuged at 20,817x g 

(Microcentaur; MSE, London, United Kingdom) for 10 minutes (4 degrees Celsius). The 

resulting supernatants were diluted with 0.2 M sodium citrate buffer (pH 2.2) to give 
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approximately 250 nmol/ml of each amino acid residue. Samples were then diluted one in 

two with the internal standard, norleucine, to give an end concentration of 125 nm/ml. 

Twenty microliters of each sample was then quantified for FAA using a JEOL JLC-500/V 

amino acid analyzer (JEOL UK Ltd., Garden City, Herts., United Kingdom) fitted with a 

JEOL Na+ high-performance cation-exchange column. 

2.3.2.3 Determination of milk coagulation properties 

Milk coagulation properties were determined on preserved milk samples within 

five days of collection, using a Formagraph (Foss Electronic A/S, Hillerød, Denmark) as 

described by Visentin et al. (2015). Coagulation properties measured included (i) RCT, 

defined as the number of minutes taken from rennet addition to the beginning of the 

coagulation, (ii) k20, the time from the gel development to a width of 20 mm in the graph, 

and (iii) curd firmness measured as the width of the graph after 30 minutes (a30) after 

rennet addition. 

2.3.2.4 Heat coagulation time and pH determination 

Heat coagulation time (HCT) was tested within 48 hrs of sample collection using 

the hot oil bath method as described by Davies and White. (1966). Heat coagulating time 

was measured by visual analysis and taken as the time when each sample started to 

coagulate. Samples with a HCT >30 min were classified as non-coagulating and 

discarded from the analyses. The pH of each sample was measured using a Seven 

compact pH-meter S220 (Mettler Toledo AG, Switzerland) within 24 hrs of samples 

collection. 

2.3.2. Data analysis 

Identification of outlier gold standard values and trait distribution was 

determined using PROC UNIVARIATE in SAS (SAS Institute Inc., Cary, NC, USA). 

Traits that did not have a normal distribution were transformed using a natural logarithm 

transformation. Gold standard values that were > 3 standard deviations from the mean 

were considered to be outliers and up to three outliers were removed from the protein 

fraction analyses while up to 22 outliers were removed from the FAA analyses. 

Observations for each protein or FAA did not exist for all samples, primarily for logistical 

reasons (Table 2.1). 

Spectral data were transformed from transmittance to linear absorbance through 

a logarithmic transformation of the reciprocal of the wavelength values (Soyeurt et al., 
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2011). Preliminary analyses revealed no improvement in model prediction accuracy 

following mathematical pre-treatment (Savitzky-Golay first and second derivatives of the 

log transformed spectral data); therefore the prediction models were developed using 

untreated spectra. Only one spectrometer was used in the present study. Equations were 

developed to predict each milk quality parameter separately using partial least squares 

regression (Proc PLS; SAS Institute Inc., Cary, NC). Spectral regions from 926-1,580 cm-

1, 1,717-2,986 cm-1 and 3,696-3,808 cm-1, were used to develop all prediction models 

based on the observed loadings for each wavelength. 

Accuracy of the prediction equations was determined using external validation 

whereby 25% of data were excluded from equation calibration and used as an 

independent validation data set (VD). This procedure was repeated 4 times, using a 

different 25% of the data in the VD each time. Samples were selected for VD to represent 

similar variation to that present in the gold standard data in the calibration dataset (CD) 

used to develop prediction equations. For each prediction model, the dataset was sorted 

by the trait of interest. The first sample and every fourth sample thereafter were included 

in the VD for the first iteration; for the second iteration, the second sample and every 

fourth sample thereafter was chosen for the VD with a similar procedure used for the 

third and fourth iteration. 

Therefore, separate VD and CD were generated for each prediction equation. All 

records from cows included in the VD were removed from the CD and included only in 

the VD; therefore no cow was represented in both the CD and VD in a given iteration. 

Criteria used to determine the effectiveness of MIRS predictive models were the 

coefficient of correlation of cross validation (rc) and external validation (rv), the root mean 

square error of cross validation (RMSEc) and external validation (RMSEv), the slope (b), 

which is the linear regression coefficient between gold standard and MIRS-predicted 

values of each trait, the mean bias of prediction, which is the average difference between 

MIRS-predicted values and gold standard values in external validation, the standard error 

(SE) of the slope and the bias and the ratio performance deviation (RPD), which is the 

ratio of the standard error in prediction to the standard deviation of each trait. Four 

validation datasets were created and then appended onto each other and the rc, rv, RMSE, 

b (SE), and bias (SE) was calculated based on  all four iterations of combined. The 

average number of factors (#L) used to build the prediction equations, was the average 

number from all four iterations rounded to the nearest whole number. Validation was also 
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performed within just the Holstein-Friesian breed (i.e., the predominant breed) as well as 

across breeds. Furthermore, protein fractions were also predicted in the external 

validation using just the total milk protein concentration and compared to prediction 

accuracy using the MIRS. 

Pearson correlations among the gold standard and among the MIRS-predicted 

values of protein fractions and FAA were estimated. Pearson correlations between gold 

standard and MIRS-predicted FAA with RCT, k20, a30, HCT and pH were also estimated. 

2.4 Results 

The total data set comprised of 730 samples; 584 milk samples were from 

spring-calving cows fed a predominantly grazed grass based diet and the remaining 146 

samples were from autumn-calving cows fed a total mixed ration diet. Milk samples 

represented different stages of lactation and ranged from 5 to 375 days in milk; first to 

eleventh parity cows were represented. 

 
Table 2.1 Number of records (n), mean, standard deviation (SD) and coefficient of variation 
(CV) for the studied traits. 

Trait n Mean SD CV 

Protein g/L     
Total CN 554 35.97 7.11 19.77 

 αS1-CN 557 13.92 3.18 22.84 

αS2 CN 555 3.62 0.97 26.90 

 β-CN 555 12.64 2.64 20.91 

 ĸ-CN 556 5.92 1.67 28.27 

Total Whey 549 6.08 1.79 29.45 

Α-LA 551 1.11 0.32 28.34 

Total Lg 552 4.97 1.65 33.20 

Β-LG A 557 2.55 1.26 49.42 

Β-LG B 554 2.44 1.69 69.31 

Free Amino Acids, µg/mL     
Total FAA 715 64.12 22.41 34.95 

Lys 686 4.52 4.26 94.35 

Val 625 1.67 1.43 85.73 

Glu 714 30.70 15.96 52.00 

Gly 699 7.00 5.25 74.90 

Asp 595 2.62 1.63 62.45 

Arg 612 3.38 1.68 49.67 

Ser 591 1.39 0.83 59.74 
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Figure 2.1 Trend in protein concentration across lactation. 

2.4.1 Descriptive statistics 

Mean gold standard values of all milk traits are summarised in Table 2.1. Mean 

values of αs1- (13.92 g/L), αs2- (3.62 g/L), β- (12.64 g/L), and κ-CN (5.92 g/L) in the 

present study were approximately in the ratio 3:1:3:1. Large differences were observed in 

the coefficient of variation (CV) across traits. The CV for protein fractions ranged from 

20% (total-CN) to 69% (β-Lg-B). 

The FAA present at the greatest concentration was Glu (mean = 30.70 μg/ml) but 

exhibited a large variability (standard deviation of 15.96 μg/ml), while Ser was present at 

the lowest concentration (mean = 1.39 μg/ml). The CV was generally large for all FAA, 

with a wide range from 35% (total FAA) to 94% (Lys). 

Protein concentration decreased in early lactation and increased linearly across 

lactation thereafter (Figure 2.1). The lactation profile of (gold standard) total FAA 

(Figure 2.2) indicated that the concentration of total FAA were greatest in early and late 

lactation.  
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2.4.2 Protein prediction accuracy 

Prediction accuracies achieved for cross validation and external validation are 

summarised in Table 2.2. The mean bias in prediction of protein fractions was not 

different from zero (P > 0.05). The number of factors included in the partial least squares 

prediction model varied from 4 (total-CN, αs1-CN, β-CN, β-Lg-B) to 16 (β-Lg-A). The rc 

between gold standard and MIRS-predicted protein fractions ranged from 0.43 (β-Lg-A) 

to 0.76 (Total Lg) and the greatest rv values obtained for protein fractions were 0.67, 0.69 

and 0.74 for β-CN, total β-Lg and total-CN, respectively. Total-CN also had the greatest 

RPD (1.49). The slope between the gold standard and MIRS-predicted values for protein 

fractions ranged from 0.76 (β-Lg-B) to 0.99 (κ-CN and β-CN). The average difference in 

rv
 when undertaken across all breeds or within just the Holstein-Friesians (Table 2.3) 

varied from -0.08 (Arg) to 0.06 (αs1-CN). 

The rv for the different proteins predicted from just protein content was on 

average 0.18 less than prediction of the same traits using MIRS. Expressing protein 

fractions as a percentage of total protein, accuracy of prediction was poorer than when 

proteins were expressed as grams per decilitre of milk (results not shown); the difference 

between rv for traits when expressed as g/L milk compared to when expressed as a 

percentage of protein ranged from 0.01 (κ-CN) to 0.42 (α-Lac).  

2.4.3 Prediction accuracy of free amino acids 

Accuracy of the developed equations to predict FAA are summarised in Table 

2.3. The number of factors included in the prediction model ranged from 9 (Ser and Arg) 

to 15 (Gly). Moderate prediction accuracy of FAA were achieved, particularly for Gly, 

Lys and Glu, with an rc and rv of 0.75 and 0.75 respectively, for Gly and an rc of 0.68 and 

an rv of 0.59, respectively for Glu; Gly also had the greatest RPD (1.38). Arg had the 

lowest rv (0.26). The slope between the gold standard and MIRS-predicted values ranged 

from 0.67 (Ser) to 0.92 (Asp). FAA were on average over predicted (P<0.05). 

2.4.4 Phenotypic correlations 

Pearson correlations among the protein fractions are summarised in Table 2.4. 

Correlations among the gold standard proteins and among the MIRS-predicted protein 

fractions were all different (P<0.05) from zero. The correlations between gold standard 

total-CN and gold standard casein fractions ranged from 0.67 (αS2-CN) to 0.92 (αS1-CN 

and β-CN) and were similar to correlations between the MIRS-predicted total-CN and the 
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MIRS-predicted components of casein. However, the correlation between the gold 

standard values of αS1-CN and αS2-CN (0.53) was weaker than the respective correlation 

between the MIRS-predicted values (0.85).  

 

The correlation between total-whey and total-Lg was 0.99 (gold standard values) 

and 0.94 (MIRS-predicted values). Similarly, the correlation between the gold standard α-

La and total-Lg (0.47) was similar to the respective correlation between their MIRS-

predicted values (0.48), whereas the correlations between the gold standard β-Lg-A and 

β-CN (0.36) and their corresponding MIRS-predicted values (0.79) differed. 

Pearson correlations among gold standard FAA and among MIRS-predicted 

FAA are in Table 2.5. In general, the correlations among the gold standard FAA and the 

respective correlations among the MIRS-predicted FAA were in less agreement than the 

correlations among the gold standard or the MIRS-predicted protein fractions. 

Pearson correlations among protein-related traits (i.e., MIRS-predicted protein, 

MIRS-predicted casein, gold standard protein fractions) and milk processing 

characteristics (i.e., RCT, k20, a30 HCT and pH) in early (DIM<60) and late (DIM>180) 

lactation are in Table 2.6; all correlations were generally weak to moderate. Rennet 

coagulating time was positively associated with MIRS-predicted protein in early lactation 

(r=0.19), but was negatively correlated with MIRS-predicted protein in late lactation (r=-

0.11), corresponding with the increase in protein concentration across lactation (Figure 

2.2). In early lactation, RCT was negatively associated with MIRS-predicted casein (-

0.21). Curd firming time was negatively correlated with the protein-related traits in both 

early and late lactation. The opposite was true for a30, which was generally positively 

correlated with the protein-related traits in early and late lactation. Native pH was 

negatively correlated with gold standard protein fractions in early lactation, but was both 

negatively and positively correlated with gold standard protein fractions in late lactation. 

The correlations among HCT and β-LG in early and late lactation were -0.17 and 0.22, 

respectively. The Pearson correlations between HCT and κ-CN in both early and late 

lactation were not different from zero, (r = -0.05 and r = 0.08, respectively). 
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Table 2.2 Number of records (n), average number of factors (#L; rounded to the nearest whole number), root mean square error (RMSE), 
correlation coefficient between gold standard and predicted values in cross validation (rc) and external validation (rv), bias (SE in parentheses), 
slope (b:SE in parentheses) and ratio performance deviation (RPD) tested using the split sample cross validation and external validation.   

      Cross Validation       External Validation 

Trait1   n #L RMSE rc  
Bias(SE) b(SE) RMSE rv RPD 

Protein   
          

TotalCN  
554 4 4.68 0.75 

 
-0.0068(4.71) 0.98(0.04) 4.80 0.74 1.49 

αS1-CN  
557 4 2.16 0.70 

 
0.0057(2.23) 0.97(0.05) 1.26 0.66 1.35 

αS2 CN  
555 5 0.78 0.60 

 
0.0072(0.80) 0.90(0.06) 1.99 0.66 1.22 

 β-CN  
555 4 1.92 0.69 

 
0.0008(1.99) 0.99(0.05) 2.37 0.67 1.33 

ĸ-CN  
556 6 1.25 0.67 

 
-0.0037(1.26) 0.99(0.05) 0.81 0.56 1.33 

Total Whey 549 6 1.17 0.76 
 

0.0049(1.22) 0.87(0.04) 1.36 0.65 1.32 

Α-LA  
551 8 0.26 0.58 

 
0.0012(0.26) 0.88(0.06) 0.26 0.54 1.17 

Total Lg  
552 14 1.01 0.76 

 
0.0015(1.06) 0.87(0.04) 1.20 0.69 1.38 

Β-LG A  
557 16 1.14 0.43 

 
0.0003(1.14) 0.94(0.09) 1.16 0.39 1.09 

Β-LG B  
554 4 1.29 0.65 

 
0.0016(1.50) 0.76(0.06) 1.39 0.44 1.15 

Free Amino Acids           
Total FAA 715 12 16.29 0.69 

 
-0.0487(17.87) 0.88(0.04) 17.79 0.61 1.26 

Lys1  
686 14 0.56 0.69 

 
-0.6910(3.30) 0.89(0.04) 3.35 0.55 1.27 

Val1  
625 11 0.57 0.60 

 
-0.3381(1.62) 0.76(0.04) 1.93 0.59 1.14 

Glu1  
714 13 0.41 0.68 

 
-2.0689(13.22) 0.86(0.04) 0.46 0.59 1.20 

Gly1  
612 15 0.41 0.75 

 
-0.4769(3.54) 0.91(0.04) 3.50 0.75 1.38 

Asp1  
595 10 0.55 0.58 

 
-0.3744(1.67) 0.92(0.08) 1.66 0.44 1.15 

Arg1  
620 9 0.38 0.66 

 
-0.2347(1.59) 0.91(0.05) 4.35 0.26 1.25 

Ser1   591 9 0.48 0.51 
 

-0.1460(0.79) 0.67(0.07) 1.22 0.42 1.07 
1Traits were log transformed prior to analysis 
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Table 2.3 Number of records (n), root mean square error (RMSE), correlation coefficient 
between gold standard and predicted values in external validation (rv) for all breeds and a 
Holstein Friesians only, average difference in rv between all breeds and Holstein Friesians, 
tested using the split sample external validation.  

    All Breeds 
 

Holstein Friesian Only 

Trait1 n RMSE rv  
n RMSE rv Difference 

Protein         
Total Casein 554 4.71 0.72 

 
332 4.79 0.71  0.02 

Alpha S1 Casein 555 2.20 0.67 
 

332 2.09 0.65 -0.02 

Alpha S2 Casein 555 0.81 0.53 
 

332 0.81 0.46  0.06 

Beta Casein 555 2.00 0.60 
 

332 2.03 0.61 -0.01 

Kappa Casein 556 1.27 0.63 
 

333 1.24 0.63  0.00 

Total Whey 547 1.38 0.66 
 

326 1.41 0.66 -0.01 

Α Lactalbumin 551 0.27 0.51 
 

329 0.28 0.49  0.01 

Total Lg 553 1.24 0.68 
 

330 1.21 0.70 -0.04 

Β Lg A 557 1.16 0.37 
 

333 1.16 0.35  0.01 

Β Lg B 554 1.45 0.52 
 

330 1.43 0.49  0.03 

Free Amino Acids        
Total FAA 715 19.2 0.50 

 
445 18.99 0.52 -0.03 

Lys2 677 0.58 0.58 
 

425 0.57 0.60 -0.02 

Val2 641 1.63 0.56 
 

393 1.55 0.55  0.01 

Glu2 714 13.16 0.57 
 

444 13.94 0.56  0.00 

Gly2 698 3.57 0.73 
 

435 3.59 0.74 -0.01 

Asp2  
603 0.63 0.47 

 
386 0.62 0.49 -0.01 

Arg5  
632 4.33 0.27 

 
387 3.27 0.39 -0.08 

Ser5   591 0.77 0.39 
 

360 0.73 0.43 -0.03 
1α Lactalbumin = Alpha Lactalbumin, β Lg A = Beta Lactoglobulin A, β Lg B = Beta 
Lactoglobulin B, Total Lg = Total Lactoglobulin. 
2Traits were log transformed prior to analysis
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Correlations between gold standard FAA and milk processing characteristics in 

early (DIM<60) and late (DIM>180) lactation are in Table 2.7. Correlations were 

strongest among gold standard FAA and the milk processing characteristics in early 

lactation. Similar to the correlations with the gold standard FAA, RCT was positively 

associated with MIRS-predicted FAA late lactation (Table 2.8). However, a30 was 

positively associated with MIRS-predicted FAA in early lactation but was negatively 

associated with MIRS-predicted FAA in late lactation (Table 2.8). In early lactation, pH 

was negatively correlated with all gold standard FAA. 

2.5 Discussion 

The objective of the present study was to demonstrate the ability of MIRS to 

predict milk quality traits, including seven individual proteins and seven FAA. 

Predictions of these traits by MIRS could be of benefit to the dairy industry as MIRS is a 

low cost and efficient method for acquiring phenotypic information on milk quality using 

infrastructure and logistics for the acquisition of milk samples that already exists. 

Limited studies exist evaluating the effectiveness of MIRS in predicting milk 

protein composition (Bonfatti et al., 2011a; Rutten et al., 2011; De Marchi et al., 2010) 

and no studies have evaluated the ability of the MIRS to predict FAA. Furthermore, 

comparison with other studies of MIRS-prediction accuracy for protein fractions is 

difficult due to differences in the dairy production system as well as methods of 

determining protein fractions used (i.e. different gold standard analyses, experimental 

design, different breeds, stages of lactations, parities, diets and milking times). For 

example, the level of crude protein in the diet affects the milk protein profile (Reid et al., 

2015); animals in the present study were on a predominately grass based diet. To our 

knowledge, this is the first study to use data from a mainly grazed grass based production 

system to develop equations to predict protein composition and FAA from milk MIR.  

Caseins constitute approximately 80% of milk protein and consist of αs1-, αs2, β-, 

and κ-CN fractions, typically in the ratio 3:1:3:1 (Farrell et al., 2004). Mean values of the 

respective caseins in the present study were consistent with this ratio. Mean values of 

1.11 g/L and 4.97 g/L for both the gold standard and MIRS-predicted α-La and total-Lg 

were in the ratio 1:3, consistent with values documented by Farrell et al. (2004). 

Similarly, the ratio of total-CN to total whey was 6:1 irrespective of whether calculated 

using the gold standard or MIRS-predicted values. Multiple sampling dates, as well as 

variability attributed to the numerous research farms, breeds, parities and milking times 
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used to maximise the variation in the sample populations is a likely contributing factor to 

the greater coefficient of variation in protein fractions compared to other studies (De 

Marchi et al., 2010). 

Glutamic acid was the FAA present in the greatest concentration in the milk. 

This conclusion was consistent with previous studies by Roucher et al. (2013), Lindmark-

Mansson et al. (2003) and Sarwar et al. (1998), who also documented Glu to be one of the 

most abundant FAA in bovine milk. The FAA Asp, Arg and Ser were present in low 

concentrations in the present study.  

The lactation profile of (gold standard) total FAA (Figure 2.2) indicated that the 

greatest concentration of FAA was during early and late lactation. This was similar to a 

finding by Ghadimi et al. (1963), who also documented variation in the concentration of 

FAA at different stages of lactation, with the greatest concentration of FAA present in the 

colostrum, and the least concentration in transitional milk. 

2.5.1 Prediction of protein fractions 

 The rc and rv of total proteins (i.e., total-CN, total-whey and total β-lg) were 

predicted with greater accuracy than their components, which was probably attributed in 

part to their greater concentration in the milk. The ability to predict components in greater 

concentration in the milk corroborates the conclusion of Soyeurt et al. (2011), Soyeurt et 

al. (2006), and Rutten et al. (2009), who all attempted to predict milk fatty acid content 

using MIRS. Accuracy of prediction of protein fractions overall in the present study were 

consistent with those documented in other publications previously (Bonfatti et al. 2011a; 

Rutten et al. 2011; De Marchi et al. 2010). Differences among studies could be due to 

differences in the gold standard methods used. HPLC was used in this present study as 

well as in both the studies of Bonfatti et al. (2011a) and De Marchi et al. (2010), whereas 

Rutten et al. (2011) used capillary zone electrophoresis. The traits predicted with the 

poorest accuracy were β-lg A and β-lg B (rv = 0.39 and rv =0.44). This may be because 

the quantity of β-lg A and β-lg B are directly related to the milk protein variants of the 

cow; if cows are AA the content of β-lg B is 0 and if cows are BB the content of β-lg A is 

0 (Ng-Kwai-Hang and Kim, 1996). 
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Table 2.4 Pearson correlations between gold standard (below diagonal) and mid-infrared spectroscopy predicted (above diagonal) protein 
composition traits. 

  Prt % Total-CN αS1-CN αS2-CN β-CN k-CN Total-Whey α-Lac Total-Lg β-Lg-A β-Lg-B 

Protein %  - 0.58 0.55 0.41 0.40 0.53 0.42 0.25 0.42 0.33 0.17 

Total-CN  0.49  - 0.93 0.92 0.95 0.95 0.68 0.53 0.65 0.88 0.36 

αS1-CN  0.32 0.92  - 0.85 0.86 0.88 0.63 0.51 0.61 0.82 0.32 

αS2-CN  0.49 0.67 0.53  -  0.86 0.90 0.67 0.57 0.62 0.86 0.31 

β-CN  0.45 0.92 0.79 0.52  - 0.87 0.63 0.58 0.60 0.79 0.33 

k-CN  0.49 0.80 0.61 0.54 0.66  - 0.71 0.43 0.69 0.92 0.39 

Total-Whey -0.02 0.61 0.58 0.40 0.49 0.57  - 0.57 0.94 0.70 0.72 

α-LA -0.02 0.46 0.49 0.34 0.38 0.33 0.59  - 0.48 0.44 0.29 

Total-Lg  0.02 0.58 0.54 0.38 0.47 0.57 0.99 0.47  - 0.67 0.77 

β-Lg-A  0.48 0.43 0.43 0.25 0.36 0.40 0.39 0.34 0.37  - 0.33 

β-Lg-B -0.13 0.24 0.21 0.19 0.19 0.26 0.70 0.21 0.72 -0.38  - 
1 All correlations were different from zero (P < 0.05). 
2Total Casein (Total CN), Alpha S1 Casein (α-S1-CN), Alpha S2 Casein (α-S1-CN), Beta Casein (β-Casein), Kappa Casein (k-CN), Total Whey, 
Beta Lactoglobulin A (β-Lg-A), Beta-Lactoglobulin-B (β-Lg-B) , Alpha Lactalbumin (α-LA) and Total Lactoglobulin  (Total-lac). 
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Table 2.5 Pearson correlations between gold standard (below diagonal) and mid-infrared 
spectroscopy predicted (above diagonal) free amino acids. 

Traits1 Lys Val Glu Gly Asp Arg Ser 

Lys - 0.69 -0.23 0.05 -0.18 0.69 0.31 

Val 0.57 - 0.01 0.26 0.06 0.67 0.36 

Glu -0.10 0.2 - 0.38 0.70 -0.29 0.10 

Gly 0.07 0.31 0.35 - 0.40 -0.1 0.30 

Asp -0.01 0.15 0.70 0.33 - -0.4 -0.10 

Arg 0.53 0.58 0.03 0.08 -0.06 - 0.39 

Ser 0.19 0.35 0.34 0.43 0.14 0.43 - 
 1Traits were log transformed prior to analysis. 
2Correlations ≤│0.07│ were not different from zero (P > 0.05). 

 
A high RPD is advantageous; an RPD greater than two indicates the generated 

prediction could be used for analytical purposes (Williams et al., 2007). No RPD value 

greater than two was however, achieved in this present study. All protein fractions had an 

RPD between one and two in the present study and this finding is consistent with a 

previous study on milk protein fractions (Bonfatti et al., 2011a). According to Williams et 

al. (2007), a slope of the gold standard values on the MIRS-predicted values of a trait that 

deviates greatly from 1 (e.g., less than 0.85 and 1.15 or greater) will result in an unstable 

calibration, whereas a prediction equation with a slope between 0.95 and 1.05 will be 

more stable. The prediction models for four protein fractions (total-CN, αs1-CN, β-CN 

and k-CN) had slopes between 0.95 and 1.00 in the present study. Protein fractions were 

however, on average under predicted. This could result in farmers being underpaid should 

a milk payment system on protein fractions be implemented. 

A poorer accuracy of prediction was obtained when protein fractions were 

expressed as a percentage of MIRS-predicted protein or in milk; this was consistent with 

results from previous studies by Bonfatti et al. (2011a) on protein fractions and by 

Soyeurt et al. (2006) on fatty acid content. The poorer accuracy of prediction when 

protein fractions were expressed as a percentage could be explained by a variation in the 

protein fractions present in different milk samples. For example, two milk samples could 

have the same concentration of protein in the milk, but be made up of different protein 

fractions. Another possible explanation for poorer accuracy of prediction is that the 

protein content of milk was actually predicted and not the actual protein composition. 

Protein content and protein composition are highly correlated (expressed as g/L). 
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Table 2.6 Pearson correlations1 between mid-infrared spectroscopy predicted protein, mid-infrared spectroscopy predicted casein, gold standard 
protein fractions and rennet coagulation time (RCT), curd-firming time (k20), curd firmness (a30), heat coagulation time (HCT) and pH across 
two stages of lactation. 

  PRT CN Total-CN αS1-CN αS2-CN β-CN k-CN Total-Whey α-LA Total-Lg β-Lg-A β-Lg-B 

Early Lactation     
         

RCT 0.19 -0.21 0.20 0.14 0.23 0.20 0.17 0.09 0.06 0.08 0.24 -0.10 

k20 -0.09 -0.44 0.00 0.00 -0.05 0.05 -0.05 -0.12 -0.07 -0.11 0.03 -0.12 

a30 0.49 0.49 0.50 0.49 0.32 0.47 0.43 0.32 0.07 0.32 0.09 0.22 

HCT -0.2 -0.14 -0.10 -0.11 -0.14 -0.07 -0.05 -0.18 -0.10 -0.17 -0.02 -0.13 

pH -0.48 -0.45 -0.37 -0.47 -0.27 -0.25 -0.18 -0.26* -0.25* -0.22 -0.18 -0.06 

Late Lactation            
RCT -0.11 -0.17 -0.10 -0.16 0.05 -0.03 -0.13 -0.15 -0.08 -0.15 -0.06 -0.10 

k20 -0.27 -0.33 -0.31 -0.27 -0.16 -0.21 -0.35 -0.17 -0.05 -0.17 -0.11 -0.09 

a30 0.39 0.38 0.37 0.37 0.16 0.22 0.40 0.29 0.10 0.30 0.17 0.17 

HCT -0.24 -0.31 -0.08 -0.03 -0.16 -0.04 0.08 0.22 0.13 0.22 0.05 0.18 

pH -0.14 -0.12 0.01 -0.10 0.09 0.06 0.10 0.17* 0.22* 0.15 0.10 0.05* 

*Correlations are significantly different to each other in early and late lactation (P<0.01) 
1Protein (PRT), Casein (CN), Total Casein (Total-CN), Alpha S1 Casein (α-S1-CN), Alpha S2 Casein (α-S1-CN), Beta Casein (β-Casein), Kappa 
Casein (k-CN), Total Whey, Beta Lactoglobulin A (β-Lg-A), Beta Lactoglobulin B (β-Lg-B), Alpha Lactalbumin (α-LA) and Total 
Lactoglobulin  (Total-LG). 
2Correlations ≤│0.11│ were not different from zero (P > 0.05). 
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Table 2.7 Pearson correlations between gold standard free amino acids (FAA) and 
rennet coagulation time (RCT), curd-firming time (k20), curd firmness (a30), heat 
coagulation time (HCT) and pH; across two stages of lactation. 

  Lys Val Glu Gly Asp Arg Ser Total FAA 

Early Lactation        
RCT 0.14 -0.02 0.19* -0.05 0.04 0.16 -0.10* 0.05 

k20 -0.01 0.00 0.21 -0.11 0.17 0.07 -0.03 0.10 

a30 0.08 -0.02 0.26 0.32 0.19 0.00 0.24 0.25 

HCT -0.12 -0.01 0.06 -0.35 -0.06 0.11 -0.10 0.02 

pH -0.48* -0.60* -0.33* -0.52* -0.32* -0.30* -0.38* -0.51* 

Late Lactation        
RCT 0.06 0.20 0.40* 0.01 0.05 0.29 0.37* 0.28 

k20 -0.14 0.49 0.30 -0.01 0.08 0.10 0.23 0.18 

a30 0.06 -0.01 -0.34 -0.03 -0.11 -0.09 -0.26 -0.22 

HCT -0.23 0.03 0.08 -0.04 -0.13 0.02 0.08 0.01 

pH -0.09* 0.09* 0.09* -0.06* -0.01* 0.05* 0.27* -0.02* 

*Correlations are significantly different to each other in early and late lactation 
(P<0.01) 
1Correlations ≤│0.18│ were not different from zero (P > 0.05) 

 
 

 
Figure 2.2 Trend in total free amino acids (i.e. the sum of gold standard Lys, Val, 
Glu, Gly, Asp, Arg, Ser) across lactation. 
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Nonetheless, exploiting the infrared spectrum in the prediction of milk 

protein composition generated superior prediction accuracy than when protein 

composition was predicted solely based on milk protein content suggest that the 

spectrum is in fact providing additional information in the prediction process. 

2.5.2 Prediction of free amino acids 

The present study is the first attempt to predict FAA in milk from MIRS. 

The moderate prediction accuracies for FAA achieved in the present study may be 

due to the low concentration of FAA present in the milk samples. The optimum 

number of factors included in the partial least squares prediction model for FAA 

was similar to previous studies (De Marchi et al., 2010; Soyeurt et al., 2011) for 

the prediction of casein fractions and  fatty acid composition. Although FAA 

required a greater number of factors than for casein fraction predictions in this 

present study. 

Glu which was predicted with moderate accuracy from the MIR may be 

important for infant formula production as the sum of Glu and Gln represents 50% 

of the total FAA in human milk (Agostoni et al., 2000). The prediction ability for 

all FAA was too poor for industrial use. The prediction models for all FAA had 

slopes of the gold standard values on the MIRS-predicted values between 0.85 and 

1, with the exception of Val (0.76) and Ser (0.67) which had slopes of the gold 

standard values on the MIRS-predicted values of <0.85 and therefore they may 

have unstable calibrations (Williams et al., 2007).  

Since protein and FAA are correlated; the MIRS could be indirectly 

predicting the FAA, by predicting the protein content of the milk. 

 

2.5.3. Phenotypic correlations 

The correlations among the gold standard traits were comparable to the 

correlations among the corresponding MIRS-predicted traits for the majority of 

protein fraction traits. This could be due to the moderately accurate predictions, 

which yielded MIRS-predicted protein fraction values similar to gold standard 

protein fraction values. The correlation between gold standard β-Lg-A and gold 

standard β-Lg-B (-0.38) was not in agreement with the correlation between the 

MIRS-predicted β-Lg-A and the MIRS-predicted β-Lg-B (0.33), as these protein 



 

48 
 

fractions β-Lg-A (rv =0.39) and β-Lg-B (rv =0.44) were poorly predicted from the 

MIR. The poor prediction of β-Lg-A and β-Lg-B may also contribute to the large 

difference in the correlations between the gold standard and MIRS-predicted 

values of these two traits with total-CN. 

Overall, the correlations among the gold standard FAA and the respective 

correlations among the MIRS-predicted FAA were in less agreement than the 

correlations among the gold standard and the MIRS-predicted protein fractions 

this may be due to poorer accuracy of prediction for FAA.  

Previous studies have shown that RCT, k20 and pH are all positively 

correlated and these traits are all negatively correlated with both a30 and HCT 

(Ikonen et al., 2004; Cassandro et al., 2008; Visentin et al., 2015). Therefore, if 

RCT has a positive correlation with protein; k20 and pH should also have positive 

correlations with protein and both a30 and HCT should be negatively correlated 

with protein. This study estimated RCT was positively correlated with MIRS-

predicted protein and the majority of gold standard protein fractions in early 

lactation, but in late lactation RCT was negatively correlated with MIRS-predicted 

protein and gold standard protein fractions. The correlations between RCT, MIRS-

predicted protein and gold standard protein fractions could be explained by the 

increase in protein content throughout lactation (Figure 2.2), because as protein 

content increases, RCT decreases (Visentin et al., 2015) and also the FAA 

concentration decreases. Throughout lactation, k20 had negative associations with 

protein-related traits but had positive associations with the majority of gold 

standard FAA; this could be due to protein hydrolysis, which releases FAA into 

the milk. The negative associations of k20 with protein-related traits and the 

positive associations of k20 with the majority of gold standard FAA were also in 

accordance with the positive correlation among RCT and k20. RCT was negatively 

correlated with a30; therefore the positive correlations between a30 and protein-

related traits in both early and late lactations and the negative associations with 

gold standard FAA in mid lactation were expected. Negative correlations were 

demonstrated between pH and both MIRS-predicted casein and gold standard 

protein fractions in early lactation, but both negative and positive correlations 

were demonstrated between pH and these traits in late lactation. These 

correlations may be explained by Vasbinder et al. (2003), who showed that a small 
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change in pH had a large effect on whey protein denaturation and gelation 

properties of milk. Milk proteins, in particular β-LG and κ-CN are known to have 

an effect on milk processing characteristics, such as HCT (Singh, 2004). However 

no strong correlations were demonstrated between these proteins and milk 

processing characteristics in this present study.  

 

Table 2.8 Pearson correlations between mid-infrared predicted free amino acids 
(FAA) and rennet coagulation time (RCT), curd-firming time (k20), curd firmness 
(a30), heat coagulation time (HCT) and pH; across two stages of lactation. 

  Lys Val Glu Gly Asp Arg Ser Total FAA 

Early Lactation   
      

RCT -0.10* -0.19* 0.24 -0.04 -0.14 -0.01 -0.16 -0.10 

k20 0.01 -0.04 0.13 -0.06 0.00 -0.08 -0.20 -0.03 

a30 0.20* 0.23* -0.21 0.10 0.00 -0.11 -0.04 0.13 

HCT 0.13 -0.02 0.15 -0.04 0.29 -0.10 0.17 0.13 

pH -0.15* -0.18 -0.01 -0.13 -0.12 -0.22 -0.13 -0.24* 

Late Lactation        
RCT 0.34* 0.21* 0.08 0.23 0.06 0.02 0.02 0.37 

k20 0.17 0.10 0.17 0.27 0.12 0.01 0.03 0.27 

a30 -0.18* -0.09* -0.17 -0.24 -0.11 0.01 -0.08 -0.26 

HCT -0.14 -0.08 0.05 -0.01 -0.10* 0.24* 0.06 -0.07 

pH 0.23* -0.08 -0.06 0.07 0.03 -0.02 0.00 0.13* 
* Correlations are significantly different to each other in early and late lactation 
(P<0.01). 

 

2.6 Conclusions 

Findings from this study indicate that MIRS is useful to routinely and 

efficiently measure milk quality traits such as protein fractions and some FAA at a 

population level. Prediction of these traits by MIRS could play an important role 

in selective breeding and therefore be of benefit to the dairy and breeding industry 

worldwide, allowing for the more accurate selection of milk for human 

consumption, infant milk formula and cheese production. Further research is 

required to quantify genetic correlations between protein fractions and FAA and to 

estimate the genetic variance of these traits which will indicate the usefulness of 

the developed MIRS models for practical animal breeding purposes. 
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3.1 Abstract 

The colour of milk impacts the subsequent colour features of the resulting 

dairy products; milk colour is also related to milk fat concentration. The objective 

of the present study was to quantify the ability of mid-infrared spectroscopy 

(MIRS) to predict colour-related traits in milk samples and to estimate the 

correlations between these colour-related characteristics and traditional milk 

quality traits. Mid-infrared spectral data were available on 601 milk samples from 

529 cows, all of which had corresponding gold standard milk colour measures 

determined using a Chroma Meter; milk colour was expressed using the CIELAB 

uniform colour space. Separate prediction equations were developed for each of 

the three colour parameters (L* = lightness, a* = greenness b*=yellowness) using 

partial least squares regression. Accuracy of prediction was determined using both 

cross validation on a calibration data set (n=422 to 457 samples) and external 

validation on a data set of 144 to 152 samples. Moderate accuracy of prediction 

was achieved for the b* index (coefficient of correlation for external validation = 

0.72), although poor predictive ability was obtained for both a* and L* indices 

(coefficient of correlation for external validation of 0.30 and 0.55, respectively). 

The linear regression coefficient of the gold standard values on the respective 

MIRS-predicted values of a*, L*, and b* was 0.81, 0.88, and 0.96, respectively; 

only the regression coefficient on L* was different (P<0.05) from one. The mean 

bias of prediction (i.e., the average difference between the MIRS-predicted values 

and gold standard values in external validation) was not different from zero (P > 

0.05) for any of three parameters evaluated. A moderate correlation (0.56) existed 

between the MIRS-predicted L* and b* indices, both of which were weakly 

correlated with the a* index. Milk fat, protein and casein were moderately 

correlated with both the gold standard and MIRS-predicted values for b*. Results 

from the present study indicate that MIRS data provides an efficient, low-cost, 

screening method to determine the b* colour of milk at a population level. 
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3.2 Introduction 

Product colour is one of the primary factors considered by consumers 

when making purchasing decisions, as it is often an indicator of ripeness, 

freshness, food safety and attractiveness in the food industry (Hutchings 1994). It 

is well known that milk colour influences the colour features of the subsequent 

dairy products, while also being related to the fat content of the milk (Winkelman 

et al., 1999). Differences in milk colour can also be related to the presence of 

abnormalities in milk; for example, mastitis attributable to Streptococcus esculine 

infection causes milk to have a more reddish/yellowish colour while mastitis due 

to Streptococcus dysgalactiae also leads to a change in milk colour (Espada et al., 

2002 and Vijverberg, 2002). 

The white colour of milk is a function of the milk’s physical structure; 

the dispersion of both casein micelles and fat globules in the milk is responsible 

for the diffusion of incident light and is related to lightness (L*) (Raty et al., 

1999). The natural pigmentations from carotenoids, protein and riboflavin are also 

associated with the white colour of milk. Milk with a low carotenoid content, high 

protein and high riboflavin tends to be whiter (Solah et al., 2007), or in other 

words have a greater L* index value.  

The yellow colour (yellowness index; b*) of bovine milk is closely 

related to the level of β-carotene and fat content; a greater milk fat and β-carotene 

content results in an incremental increase to the b* index of milk, hence the milk 

will have a more yellow colour. Feeding and selective breeding of cows may be 

used to alter the carotenoid level and thus colour of dairy products (Norieze et al., 

2006b). Cows fed grass silage tend to produce milk with yellower fat and greater 

β-carotene content, than milk produced by cows on a hay diet (Noziere et al., 

2006a; Calderon et al., 2007). Breeds of cows, such as Jerseys, that produce milk 

with a greater carotenoid and fat content, produce more yellow colour milk than 

breeds such as Holstein-Friesians (Winkelman et al., 1999). There is a minimal 

loss of carotenoids from milk when transferred into butter and cheese therefore 

also contributing to the yellow colouration of these dairy products.  

Yellower dairy products may be considered favourable or unfavourable 

depending on the target market. For example, yellower products are considered an 

unfavourable attribute in Middle Eastern dairy markets (Keen and Wilson, 1992). 
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However in Europe, a yellower colour is favourable in high fat dairy products 

such as butter and full fat cheeses (Hutchings 1994, Casalis et al., 1972).  

As the gold standard methods for the determination of milk colour (i.e., 

Chroma Meter (Minolta, Osaka, Japan) or a NH310 Colour Meter Milk (Shenzhen 

3NH Technology Co. Ltd, China) or for the determination of milk carotenoid 

content, can be relatively costly and also requires sub-sampling of milk for 

analysis, the use of an analytical system already in place (e.g. mid-infrared 

spectroscopy) to determine milk colour may be more logical. Mid–infrared 

spectroscopy (MIRS) is currently used by milk recording organizations worldwide 

to predict milk fat, protein, casein and lactose concentration and has recently been 

used to predict more detailed milk composition traits (De Marchi et al., 2014) or 

animal traits (McParland et al., 2014). The use of MIRS to predict novel milk 

quality traits is therefore appealing since the MIR spectrum is available at a 

negligible additional cost and may be undertaken as part of the routine 

quantification of other components in milk. Nevertheless, to our knowledge, no 

study has attempted to evaluate the potential of MIRS to predict milk colour traits.  

The aim of the present study was to evaluate the ability of MIRS to 

predict milk colour-related traits and to estimate the correlations between these 

milk colour traits and a selection of traditional milk quality traits. 

3.3 Materials and methods 

3.3.1 Milk sample collection  

Between August 2013 and August 2014, inclusive, 730 milk samples 

from 621 cows were obtained from seven research farms operated by the Teagasc 

Animal and Grassland Research and Innovation Centre (Moorepark, Fermoy, 

Co.Cork, Ireland). Milk composition was recorded weekly using a MilkoScan 

FT6000 (Foss Electronic A/S, Hillerød, Denmark) and the resulting spectrum, 

containing 1,060 transmittance data in the mid-infrared region between 900 and 

5,000 cm-1, was stored. Following MIRS analysis, the milk samples were stored at 

4 °C for further analysis. Samples were selected to maximize diversity of breed 

[Holstein-Friesian (n=454), Jersey (n=117), Norwegian Red (n=15), and 

crossbreds (n=144)], stage of lactation (5 to 375 days in milk), milking time (i.e. 

AM or PM milking), and parity (1 to 11). Samples with preservative added 
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(n=129) were not considered in the present study for the determination of milk 

colour. The final data set used in the present study comprised of 601 milk 

samples, 461 of which were from spring-calving cows fed a predominantly grazed 

grass based diet and the remaining 140 samples were from autumn-calving cows 

fed a total mixed ration diet in the early stages of lactation.  

3.3.2 Gold standard milk colour determination 

Milk colour was measured using a Chroma Meter CR400 (Konica 

Minolta Sensing Europe, Edisonbaan 14-F, NE) with a closed cone, set on the L* 

a* b* system and the Chroma meter was calibrated on a white tile. A 10 ml sub-

sample of each milk sample was measured in a cuvette and expressed using the 

CIE-L* a* b* uniform colour space (CIE-Lab 1976). The CIE-L* a* b* plots the 

colour co-ordinates in a uniform colour space, which has an L* a* and b* axis, 

where L* = lightness [on a scale from 0 to 100 where 0 = black and 100 = white], 

a* [where - a* has a green colour and + a* has a red colour] and b* [where – b∗ 

has a blue colour and + b∗ has a yellow colour]. The more different from zero or 

the greater the absolute value is, the stronger the colour (i.e. a sample with an 

absolute value close to zero has a lighter colour than a sample with an absolute 

value close to one hundred). 

3.3.3 Data analysis 

Outlier samples were considered to be samples with a gold standard value 

>3 from the mean. No L* or b* indices outliers were removed, but 28 outliers 

were removed based on the a* index. All three milk colour traits were normally 

distributed. Descriptive statistics were calculated within the Holstein-Friesian and 

Jersey breeds separately, as well as across all breeds combined and within season. 

The differences between the means of Holstein Friesian and Jersey cows and 

between the means of autumn and spring cows were derived using ANOVA in 

Microsoft Excel. Spectral data were transformed from transmittance to linear 

absorbance using a logarithmic transformation of the reciprocal of the wavelength 

values (Soyeurt et al., 2011). Prediction models were developed using untreated 

spectra. Mid-infrared spectroscopy models were developed to predict each colour 

trait separately using partial least squares regression (Proc PLS; SAS Institute Inc., 

Cary, NC). Spectral regions considered were from 926-1,580 cm-1, 1,717-2,986 
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cm-1 and 3,696-3,808 cm-1, determined based on the observed loadings for each 

wavelength from preliminary analyses. 

Accuracy of the prediction equations was determined using external 

validation, whereby 25% of data was excluded from equation calibration; these 

data were used in the independent validation data set. This procedure was repeated 

3 times, using a different 25% of the data in the validation data set each time. 

Samples were selected for the validation data set to represent similar variation to 

that present in the gold standard data in the calibration data set used to develop the 

prediction equations. For each prediction model, the data set was sorted by the 

trait of interest. The first sample and every fourth sample thereafter were included 

in the validation data set for the first iteration; for the second iteration the second 

sample and every fourth sample thereafter was chosen for the validation data set, 

with a similar procedure used for the third and fourth iteration. No cow was 

represented in both the calibration data set and validation data set in a given 

iteration. 

The criteria used to determine the accuracy of the MIRS predictive 

models were the coefficient of correlation of cross validation (rc) and external 

validation (rv), the root mean square error of cross validation (RMSEc) and 

external validation (RMSEv), the linear regression coefficient (b) of the MIRS-

predicted values on the gold standard values of each trait, and the mean bias of 

prediction; the mean bias of prediction was calculated as the mean difference 

between the MIRS-predicted values and gold standard values in external 

validation The ratio performance deviation (RPD), which is the ratio of the 

standard deviation of each trait to standard error of prediction, was also used as a 

measure of model predictive ability. Four validation datasets were created and 

then appended onto each other and the rc, rv, RMSE, b (SE), and bias (SE) was 

calculated based on all four iterations combined. The average number of factors 

(#L) used to build the prediction equations, was the average number from all four 

iterations rounded to the nearest whole number. Validation was performed within 

the Holstein-Friesian and Jersey breeds separately, as well as across all breeds 

combined. The Fischer’s r to z transformation was performed to determine if the 

accuracy of prediction differed between breed populations. 
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Furthermore, the L*, a* ad b* indices were also predicted in external 

validation using the regression coefficients on milk fat, protein and casein content 

estimated from the calibration dataset. 

Pearson correlations among the gold standard milk colour traits, MIRS-

predicted milk colour traits and MIRS-predicted fat, protein and casein predicted 

using the FOSS equations (MilkoScan™ FT+) were also estimated. 

3.4 Results 

3.4.1 Descriptive statistics 

Descriptive statistics of the milk colour traits are in Table 3.1; average 

values of a*, b* and L* colour indices were -3.88, 8.09, and 81.57, respectively. 

Jersey cows had a greater (P<0.01) mean value for the yellow colour of milk (b* = 

10.03) than the Holstein-Friesian cows (b* =7.48) and their milk also had a greater 

fat content. Spring calving cows had a greater (P<0.01) b* index than autumn 

calving cows (results not shown). The coefficient of variation was 2.24%, 13.65%, 

and 36.34% for L*, a* and b*, respectively. (Table 3.1) 

 

Table 3.1 Mean, standard deviation (SD), coefficient of variation (CV), minimum 
(Min) and maximum (Max) for the gold standard colour indices (L* = lightness; a* = 
greenness; b* = yellowness) in the entire dataset.  

  Cross validation     External Validation  

Trait # L RMSE rc  
Bias(SE) b(SE) RMSE rv RPD 

L* 15 1.46 0.63 
 

0.02(1.57) 0.88(0.05) 1.57 0.55 1.20 

a* 9 0.51 0.37 
 

-0.002(0.52) 0.81(0.11) 0.52 0.30 1.05 

b* 19 1.97 0.74 
 

-0.005(2.03) 0.96(0.04) 2.03 0.72 1.45 
1#L = average number of factors rounded to the nearest whole number RMSE = root 
mean square error; rc = correlation between true and predicted values in cross 
validation; rv = correlation between true and predicted values in external validation; b 
= linear regression coefficient of predicted values on the gold standard values of each 
trait SE = standard error; RPD = ratio performance deviation. 
1The greater the absolute value is, the stronger the colour. 
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Table 3.2 Fit statistics1 for the cross- and external- validation of prediction equations 
for colour indices (L* = lightness; a* = greenness; b* = yellowness). 

 Cross validation                                External validation 

Trait # L RMSE rc  Bias(SE) b(SE) RMSE rv RPD 

L* 15 1.46 0.63  0.02(1.57) 0.88(0.05) 1.57 0.55 1.20 

a* 9 0.51 0.37  -0.002(0.52) 0.81(0.11) 0.52 0.30 1.05 

b* 19 1.97 0.74  -0.005(2.03) 0.96(0.04) 2.03 0.72 1.45 
1#L = average number of factors rounded to the nearest whole number RMSE = root 
mean square error; rc = correlation between true and predicted values in cross 
validation; rv = correlation between true and predicted values in external validation; b 
= linear regression coefficient of predicted values on the gold standard values of each 
trait SE = standard error; RPD = ratio performance deviation.  

 

3.4.2 Colour prediction accuracy 

Moderate accuracy of prediction was obtained for the b* index (rv = 0.72; 

Table 3.2) while poor prediction accuracy of prediction was obtained for both the 

a* and L* indices (rv = 0.30 and rv = 0.55, respectively). The accuracy of 

predicting the a* index was greater (P<0.05) for the Jersey population (rv = 0.59) 

compared to external validation in just the Holstein-Friesian population (rv = 0.09) 

(Table 3.3). The accuracy of predicting the L* index was greater (P<0.05) for the 

Holstein-Friesian population (rv = 0.60) and the Jersey population only (rv = 0.73) 

compared to when all the breeds combined (rv = 0.55) were included in external 

validation. The accuracy of predicting the b* index was greater (P<0.05) when all 

breeds combined were used in external validation (rv = 0.72) compared to when 

just the Holstein-Friesian (rv = 0.64) or Jersey (rv =0.66) was used. RPD values for 

the three milk colour traits were less than 2. The linear regression coefficients of 

the MIRS-predicted values on the gold standard values for a*, L* and b* 

prediction models were 0.81, 0.88, 0.96, respectively; only the linear regression 

coefficient of L* was different to one (P<0.05). The bias of the prediction models, 

which is the average difference between MIRS-predicted values and gold standard 

values in external validation, was not different from zero (P > 0.05) for any of the 

three milk colour parameters. 
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Table 3.3 Number of records (n), root mean square error (RMSE), correlation 
coefficient between gold standard and MIRS-predicted values in external validation 
(rv) for all breeds, Holstein-Friesians only and Jerseys only, tested using the split 
sample external validation.  

Trait n Mean SD RMSE rv 
All Breeds 

L* 120 81.57 1.83 1.57 0.55a 

a* 143 -3.88 0.53 0.52 0.30a 

b* 120 8.09 2.94 2.03 0.72a 
Holstein-Friesians Only 

L* 98 81.57 1.91 1.55 0.60b 

a* 98 -3.79 0.61 0.45 0.09b 

b* 96 7.48 2.78 2.21 0.64a 
Jerseys Only 

L* 94 81.40 1.74 1.20 0.73ab 

a* 74 -4.25 1.34 0.48 0.59a 

b* 94 10.03 3.04 2.30 0.66a 
ab Coefficient of correlations within trait with different superscripts differ (P <0.05) 
from each other. 

 

When milk fat, protein and casein concentration combined were used as a 

predictor of the a*, L* and b* indices, rv values (0.18, 0.48 and 0.60 for a*, L* 

and b*, respectively) were numerically lower (P>0.05) than when predictions 

were based on the MIRS (0.30, 0.55 and 0.72 for a*, L* and b*, respectively). 

3.4.3 Phenotypic correlations 

A moderate correlation of 0.56 existed between the MIRS-predicted 

colour traits L* and b*, whereas the colour parameter a* was only weakly 

correlated with the other two colour traits (Table 3.4). A moderate correlation 

(0.65) existed between the gold standard colour traits L* and b*, whereas both the 

gold standard and MIRS-predicted colour parameter a* were only weakly 

correlated with the other two colour traits (Table 3.4). A negative correlation 

existed between the gold standard b* and a* indexes (-0.17), as well as between 

the MIRS-predicted b* and a * indexes (-0.04). The colour traits b* and L* were 

moderately correlated to MIRS-predicted milk fat, protein and casein content 

(Table 3.4). The correlation between the gold standard b* and MIRS-predicted fat 

(0.65) and between the MIRS-predicted b* and MIRS-predicted fat (0.59) were 

similar. No strong correlations existed between the gold standard and MIRS 



 

60 
 

predicted colour traits L* a* and b* with MIRS-predicted lactose. MIRS-predicted 

protein and CN were strongly correlated with CN constituting 77% of the 

variability in protein content. 

 
Table 3.4 Pearson correlations1 among the gold standard (below diagonal) and MIRS-
predicted (above diagonal) colour indices (L* = lightness; a* = greenness; b* = 
yellowness) and MIRS-predicted traditional milk quality traits. 

1Correlations <|0.07| were not different from zero. 
2 PRT=protein CN=casein 

 

3.5 Discussion 

Feeding management could be an effective short term method of 

increasing the yellow colour in milk (Noziere et al., 2006a; Calderon et al., 2007), 

but selective breeding could be used as a long term strategy. Moreover, 

management strategies to alter milk colour may not always be feasible (e.g., 

feeding high producing cows forage diets). Genetic selection, however, is 

cumulative and permanent but more importantly is amenable for implementation 

globally. Successful breeding programs are nonetheless predicated on access to 

large quantities of individual animal level information from which to generate 

estimated breeding values; this information should ideally be available at low cost. 

This was the motivation of the present study to evaluate the potential of the 

routinely used MIRS to predict milk colour.  

The mean absolute colour values in the present study were greater than a 

study by Ordolff (2006) who compared milk colour across a range of different 

somatic cell counts from 15 dairy cows in Germany. The b* values documented 

by Ordolff (2006) had negative values indicating the milk had a blue colour; this 

was expected as the milk had a very low fat content compared to the milk samples 

 L* a* b* Fat, % PRT, % CN, % Lactose, % 

L* - 0.35 0.56 0.38 0.36 0.39 0.01 

a* 0.01 - -0.04 -0.03 -0.17 -0.21 -0.07 

b* 0.65 -0.17 - 0.59 0.48 0.45 -0.21 

Fat % 0.49 -0.11 0.65 - 0.41 0.42 -0.05 

PRT, % 0.42 -0.33 0.50 0.41 - 0.88 -0.06 

CN, % 0.47 -0.32 0.47 0.42 0.88 - 0.13 

Lactose, % -0.01 -0.07 -0.29 -0.05 -0.06 0.13 - 
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analysed in the present study. The greater fat content of milk used in the present 

study may be because the majority of the milk samples were from cows fed a 

grass based diet. The yellow colour of milk is positively associated with greater 

Lucerne (Larsen et al., 2013). Cows fed grass silage tend to produce milk with a 

greater fat and β-carotene content and therefore a more yellow colour, than milk 

produced by cows on a hay diet (Noziere et al., 2006a; Calderon et al., 2007). A 

study by Phillips et al. (1995) that characterised low fat milk, calculated L- a- and 

b-values based on Illuminate A from a Macbeth Colour-Eye Spectrophotometer 

(Kollmorgen Instruments Corp., Newburgh, NY). The mean values for a, b and L 

observed by Phillips et al. (1995), at 2% fat content were -3.74, 2.99 and 81.11, 

respectively. The b value documented by Phillips et al. (1995) was also lower than 

the b value in the present study, where milk had a greater fat content.  

Jersey cows had a greater (P<0.01) mean value for the yellow colour of 

milk (b* = 10.03) than the Holstein-Friesian cows (b* =7.48) and their milk also 

had a greater fat content. 

Spring calving cows had a greater (P<0.01) b* index than autumn calving 

cows. This is expected as spring-calving cows were fed a grass based diet, and 

therefore would have greater carotenoid and fat level in their milk, in comparison 

to autumn calving cows that were kept indoors and fed hay or silage (Noziere et 

al., 2006a; Calderon et al., 2007). Although bovine milk colour traits are related to 

the carotenoid level in milk and the transfer of these carotenoids from the blood to 

the milk (Nozière et al., 2006b; Gross et al., 2014), no information was available 

in the present study on the carotenoid content of the milk.  

3.5.1 Milk mid-infrared spectroscopy prediction of Colour 

Because the ratio performance deviation values for the three milk colour 

traits were less than 2 in the present study, the MIRS models should not be used 

for analytical purposes. According to Williams et al. (2007), the prediction model 

for a* is unstable as the slope deviates greatly from 1 (e.g., less than 0.85 or 

greater than 1.15), whereas the prediction equation for b* is expected to be stable 

since the linear regression coefficient of the true on predicted b* was between 

0.95 and 1.05. The prediction of milk colour indices by MIRS is not a 

consequence of direct prediction because the visible region of the electromagnetic 

spectrum (i.e., 350-800 nm) is not part of the MIRS spectrum (De Marchi et al., 
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2014). As in the case of several innovative milk traits (e.g. milk coagulation traits; 

residual feed intake; methane emission), the prediction of colour traits in the 

present study is most likely from indirect prediction of other components, for 

example fat content; the correlation between the gold standard b* and fat content 

was 0.65 (Table 3.4). Mid-infrared spectroscopy is known to be able to accurately 

predict milk fat, protein, casein and free fatty acids and is currently used by milk 

recording organizations worldwide. The greater accuracy of MIRS prediction 

model for b* was also confirmed by the fewer number of model factors (9, 15 and 

19 for a*, L* and b*, respectively). With partial least square regression, the 

pattern among wavelengths is reduced into fewer variables called loadings; each 

loading explains a part of the total variance and therefore the fewer the loading 

factors used the more robust the prediction equation is likely to be (De Marchi et 

al., 2013). The loadings also depict the molecular basis of the MIRS prediction, as 

peaks close to certain wavelengths are related to certain chemical bonds. Several 

spectral regions contributed to the prediction of the three colour traits in the 

present study, and these were primarily the regions associated with lipids (2,935, 

2,839, 1,763 cm-1), followed by the peaks at 968, 1,146, 1,180, 1,331 and 1,466 

cm-1 which attributed to C-O, C-C, O-C-H, C-C-H and C-O-H bending (De 

Marchi et al., 2013). This helps verify that the ability of MIRS to predict the b* 

colour of milk may be (in part) an artefact of the MIRS detecting the milk fat 

concentration in the milk. Nonetheless, when the milk fat concentration alone was 

used as a predictor of the b* index, an rv of only 0.33 was obtained, demonstrating 

that fat concentration alone is not predicting b* but other components represented 

in the MIRS are also contributing to the prediction of b*. Nonetheless, further 

studies should consider measuring the yellow milk colour independent of the fat 

content. This could be achieved by gravity separation of a portion of the milk 

samples that have a high and low yellow colour. The gravity cream could be 

added back in different combinations with gravity skim with low or high yellow 

colour and gravity cream with low or high yellow colour. This would enable the 

statistical model to better focus on information in the spectra that is related to 

colour and reduce the confounding effect of fat concentration. 

Although no study has evaluated the potential of MIRS in predicting milk 

colour traits, several studies have investigated the use of near infrared 

spectroscopy (NIRS) to predict colour in other dairy products, especially cheese. 
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Lucas et al. (2008) reported robust NIRS prediction models for the colour of fresh 

cheeses (n = 445), with rv values as high 0.96 for the colour traits a* and b*. Other 

studies measured colour traits in foods such as meat (De Marchi et al., 2011) and 

wine (Urbano-Cuadrado et al., 2004). De Marchi et al. (2011) obtained rv values 

of 0.60, 0.82 and 0.88 for L* a* and b*, respectively in meat. Moreover, infrared 

spectroscopy has been proposed by Ordolff (2006) for the detection of abnormal 

milk colour in the blue region; for example, milk with reddish colour indicates 

contamination with blood that might be related to udder infection or teat injuries 

(Hettinga et al., 2008).  

3.5.2 Phenotypic Correlations 

Protein and casein were strongly correlated with each other (0.88), and 

therefore similar correlations between the colour traits (L* a* b*) with both 

protein and casein were expected. Correlations between milk fat and b* and 

between milk protein and a* in the present study were in agreement with those 

reported by Solah et al. (2007), who also reported significant correlations between 

these traits. Moreover, the correlation between MIRS-predicted lactose content 

and MIRS-predicted b* reported in the present study (-0.21) was weaker than that 

reported by Gross et al. (2014) in colostrum (-0.44). 

3.6 Conclusions 

This study demonstrates that MIRS data could be used as a screening tool 

to efficiently determine the b* colour of milk at a population level, providing a 

useful tool for the dairy industry and aiding in feeding management and selective 

breeding. One potential use of the equations developed in the present study is in 

milk cooperatives selecting specific farms that produce milk with certain milk 

colour characteristics which could demand a premium milk price. The MIRS 

prediction equations could be used to routinely monitor herd average milk colour 

for recruiting or expelling producers from this scheme. Further investigation is 

however, required to estimate the genetic variance of milk colour, which will 

indicate the usefulness of the developed MIRS models for practical animal 

breeding purposes. 
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4.1 Abstract 

The objective of the present study was to identify the factors associated 

with both the protein composition and free amino acid (FAA) composition of 

bovine milk predicted using mid-infrared spectroscopy (MIRS). Milk samples 

were available from seven research herds and 69 commercial herds. The spectral 

data from the research herds comprised of 94,286 separate mornings and evening 

milk samples; the spectral data from the commercial herds comprised of 40,260 

milk samples representing a composite sample of both the morning and evening 

milking. Mid-infrared spectroscopy prediction models developed in a previous 

study were applied to all spectra. Factors associated with the MIR-predicted 

protein and FAA composition were quantified using linear mixed models. Factors 

considered in the model included the fixed effects of calendar month of the test, 

milking time (i.e., AM, PM or both combined), parity (1, 2, 3, 4, 5 and ≥6), stage 

of lactation, the interaction between parity and stage of lactation, breed proportion 

of the cow (Friesian, Jersey, Norwegian Red, Montbelliarde, and other) and both 

the general heterosis and recombination coefficients of the cow. Contemporary 

group as well as both a within and across lactation permanent environmental 

effect were included in all models as random effects. Total proteins (i.e., total CN, 

total whey, and total β-LG) and protein fractions (with the exception of α-LA) 

decreased post-calving until 36-65 DIM and increased thereafter. After adjusting 

the statistical model for differences in crude protein content and milk yield 

separately, irrespective of stage of lactation, younger animals produced more total 

proteins (i.e., total CN, total whey, and total β-LG) as well as more total FAA, 

Glu, and Asp than their older contemporaries. The concentration of all protein 

fractions (except β-CN) in milk was greatest in the evening milk, even after 

adjusting for differences in the crude protein content of the milk. Relative to a 

purebred Holstein cow, Jersey cows, on average, produced a greater concentration 

of all CN fractions but less total FAA, Glu, Gly, Asp, and Val in milk. Relative to 

their respective purebred parental average, first-cross cows produced more total 

CN and more β-CN. Results from the present study indicate that many cow-level 

factors, as well as other factors, are associated with protein composition and FAA 

composition of bovine milk.  
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4.2 Introduction 

Both total protein content, and its composition, in bovine milk are among 

the most important milk characteristics for the dairy industry. In Europe, milk 

processors pay a greater premium for milk exceeding a threshold protein content 

than for milk exceeding a threshold fat content (Shalloo and Geary, 2011). Bovine 

milk generally consists of about 3.3% protein, of which 78% is comprised of 

casein (CN), 17-18% is comprised of whey protein and the remaining 4-5% of 

non-protein nitrogen. Milk CN consists of four CN fractions (αS1-CN, αS2-CN, β-

CN, and κ-CN) in the approximate proportion of 3:1:3:1 (Farrell, 2008) and 

gamma-casein, which is a product of degradation of β-CN (Ostersen et al., 1997; 

Miller et al., 1990). Changes in the concentration of individual protein fractions in 

milk affect various processing attributes of the milk including rennet coagulating 

time (Ikonen et al., 2004; Joudo et al., 2008), curd firmness (Ikonen et al., 2004; 

Wedholm et al., 2006; Joudo et al., 2008), pH (Ikonen et al., 2004; Joudo et al., 

2008), and cheese yield (Wedholm et al., 2006; Bonfatti et al., 2011a).  
Results from numerous studies reveal that parity, stage of lactation 

(Ostersen et al., 1977; Kroeker et al., 1985; Ng-Kwai-Hang et al., 1987), and 

breed (Cerbulis et al., 1975; Auldist et al., 2004; Joudu et al., 2008; Lopez-

Villalobos, 2012) are associated with the individual protein fractions of milk. For 

example, mean αS-CN was reported to increase between first and third parity cows 

but plateaued thereafter, whereas β-CN decreased as parity number increased 

(Kroeker et al., 1985; Kwai-Hang et al., 1987). Changes in the proportions of αS1-

CN, β-CN, and κ-CN in milk have also been associated with stage of lactation and 

cow parity (Kroeker et al., 1985).  

Free amino acids (FAA) in milk may be used as human nutritional 

supplements since they are more digestible than protein (Mero, 1999; Gleeson, 

2008). For milk processing purposes, a high level of FAA is undesirable, as FAA 

are a result of deprotenization and an indication of poorer quality milk. Therefore, 

bovine milk is less suitable for processing in early and late lactation, when total 

FAA are in greatest concentration (Auldist et al., 1995, Chapter 2).  Nevertheless, 

to-date, no study has investigated the variability in FAA across different parities, 

milking times of the day, calendar months of the year at test or dairy breeds.  
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Mid-infrared spectroscopy (MIRS) is commonly used worldwide to 

predict milk fat, protein, casein and lactose of individual animal and bulk tank 

milk samples. Previous studies propose MIRS as a rapid and cost-effective 

analytic tool for recording phenotypes at population level (De Marchi et al., 2014; 

McParland and Berry, 2016). The ability of MIRS to predict milk technological 

traits, detailed protein composition (αS1-CN, β-CN, κ-CN, α-LA, β-LG A, and β-

LG B), FAA, and milk colour characteristics has been previously documented 

(Visentin et al., 2015; Chapter 2; Chapter 3). The objective of the present study 

was to quantify the associations between cow-level factors, as well as other 

factors, with detailed protein and FAA composition of bovine milk predicted 

using MIRS.  

4.3 Materials and methods 

4.3.1 Spectral Data 

Milk samples were available from two sources; (i) seven research herds 

operated by the Animal and Grassland Research and Innovation Center (Teagasc, 

Ireland), and (ii) 69 Irish commercial dairy herds. Spectra from the research herds 

comprised of 126,845 separate morning and evening milk samples from 2,535 

lactations and 1,439 cows. Spectra from the commercial herds comprised 44,976 

milk samples (morning and evening milk samples combined) from 14,874 

lactations and 8,733 cows. Milk samples were form two seasonal calving systems 

(spring and autumn). Milk chemical composition (milk fat, protein, casein, and 

lactose concentration) was predicted for all milk samples using the same Fourier 

transform infrared spectrometer (Foss MilkoScan FT6000 (Foss Electronic A/S, 

Hillerød, Denmark) based at the Animal and Grassland Research and Innovation 

Center, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland. The generated spectrum, 

containing 1,060 transmittance data in the mid-infrared region between 900 and 

5,000 cm-1 was stored.  

Mid-infrared spectroscopy models were developed using partial least 

squares regressions (Proc PLS; SAS Institute Inc.) with untreated spectra as 

described in detail in Chapter 2. Spectral regions from 926 to 1,580cm−1, from 

1,717–2,986cm−1, and from 3,696–3,808 cm−1 were used to develop all prediction 

models based on the observed loadings for each wavelength. In brief, between the 
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years 2013 and 2014, a calibration dataset was generated using 715 individual 

milk samples from the same seven research herds used in the present study. Milk 

samples from 345 cows appeared in both datasets. Spectral outliers were 

determined as milk samples with a mahalanobis distance greater than three 

(Williams, 2007) relative to the mean of the calibration dataset. Prediction models 

were developed using 557 reference values for individual proteins and up to 715 

reference values for FAA determined by high performance liquid 

chromatography. The accuracy (i.e. the coefficient of correlation) of prediction 

from 1) split-sample cross validation and 2) from external validation on an 

independent 25% of the data (not included in model calibration), are reported in 

Chapter 2. The accuracy of prediction in external validation was, on average, 

moderate; the coefficient of determination for protein fractions ranged from 0.39 

(β-LG A) to 0.74 (total CN) and for FAA ranged from 0.26 (Arg) to 0.75 (Gly; 

Chapter 2).  

4.3.2 Data Editing 

Spectral data with a Mahalanobis distance greater than three (Williams, 

2007) relative to the mean of the 715 samples used in Chapter 2 to develop the 

prediction equations, were considered as spectral outliers (1,634 milk samples in 

total) and discarded. Furthermore, predicted values of proteins and FAA which 

were >3 standard deviations from the mean of the reference trait were considered 

to be outliers and also removed. Only milk yield over a 24 h period was available 

for the commercial cows; therefore milk yield over a 24 h period was computed 

for the research cows, as the sum of their morning and evening milk yield from 

the same day. Only milk samples from recorded between 5 and 305 DIM and from 

parities ≤10 were retained for analysis; parties greater than 5 were grouped 

together for analysis.  

Contemporary group of experimental treatment by test-date was defined 

for milk samples from cows in research herds, whereas contemporary group of 

herd-test-date was defined for milk samples from cows in commercial herds. Only 

records within contemporary groups with at least ten records were retained for 

analysis. The research and commercial data sets were combined for analysis. After 

editing, the final data set comprised of 134,546 milk spectra from 9,572 cows.  
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Pedigree data and breed composition of all animals were available from 

the national database managed by the Irish Cattle Breeding Federation 

(http://www.icbf.com). Only milk samples from Holstein (HO), Friesian (FR), 

Jersey (JE), Norwegian Red (NR), and Montbelliarde (MO) cows as well as their 

crosses (HO x FR, HO x JE, HO X NR, HO X MO, JE X FR, JE X NR, JE X MO, 

NR X FR, and MO X FR) were retained for analysis. The data consisted of 6,724 

purebred cows (i.e., ≥75% pure), 2,848 crossbred cows and 1,853 cows with 

crossbred parents. The number of records, cows, number of lactations, and 

average parity of each breed and cross are in Table 4.1. Coefficients of heterosis 

and recombination loss were calculated for each cow as: 

  heterosis = 1 −  ∑ �����
�
��� ∗  ���� 

and 

 recombination loss = 1 − ∑  �!"#
$% &'(#

$

)
�
���  

where sirei and dami are the proportion of genes of the breed i in the sire 

and the dam, respectively (VanRaden and Sanders, 2003). 

4.3.3 Data Analysis 

Factors associated with both protein and FAA composition traits were 

quantified separately using linear mixed models in ASReml (Gilmour et al., 

2009). Factors considered in the model included the fixed effects of calendar 

month of milk test, milking time of the day (AM, PM or both combined), parity 

(1, 2, 3, 4, 5 and ≥6), stage of lactation (in 30 day intervals), the observed 

interaction between parity and stage of lactation, breed proportion of the cow 

fitted as separate covariates (Friesian, Jersey, Norwegian Red, Montbelliarde, and 

other), and general heterosis and recombination loss coefficients of the cow; 

Holstein breed proportion was not included in the model to avoid linear 

dependencies and therefore breed solutions reported are relative to a Holstein cow. 

The random effects of contemporary group as well as both within and across 

lactation effects were included in all models. Least square means were estimated 

based on a reference cow represented as a 100% Holstein, parity 3 cow, milked in 

the morning, averaged across stages of lactation and calendar months of the year 

at test. In a separate series of analyses, models with a protein fraction as the 

dependent variable were adjusted for total milk protein content (i.e., included as a 
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covariate); models with FAA as the dependent variable were adjusted for 24 h 

milk yield by including 24 h milk yield as a covariate in the models. 

4.4 Results 

4.4.1 Descriptive Statistics 

Mean predicted values of all milk traits in the research and commercial 

herds are summarised in Table 4.1. Mean values were similar for both the 

research and commercial herds. Mean values of total CN (αS1-CN, αS2-CN, β-CN, 

and κ-CN) and total whey (α-LA, β-LG A, and β-LG B) for both research and 

commercial herds, respectively, were approximately in the ratio 6:1. Individual 

CN fractions (αS1-CN, αS2-CN, β-CN, and κ-CN) were present in the ratio 4:1:4:2 

for both the research and commercial herds, respectively. The coefficient of 

variation (CV) differed among traits, and ranged from 10% (β-CN) to 51% (β-LG-

B) for the protein fractions. The FAA present in the greatest quantity in the milk 

was Glu which represented 57% of total FAA (Glu, Gly, Lys, Arg, Asp, Ser, and 

Val) in the milk. Contemporary group accounted for between 45.34% (total FAA) 

and 86.11% (α-LA) of the variability in the traits investigated. 

4.4.2 Non-Genetic Factors  

Evening milk had a greater (P<0.001) concentration of αS1-CN, αS2-CN, 

total whey protein, α-LA, total β-LG, and β-LG A, but a reduced (P<0.01) 

concentration of β-CN (13.60g/L vs 13.75 g/L) compared to morning milk when 

adjusted for crude protein content (Table 4.3). Furthermore, although evening 

milk has more (P<0.01) β-CN than morning milk the biological difference is 

small. Evening milk had a greater (P<0.001) concentration of all FAA (total FAA, 

Glu, Gly, Lys, Arg, Asp, Ser, and Val) compared to morning milk when adjusted 

for milk yield (Table 4.3). 

The observed interaction between stage of lactation and parity on the 

concentration of protein fractions persisted irrespective of whether or not 

adjustments were made in the statistical model for either differences in crude 

protein content or 24 h milk yield (results not shown). When adjusted for crude 

protein content, total CN and protein fractions (except for α-LA) decreased post-

calving to between 36-65 DIM across all parties but gradually increased thereafter 
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(Figure 4.1, Figure 4.2 and Figure 4.4). In younger parity cows, α-LA in milk 

decreased between 5-155 DIM (P<0.05)  and then plateaued when adjusted for 

crude protein content; however, in older cows, α-LA in milk  remained constant 

until mid to late lactation, after which it decreased in concentration (Figure 4.4). 

Across all stages of lactation, younger animals produced milk with a greater 

concentration of total CN (P<0.05), total whey (P<0.001), and total β-LG 

(P<0.001), than their older contemporaries when adjusted for crude protein 

content.Younger cows produced more αS1-CN (P<0.01) and β-CN (P<0.001) in 

milk than older cows, but first parity cows produced less αs2-CN (0.001) and κ-CN 

(0.01) than multiparous cows when adjusted for crude protein content.  

The interaction between stage of lactation and parity (P<0.001) on total 

FAA, Glu, Gly, and Lys concentration in milk adjusted for milk yield is illustrated 

in Figure 4.3. Irrespective of cow parity, Lys and Val concentration decreased in 

milk until 36-65 DIM, subsequently, Lys concentration plateaued and Val 

concentration continued to increase across stage of lactation. Total FAA and Gly 

concentration decreased from 5-125 DIM after which, total FAA continued to 

decrease across stage of lactation in earlier parities but plateaued in later parities 

and Gly concentration plateaued irrespective of parity. Across stage of lactation, 

younger cows had a greater (P<0.001) concentration of total FAA, Glu, and Asp 

in milk compared to older contemporaries. The concentration of Gly was the same 

across parities (P<0.05) and there was a lower concentration of Lys and Arg in 

earlier parities compared to later parities (P<0.001). 

 

 

 

 

 

 

 

 

 

 

 



 

73 
 

 

Table 4.1 Number of records, cows and lactation records and average parity for 
different breeds and crosses used in the present study. 

 Breed1 N Cows Lactations Parity 

 
≥87.5% 

   
HO 37,929 4,684 7,410 2.86 
FR 8 4 4 3.25 
JE 4572 55 96 2.14 
NR 48 5 5 6.00 
MO 114 52 78 4.18 

HO X FR 58,556 3,644 6,006 2.58 
HO X JE 25,080 522 912 2.51 
HO X NR 2,506 287 530 2.27 
HO X MO 1,140 175 274 3.25 
JE X FR 2,899 70 121 2.79 
JE X NR 1,518 51 102 2.25 
JE X MO 51 1 1 1.00 
NR X FR  75 12 20 2.29 
MO X FR 50 10 17 4.28 

  ≥75%       
HO 62,653 6,562 10,568 2.70 
FR 288 31 48 2.60 
JE 4,872 63 107 2.22 
NR 179 13 21 4.94 
MO 135 55 81 4.46 

HO X FR 34,690 1,826 2,954 2.68 
HO X JE 24,204 488 851 2.49 
HO X NR 2,280 271 501 2.07 
HO X MO 728 122 188 3.65 
JE X FR 2,823 67 117 2.79 
JE X NR 1,518 51 102 2.25 
JE X MO 51 1 1 1.00 
NR X FR  75 12 20 2.29 
MO X FR 50 10 17 4.28 

1HO = Holstein, FR = Friesian, JE = Jersey, HO×FR = Holstein-Friesian cross, 
HO×JE = Holstein-Jersey cross, HO×NR = Holstein -Norwegian Red cross, HO×MO 
= Holstein -Montbelliarde cross, JE×FR = Jersey-Friesian cross, JE×NR = Norwegian 
Red cross, JE × MO = Jersey-Montbelliarde cross,  NR×FR= Norwegian Red-Friesian 
cross, MO×FR= Montbelliarde-Friesian cross; a purebred animal was deemed to be 
≥87.5%  of the breed or ≥75%  of the breed.
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Table 4.2 Number of records (N), mean (SD in parentheses), and coefficient of variation (CV) of the studied traits predicted using mid-infrared 
spectroscopy in research and commercial herds.  

      Research herds 
 

Commercial Herds 

Trait    
N Mean (SD) CV, % N Mean (SD) CV, % 

 
CV of Contemporary 

Group, % 

Protein g/L milk  
   

 
Total CN  

94,148 36.37 (4.48) 12.31 
 

40,247 35.66 (3.95) 11.06 
 

56.46 

αS1-CN  
94,160 13.84 (1.89) 13.67 

 
40,249 13.38 (1.68) 12.57 

 
58.95 

αS2-CN  
94,235 3.68 (0.50) 13.63 

 
40,247 3.62 (0.46) 12.75 

 
53.40 

 Β-CN 

 Κ-CN 
 

94,080 12.94 (1.55) 11.97 
 

40,155 12.99 (1.30) 10.05 
 

62.34 

 
94,211 6.08 (0.96) 15.76 

 
40,252 5.90 (0.86) 14.62 

 
62.87 

Total Whey  
94,147 6.16 (1.59) 25.78 

 
40,236 6.07 (1.42) 23.38 

 
66.51 

α-LA  
94,185 1.09 (0.22) 19.73 

 
39,921 1.15 (0.16) 13.87 

 
86.11 

Total β-LG  
94,072 5.13 (1.57) 30.64 

 
40,164 4.98 (1.42) 28.57 

 
67.63 

β-LG A  
94,231 2.45(0.52) 21.35 

 
40,258 2.27 (0.49) 21.43 

 
75.20 

β-LG B  
89,467 2.46 (1.26) 51.14 

 
38,924 2.95 (1.28) 43.45 

 
52.71 

            
Free AA μg/mL milk          
Total free AA   

94,286 53.70 (18.26) 34.00 
 

40,260 53.38 (16.43) 30.78 
 

45.34 

Glu 
  

94,286 30.64 (13.89) 45.33 
 

40,260 31.50 (11.27) 35.78 
 

45.46 

Gly 
  

94,286 7.94 (5.47) 68.92 
 

40,260 8.27 (5.11) 61.82 
 

51.18 

Lys 
  

94,286 4.82 (3.11) 64.52 
 

40,260 4.55 (2.71) 59.46 
 

71.09 

Arg 
  

94,286 3.39 (1.20) 35.41 
 

40,260 3.36 (1.46) 43.42 
 

64.52 

Asp 
  

94,286 2.75 (1.47) 53.36 
 

40,260 2.70 (1.51) 55.93 
 

63.88 

Ser   
  

94,286 2.60 (1.83) 67.94 
 

40,260 1.40 (0.65) 46.32 
 

47.47 

Val     94,286 1.48 (0.79) 53.19 
 

40,260 1.59 (0.86) 54.25 
 

61.42 
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Table 4.3 Least square means (SE in parentheses) of individual protein fractions adjusted for 
crude protein content and of individual FAA (µg/ml milk) adjusted for milk yield in both 
morning (AM) and evening (PM) milking1. 

 
 Milking time   

 
 AM  PM  

Protein g/L milk      

 Total CN  38.43 (0.0979)  38.66 (0.0983)  

 αs1-CN  14.39 (0.0414)  14.80 (0.0415) P <0.001 

 αs2-CN  3.91 (0.0105)  3.99 (0.0106) P <0.001 

 β-CN  13.72 (0.0323)  13.60 (0.0324) P <0.01 

κ-CN  6.55 (0.0201)  6.58 (0.0202)  

 Total Whey  6.41 (0.0372)  6.68 (0.0374) P <0.001 

α-LA  1.13 (0.0046)  1.16 (0.0047) P <0.001 

Total β-LG  5.33 (0.0359)  5.61 (0.0360) P <0.001 

 β-LG A  2.49 (0.0125)  2.61 (0.0125) P <0.001 

β-LG B  2.60 (0.0360)  2.70 (0.0361) P < 0.05 

      

Free AA μg/mL 
milk 

 
 

 
 

 

Total FAA  53.73 (0.3871)  60.73 (0.3890) P <0.001 

 Glu  30.01 (0.3138)  34.09 (0.3152) P <0.001 

Gly  7.84 (0.0878)  8.64 (0.0886) P <0.001 

Lys  5.08 (0.0646)  5.87 (0.0651) P <0.001 

Arg  3.53 (0.0272)  4.18 (0.0274) P <0.001 

 Asp  2.74 (0.0313)  3.17 (0.0314) P <0.001 

Ser  2.93 (0.0315)  2.88 (0.0318)  

Val  1.60 (0.0185)  1.79 (0.0187) P <0.001 
1Commercial herds are not included 

 

After adjusting for crude protein content a peak in the concentration of all CN 

fractions was evident in the months of August, September and October (Figure 4.5; 

P<0.001); while the concentration of α-LA remained relatively constant across the year 

(P<0.05). The concentration of Glu was greater (P<0.001) during the months of February, 

March, April and June, while the concentration of Gly was greater (P<0.001) during the 

months of February, March and June when adjusted for milk yield. The change in the 

concentration of Asp, Ser and Val across calendar month of the year adjusted for milk 

yield was small but different to zero (P<0.05). 
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Figure 4.1 Trends in concentration of proteins  in milk a) total protein,  b) total CN, c) total whey and d) total β-LG adjusted for crude  
protein content across stage of lactation for parity 1 (●), parity 2 (■), parity 3 (▲), parity 4 (○), parity 5 (□) and parity ≥ 6 (Δ) animals. Error 
bars represent the mean SE across parities. 
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Figure 4.2 Trends in concentrations of  casein fractions in milk a) αs1-CN, b) αs2-CN, c) β-CN and d) ĸ-CN adjusted for crude protein 
content across stage of lactation for parity 1 (●), parity 2 (■), parity 3 (▲), parity 4 (○), parity 5 (□) and parity ≥ 6 (Δ). Error bars represent 
the mean SE across parities. 
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Figure 4.3 Trends in total and individual FAA in milk a) Total FAA, b) Glu, c) Gly, d) Lys, e) Arg, f) Asp, g) Ser and h) Val adjusted for 
milk yield across stage of lactation for parity 1 (●), parity 2 (■), parity 3(▲), parity 4 (○), parity 5 (□) and parity ≥ 6 (Δ) animals. Error bars 
represent the mean SE across parities. 
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4.4.3 Breed, Heterosis and Recombination effects 

Breed regression coefficient estimates for concentration of proteins adjusted for 

crude protein content expressed relative to a purebred Holstein for Friesian, Jersey, 

Norwegian Red and Montbelliarde breeds and associated heterosis and recombination 

estimates are provided in Table 4.4. Jersey cows produced milk with the greatest 

concentration of all CN fractions (P<0.001), and produced milk with 3.91 g/L, 3.14 g/L, 

2.86 g/L, and 4.64 g/L more total CN than Holstein, Friesian, Norwegian Red, and 

Montbelliarde cows, respectively. Also, Jersey cows produced milk that had a greater 

concentration of the casein fractions (αS1-, αS2-, β-, and ĸ-CN) in addition to a greater 

concentration total whey, α-LA, total β-LG, and β LG A relative to Holstein cows. The 

concentration of total whey protein in milk of Jersey cows was 0.42 g/L, 0.23 g/L, 0.42 

g/L, and 0.53 g/L greater when compared to the milk of Holstein, Friesian, Norwegian 

Red and Montbelliarde cows, respectively. Jersey cows produced less (P<0.001) total 

FAA, Glu, Gly and Asp than any other breed of cow, including Holsteins (Table 4.5).  

Both heterosis and recombination estimates for all traits were small in 

magnitude. Relative to the purebred parent average, first-cross (F1) cows produced milk 

that had 0.27g/L more total CN and 0.13 g/L more β-CN. Positive recombination 

estimates were observed for total CN, αS1-CN, β-CN, κ-CN, total β-LG, and β-LG A. in 

milk. Heterosis estimates for all FAA (except Lys) in milk were not different from zero 

and recombination estimates for all FAA were not different from zero. 
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Table 4.4 Breed regression coefficient estimates (SE in parentheses) for concentration of proteins (g/L milk) adjusted for crude protein content 
expressed relative to a purebred Holstein for Friesian (FR), Jersey (JE), Norwegian Red (NR) and Montbelliarde (MO), and associated heterosis 
and recombination estimates. 

 

 

 

 

 

 

 

 

 

 

a-

eVal
ues 

within rows differing in superscript are different (P < 0.05) 

*Regression coefficients significantly different to zero (P < 0.05) 

  HO FR JE NR MO  Heterosis  Recombination  

Total CN 0a 0.77b (0.21) 3.91c (0.19) 1.05d (0.29) -0.73ae (0.32)  0.27 (0.10) * 1.05 (0.16) * 

αS1-CN 0 a 0.32b (0.09) 1.72c (0.08) 0.49b (0.12) -0.38ad (0.14)  0.10 (0.05) * 0.50 (0.07) * 

αS2-CN 0 a 0.06ab (0.02) 0.42c (0.02) 0.06b (0.03) -0.08d (0.03)  0.02 (0.01) * 0.07 (0.02)* 

β-CN 0 a 0.27b (0.06) 0.98c (0.06) 0.23ab (0.09) -0.22ad (0.10)  0.13 (0.03) * 0.27 (0.05) * 

κ-CN 0 a 0.07ab (0.04) 0.69c (0.04) 0.19b (0.05) -0.08ad (0.06)  0.03 (0.02)  0.14 (0.03)* 

Total Whey 0 a 0.19ab (0.07) 0.42c (0.07) 0.00abd (0.10) -0.11ad (0.11)  -0.04 (0.04)  0.22 (0.06)* 

α-LA 0 a 0.03ab (0.01) 0.08c (0.01) 0.01ad (0.01) -0.01ad (0.01)  0.01 (0.01)  0.03 (0.00)* 

Total β-LG 0 a 0.12ab (0.07) 0.34c (0.07) 0.00abd (0.10) -0.11abd (0.11)  -0.04 (0.04)  0.22 (0.06)* 

β-LG A 0 a 0.07a b (0.02) 0.32c (0.02) 0.07ab (0.03) -0.12d (0.03)  0.02 (0.01)* 0.10 (0.02)* 

β-LG B 0 a 0.11abcde (0.08) -0.04 abcde (0.07) -0.09abcde (0.11) 0.09 abcde (0.12)  -0.09 (0.04)* 0.13 (0.06)* 
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Table 4.5 Breed regression coefficient estimates (SE in parentheses) for concentration of free AA (µg/ml milk) adjusted for milk yield expressed 
relative to a purebred Holstein for Friesian (FR), Jersey (JE), Norwegian Red (NR) and Montbelliarde (MO), and associated heterosis and 
recombination estimates. 

  HO FR JE NR MO  Heterosis  Recombination  
Free AA, µg/ml         
Total free AA  0a 3.09b (0.86) -7.35c (0.76) 4.42bd (1.20) 2.28abd (1.35)  -0.06 (0.43) -0.66 (0.68)  

Glu 0 a 2.63b (0.70) -6.97c (0.62) 3.39bd (0.98) 1.89abd (1.09)  -0.17 (0.35)  -1.08 (0.55)  
Gly 0 a 0.46b (0.16) -0.52c (0.14) 0.36abd  (0.22) 0.74bd (0.29)  -0.01 (0.08)  0.21 (0.12)  
Lys 0 a -0.27ab (0.10) 0.59c (0.10) -0.07abd (0.14) -0.43bd (0.17)  0.13 (0.05) * 0.06 (0.08)  
Arg 0 a -0.13ab (0.05) 0.02ac (0.05) 0.04acd (0.07) -0.07abcd (0.08)  -0.01 (0.03)  -0.04 (0.04)  
Asp 0 a 0.11ab (0.06) -0.56c (0.06) 0.29b (0.09) -0.02ab (0.10)  0.02 (0.03)  0.01 (0.05)  
Ser 0 a 0.05 abcde (0.05) -0.01abcde (0.04) 0.00 abcde (0.07) 0.06 abcde (0.10)  0.02 (0.03)  0.02 (0.04)  
Val 0 a 0.05ab (0.03) -0.15c (0.03) 0.22d (0.05) -0.01ab (0.06)  0.00 (0.02)  0.00 (0.03)  

a-eValues within rows differing in superscript are different (P < 0.05) 

* Regression coefficients significantly different to zero (P < 0.05) 
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4.5 Discussion 

The objective of the present study was to determine the factors associated with 

protein composition and FAA composition of bovine milk. In the present study, mean 

values of αS1-, αS2-, β-, and κ-CN were in the ratio 4:1:4:2, which was not in agreement 

with results by Farrell et al. (2004), who documented a ratio of  3:1:3:1. However the 

ratio of total CN to total whey protein (6:1) in the present study was consistent with 

Farrell et al. (2004). The CV for total whey protein and whey fractions in the present 

study was greater than that reported by De Marchi et al. (2010) for 1,336 Simmental cows 

only; the present study, however, contained records from cows of multiple breeds and 

crossbreds. Total mean proteins, determined using HPLC (42.53 g/L for the research 

herds; 41.73 g/L for the commercial herds), were higher than that recorded using MIRS 

(37.45 g/L for the research herds; 36.67 g/L for the commercial herds). This is most likely 

due to cumulative variation during summation of the individual protein values when 

integrating of peak areas from the HPLC data (Chapter 2). De Marchi et al., (2010) and  

Bonfatti et al., (2011a) also reported  high mean protein values using HPLC, i.e., up to  

40.12 g/L and 40.68 g/L respectively, in milk from Simmental cows. 

 Similar trends across stage of lactation for αS1-CN, β-CN, β-LG, and α-LA in 

milk adjusted for crude protein content (i.e. decrease in early lactation followed by a 

gradual increase) were observed both in the present study and elsewhere (Ng-Kwai-Hang 

et al., 1987). Kroeker et al. (1985) observed a similar stage of lactation trend when β-CN 

was expressed relative to total casein. The observed decline in total proteins and protein 

fractions in early lactation coincides with the period of negative energy balance typically 

seen in dairy cows in early lactation (Berry et al., 2006); negative protein balance may 

also occur (when the amount of protein broken down by the cow exceeds the amount 

ingested by the cow). It can take a cow up to 20 weeks to regain a positive energy and 

protein balance, and for actual milk protein content to increase again (Taylor et al., 2003).  
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Figure 4.4 Trends in concentrations of whey proteins in milk  a) α-LA, b) β-LG A and c) β-LG B adjusted crude protein content across stage 
of lactation for parity 1 (●), parity 2 (■), parity 3 (▲), parity 4 (○), parity 5 (□) and parity ≥ 6 (Δ). Error bars represent the mean SE across 
parities. 
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The reduction in concentration of total FAA and the individual FAA (Glu, Gly, 

Lys, Arg, and Asp) in milk up to 65 days post-calving corroborates documented reports 

by Ghadimi and Pecora (1963), who studied the concentration of these FAA in bovine 

milk from 7 to 60 DIM. Both total FAA and Glu in milk decreased as parity increased 

and, despite the part-whole relationship between them (Glu makes up over 55% of total 

FAA), the lactation profile of Glu and total FAA in milk differed in younger animals 

(Figure 4.3). To our knowledge, no study to date has investigated the association between 

parity and FAA composition of milk.  

4.5.1 Variability in milk quality 

Considerable variability in protein fractions and FAA existed in both populations 

studied; the CV of β-LG B and Gly were 51% and 69% in the research herds, 

respectively, which is considerably greater than the CV of 3.1% observed for milk yield 

in the same population (results not shown). Although no heritability estimates were 

generated in the present study, previously reported heritability estimates in dairy cattle 

range between 0.02 (αS1-CN) and 0.66 (α-LA) for protein fractions (Kreoker et al., 1985; 

Huang et al., 2012) and to our knowledge no study to date has estimated heritability for 

FAA. The success of breeding programs for increased milk yield in dairy cows is well 

recognized (Berry et al., 2014; Berry, 2008; Norman and Powell, 1999); therefore based 

on the heritability estimates that exist in the literature for protein fractions, it is possible to 

assume that breeding for improved protein fractions in milk is possible. The potential of 

milk MIRS to predict protein fractions and FAA (Chapter 2) provides an opportunity to 

generate large quantities of data for use in genetic evaluations and thus breeding 

programs. The attributes and tools therefore appear to exist to facilitate breeding 

programs for superior milk quality characteristics.  

Contemporary group accounted for between 45.34% (total FAA) and 86.11% (α-

LA) of the variation in the dataset used in this study, indicating that the combination of 

herd and test-date have large effects on both protein and FAA composition of the milk. 

These differences offer the potential for herds to be selected on the basis of their protein 

and FAA profile; further milk price premiums could be paid to herds that are producing 

milk with a protein or FAA profile that better fits the processors needs for production. 

Herd-level estimates of milk quality can be readily obtained as a by-product from national 

genetic evaluations and thus the data can be readily available; these herd solutions would 

be independent of genetic merit of the producing animals and therefore more closely 
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reflect the management influence on milk quality. Moreover, the ability to monitor the 

trend in milk quality over time within a herd will enable the provision of decision support 

information to producers and processors on the factors affecting the quality of their milk. 

4.5.2 Decision support tool 

The observed trends in milk protein fractions and FAA across month of the year 

(Figure 4.5) suggest differences in the suitability of milk to produce milk products across 

the year and provides evidence of the difficulty in acquiring a stable product of constant 

composition across time. The impact on consistency of product is further compounded in 

seasonal calving herds as exist in Ireland (Berry et al., 2013) and elsewhere since milk 

protein fractions and FAA also vary across stage of lactation which is synchronized with 

calendar month. The structure of the data, coupled with the statistical model, implies that 

the observed effects reported in the present study are independent of each other and are 

therefore additive. Commercially available infant formulas have a ratio of total casein to 

total whey protein close to that of human milk, but, β-LG which is not present in human 

milk, is present in the greatest amount in cow milk. It is advantageous for infant formula 

producers to select cow milk with a higher concentration of α-LA and a lower 

concentration of β-LG; Figure 4.4 demonstrates that younger parity animals in early 

lactation produce the highest concentration of α-LA. Results from the present study also 

show that milk produced by young Jersey cows in the months of August, September and 

October could achieve a greater concentration of CN fractions in milk.   

Bovine and human milk also differ in their amino acid profile (Chuang et al., 

2005); for example human milk has, on average, four times more Arg and twice as much 

Tau as bovine milk (Sarwar et al., 1998). Free amino acids are often added to infant 

formula by processors, especially for the production of formula for infants with allergies 

to casein and whey protein fractions in milk (Owens et al., 2013). Results from the 

present study may also aid infant formula processors to select milk naturally higher in the 

sought after protein or FAA profile, thereby minimizing the requirement for protein and 

FAA additives.  
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Figure 4.5 a) Least square means of concentrations (g/L milk) of casein fractions [αs1-CN (-●-; primary vertical axis), αs2-CN (-■-; primary 
vertical axis), β-CN (-▲- ; primary vertical axis) and  ĸ-CN (-♦-; primary vertical axis)] and whey fractions [α-Lac (-○-; secondary vertical 
axis), β-LG A (-□-; secondary vertical axis) and β-LG B (-∆ -; secondary vertical axis)] adjusted for total milk protein content across 
calendar month of the year. 

b) Least square means of concentrations (µg/ml milk) of  Glu (-●-;primary vertical axis) Gly (-■-; secondary vertical axis), Lys (-▲- ; 
secondary vertical axis), Arg (-♦-; secondary vertical axis), Asp (-○-; secondary vertical axis), Ser (-□-; secondary vertical axis), Val (-∆ -; 
secondary vertical axis)  in milk adjusted for milk yield across calendar month of the year. 
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Previous studies have revealed that greater concentrations of all CN fractions in 

milk significantly increase cheese yield (Wedholm et al., 2006), and rennet coagulating 

time is positively correlated with the contents and proportions of αS1-CN and αS2-CN in 

total CN (Bonfatti et al., 2011a). Figures 2 and 3 indicate that the concentration of certain 

protein fractions (αS1-CN, β-CN, κ-CN, and β-LG B) could possibly be too low for cheese 

production in early lactation; this could be useful information for cheese manufacturers to 

optimize quality and yield of cheese. Mid and late lactation milk has a greater 

concentration of κ-CN than early lactation and parity one animals have a lower 

concentration of κ-CN than their older contemporaries.  A higher concentration of κ-CN 

in milk results in a smaller casein micelle (Gutierrez-Adan et al., 1996) and therefore in a 

shorter rennet coagulation time contributing to a stronger curd and more cheese yield. 

However, it is the genetic polymorphism of κ-CN B which is of importance (Ikonen et al., 

1999), suggesting a way to improve milk process ability for cheese production would be 

selecting animals with genes coding for κ-CN B. Jersey cows produced more casein 

fractions but less total FAA in milk than Holstein cows, indicating Jersey cows may 

produce milk more suitable for cheese production and of a better processing quality than 

Holstein cows.  

4.5.3 Crossbreeding 

Heterosis is defined as the difference between the performance of a crossbred 

animal and the average of the parents (Willham and Pollak, 1985). Relative to the 

purebred parent average, first-cross (F1) cows produced 0.13 g/L more β-CN. Studies 

have indicated that the consumption of β-CN A1 is associated with higher mortality rates 

from coronary heart disease in humans (Laugesen and Elliott, 2003; McLachlan, 2001). 

However, further research is required to determine the genetic composition of β-CN in the 

milk analysed in the present study based on its genetic composition.  Recombination loss 

is defined as the disintegration of epistatic associations to form nonparent inter-loci 

combinations of alleles in crossbred animals (Cassady et al., 2002). Generally 

recombination has unfavourable effects on milk compositional traits such as protein 

(Dechow et al., 2007), even though favourable recombination estimates were calculated 

for concentrations of all the individual protein fractions (total CN, αS1-CN, αS2-CN, β-CN, 

κ-CN, total β-LG, β-LG A and β-LG B) in milk. An unfavourable effect is expected as 

recombination normally affects traits such as milk production that have been under long-

term selection intensity (Sørensen et al., 2008). However, a study by Coffey et al. (2016) 
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showed recombination to have positive effects on milk compositional traits including 

protein percentage and suggested that different population breeding goals may be a 

causative factor towards the inconsistences among studies on the effect of recombination 

on milk compositional traits. Traditionally, Irish dairy cows may have been naturally 

selected for fertility and survivability as a result of the seasonal calving system operated 

in Ireland (Berry et al., 2013), therefore reducing the selection pressure on milk 

composition traits. Although there are known advantages of crossbreeding (Buckley et al., 

2014; Coffey et al., 2016), crossbreeding of dairy cattle is not commonly practised 

worldwide (Buckley et al., 2014). Results in the present study indicate that crossbred 

cows had a greater concentration of β-CN in milk than purebred Holsteins, which is 

advantageous for cheese production demonstrating another advantage to crossbreeding. 

4.6 Conclusions 

Results from the present study indicate that factors including stage of lactation, 

parity, calendar month of the year, milking time and breed are all associated with protein 

and FAA composition of bovine milk. Of particular interest was that younger animals 

produced more total CN, total whey and total β-LG across early and mid-lactation and 

more Glu and Asp in milk across lactation than their older contemporaries.  Jersey cows 

produced milk that had a greater concentration of all CN fractions but a lower 

concentration of total FAA than Holstein cows. Knowledge provided by this study of how 

individual milk proteins and FAA change across calendar months of the year and across 

stage of lactation could provide useful input parameters for decision support tools in the 

management of product portfolios by processors over time. 

4.7 Acknowledgements 

Funding for this work was received from the Irish Department of Agriculture, 

Food and the Marine, Research Stimulus Fund project 11/SF/311, Breed Quality. 

 

 

 

 



 

90 
 

 

 

 

CHAPTER 5 

 

Genetic and non-genetic factors associated with milk colour in dairy 

cows 

 

S. Scarso*, S. McParland1,†, G. Visentin*,†, D. P. Berry†, A. McDermott†,  M. De 

Marchi* 

 
*Department of Agronomy, Food, Natural Resources, Animals and Environment 

(DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy 
†Animal and Grassland research and Innovation Center, Teagasc, Moorepark, 

Fermoy, Co. Cork, Ireland 

 

 

Accepted for publication in the Journal of Dairy Science 

 

 

 

 

 

 

 

 

 

 



 

91 
 

5.1 Abstract 

Milk colour is one of the sensory properties that can influence consumer choice 

of one product over another and it influences the quality of processed dairy products. This 

study aims to quantify the cow-level genetic and non-genetic factors associated with 

bovine milk colour traits. A total of 136,807 spectra from Irish commercial and research 

herds (with multiple breeds and crosses) were used. Milk lightness (L̂*), red-green index 

(â*), and yellow-blue index (b̂*) were predicted for individual milk samples using only 

the mid-infrared spectrum of the milk sample. Factors associated with milk colour were 

breed, stage of lactation, parity, milking-time, udder health status, pasture grazing and 

seasonal calving. (Co)variance components for L̂*, â*, and b̂* were estimated using 

random regressions on the additive genetic and within-lactation permanent environmental 

effects. Greater b̂* value (i.e., more yellow colour) was evident in milk from Jersey cows. 

Milk L̂* increased consistently with stage of lactation, while â* increased until mid-

lactation to subsequently plateau. Milk b̂* deteriorated until 31 to 60 DIM, but then 

improved until the end of lactation. Relative to multiparous cows, milk yielded by 

primiparous cows was, on average, lighter (i.e., greater L̂*), more reddish (i.e. greater â*), 

and less yellow (i.e. lower b̂*). Milk from the morning milk session had lower L̂*, â*, and 

b̂*. Across the calendar year, L̂* (with the exception of a dip in August) and b̂* generally 

increased, while â* was relatively constant except for a peak in August. Heritability 

estimates varied between 0.15 ± 0.02 (30 DIM) and 0.46 ± 0.02 (210 DIM) for L̂*, 

between 0.09 ± 0.01 (30 DIM) and 0.15 ± 0.02 (305 DIM) for â*, and between 0.18 ± 

0.02 (21 DIM) and 0.56 ± 0.03 (305 DIM) for b̂*. For all the three milk colour features, 

the within trait genetic correlations approached unity as the time intervals compared 

shortened and were generally < 0.40 between the peripheries of the lactation. Strong 

positive genetic correlations existed between b̂* value and milk fat concentration, ranging 

from 0.82 ± 0.19 at 5 DIM to 0.96 ± 0.01 at 305 DIM and confirming the observed 

phenotypic correlation (0.64, SE=0.01). Results of the present study suggest that breeding 

strategies for the enhancement of milk colour traits could be implemented for dairy cattle 

populations. Such strategies, coupled with the knowledge of milk colour traits variation 

due to non-genetic factors, may represent a tool for the dairy processors to reduce, if not 

eliminate, the use of artificial pigments during milk manufacturing.  
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5.2 Introduction 

Food colour is known to impact food choice (Fergus, 1993). The sensory 

properties of milk (i.e., appearance, colour, flavour, aroma, and texture) are also 

important because of their close relationship with both product quality (Wadhwani and 

McMahon, 2012) and consumer acceptance (Phillips et al., 1995). The yellow colour of 

butter and many cheeses is influenced by milk fat carotenoid content (Descalzo et al., 

2012), and market preferences for milk fat colour varies across the world (Berry et al., 

2009). For example, the yellow colour of dairy products is sometimes said to be 

associated with a more “green image” by consumers, because of its association with 

grazing animals (Descalzo et al., 2012). In direct contrast, however, in New Zealand the 

yellow colour of milk and its associated products are considered an unfavorable attribute 

in many consumers’ opinion (Morris et al., 2002).  

Milk colour is known to be affected by many factors including animal genetic 

merit and breed (Winkelman et al., 1999; Noziere et al., 2006; Berry et al., 2009), stage of 

lactation and parity (Calderon et al., 2007; Jadhav et al., 2008), time of milking (Quist et 

al., 2008), udder health status (Espada and Vijverberg, 2002), as well as herd-level factors 

such as pasture grazing and seasonal calving (Agabriel et al., 2007; Solah et al., 2007; 

Walker et al., 2013).  

To our knowledge no study has attempted to quantify the contribution of 

genetics to variability in milk colour in terms of L*, a* and b* values. Winkelman et al. 

(1999) estimated genetic and phenotypic correlations of milk colour traits (in terms of 

milk colour, fat colour and β-carotene yield) with each other and with milk production 

traits (milk, fat, and protein yields). Milk colour, in this case, was determined by 

extraction from milk of the nonsaponifiable compounds. As several studies that 

investigated food colour used the CIE-L*a*b* method as colour measurement, especially 

on meat colour (Fletcher, 1999, on broiler meat; Liu et al., 2003, on beef; Zhang et al., 

2007, on pork meat), in the present study this method was used to investigate milk colour.  

Recently mid-infrared spectroscopy (MIRS) has been demonstrated to be a 

useful low cost and rapid screening tool (De Marchi et al., 2014) to acquire and predict 

innovative milk technological phenotypes (Visentin et al., 2015) and determine the b* 

colour value of milk (Chapter 3). Prediction equations developed using MIRS can be 

used to quantify the milk colour of individual animal samples during routine milk 

recording as well as more frequently available bulk tank milk samples. Therefore, MIRS 
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is useful to collate large numbers of unbiased records of milk colour throughout lactation 

which are estimate animal breeding values. 

Thus, the objective of the present study was to quantify the contribution of cow-

level genetic and non-genetic factors to variability in milk colour as described by L*, a* 

and b* indices predicted using MIRS equations.  

5.3 Materials and methods 

5.3.1 Milk sample collection 

A total of 174,062 milk samples were collected between January 2013 and 

December 2015 from 10,394 dairy cows of five different breeds (Holstein, Friesian, 

Jersey, Montbeliarde, and Norwegian Red) and crosses. Of these, 129,086 samples were 

from 1,661 research cows from 7 research farms operated by the Teagasc Animal and 

Grassland Research and Innovation Centre (Moorepark, Fermoy, Co. Cork, Ireland). 

Cows in the research herds participated in a series of experimental treatments based on 

different feeding strategies, stocking rates, calving periods, and length of grazing period. 

A small proportion of dairy cows in the research herds (90 individuals per year) belonged 

to the top 1% genetic merit, as ranked based on the national selection index. The 

remaining 44,976 samples were collected from 8,733 cows from 69 different commercial 

Irish farms located in South-West Ireland. Cows in research and commercial herds were 

fed a basal grazed pasture diet, but at times cows in the research farms were 

supplemented with a small quantity of concentrates (depending on the experimental 

treatment). All cows were milked twice daily and sampled based on test-day recording 

system. The average monthly test day records per cow and lactation were 17 and 10, 

respectively. Coefficients of heterosis and recombination loss were calculated for each 

cow as heterosis = 1 −  ∑ �����
�
��� ∗  ����, and recombination loss = 1 −

 ∑  �!"#
$% &'(#

$

)
,�

���  where sirei and dami are the proportion of genes of the breed i in the 

sire and the dam, respectively (VanRaden and Sanders, 2003). The pedigree of all animals 

was traced back at least four generations, and comprised a total of 41,232 animals. 

For the research data, milk samples were separately collected on consecutive PM 

and AM milkings once weekly. For commercial herds, a single milk sample was taken 

during the milk recording day and these samples were collected occasionally 

(approximately 1,249 spectra/month) and sent for analysis as part of a related research 

study. Once collected, all samples were analysed within 24 hours (for research samples) 
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or five days (for commercial samples) in the laboratory of Teagasc Animal and Grassland 

Research and Innovation Center (Moorepark, Fermoy, Co. Cork, Ireland). Milk chemical 

composition (protein, fat, lactose, urea, casein, total solids) was predicted using a 

MilkoScan FT6000 (Foss Electronic A/S, Hillerød, Denmark) and mid-infrared spectra 

(wavelengths from 900 to 5,000 cm-1) were stored. Somatic cell count (SCC) was 

determined by Fossomatic (Foss Electronic A/S, Hillerød, Denmark), and converted to 

somatic cell score (SCS) by taking the log10 of SCC.   

5.3.2 Gold standard analysis and prediction model development 

Milk colour was measured on a selection of samples for the development of MIR 

prediction equations using a Chroma Meter CR400 (Konica Minolts Sensing Europe, 

Nieuweigein, the Netherlands, with viewing geometry d/0) with a closed cone, set on L*, 

a* and b* system. The selection of samples was discussed in detail in Chapter 3. The 

Chroma Meter CR was calibrated on a white tile. Sub-samples of 10-mL were measured 

in a cuvette and results were expressed in CIE-L*a*b* uniform colour space. This method 

is a three-dimensional opponent colour system that represents lightness (L*), red-green 

(a*) and yellow-blue (b*) values on three axes. The central vertical axis represents the L* 

index, whose values run from 0 (black) to 100 (white). On each axis the values run from 

positive to negative. Positive values on a* axis indicate redness while negative values 

indicate greenness. On the b* axis, the yellow colour is reflected by positive values while 

blue is represented by negative values. For both axes, zero is neutral grey. 

The development of MIRS prediction models was described in detail in Chapter 

2. Briefly, prediction models were developed separately for each colour index using 

partial least squares regression analysis (PROC PLS; SAS Institute Inc.) with untreated 

spectra. Accuracy of prediction was estimated in external validation on 25% of total data, 

while the remaining 75% was used to calibrate the prediction equations. This procedure 

was repeated four times using a different validation data set. The external validation 

correlation coefficient (rv) was used to define the accuracy of each MIRS predictive 

model. The highest accuracy of prediction was obtained for b* index (rv = 0.72) while, a* 

and L* indices were related poorly with the MIR spectrum (rv = 0.30 and rv = 0.55, 

respectively) (Chapter 3). 
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5.3.2 Data editing 

Principal component analysis was undertaken on all 174,062 spectra (PROC 

PRINCOMP, SAS Institute Inc.). The first four principal components explained 97.33% 

of the entire spectral variation. Mahalanobis distance was computed; it was defined as the 

sum of squares of the centered and scaled scores of the p principal components (Brereton, 

2015). Mahalanobis distance distribution has a χ2 distribution shape (with degree of 

freedom computed on principal components) and a threshold of 97.5% was set up on the 

curve tails. All spectra out of this area were considered outliers and were deleted. A total 

of 16,870 records were discarded from all data obtained. Milk colour traits were then 

predicted by applying the MIRS models developed in Chapter 2 to the retained spectra. 

Only DIM between 5 and 305 from parities 1 to 10 were retained. Obvious data set errors 

(milk yield and milk fat and urea content lower than 2 kg, 2%, and 2% respectively) were 

deleted. Values for each trait that were >3 standard deviations from the mean were 

considered outliers and removed. All three milk colour traits were normally distributed. 

Contemporary group was defined as experimental treatment by test-day on the research 

farms and herd test-day on the commercial farm. Only contemporary groups with >10 

observations were retained. Following all edits, the final data set consisted of 136,807 

milk spectra from 16,543 lactations from 9,824 cows. 

5.3.3 Data analysis 

Spearman rank correlations among the gold standard and predicted milk colour 

indices (L*, a*, b*), milk yield (kg), milk fat (%), milk protein (%), milk lactose (%), 

urea (mg/dL), casein (%) and SCC (cells/mL) were computed. 

For the purpose of quantifying the effect of stage of lactation or parity on the 

correlation between traits, stage of lactation was stratified into classes (≤ 60 DIM, from 

61 to 159 DIM, and ≥ 160 DIM) and parity was defined as 1, 2, and ≥ 3 parities. 

Spearman rank correlations among traits were computed within each class and the 

significance of the differences in the correlations between pairwise classes was 

determined using the Fisher r-to-z transformation.  

Factors associated with each of the three predicted milk colour trait were 

determined using the following linear mixed animal model in ASREML (Gilmour et al., 

2011): 
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Where: Yjklmnopqr is the milk colour trait (L*, a*, and b*) MIRS-predicted; Breedj 

represents the j-th proportion of genes of Friesian, Jersey, Montbeliarde, Norwegian Red 

and other breeds (proportion of Holstein was not included in the model to avoid linear 

dependencies) treated as a continuous fixed effect; Hetk is the fixed effect of the k-th class 

of individual heterosis coefficient (12 classes: 0%, 1-10%, 11-20%, 21-30%, 31-40%, 41-

50%, 51-60%, 61-70%, 71-80%, 81-90%, 91-99%, 100%); Recl is the fixed effect of l-th 

class of the individual recombination loss coefficient (12 classes: 0%, 1-10%, 11-20%, 

21-30%, 31-40%, 41-50%, 51-60%, 61-70%, 71-80%, 81-90%, 91-99%, 100%); Parm is 

the fixed effect of m-th class of parity (5 classes: 1, 2, 3, 4, ≥ 5); DIMn is the fixed effect 

of the n-th class of stage of lactation (10 classes: 5-30, 31-60, 61-90, 91-120, 121-150, 

151-180, 181-210, 201-240, 241-270, 271-305 DIM); sessiono is the fixed effect of the o-

th class of milking time (3 classes: AM, PM, or combined); monthp is the fixed effect of 

the p-th class of month of test (12 classes: January, February, March, April, May, June, 

July, August, September, October, November, December); Parm*DIMn is the fixed effect 

of the two-way interaction between the m-th class of parity and the n-th class of stage of 

lactation; PEwithinq is the random effect of the within lactation permanent environmental 

effect of the q-th cow where PEwithin ~N(0,IFGHI�JK��
) ); PEacrossq is the random effect 

of the across lactation permanent environmental effect of the q-th cow where PEacross 

~N(0,IFGH'L!/  
) ); Cont_groupq is the random effect of the contemporary group of the q-th 

cow where Cont_group ~N(0,IFM/�J_N!/O0
) ); ejklmnopqr is the random effect of the residual 

where e~N(0,IF"
)). A series of supplementary analysis were undertaken, in which test-day 

milk yield or milk fat concentration was included in the model as a covariate. Least 

squares means were derived for a reference animal which was represented by a third 

parity cow, 100% Holstein, milked in the morning, averaged across all stages of lactation 

and months of test. 

Variance components were estimated for the MIRS-predicted milk colour traits 

(L̂*, â*, and b̂*), as well as for milk yield, log10SCC, and concentrations of protein, fat, 

lactose, urea, and casein using random regression animal models fitted across lactation in 

ASREML (Gilmour et al, 2011); variance components were restricted to only the 8,519 

cows that were ≥75% Holstein-Friesian. The number of test-day records remaining was 

98,253 from 14,204 lactations. The data was divided into 10 residual groups based on 
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DIM as 5 to 30 DIM, 31 to 60 DIM, …, 241-270 DIM, and 271 to 305 DIM. The 

estimated residual variance, within group, was assumed to be homogenous, but between 

group the estimated residual variance could be heterogeneous. No residual (co)variance 

was assumed among residual groups. The model fitted was the same as previously 

described, with the exception that the effect of month of test was excluded from the 

analysis, as the effect of contemporary group was fitted as a fixed term. The effect of 

DIM class was also excluded from the statistical analysis as Legendre polynomials on 

each individual DIM were fitted as fixed term. Moreover, the animal additive genetic 

effect was added as a random term where the additive effect followed the assumptions of 

~N(0,AF'
)). Legendre polynomials were fitted as a random term on both the additive 

genetic effect as well as on the within lactation permanent environmental effect. The most 

parsimonious order of fixed Legendre polynomials was based on visual inspection of the 

resulting lactation profile for each milk colour trait for the different polynomial orders. In 

all instances, a cubic Legendre polynomial was the most appropriated as minimal 

differences were detected between lactation profiles generated with higher order 

polynomials. Based on the Akaike information criterion, the most parsimonious random 

covariance function was a cubic polynomial fitted to both the additive genetic and the 

within-lactation permanent environmental effects for L̂* and b̂*, while for â* the 

polynomial order for both random terms was quadratic. 

Univariate analyses using ASREML (Gilmour et al., 2011) was carried out also 

using repeatability animal model on both gold standard and MIRS-predicted milk colour 

traits, milk yield, milk composition, and log10SCC. The model was the same as described 

for the phenotypic analyses.  

Genetic covariance function coefficients were estimated as δ) =  ΦKΦ′, where 

δ) is the 301 x 301 (co)variance matrix for the MIRS-predicted milk colour trait, milk 

yield, milk composition and log10SCC, Φ is the 301 x n matrix of Legendre polynomial 

regressed on DIM, and K is the n x n (co)variance matrix of the additive genetic (or 

within lactation permanent environment) effect. Standard errors of the heritability 

estimates were calculated using a Taylor series expansion following Fisher et al. (2004). 

Pairwise genetic correlations between traits were calculated using a series of bivariate 

random regression models, fitting the same model as used for the univariate analyses. 

Residual groups were as defined in the univariate analyses, but within-group residual 

covariances were estimated. Covariance functions for the random terms were reduced to a 
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quadratic polynomial in order to meet log-likelihood convergence. Standard error of the 

genetic correlation were calculated as in Falconer and MacKay (1996).  

5.4 Results 

Summary statistics for all colour and performance traits are in Table 5.1. The 

mean of the predicted and the respective gold standard milk colour variable was similar. 

The phenotypic correlations between the milk colour parameters (both gold standard and 

predicted) and performance traits are in Table 5.2. 

 

Table 5.1 Number of records (n), mean, genetic standard deviation (σg), heritability (standard 
error) and repeatability (standard error) for the three gold standard (L*=lightness, 
a*=redness/greenness, b*=yellowness/blueness) and predicted (L̂*, â* and b̂*) colour indices 
as well as milk yield, and concentrations of protein, fat, lactose, urea, and casein, and somatic 
cell score (SCS = log10 SCC).  

Trait n Mean σg Heritability Repeatability 

L* 590 81.60 0.54 0.16 (0.14) 0.29 (0.16) 

a* 569 -3.88 0.17 0.07 (0.16) 0.61 (0.13) 

b* 594 8.04 0.69 0.13 (0.12) 0.13 (0.12) 

L̂* 133,611 81.63 0.30 0.29 (0.02) 0.40 (0.01) 

â* 133,653 -4.05 0.07 0.10 (0.01) 0.18 (0.00) a 

b̂* 133,528 8.23 0.12 0.35 (0.01) 0.38 (0.01) 

Milk yield (kg) 134,155 13.44 1.48 0.21 (0.02) 0.67 (0.00) a 

Protein (%) 128,561 3.71 0.17 0.46 (0.02) 0.59 (0.01) 

Fat (%) 128,256 4.61 0.36 0.29 (0.01) 0.31 (0.01) 

Lactose (%) 128,510 4.76 0.09 0.36 (0.02) 0.49 (0.01) 

Urea (mg/dL) 127,982 30.59 1.95 0.14 (0.01) 0.25 (0.01) 

SCS (log10cells/mL) 75,950 1.79 0.09 0.05 (0.01) 0.44 (0.01) 

Casein (%) 128,615 2.81 0.14 0.46 (0.02) 0.59 (0.01) 
a SE values were not different from zero 

 
A higher L* (i.e. lighter milk) was associated with a more positive a* (i.e. more 

red) and more positive b* (i.e. more yellow) values. Both a* and b* were not correlated 

with each other when derived from the MIRS prediction equations despite a weak 

negative correlation (-0.11) between the gold standard a* and b* values. Milk yield was 

negatively correlated with all colour traits predicted from MIRS but was only negatively 

correlated with L* and b* values when the gold standard values were used (-0.42 and -

0.54, respectively). Milk fat concentration was moderately correlated with both gold 

standard (0.43) and predicted (0.58) L* as well as being positively correlated with gold 
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standard and predicted b* (0.64 to 0.77). Milk protein concentration was moderately 

positively correlated with both L* (0.34 to 0.50) and b* (0.50 to 0.62). Similarly, casein 

concentration in the milk was moderately positively correlated with both L* (0.35 to 

0.52) and b* (0.46 to 0.57). 

Several of the phenotypic correlations between at least one of the colour traits 

and the performance traits, however, differed by parity (Table 5.3) or stage of lactation 

(Table 5.4); the exceptions were the correlations between all colour traits with milk fat 

concentration, milk protein concentration, and milk casein concentration which did not 

differ by stage of lactation (Table 5.4).  

Jersey breed had the highest fat concentration (5.10%, SE=0.04) compared to 

Holstein (3.90%, SE=0.03), Friesian (3.99%, SE=0.06), Norwegian Red (3.94%, 

SE=0.07) and Montbeliarde (3.62%, SE=0.09).   

5.4.1 Lightness colour (L*) 

Milking-time (P<0.001), stage of lactation (P<0.001), Jersey proportion 

(P<0.001), month of the year (P<0.001), parity (P<0.001), the interaction between parity 

and stage of lactation (P<0.001), Montbeliarde proportion (P<0.001), recombination loss 

(P<0.001), Friesian proportion (P<0.05), and heterosis (P<0.05) were all associated with 

L̂*; L̂* was not associated with the proportion of Norwegian Red in the animals. L̂* 

generally increased as the calendar year progressed although a dip in L̂* was evident in 

August (Figure 5.1). 

Mean L̂* was 81.25 (SE= 0.02) in the morning milking and 81.89 (SE=0.02) in 

the evening milking. The milk of Jerseys had higher L̂* values than Holsteins, Friesians 

(P<0.001), Norwegian Reds (P<0.001) and Montbeliarde cows (P<0.001) (Table 5.5). 

The regression coefficient of L̂* on Jersey breed proportion changed from 0.41 to -0.12 

following the adjustment for difference in milk fat concentration in the model (Table 

5.5). Adjustment for differences in milk yield in the model had a minimal effect on the 

regression coefficient of L̂* on Jersey proportion. Although the trend of L̂* across 

lactation differed statistically (P<0.001) by parity, the biological impact of the interaction 

was minimal (Figure 5.2). Irrespective of parity, L̂* consistently increased with 

advancing stages of lactation. Mean L̂* for parity 1 was 81.36 (SE=0.02), for parity 2 was 

81.32 (SE=0.03), for parity 3 was 81.29 (SE=0.03), for parity 4 was 81.26 (SE=0.03), for 

parity 5+ was 81.22 (SE=0.03) (Figure 5.2). 
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The heritability of gold standard L* estimated with the repeatability model was 

0.16 (SE=0.14), while the repeatability was 0.29 (SE=0.16; Table 5.1). Heritability 

estimates for L̂* calculated using random regression models ranged between 0.15 ± 0.02 

(30 DIM) and 0.46 ± 0.02 (210 DIM; Figure 5.7). Within trait genetic correlations 

approached unity between adjacent DIM; all within trait genetic correlations were 

positive, and had a minimum of 0.02 ± 0.02 between 5 and 305 DIM (Figure 5.8). On 

average, L̂* was negatively genetically correlated with milk yield (-0.65 ± 0.02 to -0.37 ± 

0.06 at 249 and 37 DIM, respectively), milk lactose concentration (-0.34 ± 0.05 to 0.07 ± 

0.06 at 305 and 41 DIM, respectively) and milk urea content (-0.18 ± 0.03 to -0.10 ± 0.11 

at 252 and 5 DIM, respectively; Figure 5.9). Positive genetic correlations existed 

between L̂* and both milk fat concentration (0.32 ± 0.09 to 0.78 ± 0.01 at 5 and 249 DIM, 

respectively) and milk protein concentration (0.43 ± 0.07 to 0.91 ± 0.01 at 5 and 305 

DIM, respectively; Figure 5.9).  

5.4.2 Red-green colour (a*) 

Factors associated with â* included milking-time (P<0.001), month of the year 

(P<0.001), stage of lactation (P<0.001), parity (P<0.001), Jersey proportion (P<0.001), 

the two-way interaction parity-by-stage of lactation (P<0.001), Norwegian Red 

proportion (P<0.001), heterosis (P<0.001), recombination loss (P<0.001), and Friesian 

proportion (P<0.02); the proportion of Montbeliarde in the cow was not associated with 

â* values. The â* colour of milk was relatively consistent across months of the year with 

a peak (i.e., more red) in August (-3.55) and a minimum (i.e., more green) of between -

4.46 to -4.43 between March and June (Figure 5.1). Mean â* was -3.95 (SE= 0.01) in the 

morning milking and -3.82 (SE=0.01) in the evening milking. The milk of Friesians, 

Jerseys, Norwegian Reds and Montbeliardes was more green (i.e., lower â*) than that of 

Holsteins (Table 5.5).  

5.4.3 Yellow-blue colour (b*) 

Milking time (P<0.001), Jersey proportion (P<0.001), parity (P<0.001), stage of 

lactation (P<0.001), month of the year (P<0.001), the two-way interaction parity-by-stage 

of lactation (P<0.001), recombination loss (P<0.001), and Montbeliarde proportion 

(P<0.01), were all associated with b̂*; b̂* was not associated with either the proportion of 

Friesian and Norwegian Red nor the heterosis coefficient of the cow. There was a general 

trend for the b̂* value of milk to increase with calendar month (Figure 5.1) varying from 
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6.69 (in January, SE=0.18) to 8.47 (in December, SE=0.15). Including fat concentration 

as a covariate in the statistical model did not greatly alter the trend across months (Figure 

5.1). The mean unadjusted b̂* value was 7.72 (SE=0.04) and 8.89 (SE=0.04) in morning 

and evening milking, respectively. Jersey cows had more yellow milk than Holsteins with 

a b̂* value of + 1.85 (+ 0.49 after adjustment for milk fat content) relative to a b̂* value of 

0 for Holstein cows. Otherwise, the milk of Montbeliarde cows was, on average, bluer 

than the milk of Holsteins (Table 5.5). Milk b̂* value was influenced by recombination 

loss only in animals with a gene recombination percentage between 30% and 80%.  

Although a significant interaction between parity and stage of lactation existed 

for the association with b̂*, the trend in b̂* across lactation was nonetheless similar across 

parities decreasing from between 5 and 30 days in milk to between 31 and 60 days in 

milk and increasing thereafter (Figure 5.4). Mean b̂* in parity 1 animal was lowest (7.36) 

while mean b̂* in second parity animals was 7.56; the mean b̂* of older parity animals 

were similar (7.80 to 7.87). 

Including milk yield in the statistical model did not impact the lactation profile 

for b̂* but the difference between parities increased (Figure 5.5); for example the mean 

difference in b̂* between parity 1 and parity 3 animals increased from 0.43 without milk 

yield in the model to 0.60 with milk yield in the model. Including milk fat concentration 

in the statistical model altered the shape of the lactation profiles for b̂* with no observed 

reduction in b̂* in early lactation but also a widening of the difference in b̂* between 

parity one and older parity animals especially in early lactation (Figure 5.6). 

The heritability and repeatability estimates calculated using the repeatability 

animal model for gold standard b* was 0.12 (SE=0.13) and 0.13 (SE=0.12), respectively 

(Table 5.1). The heritability and repeatability estimates for the b̂* parameter estimated 

using a repeatability model that phenotypically adjusted for milk fat concentration was 

0.25 (SE=0.01) and 0.32 (SE=0.01), respectively; the genetic standard deviation of b̂* 

following the genetic adjustment for milk fat concentration was 0.25 (coefficient of 

genetic variation of 3.22%). Heritability estimates from the random regression analysis of 

b̂* varied between 0.18 ± 0.02 (21 DIM) to 0.56 ± 0.03 (305 DIM; Figure 5.7). Within 

trait genetic correlations weakened as the time between DIM increased, and had a 

minimum of 0.32 ± 0.02 between 5 and 305 DIM (Figure 5.8). Milk b̂* was genetically 

positively correlated with L̂* (0.31 ± 0.08 to 0.74 ± 0.02 at 5 and 293 DIM, respectively), 

milk fat concentration (0.82 ± 0.03 to 0.96 ± 0.01 at 5 and 305 DIM, respectively), and 
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milk protein concentration (0.58 ± 0.06 to 0.83 ± 0.01 at 8 and 305 DIM, respectively; 

Figure 5.11). Negative genetic correlations existed between b̂* and â* (-0.47 ± 0.07 to 

0.01 ± 0.07 at 10 and 297 DIM, respectively), milk yield (-0.62 ± 0.02 to -0.45 ± 0.05 at 

220 and 14 DIM, respectively), and milk lactose concentration (-0.43 ± 0.04 to -0.08 ± 

0.04 at 305 and 62 DIM, respectively; Figure 5.11).  

 

 

 
 

Figure 5.1 Monthly least-squares means along the calendar year of L̂* (––♦––; on the 
secondary vertical axis), â* (––■––; on the primary vertical axis), b̂* (––▲––; on the 
primary vertical axis); b̂* considered fat concentration (4.61%) as a covariate in the 
model (---▲---; on the primary vertical axis) (average SE = 0.05).  
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Table 5.2 Spearman rank correlations1 between the colour traits and milk yield, concentrations of protein, fat, lactose, urea, and casein, and 
SCC. Correlations with gold standard values of L* (n=590), a* (n=562), and b* (n=597) are above the diagonal and correlations with predicted 
values are below the diagonal. 

Item L* a* b* Milk yield Protein Fat Lactose Urea SCC Casein 

L* - 0.32 0.55 -0.42 0.34 0.43 -0.17 0.06 0.00 0.35 

a* 0.24 - -0.11 0.05 -0.22 -0.05 -0.01 -0.18 0.15 -0.23 

b* 0.74 0.00 - -0.54 0.50 0.64 -0.33 0.32 0.05 0.46 

Milk yield -0.64 -0.18 -0.69 - -0.42 -0.54 0.29 -0.31 -0.04 -0.45 

Protein 0.50 -0.20 0.62 -0.44 - 0.48 -0.38 0.43 0.21 0.93 

Fat 0.58 0.04 0.77 -0.57 0.51 - -0.18 0.19 0.02 0.51 

Lactose -0.18 0.01 -0.45 0.33 -0.31 -0.22 - -0.42 -0.06 -0.24 

Urea 0.05 -0.21 0.42 -0.32 0.37 0.18 -0.42 - 0.26 0.39 

SCC 0.02 0.05 -0.01 -0.03 0.03 -0.11 0.08 0.07 - 0.20 

Casein  0.52 -0.14 0.57 -0.46 0.92 0.51 -0.16 0.31 0.02 - 
1 Correlations < |0.07| were not different from zero (P > 0.05). 
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Table 5.3 Spearman rank correlations between the three gold standard milk colour indices (L*, a* and b*) and milk yield, concentrations of 
protein, fat, lactose, urea, and casein, and SCC in different parities. 

  L* 
 

a* 
 

b* 

Parity 1 2 ≥ 3 
 

1 2 ≥ 3 
 

1 2 ≥ 3 

Milk yield (kg) -0.39 -0.43 -0.40 
 

0.09a -0.13b 0.06a 
 

-0.43a -0.48a -0.70b 

Protein (%) 0.36 0.28 0.34 
 

-0.18 -0.17 -0.21 
 

0.44a 0.42a 0.58b 

Fat (%)  0.42 0.35 0.51 
 

0.07 -0.01 -0.10 
 

0.54a 0.55a 0.74b 

Lactose (%) -0.16a -0.02a -0.33b 
 

0.06 0.06 -0.08 
 

-0.32 -0.29 -0.38 

Urea (mg/dL) 0.09a -0.10b 0.17a 
 

-0.21 -0.13 -0.09 
 

0.30a 0.21b 0.40a 

SCC (cell/mL) 0.08 0.07 -0.19 
 

0.11 0.27 0.08 
 

0.09 0.19 -0.07 

Casein (%) 0.36 0.31 0.36 
 

-0.20 -0.16 -0.20 
 

0.38a 0.38a 0.55b 
a-b Correlations within the same row with different superscripts are different (P < 0.05) from each other. 
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Table 5.4 Spearman rank correlation between the three milk colour indices (L*, a* and b*) and milk yield, concentrations of protein, fat, lactose, 
urea, and casein, and SCC in different stages of lactation.  

 L*  a*  b* 

Days in milk 0-60 61-159 160-305  0-60 61-159 160-305  0-60 61-159 160-305 

Milk yield 0.04b -0.50a -0.35a  -0.07a 0.11b -0.12a  -0.29a -0.59b -0.41a 

Protein 0.37 0.37 0.27  -0.21 -0.20 -0.17  0.35 0.40 0.43 

Fat 0.45 0.54 0.37  0.13 -0.002 -0.01  0.67 0.69 0.54 

Lactose -0.14 -0.04 -0.16  -0.24a -0.07a 0.06b  -0.02a -0.20a -0.28b 

Urea -0.20a 0.13b -0.03a  -0.07 -0.12 -0.12  -0.14a 0.31b 0.06a 

SCC 0.10 0.05 -0.18  0.13 0.15 0.27  -0.05a 0.17a -0.33b 

Casein 0.36 0.36 0.27  -0.28 -0.21 -0.12  0.35 0.33 0.41 
a-b Correlations within the same row with different superscripts are different (p<0.05) from each other. 
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Figure 5.2 Least squares means of L̂* values throughout lactation in parity 1 (––♦––), 
parity 2 (---■---), parity3 (––▲––), parity 4 (––X––), and parity ≥ 5 (-·-X-·-) (average SE 
= 0.03). 
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Figure 5.3 Least squares means of â* values throughout lactation in parity 1 (––♦––), 
parity 2 (---■---), parity3 (––▲––), parity 4 (––X––), and parity ≥ 5 (-·-X-·-) (average SE 
= 0.01). 

 

The shape of the lactation profile differed by cow parity number although, within 

parity, the lowest â* value was in early lactation reaching a plateau from mid-lactation on 

(Figure 5.3). The profile of first lactation cows differed biologically from that of later 

parity cows which in turn were similar to each other. Across lactation the mean â* of first 

parity cows was -3.89 compared to a parity mean of between -3.94 and -3.96 for later 

parity cows (Figure 5.3).  

The heritability and repeatability estimates of gold standard a* (calculated by the 

repeatability animal model) was 0.07 (SE=0.18) and 0.60 (SE=0.13), respectively (Table 

5.1). Heritability values for â* estimated using the random regression models ranged from 

0.09 ± 0.01 (30 DIM) to 0.15 ± 0.02 (305 DIM) increasing almost consistently as 

lactation progressed (Figure 5.7). Within trait genetic correlations had a minimum of 

0.44 ± 0.02 occurring between 5 and 219 DIM (Figure 5.8). Milk â* values were 

positively genetically correlated with both L̂* (0.24 ± 0.05 to 0.46 ± 0.08 at 97 and 5 

DIM, respectively) and log10SCC (0.14 ± 0.09 to 0.46 ± 0.16 at 94 and 5 DIM, 

respectively), but were negatively genetically correlated with all other milk quality traits 

(Figure 5.10).  
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Table 5.5 Linear regression coefficients of L̂*, â* and b̂* on breed fractions, and with fat 
concentration (4.61%) or milk yield (13.44 kg) also included as a covariate in the statistical 
model.  

 

 

Table 5.6 Average genetic correlations calculated by random regression models between the 
three predicted colour traits (L̂*, â* and b̂*) and milk yield, concentrations of protein, fat, 
lactose, urea, and casein, and log10 (SCC/1,000). 

L̂* â* b̂* 

â* 0.32   

b̂* 0.66 -0.19 
 

Milk yield  -0.54 -0.08 -0.56 

Fat  0.70 -0.17 0.91 

Protein 0.77 -0.12 0.71 

Lactose -0.10 -0.32 -0.21 

Urea -0.14 -0.14 0.10 

log10(SCC/1,000) 0.11 0.25 -0.01 

Casein 0.76 -0.14 0.70 

 

 

 

  L̂* â* b̂* 

Friesian -0.13 (0.05) -0.04 (0.02)  0.00 (0.09) 
Jersey  0.41 (0.04) -0.14 (0.01) 1.85 (0.07) 

 Norwegian Red -0.09 (0.07) -0.07 (0.02)  0.09 (0.11) 
Montbeliarde -0.30 (0.08) -0.04 (0.03) -0.33 (0.13) 
Adjustment for fat concentration   

Friesian -0.17 (0.04) -0.04 (0.02) -0.09 (0.05) 
Jersey -0.12 (0.04) -0.19 (0.02)  0.49 (0.04) 

Norwegian Red -0.15 (0.06) -0.08 (0.02)  0.02 (0.06) 
Montbeliarde -0.19 (0.06) -0.02 (0.03) -0.04 (0.07) 

Adjustment for milk yield   
Friesian -0.17 (0.05) -0.04 (0.02) -0.06 (0.09) 
Jersey  0.34 (0.04) -0.14 (0.01)  1.74 (0.07) 

Norwegian Red -0.14 (0.07) -0.08 (0.02)  0.01 (0.11) 
Montbeliarde -0.31 (0.08) -0.04 (0.03) -0.31 (0.13) 
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Figure 5.4 Least squares means of b̂* values throughout lactation in parity 1 (––♦––), 
parity 2 (---■---), parity3 (––▲––), parity 4 (––X––), and parity ≥ 5 (-·-X-·-) (average SE 
= 0.05). 

 

 
Figure 5.5 Least squares means of b̂* values throughout lactation in parity 1 (––♦––), 
parity 2 (---■---), parity3 (––▲––), parity 4 (––X––), and parity ≥ 5 (-·-X-·-), with milk 
yield included as a covariate in the model (fixed milk yield = 13.44kg, average SE = 
0.04). 
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Figure 5.6 Least squares means of b̂* values throughout lactation in parity 1 (––♦––), 
parity 2 (---■---), parity3 (––▲––), parity 4 (––X––), and parity ≥ 5 (-·-X-·-), with fat 
concentration included as a covariate in the model (fat concentration fixed = 4.61%, 
average SE = 0.03). 

5.5 Discussion 

The objective of the present study was to quantify the contribution of cow-level 

genetic and non-genetic factors to the observed variability in predicted milk colour as 

described by lightness (L*), greenness-redness (a*) and blueness-yellowness (b*) indices. 

The practical implication from this research is to understand, and therefore, predict the 

possible future changes in milk colour (e.g., with stage of lactation) and therefore 

facilitate action (e.g., at the processor level) to ameliorate the change in developed 

products to suit the expected milk colour. For example, different markets demand dairy 

products (e.g., milk, cheese and butter) differing in colour (Morris et al., 2002; Descalzo 

et al., 2012). Results from the present study clearly identified genetic and non-genetic 

factors strongly associated with all three aspects of milk colour. Of particular interest was 

the existence of considerable genetic variability in each of the three colour parameters; 

coupled with the ability to predict the parameters from milk MIRS (Chapter 3) this 

suggests that breeding programs to alter milk colour are possible.  
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Cows included in the present study originated from Irish herds only where the 

basal diet of the cows was grazed grass, reflective of the production system in Ireland. 

Mean L*, a*, and b* indices in the present study were slightly different from results 

reported by Solah et al. (2007) based on Holstein-Friesian cows in Western Australia. 

These differences were expected as Solah et al. (2007) reported milk fat colour or butter 

colour instead of milk colour, like in the present study.   

5.5.1 Non-genetic factors associated with milk colour 

Many studies have heretofore reported associations between parity, stage of 

lactation and sometimes their interaction on a range of milk production related traits such 

as milk yield (Sklan et al., 1994), fat and protein concentration (Morris et al, 2002; 

Jadhav et al., 2008), and somatic cell count (Quist et al., 2008) in dairy cows. Based on 

the results from the present study, obvious differences among parities and lactation stages 

also exist for milk colour corroborated by a change in its correlation among traits by stage 

of lactation and parity. 

The time of milking as well as milking frequency have both been documented to 

affect milk yield (Everett and Wadell, 1970; Gilbert et al., 1973; Erdman and Varner, 

1995) and milk composition not only in terms of milk fat and protein concentrations 

(Quist et al., 2008) but also fatty acids profile (Klei et al., 1997; Ferlay et al., 2010) in 

dairy cows as well as in dairy ewes (Ploumi et al., 1998).  

The present study corroborated the difference in milk colour traits between 

morning and evening milk. The combination of both greater milk yield (Ouweltjes, 1998) 

and reduced milk fat concentration (Quist et al., 2008) in morning milk is a reasonable 

explanation of a less yellow milk colour of morning milk. The adjustment for fat 

concentration and milk yield had an effect on b̂* value even in this case, where morning 

milk had higher values than evening milk supporting the strong correlation between b̂* 

and milk fat concentration.  

Feeding and herd management, in terms of pasture grazing period, were reported 

to have a large influence on milk composition especially on milk β-carotene amount 

(Noziere et al., 2006; Agabriel et al., 2012) and milk fatty acid composition (Descalzo et 

al., 2012). Milk L̂* and b̂* increased in colder months (October, November and 

December) in the present study, which is in agreement with the higher milk colour 

intensity in cooler seasons reported by Walker et al. (2013). Seasonal variation causes a 

variation in grazing pasture composition (Hutton et al., 1969; Hall, 1970), and this is 
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probably the cause of milk composition variation and eventually in milk colour traits. 

Another factor associated with milk colour traits is udder health as suggested by Espada 

and Vijverberg (2002) who reported more reddish colour of bovine milk in the presence 

of mastitis attributable to Streptococcus Esculin. Such a result is consistent with the 

correlation between SCC (and log10SCC) and a* at both phenotypic and genetic level. 

5.5.2 Genetics of milk colour  

To our knowledge, no studies have documented heterosis and recombination loss 

effects on milk colour. In the present research, neither heterosis nor recombination loss 

among breeds had any significant effect on milk colour in spite of observed breed effects. 

Heterosis effect was also analysed for colour traits considering both the adjustment for fat 

concentration and milk yield, but heterosis values were still not significant. A possible 

hypothesis could be that genes that code for milk colour are regressive, but other studies 

are required on this aspect. The observed significant breed effect on milk colour 

corroborates previous studies (Winkelman et al., 1999; Berry et al., 2009); the milk of 

Jersey cows had the highest b̂* values, even after adjusting for fat concentration. This 

could be physiologically explained  by both the ability of the cow to convert carotene into 

vitamin A (Jadhav et al., 2008) as well as the higher fat concentration present in Jersey 

milk relative to Friesian (Auldist et al., 2004), Holstein (Morales et al., 2000), 

Montbeliarde (Soyeurt et al., 2006) and Norwegian Red (as previously reported) cows. 

The within-trait genetic correlations between each pairwise DIM were all 

positive with the weakest genetic correlations being generally only between DIM at both 

peripheries of the lactation. Moreover, the genetic correlations between all other 

performance traits at the same DIM were relatively consistent across all DIM. With the 

exception of the â* parameter, however, the heritability estimates for milk colour did 

change throughout lactation with a tendency to reflect the trend in genetic variance over 

DIM. Nonetheless, all parameter estimates suggest minimal loss of information if genetic 

evaluations were undertaken using a repeatability model but also that the ability to 

dramatically alter the lactation profile of milk colour genetically is low. 
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Figure 5.7 A) Genetic standard deviation (SE in parenthesis) for L̂* (––□––; 0.002 to 
0.012), â* (––♦––; 0.02 to 0.07), and b̂* (––△––; 0.01 to 0.03), and B) heritability 
estimates (SE in parenthesis) for L̂* (––□––; 0.02 to 0.03), â* (––♦––; 0.01 to 0.02), and 
b̂* (––△––; 0.01 to 0.03). 
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The heritability of the three milk colour parameters estimated in the present 

study agree with previous studies which considered milk colour and fat colour in dairy 

cows (Winkelman et al., 1999) as well as milk carotenoid concentration in both milk and 

milk fat of dairy cows (Morris et al., 2002). The coefficient of variation for all three 

colour traits estimated using the repeatability model was however small (0.37% to 6.88% 

for the predicted traits) and less than for the other performance traits, such as milk yield 

(9.81%). The coefficient of variation for all three colour traits was however small (0.4% 

to 2% for the predicted traits) and less than for the other performance traits. This indicates 

that relatively few records are required to achieve high accuracy of selection for these 

traits but the lack of considerable genetic variation suggests that actually achieving 

genetic gain may prove difficult. This could be exacerbated by the presence of a moderate 

negative genetic correlation averaged across all DIM between milk yield and both L̂* (-

0.54) and b̂* (-0.56), manifesting itself as a requirement to place emphasis on both milk 

colour parameters to avoid any change in milk colour as a repercussion of selection for 

greater milk yield as exists in most breeding goals (Miglior et al., 2005).  

 

Figure 5.8 Within trait genetic correlations between 5 DIM (––□––), 150 DIM (––♦––), 
and 305 DIM (––△––) and the rest of lactation for A) L̂*; B) â*; C) b̂*. Standard errors 
ranged between 0.00 and 0.02. 

 

0.0

0.2

0.4

0.6

0.8

1.0

0 30 60 90 120 150 180 210 240

A

0.0

0.2

0.4

0.6

0.8

1.0

0 30 60 90 120 150 180 210

B

0.0

0.2

0.4

0.6

0.8

1.0

0 30 60 90 120 150 180 210 240

C            Days Days in milk 

       



 

115 
 

The negative genetic correlation between b̂* (yellow-blue) index and milk yield 

agrees with previous studies (Winkelman et al., 1999; Morris et al., 2002) and could be an 

artefact of dilution of colour with greater milk yield. The heritability and genetic standard 

deviation for b̂* estimated using a repeatability animal model that was phenotypically 

adjusted for milk yield was 0.33 (SE=0.02) and 0.36 (SE=0.01), respectively, indicating a 

reduction in genetic variability in b̂* phenotypically independent of milk yield. The 

coefficient of genetic variation for b̂* following genetic adjustment for difference in milk 

yield was 6.53% (i.e., 94% of the origin genetic variation). Using the heritability and 

repeatability estimates from the repeatability animal model, each genetic standard 

deviation unit increase in milk yield though breeding for milk yield alone is expected to 

reduce b̂* by 0.19. Therefore to hold the b̂* colour of milk constant following single trait 

selection on milk yield would require a relative emphasis of 33% on milk b̂* colour; the 

gain in milk yield with such an index would be 0.81 times that of the gain in milk yield 

where only milk yield constituted the breeding goal. Hence, attempts to halt any change 

in milk colour due to breeding programs for increased milk production may require milk 

colour to be included in the breeding goal with some emphasis which will have 

repercussions in genetic gain for milk yield and other traits in the breeding goal.   

 

 

Figure 5.9 Genetic correlations (SE in parenthesis) between L̂* and â* (––□––; 0.04 to 
0.08), b̂* (––♦––; 0.01 to 0.08), milk yield (––△––; 0.02 to 0.06), protein concentration (–
–●––; 0.01 to 0.07), fat concentration (––×––; 0.01 to 0.09), lactose concentration (––∗––; 
0.02 to 0.10), urea concentration (––+––; 0.03 to 0.11), and log10(SCC/1,000) (––■––; 
0.05 to 0.17). 
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Figure 5.10 Genetic correlations (SE in parenthesis) between â* and b̂* (––♦––; 0.04 to 
0.07), milk yield (––△––; 0.06 to 0.11), protein concentration (––●––; 0.03 to 0.08), fat 
concentration (––×––; 0.04 to 0.08), lactose concentration (––∗––; 0.04 to 0.10), urea 
concentration (––+––; 0.05 to 0.11), and log10(SCC/1,000) (––■––; 0.07 to 0.16). 

 

 

Figure 5.11 Genetic correlations (SE in parenthesis) between b̂* and milk yield (––△––; 
0.02 to 0.06), protein concentration (––●––; 0.01 to 0.06), fat concentration (––×––; 0.01 
to 0.03), lactose concentration (––∗––; 0.02 to 0.09), urea concentration (––+––; 0.03 to 
0.10), and log10(SCC/1,000) (––■––; 0.04 to 0.18) 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 30 60 90 120 150 180 210 240 270 300

G
en

et
ic

 c
o

rr
el

a
ti

o
n

Days in milk

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 30 60 90 120 150 180 210 240 270 300

G
en

et
ic

 c
o

rr
el

a
ti

o
n

Days in milk



 

117 
 

The very strong positive genetic correlation averaged across all DIM between 

yellow colour (b̂* index) and milk fat concentration (0.91) mirrored the strong phenotypic 

correlation obtained both between gold standard (0.64) and predicted (0.77) values. The 

strong correlation also corroborates previous genetic studies in dairy cows (Winkelman et 

al., 1999; Morris et al., 2002). The biological justification for such a strong correlation 

could be due to the presence of β-carotene pigment in milk fat components (MacGibbon 

et al., 2006; Noziere et al., 2006) which also affect milk colour. Carotenoid pigments are 

particularly high in fresh grass which was the basal diet of the cows in the present study. 

The low coefficient of genetic variation of b* parameters after the genetic adjustment for 

milk fat concentration implies minimal scope to alter milk b* colour genetically 

independent of genetic merit for milk fat concentration. 

5.6 Conclusions 

Milking time, stage of lactation, Jersey proportion, parity, and month of test were 

associated with all three characteristics of milk colour. Simultaneously, heterosis and 

recombination loss coefficients, as well as the proportions of Montbeliarde, Norwegian 

Red, and Friesian had little biological impact of the colour of bovine milk. Of particular 

interest was the potential to breed for different milk colour depending on the respective 

market demands although the heritability for most of the milk colour traits was not high. 

The genetic variation was relatively small especially that independent of milk yield and 

our fat concentration. This therefore suggests that although the accuracy selection is 

achievable, the ability to rapidly alter milk colour independent of milk yield or fat 

composition is somewhat limited.  
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6.1 Abstract 

Detailed milk composition is not considered in current national dairy cow 

breeding, despite its known contribution to dairy food product portfolio and yield. Due to 

the lack of resources required to routinely measure milk compositional traits; there is a 

deficit in large quantities of phenotypic and genetic data for milk compositional traits. 

The objective of the present study was to measure the potential of breeding for improved 

milk protein and free amino acid (FAA) composition, but doing so by exploiting the 

prediction of these components from routinely available mid-infrared spectroscopy 

(MIRS) collected from individual cows at milk testing. Milk protein fractions and FAA 

were measured using available MIRS equations. Genetic, permanent environmental and 

residual (co) variances for protein fractions and FAA composition were quantified on 

134,546 test-day records from 16,166 lactations on 9,572 cows using linear mixed 

models. Heritability estimates for the gold standard protein fractions ranged from 0.04 

(beta casein) to 0.61 (total lactoglobulin) and the range in heritability estimates for the 

MIRS-predicted protein was less (0.19 for alpha lactalbumin to 0.46 for beta 

lactoglobulin A). Similar to the protein fractions, heritability estimates for MIRS-

predicted FAA had a narrower range (0.15 for glycine to 0.36 for aspartic acid) than the 

respective gold standard range (0.05 for aspartic acid to 0.58 for serine). The estimated 

genetic standard deviation for each protein fraction trait genetically independent of 

protein content was less than the respective unadjusted measure and this was also 

reflected in lower heritability estimates. There was little impact on the heritability 

estimates for FAA when adjusted for differences in the genetic merit of 24 hour milk 

yield. Protein fractions predicted by MIRS were negatively correlated with 24 hour milk 

yield but positively correlated with protein content and casein content. Genetic 

correlations among the MIRS-predicted protein fractions were weak to strong. Genetic 

correlations among the MIRS-predicted FAA were also weak to strong and ranged from -

0.44 (aspartic acid and lysine) to 0.97 (glutamic acid and total FAA) and adjusting the 

correlations for the genetic merit of 24 hour milk yield did not greatly affect the 

correlations. Results from the current study indicate the presence of exploitable genetic 

variation for protein fractions and FAA; these traits can be included in the selection index 

at no marginal cost, because individual cow (and bulk tank) milk samples are routinely 

subjected to MIRS analysis. 
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6.2 Introduction 

Although most dairy cow breeding objectives include milk protein and fat 

concentration at the macro level (Miglio et al., 2005), few consider detailed milk 

composition. This is despite the known contribution of detailed milk composition to dairy 

food product portfolio and yield (Wedholm et al., 2006; Bonfatti et al., 2011a). For 

example the concentration of casein (CN) in milk protein has a favourable effect on the 

quantity of protein transferred from milk into cheese curd. High concentrations of alpha-

S1-casein (αs1-CN), beta casein (β-CN), kappa casein (κ-CN), and beta lactoglobulin B (β-

LG B) are known to increase cheese yield (Wedholm et al., 2006). 

Breed differences in the concentration both of protein fractions (Cerbulis et al., 

1975; Auldist et al., 2004; Lopez-Villalobos, 2012; Chapter 4) and free amino acids 

(FAA) (Chapter 4) have been demonstrated. Individual protein fractions are known to be 

heritable (Graml and Pirchner, 2003; Schopen et al., 2009; Bonfatti et al., 2011b; Haung 

et al., 2012) although less is known about the genetic parameters of FAA. Previous 

heritability estimates of milk protein fractions are moderate to high but differ among 

studies; recent heritability estimates by Schopen et al. (2009) and Huang et al. (2012) 

ranged from 0.25 (β-CN) to 0.80 (β-LG) and from 0.33 [αS1-CN, β-CN and alpha 

lactalbumin (α-LA)] to 0.68 (β-LG), respectively. Differences in the gold standard 

methods used to quantify milk protein fractions, as well as the characteristics of the study 

population such as breeds used, and both the parities and stages of lactations represented 

could have contributed to the difference in estimates (Schopen et al., 2009). Heritability 

estimates calculated by Bonfatti et al. (2011b) for the relative proportions of protein 

fractions expressed as a percentage of total CN (0.18 for gamma casein (γ-CN) to 0.69 for 

β-CN) were greater than those for protein fraction contents expressed as g/L of milk 

[0.11g/L for α-LA to 0.53g/L for κ-CN]. Although the usefulness of mid-infrared 

spectroscopy (MIRS) analysis of milk to predict milk composition is now well established 

(De Marchi et al., 2014) no heritability estimates exist for MIRS-predicted protein 

fractions or MIRS-predicted FAA.  

The objective therefore of the present study was to quantify the potential of 

breeding for improved milk protein and FAA composition, but doing so by exploiting the 

prediction of these components from routinely available MIRS collected from individual 

cows at milk testing. 
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6.3 Material and methods 

6.3.1 Milk sample collection 

6.3.1.2 Gold standard data 

Milk samples (n=715) were collected from seven research farms operated by the 

Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. 

Cork between August 2013 and August 2014, inclusive. Individual milk proteins (αS1-CN, 

αS2-CN, β-CN, κ-CN, α-LA, β-LG A, and β-LG B) were determined for 557 milk samples 

and FAA [total FAA, glutamic acid (Glu), glycine (Gly), lysine (Lys), arginine (Arg), 

aspartic acid (Asp), serine (Ser) and valine (Val)] were determined for 715 milk samples 

using high performance liquid chromatography, as described in detail in Chapter 2. Gold 

standard data were used to calibrate equations to predict individual and groups of milk 

proteins and FAA using the mid-infrared spectrum of milk (Chapter 2). 

6.3.1.3 MIRS data 

Additional milk samples were collected from seven research herds operated by 

the Animal and Grassland Research and Innovation Centre, Teagasc, Ireland and from 69 

commercial dairy herds located in the south-west of Ireland, between the years 2013 and 

2015, inclusive. All milk samples were analysed using the same Fourier transform 

infrared spectrometer (Foss MilkoScan FT6000 (Foss Electronic A/S, Hillerød, Denmark) 

based at the Animal and Grassland Research Centre, Teagasc, Moorepark, Fermoy, Co. 

Cork, Ireland. Prediction equations were developed in Chapter 2 with untreated spectra 

using partial least squares regression analysis (Proc PLS; SAS Institute Inc.). The 

prediction equations were applied to 171,279 spectra from 10,162 cows (17,353 cow 

lactations)  to predict  1) groups of milk proteins (total CN, total whey, total LG), 2) 

individual proteins  (αS1-CN, αS2-CN, β-CN, κ-CN, α-LA, β-LG A, and β-LG B) and 3) 

FAA (total FAA, Glu, Gly, Lys, Arg, Asp, Ser and Val).  

6.3.2 Data editing  

Spectral data with a Mahalanobis distance greater than three (Williams 2007) 

relative to the mean of the 715 gold standard samples were discarded. Furthermore, mid-

infrared spectroscopy predicted and gold standard values of proteins and FAA greater 

than three standard deviations from the mean of the gold standard samples were also 

removed from the analyses. Traits that were not normally distributed (i.e. Glu, Gly, Lys, 
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Arg, Asp, Ser and Val) were transformed using a natural logarithm transformation. Breed 

composition was available for each cow and only data from Holstein, Friesian, Jersey, 

Norwegian Red, Montbelliarde cows as well as their crosses recorded between 5 and 305 

DIM and from parities ≤10 were retained for analysis; parties greater than 5 were grouped 

together for analysis.  

Contemporary groups were generated for the research animals according to 

experimental treatment and test-date; contemporary groups for commercial animals were 

defined as herd-test-date. For the MIRS data only, contemporary groups with a minimum 

of ten records were retained for analysis. The final MIRS data set comprised 134,546 

records from 16,166 lactations on 9,572 cows.  

6.3.3 Data analysis  

Pedigree information for all animals was provided by the Irish Cattle Breeding 

Federation database and each animal was traced back (where available) at least four 

generations. The pedigree file contained 33,949 animals. Genetic, permanent 

environmental and residual (co) variances for protein fractions and FAA composition 

were quantified using linear mixed models in ASReml (Gilmour et al., 2009). Models 

were adjusted for the fixed effects of contemporary group, parity (1, 2, 3, 4, 5 and ≥ 6), 

stage of lactation (6 groups each 60 day in length from 5 DIM to 305 DIM), the 

interaction between parity and stage of lactation, milking time (i.e., AM or PM), 

proportion of cow breed (Friesian, Jersey, Norwegian Red, Montbelliarde and other), 

general heterosis and recombination loss coefficients of the cow. Random effects 

included the direct additive genetic effect of the animal and both a within- and an across-

lactation cow permanent environmental effect. Models to analyse the gold standard traits 

did not include contemporary group or cow permanent environmental effects but no gold 

standard repeated records existed. Genetic correlations between the same gold standard 

and MIRS-predicted traits were estimated using the aforementioned model.  

Genetic and phenotypic (co)variances among the MIRS-predicted protein 

fractions were estimated using a series of trivariate analyses which, as well as including 

the two MIRS-predicted protein fractions, also included total protein content. Genetic and 

phenotypic (co)variances among the MIRS-predicted FAA were estimated using a series 

of trivariate analyses which as well as including the two MIRS-predicted FAA, also 

included 24 hour milk yield. Genetic correlations among the MIRS-predicted protein 

fractions adjusted for their respective genetic correlation with total protein content as well 
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as the genetic correlation among the MIRS-predicted FAA adjusted for their respective 

genetic correlation with 24 hour milk yield were estimated as: 

�xy.U =
�VW − �VU�WU

X(1 − �VU
))(1 − �WU

))
 

where rxy.z is the partial correlation between trait x and y independent of z, rxy 

represents the correlation between the traits x and y, rxz is the correlation between x and z 

and ryz is the correlation between y and z. The phenotypic and genetic variances for the 

protein fractions and the FAA adjusted for their respective genetic and phenotypic 

correlation with protein content or milk yield was calculated as  

F) ∗ (1 − �VW
)) 

Where σ2 is the variance for the protein fraction or the FAA and rxy is the 

correlation between trait x (protein fraction or FAA) and trait y (protein content and milk 

yield). 

6.4 Results 

The mean values of the gold standard and the respective MIRS-predicted milk 

protein fractions were similar; for example the mean value of the gold standard total CN 

and the mean MIRS-predicted total CN was 36.91 g/L and 36.16 g/L, respectively (Table 

6.1 and 6.2). The mean values of the gold standard and the respective MIRS-predicted 

milk FAA variables were also similar to each other. The genetic standard deviation 

ranged from 0.16 g/L (β-LG A) to 1.36 g/L (total CN) for the gold standard protein 

fractions (Table 6.1) and from 0.18 g/L (αS2-CN) to 1.85 g/L (total CN) for the MIRS-

predicted protein fractions (Table 6.2). The genetic standard deviation of the gold 

standard and the respective MIRS-predicted FAA variables were similar, with the 

exception of total FAA (13.35 µg/ml for the gold standard but 5.05 µg/ml for MIRS-

prediction). The coefficient of genetic variation differed among traits and ranged from 

3.01 (total LG) to 43.11 (β-LG B) for the gold standard protein fractions and from 1.01 

(Glu) to 25.26 (Ser) for the gold standard FAA (Table 6.1). 
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Table 6.1 Number of records (n), mean, genetic standard deviation (σg), heritability (SE), coefficient of genetic variation (CVg) for gold 
standard protein fractions and gold standard free amino acids and as well as the genetic correlation (rg) between gold standard and mid-infrared 
spectroscopy predicted protein fractions and gold standard and mid-infrared spectroscopy predicted free amino acids. 

Trait n Mean σg Heritability CVg rg 

Protein, g/L  
  

Total Casein 417 36.91 1.36 0.17 (0.160) 3.68 0.74 (0.18) 

Alpha S1 Casein 415 14.22 0.94 0.39 (0.173) 6.58 0.63 (0.12) 

Alpha S2 Casein 415 3.71 0.50 0.49 (0.166) 13.37 0.36 (0.11) 

Beta Casein 415 12.99 0.54 0.04 (0.148) 4.13 0.99 (1.84) 

Kappa Casein 416 6.14 0.34 0.06 (0.149) 5.54 0.43 (0.12) 

Total Whey 418 6.33 1.14 0.57 (0.194) 18.00 0.74 (0.12) 

Alpha Lactalbumin 412 1.13 0.03 0.35 (0.195) 3.01 0.64 (0.17) 

Total Lactoglobulin 418 5.12 1.18 0.61 (0.193) 22.98 0.76 (0.11) 

Beta Lactoglobulin A 417 2.58 0.16 0.19 (0.143) 6.22 0.68 (0.17) 

Beta Lactoglobulin B 383 2.79 1.20 0.55 (0.189) 43.11 0.82 (0.06) 

Free AA, μg/mL   
Total free AA 1 463 52.85 13.35 0.37 (0.154) 25.27 0.53 (0.12) 

Glutamic Acid1 461 30.57 0.31 0.29 (0.148) 1.01 0.78 (0.13) 

Glycine1 453 7.23 0.26 0.32 (0.154) 3.64 0.68 (0.18) 

Lysine1 441 4.66 0.18 0.25 (0.158) 3.85 0.34 (0.26) 

Arginine1 419 4.20 0.30 0.38 (0.182) 7.14 0.96 (8.62) 

Aspartic Acid1 385 2.65 0.15 0.05 (0.138) 5.82 0.94 (0.29) 

Serine1 389 1.49 0.38 0.58 (0.188) 25.65 0.38 (0.11) 

Valine1 424 1.98 0.30 0.28 (0.157) 15.13 0.46 (0.17) 
1Traits were log-transformed before analysis 
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Table 6.2 Number of records (n), mean, genetic standard deviation (σg), heritability (standard error) and repeatability (standard error), as well as 
heritability estimates after adjustment for protein content or 24 hour milk yield for MIRS protein fractions and MIRS free amino acids.  

  
   

Unadjusted 
 

After Adjustment 
Trait n Mean 

 
σg Heritability Repeatability σg Heritability 

Protein, g/L1  
   Total casein 134,395 36.16 

 
1.85 0.42 (0.017) 0.55 (0.004) 0.27 0.11 

Alpha S1 casein 134,409 13.70 
 

0.79 0.44 (0.017) 0.41 (0.006) 0.12 0.13 

Alpha S2 casein 134,482 3.66 
 

0.18 0.36 (0.015) 0.44 (0.006) 0.06 0.11 

Beta casein 134,235 12.96 
 

0.54 0.38 (0.016) 0.32 (0.006) 0.18 0.16 

Kappa casein 134,463 6.03 
 

0.34 0.36 (0.016) 0.39 (0.006) 0.09 0.16 

Total whey 134,383 6.13 
 

0.50 0.37 (0.015) 0.34 (0.006) 0.46 0.35 

Alpha lactalbumin 134,106 1.11 
 

0.04 0.19 (0.011) 0.44 (0.006) 0.03 0.15 

Total lactoglobulin 134,236 5.09 
 

0.51 0.39 (0.016) 0.22 (0.005) 0.44 0.37 

Beta lactoglobulin A 134,489 2.39 
 

0.19 0.46 (0.016) 0.46 (0.006) 0.10 0.31 

Beta lactoglobulin B 128,391 2.61 
 

0.56 0.43 (0.017) 0.48 (0.006) 0.55 0.43 

Free AA, μg/mL2      
   Total free AA 134,546 53.60 

 
5.05 0.24 (0.096) 0.36 (0.006) 5.05 0.24 

      Glutamic acid 134,426 30.93 
 

0.14 0.32 (0.016) 0.44 (0.006) 0.14 0.32 

      Glycine 133,650 8.09 
 

0.08 0.15 (0.011) 0.23 (0.005) 0.08 0.15 

      Lysine 134,105 4.75 
 

0.12 0.24 (0.013) 0.31 (0.006) 0.11 0.22 

      Arginine 134,425 3.38 
 

0.07 0.19 (0.012) 0.28 (0.005) 0.06 0.19 

      Aspartic acid 134,433 2.73 
 

0.15 0.36 (0.016) 0.47 (0.006) 0.15 0.36 

      Serine 112,918 2.74 
 

0.10 0.23 (0.013) 0.31 (0.006) 0.10 0.22 

      Valine 133,957 1.52 
 

0.09 0.24 (0.014) 0.30 (0.006) 0.09 0.18 
1Adjusted for protein content. 
2Adjusted for 24 hour milk yield and log-transformed before analysis.
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6.4.1 Heritability and repeatability estimates  

Heritability estimates for the gold standard protein fractions, albeit associated 

with large standard errors, ranged from 0.04 (β-CN) to 0.61 (total LG) (Table 6.1). 

Heritability estimates for MIRS-predicted protein fractions were higher than those 

estimated for the gold standard protein fractions (Table 6.2), although the range in 

heritability estimates for the MIRS-predicted protein fractions was less (0.19 for α-LA to 

0.46 for β-LG A; Table 6.2) than the range for the respective gold standard measures 

(0.04 for β-CN to 0.61 for total Lg; Table 6.1). Similar to the protein fractions, 

heritability estimates for MIRS-predicted FAA had a narrower range (0.15 for Gly to 0.36 

for Asp; Table 6.2) than the respective gold standard range (0.05 for Asp to 0.58 for Ser; 

Table 6.1). Repeatability estimates for MIRS-predicted protein fractions and MIRS-

predicted FAA were moderate (0.22 for total LG to 0.55 for total CN; 0.23 for Gly to 0.47 

for Asp; Table 6.2). The estimated genetic standard deviation for each protein fraction 

trait genetically independent of protein content was less than the respective unadjusted 

measure and this was also reflected in lower heritability estimates; only a small decrease 

in genetic standard deviation and heritability was observed for the whey fractions. There 

was also little impact on the heritability estimates for FAA when adjusted for differences 

in the genetic merit of 24 hour milk yield. 

6.4.2 Genetic correlations  

Moderate to strong genetic correlations existed between the gold standard 

protein fractions and their respective MIRS-predicted protein fractions, ranging from 0.36 

(β-CN) to 0.99 (κ-CN) (Table 6.1). The genetic correlation between the gold standard 

Arg and MIRS-predicted Arg was strong (0.96), similar to the correlation between the 

gold standard and MIRS-predicted Asp (0.94). Protein fractions were negatively 

correlated with 24 hour milk yield but positively correlated with protein content and CN 

content (Table 6.3). Protein fractions were weakly correlated with both lactose content 

and somatic cell count (SCC). The protein fractions αS1-CN, κ-CN, total whey, total LG, 

and β-LG B were negatively correlated with SCC. Individual FAA were weakly to 

moderately genetically correlated with all of 24 hour milk yield, protein content, CN 

content, fat content, lactose content, and SCC (Table 6.4). Correlations between FAA and 

SCC were weak while total FAA, Glu, Gly, Asp, and Ser were all negatively correlated 

with SCC. 
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Genetic correlations among the MIRS-predicted protein fractions were weak to 

strong (Table 6.5). An almost unity genetic correlation (0.99) existed between protein 

content and total CN, between total CN and αS1-CN, and between total-LG and total 

whey. The genetic correlation between total-LG and total whey did not change after 

adjusting for their respective genetic correlation with protein content, albeit the majority 

of the correlations among the protein fractions weakened when calculated genetically 

independent of protein content. For example, the strong positive genetic correlation that 

existed between β-CN and β-LG B (0.89) became negative (-0.05) once adjusted for 

genetic merit for protein content. 

Genetic correlations among the MIRS-predicted FAA were weak to strong and 

ranged from -0.44 (Asp and Lys) to 0.97 (Glu and Total FAA) (Table 6.6). Adjusting the 

correlations for the genetic merit of 24 hour milk yield did not greatly affect the 

correlations (Table 6.6). For example, the unadjusted correlation between Arg and Val 

was 0.63 and changed to 0.62 when adjusted for the genetic merit of 24 hour milk yield. 

 

6.5 Discussion 

The present study aimed to quantify the extent of genetic variability in detailed 

milk protein and FAA composition predicted by MIRS from individual cow milk 

samples. Global milk recording programmes are presently using MIRS to determine the 

concentration of fat and protein in milk samples for herd testing and genetic evaluations. 

Protein composition and FAA composition are not, however, routinely determined by 

MIRS or used in national genetic evaluations. The genetic correlations estimated in the 

present study between both the gold standard and MIRS-predicted protein fractions, as 

well as between both the gold standard and MIRS-predicted FAA, were moderate to 

strong demonstrating that the MIRS-predicted traits are genetically very similar to their 

corresponding gold standard measures. All traits were heritable and exhibited 

considerable genetic variation; therefore MIRS could be a viable method to collect a large 

amount of data for use in genetic evaluations with the goal of improving milk quality 

traits. 
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 Table 6.3 Genetic correlations between protein fractions and 24 h milk yield, MIRS-predicted protein content, MIRS-predicted casein content, 
MIRS-predicted fat content, MIRS-predicted lactose content and somatic cell count (SCC). 

 

 

 

 

 

 

 

 

 

 

 

 

1 Total-Casein (Total-CN), Alpha-S1-Casein (αS1-CN), Alpha-S2-Casein (αS1-CN), Beta Casein (β-Casein), Kappa Casein (k-CN), Alpha-
Lactalbumin (α-LA), Total Lactoglobulin (Total-LG) and Beta-Lactoglobulin A (β-LG A), Beta-Lactoglobulin B (β-LG B). 

 

 

 

 

 

 

 

 

 
24 hour  Milk yield Protein content Casein content Fat content Lactose content SCC 

Total-CN -0.57(0.040) 0.99(0.001) 0.99(0.001) 0.72(0.021) -0.09(0.038) 0.01(0.105) 

 αS1-CN -0.58(0.039) 0.99(0.001) 0.98(0.002) 0.74(0.019) -0.12(0.037) -0.01(0.105) 

 αS2-CN -0.59(0.040) 0.95(0.005) 0.96(0.004) 0.79(0.018) -0.05(0.038) 0.01(0.106) 

 β-CN -0.57(0.042) 0.94(0.005) 0.81(0.032) 0.69(0.023) 0.06(0.039) 0.02(0.107) 

  k-CN -0.50(0.043) 0.97(0.003) 0.94(0.005) 0.62(0.025) -0.20(0.038) -0.02(0.109) 

Total-Whey -0.30(0.048) 0.49(0.027) 0.46(0.029) 0.39(0.031) -0.07(0.038) -0.09(0.110) 

  α-LA -0.45(0.052) 0.55(0.031) 0.59(0.030) 0.68(0.026) 0.35(0.038) 0.01(0.117) 

 Total-Lg -0.29(0.048) 0.49(0.027) 0.46(0.029) 0.38(0.031) -0.12(0.037) -0.10(0.110) 

   β-Lg-A -0.56(0.040) 0.86(0.010) 0.87(0.009) 0.75(0.018) -0.09(0.036) 0.04(0.103) 

   β-Lg-B -0.08(0.051) 0.18(0.034) 0.15(0.035) 0.11(0.036) -0.11(0.038) -0.12(0.113) 
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Table 6.4 Genetic correlations between FAA and 24 hour milk yield, MIRS-predicted protein content, MIRS-predicted casein content, MIRS-
predicted fat content, MIRS-predicted lactose content and somatic cell count (SCC). 

1Traits were log-transformed before analysis.

24 hour Milk yield Protein content Casein content Fat content Lactose content SCC 

TFAA1 0.01(0.059) -0.10(0.041) -0.09(0.041) -0.07(0.042) 0.29(0.042) -0.11(0.120) 

  Glu1 0.10(0.054) -0.18(0.037) -0.17(0.038) -0.15(0.039) 0.33(0.037) -0.04(0.112) 

  Gly1 0.05(0.063) -0.19(0.043) -0.17(0.044) -0.24(0.043) 0.28(0.046) -0.24(0.123) 

  Lys1 -0.33(0.053) 0.52(0.030) 0.51(0.031) 0.51(0.032) -0.16(0.041) 0.04(0.114) 

  Arg1 -0.18(0.059) 0.21(0.041) 0.17(0.042) 0.40(0.036) -0.33(0.041) 0.13(0.119) 

  Asp1 0.14(0.053) -0.19(0.036) -0.20(0.036) -0.16(0.038) 0.25(0.038) -0.08(0.112) 

  Ser1 -0.13(0.058) -0.15(0.039) -0.11(0.040) 0.24(0.039) 0.26(0.041) -0.04(0.118) 

  Val1 -0.21(0.060) 0.32(0.039) 0.33(0.040) 0.25(0.042) -0.16(0.041) 0.09(0.121) 
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 Table 6.5 Genetic correlations among MIRS-predicted protein fractions (above diagonal) and genetic correlations among MIRS-predicted 
protein fractions genetically independent of protein content (below the diagonal). 

1 Total Casein (Total-CN), Alpha-S1-casein (αS1-CN), Alpha-S2-casein (αS1-CN), Beta casein (β-Casein), Kappa casein (k-CN), Alpha lactalbumin 
(α-LA), Total lactoglobulin (Total-LG) and Beta lactoglobulin A (β-LG A), Beta lactoglobulin B (β-LG B). 

  Total CN αS1-CN αS2-CN β-CN k-CN Total whey α-LA Total-LG β-LG A β-Lg B 

Total CN - 0.99(0.001) 0.92(0.005) 0.97(0.003) 0.96(0.003) 0.47(0.028) 0.60(0.028) 0.47(0.028) 0.85(0.009) 0.17(0.034) 

αS1-CN 0.91 - 0.92(0.006) 0.96(0.003) 0.95(0.004) 0.51(0.026) 0.61(0.028) 0.50(0.026) 0.81(0.012) 0.18(0.033) 

αS2-CN -0.24 -0.24 - 0.89(0.008) 0.90(0.007) 0.42(0.029) 0.56(0.029) 0.41(0.029) 0.88(0.007) 0.10(0.034) 

β-CN 0.79 0.63 -0.05 - 0.80(0.016) 0.48(0.028) 0.70(0.024) 0.46(0.029) 0.86(0.010) 0.13(0.035) 

k-CN 0.07 -0.09 -0.12 -0.22 - 0.47(0.028) 0.38(0.037) 0.47(0.028) 0.72(0.017) 0.22(0.034) 

Total whey 0.09 0.16 -0.17 0.05 -0.01 - 0.47(0.032) 0.99(0.001) 0.35(0.029) 0.91(0.007) 

 α-LA 0.53 0.56 0.14 0.63 -0.37 0.25 - 0.44(0.033) 0.72(0.022) 0.17(0.039) 

Total-LG 0.04 0.12 -0.17 -0.02 0.01 0.99 0.24 - 0.34(0.030) 0.92(0.006) 

β-Lg A 0.11 0.25 0.44 0.29 -0.79 -0.01 0.58 -0.18 - -0.03(0.033) 

β-Lg B -0.05 -0.01 -0.20 -0.13 0.18 0.96 0.09 0.90 -0.36 - 



 

131 
 

   

Table 6.6 Genetic correlations among MIRS-predicted FAA (above diagonal) and genetic correlations among MIRS-predicted FAA genetically 
independent of 24 hour milk yield (below the diagonal). 

Traits TFAA Glu Gly Lys Arg Asp Ser Val 

TFAA1 - 0.97(0.003) 0.56(0.035) -0.20(0.044) 0.31(0.043) 0.88(0.011) 0.60(0.029) 0.49(0.036) 
  Glu1 0.99 - 0.53(0.040) -0.35(0.038) 0.19(0.040) 0.91(0.008) 0.57(0.030) 0.42(0.037) 
  Gly1 0.56 0.53 - -0.36(0.044) -0.27(0.050) 0.57(0.033) 0.37(0.040) -0.09(0.053) 
  Lys1 -0.20 -0.31 -0.36 - 0.56(0.032) -0.44(0.035) 0.06(0.044) 0.49(0.037) 
  Arg1 0.24 0.21 -0.22 0.53 - 0.13(0.040) 0.32(0.041) 0.63(0.030) 
  Asp1 0.90 0.90 0.57 -0.42 0.16 - 0.32(0.040) 0.18(0.043) 
  Ser1 0.38 0.59 0.39 0.02 0.30 0.30 - 0.49(0.037) 
  Val1 0.49 0.45 -0.09 0.45 0.62 0.19 0.27 - 

1Traits were log-transformed before analysis.
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6.5.1 Milk protein fractions and free amino acids response to genetic 

selection 

Response to genetic selection is determined by the extent of genetic variability, 

the accuracy of selection, selection intensity and generation interval (Rendel and 

Robertson, 1950). Therefore to achieve genetic gain, the trait must be heritable, exhibit 

genetic variation and sufficient data on the trait must be available to ensure a high 

accuracy of selection. Considerable genetic variation clearly exists for all milk quality 

traits examined in the present study and traits were low to moderately heritable; this 

therefore suggests that there is potential to alter the protein composition and FAA 

composition in bovine milk using selective breeding, and high accuracy of selection could 

be achieved for sires based on relatively small progeny group sizes. 

Heritability estimates of all the MIRS-predicted protein fractions in the present 

study (0.19 to 0.46; Table 6.2) were higher than the heritability estimate for 24 hour milk 

yield (0.17). Moreover, the heritability of 24 hour milk yield (0.17) and protein content 

(0.46) in the present study  were in the range of the heritability estimates for the gold 

standard protein fractions (0.04 to 0.61; Table 6.1), the gold standard FAA (0.05 to 0.58; 

Table 6.1) and the MIRS-predicted FAA (0.15 to 0.36; Table 6.2). Previous heritability 

estimates of protein fractions in bovine milk have been documented to be moderate to 

high ranging from 0.25 for β-CN to 0.80 for total LG (Schopen et al., 2009, Bonfatti et 

al., 2011; Haung et al., 2012), although they differed across studies. Recent heritability 

estimates for gold standard protein fractions in milk from Simmental cows ranged from 

0.18 (κ-CN) to 0.68 (αS1-CN) (Bonfatti et al., 2009) and in milk from both Holstein and 

Holstein-Jersey crosses the range was between 0.33 [αS1-CN, β-CN and α-LA) and 0.68 

(β-LG) (Huang et al., 2012). 

In the present study, all protein fractions were positively genetically correlated 

with protein content contradicting previous findings by Schopen et al. (2009), who 

reported β-CN, κ-CN, α-LA, β-LG, and total whey to be negatively genetically correlated 

with protein content. Genetic correlations among the protein fractions were also found to 

be different between the present study and between the studies of Schopen et al. (2009) 

and Bonfatti et al. (2011). However, different methods used to measure milk protein 

fractions, as well as the characteristics of the study populations such as the breeds used, 

as well as the parities and stages of lactations represented, could have contributed to the 

difference in correlations. Bonfatti et al. (2011) used milk samples from 2,167 Simmental 
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cows and protein fractions were determined by high performance liquid chromatography, 

whereas Schopen et al. (2009) used information from 1,940 first-parity Holstein Friesian 

cows and protein fractions were determined by capillary zone electrophoresis. In the 

present study, protein fractions were predicted by MIRS for up to 134,100 milk samples, 

from Holstein, Friesian, Jersey, Norwegian Red, and Montbelliarde cows as well as their 

crosses, from a range of parities and stages of lactations.  

Many current national breeding programmes indirectly select for protein content 

through a negative weighting on milk yield concurrent with a positive weighting on 

protein yield. The coefficient of genetic variation for milk yield and protein content in the 

present study was 7.45 and 4.80, respectively; these were less than the average coefficient 

of genetic variation for the gold standard protein fractions (12.62) and FAA (10.94). 

Genetic gain in the milk yield of dairy cows in recent years is well documented (Berry et 

al., 2014; Berry, 2008; Norman and Powell, 1999) with lactation milk yield per cow 

doubling over the past 40 years (Oltenacu and Broom, 2010); given the respective 

coefficient of variation for milk yield, protein fractions and FAA this therefore implies 

that similar genetic gain is possible for protein fractions and FAA if these traits were 

included in a selection index with high accuracy of selection.  

However, a relevant question is the benefit in response to selection of including 

these detailed proteins or FAA in a breeding objective which already includes other traits 

like milk yield and protein content. One approach to estimate such a benefit is the 

coefficient of genetic variation of these traits after adjustment for the genetic merit of 

protein content or milk yield. The near unity correlation between milk protein content and 

total CN (0.99) and the resulting small coefficient of genetic variation for total CN  after 

adjustment for the genetic merit of protein content (0.75) in the present study suggests 

that including CN content directly in a breeding goal may be of little additional benefit. 

Similar to the correlation between milk protein content and total CN, the correlations 

between αS1-CN and protein content, between β-CN and protein content and between κ-

CN and protein content were strong (0.95, 0.94 and 0.97, respectively) and the coefficient 

of genetic variation for αS1-CN, β-CN and κ-CN after adjustment for the genetic merit of 

protein content was 0.88, 1.39 and 1.49, respectively. Hence, a high selection pressure 

would need to be applied to αS1-CN, β-CN and κ-CN and this would result in less 

selection pressure on the other traits within the breeding index and thus reduced genetic 

gain. The correlation between protein content and α-LA was only 0.55 and the 



 

134 
 

corresponding coefficient of genetic variation after adjusting for the genetic merit of 

protein content was 2.70. Therefore, it may advantageous to include α-LA as an 

individual trait in the breeding index even if genetic gain is slow, as a higher 

concentration of α-LA in milk is desirable in infant formula production (Lien, 2003).  

The weak genetic correlations between FAA and 24 hour milk yield and between  

FAA and protein content signify that current selection objectives on milk yield and 

protein content (Miglior et al., 2005) are not fully exploiting the potential to genetically 

improve milk protein fraction and FAA phenotypes. The near unity genetic correlation 

between total FAA and Glu (0.99) implies there is little expected benefit of including 

both in a breeding index. The lack of very strong genetic correlations among the other 

FAA (i.e., Gly, Lys, Arg, Asp, Ser and Val) plus the existence of a coefficient of genetic 

variation for these traits ranging from 3.64 (Gly) to 25.65 (Ser; Table 6.1) signify these 

traits could be simultaneously in a breeding index. 

6.5.2 Practical implications of results 

Routine access to vast quantities of phenotypic data for protein fractions and 

FAA is imperative to achieve a high accuracy of selection and thus genetic gain. Based on 

the heritability estimates, as well as the phenotypic and genetic variances of the traits 

estimated in the present study, the number of progeny required to achieve a reliability 

(i.e., squared accuracy of selection) of 0.70 for a sire is 20 for αS1-CN, 47 for α-LA, 170 

for Glu, and 65 for Gly. MIRS is an efficient method commonly used by milk recording 

organisations worldwide to predict milk fat, protein, CN and lactose and the ability of 

MIRS to predict individual protein fractions and FAA with reasonable accuracies has 

been previously documented (Chapter 2). Thus, MIRS could be used as a rapid and cost-

effective method for generating substantial quantities of milk protein fraction and FAA 

phenotypes; hence, a high accuracy of selection for some protein fractions and FAA is 

possible. 

Of potential interest to many processors are the similarities, or lack thereof, 

between human and bovine milk and the potential strategies to make them more similar 

but doing so at a low cost. Human and bovine milk differ in their protein profile; human 

milk has a whey to casein ratio of approximately 60:40, while bovine milk has a whey to 

casein ratio of approximately 20:80. Human milk does not contain β-LG, albeit it is 

present in the greatest amount in bovine milk and the concentration of α-LA (the 

dominant protein in human milk) is relatively low in bovine milk (Lien, 2003). It is 
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therefore advantageous for infant formula producers to select bovine milk with a higher 

concentration of α-LA and a lower concentration of β-LG and being able to breed cows 

for such a profile would therefore be very beneficial. The amino acid profile in human 

and bovine milk is also different (Chuang et al., 2005); human milk contains more Glu, 

Lys, Arg, Asp, Ser and Val than bovine milk (Ghadimi and Pecora, 1963). Indeed, the 

heritability estimate of the gold standard α-LA was 0.35, while the corresponding 

coefficient of genetic variation was 3.01 and similarly, the heritability estimate of total 

FAA was 0.37, with a coefficient of genetic variation of 25.27; therefore, potential clearly 

exists to breed for both α-LA and total FAA.  

Processors also aim to maximise the efficiency of transformation of the milk 

they purchase into saleable products. A high concentration of CN to total protein is 

imperative for the transfer of proteins from milk to cheese and high concentrations of αS1-

CN, β-CN, κ-CN, and β-LG B increase cheese yield (Wedholm et al., 2006). The 

heritability estimates of the MIRS-predicted CN fractions ranged from 0.36 (κ-CN and 

αS2-CN) to 0.44 (αS1-CN) and  the genetic standard deviation calculated for gold standard 

CN fractions in the present study (1.10 g/L for αS1-CN) were comparable to results 

obtained by Schopen et al. (2009) (0.94 g/L for αS1-CN). Genetic variation for CN 

fractions also existed in the present study (genetic standard deviation ranged from 0.18 

g/L for αS2-CN to 0.79 g/L for αS1-CN), even independent of the genetic merit of protein 

content indicating ample opportunity to improve the composition of protein fractions in 

cow milk through breeding, thereby improving the quality of milk for cheese production. 

6.6 Conclusions 

In conclusion, all traits were heritable and exhibited considerable exploitable 

genetic variation; therefore MIRS could be a viable method to collect a large amount of 

data for use in genetic evaluations with the goal of improving milk quality traits. Protein 

fractions and FAA can be included in the selection index at no marginal cost, because 

individual cow (and bulk tank) milk samples are routinely subjected to MIRS analysis. 
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Summary, Overall Conclusions and Implications and Future Research 
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7.1  Summary 

The overall aim of this thesis was to determine the feasibility of breeding for 

improved milk quality and in particular protein fractions, free amino acids (FAA) and 

milk colour traits. To breed for a characteristic such as milk quality it must be: (i) 

economically or socially important (ii) exhibit genetic variation (i.e. be heritable), and 

(iii) be measurable or genetically correlated with a measurable trait.  

• In Chapters 2 and 3, milk samples were collected from 7 research farms operated by 

the Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, 

Fermoy, Co. Cork between August 2013 and August 2014, inclusive. Milk protein 

fractions and FAA were determined by high performance liquid chromatography; 

milk colour was measured using a Chroma Meter CR400 with a closed cone, set on 

the L* a* b* system. Prediction equations were developed to predict 557 proteins, 715 

FAA and 601 milk colour samples directly from the MIR spectrum.  Chapters 4 and 

6 utilised additional spectral data from two sources: (i) 7 research herds operated by 

the Animal and Grassland Research and Innovation Centre (Teagasc, Ireland) and (ii) 

69 Irish commercial dairy herds. The research spectra comprised of 94,286 separate 

morning and evening milk samples; the commercial spectra comprised of 40,260 milk 

samples (morning and evening milk samples combined). Gold standard data (715 milk 

samples) were used to generate equations to predict individual and groups of milk 

proteins and FAA using the mid-infrared spectrum of milk. In Chapter 4 factors 

associated with both protein and FAA composition traits were quantified separately 

using linear mixed models in ASReml. In Chapter 5, the spectral data consisted of 

136,807 milk samples from 9,824 cows and the pedigree of all animals was traced 

back at least four generations. Mid-infrared spectroscopy prediction models 

previously developed in Chapter 2 were applied to all spectra to predict milk 

lightness (L*), red-green index (a*), and yellow-blue index (b*). Factors associated 

with milk colour traits were quantified separately using linear mixed models in 

ASReml. In Chapter 6, pedigree information for 33,949 animals was used to quantify 

the extent of genetic variation in the milk quality traits of MIRS predicted protein 

fractions and FAA. Genetic, permanent environmental and residual (co) variances for 

protein fractions and FAA composition were quantified using linear mixed models. 

Results from this thesis clearly show that MIRS is useful to routinely and 

efficiently predict some milk quality traits such as some protein fractions, some FAA and 
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the b* colour of milk at a population level. The greatest correlation coefficient of external 

validation obtained for protein fractions, FAA and colour were 0.74 (total CN), 0.75 

(Gly) and 0.72 (b*), respectively. The knowledge generated in this thesis of how milk 

protein fractions and FAA change across calendar months of the year, stage of lactation, 

parity and breed could provide useful input parameters for decision support tools in the 

management of product portfolios by processors. For example, protein fractions were 

present in the lowest concentration in July and August, while FAA were present in the 

greatest concentration during these months. Younger animals produced more total CN, 

total whey and total β-LG and some FAA in milk across lactation than their older 

contemporaries. Jersey cows produced milk that had a greater concentration of all CN 

fractions but a lesser concentration of total FAA than Holstein cows.  

 All protein fractions, FAA and colour were low to moderately heritable. 

Heritability of the predicted protein fractions, FAA and milk colour ranged from 0.04 (β-

CN) to 0.61 (total-LG), from 0.05 (Asp) to 0.58 (Ser), and from 0.29 (L*) to 0.35 (b*), 

respectively. The coefficient of genetic variation of protein fractions, FAA and milk 

colour ranged from 3.60 (α-LA) to 21.46 (β-LG B), from 0.45 (Glu) to 9.42 (total FAA), 

and from 0.37 (L*) to 1.72 (a*), respectively. 

 Results from this thesis demonstrated that some protein fractions, some FAA 

and milk colour are predictable from MIR and these predictions exhibit genetic variation 

and thus breeding for improved milk quality is feasible. The prediction of protein 

fractions, FAA and milk colour by MIRS could benefit the dairy breeding industry 

worldwide through genetic selection of animals for superior quality milk and allowing for 

the more accurate selection of milk for human consumption, infant milk formula and 

cheese production. The generated predictions could also be useful for optimising both 

herd and processor management strategies. 
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7.1.1 Chapter 1: Literature review 

Objective: To review the available literature pertinent to the mid-infrared 

spectroscopy prediction of protein fractions, FAA and milk colour as well as the 

phenotypic and genetic factors associated with these traits.  

• Detailed milk product quality traits are not considered in the Irish national dairy cow-

breeding objective, at present, despite their importance to the bio-economy. 

• Bovine milk generally consists of about 3.3% protein, of which 78% is comprised of 

CN, 17-18% of whey protein and the remaining 4-5% as non-protein nitrogen. 

• Free amino acids (FAA) in milk are amino acids resulting from milk protein 

denaturation and therefore do not contribute to the total protein of milk.  

• Human and bovine milk have different FAA content and composition, with bovine 

milk generally having a lesser concentration of FAA than human milk. 

• The yellow colour of bovine milk is related to the level of β-carotene and fat content 

in milk with a greater β-carotene content associated with a more yellow colour in 

milk. 

• Mid-infrared spectroscopy (MIRS) is a technique that studies the interactions between 

light and matter within the mid-infrared region of the electromagnetic spectrum. 

• MIR prediction accuracies for CN fractions ranged in value from a coefficient of 

determination of 0.13 for β-CN to a coefficient of determination of 0.66 for αS1-CN. 

• Both genetic and management factors such as breed, parity, stage of lactation and 

milking time influence the quantity of milk protein fractions, FAA and colour of 

bovine milk. 

• Heritability estimates of individual milk proteins are moderate to high; ranging from 

0.33 for αS1-CN, β-CN, α-LA and to 0.69 for β-LG (Haung et al., 2012) 

• Genetic correlations among the CN fractions and between CN and whey fractions 

were generally weak to moderate. 

• Gaps in the knowledge include: 

o Effectiveness of MIRS in predicting milk protein fractions, FAA and colour. 

o Cow level factors associated with protein fractions, FAA and colour in milk 

from grazing dairy cows. 

o Genetic parameters for protein fractions, FAA and colour in milk from grazing 

dairy cows. 
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7.1.2 Chapter 2: Prediction of individual milk proteins including free 

amino acids in bovine milk using mid-infrared spectroscopy and their 

correlations with milk processing characteristics 

Objective: To evaluate the effectiveness of mid-infrared spectroscopy in 

predicting milk protein fractions and FAA composition in bovine milk. 

• Milk protein fractions and FAA were determined by high performance liquid 

chromatography for 557 and 715 milk samples, respectively. 

• Prediction models from MIRS were developed to predict each trait separately using 

partial least squares regression. 

• The correlation coefficient of cross validation between gold standard and MIRS 

predicted protein fractions ranged from 0.43 (β-LG A) to 0.76 (total whey and LG); 

the greatest correlation coefficient of external validation value obtained for protein 

fractions was 0.74 for total CN, respectively.  

• The correlation coefficient of cross validation between gold standard and MIRS 

predicted FAA ranged from 0.51 (Ser) to 0.75 (Gly); the greatest correlation 

coefficient of external validation value obtained for FAA was 0.75 for Gly. 

• The linear regression coefficient of the gold standard values on the respective MIRS 

protein fractions ranged from 0.76 (β-LG B) to 0.99 (β-CN and κ-CN) and the bias 

ranged from -0.0068 g/L (total CN) to 0.0072 g/L (αS2-CN).  

• The linear regression coefficient of the gold standard values on the respective MIRS 

protein fractions FAA ranged from 0.67 (Ser) to 0.92 (Asp) and the bias ranged from -

2.0689 µg/mL (Glu) to -0.0487 µg/mL (total FAA).  

• The Pearson correlations among the gold standard traits were generally comparable to 

the Pearson correlations among the respective MIRS-predicted traits. 

• Rennet coagulating time was positively associated with MIRS-predicted protein in 

early lactation (r = 0.19), but was negatively correlated with MIRS-predicted protein 

in late lactation (r = −0.11), corresponding with the increase in protein concentration 

across lactation. 

• In conclusion, MIRS is useful to routinely and efficiently measure some milk protein 

fractions and some FAA at a population level. 



 

141 
 

7.1.3 Chapter 3: Effectiveness of mid-infrared spectroscopy to predict 

the colour of bovine milk and the relationship between milk colour and 

traditional milk quality traits 

Objective: To evaluate the ability of MIRS to predict milk colour-related traits 

and to estimate the correlations between these milk colour traits and a selection of 

traditional milk quality traits. 

• Milk colour was measured using a Chroma Meter CR400 with a closed cone set on 

the L* a*b* system for 601 milk samples from seven research farms. 

• Prediction models using MIR were developed to predict each trait separately using 

partial least squares regression. 

• Moderate accuracy of prediction was obtained for the b* index (rc=0.74 and rv = 

0.72), whereas poor prediction accuracy of prediction was obtained for both the L* 

index (rc=0.63 and rv = 0.55, respectively) and a* index (rc=0.37 and rv = 0.30). 

• The accuracy of predicting the b* index was greater (P < 0.05) when all breeds 

combined were used in external validation (rv = 0.72) compared to when just the 

Holstein-Friesian (rv = 0.64) or Jersey (rv =0.66) was used. 

• Jersey cows had a greater (P<0.01) mean value for the yellow colour of milk (b* = 

10.03) than the Holstein-Friesian cows (b* = 7.48) and their milk also had a greater 

fat content. 

• The linear regression coefficient of the gold standard values on the respective MIRS-

predicted values of a*, L*, and b* was 0.81 (0.11), 0.88 (0.05), and 0.96 (0.04), 

respectively; only the regression coefficient on L* was different from 1. 

• The bias ranged from -0.005 (b*) to 0.02 (L*). 

• A moderate correlation (0.56) existed between the MIRS-predicted L* and b* indices, 

both of which were weakly correlated with the a* index. 

• The colour traits b* and L* were moderately correlated with MIRS-predicted milk fat, 

protein, and casein content; the correlation between the gold standard b* and MIRS-

predicted fat (0.65) and between the MIRS-predicted b* and MIRS-predicted fat 

(0.59) were similar. 

• In conclusion, MIRS data could be used as a screening tool to efficiently determine 

the b* colour of milk at a population level, providing a useful tool for the dairy 

industry and aiding in feeding management and selective breeding. 
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7.1.4 Chapter 4: Factors associated with protein fractions and FAA 

predicted using mid-infrared spectroscopy in bovine milk 

Objective: To determine the cow and herd level factors associated with detailed 

protein and FAA composition of bovine milk predicted using MIRS. 

• Spectral data used consisted of 

o 94,286 separate morning and evening milk samples from seven research herds.  

o 40,260 milk samples (morning and evening milk samples combined) from 69 

commercial herds. 

• Mid-infrared spectroscopy prediction models developed in Chapter 2 were applied to 

all spectra. 

• Factors considered in the linear mixed model included the fixed effects of calendar 

month of milk test, milking time, parity, stage of lactation, the interaction between 

parity and stage of lactation, breed proportion of the cow and general heterosis and 

recombination loss coefficients of the cow; random effects of contemporary group as 

well as both within and across lactation effects were also fitted. 

• When adjusted for crude protein content, total CN and protein fractions (except for α-

LA) decreased post-calving to between 36 and 65 DIM across all parties and 

gradually increased thereafter; the observed decline in total protein and protein 

fractions in early lactation coincides with the period of negative energy balance 

observed in early lactation dairy cows. 

• A peak in the concentration of all CN fractions was evident in the months of August, 

September and October. The concentration of Glu was greatest during the months of 

February, March, April and June when adjusted for milk yield. 

• Younger animals produced more total CN, total whey and total β-LG in early and 

mid-lactation and more Glu and Asp in milk across lactation than their older 

contemporaries 

• Jersey cows produced milk that had a greater concentration of all CN fractions but a 

lower concentration of total FAA than Holstein cows. 

• In conclusion, changes in individual milk protein fractions and FAA across calendar 

months of the year and across stages of lactation could provide useful input 

parameters for decision support tools in the management of product portfolios by 

processors over time. 
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7.1.5 Chapter 5: Genetic and non-genetic factors associated with milk 

colour in dairy cows 

Objective: To quantify the contribution of cow-level genetic and non-genetic 

factors to variability in milk colour as described by L*, a* and b* indices predicted using 

MIRS. 

• Spectral data used consisted of 136,807 milk samples from 9,824 cows. 

• Mid-infrared spectroscopy prediction models previously developed in Chapter 2 

were applied to all spectra to predict milk lightness (L*), red-green index (a*), and 

yellow-blue index (b*). 

• Factors considered in the linear mixed model included the fixed effects of calendar 

month of milk test, milking time, parity, stage of lactation, the interaction between 

parity and stage of lactation, breed proportion of the cow, individual heterosis 

coefficient and recombination loss among breeds; random effects of contemporary 

group as well as both within and across lactation effects were also fitted. 

• Factors associated with milk colour were breed, stage of lactation, parity, milking-

time, somatic cell count, calendar month of the year and season of calving. 

• (Co) variance components for L̂*, â*, and b̂* were estimated using random 

regressions on the additive genetic and within-lactation permanent environmental 

effects.  

• Heritability estimates varied between 0.15 ± 0.02 (30 DIM) and 0.46 ± 0.02 (210 

DIM) for L̂*, between 0.09 ± 0.01 (30 DIM) and 0.15 ± 0.02 (305 DIM) for â*, and 

between 0.18 ± 0.02 (21 DIM) and 0.56 ± 0.03 (305 DIM) for b̂*. 

• A greater b* predicted value was evident in milk from Jersey cows. 

•  Milk b̂* deteriorated until 31 to 60 DIM, but then improved until the end of lactation. 

• Relative to multiparous cows, milk yielded by primiparous cows was, on average, 

lighter (i.e., greater L̂*), more reddish (i.e. greater â*), and less yellow (i.e. lower b̂*). 

• Strong positive genetic correlations existed between the predicted b̂* value and milk 

fat concentration, ranging from 0.82 ± 0.19 at 5 DIM to 0.96 ± 0.01 at 305 DIM. 

• In conclusion, potential exists to breed for different milk colour depending on the 

respective market demands. 
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7.1.6 Chapter 6: Genetic parameters of protein fractions and free amino 

acids predicted using mid-infrared spectroscopy 

Objective: to quantify the potential of breeding for improved milk protein and 

FAA composition, but doing so by exploiting the prediction of these components from 

routinely available MIRS collected from individual cows at milk testing. 

• Spectral data used consisted of 

o 94,286 separate morning and evening milk samples in seven research herds.  

o 40,260 milk samples (morning and evening milk samples combined) in 69 

commercial herds. 

o Pedigree information for 33,949 animals was available. 

• Gold standard data (715 milk samples) were used to generate equations to predict 

individual and groups of milk proteins and FAA using the mid-infrared spectrum of 

milk. 

• Genetic, permanent environmental and residual (co) variances for protein fractions 

and FAA composition were quantified using linear mixed models. 

• Heritability estimates for the MIRS-predicted protein ranged from 0.19 for α-LA to 

0.46 for β-LG A. 

• Heritability estimates for MIRS-predicted FAA ranged from 0.15 for Gly to 0.36 for 

Asp. 

• The estimated genetic standard deviation for each protein fraction trait genetically 

independent of protein content was less than the respective unadjusted measure; this 

was also reflected in lower heritability estimates. 

•  There was little impact on the heritability estimates for FAA when adjusted for 

differences in the genetic merit of 24 hour milk yield. 

• Genetic correlations among the MIRS-predicted protein fractions were weak to strong 

and ranged from -0.03 (β-LG A and β-LG A) to 0.99 (total CN and αS2-CN).  

• Genetic correlations among the MIRS-predicted FAA were also weak to strong and 

ranged from -0.44 (Asp and Lys) to 0.97 (Glu and total FAA); adjusting the 

correlations between MIRS-predicted FAA for the genetic merit of 24 hour milk yield 

did not greatly affect the correlations. 

• In conclusion, exploitable genetic variation for protein fractions and FAA exists; these 

traits can be included in the selection index at no marginal cost, because individual 

cow (and bulk tank) milk samples are routinely subjected to MIRS analysis. 
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7.2 Overall conclusions and implications 

The overall aim of this thesis was to determine the feasibility of breeding for 

improved milk quality in dairy cows. In order to breed for a trait such as milk quality, that 

trait must be: (i) economically or socially important (ii) exhibit genetic variation (i.e. 

heritable) and (iii) measurable or genetically correlated with a measurable trait. Detailed 

milk product quality is not considered in the Irish national dairy cow-breeding objective, 

at present, despite its fundamental importance to potentially add value to the Irish agri-

food industry. Inclusion of milk quality traits in national breeding goals is however 

particularly important for exporting countries, such as Ireland, to consistently achieve a 

value added high-quality product suitable for international markets.  

7.2.1 Genetic variation of milk quality traits 

 The application of MIRS predictions in breeding programs depends upon the 

genetic correlation between the predicted and measured values and whether genetic 

variation in the traits exists. There is a practical utility in the use of MIRS models, if the 

correlation and the genetic variance of MIRS phenotypes are moderate to strong with 

reasonable accuracies of prediction by MIRS. The success of breeding programs for 

increased milk yield in dairy cows is well recognised (Dillon et al., 2006; Norman and 

Powell, 1999); therefore based on the heritability estimates of colour in Chapter 5 

(predicted a*, L* and b* values were 0.10, 0.29 and 0.35, respectively) and protein 

fractions and FAA in Chapter 6 (predicted values of 0.46 for β-LG B and 0.32 for Glu) 

as well as the coefficient of genetic variation indicates it may be possible to breed for 

improved colour, protein fractions and FAA in milk.  

7.2.2 Phenotyping for milk quality traits 

Detailed milk product quality is not considered in the Irish national dairy cow-

breeding objective, largely due to lack of routine access to data on milk quality 

parameters. This is possibly owing to the expense of generating such data using currently 

available gold standard methods. The use of MIRS as a tool to predict detailed milk 

measures is attractive since the MIR spectrum is available at no additional cost to routine 

milk recording and it is faster than the usual gold standard (e.g., Liquid Chromatography-

/HPLC-based) techniques. The feasibility of MIRS to predict detailed milk composition 

traits such as fatty acids (De Marchi et al., 2011; Soyeurt et al., 2011), coagulation traits 

(De Marchi et al., 2013), as well as animal-level characteristics such as energy balance 
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(McParland et al., 2011, 2012) and feed efficiency (McParland et al., 2014) has recently 

been documented. The potential of milk MIRS to predict protein fractions and FAA 

(Chapter 2) as well as milk colour (Chapter 3) provides an opportunity to generate large 

quantities of data for use in genetic evaluations.  

7.2.3 Economic importance of milk quality traits 

Infant formula production is the fastest growing sector in the world dairy market 

(FAOSTAT, 2014). Currently, infant formula production contributes €620 million to the 

value of Irish dairy exports, while cheese contributes €600 million and butter €542 

million (Teagasc Publication, 2013). Human and bovine milk have different milk 

composition; the whey to casein protein ratio varies from 60:40 in human milk to 20:80 in 

bovine milk. Global cheese production and demand has increased in recent years and this 

trend is expected to continue (FAOSTAT, 2014). Milk protein composition is important 

as it affects both yield and characteristics of cheese and plays a vital role in the 

production of all cheese types (De Marchi et al., 2009a). Higher concentrations of all CN 

fractions in milk significantly increase cheese yield (Wedholm et al., 2006) and rennet 

coagulating time is positively correlated with the content and proportions of αS1-CN and 

αS2-CN in total CN (Bonfatti et al., 2011b). Raw milk colour influences the colour of 

subsequent dairy products and by-products (Descalzo et al., 2012) thereby influencing the 

attractiveness of the milk for different markets. A yellow colour of dairy products is 

considered unfavourable in Middle Eastern dairy markets (Keen and Wilson, 1992), but 

in Europe, a yellow colour is favourable in high fat dairy products such as butter and full 

fat cheeses (Hutchings 1994, Casalis et al., 1972).  

Milk from certain herds could be selected based on it’s protein, FAA or colour 

profile and perhaps premiums paid for milk profiles that better fit the processors’ 

requirements. Herd-level estimates of milk quality is readily obtained as a by-product 

from national genetic evaluations and thus the data can be readily available; these herd 

solutions will be independent of genetic merit of the cows and therefore will more closely 

reflect the management influence on milk quality. Moreover, being able to monitor the 

trend in milk quality over time within a herd will provide decision support information to 

producers on the factors affecting the quality of their milk.  

Traditionally, bio-economic models based on the present or the future expected 

market value or costs of production have been used to define breeding goals for the dairy 

sector (Veerkamp et al., 2002). Bio-economic models are suitable where the futuristic 
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profit accruing from a one-unit change in the trait can be accurately measured; this is 

relatively straightforward for most agro-economic traits (e.g., milk yield, fertility) but can 

be more difficult for novel traits such as protein fractions and FAA that have no explicit 

market value (Henchion et al., 2016). Another method to assist in determining the relative 

emphasis that should be placed on a trait where no market values exist is to undertake a 

survey of stakeholders to gauge their perceived importance of specific traits. An example 

of this method is the Delphi technique; the objective of this technique is to (a) identify 

quality traits that stakeholders think should be included in the national dairy cow breeding 

goal; (b) understand why stakeholders consider these traits to be important; and (c) direct 

them towards an agreement on the quality traits that they consider should be included into 

the national breeding goal. A study was already undertaken using this technique to assess 

stakeholders’ opinion of the importance of detailed milk quality traits within an overall 

dairy breeding goal for profit; stakeholders included researchers, breeding companies and 

advisors (Henchion et al., 2016). Results indicated for researchers and processors, milk 

composition to be the most important attribute, followed closely by protein composition. 

The majority of farm advisors ranked protein composition in their top three most 

important attributes. Breeding companies placed a particular emphasis on protein 

composition. This indicates that across the dairy industry, protein composition is 

considered important and valuable enough to include in the national breeding objective. 

Based on the selection theory index, a 16% emphasis should be placed on product quality 

in the national breeding objective to halt any deterioration in the trait, while based on the 

Delphi study, a lower emphasis of 4-10% should be placed on product quality; the 

differences in results indicates the advantage of using more than one method to determine 

breeding goals (Henchion et al., 2016). 

7.2.3 Future research 

Several studies have examined the effects of genetic polymorphisms on the 

content of αS1-CN, αS2-CN, β-CN, κ-CN, α-LA, and β-LG (e.g., Ng-Kwai-Hang et al., 

1987; Bobe et al., 1999; Heck et al., 2009) and the technological properties of milk (Ng-

Kwai-Hang, 1997; Hill et al., 2002). Selectively breeding for cows with both the β-LG 

genotype B and the β-κ-CN haplotype A2B will result in milk that is more suitable for 

cheese production (Heck et al., 2009). The genes coding for milk proteins have been 

examined in dairy cattle, and a noticeable genetic variation has been identified (Caroli et 

al., 2009). The major milk proteins of the bovine milk (αS1-CN, αS2-CN, β-CN, κ-CN, α-
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LA, and β-LG) are coded by six structural genes (Martin et al., 2002). The four casein 

genes have been mapped on chromosome 6 in dairy cattle (Hayes and Petit, 1993), 

whereas the genes encoding α-LA and β-LG have been mapped on chromosomes 5 and 

11 (Hayes and Petit, 1993; Hayes et al., 1993). 

A genome wide association study is used to identify specific genetic variants 

associated with a trait; it usually focuses on associations between single nucleotide 

polymorphisms and traits of importance and variations (Bush et al., 2012). The aims of a 

genome-wide association studies (GWAS) in dairy cattle breeding is i) to have a better 

understanding of how genes control production traits ii) to identify markers associated 

with production traits, these markers can than be incoropated ino genomic evaluations to 

improve the accuracy of breeding values (Pryce et al., 2010). In recent years, 

developments in DNA-based marker technology allow the identification of genomic 

regions (quantitative trait loci, QTL) putatives associated with complex traits such as milk 

yield and milk composition in dairy cattle. Numerous GWAS for milk production traits 

on cattle have been completed (Thaller et al., 2003; Weikard et al., 2005; Meredith et al., 

2012; Raven et al., 2014). Researchers (e.g., Grisart et al., 2002; Thaller et al., 2003; 

Pryce et al., 2010) found a causative mutation (K232A) on the gene DGAT1 influencing 

milk production traits including fat and protein on bovine chromosome 14. A GWAS for 

milk protein composition in dairy cattle was completed by Schopen et al. (2011) and 

thirty one genomic regions on 20 bovine autosomes were found to be associated with 

milk protein composition. The region on BTA 6 was associated with all milk proteins and 

the region on BTA 11 associated with all milk proteins except α-LA.  

In comparison to traditional breeding programmes which only used phenotypic 

and pedigree information for animal evaluation, the inclusion of known quantitive trait 

loci in genetic evaluations should improve selection accuracy. Producers can selectively 

breed for cows with desired milk composition at a low cost, creating an opportunity to 

increase herd profitability (Lopez-Villalobos et al., 2012). A GWAS could be performed 

on the MIRS predicted dataset used in this thesis to identify genomic regions associated 

with individual protein composition, FAA and colour. These variants could be 

incorporated onto the Irish custom genotype panel and used in gentic evaluations to 

increase accuracy of selection for milk quality traits.  
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