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Abstract

The main objective of this Ph.D thesis is to provide some advances in permutation
testing within di�erent �elds of statistics. Mainly, the thesis is divided into four
parts.

First, the two notions of power function of permutation tests (conditional and
unconditional) are reviewed. The use of empirical conditional power function for
sample size estimation is investigated. Then, the notions of reproducibility proba-
bility and generalizability probability are de�ned within the permutation framework.
It is shown that the reproducibility and generalizability probabilities are important
tools for sample size adjustment.

Second, permutation tests with ranked set sampling are investigated. The ef-
fectiveness of ranked set sampling on the power of permutation tests is studied.
Two-sample permutation test is considered as a guide. The power of the two-sample
permutation test is computed for ranked set and simple random samples. It is shown
that the test for ranked set sample is more powerful than for simple random sample.
Moreover, the e�ectiveness of the set size and number of cycles of ranked set sample
is studied. It is shown that the power increased by the set size and/or the number
of cycles. In addition, two test statistics are proposed for ranked set sample and
investigated under di�erent kind of distributions (symmetric and asymmetric).

Third, permutation tests in linear mixed model are investigated. Some tests
for a zero random e�ect variance component are reviewed and a new permutation
test is proposed. Random intercept model is considered as a guide. The proposed
permutation test has the correct nominal level of signi�cance and is more powerful
than the usual tests based on a mixture of χ2 distributions. Moreover, the proposed
permutation test is the fastest, according to computing time, approach among those
resampling-based test approaches.

Finally, permutation tests in cluster analysis is investigated. Tests for random
agreement between two sets of clusters of a dataset are discussed. The adjusted
Rand index is proposed as a test statistic. Two testing methods are proposed. The
�rst method is based on the χ2 distribution assuming the cluster sizes within each
set of clusters are equal. The second method is based on the permutation approach.
Comparison between these proposed methods is carried out in terms of empirical
level of signi�cance.
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Riassunto

L'obiettivo principale di questa tesi di Dottorato è di conseguire alcuni sviluppi
nell'analisi di permutazione nell'ambito di diversi campi della statistica. La tesi è
suddivisa in quattro parti.

La prima parte prende in esame due nozioni relative alla potenza del test di
permutazione (condizionata e incondizionata). E' stato anche indagato l'uso della
potenza empirica condizionata per la valutazione della dimensione del campione.
Quindi, vengono de�nite all'interno dell'approccio di permutazione, le nozioni di
probabilità di riproducibilità e di probabilità di generalizzabilità. Viene mostrato
che le probabilità di riproducibilità e generalizzabilità sono strumenti importanti
nell'aggiornamento della dimensione del campione.

Nella seconda parte vengono studiati test di permutazione nel ranked set sam-
pling. Quindi viene anche studiato l'e�etto di questo tipo di campionamento sulla
potenza dei test. Un test di permutazione per due campioni è stato preso come
guida. L'e�cienza del test di permutazione per due campioni viene calcolata per il
ranked set sampling e quello casuale semplice. Viene anche esaminata l'e�cienza rel-
ativa del ranked set sampling rispetto al campione casuale semplice nella condizione
di uguaglianza delle numerosità campionarie e�ettivamente osservate. Viene inoltre
esaminata l'e�cienza rispetto alla dimensione delle unità e il numero dei cicli del
ranked set sampling; ne risulta che l'e�cienza aumenta a seconda del set size e/o
il numero dei cicli. Inoltre, vengono proposti due test statistici di permutazione
esaminati sotto diversi tipi di distribuzione degli errori (simmetrica e asimmetrica).

Nella terza parte, vengono esaminati test sul modello lineare misto. Viene in
particolare proposto un test di permutazione per l'ipotesi nulla che la componente di
varianza sia pari a zero contro l'alternativa che sia positiva. Fa da guida il modello
dell'intercetta casuale. Il test di permutazione proposto ha il corretto livello di
signi�catività ed è più e�ciente dei test basati sulla mistura di distribuzioni χ2.
Inoltre, il test proposto è anche l'approccio più veloce in termini di tempi di calcolo
fra quelli basati sul ricampionamento.

In�ne, vengono esaminati test di aggregazione casuale fra due gruppi cluster di
un medesimo set di dati. L'adjusted Rand index viene adottato come test statistico.
Vengono proposti due metodi di analisi. Il primo è basato sulla distribuzione χ2

tramite l'uso della relazione tra la statistica di Pearson e l'adjusted Rand index.
Il secondo è basato sull'approccio permutazionale. Il confronto tra i due metodi
proposti è svolto in termini di livello empirico di signi�catività.
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Chapter 1

Introduction

Contents

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main Contributions of the Thesis . . . . . . . . . . . . . . . 2

1.1 Overview

Traditional parametric tests such as t-tests and F -tests are not always robust to
violation of its assumptions of normally distributed errors, homoscedasticity and
random sampling from a target population. However, the normality assumption
may not always be reasonable. In the analysis of univariate data, often someone try
avoiding the problem of non-normal data by �nding suitable transformations while
maintaining the homoscedasticity assumption in the null hypothesis. Note that
this assumption is not generally attained if the monotonic transformations are not
linear (Box and Tiao, 1964; Posten, 1978; Rasch and Guiard, 2004). An alternative
approach is to use permutation tests, where errors are not assumed to be normally
distributed and/or homoscedastic in the alternative, while maintaining dominance
in distribution.

The use of permutation tests has received renewed attention in recent years
with the advent of much faster and more accessible computer power. In general, for
an exact test by permutation, the reference distribution of a relevant test statistic
under the null hypothesis is constructed by calculating its value for all possible
rearrangements (permutations) of the observations (or by a large random samples
of such rearrangements). A p-value is then calculated as the proportion of the values
of the statistic obtained under permutation that are equal to or more extreme than
the observed value.

All simple and many relatively complex parametric tests have a correspond-
ing permutation test version that is de�ned by using the same test statistic as the
parametric test, but obtains the p-value from the sample-speci�c permutation dis-
tribution of that statistic, rather than from the theoretical distribution derived from
the parametric assumption. Fisher (1934, 1935) introduced the permutation test as
the exact test for the association between two binary variables when the expected
number of cells is less than 5; that is, when the chi-square test fails. Also it is useful
for one sided testing if at least one variable is ordered categorical. In addition, he
introduced the exact test for testing di�erences between means of two populations
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when the assumptions of the two-sample t-test were not met. Pitman (1937a,b,
1938) developed exact permutation methods consistent with the Neyman-Pearson
approach for the comparison of k ≥ 2-samples and for bivariate correlation. For two-
sample design, Pitman introduced a test statistic which is a monotonic increasing
function of the square of the t-test statistic.

Permutation tests are used in di�erent �elds of statistics. For examples, Sun
and Sherman (1996) used permutation tests in survival analysis, Mehta and Patel
(1997) used permutation tests in categorical data analysis, Anderson and Robinson
(2001) used permutation tests for linear models, and Fitzmaurice et al. (2007) used
permutation tests for generalized linear mixed models. In this thesis, empirical
conditional power analysis of permutation tests is investigated. Permutation tests
are studied in ranked set sampling, linear mixed model and cluster analysis. New
tests are proposed and compared with some available parametric and nonparametric
tests.

1.2 Main Contributions of the Thesis

The main contributions of this Ph.D thesis are:

• In accordance with Goodman (1992), Shao and Chow (2002) and De Martini
(2008) the notions of reproducibility probability and generalizability proba-
bility are de�ned within the permutation framework and their use for sample
size adjustment is addressed. Moreover, the use of empirical conditional power
approach for sample size estimation is studied.

• Ranked set sampling (RSS) is a sampling scheme which can successfully re-
place simple random sampling (SRS) in experimental settings where measur-
ing the units of interest is di�cult, expensive, or time consuming, but ranking
small subsets of units is relatively easy and inexpensive. The use of statistical
methods based on RSS can lead to a substantial improvement over analogue
methods associated with SRS schemes (Wolfe, 2004). In this thesis, particu-
larly, in Chapter 4, the e�ectiveness of the ranked set sampling on the empirical
power function of permutation tests is studied. Moreover, the e�ect of the set
size and the number of cycles in ranked set sampling is addressed.

• In linear mixed models, testing for zero variance component is problematic.
This is because the null hypothesis lies on the boundary of the parameter
space. Some available tests for the variance component are reviewed and a
new test within the permutation framework is presented. Comparisons be-
tween these tests are done in terms of empirical level of signi�cance, empirical
unconditional power and execution time.

• In cluster analysis, it is of interest to measure the agreement (or similarity)
between two sets of clusters created independently by two observers. Some
measures of agreement can be found in the literature such as Rand index
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(Rand, 1971) and Jaccard index (Jaccard, 1901). Usually large values of these
measures indicate for a high agreement but not always; that is, we could have
a high value of such an index for a random agreement. Therefore, instead of
just measure the agreement, parametric and nonparametric tests for the null
hypothesis of random agreement are proposed. Comparisons between these
tests are done in terms of empirical level of signi�cance.
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Permutation Tests

Contents

2.1 Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Two-Sample Permutation Test . . . . . . . . . . . . . . . . . 6

2.2.1 Main notation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Permutation test procedure . . . . . . . . . . . . . . . . . . . 8
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2.1 Brief History

The idea of permutation test dates back to Fisher (1934/35), and Pitman (1937/38)
was next to consider permutation tests.

Fisher (1934, 1935) introduced the permutation approach for exact inference
within the conditionality and su�ciency principles of inference. He introduced the
permutation test as the exact test for the association between two binary variables
when the expected number of cells is less than 5; that is, when the chi-square
test fails. Also it is useful for one sided testing if at least one variable is ordered
categorical. In addition, Fisher introduced the exact test for testing di�erences
between means of two populations when the assumptions of the two-sample t-test
were not met. He pointed out that the probability of a type I error (see Section 2.3)
for the two-sample permutation test (Section 2.2) is closely approximated the normal
theory probability of a type I error for the particular problem with which he dealt.

Pitman (1937a,b, 1938) developed exact permutation methods consistent with
the Neyman-Pearson approach for the comparison of k ≥ 2-samples and for bivariate
correlation. For two-sample design, Pitman introduced a test statistic which is a
monotonic increasing function of the square of the t-test statistic.

Permutation tests are considered a subclass of nonparametric tests (Lehmann
and Romano, 2005; Pesarin and Salmaso, 2010). They are computationally intensive,
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but modern computational power makes permutation tests feasible. Nonparamet-
ric test statistics do not rely on a speci�c probability distribution that describes
the underlying population. In fact, permutation tests are always distribution free
since observed data are su�cient statistics in the null hypothesis (see Pesarin and
Salmaso, 2010, Sec. 2.1.3). Some assumptions are required to the samples (e.g.
exchangeability). The exchangeability assumption is generally assured by random
allocation of treatments to units in experimental work. In case of observational
study, exchangeability in the null hypothesis shall be assumed in order to obtain
exact testing solutions. If this assumption cannot be justi�ed, then approximate
permutation solutions are obtained in accordance, for instance, with the nonpara-
metric Behrens-Fisher testing.

The theory of optimal permutation tests is developed by Lehmann and Stein
(1949). Hoe�ding (1952) studied the asymptotic power behavior of permutation
tests. He found that permutation tests for the randomized block design and for
the two-sample designs are asymptotically as powerful as their related parametric
tests. Thus, the permutation test for the randomized block design is asymptotically
as powerful as the normal theory F -test, and the two-sample permutation test is
asymptotically as powerful as student's t-test.

Permutation tests are widely used in many research �elds such as agriculture,
clinical trials, educational statistics, business statistics and industrial statistics. For
more works on permutation test and its variations see Edgington (1995), Pesarin
(2001), Salmaso (2003), Good (2005), Basso et al. (2009) and Pesarin and Salmaso
(2010) and the references therein.

2.2 Two-Sample Permutation Test

2.2.1 Main notation

Assume that a unidimensional nondegenerate variable of interest X takes values on
sample space X , and that associated with (X,X ) there are distributions P belonging
to a nonparametric family P. Each P gives the probability measure to events A
belonging to a suitable σ-algebra A. For quantitative variables de�ned on the real
line, P is equivalent to the cumulative distribution function FP (x) :=

∫
t≤x dP (t),

x ∈ R. The notation (X,X ,A, P ) summarizes the statistical model associated with
the problem at hand.

It is assumed that for any statistical model (X,X ,A, P ) there exists, possibly
unknown, the density of P with respect to a dominating measure ζ on (X ,A) and
de�ned as fP := dP/dζ. Moreover, let Xj = {Xji, i = 1, . . . , nj} ∈ X nj be the
independent and identically distributed (iid) sample data from (X,X ,A, Pj) of size
nj , j = 1, 2, and n = n1 + n2 is the total sample size. For datasets with two
independent samples, one may write X = {X11, . . . , X1n1 , X21, . . . , X2n2} ∈ X n,
whose related model is (X,X n,A(n), P (n)), where P (n) = P

(n1)
1 P

(n2)
2 . In the con-

text of permutation tests, it may be convenient to use the unit-by-unit representa-
tion X = X(n) = (X

(n1)
1 ,X

(n2)
2 ) = {X(i), i = 1, . . . , n; n1, n2} to denote datasets,
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where it is intended that the �rst n1 data in the list belong to the �rst sample
(treatment group) and the rest to the second sample (control group). Indeed, if
u∗ = (u∗1, . . . , u

∗
n) indicates a permutation of unit labels u = (1, . . . , n), then X∗ =

{X∗(i) = X(u∗i ), i = 1, . . . , n; n1, n2} is the related permutation of X. And so,
X∗1 = {X∗1 (i) = X(u∗i ), i = 1, . . . , n1} and X∗2 = {X∗2 (i) = X(u∗i ), i = n1 +1, . . . , n}
are the two permuted samples respectively. One may also use the same symbol X
to denote the pooled dataset as obtained by X = X1

⊎
X2, where

⊎
is the symbol

for concatenating two vectors.
In this thesis and for two-sample design, testing problems for one-sided alter-

natives as generated by symbolic treatments with non-negative �xed shift e�ects δ
are considered. In particular, the �xed additive e�ects model is considered, which
is written as

X1i = µ+ δ + σZ1i, i = 1, . . . , n1; X2i = µ+ σZ2i, i = 1, . . . , n2, (2.1)

where µ is a population constant, Zji are exchangeable random errors with null
location and unit scale parameter, σ is a scale coe�cient independent on units
and treatment levels, and δ is the treatment e�ect (e�ect size) which is unknown
even after data have been collected. In practice, without loss of generality, µ = 0

(because it is a nuisance quantity common to all units and thus is not essential for
comparing X1 to X2) and σ = 1 are chosen. Therefore, the dataset can be written
as X(δ) = (Z1 + δ,Z2) where δ = (δi = δ > 0, i = 1, . . . , n1). The hypotheses of
interest are

H0 : {δ = 0} against H1 : {δ > 0}. (2.2)

It should be emphasized that {δ = 0} is equivalent to {X1
d
= X2}, i.e. to the

equality in distribution of treatment and control groups. The latter notation is
in accordance with the notion that data of two groups are exchangeable, same as
permutable, in the null hypothesis. The alternative is then consistent with the
notion that distribution of treatment group (X1) stochastically dominates that of
control group (X2).

A suitable test statistic, T : X n → R1 should be chosen such that, without loss of
generality, large values are evidence againstH0. Typically, T (X) = S1(X1)−S2(X2)

for the comparison with two-sample permutation design, where functions Sj , j = 1, 2

are assumed to be:

1. symmetric, that is, invariant with respect to rearrangements of data input,
i.e., their arguments;

2. strictly increasing, that is, Sj(X + Y) ≥ Sj(X), j = 1, 2, for any dataset X

and nonnegative Y
p
≥ 0 so that large values of T are evidence against H0.

The conditional support of T is given by

T (X) = {T ∗ = T (X∗), X∗ ∈ X/X},
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where X∗ is a permutation of X, X/X is the collection of all permutations generated
by X and it is called the permutation sample space or the conditional reference
space.

For a given level of signi�cance α, the critical value of the permutation test is
Tα. For simplicity, the non-randomized version of permutation test is adopted. By
indicating with T o = T (X) the observed value of T , H0 is rejected if T o ≥ Tα, and
the test is given by

ϕ(X|X/X) =

{
1 if T o ≥ Tα
0 otherwise

Due to the di�culty of expressing the permutation distribution of T ∗ in a closed
form, the determination of Tα(X) is considered not convenient in practice. So, the
p-value approach is considered. The p-value is de�ned as

λT (X) = Pr{T ∗ ≥ T o|X/X},

which is a non-increasing function of T o, and hence, H0 is rejected if λT ≤ α, for
any �xed value of α. The non-randomized permutation test is then given by

ϕ(X|X/X) =

{
1 if λT (X) ≤ α
0 otherwise

In practice, since the p-value λT (X) is one-to-one with the test statistic ϕ(X|X/X),
is itself used with the role of test statistic for which the critical value is α, because
in the null hypothesis the distribution of λT (X) is uniform over its support.

It is worthwhile to observe that the hypothetical frequency interpretation of
such reported p-values is as follows. If we were to accept the available data as just
decisive evidence against H0, then we would reject the null hypothesis when true a
long-run proportion λT (X) of times.

2.2.2 Permutation test procedure

A two-sample permutation test is carried out as follows.

1. Randomly assign experimental units to one of the two groups with n1 units
assigned to the treatment group and n2 units assigned to the control or placebo
group. Then, the observed datasets, X1 and X2, are obtained and the test
statistic is calculated, T o.

2. Permute the n = n1 + n2 observations between the two groups so that there
are n1 observations for the treatment group and n2 observations for the control
group. Write down the set of all possible permutations, i.e. the permutation
sample space X/X. The cardinality of X/X is(

n

n1

)
=

n!

n1!n2!
.
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3. For each permutation of the data, i.e. for each X∗ ∈ X/X, compute the test
statistic, T ∗ = T (X∗).

4. Compute the p-value,

λT (X) =
number of T ∗'s ≥ T o(

n
n1

) .

5. If a preassigned level of signi�cance, α, has been set, declare the test to be
statistically signi�cant if the p-value is not larger than this level.

Since it is tedious to write down the whole permutation sample space, conditional
Monte Carlo algorithm (Algorithm 2.1) is used to estimate the p-value at any desired
accuracy.

Algorithm 2.1 Conditional Monte Carlo (CMC)

1. For the given dataset X, calculate the observed test statistic, T o.

2. Take a random permutation X∗ ∈ X/X of X, and calculate the corresponding
test statistic T ∗ = T (X∗).

3. Independently repeat Step 2 a large number, say B, of times, giving B test
statistics, say {T ∗b , b = 1, . . . , B}.

4. The permutation p-value is estimated as

λ̂T (X) =

∑B
b=1 I(T ∗b ≥ T o)

B
,

where I(·) is the indicator function. Note that λ̂T (X) is unbiased and strongly
consistent due to Glivenko-Cantelli theorem (Shorack and Wellner, 1986).

2.3 Power Functions of Permutation Tests

Neyman and Pearson (1933) were the �rst to discuss the concepts of type I error and
type II error. Type I error occurs when the researcher rejects the null hypothesis
when it is true. Type I error probability is determined by the level of signi�cance
α. Hence, α is the probability of making a type I error when the null hypothesis is
true. α is de�ned as the long-run relative frequency by which type I errors are made
over independently repeated samples from the same population under the same null
hypothesis, assuming the null hypothesis is true. Conversely, type II error occurs
when the researcher accepts the null hypothesis when the alternative is true. The
probability of making a type II error under the alternative is denoted by β.

In general, type I error is considered to be more serious, and then more important
to avoid, than a type II error. Unfortunately, everything else being �xed, it is not
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possible to decrease both errors at the same time; reduce the type I error leads to
increase the type II error. Therefore, statisticians �x α and try to minimize β.

α and β can be calculated using the power function. The power function is
de�ned as

Pr(reject H0|δ) =

{
α if H0 is true
1− β(δ) if H0 is false

The power of permutation tests may be generally thought of in two quite di�erent
ways (Box and Andersen, 1955): �rst, as a power conditional upon the observations
which is considered in Section 2.3.1 as conditional power, and second, as what will
be called an unconditional power which is discussed in Section 2.3.2 (Kempthorne
et al., 1961; Collier and Baker, 1966; Pesarin and Salmaso, 2010).

2.3.1 Conditional power function

For testing the hypotheses in Equation 2.2 the conditional power function is de�ned
as

W
[
(δ;n, α, T )|X/X(δ)

]
= E[ϕ(X(δ)|X/X(δ))]

= Pr
[
λT (X(δ)) ≤ α|X/X(δ)

]
= E

{
I[λT (X†(δ)) ≤ α]

∣∣X/X†(δ)

}
, (2.3)

It is worthwhile to observe that W
[
(δ;n, α, T )|X/X(δ)

]
is a function of the e�ect

size δ for a given sample size n, preassigned level of signi�cance α and suitable test
statistic T conditional on the observed dataset which is a su�cient statistic for the
underlying distribution P in the null hypothesis. One may write

W
[
(δ;n, α, T )|X/X(δ)

]
=

{
α if δ = 0

1− β/X(δ) if δ > 0

It is also worth noting that λT (X†(δ)) is the p-value calculated on the dataset
X†(δ) = (Z†1 + δ,Z†2), where Z† ∈ Z/Z is a random permutation of unobservable
deviates Z. Indeed, the randomization principle essentially involves a random as-
signment of a subset Z†1 of deviates Z to treated units for which δ is active and the
rest to the untreated, so that Z†1 + δ are the data X†1 of the treatment group. From
this point of view, the actual dataset X(δ) is just one of the possible sets X†1 that
can be obtained by a re-randomization of deviates to treatments. And so the notion
of conditional power uses as many datasets X† as there are re-randomizations in
Z/Z (Pesarin and Salmaso, 2010).

It is clear that the true value of the conditional power function is not only tedious
but also virtual to attain. Hence, Algorithm 2.2 is used for evaluating it empirically.

Empirical post-hoc conditional power function In order for Algorithm 2.2
to be e�ectively carried out, it is necessary, in the given dataset, to separate the
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Algorithm 2.2 Empirical Conditional Power Function

1. Consider the pooled set of deviates Z = Z1
⊎

Z2 and the e�ects δ.

2. Take a re-randomization Z† of Z and the corresponding dataset X†(δ) =

(Z†1 + δ,Z†2).

3. Use the CMC algorithm to calculate the p-value λ̂T (X†(δ)).

4. Independently repeat Steps 2 and 3 a large number, say R, of times, giving R
p-values, say {λ̂T (X†r(δ)), r = 1, . . . , R}.

5. Finally, the empirical conditional power is given by

Ŵ [(δ;n, α, T )|X/X(δ)] =

∑R
r=1 I[λ̂T (X†r(δ)) ≤ α]

R
.

6. To obtain a function in δ, Steps 1-5 are repeated for di�erent values of δ.

contributions of random deviates Z from those of e�ects δ. This is generally not
possible in practice, because usually X is observed; its components Z and δ are
not separately observable. Thus, the conditional power is essentially a virtual no-

tion in the sense that it is well de�ned but is not calculable exactly. However, in
place of Ŵ [(δ;n, α, T )|X/X(δ)], the so-called empirical post-hoc conditional power

Ŵ [(δ; δ̂, n, α, T )|X/X(δ)] may be achieved. The main idea is to �nd an empirical

estimate of Z, Ẑ, by subtracting a suitable estimate of the e�ect size δ, δ̂, from
the observed dataset X. Thus, the empirical pooled set of deviates is given by
Ẑ = Ẑ1

⊎
Z2 = (X1 − δ̂)

⊎
X2. Note that this gives rise to approximate solution

because exchangeability condition is now approximate as δ̂ is not a permutationally
invariant estimate.

There are di�erent approaches to estimate δ which depend on the design of
study (Cooper and Hedges, 1997; Hedges and Olkin, 1985; Cohen, 1988). For two
sample permutation design, the di�erence between sample means, δ̂ = X̄1 − X̄2, is
considered.

To sum up, Algorithm 2.3 is used to �nd the empirical post-hoc conditional
power function.

2.3.2 Unconditional power function

To de�ne the unconditional power, the mean value of the conditional power,
W [(δ;n, α, T )|X/X], with respect to the underlying distribution P , must be ob-
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Algorithm 2.3 Empirical Post-Hoc Conditional Power Function

1. For the given datasetX, �nd an estimate of δ, δ̂. Then consider the consequent
empirical deviates Ẑ = (X1 − δ̂)

⊎
X2.

2. Take a random re-randomization Ẑ† of Ẑ. Then for any chosen δ the corre-
sponding dataset X̂†(δ) = (Ẑ†1 + δ, Ẑ†2).

3. Use the CMC algorithm to calculate the p-value λ̂T (X̂†(δ)).

4. Independently repeat Steps 2 and 3 a large number, say R, of times, giving R
p-values, say {λ̂T (X̂†r(δ)), r = 1, . . . , R}.

5. Finally, the empirical post-hoc conditional power is given by

Ŵ [(δ; δ̂, n, α, T )|X/X(δ)] =

∑R
r=1 I[λ̂T (X̂†r(δ)) ≤ α]

R
.

6. To obtain a function in δ, Steps 2-5 are repeated for di�erent values of δ.

tained. That is:

W (δ;n, α, T, P ) = EXn\X/X
{
E
[
W ((δ;n, α, T )|X/X)

]}
= EX

{
W [(δ;n, α, T )|X/X]

}
=

∫
Xn

I
[
λT (X(δ)) ≤ α|X/X

]
dP (X(δ))

Note that in order to properly de�ne the unconditional power W (δ;n, α, T, P ),
the underlying population distribution P must be fully speci�ed, that is, de�ned in
its analytical form and all its parameters. Also note that averaging with respect
to the whole sample space X n implies taking the mean with respect to each condi-
tional distribution over X/X and then taking the mean of these with respect to the
distribution over X n\X/X.

In practice, the unconditional power is based upon random sampling from some
population. The p-value of the permutation test is conditional upon the observations
for each sample, but the power is the proportion of p-values that are less than or
equal α over repeated sampling from the underlying population. Algorithm 2.4
is used for evaluating the unconditional power based on a standard Monte Carlo
simulation.

If the true e�ect size is unknown, one may attain the empirical post-hoc uncon-
ditional power function, denoted by Ŵ (δ; δ̂, n, α, T, P ).
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Algorithm 2.4 Empirical Unconditional Power Function

1. Choose a virtual value of the e�ect size δ.

2. From the given population distribution P draw one set of n deviates Z, and
then add δ to the �rst n1 errors to de�ne the dataset X(δ) = (Z1 + δ,Z2).

3. Use the CMC algorithm to calculate the p-value λ̂T (X(δ)).

4. Independently repeat Steps 2 and 3 a large number, say R, of times, giving R
p-values, say {λ̂T (Xr(δ)), r = 1, . . . , R}.

5. Finally, the empirical unconditional power is given by

Ŵ (δ;n, α, T, P ) =

∑R
r=1 I[λ̂T (Xr(δ)) ≤ α]

R
.

6. To obtain a function in δ, Steps 1-5 are repeated for di�erent values of δ.

2.4 Illustration Examples

2.4.1 Degree of reading power

In his Ph.D thesis, Schmitt (1987) was interested to test whether directed reading
activities in the classroom help elementary school students improve aspects of their
reading ability. A treatment class of 21 third-grade students participated in these
activities for eight weeks, and a control class of 23 third-graders followed the same
curriculum without the activities. After the eight-week period, students in both
classes took a Degree of Reading Power (DRP) test which measures the aspects
of reading ability that the treatment is designed to improve. The DRP scores are
reported in Table 2.1.

Table 2.1: Degree of reading power scores for third-graders

Treatment Group, Xt Control Group, Xc

24 43 58 71 61 44 42 43 55 26 33 41
67 49 59 52 62 54 19 54 46 10 17 60
46 43 57 43 57 56 37 42 55 28 62 53
53 49 33 37 42 20 48 85

For testing H0 : {µt = µc} versus H1 : {µt > µc}, Algorithm 2.1 is used. The
di�erence between the sample means is considered as a test statistic. The observed
test statistic is T o = 9.954 and the conditional p-value is λ̂ = 0.015. At α = 0.05

the null hypothesis is rejected.
Figure 2.1(a) shows the permutation distribution of the di�erence of means based

on 5000 iterations. The solid vertical line in the �gure marks the location of the
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statistic for the original sample, T o = 9.954. Use the permutation distribution
exactly as if it were the sampling distribution: the p-value is the probability that
the statistic takes a value at least as extreme as 9.954 in the direction given by the
alternative hypothesis.

Figure 2.1(a) shows that the permutation distribution has a roughly normal
shape. Because the permutation distribution approximates the sampling distribu-
tion, and hence the sampling distribution is close to normal. Therefore, the usual
two-sample t-test can safely be applied. Using the t-test, the p-value is 0.013, which
is very close to the p-value obtained using the permutation test.

Assuming the underlying distribution is normal, the unconditional (parametric)
power function can be obtained as follows.

W (δ;n, α, T, P ) = 1− Ft(t1−αdf , df, ncp), (2.4)

where Ft is the student t-distribution, df = n1 + n2 − 2 is the degrees of freedom,
t1−αdf is the 1 − α quantile of a student t-distribution with degrees of freedom df

and ncp = δ
(
S2
p( 1
n1

+ 1
n2

)
)−1/2

, S2
p =

∑n1
i=1(X1i−X̄1)2+

∑n2
i=1(X2i−X̄2)2

n1+n2−2 is the pooled

variance.
Figure 2.1(b) shows the empirical post-hoc conditional power function together

with the unconditional (parametric) power function.

(a) (b)

Figure 2.1: DRP data: (a) The permutation distribution. (b) The unconditional
power and the empirical post-hoc conditional power functions.

2.4.2 Tawjihi exam 2009/2010

The Tawjihi exam is a school matriculation exam, part of education in Palestine,
which is a prerequisite for graduation and university entrance. Palestine is divided
into two geographic regions: the West Bank and Gaza Strip. Since June 2007, Gaza
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Strip is under siege, and this impacted negatively on the schools' ability to proceed
normally with a structured learning-teaching process. Therefore, it is expected that
Tawjihi results in Gaza Strip are worse than in West Bank. So, it is of interest to
test H0 : {µWB = µGS} versus H1 : {µWB > µGS}.

Two samples are randomly chosen from these two regions, each of size 10. The
data are reported in Table 2.2.

Table 2.2: Tawjihi results in Palestine, 2009/2010

West Bank, XWB Gaza Strip, XGS

57.4 70.1 92.9 93.4 66.0 73.3 50.1 71.8 56.5 68.4
58.1 55.5 79.8 51.5 84.2 55.9 59.6 81.3 58.5 69.7

Algorithm 2.1 is used and the di�erence between the sample means is considered
as a test statistic. The observed test statistic is T o = 4.58 and the conditional
p-value is λ̂ = 0.215. At α = 0.05, the null hypothesis is not rejected.

Figure 2.2(a) shows that the permutation distribution has a roughly normal
shape. Applying the usual two-sample t-test, the p-value is 0.226.

Figure 2.2(b) shows three power curves; the empirical post-hoc conditional power
curve (Algorithm 2.3), the empirical unconditional power curve (Algorithm 2.4) and
the unconditional (parametric) power curve.

(a) (b)

Figure 2.2: Tawjihi data: (a) The permutation distribution. (b) Power functions.
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In this chapter, reproducibility and generalizability probabilities are de�ned
within the permutation framework. It is shown that these probabilities can be
useful for sample size adjustment. Moreover, the use of empirical conditional power
function of permutation tests for sample size estimation is investigated. Two-sample
permutation design is considered as a guide and some real data applications are used.

3.1 Introduction

In general, the power of a particular test is a�ected by many factors (Kraemer
and Thiemann, 1987; Lipsey, 1990; Hallahan and Rosenthal, 1996), the main three
factors, under simple regularity conditions, are:

1. Sample size, n. Everything else being �xed, the greater the sample size, the
greater the power of the test.

2. Signi�cance level, α. Everything else being �xed, the greater the signi�cance
level, the greater the power of the test.

3. (Standardized) e�ect size, ∆ = δ/σ. It is easier to detect a large e�ect than
it is to detect a small e�ect; that is, the greater the e�ect size, the greater the
power of the test.
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The most important component a�ecting statistical power is sample size in the sense
that the most frequently asked question in practice is how many observations need
to be collected.

Power analysis is discussed in di�erent �elds of studies. Cohen (1988) studied
power analysis for the behavioural sciences; he provided power tables for various
common parametric statistical tests that can be consulted to determine the sample
size for speci�ed values of α, ∆ and power. Moher et al. (1994) studied power anal-
ysis in clinical trials and Markowski and Markowski (1999) studied power analysis
in business researches.

For most common statistical tests, power is easily calculated from tables. For
example, see Cohen (1988) for some parametric tests and Randles and Wolfe (1979)
for some one- and two-sample nonparametric tests. Owen (1965) provided power
tables for various tests which use the student t-distribution. Moreover, statistical
computer software (e.g. R, SPSS) are used to calculate the power of the test. For
more complex tests, and for most nonparametric tests, ready tables are often not
available and not easily expressed. In these cases, Monte Carlo simulations can be
used to estimate power. For example, Collings and Hamilton (1988) proposed a
bootstrap method which does not require any knowledge of the underlying distri-
bution to estimate the power of the two-sample Wilcoxon test. See also Epstein
(1955), Teichroew (1955) and Hemelrijk (1961). However, some authors derived the
power functions and/or tables but only in limited cases. For example, see Dixon
(1954), Barton (1957), Bell et al. (1966), Haynam and Govindarajulu (1966) and
Milton (1970).

In this chapter, some applications of empirical conditional power function of
permutation tests are investigated. In particular, the use of empirical conditional
power for sample size estimation is investigated in Section 3.2.1, reproducibility
probability is investigated in Section 3.2.2, generalizability probability is investigated
in Section 3.2.3 and sample size adjustment is investigated in Section 3.2.4. Real
data applications are presented in Section 3.3. Concluding remarks are contained
in Section 3.4.

3.2 Applications of Empirical Conditional Power Func-

tion

3.2.1 Sample size calculation

Sample size calculation is an important and often di�cult step in planning a re-
search study. Samples that are too large may waste time, resources and money,
while samples that are too small may lead to inaccurate results. There are di�er-
ent approaches for sample size calculation including con�dence interval approach
(McHugh, 1961) and Bayesian approach (Wang et al., 2005). One of the most pop-
ular approaches involves studying the power of a test of hypothesis. In our context,
the empirical conditional power function of permutation test is used as an important
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tool for estimating an appropriate sample size for a particular study.
Consider the two samples in which X1 = {X11, . . . , X1n1} are iid F (x+ ∆) and

X2 = {X21, . . . , X2n2} are iid F (x) and the two samples are independent of one
another. We shall focus on the null hypothesis H0 : {∆ = 0} versus the alternative
H1 : {∆ > 0}. If the underlying distribution is normal, using t-statistic, the power
of the test is given by

1− β = 1− Φ

(
zα −∆

√
n1n2

n1 + n2

)
, (3.1)

where Φ(·) is the cumulative distribution function (cdf) of the standard normal
distribution and zα is the upper α critical value of the standard normal distribution.
It is worthwhile to observe that the power is monotonic nondecreasing in n1 and/or
n2. Moreover, for �xed total sample size, the highest power is attained when n1 =

n2.
For a preassigned level of signi�cance α, the sample size required to detect an

e�ect size ∆ with a desired level of power 1−β can be calculated from Equation 3.1
(see for example, Chow and Liu, 2004, pages 445-451). Let n1 = ρn, where 0 < ρ < 1

and n = n1 + n2, then

n =
1

ρ(1− ρ)

(
zβ + zα

∆

)2

. (3.2)

See also Chow et al. (2002) for sample size calculation based on noncentral t-
distribution.

Noether (1987) discussed sample size determination for some common nonpara-
metric tests. For the two-sample Wilcoxon test, the total sample size is given by

n =
1

12ρ(1− ρ)

(
zβ + zα

∆Noether − 0.5

)2

, (3.3)

where ∆Noether = Pr(X1 > X2) is Noether's e�ect size. There are several ways of
estimating ∆Noether under various assumptions, one possibility is

∆̂Noether =
4U

n2
,

where U is the Mann-Whitney statistic. Simono� et al. (1986) showed that the
maximum likelihood estimator of ∆Noether is given by

∆̂Noether = Φ

 X̄1 − X̄2√
S2
X1

+ S2
X2

 ,

where X̄1 and S2
X1

are the mean and variance of the �rst datasetX1 and X̄2 and S2
X2

are the corresponding quantities for the second dataset X2. Hamilton and Collings
(1991) used the results of Collings and Hamilton (1988) to suggest a procedure to
determine sample size of the two-sample Wilcoxon test.
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Within the permutation framework, De Martini (2002) studied the use of the
estimated unconditional power of permutation tests for sample size estimation. In
this section, the sample size is estimated by the use of conditional power function
of permutation tests.

For a preassigned level of signi�cance α, the sample size required to detect an
e�ect size ∆ with a desired level of power W̃ ∈ (α, 1) can be obtained by solving

n = arg min
n
{W [(∆;n, α, T )|X/X(∆)] = W̃}.

Since it is generally not possible to write the conditional power function in closed
form, the sample size cannot be exactly determined. Therefore, simulation study is
considered to estimate it. Algorithm 3.1 is used for sample size estimation to detect
an e�ect size ∆ with a desired power W̃ .

Algorithm 3.1 Sample Size Estimation

1. Start with a pilot sample of size n = n1 + n2; n1 to be drawn from the
treatment population and n2 from the control population, without assuming
the knowledge of their distributions.

2. Calculate the empirical conditional power W .

3. Adjust the sample size n to achieve desirable empirical conditional power W̃ .

4. To obtain a function in n, Steps 1 and 2 are repeated for di�erent values of n.

The required sample size n for detecting the e�ect size ∆ with a desired power
that is equal to the power at a given e�ect size ∆̃ with a total sample size ñ is
derived as follows.

W [(∆;n, α, T )|X/X(n)(∆)] = W̃ [(∆̃; ñ, α, T )|X/X(ñ)(∆̃)]

if and only if

∆

√
n1n2

n1 + n2
= ∆̃

√
ñ1ñ2

ñ1 + ñ2
.

Let n1 = ρn (0 < ρ < 1) and ñ1 = ρ̃ñ (0 < ρ̃ < 1), then

n =
ρ̃(1− ρ̃)ñ

ρ(1− ρ)

(
∆̃

∆

)2

. (3.4)

It is worthwhile to observe that this equality is asymptotically true and approx-
imation is good for relatively small sample sizes. This approximation is mainly due
to di�erences on supports for the involved permutation distributions.
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3.2.2 Reproducibility probability

Suppose that one study has been conducted and the result is signi�cant. What
is the probability that a second study will produce a signi�cant result? In other
words, what is the probability that the signi�cant result from the �rst study is
reproducible? Statistically, if the two studies are independent, the probability of
observing a signi�cant result from the second study is given by the power of the
test, irrespective of whether the result from the �rst study was signi�cant or not.
However, such information from the �rst study should be useful in the evaluation of
the probability of observing a signi�cant result in the second study. This leads to
the concept of reproducibility probability, which is di�erent from the power of the
test.

Shao and Chow (2002) de�ned the reproducibility probability as a person's sub-
jective probability of observing a signi�cant result from a future study, when sig-
ni�cant results from one or several previous studies are observed. Goodman (1992)
de�ned the reproducibility probability as an estimated power of the future study
using the data from the previous study. In other words, the reproducibility proba-
bility is de�ned as the power with ∆ replaced by its estimate ∆̂0 based on the data
from the previous study.

Within the permutation framework, Pesarin and Salmaso (2010) de�ned the re-
producibility probability or the actual post-hoc conditional power as the power
with ∆ replaced by its estimate ∆̂ obtained before randomization, denoted by
Ŵ [(∆̂; ∆̂, n, α, T )|X/X(∆̂)]. It is used to assess how reliable the testing inference
associated with (T,X) is, in the sense that if by chance the probability of obtaining
the same inference with (T,X†) as with (T,X) is greater than (say) 0.50, then the
actual inferential conclusion, given the set of units underlying X, is reproducible
more often than not.

Onwuegbuzie and Leech (2004) and Lenth (2007) pointed out that such repro-
ducibility probability can provide useful information for replication studies. Brewer
and Sindelar (1988) argued that this is merely a rephrasing of the a priori problem,
namely, What would the power be if I used my α, n and post-hoc (observed) e�ect

size ∆̂?. That is, contemplate a future study exactly like the one we just did, with
the same sample size; what is the probability of achieving statistical signi�cance if
the same e�ect is observed?

It is worthwhile to observe that the outcome (signi�cance or non-signi�cance)
of a single test using adequate sample size in no way a�ects or alters the levels
of power, α, and e�ect size set a priori by the researcher. These concepts relate
to statistical tests in general and not to a single study. Moreover, p-value and
reproducibility probability are not equivalent notions in the sense that the later
implies re-randomization whereas the former does not. However, they are quite
closely related (Thomas, 1997; Levine and Ensom, 2001; Onwuegbuzie and Leech,
2004).
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3.2.3 Generalizability probability

As discussed in Section 3.2.2, the concept of reproducibility is used to evaluate
whether results observed from the same population are reproducible from study site
to study site. It is of interest to study how likely the results can be reproducible
to a di�erent but similar population. For example, in clinical development (see
Shao and Chow, 2002), after the investigational drug product has been shown to
be e�ective and safe with respect to a target patient population (e.g. adults), it
is often of interest to study a similar but di�erent patient population (e.g. elderly
patients with the same disease under study or a patient population with di�erent
ethnic factors) to see how likely the clinical result is reproducible in the di�erent
population. This information is useful in regulatory submission for supplement new
drug application (for example, when generalizing the clinical results from adults to
elderly patients) and regulatory evaluation for bridging studies (for example, when
generalizing clinical results from Gaussian to Asian patient population). For this
purpose, the concept of generalizability probability is proposed. It is simply the
reproducibility probability in a di�erent population.

Let A and B are two di�erent but similar populations. In population A, the e�ect
size is given by ∆ = (µ1−µ2)/σ. Suppose that in population B the population mean
di�erence is changed to µ1−µ2 +η and the population variance is changed to C2σ2,
so the new e�ect size is given by

µ1 − µ2 + η

Cσ
=
D(µ1 − µ2)

σ
,

where

D =
1 + η/(µ1 − µ2)

C

is a measure of change in the e�ect size for the population di�erence.
If the power of the current study (under population A) isW [(∆;n, α, T )|X/X(∆)],

then the power of the future study (under population B) isW [(D∆;n, α, T )|X/X(∆)].
If D is known, then the generalizability probability is the reproducibility probability
Ŵ [(D∆̂; ∆̂, n, α, T )|X/X(∆̂)]. When the value of D is unknown, a set of D-values
may be considered.

3.2.4 Sample size adjustment

If the sample size of a previous study was determined based on conditional power
function with a priori e�ect size ∆̃ and preassigned level of signi�cance α, then it is
reasonable to make sample size adjustment for the current study based on the results
from the previous study. The concept of reproducibility probability is very useful in
providing important information for adjusting the sample size. If the reproducibility
probability is lower than a desired power level of the current study, then sample size
should be increased. Otherwise, the sample size may be decreased to avoid wasting
resources.
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The sample size ñ can be adjusted to n according to the reproducibility prob-
ability as follows. The reproducibility probability is set to be equal to the a priori
power W̃ which is evaluated at a virtual e�ect size ∆̃ with total sample size ñ, then
the new sample size n is derived.

W [(∆̂; ∆̂, n, α, T )|X/X(n)(∆̂)] = W̃ [(∆̃; ∆̂, ñ, α, T )|X/X(ñ)(∆̂)]

if and only if

∆̂

√
n1n2

n
= ∆̃

√
ñ1ñ2

ñ
.

Let n1 = ρn, 0 < ρ < 1 (one may consider ρ = ρ̃ = ñ1/ñ), then

n = ñ

(
∆̃

∆̂

)2

. (3.5)

Generalizability probability can be used for sample size adjustment. The new
total sample size n to be drawn from the new population is derived as follows.
The generalizability probability is set to be equal to the a priori power W̃ which is
evaluated from the �rst population at a virtual e�ect size ∆̃ with total sample size
ñ, then the new sample size n to be drawn from the second population is derived.

W [(D∆̂; ∆̂, n, α, T )|X/X(n)(∆̂)] = W̃ [(∆̃; ∆̂, ñ, α, T )|X/X(ñ)(∆̂)]

if and only if

D∆̂

√
n1n2

n
= ∆̃

√
ñ1ñ2

ñ

Let n1 = ρn, 0 < ρ < 1 (one may consider ρ = ρ̃ = ñ1/ñ), then

n = ñ

(
∆̃

D∆̂

)2

. (3.6)

3.3 Illustration Examples

3.3.1 Degree of reading power (revisited)

Sample size calculation Algorithm 3.1 is used to calculate the required sample
sizes to detect an e�ect size δ = µt−µc = 14. The results are reported in Table 3.1.
For example, if the desired power is W̃ = 0.90, one may consider n1 = 13 and
n2 = 7.

Table 3.2 reports the (parametric) unconditional power calculated using Equa-
tion 2.4 as a function with the sample sizes. It is clear that balanced designs are
more powerful than unbalanced. For example, consider the total sample size n = 20,
then the highest power is occurred when n1 = 10 and n2 = 10. Moreover, the power
when n1 > n2 is higher than the power when n1 < n2, this is due to the sample vari-
ances; the sample variance of the treatment group is less than the sample variance
of the control group.
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Now, given the information reported in Table 3.1 or 3.2, the sample sizes to detect
an e�ect size δ = 10 are calculated using Equation 3.4. Assuming ρ = ρ̃ = 0.5 and
ñ = 20, then n = 39.2 ≈ 40. Hence, n1 = 20 and n2 = 20.

Table 3.1: DRP Example: empirical conditional power and sample sizes, δ = 14

n2

5 7 10 13 16 20
5 0.54 0.71 0.80 0.69 0.61 0.48
7 0.68 0.84 0.90 0.79 0.74 0.61

n1 10 0.78 0.91 0.96 0.89 0.87 0.75
13 0.78 0.90 0.95 0.92 0.91 0.84
16 0.78 0.90 0.95 0.94 0.93 0.88
20 0.86 0.96 0.99 0.98 0.98 0.95

Table 3.2: DRP Example: parametric unconditional power and sample sizes, δ = 14

n2

5 7 10 13 16 20
5 0.68 0.77 0.87 0.68 0.61 0.53
7 0.80 0.87 0.94 0.81 0.74 0.65

n1 10 0.89 0.94 0.98 0.90 0.85 0.78
13 0.87 0.93 0.98 0.93 0.90 0.84
16 0.84 0.92 0.98 0.94 0.92 0.89
20 0.91 0.96 0.99 0.98 0.97 0.94

Reproducibility probability According to Table 3.1 or 3.2, the required sample
sizes to detect the virtual e�ect size δ̃ = 14 at level of signi�cance α = 0.05 with
a desired level of power W̃ = 0.85 are n1 = 7 and n2 = 7. From Section 2.4.1,
it is found that the observed e�ect size is δ̂ = 9.954 or equivalently ∆̂ = δ̂/Sp ≈
0.68 based on sample sizes n1 = 21 and n2 = 23. Therefore, the reproducibility
probability is given by Ŵ [(∆̂; ∆̂, n, α, T )|X/X(∆̂)] = 0.722 (see Figure 2.1(b)). That

is, the probability of getting a signi�cance results to detect an e�ect size δ̂ = 9.954

at level of signi�cance α = 0.05 is high, 72.2%.

Sample size adjustment Hence, in order to have a reproducibility probability
equals to 0.85, one may adjust the sample size using Equation 3.5. Let δ̃ = 14,
ñ = 14 and δ̂ = 9.954, then n = 27.6942 ≈ 28 and hence n1 = n2 = 14. That is,
in order to detect an e�ect size 9.954 with a desired reproducibility probability of
0.85, the sample sizes should be n1 = n2 = 14.
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3.3.2 Tawjihi exam 2009/2010 (revisited)

Sample size calculation Algorithm 3.1 is used to calculate the required sample
sizes to detect an e�ect size δ = µWB − µGS = 10. The results are reported in
Table 3.3. For example, if the desired power is W̃ = 0.80, one may consider n1 = 15

and n2 = 15.
Table 3.4 reports the (parametric) unconditional power calculated using Equa-

tion 3.1 as a function with the sample sizes. It is assumed that the true standard
deviation is σ = 13.03 and hence ∆ = 10/13.03 ≈ 0.77. It is clear that balanced
designs are more powerful than unbalanced. Moreover, the power is not a�ected by
whether the size of the treatment group is greater or smaller than the size of the
control group.

Now, given the information reported in Table 3.3 or 3.4, the sample sizes to
detect an e�ect size δ = 5 are calculated using Equation 3.4. Assuming ρ = ρ̃ = 0.5

and ñ = 30, then n = 120. Hence, n1 = n2 = 60.

Table 3.3: Tawjihi Example: empirical conditional power and sample sizes, δ = 10

n2

5 10 15 20 25 30
5 0.49 0.56 0.59 0.57 0.62 0.67
10 0.59 0.71 0.71 0.71 0.75 0.81

n1 15 0.67 0.78 0.80 0.80 0.83 0.89
20 0.68 0.81 0.84 0.83 0.89 0.92
25 0.73 0.85 0.88 0.89 0.92 0.96
30 0.72 0.86 0.89 0.91 0.94 0.97

Table 3.4: Tawjihi Example: parametric unconditional power and sample sizes,
δ = 10

n2

5 10 15 20 25 30
5 0.53 0.59 0.63 0.66 0.68 0.70
10 0.59 0.68 0.73 0.76 0.78 0.81

n1 15 0.63 0.73 0.78 0.82 0.84 0.88
20 0.66 0.76 0.82 0.86 0.88 0.91
25 0.68 0.78 0.84 0.88 0.91 0.94
30 0.70 0.81 0.88 0.91 0.94 0.96

Reproducibility probability The required sample sizes to detect the virtual
e�ect size δ̃ = 10 at level of signi�cance α = 0.05 with a desired level of power
W̃ = 0.70 are n1 = 10 and n2 = 10. From Section 2.4.2, it is found that the
observed e�ect size is δ̂ = 4.58 or ∆̂ = δ̂/σ = 0.35. Therefore, the reproducibility
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probability is given by Ŵ [(∆̂; ∆̂, n, α, T )|X/X(∆̂)] = 0.186 (see Figure 2.2(b)). That

is, the probability of getting a signi�cance results to detect an e�ect size δ̂ = 4.58

at level of signi�cance α = 0.05 is very low, 18.6%.

Sample size adjustment Hence, in order to have a high reproducibility proba-
bility, e.g. 70%, one may adjust the sample size using Equation 3.5. Let δ̃ = 10,
ñ = 20 and δ̂ = 4.58, then n = 95.34525 ≈ 96 and hence n1 = n2 = 48. That is, in
order to detect an e�ect size 4.58 with a desired reproducibility probability of 0.70,
the sample sizes should be n1 = n2 = 48.

Generalizability probability A sample of size n = 96 (48 from each region) is
taken form the �rst population (students attended Tawjihi exam 2009/2010) and
the observed e�ect size is δ̂ ≈ 6.17 and the p-value is 0.016 which is signi�cant.
Now, given these information, one may ask what is the probability of obtaining a
signi�cance result if one would draw a sample of size n = 96 from students attended
Tawjihi exam 2010/2011 (di�erent but similar population). Assume D ≈ 1.34 (in
fact it is, otherwise a set of D-values are considered), the generalizability probability
evaluated at Dδ̂ = 1.34 × 6.17 ≈ 8.27 or equivalently D∆̂ ≈ 0.59 is given by
Ŵ [(D∆̂; ∆̂, n, α, T )|X/X(∆̂)] = 0.885. That is, if one would draw a sample of size
n = 96 from students attended Tawjihi exam 2010/2011, then in order to detect
an e�ect size D∆̂ ≈ 0.59 the probability of getting a signi�cant result is 88.5%.
Consider D = (0.2, 0.4, 0.8, 1.2, 1.34, 1.5, 2), then the generalizability probabilities
are reported in Table 3.5.

A sample of size n = 96 is drawn from students attended Tawjihi exam 2010/2011
and the empirical post-hoc conditional power is reported in Table 3.5. It is clear
that the generalizability probability obtained by the use of the information based
on a sample from students attended Tawjihi exam 2009/2010 is very close to the
empirical post-hoc conditional power obtained by a sample from students attended
Tawjihi exam 2010/2011.

Table 3.5: Tawjihi Example: Generalizability, Ŵ [(D∆̂; ∆̂, n, α, T )|X/X(∆̂)]

Dδ̂

1.23 2.47 4.94 7.41 8.27 9.26 12.34
GP 0.12 0.21 0.53 0.84 0.89 0.95 0.99
PHP 0.12 0.23 0.60 0.89 0.95 0.98 0.99

GP: The generalizability probability calculated based on a sample drawn from stu-
dents attended Tawjihi exam 2009/2010. PHP: The empirical post-hoc conditional
power calculated based on a sample from students attended Tawjihi exam 2010/2011.
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3.4 Concluding Remarks

In this chapter:

• Sample size is estimated by the use of empirical conditional power function of
permutation tests. A pilot sample with a reasonable size is drawn from the
population of interest, without assuming the knowledge of its distribution, and
then the empirical power is calculated. The size is to be increased (or may be
reduced) till a desired power is achieved.

• It is shown that two-sample balanced design is more powerful than unbalanced.

• Reproducibility probability is de�ned within permutation framework. It is an
important tool for sample size adjustment and is used to measure the reliability
of the test.

• Generalizability probability is de�ned within permutation framework. It is
also used for sample size adjustment.
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In this chapter, the permutation test is studied in the context of Ranked Set
Sampling (RSS). The RSS version of the test statistic is de�ned and the power is
compared with its counterpart in Simple Random Sampling (SRS). The e�ect of
the set size and the number of cycles in RSS is also addressed. The two-sample
permutation design is considered as a guide.

4.1 Introduction

Ranked Set Sampling (RSS), a sampling technique, was �rst introduced by McIn-
tyre (1952, 2005) as an e�cient alternative to Simple Random Sampling (SRS) for
estimating the expected pasture yields in agricultural experimentation. It is obvi-
ously applicable in other situations as well. Dell and Clutter (1972) used RSS in
ecological and environmental studies. Samawi (1999) and Samawi and Al-Sagheer
(2001) used RSS in medical studies.

RSS can be useful when measurements are expensive (in terms of time, money,
or other) but units from the population can be easily ranked. In McIntyre's case,
measuring the plots of pasture yields requires mowing and weighting crop yields,
which is time consuming. However, a small number of plots can be even though
su�ciently well ranked by eye without measurement. McIntyre's goal was to develop
a sampling technique to reduce the number of necessary measurements to be made,
maintaining the unbiasedness of the SRS mean and reducing the variance of the mean
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estimator by incorporating the outside information provided by visual inspection.
Therefore, since the ranking of the plots could be done very cheap, he developed a
technique to implement this advantage (Rey, 2004).

RSS can be used in certain medical studies. For instance, it can be used in the
determination of normal ranges of certain medical measures, which usually involves
expensive laboratory tests. Samawi (1999) considered using RSS for the determina-
tion of normal ranges of bilirubin level in blood for new born babies. To establish
such ranges, blood sample must be taken from the sampled babies and tested in a
laboratory. But, on the other hand, the ranking of the bilirubin levels of a small
number of babies can be done by observing whether their face, chest, lower parts
of the body and the terminal parts of the whole body are yellowish, since, as the
yellowish color goes from face to the terminal parts of the whole body, the level of
bilirubin in blood goes higher.

For discussions of some other settings where ranked set sampling techniques
have found applications, see Patil (1995), Barnett and Moore (1997) and Chen
et al. (2004).

Algorithm 4.1 described the original form of RSS conceived by McIntyre.

Algorithm 4.1 Ranked Set Sampling Technique

1. Randomly select m sets, each of size m elements from the population of inter-
est.

2. The elements of each set in Step 1 are ranked with respect to the variable of
interest, say X, visually or by any negligible cost method that does not require
actual measurements.

3. Identify by judgment the ith minimum from the ith set, i = 1, 2, . . . ,m. The
set of the m elements obtained is called a ranked set sample.

4. Independently repeat Steps 1-3 h times (cycles), if necessary, to obtain an RSS
of size n = mh.

Figure 4.1 describes each step in the process of RSS (Algorithm 4.1) in
terms of matrices. Let Yi = {X(ii), i = 1, . . . ,m}; that is, the obtained RSS,
{X(11), X(22), . . . , X(mm)}, is denoted by Y = {Y1, Y2, . . . , Ym}. If the process is
repeated h cycles, then the RSS can be represented as a matrix of size n = h ×m
as it is shown in Step 4 of Figure 4.1.

To understand the structure of RSS and its variation from SRS, consider the
simple case of a single cycle (h = 1) with set size m. Let X1, . . . , Xm be a SRS of
size m from a continuous distribution with probability density function (pdf) f(x)

and cumulative distribution function (cdf) F (x) and let Y1, . . . , Ym be a RSS of size
m obtained as described in Algorithm 4.1 from m independent random samples of
m elements each.

In the case of a SRS, the m observations are iid f(x). However, there is
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Step 1:


X11 X12 · · · X1m

X21 X22 · · · X2m
...

...
. . .

...
Xm1 Xm2 · · · Xmm

 Step 2:


X(11) X(12) · · · X(1m)

X(21) X(22) · · · X(2m)
...

...
. . .

...
X(m1) X(m2) · · · X(mm)



Step 3: {X(11), X(22), . . . , X(mm)} Step 4:


Y11 Y12 · · · Y1m

Y21 Y22 · · · Y2m
...

...
. . .

...
Yh1 Yh2 · · · Yhm


Figure 4.1: Ranked set sampling procedure

no additional structure imposed on their relationship to one another. Letting
X(1), X(2), . . . , X(m) be the order statistics associated with these SRS observations.
Note that they are dependent random variables with joint pdf given by

fX(1),...,X(m)
(x1, . . . , xm) = m!

∏
i

f(xi)I{−∞<x1<···<xm<∞}(x1, . . . , xm).

In the case of a RSS, additional information and structure has been provided
through the judgement ranking process involving a total of m2 sample elements.
The m measurements Y1, . . . , Ym are also order statistics but in this case they are
independent observations and each of them provides information about a di�erent
aspect of the population. The joint pdf for Y1, . . . , Ym is given by

fY1,...,Ym(y1, . . . , ym) =
∏
i

fYi(yi),

where

fYi(yi) =
m!

(i− 1)!(m− i)!
[F (yi)]

i−1[1− F (yi)]
m−if(yi)

is the pdf for the ith order statistic for a SRS of size m from the population with
pdf f(x) and cdf F (x) (David and Nagaraja, 2003). This extra structure in RSS
make it to be more e�cient (in terms of variance of estimates of the mean) than
comparable procedures based on a SRS with the same number of measured obser-
vations. However, these extra structure make the theory of RSS more di�cult than
their SRS counterparts.

It is worthwhile to emphasize that in RSS m2 elements are selected at no cost
and m of them are identi�ed at no extra cost. The m identi�ed elements make
up the RSS. Then, measurements on these m elements are made and the needed
information is obtained. The information in this carefully selected sample is more
than the information in a SRS of m elements. Thus, comparing a RSS of size m
with SRS of size m2 does not make any sense. However, if measurements are made
on all m2 units, then all of them should be used not only the m units.

The mathematical theory of RSS established by Takahasi and Wakimoto (1968).
They showed that the mean of the RSS is an unbiased estimator of the population
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mean, and has smaller variance than the mean of a SRS. Stokes and Sager (1988)
used RSS to estimate distribution functions. They showed that the empirical distri-
bution function (edf) of a RSS is an unbiased estimator of the distribution function
and has a smaller variance than that from a SRS.

In the context of statistical hypothesis, Kotia and Babua (1996) derived the exact
distribution of the RSS sign test. They showed that the test is more powerful than
the counterpart SRS sign test. Liangyong and Xiaofang (2010) proposed the sign
test based on RSS for testing hypotheses concerning the quantiles of a population
characteristic.

In particular, the two-sample design has been approached by collecting two in-
dependent RSS. Several procedures have been developed to make inference on a
location shift between two populations. Bohn and Wolfe (1992, 1994) proposed the
RSS analogue of the usual two-sample Wilcoxon test and studied its relative proper-
ties both under perfect and imperfect judgement. Ozturk (1999) studied the e�ect
of the RSS on two-sample sign test statistic. Ozturk and Wolfe (2000) presented
an optimal RSS allocation scheme for a two-sample RSS median test. They derived
the exact distribution of the ranked set two-sample median test and tabulated for
selected sample and set sizes. For more work on RSS and its variations see Al-Saleh
and Al-Omari (2002), Al-Saleh and Samuh (2008), Samuh and Al-Saleh (2011) and
Drikvandi et al. (2011).

It is worthwhile to emphasize that when the judgement rankings for obtaining
a RSS are done perfectly, the sample consists of independent order statistics from
the original underlying distribution of the data. If judgement rankings are not done
perfectly, then the cdf of the ith judgement order statistic will no longer be the cdf
of the ith order statistic. In this chapter, perfect judgement rankings are assumed.
Moreover, the empirical conditional and unconditional power functions of the two-
sample RSS permutation test are computed and compared with their counterparts
in SRS.

This chapter is organized as follows. The construction of the two-sample RSS
design is described in Section 4.2. Permutation test with two proposed test statis-
tics is discussed in Section 4.3. Simulation study that document the bene�ts of
permutation approach of the two-sample RSS is provided in Section 4.4. Real data
application is considered in Section 4.5. Finally, Section 4.6 is devoted for concluding
remarks.

4.2 Two-Sample Ranked Set Samples

Consider the two samples in which X1 = {X11, . . . , X1n1} are iid F (x + δ) and
X2 = {X21, . . . , X2n2} are iid F (x) and the two samples are independent of one
another. In the corresponding RSS design, the treatment sample Yt of h1 cycles
and m samples is drawn from F (x+ δ) and the control sample Yc of h2 cycles and
m samples is drawn from F (x). The two samples, Yt and Yc, are independent of
one another. The measured data are displayed in Figure 4.2. It is worthwhile to
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observe that the data within each column are iid while the data within each row
are independent. That is, for each i = 1, . . . ,m, Yt1i, . . . , Yth1i are iid fYi(x + δ)

and Yc1i, . . . , Ych2i are iid fYi(x), where fYi(·) is the distribution of the ith order
statistic. And for each j = 1, . . . , h1, Ytj1, . . . , Ytjm are independent and for each
j′ = 1, . . . , h2, Ycj′1, . . . , Ycj′m are independent.

Yt =


Yt11 Yt12 · · · Yt1m
Yt21 Yt22 · · · Yt2m
...

...
. . .

...
Yth11 Yth12 · · · Yth1m

 Yc =


Yc11 Yc12 · · · Yc1m
Yc21 Yc22 · · · Yc2m
...

...
. . .

...
Ych21 Ych22 · · · Ych2m


Figure 4.2: Two-sample RSS design, Yt: treatment group and Yc: control group

4.3 Permutation Test

In this section, permutation approach for testing H0 : {δ = 0} versus H1 : {δ > 0}
is used. Note that under the null hypothesis, the exchangeability assumption holds
within columns and hence exact permutation solution may exist. Permutation
should be applied to the data column by column; the �rst column from Yt by
the �rst column from Yc, the second column from Yt by the second column from
Yc, and so forth. In other words, a new matrix Y of size (h1 +h2)×m is created by
concatenating the two matrices Yt and Yc. The permutation Y∗ of Y = Yt

⊎
Yc

is obtained by permuting the data points within each column of Y so as to pre-
serve diversity of distributions. The permutation sample space Y/Y contains all
permutations of Y.

To solve the testing problem, a suitable test statistic T : X n → R1 should be
chosen such that, without loss of generality, large values are evidence against H0.
Two test statistics are proposed. First, the di�erence between grand means of the
two groups; that is,

T 1
RSS = Ȳt − Ȳc,

where Ȳt = 1
h1m

∑
i

∑
j Ytij and Ȳc = 1

h2m

∑
i

∑
j Ycij . Second, the sum of the

studentized statistics for all columns of the two matrices; that is,

T 2
RSS =

m∑
i=1

(
Ȳti − Ȳci

σ̂i

)
,

where σ̂2
i = 1

h1+h2−2

[∑h1
j=1(Ytji − Ȳti)2 +

∑h2
j′=1(Ycj′i − Ȳci)2

]
, Ȳti = 1

h1

∑h1
j=1 Ytji,

and Ȳci = 1
h2

∑h2
j′=1 Ycj′i.

To obtain the p-value for testing H0, Algorithm 4.2 is used.
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Algorithm 4.2 Two-sample RSS permutation test

1. For the given two-sample RSS,Yt andYc, calculate the observed test statistic,
T o.

2. Concatenate Yt and Yc row-wise to get Y = Yt
⊎
Yc.

3. Take a random permutation Y∗ ∈ Y/Y of Y.

4. Split Y∗ into two matrices such that Y∗t containing the same number of rows
as in Yt and Y∗c containing the rest.

5. Calculate the corresponding test statistic, T ∗ = T (Y∗).

6. Independently repeat Steps 3 to 5 a large number, say B, of times, giving B
test statistics, say {T ∗b , b = 1, . . . , B}.

7. The permutation p-value is estimated as

λ̂(Y) =

∑B
b=1 I(T ∗b ≥ T o)

B
.

4.4 Simulation Study

This section looks at the empirical conditional and unconditional power of the pro-
posed permutation testing procedure under di�erent sampling schemes. The simu-
lation study considers simple random samples and ranked set samples. The power
of permutation test based on two-sample RSS with set size m and number of cycle h
in each sample is computed and it is compared with the power of permutation test
based on another two-sample SRS of size h×m in each sample. So comparisons are
made considering the same numbers of really observed data since in this way costs
of two sampling schemes are the same. Moreover, the two proposed test statistics,
T 1
RSS and T 2

RSS , are also compared.

In the simulation, the set sizes are taken asm = {2, 3, 4} and the number of cycles
with balanced designs are taken as h1 = h2 = {5, 10}. The nominal level of signi�-
cance is taken as 0.05. In order to evaluate the empirical power of the test, the treat-
ment groups are shifted by adding the shift parameters δ = {0, 0.2, 0.4, 0.6, 0.8, 1}.
The choice δ = 0 to check the empirical level of signi�cance. The empirical power
of the test is computed for ranked set and simple random samples conditionally and
unconditionally. A simulation study based on 5000 datasets are performed. The
considered permutations are B = 1000 on each dataset. Moreover, four di�erent
probability distributions were considered for the error terms in Y = (Zt + δ,Zc):
normal distribution N(0, 1); uniform distribution U(−

√
3,
√

3); skew normal distri-
bution SN(0, 1,−5); and exponential distribution Exp(1).
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4.4.1 Empirical unconditional power

The empirical unconditional power of permutation tests for the aforementioned con-
�gurations for a two-sample procedure at the 5% level is reported in Tables 4.1-4.4.
It is clear that the unconditional power is improved using RSS. It is increased as m
and/or h increased. For �xed total sample size, the power is increased by m much
better than by h. For example, consider Table 4.1, for a sample of size n = 20 where
h = 5 and m = 4, the power for detecting an e�ect of size δ = 0.4 using SRS is 0.340

and using RSS (let say, T 1
RSS) is 0.612, so the power is improved by 0.272. While if

h = 10 and m = 2, then the power for detecting the same e�ect (δ = 0.4) using SRS
is 0.358 and using T 1

RSS is 0.450, so the power is improved only by 0.092. In fact
increasing m makes the data more representative to the underlying population (for
more details see Samuh and Al-Saleh, 2011). Moreover, the proposed test statistic
T 1
RSS is more powerful than T 2

RSS for symmetric distributions, while T 2
RSS is more

powerful than T 1
RSS for asymmetric distributions.

4.4.2 Empirical conditional power

Considering the same aforementioned con�gurations, the empirical conditional
power is reported in Tables 4.5-4.8. It is clear that the use of RSS does not a�ect the
conditional power, whatever the set size and the number of cycles. Of course this is
unstrange because conditional power use the observed dataset irrespective of their
underlying distributions. Moreover, the proposed test statistic T 1

RSS seems to be
more powerful than T 2

RSS for symmetric distributions, while T 2
RSS is more powerful

than T 1
RSS for asymmetric distributions.

4.5 Illustration Example

4.5.1 Tawjihi exam 2009/2010 (revisited)

In this example, the empirical conditional and unconditional powers are calculated
under SRS and RSS. For two-sample RSS, di�erent set sizes, m = {2, 3, 4}, and
di�erent number of cycles, h1 = h2 = {5, 10}, with balanced designs are considered.
For two-sample SRS, a sample of size m × h is drawn for each sample. Moreover,
the two proposed test statistics, T 1

RSS and T 2
RSS , are considered. The results are

reported in Tables 4.9 and 4.10. It is clear that the empirical unconditional power
is improved using RSS and the two proposed test statistics, T 1

RSS and T 2
RSS , have

the same level of power (see Figure 4.3(a)). Moreover, powers are increased as m
and/or h increased. For �xed total sample size, the power is increased by m much
better than by h (see Figure 4.3(b)).

4.6 Concluding Remarks

The e�ectiveness of RSS for improving the power of the test has been investigated
conditionally and unconditionally. Since the conditional power does not require the
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information of the underlying populations then it does not improve by the use of
RSS. While the unconditional power has a clear improvement. It is recommended to
increase the set size than increasing the number of cycles. Moreover, two test statis-
tics are proposed for the RSS. The �rst proposed statistic is the di�erence between
the two grand means of the two-sample ranked set samples, which is recommended
for symmetric distributions. The second proposed statistic is the sum of the stu-
dentized statistics of the two-sample ranked set samples and it is recommended for
asymmetric distributions.

Table 4.1: Empirical unconditional power, α = 0.05, normal distribution

h m Sampling δ

design 0.00 0.20 0.40 0.60 0.80 1.00

5 2 SRS 0.050 0.114 0.216 0.355 0.543 0.704

T 1
RSS 0.050 0.130 0.285 0.481 0.670 0.838

T 2
RSS 0.050 0.129 0.272 0.462 0.645 0.821

3 SRS 0.052 0.141 0.290 0.473 0.689 0.843

T 1
RSS 0.053 0.187 0.441 0.712 0.908 0.977

T 2
RSS 0.055 0.183 0.427 0.691 0.895 0.973

4 SRS 0.047 0.166 0.340 0.583 0.800 0.934

T 1
RSS 0.051 0.256 0.612 0.885 0.986 0.999

T 2
RSS 0.053 0.239 0.589 0.869 0.985 0.999

10 2 SRS 0.054 0.154 0.358 0.584 0.796 0.932

T 1
RSS 0.057 0.188 0.450 0.722 0.911 0.978

T 2
RSS 0.054 0.186 0.448 0.712 0.906 0.976

3 SRS 0.048 0.197 0.456 0.737 0.917 0.982

T 1
RSS 0.053 0.284 0.681 0.939 0.994 0.999

T 2
RSS 0.053 0.286 0.673 0.938 0.994 0.999

4 SRS 0.050 0.223 0.536 0.856 0.968 0.998

T 1
RSS 0.052 0.397 0.859 0.993 0.999 0.999

T 2
RSS 0.052 0.393 0.857 0.992 0.999 0.999
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Table 4.2: Empirical unconditional power, α = 0.05, uniform distribution

h m Sampling δ

design 0.00 0.20 0.40 0.60 0.80 1.00

5 2 SRS 0.051 0.107 0.205 0.352 0.505 0.669

T 1
RSS 0.051 0.137 0.269 0.470 0.666 0.841

T 2
RSS 0.051 0.132 0.260 0.446 0.640 0.811

3 SRS 0.052 0.132 0.274 0.472 0.681 0.841

T 1
RSS 0.049 0.192 0.444 0.731 0.916 0.986

T 2
RSS 0.047 0.186 0.428 0.704 0.900 0.978

4 SRS 0.055 0.052 0.149 0.335 0.581 0.799

0.937

T 1
RSS 0.056 0.252 0.620 0.897 0.989 0.999

T 2
RSS 0.057 0.248 0.617 0.888 0.985 0.999

10 2 SRS 0.056 0.150 0.339 0.575 0.803 0.930

T 1
RSS 0.053 0.188 0.444 0.730 0.914 0.983

T 2
RSS 0.054 0.182 0.432 0.721 0.907 0.981

3 SRS 0.055 0.179 0.448 0.736 0.928 0.988

T 1
RSS 0.050 0.279 0.701 0.944 0.997 0.999

T 2
RSS 0.052 0.275 0.699 0.939 0.995 0.999

4 SRS 0.052 0.221 0.538 0.855 0.976 0.998

T 1
RSS 0.050 0.404 0.878 0.993 0.999 0.999

T 2
RSS 0.054 0.403 0.880 0.993 0.999 0.999

Table 4.3: Empirical unconditional power, α = 0.05, skew normal distribution

h m Sampling δ

design 0.00 0.20 0.40 0.60 0.80 1.00

5 2 SRS 0.045 0.176 0.406 0.675 0.873 0.963

T 1
RSS 0.049 0.212 0.519 0.797 0.949 0.991

T 2
RSS 0.052 0.217 0.540 0.823 0.963 0.995

3 SRS 0.054 0.230 0.545 0.827 0.960 0.996

T 1
RSS 0.050 0.334 0.769 0.963 0.997 0.999

T 2
RSS 0.050 0.352 0.810 0.979 0.999 0.999

4 SRS 0.053 0.263 0.640 0.910 0.989 0.999

T 1
RSS 0.052 0.451 0.911 0.998 0.999 0.999

T 2
RSS 0.053 0.497 0.949 0.999 0.999 0.999

10 2 SRS 0.052 0.281 0.638 0.910 0.986 0.999

T 1
RSS 0.053 0.323 0.775 0.974 0.999 0.999

T 2
RSS 0.055 0.348 0.804 0.984 0.999 0.999

3 SRS 0.052 0.337 0.801 0.979 0.999 0.999

T 1
RSS 0.054 0.517 0.953 0.999 0.999 0.999

T 2
RSS 0.053 0.573 0.974 0.999 0.999 0.999

4 SRS 0.052 0.415 0.885 0.996 0.999 0.999

T 1
RSS 0.050 0.693 0.996 0.999 0.999 0.999

T 2
RSS 0.050 0.772 0.999 0.999 0.999 0.999
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Table 4.4: Empirical unconditional power, α = 0.05, exponential distribution

h m Sampling δ

design 0.00 0.20 0.40 0.60 0.80 1.00

5 2 SRS 0.049 0.133 0.270 0.422 0.584 0.726

T 1
RSS 0.055 0.142 0.298 0.507 0.683 0.815

T 2
RSS 0.053 0.177 0.412 0.648 0.824 0.923

3 SRS 0.053 0.156 0.325 0.530 0.717 0.852

T 1
RSS 0.051 0.199 0.443 0.690 0.864 0.940

T 2
RSS 0.046 0.299 0.685 0.912 0.982 0.999

4 SRS 0.050 0.166 0.378 0.619 0.802 0.922

T 1
RSS 0.054 0.251 0.580 0.830 0.954 0.986

T 2
RSS 0.048 0.450 0.872 0.988 0.999 0.999

10 2 SRS 0.051 0.170 0.384 0.615 0.806 0.921

T 1
RSS 0.059 0.193 0.477 0.717 0.891 0.964

T 2
RSS 0.052 0.256 0.624 0.868 0.967 0.994

3 SRS 0.056 0.202 0.473 0.750 0.911 0.978

T 1
RSS 0.051 0.274 0.644 0.901 0.984 0.998

T 2
RSS 0.048 0.455 0.888 0.994 0.999 0.999

4 SRS 0.055 0.238 0.566 0.848 0.969 0.994

T 1
RSS 0.042 0.358 0.799 0.971 0.997 0.999

T 2
RSS 0.047 0.657 0.986 0.999 0.999 0.999

Table 4.5: Empirical conditional power, α = 0.05, normal distribution

h m Sampling δ

design 0.00 0.20 0.40 0.60 0.80 1.00

5 2 SRS 0.047 0.107 0.180 0.299 0.441 0.613

T 1
RSS 0.052 0.105 0.189 0.309 0.446 0.610

T 2
RSS 0.051 0.099 0.174 0.275 0.408 0.565

3 SRS 0.056 0.132 0.285 0.501 0.718 0.875

T 1
RSS 0.050 0.144 0.305 0.540 0.761 0.913

T 2
RSS 0.052 0.138 0.294 0.514 0.736 0.891

4 SRS 0.052 0.164 0.375 0.641 0.867 0.969

T 1
RSS 0.045 0.167 0.349 0.606 0.830 0.953

T 2
RSS 0.043 0.156 0.321 0.565 0.794 0.927

10 2 SRS 0.052 0.172 0.418 0.714 0.905 0.989

T 1
RSS 0.057 0.178 0.420 0.693 0.898 0.981

T 2
RSS 0.054 0.172 0.414 0.689 0.891 0.978

3 SRS 0.057 0.186 0.472 0.773 0.936 0.989

T 1
RSS 0.049 0.177 0.424 0.699 0.902 0.981

T 2
RSS 0.050 0.174 0.414 0.685 0.890 0.977

4 SRS 0.055 0.206 0.520 0.822 0.961 0.997

T 1
RSS 0.052 0.234 0.594 0.891 0.988 1.000

T 2
RSS 0.050 0.228 0.579 0.877 0.987 1.000
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Table 4.6: Empirical conditional power, α = 0.05, uniform distribution

h m Sampling δ

design 0.00 0.20 0.40 0.60 0.80 1.00

5 2 SRS 0.051 0.115 0.223 0.374 0.545 0.736

T 1
RSS 0.055 0.106 0.203 0.338 0.515 0.680

T 2
RSS 0.056 0.098 0.181 0.289 0.467 0.627

3 SRS 0.050 0.138 0.290 0.501 0.723 0.895

T 1
RSS 0.051 0.135 0.307 0.512 0.737 0.887

T 2
RSS 0.055 0.123 0.268 0.449 0.673 0.843

4 SRS 0.052 0.150 0.324 0.563 0.782 0.922

T 1
RSS 0.054 0.148 0.320 0.538 0.758 0.917

T 2
RSS 0.056 0.136 0.281 0.471 0.690 0.869

10 2 SRS 0.056 0.179 0.426 0.731 0.926 0.991

T 1
RSS 0.047 0.134 0.300 0.518 0.731 0.885

T 2
RSS 0.048 0.129 0.292 0.498 0.709 0.869

3 SRS 0.046 0.184 0.450 0.732 0.926 0.988

T 1
RSS 0.050 0.194 0.470 0.785 0.946 0.994

T 2
RSS 0.049 0.186 0.453 0.765 0.938 0.990

4 SRS 0.055 0.226 0.556 0.841 0.975 0.998

T 1
RSS 0.051 0.208 0.542 0.832 0.967 0.996

T 2
RSS 0.053 0.196 0.520 0.811 0.960 0.995

Table 4.7: Empirical conditional power, α = 0.05, skew normal distribution

h m Sampling δ

design 0.00 0.20 0.40 0.60 0.80 1.00

5 2 SRS 0.048 0.221 0.557 0.864 0.991 1.000

T 1
RSS 0.050 0.195 0.440 0.768 0.947 0.999

T 2
RSS 0.052 0.179 0.410 0.725 0.927 0.998

3 SRS 0.055 0.174 0.384 0.651 0.855 0.975

T 1
RSS 0.051 0.170 0.433 0.717 0.925 0.992

T 2
RSS 0.050 0.170 0.426 0.702 0.913 0.988

4 SRS 0.049 0.253 0.615 0.907 0.995 1.000

T 1
RSS 0.051 0.330 0.772 0.980 1.000 1.000

T 2
RSS 0.050 0.348 0.807 0.985 1.000 1.000

10 2 SRS 0.050 0.318 0.759 0.977 1.000 1.000

T 1
RSS 0.052 0.256 0.634 0.930 0.997 1.000

T 2
RSS 0.054 0.256 0.636 0.925 0.996 1.000

3 SRS 0.045 0.380 0.860 0.996 1.000 1.000

T 1
RSS 0.056 0.297 0.732 0.960 1.000 1.000

T 2
RSS 0.053 0.294 0.727 0.958 1.000 1.000

4 SRS 0.057 0.364 0.826 0.993 1.000 1.000

T 1
RSS 0.057 0.387 0.865 0.996 1.000 1.000

T 2
RSS 0.060 0.369 0.848 0.993 1.000 1.000



40 Chapter 4. Permutation Tests with Ranked Set Sampling

Table 4.8: Empirical conditional power, α = 0.05, exponential distribution

h m Sampling δ

design 0.00 0.20 0.40 0.60 0.80 1.00

5 2 SRS 0.055 0.107 0.194 0.302 0.436 0.569

T 1
RSS 0.049 0.102 0.170 0.244 0.355 0.475

T 2
RSS 0.047 0.103 0.197 0.296 0.429 0.565

3 SRS 0.055 0.149 0.323 0.563 0.795 0.931

T 1
RSS 0.054 0.170 0.416 0.712 0.911 0.988

T 2
RSS 0.053 0.166 0.411 0.702 0.898 0.985

4 SRS 0.048 0.133 0.275 0.451 0.648 0.829

T 1
RSS 0.052 0.144 0.307 0.513 0.716 0.881

T 2
RSS 0.051 0.171 0.376 0.627 0.842 0.953

10 2 SRS 0.049 0.149 0.342 0.592 0.802 0.941

T 1
RSS 0.051 0.175 0.409 0.689 0.899 0.978

T 2
RSS 0.052 0.174 0.411 0.680 0.899 0.977

3 SRS 0.048 0.218 0.560 0.844 0.978 0.998

T 1
RSS 0.046 0.158 0.369 0.624 0.847 0.953

T 2
RSS 0.047 0.171 0.421 0.690 0.885 0.971

4 SRS 0.051 0.302 0.753 0.973 1.000 1.000

T 1
RSS 0.049 0.238 0.556 0.855 0.979 0.999

T 2
RSS 0.050 0.256 0.592 0.878 0.984 0.999

Table 4.9: Tawjihi Example: Empirical unconditional power, α = 0.05

h m Sampling δ

design 0.00 2.00 4.00 6.00 8.00 10.00

5 2 SRS 0.056 0.103 0.165 0.257 0.366 0.488

T 1
RSS 0.052 0.111 0.196 0.317 0.469 0.628

T 2
RSS 0.055 0.110 0.195 0.312 0.463 0.617

3 SRS 0.048 0.105 0.217 0.342 0.490 0.646

T 1
RSS 0.051 0.149 0.307 0.523 0.749 0.892

T 2
RSS 0.056 0.148 0.308 0.522 0.741 0.884

4 SRS 0.052 0.121 0.251 0.414 0.595 0.760

T 1
RSS 0.054 0.186 0.435 0.717 0.907 0.980

T 2
RSS 0.055 0.181 0.428 0.718 0.904 0.979

10 2 SRS 0.056 0.129 0.238 0.398 0.606 0.768

T 1
RSS 0.053 0.151 0.314 0.534 0.743 0.885

T 2
RSS 0.055 0.152 0.320 0.538 0.739 0.885

3 SRS 0.053 0.149 0.324 0.539 0.743 0.893

T 1
RSS 0.049 0.206 0.507 0.796 0.951 0.993

T 2
RSS 0.053 0.206 0.511 0.807 0.953 0.993

4 SRS 0.054 0.169 0.381 0.652 0.852 0.957

T 1
RSS 0.053 0.282 0.687 0.937 0.996 1.000

T 2
RSS 0.049 0.287 0.692 0.941 0.997 1.000
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Table 4.10: Tawjihi Example: Empirical conditional power, α = 0.05

h m Sampling δ

design 0.00 2.00 4.00 6.00 8.00 10.00

5 2 SRS 0.052 0.081 0.145 0.228 0.300 0.404

T 1
RSS 0.048 0.091 0.136 0.202 0.405 0.527

T 2
RSS 0.052 0.086 0.123 0.180 0.355 0.475

3 SRS 0.048 0.104 0.184 0.282 0.513 0.684

T 1
RSS 0.055 0.119 0.220 0.402 0.542 0.701

T 2
RSS 0.054 0.110 0.201 0.357 0.499 0.653

4 SRS 0.057 0.118 0.203 0.337 0.623 0.798

T 1
RSS 0.052 0.121 0.225 0.365 0.613 0.803

T 2
RSS 0.052 0.115 0.199 0.322 0.553 0.742

10 2 SRS 0.053 0.115 0.243 0.420 0.589 0.774

T 1
RSS 0.049 0.122 0.212 0.377 0.597 0.766

T 2
RSS 0.049 0.119 0.211 0.357 0.582 0.755

3 SRS 0.056 0.141 0.271 0.451 0.736 0.885

T 1
RSS 0.049 0.154 0.316 0.535 0.798 0.937

T 2
RSS 0.047 0.153 0.301 0.516 0.784 0.923

4 SRS 0.053 0.161 0.369 0.623 0.861 0.962

T 1
RSS 0.053 0.142 0.411 0.674 0.803 0.932

T 2
RSS 0.053 0.139 0.398 0.651 0.779 0.918

(a) (b)

Figure 4.3: Tawjihi 2009/2010: Unconditional power (a) SRS versus RSS. (b) RSS:
h = 5 and m = 4 versus h = 10 and m = 2.
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Standard asymptotic χ2 distribution of the likelihood ratio statistic under the
null hypothesis does not hold when the parameter value is on the boundary of the
parameter space. In mixed models, it is of interest to test for a zero random e�ect
variance component. Some available tests for the variance component are reviewed
and a new test within the permutation framework is presented. The unconditional
power and level of signi�cance of the di�erent tests are investigated by means of a
Monte Carlo simulation study.

5.1 Introduction

Mixed models (e.g. Verbeke and Molenberghs, 2000), hierarchical models (e.g. Rau-
denbush and Bryk, 2002) or multilevel regression models (e.g. Snijders and Bosker,
1999) are an extension of regression models in which data have a hierarchical struc-
ture with units nested in clusters. A common application is on individuals nested
in institutions or organizations (e.g. students in schools, employees in �rms, or
patients in hospitals). Another kind of application is on repeated measures where
measurement occasions are nested in individuals.

Mixed models are widely used in many research �elds such as social sciences
(Afshartous and de Leeuw, 2004), econometrics (Swamy, 1970) and political science
(Garner and Raudenbush, 1991).
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To facilitate calculations and clarify ideas, the simplest case of linear mixed
models, random intercept model, involving two levels of analysis is considered as a
guide. Level one units are referred to as subjects and level two units as clusters. A
model with one level-1 predictor, which is observable and has a linear relationship
with the level-1 dependent variable, is considered.

Let the random variable Yij denote the response of interest for the ith subject in
the jth cluster, Xij denote the related observed covariate, β1 is a �xed parameter or
regression coe�cient, γ0j is the cluster intercept, β0 is the average intercept across
the clusters, εij is the level-1 residual, and ξj is the level-2 residual. The level-1
model, which relates the response variable to the covariate, is written as

Yij = γ0j + β1Xij + εij , i = 1, . . . , nj ; j = 1, . . . , J, (5.1)

while the level-2 model, describing the variation between clusters, is written as

γ0j = β0 + ξj , j = 1, . . . , J. (5.2)

Combining Equations 5.1 and 5.2 into a single equation gives one that looks like a
common regression equation with an extra error term ξj . This error term indicates
that the mean intercepts can randomly di�er across clusters. The combined model
is written as

Yij = β0 + β1Xij + ξj + εij , i = 1, . . . , nj ; j = 1, . . . , J. (5.3)

For �xed Xij , the essential assumptions for the random intercept model are that:

1. ξj are iid normal with mean E(ξj) = 0 and variance V(ξj) = σ2
ξ ;

2. εij are iid normal with mean E(εij) = 0 and variance V(εij) = σ2
ε ;

3. ξj and εij are independent.

It is of interest to test whether the random e�ects should be included in the
model. This is equivalent to testing if the between-cluster σ2

ξ is zero. That is,

H0 : {σ2
ξ = 0} versus H1 : {σ2

ξ > 0}. (5.4)

This problem is nonstandard because the parameter value underH0 is on the bound-
ary of the parameter space [0,∞). Therefore, the likelihood ratio and score statistics
no longer have the standard asymptotic χ2 distribution (Self and Liang, 1987; Stram
and Lee, 1994; Verbeke and Molenberghs, 2003).

This chapter is organized as follows. Likelihood ratio tests and their asymptotic
distributions are reviewed in Section 5.2. Simulation-based tests (exact likelihood
ratio tests, parametric bootstrap tests and permutation tests) are reviewed in Sec-
tion 5.3. A new permutation test is proposed in Section 5.4. Simulation study
that document the bene�ts of the new permutation test is provided in Section 5.5.
Concluding remarks are contained in Section 5.6.
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5.2 Likelihood Ratio Tests

Suppose we wish to test

H0 : {σ2
ξ ∈ Θ0} versus H1 : {σ2

ξ ∈ Θ1}, Θ = Θ0 ∪Θ1.

Let `ML
Θ0

and `ML
Θ be the log likelihood functions maximised over Θ0 and Θ, respec-

tively. Then the likelihood ratio test (LRT ) statistic is given by

LRT = −2
[
`ML
Θ0
− `ML

Θ

]
.

Using the restricted likelihood functions, the restricted likelihood ratio test (RLRT )
statistic is given by

RLRT = −2
[
`REML
Θ0

− `REML
Θ

]
.

It follows from the classical likelihood theory (see e.g. Pace and Salvan, 1997, Sec.
3.4) that under some regularity conditions LRT and RLRT follow, asymptotically
under H0, a χ2 distribution with degrees of freedom equal to the di�erence between
the number of parameters in Θ and Θ0. One of the regularity conditions under which
the χ2 approximation is valid is that the parameter value under the null hypothesis
is not on the boundary of the parameter space Θ, such as in hypothesis 5.4. Self and
Liang (1987) and Stram and Lee (1994) showed that the LRT statistic in this case
has an asymptotic null distribution that is a mixture of χ2

0 and χ2
1 distributions,

each having an equal weight of 0.5. χ2
0 denotes the distribution with all probability

mass at zero, so the correct p-value is obtained by halving the p-value obtained from
the χ2

1 distribution. This result also applies for RLRT , as shown by Morrell (1998)
(see also Verbeke and Molenberghs, 2000).

5.3 Simulation-Based Tests in the Literature

5.3.1 Finite sample distribution of LRT and RLRT

In linear mixed models with one variance component, �nite sample distributions of
the LRT and RLRT are derived by Crainiceanu and Ruppert (2004). They con-
sidered the spectral representations of the LRT and RLRT as the basis of e�cient
simulation algorithms of their null distributions. They provided an algorithm for
simulating the null �nite distribution of LRT (and RLRT ). For more details, see
Crainiceanu and Ruppert (2004), page 168.

Crainiceanu and Ruppert's algorithm is implemented in R by Scheipl (2010) in
the package �RLRsim�. The Function �exactLRT� is used for �nite sample LRT ,
and �exactRLRT� for �nite sample RLRT .

In R, the function �lmer� in the package �lme4� produced by Bates (2010) can be
used to �t the linear mixed models. It is worthwhile to observe that the �exactLRT�
function is not working properly with �lmer� function. This is due to some modi�-
cations done on �lmer� function after Scheipl has been implemented his package.
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5.3.2 Parametric bootstrap tests

A parametric bootstrap test (Efron and Tibshirani, 1993; Davison and Hinkley,
1997) for variance components is proposed by Sinha (2009) in generalized linear
mixed models based on the score test (Silvapulle and Silvapulle, 1995). Via simula-
tion, Sinha (2009) showed that the empirical level of signi�cance of the parametric
bootstrap test is much closer to the nominal level and it is more powerful than the
usual asymptotic score test based on a mixture of χ2 distributions. Bootstrap tests
are more commonly based on LRT or RLRT (see Faraway, 2006, Sec. 8.4).

To obtain a parametric bootstrap estimate of the LRT statistic's p-value, Algo-
rithm 5.1 is used.

Algorithm 5.1 Parametric Bootstrap Method

1. For the given dataset, calculate the LRT statistic, denoted by LRT o.

2. Generate a bootstrap sample from the model under H0 and calculate the
corresponding bootstrap LRT ∗ statistic.

3. Independently repeat Step 2 a large number, say B, of times, giving B test
statistics, say {LRT ∗b , b = 1, . . . , B}.

4. The bootstrap p-value is obtained as the proportion of samples with LRT ∗b
greater than or equal to LRT o.

5.3.3 Permutation tests

Fitzmaurice et al. (2007) proposed a permutation test for variance components in
generalized linear mixed models based on the LRT statistic. Their results are com-
pared with the asymptotic 50 : 50 χ2 distribution of the LRT and with the LRT
distribution proposed by Crainiceanu and Ruppert (2004). The proposed permu-
tation test has the correct nominal level under the null hypothesis, and it is more
powerful than the usual tests based on a mixture of χ2 distributions. Although
their results were obtained for the case of LRT , the same procedure can be used for
RLRT .

Algorithm 5.2 is used for obtaining a permutation estimate of the LRT statistic's
p-value.

5.4 A New Permutation Test

Fitzmaurice et al. (2007) considered the LRT as a test statistic in their algorithm
and this require the underlying distribution to be known. In this section, a new
permutation algorithm is proposed which does not require any knowledge of the
underlying distribution.
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Algorithm 5.2 Fitzmaurice et al. (2007) Approach

1. For the given dataset, calculate the LRT statistic, denoted by LRT o.

2. Randomly permute the cluster indices while maintaining a �xed number of
subjects within a cluster and calculate the corresponding permutation LRT ∗

statistic.

3. Independently repeat Step 2 a large number, say B, of times, giving B test
statistics, say {LRT ∗b , b = 1, . . . , B}.

4. The permutation p-value is obtained as the proportion of samples with LRT ∗b
greater than or equal to LRT o.

Let us consider the random intercept model (5.3), repeated here as a guide:

Yij = β0 + β1Xij + ξj + εij , i = 1, . . . , nj ; j = 1, . . . , J.

Normality assumptions for the random error components are not required. The
hypotheses of interest are given by

H0 : {σ2
ξ = 0} versus H1 : {σ2

ξ > 0}.

Under H1, the cluster-speci�c regression lines have di�erent intercepts but the same
slope. The testing problem can be treated as permutation ANOVA by removing the
e�ect of the covariate(s). To this end, the least square estimators of β0 and β1 under
H0 are computed then the empirical deviates Rij = Yij − β̂0 − β̂1Xij are obtained.
The Rij are exchangeable, so the resulting problem is equivalent to permutation
ANOVA. In terms of the population deviates (ξj + εij), the testing problem is:

H0 : {ξ1 = · · · = ξJ} ≡ {σ2
ξ = 0} versus H1 : {H0 is false}.

The usual F -test statistic is

F =
N − J
J − 1

∑J
j=1 nj(R̄j − R̄)2∑J

j=1

∑nj
i=1(Rij − R̄j)2

, (5.5)

where R̄j = 1
nj

∑
iRij and R̄ = 1

N

∑
j njR̄j . The F -statistic (5.5) is permutationally

equivalent to the following T -statistic (see Pesarin and Salmaso, 2010, Sec. 2.4)

T =

J∑
j=1

njR̄
2
j .

Steps for obtaining a conditional Monte Carlo estimate of the permutation p-
value are summarized in Algorithm 5.3.

It is worthwhile to observe that the least square estimators of β0 and β1 and
hence the empirical deviates Rij are derived only once, which make our proposed
algorithm a bit faster than others.
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Algorithm 5.3 A New Permutation Test Approach

1. For the given dataset, under H0, compute the least square estimates of β0 and
β1 and calculate the empirical deviates Rij = Yij − β̂0 − β̂1Xij .

2. Calculate the observed test statistic, T o.

3. Randomly permute the cluster indices while maintaining the same number of
subjects within a cluster and calculate the corresponding test statistic, T ∗.

4. Independently repeat Step 3 many times, say B times, giving B test statistics,
say {T ∗b , b = 1, . . . , B}.

5. The permutation p-value is obtained as the proportion of samples with T ∗b
greater than or equal to T o.

5.5 Simulation Study

A simulation study is conducted to assess the level of signi�cance and the power
of the proposed permutation test for variance components and to compare it
with the aforementioned available tests. In the simulation, di�erent number of
clusters, J = {10, 50}, and di�erent number of observations within a cluster,
nj = n = {5, 25, 100}, j = 1, . . . , J (balanced designs), are considered. Sev-
eral other combinations are performed, not reported here, and the results follow
the same behavior. A simulation study based on 2000 datasets are performed.
The permutation and the bootstrap are based on B = 500 replications. More-
over, σ2

ξ = 0 is chosen to examine the level of signi�cance of the tests, and
σ2
ξ = {0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.60, 0.80, 1.00} are chosen to investigate the

power behavior. The nominal level of signi�cance was set to α = 0.05. In the simu-
lation, the model in equation (5.3) is considered, where ξj ∼ N(0, σ2

ξ ), εij ∼ N(0, 1),
Xij ∼ N(0, 1), β0 = 0 and β1 = 1.

In the following, LRT is abbreviated for the likelihood ratio approach (0.5χ2
0 +

0.5χ2
1), ERLRT for the �nite sample restricted likelihood ratio approach, Boot for

the parametric bootstrap approach, Fitz for Fitzmaurice et al. (2007) approach and
PT for the proposed permutation approach.

The execution times taken for a single computation of each test, using a PC with
a single CPU and considering a design where n = 100 and J = 50, are reported
in Table 5.1. Of course, the LRT and ERLRT methods are faster than the others
because they do not require resampling process. The proposed permutation test PT
is largely the fastest among the resampling tests.

The empirical level of signi�cance for all the tests are reported in Table 5.2. The
empirical level of signi�cance of the bootstrap approach in the simulation con�gu-
rations is between 0.049 and 0.055, which is much closer to the nominal 0.05 level
than the other tests. Our proposed PT is the second preferable test in terms of
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empirical level of signi�cance.
To investigate the power of the proposed permutation test, some con�gurations

are reported in Table 5.4. It is clear that PT is more powerful than the LRT and
ERLRT methods and it is a good competitor of the Boot and Fitz methods.

One con�guration with an unbalanced design is investigated, J = 10 clusters
with average cluster size equal to 25 (half cluster of size 10 and half clusters of
size 40). The empirical level of signi�cance and power of the tests are reported in
Table 5.3. The power of the LRT method is the worst. The PT method is a good
competitor of the ERLRT , Boot and Fitz. In addition, Boot and Fitz have an
empirical level of signi�cance much closer to the nominal level than the others.

The power of the proposed permutation test when the distributions of the ran-
dom error components are misspeci�ed is investigated. Speci�cally, the model of
Equation 5.3 is considered but a gamma distribution is assumed for the random
error components ξj and εij ; i.e. ξj = σξ(ξ

∗
j − 1) where ξ∗j is distributed as gamma

with location and scale parameters equal to 1. A similar distribution is used to gen-
erate the errors εij . The empirical level of signi�cance of the tests are reported in
Table 5.5. The proposed permutation test PT and the Boot test have an empirical
level of signi�cance between 0.045 and 0.051 which are much closer to the nominal
level than the other tests. In terms of power, some con�gurations are reported in
Table 5.6. The proposed PT is more powerful than the LRT and ERLRT and it
is a very good competitor of the Boot and Fitz methods.

5.6 Concluding Remarks

To test variance components in a linear mixed model with balanced design, the
proposed permutation test has a level of signi�cance close to the nominal level and
more powerful than the tests based on the 50 : 50 mixture χ2 distributions and
the approximate exact restricted likelihood ratio method given by Crainiceanu and
Ruppert (2004). In terms of speed, the proposed permutation test is the fastest
method among the resampling-based methods. This is due to the way of obtaining
the distribution of the test statistic; the proposed permutation approach requires
the �tted model under the null hypothesis only once, while the other algorithms
require the �tted model under at least the null hypothesis for every iteration. The
proposed permutation test is also fully nonparametric while the other approaches
rely on distributional assumptions.

With unbalanced designs, the proposed permutation test still has a level of
signi�cance close to the nominal level and it is more powerful than the likelihood
ratio test based on the 50 : 50 mixture χ2 distribution and the approximate exact
restricted likelihood ratio method. It is worthwhile to observe that all tests discussed
in this chapter are more powerful for the balanced designs than the unbalanced.

When the distributions of the model errors are misspeci�ed all the tests under
consideration loose power. Also in this case, the three resampling-based tests, which
have similar performances, are clearly preferable to the standard LRT and the
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ERLRT .

Table 5.1: Times (in seconds) for a single computation of the tests calculated using
a PC with a single CPU, considering a design where n = 100 and J = 50.

Test LRT ERLRT Boot F itz PT

Time 0.18 0.25 35.00 38.00 0.30

Table 5.2: Empirical level of signi�cance from the simulation study of balanced
designs, nominal level α = 5%

(J, n) LRT ERLRT Boot F itz PT

(10, 5) 0.031 0.036 0.050 0.046 0.051
(10, 25) 0.026 0.043 0.051 0.046 0.046
(10, 100) 0.023 0.047 0.049 0.049 0.051
(50, 5) 0.036 0.043 0.049 0.039 0.053
(50, 25) 0.038 0.050 0.055 0.055 0.052
(50, 100) 0.036 0.048 0.050 0.050 0.051

Table 5.3: Empirical power from the simulation study of unbalanced design, J = 10,
n1 = · · · = n5 = 10 and n6 = · · · = n10 = 40, nominal level α = 0.05

σ2
ξ LRT ERLRT Boot F itz PT

0.00 0.023 0.046 0.050 0.050 0.055
0.05 0.451 0.560 0.568 0.566 0.524
0.10 0.735 0.810 0.811 0.812 0.804
0.15 0.872 0.922 0.923 0.922 0.924
0.20 0.919 0.948 0.948 0.948 0.953
0.30 0.975 0.981 0.982 0.980 0.987
0.40 0.988 0.991 0.992 0.991 0.992
0.60 0.998 0.999 0.999 0.999 0.999
0.80 0.997 0.999 0.999 0.999 0.999
1.00 0.999 0.999 0.999 0.999 0.999
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Table 5.4: Empirical power from the simulation study of balanced designs, nominal
level α = 0.05

(J, n) σ2
ξ LRT ERLRT Boot F itz PT

(10, 5) 0.05 0.086 0.098 0.119 0.124 0.128
0.10 0.161 0.186 0.216 0.219 0.219
0.15 0.246 0.278 0.313 0.315 0.308
0.20 0.318 0.348 0.400 0.396 0.402
0.30 0.490 0.532 0.575 0.580 0.562
0.40 0.608 0.648 0.688 0.678 0.680
0.60 0.779 0.802 0.834 0.835 0.822
0.80 0.882 0.898 0.910 0.912 0.915
1.00 0.935 0.945 0.953 0.951 0.953

(10, 25) 0.05 0.480 0.588 0.591 0.590 0.591
0.10 0.776 0.834 0.837 0.833 0.834
0.15 0.912 0.934 0.937 0.937 0.940
0.20 0.946 0.962 0.964 0.964 0.964
0.30 0.989 0.992 0.992 0.992 0.992
0.40 0.996 0.999 0.999 0.999 0.999
0.60 0.998 0.999 0.999 0.999 0.999
0.80 0.999 0.999 0.999 0.999 0.999
1.00 0.999 0.999 0.999 0.999 0.999

(50, 5) 0.05 0.252 0.275 0.289 0.262 0.298
0.10 0.540 0.570 0.586 0.552 0.584
0.15 0.780 0.793 0.811 0.785 0.807
0.20 0.913 0.918 0.927 0.918 0.930
0.30 0.987 0.988 0.991 0.987 0.991
0.40 0.998 0.998 0.998 0.998 0.999
0.60 0.999 0.999 0.999 0.999 0.999
0.80 0.999 0.999 0.999 0.999 0.999
1.00 0.999 0.999 0.999 0.999 0.999

Table 5.5: Empirical level of signi�cance from the simulation study when error
components follow a gamma distribution, nominal level α = 0.05

(J, n) LRT ERLRT Boot F itz PT

(10, 5) 0.026 0.035 0.049 0.047 0.052
(10, 25) 0.025 0.048 0.051 0.050 0.051
(10, 100) 0.022 0.047 0.048 0.052 0.050
(50, 5) 0.039 0.042 0.050 0.041 0.048
(50, 25) 0.035 0.045 0.051 0.050 0.047
(50, 100) 0.029 0.045 0.045 0.048 0.045
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Table 5.6: Empirical power from the simulation study when error components follow
a gamma distribution, nominal level α = 0.05

(J, n) σ2
ξ LRT ERLRT Boot F itz PT

(10, 5) 0.05 0.079 0.105 0.127 0.134 0.131
0.10 0.170 0.204 0.236 0.244 0.232
0.15 0.235 0.262 0.299 0.306 0.313
0.20 0.330 0.370 0.406 0.405 0.417
0.30 0.432 0.465 0.502 0.514 0.510
0.40 0.541 0.566 0.590 0.594 0.599
0.60 0.680 0.702 0.728 0.734 0.738
0.80 0.762 0.785 0.808 0.812 0.810
1.00 0.830 0.845 0.866 0.865 0.863

(10, 25) 0.05 0.412 0.496 0.503 0.507 0.505
0.10 0.662 0.732 0.739 0.734 0.735
0.15 0.778 0.827 0.830 0.831 0.832
0.20 0.871 0.898 0.901 0.903 0.902
0.30 0.936 0.953 0.955 0.956 0.955
0.40 0.957 0.972 0.972 0.974 0.972
0.60 0.982 0.986 0.987 0.988 0.987
0.80 0.992 0.993 0.993 0.992 0.993
1.00 0.995 0.996 0.997 0.997 0.997

(50, 5) 0.05 0.234 0.252 0.272 0.241 0.269
0.10 0.498 0.529 0.551 0.514 0.549
0.15 0.737 0.754 0.768 0.746 0.766
0.20 0.852 0.866 0.870 0.859 0.869
0.30 0.964 0.969 0.970 0.967 0.969
0.40 0.983 0.985 0.988 0.985 0.989
0.60 0.997 0.998 0.999 0.998 0.998
0.80 0.999 0.999 0.999 0.999 0.999
1.00 0.999 0.999 0.999 0.999 0.999
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The adjusted Rand index is a measure of similarity or agreement between two
clusterings for the same dataset. It is calculated based on counting pairs of points
and comparing the agreement and the disagreement between the two clusterings or
two classi�cation rules. In this chapter, the adjusted Rand index is suggested as a
test statistic for testing the null hypothesis of random agreement.

6.1 Introduction

Measuring the similarity between two clusterings (two sets of clusters) for the same
dataset have received strong interest in the literature. This is due to the existence
of many di�erent clustering algorithms (Kaufman and Rousseeuw, 1990; Theodor-
idis and Koutroumbas, 2006) or di�erent observers may use the same clustering
algorithm but di�erent starting points which yield di�erent clusterings (Brennan
and Light, 1974). Therefore, measuring the similarity (agreement) is one of the
fundamental techniques in the cluster analysis �eld.

In order to clarify ideas and to avoid misunderstanding of what we mean by
the similarity or agreement between two clusterings, it is helpful to refer to an
example. Suppose two observers are asked independently to cluster or to partition
a dataset into several clusters, so we have two clusterings. The speci�c criterion
for partitioning is left up to each observer. Thus the number of clusters within
each clustering could be di�erent. Moreover, each observer may use di�erent labels
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for his clusters. An important question to be asked is whether the two observers
agree or disagree. For example, consider a two-dimensional dataset of size 100.
In Figure 6.1(a) the two observers agree completely. In Figure 6.1(b) they also
agree completely although di�erent labels are used. There is a strong agreement in
Figure 6.1(c) although di�erent number of clusters are used. Finally, Figure 6.1(d)
depicts a random agreement. Note that the random agreement occurred when each
of the observers partition the dataset into clusters randomly.

(a) Perfect agreement, ARI = 1 (b) Perfect agreement, ARI = 1

(c) Strong agreement, ARI = 0.75 (d) Random agreement, ARI ≈ 0

Figure 6.1: The agreement between two clusterings of a dataset obtained indepen-
dently by two di�erent observers

It is worthwhile to observe that the problem of measuring agreement between
two (or more) observers, given that the categories or the cluster labels are prede�ned
and imposed on observers, is investigated in the literature. Cohen (1960) introduced
the coe�cient kappa to measure the degree of agreement between two observers who
cluster the observations among the prede�ned categories. This measure has been
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extended to three or more observers by Light (1971) and Fleiss (1971). See also
Cohen (1968), Everitt (1968) and Fleiss et al. (1969).

The problem considered in this chapter is somewhat di�erent. The two observers
are asked to cluster the observations into several clusters. The speci�c criterion for
clustering is left up to each observer. Thus the two observers may develop di�erent
number of clusters. Moreover, since no precise set of clusters have been labelled in
advance, each observer may use di�erent criteria resulting in categories with di�erent
labels.

A large number of agreement measures have been proposed in the literature,
which can be classi�ed into three groups:

1. Pair counting measures: which are based on counting pairs of points and com-
paring the agreement and the disagreement between two clusterings. Jaccard
index (Jaccard, 1901), Rand index (Rand, 1971), Folkes and Mallows index
(Fowlkes and Mallows, 1983) and adjusted Rand index (Hubert and Arabie,
1985) are examples of this group of measures.

2. Set matching measures: which are based on measuring the shared set cardi-
nality between two clusterings. F -measures (Rijsbergen, 1979) and misclassi-
�cation rate (Meil�a, 2005) are examples of this group of measures.

3. Information theoretic measures: which are based on the conditional probabil-
ities resulting from the number of points shared between clusters of the two
clusterings. Mutual information (Strehl and Ghosh, 2003) and variation of
information (Meil�a, 2005) are examples of this group of measures.

For more details see Hubalek (1982), Albatineh et al. (2006), Milligan and Cooper
(1986) and Warrens (2008a,b).

Few publications are found in the literature concerning distributional properties
of agreement measures. Janson and Vegelius (1981) derived the mean and the
variance of Jaccard index. McCormick et al. (1992) derived the exact distribution
of Jaccard index assuming an underlying multinomial distribution with all categories
equally likely except one. Hubert and Arabie (1985) derived the mean of the Rand
index under the hypergeometric distribution assumption. Fowlkes and Mallows
(1983) derived the mean and variance for Rand index. Albatineh (2010) generalized
the derivation of Fowlkes and Mallows (1983) for the mean and the variance to a
large number of similarity measures. Finally, Shuweihdi and Taylor (2007) showed
that the Rand index is linearly related to the Pearson statistic given that the cluster
sizes (i.e. the number of observations within each cluster) within each clustering are
equal.

In this chapter, the ARI is used as a test statistic for testing the null hypothesis
of random agreement. The concept of the ARI and its properties are reviewed in
Section 6.2. Tests for the null hypothesis of random agreement using χ2 distribution
and permutation approaches are investigated in Section 6.3. Simulation study to
investigate the empirical level of signi�cance is carried out in Section 6.4. Finally,
concluding remarks are contained in Section 6.5.
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6.2 Adjusted Rand Index

6.2.1 De�nition and notation

Consider a dataset with n items denoted by X = {X1, . . . ,Xn}. Let U with r

clusters and V with c clusters are two clusterings to be compared. U and V are
obtained independently by two observers, same observer but in di�erent occasions
or di�erent starting points, or by applying two di�erent clustering algorithms. The
information on the overlap between U and V can be summarized by considering one
of the following representations.

• Representation 1 Each clustering is represented by a string of symbols
containing the cluster labels of the corresponding data points. For exam-
ple, U = {u1, u1, u3, u4, u4, . . .} and V = {v3, v3, v1, v2, v4, . . .} means the �rst
data point X1 is labeled by u1 in clustering U whereas it is labeled by v3 in
clustering V, and so on.

• Representation 2 Let U = {u1, . . . ,ur} and V = {v1, . . . ,vc}, where ui is
the set of all data points clustered into the ith cluster, i = 1, . . . , r, by U , and
vj is the set of all data points clustered into the jth cluster, j = 1, . . . , c, by V.
Then the information on cluster overlap between U and V can be summarized
in the form of a r × c contingency table as illustrated in Table 6.1, where
nij is the number of items classi�ed into cluster ui according to U and into
cluster vj according to V. The cluster sizes in the two clusterings are the
row and column totals of the contingency table given by ni+ =

∑
j nij and

n+j =
∑

i nij .

Table 6.1: Two-way contingency table

V
v1 v2 . . . vc ni+

u1 n11 n12 . . . n1c n1+
U u2 n21 n22 . . . n2c n2+

...
...

...
. . .

...
...

ur nr1 nr2 . . . nrc nr+
n+j n+1 n+2 . . . n+c n

• Representation 3 Any pair of data points from the total of N =
(
n
2

)
di�erent

pairs in the dataset X falls into one of the following four types of pairs:

1. N11: the number of pairs that are in the same cluster in both U and V;
2. N00: the number of pairs that are in di�erent clusters in both U and V;
3. N01: the number of pairs that are in the same cluster in U but in di�erent

clusters in V;
4. N10: the number of pairs that are in di�erent clusters in U but in the

same cluster in V.



6.2. Adjusted Rand Index 57

These quantities can be calculated using the nij 's (Hubert and Arabie, 1985).
Intuitively, N00 and N11 are typically interpreted as agreements in the clas-
si�cation of the items whereas N01 and N10 represent disagreements. The
information on cluster overlap between U and V can be summarized in the
form of a 2× 2 contingency table as illustrated in Table 6.2.

Table 6.2: 2× 2 contingency table

U ↓ V → Pairs in same cluster Pairs in di�erent clusters

Pairs in same cluster N11 N01

Pairs in di�erent clusters N10 N00

The Rand index (Rand, 1971) is simply de�ned as the probability of agreement:

RI =
N00 +N11

N
.

The Rand index lies between 0 and 1. It takes the value of 1 when the two clusterings
are identical and 0 when the two clusterings have no agreement. In fact, the latter
happens if and only if one clustering consists of a single cluster and the other only
of clusters containing single points. However as can be seen, the unique case where
RI = 0 is quite extreme and has little practical value. In most situations the
Rand index often lies within the narrower range of [0.5, 1]. Therefore, the Rand
index possibly gives high values to pairs of randomly generated clusterings, e.g. 0.5,
and this baseline value does not take on the same value in di�erent scenarios. In
fact, it is desirable for the similarity measure between two random clusterings to
take values close to zero, or at least a constant value. A further problem with the
Rand index is that its expected value between two random clusterings does not
even take a constant value. Hubert and Arabie (1985), by taking the generalized
hypergeometric distribution as the model of randomness, i.e. the two clusterings
are picked at random subject to having the original number of classes and objects
in each, found the expected value for N00 +N11. They suggested using a corrected
version of the Rand index of the form:

Adjusted_Index =
Index− E(Index)

Max(Index)− E(Index)

thus giving rise to the adjusted Rand index given by:

ARI(U ,V) =

∑
i

∑
j

(nij
2

)
−
∑

i

(
ni+

2

)∑
j

(n+j

2

)
/
(
n
2

)
0.5
(∑

i

(
ni+

2

)
+
∑

j

(n+j

2

))
−
∑

i

(
ni+

2

)∑
j

(n+j

2

)
/
(
n
2

) . (6.1)

The ARI is bounded above by 1 and takes on the value 0 when the index equals
its expected value (under the generalized hypergeometric distribution assumption
for randomness). For more details see Hubert and Arabie (1985); Yeung and Ruzzo
(2001).
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Using Representation 3, Warrens (2008b) showed that the ARI can be rewrit-
ten as follows:

ARI(U ,V) =
2(N11N00 −N01N10)

(N11 +N01)(N00 +N01) + (N00 +N10)(N10 +N11)
.

Albatineh et al. (2006) introduced a family of similarity measures which can be
written in the form β0 +β1

∑
i

∑
j n

2
ij , where β0 and β1 are unique for each measure.

The ARI can be written by the same way. By the use of Equation 6.1, after simple
algebra, the ARI is written in the following form:

ARI(U ,V) = β0 + β1

∑
i

∑
j

n2
ij , (6.2)

where

β0 =
−n− PQ

n(n−1)

0.5(P +Q)− PQ
n(n−1)

and

β1 =
1

0.5(P +Q)− PQ
n(n−1)

with P =
∑

i n
2
i+ − n and Q =

∑
j n

2
+j − n.

6.2.2 ARI and Pearson statistic

Let the totals within each marginal are equal, that is,

ni+ =
n

r
,∀i = 1, . . . , r (6.3)

and
n+j =

n

c
,∀j = 1, . . . , c. (6.4)

Shuweihdi and Taylor (2007) showed that the Rand index is linearly related with
the Pearson statistic. By the same way, the relationship between ARI and Pearson
statistic can be derived. The Pearson statistic is given by

X2 =
∑
i

∑
j

(
nij − ni+n+j

n

)2
ni+n+j

n

.

Under restrictions 6.3 and 6.4, the Pearson statistic becomes

X2 =
rc

n

∑
i

∑
j

n2
ij − n.

Therefore, after simple algebra,

ARI = γ0 + γ1X
2, (6.5)

where γ0 = c+r−rc−1
d and γ1 = n−1

nd with d = 0.5nc− rc+ 0.5c+ 0.5nr − n+ 0.5r.
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6.3 Tests for Random Agreement

Consider two independent clusterings U and V. The hypotheses of interest are given
by

H0 : {There is a random agreement between U and V}

and

H1 : {U and V are not random}.

Performing the test based on the statistic ARI requires the knowledge of its proba-
bility distribution under the null hypothesis which is tedious to �nd in closed form.
To overcome this problem, two approaches are proposed; χ2 distribution approach
(Section 6.3.1) and permutation approach (Section 6.3.2).

6.3.1 χ2 distribution approach

When the clusterings U and V have equal cluster sizes, it is shown in Section 6.2.2
that the ARI can be written as a linear function with Pearson statistic (see Equa-
tion 6.5).

Since X2 has an asymptotic χ2 distribution with ν = (r − 1)(c − 1) degrees of
freedom, then the probability distribution of ARI is given by

fARI(x) =
1

2ν/2Γ(ν/2)γ1

(
x− γ0

γ1

)ν/2−1

exp

{
−(x− γ0)

2γ1

}
, where x ≥ γ0.

with mean

E (ARI(U ,V)) = γ0 + γ1ν,

and variance

V (ARI(U ,V)) = 2νγ2
1 .

To test the null hypothesis of random agreement, the following test statistic is
used.

X2
ARI(U ,V) =

ARI − γ0

γ1
,

which has an asymptotic χ2 distribution with ν = (r− 1)(c− 1) degrees of freedom.
Therefore, the p-value is given by

λ1 = 1− FX2(X2o
ARI) =

∫ ∞
X2o
ARI

fARI(x) dx,

where X2o
ARI is the observed test statistic and FX2(·) is the cdf of χ2 distribution.

The size of the test has the correct nominal level α in the sense that∫∞
X2
α
fARI(x) dx = α.
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6.3.2 Permutation approach

χ2 distribution approach, discussed in Section 6.3.1, is valid when the cluster sizes
within each clustering are equal and the expected number of cells is greater than 5.
In practice, these restrictions are hard to attain. Therefore, an alternative approach
is required. In this section, a permutation test is proposed.

The goal of using permutation method is the computation of the conditional
probability distribution of the ARI. For the purpose of �nding the permutation
sample space, Representation 1 of the two clusterings (discussed in Section 6.2.1)
is considered. The cluster labels within each clustering are permuted then ARI

is calculated using U∗ and V∗. Algorithm 6.1 is used to obtain the permutation
(conditional) p-value for testing the null hypothesis of random agreement.

Algorithm 6.1 Conditional p-value of the ARI

1. For the given two clusterings U and V, calculate the observed test statistic
ARI(U ,V), denoted by ARIo.

2. Take a random permutation U∗ of U and V∗ of V.

3. Calculate the test statistic ARI∗ = ARI(U∗,V∗).

4. Independently repeat Steps 2 and 3 many times, say B times, giving B test
statistics, say {ARI∗b , b = 1, . . . , B}.

5. The permutation mid p-value is estimated as

λ2 =

∑B
b=1 I(ARI∗b > ARIo)

B
+

∑B
b=1 I(ARI∗b = ARIo)

2B
.

Note that the permutation mid p-value (Lancaster, 1961) is calculated due to
the discreteness of the permutation distribution of the test statistic.

6.4 Simulation Study

In this section, the empirical level of signi�cance of the proposed tests is investigated.
To assess the empirical level of signi�cance, the tests are performed on a two

random clusterings. A random clustering can be created by assigning data points
to clusters randomly. As an example, two clusterings each with three categories
(r = c = 3) are created under the null hypothesis and three di�erent con�gurations
are considered: (a) ni+ = 50, ∀i = 1, 2, 3 and n+j = 50, ∀j = 1, 2, 3; (b) n1+ =

n+1 = 5, ni+ = 50, i = 2, 3 and n+j = 50, j = 2, 3; (c) n1+ = 5, n2+ = 3, n3+ = 7

and n+1 = 1, n+2 = 10, n+3 = 4. Steps for assessing the empirical signi�cance level
are summarized in Algorithm 6.2. A simulation study based on R = 5000 datasets
are performed. The considered permutations on each dataset are B = 1000.
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Algorithm 6.2 Empirical level of signi�cance

1. For the given dataset, randomly create two clusterings U and V.

2. Use the aforementioned approaches to obtain the p-values, λ1 and λ2.

3. Independently repeat Steps 1 and 2 many times, say R times, giving R p-values
for each approach, say {λir, r = 1, . . . , R}, i = 1, 2.

4. For a preassigned nominal level of signi�cance α, the empirical level of signif-
icance is given by

α̂i =

∑R
r=1 I(λir ≤ α)

R
, i = 1, 2.

The simulation results are reported in Tables 6.3-6.5 for each con�guration. It is
clear that the empirical level of signi�cance for the proposed tests in con�guration
(a) is closed to the nominal one; that is, the p-values under the null hypothesis are
uniformly distributed over its support, [0, 1]. While in con�gurations (b) and (c)
the proposed permutation test is still valid but not the χ2 distribution.

Table 6.3: The empirical level of signi�cance, ni+ = 50, ∀i = 1, 2, 3 and n+j =

50, ∀j = 1, 2, 3

Nominal level α

Method 0.05 0.10 0.20 0.40 0.60 0.80 0.90

χ2 distribution 0.049 0.104 0.215 0.427 0.604 0.813 0.906

permutation 0.051 0.105 0.208 0.410 0.600 0.805 0.905

Table 6.4: The empirical level of signi�cance, n1+ = n+1 = 5, ni+ = 50, i = 2, 3

and n+j = 50, j = 2, 3

Nominal level α

Method 0.05 0.10 0.20 0.40 0.60 0.80 0.90

χ2 distribution 0.049 0.103 0.184 0.409 0.550 0.804 0.999

permutation 0.049 0.098 0.200 0.408 0.596 0.800 0.898

Table 6.5: The empirical level of signi�cance, n1+ = 5, n2+ = 3, n3+ = 7 and
n+1 = 1, n+2 = 10, n+3 = 4

Nominal level α

Method 0.05 0.10 0.20 0.40 0.60 0.80 0.90

χ2 distribution 0.040 0.049 0.182 0.4100 0.828 0.999 0.999

permutation 0.048 0.103 0.190 0.4100 0.575 0.828 0.871
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6.5 Concluding Remarks

Testing for random agreement for two clusterings of a dataset is investigated in this
chapter. The adjusted Rand index is proposed as a test statistic. Two proposed
methods are discussed; the �rst one is based on the χ2 distribution by the use of
the relationship between Pearson statistic and the adjusted Rand index; the second
one is based on the permutation approach. Comparison between these proposed
methods is carried out in terms of empirical level of signi�cance.



Appendix A

Perspectives of Future Work

I would be most interested in continuing to work and to extend some approaches
discussed in this thesis.

In Chapter 2, the power functions of permutation tests (conditional and uncon-
ditional) are de�ned for two-sample design for one-sided alternatives. It is of interest
to extend these de�nitions to two-sided alternatives, one-sample, and k > 2-sample
designs also with categorical variables and in multidimensional settings. Moreover,
the power functions are de�ned for �xed e�ects and extension to random e�ects can
be provided.

In Chapter 3, some applications of empirical conditional power function are
investigated. It is of interest to extend these applications for bioequivalence and
non-inferiority testing problems (see, for example Wellek, 2010).

In Chapter 4, two-sample permutation design is studied with ranked set sampling
for perfect ranking. It is of interest to study di�erent permutation designs (such as
paired and ANOVA designs) with ranked set sampling and imperfect ranking may
also be considered. Moreover, it is of interest to study the use of permutation tests
with multistage ranked set sampling (Al-Saleh and Al-Omari, 2002) and to check
the e�ectiveness of the number of stages on the power of the test.

In Chapter 5, permutation tests in linear mixed models is proposed for one
variance component and the random intercept model is considered as a guide. It
is of interest to study the use of permutation tests for more than one variance
component.

In Chapter 6, tests for random agreement are investigated for a two di�erent
clusterings created for the same dataset. It is of interest to study these tests when
the two clusterings are created for two di�erent datasets. It is found in the literature
a measure of similarity called ADCO proposed by Bae et al. (2010) which could be
considered as a test statistic for the null hypothesis of random agreement.
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