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Abstract

Extremal black holes are states in the non-perturbative spectrum of Supergravity theo-

ries. They may be charged under abelian fields and in this case give rise to an effective

potential for the scalars. This, in addition, is responsible for the occurrence of an at-

tractor mechanism: extremal solutions are determined by critical points of the effective

potential. This implies that their supersymmetric features rely only on the algebraic

properties of the electric-magnetic duality group. In this thesis black holes solutions

and their properties under duality transformations are analyzed in extended Supergrav-

ity theories in four dimensions.

An introductory part reviews the construction of electric-magnetic duality invariant

theories and describes the symplectic covariant formalism both in the case of N = 2

and N > 2 Supergravity theories. The attractor mechanism and black hole first order

formalism are also reviewed.

The thesis than proceeds with the discussion of original results. First I discuss

the ungauged N=8 theory and show how the supersymmetric properties of black hole

duality orbits are manifest, once the proper representations of vectors and scalar fields

in different symplectic frames is chosen, according to the algebraic branching of the orbit

with respect to the duality group. In particular, one of these cases corresponds to the

Kaluza−Klein reduction of the theory from five dimensions, as it can be seen from the

relation between the central charge in four and five dimensions. Explicit computations

are possible if one restricts the solutions to the stu-truncation.

Then I present static dyonic black holes in the context of N=2 U(1) gauged super-

gravity in four dimensions, with AdS4 asymptotic geometry. It is shown that the flow

of scalar fields and metric warp factors is governed by first order equations that can be

derived for a general U(1) gauging potential. Explicit examples are finally presented,

which only preserve up to half of the supersymmetry and thus evade previous no-go

theorems.





Riassunto

I buchi neri estremali sono stati dello spettro non perturbativo di teorie di Supergravità.

Sono sistemi carichi rispetto a campi abeliani, la cui presenza introduce un potenziale

effettivo per i campi scalari. Questo stesso potenziale è responsabile di un meccanismo

attrattore per i campi scalari: le soluzioni estremali corrispondono infatti ai punti critici

di un potenziale efficace. In questo modo le proprietà di supersimmetria della soluzione

dipendono solamente dalla struttura algebrica del gruppo di dualità elettromagnetica.

In questa tesi vengono analizzate soluzioni di buco nero in teorie di Supergravità estese

in quattro dimensioni.

Una parte introduttiva presenta la costruzione delle teorie invarianti per dualità

elettromagnetica, e descrive il formalismo covariante simplettico sia nel caso della Su-

pergravità estesa N = 2 che di quelle con N > 2. Vengono anche descritti il meccanismo

degli attrattori e il formalismo del prim’ordine per le soluzioni di buco nero.

La tesi procede poi con la discussione dei risultati originali. In questa parte si

considera la teoria N = 8 in assenza di gauging delle isometrie del gruppo di dualità.

Viene mostrato come le proprietà di supersimmetria delle orbite del buco nero siano

manifeste se si sceglie una rappresentazione opportuna per i campi vettoriali e scalari,

a seconda del branching algebrico corrispondente all’orbita nel gruppo di dualità. In

particolare, uno di questi casi corrisponde alla riduzione dimensionale di Kaluza−Klein

da cinque dimensioni, come si può leggere dalla relazione tra la carica centrale in quattro

e in cinque dimensioni. Per la troncazione al modello stu verranno mostrate soluzioni

esplicite.

Nella parte finale vengono presentati configurazioni di buchi neri dionici nella teoria

di Supergravità N = 2 con gauging U(1) in quattro dimensioni. Queste soluzioni am-

mettono una geometria asintotica di tipo AdS4. Viene mostrato come il flusso radiale dei

campi scalari e il warp factor della metrica sono governati da equazioni del prim’ordine,

che si possono ricavare per un generico potenziale di gauging. Sono presentati, infine,

alcuni esempi espliciti di soluzioni di buco nero che preservano non più della metà di

supersimmetrie, e quindi possono evadere teoremi di inesistenza presenti in letteratura.
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Chapter 1

Introduction

Black holes are solutions of General Relativity, the theory that describes classical grav-

itational interactions, or of its classical extensions, like Supergravity. They are charac-

terized by the presence of an event horizon hiding a space-time singularity. For their

intrinsic connection to the limits of validity of General Relativity, they have always

been an interesting playground for the investigation of possible extensions to quantum

theories of gravity.

Non linearity of General Relativity equations of motion implies, in fact, that smooth

initial data can evolve into a singular field configuration [1], thus, the horizon protects

the outer region of spacetime from causally interacting with the inner part, in contact

with the singularity, because no particles can classically come out from the horizon. A

naked singularity would instead cause the breakdown of the theory. As soon as one starts

taking into account the semiclassical behavior, however, under very general assumptions,

black holes behave as a thermal state, emitting particles with a black body spectrum

[2]. This means that the emitted radiation carries no information about the matter

that caused the formation of, or simply fell into the black hole, and was then emitted

thermally [3]. This causes the breakdown of unitary evolution of states, leading to the

“information loss” problem.

As thermal states, black holes have an entropy associated to them. From a semi-

classical computation, Bekenstein and Hawking [4],[5],[6] found that it is proportional

to the area of the event horizon, and is a topological invariant quantity. It is a funda-

mental question for any quantum extension of gravity, if this entropy has a statistical

interpretation in terms of fundamental, quantum degrees of freedom. Up to now, the

only theory that has been able to microscopically describe a black hole is String Theory.
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Examples have been built, where the degrees of freedom are strings and branes, and give

rise to a black hole in the low energy, effective theory. The microstates counting has

been carried out at weak coupling gs → 0, and takes into account the BPS states of the

corresponding D-brane worldvolume theory [7]. Because of supersymmetry, the number

of states has to remain the same also at strong coupling, and the result of microscopic

counting actually agrees with the semi-classical computation of black hole entropy, given

by the Bekenstein−Hawking formula. What is interesting to our purposes, is that these

low energy, effective configurations, in the large charges approximation, are precisely

Supergravity black holes.

We will be dealing with the subset of extremal black holes that are charged massive

states with vanishing thermal temperature. The charge and mass of a state in general

relativity and all its classical extensions satisfy the BPS bound M ≥ Q [8]: extremal

black holes are those saturating this bound. They are stable states and have non van-

ishing entropy, and this ensures them a regular near horizon geometry.

String theory and its low energy Supergravity limits base their formulation on a

fundamental ingredient, which is Supersymmetry.

Supersymmetry is a candidate for a fundamental new symmetry of particles and

fields. It relates fermions to bosons and organizes fields in supermultiplets. It is being

intensively tested in these days at the LHC collider at CERN, in Geneva. Together

with the search of the Higgs, the missing particle from the Standard Model of gauge

interactions, testing the existence of supersymmetric partners of known particles, at

accessible energies, is one of the most intriguing challenges of high energy physics of

the XXI century. Supergravity theories, moreover, are theories of gravity which are also

Supersymmetry invariant, their field content contains Standard Model-like fields but

also other matter fields with spin less then two, and treat the rank-2 symmetric tensor

of the metric as the only spin-2 field in the theory. Invariance under Supersymmetry

determines completely the action and the coupling of the fields. It reveals, however, that

the action possesses other symmetries and invariances, which follow from the specific

structure of the terms in the Lagrangian allowed by supersymmetry.

It is the aim of this thesis to exploit the richness of symmetries and duality invari-

ances that extended Supergravity theories manifest, to study their extremal black holes

solutions. The relevant invariance in their description is electric-magnetic duality. Not

only this will help in the determination of the black hole metric, but it will also allow

for an algebraic classification of the solutions in terms of electric and magnetic orbits.

As charged states, black holes satisfy the BPS bound. In supersymmetric invariant
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theories, this is related to Supersymmetry, in the sense that (a part of the) Super-

symmetry is preserved by a state, when the bound is saturated. Selecting a particular

configuration of black hole electric and magnetic charges, indeed, fixes the duality orbit

of the solution. For each orbit, black holes have an entropy which is given by a dual-

ity invariant expression of the charges, a geometric quantity of the duality group that

encodes the supersymmetric properties of the orbit in the duality group.

Each orbit is obtained by solving the corresponding black hole “attractor equations”.

As it has been found in [9]-[13], the horizon of extremal black holes in Supergravity

manifests an attractor behavior: an extremal black hole attractor is associated to a

critical point of a suitably defined black hole effective potential, and it describes a scalar

field configuration stabilized at the event horizon, purely in terms of conserved electric

and magnetic charges, regardless the value of scalar fields at spatial infinity. This ensures

that the entropy does not depend on continuous parameters of the theory, like the scalars

v.e.v. at asymptotic infinity, consistently with a microscopic interpretation of entropy

as the log of the number of fundamental degrees of freedom, giving rise to the statistical

black hole-state.

More precisely, in this thesis, we explicitly parametrize orbits of ungauged N = 2

and N = 8 Supergravity, studying how the Supersymmetry features are encoded in the

form of the central charge matrix at the attractor point. We derive the entropy and the

explicit symplectic sections, which are suitable parametrizations of different branching

of the fields representations, with respect to the maximal subgroups contained in the

duality group.

In gauged Supergravity some of the global isometries of the scalar manifolds are made

local, and the scalars are charged under the action of gauge fields. There is however a

case, precisely the gauging of the diagonal U(1) group in the N = 2 theory, in which the

only modification is the appearance of a scalar potential. This behaves as a position-

dependent cosmological constant, thus allowing for asymptotically curved space-time

solutions. The presence of this additional potential strictly constrains the scalar dynam-

ics. Only recently, in fact, the standard lore of the non-existence of Supergravity black

holes, in asymptotically Anti de Sitter (AdS) space-time in four dimensions, has been

demonstrated wrong, by the construction of a magnetically charged black hole solution

in the mentioned N = 2 supergravity. We extended such formulation to render it dual-

ity invariant; in particular, in this framework, it is possible to introduce also magnetic

gauging. We show how to recover an attractor flow and we identify the corresponding

super-potential.
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Finally, it is important to mention that, in more recent years, black holes have become

a powerful tool in applications of the AdS/CFT correspondence to condensed matter

and nuclear physics. The construction of black hole solutions for gauged Supergravity

theories may give the opportunity to extend such results for AdS black holes in presence

of multiple charges and nontrivial scalars profiles, thus investigate more complex dual

configurations.

This thesis is organized as follows. Chapter 2 reviews electric-magnetic duality trans-

formations in theories of vectors, scalars and fermions coupled to gravity. In Chapter

3 we introduce the geometric formulation of extended Supergravity theories with coset

scalar manifold, exploiting the symplectic structure of their scalar manifold. We also

show how a symplectic covariant formalism allows to clarify the connection between

electric-magnetic duality and U-duality invariance of the theory. Attractor equations

are derived for a static black hole solutions of Supergravity in Chapter 4. We then

analyze some N = 8 Supergravity specific configurations which capture representatives

of both BPS and non-BPS orbits, in Chapter 5, and we focus on the properties of black

holes in 4-dimensional theory that arise from dimensional reduction of 5-dim N = 8

Supergravity in Chapter 6.

We dedicate Chapter 7 to the construction of dyonic black holes in U(1)-gauged

Supergravity, and present examples of different charge configurations that can be related

by duality or symplectic transformations.



Chapter 2

Electric-magnetic duality in

Supergravity

Supersymmetry invariance constrains the form of the action, and thus determine the

possible couplings among the fields of a given theory. However, the resulting Lagrangian

shows additional interesting symmetries and invariances, which are collectively described

as dualities. This, in part, reflects the geometric nature of the supersymmetric field

content. For example, when the maximally extended theory of Supergravity was con-

structed, by Cremmer and Julia, a non-compact duality invariance under the action of

E7(7) emerged. Gaillard and Zumino then considered this invariance for general theo-

ries, extending the duality of Maxwell electrodynamics to several abelian gauge fields;

supersymmetric theories are just a subset of those.

Duality transformations rotate among themselves the abelian field strengths, and

correspond to an invariance of the theory if they do not affect the equations of motion

and Bianchi identities. The Lagrangian in general transforms under duality, and the

action is not invariant. By exploiting the covariant transformation of equations of motion

and Bianchi identities, one can study their properties in a unified framework, and clarify

how solutions of different models can be mapped onto each others.

It is interesting how the supersymmetric feature of a theory automatically selects the

couplings among the fields, in such a way that a nontrivial duality invariance remains,

acting on the vector sector. We will see how this happens in Chapter 3, where we will

discuss the details of the scalar manifold of Supergravity theories and in particular of its

symplectic embedding. Before that, we will derive the constraints imposed by duality

invariance for generic theories of vectors, coupled to scalars and fermionic fields, and we
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will follow in that the study of M.K. Gaillard and B. Zumino [14].

2.1 Gaillard−Zumino construction

One of the most interesting properties of charged solutions of Supergravity is their

invariance under electric-magnetic duality rotations. Consider the bosonic sector of

Supergravity, described by the following action

S =

∫ √
−g d4x

(
−1

2
R+ ImNΛΓF

Λ
µνF

Γ, µν+
1

2
√
−g

ReNΛΓε
µνρσFΛ

µνF
Γ
ρσ +

+
1

2
Grs(φ)∂µφ

r∂µφs
)
. (2.1.1)

This is a theory of gravity coupled to nv abelian fields (Λ,Γ = 1, .., nv), and scalar fields

which are described by a nonlinear σ-model with target space Mscalar. They couple to

the vector fields by the metric

NΛΓ = NΛΓ(φ) . (2.1.2)

Except for some cases in N = 2 theories, the scalar manifold of extended Supergravity

is a symmetric homogenous space of the form Mscalar = G/H, where G is the duality

group acting on the electric and magnetic field strengths, and H is its maximal compact

subgroup. Of course, the action in (2.2.1) needs to be completed with terms containing

fermionic fields for the theory to be supersymmetric. However, when we specify to black

holes solutions, fermions decouple from the bosonic equations of motion, thus (2.2.1) is

sufficient to find the solution for the metric.

In a seminal work of 1981 [14], M. K. Gaillard and B. Zumino considered the most

general 2-derivatives action of bosonic and fermionic fields, with invariance under elec-

tric magnetic duality rotations, and showed that the group G must be embedded in the

symplectic group Sp(2n,R), where n is the number of vector fields in the theory. More

exactly, the duality invariance of electromagnetism can be extended to the interaction

with the gravitational field, but it is violated by electromagnetic couplings of the mini-

mal type, and there is no non-abelian generalization of duality rotations that leave the

pure Yang-Mills equations invariant [15]. However, generalizations to non minimal (e.g.

magnetic moment type) couplings is possible, even to non abelian group.

In the following, the main procedure to derive such an action will be outlined. In

particular, it will be shown that the most general group which can be realized, given n

field strength, is the real symplectic group Sp(2n,R), which has U(n) as its maximal
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compact subgroup. U(n) is indeed the largest group of duality transformations, in

absence of scalar fields, and this is related to non-linear transformations of the scalars.

In the examples we will touch in this thesis, the group of duality transformations is

smaller than the whole symplectic group. In the case of N = 8, for example, there are

28 field strengths, the duality group is E7(7), a subgroup of Sp(56,R), whose maximal

compact subgroup is SU(8) ⊂ U(28).

Duality invariance in Maxwell-Einstein theory

The simplest theory in which electric-magnetic duality is realized is Maxwell theory

of electromagnetism coupled to gravity, in which an abelian gauge field Aµ(x) is the

connection of a U(1) gauge bundle over the 4-dimensional space-time manifold, with

metric gµν . It is described by the action

SEM =
1

16πG

∫ √
−g {R− FµνFµν} , (2.1.3)

leading to the equations of motion

∂µF
µν = 0 , (2.1.4)

Rµν −
1

2
Rgµν = −8πGTµν , (2.1.5)

and Bianchi identities

∂µF̃
µν = 0 ⇐⇒ ∂[µFνρ] = 0 , (2.1.6)

where

?F =
1

2
F̃µνdxµ ∧ dxν =

1

2
√
−g

εµνρσFρσdx
µ ∧ dxν , (2.1.7)

is the hodge dual field strength of the vector field. The stress-energy tensor is

Tµν =
1

4π

[
FµαF

α
ν −

1

4
gµνF

2

]
. (2.1.8)

This theory is manifestly duality invariant, in the sense that the set of equations (2.1.4)

is unaffected by the following transformations on the vector field strength

F ′µν = (cosα+ j sinα)Fµν , α ∈ R , (2.1.9)

where the j “duality” operator is such that jF = ∗F , corresponding to the following

U(1) ' SO(2) rotation (
E′

H ′

)
=

(
cosα sinα

− sinα cosα

)(
E

H

)
. (2.1.10)
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The Lagrangian of the vector field is written in terms of the field strengths and their

duals, or explicitly

T =
1

4π

(
E2 −H2

)
, (2.1.11)

which is obviously not invariant for SO(2) rotations acting on the vector (E,H). It

is important to stress that duality rotations are not defined as transformations on the

vector fields but on their field strengths, they are an invariance of the equations of

motions and not symmetries of the action. Notice that duality transforms electric and

magnetic charges, thus relating among them different configurations. On the other hand,

the metric gµν remains a solution of the Einstein equations 2.1.5, in the new frame.

The Lagrangian will not be invariant but transforms in a specific way, that we will

analyze in generalizations of Maxwell duality.

Duality invariance in a theory of vector fields

It is possible to extend duality invariance to the case of a theory of n interacting vector

fields, coupled to other fields χi, both fermionic and bosonic, described by a Lagrangian

of the form

L = L(F a, χi, χiµ) , (2.1.12)

where F a, (a = 1, ..., n) are abelian vector field strengths

F aµν = ∂µA
a
ν − ∂νAaµ (2.1.13)

and χiµ ≡ ∂µχi. We define a dual electromagnetic curvature

G̃aµν =
1

2
εµνρσG

aρσ ≡ 2
∂L

∂F aµν
, (2.1.14)

so that the equations of motion derived from (2.1.12) can be simply written as

∂µG̃aµν = 0 , (2.1.15)

while Bianchi identities still hold in the form

∂µF
aµν = 0 (2.1.16)
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Since these equations are linear in the fields strength F, G, the infinitesimal transfor-

mation that leave these equations and (2.1.15) invariants, must act on the fields as

δ

(
F

G

)
=

(
A B

C D

) (
F

G

)
, (2.1.17)

δχi = ξi(χ) ,

δ(∂µχ
i) = ∂µξ

i = ∂µχ
j ∂ξ

i

∂χj
,

where

(
A B

C D

)
is an arbitrary real 2n×2nmatrix, and the functions ξi(χ) do not contain

derivatives of the fields. We define the duality group as the one that acts linearly on the

vectors of the field strengths and their duals, not affecting the dynamical equations of the

theory; their covariance, indeed, put constraints on the possible duality transformations

among the general linear ones.

Constraining the duality group

Given the above transformation, the generic variation of a Lagrangian of the form

(2.1.12) is

δL =

[
ξi
∂L
∂χj

+ χjµ
∂

∂χiµ
+ (F cAbc +GcBbc)

∂

∂F b

]
L ; (2.1.18)

differentiating again with respect to F a and using again the transformations in (2.1.17)

gives

2
∂

∂F a
δL =

1

2

∂

∂F a
(FCF̃ +GBT G̃) + 2(Dab +Aba)

∂L
∂F b

+
1

2

[
(Cab − Cba)F̃ b +

∂Gc

∂F a
(Bbc −Bcb)G̃b

]
. (2.1.19)

The requirement that the r.h.s. is a derivative with respect to F a gives

C = CT , B = BT , Dab +Aba = ηδab , (2.1.20)

thus the Lagrangian must satisfy

∂

∂F a
δL =

∂

∂F a

(
1

4
FCF̃ +

1

4
GBT G̃+ ηL

)
. (2.1.21)

Moreover, the covariance of the equations of motion for lower spin fields χi yields the

condition (
∂

∂χi
− ∂µ

∂

∂χiµ

)
(δL − 1

4
GBG̃) = 0 , (2.1.22)
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which is consistent with (2.1.21) for η = 0, D = −AT . This finally restricts the matrix(
A B

C D

)
to be an element of Sp(2n,R). We find the variation of the Lagrangian

δL =
1

4
(FCF̃ +GBG̃) . (2.1.23)

Notice that this is not a total derivative, G being a curl only because of the equations

of motion (2.1.15).

2.1.1 Construction of the Lagrangian

From the variation (2.1.23), given by the transformation (2.1.17), satisfying the con-

straints (2.1.20), we can write more simply δL = 1
4δ(FG̃). We begin to write the

functional as

L =
1

4
FG̃+ Linv(F a, χi, χiµ) ,

where Linv is written as a function of invariants of the duality group. But in the general

case where this group is Sp(2n,R) and the field strengths

(
F

G

)
transform as a vector

in the fundamental representation, the only possible invariant coupling of F and G to

the fields ξs is built out of two Lorentz invariant tensors

(Hµν(χ), Iµν(χ)) , (2.1.24)

transforming as the vector (F,G) under duality. Then the Lagrangian whose equations

of motions are invariant under duality has the form

Linv.(F,G, χi, χiµ) =
1

4
(FI −GH) + Linv.(χi, χiµ) ,

where Linv. is now an invariant functional of the χi fields only, so that it does not affect

the equations of motion, and I, H form a vector in the fundamental representation of

the Symplectic group.

By definition one has δL
δF = 1

2G̃, and this is actually a constraint on I and H

G̃− I = (F + H̃)
∂G̃

∂F
. (2.1.25)

the operator j introduced in the previous section, giving a field strength Tµν , satisfies

j Tµν = T̃µν ,

(j)2 = −1 .
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We can write (2.1.25) as

j G− I = (F + jH)
∂G̃

∂F
.

whose general solution is

jG− I = −K(χ)(F + jH) ;

⇓

jG = I −K(χ)(F + jH) . (2.1.26)

Thus the effect of an infinitesimal duality transformation of Sp(2n,R), (2.1.17), is de-

termined by the tranformations on (F,G) and (H, I) the vectors of the fundamental

representation. We find

δK(χ) = −jC − jKBK +DK −KA , (2.1.27)

which restricts the form of the Lagrangian to

L = −1

4
FKF +

1

2
F (I − jKH) +

1

4
jH(I − jKH) + Linv.(χ) . (2.1.28)

Compact Duality Rotations

The case K(χ) = 1 implies δK = 0. From (2.1.27) the constraints on the coefficients of

the duality rotation are

B = −C = BT , A = D = −AT ,

which restrict the duality group to the maximal compact subgroup U(n) ⊂ Sp(2n,R).

This appears even more manifest in a complex basis of the fundamental representation,

namely using the self and anti-self dual vectors

F+ ≡ F + iG ,

F− ≡ F − iG ,

which allow to write (2.1.17) in the form

δ

(
F+

F−

)
=

(
T 0

0 T ∗

) (
F+

F−

)
, (2.1.29)

with T = A − iB = −T †. The complex basis which uses F+ and F− allows a symple

physical interpretation: spin-1 fields of opposite helicity transform according to con-

jugate representations of the duality group, just as massless fermions do under chiral

transformations.
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It is easy to give a formulation that easily generalizes to the non compact case. The

role of the imaginary complex element i in the definitions of the complex basis (2.1.29)

is played in general by the “duality” operator

F ± iG→ F ± jG .

With the replacement i→ j, and the block-diagonal T -matrix becomes

Re T ± i ImT → Re T ± j Im T .

Also, defining a complexified coupling jH± ≡ (H ± jI), functions of the fields χ, the

Lagrangian (2.1.28) can be written as

L = −1

4
F 2 +

1

2
FH+ −

1

8
H2

+ −
1

8
H+H− + Linv.(χ) .

The field H− has no dynamical meaning, since it does not appear in any of the couplings

of F , and can be set to zero, meaning it is reabsorbed in Linv.(χ). Then, for H = jI,

from (2.1.26) it follows that

I = (1 +K(χ))−1
[
K(χ)F 2 +G2 + FjG−K(χ)GjF

]
. (2.1.30)

Notice that, in this way, in the compact K(χ) = 1 case, the invariant bilinear FI −GH
is

(FI −GH) = =
1

2
(F 2 +G2) =

1

2
(F − iG)(F + iG) ,

which is manifestly invariant under linear unitary transformations among F and G.

Non-compact transformations and non-linear realizations on scalars

By now we have all the ingredients to describe the theory of interacting fields with invari-

ance under a compact subgroup of Sp(2n,R), but we need to generalize the description

to non compact duality groups. The solution is to introduce in the theory scalar fields

described by a nonlinear sigma model, taking values in the quotient space of group G
with respect to its maximal compact subgroup K, being the semisimple group G the

duality group.

The scalars are described by a group element g(x) ∈ G, in some representation

of the duality group, but two elements are equivalent if they differ by right-action of

the maximal compact subgroup H of G. This equivalence, and thus the coset space
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structure, is implemented by the requirement that the Lagrangian is invariant under

gauge transformations that can be written as

g(x)→ g(x)[k(x)]−1 , (2.1.31)

together with rigid transformations

g(x)→ g0g(x) , (2.1.32)

with g0 ∈ G. The covariant derivative is built from the H group connection Qµ as

Dµg = ∂µg − gQµ. Notice that g−1Dµg is invariant under the global transformation

(2.1.32), thus the Lagrangian

L = −1

2
Tr
(
g−1Dµg

)2
,

is invariant under both gauge and rigid transformations on G. Defining Pµ = g−1Dµg,

the equations of motions for the scalar of the non linear σ-model can be written as

DµPµ ≡ ∂µPµ − [Pµ, Qµ] = 0 . (2.1.33)

Given the structure of non the linear σ-model, it is possible to solve (2.1.26) for

G non compact. The scalars of the coset can be represented by an Sp(2n,R) matrix

(symplectic embedding), which is easily expressed in a complex basis as1

g =

(
φ0 φ

∗
1

φ1 φ
∗
0

)
, (2.1.34)

where φ0 and φ1 are n× n matrices satisfying

φ†0φ0 − φ†1φ
1 = 1 ; (2.1.35)

scalar fields transform under the action of Sp(2n,R) as

δg =

(
T V ∗

V T ∗

)
g , (2.1.36)

T and V are related to the block elements of the transformation matrix in (2.1.17) by

T =
A− iB

2
+
D + iC

2

V =
A− iB

2
− D + iC

2
. (2.1.37)

1For the derivation of complex coset representatives see the Appendix A of [14].
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The solution to the transformation law of K in (2.1.27) is

δK = (φ†0 + φ†1)−1(φ†0 − φ
†
1) , (2.1.38)

where again complex numbers have to be reinterpreted as having i replaced by j, so for

instance

φi = Reφi + jImφi . (2.1.39)

Notice that in case one chooses the particular choice of gauge

g =

(
φ0 φ

∗
1

φ1 φ
∗
0

)
= exp

(
0 P ∗

P 0

)
, (2.1.40)

because of the symmetry of the noncompact generators P , the matrices φ0, φ1 satisfy

φ0 = φ†0 , φ1 = φT1 . (2.1.41)

A remark is in order. The conserved currents associated with the noncompact generators

can be constructed only when the interactions with the scalar fields is present. It is

possible to follow what happens in the decoupling limit, simply by dimensional analysis

of the Lagrangian terms. Interestingly, in this limit, the noncompact part of the duality

group becomes abelian, corresponding to a contraction of the original group to the U(n)-

scalar free case, thus the compact case can be recovered smoothly from the noncompact

construction.

Moreover, the structure underlying duality invariance presented above holds for

generic theories. There is indeed an unspecified Linv and an antisymmetric tensor

which couples to fermions in the form Hµν(ψ) which are completely free, up to now.

In supergravity theories, these quantities, in fact the field content itself, are fixed by

supersymmetry.

2.2 Duality rotations and covariance for the supergravity

action in d = 4

As stated at the beginning of the chapter, any N -extended Supergravity theory in d = 4

has a bosonic sector described by the action

S =

∫ √
−g d4x

(
−1

2
R+ ImNΛΓF

Λ
µνF

Γ, µν+
1

2
√
−g

ReNΛΓε
µνρσFΛ

µνF
Γ
ρσ +

+
1

2
gscIJ(φ)∂µφ

I∂µφJ
)
. (2.2.1)



2.2. Duality rotations and covariance for the supergravity action in d = 4 15

The matrix NΛΣ(Φ) is a symmetric matrix n×n, with n number of vector fields, depend-

ing on their representation of Gaillard−Zumino Symplectic group. Different Supergrav-

ity theories thus have different scalar manifolds and number of vector multiplets, and,

since for N ≥ 2 vector multiplets contain scalar fields, the action of the vector isometry

group Mscalar is deeply connected to the transformation of scalars. This results in the

embedding of the isometry group in the duality group, whose explicit form relies on the

specific Supergravity theory we are considering. Once we have this correspondence, we

find the matrix N in its explicit form.

It is crucial, then, to study duality transformations in details, in the form of a linear

action on the (abelian) vector field strengths and their dual forms. As stressed before,

these transformations leave Bianchi Identities and equations of motions invariant, and

generalize electromagnetic duality. For the purposes of studying black hole configura-

tions, it is important to underline that gµν , the four dimensional space-time metric, does

not transform under duality. This means, in particular, that when gµν is a black hole

metric, duality transformations will map black holes into other black holes. More gener-

ally, any solution for gµν depends on scalar fields and charges in a symplectic invariant

way.

In what follows we will see the Gaillard−Zumino construction at work in the Super-

gravity framework.

Duality rotations and symplectic covariance.

We deal with a theory of vectors and scalar fields which is invariant under the action of

a duality group, in d = 4. The gauge fields are nV abelian fields AΛ
µ , whose dynamic is

described by the field strengths in the action (2.2.1). We can separately write the dual

and anti-dual field strength

F± =
1

2
(F ± i ?F ) ,

?F± = ∓iF± , (2.2.2)

and rewrite the vector part of the action as

Lvec = i
[
F−,T N̄F− − F+,TNF+

]
=

= −i
(
F+ T , F− T

)(N 0

0 −N̄

)(
F+

F−

)
. (2.2.3)
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Following the Gaillard−Zumino construction we introduce the tensor GΛ
µν defined as

?GΛ
µν ≡

1

2

∂L
∂FΛ

µν

, (2.2.4)

that, for the theory under examination, is

?GΛµν = Im NΛΣ FΣ
µν + ReNΛΣ

?FΣ
µν . (2.2.5)

The equations of motion and Bianchi identities are{
∇µ?FΛ

µν = 0 ,

∇µ?GΛµν = 0 ,

⇓{
∇µImF± Λ = 0 ,

∇µImG±Λµν = 0 ,
(2.2.6)

where we also write GΛµν separating its self-dual and anti self-dual part

G± =
1

2
(G± i ?G) ,

?G± = ∓iG± , (2.2.7)

whose relation on the field strength F is given by

G+ = NF+ ,

G− = N̄F− . (2.2.8)

The vector part of the Lagrangian, if written in terms of F and G as in (2.2.4), takes

the compact form

Lvec = i
[
F−TG− − F+TG+

]
=

= −i
(
F+ T , F− T

)(G+

G−

)
. (2.2.9)

Moreover, we introduce the n+ n components vector of 2-forms

V ≡

(
?F

?G

)
,

and we get equations of motion, from the variation of the vector fields, in the form

d V = 0 , (2.2.10)
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considering differentiation with respect to space-time coordinates. Duality transforma-

tions are then simply described by

V′ = SV , S =

(
A B

C D

)
. (2.2.11)

S is a priori a matrix in GL(2nv,R), and, since we always required duality invariance

during the construction, the equations of motion for the vector V′ are still given by

dV′ = 0.

Restriction to symplectic group from the scalar sector

While the duality rotation (2.2.11) acts on field strengths and corresponding duals, also

the scalar fields are subject to the action of some diffeomorphism ξ ∈ Diff(Mscalar) of

the scalar manifold, transforming the matrix of couplings NΛΣ. We thus assume that,

givenMscalar the manifold of the nonlinear sigma model, there exists a homomorphism

of the form

ιδ : Diff (Mscalar) −→ GL(2n,R) (2.2.12)

so that

∀ ξ ∈ Diff (Mscalar) : φI
ξ−→ φI′

∃ ιδ(ξ) =

(
Aξ Bξ

Cξ Dξ

)
∈ GL(2n,R) . (2.2.13)

The action of this homomorphism describes the transformation of all the fields, that can

be expressed as

ξ :


φ −→ ξ(φ)

V −→ ιδ(ξ) V

N (φ) −→ N ′(ξ(φ))

(2.2.14)

In particular, the transformation of the Lagrangian is

L′vec = i
[
F−T

(
A+BN̄

)T N̄ ′(A+BN̄
)
F−−F+T

(
A+BN

)TN ′(A+BN
)
F+
]

(2.2.15)

Consistency with the definition of G+ requires that the matrix NΛΣ transforms as

N ′ ≡ N ′(ξ(φ)) = (C +DN (φ)) (A+BN (φ))−1 (2.2.16)

while consistency with the definition of G− imposes the analogue transformation on the

complex conjugate symplectic matrix

N̄ ′ ≡ N̄ ′(ξ(φ)) =
(
C +DN̄ (φ)

) (
A+BN̄ (φ)

)−1
(2.2.17)
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Finally, by requiring that the transformed matrix N ′ be again symmetric it simply

follows that the matrix Λ ≡ ιδ(ξ) must obey

ΛT

(
0 −11

11 0

)
Λ =

(
0 −11

11 0

)
, (2.2.18)

that is Λ ∈ Sp(2n,R). Consequently, the homomorphism of eq. 2.2.12 becomes

ιδ : Diff (Mscalar) −→ Sp(2n,R) (2.2.19)

Clearly, since Sp(2n,R) is a finite dimensional Lie group, while Diff (Mscalar) is infinite–

dimensional, the homomorphism ιδ can never be an isomorphism.

Also notice that the transformation Λ is not a symmetry of the action, unless for a

very restricted subset among the matrices with C = B = 0. However, the diffeomor-

phism ξ, defined by the correspondence Λ = ιδ(ξ), is a diffeomorphisms on the scalar

manifold for which the Lagrangian is invariant, since it is just an isometry of the scalar

manifold metric gscIJ . In fact, if ξ∗ : TMsc → TMsc is the push-forward of the diffeo-

morphism ξ, then ∀X,Y ∈ TM, gsc(X,Y ) = gsc(ξ∗X, ξ ∗Y ), meaning that ξ is an exact

global symmetry of the scalar part of the Lagrangian (2.2.1). In connection to the previ-

ous construction of duality rotations, it is important to stress that these symmetries of

the scalar sector are not guaranteed to admit an extension to symmetries of the whole

action, but they can instead be extended to symmetries of the field equations of motion

and Bianchi identities, that is to duality symmetries, as defined in the first part of this

Chapter. To achieve this, the group of isometries of the scalar metric I(Mscalar) needs

to be suitably embedded in the duality group Sp(2n,R) while the matrix NΛΣ needs to

be a scalar under transformations of Mscalar coordinates.

The description of this embedding, and the properties ofN ≥ 2 supergravity theories,

will be then the subject of the next Chapter.



Chapter 3

Symplectic structure of extended

Supergravity

The aim of this Chapter is to provide the geometric formulation which describes ex-

tended Supergravities in four dimensions in presence of electric and magnetic sources,

keeping manifest the underlying duality symmetries of the theory. We will emphasize

the symplectic structure of N ≥ 2 extended Supergravity, focusing on the N = 8 case.

This can be seen as a consequence of the existence of a flat symplectic bundle on the

scalar manifold. We then discuss, in the context of N = 2, the modifications induced

by the gauging of a subgroup of scalar manifold isometries, exploiting the notion of

momentum map.

3.1 N = 2 Supergravity and special geometry

Four dimensional N = 2 extended Supergravity is particularly interesting due to its

interpretation in connection to string theory, because it can be realized as the low

energy effective theory of string compactifications on Calabi−Yau manifolds. The theory

contains the gravity multiplet, and can be coupled to vector and hyper- matter multiplets
gµν

ψAµ

A0
µ

 ,


Aiµ

λiA

zi

 ,

 ζα

qu

 ,

gravity, nV vector′s nH hyper′s

(3.1.1)



20 Chapter 3. Symplectic structure of extended Supergravity

Since in N = 2 the gravity multiplet contains the graviphoton, the total number of

abelian vector fields for a given (ungauged) supergravity theory will be n = nV + 1.

Scalars are present both in the vector and in the hypervector sector, and in this case the

non-linear σ model, defined by the Lagrangian kinetic terms of the scalars, is a tensor

product of a Special Kähler with a Quaternionic Kähler manifold

M = MSK ⊗MQK . (3.1.2)

The scalars present in the vector multiplets are coordinates of MSK , while the hy-

perscalars parametrize MQK . This is a consequence of the factorized action of the

R-symmetry group on the scalar manifold, namely U(2) = U(1)×SU(2). As it is shown

in the action (2.2.1), supersymmetry of the action requires that the abelian field strength

couple to the scalars through the matrix NΛΣ, which is built from geometrical quantities

determined by the particular SK manifold of the theory under consideration. In par-

ticular, they do not depend on hyperscalars. This will become important when dealing

with black holes solutions, because we will look for configurations where hyperscalars

are consistently set to zero.

Given any N = 2 Supergravity, scalars of the vector multiplets span the complex

MSK . Special Kähler means that the manifold MSK is a Kähler−Hodge manifold

endowed with an extra symplectic structure, where a Kähler manifold M is a Hodge

manifold if and only if there exists a U(1) bundle L −→ M such that its first Chern

class equals the cohomology class of the Kähler 2-form K:

c1(L) = [K ] . (3.1.3)

For local coordinates zi, z̄ ı̄, we can write

K = i gī dz
i ∧ dz̄ ̄ , (3.1.4)

where zi are the n = nV + 1 holomorphic coordinates on MSK , the scalar fields in the

vector multiplets, and gī its metric.

In this case the U(1) Kähler connection is given by:

Q = − i

2

(
∂iKdzi − ∂ı̄Kdz̄ ı̄

)
, (3.1.5)

where K is the Kähler potential, so that K = dQ.

A Special Kähler manifold is not necessarily a coset manifold. It is possible, however,

to exploit the symplectic covariant construction of Gaillard and Zumino also in the case

of N = 2 Supergravity.
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3.1.1 Special geometry in Supergravity

Duality rotations and symplectic structure act already on charged BPS states of N = 2

rigid supersymmetric Yang-Mills theory [16]. When we couple it to gravity, the moduli

space of N = 2 Supergravity acquires a Kähler−Hodge structure over the symplectic

manifold, introducing a U(1) connection that modifies the constraints of special geometry

of the rigid formulation [17]. One striking difference is that, in presence of coupling to

gravity, the prepotential of the theory may not exist. It is possible, however, to give a

prepotential-independent formulation of special geometry in the Supergravity case.

Suppose the theory is coupled to nV vector multiplets, then the total number of

vectors, including the graviphton, is n = nV + 1 and the scalar fields of the vector

multiplets parametrize G/H ∈ Sp(2n,R). Consider the 2n sections

V = (LΛ,MΛ) , Λ = 0, 1, .., nV . (3.1.6)

The local Special Kähler geometry is defined by the following relations, which define a

flat connection on the symplectic bundle,

Ui = (DiLΛ,DiMΛ) ≡ (fΛ
i , hΛi),

DiUj = iCijkg
kl̄U l̄ ,

DiU ̄ = gīV ,

DiV = 0 . (3.1.7)

Latin indices run over 1, 2, ...., n, and Di is the covariant derivative with respect to

the Levi-Civita connection and the Kähler connection Q, meaning that under a Kähler

transformation given by K → K+ f + f , a section over the U(1) line bundle transforms

accordingly as

ψi → exp−
1
2

(2pf+p̄f̄) ψi . (3.1.8)

Its covariant derivative is then

Diψj = ∂iψ
j + Γijkψ

k +
p

2
∂iKψ

j , (3.1.9)

and analogously for Dı̄, with the substitution p → p̄. (p, p̄) are the Kähler weights of

the line bundle section ψ.

In the rest of this section we introduce relations and formulae of Special Geometry

that will be needed to construct solutions in N = 2 theories, and to analyze their

supersymmetric properties.
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We start with the coset parametrization. Symplectic sections in (3.1.6) have Kähler

weights (1,−1), conventionally, and they are are covariantly holomorphic, in the sense

that DīV = 0. They are normalized as

i(L
Λ
MΛ − LΛMΛ) = i〈V, V 〉 = 1 . (3.1.10)

It is then convenient to introduce holomorphic sections XΛ = e−K/2LΛ, FΛ = e−K/2MΛ,

satisfying by construction

K = − log
[
i(X

Λ
FΛ −XΛFΛ)

]
. (3.1.11)

In all cases when the integrability constraints1 (3.1.7) can be solved in terms of a pre-

potential, that is a holomorphic function homogeneous of degree two F (XΛ), then the

holomorphic sections are determined by

FΛ =
∂

∂XΛ
F (XΣ) , (3.1.13)

while in general it holds that

MΛ = NΛΣL
Σ hΛi = NΛΣf

Σ
i ; (3.1.14)

introducing the two matrices

hΛI = (hΛ0, hΛi) , fΛ
I = (fΛ

0 , f
Λ
i ) , hΛ0 ≡MΛ fΛ

0 ≡ LΛ , (3.1.15)

the symplectic matrix NΛΣ giving the couplings between scalars and gauge fields is

determined explicitly in terms of (LΛ,MΛ) as

NΛΣ = hΛI(f
−1)IΣ . (3.1.16)

The action of the duality group is the same in the rigid and in the local case and acts as(
LΛ

MΛ

)
→

(
A B

C D

)(
LΛ

MΛ

)
,

(
A B

C D

)
= S ∈ Sp(2n,R) , (3.1.17)

1In general, from the same integrability conditions for a special Kähler manifold, the curvature of the

manifold is given by

Rīkl̄ = gij̄glk̄ + gik̄glj̄ − CilqCj̄k̄q̄g
qq̄ , (3.1.12)

which is determined by the covariantly holomorphic (2,−2) tensor Cijk of (3.1.7).
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so the vector of symplectic section transforms as the symplectic vector of (anti)self dual

field strengths (F−Λ
µν , G

µν
−Λ), with F−Λ

µν = FΛ
µν + i

2εµνρσF
Λ
ρσ, and the dual field strength

Gµν−Λ = iδL/δF−Λ
µν for the bosonic Supergravity action is given by

GΛµν = ReNΛΣ FΣ
µν − Im NΛΣ

?FΣ
µν . (3.1.18)

The symplectic embedding describing the isomorphism

ι : Diff(Mscalar)→ Sp(2n,R) (3.1.19)

for N ≥ 2 theories is simply stated in terms of the sections (f, h) defined above, as(
f

h

)
=

1√
2

(
A− iB
C − iD

)
,

(
A B

C D

)
∈ Sp(2n,R) (3.1.20)

implying on the sections the following normalization relations

i(f †h− h†f) = 1 ,

f th− htf = 0 . (3.1.21)

In this thesis we will study particular solutions to Supergravity equations, namely

those in which the metric field describes a static charged black hole. The black hole

is a dyonic state whose charges are defined as the fluxes of electric-and magnetic field

strengths on a 2-sphere at spatial infinity

pΛ =
1

4π

∫
S2

FΛ , qΛ =
1

4π

∫
S2

GΛ . (3.1.22)

In the presence of scalar fields, the physical field strengths (T+, T−) are dressed with

the scalars, as it results from the supersymmetry variations of the fermions

T± = hΛF
±Λ − fΛG±Λ . (3.1.23)

They satisfy

T+ = hΛF
+Λ − fΛG+

Λ = 0 (3.1.24)

so that T = T− (and T̄ = T̄+). The physical charges, given by the central charges and

the matter charges, are now defined as the integrals over a S2 of the physical graviphoton

and matter vectors

Z =

∫
S2

T =

∫
S2

(hΛF
Λ − fΛGΛ) = hΛ(z, z̄)pΛ − fΛ(z, z̄)qΛ (3.1.25)
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with zi, z̄ ı̄ being the v.e.v. of the moduli fields for a given background. Notice that,

since V = (fΛ, hΛ), we have that

Zi = hΛ ip
Λ − fΛ iqΛ = ∇iZ . (3.1.26)

In particular, a BPS solution with Zi = ∇iZ = 0 would then have a minimum mass,

since it would satisfy

∇iZ = 0→ ∂i|Z|2 = 0. (3.1.27)

The symplectic structure of the manifold implies, for special geometry, the following

sum rules

|Z|2 ± |Zi|2 ≡ |Z|2 ± ZigīZ̄̄ = −1

2
QtM±Q (3.1.28)

where

M+ =

(
11 −ReN
0 11

)(
ImN 0

0 ImN−1

)(
11 0

−ReN 11

)
(3.1.29)

M− =

(
11 −ReF
0 11

)(
ImF 0

0 ImF−1

)(
11 0

−ReF 11

)
(3.1.30)

Q =
(
pΛ, qΛ

)
. (3.1.31)

Notice that the new symplectic metrics M± are related by the exchange of N ↔ F ,

where F relies upon the existence of a prepotential F and is F = ∂2F
∂XΛ∂XΣ = FΛΣ. Notice

also that, while ImN is always negative definite, this does not hold for ImF in general.

Discussion on the existence of a prepotential

When a prepotential F exists, the degree-2 homogeneity of F requires that the holo-

morphic sections XΛ, FΛ transform under duality action of the matrix S like

X̃Λ(X) = (AΛ
Σ +BΛ∆F∆Σ)XΣ ,

F̃Λ(X) = (CΛΣ +D ∆
Λ F∆Σ)XΣ , (3.1.32)

where F = FΛΣ = ∂Λ∂ΣF . It can be shown that the in new duality frame, a prepotential

exists such that

F̃Λ =
∂F

∂XΛ
, (3.1.33)

whenever the map XΛ → X̃Λ is invertible.



3.2. Symplectic embedding for coset scalar manifolds 25

When working in Supergravity, special coordinates are defined such that ti = Xi/X0;

assuming that Di(XΛ/X0) is an invertible matrix, then it is possible to choose a frame

such that ∂i(X
Λ/X0) = δΛ

i . This is only possible if XΛ are unconstrained (linearly

independent) variables, and so FΛ(X). From the relations above follows, however, that

whenever the (n + 1) × (n + 1)matrix A + BF is not invertible, in the rotated frame

the variables X̃Λ and F̃Λ still forms a good symplectic section, since the symplectic

transformation matrix S is always invertible, but there will be no function F̃ = F̃ (X̃)

such that F̃Λ = ∂F̃ (X̃)/∂X̃Λ.

None of the formulae needed in this section to build special geometry use the existence

of a prepotential (i.e. the functional dependence of FΛ on the XΛ), but all quantities are

symplectic invariant or covariant, thus well defined in any duality frame. For example,

in order to compute the electric-magnetic coupling matrix N in the rotated basis, the

formula of the transformed matrix

ÑΛΣ(X̃, F̃ ) = N (X̃, F̃ ) = (C +DN (X))(A+BN (X))−1 (3.1.34)

it is only needed that A+BN is invertible, but this is ensured, as in the rigid case, by the

conventional negative definiteness of the matrix ImN . However, since in the local case

A+BN is no more related to the change of coordinate, now being ∂X̃/∂X = (A+BF),

the existence of a prepotential, as stressed, is no more guaranteed.

This formulation of special geometry, independent from a prepotential, is relevant

for Supergravity theories obtained as low energy limits of heterotic String theory, for

which a prepotential may not exists (see, for example, the discussion in [17]).

3.2 Symplectic embedding for coset scalar manifolds

We now deal with the cases in which the scalar σ-model is a coset space G/H, and N ≥ 2

arbitrary. G is a non-compact group acting as an isometry group on the scalar manifold,

H is the isotropy subgroup

H = HAut ⊗Hmatter , (3.2.1)

HAut is the automorphism group of the supersymmetry algebra, and Hmatter is a local

gauge invariance on the scalar manifold related to the presence of matter multiplets.

Theories with N ≥ 4 Supersymmetry and field content of spin at most 2 have, of course,

Hmatter = 11. As discussed from the beginning, the duality group G acts linearly on the

field strengths FΛ
µν , where generically Λ is the index spanning the representation of G in
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which the vector fields transform. We notice here that, since solutions of Supergravity

are a large-charge approximation of the fundamental charged dyons, suitable at low

energy with a classical coupling to gravity, the true duality symmetry (U-duality) acts

instead on integral quantized electric and magnetic charges, and is nothing but the

restriction of G to the integers, thus the moduli spaces of these theories is G(Z)\G/H.

The geometry of the coset manifold Mscalar = G/H determines the Supergravity

theory. All its properties are indeed fixed in terms of the coset representatives L(φ),

which transform according to

L(φ′) = gL(φ)h(g, φ) , (3.2.2)

for change of coordinates φ′(φ) on the scalar manifold (g ∈ G, h ∈ H). The kinetic and

axionic metric NΛΣ for the 2-forms FΛ are fixed in terms of L and the physical field

strengths of the interacting theory are “dressed” with scalar fields in terms of the coset

representatives. In this way, central charges associated to the 1-forms in the gravitational

multiplet are determined by the geometrical structure of the moduli space (analogously,

the 1-forms of matter multiplets give rise to related central charges).

If we use the self-dual and anti-self dual decomposition of vector field strengths

F± =
1

2
(F ∓ i ?F ) , (3.2.3)

the kinetic part of the vector Lagrangian becomes

Lkin = iNΛΣF
−ΛF−Σ + h.c. (3.2.4)

The duality group action is given by

S

(
F−Λ

G−Λ

)
=

(
F−Λ

G−Λ

)′
, (3.2.5)

where:

G−Λ = NΛΣF
−Σ ,

G+
Λ = NΛΣF

+Σ , (3.2.6)

S =

(
A B

C D

)
∈ G ⊂ Sp(2n,R) . (3.2.7)

If L(φ) is the coset representative of G for a given representation, then S corresponds

to the embedded coset representative belonging to Sp(2n,R), and A,B,C,D are built,
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in any theory, in terms of L(φ). It is useful, dealing also with complex coset spaces, to

use a complex basis in Sp(2n), and then the matrix in USp(n)

U =
1√
2

(
f + ih f̄ + ih̄

f − ih f̄ − ih̄

)
= A−1SA (3.2.8)

the relation between f, h and S is the same as in (3.1.20)

i(f †h− h†f) = 11 ,

f th− htf = 0 , (3.2.9)

and

A =

(
1 1

−i i

)
, (3.2.10)

however, the submatrices f, h can now be decomposed with respect to the isotropy group

HAut ⊗Hmatter as

f = (fΛ
AB, f

Λ
I ) ,

h = (hΛAB, hΛ I) (3.2.11)

where AB are indices in the antisymmetric representation of HAut = SU(N) × U(1)

and I is an index of the fundamental representation of Hmatter (upper SU(N) indices

label objects in the complex conjugate representation of SU(N) (fΛ
AB)∗ = fΛAB etc. )

Notice that (fΛ
AB, hΛAB) and (fΛ

I , hΛI) are symplectic sections of a Sp(2n,R) bundle

over G/H, which is actually a flat bundle. The real embedding given by S is appropriate

for duality transformations of F± and their duals G±, according to equations (3.2.7),

(3.2.6), while the complex embedding in the matrix U is appropriate in writing down

the fermion transformation laws and supercovariant field strengths. The kinetic matrix

N , according to Gaillard−Zumino construction, turns out to be:

N = hf−1, N = N t (3.2.12)

and, as stated already, transforms projectively under Sp(2n,R) duality rotations:

N ′ = (C +DN )(A+BN )−1 . (3.2.13)

Due to this symplectic embedding, the physical field strengths appearing in the gravitino,

dilatino and gaugino supersymmetry transformations are dressed by the scalars and
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result in

T−AB = i(f̄−1)ABΛF
−Λ = fΛ

AB(N −N )ΛΣF
−Σ = hΛABF

−Λ − fΛ
ABG

−
Λ , (3.2.14)

T−I = i(f̄−1)IΛF
−Λ = fΛ

I (N −N )ΛΣF
−Σ = hΛIF

−Λ − fΛ
I G
−
Λ , (3.2.15)

T+
AB = hΛABF

+Λ − fΛ
ABG

+
Λ = 0 , (3.2.16)

T+
I = hΛIF

+Λ − fΛ
I G

+
Λ = 0 . (3.2.17)

The dressed central charges are then given by

ZAB =

∫
S2

TAB =

∫
S2

(T+
AB + T−AB) =

∫
S2

T−AB = hΛABp
Λ − fΛ

ABqΛ ,

ZI =

∫
S2

TI =

∫
S2

(T+
I + T−I ) =

∫
S2

T−I = hΛIm
Λ − fΛ

I qΛ (N ≤ 4) .

(3.2.18)

Using the embedded coset representative U , it is possible to derive the differential re-

lations between central and matter charges, using Maurer−Cartan equations [18]. The

connection on the symplectic bundle is the USp(n, n) Lie algebra left invariant one form

Γ = U−1dU satisfying:

dΓ + Γ ∧ Γ = 0 . (3.2.19)

This integrability condition means that Γ is a flat connection on the symplectic fiber

bundle constructed on G/H. The dependence of Γ on (f, h) is given by

Γ ≡ U−1dU =

(
i(f †dh− h†df) i(f †dh̄− h†df̄)

−i(f tdh− htdf) −i(f tdh̄− htdf̄)

)
≡

(
Ω(H) P̄
P Ω̄(H)

)
(3.2.20)

where the n×n subblocks Ω(H) and P embed the H connection and the vielbein of G/H
respectively . This identification follows from the Cartan decomposition of the Usp(n, n)

Lie algebra. A further decomposition of the embedded vielbein

P =

(
PABCD PABJ

PICD PIJ

)
(3.2.21)

reflects the decompositions of (3.2.11). Here the sub-blocks are related to the vielbein of

G/H, P = L−1∇(H)L, since they are written in terms of the indices of HAut ×Hmatter,

they are used to write the differential relations among the central and matter charges

∇(ω)ZAB = Z̄IP
I
AB +

1

2
Z̄CDPABCD

∇(ω)ZI =
1

2
Z̄ABPABI + Z̄JP

J
I . (3.2.22)
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Notice that, since f belongs to the unitary matrix U , then (fΛ
AB, f

Λ
I )? = (f̄ΛAB, f̄ΛI).

For N > 4 no matter coupling is allowed, for a theory with spin content not higher

than 2, then P coincides with the vielbein PABCD of the relevant G/H.

Besides the differential relations (3.2.22), the charges also satisfy sum rules quite

analogous to those of the N = 2 Special Geometry case.

The sum rule has the following form:

1

2
ZABZ̄

AB + ZI Z̄
I = −1

2
P tM(N )P (3.2.23)

where M(N ) and Q are:

M =

(
11 −ReN
0 11

)(
ImN 0

0 ImN−1

)(
11 0

−ReN 11

)
(3.2.24)

Q =

(
pΛ

qΛ

)
(3.2.25)

and follow from the identities

ff † = −i
(
N −N

)−1
(3.2.26)

hh† = −i
(
N−1 −N−1

)−1
≡ −iN

(
N −N

)−1N (3.2.27)

hf † = N ff † (3.2.28)

fh† = ff †N (3.2.29)

The matrix M is a symplectic tensor and can be written as

M(N ) =

(
0 11

−11 0

)(
f

h

)(
f h

)†( 0 11

−11 0

)
(3.2.30)

where

(
0 11

−11 0

)(
f

h

)
is the embedded object corresponding to the coset representative

L satisfying

1

2
LABΛL

AB
Σ − LIΣLIΣ = NΛΣ . (3.2.31)

This formalism , valid for D = 4, N > 2 theories is completely determined by the em-

bedding of the coset representative of G/H in Sp(2n,R) and by the Usp(n, n) embedded

Maurer−Cartan equations .

This formalism, and in particular the identities (3.2.9), the differential relations

among charges (3.2.22) and the sum rules (3.2.23), are completely analogous to the
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Special Geometry relations of N = 2 matter coupled supergravity, thanks essentially

from the fact that, though the scalar manifold MN=2 of the N = 2 theory is not in

general a coset manifold, nevertheless it has a symplectic structure identical to theN > 2

theories.

3.3 N = 8 theory

Cremmer and Julia [19]-[20] in 1978-1979 built four dimensional N = 8 Supergravity,

invariant under U-duality action of the noncompact group E7(7) and under local SU(8)

action. They constructed it from dimensional reduction of N = 1 Supergravity in

11 dimensions, and used the duality covariance to derive the complete supersymmetry

transformations. It is a theory based on a massless supermultiplet of physical states(
gµν , ψ

i
µ , A

IJ
µ , χklm , φpqrs

)
[1] [8] [28] [56] [70]

(3.3.1)

corresponding to a vierbein eaµ, 8 Rarita-Schwinger spin 3/2-fields ψiµ, 28 abelian gauge

fields AIJµ , 56 Majorana spinors χklm and 70 real scalars φpqrs in the irreducible anti-

symmetric representation of SU(8), parametrizing the coset

Mscalar =
E7(7)

SU(8)
, (3.3.2)

which has real dimension 133− 63 = 70, indeed. In this thesis, we will be investigating

solutions of the attractor equations for static black holes, which correspond to critical

points of an effective potential VBH . We want to anticipate that, in order to solve the

equations for N = 8 Supergravity, it is convenient to exploit the language of N = 2

special geometry, generalized to any N > 2 by constructing a flat symplectic bundle [18],

as detailed in the previous section. This indeed allows to find a set of simple algebraic

equations for the N = 8 BPS and non-BPS black holes [21]. Moreover, properties of

N = 2 vector multiplets can be embedded into N = 8 Supergravity.

With reference to the construction of the previous section, then, and specializing to

the N = 8 case, where in particular the matter sector is not present, the symplectic

embedding is automatically realized in terms of the 56 representation of E7, embedded

in USp(28, 28), and it is given by the usual coset element (3.2.8) where

f + ih ≡ fΛΣ
AB + ihΛΣAB (3.3.3)

f̄ − ih̄ ≡ f̄ΛΣAB − ih̄ AB
ΛΣ (3.3.4)
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ΛΣ, AB are couples of antisymmetric indices, with Λ,Σ, A,B running from 1 to 8 .

The supercovariant field-strengths and coset manifold vielbein, which also depend on

fermionic fields, are

F̂ΛΣ = dAΛΣ + [fΛΣ
AB(a1ψ̄

AψB + a2χ̄
ABCγaψCV

a) + h.c.] (3.3.5)

P̂ABCD = PABCD − χ̄[ABCψD] + h.c. (3.3.6)

where the vielbein satisfy PABCD = 1
4!εABCDEFGH P̄

EFGH ≡ (L−1∇SU(8)L)AB|CD =

PABCD,idφ
i (φi coordinates of G/H). The fermion transformation laws are given by:

δψA = DεA + a3T
−
AB|ab∆

abcεBVc + · · · (3.3.7)

δχABC = a4PABCD,i∂aφ
iγaεD + a5T

−
[AB|abγ

abεC] + · · · (3.3.8)

with dressed field strengths

TAB = − i

2
(f̄−1)ΛΣABF

ΛΣ =
1

4
(N − N̄ )ΛΣ,Γ∆f

ΛΣ
ABF

Γ∆

=
1

2
(hΛΣABF

ΛΣ − fΛΣ
ABGΛΣ) (3.3.9)

the duality relations among the symplectic sections determine

NΛΣ,Γ∆ =
1

2
hΛΣAB(f−1)ABΓ∆ (3.3.10)

GΛΣ = −i/2
∂L
∂FΛΣ

. (3.3.11)

The central charges are

ZAB =
1

2
(hΛΣABg

ΛΣ − fΛΣ
ABeΛΣ), (3.3.12)

and satisfy the differential relations

∇SU(8)Z AB =
1

2
Z̄ CDPABCD (3.3.13)

and sum rule

1

2
ZABZ̄

AB = −1

8
(pΛΣ, qΛΣ)M(N )ΛΣ,Γ∆

(
pΓ∆

qΓ∆

)
. (3.3.14)

These relations will determine the particular form of the attractor equations in the

folowing chapters.
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3.4 Gauged Supergravities

It is possible to introduce a further gauge invariance on the scalar manifold of the theory,

exploiting the already existent U-duality, if the gauge group is a subgroup of Mscalar.

We discuss here the gauging for the N = 2 case, involving in general both scalars of

the vector multiplets and hypermultiplets, for this is what will be used in Chapter 7.

Gauging of N > 2-extended theories is also possible and it is particularly interesting

in the study of flux compactifications of String theory, for which we refer the reader to

the review in [22]. For completeness we mention that the gauging procedure for N = 2

rigid supersymmetric theories has a related construction to that of the supergravity case,

which can be found in [23].

Gauging and the momentum map construction

The structure detailed up to now is that one underlying an abelian, ungauged super-

gravity. We restrict now to the bosonic Lagrangian of N = 2 Supergravity coupled to

nv abelian vector multiplets with complex scalars and m hypermultiplets

Lungauged =
√
−g
[
R[g] + gscī (z, z̄) ∂µzi ∂µz̄

̄ + huv(q) ∂
µqu ∂µq

v

+ i
(
N̄ΛΣF−Λ

µν F−Σ|µν − NΛΣF+Λ
µν F+Σ|µν

) ]
(3.4.1)

where the nv complex fields zi span a special Kähler manifold SM and the 4m real fields

qu span a quaternionic manifold HM, whose metrics are respectively gscī and huv . The

period matrix NIJ depends only on the special manifold coordinates zi , z̄ ı̄ as already

stated, and is expressed through the symplectic sections of the flat symplectic bundle as

NΛΣ = hΛ if
−1 i
Σ . (3.4.2)

In the theory there are no electric or magnetic currents, and there is on shell symplectic

covariance. Using the homomorphism (2.2.19), any diffeomorphism of the scalar mani-

fold can be lifted to a symplectic transformation on the electric-magnetic field strengths.

Under this lifting any isometry of the scalar manifold becomes a symmetry of the differ-

ential system comprehending equations of motion and Bianchi identities. The problem

of gauging the N = 2 theory consits in identifying the gauge group G̃ as a subgroup of

the isometries of the product space

SM×HM . (3.4.3)
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The gauging effect is to charge the scalars under the gauge fields, thus introducing

covariant derivatives in the action, together with adding new terms which can be fermion-

fermion bilinears with scalars dependent coupling coefficients, and, interestingly for the

purposes of the black holes solutions, a scalar potential Vgauging.

All the modifications induced by the gauging to the Lagrangian and supersymmetry

equations can be obtained via a geometric construction proper of any Lie group action on

manifolds endowed with a symplectic structure: the momentum map. In supersymmetry,

indeed, this geometric notion corresponds exactly to gauge multiplets auxiliary fields (D-

fields).

Momentum map for a scalar Special Kähler manifold

The Lagrangian giving the action in (2.2.1) contains kinetic terms for the scalars that

are of course invariant under continuous isometries of the scalar manifold metric Gαβ,

which decomposes, because of the scalar manifold structure of N = 2, into Special

Kähler metric gī and quaternionic metric huv. Scalars can however appear, as we have

seen, through sections of vector bundles over M, in the period matrix N , which won’t

be left invariant.

Let us focus at first on the isometries of gī. Suppose then, that the holomorphic

coordinates of SM change under an isometry generated by a Killing vector field

zi → zi + εΛkiΛ(z) , (3.4.4)

with Λ = 0, 1, ..,dim G̃, and kiΛ holomorphic Killing vector

∂̄k
i
Λ(z) = 0↔ ∂jk

ı̄
Λ(z̄) = 0 (3.4.5)

satisfying the equation, in holomorphic indices (kΛ i = gīk
̄
Λ)

∇ikΛ j +∇jkΛ i = 0 ; ∇ı̄kΛ j +∇jkΛ ı̄ = 0 . (3.4.6)

Because of the Kähler structure of the manifold, whose metric is defined by differentiating

a more fundamental Kähler potential, also the Killing vectors are built from a real

prepotential PΛ as

kiΛ = igī∂̄PΛ, P∗Λ = PΛ (3.4.7)

This means that, in order to find the isometries of the manifold, it is sufficient to find a

real function PΛ such that

∂k̄(g
ī∂̄PΛ) = 0 , (3.4.8)
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in order to require holomorphicity of the Killing vector, while eq. (3.4.6) is automatically

satisfied by the definition (3.4.7).

This procedure has a geometrical origin which reveals a deep connection with su-

persymmetry, and involves the momentum map. This is a map from the symplectic

manifold to the dual of the Lie algebra of the group acting on it, in our case the group

G̃ ∈ M whose isometries we want to gauge. The group G̃ actually acts onM and its ac-

tion is called ”symplectic reduction”, whose definition actually involves the momentum

map. The details of the construction are reviewed in Appendix 3.A. What is needed to

our gauging procedure is the existence of this map, guaranteed by the symplectic struc-

ture underlying the Kähler manifold, whose Poissonian structure is based on the Kähler

closed 2-form (3.1.4). In fact, the momentum map associates a function PΛ ∈ C∞(M)

to any generator of the Lie algebra g̃ of G̃, as from (3.4.7) and the Poisson bracket of

two PΛ,PΣ is defined as

{PΛ,PΣ} ≡ 4πK(~kΛ,~kΣ) . (3.4.9)

It has been demonstrated in [24] that, for any Lie algebra such that H2(g) = 0, which

is satisfied in particular by any semi-simple Lie algebra, the following identity holds

{PΛ,PΣ} = f Γ
ΛΣ PΓ . (3.4.10)

By the above definition of Poisson brackets, we have, in components,

i

2
gī(k

i
Λk

̄
Σ − k

i
Σk

̄
Λ) =

1

2
f Γ

ΛΣPΓ ; (3.4.11)

finally, by definition of momentum map (3.4.7) and Kähler form (3.1.4), we can derive

the form of PΛ in terms of derivatives of Kähler potential K,

iPΛ =
1

2

(
kiΛ ∂iK − ki

?

Λ ∂i?K
)

= kiΛ ∂iK = −ki?Λ ∂i?K . (3.4.12)

In N = 2 Supergravity, with respect to the rigid supersymmetry case, the manifold

is not only Hodge-Kähler but also Special Kähler. This allows to have an expression of

PΛ in terms of symplectic invariants. In this case, also the isometry subgroup admits a

symplectic embedding, and the formula for PΛ is

PΛ = eK
(
F∆ f

∆
ΛΣ X̄

Σ + F̄∆ f
∆

ΛΣX
Σ
)

(3.4.13)

Triholomorphic momentum map for quaternionic manifolds

Let us now discuss the gauging procedure for the hypermultiplet scalars sector. For

applications to N = 2 theories one has to assume that the same Lie group G of isometries
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acts both on SM and HM . This means that Killing vectors on HM

~kΛ = kuΛ
~∂

∂qu
(3.4.14)

satisfy the same Lie algebra as the corresponding ones on SM. We can express the

Killing vectors on the full Mscalar as

~̂kΛ = kiΛ
~∂i + ki

∗
Λ
~∂i∗ + kuΛ

~∂u (3.4.15)

according to the tensorial decomposition of the metric

ĝ =

(
gij∗ 0

0 huv

)
(3.4.16)

defined on the product manifold SM⊗HM.

Recall that supersymmetry requires an SU(2)-bundle over the HyperKähker man-

ifold, thus leaving an SU(2) rotations invariance of the HyperKähler structure, which

implies triholomorphicity of the Killing vectors. This means that we can associate to

each Killing vector a triplet of prepotentials PxΛ according to

iΛK
x = −∇PxΛ ≡ −(dPxΛ + εxyzωyPzΛ) (3.4.17)

where ∇ denotes the SU(2) covariant exterior derivative. One imposes an equivariance

condition also in the quaternionic case

X ◦ PY = P[X,Y] (3.4.18)

and a tri-holomorphic Poisson bracket

{PΛ,PΣ}x ≡ 2Kx(Λ,Σ)− λ εxyz PyΛ P
z
Σ (3.4.19)

yielding a tri-holomorphic Poissonian realization of the Lie algebra

{PΛ,PΣ}x = f∆
ΛΣ Px∆ (3.4.20)

which in components reads

Kx
uv k

u
Λ k

v
Σ −

λ

2
εxyz PyΛ P

z
Σ =

1

2
f∆

ΛΣ Px∆ (3.4.21)
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Scalar potential

Once the supersymmetry variations have been adjusted to the new gauge couplings and

derivatives, a set of Ward identities fixes the form of the scalar potential [25],[26]. For

only electric gauging, the result is

V = (gij?k
i
Λk

j?

Σ + 4huvk
u
Λk

v
Σ)L̄ΛLΣ + (UΛΣ − 3L̄ΛLΣ)PxΛPxΣ , (3.4.22)

where UΛΣ is defined as

UΛΣ ≡ fΛ
i f

Σ
j? g

ij? = −1

2
(ImN )−1|ΛΣ − L̄ΛLΣ . (3.4.23)

The first two terms in the scalar potential are actually related to the gauging of isometries

of Mscalar = SK ⊗ Q, the last term is the gravitino mass contribution, and the term

containing UΛΣ is the contribution coming from the gaugino shift due to the quaternionic

prepotential. We can recast the expression for the scalar potential as

V = (kΛ, kΣ)L̄ΛLΣ + (UΛΣ − 3L̄ΛLΣ)(PxΛPxΣ − PΛPΣ) , (3.4.24)

where we used the scalar product of Killing vectors

(kΛ, kΣ) =
(
kiΛ, k

i?

Λ , k
u
Λ

)
0 gij? 0

gi?j 0 0

0 0 2huv



kjΣ

kj
?

Σ

kvΣ

 , (3.4.25)

their definition in terms of the prepotential PΛ, and the relations from special geometry

kiΛL
Λ = ki

?

Λ L̄
Λ = PΛL

Λ = PΛL̄
Λ = 0 . (3.4.26)

For the purpose of building black holes solutions and attractor flows in gauged su-

pergravity, we will restrict in this thesis to the case where the gauged isometries group

G̃ is an abelian group. It is possible that the scalar potential still remains nonzero, due

to the presence of so called Fayet-Iliopoulos terms

PxΛ = ξxΛ ; εxyzξyΛξ
z
Σ = 0 . (3.4.27)

We are left, in this case, with

V (z, z̄) = (UΛΣ − 3L̄ΛLΣ)ξxΛξ
x
Σ . (3.4.28)

This potential is the new term that appears in the Lagrangian of (2.2.1), for U(1)−gauging

of N = 2 Supergravity, the case that we are going to consider in Chapter 7. We will
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construct, in fact, solutions of static black holes, starting from a duality invariant gen-

eralisation of (3.4.28) . In particular, we will consider the minimal gauging in which

the group G̃ is the diagonal U(1) in the tensor product of SK ⊗ Q, which is also the

largest subgroup of R-symmetry group U(2) one can gauge in N = 2 Supergravity, thus

we will often call the corresponding theory, the U(1)-gauged N = 2 theory, or N = 2

Supergravity with R-symmetry gauging.

Appendix 3.A Symplectic reduction and momentum map

We will now give a more technical overview of the momentum map, involved in the

symplectic reduction, determined by the action of a Lie group on a symplectic manifold.

The momentum map is a map from the symplectic manifold to the dual of the Lie

algebra of the group acting on it2. As an historical note, momentum maps and symplec-

tic reduction appeared in many examples from classical mechanics, and were defined in

general only later by Konstant and Souriau in 1965. Special cases of momentum maps

are, for example, the conserved linear and angular momentum. Symplectic structures

appear naturally in classical mechanics, the phase space of a system is indeed a sym-

plectic manifold. The Hamiltonian is the function defined on this space which generates

the dynamics. A symmetry of the system is merely an action of a group on the phase

space which leaves the symplectic form and the Hamiltonian invariant.

In the case under consideration, namely the gauging of a Supergravity theory, we

are interested in the symplectic reduction of the scalar manifoldMscalar (which is itself

a Lie group) under the action of the subgroup of gauged isometries G̃ whose action on

Mscalar is trivial.

Momentum map for the action of a compact Lie group on Kähler manifolds

Lemma (Invariance of the symplectic form). Let M be a Kähler manifold of

dimension 2n, and let G be a compact Lie group acting on M with an action that

preserves the complex structure J of M (i.e. Killing vectors are holomorphic with

respect to J). Then, these vectors also preserve the Kähler 2 form K.

Proof. Denote LX and iX the Lie derivative along the Killing vector field X and the

2It is sometimes equivalently called moment map.
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contraction (of forms) with it, respectively, then we have

LXg = 0 ↔ ∇(µXν) = 0

LXJ = 0

}
⇒ 0 = LXK = iXdK + d(iXK) = d(iXK) (3.A.1)

since the Kähler form is closed.

Definition (Momentum map). If a Lie group G acts on a symplectic manifold (M, ω)

leaving the symplectic form ω invariant, then the action is called Hamiltonian if there

exists a smooth, equivariant map

µ :M→ g∗ , (3.A.2)

such that for all X ∈ g,

dµX = −iXω ; (3.A.3)

the function µX is defined by

µX(m) = 〈µ(m),X〉 , (3.A.4)

for X ∈ g and m ∈ M. The map µ is called a momentum map for the action. Recall

that on the Kähler manifoldM the action of the isometries subgroup G̃ is Hamiltonian,

since the existence of the momentum map is ensured by (3.A.1).

Definition (Equivariance). Equivariance of the momentum map with respect to the

coadjoint action of G on g∗ is defined as

〈Ad∗(g)µ(m), Y 〉 = 〈µ(m), Ad−1(g)Y 〉 , (3.A.5)

for all g ∈ G,m ∈M and Y ∈ g, and, infinitesimally, is given by the action of g on g∗

〈ad∗(X)µ(m), Y 〉 = 〈µ(m),−[X,Y ]〉 (3.A.6)

for all X,Y ∈ g and m ∈M, or

ad∗(X)µ = −µ[X,Y ] . (3.A.7)

Remark (Uniqueness of momentum map). If µ and ν are momentum maps for

the same action, then ∀ X ∈ g, by definition,

d(µX − νX) = 0. (3.A.8)
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If M is connected (as in the cases we will be dealing with in N = 2 Supergravity), this

imply that

µX − νX = cX (3.A.9)

with cX constant function on M. From the definition of momentum map, cX depends

linearly on X, thus there is actually an element ξ ∈ g∗ such that

µ− ν = ξ . (3.A.10)

Equivariance of the momentum map then fixes the element ξ by the coadjoint action of

G on g∗. In fact, given the action of G on (M, ω), the space of elements of g∗, that are

fixed by the coadjoint action, parametrizes the set of all momentum maps associated to

the G-action.

There is another, constructive, definition of momentum map, which is suitable in the

case of gauging a duality subgroup of isometries, given in terms of Hamiltonian vector

fields and Poisson brackets. We will define it here in the case the Hamiltonian vectors

are the Killing vector fields corresponding to the isometries of G̃, that we denote as kΛ.

If we expand the vector field in a basis of kΛ’s as X = aΛkΛ such that

[kΛ, kΣ] = f ∆
ΛΣ k∆ , (3.A.11)

then we have also µX = aΛµΛ, and each µΛ is an element of C∞(M). The Poisson

bracket of µΛ and µΣ is defined as

{µΛ, µΣ} ≡ ω(kΛ, kΣ) , (3.A.12)

which, in the case of a Kähler manifold becomes {µΛ, µΣ} ≡ K(kΛ, kΣ). It can be shown

that a map satisfying (3.A.3) is equivariant if and only if it is an anti-Poisson map,

which in our particular case means that

{µX , µY } ≡ −µ[X,Y ] . (3.A.13)

This form of the equivariance condition corresponds exactly to eq. (3.4.10), or, in

components to (3.4.11), that allowed us to solve for an expression of PΛ in terms of the

killing vectors and the Kähler potential.
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Chapter 4

Black Holes in Supergravity: the

attractor mechanism

In the classical description of Einstein−Maxwell theory, black holes can be considered

solitons of general relativity. Zero-temperature black holes are stable against thermal

emission of particles. In principle, loss of angular momentum or charge would cause

instability, thus any non-rotating system in a theory whose elementary fields are not

charged can be considered, at least classically, stable. These are the black holes that

we will deal with in this thesis, as solutions of extended Supergravity theories. They

generalize charged black holes of General Relativity, which are represented, in the static

case, by the Reissner−Nördstrom metric. In particular, in the same way GR solutions

obey the cosmic censorship conjecture and a no hair theorem holds, also the Supergravity

extremal solutions obey these conditions. In fact, in Supergravity, the BPS bound

M ≥ |Q| has to be replaced with the condition M ≥ |Z|, with Z central charge, obtained

by dressing the abelian charges of the theory with the scalar fields. The BPS bound,

in this form, comes from the closure of the supersymmetry algebra and implies that the

cosmic censorship is verified, thus there cannot exist naked singularities but they always

have to be hidden, by the event horizon, from an observer at infinity. Moreover, in the

extremal case, the near horizon geometry is a conformally flat, Bertotti−Robinson type

metric, as in the Reissner−Nördstrom case, and the mass parameter only depends on

the charge configuration and not on the scalar fields.

We can say that the extremal black hole looses memory of the scalar “hair” at

the horizon. Notice, however, that this is not implied by the no-hair theorem, which,

indeed, does not hold for such solutions. The “no-hair theorem”, in general relativity,
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states that a charged black hole solution only depends on the observable parameters

of angular momentum, charge and mass. In particular, the entropy is determined by

the same quantities. However, to completely define the extremal black hole solution in

Supergravity, one has to specify the v.e.v.’s that scalars acquire at infinity, and on which

the configuration depends.

The scalar dependence actually cancels in the expression of the entropy, because of

the requirement that the differential equations governing the scalar dynamics reach a

critical point of the flow at the black hole horizon (attractor mechanism). As it will be

shown in this Chapter, this is related to the condition on the horizon to be a regular point

for the radial dynamics of scalar fields. The attractor mechanism is then stronger than

the no-hair theorem, since for Supergravity black holes no physical principle would a

priori imply that the dependence on scalar fields drops from the computation of physical

quantities associated to the solution, such as the area of the horizon.

Since the black hole entropy is given by the horizon area, according to the Bekenstein

− Hawking formula, for extremal black holes it is a topological quantity depending on

electric and magnetic charges. This would be consistent with a microscopic interpre-

tation of black hole entropy in terms of fundamental degrees of freedom, since charges

are quantized as integer numbers. In Supergravity, however, charged systems are classi-

cal configurations, which correspond to a large charges approximation, where they take

continuous real values.

We already pointed out that the fermions ( and hypermultiplet, for N = 2) decouple

from the black hole dynamics. It is consistent, then, to look for solutions where all

fermions and hyperscalars are set to zero. One can further exploit staticity and spherical

symmetry, to write a general ansatz for the metric of the extremal black hole, as we are

going to discuss, in a theory described by the action (2.2.1).

We restrict the attention to dynamics and field equations for the bosonic sector of

Supergravity theories, that is to massless scalars and n vector fields coupled to grav-

ity. The scalars describe a non linear σ-model over a manifold G/H, the vector fields

transform according to a certain representation of the global symmetry group G.

If the solution is stationary, then the space-time admits a time-like Killing vector

field. We can use this field to perform a dimensional reduction of the action down to

3 dimensions. This would introduce a Kaluza−Klein field, the warp factor, in the form

of a new scalar field that enlarges the scalar non linear σ-model. If the black hole is

non-rotating, i.e. it has zero angular momentum, it is possible to further reduce the

action down to a one dimensional system, subject to a Hamiltonian constraint, as it will
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be shown in Section 4.1.

4.1 Dimensional reduction and equations of motion

We derive the three dimensional effective metric in the case of static spherically sym-

metric non-extremal black holes, for a non linear sigma model coupled to gravity, which

yields a regular metric in the extremal limit.

Let us consider at first a 4-dimensional space-time manifold Σ with metric gαβ cou-

pled to scalars. The action is given by the Einstein-Hilbert term and the non linear

sigma model of the scalar fields

Sφ =

∫
Σ

√
gdx

[
−1

2
R(x) +

1

2
gαβ∂αφ̄

i∂βφ̄
jγij

]
. (4.1.1)

We take into account the contribution of vector fields only later, adding the stress-energy

tensor to the Einstein equations and the black hole effective potential to the equations

of motion for the scalars. The dynamics corresponding to the above action is described

by

Rαβ − γij ∂αφ̄i∂βφ̄j = 0 , (4.1.2)

Dα∂αφ̄(x) = 0 . (4.1.3)

Notice that solutions to (4.1.3) are harmonic maps from the (pseudo) Riemannian man-

ifold (Σ , gij) to (G/H , Gij) Stationary solutions are those admitting everywhere a time-

like Killing vector field, which is orthogonal to the reduced 3 dimensional space Σ3 and

allows SO(3) (spherical) symmetry. The metric decomposes as

gαβ =

(
e2U 0

0 −e−2Uhab

)
. (4.1.4)

hab, the metric on Σ3, can be parametrized in terms of a function f(r) so that

ds2 = −e2Udt2 + e−2U
(
dr2 + f(r)2(dθ2 + sin2 θdφ2)

)
,

≡ −e2Udt2 + e−2Uhabdx
adxb . (4.1.5)

The effective Lagrangian for the reduced three dimensional system is

1

2
R̂− 1

2
γmn∂mφ

a∂nφ
bGab − c2 , (4.1.6)

where c = κA
4π = 2ST , and Gab is now the metric of the enlarged scalar manifold, so

φa = (U, φ̄a, ψΛ, χΛ) .
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The equations of motion in this case are

f−2 d

dr

(
f2dφ

i

dr

)
+ Γijk(φ)

dφj

dr

dφk

dr
= 0 ,

Rrr = −2f−1d
2f

dr2
= Gij(φ)

dφj

dr

dφk

dr
,

sin2 θRφφ = Rθθ = f−2

(
d

dr
f
df

dr
− 1

)
= 0 . (4.1.7)

From the last one we find

f(r)2 = (r − r0)2 + c̃ , (4.1.8)

thus, if we define the harmonic function on (Σ3, h)

τ(r) ≡ −
∫ ∞
r

f−2(s)ds , (4.1.9)

then being

f−2(r) = −dτ
dr

, (4.1.10)

we find that the first in (4.1.7) is

−
(
dτ

dr

)2 d

dr

(
f2 dr

dτ

d

dτ
φi
)

+ Γijk(φ)
dφj

dτ

dφk

dτ

(
dτ

dr

)2

= 0 ,

(4.1.11)

that is, the geodesic equation

d2φ(τ)

dτ2
+ Γijk(φ)

dφj

dτ

dφk

dτ
= 0 . (4.1.12)

The geodesic map φ satisfies the condition

Gij(φ)
dφi

dτ

dφj

dτ
= 2c2 ; (4.1.13)

comparing with the general solution for f(r) in (4.1.8), we can set c̃ = −c2.

To write the metric in (4.1.5) using τ coordinate we compute, from the definition

(4.1.9)

(r − r0)2 − c2 =
c2

sinh2(cτ)

⇓

(r − r0)2 = c2 coth(cτ) ,

dr2 =
c4

sinh4(cτ)
dτ2 ,

f2(r(τ)) =
c2

sinh2(cτ)
, (4.1.14)
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so that we finally arrive to

ds2 = −e2Udt2 + e−2U

[
c4dτ2

sinh4(cτ)
+

c2

sinh2(cτ)
(dθ2 + sin2 θdφ2)

]
. (4.1.15)

This is the most general metric for a static, non-extremal spherically symmetric black

hole. The extremal limit is obtained sending c→ 0.

The vector sector

Let us now complete the derivation by taking into account the vector sector. As discussed

in the previous Chapters, the bosonic action is given by

S = SEH + Sscalar + SV =

=

∫ √
−g d4x

(
−1

2
R+

1

2
γrs(φ)∂µφ

r∂µφs − 1

4
Fαβ

(
µFαβ − ν ∗Fαβ

))
,

(4.1.16)

where µΛΣ = −ImNΛΣ, νΛΣ = −ReNΛΣ are the real symmetric matrices defining the

coupling of scalars to the vector fields. To write the contribution of SV to Einstein

equations we need to compute the energy-momentum tensor

TµνV =
2√
−g

[
∂(
√
−gLV )

∂gµν
− ∂λ

∂(
√
−gLV )

∂(∂λgµν)

]
. (4.1.17)

By definition of Hodge-star duality we have

∗FΛαβ =
1

2
√
−g

εαβγδFΛ
γδ , (4.1.18)

which gives

∂

∂gµν
(FΛ

αβ
∗FΣαβ) = FΛ

αβ

∂ ∗FΣαβ

∂gµν
, (4.1.19)

and

∂ ∗FΛαβ

∂gµν
=

1

2
gµν ∗FΛαβ . (4.1.20)

We then have

1

2

√
−gTµν = −1

2

√
−ggµνLV +

√
−g
[
−1

2
FΛσ
µ µΛΣF

Σ
νσ +

1

2
· 1

4
gµνFΛ

αβνΛΣ
∗FΣαβ

]
,

(4.1.21)
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and finally

Tµν =
1

4
gµνFΛ

αβµΛΣF
Σαβ − FΛ

µσµΛΣF
Σσ
ν . (4.1.22)

The modification of scalar geodesic equations due to the vector fields coupling is found

by considering

δLV
δφi

= −1

4

√
−gFαβ

(
δµ

δφi
Fαβ − δν

δφ
∗Fαβ

)
. (4.1.23)

Due to the specific form of SV , required by electric-magnetic duality invariance, the

expressions of (4.1.22) and (4.1.23) can be recast in a compact form. Let us consider,

indeed, the dual field strength defined as in (3.1.18)

−∗GΛµν = µΛΣF
Σ
µν + νΛΣ

∗FΣ
µν , (4.1.24)

and the symplectic vector F =
(
FΛ , GΛ

)
. We can write the stress energy tensor and the

contribution to scalar equations of motion from the vector Lagrangian in a manifestly

symplectic way, simply introducing the matrix

M =

(
µ+ νµ−1ν νµ−1

µ−1ν µ−1

)
(4.1.25)

The expressions in (4.1.22) and (4.1.23) then become

Tµν = −1

2
FΛ
µγMΛΣFΣ γ

ν , (4.1.26)

and

δLV
δφi

= −1

8

√
−gFΛ

µν

δMΛΣ

δφi
FΣµν . (4.1.27)

Spherical symmetry has played no role, so far, in the derivation of the equations of

motion. We are going to see, in the next section, that it allows to further reduce

the Lagrangian to describe a one dimensional system, together with an Hamiltonian

constraint.

4.2 One dimensional Lagrangian for static configurations

In the case of time-independent solutions that preserve spherical symmetry, one can

perform the integration of the 4-dimensional action over Rt × S2. In order to do that,

it is convenient to specify a consistent ansatz for the vector field strengths. Given
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the metric as in (4.1.15), we can take a potential AΛ = χΛ(r)dt − pΛ cos θdφ, so that

FΛ = dAΛ leads to

FΛ =
1

2
pΛ sin θdθ ∧ dφ− χΛ′(r) dt ∧ dr . (4.2.1)

Since χΛ only appears in the original action (4.1.16) under derivatives, one can integrate

it out performing a Légendre transform on the action. From the equations of motion for

χΛ one gets

χΛ′(r) = e2UI−1 ΛΣ(qΣ −RΣΓp
Γ) , (4.2.2)

here and in the following we will use IΛΣ = ImNΛΣ, RΛΣ = ReNΛΣ.

Due to spherical symmetry, all the fields depend only on the radial variable so φi =

φi(r), U = U(r), etc. . In particular, given the ansatz for the field strength as above,

integration over angular variables of the vector sector Sv yields the effective black hole

potential

VBH =
1

2
QT ΛMΛΣQ

Σ , (4.2.3)

where

QΛ =

(
pΛ

qΛ

)
, (4.2.4)

is the vector of charges

pΛ =
1

4π

∫
S2

FΛ ,

qΛ =
1

4π

∫
S2

GΛ , (4.2.5)

The resulting effective action is given by [13]

L =

(
dU

dτ

)2

+Gab
dφa

dτ

dφb

dτ
+ e2UVBH − c2 . (4.2.6)

This holds quite general for any 4-dimensional theory whose bosonic sector is given as

in (2.2.1). The explicit form of the effective potential actually selects the theory under

consideration.

The dimensionally reduced system of equations of motion, however, is not completely

equivalent to the four dimensional one. In order for the two sets of equations of motions

to be equivalent, in fact, one has supplement (4.2.6) with the Hamiltonian constraint:(
dU

dτ

)2

+Gab
dφa

dτ

dφb

dτ
− e2UVBH = c2 . (4.2.7)
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This, together with the equations of motion derived from the Lagrangian (4.2.6)

d2U

dτ2
= 2e2UVBH(φ, p, q), (4.2.8)

D2φa

Dτ2
= e2U ∂VBH

∂φa
, (4.2.9)

completely determines the solution. The constant is c = 2ST , where S is the entropy

and T the temperature of the black hole is the non-extremality parameter: extremal

black holes have zero temperature and can now equivalently be characterized by c = 0.

4.3 Near horizon dynamics and the attractor condition

The metric of the static spherically symmetric system can be described by

ds2 = −e2Udt2 + e−2U

[
dτ2

τ4
+

1

τ2
dΩ2

]
, (4.3.1)

where the horizon is located at negative infinity in terms of the coordinate τ . If it has

a finite area then the term e−2U has to behave as

e−2U →
(
A

4π

)
τ2 , as τ → −∞ . (4.3.2)

The scalar term in the Lagrangian remains finite near the horizon if

Gij∂mφ
i∂nφ

jγmn <∞ , (4.3.3)

that is, in our coordinates,

Gij
dφi

dτ

dφj

dτ
e2Uτ4 <∞ . (4.3.4)

The near horizon behavior is then given by

Gij
dφi

dτ

dφj

dτ

(
4π

A

)
τ2 → X2 , as τ → −∞ , (4.3.5)

that gives the condition, substituting in the constraint (4.2.7) in the extremal case c = 0,

near the horizon,

A ≤ 4πVBH(p, q, φH) , (4.3.6)

and the metric is

ds2 ≈ − 4π

Aτ2
dt2 +

(
A

4π

)[
dτ2

τ4
+

1

τ2
dΩ2

]
. (4.3.7)
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The AdS2 × S2 horizon geometry of the extremal black hole appears explicitly once the

metric is written in terms of the coordinate

ω = log ρ , ρ = −1

τ
, (4.3.8)

since the metric becomes

ds2 ≈ −4π

A
e2ωdt2 +

(
A

4π

)
dω2 +

(
A

4π

)
(dθ2 + sin2 θdφ2) . (4.3.9)

The condition (4.3.5) is now

Gij
dφi

dω

dφj

dω

(
4π

A

)
→ X2 , as ω →∞ ; (4.3.10)

the only allowed value of X2 is then X2 = 0, in order for the moduli dynamic to be

regular at the horizon, since a non-zero constant value of dφa

dω

dφa

dω
= const. as ω →∞ , (4.3.11)

provides a linear dependence on ω that would prevent regular moduli dynamics at the

horizon. The only possibility is then

dφa

dω
= 0 , (4.3.12)

so that the constraint (4.2.7) in the extremal case now strictly requires

A

4π
= VBH(p, q, φH) . (4.3.13)

In the case of constant scalar fields the black hole is double-extremal, its area is still

given by VBH , following immediately from (4.2.7), and it is equal to the area of an

extremal black hole with the same electric and magnetic charges

Aextr(p, q) = Adouble−extr(p, q) = 4πVBH(p, q, φ∞) . (4.3.14)

The behavior of the scalars near the horizon, taking into account that dφa

dω = 0, follows

from the equation of motion (4.2.9) for which

d2φa

dτ2
→ 1

2

∂VBH
∂φa

(
4π

Aτ2

)
, (4.3.15)

whose solution, recalling that a linear dependence on τ coordinates would give a singular

dilaton field at the horizon, is

φa ≈ φaH +

(
2π

A

)
∂VBH
∂φa

log τ . (4.3.16)
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The regularity requirement now gives the following extremum condition on the potential(
∂VBH
∂φa

)
hor

= 0 . (4.3.17)

In this picture the black hole is a solution corresponding to dynamical trajectories in

the moduli space Mφ from the asymptotic point φ∞ to the critical point φh.

Black hole entropy and duality orbits

Condition (4.3.13) means that attractor values of the black hole potential corresponds

to the black hole entropy. The entropy, for theories based on moduli spaces given by

symmetric manifolds G/H, is a duality invariant. This invariant has the form of a

generalized metric on the moduli space, that determines the orbit of the solution. In the

same way, in fact, that a four-vector in space-time can be time-like, space-like or light-

like, depending on the values of his invariant norm, defined by the metric on the space-

time 4-manifold, also the symplectic vector of charges has a different nature depending on

the value of the scalar manifold invariant I(pΛ, qΛ) > 0, I(pΛ, qΛ) < 0, or I(pΛ, qΛ) = 0.

I is a U-duality invariant expression depending on the representation of the group G
of G/H under which electric and magnetic charges transform. All N = 2 theories with

symmetric space based on cubic prepotential, as well as N = 4, 6, 8 theories, have a

quartic invariant I4. The entropy is proportional to the square root of the invariant1

SB-H ∝
√
|I4|. (4.3.18)

BPS solutions have I4 > 0 while the non-BPS ones (with non vanishing central charge)

have instead I4 < 0. N = 2 theories with quadratic prepotentials, N = 3 and N = 5

theories have only a quadratic invariant, and the entropy is

SB-H ∝ |I2|. (4.3.19)

The BPS solution has I2 > 0, while the non-BPS one has vanishing central charge and

I2 < 0.

These solutions fall in the class of large black holes, which have SBH 6= 0, and thus for

these configurations I 6= 0. Solutions with I = 0 do exist but they do not correspond to

classical attractors since in this case the classical entropy/area formula vanishes. These

are the so called small black holes, and to discuss their entropy one has to take into

account quantum corrections, and include higher curvature terms in the action.

1See [27] and references therein.
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4.4 First order BPS and non-BPS flow

The properties of black holes in Supergravity theories depend on the values φ∞ of the

massless scalar fields parametrizing the different vacua of the theory. The entropy of

the black hole, S = A
4 , however, in order to be consistent with the microstate count-

ing interpretation in string theory, has to be independent, in the extreme case, of the

particular ground state being determined only by the conserved electric and magnetic

charges (dyonic black hole). The attractor equations correspond to algebraic constraints

on the scalars, which fixes them in terms of the electric-magnetic charges, in such a way

that, in the entropy formula, their dependence drops out. They are a horizon bound-

ary condition of a radial flow, yielding a first-order description of black hole dynamics

for BPS configurations. This is expected, since the supersymmetric state is actually a

solution of the supersymmetry equations, which only contain first order derivatives. It

was interestingly unexpected that the first orders formalism can be conveniently used

to describe also non-BPS attractor flows of d = 4 extremal black holes [28], including

solutions corresponding to non-BPS branes configurations in string theory [29].

The attractor flow we describe in this Chapter is valid for static black holes. Due

to the nature of Einstein equations, it is possible to construct black hole solutions with

multiple centers, which however require a stationary metric. BPS configurations are

possible, and we refer to [30] and [31] for they description, where the first full solutions

have been found.

4.4.1 BPS flow equations

Using symmetries and suitable ansatze we have been able to reduce a four dimensional

system of scalar and vectors coupled to the space-time metric, to a one dimensional

problem of solving equations of motions for scalars fields on a manifold, subject to a

potential VBH . These equations, although simpler than the original problem, still are

second order differential equations. Exploiting supersymmetry, but more in general the

form of the Lagrangian and the Hamiltonian constraint [28], we can express the actual

fields dynamics through first order equations and then find explicit solutions. Let us

notice here that, if we look for solutions in which fermions are identically set to zero,

then the supersymmetry variations of bosonic fields, containing fermions in each term,

are automatically satisfied. For the analogous reason, the requirement that the solution

is supersymmetric, implies that the supersymmetry equations of fermionic fields are

indeed first order differential equations for the scalars, under the assumptions of the
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states being a BPS configuration.

For example, the equations we get from gravitino and gaugino variations are

0 = ∇µ ξA + εAB T
−
µν γ

νξB , (4.4.1)

0 = i∇µ zi γµξA +
i

2
gī T̄−̄|µν γ

µνεAB ξB , (4.4.2)

where the Killing spinor ξA(r) is of the form of a single radial function times a constant

spinor satisfying

ξA(r) = ef(r)χA χA = constant

γ0χA = i
Z

|Z|
εABχ

B (4.4.3)

Notice that the condition (4.4.3) halves the number of supercharges preserved by the

solution. Substituting in the supersymmetry equations the ansatz for the metric and

the field strength, one finds that the supersymmetry equations (4.4.1,4.4.2) are solved

for 
U ′ = −eU |Z|,

zi′ = −2 eUgī∂ ̄|Z| ,
(4.4.4)

so the central charge is the superpotential that drives the flow of scalar fields along the

radial direction.

4.4.2 Scalar charges and Black Hole asymptotic moduli dependence

The expansion of the scalar fields at spatial infinity

φa = φa∞ +
Σa

r
+O(

1

r2
) , (4.4.5)

defines the scalar charges Σa = Σa(A, qΛ, p
Λ, φa∞). In the presence of scalar fields, the

first law of thermodynamics for a static dyonic black hole has to be replaced by

dM = TdA+ ψΛdqΛ + χΛdp
Λ +

(
∂M

∂φa

)
dφa , (4.4.6)

where the black hole temperature is T = κ
2π , and ψΛ, χΛ are electric and magnetic scalar

potentials, respectively.

The potential V (φ, p, q) defines a symmetric tensor that satisfies the convexity con-

dition

Vab ≡ ∇a∇bV ≥ 0 , (4.4.7)
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on the scalar manifold Mφ. Moreover, if Vab is strictly positive and the scalar charges

vanish, the scalar fields have to be frozen to φa(τ) = φa∞.

The mass of the black hole, by comparison with the asymptotic Gravitational po-

tential, is given by

M =

(
dU

dτ

)
τ=0

(4.4.8)

and this substitution in the constraint (4.2.7) evaluated at spatial infinity (τ = 0) leads

to

M2 +Gab(φ∞)ΣaΣb − V (φ∞, p, q) = 4S2T 2 . (4.4.9)

The scond term on the left is the contribution(
∂M

∂φa

)
= −Gab(φ∞)Σb (4.4.10)

in expression (4.4.6). The right hand side is related to the black hole configuration

described by the metric (4.1.15) by

c = 2ST . (4.4.11)

For extremal black holes, the attractor mechanism fixes the moduli at the horizon

in terms of electric and magnetic charges

φH,extr = φfix(p, q) , (4.4.12)

and the extreme point can be found, for a given charge configuration, as

∂Mextr

∂φ

∣∣∣∣
φ=φextr

= 0 . (4.4.13)

In particular, the entropy of the extremal black hole is independent on φ∞, being

S =
A

4
= πVBH(φfix, p, q) . (4.4.14)

The scalar charge is not conserved, the flux of the gradient vanishes at the horizon, and

it reveals that it resides entirely outside the horizon. Equivalently, moduli at infinity

or the scalar charges have to be added to the mass M , the charges (q, p) and, in the

non static case, to the angular momentum J to completely characterize the black hole

solution.
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4.4.3 First order formalism for d = 4 Extremal Black Holes

For d = 4 supergravities a general formula for a black hole effective potential holds,

VBH =
1

2
ZABZ

AB
+ ZIZ

I
, (4.4.15)

where ZAB = Z[AB] (A,B = 1, ...,N ) is the central charge matrix, and ZI (I = 1, ..., n)

are the matter charges, n ∈ N is the number of matter multiplets. One can in general

rewrite this potential, in the first order formalism , as

VBH =W2 + 4Gij (∂iW) ∂jW =W2 + 4Gij (∇iW)∇jW, (4.4.16)

where W is the moduli-dependent first order superpotential, and ∇ is the covariant

differential operator.

In fact, the second order equations of motion (4.2.8) and (4.2.9) can be derived by a

first order system, by performing the ansatz

U̇ = eUW(φ, τ) , (4.4.17)

where U̇ = dU
dτ . At the horizon we get the condition

∂τW = 0 . (4.4.18)

Differentiating equation (4.4.17) with respect to τ gives the equation of motion for

the field U(τ) and the identification of

VBH = W2 + e−U φ̇a∂aW . (4.4.19)

It follows from the constraint (4.2.7) that

Ü − U̇2 =
1

2
φ̇aφ̇bGab = φ̇a∂aWeU , (4.4.20)

which, disregarding contributions that do not affect the entropy, is solved by

φ̇a = 2eUgrs∂sW , (4.4.21)

where the last equation is a first order type BPS-like condition. The effective potential

becomes, as stated above,

VBH = W2 + 2Gab∂aW∂bW . (4.4.22)

Extremization of VBH corresponds to

∂aVBH = 2∂bW(Wδba + 2Gbc∇a∂cW) = 0 , (4.4.23)
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which means that in the first order formalism the attractor point for scalar fields at the

horizon of extremal black holes is directly related to the extrema of W. This formalism

leads to first order equations which imply second order equations of motion, but does not

rely on supersymmetry. As was first shown in [28], remarkably, whenever the black hole

effective potential admits a rewriting in the form (4.4.22), then the black hole equations

reduce to the first order differential system
U ′ = −eUW,

zi′ = −2 eUgī ∂ ̄W.

(4.4.24)

Obviously, the BPS case is recovered for W = |Z|. However, notice that the expression

(4.4.22) can be satisfied for different W’s. This is why the first formalism is useful: it

allows us to find the critical points of the black hole potential which are not critical points

of the central charge. Attractor mechanism, then, tells us that those point correspond

to extremal black holes, that, in the case W 6= |Z|, are simply the non-BPS extremal

solutions. For them, because of lack of supersymmetry, W is called fake superpotential.

4.4.4 General properties of attractors for N = 2 Supergravity

For N = 2 Supergravity, the black hole potential at the attractor point is given by one

of the quadratic invariants of the scalar manifold

VBH = I1 = |Z|2 + |DiZ|2 , (4.4.25)

where D is the Kähler covariant derivative with respect to the complex holomorphic

coordinates on the special Kähler manifold. The horizon is an attractor point and this

condition requires, as we have seen, that it is also a critical point of a suitable black hole

effective potential VBH , namely

∂iVBH |h = 0 . (4.4.26)

This is an algebraic equation on the central charge and its covariant derivatives; in fact,

one has that

∂iVBH = ∂i(|Z|2 + |DiZ|2) =

= Z̄DiZ +Gkl̄(DiDkZDl̄Z̄) +Gkl̄DkZDiDl̄Z̄ . (4.4.27)

The extremum condition is satisfied whenever at the horizon

• DiZ = 0 , Z 6= 0 , BPS ;

• DiZ 6= 0 , Z = 0 , non-BPS ;



56 Chapter 4. Black Holes in Supergravity: the attractor mechanism

which refer to a supersymmetric and non-supersymmetric black hole solution, respec-

tively.

Black hole entropy at the attractor points is given by the absolute value of the second

quadratic invariant of the symmetric space,

S = |I2| =
∣∣|Z|2 − |DiZ|2

∣∣ , (4.4.28)

where |DiZ|2 = GīıDiZ Dı̄Z̄. In the BPS case, DiZ = 0 yields

SN=2−Symm−BPS = |Z|2 . (4.4.29)

The attractor point corresponds, in the BPS case, to a minimum of the potential. In

fact, the Hessian metric for the black hole potential is

VBH ̄i = 2D̄Z̄DiZ + 2Z̄D̄DiZ

∣∣∣∣
Zi=0

=

= 2Z̄D̄DiZ

∣∣∣∣
Zi=0

, (4.4.30)

and, from the relations of special geometry,

VBH ̄i = 2Ḡi|Z|2 . (4.4.31)

Since the metric is positive defined, this matrix has no null-eigenvalues, which means

that there are no “flat directions” for the scalar fields.

Black hole entropy at the horizon, as well as the black hole potential, are invariant

expressions of the charges, and can be written as

VBH = −1

2
QtM(N )Q , (4.4.32)

SBH =
1

2
QtM(F)Q

∣∣∣
φi=φihor

, (4.4.33)

where N is the matrix in the vector fields kinetic term, and F ≡ FΛΣ = ∂Λ∂ΣF (X).

Equations (4.4.33) depends on the scalars through F , and thus only holds at the attractor

point, the horizon, while the expression for VBH is valid along the flow.

4.4.5 Attractors for N = 8 Supergravity

The black hole potential for N = 8, d=4 supergravity is given by [20],[18]

VBH(φ,Q) = ZABZ
∗AB = 〈Q,VAB〉〈Q, V̄ AB〉 A,B = 1, . . . , 8 (4.4.34)



4.4. First order BPS and non-BPS flow 57

where ZAB (and its conjugate Z∗AB) is the central charge matrix

ZAB(φ,Q) = 〈Q,VAB〉 = fΛΣ
ABeΛΣ − hΛΣ,ABm

ΛΣ . (4.4.35)

Q is the charge vector, in the fundamental representation 56 of E7(7) and the symplectic

section (fΛΣ
AB(φ), hΛΣ,AB(φ)) is an element of the coset space

E7(7)

SU(8) which connects the

real 56 representation to the complex 28 indices of [AB]. There are 70 real scalars φi

(the local SU(8) symmetry removes 63 scalars from the 133 parameters of E7(7)), we

sum over the indices AB,ΛΣ for A < B and Λ < Σ in (4.4.34), (4.4.35).

Maurer−Cartan equations for the coset space define the covariant derivative of the

central charge matrix

DiZAB =
1

2
Pi,[ABCD](φ)Z∗CD(φ,Q) (4.4.36)

where we introduced the 70 × 70 vielbein of the E7(7)/SU(8) coset space Pi,[ABCD]dφ
i,

i = 1, . . . , 70, whose self-dual real is

Pi,[ABCD] =
1

4!
εABCDEFGH(Pi,[ABCD])

∗ , (4.4.37)

while Di is the SU(8) covariant derivative [18].

The attractor condition, expressed as minimization of the black hole potential with

respect to the scalars, is given by

0 = ∂iV =
1

2

(
DiZABZ∗AB + ZABDiZ∗AB

)
=

1

4

(
Pi,[ABCD]Z

∗ABZ∗CD + P
[ABCD]
i ZABZCD

)
=

1

4
Pi,[ABCD]

[
Z∗[CDZ∗AB] +

1

4!
εCDABEFGHZEFZGH

]
(4.4.38)

thanks to the self duality condition.

It is important to notice that the vielbein Pi,[ABCD] is invertible, thus one can mul-

tiply the previous equation by (Pi,[A′B′C′D′])
−1 and still get a necessary and sufficient

condition on the critical points of the black hole potential, that now is simply written

as

Z∗[ABZ∗CD] +
1

4!
εABCDEFGHZEFZGH = 0 . (4.4.39)

Moreover, one can rotate the central charge matrix to its normal form [32] where it has

only the non-vanishing complex skew-eigenvalues z1 = Z12, z2 = Z34, z3 = Z56, z4 = Z78,

and in such basis the attractor equations are

z1z2 + z∗3z∗4 = 0

z1z3 + z∗2z∗4 = 0

z2z3 + z∗1z∗4 = 0 (4.4.40)
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SU(8) symmetry of ZAB allows to further reduce all 4 complex eigenvalues to the fol-

lowing normal form

zi = ρie
iϕ/4 i = 1, 2, 3, 4. (4.4.41)

so that only 5 real parameters are left independent: the 4 absolute values ρi and an

overall phase, ϕ ( the relative phase of zi’s can be changed but not the overall phase).

The form of the quartic invariant J4 is then [33]

J4 =
[
(ρ1 + ρ2)2 − (ρ3 + ρ4)2

][
(ρ1 − ρ2)2 − (ρ3 − ρ4)2

]
+ 8ρ1ρ2ρ3ρ4(cosϕ− 1) (4.4.42)

The central charge matrix in normal form is written as

ZAB =


ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4

⊗
(

0 1

−1 0

)
eiϕ/4 (4.4.43)

we can order ρ’s as ρ1 ≥ ρ2 ≥ ρ3 ≥ ρ4 so that the first term in J4 is positive, null or

negative depending whether ρ1− ρ2 ≥ ρ3− ρ4 or ρ1− ρ2 ≤ ρ3− ρ4 while the last term is

negative or null. It is easily seen, then, that the 1/8 BPS attractor orbit, characterized

by J4 > 0, corresponds to ρ2 = ρ3 = ρ4 = 0, and the non-BPS one to ρi = ρ and ϕ = π,

which indeed implies J4 < 0.

Notice that the non-BPS critical points of the potential the matrix of the second

derivative is not guaranteed to be positive definite [34], and a critical point of the

potential may not be its minimum.

The attractor equations (4.4.40) have thus 2 solutions that correspond to black holes

with finite horizons

- 1/8 BPS orbit

z1 = ρBPSe
iϕ1 6= 0 z2 = z3 = z4 = 0 JBPS4 = ρ4

BPS > 0 (4.4.44)

The black hole entropy-area of the corresponding 1/8-BPS black holes is

SBPS(Q)

π
=
ABPS(Q)

4π
=
√
JBPS4 (Q) = ρ2

BPS (4.4.45)

- non-BPS orbit

zi = ρ ei
π
4 JnonBPS4 = −16ρ4

nonBPS (4.4.46)

In the non-BPS case, the black hole entropy-area is given by

SnonBPS(Q)

π
=
AnonBPS(Q)

4π
=
√
−JBPS4 (Q) = 4ρ2

nonBPS (4.4.47)
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4.4.6 The gauged flow

The flow equations and derivation of the one dimensional Lagrangian, we discussed so

far in the chapter, have been the subject of an extensive research over the past 15 years.

However, as we have seen, the gauging of a supergravity theory, even in the minimal

case, introduces a scalar potential which changes the action (2.2.1) we started from. The

momentum map construction ensures the duality covariance of the gauging, however,

new BPS flow equations and a new ansatz for the metric have to be considered.

Let us consider the Fayet-Iliopoulos gauging in N = 2 supergravity. We can choose

The main points that will allow us to find new solutions are

- The introduction of a second warp factor in the metric ansatz (4.1.15), for the

angular part, which in general give a nontrivial holonomy on the 2-space orthogonal

to the radial direction, and yielding a metric for static and spherically symmetric

solutions of the form

ds2 = −e2Udt2 + e−2Udr2 + e2U−2ψ(dθ2 + sin θ2dφ2) ; (4.4.48)

where U = U(r) and ψ = ψ(r) have only radial dependence.

- If a black hole solution whose spherical horizon is regular, thus has nonzero area,

also preserves some supersymmetry, then its electric-magnetic charges satisfy a

constraint dictated by the gauging parameters G = (ξΛ, ξΛ) that can be expressed

as

〈G,Q〉 = −1 . (4.4.49)

These solutions are built for a gauging which also involves tensor fields, which allow the

duality to be restored introducing a set of dual gauging parameters ξΛ in addition to

the ξΛ. We notice however that in U(1) gauged supergravity the fields are not charged

under the gauge field, and the only modification to the action is the introduction of the

scalar potential as in (3.4.28). It is possible, then, using the duality-complete vector of

gauging G defined above, to give a duality invariant definition of the scalar potential as

Vgauging = |DiL|2 − 3|L|2 , (4.4.50)

by means of a new symplectic invariant quantity which is analogous to the central charge,

defined as

L = 〈G,V〉 , (4.4.51)
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with V = (XΛ, FΛ) the normalized symplectic sections. It is then straightforward to

generalize the superpotential, driving the BPS flow in the ungauged theory, to the gauged

case as

W = eU |Z − ie2AL| (4.4.52)

where it is convenient to define the combination A = ψ − U . The BPS flow is

U ′ = −e−2(A+U) (W − ∂AW ) ,

A′ = e−2(A+U)W,

zi′ = −2e−2(A+U) gī ∂̄W.

(4.4.53)

With respect to the ungauged case the non linear sigma model is now enlarged to 2 new

fields, instead of just one, the warp factor U and the new function ψ. Another feature

that differs both from the ungauged case and the previously known, zero area, solutions

of gauged supergravity [35],[36], is that the static black hole with regular horizon, that

we will describe, only preserves 2 out of the 8 supercharges of the theory along the flow.

It is then a 1/4-BPS solution, unlike the usual 1/2-BPS nature of the solution in the

ungauged supergravity. The conditions that impose the supersymmetry preservation are

related to those found in [37] for a massless supersymmetric state there called “cosmic

monopole”.
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Duality orbits in N=8

Supergravity

The N = 8 supergravity theory in d = 4 [20] and d = 5 [38] dimensions is a remarkable

theory which unifies the gravitational fields with other lower spin particles in a rather

unique way, due to the high constraints of local N = 8 supersymmetry, the maximal one

realized in a 4d Lagrangian field theory. These theories, particularly in four dimensions,

are supposed to enjoy exceptional ultraviolet properties. For this reason, 4d supergravity

has been advocated not only as the simplest quantum field theory [39] but also as a

potential candidate for a finite theory of quantum gravity, even without its completion

into a larger theory [40].

Maximal supergravity in highest dimensions has a large number of classical solutions

[41] which may survive at the quantum level. Among them, there are black p-branes

of several types [42] and interestingly, 4d black holes of different nature. On the other

hand, theories with lower supersymmetries (such as N = 2) emerging from Calabi-Yau

compactifications of M-theory or superstring theory, admit extremal black hole solutions

that have been the subject of intense study, because of their wide range of classical and

quantum aspects.

For asymptotically flat, stationary and spherically symmetric extremal black holes,

the attractor behavior [9]-[13], has played an important role not only in determining

universal features of fields flows toward the horizon, but also to explore dynamical prop-

erties such as wall crossing [43] and split attractor flows [44], the connections with string

topological partition functions [45] and relations with microstates counting [46] . There-

fore, it has become natural to study the properties of extremal black holes not only in
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the context of N = 2, but also in theories with higher supersymmetries, up to N = 8

[47]-[48].

5.1 Introduction

It has been known for some time [49] that extremal BPS black hole states coming from

string and M theory compactifications to four and five dimensions, preserving various

fractions of the original N = 8 supersymmetry, can be invariantly classified in terms

of orbits of the fundamental representations of the exceptional groups E7(7) and E6(6).

These are the duality groups of the low energy actions, whose discrete subgroups appear

as symmetries of the non-perturbative spectrum of BPS states [50]. These orbits, which

have been further studied in [33, 51, 52], correspond to well defined categories of allowed

entropies of extremal black holes in d = 5 and in d = 4, given in terms of the cubic E6(6)

invariant I3 [49, 51, 53] and the quartic E7(7) invariant I4 [54, 55, 21]. There are three

types of orbits depending on whether the black hole background preserves 1/2, 1/4 or

1/8 of the original supersymmetry. Only 1/8 BPS states have non vanishing entropy

and regular horizons, while 1/4 and 1/2 BPS configurations lead to vanishing classical

entropy.

It has been shown in the previous chapters, how to solve the criticality condition for

the N = 8 attractors black hole effective potential, extending the lore of N = 2 special

Kähler geometry.

In this Chapter we focus on some specific simple configurations in N = 8, d =

4 supergravity, which capture some representatives of the “large” BPS and non-BPS

charge orbits of the theory, corresponding to regular extremal black holes, with non-

vanishing classical entropy. One is the Reissner−Nördstrom (RN) dyonic black hole, with

electric and magnetic charge e and m respectively, and Bekenstein−Hawking entropy

(in unit of Planck mass) [8]

SRN = π
(
e2 +m2

)
. (5.1.1)

Another one is the Kaluza−Klein dyonic black hole, with a KK monopole charge p and

a KK momentum q, which is dual to a D0 − D6 brane configuration in Type II A

supergravity. Its Bekenstein−Hawking entropy reads

SKK = π |pq| . (5.1.2)

One more interesting example is the extremal axion-dilaton black hole, a subsector of

pure N = 4 supergravity in d = 4 which was considered in the past [56]-[64].
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We will show how the entropies of these black holes can be obtained in the context

of N = 8, d = 4 supergravity by exploiting the attractor mechanism [9]-[11],[13], for

extremal BPS and non BPS black holes . Earlier studies for some specific cases where

examined in [65], [66].

The black hole charge configuration with entropy given by (5.1.1) is 1/8 BPS [8],

while the entropy (5.1.2) is related to a non BPS one. Indeed, the E7(7) quartic invariant

I4 on these configurations reduces to√
IRN4 = e2 +m2; (5.1.3)√
−IKK4 = |pq| . (5.1.4)

In particular we note that, if the magnetic (or electric) charge is switched off, the

Reissner−Nördstrom black hole remains regular, whereas the Kaluza−Klein black hole

reaches zero entropy (I4 = 0) and becomes 1/2 BPS [33].

The simplest way to obtain these configurations is to observe that the BPS and

non-BPS charge orbits with I4 6= 0 in N = 8, d = 4 supergravity are given by [49]

O1/8−BPS :
E7(7)

E6(2)
, I4 > 0; (5.1.5)

Onon−BPS :
E7(7)

E6(6)
, I4 < 0. (5.1.6)

The moduli spaces corresponding to the above disjoint orbits are [67]

M1/8−BPS =
E6(2)

SU(6)× SU(2)

Mnon−BPS =
E6(6)

USp(8)
. (5.1.7)

Hence, a convenient representative of these orbits is given by the (unique) E6-singlets

in the decomposition of the fundamental representation 56 of E7(7) into the two relevant

non-compact real forms of E6:

RN O1/8−BPS :


E7(7) → E6(2) × U (1) ;

56→ (27, 1) + (1, 3) +
(
27,−1

)
+ (1,−3) ;

(5.1.8)

KK Onon−BPS :


E7(7) → E6(6) × SO (1, 1) ;

56→ (27, 1) + (1, 3) + (27′,−1) + (1′,−3) ,

(5.1.9)
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where the U (1) charges and SO (1, 1) weights are indicated, and the prime denotes the

contravariant representations. Notice that, consistently with the group factors U (1)

and SO (1, 1), 27 is complex for E6(2), whereas it is real for E6(6) . Both E6(2) × U(1)

and E6(6) × SO (1, 1) are maximal non-compact subgroups of E7(7), with symmetric

embedding.

The results from the algebraic analysis can be stated as follows. The two extremal

black hole charge configurations determining the embedding of RN and KK extremal

black holes into N = 8, d = 4 supergravity with entropies (5.1.1) and (5.1.2), are given

by the two E6-singlets in the decompositions (5.1.8) and (5.1.9).

The two situations can be efficiently associated to two different parametrizations

of the real symmetric scalar manifold
E7(7)

SU(8) (dimR = 70, rank= 7) of N = 8, d = 4

supergravity.

For the branching (5.1.8), pertaining to the RN extremal black hole, the relevant

parametrization is the SU (8)-covariant one. This corresponds to the Cartan’s decom-

position basis, where the coset coordinates φijkl (i = 1, ...8) sit in the four-fold anti-

symmetric self-real irrep 70 of SU(8). The attractor mechanism implies that at the

horizon

φijkl,H = 0, (5.1.10)

i.e. the scalar configuration at the event horizon of the 1/8-BPS extremal black hole

is given by the origin of
E7(7)

SU(8) . Some care should be taken with regards to flat direc-

tions [55], [67]. The 1
8 -BPS attractor solutions has a moduli space

E6(2)

SU(6)×SU(2) , with

dimension dimR = 40, and rank= 4, which leaves 40 scalar degrees of freedom out of

70 undetermined, at the event horizon of the given 1
8−BPS RN extremal black hole.

In other words, 40 real scalar degrees of freedom, spanning the quaternionic symmetric

coset
E6(2)

SU(6)×SU(2) (which is the c-map [68] of the vector multiplets’ scalar manifold of

N = 2, d = 4 “magic” supergravity based on JC
3 ), can be set to any real value, without

affecting the RN black hole entropy (5.1.1).

It should be noticed that, consistently with the Gaillard−Zumino formulation of

electric-magnetic duality in presence of scalar fields, the solution (5.1.10) to the attractor

equations is the only one allowed in presence of a compact underlying symmetry (in this

case U (1)).

The branching (5.1.9), pertaining to the KK extremal black hole, on the other hand,

is parametrized by the KK radius

rKK ≡ V1/3 ≡ e2ϕ, (5.1.11)
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by the 42 real scalars ψijkl (i = 1, ...8) sitting in the 42 of USp (8), and by the 27 real

axions aI (I = 1, . . . , 27) sitting in the 27 of USp (8) (or equivalently, in the 27 of E6(6)).

In virtue of the attractor mechanism, the KK radius is stabilized as [69]

r3
KK,H ≡ VH ≡ e6ϕH = 4

∣∣∣∣qp
∣∣∣∣ , (5.1.12)

and has vanishing axions

aIH = 0. (5.1.13)

The 42 real scalars ψijkl are actually undetermined at the event horizon of the non-BPS

KK black hole, without affecting its entropy (5.1.2). Indeed, they span the moduli space
E6(6)

USp(8) (dimR = 42, rank= 6) of the non-BPS attractor solutions, which is the real

symmetric scalar manifold of N = 8, d = 5 supergravity [67].

Thus, it follows from this discussion that the possibility of having a non-vanishing

scalar stabilized at the horizon of the KK extremal black hole is related to the presence

of a singlet in the corresponding decomposition of the 70 scalars. This is related to

the existence of an underlying non-compact symmetry (SO (1, 1) in the present case),

admitting no compact sub-symmetry.

An alternative way to obtain eqs. (5.1.1) and (5.1.2) is to use appropriate truncations

for the bare charges in the expression of the quartic invariant I4, which is related to the

Bekenstein−Hawking entropy by the formula

S =
√
|I4|. (5.1.14)

The manifestly SU(8)-invariant expression of I4 reads as follows:

I4 = Tr
(
ZZ†

)2
− 1

4
Tr2

(
ZZ†

)
+ 8RePf (Z) , (5.1.15)

where Z ≡ ZAB (φ) is the central charge 8× 8 skew-symmetric matrix. Since (5.1.15) is

moduli-independent, it can be evaluated at φ = 0 without loss of generality, and in such

a case ZAB is replaced by QAB, the bare charge matrix in the SU (8) basis.

Considering the RN black hole, we will see that a suitable truncation of the N = 8

bare charge matrix QAB (A,B = 1, . . . 8), reduces it to the form

QRNAB → (zεab, 0) , z ≡ e+ im, (5.1.16)

where a, b = 1, 2 and εT = −ε. Thus one obtains

I4 = |z|4 =
(
e2 +m2

)2
, (5.1.17)
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which is nothing but Eq. (5.1.3) and it is also the same result as in pure N = 2, d = 4

supergravity, which has a U(1) global R-symmetry [8].

In the case of the Kaluza−Klein orbit solution, one has to consider the manifestly

E6(6)-invariant expression of I4 in terms of the cubic invariant I3, as function of the

bare electric and magnetic charges [49, 70, 52]:

I4 = −
(
p0q0 + piqi

)2
+ 4

[
q0I3 (p)− p0I3 (q) + {I3 (p) , I3 (q)}

]
. (5.1.18)

The corresponding truncation is given by the choice of the fluxes

pi = 0 = qi, (5.1.19)

so thatt one obtains (p0 ≡ p, q0 ≡ q)

I4 = − (pq)2 , (5.1.20)

which now coincides with Eq. (5.1.4).

We will show that there is yet another way to obtain the two entropies for RN and

KK black holes (5.1.1) and (5.1.2) . This consists in using the attractor equations for

the effective black hole potential ∂VBH
∂φ = 0 and the expression of the entropy as the

value of such potential at the critical point,

S = π VBH |crit . (5.1.21)

In the following, we will first consider various bases of N = 8, d = 4 supergrav-

ity, namely the SL (8,R), SU (8)- and USp(8)-covariant ones, exploiting the relevant

branchings of the U -duality group E7(7). We will analyze the fundamental quantities

for the geometry of the scalar manifold
E7(7)

SU(8) in the SL (8,R)-covariant basis, first, and

then move to the E6(6)-covariant basis; with the goal of exhibiting the connection with

N = 8, d = 5 supergravity, we will recast the d = 4 effective black hole potential in

a manifestly d = 5 covariant form. The charge configurations of this potential leading

to vanishing axion fields are studied along with the corresponding attractor solutions.

The embedding of the axion-dilaton extremal black hole in N = 8, d = 4 supergravity,

through an intermediate embedding into N = 4, d = 4 theory with 6 vector multiplets

will be presented.
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5.2 Symplectic Frames

The de Wit-Nicolai [71] formulation of N = 8, d = 4 supergravity is based on a sym-

plectic frame where the maximal non-compact symmetry of the Lagrangian is SL (8,R)

[72], according to the decomposition

E7(7) → SL (8,R) ,

56→ 28 + 28′,

(5.2.1)

where SL (8,R) is a maximal non-compact subgroup of E7(7), and 28 is its two-fold

antisymmetric irreducible representation. Since there is no matter coupling, the SU (8)

R-symmetry, is the stabilizer of the scalar manifold. It is not a symmetry of the La-

grangian, but only of the equations of motion, the maximal compact symmetry of the

Lagrangian is indeed the intersection of SL (8,R) with SU (8), which is SO (8), the

maximal compact subgroup of SL (8,R) itself.

Another symplectic frame corresponds to the decomposition (5.1.9). In this case, the

maximal non-compact symmetry of the Lagrangian is E6(6) × SO (1, 1) n T27, with T27

standing for the 27-dimensional Abelian subgroup of E7(7). The maximal compact sym-

metry is now USp (8), which is also the maximal compact symmetry of the Lagrangian.

Note that all terms in the Lagrangian are SU(8) invariant, with the exception of the

vector kinetic terms, which are SU (8)-invariant only on-shell.

Let us decompose E7(7) along two different maximal non-compact subgroups accord-

ing to the following diagram:

E7(7) −→ SL(8,R)

↓ ↓

E6(6) × SO(1, 1) −→ SL(6,R)× SL(2,R)× SO(1, 1) .

(5.2.2)

If one goes first horizontally, the 56 of E7(7) decomposes as

56→ 28 + 28′ →


(15,1, 1) + (6,2,−1) + (1,1,−3) +

+ (15′,1,−1) + (6′,2, 1) + (1,1, 3) .

(5.2.3)
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Alternatively, one can first go downward, and use that

E6(6) → SL(6,R)× SL (2,R) ;

27→ (15,1) + (6′,2) ,

1→ (1,1) ,

(5.2.4)

thus obtaining:

56→ (27, 1) + (1, 3) +
(
27′,−1

)
+ (1,−3)→


(15,1, 1) + (6′,2, 1) + (1,1, 3) +

+ (15′,1,−1) + (6,2,−1) + (1,1,−3) .

(5.2.5)

Therefore, either way on the diagram and irrespectively of the intermediate decomposi-

tion, one obtains the same irreducible representations of SL (6,R)×SL (2,R)×SO (1, 1),

which enjoyes a unique embedding in the U -duality group E7(7). In particular, one sees

that the singlets are indeed the same in the two cases, and the alternative decomposi-

tions are related by the interchange of (15,1, 1) with (15′,1,−1). We can thus conclude

that these two formulations, corresponding to two different symplectic frames, can be

interchanged by dualizing 15 out of the 28 vector fields.

An analogous argument holds if one decomposes E7(7) according two two different

maximal compact subgroups along the diagram

E7(7) −→ SU(8)

↓ ↓

E6(2) × U(1) −→ SU(6)× SU(2)× U(1) .

(5.2.6)

This time, going first horizontally along the diagram, the result reads:

56→ 28 + 28→


(15,1, 1) + (6,2,−1) + (1,1,−3) +

+
(
15,1,−1

)
+
(
6,2, 1

)
+ (1,1, 3) .

(5.2.7)
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Equivalently, one can first go vertically on the diagram and use

E6(2) → SU (6)× SU (2) ;

27→ (15,1) +
(
6,2

)
,

1→ (1,1) ,

(5.2.8)

thus obtaining:

56→ (27, 1) +
(
27,−1

)
+ (1, 3) + (1,−3)→


(15,1, 1) +

(
6,2, 1

)
+ (1,1, 3) +

+
(
15,1,−1

)
+ (6,2,−1) + (1,1,−3) .

(5.2.9)

Again, either of the two alternative branchings in (5.2.6) , which are related by the

interchange of (15,1, 1) with
(
15,1,−1

)
, yield the same decomposition into irreducible

representations of SU (6)× SU (2)×U(1). Moreover, the U(1) singlet which commutes

with SU (6)× SU (2) is the same as the one which commute with E6(2).

Let us now turn to the scalar sector. As mentioned above, the coordinate system

for the scalar manifold
E7(7)

SU(8) based on the Cartan decomposition, the real scalars φijkl

sit in the 70 ( four-fold antisymmetric and self-real irreducible representation) of SU(8)

with i = 1, . . . , 8. The embedding of the RN extremal black hole is related to the further

decomposition

SU(8)→ SU (6)× SU (2)× U(1),

70→ (20,2, 0) + (15,1,−2) +
(
15,1, 2

)
.

(5.2.10)

On the other hand, for describing the KK extremal black hole one decomposes SU(8)

under its maximal subgroup USp(8):

SU(8)→ USp(8),

70→ 42 + 27 + 1,

(5.2.11)

where 42 and 27 are respectively the four-fold and two-fold antisymmetric irreducible

representations (both skew-traceless and self-real) of USp (8).

The crucial difference between (5.2.10) and (5.2.11) is that the latter decomposition

contains a real singlet, whereas the first one does not. This is related to an underlying

maximal compact (U (1) symmetry which is present for (5.2.10) and not for (5.2.11).
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This feature explains the different behavior of the two solutions at the attractor point:

the RN solution has the behavior (5.1.10) while the KK solution is given by (5.1.12)-

(5.1.13).

5.3 SL (8,R)-Basis

We now turn to discuss the details of the symplectic formalism for extended super-

gravities reviewed in the introductory section, and the original formulation of N = 8

supergravity of [71] for some of the key geometrical objects that are relevant for the

present investigation.

We start by considering the coset representative for E7(7)/SU(8), which is parametrized

as [71]

V =

(
uIJij vijKL

vklIJ uklKL .

)
(5.3.1)

The sub-matrices u and v carry indices of both E7(7) and SU(8) (I = 1, . . . , 8, I =

1, . . . , 8) but one can choose a suitable SU(8) gauge for the fields, and then retain only

manifest invariance with respect to the rigid diagonal subgroup of E7(7)×SU(8), without

distinction among the two types of indices. Comparing the notation of [71] (in particular

the appendix B) with the symplectic formalism of [14],[27], we can identify{
φ0 ≡ u
φ1 ≡ v

→
u kl
ij = (P−1/2) kl

ij ,

vijkl = −(P̄−1/2)ijmnȳ
mnkl

so that  f = 1√
2
(φ0 + φ1) = 1√

2
(u+ v)

ih = 1√
2
(φ0 − φ1) = 1√

2
(u− v)

. (5.3.2)

Since sections are sub-matrices of the symplectic representation, relatively to electric

and magnetic subgroups, their explicit indices components are given by

f kl
ij =

1√
2

(
(P−1/2) kl

ij − (P̄−1/2)ijmnȳ
mnkl

)
,

hij,kl =
−i√

2

(
(P−1/2) kl

ij + (P̄−1/2)ijmnȳ
mnkl

)
, (5.3.3)

where, in matrix notation,

P = 1− Y Y † , Y = B
tanh

√
B†B√

B†B
, Bij,kl = − 1

2
√

2
φijkl , (5.3.4)
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the last definition coming from the choice of the symmetric gauge for the coset repre-

sentative in Eq. (B.1) of [71]. If one defines

P̃ = 1− Y †Y , (5.3.5)

and uses the identity

(P̃−1/2)Y † = Y †(P−1/2) , (5.3.6)

the following simple expressions for f and h are finally achieved:

f =
1√
2

[
P−1/2 − (P̃−1/2)Y †

]
=

1√
2

[1− Y †] 1√
1− Y Y †

, (5.3.7)

h = − i√
2

[
P−1/2 + (P̃−1/2)Y †

]
= − i√

2
[1 + Y †]

1√
1− Y Y †

. (5.3.8)

The above notations are such that

P 1/2 =
√

1− Y Y † → P kl
ij = δklij − yijmnȳmnkl

P̃ 1/2 =
√

1− Y †Y → P̄ klij = δklij − ȳklmnymnij (5.3.9)

It is easily checked that the symplectic sections satisfy the usual relations

i(f †h− h†f) = 1 ,

hT f − fTh = 0 . (5.3.10)

These are obtained writing the symplectic sections as in (5.3.7) and (5.3.8), and using

the identity

Y P̃−1 = P−1Y . (5.3.11)

The kinetic matrix is given in terms of the symplectic sections by [27]

N = hf−1 . (5.3.12)

Therefore, Eqs. (5.3.7) and (5.3.8) yield

N = −i [1 + Y †]
1√

1− Y Y †
√

1− Y Y † 1

1− Y †
=

= −i 1 + Y †

1− Y †
⇓

Nij|kl = −i(δklmn + ȳmnkl)(δmnij − ȳijmn)−1 . (5.3.13)
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We now turn to the central charge function, which is defined by

Zij = f kl
ij qkl − hij|klpkl , (5.3.14)

where electric and magnetic charges are in the same SO(8) adjoint representation as

vector fields. Using the definitions in (5.3.3), one obtains1

Zij =
1√
2

(
(P−1/2) kl

ij − (P̄−1/2)ijmnȳ
mnkl

)
qkl +

i√
2

(
(P−1/2) kl

ij + (P̄−1/2)ijmnȳ
mnkl

)
pkl =

= (P−1/2) kl
ij Qkl − (P̄−1/2)ijmnȳ

mnklQ̄kl =

=
1√
2

( 1√
1− Y Y

) kl

ij

Qkl −

(
1√

1− Y Y

)ij
mn

Ȳ mnklQ̄kl

 , (5.3.15)

where the complex charges

Qij ≡
1√
2

(qij + ipij) (5.3.16)

have been introduced.

Then one can also give an expression for the black hole potential, which is given by

VBH =
1

2
ZijZ

ij
=

=
1

4

[
(1− Y Y )−1 ijklQklQ̄ij+

−
(√

1− Y Y
)−1 ab

ij
Qab

(√
1− Y Y

)−1 ij

cd
YcdklQkl +

−
(√

1− Y Y
)−1 ij

ab
Y
abkl

Q̄kl

(√
1− Y Y

)−1 cd

ij
Q̄cd +

+ (1− Y Y )−1
ijklY

ijab
YklmnQ̄abQmn

]
. (5.3.17)

Thus, in the expansion around the zero field configuration, the black hole receives con-

tribution from the term

VBH(φ = 0) =
1

4
QijQ̄

ij . (5.3.18)

The linear term in the expansion of the black hole potential near the point φ = 0 receives

contributions from the second and third row of Eq. (5.3.17), yielding the condition

QijφijklQkl − Q̄ijφ̄ijklQ̄kl = 0 , (5.3.19)

⇓

QijQklδ
mnpq
ijkl −

1

4!
Q̄ijQ̄klε

ijklmnpq = 0 . (5.3.20)

1The expression with explicit indices is given by

P̄ ijkl = (P̃ ) ij
kl
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The configuration corresponding to charges QAB in the singlet of SU(2)×SU(6) trivially

satisfies condition (5.3.20). Furthermore, it sets to zero the linear term for all values of

φ, implying the φ = 0 point to be an attractor point for this configuration.

5.4 E6(6)-Basis and Relation to d = 5

This section is aimed to establish the relation between the N = 8, d = 4 theory and

N = 8, d = 5 supergravity ([73, 74]), especially for what concerns the effective black

hole potential.

In our normalizations the kinetic Lagrangian for vector fields in the N = 2 theory

reads (with Fµν ≡ 1
2 (∂µAν − ∂νAµ) = ∂[µAν]) [75],[18]

L = . . .− ImNΛΣFΛFΣ − ReNΛΣFΛ ∗FΣ , (5.4.1)

where NΛ Σ is the d = 4 vector kinetic matrix, with Λ,Σ = 0, 1, ..., 27. The effective

black hole potential is given by [13]

VBH = −1

2
QTM(N )Q , (5.4.2)

where Q is the symplectic charge vector Q =

(
pΛ

qΛ

)
, and the matrix M reads [13]

M(N ) =



ImN + ReN (ImN)−1ReN −ReN (ImN )−1

−(ImN )−1ReN (ImN )−1


. (5.4.3)

The d = 5 U -duality group E6(6) acts linearly on the 27 vectors ÂIµ̂, with µ̂ = 1, . . . , 5

and I = 1, . . . , 27. The d = 5 vector kinetic matrix N̂IJ is a function of the scalar fields

spanning the d = 5 scalar manifold
E6(6)

USp(8) (dimR = 42, rank= 6).

According to the splitting Λ = {0, I}, the d = 4 kinetic vector matrix assumes the
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block form

NΛ Σ =



N00 N0 J

NI 0 NI J


. (5.4.4)

By using to the formulæ obtained in [76] which determineNΛ Σ in terms of five-dimensional

quantities, in a normalization2 that is suitable for comparison to N = 2 , one obtains

NΛ Σ =



1
3dIJKa

IaJaK − i
(
e2φaIJa

IaJ + e6φ
)
−1

2dIJKa
IaK + ie2φaKJa

K

−1
2dIKLa

KaL + ie2φaIKa
K dIJKa

K − ie2φaIJ


.(5.4.5)

Since the dIJK tensor, the aI fields, the d = 5 vector kinetic matrix aIJ and the field φ

are real, the expressions for ImN and ReN are given by

ImNΛ Σ = −e6φ



1 + e−4φaIJ a
IaJ −e−4φaKJ a

K

−e−4φaIK a
K e−4φaIJ


; (5.4.6)

ReNΛ Σ =



1
3dKLMa

KaLaM −1
2dJLMa

LaM

−1
2dILMa

LaM dIJKa
K


=

(
1
3d −1

2dJ

−1
2dI dIJ

)
, (5.4.7)

2 Compared to the notation of [76], here we use NΛΣ → 4NΛΣ, 2N̂IJ → aIJ , dIJK → −dIJK/4 and

aI → −aI .
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where the following shorthand notation has been introduced:

d ≡ dIJKaIaJaK , dI ≡ dIJKaJaK , dIJ ≡ dIJKaK . (5.4.8)

The inverse matrix (ImNΛΣ)−1 ≡ ImNΛΣ can be determined by noticing the block

structure of (5.4.6). Then, by performing computations analogous to those of [69], one

finds

(ImN−1)Λ Σ = −e−6φ



1 aJ

aI aIaJ + e4φaIJ

,


(5.4.9)

where aIJ ≡ (aIJ)−1. Inserting the above expressions into Eq. (6.2.1), the N = 8, d = 4

effective black hole potential can finally be rewritten in a d = 5 language:

VBH = (p0)2

[
1

2
e2φaIJa

IaJ +
1

2
e6φ +

1

8
e−6φ

(
d2

9
+ e4φaIJdIdJ

)]
+

+p0pI
[
−e2φaIJa

J − 1

4
e−6φ

(
1

3
ddI + 2e4φaKJdKdJI

)]
+

+pIpJ
[

1

2
e2φaIJ +

1

8
e−6φ

(
dIdJ + 4e4φaKLdIKdLJ

)]
+

+
1

6
q0p

0 e−6φd+
1

6
qIp

0 e−6φ
[
d aI + 3e4φaKIdK

]
+

−1

2
q0p

I e−6φdI −
1

2
qIp

J e−6φ
[
dJa

I + 2e4φaKIdJK

]
+

+
1

2
(q0)2e−6φ + q0qIe

−6φaI +
1

2
qIqJ e

−6φ
[
aIaJ + e4φaIJ

]
. (5.4.10)

Notice that this formula becomes identical to the corresponding one of [69] concerning

(purely cubic) N = 2 geometries [77],[78], where aIJ = 4e4φgij and V ≡ e6φ.

The potential (5.4.10), because of the definitions (6.2.5), can be seen to be a poly-

nomial of degree up to sixth in the axion fields, whose general solutions are hard to

determine. However, one can consider in particular attractor solutions with vanishing

axion fields. These are given by specific charge configurations that solve the following

attractor equations:

∂VBH
∂aI

∣∣∣
aJ=0

= −e2φp0pKaKI − e−2φqJp
KdILKa

JL + q0qIe
−6φ = 0 . (5.4.11)
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Therefore, the black hole charge configurations Q = (p0, pI , q0, qI) supporting axion–

free solutions fall into three classes:

a) Qe = (p0, 0, 0, qI) Electric black hole ;

b) Qm = (0, pI , q0, 0) Magnetic black hole ;

c) Q0 = (p0, 0, q0, 0) KK charged black hole . (5.4.12)

In each of these classes, we now specify the black hole potential by setting to zero the

appropriate charge configuration in (5.4.10):

a) Electric black hole:

VBH(φ, p0, qI)
∣∣
aI=0

=
1

2
e6φ(p0)2 +

1

2
e−2φaIJqIqJ . (5.4.13)

b) Magnetic black hole:

VBH(φ, q0, p
J)
∣∣
aI=0

=
1

2
e−6φ(q0)2 +

1

2
e2φaIJp

IpJ . (5.4.14)

c) Black hole charged with respect to the KK vector:

VBH(φ, q0, p
0)
∣∣
aI=0

=
1

2
e−6φ(q0)2 +

1

2
e6φ(p0)2 . (5.4.15)

In order to recover the complete attractor solution, one also has to stabilize eφ. For

the KK charged black hole one gets,

∂V KK
BH (φ, q0, p

0)

∂φ

∣∣
aI=0

= 0 ⇐⇒ e6φ =

∣∣∣∣ q0

p0

∣∣∣∣ , (5.4.16)

thus yielding

V KK
BH (q0, p

0)
∣∣
aI=0

= |q0p
0| . (5.4.17)

In the electric case it holds that

∂V e
BH

∂φ

∣∣
aI=0

= 0 ⇐⇒ e2φ =

(
aIJqIqJ
3(p0)2

) 1
4

, (5.4.18)

implying the critical value

V e
BH(qI , p

0)|aI=0 = 2|p0|1/2
(
aIJqIqJ

3

)3/4

. (5.4.19)

Analogously, for the magnetic black hole one finds

∂V m
BH

∂φ

∣∣
aI=0

= 0 ⇐⇒ e2φ =

(
aIJp

IpJ

3q2
0

)− 1
4

, (5.4.20)
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yielding

V m
BH(q0, p

I)|aI=0 = 2|q0|1/2
(
aIJp

IpJ

3

)3/4

. (5.4.21)

In virtue of the Bekenstein−Hawking entropy-area formula, the above expressions

for the critical electric and magnetic black hole potentials must be compared with

appropriate powers of the E6(6) cubic invariants I3(p) ≡ 1
3!dIJKp

IpJpK and I3(q) ≡
1
3!d

IJKqIqJqK . Indeed, in d = 5 it must hold that [10]

S ∼ V 3/4|crit ∼ |I3|1/2 , (5.4.22)

Defining the electric and magnetic d = 5 effective potentials respectively as

V e
5 = aIJqIqJ , V m

5 = aIJp
IpJ (5.4.23)

one obtains

V e
crit = 2|p0|1/2

(
V e

5

3

)3/4 ∣∣
crit

(5.4.24)

and

V m
crit = 2|q0|1/2

(
V m

5

3

)3/4 ∣∣
crit

. (5.4.25)

By comparison with N = 2 symmetric d−geometries having

V e
5 |crit = |I3(q)|2/3 = |q1q2q3| , (5.4.26)

one obtains the expressions for the critical potential of the four dimensional electric and

magnetic black holes:

V e
BH crit(qI , p

0) = 2

√
|p0dIJKqIqJqK |

3!
, (5.4.27)

and

V m
BH crit(q0, p

I) = 2

√
|q0dIJKpIpJpK |

3!
. (5.4.28)

More generally, these solutions can be compared with the embedding of the N = 2

purely cubic supergravities into N = 8 supergravity, and using the above critical values

of the black hole potential in (5.1.21), one finds for the three family of configurations

under exam the correct result:
SBH
π

=
√
|I4| . (5.4.29)
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It is interesting to remark that the KK black hole can be connected to the RN

solution by performing an analytic continuation of the charges, as one can see from the

redefinition

p0 → p+ iq ,

q0 → p− iq ,

which allows one to recover the RN entropy

SRN = π( p2 + q2) . (5.4.30)

We conclude this Section by pointing out that the 70 scalars of N = 8, d = 4

supergravity have been decomposed according to representations of USp (8) (maximal

compact subgroup of E6(6) × SO (1, 1)) as follows:

70→ 42 + 27 + 1 . (5.4.31)

The 42 unstabilized fields are the coordinates of the corresponding moduli space [67].

The non-compact form of the exceptional group, E6(6), in fact, enters in the expression

of the coset

E6(6)

USp(8)
, (5.4.32)

which is the moduli space of the d = 4 non-BPS, ZAB 6= 0 extremal black holes, whose

orbit is precisely

O =
E7(7)

E6(6)
. (5.4.33)

Indeed, the KK black hole is a non supersymmetric solution.

5.5 Embedding of the Axion-Dilaton Extremal black hole

The embedding of the axion-dilaton black hole in N = 8, d = 4 supergravity can

be performed by a three step supersymmetry reduction, which can be schematically

indicated as

N = 8→ N = 4, nV = 6→ pureN = 4→ N = 2 quadratic, nV = 1, (5.5.1)

where nV denotes the number of vector multiplets coupled to the supergravity multiplet.

More precisely, the first step consists in truncating N = 8 supergravity to an N = 4
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theory interacting with six matter (vector) multiplets. In the second step, N = 4 reduces

to the pure theory, while in the last reduction one obtains N = 2 supergravity quadratic

[79] theory with a single vector multiplet.

We are now going to examine more precisely each intermediate step.

1) In the first step, the N = 8 central charge matrix ZAB assumes the block form

(a, b = 1, .., 4, i, j = 1, ..., 4):

ZAB →


Zab 0

0 iZij

 . (5.5.2)

where Zab is the N = 4 central charge matrix and Zij are the matter charges of the 6

vector multiplets (sitting in the two-fold antisymmetric of SU (4), or equivalently in the

vector representation of SO (6) ∼ SU (4)).

Consequently, the N = 8 scalar manifold
E7(7)

SU(8) , reduces to

SL (2,R)

U (1)
× SO (6, 6)

SO (6)× SO (6)
=
SL (2,R)

U (1)
× SO (6, 6)

SU (4)× SU (4)
, (5.5.3)

which admits three orbits. This is the scalar manifold for N = 4 supergravity coupled

to 6 vector multiplets, .

2) In the second step, the 6 vector multiplets are eliminated and Zij = 0; this

corresponds to retaining only states which are singlets with respect to the second SU(4)

in the stabilizer of the coset (5.5.3)), and the theory becomes pure = 4, with U -duality

SL (2,R)× SU (4): 
Zabε 0

0 iZijε

→

Zab 0

0 0

 , (5.5.4)

with ε =
(

0
−1

1
0

)
. Accordingly, the scalar manifold reduces to SL(2,R)

U(1) . Notice that, the

presence of the axion-dilaton s spanning SL(2,R)
U(1) , in the N = 4 supergravity multiplet,

only an SU(4) out of the whole (local) N = 4 R-symmetry U(4) gets promoted to

(global) U -duality symmetry .

3) In the last step, 4 out of 6 graviphotons drop out, reducing the overall gauge

symmetry from U(1)6 to U(1)2, with resulting U -duality SL (2,R) × U (1). Thus, the

framework becomes N = 2-supersymmetric, with the two skew-eigenvalues (Z1, Z2) of
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Zab related to the N = 2 central and matter charges (Z,DsZ) :

Zab →


Z 0

0 i Ds̄Z̄

 . (5.5.5)

Therefore, at the N = 2 level one can have both BPS attractors (DsZ = 0) and the

non-BPS (Z = 0) ones [52].

On a group theoretical side, this step correspond to performing the decomposition

SU (4)→ SU (2)× SU (2)× U (1) ,

4→
(
2,1, 1

2

)
+
(
1,2,−1

2

)
,

6→ (2,2, 0) + (1,1, 1) + (1,1,−1) ,

(5.5.6)

and to retaining only the singlets of SU (2)× SU (2).

The above three step reduction can be viewed from the point of view of the clas-

sification of large charge orbits [27],[80]. One starts with the N = 8 scalar manifold

E7(7)/SU(8) admitting the two regular orbits (5.1.5) and (5.1.6). The large charge

orbits of N = 4, d = 4 supergravity coupled to 6 vector multiplets are:

O1/4BPS : SL (2,R)× SO(6,6)
SO(2)×SO(6,4) ;

OnonBPS, Zab=0 : SL (2,R)× SO(6,6)
SO(2)×SO(6,4) ;

OnonBPS, Zab 6=0 : SL (2,R)× SO(6,6)
SO(1,1)×SO(5,5) ,

(5.5.7)

where the coincidence of the first two orbits is due to the symmetry between the gravity

and the matter sector.

The corresponding moduli spaces for the N = 4, n = 6 attractor solutions, exploiting

the hidden symmetries of the above charge orbits, are given by:

MBPS = SO(6,4)
SU(4)×SU(2)×SU(2) ;

MnonBPS,Zab=0 = SO(6,4)
SO(6)×SO(4) ;

MnonBPS,Zab 6=0 = SO (1, 1)× SO(5,5)
SO(5)×SO(5) = SO(1, 1)× SO(5,5)

USp(4)×USp(4) .

(5.5.8)
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Notice thatM1/4BPS (andMnon−BPS,Zab=0) are homogeneous symmetric quaternionic

manifolds, as in the N = 4→ N = 2 reduction they become the hypermultiplets’ scalar

manifold [27].

The truncation of the N = 8 theory into N = 4 is based on the decomposition

E7(7) → SL(2, R)× SO(6, 6) (5.5.9)

and on the following group embeddings

SO(6, 4)× SO (2) ( E6(2); (5.5.10)

SO(5, 5)× SO (1, 1) ( E6(6). (5.5.11)

Therefore, one can readily establish that the orbits 1/4 BPS and non BPS, Zab = 0

descend from the N = 8, BPS orbit
E7(7)

E6(2)
, whereas the orbit OnonBPS, Zab 6=0 comes from

the N = 8, non-BPS orbit
E7(7)

E6(6)
.

There is also another way to interpret the three step reduction (5.5.1), that is in

terms of U -duality invariant representations. At group level, the embedding of the

axion-dilaton extremal black hole into N = 8, d = 4 supergravity is based on the

decomposition of E7(7) → SU(8) and

SU (8)→ SU (4)× SU (4)× U (1) ,

8→
(
4,1, 1

2

)
+
(
1,4,−1

2

)
,

28→ (4,4, 0) + (6,1, 1) + (1,6,−1) ,

28→
(
4,4, 0

)
+ (6,1,−1) + (1,6, 1) ,

(5.5.12)

where SU (4)× SU (4)× U (1) is a maximal subgroup of SU (8).

Then, the first truncation (N = 8→ N = 4, n = 6) consists in setting

(4,4, 0) = 0 =
(
4,4, 0

)
, (5.5.13)

which gives rise to the decomposition (5.5.2).

We recall that the quartic invariant of the U -duality group SL (2,R)× SO (6, n) of

N = 4, d = 4 supergravity coupled to n vector multiplets is [55]

I4 = S2
1 − |S2|2 , (5.5.14)
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where the three SO (6, n) invariants S1, S2 and S2 are defined by (a, b = 1, ..., 4, I =

1, ..., n):

S1 ≡
1

2
ZabZ

ab − ZIZ
I
; (5.5.15)

S2 ≡
1

4
εabcdZabZcd − ZIZ

I
. (5.5.16)

The case n = 6 is remarkably symmetric, as the symmetry of the gravity and matter

sector is the same and furthermore, due to the isomorphism SU(4) ∼ SO(6), the SO(6)-

vector ZI of matter charges can be equivalently represented as the SU(4)-antisymmetric

tensor iZij (i, j = 1, ..., 4). Consequently, for n = 6 we have

S1,n=6 ≡
1

2
ZabZ

ab − 1

2
ZijZ

ij ; (5.5.17)

S2,n=6 ≡
1

4
εabcdZabZcd −

1

4
εijklZ

ijZkl. (5.5.18)

Notice that O1/4BPS and OnonBPS, Zab=0 in Eq. (5.5.7) correspond to the two discon-

nected branches of the same manifold, classified by the sign of the real SO (6, 6)-invariant

[27] Indeed, S1,n=6 > 0 for O1/4BPS and S1,n=6 < 0 for OnonBPS, Zab=0.

By a suitable U(1)×SU (4)×SU(4) transformation, one can reach the normal frame

for both gravity sector and matter sector, such that the two matrices Zab and Zij are

simultaneously skew-diagonalized, obtaining

Zab −→

(
Z1

Z2

)
⊗ ε; (5.5.19)

Zij −→ eiθ

(
Z3

Z4

)
⊗ ε, (5.5.20)

where Z1, Z2 ∈ R+, and Z3, Z4 ∈ R+, θ ∈ [0, 2π). In the normal frame, one obtains

S1,n=6 ≡ |Z1|2 + |Z2|2 − |Z3|2 − |Z4|2 ; (5.5.21)

S2,n=6 ≡ 2
(
Z1Z2 − Z̄3Z̄4

)
; (5.5.22)

I4,n=6 = S2
1,n=6 − |S2,n=6|2 =

=

4∑
i=1

|Zi|4 − 2

4∑
i<j=1

|Zi|2 |Zj |2 + 4

(
4∏
i=1

Zi +

4∏
i=1

Zi

)
. (5.5.23)

Eq. (5.5.23) coincides with the expression of the quartic invariant of N = 8, d = 4

supergravity, as given by [54] (see also [33]) Considering now the second step of the

reduction, where one reaches the pure N = 4 theory, one sets Zij = 0, or equivalently
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Z3 = 0 = Z4 in the normal frame (that is, retaining only states which are singlets with

respect to the second SU(4) in the stabilizer of the coset (5.5.3)). Notice that, by doing

so, I4,n=0 becomes a perfect square:

I4,n=0 = S2
1,n=0 − |S2,n=0|2 =

(
|Z1|2 − |Z2|2

)2
=
(
Z2

1 − Z2
2

)2
. (5.5.24)

Eq. (5.5.24) implies that I4,n=0 is (weakly) positive, and as a consequence an unique

class of large attractor exists, namely the 1/4-BPS one. The (weak) positivity of I4,n=0

is consistent with the known expression of I4,n=0 in terms of the magnetic and electric

charges
(
pΛ, qΛ

)
(Λ = 1, ..., 6):

I4,n=0 = 4
[
p2q2 − (p · q)2

]
, (5.5.25)

where here p2 ≡ pΛpΣδΛΣ, q2 ≡ qΛqΣδ
ΛΣ and p · q ≡ pΛqΣδ

Λ
Σ. Notice that in the basis

of bare charges I4,n=0, as given by Eq. (5.5.25), is (weakly) positive due to the Schwarz

inequality, and not because it is a non-trivial perfect square of an expression of the bare

magnetic and electric charges [81].

Notice that
√
I4,n=0 (with I4,n=0 given by Eq. (5.5.25)) must coincide with the

value of the effective black hole potential of the pure N = 4 theory at its critical points.

This can be understood (see the recent discussion given in [27] and [82]) because this

potential reads as follows (Λ = 1, ..., 6):

VBH,pureN=4

(
φ, a, pΛ, qΛ

)
= e2φ(spΛ − qΛ)(s̄pΛ − qΛ) =

= (e2φa2 + e−2φ)p2 + e2φq2 − 2ae2φp · q, (5.5.26)

where the complex (axion-dilaton) field

s ≡ a+ ie−2φ (5.5.27)

parametrizes the coset SU(1,1)
U(1) of N = 4, d = 4 pure supergravity [83]. By computing the

criticality conditions of VBH,pureN=4, one obtains the following stabilization equations

for the axion a and the dilaton φ at criticality, (φ, a) = (φH(p, q), aH(p, q)) [27]

∂V BH(φ, a, p, q)

∂a

∣∣
crit

= 0⇐⇒ aH(p, q) =
p · q
p2

; (5.5.28)

∂V BH(φ, a, p, q)

∂φ

∣∣
crit

= −e−4φp2 + q2 − aH(p, q)p · q = −e−4φp2 + q2 − (p · q)2

p2
= 0;

m

e−2φH(p,q) =

√
p2q2 − (p · q)2

p2
. (5.5.29)
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The Bekenstein−Hawking black hole entropy is computed to be

SBH (p, q) =
AH (p, q)

4
= πVBH (φH (p, q) , aH (p, q) , p, q)

= 2π
√
p2q2 − (p · q)2 = π

√
I4,n=0. (5.5.30)

The third and last step, when the pure N = 4 theory reduces to the N = 2 quadratic

theory with nV = 1, is performed through the truncation (U (1))6 → (U (1))2 of the over-

all Abelian gauge invariance (Λ = 1, ..., 6→ Λ = 1, 2). In this case, I4,n=0,(U(1))6→(U(1))2

is a perfect square in both the basis of Zab and in the basis of charges
(
pΛ, qΛ

)
, and it

actually is the square of the quadratic invariant I2(n=1) of the axion-dilaton system:

I4,n=0,(U(1))6→(U(1))2 =
(
|Z1|2 − |Z2|2

)2
= 4

(
p1q2 − p2q1

)2
= I2

2(n=1); (5.5.31)

m

I2(n=1) = ±2
∣∣p1q2 − p2q1

∣∣ , (5.5.32)

implying that the axion-dilaton system exhibits two types of attractors: the 1
2 -BPS one

(I2(n=1) > 0) and the non-BPS Z = 0 one (I2(n=1) < 0).

By further putting

p1 = 0 = q2, p
2 ≡ p, q1 ≡ q (5.5.33)

(⇒ p · q = 0), one obtains:

I∗4(n=0,U(1)6→U(1)2) = I2∗
2(n=1) = 4 (pq)2 ; (5.5.34)

m

I∗2(n=1) = ±2 |pq| , (5.5.35)

where I∗ means the evaluation along Eq. (5.5.33).

The similarity between the r.h.s.’s of Eqs. (5.1.4) and (5.5.35) is only apparent. In

fact, the KK extremal black hole has
√
−I4,KK , which necessarily implies that it is non-

BPS (ZAB 6= 0 in N = 8 and Z 6= 0 in N = 2). On the other hand, the axion-dilaton

extremal black hole has I∗2(n=1) and a “±” in the r.h.s., so that it can be both 1
2 -BPS

and non-BPS Z = 0 in N = 2. Moreover, the choice (5.5.33) leads to vanishing axion a

(see Eq. (5.5.28)), and this explains that Eqs. (5.5.35) has SO (1, 1) symmetry, as Eq.

(5.1.4).

5.5.1 Truncations of the scalar sector

As reported e.g. in Sects. 6 and 7 of [82], one can see that the attractor mechanism

stabilizes the complex axion-dilaton s at the event-horizon of the axion-dilaton extremal
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black hole itself, while, as given by Eqs. (5.1.12) and (5.1.13) within the branching

(5.2.11), only one real scalar degree of freedom, namely the KK radius rKK defined by

Eq. (5.1.11), is stabilized at the event horizon of the extremal KK black hole.

The relevant branching of the scalar sector for the embedding of the axion-dilaton

extremal black hole into N = 8, d = 4 supergravity is given by:

SU(8)→ SU (4)× SU (4)× U (1) ,

70→ (1,1,2) + (1,1,−2) + (6,6,0) +
(
4,4,1

)
+
(
4,4,− 1

)
.

(5.5.36)

Eq. (5.5.36) is the analogue of Eqs. (5.2.10) and (5.2.11), holding respectively for the

(N = 8, d = 4 embedding of the) RN and KK d = 4 extremal (and asymptotically flat)

black holes.

A remarkable feature characterizing the branchings (5.2.10), (5.2.11) and (5.5.36) is

the possible presence of a singlet in their r.h.s.’s. The decomposition (5.5.36) contains

two SU (4) (×SU (4)) singlets, whereas the decomposition (5.2.11) contains a real singlet,

and the decomposition (5.2.10) does not contain any singlet. The presence of the singlet

may lead to an underlying maximal compact symmetry (U (1) for (5.2.10), absent for

(5.2.11), and SU (4) for (5.5.36)).

1. The first truncation (N = 8→ N = 4, nV = 6) corresponds to setting3

(
4,4,1

)
= 0 =

(
4,4,− 1

)
. (5.5.37)

Indeed, by applying the condition (5.5.37), one obtains the correct quantum num-

bers of the scalar manifold SL(2,R)
U(1) ×

SO(6,6)
SO(6)×SO(6) of the N = 4, d = 4 supergravity

coupled to 6 vector multiplets.

2. The second truncation (N = 4, nV = 6 → pure N = 4 ) simply consists in

implementing the condition

(6,6,0) = 0, (5.5.38)

which is consistently symmetric under the exchange of the gravity sector and the

matter sector. Through condition (5.5.38), one achieves the correct quantum num-

bers of the scalar manifold SL(2,R)
U(1) of the pure N = 4, d = 4 supergravity.

3Notice the difference with respect to the analogue truncation condition (5.5.13) for the decomposition

of the 28 and 28 of SU (8).
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3. The third and last step (pure N = 4→ N = 2 quadratic, nV = 1) does not change

anything with respect to the previous one. Indeed, the scalar sector is unaffected

by this third truncation, and the scalar manifold remains SL(2,R)
U(1) .

Appendix 5.A Truncation of N = 8, d = 5 supergravity to

the d = 5 uplift of the stu model

The bosonic sector of the N = 8, d = 5 supergravity theory consists in the metric

gµν (µ, ν = 1, ..., 5), 27 vectors AΛ
µ and 42 scalars φabcd parametrizing the coset

E6(6)

USp(8) .

The index Λ = 1, . . . 27 is in the 27 of E6(6), and it can be traded for a couple of flat

antisymmetric indices (ab) of USp(8). Thus, the vectors Aabµ transform in the 27 of

USp(8) , that is

27 of E6(6) −→ 27 of USp(8) . (5.A.1)

The 42 scalars φabcd are in the traceless self-real 4-fold antisymmetric representation 42

of USp(8).

Upon performing the d = 5→ d = 4 reduction, one gets 70 scalars, which split into

the following irreps. of USp(8):

70 = 42 + 27 + 1 . (5.A.2)

Here 27 accounts for the axions coming from the Aab5 vectors of E6(6), 1 is the KK

radius rKK (see the definition (5.1.11)), and 42 corresponds to the scalars in
E6(6)

USp(8) .

In order to extract the stu model, we notice that its d = 5 uplift is the (SO(1, 1))2

model with cubic hypersurface [77],[78] (see e.g. the treatment given in [69])

λ̂1λ̂2λ̂3 = 1. (5.A.3)

The N = 8 −→ N = 2, d = 5 supersymmetry reduction corresponds, at the level of

E6(6), to taking the decomposition

E6(6) −→ SO(1, 1)× SO(5, 5) −→ (SO(1, 1))2 × SO(4, 4) , (5.A.4)

so that (weights with respect to SO(1, 1)’s are disregarded, irrelevant for our purposes)

27→ 1 + 16 + 10→ 1 + 8s + 8c + 1 + 1 + 8v. (5.A.5)

Thus, three SO(4, 4)-singlets are generated; they correspond to the three Abelian

vector fields of the d = 5 uplift of the stu model. By further reducing to d = 4, one gets
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a further vector from the KK vector (alias the d = 4 graviphoton). This can be easily

seen by completing the decomposition (5.A.4) starting from the U -duality group E7(7)

of d = 4 maximal supergravity:

E7(7) −→ SO (1, 1)× E6(6) −→ (SO(1, 1))2 × SO(5, 5) −→ (SO(1, 1))3 × SO(4, 4) ,

(5.A.6)

so that Eq. (5.A.5) gets completed as (again, neglecting weights with respect to SO(1, 1))

28→ 27 + 1→ 1 + 16 + 10 + 1→ 1 + 8s + 8c + 1 + 1 + 8v + 1, (5.A.7)

containing four SO(4, 4) singlets in the last term.

It is worth pointing out that at d = 4 the (SO (1, 1))3 commuting with SO (4, 4) gets

enhanced to (SL (2,R))3. By further decomposing

SO (4, 4)→ (SL (2,R))4 , (5.A.8)

this yields the (SL (2,R))7, used for the seven qubit entanglement in quantum informa-

tion theory [84],[85].

Notice that the presence of three different 8’s of SO(4, 4) in the r.h.s. of the decom-

position (5.A.5) (as well as of (5.A.7)) is the origin of the triality symmetry [86],[87] of

the stu model [88].

The (SO(1, 1))2 factor in the r.h.s. of the branching (5.A.4) is nothing but the scalar

manifold of the d = 5 counterpart of the stu model (spanned by λ̂1, λ̂2 and λ̂3 satisfying

the cubic constraint (5.A.3)). On the other hand, the (SO(1, 1))3 factor in the r.h.s. of

the branching (5.A.7) is spanned by the unconstrained, strictly positive, d = 4 dilatons

λ1 ≡ −Im (s), λ2 ≡ −Im (t) and λ3 ≡ −Im (u). They are related to their hatted

counterparts by λi ≡ rKK λ̂
i, i = 1, 2, 3, implying (see Eqs. (5.A.3) and Eq. (5.1.11);

see also e.g. [69]))

λ1λ2λ3 = r3
KK ≡ V. (5.A.9)

The decomposition of the d = 5 stabilizer (analogue to the decomposition (5.A.4) of

the U -duality group of the d = 5 maximal supergravity) reads as follows:

USp(8) → USp(4)× USp(4) = Spin(5)× Spin(5)→

→ Spin(4)× Spin(4) = (SU(2))2 × (SU(2))2 , (5.A.10)

yielding the following decomposition of the fundamental 8 of USp(8):

8→ (4,1) + (1,4)→ (2,1,1,1) + (1,2,1,1) + (1,1,2,1) + (1,1,1,2) . (5.A.11)
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This allows one to compute the corresponding branchings of the 27 = (8× 8)A,0 and

42 = (8× 8× 8× 8)A,0 (the subscript “A, 0” standing for “antisymmetric traceless”) of

USp (8) (the intermediate decompositions with respect to USp(4)×USp(4) are omitted,

because irrelevant for our purposes):

27 → (2,2,1,1) + (2,1,2,1) + (2,1,1,2) + (1,2,2,1) +

+(1,2,1,2) + (1,1,2,2) + 3 (1,1,1,1); (5.A.12)

42 → (2,2,2,2) + (2,2,1,1) + (2,1,2,1) + (2,1,1,2) + (1,2,2,1) +

+(1,2,1,2) + (1,1,2,2) + 2 (1,1,1,1) (5.A.13)

Consistently with previous statements, the three (SU(2))4-singlets in the r.h.s. of the de-

composition (5.A.12) and the two (SU(2))4-singlets in in the r.h.s. of the decomposition

(5.A.13) respectively are the three Abelian vector fields (including the d = 5 gravipho-

ton) and the two independent real scalars (say, λ̂1 and λ̂2) in the bosonic spectrum of

the (SO (1, 1))2 model, which is the d = 5 uplift of the stu model.

Reducing to d = 4, the six real scalar degrees of freedom of the stu model are the

radius rKK (see Eqs. (5.1.11) and (5.A.9)), the two scalars λ̂1 and λ̂2, and the three

axions (coming from the fifth component AI5 (I = 1, 2, 3) of the three d = 5 vectors).

As previously mentioned, the four d = 4 vectors come from the three d = 5 vectors and

from the KK vector g5µ (µ = 1, ..., 4).

Finally, it should be notice that λ1λ2λ3 (defining the volume of the d = 5 cubic

hypersurface through Eqs. (5.1.11) and (5.A.9)) can be obtained through a consistent

truncation of the E6(6)-invariant expression (Λ,Σ,∆ = 1, ..., 27)

1

3!
dΛΣ∆λ

ΛλΣλ∆ (5.A.14)

to (SO (1, 1))2, by retaining only the three singlets of SO (4, 4) (see the decompositions

(5.A.4) and (5.A.5) above).

Appendix 5.B Discussion

We have considered, in this chapter, some examples of extremal black hole configurations

in the framework of black hole attractors of N = 8 supergravity.

The effective black hole potential has been computed in different bases, namely in the

manifestly SU (8)-covariant basis, as well as in the USp (8)-covariant one. The former is



5.B. Discussion 89

suitable to describe the (BPS) Reissner−Nördstrom extremal black hole with its U (1)

symmetry, as a consequence of the attractor point to be the origin of the d = 4 scalar

manifold
E7(7)

SU(8) . The latter has an origin in d = 5, and it is appropriate in order to

describe the non-BPS Kaluza−Klein extremal black hole, with its SO (1, 1) symmetry

arising from the non-trivial attractor value of the KK radial mode.

We have also considered the axion-dilaton system, whose BPS or non-BPS nature

depends on whether it is embedded in N = 2 quadratic or in N = 4, d = 4 supergravity.

The axion-dilaton extremal black hole is obtained as a particular case of the attractor

equations of the maximal d = 4 theory. In that case, all 70 scalars other than the SU (4)×
SU (4)-singlets in the decomposition 5.5.36 are set to vanish, and correspondingly only

12 graviphoton electric and magnetic charges are taken to be nonzero (see Eq. (5.5.12)).

At the level N = 2, this attractor solution is obtained by retaining only 4 (2 electric and

2 magnetic) non-vanishing charges, according to the decomposition (5.5.6) of SU (4).
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Chapter 6

5d/4d U-dualities for

N =8 black holes

The connection between the U-duality groups in d = 5 and d = 4 is used here to derive

properties of the N = 8 black hole potential and its critical points (attractors). This

approach allows to study and compare the supersymmetry features of different solutions.

6.1 Introduction

In N = 8 supergravity, in the Einsteinian approximation, there is a nice relation between

the classification of large black holes which undergo the attractor flow and charge orbits

which classify, in a duality invariant manner, the properties of the dyonic vector of

electric and magnetic charges Q = (pΛ, qΛ) (Λ = 0, ..., 27 in d = 4) [33],[49]. The

attractor points are given by extrema of the 4d black hole potential, as discussed in

Section 4.4,

VBH =
1

2
ZABZ

∗AB = 〈Q,VAB〉 〈Q,V
AB〉 , (6.1.1)

where the central charge is the antisymmetric matrix (A,B = 1, ..., 8)

ZAB = 〈Q,VAB〉 = QT ΩVAB = fΛ
AB qΛ − hΛAB p

Λ , (6.1.2)

the symplectic sections are

VAB = (fΛ
AB, hΛAB) , (6.1.3)

and Ω is the symplectic invariant metric.
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An important role is played by the Cartan quartic invariant I4 [89, 20] in that it only

depends on Q and not on the asymptotic values of the 70 scalar fields ϕ. This means

that if we construct I4 as a combination of quartic powers of the central charge matrix

ZAB(q, p, ϕ) [54], the ϕ dependence drops out from the final expression

∂

∂ϕ
I4(ZAB) = 0 . (6.1.4)

Analogue (cubic) invariants I3 exist for black holes and/or (black) strings in d = 5 [12],

[33]. These are given by

I3(pI) =
1

3!
dIJKp

IpJpK , (6.1.5)

I3(qI) =
1

3!
dIJKqIqJqK , (6.1.6)

where dIJK , dIJK are the (27)3 E6(6) invariants. Consequently, the d = 4 E7(7) quartic

invariant takes the form

I4(Q) = −(p0q0 + pIqI)
2 + 4

[
−p0I3(q) + q0I3(p) +

∂I3(q)

∂qI

∂I3(p)

∂pI

]
. (6.1.7)

On the other hand, in terms of the central charge matrices Zab(φ, q) (in d = 5 this

is the 27 representation of USp(8)) and ZAB(φ, p, q) (in d = 4 this is the 28 of SU(8)),

their expression is

I3(q) = ZabΩ
bcZcdΩ

dqZqpΩ
pa , ZabΩ

ab = 0 , (6.1.8)

I4(p, q) =
1

4

[
4Tr(ZZ†ZZ†)− (Tr ZZ†)2 + 32 Re (Pf ZAB)

]
, (6.1.9)

where ZZ† = ZABZ̄
CB, Ωab is the 5d symplectic invariant metric, and the Pfaffian of

the central charge is [20]

Pf (ZAB) =
1

244!
εABCDEFGHZABZCDZEFZGH . (6.1.10)

In fact, these are simply the (totally symmetric) invariants which characterize the 27

dimensional representation of E6(6) and the 56 dimensional representation of E7(7), which

are the U -duality [50] symmetries ofN = 8 supergravity in d = 5 and d = 4, respectively.

When charges are chosen such that I4 and I3 are not vanishing, one has large black

holes and in the extremal case the attractor behavior may occur. However, while at

d = 5 there is a unique (1
8 -BPS) attractor orbit with I3 6= 0, associated to the space [49],

[90]

Od=5 =
E6(6)

F4(4)
, (6.1.11)
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at d = 4 two orbits emerge, the BPS one

Od=4, BPS =
E7(7)

E6(2)
, (6.1.12)

and the non BPS one with different stabilizer

Od=4, non−BPS =
E7(7)

E6(6)
. (6.1.13)

Such orbits have further ramifications in theories with lower supersymmetry , but but

we will confine our attention to the N = 8 theory.

In this Chapter, extending a previous result for N = 2 theories [69], we elucidate the

connection between these configurations and we relate the critical points of the N = 8

black hole potential of the 5d and 4d theories. To achieve this goal we use a formulation

of 4d supergravity in a E6(6) duality covariant basis [76], which is appropriate to discuss a

4d/5d correspondence. This is not the same as the Cremmer-Julia [20] or de Wit-Nicolai

[71] manifest SO(8) (and SL(8,R)) covariant formulation, but it is rather related to the

Sezgin-Van Nieuwenhuizen 5d/4d dimensional reduction [74]. These two formulations

are related to one another by dualizing several of the vector fields and therefore they

interchange electric and magnetic charges of some of the 28 vector fields of the final

theory, as we have seen in the previous chapter.

6.2 4d/5d relations for the N = 8 extremal black hole po-

tential

Using known identities [21], [75], the black hole potential can be written as a quadratic

form in terms of the charge vector Q and the symplectic 56× 56 matrixM(N ), related

to the 4d vector kinetic matrix NΛΣ

VBH = −1

2
QTM(N )Q , (6.2.1)

where M is

M(N ) =


ImN + ReN (ImN)−1ReN −ReN (ImN )−1

−(ImN )−1ReN (ImN )−1

 . (6.2.2)

The indices Λ ,Σ of NΛΣ are now split as (0, I), according to the decomposition of

4d charges with respect to 5d ones, thus NΛΣ assumes the block form

NΛ Σ =

 N00 N0 J

NI 0 NI J

 , (6.2.3)
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The kinetic matrix depends on the 70 scalars of the N = 8 theory, which are given,

in the 5d/4d KK reduction, by the 42 scalars of the 5d theory (encoded in the 5d vector

kinetic matrix aIJ = aJI), by the 27 axions aI and the dilaton field eφ. In a normalization

that is suitable for comparison to N = 2 , it has the form

NΛΣ =



1
3d− i

(
e2φaIJa

IaJ + e6φ
)
−1

2dJ + ie2φaKJa
K

−1
2dI + ie2φaIKa

K dIJ − ie2φaIJ


, (6.2.4)

where

d ≡ dIJKaIaJaK , dI ≡ dIJKaJaK , dIJ ≡ dIJKaK . (6.2.5)

The black hole potential, computed from (6.2.1) using the above formulas, can be

rearranged as

VBH =
1

2

(
p0eφaI

)
aIJ

(
p0eφaJ

)
+

1

2

(
p0e3φ

)2
+

1

2

(
d

6
p0e−3φ

)2

+

+
1

2

(
1

2
e−φp0dI

)
aIJ

(
1

2
e−φp0dJ

)
+

1

2
× 2

(
−p0eφaI

)
aIJ

(
pJeφ

)
+

+
1

2
× 2

(
d

6
p0e−3φ

)(
−1

2
pIdIe

−3φ

)
− 1

2
× 2

(
1

2
p0e−φdI

)
aIJ

(
pKdKJe

−φ
)

+

+
1

2

(
eφpI

)
aIJ

(
eφpJ

)
+

1

2

(
1

2
e−3φpKdK

)2

+

+
1

2

(
e−φpKdKI

)
aIJ

(
e−φpLdJL

)
+

1

2
× 2

(
q0e
−3φ
)(d

6
p0e−3φ

)
+

+
1

2
× 2

(
qIa

Ie−3φ
)(d

6
p0e−3φ

)
+

1

2
× 2

(
qIe
−φ
)
aIJ

(
1

2
p0dJe

−φ
)

+

−1

2
× 2

(
q0e
−3φ
)(1

2
pIdIe

−3φ

)
− 1

2
× 2

(
qIa

Ie−3φ
)(1

2
pJdJe

−3φ

)
+

−1

2
× 2

(
qIe
−φ
)
aIJ

(
pKdKJe

−φ
)

+
1

2

(
q0e
−3φ
)2

+
1

2
× 2

(
q0e
−3φ
)(

qIa
Ie−3φ

)
+

+
1

2

(
qIa

Ie−3φ
)2

+
1

2

(
qIe
−φ
)
aIJ

(
qJe
−φ
)
,

(6.2.6)

with aIJ = a−1
IJ . This form shows that it can be written in terms of squares of electric

and magnetic components as

VBH =
1

2
(Ze0)2 +

1

2

(
Z0
m

)2
+

1

2
ZeIa

IJZeJ +
1

2
ZImaIJZ

J
m , (6.2.7)
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provided one defines,

Ze0 = e−3φq0 + e−3φqIa
I + e−3φd

6
p0 − 1

2
e−3φpIdI ,

Z0
m = e3φp0 ,

ZeI =
1

2
e−φp0dI − pJdIJe−φ + qIe

−φ ,

ZIm = eφpI − eφp0aI . (6.2.8)

In order to get the symplectic embedding of the four dimensional theory, we still need

to complexify the central charges. To this end, we define the two complex vectors

Z0 ≡
1√
2

(Ze0 + iZ0
m) ,

Za ≡
1√
2

(Zea + iZam) , (6.2.9)

where

Zea = ZeI (a−1/2)Ia , Zam = ZIm(a1/2)aI (6.2.10)

such that

VBH = |Z0|2 + ZaZ̄a , (6.2.11)

where now a = 1, ..., 27 is a flat index, which can be regarded as a USp(8) antisymmetric

traceless matrix.

The potential at the critical point gives the black hole entropy corresponding to the

given solution, which in d = 4 reads

SBH
π

=
√
|I4| = V crit.

BH , (6.2.12)

while in d = 5 it is [53]

SBH
π

= 33/2|I3|1/2 =
(
3V crit

5

)3/4
, (6.2.13)

where I4 and I3 are the invariants of the N = 8 theory in d = 4 and d = 5 respectively.

6.2.1 Symplectic sections

In virtue of the previous discussion, we can trade the central charge (6.1.2)for the 28-

component vector

ZA = fΛ
AqΛ − hΛAp

Λ , (6.2.14)

where f and h are symplectic sections satisfying
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a) NΛΣ = hΛA(f−1)AΣ ,

b) i(f †h− h†f) = Id ,

c) fTh− hT f = 0 .

Notice that one still has the freedom of a further transformation

h→ hM ,

f → fM , (6.2.15)

as it leaves invariant the vector kinetic matrix N , as well as relations a)− c), when M

is a unitary matrix

MM † = 1 . (6.2.16)

Indeed, when the central charge transforms as

Z → ZM ,

ZZ† → ZMM †Z† = ZZ† , (6.2.17)

the black hole potential

VBH ≡ ZZ† (6.2.18)

is left invariant. In our case, we rearrange the 28 indices into a single complex vector

index, to be identified, for a suitable choice of M , with the two-fold antisymmetric rep-

resentation of SU(8), according to the decomposition 28→ 27 + 1 of SU(8)→ USp(8);

we thus have

Z0 = fΛ
0qΛ − hΛ 0p

Λ =

= f0
0q0 + fJ0qJ − h0 0p

0 − hJ 0p
J ,

Za = fΛ
aqΛ − hΛ ap

Λ =

= f0
aq0 + fJaqJ − h0 ap

0 − hJ apJ ;

(6.2.19)

which, from the definition in (6.2.9) yields

Z0 =
1√
2

[
e−3φq0 + e−3φaIqI +

(
e−3φd

6
+ ie3φ

)
p0 − 1

2

(
e−3φdI

)
pI
]
,

Za =
1√
2

[
e−φqI(a

−1/2)Ia +

(
1

2
e−φdI(a

−1/2)Ia − ieφaJ(a1/2) a
J

)
p0+

−
(
e−φdIJ(a−1/2)Ia − ieφ(a1/2) a

J

)
pJ
]
.

(6.2.20)
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Thus we consider

fΛ
A =

1√
2



e−3φ 0

e−3φaI e−φ(a−1/2)Ia


, (6.2.21)

hΛA =
1√
2



−e−3φ d
6 − ie

3φ −1
2e
−φdK(a−1/2)Ka + ieφaK(a1/2) a

K

1
2e
−3φdI e−φdIJ(a−1/2)Ja − ieφ(a1/2) a

I


. (6.2.22)

From f−1

(f−1) A
Λ =

√
2



e3φ 0

−eφaI(a1/2) a
I eφ(a1/2) a

I


, (6.2.23)

by matrix multiplication, we find that relations a) b) and c) are fulfilled by f and h, that

we now recognize to be the symplectic sections.

We finally perform the transformation f ′ = fM (where M = f−1f ′ = h−1h′), with

M unitary matrix, in virtue of identities a), b) and c), valid for both (f, h) and (f ′, h′).

A model independent formula for M valid for any N = 2 d-geometry (in particular,

for any truncation of N = 8 to an N = 2 geometry, such as the models treated in this

paper) is given by the matrix [91]

M = A1/2M̂G−1/2 , (6.2.24)
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with

A =



1 0...0

0

.

.

0

aIJ


, G =



1 0...0

0

.

.

0

gIJ


, gIJ =

1

4
e−4φaIJ , (6.2.25)

with M̂ given by

M̂ =
1

2

(
1 ∂J̄K

−iλIe−2φ e−2φδI
J̄

+ ie−2φλI∂J̄K

)
, (6.2.26)

where “−λI” are the imaginary parts of the complex moduli zI = aI − iλI , and K is

the Kähler potential K = − ln(8V), with V = 1
3!dIJKλ

IλJλK ; the matrix M̂ satisfies

the properties

AM̂G−1M̂ † = Id ,

G−1M̂ †AM̂ = Id . (6.2.27)

For the models considered below, this matrix M does indeed reproduce, for the given

special configurations, the formula in eq. (6.4.7).

Note that M̂ performs the change of basis between the central charges defined as

Z0 =
1√
2

(Ze0 + iZ0
m) ,

ZI =
1√
2

(ZeI + iaIJZ
J
m) , (6.2.28)

and the special geometry charges (Z, DĪZ), that is the charges in “curved” rather than

the “flat” indices.

6.3 Attractors in the 5 dimensional theory

It was shown in [33] that the cubic invariant of the five dimensions can be written as

I3 = Z5
1 Z

5
2 Z

5
3 , (6.3.1)
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where Z5
a ’s are related to the skew eigenvalues of the USp(8) central charge matrix in

the normal frame

eab =


Z5

1 + Z5
2 − Z5

3 0 0 0

0 Z5
1 + Z5

3 − Z5
2 0 0

0 0 Z5
2 + Z5

3 − Z5
1 0

0 0 0 −(Z5
1 + Z5

2 + Z5
3 )

⊗
(

0 1

−1 0

)
.

(6.3.2)

We consider a configuration of only three non-vanishing electric charges (q1, q2, q3), that

we can take all non-negative. We further confine to two moduli λ1, λ2, describing a

geodesic submanifold SO(1, 1)2 ∈ E6(6)/USp(8) whose special geometry is determined

by the constraint

1

3!
dIJK λ̂

I λ̂J λ̂K = λ̂1λ̂2λ̂3 = 1 , (6.3.3)

where λ̂I = V−1/3λI , defining the stu−model [69].

The metric aIJ , restricted to this surface, takes the diagonal form

aIJ = − ∂2

∂λ̂I∂λ̂J
logV

∣∣
V=1

=


1
λ̂2

1

0 0

0 1
λ̂2

2

0

0 0 1
λ̂2

3

= λ̂2
1λ̂

2
2

 , (6.3.4)

and the five dimensional black hole potential for electric charges is1

V e
5 = qIa

IJqJ =
3∑

a=1

Z5
a (q)Z5

a (q) , (6.3.5)

with Z5
a (q) = (a−1/2)Ia qI ; the moduli at the attractor point of the 5-dimensional solu-

tion are (see eq. 4.4 and 4.7 of [69])

λ̂Icrit =
I

1/3
3

qI
, (6.3.6)

and

V crit
5 = 3|q1q2q3|2/3 = 3I

2/3
3 ,

aIJcrit =
I

2/3
3

q2
I

δIJ (6.3.7)

1In an analogous way, the black hole potential for magnetic charges, V m5 =
∑3
a=1 Z

5
a (p)Z5

a (p), is

obtained by replacing qI → pI and aIJ → aIJ [69, 53], with Z5
a (p) = pI(a1/2) a

I .
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with no sum over repeated indices. We find

Z5 , crit
a = I

1/3
3 , I3 = Z5

1 Z
5
2 Z

5
3 . (6.3.8)

These relations also allow to connect the potential in (6.3.5)

V5 = (Z5
1 )2 + (Z5

2 )2 + (Z5
3 )2 , (6.3.9)

with the form given in terms of the central charges [53], where it is the trace of the

square matrix

V5 =
1

2
Z5
abZ

5 ab . (6.3.10)

The eigenvalues of Z5
ab are written in (6.3.2) in terms of Z5

1 , Z
5
2 , Z

5
3 . The 5d central

charge matrix in the normal frame at the attractor point thus becomes

eab =


I

1/3
3 ε 0 0 0

0 I
1/3
3 ε 0 0

0 0 I
1/3
3 ε 0

0 0 0 −3I
1/3
3 ε

 , (6.3.11)

which shows the breaking USp(8)→ USp(6)× USp(2).

6.4 Attractors in the 4 dimensional theory

In this section we reconsider the attractor solutions in terms of the present formalism

based on central charges. We separately examine the three “axion free” configurations.

6.4.1 Electric solution Q = (p0 , qi)

Let us first compute the 4dim central charge for the electric charge configuration with

vanishing axions; using (6.2.20) we find

Z0 =
i√
2
e3φp0 , Za =

1√
2
e−φqI(a

−1/2)Ia . (6.4.1)

The 4-dim potential is

VBH =
1

2
e−2φV e

5 +
1

2
e6φ(p0)2 , (6.4.2)

(where φ is connected to the volume used in ref. [69] by the formula V = e6φ) and has

the same critical points of the 5 dimensional potential, since

∂VBH
∂λI

= 0 ⇐⇒ ∂V e
5

∂λ̂I
= 0 , ∀ I = 1, 2 . (6.4.3)
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The attractor values of λ̂I are still given by (6.3.6), while the φ field at the critical point

is [69]

e8φ|crit. = I
2/3
3 (p0)−2 . (6.4.4)

This fixes the central charges at the attractor point to be

Z attr
0 =

i√
2
|p0q1q2q3|1/4sign(p0) =

i

2
|I4|1/4sign(p0) ,

Z attr
a =

1√
2
I
−1/12
3 (p0)1/4qI

I
1/3
3

qI
=

1

2
|I4|1/4 , (6.4.5)

where the quartic invariant is I4 = −4 p0q1q2q3. So we find

Zcrit1 = Zcrit2 = Zcrit3 =
1

2
|I4|1/4 ≡ Z , Zcrit0 =

i

2
|I4|1/4sign(p0) ≡ iZ0 . (6.4.6)

Let us define the 4d central charge matrix as

2ZAB = eAB − iZ0Ω , (6.4.7)

where eAB is the matrix in (6.3.2) in which, instead of Z5
1 , Z

5
2 , Z

5
3 of the 5d theory,

we now write the 4d Za’s defined in (6.2.20). it can be readily seen that for axion free

solutions eq. (6.4.7) correctly gives

VBH =
∑
i

|zi|2 = |Z0|2 +
∑
a

|Za|2 (6.4.8)

where zi’s, for i = 1, .., 4, are the (complex skew-diagonal) elements of ZAB. We then

have

2ZAB =


Zε 0 0 0

0 Zε 0 0

0 0 Zε 0

0 0 0 −3Zε

+


Z0ε 0 0 0

0 Z0ε 0 0

0 0 Z0ε 0

0 0 0 Z0ε

 =

=


(Z + Z0)ε 0 0 0

0 (Z + Z0)ε 0 0

0 0 (Z + Z0)ε 0

0 0 0 (−3Z + Z0)ε

 .

(6.4.9)
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Since (6.4.5) and (6.4.6) yield that Z = |Z0|, depending on the choice p0 > 0 or p0 < 0,

two different solutions arise. In fact,

Z + Z0 = 0 → ZAB =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2Z0

⊗ ε , (6.4.10)

gives the 1
8 -BPS solution when p0 < 0 and shows SU(6)×SU(2) symmetry. Conversely,

Z = Z0 → ZAB =


Z0 0 0 0

0 Z0 0 0

0 0 Z0 0

0 0 0 −Z0

⊗ ε , (6.4.11)

is the non-BPS solution that corresponds to the choice p0 > 0, with residual USp(8)

symmetry.

6.4.2 Magnetic solution Q = (pi , q
0)

This case is symmetric to the electric solution of Section 6.4.1. If we take all positive

magnetic charges, then the cubic invariant is I3 = p1p2p3 , the quartic invariant is

I4 = 4 q0 p
1p2p3 and the values of the critical 5d moduli are now (see eq. (5.3) of [69])

λ̂I =
pI

I
1/3
3

. (6.4.12)

The central charges for this configuration are, from (6.2.20),

Z0 =
1√
2
e−3φq0 , Za =

i√
2
eφpI(a1/2) a

I , (6.4.13)

and the black hole potential is

VBH =
1

2
e2φV m

5 +
1

2
e−6φ(q0)2 . (6.4.14)

This gives the attractor value of the φ field as

e8φ|crit. = I
−2/3
3 (q0)2 . (6.4.15)

At the attractor point (a
1/2
crit.)IJ = (λ̂I)−1δIJ , and the magnetic central charges are

Zcrita =
i√
2

(I3)1/4|q0|1/4 =
i

2
|I4|1/4 ≡ iZ , a = 1, 2, 3 . (6.4.16)



6.4. Attractors in the 4 dimensional theory 103

We can then write the central charge matrix corresponding to the 27 representation in

the normal frame as

eAB =


Zε 0 0 0

0 Zε 0 0

0 0 Zε 0

0 0 0 −3Zε

 . (6.4.17)

To describe the four dimensional solution we need the electric central charge, that at

the attractor point is

Zcrit0 =
1√
2

(I3)1/4|q0|1/4 sign(q0) =
1

2
|I4|1/4 sign(q0) ≡ Z0 .

Then, using the definition(6.4.7) the complete 4d central charge matrix is

2ZAB = i


Zε 0 0 0

0 Zε 0 0

0 0 Zε 0

0 0 0 −3Zε

− i

Z0ε 0 0 0

0 Z0ε 0 0

0 0 Z0ε 0

0 0 0 Z0ε

 =

= eiπ/2


(Z − Z0)ε 0 0 0

0 (Z − Z0)ε 0 0

0 0 (Z − Z0)ε 0

0 0 0 (−3Z − Z0)ε

 .

(6.4.18)

The sign(q0) determines whether the solution is supersymmetric or not. We may have

q0 > 0 → Z = Z0 ,

ZAB = eiπ/2


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −2Z0

⊗ ε (6.4.19)
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which is a magnetic 1
8 -BPS solutions with SU(6)× SU(2) symmetry, or

q0 < 0 → Z = −Z0 ,

ZAB = eiπ/2


−Z0 0 0 0

0 −Z0 0 0

0 0 −Z0 0

0 0 0 Z0

⊗ ε (6.4.20)

which is the non-BPS solution with USp(8) symmetry. These solutions have the same Z0

as the electric ones, but now the choice of positive q0 charge leads to the supersymmetric

solution while the negative q0 charge gives the non-supersymmetric one, in contrast with

what happened for the choice of p0 in the electric case in eq. (6.4.10) and (6.4.11).

6.4.3 KK dyonic solution Q = (p0 , q0)

This charge configuration also has vanishing axions, and the only non-zero charges give

Ze0 = e−3φq0 , Z0
m = e3φp0 ,

⇓
Z0 = 1√

2
(e−3φq0 + ie3φp0) .

(6.4.21)

Since none of the 5 dimensional charges are turned on, the four dimensional black hole

potential is

VBH =
1

2

[
e−6φq2

0 + e6φ(p0)2
]
, (6.4.22)

which is extremized at the horizon by the value of the φ field

e6φ|crit. =

∣∣∣∣ q0

p0

∣∣∣∣ . (6.4.23)

We only focus on the case p0 > 0 and q0 > 0, since all the other choices are related to

this by a duality rotation. Evaluating the central charge at the attractor point we find

Zcrit0 =
√
|p0q0|

1 + i√
2

=
√
|p0q0|eiπ/4 . (6.4.24)

Following the prescription in (6.4.7) we find that at the attractor point

2ZAB = −iZ0Ω =

= −ieiπ/4


√
|p0q0|ε 0 0 0

0
√
|p0q0|ε 0 0

0 0
√
|p0q0|ε 0

0 0 0
√
|p0q0|ε

 (6.4.25)
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that gives a non-BPS 4 dimensional black hole with I4 = −(p0q0)2.

Note that eqs. (6.4.11), (6.4.20) and (6.4.25) imply that the sum of the phases of

the four complex skew entries is π, as appropriate to a non-BPS N = 8 solution [21].

Also, in all cases, VBH |crit. =
√
|I4|.

6.4.4 N = 8 and N = 2 attractive orbits at d = 5 and d = 4

We now compare the different interpretations in the N = 8 and N = 2 theories of the

critical points of the very same black hole 4d potential, in terms of the axion-free electric

solution (sec. 6.4.1) as discussed in this paper and in ref. [69].

Since the “normal frame” solution is common to all symmetric spaces (with rank

three), it can be regarded as the generating solution of any model. So we confine our

attention to the exceptional N = 2 (octonionic) E7(−25) model [78] which has a charge

vector in 5d and 4d of the same dimension as in N = 8 supergravity. At d = 5 the

duality group is E6(−26), with moduli space of vector multiplets E6(−26)/F4.

It is known [49], [51] that in d = 5 there are two different charge orbits,

ON=2
d=5, BPS =

E6(−26)

F4
, (6.4.26)

the BPS one, and the non BPS one

ON=2
d=5, non−BPS =

E6(−26)

F4(−20)
, (6.4.27)

The latter one precisely corresponds to the non supersymmetric solution and to (++ −),

(−− +) signs of the q1, q2, q3, charges (implying ∂Z 6= 0). For charges of the same sign

(+ + +), (−−−) one has the 1
8BPS solution (∂Z = 0), as discussed in [69].

It is easy to see that in theN = 8 theory all these solutions just interchange Z1, Z2, Z3

and Z4 = −3Z3 but always give a normal frame matrix of the form

Zab =


Zε 0 0 0

0 Zε 0 0

0 0 Zε 0

0 0 0 −3Zε

 , (6.4.28)

which has USp(6)×USp(2) ∈ F4(4) as maximal symmetry. Another related observation

is that while E6(−26) contains both F4 and F4(−20), so that one expects two orbits and

two classes of solution, in the N = 8 case E6(6) contains only the non compact F4(4),

thus only one class of solutions is possible.
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These orbits and critical points at d = 5 have a further story when used to study the

d = 4 critical points with axion free solutions as it is the case for the electric (p0, q1, q2, q3)

configuration. Since in this case I4 = −4p0q1q2q3, in the N = 8 case, once one choose

q1, q2, q3 > 0, the I4 > 0, p0 < 0 solution is BPS, while the I4 < 0, p0 > 0 is non BPS.

Things again change in N = 2 [52], when now we consider the solution embedded in

the Octonionic model with 4d moduli space E7(−25)/E6 × U(1). A new non BPS orbit

in d = 4 is generated, corresponding to Z = 0 (∂Z 6= 0) solution, so three 4d orbits exist

in this case depending whether the (+ + +) and (+ + −) solutions are combined with

−p0 ≶ 0. So

(+,+ + +) is BPS with I4 > 0 , O =
E7(−25)

E6
, (6.4.29)

(−,−+ +) is non BPS with I4 > 0 , O =
E7(−25)

E6(−14)
, (6.4.30)

(+,−+ +) or (−,+ + +) is non BPS with I4 < 0 , O =
E7(−25)

E6(−26)
. (6.4.31)

6.5 Maurer−Cartan equations of the four dimensional the-

ory

Let us call Maurer−Cartan equations [18] those which give the derivative of the central

charges (coset representatives) with respect to the moduli φ, aI , λi. Using (6.2.8) we

have

∂φZ
e
0 = −3Ze0 , ∂φZ

0
m = 3Z0

m ,

∂φZ
e
I = −ZeI , ∂φZ

I
m = ZIm , (6.5.1)

and

∂Ze0
∂aI

= e−2φZeI ,
∂Z0

m

∂aI
= 0 ,

∂ZIm
∂aJ

= −δIJe−2φZ0
e ,

∂ZeI
∂aJ

= −e−2φdIJKZ
K
m . (6.5.2)

In our notation the 5d metric aIJ , (I, J = 1, .., 27) can also be rewritten with a pair of

antisymmetric (traceless) indices

aΛΣ ,∆Γ = LabΛΣL∆Γ ab , (6.5.3)

where LabΛΣ is the coset representative; in a fixed gauge (where a, b and Λ,Σ indices are

identified)

L a
I = (a1/2) a

I , (L̄Ia = LTIa) (6.5.4)
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The object Pi ≡ a1/2∂ia
−1/2 can be regarded as the Maurer−Cartan connection (see ref-

erence [74]). In fact, by reminding that Zea = ZeI (a−1/2)Ia, we have ∂iZ
e
a = (∂ia

−1/2)IaZ
e
I

( since ∂iZ
e
I = 0). Since we can also write

∂iZ
e
a = (∂ia

−1/2)Ia(a
1/2) b

I Z
e
b (6.5.5)

we find that P b
i,a is such that

∂iZ
e
a = P b

i,a Z
e
b . (6.5.6)

Notice that using P b
i,a = Q b

i,a + V b
i,a , we identify a connection which satisfies

∇iZea = V b
a Zeb , (6.5.7)

with ∇i = ∂i −Qi.

6.5.1 Attractor equations from Maurer−Cartan equations

We can now use this formalism to write the attractor equations for the potential

VBH =
1

2
(Ze0)2 +

1

2
(Z0

m)2 +
1

2
ZeIa

IJZeJ +
1

2
ZImaIJZ

J
m . (6.5.8)

By differentiating with respect to φ, aI , λi, we get

∂φVBH = −3(Ze0)2 + 3(Z0
m)2 − ZeIaIJZeJ + ZImaIJZ

J
m = 0 , (6.5.9)

∂aIVBH = e−2φ
[
Ze0Z

e
I − ZeJaJKdIKLZLm − Z0

maIJZ
J
m

]
= 0 , (6.5.10)

∂λiVBH ≡ ∂iVBH =
1

2
ZeI ∂ia

IJ ZeJ +
1

2
ZIm ∂iaIJ Z

J
m = 0 . (6.5.11)

From (6.5.10) we see that a solution with aI = 0 implies

∂aIVBH
∣∣
aI=0

= 0 = e−2φ
[
e−4φq0qI − qJaJKdIKLpL − e4φp0aIJp

J
]

= 0 , (6.5.12)

which is trivially satisfied if we set 6= 0 (q0, p
0) or (q0, p

I) or (p0, qI).

From (6.5.9) we see that for an axion-free solution, if Ze0 , Z
I
m = 0, we get

3(Z0
m)2 = ZeIa

IJZeJ , (6.5.13)

and if aIJ is diagonal, I = J = 1, 2, 3, we obtain

3(Z0
m)2 = (Ze1)2a11 + (Ze2)2a22 + (Ze3)2a33 , (6.5.14)

which is compatible with Ze1 = Ze2 = Ze3 = ±Z0
m .
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The derivative with respect to the 5d moduli λi, i = 1, .., 42 for N = 8 theory, only

receives contributions from the matrix aIJ . Indeed since ZeI , ZIm do not depend on the

λi(see eq.6.2.8), one finds

∂iV4 = 0 = ZeI ∂ia
IJ ZeJ + ZIm ∂iaIJ Z

J
m . (6.5.15)

By rewriting the charges multiplied by (a−1/2)Ia and (a1/2) a
I so that

Zea ≡ ZeI (a−1/2)Ia , Zam = ZIm(a1/2)aI , (6.5.16)

we have

∂iZ
e
a = P b

i,a Z
e
b , P b

i,a = ∂i(a
−1/2)Ia(a

1/2) b
I ,

∂iZ
a
m = P a

i bZ
b
m , P a

i b = ∂i(a
1/2) a

I (a−1/2)Ib , (6.5.17)

where Pai b = −P a
i b since ∂i(Z

e
aZ

a
m) = 0 . Then we also have

∂i(Z
e
aZ

e
a) = Zea(P b

ia )Zeb =

= ZeaPi,abZeb =

= ZeaPi (ab)Zeb = 0 , (6.5.18)

and if we split Pi,ab = Qi [ab] + Vi (ab), with

P a
i b = Q a

i b + V a
i b ,

P b
i,a = Q b

i,a − V b
i,a , (6.5.19)

the critical condition implies

∂i(Z
eZe) = ZeaVi (ab)Z

e
b = 0 , (6.5.20)

and the analogue equation for magnetic charges

∂i(Z
mZm) = ZamVi (ab)Z

b
m = 0 , (6.5.21)

so that only the vielbein Vi ,ab enters in the equations of motion.

The criticality condition on the potential of eq. (6.5.15) now gives

∂iVBH = 0 → ZeaV
ab
i Zeb + ZamVi, abZ

b
m = 0 , (6.5.22)

thus, for electric configurations (Zbm = 0) with aI = 0,

ZeaV
ab
i Zeb = 0 . (6.5.23)
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Comparing results of [53] with our formulæ we see that V1, V2, V3, with V1 +V2 +V3 = 0,

in the case where the metric aIJ is diagonal, correspond to

(a−1/2)Ia∂i(a
1/2) a

J = (a−1/2)I∂i(a
1/2)I = P I

i I = V I
i I ≡ V I

i , (6.5.24)

where (a−1/2)II ≡ (a−1/2)I , (a1/2) I
I ≡ (a1/2)I , I = 1, 2, 3, and using (6.3.4) we find

V I
1 =

(
1

λ̂1

, 0 ,− 1

λ̂1

)
,

V I
2 =

(
0 ,

1

λ̂2

,− 1

λ̂2

)
. (6.5.25)

Indeed, ∑
i=1,2,3

V I
i = 0 , (6.5.26)

so, by using eq. (2.31)-(2.33) of ref. [53] one gets the desired result. In fact, using the

definitions of PI1 and PI2 we get from the λ̂i equations of motion∑
I

ZeIV
I
i Z

e
I = 0 , (6.5.27)

which explicitly gives

Ze1Z
e
1 − Ze3Ze3 = 0 ,

Ze2Z
e
2 − Ze3Ze3 = 0 , (6.5.28)

whose solution, combined with eq. (6.5.14), gives

(Ze1)2 = (Ze2)2 = (Ze3)2 = (Z0
m)2 ,

⇓

Ze1 = Ze2 = Ze3 = ±Z0
m , (6.5.29)

all the other sign choices being equivalent in the 5d theory.
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Chapter 7

Black holes in gauged

Supergravity

7.1 Introduction

We now discuss the investigation of black hole solutions of 4-dimensional N = 2 gauged

supergravity theories, where the matter content is given by vector multiplets and the

U(1) gauging is obtained by Fayet–Iliopoulos terms. The main motivation for considering

these toy models is the analysis of the attractor mechanism and of the entropy formula in

the case of extremal solutions in theories where there may be a non-trivial cosmological

constant and the moduli cannot be freely changed in the solution. Generically, an Anti–

de Sitter (AdS) vacuum stabilizes all the scalar fields and therefore a black hole in AdS

may only appear for values of the dilaton such that one cannot extrapolate between

strong and weak coupling.

Supersymmetric static black hole solutions in theories with a negative cosmological

constant have already been considered in [92, 93, 94], where it was shown that they

usually lead to naked singularities, unless higher order derivative corrections are added to

the Lagrangian. For this reason, most subsequent approaches to this problem considered

extremal non-BPS configurations [35, 95, 96, 97]. One strong limitation of the work in

[92, 93, 94], however, was the requirement that the scalar fields remained constant along

the solution. If there is some sort of attractor mechanism at work, the AdS4 vacuum may

in fact require a definite value for the scalars that differs from the one required by the

construction of a supersymmetric AdS2 × S2 horizon geometry. Hence the appearance

of singular geometries. However, if the scalars are allowed to flow, supersymmetry can
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be restored and regular geometries can be obtained. An important step forward in this

direction was obtained by the authors of [98], who considered a setup like the one of this

paper and where supersymmetric black hole configurations were explicitly constructed,

though mostly with a hyperbolic horizon.

Although we use [98] as an important basis, we will extend their results in two main

directions. Since the electric gauging procedure breaks the electric–magnetic duality

that a generic 4-dimensional Einstein–Maxwell theory possess, the approach presented

in [98] has the limitation that for the same supergravity model only part of the black hole

solutions are accessible, whenever the prepotential defining the scalar σ-model is fixed.

We will present a completely covariant approach by considering a general U(1) gauged

supergravity, where also magnetic gaugings are allowed. We are also going to describe

the black hole solutions by means of first order flow equations driven by a superpotential

W , which is a function of the scalar fields and the warp factors. This clearly mimics the

flow equations of black holes in ungauged supergravity, where the superpotential is the

absolute value of the central charge for supersymmetric configurations [10] or a duality

invariant function for non-supersymmetric extremal configurations [28] and gives both

the ADM mass at infinity and the horizon area. However, the different metric ansatz

and the presence of a non-trivial cosmological constant usually forbid a direct relation

between W and S and/or the mass of the black hole. As we will show, the general

construction of this superpotential proves a very effective procedure in order to obtain

explicit solutions.

Before presenting our results, we would like to introduce one last important mo-

tivation to the analysis of black hole solutions to gauged supergravity theories: flux

compactifications. It is well known that flux compactifications provide an efficient tool

to address the moduli problem in string compactifications. Fluxes provide a non-trivial

source for a potential in the effective theory, as well as deformations leading to gauged

supergravity models (see for instance [99, 100, 101]). It is therefore of vital importance

for this scenario to understand if there is still an attractor mechanism at work in the

case of black hole configurations in gauged supergravities, because their generation may

destabilize the vacuum [102, 103]. In fact, the presence of a charged black hole may

drive the value of the moduli fields to a new value at the horizon, different from the one

obtained by the potential generated by flux compactification and eventually catalyze the

production of new vacuum bubbles within the original setup [104].

We should point out that we expect realistic scenarios of flux compactification to re-

quire the presence of hypermultiplets. This means that our analysis should be extended
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to the case where also this type of scalars is allowed to acquire a non-trivial profile. In

fact, in contrast with the case of ungauged theories, where hyperscalars are moduli of

black hole solutions, in gauged supergravity black holes, the hypermultiplet scalars may

be charged and hence actively participate to the solution. A very interesting develop-

ment in this direction is given by the work of [105], where the authors constructed new

solutions in gauged supergravities with non-trivial hypermultiplets, embedding known

solutions to the ungauged theories. A general treatment in terms of a superpotential

would be desirable for these cases, too, generalizing the construction we will explain

below.

We should also mention that supersymmetric black holes in gauged supergravities

were also analyzed in [106], [107], though there the authors focussed on non-abelian

configurations.

7.2 BPS flow equations for dyonic configurations

7.2.1 Notations and setup

We are interested in dyonic black hole solutions of N = 2 U(1) gauged supergravity.

For this reason we are going to consider supergravity models coupled to nV vector

multiplets, a linear combination of which is going to gauge a U(1) factor via suitable

Fayet–Iliopoulos (FI) terms. The bosonic Lagrangian of this class of models is

L =
R

2
− gī ∂µzi∂µz̄ ̄ +

1

4
ImNΛΣ F

Λ
µν F

Σµν +
1

4
ReNΛΣ F

Λ
µν

εµνρσ

2
√
−g

FΣ
ρσ − Vg. (7.2.1)

The index Λ = 0, 1, . . . , nV runs over the nV vectors of the vector multiplets and the

graviphoton, zi denote the complex scalar fields sitting in the vector multiplets and

Vg is the scalar potential of the theory generated by the FI terms. The scalar fields

parameterize a special-Kähler σ-model and all the relevant quantities in the Lagrangian

and in the supersymmetry transformations can be written in terms of special geometry.

The σ-model metric gī(z, z̄) can be derived from the second mixed derivatives of the

Kähler potential, which in turn is a function of the covariantly holomorphic symplectic

sections V ≡ eK/2
(
XΛ(z), FΛ(z)

)
, as follows from

1 = i 〈V,V〉, (7.2.2)

where the brackets denote the symplectic scalar product 〈A,B〉 = ATΩB = AΛB
Λ −

AΛBΛ, where Ω is the Sp(2nv + 2) metric. The vector kinetic matrix NΛΣ(z) is then a
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complex and symmetric function of the scalar fields and the scalar potential

Vg = gīDiLD̄L − 3|L|2 (where DiL ≡ ∂iL+ 1/2 ∂iK L) (7.2.3)

can be obtained in terms of the superpotential

L = 〈G,V〉 = eK/2
(
XΛgΛ − FΛg

Λ
)
, (7.2.4)

where G = (gΛ, gΛ) denote the FI terms. One should not be confused by the fact that

we have introduced both electric and magnetic gaugings because in consistent models

the electric-magnetic duality group will always allow one to reduce to the case where

only electric gaugings are turned on (i.e. gΛ = 0). However, this also implies a rotation

of the symplectic sections and the choice of a somewhat preferred basis. We therefore

prefer to maintain duality covariance and allow for generic FI terms G.

A duality covariant action for generic gauging has been recently built in [108] for

N = 2 conformal Supergravity, using the embedding tensor formalism, and these

results can be extended beyond the conformal approach. As shown in [109],[110], when-

ever one introduces magnetic gaugings, tensor fields have to be introduced. In the case

of supergravity coupled to vector multiplets, one has therefore to improve couplings to

vector-tensor multiplets. In [111] the authors worked out the supersymmetry transfor-

mations and scalar potential for supergravity coupled to vector-tensor multiplets and for

a generic gauging, although in the case of vanishing FI terms. However, the extension

to non-trivial FI terms is straightforward [108] and, taking a pragmatic approach, we

will use the action (7.2.1) as our starting point, as this is going to be the relevant sector

for our solutions because we will always consider vanishing tensor fields anyway.

We seek static dyonic black hole configurations. Hence we will consider the metric

ansatz

ds2 = −e2U(r)dt2 + e−2U(r)
(
dr2 + e2ψ(r)dΩ2

)
, (7.2.5)

where dΩ2 is going to be the line element of a 2-sphere for most of the applications

considered in this paper and appropriate profiles for the vector fields so that∫
S2

FΛ = 4πpΛ,

∫
S2

GΛ = 4πqΛ,

(
with GΛ =

δL

δFΛ

)
(7.2.6)

where Q ≡ (pΛ, qΛ) are the black hole magnetic and electric charges, respectively. We

also assume that the scalar fields have only a radial dependence zi = zi(r). Although we

look for static configurations and preserve an SO(3) isometry group along the solutions,
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the metric ansatz (7.2.5) differs from the one of asymptotically flat static configura-

tions because of the additional factor depending on ψ(r). We inserted this additional

factor, because, as we will see, it will be necessary to compensate for the additional

curvature contributions to the Einstein equations coming from the (varying) non-trivial

cosmological constant.

Once we plug these ansatze in the action (7.2.1) we obtain an effective 1-dimensional

theory for the scalar fields and the warp factors U(r) and ψ(r)

S1d =

∫
dr
{
e2ψ

[
(U ′ − ψ′)2 + 2ψ′2 + gīz

i′z̄ ̄′ + e2U−4ψVBH + e−2UVg + 2ψ′′ − U ′′
]
− 1
}
,

(7.2.7)

which, after an integration by parts, can be written as

S1d =

∫
dr
{
e2ψ

[
U ′2 − ψ′2 + gīz

i′z̄ ̄′ + e2U−4ψVBH + e−2UVg

]
− 1
}

+

∫
dr

d

dr

[
e2ψ(2ψ′ − U ′)

]
.

(7.2.8)

Primes denote derivatives with respect to the radial coordinate and the black hole po-

tential

VBH = |DZ|2 + |Z|2 (7.2.9)

is a function of the central charge

Z ≡ 〈Q,V〉. (7.2.10)

It is also useful to rewrite the black hole potential as

VBH = −1

2
QTMQ, (7.2.11)

where M is the symplectic matrix defined as (3.1.29).

7.2.2 BPS rewriting of the action

Since we are interested in analyzing supersymmetric configurations, we have to impose

the vanishing of the supersymmetry transformation rules on our background, in addition

to solving the equations of motion. This analysis was performed in this way for generic

half-supersymmetric configurations in [112] and applied to a black hole similar to ours

in [98], though only for electric gaugings. The resulting first order differential equations

provide solutions to both the supersymmetry conditions and the equations of motion.

We will now extend this work for configurations obtained in the duality-symmetric setup

given by (7.2.7).
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As a first step in this process, we will show that one can rewrite the action (7.2.7) as a

sum of squares of first-order differential equations as long as a specific constraint between

the black hole charges and the FI parameters is satisfied. This rewriting then guarantees

the solution of the equations of motion of the effective action. An important outcome of

this rewriting is the existence of an additional constraint on the field configurations that

may lead to consistent BPS solutions, which will be identified with the defining equation

for a phase factor α(r). Then we will show how the first-order equations derived here

follow from a real superpotential, which is the norm of a complex quantity whose phase

is α, and we finally give a direct analysis of the supersymmetry transformations, which

give the same result. Following a strategy similar to the one used in the ungauged BPS

case in [31], we can rewrite the action (7.2.7) as a sum of BPS squares by using a series

of special geometry identities. In particular, we can use the negative-definite matrixM
as a “metric” for a set of symplectic covariant first-order equations. In order to do so,

we will use several special geometry identities. A basic identity, which will be repeatedly

used, is
1

2
(M− iΩ) = ΩV VΩ + ΩUi g

ī U ̄Ω , (7.2.12)

which leads to

MV = iΩV, MUi = −iΩUi, (7.2.13)

from which follows that

VTMV = i〈V,V〉 = −1 (7.2.14)

and

UTi MU ̄ = i〈Ui, U ̄〉 = −gī. (7.2.15)

The first step is to rewrite the kinetic term for the scalar fields and the scalar po-

tentials Vg and VBH in terms of symplectic sections using

− V ′TMV ′ = gīz
i ′z̄ ̄ ′ +A2

r , (7.2.16)

where

Ar ≡
i

2

(
z̄ ̄′ ∂ ̄K − zi′ ∂iK

)
(7.2.17)

is a composite connection. Given the properties of the symplectic sections, we can also

introduce a phase factor, which we will see related to the spinor projector one imposes

in order to solve the supersymmetry equations (see the Appendix), so that

− Im(eiαV ′T )MIm(eiαV ′) =
1

2
gīz

i ′z̄ ̄ ′ +
1

2
A2
r , (7.2.18)
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and once more obtain new identities:

Re(eiαV)TMRe(eiαV) = Im(eiαVT )MIm(eiαV) = −1

2
, (7.2.19)

Im(eiαVT )MRe(eiαV) = 0 , (7.2.20)

Im(eiαV ′) = Im(eiαzi ′Ui)−Ar Re(eiαV) , (7.2.21)

Im(eiαVT )MQ = Re(eiαZ) , Re(eiαVT )MQ = −Im(eiαZ) , (7.2.22)

Im(eiαV ′)MQ = −Re(eiαZ ′) + 2Ar Im(eiαZ) . (7.2.23)

After some long, but straightforward manipulations, the action (7.2.7) can then be

rewritten as

S1d =

∫
dr

{
−1

2
e2(U−ψ)ETME − e2ψ

[
(α′ +Ar) + 2e−U Re(e−iαL)

]2
−e2ψ

[
ψ′ − 2e−U Im(e−iαL)

]2 − (1 + 〈G, Q〉)

−2
d

dr

[
e2ψ−U Im(e−iαL) + eU Re(e−iαZ)

]}
,

(7.2.24)

where we introduced

ET ≡ 2e2ψ
(
e−U Im(e−iαV)

)′ T − e2(ψ−U)GTΩM−1 + 4e−U (α′ +Ar)Re(e−iαV)T +QT .

(7.2.25)

A simple inspection of (7.2.24) shows that we succeeded in rewriting the action (7.2.7)

as a sum of squares of first order differential conditions and a boundary term provided

the charges fulfill the constraint

〈G, Q〉 = −1. (7.2.26)

Once this is satisfied we obtain that BPS configurations have to satisfy three sets of

equations

E = 0, (7.2.27)

ψ′ = 2 e−U Im(e−iαL), (7.2.28)

α′ +Ar = −2e−U Re(e−iαL). (7.2.29)

The first set of conditions contains both the flow equations for the scalar field as well

as the equation for the warp factor U . Equation (7.2.28) describes the evolution of the

other warp factor ψ. Finally, (7.2.29) gives the condition on the phase α.
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Some comments are in order here. First of all, we can see that the first set of

equations reduces to the known BPS equations of the ungauged case as presented in

[31] whenever G = 0 (and then L = 0). In such a case, however, we would get an

inconsistency from the constraint (7.2.26). This implies that the BPS configurations we

find by solving such a system are solitonic [98]. Actually, the BPS rewriting in the G = 0

case can be achieved by rewriting the second line of (7.2.24) as a new squared first order

equation and a boundary term

−
(
eψψ − 1

)2
−
(

2eψ
)′
, (7.2.30)

which leads to the identification of eψ(r) = r and hence to reducing the metric ansatz to

the known one of the asymptotically flat configurations. Then we see that the equations

we derived are all symplectic covariant or invariant. This means that once we obtain

some solution in a given frame, for a specific choice of charges Q and FI terms G, we can

map it to a different solution for a different set of charges and FI terms related to the

original ones by a duality transformation. We can also compare our BPS equations with

those found in [98] by identifying b = e−iα−U and setting the magnetic FI terms to zero

gΛ = 0. The two sets of conditions match and therefore we can also conclude that our

BPS conditions imply also the full 4-dimensional equations of motion. Finally, we would

like to point out that the BPS rewriting of the effective action and the derivation of

the first order equations (7.2.27)–(7.2.29) can be trivially extended to the case of flat or

hyperbolic horizons and yields the same results, but for the charge constraint (7.2.26),

which becomes 〈G, Q〉 = 0 or 〈G, Q〉 = 1 in the flat and hyperbolic case, respectively.

7.2.3 Superpotentials and flow equations

Although the BPS square rewriting of the effective 1-dimensional action already led to a

set of first-order differential equations for the scalar field dependent symplectic sections

V and the warp factors, we now provide an explicit expression for the resulting flow

equations for the actual scalar fields zi. This rewriting will lead to the identification of

a proper superpotential function driving the BPS flow.

The equation (7.2.27) is actually a complex symplectic vector of equations whose

information can be extracted by appropriate projections with all possible independent

sections. We first discuss the projections of the BPS equations E = 0 on the symplectic

sections V and their derivatives Ui and then pass to the possible contractions with the
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charges Q and FI terms G. From the contraction

〈E ,Re(e−iαV)〉 = 0 (7.2.31)

we obtain the flow equation for the warp factor U(r):

U ′ = −eU−2ψ Re(e−iαZ) + e−U Im(e−iαL). (7.2.32)

The contraction

〈E , Im(e−iαV)〉 = 0 (7.2.33)

produces once more an equation for the phase

α′ +Ar = −eU−2ψ Im(e−iαZ)− e−U Re(e−iαL). (7.2.34)

Finally, the contraction along the covariant derivatives of the sections

〈E , Ui〉 = 0 (7.2.35)

leads to the scalar fields flow equations

zi′ = −eiαgī
(
eU−2ψD̄Z + i e−UD̄L

)
. (7.2.36)

Contractions with Q and/or G give identities once (7.2.32), (7.2.34), (7.2.36) and (7.2.29)

are used. The first thing we notice is that the flow equation for the phase (7.2.34) differs

from the one derived directly from the action, namely (7.2.29). Consistency of the two

equations then implies the following constraint:

eU−2ψ Im(e−iαZ) = e−U Re(e−iαL). (7.2.37)

The constraint arises as a consequence of the fact that in the BPS rewriting we introduced

an additional degree of freedom α(r) that was not present in the reduced action. We

can actually rewrite this constraint as an expression that identifies the phase as

e2iα =
Z − i e2(ψ−U)L
Z + i e2(ψ−U)L

. (7.2.38)

We can see that this phase gets identified with the phase of Z in the limit where the

gauging goes to zero (or, better, e2iα = e2iφZ ; we will come back on this issue later on).

Another interesting remark is that, by using (7.2.38), it is straightforward to check that

the phase equation (7.2.34) is identically satisfied if the BPS equations associated to the

scalar fields and to the warp factor are used.
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The other important outcome of this analysis is that we can now realize the BPS

condition as flow equations for the effective scalar degrees of freedom U,ψ, zi. Once we

define a superpotential

W ≡ eU Re(e−iαZ) + e−U+2ψ Im(e−iαL), (7.2.39)

or, by using the phase constraint (7.2.38),

W = eU |Z − i e2(ψ−U)L|, (7.2.40)

we can rewrite the flow equations as

U ′ = −gUU ∂UW, (7.2.41)

ψ′ = −gψψ ∂ψW, (7.2.42)

zi′ = −2 g̃ī ∂̄W, (7.2.43)

where gUU = −gψψ = e2ψ, g̃ī = e2ψgī and we used the constraint (7.2.37) in the

derivation of the last equation. It is remarkable that W looks precisely like the norm of

a complex quantity whose phase is given by α and that it reduces to the supersymmetric

superpotential for G = 0.

Although the structure of the flow equations looks rather neat in these variables,

for the subsequent discussion it is useful to rewrite them by introducing a different

parameterization for the warp factors. In detail, we can introduce

A = ψ − U, (7.2.44)

so that the metric ansatz becomes

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + e2A(r)dΩ2. (7.2.45)

By using these variables

W = eU |Z − i e2AL| (7.2.46)

and the flow equations become

U ′ = −e−2(A+U) (W − ∂AW ) ,

A′ = e−2(A+U)W,

zi′ = −2e−2(A+U) gī ∂̄W.

(7.2.47)
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7.3 Attractors

One of the key properties of extremal black hole solutions is the so-called attractor

mechanism. We will now show that such an attractor mechanism is at work also for

supersymmetric black holes in U(1) gauged supergravity: we will show that one can write

the equations defining the value of the scalar fields at the black hole horizon in terms

of a set of algebraic conditions on the charges and the symplectic sections. We stress,

that despite formal similarities, the situation is fundamentally different from the one of

asymptotically flat solutions. In fact, AdS4 solutions already fix the asymptotic value

of the moduli, which are then driven to the horizon value by the attractor mechanism.

This means that, although the existence of a black hole horizon specifies the values of the

moduli fields in terms of the charges, this attractor cannot be reached from a generic

point in moduli space because of the asymptotic constraint in terms of the gauging

parameters.

7.3.1 Near horizon limit

When approaching the horizon of a supersymmetric extremal black hole we expect the

metric (7.2.5) to approach that of an AdS2 × S2 spacetime:

ds2 = − r2

R2
A

dt2 +
R2
A

r2
dr2 +R2

S(dθ2 + sin2 θ dφ2), (7.3.1)

where RS and RA are the radii of the 2-dimensional sphere and of the 2-dimensional

Anti-de Sitter spacetime, respectively. In the framework of the metric ansatz proposed

in (7.2.5), this is obtained by imposing

U = log
r

RA
, and ψ = log

rRS
RA

, (7.3.2)

or, in terms of the alternative variables for the warp factors,

A = logRS . (7.3.3)

This means that

A′ = 0 ⇔ W = 0 (7.3.4)

at the horizon. We also expect the scalar fields to be constant zi′ = 0 at the horizon

and therefore we expect

∂i|Z − i e2AL| = 0 ⇔ DiZ − i e−2ADiL = 0. (7.3.5)
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The attractor equations can then be obtained by using special geometry identities to

expand the moduli independent quantity Q+i e2A G and then use the horizon conditions

(7.3.5). When we multiply from the left the charge combination just mentioned by

ΩM+ i we get

ΩMQ+ iQ+ i e2A ΩMG− e2AG = 2
(
Z + i e2A L

)
V + 2

(
Dı̄Z + i e2ADı̄L

)
U ı̄. (7.3.6)

This is a general expansion valid at any point of the moduli space. However, at the

attractor point the last term vanishes and we therefore obtain that

Q+ e2A ΩMG = −2Im(ZV) + 2 e2A Re(LV), (7.3.7)

which is the attractor equation. Once again, for G = 0, we can see that it reduces to the

known attractor equation Q = −2Im(ZV). Since this equation only gives the value of

the scalar fields at the attractor point, but we also need to fix the value of A in order to

obtain the right geometry, one has to supplement the conditions just derived with the

W = 0 condition, namely

|Z − i e2AL| = 0. (7.3.8)

Although this is a real condition, it is easy to see that the request that eA be a real

number gives as an outcome that

e2A = −i Z
L

= R2
S . (7.3.9)

This equation was also derived in [98], as a horizon condition. Summarizing, the BPS

attractors in a U(1) gauged supergravity are

Q+ e2A ΩMG = −2Im(ZV) + 2 e2A Re(LV), (7.3.10)

e2A = −i Z
L

= R2
S . (7.3.11)

From the last condition we also learn that the phases of the central charge and of the

superpotential of the gauging are related at the horizon, so that

φZ = φL +
π

2
. (7.3.12)

If we plug this information in the definition of the phase factor α we obtain that e2iα =

e2iφZ

α = φZ + k π, k ∈ Z, (7.3.13)
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at the horizon. This is an important consistency requirement, in order to obtain spherical

horizons, because we can see from inserting the near horizon limits for the warp factors

in the flow equations that at the fixed point

e−iαZ = −
R2
S

2RA
< 0 (7.3.14)

and this is possible only if the phase α at the horizon is identified with φZ + π. A

different attractor equation was proposed in [98], which depends only on the moduli

fields. This equation can be obtained from ours by plugging (7.3.11) into (7.3.10), but

it looses the information on the horizon area, which instead is governed by (7.3.11).

Although the attractor equations (7.3.10)–(7.3.11) are 2nV +4 conditions for 2nV +1

variables (the 2nV scalar fields and the warp factor A), we can see that not all of them

are independent. In fact, if we contract (7.3.10) with V we obtain an identity and we can

therefore argue that it is equivalent to (7.3.5), which one recovers by contracting (7.3.10)

with Ui. In order to have a spherical horizon these conditions have to be supplemented

by the constraint (7.2.26), which can at times overconstrain the system, as we will show

in a while.

More information on the attractor point can also be obtained by further contracting

the attractor equation (7.3.10) by the charges of the gauging or of the black hole and

by using (7.3.11). In the first case we obtain that

e−2A = 2
(
|DiL|2 − |L|2

)
, (7.3.15)

while in the second case we get that

e2A = 2
(
|DiZ|2 − |Z|2

)
. (7.3.16)

These equations are very interesting because they can be related to the second symplectic

invariant

I2(Q) = |Z|2 − |DiZ|2 = −1

2
QM(F )Q, (7.3.17)

where M(F ) is a matrix constructed using Re FΛΣ and Im FΛΣ rather than Re NΛΣ

and Im NΛΣ. We can also see that if we start from an AdS4 vacuum DiL = 0 and

we try to obtain a black hole solution by keeping the scalars constant, we get to an

immediate contradictory result, because (7.3.15) implies that e−2A = −2|L|2 < 0. This

excludes the possibility of spherical horizons in an asymptotically AdS geometry while

keeping scalars fixed and therefore explains the results of [92, 93, 94]. More in general,

the second attractor equation (7.3.11) can also be written as

e2A = − Im(ZL)

|L|2
, (7.3.18)
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which, for DiL = 0, is equivalent to

e2A =
1

2

〈G, Q〉
|L|2

. (7.3.19)

We then see that this is positive only for hyperbolic horizons, while for spherical horizons

〈G, Q〉 = −1 < 0.

7.4 Supersymmetry equations

In order to explicitly prove that the configurations discussed so far are supersymmetric,

we now analyze in detail the supersymmetry variations of N = 2 U(1) gauged super-

gravity. For simplicity we will discuss the case without magnetic gauging parameters,

but the extension to the full case is straightforward. The relevant variations are then

δψµA = DµεA − εAB T−µν γν εB −
i

2
L δAB γν ηµν εB , (7.4.1)

δλiA = −i ∂µzi γµ εA −G−iµν γµν εAB εB +D
iL δAB εB , (7.4.2)

where the covariant derivative is defined as

DµεA ≡ ∂µεA −
1

4
ωabµ γabεA +

i

2
AµεA + gΛA

Λ
µ δACε

CBεB, (7.4.3)

and Aµ is the composite connection for the Kähler transformations:

Aµ ≡
i

2

(
∂µz̄

̄ ∂ ̄K − ∂µzi ∂iK
)
. (7.4.4)

We also have that the vector field strengths FΛ
µν = 2∂[µA

Λ
ν] appear via their (anti)self–

dual combinations

F−µν ≡
1

2

(
Fµν −

i

2
εµνρσF

ρσ

)
, (7.4.5)

dressed by the scalar fields

T−µν = 2i IΛΣ L
Σ FΛ−

µν G−iµν = D
i
L̄Γ IΓΛ F

Λ−
µν . (7.4.6)

The ansatz for the field strengths is

FΛ
tr =

e2U−2ψ

2
(I−1)ΛΣ

(
RΣΓ p

Γ − qΣ

)
, (7.4.7)

FΛ
θφ = −1

2
pΛ sin θ , (7.4.8)

which, in the combinations (7.4.6), reconstruct the central charge Z and its derivatives.
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Once the metric ansatz (7.2.5), the vector field strengths ansatz (7.4.7) and the

requirement that the scalar fields depend only on the radial coordinate is used in the

supersymmetry transformations above, we should be able to reproduce the flow equations

(7.2.27)–(7.2.29) by requiring the existence of some Killing spinors.

The first variation we analyze is the time component of the gravitino δψtA = 0. This

gives the condition

1

2
e2UU ′γ01εA+

1

2
AΛ
t gΛδACε

CBεB +
i

2
e3U−2ψ Z γ1εABε

B− i

2
eU L δABγ0εB = 0, (7.4.9)

where we assumed that ∂tεA = 0. Since this equation contains both chiralities of the

4-dimensional supersymmetry parameters, we need to impose a projector condition that

relates them. We can actually identify the required projectors by rewriting the above

equation as

U ′εA = e−2U AΛ
t gΛ δAC γ

1γ0εCBεB + i eU−2ψ Z γ0εABε
B − i e−UL δABγ1εB. (7.4.10)

If we introduce two distinct projectors relating the spinor components as

γ0εA = i eiα εABε
B (7.4.11)

and

γ1εA = eiα δABε
B, (7.4.12)

we can rewrite the δψt A = 0 condition as a single differential equation multiplying the

same spinor εA. This is proved also using

γ0εA = −ie−iαεABεB and γ1εA = e−iαδABεB, (7.4.13)

which follow from (7.4.11)–(7.4.12) by consistency. The resulting time component of the

gravitino variation gives(
−U ′ + ie−2U AΛ

t gΛ − eU−2ψ e−iαZ − i e−U e−iαL
)
εA = 0, (7.4.14)

which is satisfied only if the quantity within brackets vanishes. Identifying the real and

imaginary parts of the resulting differential equation, one gets that

U ′ = − eU−2ψ Re(e−iαZ) + e−U Im(e−iαL) (7.4.15)

and

eU AΛ
t gΛ = e−URe(e−iαL) + eU−2ψIm(e−iαZ). (7.4.16)
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We can now analyze the radial component of the gravitino variation δψrA = 0, which

gives

∂rεA +
i

2
ArεA −

i

2R2
eU−2ψZγ0εABε

B − i

2
L δABγ1e−U εB = 0. (7.4.17)

By using the projectors (7.4.11)–(7.4.12) and the supersymmetry conditions (7.4.15)–

(7.4.16), this reduces to

∂rεA −
1

2

(
U ′ − iÃ

)
εA = 0, (7.4.18)

where we introduced

Ã = Ar +
(
eU−2ψ Im(e−iαZ) + e−U Re(e−iαL)

)
. (7.4.19)

This equation is readily solved by

εA = e
U
2
− i

2

∫
Ã drχA, (7.4.20)

for a spinor χA that is r independent. Consistency with the projector conditions defined

above also imply that

α+

∫
Ã dr = 0 (7.4.21)

and hence

α′ +Ar = −eU−2ψ Im(e−iαZ)− e−U Re(e−iαL), (7.4.22)

reproducing the phase equation (7.2.34).

We are then left with the angular components of the gravitino variations and the

dilatino. From the θ direction we get that

∂θεA −
1

2
eψ(U ′ − ψ′)γ12εA −

1

2
eU−ψ Z γ3εABε

B − i

2
e−U+ψ L δABγ2εB = 0. (7.4.23)

Once more, using the projectors above as well as the supersymmetry conditions derived

so far, we can simplify this equation to

∂θεA =
1

2
eψ
[
ψ′ − 2eU Im(e−iαL) + i

(
eU−2ψ Im(e−iαZ)− e−U Re(e−iαL)

)]
γ21εA.

(7.4.24)

Since the radial dependence is fixed on both sides of the equation by (7.4.20), we need to

require that both the real and imaginary parts of the quantities between square brackets

vanish. This leads to the flow equation for ψ

ψ′ = 2eU Im(e−iαL) (7.4.25)
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and to the constraint

eU−2ψ Im(e−iαZ) = e−U Re(e−iαL) (7.4.26)

This condition now fixes the ansatz for the time component of the vector fields

AΛ
t gΛ = 2 eU Re(e−iαL). (7.4.27)

We also get that the Killing spinors εA should not depend on θ:

∂θεA = 0. (7.4.28)

A similar analysis can be performed for the other angular direction, which gives the

same set of flow equations and leaves the following condition on the Killing spinors:

∂φεA =
1

2
cos θ γ32εA −

i

2
〈G, Q〉 cos θ γ01εA. (7.4.29)

This is solved by requiring that

∂φεA = 0 (7.4.30)

and that

〈G, Q〉+ 1 = 0. (7.4.31)

The only supersymmetry equation remaining is the dilatino variation δλiA = 0. By

using once more the projector conditions (7.4.11)–(7.4.12) and the other supersymmetry

constraints obtained above we eventually find the flow equations for the scalar fields:

zi′ = −eiαgī
[
eU−2ψD̄Z + i e−U D̄L

]
. (7.4.32)

Summarizing, the analysis of the supersymmetry transformations reproduces the flow

equations (7.2.27)–(7.2.29) for a Killing spinor of the form

εA = e
U
2

+ i
2

∫
Ã drχA, (7.4.33)

where χA is a constant spinor fulfilling

γ0χA = i εABχ
B, γ1χA = δABχ

B. (7.4.34)

Since we imposed two independent projector conditions, the resulting configurations will

be 1/4 BPS (each projector halving the number of preserved supersymmetries).
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7.5 Examples of dyonic solutions

We now turn to the analysis of the full flow equations and to the construction of explicit

solutions, as an example of how the flow equations work and especially of the fact that

now we can obtain in a single duality frame all possible black hole solutions for a given

gauged supergravity model. As explained above, in order to have a regular black hole

solution in an asymptotically AdS spacetime, the scalar fields have to flow according to

the attractor mechanism discussed in the previous section. We will now analyze some

examples where this is required. Actually, we will first show that there may be models

that do not admit at all such flows, because the AdS4 vacua and the AdS2 × S2 can

never appear simultaneously for any given set of charges. We will then investigate the

STU model, which is known to admit spherical horizons for special values of the charges

[98].

7.5.1 Constant scalar flows

As already explained, we cannot have regular flows with constant scalars, unless the

horizon is not spherical, but for instance hyperbolic [92, 93, 94]. In this case one can have

regular solutions by using our flow equations together with the constraint 〈G, Q〉 = 1. If

we assume that the scalar fields are fixed at the horizon value, we can impose that

e−iαZ = −
R2
H

2RA
, and e−iαL =

i

2RA
. (7.5.1)

Once inserted in the superpotential we get that

W =
eU

2RA

(
e2A −R2

H

)
. (7.5.2)

This implies that the equations for the warp factor reduce to

U ′ =
e−U

2RA

(
1 +R2

He
−2A

)
, (7.5.3)

A′ =
e−U

2RA

(
1−R2

He
−2A

)
. (7.5.4)

A trivial solution is for constant A

eA = RH , eU =
r

RA
, (7.5.5)

which reproduces the AdS2 ×H2 horizon solution. More generally, we can solve these

equations first in terms of the variables A and ψ, with the equation for ψ being

ψ′ = A′ + U ′ =
eA−ψ

RA
. (7.5.6)
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In fact, introducing now

C = e2A −R2
H , (7.5.7)

the differential equations for A and ψ can be used to write

C ′ = Cψ′, (7.5.8)

which is readily solved by

C = k eψ ⇔ e2A = R2
H + k eψ, (7.5.9)

where k = 0 should give back the AdS2 × H2 metric. Plugging the solution into the

equation for ψ (7.5.6), we get that

(eψ)′ =

√
R2
H + k eψ

RA
, (7.5.10)

which is solved by

eψ = k
r2

4R2
A

+

√
R2
S + k α

RA
r + α, (7.5.11)

where we chose the integration constant so that the limit k → 0 is well-defined.

If we set α = 0, we get that the asymptotic behavior of the warp factor is

r → 0 : e2A → R2
H , e2U → r2

R2
A

, (7.5.12)

which leads to the AdS2 ×H2 metric

ds2 = − r2

R2
A

dt2 +
R2
A

r2
dr2 +R2

Hds
2
H2 , (7.5.13)

and

r →∞ : e2A → k2

4R2
A

r2, e2U → r2

k
, (7.5.14)

which leads to a metric that differs from AdS4 by 1/r terms in the limit.

7.5.2 One modulus case

One of the simplest special Kähler moduli spaces is given by the geometry defined by

the prepotential

F = −iX0X1 . (7.5.15)
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This space has only one modulus and the σ-model metric can be obtained from the

Kähler potential

K = − log 2(z + z̄), (7.5.16)

which requires that Rez > 0. The gauging potential is determined by

L = eK/2
(
g0 + i g1 + (g1 + ig0)z

)
, (7.5.17)

which gives a supersymmetric AdS4 extremum at

z =
g0g1 + g0g1 + i (g0g

0 − g1g
1)

(g1)2 + (g0)2
. (7.5.18)

This is in the allowed region of the moduli space if and only if

g0g1 + g0g1 > 0. (7.5.19)

For such a simple model the second derivatives of the prepotential (7.5.15) are con-

stant and therefore the second symplectic invariant I2 is a constant function of the

charges at every point of the moduli space:

I2(G) = |G|2 − |DiG|2 = −1

2
GM(F )G = g0g1 + g0g1. (7.5.20)

Since at the horizon e−2A = −I2(G), we immediately see that the requirement to have

a regular solution would require

g0g1 + g0g1 < 0, (7.5.21)

in direct contradiction with the requirement to have a supersymmetric AdS vacuum.

Hence we conclude that for such a model there are no regular spherical black holes with

an AdS asymptotic geometry. This also implies that the AdS4 vacua of this model will

not be destabilized by the presence of supersymmetric black holes.

7.5.3 The STU model

The STU model is defined by various prepotentials, according to the choice of symplectic

frame. Since our formalism is duality covariant, we can fix a symplectic basis where the

prepotential has the classic form

F =
X1X2X3

X0
. (7.5.22)
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In this basis the Kähler potential is

K = − log[−i(s− s̄)(t− t̄)(u− ū)], (7.5.23)

where we introduced normal coordinates s = X1/X0, t = X2/X0 and u = X3/X0. The

symplectic vector V for such a prepotential is given by

V = eK/2 (1, s, t, u,−stu, tu, su, st)T . (7.5.24)

From [98] we know that the STU model admits spherical horizon solutions for electric

gaugings G = (0, gΛ) and magnetic charges Q = (pΛ, 0), but in the symplectic frame

defined by the prepotential

FCK =
√
X0X1X2X3. (7.5.25)

The Kähler potentials of the two models are obviously the same, but the symplectic

sections V for the square root prepotential FCK are now

VCK = eK/2 (1,−tu,−su,−st,−stu, s, t, u)T . (7.5.26)

The two frames are therefore related by a symplectic transformation

S =



1

−1

−1

−1

1

1

1

1


, (7.5.27)

so that VCK = SV. We should stress that such a transformation is an allowed change

of frame, but it is not a duality transformation. In fact, the duality transformations

for the STU model are only a subset of the full symplectic group: SU(1,1)3 ⊂ Sp(8,R).

Their form can be computed explicitly (see for instance [87]) and the matrix S does

not belong to any of their combinations. However, the effective 1-dimensional model

we started from (7.2.7) is fully constructed out of symplectic invariant quantities. This

means that a solution to the model where, for instance, the gauging potential is obtained

from LCK = 〈GCK ,VCK〉, can be mapped to a solution of a different system where

L = 〈G,V〉, with VCK = SV and G = S−1GCK . Hence we should be able to reproduce
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solutions with a spherical horizon for our model, with non-trivial gauging charges G =

(0, g̃1, g̃2, g̃3, g0, 0, 0, 0)T and black hole charges Q = (p0, 0, 0, 0, 0, q1, q2, q3).

Notice that, given our framework, however, we can do more than this. Since our

formalism allows for the introduction of arbitrary electric and magnetic charges both for

the gauging as well as for the black hole, once we have fixed a solution, like the one above,

we can generate new ones by means of duality transformations. We actually know that

the gauging breaks the duality group SU(1,1)3 to a U(1) related to the isometry of the

scalar manifold that is gauged by the graviphoton and the 3 vector fields, which couple

to the 4 independent charges of the gauging among the 8 parameters G. This means,

however, that we can still act with this symmetry on the scalar fields and the gauging

and black hole charges. In particular, we could now generate solutions with non-trivial

axions, by using the representation of the three U(1) ⊂ SU(1,1) duality transformations,

which act as follows:

zi → cos θi z
i + sin θi

− sin θi zi + cos θi
. (7.5.28)

The action on the charges can be then deduced by the corresponding symplectic trans-

formations derived, for instance, in [87].

The electric dyonic configuration

The model and symplectic frame are defined by (7.5.22)-(7.5.24), and the prepotential

then becomes F = stu. The symplectic sections are

V =
(
LΛ ,MΛ

)
, (7.5.29)

where

LΛ = eK/2


1

s

t

u

 , MΛ = eK/2


−stu
tu

su

st

 , (7.5.30)

and the Kähler potential is K = − log(8λ1λ2λ3) so that eK/2 = 1/(2
√

2
√
λ1λ2λ3), which

requires to be on the branch of positive λi’s.

In our framework, the superpotential for such a model is given by

W = eK/2|q1s+ q2t+ q3u+ p0stu− ie2A(g0 − g1tu− g2su− g3st)|. (7.5.31)

By using the flow equations we can immediately check that we can consistently fix the

axions Re s = Re t = Reu = 0 along the whole solution, for the charge configuration we
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consider. For the remaining flow equations we can then use an ansatz similar to the one

proposed in [98], namely (where now zi = (s, t, u))

Im zi =

√
1
2 |εijk|HjHk

H0Hi
, ψ = log(ar2 + c) , U = −1

4
log 4H0H1H2H3 , (7.5.32)

and

H0 =
α0r + β0

ar2 + c
, Hi =

αir + βi
ar2 + c

, i = 1, 2, 3 . (7.5.33)

The symplectic sections for our configuration are

LΛ =
1

2
√

2


1/
√
λ1λ2λ3

−i
√
λ1/λ2λ3

−i
√
λ2/λ1λ3

−i
√
λ3/λ1λ2

 , MΛ =
1

2
√

2


−i
√
λ1λ2λ3

−
√
λ2λ3/λ1

−
√
λ1λ3/λ2

−
√
λ1λ2/λ3

 . (7.5.34)

These determine the symplectic matrix

NΛΣ = iIΛΣ , IΛΣ =


−λ1λ2λ3

−λ2λ3/λ1

−λ1λ3/λ2

−λ1λ2/λ3

 , (7.5.35)

then the matrix M is simply given by

M =

(
I
I−1

)
. (7.5.36)

Finally, the central black hole and gauge charges are

Z = 〈Q,V〉 =
i

2
√

2

(
p0
√
λ1λ2λ3 − q1

√
λ1

λ2λ3
− q2

√
λ2

λ1λ3
− q3

√
λ3

λ1λ2

)
, (7.5.37)

L = 〈G,V〉 =
1

2
√

2

(
g0√

λ1λ2λ3
+ g̃1

√
λ2λ3

λ1
+ g̃2

√
λ1λ3

λ2
+ g̃3

√
λ1λ2

λ3

)
. (7.5.38)

Knowing these central charges we can easily compute the phase α from

e2iα =
Z − ie2AL
Z̄ + ie2AL̄

, (7.5.39)

and its value at the asymptotic AdS4 where

λ1 =

√
g0g̃1

g̃2g̃3
, λ2 =

√
g0g̃2

g̃1g̃3
, λ3 =

√
g0g̃3

g̃1g̃2
, (7.5.40)

since the zero axions configuration has α̇ = 0, the phase is fixed at α = −π/2.
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Equations of motion

The BPS equations relative to this configurations are

2e2ψ
(
e−UReV

)′
+ e2(ψ−U)ΩMG +Q = 0 ,

(eψ)′ = 2eψ−UReL , (7.5.41)

now consider that

ΩMG =



g0/λ1λ2λ3

0

0

0

0

−g̃1λ2λ3/λ1

−g̃2λ1λ3/λ2

−g̃3λ1λ2/λ3


= 8



g0(L0)2

0

0

0

0

−g̃1(M1)2

−g̃2(M2)2

−g̃3(M3)2


, (7.5.42)

so if we define four positive functions1

H0 = 2L0e−U , Hi = −2Mie
−U , (7.5.43)

we can rewrite (7.5.41) as

e2ψ


∂rH

0 + 2g0(H0)2

−∂rH1 − 2g̃1(H1)2

−∂rH2 − 2g̃2(H2)2

−∂rH3 − 2g̃3(H3)2

 =


−p0

−q1

−q2

−q3

 , ψ′ = g0H
0 + g̃1H1 , (7.5.44)

As already stated, we follow the assumptions of [98] and make the ansatz

H0 = e−ψ(α0r + β0) , Hi = e−ψ(αir + βi) , ψ = log(ar2 + c) . (7.5.45)

We look for −c = r2
h, so that ψ = log(a r2 − r2

h). The equations (7.5.44) now become

algebraic equations

p0 = α0r2
h − 2g0(β0)2 α0 =

a

2g0
,

qi = −αir2
h + 2g̃i(βi)

2 αi =
a

2g̃i
∀ i = 1, 2, 3 ,

g0β
0 +

3∑
i=1

g̃iβi = 0 , (7.5.46)

1These functions are analogous to those defined in [98] up to a factor of 2 and, for the Hi’s, an overall

minus sign.
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and we don’t have to forget the constraint

〈G, Q〉 = g0p
0 −

3∑
i=1

g̃iqi = −1 . (7.5.47)

t3-black hole

We take a = 1, and we look for the simple solution which has all quantities with i-indices

equal; from (7.5.46) e (7.5.47) we are left then with the system of 4 equations

p0 =
r2
h

2g0
− 2g0(β0)2 q = −

r2
h

2g̃
+ 2g̃(β)2

0 = g0β
0 + 3g̃β g0p

0 − 3g̃q = −1 (7.5.48)

and 7 unknowns {q, p0, g̃, g0, β, β0, rh}; we choose to parametrize the solution with q, g̃

and g0. Moreover, we see that if we define the hatted quantities

q̂ ≡ q · g̃ p̂0 ≡ p0 · g0 β̂ ≡ β · g̃ β̂0 ≡ β0 · g0 , (7.5.49)

choosing g0 > 0, g̃ > 0, the equations become simply

p̂0 =
r2
h

2
− 2(β̂0)2 q̂ = −

r2
h

2
+ 2(β̂)2

0 = β̂0 + 3β̂ p̂0 − 3q̂ = −1 (7.5.50)

and we choose to parametrize the solution of these system with q̂. We then have

p̂0 = 3q̂ − 1 β̂ = −
√

1− 4q̂

4
β̂0 =

3

4

√
1− 4q̂ rh =

√
1− 12q̂

2
, (7.5.51)

in fact one can show that a regular solution with all positive gauge charges cannot have

β > 0. We also have to check that the functions in (7.5.43) are well defined, in particular

that they are positive throughout the flow; this imply, given β̂ < 0, that rh > −2β̂ which

results in

q̂ < 0 ⇒ q < 0 ∪ p0 < 0 . (7.5.52)

To summarize, we have a black hole solution whose scalars and metric warp factors are

parametrized by the functions in (7.5.43, 7.5.45), with α0, αi given in (7.5.46) and the

other parameters are2.

p0 =
3 g̃ q − 1

g0
β = −

√
1− 4 g̃ q

4g̃
β0 =

3

4g0

√
1− 4 g̃ q rh =

√
1− 12 g̃ q

2
,

(7.5.53)

2Confronting the value for the β parameter found here with the one in eq. (4.24) of [113], we see that

the different factor of 2 is consistent with the same rescaling factor in the definition of H0 and Hi’s,

since we previously follows the notation of [98]
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we are left with the freedom to choose q < 0, g0 > 0 and g > 0. The scalar is

λ =

√
Hi

H0
= λ∞

√
2r −

√
1− 4 g̃ q

2r + 3
√

1− 4 g̃ q
, (7.5.54)

where we defined λ∞ =
√
g0/g̃.

The value of the scalar field at the horizon is

λh =
λ∞√

2

√
−1 + 6 g̃q +

√
1− 16 g̃ q + 48 g̃2q2

1− 3 g̃ q
, (7.5.55)

the entropy is given by the warp factor e2A|h = e2ψ(rh)−2U(rh), with

e2U(r) = 1/(2
√
H0H1H2H3) , (7.5.56)

thus we get

e2A(rh) =
1

4g2λ∞

√
1− 3(1− 4 g̃ q)2 + 2(1− 4 g̃ q)

√
1− 16 g̃ q + 48 g̃2q2 .

(7.5.57)

We recall that the asymptotically AdS4 metric, solution of the STU -model in U(1)-

gauged N = 2 supergravity with AdS2 × S2 horizon is

ds2 = −e2Udt2 + e−2Udr2 + e−2U+2ψ(dθ2 + sin θ 2 dφ2) , (7.5.58)

where the warp factors are

e2ψ(r) = (r2 − r2
h)2 ,

e2U =
2
√
g0(g̃)3(r2 − r2

h)2(
r − 1

2

√
1− 4 g̃ q

)3/2 (
r + 3

2

√
1− 4 g̃ q

)1/2
=

2
√
g0(g̃)3(r2 − r2

h)2(
r −

√
r2
h − 2 g̃ q

)3/2 (
r + 3

√
r2
h − 2 g̃ q

)1/2
. (7.5.59)

7.5.4 Purely electric black hole in four dimensional AdS4

The work of [114] and [115] presents an holographic renormalization approach to the

computation of the black hole mass in asymptotically AdS space, in various dimensions.

It is possible to use their results for black holes in AdS4, in the framework we are

presenting in this Chapter. In order to make contact with the setup of those works, one

has to consider a black hole solution in a frame where all abelian charges are electric

and the gauging is purely magnetic.
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This is another configuration which is easily constructed from the previous one. It

can be obtained, indeed, by performing S-duality on he scalars from the solution of [98]

s→ −1
s , t→ −1

t , u→ −
1
u .

Consider the stu-model with prepotential

F = −2
√
−X0X1X2X3 , (7.5.60)

and the vector of non-normalized symplectic sections

v =

(
1,

1

tu
,

1

su
,

1

st
,
i

stu
,
i

s
,
i

t
,
i

u

)
, (7.5.61)

giving the Kähler potential

K = log

[
− |stu|2

(s+ s̄)(t+ t̄)(u+ ū)

]
. (7.5.62)

The zero axion configuration in this case will be given by the choice of real negative

scalars, thus a suitable parametrization of the scalars is s = −x1 + iλ1, t = −x2 + iλ2,

u = −x3 + iλ3.

The normalized sections are V = (LΛ,MΛ)

LΛ =
−i|stu|√

(s+ s̄)(t+ t̄)(u+ ū)


1
1
tu
1
su
1
st

 , MΛ =
|stu|√

(s+ s̄)(t+ t̄)(u+ ū)


1
stu

1/s

1/t

1/u

 .

(7.5.63)

Zero axions solution

The electric black hole solution is supported by zero axion configuration. From now on

we will restrict to the branch

s = −x1 , t = −x2 , u = −x3 , x1 , x2 , x3 > 0 , (7.5.64)

that in particular implies

K = − log

[
8

x1x2x3

]
, LΛ =

1

2
√

2



√
x1x2x3√

x1

x2x3√
x2

x1x3√
x3

x1x2

 , MΛ =
i

2
√

2


1/
√
x1x2x3√
x2x3

x1√
x1x3

x2√
x1x2

x3

 .

(7.5.65)
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The black hole charges are
Q = (0, 0, 0, 0, q0, q1, q2, q3) , (7.5.66)

the gauging is magnetic
G =

(
g0, g1, g2, g3, 0, 0, 0, 0

)
, (7.5.67)

the black hole and the “gauging” central charges are

Z =
1

2
√

2
√
x1x2x3

(
q0x

1x2x3 + q1x
1 + q2x

2 + q3x
3
)
,

L =
−i

2
√

2
√
x1x2x3

(
g0 + g1x2x3 + g2x1x3 + g3x1x2

)
, (7.5.68)

so that α = 0. The symplectic matrix NΛΣ and the black hole potential quadratic form

M are

NΛΣ = iIΛΣ , IΛΣ =


− 1
x1x2x3 0 0 0

0 −x2x3

x1 0 0

0 0 −x1x3

x2 0

0 0 0 −x1x2

x3

 ,

M =

(
I
I−1

)
. (7.5.69)

There is a supersymmetric AdS4 minimum at asymptotic infinity

DiL∞ = 0 → x1
∞ =

√
g0g1

g2g3
, x2

∞ =

√
g0g2

g1g3
, x3

∞ =

√
g0g3

g1g2
. (7.5.70)

BPS equations of motion

The equation of motion are in this case

e2ψ∂rIm
(
e−UV

)
+ e2(ψ−U)ΩMG +Q = 0 ,

ψ′ = 2e−U ImL , (7.5.71)

and we have

ΩMG =



0

0

0

0

− 1
x1x2x3 g

0

−g1x2x3/x
1

−g2x1x3/x2

−g3x1x2/x3


= 8



0

0

0

0

g0(M0)2

g1(M1)2

g2(M2)2

g3(M3)2


, (7.5.72)
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thus we can define

HΛ = −2iMΛe
−U , Λ = 0, 1, 2, 3 (7.5.73)

so that the eom.s become

e2ψ
(
∂rHΛ + 2gΛ(HΛ)2

)
= −qΛ , ψ′ = −

3∑
Λ=0

gΛHΛ , (7.5.74)

where no sum is intended in the first of the above equations. Once again we proceed

with the ansatz

HΛ = e−ψ(αΛr + βΛ) , ψ = log(ar2 − r2
H) , (7.5.75)

turning the BPS equations to the algebraic ones

αΛr
2
H + 2gΛ(βΛ)2 = −qΛ , a+ 2gΛαΛ = 0 ,

3∑
Λ=0

gΛβ
Λ = 0 . (7.5.76)

Electric t3 model

Taking into account the constraint (7.5.47), we choose a = 1 and find a solutions for

βi ≡ β and qi ≡ q, thus gi ≡ g, and we take all gΛ < 0, in order to recover the

previous electric solution. Notice that the existence of an asymptotic AdS point is not

effected by an overall rotation of the gauge charges in this configuration by a same

phase, in particular a minus sign. Again, it’s easier to rewrite the equations in terms of

β̂ = |gi|βi, β̂0 = |g0|β0, and so on. We get the system

q̂0 = −
r2
H

2
+ 2(β̂0)2 q̂ = −

r2
H

2
+ 2β̂2

0 = β̂0 + 3β̂ q̂0 + 3q̂ = −1 (7.5.77)

in the unknowns {β̂, β̂0, q̂, q̂0, rH}. We choose to parametrize the solution with q̂, which

gives the same solution of the previous case in the hatted coordinates

q̂0 = −3q̂ − 1 β̂ = −
√

1− 4q̂

4
β̂0 =

3

4

√
1− 4q̂ rh =

√
1− 12q̂

2
, (7.5.78)

with q̂ < 0. The explicit dependence of the parameters on the gauge charges is then

q0 =
1− 3g q

g0
β =

√
1 + 4g q

4g
β0 = −3

√
1 + 4g q

4g0
rh =

√
1 + 12g q

2
,

(7.5.79)
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where we still have the freedom to choose the charges q < 0, g0 < 0, g < 0. The scalar

fields are

x =

√
H1

H0
= x∞

√
r − 2gβ

r − 2g0β0
= x∞

√
2r −

√
1 + 4gq

2r + 3
√

1 + 4gq
,

x∞ =

√
g0

g1
eψ =

4r2 − 1− 12g q

4
, (7.5.80)

e−2U = 2
√
H0H1H2H3 =

e−2ψ

2
√
g0g3

3∏
Λ=0

√
r − 2βΛgΛ =

=

√
2r + 3

√
1 + 4gq

√
(2r −

√
1 + 4g q)3

8
√
g0g3 (r2 − r2

H)2
, (7.5.81)

the metric solution is

ds2 = −
8
√
g0(g)3 (r2 − r2

H)2√
2r + 3

√
1 + 4gq

√
(2r −

√
1 + 4g q)3

dt2 +

√
2r + 3

√
1 + 4gq

√
(2r −

√
1 + 4g q)3

8
√
g0(g)3 (r2 − r2

H)2
dr2

+

√
2r + 3

√
1 + 4gq

√
(2r −

√
1 + 4g q)3

8
√
g0(g)3

(dθ2 + sin θ2dφ2) . (7.5.82)

7.5.5 Confronting previous solutions in gauged supergravities

The examples we have presented in this section rely on the metric ansatz (7.2.5). It

is convenient, however, to compare our conventions to the previous literature, see for

example [92, 36, 35, 93], where Supergravity black holes in asymptotic AdS space have

been discussed, before a regular horizon solution was shown to exist in [98] .

We define

H̃ = 1− Q̃

r
, Q̃ =

√
1 + 4gq , H̃0 = 1 +

Q̃0

r
, Q̃0 = 3Q̃ , I(G) = 2

√
g0g1g2g3 ,

(7.5.83)

and rewrite the metric as

ds2 = −I(G) r2

(
1−

r2
H

r2

)2(√
H̃0(H̃)3

)−1

dt2 + I(G)−1

(
1−

r2
H

r2

)−2√
H̃0(H̃)3

dr2

r2
+

+
r2

I(G)

√
H̃0(H̃)3 (dθ2 + sin θ2dφ2) , (7.5.84)

whose asymptotical behavior is

ds2
∞ ∼ −I(G) r2dt2 +

1

I(G)

dr2

r2
+

r2

I(G)
(dθ2 + sin θ2dφ2) . (7.5.85)
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One can define a function f(r)

f(r) = r2

(
1−

r2
H

r2

)2

, (7.5.86)

so that the metric takes the form

ds2 = −e2Af(r)dt2 + e−2A

(
dr2

f(r)
+ r2dΩ2

2

)
,

e2A =
I(G)√

H̃0H̃1H̃2H̃3

, (7.5.87)

which is analogous to the metric used in [35]. Notice that, with respect to the ansatz of

the same paper where f(r)Duff−Liu = 1− (r/r0) + g2r2, we now have

f(r) = −2r2
H + (r2

H/r)
2 + r2 , (7.5.88)

in which the minus sign of the constant is crucial to find a regular solution. Also, a factor

I(G) is added, with respect to previous ansatz, and changes the asymptotic behavior of

the metric.

7.5.6 The magnetic solution of Cacciatori and Klemm

For completeness, we give here the details of a purely magnetic black hole solution that

Cacciatori and Klemm in [98] demonstrated to exist, and to exihbit a regular spherical

horizon. The solution can be found in the t3 model, for which p1 = p2 = p3 ≡ p,

H1 = H2 = H3, g1 = g2 = g3 ≡ g, and it is

ds2 = −e2U(r)dt2 + e−2U(r)
[
dr2 + e2ψ(r)dΩ2

]
,

e2ψ(r) = (r2 − r2
H)2 , e−2U(r) = 2

√
H0H1H2H3 ,

H(i) = e−φ(αir + βi) . (7.5.89)

It can be parametrized by g0 , g > 0 , p > 0 as

α =
1

2g
, α0 =

1

2g0
, β = −

√
1 + 4gp

4g
, β0 =

3
√

1 + 4gp

4g0
, (7.5.90)

with a black hole horizon given by

rH =
1

2

√
1 + 12gp . (7.5.91)

Moreover, the constraint of spherical horizon gives

p0 = −1 + 3gp

g0
. (7.5.92)
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