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Abstract

Extremal black holes are states in the non-perturbative spectrum of Supergravity theo-
ries. They may be charged under abelian fields and in this case give rise to an effective
potential for the scalars. This, in addition, is responsible for the occurrence of an at-
tractor mechanism: extremal solutions are determined by critical points of the effective
potential. This implies that their supersymmetric features rely only on the algebraic
properties of the electric-magnetic duality group. In this thesis black holes solutions
and their properties under duality transformations are analyzed in extended Supergrav-

ity theories in four dimensions.

An introductory part reviews the construction of electric-magnetic duality invariant
theories and describes the symplectic covariant formalism both in the case of N = 2
and N > 2 Supergravity theories. The attractor mechanism and black hole first order

formalism are also reviewed.

The thesis than proceeds with the discussion of original results. First I discuss
the ungauged N=8 theory and show how the supersymmetric properties of black hole
duality orbits are manifest, once the proper representations of vectors and scalar fields
in different symplectic frames is chosen, according to the algebraic branching of the orbit
with respect to the duality group. In particular, one of these cases corresponds to the
Kaluza—Klein reduction of the theory from five dimensions, as it can be seen from the
relation between the central charge in four and five dimensions. Explicit computations

are possible if one restricts the solutions to the stu-truncation.

Then I present static dyonic black holes in the context of N=2 U(1) gauged super-
gravity in four dimensions, with AdS; asymptotic geometry. It is shown that the flow
of scalar fields and metric warp factors is governed by first order equations that can be
derived for a general U(1) gauging potential. Explicit examples are finally presented,
which only preserve up to half of the supersymmetry and thus evade previous no-go

theorems.






Riassunto

I buchi neri estremali sono stati dello spettro non perturbativo di teorie di Supergravita.
Sono sistemi carichi rispetto a campi abeliani, la cui presenza introduce un potenziale
effettivo per i campi scalari. Questo stesso potenziale ¢ responsabile di un meccanismo
attrattore per i campi scalari: le soluzioni estremali corrispondono infatti ai punti critici
di un potenziale efficace. In questo modo le proprieta di supersimmetria della soluzione
dipendono solamente dalla struttura algebrica del gruppo di dualita elettromagnetica.
In questa tesi vengono analizzate soluzioni di buco nero in teorie di Supergravita estese
in quattro dimensioni.

Una parte introduttiva presenta la costruzione delle teorie invarianti per dualita
elettromagnetica, e descrive il formalismo covariante simplettico sia nel caso della Su-
pergravita estesa N' = 2 che di quelle con N’ > 2. Vengono anche descritti il meccanismo
degli attrattori e il formalismo del prim’ordine per le soluzioni di buco nero.

La tesi procede poi con la discussione dei risultati originali. In questa parte si
considera la teoria N' = 8 in assenza di gauging delle isometrie del gruppo di dualita.
Viene mostrato come le proprieta di supersimmetria delle orbite del buco nero siano
manifeste se si sceglie una rappresentazione opportuna per i campi vettoriali e scalari,
a seconda del branching algebrico corrispondente all’orbita nel gruppo di dualita. In
particolare, uno di questi casi corrisponde alla riduzione dimensionale di Kaluza—Klein
da cinque dimensioni, come si puo leggere dalla relazione tra la carica centrale in quattro
e in cinque dimensioni. Per la troncazione al modello stu verranno mostrate soluzioni
esplicite.

Nella parte finale vengono presentati configurazioni di buchi neri dionici nella teoria
di Supergravita N/ = 2 con gauging U(1) in quattro dimensioni. Queste soluzioni am-
mettono una geometria asintotica di tipo AdSs. Viene mostrato come il flusso radiale dei
campi scalari e il warp factor della metrica sono governati da equazioni del prim’ordine,
che si possono ricavare per un generico potenziale di gauging. Sono presentati, infine,
alcuni esempi espliciti di soluzioni di buco nero che preservano non piu della meta di

supersimmetrie, e quindi possono evadere teoremi di inesistenza presenti in letteratura.
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Chapter 1

Introduction

Black holes are solutions of General Relativity, the theory that describes classical grav-
itational interactions, or of its classical extensions, like Supergravity. They are charac-
terized by the presence of an event horizon hiding a space-time singularity. For their
intrinsic connection to the limits of validity of General Relativity, they have always
been an interesting playground for the investigation of possible extensions to quantum

theories of gravity.

Non linearity of General Relativity equations of motion implies, in fact, that smooth
initial data can evolve into a singular field configuration [1], thus, the horizon protects
the outer region of spacetime from causally interacting with the inner part, in contact
with the singularity, because no particles can classically come out from the horizon. A
naked singularity would instead cause the breakdown of the theory. As soon as one starts
taking into account the semiclassical behavior, however, under very general assumptions,
black holes behave as a thermal state, emitting particles with a black body spectrum
[2]. This means that the emitted radiation carries no information about the matter
that caused the formation of, or simply fell into the black hole, and was then emitted
thermally [3]. This causes the breakdown of unitary evolution of states, leading to the

“information loss” problem.

As thermal states, black holes have an entropy associated to them. From a semi-
classical computation, Bekenstein and Hawking [4],[5],[6] found that it is proportional
to the area of the event horizon, and is a topological invariant quantity. It is a funda-
mental question for any quantum extension of gravity, if this entropy has a statistical
interpretation in terms of fundamental, quantum degrees of freedom. Up to now, the

only theory that has been able to microscopically describe a black hole is String Theory.
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Examples have been built, where the degrees of freedom are strings and branes, and give
rise to a black hole in the low energy, effective theory. The microstates counting has
been carried out at weak coupling gs — 0, and takes into account the BPS states of the
corresponding D-brane worldvolume theory [7]. Because of supersymmetry, the number
of states has to remain the same also at strong coupling, and the result of microscopic
counting actually agrees with the semi-classical computation of black hole entropy, given
by the Bekenstein—Hawking formula. What is interesting to our purposes, is that these
low energy, effective configurations, in the large charges approximation, are precisely
Supergravity black holes.

We will be dealing with the subset of extremal black holes that are charged massive
states with vanishing thermal temperature. The charge and mass of a state in general
relativity and all its classical extensions satisfy the BPS bound M > @ [8]: extremal
black holes are those saturating this bound. They are stable states and have non van-
ishing entropy, and this ensures them a regular near horizon geometry.

String theory and its low energy Supergravity limits base their formulation on a
fundamental ingredient, which is Supersymmetry.

Supersymmetry is a candidate for a fundamental new symmetry of particles and
fields. It relates fermions to bosons and organizes fields in supermultiplets. It is being
intensively tested in these days at the LHC collider at CERN, in Geneva. Together
with the search of the Higgs, the missing particle from the Standard Model of gauge
interactions, testing the existence of supersymmetric partners of known particles, at
accessible energies, is one of the most intriguing challenges of high energy physics of
the XXI century. Supergravity theories, moreover, are theories of gravity which are also
Supersymmetry invariant, their field content contains Standard Model-like fields but
also other matter fields with spin less then two, and treat the rank-2 symmetric tensor
of the metric as the only spin-2 field in the theory. Invariance under Supersymmetry
determines completely the action and the coupling of the fields. It reveals, however, that
the action possesses other symmetries and invariances, which follow from the specific
structure of the terms in the Lagrangian allowed by supersymmetry.

It is the aim of this thesis to exploit the richness of symmetries and duality invari-
ances that extended Supergravity theories manifest, to study their extremal black holes
solutions. The relevant invariance in their description is electric-magnetic duality. Not
only this will help in the determination of the black hole metric, but it will also allow
for an algebraic classification of the solutions in terms of electric and magnetic orbits.

As charged states, black holes satisfy the BPS bound. In supersymmetric invariant



theories, this is related to Supersymmetry, in the sense that (a part of the) Super-
symmetry is preserved by a state, when the bound is saturated. Selecting a particular
configuration of black hole electric and magnetic charges, indeed, fixes the duality orbit
of the solution. For each orbit, black holes have an entropy which is given by a dual-
ity invariant expression of the charges, a geometric quantity of the duality group that
encodes the supersymmetric properties of the orbit in the duality group.

Each orbit is obtained by solving the corresponding black hole “attractor equations”.
As it has been found in [9]-[13], the horizon of extremal black holes in Supergravity
manifests an attractor behavior: an extremal black hole attractor is associated to a
critical point of a suitably defined black hole effective potential, and it describes a scalar
field configuration stabilized at the event horizon, purely in terms of conserved electric
and magnetic charges, regardless the value of scalar fields at spatial infinity. This ensures
that the entropy does not depend on continuous parameters of the theory, like the scalars
v.e.v. at asymptotic infinity, consistently with a microscopic interpretation of entropy
as the log of the number of fundamental degrees of freedom, giving rise to the statistical
black hole-state.

More precisely, in this thesis, we explicitly parametrize orbits of ungauged N = 2
and N = 8 Supergravity, studying how the Supersymmetry features are encoded in the
form of the central charge matrix at the attractor point. We derive the entropy and the
explicit symplectic sections, which are suitable parametrizations of different branching
of the fields representations, with respect to the maximal subgroups contained in the
duality group.

In gauged Supergravity some of the global isometries of the scalar manifolds are made
local, and the scalars are charged under the action of gauge fields. There is however a
case, precisely the gauging of the diagonal U(1) group in the N' = 2 theory, in which the
only modification is the appearance of a scalar potential. This behaves as a position-
dependent cosmological constant, thus allowing for asymptotically curved space-time
solutions. The presence of this additional potential strictly constrains the scalar dynam-
ics. Only recently, in fact, the standard lore of the non-existence of Supergravity black
holes, in asymptotically Anti de Sitter (AdS) space-time in four dimensions, has been
demonstrated wrong, by the construction of a magnetically charged black hole solution
in the mentioned N = 2 supergravity. We extended such formulation to render it dual-
ity invariant; in particular, in this framework, it is possible to introduce also magnetic
gauging. We show how to recover an attractor flow and we identify the corresponding

super-potential.
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Finally, it is important to mention that, in more recent years, black holes have become
a powerful tool in applications of the AdS/CFT correspondence to condensed matter
and nuclear physics. The construction of black hole solutions for gauged Supergravity
theories may give the opportunity to extend such results for AdS black holes in presence
of multiple charges and nontrivial scalars profiles, thus investigate more complex dual

configurations.

This thesis is organized as follows. Chapter 2 reviews electric-magnetic duality trans-
formations in theories of vectors, scalars and fermions coupled to gravity. In Chapter
3 we introduce the geometric formulation of extended Supergravity theories with coset
scalar manifold, exploiting the symplectic structure of their scalar manifold. We also
show how a symplectic covariant formalism allows to clarify the connection between
electric-magnetic duality and U-duality invariance of the theory. Attractor equations
are derived for a static black hole solutions of Supergravity in Chapter 4. We then
analyze some N = 8 Supergravity specific configurations which capture representatives
of both BPS and non-BPS orbits, in Chapter 5, and we focus on the properties of black
holes in 4-dimensional theory that arise from dimensional reduction of 5-dim N = 8
Supergravity in Chapter 6.

We dedicate Chapter 7 to the construction of dyonic black holes in U(1)-gauged
Supergravity, and present examples of different charge configurations that can be related

by duality or symplectic transformations.



Chapter 2

Electric-magnetic duality in

Supergravity

Supersymmetry invariance constrains the form of the action, and thus determine the
possible couplings among the fields of a given theory. However, the resulting Lagrangian
shows additional interesting symmetries and invariances, which are collectively described
as dualities. This, in part, reflects the geometric nature of the supersymmetric field
content. For example, when the maximally extended theory of Supergravity was con-
structed, by Cremmer and Julia, a non-compact duality invariance under the action of
E7(7) emerged. Gaillard and Zumino then considered this invariance for general theo-
ries, extending the duality of Maxwell electrodynamics to several abelian gauge fields;

supersymmetric theories are just a subset of those.

Duality transformations rotate among themselves the abelian field strengths, and
correspond to an invariance of the theory if they do not affect the equations of motion
and Bianchi identities. The Lagrangian in general transforms under duality, and the
action is not invariant. By exploiting the covariant transformation of equations of motion
and Bianchi identities, one can study their properties in a unified framework, and clarify

how solutions of different models can be mapped onto each others.

It is interesting how the supersymmetric feature of a theory automatically selects the
couplings among the fields, in such a way that a nontrivial duality invariance remains,
acting on the vector sector. We will see how this happens in Chapter 3, where we will
discuss the details of the scalar manifold of Supergravity theories and in particular of its
symplectic embedding. Before that, we will derive the constraints imposed by duality

invariance for generic theories of vectors, coupled to scalars and fermionic fields, and we
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will follow in that the study of M.K. Gaillard and B. Zumino [14].

2.1 Gaillard—Zumino construction

One of the most interesting properties of charged solutions of Supergravity is their
invariance under electric-magnetic duality rotations. Consider the bosonic sector of
Supergravity, described by the following action

1 1
B 4 A 7T, o A I
- / V=g die (—zR“WVAFFwF T g N F

+;GTS(¢)8H¢”8“¢S) : (2.1.1)

This is a theory of gravity coupled to n, abelian fields (A,I' = 1,..,n,), and scalar fields
which are described by a nonlinear o-model with target space M eqiq-- They couple to

the vector fields by the metric
Nar = Nar(¢) - (2.1.2)

Except for some cases in A/ = 2 theories, the scalar manifold of extended Supergravity
is a symmetric homogenous space of the form Mcuqr = G/H, where G is the duality
group acting on the electric and magnetic field strengths, and H is its maximal compact
subgroup. Of course, the action in (2.2.1) needs to be completed with terms containing
fermionic fields for the theory to be supersymmetric. However, when we specify to black
holes solutions, fermions decouple from the bosonic equations of motion, thus (2.2.1) is
sufficient to find the solution for the metric.

In a seminal work of 1981 [14], M. K. Gaillard and B. Zumino considered the most
general 2-derivatives action of bosonic and fermionic fields, with invariance under elec-
tric magnetic duality rotations, and showed that the group G must be embedded in the
symplectic group Sp(2n,R), where n is the number of vector fields in the theory. More
exactly, the duality invariance of electromagnetism can be extended to the interaction
with the gravitational field, but it is violated by electromagnetic couplings of the mini-
mal type, and there is no non-abelian generalization of duality rotations that leave the
pure Yang-Mills equations invariant [15]. However, generalizations to non minimal (e.g.
magnetic moment type) couplings is possible, even to non abelian group.

In the following, the main procedure to derive such an action will be outlined. In
particular, it will be shown that the most general group which can be realized, given n

field strength, is the real symplectic group Sp(2n,R), which has U(n) as its maximal
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compact subgroup. U(n) is indeed the largest group of duality transformations, in
absence of scalar fields, and this is related to non-linear transformations of the scalars.
In the examples we will touch in this thesis, the group of duality transformations is
smaller than the whole symplectic group. In the case of N' = 8, for example, there are
28 field strengths, the duality group is E7(7), a subgroup of Sp(56, R), whose maximal
compact subgroup is SU(8) C U(28).

Duality invariance in Maxwell-Einstein theory

The simplest theory in which electric-magnetic duality is realized is Maxwell theory
of electromagnetism coupled to gravity, in which an abelian gauge field A,(x) is the
connection of a U(1) gauge bundle over the 4-dimensional space-time manifold, with
metric g,,,. It is described by the action

1
— —g{R—-F,, F*" 2.1.3
o | VIR By (213)

leading to the equations of motion

Sem =

O F" =0, (2.1.4)
1
R, — iRg,w = —8rGT,, , (2.1.5)
and Bianchi identities
™ =0 = O F =0, (2.1.6)
where
1 - 1
= iF/“’dxM ANdz¥ = ﬁel“/panadxﬂ A dx” y (217)
is the hodge dual field strength of the vector field. The stress-energy tensor is
1 « 1 2
T;U'V = E FHQFI/ - Zg'“VF . (218)

This theory is manifestly duality invariant, in the sense that the set of equations (2.1.4)

is unaffected by the following transformations on the vector field strength
F'™ = (cosa + jsina)F* | aceR, (2.1.9)

where the j “duality” operator is such that jF' = *F, corresponding to the following

U(1) ~ SO(2) rotation
E cos o sina E
_ . (2.1.10)
H' —sina cos o H
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The Lagrangian of the vector field is written in terms of the field strengths and their
duals, or explicitly

! (E? — H?) | (2.1.11)

" 4r

T

which is obviously not invariant for SO(2) rotations acting on the vector (E,H). It
is important to stress that duality rotations are not defined as transformations on the
vector fields but on their field strengths, they are an invariance of the equations of
motions and not symmetries of the action. Notice that duality transforms electric and
magnetic charges, thus relating among them different configurations. On the other hand,
the metric g, remains a solution of the Einstein equations 2.1.5, in the new frame.
The Lagrangian will not be invariant but transforms in a specific way, that we will

analyze in generalizations of Maxwell duality.

Duality invariance in a theory of vector fields

It is possible to extend duality invariance to the case of a theory of n interacting vector
fields, coupled to other fields x*, both fermionic and bosonic, described by a Lagrangian

of the form

L=LF XX, (2.1.12)
where F*  (a = 1,...,n) are abelian vector field strengths

Fy, = 0,47 — 0, A (2.1.13)

and XL = (?#Xi. We define a dual electromagnetic curvature

~ 1 oL
Gy, = 5eWpUGapcr = 28F““V , (2.1.14)
so that the equations of motion derived from (2.1.12) can be simply written as
rGs, =0, (2.1.15)

while Bianchi identities still hold in the form

8, F = 0 (2.1.16)
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Since these equations are linear in the fields strength F, G, the infinitesimal transfor-

mation that leave these equations and (2.1.15) invariants, must act on the fields as

Q-0 e

ox' =€)
. o€
5(8uXZ) = ufl = ,uX :

oI’

A B .
where ( cD ) is an arbitrary real 2n x 2n matrix, and the functions £'(x) do not contain

derivatives of the fields. We define the duality group as the one that acts linearly on the
vectors of the field strengths and their duals, not affecting the dynamical equations of the
theory; their covariance, indeed, put constraints on the possible duality transformations

among the general linear ones.

Constraining the duality group

Given the above transformation, the generic variation of a Lagrangian of the form
(2.1.12) is

L = {§l+ ; 0

C C C C 8
u@@ + (FeAY + G°BY)— ]L (2.1.18)

OF®

differentiating again with respect to F* and using again the transformations in (2.1.17)

gives
9 _ 10 T ab ba oL
250l = 28F 570 (FCF + GBTG) + 2D + A™)
~ 0G¢ ~
- ab _ ba b be cb\ ~b
+5 [(C ChYFt 4 S (B~ B )G] . (2.1.19)

The requirement that the r.h.s. is a derivative with respect to F'* gives
c=cT, B =BT, D 4 Aba — pgab (2.1.20)

thus the Lagrangian must satisfy

) )
o't = gpe

< FCF + GBTG+17£> : (2.1.21)

Moreover, the covariance of the equations of motion for lower spin fields x* yields the

condition

0 0 1 ~
— =0, = — -GBG) = 2.1.22
(50~ fuge ) (62 - 566 ~0. (2.1.22)
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which is consistent with (2.1.21) for = 0, D = —AT. This finally restricts the matrix

A B
(C D) to be an element of Sp(2n,R). We find the variation of the Lagrangian

1 - ~
5L = J(FCF +GBG) . (2.1.23)

Notice that this is not a total derivative, G being a curl only because of the equations

of motion (2.1.15).

2.1.1 Construction of the Lagrangian

From the variation (2.1.23), given by the transformation (2.1.17), satisfying the con-
straints (2.1.20), we can write more simply 6L = %5(F(~?) We begin to write the

functional as

1 - ) .
L = ZFG‘Fﬁinv(FauXZvXL) ’

where L;,, is written as a function of invariants of the duality group. But in the general

a
case where this group is Sp(2n, R) and the field strengths <G> transform as a vector

in the fundamental representation, the only possible invariant coupling of F' and G to

the fields &° is built out of two Lorentz invariant tensors

(Hpw (X)s L (X)) (2.1.24)

transforming as the vector (F,G) under duality. Then the Lagrangian whose equations

of motions are invariant under duality has the form
o 1 o
'Cinv-(Fv G,Xza XL,) = Z(FI - GH) + ‘Cinv.(Xza XL) ’

where L;,,. is now an invariant functional of the x’ fields only, so that it does not affect
the equations of motion, and I, H form a vector in the fundamental representation of
the Symplectic group.

By definition one has (% = %é’, and this is actually a constraint on I and H

é—]:(F+ﬁ)g?

(2.1.25)
the operator j introduced in the previous section, giving a field strength 7}, satisfies

jT;w = T;w )

(7)? = 1.
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We can write (2.1.25) as

: . 0G
jG—I:(F—i—]H)a—F.

whose general solution is
JG—I=—-K(x)(F+jH) ;
4
jG =1—-K(x)(F+jH) . (2.1.26)

Thus the effect of an infinitesimal duality transformation of Sp(2n, R), (2.1.17), is de-
termined by the tranformations on (F,G) and (H,I) the vectors of the fundamental

representation. We find
0K(x) = —jC — jKBK + DK — KA | (2.1.27)
which restricts the form of the Lagrangian to

1 1 1
L= FKF+ F(I—jKH)+ (jH(I = jKH) + Lo (x) . (2.1.28)

Compact Duality Rotations

The case K(x) =1 implies §K = 0. From (2.1.27) the constraints on the coefficients of

the duality rotation are
B =-C=B", A=D=-A",

which restrict the duality group to the maximal compact subgroup U(n) C Sp(2n, R).
This appears even more manifest in a complex basis of the fundamental representation,

namely using the self and anti-self dual vectors
Ft=F+iG,
F~=F—iG,

which allow to write (2.1.17) in the form

5(1’) - <T 0) (F> | 2129
F~- 0T F~

with 7= A —iB = —TT. The complex basis which uses F* and F~ allows a symple
physical interpretation: spin-1 fields of opposite helicity transform according to con-
jugate representations of the duality group, just as massless fermions do under chiral

transformations.
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It is easy to give a formulation that easily generalizes to the non compact case. The
role of the imaginary complex element ¢ in the definitions of the complex basis (2.1.29)

is played in general by the “duality” operator
F+iG— F+iG.
With the replacement ¢ — j, and the block-diagonal T-matrix becomes
ReT+iImT - ReT£3ImT.

Also, defining a complexified coupling jHL = (H + jI), functions of the fields x, the

Lagrangian (2.1.28) can be written as

1 1 1 1
£:_"fa+§FH+—in—§

4 S HJer + Eim;.(X) .

The field H_ has no dynamical meaning, since it does not appear in any of the couplings
of F', and can be set to zero, meaning it is reabsorbed in L, (x). Then, for H = jI,
from (2.1.26) it follows that

I=1+KX) "' [KNF?+G*+ FjG - K(x)GjF] . (2.1.30)

Notice that, in this way, in the compact K (x) = 1 case, the invariant bilinear F'I — GH

(szHp::;ﬁ+G%:%w—mmF+w%

which is manifestly invariant under linear unitary transformations among F' and G.

Non-compact transformations and non-linear realizations on scalars

By now we have all the ingredients to describe the theory of interacting fields with invari-
ance under a compact subgroup of Sp(2n,R), but we need to generalize the description
to non compact duality groups. The solution is to introduce in the theory scalar fields
described by a nonlinear sigma model, taking values in the quotient space of group G
with respect to its maximal compact subgroup K, being the semisimple group G the
duality group.

The scalars are described by a group element g(z) € G, in some representation
of the duality group, but two elements are equivalent if they differ by right-action of

the maximal compact subgroup H of G. This equivalence, and thus the coset space
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structure, is implemented by the requirement that the Lagrangian is invariant under

gauge transformations that can be written as

g(z) = g(@)[k(x)] ", (2.1.31)

together with rigid transformations

9(z) = gog(w) , (2.1.32)

with go € G. The covariant derivative is built from the H group connection @, as
D,g = 8,9 — 9gQ,. Notice that ¢g~1D,g is invariant under the global transformation
(2.1.32), thus the Lagrangian

L= —% Tr (g_lDMg)2 ,

is invariant under both gauge and rigid transformations on G. Defining P, = g_lDug,

the equations of motions for the scalar of the non linear o-model can be written as
D,P, =0,P,—[P,,Qu=0. (2.1.33)

Given the structure of non the linear o-model, it is possible to solve (2.1.26) for

G non compact. The scalars of the coset can be represented by an Sp(2n,R) matrix

(symplectic embedding), which is easily expressed in a complex basis as'

®o 97
- , 2.1.34
! <¢>1 ¢3) ( )

where ¢¢ and ¢, are n x n matrices satisfying
Bhdo — dlo! = 1; (2.1.35)

scalar fields transform under the action of Sp(2n,R) as

T V*
5g = , 2.1.36
g (V - ) g ( )

T and V are related to the block elements of the transformation matrix in (2.1.17) by
A—iB D+iC

T —
2 T2
A—iB D+i

v 21 _ ;lc _ (2.1.37)

'For the derivation of complex coset representatives see the Appendix A of [14].
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The solution to the transformation law of K in (2.1.27) is

0K = (g + o)) (o) — ol) (2.1.38)

where again complex numbers have to be reinterpreted as having ¢ replaced by j, so for

instance
¢i = Re¢; + jlmg; . (2.1.39)

Notice that in case one chooses the particular choice of gauge

b0 O] 0 P
_ _ , 2.1.40
’ <¢1¢3> exp(P 0) (2140

because of the symmetry of the noncompact generators P, the matrices ¢g, ¢1 satisfy

G0 =,  ¢1=01 . (2.1.41)

A remark is in order. The conserved currents associated with the noncompact generators
can be constructed only when the interactions with the scalar fields is present. It is
possible to follow what happens in the decoupling limit, simply by dimensional analysis
of the Lagrangian terms. Interestingly, in this limit, the noncompact part of the duality
group becomes abelian, corresponding to a contraction of the original group to the U(n)-
scalar free case, thus the compact case can be recovered smoothly from the noncompact
construction.

Moreover, the structure underlying duality invariance presented above holds for
generic theories. There is indeed an unspecified L;,, and an antisymmetric tensor
which couples to fermions in the form H,, (1) which are completely free, up to now.
In supergravity theories, these quantities, in fact the field content itself, are fixed by

supersymmetry.

2.2 Duality rotations and covariance for the supergravity
action in d =4

As stated at the beginning of the chapter, any N-extended Supergravity theory in d = 4

has a bosonic sector described by the action

1 1
. 4 A ', pv v A I’
S — / \/jg dr <_2 R+ ImNAFFMVF I + WRGNAFGM po—Ful/FpO' +

30 (0)0,010%0" ) (2:2.)
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The matrix NMaxn(®) is a symmetric matrix nx n, with n number of vector fields, depend-
ing on their representation of Gaillard—Zumino Symplectic group. Different Supergrav-
ity theories thus have different scalar manifolds and number of vector multiplets, and,
since for N' > 2 vector multiplets contain scalar fields, the action of the vector isometry
group Mcqiar 18 deeply connected to the transformation of scalars. This results in the
embedding of the isometry group in the duality group, whose explicit form relies on the
specific Supergravity theory we are considering. Once we have this correspondence, we
find the matrix N in its explicit form.

It is crucial, then, to study duality transformations in details, in the form of a linear
action on the (abelian) vector field strengths and their dual forms. As stressed before,
these transformations leave Bianchi Identities and equations of motions invariant, and
generalize electromagnetic duality. For the purposes of studying black hole configura-
tions, it is important to underline that g, , the four dimensional space-time metric, does
not transform under duality. This means, in particular, that when g,, is a black hole
metric, duality transformations will map black holes into other black holes. More gener-
ally, any solution for g,,, depends on scalar fields and charges in a symplectic invariant
way.

In what follows we will see the Gaillard—Zumino construction at work in the Super-

gravity framework.

Duality rotations and symplectic covariance.

We deal with a theory of vectors and scalar fields which is invariant under the action of
a duality group, in d = 4. The gauge fields are ny abelian fields Al/}, whose dynamic is
described by the field strengths in the action (2.2.1). We can separately write the dual
and anti-dual field strength

1
F* = 5(ij'*F) :
*FE = FiFt (2.2.2)

and rewrite the vector part of the action as

Lyee =i [FINF~ —FHINFY] =

— _Z'<F+T ’ FfT) (J;/ j\/_) (ii) , (2.2.3)
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Following the Gaillard—Zumino construction we introduce the tensor Gﬁy defined as

1 0L
A
*G;w

= - 2-2.4)
A (
20F},

that, for the theory under examination, is
*GA/W =Im Ny FEV—G—RGNAX;*FMZV . (2.2.5)

The equations of motion and Bianchi identities are

VHFS, =0,
VE*GA =0,

J
{ VAImFE A = 0 |

2.2.6
VHmGy ,, =0, (229)

where we also write Gy ,,,, separating its self-dual and anti self-dual part

1
Gt = S (GG,
Gt = FiGT (2.2.7)

whose relation on the field strength F' is given by

Gt =NF",
G- =NF. (2.2.8)

The vector part of the Lagrangian, if written in terms of F' and G as in (2.2.4), takes

the compact form

Loee =i [F~TG™ —FTTGT] =

:—i<F+T,F_T> <g+> , (2.2.9)

Moreover, we introduce the n + n components vector of 2-forms

*F
V = ,

and we get equations of motion, from the variation of the vector fields, in the form

AV =0, (2.2.10)
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considering differentiation with respect to space-time coordinates. Duality transforma-

tions are then simply described by

, A B
V=8V, §= . (2.2.11)
C D

S is a priori a matrix in GL(2n,,R), and, since we always required duality invariance
during the construction, the equations of motion for the vector V' are still given by
dVv’ =0.

Restriction to symplectic group from the scalar sector

While the duality rotation (2.2.11) acts on field strengths and corresponding duals, also
the scalar fields are subject to the action of some diffeomorphism £ € Diff(Meqiqr) Of
the scalar manifold, transforming the matrix of couplings Nas;. We thus assume that,

given M cqiqr the manifold of the nonlinear sigma model, there exists a homomorphism

of the form
ts : Diff (Mgeatar) —> GL(2n,R) (2.2.12)
so that
v 5 € Diff (Mscalar) : d)[ i> ¢I/
A B
@) =|"° ") e GLEn,R) . (2.2.13)
Ce De

The action of this homomorphism describes the transformation of all the fields, that can

be expressed as
¢ — &(¢)
§: V — 15V (2.2.14)

N(g) — N'(£(9))

In particular, the transformation of the Lagrangian is

/
ﬁ'uec

= i[FT (44 BN) N (A+BN)F~ = F*T (4+BN) N'(A+BN)F*]| (22.15)
Consistency with the definition of G* requires that the matrix Ay, transforms as
N' = N'(£(9)) = (C+ DN(¢)) (A+ BN (¢))™ (2.2.16)

while consistency with the definition of G~ imposes the analogue transformation on the

complex conjugate symplectic matrix

N' = N'(&(¢)) = (C+ DN(¢)) (A+ BN(¢)) " (2.2.17)



18 Chapter 2. FElectric-magnetic duality in Supergravity

Finally, by requiring that the transformed matrix N’ be again symmetric it simply

follows that the matrix A = ¢5(£) must obey

AT<O_H>A: (0_]1) : (2.2.18)
1 0 10

that is A € Sp(2n,R). Consequently, the homomorphism of eq. 2.2.12 becomes
ts + Diff (Mseatar) — Sp(2n,R) (2.2.19)

Clearly, since Sp(2n,R) is a finite dimensional Lie group, while Diff (M 414, ) is infinite—
dimensional, the homomorphism ¢5 can never be an isomorphism.

Also notice that the transformation A is not a symmetry of the action, unless for a
very restricted subset among the matrices with C = B = 0. However, the diffeomor-
phism &, defined by the correspondence A = 15(€), is a diffeomorphisms on the scalar
manifold for which the Lagrangian is invariant, since it is just an isometry of the scalar
manifold metric ¢g75. In fact, if £* : TM,. — T'M,, is the push-forward of the diffeo-
morphism ¢, then VX, Y € TM, ¢°(X,Y) = ¢°(£* X, £+ Y), meaning that £ is an exact
global symmetry of the scalar part of the Lagrangian (2.2.1). In connection to the previ-
ous construction of duality rotations, it is important to stress that these symmetries of
the scalar sector are not guaranteed to admit an extension to symmetries of the whole
action, but they can instead be extended to symmetries of the field equations of motion
and Bianchi identities, that is to duality symmetries, as defined in the first part of this
Chapter. To achieve this, the group of isometries of the scalar metric Z(Mgeqrqr) needs
to be suitably embedded in the duality group Sp(2n,R) while the matrix My needs to
be a scalar under transformations of M .44 coordinates.

The description of this embedding, and the properties of N’ > 2 supergravity theories,
will be then the subject of the next Chapter.



Chapter 3

Symplectic structure of extended

Supergravity

The aim of this Chapter is to provide the geometric formulation which describes ex-
tended Supergravities in four dimensions in presence of electric and magnetic sources,
keeping manifest the underlying duality symmetries of the theory. We will emphasize
the symplectic structure of A/ > 2 extended Supergravity, focusing on the AN/ = 8 case.
This can be seen as a consequence of the existence of a flat symplectic bundle on the
scalar manifold. We then discuss, in the context of N’ = 2, the modifications induced
by the gauging of a subgroup of scalar manifold isometries, exploiting the notion of

momentum map.

3.1 N =2 Supergravity and special geometry

Four dimensional A/ = 2 extended Supergravity is particularly interesting due to its
interpretation in connection to string theory, because it can be realized as the low
energy effective theory of string compactifications on Calabi—Yau manifolds. The theory

contains the gravity multiplet, and can be coupled to vector and hyper- matter multiplets

Guv Aft
A ; ¢
1/};/, ) 7;4 ) " 3
) q
A r (3.1.1)

gravity, ny vector’s ny hyper’s
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Since in N/ = 2 the gravity multiplet contains the graviphoton, the total number of
abelian vector fields for a given (ungauged) supergravity theory will be n = ny + 1.
Scalars are present both in the vector and in the hypervector sector, and in this case the
non-linear ¢ model, defined by the Lagrangian kinetic terms of the scalars, is a tensor

product of a Special Kéhler with a Quaternionic Kahler manifold
M = Mg @ Mgk - (3.1.2)

The scalars present in the vector multiplets are coordinates of Mgy, while the hy-
perscalars parametrize Mgg. This is a consequence of the factorized action of the
R-symmetry group on the scalar manifold, namely U(2) = U(1) x SU(2). As it is shown
in the action (2.2.1), supersymmetry of the action requires that the abelian field strength
couple to the scalars through the matrix Ay, which is built from geometrical quantities
determined by the particular SK manifold of the theory under consideration. In par-
ticular, they do not depend on hyperscalars. This will become important when dealing
with black holes solutions, because we will look for configurations where hyperscalars
are consistently set to zero.

Given any N = 2 Supergravity, scalars of the vector multiplets span the complex
Mgk. Special Kihler means that the manifold MK is a K#hler—Hodge manifold
endowed with an extra symplectic structure, where a Kéhler manifold M is a Hodge
manifold if and only if there exists a U(1) bundle L — M such that its first Chern

class equals the cohomology class of the Kéahler 2-form K:
all) = [K]. (3.1.3)
For local coordinates 2%, z', we can write
K =igy;ds' A d#, (3.1.4)

where 2% are the n = ny + 1 holomorphic coordinates on M the scalar fields in the
vector multiplets, and g;; its metric.

In this case the U(1) Kéhler connection is given by:
Q= —3 (9ikds' — aiKd=') (3.1.5)

where K is the Kéhler potential, so that K = dQ.
A Special Kéhler manifold is not necessarily a coset manifold. It is possible, however,
to exploit the symplectic covariant construction of Gaillard and Zumino also in the case

of N'= 2 Supergravity.
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3.1.1 Special geometry in Supergravity

Duality rotations and symplectic structure act already on charged BPS states of N' = 2
rigid supersymmetric Yang-Mills theory [16]. When we couple it to gravity, the moduli
space of N' = 2 Supergravity acquires a Kahler—Hodge structure over the symplectic
manifold, introducing a U(1) connection that modifies the constraints of special geometry
of the rigid formulation [17]. One striking difference is that, in presence of coupling to
gravity, the prepotential of the theory may not exist. It is possible, however, to give a
prepotential-independent formulation of special geometry in the Supergravity case.
Suppose the theory is coupled to ny vector multiplets, then the total number of
vectors, including the graviphton, is n = ny + 1 and the scalar fields of the vector

multiplets parametrize G/H € Sp(2n,R). Consider the 2n sections
V=(L"My, A=0,1,.,ny . (3.1.6)

The local Special Kahler geometry is defined by the following relations, which define a

flat connection on the symplectic bundle,

U; = (D;LA, DiMy) = (f2 ha),
Din = iCijkgk[U[ y

DUs = g5V ,
D,V =0. (3.1.7)
Latin indices run over 1,2,....,n, and D; is the covariant derivative with respect to

the Levi-Civita connection and the Kéhler connection @, meaning that under a Kéahler
transformation given by K — K + f + f, a section over the U(1) line bundle transforms

accordingly as
P — exp_%@pfﬂjf) Y. (3.1.8)
Its covariant derivative is then
Dol = 9 + Tk + gain : (3.1.9)

and analogously for D;, with the substitution p — p. (p,p) are the Kihler weights of
the line bundle section .

In the rest of this section we introduce relations and formulae of Special Geometry
that will be needed to construct solutions in A/ = 2 theories, and to analyze their

supersymmetric properties.
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We start with the coset parametrization. Symplectic sections in (3.1.6) have K&hler
weights (1, —1), conventionally, and they are are covariantly holomorphic, in the sense

that D;V = 0. They are normalized as
(T My — LANL)) = i(V, V) = 1. (3.1.10)

It is then convenient to introduce holomorphic sections X = e K/2LA Fy = e~ K/2 )y,

satisfying by construction
~A AT
K= —log|i(X Fx—X"Fyp)| . (3.1.11)

In all cases when the integrability constraints® (3.1.7) can be solved in terms of a pre-
potential, that is a holomorphic function homogeneous of degree two F(X A), then the

holomorphic sections are determined by

Fp = a)a(AF(XE) , (3.1.13)

while in general it holds that
My = NasL”™  hai =Nasf (3.1.14)

introducing the two matrices
har = (haohad) » f1 = (o fY) 5 hao=Ma for = L, (3.1.15)

the symplectic matrix Myy, giving the couplings between scalars and gauge fields is

determined explicitly in terms of (LA, My) as
Mz = har(fH% - (3.1.16)

The action of the duality group is the same in the rigid and in the local case and acts as

()= (en) () (E0)
N : =SeSp@n,R),  (3.1.17)
My C D)\ My C D

'In general, from the same integrability conditions for a special Kéhler manifold, the curvature of the

manifold is given by
Rii = 939 + 95915 — CitaCingg™ (3.1.12)

which is determined by the covariantly holomorphic (2, —2) tensor Cjjj of (3.1.7).
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so the vector of symplectic section transforms as the symplectic vector of (anti)self dual

field strengths (F.,*, G*}), with F,* = F2, + f€u,psF 5, and the dual field strength

G"\ =idL/ 5]-",:”/\ for the bosonic Supergravity action is given by
Gaw = ReNax oo, —Im Mys *F), . (3.1.18)
The symplectic embedding describing the isomorphism
v Dif f(Mscatar) = Sp(2n, R) (3.1.19)

for N > 2 theories is simply stated in terms of the sections (f, h) defined above, as

({L):;i(é:zi) : <g13;>€5p(2n,R) (3.1.20)

implying on the sections the following normalization relations

i(fth—ntf) =1,
ffh—h'f=0. (3.1.21)

In this thesis we will study particular solutions to Supergravity equations, namely
those in which the metric field describes a static charged black hole. The black hole
is a dyonic state whose charges are defined as the fluxes of electric-and magnetic field
strengths on a 2-sphere at spatial infinity

1 1
. / o= G (3.1.22)
47 S2 4 S2

In the presence of scalar fields, the physical field strengths (T7,T~) are dressed with

the scalars, as it results from the supersymmetry variations of the fermions
T = hWFH — fAGE . (3.1.23)

They satisfy
T =hF™ - AT =0 (3.1.24)

so that T =T~ (and T = TF). The physical charges, given by the central charges and
the matter charges, are now defined as the integrals over a S? of the physical graviphoton

and matter vectors

Z = / T= / (haF™ — fFAG)) = ha(z, 2)p™ — (2, 2)qa (3.1.25)
52 52
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with 2%, 2 being the v.e.v. of the moduli fields for a given background. Notice that,

since V = (f*, hy), we have that
Zi = haip™ — Mg = ViZ . (3.1.26)

In particular, a BPS solution with Z; = V;Z = 0 would then have a minimum mass,

since it would satisfy
ViZ =0 0|Z*=0. (3.1.27)

The symplectic structure of the manifold implies, for special geometry, the following

sum rules
= 1
|21 212" = |2 + Zig7 25 = - 5Q'M=Q (3.1.28)
where
1 —ReN ImAV 0 1 0
M, = ¢ (3.1.29)
0 1 0 ImN~!/ \ —ReN 1
1 —ReF ImF 0 T 0
M = ¢ - (3.1.30)
0 1 0 Imr! —ReF 1
Q= (", q) - (3.1.31)
Notice that the new symplectic metrics ML are related by the exchange of N' <+ F,
where F relies upon the existence of a prepotential F' and is F = axaff% = Fy». Notice

also that, while ImN is always negative definite, this does not hold for ImF in general.

Discussion on the existence of a prepotential

When a prepotential F' exists, the degree-2 homogeneity of F' requires that the holo-

morphic sections X, F) transform under duality action of the matrix S like

XMX) = (AN + BMFap) X®
FA(X) = (Cas + D" Fas) X™ (3.1.32)

where F = Fjy; = OpnOsF' . It can be shown that the in new duality frame, a prepotential
exists such that

~ oF

whenever the map X* — XA s invertible.
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When working in Supergravity, special coordinates are defined such that t' = X*/X?;
assuming that D;(X*/X0) is an invertible matrix, then it is possible to choose a frame
such that 9;(X*/X%) = §7. This is only possible if X* are unconstrained (linearly
independent) variables, and so Fj(X). From the relations above follows, however, that
whenever the (n + 1) x (n 4+ 1)matrix A + BF is not invertible, in the rotated frame
the variables X and F) still forms a good symplectic section, since the symplectic
transformation matrix S is always invertible, but there will be no function F = F(X)
such that FA = 9F(X)/0XA.

None of the formulae needed in this section to build special geometry use the existence
of a prepotential (i.e. the functional dependence of F) on the X*), but all quantities are
symplectic invariant or covariant, thus well defined in any duality frame. For example,
in order to compute the electric-magnetic coupling matrix N in the rotated basis, the

formula of the transformed matrix
Ms(X,F) = N(X,F) = (C + DN(X))(A+ BN (X))~} (3.1.34)

it is only needed that A+ BN is invertible, but this is ensured, as in the rigid case, by the
conventional negative definiteness of the matrix ImAN. However, since in the local case
A+ BN is no more related to the change of coordinate, now being 90X /0X = (A+ BF),
the existence of a prepotential, as stressed, is no more guaranteed.

This formulation of special geometry, independent from a prepotential, is relevant
for Supergravity theories obtained as low energy limits of heterotic String theory, for

which a prepotential may not exists (see, for example, the discussion in [17]).

3.2 Symplectic embedding for coset scalar manifolds

We now deal with the cases in which the scalar o-model is a coset space G/H, and N' > 2
arbitrary. G is a non-compact group acting as an isometry group on the scalar manifold,

‘H is the isotropy subgroup
H = Hau @ Hinatter (321)

H Ayt is the automorphism group of the supersymmetry algebra, and Hatter 1S @ local
gauge invariance on the scalar manifold related to the presence of matter multiplets.
Theories with A/ > 4 Supersymmetry and field content of spin at most 2 have, of course,
Hmatter = 1. As discussed from the beginning, the duality group G acts linearly on the

field strengths F lﬁ\y, where generically A is the index spanning the representation of G in
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which the vector fields transform. We notice here that, since solutions of Supergravity
are a large-charge approximation of the fundamental charged dyons, suitable at low
energy with a classical coupling to gravity, the true duality symmetry (U-duality) acts
instead on integral quantized electric and magnetic charges, and is nothing but the
restriction of G to the integers, thus the moduli spaces of these theories is G(Z)\G/H.
The geometry of the coset manifold Mg.q1r = G/H determines the Supergravity
theory. All its properties are indeed fixed in terms of the coset representatives L(¢),

which transform according to

L(¢') = gL($)(g, ¢) (3.2.2)

for change of coordinates ¢/(¢) on the scalar manifold (g € G, h € H). The kinetic and
axionic metric My for the 2-forms F* are fixed in terms of L and the physical field
strengths of the interacting theory are “dressed” with scalar fields in terms of the coset
representatives. In this way, central charges associated to the 1-forms in the gravitational
multiplet are determined by the geometrical structure of the moduli space (analogously,
the 1-forms of matter multiplets give rise to related central charges).

If we use the self-dual and anti-self dual decomposition of vector field strengths
F*E = %(F$z'*F) : (3.2.3)
the kinetic part of the vector Lagrangian becomes
Liin = iNasFAF = 4 hee (3.2.4)

The duality group action is given by

F—A F—A !
S — : (3.2.5)
(o) ()

where:
G\ = NAgF_E ,
GL = NanF™ | (3.2.6)
A B
S= oD € G c Sp(2n,R) . (3.2.7)

If L(¢) is the coset representative of G for a given representation, then S corresponds

to the embedded coset representative belonging to Sp(2n,R), and A, B,C, D are built,
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in any theory, in terms of L(¢). It is useful, dealing also with complex coset spaces, to

use a complex basis in Sp(2n), and then the matrix in USp(n)

1 <f+ihf+il_z

— _ ) =A'SA (3.2.8)
f—ih f—ih

V2

the relation between f,h and S is the same as in (3.1.20)

i(fth—hif) =1,
filh—htf =0, (3.2.9)

A= ( 1. 1) , (3.2.10)

however, the submatrices f, h can now be decomposed with respect to the isotropy group

and

Haut @ Hmatter as

f=(fas. 1),
h = (hpa aB,ha1) (3.2.11)

where AB are indices in the antisymmetric representation of Ha, = SU(N) x U(1)
and I is an index of the fundamental representation of Hyqier (upper SU(N) indices
label objects in the complex conjugate representation of SU(N) (fig)* = f24B ete. )
Notice that (f;g\B,hAAB) and (f}\,h,\[) are symplectic sections of a Sp(2n,R) bundle
over G/H, which is actually a flat bundle. The real embedding given by S is appropriate
for duality transformations of F* and their duals G*, according to equations (3.2.7),
(3.2.6), while the complex embedding in the matrix U is appropriate in writing down
the fermion transformation laws and supercovariant field strengths. The kinetic matrix

N, according to Gaillard—Zumino construction, turns out to be:
N=hft, N=MN (3.2.12)
and, as stated already, transforms projectively under Sp(2n,R) duality rotations:
N' = (C+ DN)(A+BN)™!. (3.2.13)

Due to this symplectic embedding, the physical field strengths appearing in the gravitino,

dilatino and gaugino supersymmetry transformations are dressed by the scalars and
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result in
T/;B = i(fT_l)ABAF_A = f,/él\B(N —N)AEF_E = hAABF_A — fﬁBGX , (3.2.14)
Ty =i(f HaF ™ = fMN = N)asF > = hatF72 = fRGy (3.2.15)
Tip = haapF™ — fipGy =0, (3.2.16)
TF = hatF™ — fAGL =0, (3.2.17)
The dressed central charges are then given by
— — + -\ - _ A A
ZAB = / Tap —/ (Thg+Tyg) —/ T)p = haaBp™ — fapan »
S2 S2 S2
Z :/ TI:/ (T[++T;):/ Ty = harm® — flgn (N <4).
S2 52 52
(3.2.18)

Using the embedded coset representative U, it is possible to derive the differential re-
lations between central and matter charges, using Maurer—Cartan equations [18]. The
connection on the symplectic bundle is the USp(n, n) Lie algebra left invariant one form
I' = U~dU satisfying:

dl +T AT =0. (3.2.19)

This integrability condition means that I' is a flat connection on the symplectic fiber

bundle constructed on G/H. The dependence of " on (f, h) is given by

i(FTdh — mtaf) i(ftdh — hidF (H) P
PEUldU:<1(fdh nidf) i(ftdh hdf))E(Q 73) (3.2.20)

—i(ftdh — htdf) —i(ftdh — htdf) P QU

where the n x n subblocks Q) and P embed the H connection and the vielbein of G J/H
respectively . This identification follows from the Cartan decomposition of the Usp(n,n)

Lie algebra. A further decomposition of the embedded vielbein
P P
D 'ABCD 1"ABJ (3.2.21)
Piep  Pry

reflects the decompositions of (3.2.11). Here the sub-blocks are related to the vielbein of
G/H, P= L iv#H )L, since they are written in terms of the indices of Hayt X Hpatter,

they are used to write the differential relations among the central and matter charges
_ 1_
V(w)Zap = ZiPip + §ZCDPABCD

V(w)Zy

1_ _
5ZABPABI + Z;P{ . (3.2.22)
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Notice that, since f belongs to the unitary matrix U, then (fj}B, f}\)* = (fAAB | fAD,
For A/ > 4 no matter coupling is allowed, for a theory with spin content not higher
than 2, then P coincides with the vielbein Pypcop of the relevant G/H.
Besides the differential relations (3.2.22), the charges also satisfy sum rules quite
analogous to those of the A/ = 2 Special Geometry case.

The sum rule has the following form:

%ZABZAB + 7171 = —%PtM(N')P (3.2.23)
where M(N) and @ are:
Mo 1 —ReN ImN 0 1 0 (3.2.24)
0 1 0 ImN~! —ReN 1
A
Q= (p ) (3.2.25)
qa
and follow from the identities
fri=—wW-a"" (3.2.26)
S -1 o l1—
hat = i (N —N—l) = NWN-N)"'N (3.2.27)
hft = NffT (3.2.28)
fht = ffIN (3.2.29)

The matrix M is a symplectic tensor and can be written as

M(/\/):<Oﬂ]£> (i) (1 h)T<01];> (3.2.30)

01
where < 10 ) ('2) is the embedded object corresponding to the coset representative

L satisfying
1
§LABALAE — LisL'y, = N)x . (3.2.31)

This formalism , valid for D = 4, N' > 2 theories is completely determined by the em-
bedding of the coset representative of G/H in Sp(2n,R) and by the Usp(n,n) embedded
Maurer—Cartan equations .

This formalism, and in particular the identities (3.2.9), the differential relations

among charges (3.2.22) and the sum rules (3.2.23), are completely analogous to the
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Special Geometry relations of A/ = 2 matter coupled supergravity, thanks essentially
from the fact that, though the scalar manifold Mpy—s of the N/ = 2 theory is not in
general a coset manifold, nevertheless it has a symplectic structure identical to the N' > 2

theories.

3.3 N =8 theory

Cremmer and Julia [19]-[20] in 1978-1979 built four dimensional N’ = 8 Supergravity,
invariant under U-duality action of the noncompact group E7(7) and under local SU(8)
action. They constructed it from dimensional reduction of N' = 1 Supergravity in
11 dimensions, and used the duality covariance to derive the complete supersymmetry

transformations. It is a theory based on a massless supermultiplet of physical states

% 1J kim TS
(g;w 9 wu 9 AN 9 X ) ¢pq ) (331)
[ 8] [28] [56] [70]
corresponding to a vierbein ey, 8 Rarita-Schwinger spin 3 /2-fields @Z)L, 28 abelian gauge

m

fields A/{L‘] , 56 Majorana spinors x*™ and 70 real scalars ¢P?"* in the irreducible anti-

symmetric representation of SU(8), parametrizing the coset

Ereny

Mscalar = SU(S) )

(3.3.2)

which has real dimension 133 — 63 = 70, indeed. In this thesis, we will be investigating
solutions of the attractor equations for static black holes, which correspond to critical
points of an effective potential Vgy. We want to anticipate that, in order to solve the
equations for A/ = 8 Supergravity, it is convenient to exploit the language of N' = 2
special geometry, generalized to any N > 2 by constructing a flat symplectic bundle [18],
as detailed in the previous section. This indeed allows to find a set of simple algebraic
equations for the A/ = 8 BPS and non-BPS black holes [21]. Moreover, properties of
N = 2 vector multiplets can be embedded into N' = 8 Supergravity.

With reference to the construction of the previous section, then, and specializing to
the N/ = 8 case, where in particular the matter sector is not present, the symplectic
embedding is automatically realized in terms of the 56 representation of E7, embedded

in USp(28,28), and it is given by the usual coset element (3.2.8) where

f+ih = Mg +ihasas (3.3.3)
f—ih = fARAB _ip, 4B (3.3.4)
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AY, AB are couples of antisymmetric indices, with A, >, A, B running from 1 to 8 .
The supercovariant field-strengths and coset manifold vielbein, which also depend on

fermionic fields, are

FA = dA™ 4 [N p(ad 9" + aox P vatho V) + hocl (3.3.5)

Papep = Papep — X[aBcYp] + h.c. (3.3.6)

where the vielbein satisfy Papop = %GABCDEFGHPEFGH = (L_IVSU(S)L)AB|CD =

Papcp,idg' (¢ coordinates of G/H). The fermion transformation laws are given by:

04 = Dea + asT g , A ePVe 4 (3.3.7)

oxapc = asPapcp,i0ud' e’ + asTi g o0 e + -+ (3.3.8)
with dressed field strengths
1, - 1 _
Tap = —i(f_l)AEABFAE = Z(N—N)Az,mfﬁgFm
1
= S (hasapF™ — fA5pGax) (3.3.9)

the duality relations among the symplectic sections determine

1 _
Nasra = ihAEAB(f HAB, (3.3.10)
e OL
The central charges are
1
Zap = i(hAZABQAZ — igeas), (3.3.12)
and satisfy the differential relations
1_
VU 7 45 = 52 “Ppisep (3.3.13)
and sum rule
1 > AB L As P
524277 = — (P77, aas) M(N)asra : (3.3.14)
qra

These relations will determine the particular form of the attractor equations in the

folowing chapters.
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3.4 Gauged Supergravities

It is possible to introduce a further gauge invariance on the scalar manifold of the theory,
exploiting the already existent U-duality, if the gauge group is a subgroup of Mqiar-
We discuss here the gauging for the N' = 2 case, involving in general both scalars of
the vector multiplets and hypermultiplets, for this is what will be used in Chapter 7.
Gauging of N' > 2-extended theories is also possible and it is particularly interesting
in the study of flux compactifications of String theory, for which we refer the reader to
the review in [22]. For completeness we mention that the gauging procedure for N’ = 2
rigid supersymmetric theories has a related construction to that of the supergravity case,
which can be found in [23].

Gauging and the momentum map construction

The structure detailed up to now is that one underlying an abelian, ungauged super-
gravity. We restrict now to the bosonic Lagrangian of N = 2 Supergravity coupled to

n, abelian vector multiplets with complex scalars and m hypermultiplets

Lungauged = \/—g[R[g] + g (2,2) M2 8u23 + huw(q) 0"q" 0uq”

i (NanFahF s — Ny A i) | (3.4.1)

where the n, complex fields z* span a special Kdhler manifold SM and the 4m real fields
q" span a quaternionic manifold HM, whose metrics are respectively g%c and hy, . The
period matrix A7; depends only on the special manifold coordinates 2, z" as already

stated, and is expressed through the symplectic sections of the flat symplectic bundle as
Naz = haifs' ' (3.4.2)

In the theory there are no electric or magnetic currents, and there is on shell symplectic
covariance. Using the homomorphism (2.2.19), any diffeomorphism of the scalar mani-
fold can be lifted to a symplectic transformation on the electric-magnetic field strengths.
Under this lifting any isometry of the scalar manifold becomes a symmetry of the differ-
ential system comprehending equations of motion and Bianchi identities. The problem
of gauging the N = 2 theory consits in identifying the gauge group G as a subgroup of

the isometries of the product space

SM x HM . (3.4.3)
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The gauging effect is to charge the scalars under the gauge fields, thus introducing
covariant derivatives in the action, together with adding new terms which can be fermion-
fermion bilinears with scalars dependent coupling coefficients, and, interestingly for the
purposes of the black holes solutions, a scalar potential Vyquging-

All the modifications induced by the gauging to the Lagrangian and supersymmetry
equations can be obtained via a geometric construction proper of any Lie group action on
manifolds endowed with a symplectic structure: the momentum map. In supersymmetry,
indeed, this geometric notion corresponds exactly to gauge multiplets auxiliary fields (D-
fields).

Momentum map for a scalar Special Kédhler manifold

The Lagrangian giving the action in (2.2.1) contains kinetic terms for the scalars that
are of course invariant under continuous isometries of the scalar manifold metric Gg,
which decomposes, because of the scalar manifold structure of N' = 2, into Special
Kahler metric g;; and quaternionic metric h,,. Scalars can however appear, as we have
seen, through sections of vector bundles over M, in the period matrix N, which won’t
be left invariant.

Let us focus at first on the isometries of g;;. Suppose then, that the holomorphic

coordinates of SM change under an isometry generated by a Killing vector field
2o 2+ () (3.4.4)
with A = 0,1, ..,dim G, and k}\ holomorphic Killing vector
Ok (2) = 0 < 9K\ (2) =0 (3.4.5)
satisfying the equation, in holomorphic indices (kp; = gijkg\)
Vikn; +Vjikni =05 Vika; +Vjikar =0. (3.4.6)

Because of the Kéhler structure of the manifold, whose metric is defined by differentiating
a more fundamental Kéahler potential, also the Killing vectors are built from a real
prepotential Py as

ki =ig"0Px, Px=Pa (3.4.7)

This means that, in order to find the isometries of the manifold, it is sufficient to find a

real function P, such that

8,;(958573/\) =0, (3.4.8)
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in order to require holomorphicity of the Killing vector, while eq. (3.4.6) is automatically
satisfied by the definition (3.4.7).

This procedure has a geometrical origin which reveals a deep connection with su-
persymmetry, and involves the momentum map. This is a map from the symplectic
manifold to the dual of the Lie algebra of the group acting on it, in our case the group
G € M whose isometries we want to gauge. The group G actually acts on M and its ac-
tion is called ”symplectic reduction”, whose definition actually involves the momentum
map. The details of the construction are reviewed in Appendix 3.A. What is needed to
our gauging procedure is the existence of this map, guaranteed by the symplectic struc-
ture underlying the Kéahler manifold, whose Poissonian structure is based on the Kéahler
closed 2-form (3.1.4). In fact, the momentum map associates a function Py € C*°(M)
to any generator of the Lie algebra § of G, as from (3.4.7) and the Poisson bracket of
two Pp, Ps; is defined as

{Pr, Ps} = 4nK (ky, k) . (3.4.9)

It has been demonstrated in [24] that, for any Lie algebra such that H?(g) = 0, which

is satisfied in particular by any semi-simple Lie algebra, the following identity holds
{Pa, Ps} = fus' Pr . (3.4.10)
By the above definition of Poisson brackets, we have, in components,
gkl — KL = S £ Py 3.4.11
igz](AZ_EA)_ifAE r; (3.4.11)

finally, by definition of momentum map (3.4.7) and Kéhler form (3.1.4), we can derive

the form of P, in terms of derivatives of Kahler potential /C,
1/, * : i
iPy =5 (HA 9K — kY ai*/c) = K 0K = —k 9K . (3.4.12)

In N = 2 Supergravity, with respect to the rigid supersymmetry case, the manifold
is not only Hodge-Kéahler but also Special Kéhler. This allows to have an expression of
Pa in terms of symplectic invariants. In this case, also the isometry subgroup admits a

symplectic embedding, and the formula for P, is

Pr = & (Fa fAs X® + Fa [R5 X7) (3.4.13)

Triholomorphic momentum map for quaternionic manifolds

Let us now discuss the gauging procedure for the hypermultiplet scalars sector. For

applications to A/ = 2 theories one has to assume that the same Lie group G of isometries
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acts both on SM and HM. This means that Killing vectors on HM

—

- 0

satisfy the same Lie algebra as the corresponding ones on SM. We can express the

Killing vectors on the full Mg.41qr as
ka = KL O; + kY 0 + K40, (3.4.15)

according to the tensorial decomposition of the metric

. Jij* 0
§— 3.4.16
( : hw) (3.416)

defined on the product manifold SM @ HM.

Recall that supersymmetry requires an SU(2)-bundle over the HyperKahker man-
ifold, thus leaving an SU(2) rotations invariance of the HyperKéhler structure, which
implies triholomorphicity of the Killing vectors. This means that we can associate to

each Killing vector a triplet of prepotentials P} according to
iNK* = —VP{ = —(dP} + €"Y*wYP3) (3.4.17)

where V denotes the SU(2) covariant exterior derivative. One imposes an equivariance

condition also in the quaternionic case
XoPy = Pxy] (3.4.18)
and a tri-holomorphic Poisson bracket
{Pa, P} = 2K* (A, ) — X\e™* P} P§ (3.4.19)
yielding a tri-holomorphic Poissonian realization of the Lie algebra
{Px, P} = [PsPA (3.4.20)
which in components reads

A 1
K, ki ks — 5™ PIPE = 5 s PE (3.4.21)
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Scalar potential

Once the supersymmetry variations have been adjusted to the new gauge couplings and
derivatives, a set of Ward identities fixes the form of the scalar potential [25],[26]. For

only electric gauging, the result is

V = (i ka kL + 4huoki k%) LAL® + (UMY — SLALR)PEPE (3.4.22)

UAE

where is defined as

. 1 _
UAE = fA R g = -3 (ImN)~UAZ _ AL (3.4.23)

The first two terms in the scalar potential are actually related to the gauging of isometries
of Micaiar = SK ® Q, the last term is the gravitino mass contribution, and the term
containing UM is the contribution coming from the gaugino shift due to the quaternionic

prepotential. We can recast the expression for the scalar potential as
V = (ka, ks)LAL® + (UME — 3LALE)(PEPE — PaPy) (3.4.24)
where we used the scalar product of Killing vectors

0 gij* 0 k‘%:
(knks) = (K ki kg ) [ gy 00 0 || R (3.4.25)
0 0 2hy kY,

their definition in terms of the prepotential Py, and the relations from special geometry
ALY = BV LA = PALY = PALY =0 . (3.4.26)

For the purpose of building black holes solutions and attractor flows in gauged su-
pergravity, we will restrict in this thesis to the case where the gauged isometries group
G is an abelian group. It is possible that the scalar potential still remains nonzero, due

to the presence of so called Fayet-Iliopoulos terms
Pr=E&; €5 =0. (3.4.27)
We are left, in this case, with
V(z,2) = (UM —3LAL®)e% €L . (3.4.28)

This potential is the new term that appears in the Lagrangian of (2.2.1), for U(1)—gauging
of N' = 2 Supergravity, the case that we are going to consider in Chapter 7. We will
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construct, in fact, solutions of static black holes, starting from a duality invariant gen-
eralisation of (3.4.28) . In particular, we will consider the minimal gauging in which
the group G is the diagonal U(1) in the tensor product of SK ® Q, which is also the
largest subgroup of R-symmetry group U(2) one can gauge in N’ = 2 Supergravity, thus
we will often call the corresponding theory, the U(1)-gauged N = 2 theory, or N' = 2
Supergravity with R-symmetry gauging.

Appendix 3.A Symplectic reduction and momentum map

We will now give a more technical overview of the momentum map, involved in the

symplectic reduction, determined by the action of a Lie group on a symplectic manifold.

The momentum map is a map from the symplectic manifold to the dual of the Lie
algebra of the group acting on it?. As an historical note, momentum maps and symplec-
tic reduction appeared in many examples from classical mechanics, and were defined in
general only later by Konstant and Souriau in 1965. Special cases of momentum maps
are, for example, the conserved linear and angular momentum. Symplectic structures
appear naturally in classical mechanics, the phase space of a system is indeed a sym-
plectic manifold. The Hamiltonian is the function defined on this space which generates
the dynamics. A symmetry of the system is merely an action of a group on the phase
space which leaves the symplectic form and the Hamiltonian invariant.

In the case under consideration, namely the gauging of a Supergravity theory, we
are interested in the symplectic reduction of the scalar manifold Mq1q, (Which is itself
a Lie group) under the action of the subgroup of gauged isometries G whose action on

Mcalar 18 trivial.

Momentum map for the action of a compact Lie group on Kahler manifolds

Lemma (Invariance of the symplectic form). Let M be a Ké&hler manifold of
dimension 2n, and let G be a compact Lie group acting on M with an action that
preserves the complex structure J of M (i.e. Killing vectors are holomorphic with

respect to J). Then, these vectors also preserve the Kdhler 2 form K.

Proof. Denote Lx and ix the Lie derivative along the Killing vector field X and the

2Tt is sometimes equivalently called moment map.



38 Chapter 3. Symplectic structure of extended Supergravity

contraction (of forms) with it, respectively, then we have

Exg =0 < V(MXV) =0

since the Ké&hler form is closed.

Definition (Momentum map). If a Lie group G acts on a symplectic manifold (M, w)
leaving the symplectic form w invariant, then the action is called Hamiltonian if there

exists a smooth, equivariant map

wiM—g*, (3.A.2)
such that for all X € g,
dux = —ixw ; (3.A.3)
the function ux is defined by
px(m) = (u(m), X) , (3.A.4)

for X € g and m € M. The map p is called a momentum map for the action. Recall
that on the Kihler manifold M the action of the isometries subgroup G is Hamiltonian,

since the existence of the momentum map is ensured by (3.A.1).

Definition (Equivariance). Equivariance of the momentum map with respect to the

coadjoint action of G on g* is defined as
(Ad*(9)u(m),Y) = (u(m), Ad" (g)Y) , (3.A.5)
forall g € G,m € M and Y € g, and, infinitesimally, is given by the action of g on g*
(ad"(X)p(m),Y) = (u(m), =[X,Y]) (3.A.6)
for all X,Y € g and m € M, or
ad (X)) = —pxy] - (3.A.7)

Remark (Uniqueness of momentum map). If x4 and v are momentum maps for

the same action, then V X € g, by definition,

d(px —vx) = 0. (3.A.8)
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If M is connected (as in the cases we will be dealing with in N' = 2 Supergravity), this
imply that

Ux — VX = €x (3.A.9)

with cx constant function on M. From the definition of momentum map, cx depends

linearly on X, thus there is actually an element £ € g* such that
p—v==¢. (3.A.10)

Equivariance of the momentum map then fixes the element & by the coadjoint action of
G on g*. In fact, given the action of G on (M,w), the space of elements of g*, that are
fixed by the coadjoint action, parametrizes the set of all momentum maps associated to
the G-action.

There is another, constructive, definition of momentum map, which is suitable in the
case of gauging a duality subgroup of isometries, given in terms of Hamiltonian vector
fields and Poisson brackets. We will define it here in the case the Hamiltonian vectors
are the Killing vector fields corresponding to the isometries of G, that we denote as k.

If we expand the vector field in a basis of kp’s as X = a’ky such that

[ka, ks] = fastka (3.A.11)

then we have also ux = a®ua, and each pp is an element of C*°(M). The Poisson

bracket of pup and py is defined as

{un, ps} = w(ka, ks) (3.A.12)

which, in the case of a K&hler manifold becomes {pup, ux} = K(ka, ks). It can be shown
that a map satisfying (3.A.3) is equivariant if and only if it is an anti-Poisson map,

which in our particular case means that

{ux,py} = —pxyy - (3.A.13)

This form of the equivariance condition corresponds exactly to eq. (3.4.10), or, in
components to (3.4.11), that allowed us to solve for an expression of P, in terms of the

killing vectors and the Kéhler potential.
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Chapter 4

Black Holes in Supergravity: the

attractor mechanism

In the classical description of Einstein—Maxwell theory, black holes can be considered
solitons of general relativity. Zero-temperature black holes are stable against thermal
emission of particles. In principle, loss of angular momentum or charge would cause
instability, thus any non-rotating system in a theory whose elementary fields are not
charged can be considered, at least classically, stable. These are the black holes that
we will deal with in this thesis, as solutions of extended Supergravity theories. They
generalize charged black holes of General Relativity, which are represented, in the static
case, by the Reissner—No6rdstrom metric. In particular, in the same way GR solutions
obey the cosmic censorship conjecture and a no hair theorem holds, also the Supergravity
extremal solutions obey these conditions. In fact, in Supergravity, the BPS bound
M > |Q)] has to be replaced with the condition M > |Z|, with Z central charge, obtained
by dressing the abelian charges of the theory with the scalar fields. The BPS bound,
in this form, comes from the closure of the supersymmetry algebra and implies that the
cosmic censorship is verified, thus there cannot exist naked singularities but they always
have to be hidden, by the event horizon, from an observer at infinity. Moreover, in the
extremal case, the near horizon geometry is a conformally flat, Bertotti—Robinson type
metric, as in the Reissner—Nordstrom case, and the mass parameter only depends on

the charge configuration and not on the scalar fields.
We can say that the extremal black hole looses memory of the scalar “hair” at
the horizon. Notice, however, that this is not implied by the no-hair theorem, which,

indeed, does not hold for such solutions. The “no-hair theorem”, in general relativity,
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states that a charged black hole solution only depends on the observable parameters
of angular momentum, charge and mass. In particular, the entropy is determined by
the same quantities. However, to completely define the extremal black hole solution in
Supergravity, one has to specify the v.e.v.’s that scalars acquire at infinity, and on which
the configuration depends.

The scalar dependence actually cancels in the expression of the entropy, because of
the requirement that the differential equations governing the scalar dynamics reach a
critical point of the flow at the black hole horizon (attractor mechanism). As it will be
shown in this Chapter, this is related to the condition on the horizon to be a regular point
for the radial dynamics of scalar fields. The attractor mechanism is then stronger than
the no-hair theorem, since for Supergravity black holes no physical principle would a
priori imply that the dependence on scalar fields drops from the computation of physical
quantities associated to the solution, such as the area of the horizon.

Since the black hole entropy is given by the horizon area, according to the Bekenstein
— Hawking formula, for extremal black holes it is a topological quantity depending on
electric and magnetic charges. This would be consistent with a microscopic interpre-
tation of black hole entropy in terms of fundamental degrees of freedom, since charges
are quantized as integer numbers. In Supergravity, however, charged systems are classi-
cal configurations, which correspond to a large charges approximation, where they take
continuous real values.

We already pointed out that the fermions ( and hypermultiplet, for NV = 2) decouple
from the black hole dynamics. It is consistent, then, to look for solutions where all
fermions and hyperscalars are set to zero. One can further exploit staticity and spherical
symmetry, to write a general ansatz for the metric of the extremal black hole, as we are
going to discuss, in a theory described by the action (2.2.1).

We restrict the attention to dynamics and field equations for the bosonic sector of
Supergravity theories, that is to massless scalars and n vector fields coupled to grav-
ity. The scalars describe a non linear o-model over a manifold G/H, the vector fields
transform according to a certain representation of the global symmetry group G.

If the solution is stationary, then the space-time admits a time-like Killing vector
field. We can use this field to perform a dimensional reduction of the action down to
3 dimensions. This would introduce a Kaluza—Klein field, the warp factor, in the form
of a new scalar field that enlarges the scalar non linear o-model. If the black hole is
non-rotating, i.e. it has zero angular momentum, it is possible to further reduce the

action down to a one dimensional system, subject to a Hamiltonian constraint, as it will
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be shown in Section 4.1.

4.1 Dimensional reduction and equations of motion

We derive the three dimensional effective metric in the case of static spherically sym-
metric non-extremal black holes, for a non linear sigma model coupled to gravity, which
yields a regular metric in the extremal limit.

Let us consider at first a 4-dimensional space-time manifold ¥ with metric g,g cou-
pled to scalars. The action is given by the Einstein-Hilbert term and the non linear

sigma model of the scalar fields

1 1 i
Sp = /Zﬁdm [_2R<$) + 5977 0a ' 0075 | - (4.1.1)

We take into account the contribution of vector fields only later, adding the stress-energy
tensor to the Einstein equations and the black hole effective potential to the equations
of motion for the scalars. The dynamics corresponding to the above action is described
by

Rap —7ij 0ad'ds¢? =0, (4.1.2)

D*0yp(z) =0 . (4.1.3)

Notice that solutions to (4.1.3) are harmonic maps from the (pseudo) Riemannian man-
ifold (3, gs5) to (G/H , Gi;) Stationary solutions are those admitting everywhere a time-

like Killing vector field, which is orthogonal to the reduced 3 dimensional space X3 and

allows SO(3) (spherical) symmetry. The metric decomposes as

e2U 0
JaB = . 4.14
g 0 —e_gUhab ( )

hab, the metric on X3, can be parametrized in terms of a function f(r) so that
ds® = —e*Vadt* + eV (dr® + f(r)?(d6® + sin® 0d¢?)) |
= —?Vdt? + e Y hydada® . (4.1.5)
The effective Lagrangian for the reduced three dimensional system is
%R ~ %’ym" 0 Gy — ¢, (4.1.6)

where ¢ = % = 25T, and Gy is now the metric of the enlarged scalar manifold, so

¢a = (Ua Q_Sava7XA) :
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The equations of motion in this case are

7 ) ] k
2L (fzdd)) 1T () 29

dr dr
d2f d¢’ dg*
941 = () 2
f G’L] <¢) d?” dT‘ I
d .df
.2 -2
— — —f2 _1)=0. 4.1.
sin“ORyy = Rgo = f (dr o ) 0 (4.1.7)
From the last one we find
fr)?=(r—ro)’+e, (4.1.8)
thus, if we define the harmonic function on (X3, h)
T(r) = — “2(s)ds , (4.1.9)
then being
dr
-2
= —— 4.1.1
20y = - (4.1.10)

we find that the first in (4.1.7) is

dr pdr d d¢? dgb (dr\*
(&) & (Phae) o (5) =0

(4.1.11)
that is, the geodesic equation
d*¢(7) d¢’ dg*
= 4.1.12
dr? (é) dr dr ( )
The geodesic map ¢ satisfies the condition
de' d¢? 2.
Gij(9) I dr = 2¢” (4.1.13)
comparing with the general solution for f(r) in (4.1.8), we can set & = —c?.

To write the metric in (4.1.5) using 7 coordinate we compute, from the definition

(4.1.9)
2

N2 2 ¢
(r=1o) © = sinhZ(CT)
4
(r —r9)% = ¢? coth(er) |
@ S g
sinh?(cr) ’
fAr(r) = o (4.1.14)

sinh?(cr)
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so that we finally arrive to

ctdr? ?
sinh?(cr)  sinh?(er)

ds? = —e2Uqe? 4+ ¢~ 2V (d6* + sin? 0d¢?)| . (4.1.15)

This is the most general metric for a static, non-extremal spherically symmetric black

hole. The extremal limit is obtained sending ¢ — 0.

The vector sector

Let us now complete the derivation by taking into account the vector sector. As discussed

in the previous Chapters, the bosonic action is given by
S = SEH + Sscalar + SV =

1 1 1
- [v=gdta (-2 R+ 579rs(0)0u6" 06" = Fay (nF” - V*Faﬁ)) ,
(4.1.16)

where pups; = —ImANyy, vas = —ReNjx are the real symmetric matrices defining the
coupling of scalars to the vector fields. To write the contribution of Sy to Einstein

equations we need to compute the energy-momentum tensor

vV —3g ag,ul/ A a(aAg;w)

By definition of Hodge-star duality we have

. 1
Fhef _ ﬁeaWF% , (4.1.18)

which gives

D A ey * Fxop
—(FA*F>f)y = FA , 4.1.19
39W( B ) = Fops D9 ( )
and
g*¥Fhef
B = §gw/* FhaB (4.1.20)
nv

‘We then have

1 1 1 11 .
V91" = —5V=99""Lv + V=g _iF;i\UMAZFE; + = ZQWFé\ﬁVAz B

2
(4.1.21)
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and finally

1
T = Eg'uVFé}ﬂ,u,Angaﬁ — FouasFy 7 (4.1.22)

The modification of scalar geodesic equations due to the vector fields coupling is found

by considering

0Ly 1 oL ov
. = _-\/—gF B xpaf) 4.1.2

Due to the specific form of Sy, required by electric-magnetic duality invariance, the

expressions of (4.1.22) and (4.1.23) can be recast in a compact form. Let us consider,
indeed, the dual field strength defined as in (3.1.18)

—*Gap = pasFl, +vas *F, | (4.1.24)

and the symplectic vector F = (FA , G A). We can write the stress energy tensor and the
contribution to scalar equations of motion from the vector Lagrangian in a manifestly

symplectic way, simply introducing the matrix

-1 -1
M — (MJFW VoK ) (4.1.25)

T

The expressions in (4.1.22) and (4.1.23) then become
1

™ = —ifll},y/\/l/\zf,/z’y : (4.1.26)
and
L 1 SM y
5¢"'/ = V9T, W@ FE (4.1.27)

Spherical symmetry has played no role, so far, in the derivation of the equations of
motion. We are going to see, in the next section, that it allows to further reduce
the Lagrangian to describe a one dimensional system, together with an Hamiltonian

constraint.

4.2 One dimensional Lagrangian for static configurations

In the case of time-independent solutions that preserve spherical symmetry, one can
perform the integration of the 4-dimensional action over R; x S2. In order to do that,

it is convenient to specify a consistent ansatz for the vector field strengths. Given
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the metric as in (4.1.15), we can take a potential AN = y™(r)dt — p” cosd¢, so that
FA = dA? leads to

1
FA = pr sin 0dO A dg — x™ (r) dt A dr . 4.2.1
2

Since x™ only appears in the original action (4.1.16) under derivatives, one can integrate
it out performing a Légendre transform on the action. From the equations of motion for

XA one gets
XM(r) = VT M (g — Rarph) (4.2.2)

here and in the following we will use Zpay, = ImMyy, Ras = ReNps.

Due to spherical symmetry, all the fields depend only on the radial variable so ¢* =
#'(r), U = U(r), etc. . In particular, given the ansatz for the field strength as above,
integration over angular variables of the vector sector S, yields the effective black hole

potential

1
Ver = QQTAMAEQE : (4.2.3)

N = (pA> , (4.2.4)
i

1

A A
- F
p 47r/52 ’

1

= — G 4.2.5
gAa ir g A ( )

where

is the vector of charges

The resulting effective action is given by [13]

2
L= (‘fg) + Gab‘f?: +eVpy — 2. (4.2.6)
This holds quite general for any 4-dimensional theory whose bosonic sector is given as
in (2.2.1). The explicit form of the effective potential actually selects the theory under
consideration.

The dimensionally reduced system of equations of motion, however, is not completely
equivalent to the four dimensional one. In order for the two sets of equations of motions

to be equivalent, in fact, one has supplement (4.2.6) with the Hamiltonian constraint:

(dU>2 +G d‘badi)b

I ab g T T eVpy = ¢ . (4.2.7)
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This, together with the equations of motion derived from the Lagrangian (4.2.6)
d*U

W = 262UVBH(¢7 b, Q)’ (428)
D?*¢*  5;0VpH
DT2 =€ a¢a 9 (429)

completely determines the solution. The constant is ¢ = 25T, where S is the entropy
and T the temperature of the black hole is the non-extremality parameter: extremal

black holes have zero temperature and can now equivalently be characterized by ¢ = 0.

4.3 Near horizon dynamics and the attractor condition

The metric of the static spherically symmetric system can be described by

dr’

1
ds® = —e?Vd? + 72V [ -+ QdQQ} : (4.3.1)
T T

where the horizon is located at negative infinity in terms of the coordinate 7. If it has

a finite area then the term e 2V has to behave as
A
e <> 72, as T — —00 . (4.3.2)
47

The scalar term in the Lagrangian remains finite near the horizon if

GijOm @' Ond? ™ < o0 , (4.3.3)
that is, in our coordinates,
do* dg/
ijﬁﬁeﬂ]# < 00 . (4.3.4)

The near horizon behavior is then given by

i 10 (32

G
Tdr dr A

> = X2, as T — —00, (4.3.5)

that gives the condition, substituting in the constraint (4.2.7) in the extremal case ¢ = 0,

near the horizon,

A< 47TVBH(pa q, ¢H) ) (436)

and the metric is

47 A dr? 1
2 o =0 2 il et =
ds® =~ Tth + <47r> [7'4 + T2d92:| . (4.3.7)
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The AdS, x S? horizon geometry of the extremal black hole appears explicitly once the

metric is written in terms of the coordinate

1
w=logp, p=—c (4.3.8)
since the metric becomes
47 A A
2 AT 2y 4,2 a 2 a 2 20742
ds” ~ 1€ dt* + (47r> dw® + (477) (d6 + sin” 8dg”) . (4.3.9)
The condition (4.3.5) is now
do' d¢? (4
U%% <Z> — X2 as w — 00 ; (4.3.10)

the only allowed value of X? is then X2 = 0, in order for the moduli dynamic to be
regular at the horizon, since a non-zero constant value of %

do®
dw

= const. as w — 00, (4.3.11)

provides a linear dependence on w that would prevent regular moduli dynamics at the
horizon. The only possibility is then

de*
dw

0, (4.3.12)
so that the constraint (4.2.7) in the extremal case now strictly requires

A
=V, . 4.3.1
- BH(p7Q=¢H) ( 3 3)

In the case of constant scalar fields the black hole is double-extremal, its area is still
given by Vpp, following immediately from (4.2.7), and it is equal to the area of an

extremal black hole with the same electric and magnetic charges

Aemtr (p7 Q) = Adouble—eaztr (pa Q) = 4nVeH (p7 q, (bOO) . (4314)
The behavior of the scalars near the horizon, taking into account that % = 0, follows
from the equation of motion (4.2.9) for which
d?¢* 10Vy [ 4n
= 4.3.15
dr? 2 0¢> \Ar2) "’ ( )

whose solution, recalling that a linear dependence on 7 coordinates would give a singular

dilaton field at the horizon, is

a . a 27\ OV
¢ ~¢H+<A> 0 log 7 . (4.3.16)
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The regularity requirement now gives the following extremum condition on the potential

<6V3H> =0. (4.3.17)
hor

toJoss
In this picture the black hole is a solution corresponding to dynamical trajectories in

the moduli space M from the asymptotic point ¢, to the critical point ¢y,.

Black hole entropy and duality orbits

Condition (4.3.13) means that attractor values of the black hole potential corresponds
to the black hole entropy. The entropy, for theories based on moduli spaces given by
symmetric manifolds G/H, is a duality invariant. This invariant has the form of a
generalized metric on the moduli space, that determines the orbit of the solution. In the
same way, in fact, that a four-vector in space-time can be time-like, space-like or light-
like, depending on the values of his invariant norm, defined by the metric on the space-
time 4-manifold, also the symplectic vector of charges has a different nature depending on
the value of the scalar manifold invariant Z(p™, gz) > 0, Z(p™, qa) < 0, or Z(p*, qp) = 0.
7 is a U-duality invariant expression depending on the representation of the group G
of G/H under which electric and magnetic charges transform. All N' = 2 theories with
symmetric space based on cubic prepotential, as well as N' = 4,6, 8 theories, have a

quartic invariant Zs. The entropy is proportional to the square root of the invariant!

SB—H X 4/ ’I4| (4.3.18)

BPS solutions have I4 > 0 while the non-BPS ones (with non vanishing central charge)
have instead I < 0. N = 2 theories with quadratic prepotentials, N’ = 3 and N/ = 5

theories have only a quadratic invariant, and the entropy is
Sp.H x |I2]. (4.3.19)

The BPS solution has I» > 0, while the non-BPS one has vanishing central charge and
I < 0.

These solutions fall in the class of large black holes, which have Spyr # 0, and thus for
these configurations Z # 0. Solutions with Z = 0 do exist but they do not correspond to
classical attractors since in this case the classical entropy/area formula vanishes. These
are the so called small black holes, and to discuss their entropy one has to take into

account quantum corrections, and include higher curvature terms in the action.

!See [27] and references therein.
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4.4 First order BPS and non-BPS flow

The properties of black holes in Supergravity theories depend on the values ¢ of the
massless scalar fields parametrizing the different vacua of the theory. The entropy of
the black hole, S = %, however, in order to be consistent with the microstate count-
ing interpretation in string theory, has to be independent, in the extreme case, of the
particular ground state being determined only by the conserved electric and magnetic
charges (dyonic black hole). The attractor equations correspond to algebraic constraints
on the scalars, which fixes them in terms of the electric-magnetic charges, in such a way
that, in the entropy formula, their dependence drops out. They are a horizon bound-
ary condition of a radial flow, yielding a first-order description of black hole dynamics
for BPS configurations. This is expected, since the supersymmetric state is actually a
solution of the supersymmetry equations, which only contain first order derivatives. It
was interestingly unexpected that the first orders formalism can be conveniently used
to describe also non-BPS attractor flows of d = 4 extremal black holes [28], including
solutions corresponding to non-BPS branes configurations in string theory [29].

The attractor flow we describe in this Chapter is valid for static black holes. Due
to the nature of Einstein equations, it is possible to construct black hole solutions with
multiple centers, which however require a stationary metric. BPS configurations are
possible, and we refer to [30] and [31] for they description, where the first full solutions

have been found.

4.4.1 BPS flow equations

Using symmetries and suitable ansatze we have been able to reduce a four dimensional
system of scalar and vectors coupled to the space-time metric, to a one dimensional
problem of solving equations of motions for scalars fields on a manifold, subject to a
potential Vpp. These equations, although simpler than the original problem, still are
second order differential equations. Exploiting supersymmetry, but more in general the
form of the Lagrangian and the Hamiltonian constraint [28], we can express the actual
fields dynamics through first order equations and then find explicit solutions. Let us
notice here that, if we look for solutions in which fermions are identically set to zero,
then the supersymmetry variations of bosonic fields, containing fermions in each term,
are automatically satisfied. For the analogous reason, the requirement that the solution
is supersymmetric, implies that the supersymmetry equations of fermionic fields are

indeed first order differential equations for the scalars, under the assumptions of the
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states being a BPS configuration.

For example, the equations we get from gravitino and gaugino variations are

0=Vuéa +eapT,, 7", (4.4.1)

yretP g, (4.4.2)

Lo iapgA L g
0=1iV,2"y#¢ +2g ijy

where the Killing spinor £4(r) is of the form of a single radial function times a constant

spinor satisfying

§alr) = ef(r)XA XA = constant
. Z
Yoxa = 1@6ABXB (4.4.3)

Notice that the condition (4.4.3) halves the number of supercharges preserved by the
solution. Substituting in the supersymmetry equations the ansatz for the metric and
the field strength, one finds that the supersymmetry equations (4.4.1,4.4.2) are solved

for
U =-el|z|,
(4.4.4)
2= -2eYg10;|Z] ,
so the central charge is the superpotential that drives the flow of scalar fields along the

radial direction.
4.4.2 Scalar charges and Black Hole asymptotic moduli dependence
The expansion of the scalar fields at spatial infinity
u PR D 1
¢ = ¢+ ——+0() (4.4.5)

defines the scalar charges 3¢ = X%(A, an, P, % ). In the presence of scalar fields, the

first law of thermodynamics for a static dyonic black hole has to be replaced by

oM
dM = TdA + ™ dga + xadp™ + (6¢a> do® (4.4.6)
where the black hole temperature is 7' = 5=, and Y™, xa are electric and magnetic scalar

potentials, respectively.
The potential V (¢, p,q) defines a symmetric tensor that satisfies the convexity con-

dition

Viy = VoWV >0 | (4.4.7)
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on the scalar manifold My. Moreover, if V,, is strictly positive and the scalar charges
vanish, the scalar fields have to be frozen to ¢*(7) = ¢%.

The mass of the black hole, by comparison with the asymptotic Gravitational po-

M = <C§T]>TO (4.4.8)

and this substitution in the constraint (4.2.7) evaluated at spatial infinity (7 = 0) leads
to

tential, is given by

M? 4 Gap(900) 25" = V (oo, 0, q) = 45T (4.4.9)

The scond term on the left is the contribution

<gi{> = —Gap(hoo)X? (4.4.10)

in expression (4.4.6). The right hand side is related to the black hole configuration
described by the metric (4.1.15) by

c=28T . (4.4.11)

For extremal black holes, the attractor mechanism fixes the moduli at the horizon

in terms of electric and magnetic charges

¢H,e:ptr = Qbfix(pa Q) s (4412)

and the extreme point can be found, for a given charge configuration, as

M,
aem =0. (4.4.13)
? o=geatr

In particular, the entropy of the extremal black hole is independent on ¢, being

A
S = i TVeH (P fiz, D, q) - (4.4.14)

The scalar charge is not conserved, the flux of the gradient vanishes at the horizon, and
it reveals that it resides entirely outside the horizon. Equivalently, moduli at infinity
or the scalar charges have to be added to the mass M, the charges (¢,p) and, in the
non static case, to the angular momentum J to completely characterize the black hole

solution.
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4.4.3 First order formalism for d = 4 Extremal Black Holes
For d = 4 supergravities a general formula for a black hole effective potential holds,
1 _ _
Vin = 5ZABZAB + 72,7, (4.4.15)

where Zap = Zap) (A, B =1, ..., N) is the central charge matrix, and Z; (I =1,...,n)
are the matter charges, n € N is the number of matter multiplets. One can in general

rewrite this potential, in the first order formalism , as
Ve = W2+ 4G (9W) 00 = W2 + 4G (VW) VW, (4.4.16)

where W is the moduli-dependent first order superpotential, and V is the covariant
differential operator.
In fact, the second order equations of motion (4.2.8) and (4.2.9) can be derived by a

first order system, by performing the ansatz
U=e"Wie,7), (4.4.17)
where U = %. At the horizon we get the condition
W =0. (4.4.18)

Differentiating equation (4.4.17) with respect to 7 gives the equation of motion for
the field U(7) and the identification of

Vg = W2 +e Vg%, . (4.4.19)
It follows from the constraint (4.2.7) that
0% = 230Gy = $ 0" (4.4.20)
which, disregarding contributions that do not affect the entropy, is solved by
¢ = 2eV g oW | (4.4.21)

where the last equation is a first order type BPS-like condition. The effective potential

becomes, as stated above,
Ve = W? + 2G0,Wo,W . (4.4.22)
Extremization of Vg corresponds to

0V = 20,W(W8° + 2G*V,0.W) =0, (4.4.23)
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which means that in the first order formalism the attractor point for scalar fields at the
horizon of extremal black holes is directly related to the extrema of W. This formalism
leads to first order equations which imply second order equations of motion, but does not
rely on supersymmetry. As was first shown in [28], remarkably, whenever the black hole
effective potential admits a rewriting in the form (4.4.22), then the black hole equations
reduce to the first order differential system

U =—-ew,

(4.4.24)

2= —-2eVgl oW,
Obviously, the BPS case is recovered for W = |Z|. However, notice that the expression
(4.4.22) can be satisfied for different ¥W’s. This is why the first formalism is useful: it
allows us to find the critical points of the black hole potential which are not critical points
of the central charge. Attractor mechanism, then, tells us that those point correspond
to extremal black holes, that, in the case W # |Z|, are simply the non-BPS extremal

solutions. For them, because of lack of supersymmetry, W is called fake superpotential.

4.4.4 General properties of attractors for N’ = 2 Supergravity

For N' = 2 Supergravity, the black hole potential at the attractor point is given by one

of the quadratic invariants of the scalar manifold
Ve = L = |Z* + |D;Z)? , (4.4.25)

where D is the Kéahler covariant derivative with respect to the complex holomorphic
coordinates on the special Kahler manifold. The horizon is an attractor point and this
condition requires, as we have seen, that it is also a critical point of a suitable black hole

effective potential Vpp, namely
OiVeulh =0. (4.4.26)

This is an algebraic equation on the central charge and its covariant derivatives; in fact,

one has that
Ve = 0;(|1Z)* + |DiZ?) =
= ZD;Z + G*(D;D,ZD;Z) + G¥ D, ZD; D; Z . (4.4.27)
The extremum condition is satisfied whenever at the horizon
e D;Z=0, Z#0, BPS;
e D;Z#0, Z=0, non-BPS;
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which refer to a supersymmetric and non-supersymmetric black hole solution, respec-
tively.
Black hole entropy at the attractor points is given by the absolute value of the second

quadratic invariant of the symmetric space,

S =|L|=Z?-\D;Z)?| , (4.4.28)
where |D;Z|? = G""D;Z D;Z. In the BPS case, D;Z = 0 yields
SN=2—symm—-BPs = |Z|* . (4.4.29)

The attractor point corresponds, in the BPS case, to a minimum of the potential. In

fact, the Hessian metric for the black hole potential is

Ve i = 2D]-ZDZZ + QZD]-DZZ

Z;=0
= 2ZD;D;Z : (4.4.30)
Z;=0
and, from the relations of special geometry,
Ve i = 2G5 Z)* . (4.4.31)

Since the metric is positive defined, this matrix has no null-eigenvalues, which means
that there are no “flat directions” for the scalar fields.
Black hole entropy at the horizon, as well as the black hole potential, are invariant

expressions of the charges, and can be written as

Ve = —%QtM(N )Q (4.4.32)

Spu = %Qt/\/l(]-")@ (4.4.33)

O =Ghr
where N is the matrix in the vector fields kinetic term, and F = Fpy, = Ip0sF(X).
Equations (4.4.33) depends on the scalars through F, and thus only holds at the attractor
point, the horizon, while the expression for Vg is valid along the flow.

4.4.5 Attractors for N = 8 Supergravity

The black hole potential for N' = 8, d=4 supergravity is given by [20],[18]

Ver(6,Q) = ZapZ™ P = (Q,Vap)(Q,VAP) A B=1,...,8 (4.4.34)
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where Z4p (and its conjugate Z*4P) is the central charge matrix

Zap(6,Q) = (Q,Vap) = fABeas — has,apm™™ . (4.4.35)

@ is the charge vector, in the fundamental representation 56 of F7(7) and the symplectic

section (fA%5(4), has.ap(¢)) is an element of the coset space Sé({g)) which connects the

real 56 representation to the complex 28 indices of [AB]. There are 70 real scalars ¢'

(the local SU(8) symmetry removes 63 scalars from the 133 parameters of Er(7)), we

sum over the indices AB,AY for A < B and A < ¥ in (4.4.34), (4.4.35).
Maurer—Cartan equations for the coset space define the covariant derivative of the

central charge matrix

1 *

DiZap = 5Piancp) ($)2*“P(6,Q) (4.4.36)
where we introduced the 70 x 70 vielbein of the E;(7y/SU(8) coset space Pl-y[ABCD]dqﬁi,
1=1,...,70, whose self-dual real is

1 *
P;1aBcp) = @eABCDEFGH(PL[ABC’D}) ; (4.4.37)

while D; is the SU(8) covariant derivative [18].
The attractor condition, expressed as minimization of the black hole potential with

respect to the scalars, is given by

0=0) = (DZ-ZABZ*AB + ZABDiZ*AB>

1
2
1 «AB ABC

= Z<Pi,[ABCD]Z AB 7+CD +Pi[ b D]ZABZCD>

1 1

thanks to the self duality condition.

It is important to notice that the vielbein P; 4pcpy is invertible, thus one can mul-
tiply the previous equation by (PZ-’[ A BIC D/})_l and still get a necessary and sufficient
condition on the critical points of the black hole potential, that now is simply written
as

1
ZeAB(JDEFGHZEFZGH —0. (4.4.39)

Moreover, one can rotate the central charge matrix to its normal form [32] where it has

only the non-vanishing complex skew-eigenvalues z1 = Z192, 290 = Z34, 23 = Z5g, 24 = 478,
and in such basis the attractor equations are

2129+ 232 =0

2123 + 2224 =0

223+ 22 =0 (4.4.40)
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SU(8) symmetry of Z,p allows to further reduce all 4 complex eigenvalues to the fol-

lowing normal form
zi=pe®/t i=1,2,3,4. (4.4.41)

so that only 5 real parameters are left independent: the 4 absolute values p; and an
overall phase, ¢ ( the relative phase of z;’s can be changed but not the overall phase).

The form of the quartic invariant J4 is then [33]

Jy=|(p1+p2)* — (p3+ p4)2] [(m —p2)* = (p3 — p4)2] + 8p1p2pspa(cos o — 1) (4.4.42)

The central charge matrix in normal form is written as

000
0p2 00 01\ ,

Zup=| " ® e/ (4.4.43)
00 p3 0 10
000 ps

we can order p’s as p; > p2 > p3 > p4 so that the first term in Jy is positive, null or
negative depending whether p; — ps > p3 — p4 or p1 — p2 < p3 — pg while the last term is
negative or null. It is easily seen, then, that the 1/8 BPS attractor orbit, characterized
by J4 > 0, corresponds to ps = p3 = p4s = 0, and the non-BPS one to p; = p and ¢ = 7,
which indeed implies J; < 0.

Notice that the non-BPS critical points of the potential the matrix of the second
derivative is not guaranteed to be positive definite [34], and a critical point of the
potential may not be its minimum.

The attractor equations (4.4.40) have thus 2 solutions that correspond to black holes

with finite horizons
- 1/8 BPS orbit
21 =ppps€ Pt #0 zo=zm=2=0 JPPS = pLoe >0 (4.4.44)

The black hole entropy-area of the corresponding 1/8-BPS black holes is

Sprs(Q) _ Apps(Q) _ \/m — ps (4.4.45)

T 47

- non-BPS orbit
z=pei IS = —16p5,,5ps (4.4.46)

In the non-BPS case, the black hole entropy-area is given by

SnonBPS(Q) AnOnBPS(Q)
m = = =\ IPPQ) = 4pnonsps (4.4.47)
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4.4.6 The gauged flow

The flow equations and derivation of the one dimensional Lagrangian, we discussed so
far in the chapter, have been the subject of an extensive research over the past 15 years.
However, as we have seen, the gauging of a supergravity theory, even in the minimal
case, introduces a scalar potential which changes the action (2.2.1) we started from. The
momentum map construction ensures the duality covariance of the gauging, however,
new BPS flow equations and a new ansatz for the metric have to be considered.

Let us consider the Fayet-Iliopoulos gauging in A/ = 2 supergravity. We can choose

The main points that will allow us to find new solutions are

- The introduction of a second warp factor in the metric ansatz (4.1.15), for the
angular part, which in general give a nontrivial holonomy on the 2-space orthogonal
to the radial direction, and yielding a metric for static and spherically symmetric

solutions of the form
ds® = —e?Vdt? + e Vdar? + 2V =2Y(dh* + sin 02de?) ; (4.4.48)
where U = U(r) and 1 = v (r) have only radial dependence.

- If a black hole solution whose spherical horizon is regular, thus has nonzero area,
also preserves some supersymmetry, then its electric-magnetic charges satisfy a
constraint dictated by the gauging parameters G = ({A, &)) that can be expressed

(G,Q) =—1. (4.4.49)

These solutions are built for a gauging which also involves tensor fields, which allow the
duality to be restored introducing a set of dual gauging parameters ¢ in addition to
the 5. We notice however that in U(1) gauged supergravity the fields are not charged
under the gauge field, and the only modification to the action is the introduction of the
scalar potential as in (3.4.28). It is possible, then, using the duality-complete vector of

gauging G defined above, to give a duality invariant definition of the scalar potential as
Voauging = |DiL]> = 3|L[* (4.4.50)

by means of a new symplectic invariant quantity which is analogous to the central charge,
defined as

L=1{GV), (4.4.51)
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with V = (X, Fj) the normalized symplectic sections. It is then straightforward to
generalize the superpotential, driving the BPS flow in the ungauged theory, to the gauged

case as
W = €V|z —ie?AL) (4.4.52)
where it is convenient to define the combination A = ¢y — U. The BPS flow is
U' = —e A0 (W — 9,W),
A = e 2AH0) By (4.4.53)
Sil — _9p—2(A+U) 97 0;W.

With respect to the ungauged case the non linear sigma model is now enlarged to 2 new
fields, instead of just one, the warp factor U and the new function . Another feature
that differs both from the ungauged case and the previously known, zero area, solutions
of gauged supergravity [35],[36], is that the static black hole with regular horizon, that
we will describe, only preserves 2 out of the 8 supercharges of the theory along the flow.
It is then a 1/4-BPS solution, unlike the usual 1/2-BPS nature of the solution in the
ungauged supergravity. The conditions that impose the supersymmetry preservation are
related to those found in [37] for a massless supersymmetric state there called “cosmic

monopole”.



Chapter 5

Duality orbits in N=8
Supergravity

The N = 8 supergravity theory in d = 4 [20] and d = 5 [38] dimensions is a remarkable
theory which unifies the gravitational fields with other lower spin particles in a rather
unique way, due to the high constraints of local N' = 8 supersymmetry, the maximal one
realized in a 4d Lagrangian field theory. These theories, particularly in four dimensions,
are supposed to enjoy exceptional ultraviolet properties. For this reason, 4d supergravity
has been advocated not only as the simplest quantum field theory [39] but also as a
potential candidate for a finite theory of quantum gravity, even without its completion

into a larger theory [40].

Maximal supergravity in highest dimensions has a large number of classical solutions
[41] which may survive at the quantum level. Among them, there are black p-branes
of several types [42] and interestingly, 4d black holes of different nature. On the other
hand, theories with lower supersymmetries (such as N/ = 2) emerging from Calabi-Yau
compactifications of M-theory or superstring theory, admit extremal black hole solutions
that have been the subject of intense study, because of their wide range of classical and
quantum aspects.

For asymptotically flat, stationary and spherically symmetric extremal black holes,
the attractor behavior [9]-[13], has played an important role not only in determining
universal features of fields flows toward the horizon, but also to explore dynamical prop-
erties such as wall crossing [43] and split attractor flows [44], the connections with string
topological partition functions [45] and relations with microstates counting [46] . There-

fore, it has become natural to study the properties of extremal black holes not only in
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the context of N' = 2, but also in theories with higher supersymmetries, up to N' = 8
[47]-[48].

5.1 Introduction

It has been known for some time [49] that extremal BPS black hole states coming from
string and M theory compactifications to four and five dimensions, preserving various
fractions of the original N/ = 8 supersymmetry, can be invariantly classified in terms
of orbits of the fundamental representations of the exceptional groups Er(7) and Egg).
These are the duality groups of the low energy actions, whose discrete subgroups appear
as symmetries of the non-perturbative spectrum of BPS states [50]. These orbits, which
have been further studied in [33, 51, 52], correspond to well defined categories of allowed
entropies of extremal black holes in d = 5 and in d = 4, given in terms of the cubic Egg)
invariant Z [49, 51, 53] and the quartic E7(7) invariant Zy [54, 55, 21]. There are three
types of orbits depending on whether the black hole background preserves 1/2, 1/4 or
1/8 of the original supersymmetry. Only 1/8 BPS states have non vanishing entropy
and regular horizons, while 1/4 and 1/2 BPS configurations lead to vanishing classical
entropy.

It has been shown in the previous chapters, how to solve the criticality condition for
the A/ = 8 attractors black hole effective potential, extending the lore of A/ = 2 special
Kaéhler geometry.

In this Chapter we focus on some specific simple configurations in N' = 8, d =
4 supergravity, which capture some representatives of the “large” BPS and non-BPS
charge orbits of the theory, corresponding to regular extremal black holes, with non-
vanishing classical entropy. One is the Reissner—Nordstrom (RN) dyonic black hole, with
electric and magnetic charge e and m respectively, and Bekenstein—Hawking entropy
(in unit of Planck mass) [§]

Spn =7 (e +m?). (5.1.1)

Another one is the Kaluza—Klein dyonic black hole, with a KK monopole charge p and
a KK momentum ¢, which is dual to a DO — D6 brane configuration in Type II A

supergravity. Its Bekenstein—Hawking entropy reads
SKK:’/T‘pq’. (5.1.2)

One more interesting example is the extremal axion-dilaton black hole, a subsector of

pure N = 4 supergravity in d = 4 which was considered in the past [56]-[64].
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We will show how the entropies of these black holes can be obtained in the context
of N = 8, d = 4 supergravity by exploiting the attractor mechanism [9]-[11],[13], for
extremal BPS and non BPS black holes . Earlier studies for some specific cases where
examined in [65], [66].

The black hole charge configuration with entropy given by (5.1.1) is 1/8 BPS [§],
while the entropy (5.1.2) is related to a non BPS one. Indeed, the E7(7) quartic invariant

74 on these configurations reduces to

IRN = % +m? (5.1.3)

VIER = |pal - (5.1.4)

In particular we note that, if the magnetic (or electric) charge is switched off, the
Reissner—Nordstrom black hole remains regular, whereas the Kaluza—Klein black hole
reaches zero entropy (Z4 = 0) and becomes 1/2 BPS [33].

The simplest way to obtain these configurations is to observe that the BPS and

non-BPS charge orbits with Z4 # 0 in N/ = 8, d = 4 supergravity are given by [49]

0 SN A 5.1.5
1/8—BPS * E6(2)7 4 > U; (5.1.5)
E
Onon_pps : -2 1, <. (5.1.6)
Eg(6)

The moduli spaces corresponding to the above disjoint orbits are [67]

M _ Eg(2)
/8=BPS = 3517(6) x SU(2)
E¢(6)
non— == . 5.1.7
Muon—BPs USp(8) (5.17)

Hence, a convenient representative of these orbits is given by the (unique) Fg-singlets
in the decomposition of the fundamental representation 56 of E7(7) into the two relevant

non-compact real forms of Fg:

Eqry = Eg) x U (1);
RN 01/8—BPS : (518)
56 — (27,1) + (1,3) + (27, 1) + (1, -3);

E7(7) — EG(G) x SO (1, 1) )
KK Onon_pps : (5.1.9)
\ 56 — (27’ 1) + (1)3) + (27,a _1) + (1,a _3) )
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where the U (1) charges and SO (1, 1) weights are indicated, and the prime denotes the
contravariant representations. Notice that, consistently with the group factors U (1)
and SO (1,1), 27 is complex for Fg), whereas it is real for Egg) . Both Egg) x U(1)
and FEge) x SO (1,1) are maximal non-compact subgroups of E7(7), with symmetric

embedding.

The results from the algebraic analysis can be stated as follows. The two extremal
black hole charge configurations determining the embedding of RN and KK extremal
black holes into N' = 8, d = 4 supergravity with entropies (5.1.1) and (5.1.2), are given
by the two Eg-singlets in the decompositions (5.1.8) and (5.1.9).

The two situations can be efficiently associated to two different parametrizations

of the real symmetric scalar manifold 5(;((78)) (dimg = 70, rank=T7) of N =8, d = 4

supergravity.

For the branching (5.1.8), pertaining to the RN extremal black hole, the relevant
parametrization is the SU (8)-covariant one. This corresponds to the Cartan’s decom-
position basis, where the coset coordinates ¢;;i; (¢ = 1,...8) sit in the four-fold anti-
symmetric self-real irrep 70 of SU(8). The attractor mechanism implies that at the

horizon
Gijki, i = 0, (5.1.10)

i.e. the scalar configuration at the event horizon of the 1/8-BPS extremal black hole

E7 7
SU)

tions [55], [67]. The £-BPS attractor solutions has a moduli space %, with

dimension dimg = 40, and rank= 4, which leaves 40 scalar degrees of freedom out of

is given by the origin of Some care should be taken with regards to flat direc-

70 undetermined, at the event horizon of the given %—BPS RN extremal black hole.
In other words, 40 real scalar degrees of freedom, spanning the quaternionic symmetric
coset % (which is the c-map [68] of the vector multiplets’ scalar manifold of
N =2, d=4 “magic” supergravity based on Jéc), can be set to any real value, without
affecting the RN black hole entropy (5.1.1).

It should be noticed that, consistently with the Gaillard—Zumino formulation of
electric-magnetic duality in presence of scalar fields, the solution (5.1.10) to the attractor
equations is the only one allowed in presence of a compact underlying symmetry (in this
case U (1)).

The branching (5.1.9), pertaining to the KK extremal black hole, on the other hand,
is parametrized by the KK radius

rgi = V3 = e, (5.1.11)
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by the 42 real scalars ¥ (i = 1,...8) sitting in the 42 of USp (8), and by the 27 real
azions a’ (I =1,...,27) sitting in the 27 of USp (8) (or equivalently, in the 27 of FEg(6))-

In virtue of the attractor mechanism, the KK radius is stabilized as [69]

’q , (5.1.12)

Tiren = Vi = %1 =4
and has vanishing axions
al; = 0. (5.1.13)

The 42 real scalars 1);;5; are actually undetermined at the event horizon of the non-BPS

KK black hole, without affecting its entropy (5.1.2). Indeed, they span the moduli space

Es(6)
USp(8)

symmetric scalar manifold of N' = 8, d = 5 supergravity [67].

(dimr = 42, rank= 6) of the non-BPS attractor solutions, which is the real

Thus, it follows from this discussion that the possibility of having a non-vanishing
scalar stabilized at the horizon of the KK extremal black hole is related to the presence
of a singlet in the corresponding decomposition of the 70 scalars. This is related to
the existence of an underlying non-compact symmetry (SO (1,1) in the present case),
admitting no compact sub-symmetry.

An alternative way to obtain egs. (5.1.1) and (5.1.2) is to use appropriate truncations
for the bare charges in the expression of the quartic invariant Z4, which is related to the

Bekenstein—Hawking entropy by the formula

S = /|14l (5.1.14)

The manifestly SU(8)-invariant expression of Z, reads as follows:
2
Ty =Tr (ZZT) - %Trz (ZZT) +8RePf(Z), (5.1.15)

where Z = Zsp (¢) is the central charge 8 x 8 skew-symmetric matrix. Since (5.1.15) is
moduli-independent, it can be evaluated at ¢ = 0 without loss of generality, and in such
a case Zp is replaced by Qap, the bare charge matrix in the SU (8) basis.

Considering the RN black hole, we will see that a suitable truncation of the N = 8
bare charge matrix Qap (4, B =1,...8), reduces it to the form

QN = (zea,0), 2z = e+ im, 5.1.16
AB

where a,b=1,2 and ¢/ = —e. Thus one obtains

Ty = |2|* = (2 +m?)’, (5.1.17)
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which is nothing but Eq. (5.1.3) and it is also the same result as in pure N =2, d =4
supergravity, which has a U(1) global R-symmetry [8].

In the case of the Kaluza—Klein orbit solution, one has to consider the manifestly
Eg()-invariant expression of 7, in terms of the cubic invariant 73, as function of the

bare electric and magnetic charges [49, 70, 52]:
Ty = — (%0 + P'a1)” + 4 [q0Ts (0) — 1°Ts (q) + {Ts (0) , Ts ()}] - (5.1.18)
The corresponding truncation is given by the choice of the fluxes
pl=0=gq, (5.1.19)
so thatt one obtains (p = p, qo = q)
I, = —(pg)?, (5.1.20)

which now coincides with Eq. (5.1.4).

We will show that there is yet another way to obtain the two entropies for RN and
KK black holes (5.1.1) and (5.1.2) . This consists in using the attractor equations for
the effective black hole potential 8\5% = 0 and the expression of the entropy as the

value of such potential at the critical point,

S =7 Vpyl| (5.1.21)

crit *

In the following, we will first consider various bases of N' = 8, d = 4 supergrav-
ity, namely the SL (8,R), SU (8)- and USp(8)-covariant ones, exploiting the relevant
branchings of the U-duality group E77). We will analyze the fundamental quantities

for the geometry of the scalar manifold 55((;)) in the SL (8, R)-covariant basis, first, and
then move to the Eg)-covariant basis; with the goal of exhibiting the connection with
N = 8, d = 5 supergravity, we will recast the d = 4 effective black hole potential in
a manifestly d = 5 covariant form. The charge configurations of this potential leading
to vanishing axion fields are studied along with the corresponding attractor solutions.
The embedding of the axion-dilaton extremal black hole in ' = 8, d = 4 supergravity,
through an intermediate embedding into N' = 4, d = 4 theory with 6 vector multiplets

will be presented.
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5.2 Symplectic Frames

The de Wit-Nicolai [71] formulation of N' = 8, d = 4 supergravity is based on a sym-
plectic frame where the maximal non-compact symmetry of the Lagrangian is SL (8, R)

[72], according to the decomposition

E7(7) — SL (8,R) ,
(5.2.1)
56 — 28 + 28/

where SL (8,R) is a maximal non-compact subgroup of FEr(7), and 28 is its two-fold
antisymmetric irreducible representation. Since there is no matter coupling, the SU (8)
R-symmetry, is the stabilizer of the scalar manifold. It is not a symmetry of the La-
grangian, but only of the equations of motion, the maximal compact symmetry of the
Lagrangian is indeed the intersection of SL (8,R) with SU (8), which is SO (8), the
maximal compact subgroup of SL (8, R) itself.

Another symplectic frame corresponds to the decomposition (5.1.9). In this case, the
maximal non-compact symmetry of the Lagrangian is Egg) x SO (1,1) x Tar, with Ty
standing for the 27-dimensional Abelian subgroup of E7(7). The maximal compact sym-
metry is now USp (8), which is also the maximal compact symmetry of the Lagrangian.
Note that all terms in the Lagrangian are SU(8) invariant, with the exception of the
vector kinetic terms, which are SU (8)-invariant only on-shell.

Let us decompose Er(7) along two different maximal non-compact subgroups accord-

ing to the following diagram:
Eq 7y — SL(8,R)
{ 1 (5.2.2)
FEg) x SO(1,1) — SL(6,R) x SL(2,R) x SO(1,1).
If one goes first horizontally, the 56 of E7(7) decomposes as
(15,1,1) +(6,2,—1) + (1,1,-3) +

56 — 28 + 28" — (5.2.3)
+ (15,1, 1) + (6/,2,1) + (1,1,3).
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Alternatively, one can first go downward, and use that
Eg) — SL(6,R) x SL(2,R);
27 — (15,1) + (6/,2), (5.2.4)
1—(1,1),

thus obtaining:

(15,1,1) + (6’,2,1) + (1,1,3) +
56 — (27,1)+(1,3)+ (27, -1) + (1, -3) —
+(15',1,—-1) + (6,2,—1) + (1,1,-3).
(5.2.5)
Therefore, either way on the diagram and irrespectively of the intermediate decomposi-
tion, one obtains the same irreducible representations of SL (6, R) x SL (2,R)x SO (1,1),
which enjoyes a unique embedding in the U-duality group E7(7). In particular, one sees
that the singlets are indeed the same in the two cases, and the alternative decomposi-
tions are related by the interchange of (15,1, 1) with (15’,1, —1). We can thus conclude
that these two formulations, corresponding to two different symplectic frames, can be

interchanged by dualizing 15 out of the 28 vector fields.

An analogous argument holds if one decomposes E7(7) according two two different

maximal compact subgroups along the diagram
Eqepy — SU(8)
l i} (5.2.6)
Eg2) x U(1) — SU(6) x SU((2) xU(1).
This time, going first horizontally along the diagram, the result reads:
(15,1,1) + (6,2, —1) + (1,1,-3) +

56 — 28 + 28 — (5.2.7)
+(15,1,-1) + (6,2,1) +(1,1,3).
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Equivalently, one can first go vertically on the diagram and use

E6(2) — SU (6) x SU (2);
27 — (15,1) + (6,2) , (5.2.8)

1—(1,1),
thus obtaining:

(15,1,1) + (6,2,1) + (1,1,3) +
56 — (27,1) + (27,-1) + (1,3) + (1,-3) —

+(15,1,-1) + (6,2, —1) + (1,1,-3).

(5.2.9)

Again, either of the two alternative branchings in (5.2.6) , which are related by the
interchange of (15,1,1) with (ﬁ, 1, —1), yield the same decomposition into irreducible
representations of SU (6) x SU (2) x U(1). Moreover, the U(1) singlet which commutes
with SU (6) x SU (2) is the same as the one which commute with Fg o).

Let us now turn to the scalar sector. As mentioned above, the coordinate system

E ..
S(}((;)) based on the Cartan decomposition, the real scalars ¢;;

for the scalar manifold
sit in the 70 ( four-fold antisymmetric and self-real irreducible representation) of SU(8)
with ¢ =1,...,8. The embedding of the RN extremal black hole is related to the further
decomposition

SU(8) — SU (6) x SU (2) x U(1),

(5.2.10)

70 — (20,2,0) + (15,1,-2) + (15,1,2).
On the other hand, for describing the KK extremal black hole one decomposes SU(8)
under its maximal subgroup U Sp(8):

SU(8) — USp(8),
(5.2.11)
70 42+ 27+ 1,

where 42 and 27 are respectively the four-fold and two-fold antisymmetric irreducible
representations (both skew-traceless and self-real) of USp (8).

The crucial difference between (5.2.10) and (5.2.11) is that the latter decomposition
contains a real singlet, whereas the first one does not. This is related to an underlying

maximal compact (U (1) symmetry which is present for (5.2.10) and not for (5.2.11).
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This feature explains the different behavior of the two solutions at the attractor point:
the RN solution has the behavior (5.1.10) while the KK solution is given by (5.1.12)-
(5.1.13).

5.3 SL(8,R)-Basis

We now turn to discuss the details of the symplectic formalism for extended super-
gravities reviewed in the introductory section, and the original formulation of NV = 8
supergravity of [71] for some of the key geometrical objects that are relevant for the
present investigation.

We start by considering the coset representative for E7 7y, 517 (s), which is parametrized
as [71]

17 4.
Y= < Ui “”KL> (5.3.1)

kl1J , Kkl
v Upr, -

The sub-matrices u and v carry indices of both E7) and SU(8) (I = 1,...,8, I =
1,...,8) but one can choose a suitable SU(8) gauge for the fields, and then retain only
manifest invariance with respect to the rigid diagonal subgroup of Er(7) x SU(8), without
distinction among the two types of indices. Comparing the notation of [71] (in particular

the appendix B) with the symplectic formalism of [14],[27], we can identify

$o=u . U’ijkl = (Pil/Q)ijkl ;
¢1 = vijkl — _(if)—l/Q)lJmngmnkl

so that

£= L5(o0+61) = H(u+v)

5.3.2
ih:%(qbo—qﬁ):%(u—v) ( )

Since sections are sub-matrices of the symplectic representation, relatively to electric

and magnetic subgroups, their explicit indices components are given by

KoL “1joy KM pel/2ig -
5 = 5 (PP = ()

—i _ R

hij i = NG ((P 1/2)2-ij + (P 1/2)”mnymnkl> , (5.3.3)
where, in matrix notation,
tanh vV BT B 1

PZl—YYT, Y=B—F~—— | Biiki = ———®iikl » 5.3.4
BTB ij,kl 2\/§¢2]kl ( )
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the last definition coming from the choice of the symmetric gauge for the coset repre-

sentative in Eq. (B.1) of [71]. If one defines
P=1-Y'y, (5.3.5)
and uses the identity
(PVyt =yT(p~1/?), (5.3.6)

the following simple expressions for f and h are finally achieved:

1 ~ 1 1
£f— [p—l/2 _(p~1/2 YT] - -y , 5.3.7
7 ( ) ﬁ[ s ag (5.3.7)
i ~ i 1
h=—— [P’1/2+ P12 YT} ) ) 5.3.8
7 ( ) \/5[ N (5.3.8)
The above notations are such that

P2 = /1 —vyYt — P, M 51-’31 — Yijmn g™

P12 — /1Yty — Pklij = 6 — g i (5.3.9)
It is easily checked that the symplectic sections satisfy the usual relations
i(ffh —h'f) =1,

h’f —fTh=0. (5.3.10)

These are obtained writing the symplectic sections as in (5.3.7) and (5.3.8), and using

the identity
YPt=pPly. (5.3.11)
The kinetic matrix is given in terms of the symplectic sections by [27]
N =hf!. (5.3.12)

Therefore, Egs. (5.3.7) and (5.3.8) yield
1 1
= Y V1 oyYT =
N i[1+YT] Raa G
14 YT
_l [
1-Yt

4
Nijir = =i(Sp + 5™ ) (5" — 7™~ (5.3.13)
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We now turn to the central charge function, which is defined by
kl
Zij = fi" am = hijap™ (5.3.14)

where electric and magnetic charges are in the same SO(8) adjoint representation as

vector fields. Using the definitions in (5.3.3), one obtains!

1 _ =_ i _mn i — D— iJ —mn
Zi; = = ((P 1/2)ijkl (P I k:l) aui + % ((P 1/2)ijkl (P12 I kl) .

= (P_l/Q)ijlekl - (P_l/Q)ijmngmnlekl =

kl ]
1 1 1 _ _
= ——=] OQu-|—m— YR Q| (5.3.15)
V2 (\/1—YY)U vVi-yvy)
where the complex charges
1 Y
Qij = ﬁ(qm’ +ip") (5.3.16)
have been introduced.
Then one can also give an expression for the black hole potential, which is given by
1 ..
VB = §Zij7] =
[(1 — YY) MQuQi+

—\ —lab — —14j
m) o Qa (m) oy Yedr1Qrt +

v

-
(V) R (Vieyy) T MGt
+(

=

ij

1=YY)~ v Yklanamen} . (5.3.17)

Thus, in the expansion around the zero field configuration, the black hole receives con-

tribution from the term
1 ..
V(¢ =0) = 7Qi5Q" . (5.3.18)

The linear term in the expansion of the black hole potential near the point ¢ = 0 receives

contributions from the second and third row of Eq. (5.3.17), yielding the condition

QijbijQu — QijdMQu = 0 (5.3.19)
I
1
QijQuo " — Qi Que ™™™ =0 . (5.3.20)

!The expression with explicit indices is given by

Pijkz = (P)kzij
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The configuration corresponding to charges Q 45 in the singlet of SU(2) x SU(6) trivially
satisfies condition (5.3.20). Furthermore, it sets to zero the linear term for all values of

¢, implying the ¢ = 0 point to be an attractor point for this configuration.

5.4 FEg)-Basis and Relation to d =5

This section is aimed to establish the relation between the N' = 8, d = 4 theory and
N = 8, d = 5 supergravity ([73, 74]), especially for what concerns the effective black
hole potential.

In our normalizations the kinetic Lagrangian for vector fields in the N' = 2 theory
reads (with 7y, = 3 (0,4, — 0,A,) = OuAu) [75],]18]

L=...—ImNAsFAFE — ReNnFA *F2, (5.4.1)

where Ny is the d = 4 vector kinetic matrix, with A,X = 0,1,...,27. The effective
black hole potential is given by [13]

Van = —5Q"MN)Q, (5.4.2)

pA

) , and the matrix M reads [13]
aa

where @ is the symplectic charge vector Q) = (

ImN + ReN(ImN)'ReN  —ReN(ImN)~!

MWN) = (A TR\’ ()1 : (5.4.3)

The d = 5 U-duality group Egg) acts linearly on the 27 vectors flé, with g =1,...,5

and I =1,...,27. The d = 5 vector kinetic matrix N7 7 is a function of the scalar fields

spanning the d = 5 scalar manifold U%;?é) (dimg = 42, rank= 6).

According to the splitting A = {0, I}, the d = 4 kinetic vector matrix assumes the
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block form

NOO NOJ
My = | — . (5.4.4)

Nro [Ny

By using to the formula obtained in [76] which determine N} 5 in terms of five-dimensional

quantities, in a normalization? that is suitable for comparison to A= 2 , one obtains

%dUKaIaJaK —1 (62¢a1JaIaJ + €6¢) —%dUKaIaK +ie*?ag ja’€

Ms = 5.4.5)

*%d[KLCLKaL + ieQ‘%U((LK d[JKCLK — i€2¢a1J

Since the djsx tensor, the a! fields, the d = 5 vector kinetic matrix a;; and the field 10}

are real, the expressions for ImN and ReN are given by

1+ e_4¢au ala”’ —6_4¢GKJ a
ImNyy = —eb? ; (5.4.6)
—6_4¢a1K a’€ 6_4¢a1J
%dKLMaKaLaM —%dJLMaLCLM
ReNyy = _ (_:1;16;[ :i?) . (5.4.7)
2
—3dipmata dryxal

2 Compared to the notation of [76], here we use Nas — 4Nax, 2N77 — ars, digx — —disi /4 and

al = —adl.
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where the following shorthand notation has been introduced:

d= d[JKCLICLJCLK s d] = dUKaJaK s d[J = dUKaK . (548)
The inverse matrix (ImAyx)~' = ImN?* can be determined by noticing the block
structure of (5.4.6). Then, by performing computations analogous to those of [69], one
finds

(ImN~HAE = 709 , (5.4.9)

aI aIaJ 4 e4<;SaIJ

where a!’ = (

ary)~!. Inserting the above expressions into Eq. (6.2.1), the N' =8, d =4
effective black hole potential can finally be rewritten in a d = 5 language:

1 1., 1 d?
VB = (P0)2 {2€2¢auafaj + §ef’¢ + §€_6¢ <9 + e4¢a”d1dJN +

1 1
—I—popl |:—€2¢CZIJ(1J — Z€_6¢ <3dd] + 2€4¢CLKJdeJ]>:| +

1 1
+pIpJ |:€2¢CL[J + ge_ﬁd) (d[d] + 4€4¢CLKLd]KdLJ):| +

2
1 1
+6qop0 e 6%q + 6q1p0 e 00 {d al + 3e4¢aKIdK} +

1 _ 1 _
—§q0ple 6¢d1 - iqlp‘]e 6¢ [djal + 2€4¢GKICZJK:| +
1

1
+§(q0)2€_6¢ + qogre”%a’ + SUa e [ala‘] + €4¢GIJ} . (5.4.10)

Notice that this formula becomes identical to the corresponding one of [69] concerning

purely cubic) N = 2 geometries [77],[78], where ar; = 4e*?g;; and V = €59.
J

The potential (5.4.10), because of the definitions (6.2.5), can be seen to be a poly-
nomial of degree up to sixth in the axion fields, whose general solutions are hard to
determine. However, one can consider in particular attractor solutions with vanishing
axion fields. These are given by specific charge configurations that solve the following

attractor equations:

oVH _
Bl oo = € PP s e

ap"dipa’ + qoqre ™ =0. (5.4.11)
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Therefore, the black hole charge configurations Q = (p°, p’, qo, ¢7) supporting axion—

free solutions fall into three classes:

a) Qe = (9°,0,0,q1) Electric black hole;
b) Qm = (0,p',0,0) Magnetic black hole;
c) Qo= (°,0,¢0,0) KK charged black hole . (5.4.12)

In each of these classes, we now specify the black hole potential by setting to zero the
appropriate charge configuration in (5.4.10):
a) Electric black hole:

1 1 _
Vau($,0°,a1)| ,i_y = 566‘1’(]90)2 +5e 226 qrqy . (5.4.13)
b) Magnetic black hole:
J L 66, 2, Loy 1
Vi (6,90, 0")| 1o = 3¢~ (00)" + 3¢ arp'p”. (5.4.14)

c) Black hole charged with respect to the KK vector:

1_ 1
Vi (6,00, 0)] 1o = 3¢ (a0)* + 5% (0°)* . (5.4.15)

In order to recover the complete attractor solution, one also has to stabilize e®. For

the KK charged black hole one gets,

VAL (8,90, 1°) 6o |0
96 =0 = 7= 0| (5.4.16)
thus yielding
VEa (90, %) 1_y = laop”| - (5.4.17)
In the electric case it holds that
1
Vin 2 a"qrqs\*
—_BH =0 ¢ — , 5.4.18
D6 o € 3(p0)2 ( )
implying the critical value
1J 3/4
a "q1qJ
R (5.4.19)
Analogously, for the magnetic black hole one finds
1
VEy 2 arp'p’\ 1
=0 <= o — (22 , 5.4.20
8¢ |a1:0 € ng ( )
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yielding
3/4

I..J
m arjp p
Vi (40, 9" lar o = 2lao] 2 <3 ) . (5.4.21)

In virtue of the Bekenstein—Hawking entropy-area formula, the above expressions
for the critical electric and magnetic black hole potentials must be compared with
appropriate powers of the Eg) cubic invariants Z3(p) = %d} Jrp'p’pX and Z3(q) =

%d”ququK. Indeed, in d = 5 it must hold that [10]
S~ VA e ~ | T3|V2 (5.4.22)

Defining the electric and magnetic d = 5 effective potentials respectively as

Ve =a"qqs . VB =aup'p’ (5.4.23)
one obtains
011/2 Vs o/
erit = 2P| (3> | it (5.4.24)
and
m 0(1/2 V:’)m o/
crit — 2‘(] ’ T |c7‘it' (5425>

By comparison with A/ = 2 symmetric d—geometries having

Vi lerit = [Z3(@)*® = |q19243] , (5.4.26)

one obtains the expressions for the critical potential of the four dimensional electric and

magnetic black holes:

0qIJK
Vi erit(a1,9°) = 2\/ P TR y (5.4.27)
and
qod1yxp'p’p*
Vit erit (40, ) = 2 | 3 | (5.4.28)

More generally, these solutions can be compared with the embedding of the N' = 2
purely cubic supergravities into N/ = 8 supergravity, and using the above critical values
of the black hole potential in (5.1.21), one finds for the three family of configurations

under exam the correct result:

SBH _ VI (5.4.29)
7T
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It is interesting to remark that the KK black hole can be connected to the RN
solution by performing an analytic continuation of the charges, as one can see from the

redefinition

P’ = p+ig,

go — p—1iq,
which allows one to recover the RN entropy
Spn =7( p* +4°) . (5.4.30)

We conclude this Section by pointing out that the 70 scalars of N' = 8, d = 4
supergravity have been decomposed according to representations of USp (8) (maximal

compact subgroup of Egg) x SO (1,1)) as follows:
70 5424+ 27+1 . (5.4.31)

The 42 unstabilized fields are the coordinates of the corresponding moduli space [67].
The non-compact form of the exceptional group, Eg), in fact, enters in the expression

of the coset

Fé6)
%0 4.32

which is the moduli space of the d = 4 non-BPS, Z4p # 0 extremal black holes, whose

orbit is precisely

Erny
O =—=. 5.4.33
B ( )

Indeed, the KK black hole is a non supersymmetric solution.

5.5 Embedding of the Axion-Dilaton Extremal black hole

The embedding of the axion-dilaton black hole in N' = 8, d = 4 supergravity can
be performed by a three step supersymmetry reduction, which can be schematically

indicated as
N=8—=N=4 ny=6— pure N =4— N =2 quadratic, ny =1, (5.5.1)

where ny denotes the number of vector multiplets coupled to the supergravity multiplet.

More precisely, the first step consists in truncating N’ = 8 supergravity to an N' = 4
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theory interacting with six matter (vector) multiplets. In the second step, N' = 4 reduces
to the pure theory, while in the last reduction one obtains N' = 2 supergravity quadratic
[79] theory with a single vector multiplet.

We are now going to examine more precisely each intermediate step.

1) In the first step, the N/ = 8 central charge matrix Z4p assumes the block form
(a,b=1,.,4,i,7=1,...,4):

Zag — . (5.5.2)
0 ZZ”

where Z,;, is the N/ = 4 central charge matrix and Z;; are the matter charges of the 6
vector multiplets (sitting in the two-fold antisymmetric of SU (4), or equivalently in the

vector representation of SO (6) ~ SU (4)).

Eq )
SU(8)

Consequently, the A/ = 8 scalar manifold , reduces to

SLR) ~_ SO(6,6) _ SLR) _ SO(66)
U) “SO6)xS06) U(1) ~ SU(4) xSU@4) (5.5.3)

which admits three orbits. This is the scalar manifold for N' = 4 supergravity coupled

to 6 vector multiplets, .

2) In the second step, the 6 vector multiplets are eliminated and Z;; = 0; this
corresponds to retaining only states which are singlets with respect to the second SU(4)
in the stabilizer of the coset (5.5.3)), and the theory becomes pure = 4, with U-duality
SL(2,R) x SU (4):

Zwe 0 Zaw 0O
— ) (5.5.4)
0 iZjje 0 0
with € = (91 (1]) Accordingly, the scalar manifold reduces to S%J(a’;R ). Notice that, the
SL(2,R)

presence of the axion-dilaton s spanning , in the N' = 4 supergravity multiplet,

)
only an SU(4) out of the whole (local) N' = 4 R-symmetry U(4) gets promoted to

(global) U-duality symmetry .

3) In the last step, 4 out of 6 graviphotons drop out, reducing the overall gauge
symmetry from U(1)% to U(1)?, with resulting U-duality SL (2,R) x U (1). Thus, the

framework becomes N = 2-supersymmetric, with the two skew-eigenvalues (Z1, Z3) of
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Zap related to the NV = 2 central and matter charges (Z, DsZ) :

Z 0
Zap — . (5.5.5)
0 i DsZ
Therefore, at the N' = 2 level one can have both BPS attractors (DsZ = 0) and the
non-BPS (Z = 0) ones [52].

On a group theoretical side, this step correspond to performing the decomposition

SU (4) — SU (2) x SU (2) x U (1),

4—(2,1,3) +(1,2,-1), (5.5.6)

6 — (272a0) + (1’171) + (1717_1)7

and to retaining only the singlets of SU (2) x SU (2).

The above three step reduction can be viewed from the point of view of the clas-
sification of large charge orbits [27],[80]. One starts with the N' = 8 scalar manifold
E7(7/SU(8) admitting the two regular orbits (5.1.5) and (5.1.6). The large charge
orbits of N’ = 4, d = 4 supergravity coupled to 6 vector multiplets are:

500,
( O1/4BPs SL(2,R) x %5
Onon BPS, Za=0 SL(2,R) x %; (5.5.7)

50(6.,6
{ Onon BPS, Z,,#0 SL(2,R) x m’

where the coincidence of the first two orbits is due to the symmetry between the gravity
and the matter sector.
The corresponding moduli spaces for the N’ = 4, n = 6 attractor solutions, exploiting

the hidden symmetries of the above charge orbits, are given by:

S0(6,4 .
Mpps = SU(4)><SU((2))><5U(2)’

_ S0(64)
Mon BPS,Z,=0 = S0(6)xS0() (5.5.8)

( Muon BPS,Z,#0 = SO (1,1) x 750?5(;%50)(5) = 50(1,1) x 7[]3;;?40)(55;;;(4)'
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Notice that M4 pps (and Myon—BPs,z,,=0) are homogeneous symmetric quaternionic
manifolds, as in the N' =4 — N = 2 reduction they become the hypermultiplets’ scalar
manifold [27].

The truncation of the ' = 8 theory into N’ = 4 is based on the decomposition

Eq7y — SL(2,R) x SO(6,6) (5.5.9)
and on the following group embeddings

SO(5,5) x SO (1,1) € Eg(g).- (5.5.11)

Therefore, one can readily establish that the orbits 1/4 BPS and non BPS, Z,, = 0

descend from the N/ = 8, BPS orbit Err) whereas the orbit O,onBps, z,,40 comes from

Eg(2)’
the A/ = 8, non-BPS orbit #
6(6)

There is also another way to interpret the three step reduction (5.5.1), that is in
terms of U-duality invariant representations. At group level, the embedding of the
axion-dilaton extremal black hole into N = 8, d = 4 supergravity is based on the

decomposition of Er7y — SU(8) and

SU (8) — SU (4) x SU (4) x U (1),

85 (41.4) + (1.4,-4).

(5.5.12)
28 — (4,4,0) + (6,1,1) + (1,6, —1),
% - (1717 0) + (6> 17 _1) + (1’ 6> 1) )
where SU (4) x SU (4) x U (1) is a maximal subgroup of SU (8).
Then, the first truncation (M =8 — N = 4,n = 6) consists in setting
(4,4,0) =0= (4,4,0), (5.5.13)

which gives rise to the decomposition (5.5.2).
We recall that the quartic invariant of the U-duality group SL (2,R) x SO (6,n) of

N =4, d = 4 supergravity coupled to n vector multiplets is [55]

Ty = 8 — |87, (5.5.14)
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where the three SO (6,n) invariants S1, Sy and Sy are defined by (a,b = 1,...,4, I =
1,...,n):

1. _
1= Wz — 7,7 (5.5.15)
1 _
Sy = € 2 Zea - Z,7". (5.5.16)

The case n = 6 is remarkably symmetric, as the symmetry of the gravity and matter
sector is the same and furthermore, due to the isomorphism SU(4) ~ SO(6), the SO(6)-
vector Z; of matter charges can be equivalently represented as the SU(4)-antisymmetric

tensor iZ;; (i,j = 1,...,4). Consequently, for n = 6 we have

1 —ab 1— .

Sin=6 = 3 w2 — §ZijZU§ (5.5.17)
1 1 g

827,,1:6 = ZﬁadeZachd — 16¢jklZl]Zkl. (5518)

Notice that Oy/4pps and Ononpps, z,,=0 in Eq. (5.5.7) correspond to the two discon-
nected branches of the same manifold, classified by the sign of the real SO (6, 6)-invariant
[27] Indeed, S; =6 > 0 for O1/4pps and S1n=¢ < 0 for OnonBPS, Z,,=0-

By a suitable U(1) x SU (4) x SU(4) transformation, one can reach the normal frame
for both gravity sector and matter sector, such that the two matrices Z,;, and Z;; are

simultaneously skew-diagonalized, obtaining
Z
Zop — ® €; (5.5.19)
Zs

Az
Zij —» € ( ’ , > ®c¢, (5.5.20)
4

where Z1, Zy € RT, and Z3,Z4 € RY, 6 € [0,27). In the normal frame, one obtains

Stn—o = |21 + 122" — 125" — | Zu)*; (5.5.21)
Son—6 = 2 (2125 — Z3Z4) ; (5.5.22)
Tin—6 = Stp_g — |Son—s|” =

4 4 4 4
= 1zi* =2 Y 1z 127 +4 <HZZ»+HZi>. (5.5.23)

i=1 i<j=1 i=1 i=1
Eq. (5.5.23) coincides with the expression of the quartic invariant of N' = 8, d = 4
supergravity, as given by [54] (see also [33]) Considering now the second step of the

reduction, where one reaches the pure N' = 4 theory, one sets Z;; = 0, or equivalently



5.5. Embedding of the Axion-Dilaton Extremal black hole 83

Z3 =0 = Z4 in the normal frame (that is, retaining only states which are singlets with
respect to the second SU(4) in the stabilizer of the coset (5.5.3)). Notice that, by doing

50, Z4 n—0 becomes a perfect square:
2 2
Tinmo = Stuco = |S2nmol” = (120~ 12) = (28 - 23)". (5.5.24)

Eq. (5.5.24) implies that Z, ,—o is (weakly) positive, and as a consequence an unique
class of large attractor exists, namely the 1/4-BPS one. The (weak) positivity of Z4 ,,—¢
is consistent with the known expression of Z4 ,—o in terms of the magnetic and electric
charges (pA,qA) (A=1,..,6):

Tan—o =4 [p2q2 — (97, (5.5.25)

where here p? = p*p®as, ¢® = qrqsd™ and p- ¢ = pAqE5§. Notice that in the basis
of bare charges 7y ,—0, as given by Eq. (5.5.25), is (weakly) positive due to the Schwarz
inequality, and not because it is a non-trivial perfect square of an expression of the bare
magnetic and electric charges [81].

Notice that /Zyn—o (with Zy,—o given by Eq. (5.5.25)) must coincide with the
value of the effective black hole potential of the pure N/ = 4 theory at its critical points.
This can be understood (see the recent discussion given in [27] and [82]) because this

potential reads as follows (A =1, ...,6):

VBH,pureN=4 (¢7 a, PAa QA) = 62¢(5p/\ - QA)(EpA - qA) =

= (e2%a® + e 22)p? + €22¢% — 2ae¥p - q, (5.5.26)
where the complex (axion-dilaton) field

s=a+ie 2 (5.5.27)

SU(1,1)
Uu(1)

criticality conditions of Vg pure A'=4, One obtains the following stabilization equations

for the axion a and the dilaton ¢ at criticality, (¢, a) = (¢g(p, q), agx(p,q)) [27]

8VBH(¢’ a,p, C.I)

parametrizes the coset of N = 4, d = 4 pure supergravity [83]. By computing the

p-q

oa ‘crit = 0= CLH<p7 q) = R (5528)
aVBHvaa»p,q — _ qu
(aqb : i = —€ P+ —anlp,p-q=—e P +¢* - (p2) —0:

202 — (p . g)2
e~ 20n(pa) — VP4 7 (r-9) ) (5.5.29)
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The Bekenstein—Hawking black hole entropy is computed to be

_ Ag (p,q)

SBH (p: Q) - ? = WVBH ((bH (p7 Q) , OH (p7 Q) » Dy q)

=2m\/p?>¢®> — (p- q)? = 1\/Lan=o0. (5.5.30)

The third and last step, when the pure N’ = 4 theory reduces to the N’ = 2 quadratic
theory with ny = 1, is performed through the truncation (U (1))® — (U (1))? of the over-
all Abelian gauge invariance (A = 1,...,6 — A = 1,2). In this case, Z, (W(1)P—(U(1))?2
is a perfect square in both the basis of Z,; and in the basis of charges (pA, qA), and it

actually is the square of the quadratic invariant Zy(,,—1) of the axion-dilaton system:

2 2\ 2 2
I4,n:0,(U(1))6—>(U(1))2 = <\Zlf — |2 > = 4(P1QQ —thn) = 22(n=1)§ (5.5.31)

)

Tyn=1) = £2 \plfm —pgfh\ ) (5.5.32)
implying that the axion-dilaton system exhibits two types of attractors: the %—BPS one
(Zy(n=1) > 0) and the non-BPS Z = 0 one (Zy(,—1) < 0).

By further putting

P'=0=q, p"=p q1=¢ (5.5.33)
(= p-q=0), one obtains:
* * 2
Trtneo,u(y5—u(1)2) = Lainety = 4(09)"; (5.5.34)
T
Lyn—1) = £2|pal , (5.5.35)

where Z* means the evaluation along Eq. (5.5.33).

The similarity between the r.h.s.’s of Egs. (5.1.4) and (5.5.35) is only apparent. In
fact, the KK extremal black hole has \/m , which necessarily implies that it is non-
BPS (Zap #0in N =8 and Z # 0 in N = 2). On the other hand, the axion-dilaton
extremal black hole has I;(nzl) and a “£” in the r.h.s., so that it can be both %—BPS
and non-BPS Z = 0 in N = 2. Moreover, the choice (5.5.33) leads to vanishing axion a
(see Eq. (5.5.28)), and this explains that Egs. (5.5.35) has SO (1, 1) symmetry, as Eq.

(5.1.4).

5.5.1 Truncations of the scalar sector

As reported e.g. in Sects. 6 and 7 of [82], one can see that the attractor mechanism

stabilizes the complex axion-dilaton s at the event-horizon of the axion-dilaton extremal
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black hole itself, while, as given by Eqgs. (5.1.12) and (5.1.13) within the branching
(5.2.11), only one real scalar degree of freedom, namely the KK radius rxx defined by
Eq. (5.1.11), is stabilized at the event horizon of the extremal KK black hole.

The relevant branching of the scalar sector for the embedding of the axion-dilaton

extremal black hole into N' = 8, d = 4 supergravity is given by:

SU(8) — SU (4) x SU (4) x U (1),
(5.5.36)
70 — (1,1,2) + (1,1,-2) + (6,6,0) + (4,4,1) + (4,4, — 1).

Eq. (5.5.36) is the analogue of Egs. (5.2.10) and (5.2.11), holding respectively for the
(N =38, d =4 embedding of the) RN and KK d = 4 extremal (and asymptotically flat)
black holes.

A remarkable feature characterizing the branchings (5.2.10), (5.2.11) and (5.5.36) is
the possible presence of a singlet in their r.h.s.’s. The decomposition (5.5.36) contains
two SU (4) (xSU (4)) singlets, whereas the decomposition (5.2.11) contains a real singlet,
and the decomposition (5.2.10) does not contain any singlet. The presence of the singlet
may lead to an underlying maximal compact symmetry (U (1) for (5.2.10), absent for
(5.2.11), and SU (4) for (5.5.36)).

1. The first truncation (N =8 — N = 4,ny = 6) corresponds to setting?
(4,41)=0=(44,-1). (5.5.37)

Indeed, by applying the condition (5.5.37), one obtains the correct quantum num-

bers of the scalar manifold S%]((Ql’;R ) % SOfGO) (X%%(ﬁ) of the N’ = 4, d = 4 supergravity

coupled to 6 vector multiplets.

2. The second truncation (N' = 4,ny = 6 — pure N' = 4 ) simply consists in

implementing the condition

(6,6,0) = 0, (5.5.38)

which is consistently symmetric under the exchange of the gravity sector and the

matter sector. Through condition (5.5.38), one achieves the correct quantum num-

bers of the scalar manifold % of the pure N' = 4, d = 4 supergravity.

3Notice the difference with respect to the analogue truncation condition (5.5.13) for the decomposition
of the 28 and 28 of SU (8).
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3. The third and last step (pure N' =4 — N = 2 quadratic, ny = 1) does not change

anything with respect to the previous one. Indeed, the scalar sector is unaffected

by this third truncation, and the scalar manifold remains SLU((21’;R ),

Appendix 5.A Truncation of N = 8, d = 5 supergravity to
the d = 5 uplift of the stu model

The bosonic sector of the N' = 8, d = 5 supergravity theory consists in the metric

. E
G (u,v =1,...,5), 27 vectors Aﬁ and 42 scalars ¢up.q parametrizing the coset USB;E((%)'

The index A = 1,...27 is in the 27 of Eg), and it can be traded for a couple of flat

antisymmetric indices (ab) of USp(8). Thus, the vectors AZb transform in the 27 of
USp(8) , that is

The 42 scalars ¢qpeq are in the traceless self-real 4-fold antisymmetric representation 42
of USp(8).

Upon performing the d =5 — d = 4 reduction, one gets 70 scalars, which split into
the following irreps. of USp(8):

70 =42+ 27+ 1. (5.A.2)

Here 27 accounts for the axions coming from the A‘gb vectors of Eg), 1 is the KK

radius rx ik (see the definition (5.1.11)), and 42 corresponds to the scalars in U%};?g).

In order to extract the stu model, we notice that its d = 5 uplift is the (SO(1,1))?

model with cubic hypersurface [77],[78] (see e.g. the treatment given in [69])
NAZN3 = 1. (5.A.3)

The N =8 — N = 2, d = 5 supersymmetry reduction corresponds, at the level of

Eg ), to taking the decomposition
Ege) — SO(1,1) x SO(5,5) — (SO(1,1))* x SO(4,4), (5.A.4)
so that (weights with respect to SO(1,1)’s are disregarded, irrelevant for our purposes)
27 —+14+164+10—-1+8,+8.+1+1+8,. (5.A.5)

Thus, three SO(4,4)-singlets are generated; they correspond to the three Abelian
vector fields of the d = 5 uplift of the stu model. By further reducing to d = 4, one gets
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a further vector from the KK vector (alias the d = 4 graviphoton). This can be easily
seen by completing the decomposition (5.A.4) starting from the U-duality group ;)

of d = 4 maximal supergravity:

Eqry — SO (1,1) x Ege) — (SO(1,1))* x SO(5,5) — (SO(1,1))° x SO(4,4) ,
(5.A.6)
so that Eq. (5.A.5) gets completed as (again, neglecting weights with respect to SO(1,1))

28 -27+1—-1+16+10+1—-1+8,+8.+1+1+8,+1, (5.A.7)

containing four SO(4,4) singlets in the last term.
It is worth pointing out that at d = 4 the (SO (1,1))® commuting with SO (4,4) gets
enhanced to (SL (2,R))*. By further decomposing

SO (4,4) — (SL(2,R))*, (5.A.8)

this yields the (SL (2,RR)), used for the seven qubit entanglement in quantum informa-
tion theory [84],[85].

Notice that the presence of three different 8’s of SO(4,4) in the r.h.s. of the decom-
position (5.A.5) (as well as of (5.A.7)) is the origin of the triality symmetry [86],[87] of
the stu model [88].

The (SO(1,1))? factor in the r.h.s. of the branching (5.A.4) is nothing but the scalar
manifold of the d = 5 counterpart of the stu model (spanned by /):1, 22 and A3 satisfying
the cubic constraint (5.A.3)). On the other hand, the (SO(1,1))® factor in the r.h.s. of
the branching (5.A.7) is spanned by the unconstrained, strictly positive, d = 4 dilatons
M = —Im(s), X2 = —Im(t) and A = —Im (u). They are related to their hatted
counterparts by A\ = TKK/):i, i =1,2,3, implying (see Egs. (5.A.3) and Eq. (5.1.11);
see also e.g. [69]))

MNN3 =3 =V, (5.A.9)

The decomposition of the d = 5 stabilizer (analogue to the decomposition (5.A.4) of

the U-duality group of the d = 5 maximal supergravity) reads as follows:

USp(8) — USp(4) x USp(4) = Spin(5) x Spin(5) —
— Spin(4) x Spin(4) = (SU(2))* x (SU(2))?, (5.A.10)

yielding the following decomposition of the fundamental 8 of USp(8):

8 (4,1)+(1,4) - (2,1,1,1) + (1,2,1,1) + (1,1,2,1) + (1,1,1,2).  (5.A.11)
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This allows one to compute the corresponding branchings of the 27 = (8 x 8) 4 5 and
42 = (8 x 8 x 8 x 8) 4  (the subscript “A, 0” standing for “antisymmetric traceless”) of
USp (8) (the intermediate decompositions with respect to USp(4) x USp(4) are omitted,

because irrelevant for our purposes):

27 - (2,2,1,1) +(2,1,2,1) + (2,1,1,2) 4+ (1,2,2,1) +
+(1,2,1,2) +(1,1,2,2) +3(1,1,1,1); (5.A.12)

42 % (2’ 2?27 2) + (27 27 17 1) + (271727 1) + (2717 1’2) + (1727 2’ 1) +
+(1,2,1,2) +(1,1,2,2) +2(1,1,1,1) (5.A.13)

Consistently with previous statements, the three (SU(2))*-singlets in the r.h.s. of the de-
composition (5.A.12) and the two (SU(2))*-singlets in in the r.h.s. of the decomposition
(5.A.13) respectively are the three Abelian vector fields (including the d = 5 gravipho-
ton) and the two independent real scalars (say, Al and X2) in the bosonic spectrum of
the (SO (1,1))? model, which is the d = 5 uplift of the stu model.

Reducing to d = 4, the six real scalar degrees of freedom of the stu model are the
radius rx i (see Egs. (5.1.11) and (5.A.9)), the two scalars Al and A2, and the three
axions (coming from the fifth component AL (I = 1,2,3) of the three d = 5 vectors).
As previously mentioned, the four d = 4 vectors come from the three d = 5 vectors and
from the KK vector g5, (u=1,...,4).

Finally, it should be notice that A'A?A3 (defining the volume of the d = 5 cubic
hypersurface through Egs. (5.1.11) and (5.A.9)) can be obtained through a consistent

truncation of the Fgg)-invariant expression (A, X, A =1,...,27)

1

grdamaXia=AS (5.A.14)
to (SO (1,1))?, by retaining only the three singlets of SO (4,4) (see the decompositions
(5.A.4) and (5.A.5) above).
Appendix 5.B Discussion

We have considered, in this chapter, some examples of extremal black hole configurations
in the framework of black hole attractors of N' = 8 supergravity.
The effective black hole potential has been computed in different bases, namely in the

manifestly SU (8)-covariant basis, as well as in the U Sp (8)-covariant one. The former is
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suitable to describe the (BPS) Reissner—Nordstrom extremal black hole with its U (1)

symmetry, as a consequence of the attractor point to be the origin of the d = 4 scalar

manifold Sé({g)). The latter has an origin in d = 5, and it is appropriate in order to

describe the non-BPS Kaluza—Klein extremal black hole, with its SO (1,1) symmetry
arising from the non-trivial attractor value of the KK radial mode.

We have also considered the axion-dilaton system, whose BPS or non-BPS nature
depends on whether it is embedded in N/ = 2 quadratic or in N = 4, d = 4 supergravity.
The axion-dilaton extremal black hole is obtained as a particular case of the attractor
equations of the maximal d = 4 theory. In that case, all 70 scalars other than the SU (4) x
SU (4)-singlets in the decomposition 5.5.36 are set to vanish, and correspondingly only
12 graviphoton electric and magnetic charges are taken to be nonzero (see Eq. (5.5.12)).
At the level N/ = 2, this attractor solution is obtained by retaining only 4 (2 electric and

2 magnetic) non-vanishing charges, according to the decomposition (5.5.6) of SU (4).
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Chapter 6

5d/4d U-dualities for
N =8 black holes

The connection between the U-duality groups in d = 5 and d = 4 is used here to derive
properties of the A/ = 8 black hole potential and its critical points (attractors). This

approach allows to study and compare the supersymmetry features of different solutions.

6.1 Introduction

In V' = 8 supergravity, in the Einsteinian approximation, there is a nice relation between
the classification of large black holes which undergo the attractor flow and charge orbits
which classify, in a duality invariant manner, the properties of the dyonic vector of
electric and magnetic charges Q = (p*, qo) (A = 0,...,27 in d = 4) [33],[49]. The
attractor points are given by extrema of the 4d black hole potential, as discussed in

Section 4.4,
Ven = éZABZ*AB =(Q,Van) <Q;VAB> ; (6.1.1)
where the central charge is the antisymmetric matrix (A, B = 1,...,8)
Zap = (Q,Vap) = Q" QVap = flapan — haapp™ | (6.1.2)
the symplectic sections are

Vap = (A, ha aB) (6.1.3)

and 2 is the symplectic invariant metric.
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An important role is played by the Cartan quartic invariant I [89, 20] in that it only
depends on @ and not on the asymptotic values of the 70 scalar fields ¢. This means
that if we construct I, as a combination of quartic powers of the central charge matrix
Zap(q,p, ) [54], the ¢ dependence drops out from the final expression
ﬂI4(ZAB) =0. (6.1.4)
ot
Analogue (cubic) invariants I3 exist for black holes and /or (black) strings in d = 5 [12],
[33]. These are given by

1

I(p') = ngJKPIpJPK ; (6.1.5)
1

Is(qr) = gdUKQIQJQK ) (6.1.6)

where dj i, d'’5 are the (27)3 FEg(6) invariants. Consequently, the d = 4 E7(7) quartic
invariant takes the form

013(q) 0I3(p)
dqr  op!

1(Q) = —(0°q0 +p'ar)? + 4 | —p°I3(q) + qoI3(p) + (6.1.7)

On the other hand, in terms of the central charge matrices Z,;(¢,q) (in d = 5 this
is the 27 representation of USp(8)) and Zap(¢,p,q) (in d = 4 this is the 28 of SU(8)),

their expression is

I(q) = ZapQ°Z,qQM 72,00 | Z40% =0, (6.1.8)
1
Li(p.q) = 7 (4Tr(22'22") = (Tr 22') + 32 Re (Pf ZAB)] . (6.1.9)

where ZZV = Z,pZ¢B, Q% is the 5d symplectic invariant metric, and the Pfaffian of

the central charge is [20]

1
Pf(Zap) = meABCDEFGHZABZCDZEFZGH. (6.1.10)

In fact, these are simply the (totally symmetric) invariants which characterize the 27
dimensional representation of Eg(g) and the 56 dimensional representation of E7(7y, which
are the U-duality [50] symmetries of N' = 8 supergravity in d = 5 and d = 4, respectively.
When charges are chosen such that Iy and I3 are not vanishing, one has large black
holes and in the extremal case the attractor behavior may occur. However, while at
d = 5 there is a unique (%—BPS) attractor orbit with I3 # 0, associated to the space [49],
[90]
Eé6)
Fyy

Oges = (6.1.11)
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at d = 4 two orbits emerge, the BPS one

E
Od=4,BPs = E7(7) (6.1.12)
6(2)
and the non BPS one with different stabilizer
E
Od=4,non—BPS = Eﬂ) : (6.1.13)
6(6)

Such orbits have further ramifications in theories with lower supersymmetry , but but
we will confine our attention to the N’ = 8 theory.

In this Chapter, extending a previous result for N' = 2 theories [69], we elucidate the
connection between these configurations and we relate the critical points of the N' =8
black hole potential of the 5d and 4d theories. To achieve this goal we use a formulation
of 4d supergravity in a Fgg) duality covariant basis [76], which is appropriate to discuss a
4d/5d correspondence. This is not the same as the Cremmer-Julia [20] or de Wit-Nicolai
[71] manifest SO(8) (and SL(8,R)) covariant formulation, but it is rather related to the
Sezgin-Van Nieuwenhuizen 5d/4d dimensional reduction [74]. These two formulations
are related to one another by dualizing several of the vector fields and therefore they
interchange electric and magnetic charges of some of the 28 vector fields of the final

theory, as we have seen in the previous chapter.

6.2 4d/5d relations for the A/ = 8 extremal black hole po-

tential

Using known identities [21], [75], the black hole potential can be written as a quadratic
form in terms of the charge vector @ and the symplectic 56 x 56 matrix M(N), related

to the 4d vector kinetic matrix Max
Ven = —%QTM(N)Q, (6.2.1)
where M is
ImA + ReN(ImN) 'ReN  —ReN(ImN)~!
MWN) = : (6.2.2)
—(ImN) ~'ReNV (TmN)
The indices A, Y of Myy are now split as (0,7), according to the decomposition of

4d charges with respect to 5d ones, thus My, assumes the block form

NOO NOJ
Nis = : 6.2.3
22 = TN, (6.2.3)
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The kinetic matrix depends on the 70 scalars of the N’ = 8 theory, which are given,
in the 5d/4d KK reduction, by the 42 scalars of the 5d theory (encoded in the 5d vector
kinetic matrix ar; = ajs), by the 27 axions a’ and the dilaton field e®. In a normalization

that is suitable for comparison to N’ = 2 , it has the form

1d —1 ( 2¢arsata’ + 66¢) —%dj +ie??ay ja’

Nax = : (6.2.4)

K

—%dj—l-ie%’anga dry —ie2®ary

where

d= d[JKa]aJaK , di = d[JKaJCLK , dij = d[JKaK . (6.2.5)

The black hole potential, computed from (6.2.1) using the above formulas, can be

rearranged as
Liogr 0.6, J L/ o 30 d o _34
VBH=*<pea)au(pe )+ (pe)+ —pe +
2 2 2\6
11 4 (40 1 ) J.é
+— | = %p’d; ) a 3¢ D dy —|—§x2(—pea1)a”(pe)+
—i—} X 2 gp[)(f?"lS —lpld]e*‘o’d’ X 2 p e~ %d; ( KdKJeﬂb) +
2 6 2 2 2
1 2
+§ <€¢ I) arjy ( ) ( —3¢ Kd}() +

1 1 d
+= < —¢ KdK] 1 ( —9 LdJL) - X2 (q0€_3¢> p06_3¢ +
2 2 6
1 d 1 1
+-x2 (qla e 3¢> —ple™3?) + = x 2 <q16_¢> a [ ZpPdye? ) +
2 6 2 2
_1 I, 36\ 1 3o\ (L g, 3
qoe” pdre X 2 an e —p’dje +
2 2 2
1 K + = (goe=3¢) + 36 1,30
5 x 2 (qre” dgje —|—2 qoe +2 X 2 ( qoe qra'e +
1 1
IS
(6.2.6)
with o/’ = a7 7 J This form shows that it can be written in terms of squares of electric
and magnetic components as
Loeo Lo 1erige 10 J
VBH = E(ZO) —+ 5 (Zm) =+ §ZIG’ ZJ + 2Zma,]JZm y (627)
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provided one defines,

Z§ = e gy + e *qra’ + e gpo - %6_3%1611 7

Zy = ¥p°

A %ef%odl —pldige? + qre? |

zl = e?pl — e?pPal | (6.2.8)

In order to get the symplectic embedding of the four dimensional theory, we still need

to complexify the central charges. To this end, we define the two complex vectors

Zo = T(Zo +iZp)
Z, = —(Ze +iZ%) , (6.2.9)
V2
where
Z¢ = Zg(a VA ze = ZL (a1/?)g (6.2.10)
such that
Vi = 20> + ZaZa (6.2.11)

where now a = 1, ..., 27 is a flat index, which can be regarded as a USp(8) antisymmetric
traceless matrix.
The potential at the critical point gives the black hole entropy corresponding to the

given solution, which in d = 4 reads
SBH L] = Vgt (6.2.12)

while in d = 5 it is [53]
SB% — 33/ 13|12 = (3 V5cm)3/4 ’ (6.2.13)

where I and I3 are the invariants of the N’ = 8 theory in d = 4 and d = 5 respectively.

6.2.1 Symplectic sections

In virtue of the previous discussion, we can trade the central charge (6.1.2)for the 28-

component vector
Za = fMan — haap® (6.2.14)

where f and h are symplectic sections satisfying
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a) Nax = haa(fH%,

b) i(fTh — h'f) = 1d ,

c) ffh—h’f=0.

Notice that one still has the freedom of a further transformation

h— hM
f—= M, (6.2.15)

as it leaves invariant the vector kinetic matrix N, as well as relations a) — ¢), when M

is a unitary matrix
MMt =1. (6.2.16)

Indeed, when the central charge transforms as

Z — ZIM ,
Z7ZV - ZMMZt = 221 | (6.2.17)
the black hole potential
Ve = 271 (6.2.18)

is left invariant. In our case, we rearrange the 28 indices into a single complex vector
index, to be identified, for a suitable choice of M, with the two-fold antisymmetric rep-
resentation of SU(8), according to the decomposition 28 — 27 + 1 of SU(8) — USp(8);
we thus have
Zy = fhoqa — haop™ =
= f%a0 + f70as — hoop” = hyop”
Za = fYan — haap™ =

= f%aq0+ g5 — hoap® — hyap” ;

(6.2.19)
which, from the definition in (6.2.9) yields
1 d 1
Zy = 7 [63¢q0 +e %alqr + (63¢6 + i€3¢) P’ — 3 (e’g‘bdl) pI] ,
1 1
Zo = 7 [€_¢qI(a_1/2)Ia + <2e_¢d1(a_1/2)1a — ie¢aj(a1/2)Ja> P+

- (Pt ) i@,

(6.2.20)
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Thus we consider
e3¢ 0
A= 1 (6.2.21)
A \/§ )
e—3%q! e—¢(a—1/2)la
—e730d _je3? | —Le=Pdy (a7 K +ie?ak (al/?)
1
haa = — . (6.2.22
M= ( )
%e‘g‘bd[ e‘¢d1J(a_1/2)Ja — ie¢(a1/2)1“
From f~!
e3¢ 0
(f Ot =2 : (6.2.23)
_e¢al(a1/2)la e¢(a1/2)1“

by matrix multiplication, we find that relations a) b) and c) are fulfilled by f and h, that

we now recognize to be the symplectic sections.

We finally perform the transformation f’ = fM (where M = f~1f" = h=11), with
M unitary matrix, in virtue of identities a), b) and c¢), valid for both (f, k) and (f’,h').

A model independent formula for M valid for any N' = 2 d-geometry (in particular,

for any truncation of N/ = 8 to an N' = 2 geometry, such as the models treated in this

paper) is given by the matrix [91]

M= AYV2MGT?

(6.2.24)
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with
1] 0...0 1] 0.0
0 0 )
A= , G= . s grjg = 1674(;5&[] , (6.2.25)
arj arJj
0 0

with M given by

=L ! oK (6.2.26)
2\ —iNle 20 295l 1 je20)g K ) -

where “—\” are the imaginary parts of the complex moduli 2/ = af — i\, and K is
the Kéhler potential K = —In(8V), with V = %dUK)\I)\J)\K; the matrix M satisfies
the properties

AMG ‘Mt = 1d ,
GIMYAM = Id . (6.2.27)

For the models considered below, this matrix M does indeed reproduce, for the given

special configurations, the formula in eq. (6.4.7).

Note that M performs the change of basis between the central charges defined as

1

Zo = —=(Z+1i29%) |
0 \/5( 0 m)
1
Zr = —=(Z% +iar; Z7)) | 6.2.28
I ﬂ( [ +iarsZy,) ( )

and the special geometry charges (Z, D;Z), that is the charges in “curved” rather than

the “flat” indices.

6.3 Attractors in the 5 dimensional theory

It was shown in [33] that the cubic invariant of the five dimensions can be written as

Iy = 277373 , (6.3.1)



6.8. Attractors in the 5 dimensional theory 99

where Z2’s are related to the skew eigenvalues of the USp(8) central charge matrix in

the normal frame

7P+ 23 - 73 0 0 0
0 VAR A A ] 0 0 0 1
Cab = X .
0 0 Z3+7Z3 — 77 0 -1 0
0 0 0 —(Z7 + Z§ + Z3)
(6.3.2)

We consider a configuration of only three non-vanishing electric charges (q1, g2, ¢3), that
we can take all non-negative. We further confine to two moduli A, A2, describing a
geodesic submanifold SO(1,1)? € Eg)/USp(8) whose special geometry is determined
by the constraint

1 IR IR
gdUK)\I/\J/\K =M\ =1, (6.3.3)

where Al = V=1/3)\! defining the stu—model [69].

The metric ayy, restricted to this surface, takes the diagonal form

1
= 0 0
5 N
QIJ:—mlogV’vzlz 0 g 0A ) s (634)
0 0 %3:)\%/\%

and the five dimensional black hole potential for electric charges is'

3
Vs =qra'q; =" Z2(a) 2 (a) . (6.3.5)

a=1

with Z7(q) = (a=*/?)! qr; the moduli at the attractor point of the 5-dimensional solu-
tion are (see eq. 4.4 and 4.7 of [69])

A 713
Nt = o (6.3.6)
and
yerit = 3\q1q2q3]2/3 _ 31—??/3 :
I 12/3 '
all, = 36" (6.3.7)
a7

In an analogous way, the black hole potential for magnetic charges, Vi = 23 Z2(p)Z2(p), is

a=1%a

a

obtained by replacing qr — p’ and o’ — ar; [69, 53], with Z72 (p) = p’ (a1/2)1 .
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with no sum over repeated indices. We find
zoerit = 3 [y =7572575 (6.3.8)
These relations also allow to connect the potential in (6.3.5)
Vs = (Z0)"+(29)" +(25)* (6.3.9)

with the form given in terms of the central charges [53], where it is the trace of the
square matrix
1
Vs = 5Z(be“b : (6.3.10)
The eigenvalues of Z7, are written in (6.3.2) in terms of Z7,Z3,Z3. The 5d central

charge matrix in the normal frame at the attractor point thus becomes

L% 0 0o o0
0 1% 0o 0

Cap = , (6.3.11)
‘ 0 0 I¢ o0

0 0 0 -3I%

which shows the breaking USp(8) — USp(6) x USp(2).

6.4 Attractors in the 4 dimensional theory

In this section we reconsider the attractor solutions in terms of the present formalism

based on central charges. We separately examine the three “axion free” configurations.

6.4.1 Electric solution Q = (p°, ¢;)

Let us first compute the 4dim central charge for the electric charge configuration with

vanishing axions; using (6.2.20) we find

i 1
Zo = —e3p | Zo = —=e %qr(a )T . 6.4.1
The 4-dim potential is
1 1
Ver = e V5 + 2e™(p")? (6.4.2)

(where ¢ is connected to the volume used in ref. [69] by the formula V = €5?) and has
the same critical points of the 5 dimensional potential, since
oVeh ovy

o ) ON

=0, VI=1,2. (6.4.3)
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The attractor values of Al are still given by (6.3.6), while the ¢ field at the critical point
is [69]

2/3 _
eg(b’crit. = I3/ (po) Z, (644)
This fixes the central charges at the attractor point to be

Zoattr _ EIPOQ1(]2(J3|1/4SZQH(Z?O) — §|]4’1/4gzgn(p0) 5

7 attr _ LI—I/H( 0\1/4 i/g :1 1/4
p Al ) ar Sl (6.4.5)
where the quartic invariant is Iy, = —4p%q1¢g2¢3. So we find
Zerit = ggrit — gerit — %\14\1/4 =z, zZ§t= %]14\1/4sign(p0) =iZy . (6.4.6)
Let us define the 4d central charge matrix as
2745 = eap —iZ°Q , (6.4.7)

where esp is the matrix in (6.3.2) in which, instead of Z7,Z3,Z3 of the 5d theory,
we now write the 4d Z,’s defined in (6.2.20). it can be readily seen that for axion free

solutions eq. (6.4.7) correctly gives
Ve = Y _|zil> =120 + ) | Za]? (6.4.8)
% a

where z;’s, for i = 1,..,4, are the (complex skew-diagonal) elements of Z45. We then

have
Ze 0 0 O Zoe 0 0 O
57 — 0 Ze O 0 n 0 Zge 0 O _
0 0 Ze O 0 0 Zpe O
0 0 0 —3Ze 0 0 0 Zpe
(Z+Zg)e 0O 0 0
B 0 (Z+Zye O 0
a 0 0 (Z+Zo)e 0
0 0 0 (=3Z+Zo)e

(6.4.9)



102 Chapter 6. 5d/4d U-dualities for N =8 black holes

Since (6.4.5) and (6.4.6) yield that Z = |Zp|, depending on the choice p° > 0 or p° < 0,

two different solutions arise. In fact,

000 O
000 O
Z+7Zy=0 — Zsp= R €, (6.4.10)
000 O
00027
gives the %—BPS solution when p® < 0 and shows SU(6) x SU(2) symmetry. Conversely,
Zog 0 0 O
0 Zo 0 O
Z=7Z2y — Zip= ®c¢, (6.4.11)
0 0 Z% O
0 0 0 —Z%

is the non-BPS solution that corresponds to the choice p° > 0, with residual USp(8)

symmetry.

6.4.2 Magnetic solution Q = (p;,¢°)

This case is symmetric to the electric solution of Section 6.4.1. If we take all positive

magnetic charges, then the cubic invariant is I3 = p'p?p?® , the quartic invariant is

Iy = 4qop'p?p® and the values of the critical 5d moduli are now (see eq. (5.3) of [69])
1

ir_ P
A= ﬁ . (6.4.12)
3

The central charges for this configuration are, from (6.2.20),

1 1
Zo= ——e 3qq | Zo = —e?pl(a"/?),* | 6.4.13
0 /2 4o a /2 P ( )1 ( )
and the black hole potential is
1 1 _
Ve = 562¢>V5m +5e 6 (q0)? . (6.4.14)
This gives the attractor value of the ¢ field as
i, = Iy (q0)? (6.4.15)

At the attractor point (a;{i) 77 = (M)~1677, and the magnetic central charges are

Zerit = \%(13)1/4\q0|1/4 - %|14\1/4 =iZ, a=123. (6.4.16)
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We can then write the central charge matrix corresponding to the 27 representation in

the normal frame as

Ze 0 0 O
0 Ze 0 0
eAB = . (6.4.17)
0 0 Ze O
0 0 0 —3Z¢

To describe the four dimensional solution we need the electric central charge, that at

the attractor point is
Z5t = =S (13)"*|go|"* sign(qo) = 1|I4\1/4 sign(qo) = Zo -
V2 2

Then, using the definition(6.4.7) the complete 4d central charge matrix is

Ze 0 0 0 Zoe 0 0 O
1 0 Ze O 0 ) 0 Zpge 0 O
274 = 1 —1 =
0 0 Ze O 0 0 Zpe O
0 0 0 —3Ze 0 0 0 Zge
(Z — Zy)e 0 0 0
0 0 (Z — Zy)e 0
0 0 0 (=37 — Zy)e

(6.4.18)

The sign(qo) determines whether the solution is supersymmetric or not. We may have

w0>0 — Z=2,

000 0
, 000 0
Zap = €™/ 100 o ® € (6.4.19)

000 —2%
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which is a magnetic -BPS solutions with SU(6) x SU(2) symmetry, or

Q<0 — Z=-Z,

~Zy 0 0 0
, 0 —-Zy 0 0
Tap = e/ . 00 2 o | ®¢ (6.4.20)
— 40

0 0 0 Z

which is the non-BPS solution with USp(8) symmetry. These solutions have the same Z
as the electric ones, but now the choice of positive qg charge leads to the supersymmetric
solution while the negative gy charge gives the non-supersymmetric one, in contrast with

what happened for the choice of p® in the electric case in eq. (6.4.10) and (6.4.11).

6.4.3 KK dyonic solution Q = (p°, qo)

This charge configuration also has vanishing axions, and the only non-zero charges give
Z§=e"q, Zp, =epY,
(! (6.4.21)
Zoy = %(6_3%0 +ie3%p0) .
Since none of the 5 dimensional charges are turned on, the four dimensional black hole

potential is
1
Vin = 5 [e—6¢q§ n e6¢(p0)2} ’ (6.4.22)

which is extremized at the horizon by the value of the ¢ field

[

€% pis. = 0 (6.4.23)

We only focus on the case p° > 0 and gy > 0, since all the other choices are related to

this by a duality rotation. Evaluating the central charge at the attractor point we find
. 144 A
Z5" =/ \Jooqo!\;%Z = V/IP%qole™* . (6.4.24)

Following the prescription in (6.4.7) we find that at the attractor point

27ap = —iZyQ =
VIPPqle 0 0 0
, 0 0 0 0
— _jein/A P aole (6.4.25)
0 0 [P%qole 0
0 0 0 V|P%qol€
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that gives a non-BPS 4 dimensional black hole with I, = —(p%gg)?.

Note that egs. (6.4.11), (6.4.20) and (6.4.25) imply that the sum of the phases of
the four complex skew entries is 7, as appropriate to a non-BPS A = 8 solution [21].
Also, in all cases, Vg |crit. = \/m .

6.4.4 N =8 and N = 2 attractive orbits at d =5 and d = 4

We now compare the different interpretations in the N/ = 8 and N’ = 2 theories of the
critical points of the very same black hole 4d potential, in terms of the axion-free electric
solution (sec. 6.4.1) as discussed in this paper and in ref. [69].

Since the “normal frame” solution is common to all symmetric spaces (with rank
three), it can be regarded as the generating solution of any model. So we confine our
attention to the exceptional N’ = 2 (octonionic) Fr(_s5) model [78] which has a charge
vector in 5d and 4d of the same dimension as in N = 8 supergravity. At d = 5 the
duality group is Fg_g6), with moduli space of vector multiplets Eg_g6) /Fy.

It is known [49], [51] that in d = 5 there are two different charge orbits,

- Eg(—26
Oé\/:f),zBPs = 1([7 ) ) (6.4.26)
4
the BPS one, and the non BPS one
— Eg(—26
02\;5,2n0n—BPS = F4(( 20)) ) (6.4.27)

The latter one precisely corresponds to the non supersymmetric solution and to (++ —),
(— — +) signs of the ¢1, g2, g3, charges (implying 0Z # 0). For charges of the same sign
(++4+), (— — —) one has the £BPS solution (9Z = 0), as discussed in [69).

It is easy to see that in the A/ = 8 theory all these solutions just interchange 71, Z5, Z3

and Z, = —3Z3 but always give a normal frame matrix of the form
Ze 0 0 O
0 Ze 0 O
Lap = , (6.4.28)
0 0 Ze O
0 0 0 —3Ze

which has USp(6) x USp(2) € Fy(4) as maximal symmetry. Another related observation
is that while Eg_s6) contains both Fy and Fy_s), so that one expects two orbits and
two classes of solution, in the N = 8 case Eg(6) contains only the non compact Fjyy),

thus only one class of solutions is possible.
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These orbits and critical points at d = 5 have a further story when used to study the
d = 4 critical points with axion free solutions as it is the case for the electric (p°, q1, g2, q3)
configuration. Since in this case Iy = —4p°q1¢aqs3, in the N' = 8 case, once one choose
q1, g2, g3 > 0, the I, > 0, p° < 0 solution is BPS, while the I, < 0, p° > 0 is non BPS.

Things again change in N' = 2 [52], when now we consider the solution embedded in
the Octonionic model with 4d moduli space E7_g5y/FEg x U(1). A new non BPS orbit
in d = 4 is generated, corresponding to Z = 0 (0Z # 0) solution, so three 4d orbits exist
in this case depending whether the (+ + +) and (+ + —) solutions are combined with
—p? < 0. So

, , E7(_a5)
(+,+++) isBPSwithI, >0, O= 5 , (6.4.29)
6
E-_
(—,—4++) isnon BPSwith Iy, >0, O= Z1=2) , (6.4.30)
Eg(—14

E
(+,—++) or (—,+++) isnon BPSwith [, <0, O= (6.4.31)

6.5 Maurer—Cartan equations of the four dimensional the-

ory

Let us call Maurer—Cartan equations [18] those which give the derivative of the central

charges (coset representatives) with respect to the moduli ¢, af, A\’. Using (6.2.8) we

have
0pZ¢ = =325, 0,20 =320,
0p2f = =25, 0sZi =2 » (6.5.1)
and
Zf?e =e 7, %Za% =0,
%?} =07, ZGZE = —e d K2y . (6.5.2)

In our notation the 5d metric ary, (I,J = 1,..,27) can also be rewritten with a pair of

antisymmetric (traceless) indices

aps.Ar = L s Larap (6.5.3)

where L Ax. is the coset representative; in a fixed gauge (where a, b and A, 3 indices are

identified)

L= (@),  (Lia=L},) (6.5.4)
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The object P; = a'/29;a=1/2 can be regarded as the Maurer—Cartan connection (see ref-
erence [74]). In fact, by reminding that Z¢ = Z§(a=/?)! , we have 8, Z¢ = (9;a=/?)!_Z¢

( since 0;Z% = 0). Since we can also write
0 Z¢ = (8, (a}?) 0 Zg (6.5.5)
we find that Piyab is such that
078 =P, 7 . (6.5.6)
Notice that using IP’Z-,ab = wa +Vi. b , we identify a connection which satisfies
ViZE =V, 78, (6.5.7)
with V; = 0; — Q.
6.5.1 Attractor equations from Maurer—Cartan equations
We can now use this formalism to write the attractor equations for the potential
Ve = %(25)2 + %(Z?,f + %Zfa”Zf, + %Z{nauz;; . (6.5.8)

By differentiating with respect to ¢, a!, X, we get

Ve = —3(Z5)? +3(25)% - Z5a' 25 + ZL ar,2) =0, (6.5.9)

OutVen = e 20 (2525 — Z5a" M dii1.Zh — 2001527 =0, (6.5.10)
1 1

8)\1VBH = 0;,Vgy = 52; 8¢CLIJ Z3 + EZTL o;ary Z#l =0. (6.5.11)

From (6.5.10) we see that a solution with a! = 0 implies
0at Va1 =0=e"2% e qq; — qya’ " dixrp” — €*pParp’| =0, (6.5.12)

which is trivially satisfied if we set # 0 (qo,p°) or (qo,p’) or (p°, qr).

From (6.5.9) we see that for an axion-free solution, if Z§, ZL = 0, we get
3(29)? = Z¢a'' 79 | (6.5.13)
and if ayy is diagonal, I = J = 1,2, 3, we obtain
3(20)° = (Z67a" + (25a™ + (25)%a® | (6.5.14)

which is compatible with Z§ = Z§ = Z§ = +£29, .
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The derivative with respect to the 5d moduli A, i = 1, ..,42 for A" = 8 theory, only

receives contributions from the matrix a;;. Indeed since Z7, ZL do not depend on the

\i(see eq.6.2.8), one finds
o;Vy =0= Z; aia” Z3 + ZTIn o;ary Z;{L .

By rewriting the charges multiplied by (a='/2)!, and (a'/?),* so that

Zo= 2@, 2= Zha )
we have
0:Zg = ;25 . B =02 (),
0:Zm = P2y, Py =0a'?) (a7 )
where P¢ | = —IP, ,* since 0;(Z5Z%) = 0 . Then we also have

0i(2525) = Zg(Pi,") 25 =
= ZP; w2y =
= ZgPianyZs =0,
and if we split P; op = Q;ap] + Vi (ap), With
P = Q% +Vi%,
Pi,ab = Qi,ab - Vi,a b )
the critical condition implies
0i(Z2°2°) = ZgVi(aryZy =0,
and the analogue equation for magnetic charges
0(Z™Z™) = ZyVi(any Zm =0 ,

so that only the vielbein V; 4, enters in the equations of motion.
The criticality condition on the potential of eq. (6.5.15) now gives
Ve =0 —  ZV,®Z¢ + Z8Vi 22, =0,
thus, for electric configurations (Z%, = 0) with a! =0,

m

ZEV, b 7¢ =0 .

(6.5.15)

(6.5.16)

(6.5.17)

(6.5.18)

(6.5.19)

(6.5.20)

(6.5.21)

(6.5.22)

(6.5.23)
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Comparing results of [53] with our formulae we see that V;, Vs, Vi, with Vi +Va+V3 = 0,

in the case where the metric ay; is diagonal, correspond to

(@20 1 = @V ) = Bl =V =V, (6524

7

where (a='/2)!, = (a7 /)1, (a'/?),! = (a'/?);, T = 1,2,3, and using (6.3.4) we find

1 1
‘/i[ == (A707_A> )
Al Al

11
Vi = <0,A,—A> . (6.5.25)
e Ao
Indeed,
Y vl=o, (6.5.26)
1=1,2,3

so, by using eq. (2.31)-(2.33) of ref. [53] one gets the desired result. In fact, using the

definitions of P! and P} we get from the A’ equations of motion

S zvizi =0, (6.5.27)
1

which explicitly gives

2127 — 25725 = 0,
7575 — 2575 = 0, (6.5.28)

whose solution, combined with eq. (6.5.14), gives
(2§)? = (Z5)* = (Z5)* = (Zp)* |

I
78 =25=7§ =479, (6.5.29)

all the other sign choices being equivalent in the 5d theory.
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Chapter 7

Black holes in gauged
Supergravity

7.1 Introduction

We now discuss the investigation of black hole solutions of 4-dimensional N = 2 gauged
supergravity theories, where the matter content is given by vector multiplets and the
U(1) gauging is obtained by Fayet—Iliopoulos terms. The main motivation for considering
these toy models is the analysis of the attractor mechanism and of the entropy formula in
the case of extremal solutions in theories where there may be a non-trivial cosmological
constant and the moduli cannot be freely changed in the solution. Generically, an Anti—
de Sitter (AdS) vacuum stabilizes all the scalar fields and therefore a black hole in AdS
may only appear for values of the dilaton such that one cannot extrapolate between
strong and weak coupling.

Supersymmetric static black hole solutions in theories with a negative cosmological
constant have already been considered in [92, 93, 94], where it was shown that they
usually lead to naked singularities, unless higher order derivative corrections are added to
the Lagrangian. For this reason, most subsequent approaches to this problem considered
extremal non-BPS configurations [35, 95, 96, 97]. One strong limitation of the work in
[92, 93, 94], however, was the requirement that the scalar fields remained constant along
the solution. If there is some sort of attractor mechanism at work, the AdS4 vacuum may
in fact require a definite value for the scalars that differs from the one required by the
construction of a supersymmetric AdSs x S? horizon geometry. Hence the appearance

of singular geometries. However, if the scalars are allowed to flow, supersymmetry can
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be restored and regular geometries can be obtained. An important step forward in this
direction was obtained by the authors of [98], who considered a setup like the one of this
paper and where supersymmetric black hole configurations were explicitly constructed,
though mostly with a hyperbolic horizon.

Although we use [98] as an important basis, we will extend their results in two main
directions. Since the electric gauging procedure breaks the electric-magnetic duality
that a generic 4-dimensional Einstein—-Maxwell theory possess, the approach presented
in [98] has the limitation that for the same supergravity model only part of the black hole
solutions are accessible, whenever the prepotential defining the scalar o-model is fixed.
We will present a completely covariant approach by considering a general U(1) gauged
supergravity, where also magnetic gaugings are allowed. We are also going to describe
the black hole solutions by means of first order flow equations driven by a superpotential
W, which is a function of the scalar fields and the warp factors. This clearly mimics the
flow equations of black holes in ungauged supergravity, where the superpotential is the
absolute value of the central charge for supersymmetric configurations [10] or a duality
invariant function for non-supersymmetric extremal configurations [28] and gives both
the ADM mass at infinity and the horizon area. However, the different metric ansatz
and the presence of a non-trivial cosmological constant usually forbid a direct relation
between W and S and/or the mass of the black hole. As we will show, the general
construction of this superpotential proves a very effective procedure in order to obtain
explicit solutions.

Before presenting our results, we would like to introduce one last important mo-
tivation to the analysis of black hole solutions to gauged supergravity theories: flux
compactifications. It is well known that flux compactifications provide an efficient tool
to address the moduli problem in string compactifications. Fluxes provide a non-trivial
source for a potential in the effective theory, as well as deformations leading to gauged
supergravity models (see for instance [99, 100, 101]). It is therefore of vital importance
for this scenario to understand if there is still an attractor mechanism at work in the
case of black hole configurations in gauged supergravities, because their generation may
destabilize the vacuum [102, 103]. In fact, the presence of a charged black hole may
drive the value of the moduli fields to a new value at the horizon, different from the one
obtained by the potential generated by flux compactification and eventually catalyze the
production of new vacuum bubbles within the original setup [104].

We should point out that we expect realistic scenarios of flux compactification to re-

quire the presence of hypermultiplets. This means that our analysis should be extended
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to the case where also this type of scalars is allowed to acquire a non-trivial profile. In
fact, in contrast with the case of ungauged theories, where hyperscalars are moduli of
black hole solutions, in gauged supergravity black holes, the hypermultiplet scalars may
be charged and hence actively participate to the solution. A very interesting develop-
ment in this direction is given by the work of [105], where the authors constructed new
solutions in gauged supergravities with non-trivial hypermultiplets, embedding known
solutions to the ungauged theories. A general treatment in terms of a superpotential
would be desirable for these cases, too, generalizing the construction we will explain
below.

We should also mention that supersymmetric black holes in gauged supergravities
were also analyzed in [106], [107], though there the authors focussed on non-abelian

configurations.

7.2 BPS flow equations for dyonic configurations

7.2.1 Notations and setup

We are interested in dyonic black hole solutions of N' = 2 U(1) gauged supergravity.
For this reason we are going to consider supergravity models coupled to ny vector
multiplets, a linear combination of which is going to gauge a U(1) factor via suitable

Fayet—Iliopoulos (FI) terms. The bosonic Lagrangian of this class of models is

R P | A S L >
R 5 — gij—auzlal‘zj + Z ImANps F/M/F g Z ReMNs F;W ﬁFPU — Vg (7.2.1)
The index A = 0,1,...,ny runs over the ny vectors of the vector multiplets and the

graviphoton, z’ denote the complex scalar fields sitting in the vector multiplets and
Vy is the scalar potential of the theory generated by the FI terms. The scalar fields
parameterize a special-Kahler o-model and all the relevant quantities in the Lagrangian
and in the supersymmetry transformations can be written in terms of special geometry.
The o-model metric g;;(z,2) can be derived from the second mixed derivatives of the
Kaéhler potential, which in turn is a function of the covariantly holomorphic symplectic

sections V = eX/2 (XA(z), Fo(2)), as follows from
1=i(V,V), (7.2.2)

where the brackets denote the symplectic scalar product (4, B) = ATQB = A\B" —
AMBy, where Q is the Sp(2n,, + 2) metric. The vector kinetic matrix Myx(z) is then a
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complex and symmetric function of the scalar fields and the scalar potential
V, = g9 D;LD;L — 3|L)? (where D;L=0;L+1/20;K L) (7.2.3)
can be obtained in terms of the superpotential
L=(G,V)=el? (X2gr — Fagh), (7.2.4)

where G = (¢g”, ga) denote the FI terms. One should not be confused by the fact that
we have introduced both electric and magnetic gaugings because in consistent models
the electric-magnetic duality group will always allow one to reduce to the case where
only electric gaugings are turned on (i.e. g™ = 0). However, this also implies a rotation
of the symplectic sections and the choice of a somewhat preferred basis. We therefore
prefer to maintain duality covariance and allow for generic FI terms G.

A duality covariant action for generic gauging has been recently built in [108] for
N = 2 conformal Supergravity, using the embedding tensor formalism, and these
results can be extended beyond the conformal approach. As shown in [109],[110], when-
ever one introduces magnetic gaugings, tensor fields have to be introduced. In the case
of supergravity coupled to vector multiplets, one has therefore to improve couplings to
vector-tensor multiplets. In [111] the authors worked out the supersymmetry transfor-
mations and scalar potential for supergravity coupled to vector-tensor multiplets and for
a generic gauging, although in the case of vanishing FI terms. However, the extension
to non-trivial FI terms is straightforward [108] and, taking a pragmatic approach, we
will use the action (7.2.1) as our starting point, as this is going to be the relevant sector
for our solutions because we will always consider vanishing tensor fields anyway.

We seek static dyonic black hole configurations. Hence we will consider the metric

ansatz

ds? = =2V gg? 4 72U ) (dr2 + 62¢(T)d92> , (7.2.5)
where dQ? is going to be the line element of a 2-sphere for most of the applications
considered in this paper and appropriate profiles for the vector fields so that

/52 FA = 4mph, /52 Gp = 4mqp, <With Gy = ;;_i) (7.2.6)

where Q = (p", qa) are the black hole magnetic and electric charges, respectively. We
also assume that the scalar fields have only a radial dependence z¢ = z¢(r). Although we

look for static configurations and preserve an SO(3) isometry group along the solutions,
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the metric ansatz (7.2.5) differs from the one of asymptotically flat static configura-
tions because of the additional factor depending on (7). We inserted this additional
factor, because, as we will see, it will be necessary to compensate for the additional
curvature contributions to the Einstein equations coming from the (varying) non-trivial
cosmological constant.

Once we plug these ansatze in the action (7.2.1) we obtain an effective 1-dimensional

theory for the scalar fields and the warp factors U(r) and (r)

Sy = / dr {ew [(U’ — )2 4 22 4 g2 T 4 Yy 4 e Y, 4 2y — U”} _ 1} :
(7.2.7)

which, after an integration by parts, can be written as

Sy = /dr {621,0 [Ulz _ le + gijzilij' + 62U—4wVBH + 6_2UV;]] _ 1}
d (7.2.8)
+ / dr— [ew(w - U’)] .

Primes denote derivatives with respect to the radial coordinate and the black hole po-
tential
Veu = |DZ* + |2 (7.2.9)

is a function of the central charge
z2=(Q,V). (7.2.10)
It is also useful to rewrite the black hole potential as
L r
Ve = —3 Q' MQ, (7.2.11)

where M is the symplectic matrix defined as (3.1.29).

7.2.2 BPS rewriting of the action

Since we are interested in analyzing supersymmetric configurations, we have to impose
the vanishing of the supersymmetry transformation rules on our background, in addition
to solving the equations of motion. This analysis was performed in this way for generic
half-supersymmetric configurations in [112] and applied to a black hole similar to ours
in [98], though only for electric gaugings. The resulting first order differential equations
provide solutions to both the supersymmetry conditions and the equations of motion.
We will now extend this work for configurations obtained in the duality-symmetric setup
given by (7.2.7).
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As a first step in this process, we will show that one can rewrite the action (7.2.7) as a
sum of squares of first-order differential equations as long as a specific constraint between
the black hole charges and the FI parameters is satisfied. This rewriting then guarantees
the solution of the equations of motion of the effective action. An important outcome of
this rewriting is the existence of an additional constraint on the field configurations that
may lead to consistent BPS solutions, which will be identified with the defining equation
for a phase factor a(r). Then we will show how the first-order equations derived here
follow from a real superpotential, which is the norm of a complex quantity whose phase
is «, and we finally give a direct analysis of the supersymmetry transformations, which
give the same result. Following a strategy similar to the one used in the ungauged BPS
case in [31], we can rewrite the action (7.2.7) as a sum of BPS squares by using a series
of special geometry identities. In particular, we can use the negative-definite matrix M
as a “metric” for a set of symplectic covariant first-order equations. In order to do so,

we will use several special geometry identities. A basic identity, which will be repeatedly

used, is
1 _ o
3 (M —iQ) = QY VQ + QU; ¢ U2, (7.2.12)
which leads to
MY =iQV, MU; = —iQU;, (7.2.13)
from which follows that
VMY =iV, V) = —1 (7.2.14)
and

The first step is to rewrite the kinetic term for the scalar fields and the scalar po-

tentials V; and Vpy in terms of symplectic sections using

—VITMY = gig2" 7 + A2, (7.2.16)
where '

7 o .

Ar=3 (77" 0;K — 2" O;K) (7.2.17)
is a composite connection. Given the properties of the symplectic sections, we can also
introduce a phase factor, which we will see related to the spinor projector one imposes
in order to solve the supersymmetry equations (see the Appendix), so that

) , 1 I |
— Im(eVT) MIm(e*V') = §gi]—2’w2ﬂ + 5,42 : (7.2.18)
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and once more obtain new identities:

Re(e V)T MRe(e®V) = Im (VT ) MIm(e®V) = —% , (7.2.19)
Im(e“VT)MRe(e!V) =0, (7.2.20)

Im(e"V') = Im(e"2"'U;) — A, Re(e*V) (7.2.21)

Im(e“VIYMQ = Re(e'“Z) , Re(eVII)MQ = —Im(e“Z) , (7.2.22)
Im(e"VIMQ = —Re(e’“Z2') + 2 A, Im(e"Z) . (7.2.23)

After some long, but straightforward manipulations, the action (7.2.7) can then be

rewritten as

Sia = / dr {—;eﬂU—WTMg — ¥ (o) + Ay) + 2¢ U Re(e 7))
—e [y — 2"V Tm(e L))" — (1+ (G, Q) (7.2.24)

d 2¢p—-U —iQ U —iQ
725 [e Im(e L) + e” Re(e Z)} ,

where we introduced

ET = 2% (e_UIm(e_iO‘V)), T 2W=0gTOM™ + 4e V(! + A)Re(e V)T + QT
(7.2.25)

A simple inspection of (7.2.24) shows that we succeeded in rewriting the action (7.2.7)
as a sum of squares of first order differential conditions and a boundary term provided

the charges fulfill the constraint

(G.Q)=-1. (7.2.26)

Once this is satisfied we obtain that BPS configurations have to satisfy three sets of
equations

£ =0, (7.2.27)

¢ =2eVIm(e L), (7.2.28)

o + A, = —2¢7Y Re(e7™L). (7.2.29)

The first set of conditions contains both the flow equations for the scalar field as well
as the equation for the warp factor U. Equation (7.2.28) describes the evolution of the
other warp factor . Finally, (7.2.29) gives the condition on the phase a.
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Some comments are in order here. First of all, we can see that the first set of
equations reduces to the known BPS equations of the ungauged case as presented in
[31] whenever G = 0 (and then £ = 0). In such a case, however, we would get an
inconsistency from the constraint (7.2.26). This implies that the BPS configurations we
find by solving such a system are solitonic [98]. Actually, the BPS rewriting in the G = 0
case can be achieved by rewriting the second line of (7.2.24) as a new squared first order

equation and a boundary term
2 /
- (e% - 1) - (2e¢) , (7.2.30)

which leads to the identification of e¥(") = r and hence to reducing the metric ansatz to
the known one of the asymptotically flat configurations. Then we see that the equations
we derived are all symplectic covariant or invariant. This means that once we obtain
some solution in a given frame, for a specific choice of charges @) and FI terms G, we can
map it to a different solution for a different set of charges and FI terms related to the
original ones by a duality transformation. We can also compare our BPS equations with

those found in [98] by identifying b = e~V

and setting the magnetic FI terms to zero
g* = 0. The two sets of conditions match and therefore we can also conclude that our
BPS conditions imply also the full 4-dimensional equations of motion. Finally, we would
like to point out that the BPS rewriting of the effective action and the derivation of
the first order equations (7.2.27)—(7.2.29) can be trivially extended to the case of flat or
hyperbolic horizons and yields the same results, but for the charge constraint (7.2.26),

which becomes (G, Q) = 0 or (G, Q) =1 in the flat and hyperbolic case, respectively.

7.2.3 Superpotentials and flow equations

Although the BPS square rewriting of the effective 1-dimensional action already led to a
set, of first-order differential equations for the scalar field dependent symplectic sections
VY and the warp factors, we now provide an explicit expression for the resulting flow
equations for the actual scalar fields 2. This rewriting will lead to the identification of
a proper superpotential function driving the BPS flow.

The equation (7.2.27) is actually a complex symplectic vector of equations whose
information can be extracted by appropriate projections with all possible independent
sections. We first discuss the projections of the BPS equations £ = 0 on the symplectic

sections V and their derivatives U; and then pass to the possible contractions with the
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charges ) and FI terms G. From the contraction
(E,Re(e™™V)) =0 (7.2.31)
we obtain the flow equation for the warp factor U(r):
U = —e""Re(e™@2) + eV Im(e L). (7.2.32)

The contraction
(&, Im(e™"V)) =0 (7.2.33)

produces once more an equation for the phase
o + A = —eV"Im(e @ 2) — eV Re(e L). (7.2.34)
Finally, the contraction along the covariant derivatives of the sections
(&, U;))=0 (7.2.35)
leads to the scalar fields flow equations
2 = —elgh (eUfwﬁjz +i eiUﬁjZ> . (7.2.36)

Contractions with @) and/or G give identities once (7.2.32), (7.2.34), (7.2.36) and (7.2.29)
are used. The first thing we notice is that the flow equation for the phase (7.2.34) differs
from the one derived directly from the action, namely (7.2.29). Consistency of the two

equations then implies the following constraint:
U2 Im(e ™ 2) = eV Re(e70L). (7.2.37)

The constraint arises as a consequence of the fact that in the BPS rewriting we introduced
an additional degree of freedom «(r) that was not present in the reduced action. We

can actually rewrite this constraint as an expression that identifies the phase as

el = w (7.2.38)

Z+ie2-U)L
We can see that this phase gets identified with the phase of Z in the limit where the
gauging goes to zero (or, better, e?® = €292 we will come back on this issue later on).
Another interesting remark is that, by using (7.2.38), it is straightforward to check that
the phase equation (7.2.34) is identically satisfied if the BPS equations associated to the

scalar fields and to the warp factor are used.
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The other important outcome of this analysis is that we can now realize the BPS
condition as flow equations for the effective scalar degrees of freedom U, 1, z*. Once we

define a superpotential
W = eV Re(e ™2) + e VT2¥ Im(e70L), (7.2.39)
or, by using the phase constraint (7.2.38),
W =eV|z —ie2 Vg, (7.2.40)

we can rewrite the flow equations as

U = —g"Yoyw, (7.2.41)
W= —g"" O, W, (7.2.42)
2 = 257 ;W (7.2.43)
where gy = —gyy = e??, gi7 = ewgij— and we used the constraint (7.2.37) in the

derivation of the last equation. It is remarkable that W looks precisely like the norm of
a complex quantity whose phase is given by « and that it reduces to the supersymmetric
superpotential for G = 0.

Although the structure of the flow equations looks rather neat in these variables,
for the subsequent discussion it is useful to rewrite them by introducing a different

parameterization for the warp factors. In detail, we can introduce

A=y -U, (7.2.44)
so that the metric ansatz becomes
ds? = =2V g2 4 72U g2 4 24002, (7.2.45)
By using these variables
W =eV|Z —ie?L| (7.2.46)

and the flow equations become
U = _6—2(A+U) (W _ aAW) ’
Al = 24Ty, (7.2.47)

i — _26—2(A+U) gz’jajW
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7.3 Attractors

One of the key properties of extremal black hole solutions is the so-called attractor
mechanism. We will now show that such an attractor mechanism is at work also for
supersymmetric black holes in U(1) gauged supergravity: we will show that one can write
the equations defining the value of the scalar fields at the black hole horizon in terms
of a set of algebraic conditions on the charges and the symplectic sections. We stress,
that despite formal similarities, the situation is fundamentally different from the one of
asymptotically flat solutions. In fact, AdS4 solutions already fix the asymptotic value
of the moduli, which are then driven to the horizon value by the attractor mechanism.
This means that, although the existence of a black hole horizon specifies the values of the
moduli fields in terms of the charges, this attractor cannot be reached from a generic
point in moduli space because of the asymptotic constraint in terms of the gauging

parameters.

7.3.1 Near horizon limit

When approaching the horizon of a supersymmetric extremal black hole we expect the

metric (7.2.5) to approach that of an AdSs x S? spacetime:

7.2

ds® =
R}

R2
dt* + r—g‘dﬂ + R%(d#* + sin” 0 d¢?), (7.3.1)

where Rg and R4 are the radii of the 2-dimensional sphere and of the 2-dimensional
Anti-de Sitter spacetime, respectively. In the framework of the metric ansatz proposed

in (7.2.5), this is obtained by imposing

U =log RLA’ and ¥ = log Ry (7.3.2)

or, in terms of the alternative variables for the warp factors,
A =logRs. (7.3.3)

This means that
A =0 = W =0 (7.3.4)

at the horizon. We also expect the scalar fields to be constant 2z = 0 at the horizon

and therefore we expect

X Z—ieL=0 o @ DiZ—ie A D;L=0. (7.3.5)
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The attractor equations can then be obtained by using special geometry identities to
expand the moduli independent quantity Q+1ie?4 G and then use the horizon conditions
(7.3.5). When we multiply from the left the charge combination just mentioned by
QM + i we get

OMQ +iQ+ie** QMG —*AG =2 (2 +ie* L) V+2(D;Z +ie*  D;:L) U'. (7.3.6)

This is a general expansion valid at any point of the moduli space. However, at the

attractor point the last term vanishes and we therefore obtain that
Q + A QMG = —2Im(ZV) 4 2> Re(LV), (7.3.7)

which is the attractor equation. Once again, for G = 0, we can see that it reduces to the
known attractor equation QQ = —2Im(ZV). Since this equation only gives the value of
the scalar fields at the attractor point, but we also need to fix the value of A in order to
obtain the right geometry, one has to supplement the conditions just derived with the
W = 0 condition, namely

|Z —ie?AL| = 0. (7.3.8)

Although this is a real condition, it is easy to see that the request that e? be a real

number gives as an outcome that
e =i = = R2. (7.3.9)

This equation was also derived in [98], as a horizon condition. Summarizing, the BPS

attractors in a U(1) gauged supergravity are

Q+ A AMG = —2Im(ZV) + 224 Re(LV), (7.3.10)
4 = —i% = R%. (7.3.11)

From the last condition we also learn that the phases of the central charge and of the

superpotential of the gauging are related at the horizon, so that

¢z = ¢r+ g (7.3.12)

If we plug this information in the definition of the phase factor o we obtain that e?*® =
2ipz
e

a=¢z+kn, kel (7.3.13)
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at the horizon. This is an important consistency requirement, in order to obtain spherical
horizons, because we can see from inserting the near horizon limits for the warp factors

in the flow equations that at the fixed point

2

4 R
Tlagz— _ 8 7.3.14
e R, ( )

and this is possible only if the phase « at the horizon is identified with ¢z + 7. A
different attractor equation was proposed in [98], which depends only on the moduli
fields. This equation can be obtained from ours by plugging (7.3.11) into (7.3.10), but
it looses the information on the horizon area, which instead is governed by (7.3.11).

Although the attractor equations (7.3.10)—(7.3.11) are 2ny +4 conditions for 2ny + 1
variables (the 2ny scalar fields and the warp factor A), we can see that not all of them
are independent. In fact, if we contract (7.3.10) with V we obtain an identity and we can
therefore argue that it is equivalent to (7.3.5), which one recovers by contracting (7.3.10)
with U;. In order to have a spherical horizon these conditions have to be supplemented
by the constraint (7.2.26), which can at times overconstrain the system, as we will show
in a while.

More information on the attractor point can also be obtained by further contracting
the attractor equation (7.3.10) by the charges of the gauging or of the black hole and
by using (7.3.11). In the first case we obtain that

e 24 =2 (ID;L* - |L]), (7.3.15)
while in the second case we get that
et =2(ID;2)* - |2). (7.3.16)

These equations are very interesting because they can be related to the second symplectic
invariant

b(Q) = 2P - D2 = —LQM(F)Q, (73.17)
where M(F) is a matrix constructed using Re Fjx and Im Fjy rather than Re My
and Im NMyy,. We can also see that if we start from an AdS; vacuum D,£ = 0 and
we try to obtain a black hole solution by keeping the scalars constant, we get to an
immediate contradictory result, because (7.3.15) implies that e =24 = —2|£|?> < 0. This
excludes the possibility of spherical horizons in an asymptotically AdS geometry while
keeping scalars fixed and therefore explains the results of [92, 93, 94]. More in general,
the second attractor equation (7.3.11) can also be written as

24 Im(ZL)
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which, for D;£ = 0, is equivalent to

€2A — 1<gaQ>
2 [L]2

(7.3.19)

We then see that this is positive only for hyperbolic horizons, while for spherical horizons

G,Q)=-1<0.

7.4 Supersymmetry equations

In order to explicitly prove that the configurations discussed so far are supersymmetric,
we now analyze in detail the supersymmetry variations of NV = 2 U(1) gauged super-
gravity. For simplicity we will discuss the case without magnetic gauging parameters,

but the extension to the full case is straightforward. The relevant variations are then
_ i
0pya = DHGA—EABTW'y”eB—§£5A3’y”77WEB , (7.4.1)
ONA = —i 9,2 et — G AP ey + DL P ep (7.4.2)

where the covariant derivative is defined as

1 1
Dyea = 0uen — 1 wzb’)’abGA + B Auea+ga Aﬁ 5ACECBGB, (7.4.3)

and A, is the composite connection for the Kahler transformations:

Ay =< (0,7 0;K — 0,2" 0,K) . (7.4.4)

N | <.

We also have that the vector field strengths F| lﬁ\y = 28[”AA appear via their (anti)self-

V]

dual combinations

_ 1 i
Fuw ) (F/w - 26,uupana> ) (7.4.5)

dressed by the scalar fields
T, =2iIzs L¥ FA; Gi=DL Ira F) . (7.4.6)

The ansatz for the field strengths is

A U 1\AX r
Fp = —— (@7 (Rsrp" —as) , (7.4.7)
Fly = —lpA sin 0 (7.4.8)
9¢> 2 P . .

which, in the combinations (7.4.6), reconstruct the central charge Z and its derivatives.
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Once the metric ansatz (7.2.5), the vector field strengths ansatz (7.4.7) and the
requirement that the scalar fields depend only on the radial coordinate is used in the
supersymmetry transformations above, we should be able to reproduce the flow equations
(7.2.27)—(7.2.29) by requiring the existence of some Killing spinors.

The first variation we analyze is the time component of the gravitino d¢;4 = 0. This

gives the condition

1 1 . .
§€2UU/’)/016A + B Aé\gA(SAosoBeB + % U2 zAle ygeP — % eV L6457 P =0, (7.4.9)

where we assumed that d,e4 = 0. Since this equation contains both chiralities of the
4-dimensional supersymmetry parameters, we need to impose a projector condition that
relates them. We can actually identify the required projectors by rewriting the above

equation as
Ueg=e 2V Aé\gA dac 717080363 +ieV™ Z’YoéABGB —ie VL (5,437163. (7.4.10)
If we introduce two distinct projectors relating the spinor components as
es =ie®eqge? (7.4.11)

and
1 _ i« B
Y ea =€ dape”, (7.4.12)

we can rewrite the §iy, 4 = 0 condition as a single differential equation multiplying the

same spinor €4. This is proved also using
e = —ie7@eABep  and  Alet = e7054Bep, (7.4.13)

which follow from (7.4.11)—(7.4.12) by consistency. The resulting time component of the

gravitino variation gives
(—U/ + e 2V Ang — U Wetlaz iU e*m‘ﬁ) eq =0, (7.4.14)

which is satisfied only if the quantity within brackets vanishes. Identifying the real and

imaginary parts of the resulting differential equation, one gets that
U =—e"2YRe(e™Z) + e VIm(e L) (7.4.15)

and
eV Algn = e URe(e L) + V" Im(e ™ 2). (7.4.16)
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We can now analyze the radial component of the gravitino variation d1,.4 = 0, which

gives

Oreq + %AreA - eUfsz’yoaABeB - %E 5Anyle*UeB =0. (7.4.17)

i
2R?
By using the projectors (7.4.11)—(7.4.12) and the supersymmetry conditions (7.4.15)—

(7.4.16), this reduces to
1/,
Orea =3 <U - 1A> ea=0, (7.4.18)

where we introduced
A=A + (eU_w Im(e~@2) +e Y Re(e_io‘/l)> : (7.4.19)
This equation is readily solved by

ea=ezs Adry (7.4.20)

for a spinor x 4 that is r independent. Consistency with the projector conditions defined
above also imply that

a+ /,Zdr =0 (7.4.21)

and hence
o + A, = =V Im(e " Z) — e Y Re(e L), (7.4.22)

reproducing the phase equation (7.2.34).
We are then left with the angular components of the gravitino variations and the

dilatino. From the 6 direction we get that
1 1 j
Opes — 5 e¢(U' — @Z/)vmeA ~3 U= ZygeABeB — %e_Uﬂb L 5A372EB =0. (7.4.23)

Once more, using the projectors above as well as the supersymmetry conditions derived

so far, we can simplify this equation to

Opea = % e¥ [@Z)’ —2¢Y Im(e™ L) + i <6U_2w Im(e~@2) — eV Re(e_mﬁ)ﬂ e
(7.4.24)
Since the radial dependence is fixed on both sides of the equation by (7.4.20), we need to
require that both the real and imaginary parts of the quantities between square brackets

vanish. This leads to the flow equation for ¢

' = 2¢¥ Im(e L) (7.4.25)
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and to the constraint

V"2 Im(e™2) = e"Y Re(e L) (7.4.26)
This condition now fixes the ansatz for the time component of the vector fields
Algn = 2eV Re(e70L). (7.4.27)
We also get that the Killing spinors €4 should not depend on 6:
Opea = 0. (7.4.28)

A similar analysis can be performed for the other angular direction, which gives the

same set of flow equations and leaves the following condition on the Killing spinors:
1 .
Open = 3 cos 03 2e s — % (G, Q) cos~"ea. (7.4.29)

This is solved by requiring that
O0pea =0 (7.4.30)

and that
(G.Q)+1=0. (7.4.31)

The only supersymmetry equation remaining is the dilatino variation A" = 0. By
using once more the projector conditions (7.4.11)—(7.4.12) and the other supersymmetry

constraints obtained above we eventually find the flow equations for the scalar fields:
2 = —elg [V DZ 4 iU DL (7.4.32)

Summarizing, the analysis of the supersymmetry transformations reproduces the flow

equations (7.2.27)—(7.2.29) for a Killing spinor of the form
en = ea s Ady (7.4.33)
where x4 is a constant spinor fulfilling
Yxa=ieanx®,  v'xa =dapx". (7.4.34)

Since we imposed two independent projector conditions, the resulting configurations will

be 1/4 BPS (each projector halving the number of preserved supersymmetries).
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7.5 Examples of dyonic solutions

We now turn to the analysis of the full flow equations and to the construction of explicit
solutions, as an example of how the flow equations work and especially of the fact that
now we can obtain in a single duality frame all possible black hole solutions for a given
gauged supergravity model. As explained above, in order to have a regular black hole
solution in an asymptotically AdS spacetime, the scalar fields have to flow according to
the attractor mechanism discussed in the previous section. We will now analyze some
examples where this is required. Actually, we will first show that there may be models
that do not admit at all such flows, because the AdS, vacua and the AdSy x S? can
never appear simultaneously for any given set of charges. We will then investigate the
STU model, which is known to admit spherical horizons for special values of the charges
[98].

7.5.1 Constant scalar flows

As already explained, we cannot have regular flows with constant scalars, unless the
horizon is not spherical, but for instance hyperbolic [92, 93, 94]. In this case one can have
regular solutions by using our flow equations together with the constraint (G, Q) = 1. If

we assume that the scalar fields are fixed at the horizon value, we can impose that

ez = —R—%I and e L = _ (7.5.1)
2R, 2R, e
Once inserted in the superpotential we get that
_ (A g 7.5.2
This implies that the equations for the warp factor reduce to
U = e’ (1+ Rye %) (7.5.3)
2RA H 5 ..
A= (1 e 7.5.4
A trivial solution is for constant A
A U r
e’ = Ry, e’ = —, 7.5.5
H ) (7.5.5)

which reproduces the AdSy x H? horizon solution. More generally, we can solve these
equations first in terms of the variables A and 1, with the equation for ¢ being

w/_A/‘f’U/_ eA_w

e (7.5.6)
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In fact, introducing now

C =e*4 — R, (7.5.7)

the differential equations for A and 1 can be used to write
C'=Cy, (7.5.8)
which is readily solved by
C=ke¥ < e24=R% +ke?, (7.5.9)

where k = 0 should give back the AdSy; x H? metric. Plugging the solution into the
equation for ¢ (7.5.6), we get that

/2 o
(e?) Yt R (7.5.10)

Ry ’
which is solved by
2 R+ ko
v 5 7.5.11
e 4R?4 + R r+ a, ( )

where we chose the integration constant so that the limit £ — 0 is well-defined.

If we set a = 0, we get that the asymptotic behavior of the warp factor is
2
r—0: e 5 R% U 7 (7.5.12)

which leads to the AdSy x H? metric

7,,2 RZ
ds? = —R—Qdﬂ + T—;‘dﬁ + R%ds?p, (7.5.13)
A
and
24 K 5 w T
r— 00 : e —>4R2A7‘, e = (7.5.14)

which leads to a metric that differs from AdS4 by 1/r terms in the limit.

7.5.2 One modulus case

One of the simplest special Kahler moduli spaces is given by the geometry defined by
the prepotential
F=—iXx", (7.5.15)
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This space has only one modulus and the o-model metric can be obtained from the
Kahler potential
K =—log2(z+ z), (7.5.16)

which requires that Rez > 0. The gauging potential is determined by
L£=e52(go+ig"+ (g1 +1ig%)z), (7.5.17)
which gives a supersymmetric AdS, extremum at

__ 9091 +9°g" +i(909° — 919")

7.5.18
0 + (&) (7:24%)

This is in the allowed region of the moduli space if and only if
gog1 + g°g' > 0. (7.5.19)

For such a simple model the second derivatives of the prepotential (7.5.15) are con-
stant and therefore the second symplectic invariant I is a constant function of the

charges at every point of the moduli space:

1
I(G) = |G — |DiG|* = —59M(F)G = gog1 + ggt. (7.5.20)

Since at the horizon e 24 = —I5(G), we immediately see that the requirement to have

a regular solution would require
go91 + 9’9" <0, (7.5.21)

in direct contradiction with the requirement to have a supersymmetric AdS vacuum.
Hence we conclude that for such a model there are no regular spherical black holes with
an AdS asymptotic geometry. This also implies that the AdS, vacua of this model will

not be destabilized by the presence of supersymmetric black holes.

7.5.3 The STU model

The STU model is defined by various prepotentials, according to the choice of symplectic
frame. Since our formalism is duality covariant, we can fix a symplectic basis where the
prepotential has the classic form

Xtx2xs3

F %0

(7.5.22)
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In this basis the Kéahler potential is
K = —log[—i(s — 3)(t — t)(u — u)], (7.5.23)

where we introduced normal coordinates s = X' /X° ¢ = X2/X% and u = X3/X". The

symplectic vector V for such a prepotential is given by
Y = K/? (1,s,t,u, —stu, tu, su, st)T. (7.5.24)

From [98] we know that the STU model admits spherical horizon solutions for electric
gaugings G = (0,gx) and magnetic charges Q@ = (p*,0), but in the symplectic frame
defined by the prepotential

Fox = VXOXIX2X3, (7.5.25)

The Ké&hler potentials of the two models are obviously the same, but the symplectic

sections V for the square root prepotential Fog are now
Ve = ef/? (1, —tu, —su, —st, —stu, s, t,u)? . (7.5.26)
The two frames are therefore related by a symplectic transformation

1

S = : (7.5.27)

1

so that Vog = SV. We should stress that such a transformation is an allowed change
of frame, but it is not a duality transformation. In fact, the duality transformations
for the STU model are only a subset of the full symplectic group: SU(1,1)3 C Sp(8,R).
Their form can be computed explicitly (see for instance [87]) and the matrix S does
not belong to any of their combinations. However, the effective 1-dimensional model
we started from (7.2.7) is fully constructed out of symplectic invariant quantities. This
means that a solution to the model where, for instance, the gauging potential is obtained
from Lok = (Gok,Veok), can be mapped to a solution of a different system where
L = (G, V), with Vox = SV and G = S 'Gcx. Hence we should be able to reproduce
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solutions with a spherical horizon for our model, with non-trivial gauging charges G =
(0,3, 3% 3% 90,0,0,0)” and black hole charges Q = (p°,0,0,0,0,q1, g2, q3).

Notice that, given our framework, however, we can do more than this. Since our
formalism allows for the introduction of arbitrary electric and magnetic charges both for
the gauging as well as for the black hole, once we have fixed a solution, like the one above,
we can generate new ones by means of duality transformations. We actually know that
the gauging breaks the duality group SU(1,1)3 to a U(1) related to the isometry of the
scalar manifold that is gauged by the graviphoton and the 3 vector fields, which couple
to the 4 independent charges of the gauging among the 8 parameters G. This means,
however, that we can still act with this symmetry on the scalar fields and the gauging
and black hole charges. In particular, we could now generate solutions with non-trivial
axions, by using the representation of the three U(1) C SU(1,1) duality transformations,

which act as follows:

i cosf; 2zt + sin 6;

. ) 7.5.28
—sin 6; z* + cos 6; ( )

The action on the charges can be then deduced by the corresponding symplectic trans-

formations derived, for instance, in [87].

The electric dyonic configuration

The model and symplectic frame are defined by (7.5.22)-(7.5.24), and the prepotential

then becomes F' = stu. The symplectic sections are
V= (L \My) , (7.5.29)

where

—_
|
VA
~
<

LA = &2 . My =€l , (7.5.30)

-+
»
IS

U st

and the Kéhler potential is K = —log(8A1A2)3) so that /2 = 1/(2v/2v/X\1 Xa)3), which
requires to be on the branch of positive \;’s.
In our framework, the superpotential for such a model is given by

W = eK/2|q18 + ot 4 qzu + pPstu — i€ (go — g'tu — g®su — g3st)). (7.5.31)

By using the flow equations we can immediately check that we can consistently fix the

axions Res = Ret = Reu = 0 along the whole solution, for the charge configuration we
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consider. For the remaining flow equations we can then use an ansatz similar to the one

proposed in [98], namely (where now z° = (s,t,u))

‘ Lien|HiH 1
Im 2z’ = 4 /W , W =loglar®* +¢), U= -1 log 4 H'H HyHs , (7.5.32)

and 0 0
HO:‘MQJ, H:O”;;ﬁ i=1,2,3. (7.5.33)
ars+c ar< +c
The symplectic sections for our configuration are
1/v/A1A2)3 —ivV A1 A2A3
1 —i4/ A1/ A2 1 —v/A2A3/A
A = 1/ 223 My=—— 2hs/A | (7.5.34)

2v2 | —iv/ /Mg | IPNCH A1A3/ Ao
—1 /\3//\1)\2 - )\1)\2/)\3

These determine the symplectic matrix

—A1A2A3

—XoA3/
Nas =ilys,  Ias = 2Xa/ M1 , (7.5.35)
—A1A3/ A2

—A1A2/ A3

then the matrix M is simply given by

z
M = < Zl) . (7.5.36)

Finally, the central black hole and gauge charges are

A A
— @V = o (VAT - W -W 2[R e
A3 A1 Ag

1 N )\2>\3 2 [As s A
=(G,V) = 2{( AWA + g/ 2\/ \/A3 ) . (7.5.38)

Knowing these central charges we can easily compute the phase « from
_ Z- ie?AL

 Z4ie?AL

and its value at the asymptotic AdS, where

5l 52 53

[ 90g [ 90g 9og
M=/, A= 3=, 7.5.40
*g? g3 g'g? ( )

since the zero axions configuration has & = 0, the phase is fixed at o = —7/2.

622a

(7.5.39)
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Equations of motion

The BPS equations relative to this configurations are

202Y (eiUReV)/ + 2W-UOMG + Q=0,

(e¥) = 2¢¥"YReL , (7.5.41)
now consider that
9o/ A1 A2A3 go(L°)?
0 0
0 0
0 0
QMG = =38 , (7.5.42)
0 0
—g'" Ao A3/ M\ —g(M;)?
—3* M3/ A2 —g*(Ms)?
—33 M2/ A3 —g° (Ms)?
so if we define four positive functions®
HY =21% Y H =-2Me Y, (7.5.43)
we can rewrite (7.5.41) as
OrH® + 2go(H")? —p°
—0,Hy — 25" (H1)? —
e PR e G HY L g H,, (75.44)
—0,Hy — 2g%(H>)* —q2
—0,Hs — 2g3(H3)? —q3

As already stated, we follow the assumptions of [98] and make the ansatz
H® = e %+ 8%, Hi=eY(aur+p5), =loglar®+¢). (7.5.45)

We look for —c = 72, so that ¢ = log(ar? — r?). The equations (7.5.44) now become

algebraic equations
a
P° = a2 — 2g(8°)? o=

i a .
¢ = —om’% + 291(@-)2 o; = 2—@@ Vi=1,2,3 |,

3
908" +> §Bi=0, (7.5.46)
=1

'These functions are analogous to those defined in [98] up to a factor of 2 and, for the H;’s, an overall

minus sign.



7.5. Examples of dyonic solutions 135

and we don’t have to forget the constraint

(G,Q) = gop” (7.5.47)

||Mw

t3-black hole

We take a = 1, and we look for the simple solution which has all quantities with i-indices

equal; from (7.5.46) e (7.5.47) we are left then with the system of 4 equations

o Th g q— -1kt 25(3)
P’ = g =20 4=—55+2
0 = goB° + 338 gor’ — 3Gq = —1 (7.5.48)

and 7 unknowns {q,p°, g, g%, 8, 5%,m,}; we choose to parametrize the solution with ¢, §
and ¢°. Moreover, we see that if we define the hatted quantities

~” ~ A0 A ~ 20 — 20

i=q-g p"=p"-90 B=p-35 =89, (7.5.49)

choosing ¢° > 0, § > 0, the equations become simply

.0 T}% 7042 N T}QL M2
D :?—2@) qz—?-i-?(ﬁ)

0=p3"+38 0 —3G=—1 (7.5.50)

and we choose to parametrize the solution of these system with §. We then have

T—=45 ., 3 JI=12G
Tq B =V1-144 rh:%,w.am)

in fact one can show that a regular solution with all positive gauge charges cannot have

B > 0. We also have to check that the functions in (7.5.43) are well defined, in particular

I°=34-1  p=-

that they are positive throughout the flow; this imply, given B < 0, that rp, > —25 which

results in
G<0 = g<0 U p’<o0. (7.5.52)

To summarize, we have a black hole solution whose scalars and metric warp factors are

parametrized by the functions in (7.5.43, 7.5.45), with o, a; given in (7.5.46) and the

other parameters are’.

3gg—1 Vv1—4gq 3 - Vv1—-12g¢q
pOZT B:_T 60:4790\/1—4gq Th:fa

(7.5.53)

2Confronting the value for the 3 parameter found here with the one in eq. (4.24) of [113], we see that
the different factor of 2 is consistent with the same rescaling factor in the definition of H® and H;’s,

since we previously follows the notation of [98]



136 Chapter 7. Black holes in gauged Supergravity

we are left with the freedom to choose ¢ < 0, g° > 0 and g > 0. The scalar is

H; 2r —/1—4g
A=)t = Aoy — g4 (7.5.54)
HO 2r+3y1—4gq

where we defined Ao = 1/g0/3-
The value of the scalar field at the horizon is

Moo |~1+6Gq+/1—16gq+ 48322
w = oo [Z1H600+ VI—165q 4857 (7.5.55)
V2 1-37¢q

the entropy is given by the warp factor ezA\h = 20(rn)=2U(mn)  with

V() = 1/(2v/HoH,HyH3) | (7.5.56)

thus we get

1

2A(ry) _ ~ ~ = -

e2Alrn) = 492%0\/1—3(1 —4Gq)2+2(1—4Gq)\/1—16Gq + 48 5%¢2 .
(7.5.57)

We recall that the asymptotically AdS; metric, solution of the STU-model in U(1)-
gauged N = 2 supergravity with AdS, x S? horizon is

ds® = —eVdt? + e 2Vdr? + e 2VT2Y(dh? 4 sin 62 dp?) | (7.5.58)
where the warp factors are

20 = (12 —42)? |
o2V — 2 QO(Q)S(TQ - T}QL)Q
= 3/2 = 1/2
(r—ivi=439)"* (r+3yT—45q)"
9 /03 (r2 — 12)2

(T_ r—2§q>3/2 (r+3 r_qu)l/Q.

7.5.4 Purely electric black hole in four dimensional AdS,

The work of [114] and [115] presents an holographic renormalization approach to the
computation of the black hole mass in asymptotically AdS space, in various dimensions.
It is possible to use their results for black holes in AdSy, in the framework we are
presenting in this Chapter. In order to make contact with the setup of those works, one
has to consider a black hole solution in a frame where all abelian charges are electric

and the gauging is purely magnetic.
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This is another configuration which is easily constructed from the previous one. It
can be obtained, indeed, by performing S-duality on he scalars from the solution of [98]
s— =1t 1y 1

s’ t7 u

Consider the stu-model with prepotential
F=-2/-X0X1X2X3 (7.5.60)
and the vector of non-normalized symplectic sections

o
v:<1 ) (75.61)

giving the Kéahler potential

(7.5.62)

|stul? ]
(s+38)(t+1)(u+a)

The zero axion configuration in this case will be given by the choice of real negative

K = log [—

scalars, thus a suitable parametrization of the scalars is s = —z' + i\, t = —22 + i)2,
u = —x3 4+ i3
The normalized sections are V = (L%, My)

1 sta
A —i|stul L _ |stul 1/s
Vi+s)t+u+a) | L | Vis+8)(t+Hu+a) | 1/t
é 1/u
(7.5.63)

Zero axions solution

The electric black hole solution is supported by zero axion configuration. From now on

we will restrict to the branch
s=—x, t=-x‘, u=-x°, x, x¢, 0 >0, (7.5.64)

that in particular implies

Vala?a3 1/Vala?a’

] 1 z! x223
2.3 4 zl

Kﬁ:—bg[} e —— 2’ My = ——
1,23 ’ 2 ’ 1.3
T xeT 2v2 g 242 =
3 xlx?
xlz? 3
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The black hole charges are
Q = (0707070) QO>q17Q2aQ3) 5 (7566)

the gauging is magnetic
G =(g"9"9%9°0,0,0,0), (7.5.67)

the black hole and the “gauging” central charges are

23 4 q1x1 + Qsz + q3x3) ,

1
Z = ——— (qox
22V x 23 (
—i
L=——— (& +
2v/2V 1223 (6" +9
so that a = 0. The symplectic matrix Ny and the black hole potential quadratic form
M are

12%2° + g*a'a® + g*2'a?) | (7.5.68)

_x19012z5 0 0 0
2.3
. _zfz 0 0
Nas, = iZps Irs = @ L3 ;
0 0 -z o
0 -z
B A
M = ) (7.5.69)

There is a supersymmetric AdS,; minimum at asymptotic infinity

0,1 0,2 0,3

[9°g 2 [9°g 3 [9°g
DiLoo =0 — ' =55, 22 =525, 22 =4/%L . (7570
1~00 [e'e} 9293 [e'e] glgg [e'e) 9192 ( )

BPS equations of motion

The equation of motion are in this case

e?¥9,Im (e*UV) + 20 UOMG+Q =0,
Y =2 VImL (7.5.71)

and we have

0 0
0 0
0 0
0 0
OMG = g =5 o | (7.5.72)
—g'zows/at gt (My)?
a3 P (M,)?
—gata? /P g3 (Ms)?



7.5. Examples of dyonic solutions 139

thus we can define
Hpy = —2iMpe™ Y, A=0,1,2,3 (7.5.73)

so that the eom.s become
3
V(0 Hy + 29" (HA?) = —an . ¢ == ¢“Ha, (7.5.74)
A=0

where no sum is intended in the first of the above equations. Once again we proceed

with the ansatz

Hy=e Y(anr+Br), ¢ =log(ar? —7%), (7.5.75)
turning the BPS equations to the algebraic ones
3
arry +208(Ba)° =—aqn,  a+20%aa=0, D gB =0. (7.5.76)
A=0

Electric > model

Taking into account the constraint (7.5.47), we choose ¢ = 1 and find a solutions for
B; = B and ¢; = ¢, thus ¢° = ¢, and we take all ¢® < 0, in order to recover the
previous electric solution. Notice that the existence of an asymptotic AdS point is not
effected by an overall rotation of the gauge charges in this configuration by a same
phase, in particular a minus sign. Again, it’s easier to rewrite the equations in terms of
B = lg'l5", BO = 1¢°|B0, and so on. We get the system

~0 7"1%1 7042 A 7”1%1 A2
q =—7+2(ﬁ) G=——=+2p

0=p3"+33 P +3G=-1 (7.5.77)

in the unknowns {B, BO, 4,3, 7 }. We choose to parametrize the solution with ¢, which

gives the same solution of the previous case in the hatted coordinates

. . 5 1—4q A 3 = Vv1—12¢
Go=—-3G—1 B:_Tq 50211/1—4q rh:%,(?.fﬂ?&

with ¢ < 0. The explicit dependence of the parameters on the gauge charges is then

1—3gq v1+4gq 3v1+4gq v1+12gq
QO:T B:T 50:_4790 Th="

(7.5.79)
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where we still have the freedom to choose the charges ¢ < 0, ¢° < 0, g < 0. The scalar

fields are
Hy r—2g0 2r — /1 +4gq
rT=4—=z
Hy o r—ZgOﬁO 2r + 3y/1+4gq
q° €¢:4r —1—-12¢g¢
g' 4 ’

(7.5.80)

—2U
e = 2/ HyH HyH;3 = | | Vr—2Bpg" =
/ 0 3
_ \/27“+3\/1+4gq\/ 2r—\/1+47gq)3 (75.81)

)
8 9093 (7«2 _ ,,412[[)2

the metric solution is

ds? = — 8V (9)? (r* —riy)? 2o V23V aga /o = VT5390°
V2r + 3T+ 49q/(2r — VT +4gq)? 8v/P(9) (12 — 12,2
— 3
* vars 3@ \0/((2)7; VIZ490) (d6? 4 sin 62dp?) . (7.5.82)
9°(g

7.5.5 Confronting previous solutions in gauged supergravities

The examples we have presented in this section rely on the metric ansatz (7.2.5). It
is convenient, however, to compare our conventions to the previous literature, see for
example [92, 36, 35, 93], where Supergravity black holes in asymptotic AdS space have
been discussed, before a regular horizon solution was shown to exist in [98] .

We define

=TT, B=1+2 . =30, 7(6) =2/

(7.5.83)

and rewrite the metric as

I ( 2)2 ( %(ﬁ)ﬁ*)l i+ 76) (1- H)2 iy 4

T2

+m Ho(H)3 (d6* + sin 8%d¢?) | (7.5.84)

whose asymptotical behavior is

1 dr? r2

> 7T 22 4 - o
dss, (G)rod +I(G) 2 +I(G)

(d6? + sin 62dp?) . (7.5.85)
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One can define a function f(r)

) = T2( _ 7“1%1)2 7 (7.5.86)

so that the metric takes the form

d 2
ds® = —€2Af(7')dt2 +e 24 (T + 7*2ng> ,

f(r)
e = 1(G) (7.5.87)

\/ HoHyHyHs

which is analogous to the metric used in [35]. Notice that, with respect to the ansatz of

the same paper where f(r)Pu/ /=Lt =1 — (r/rq) + g*r?, we now have
f(r) = =2rg + (P /r)* + 1%, (7.5.88)

in which the minus sign of the constant is crucial to find a regular solution. Also, a factor
Z(G) is added, with respect to previous ansatz, and changes the asymptotic behavior of

the metric.

7.5.6 The magnetic solution of Cacciatori and Klemm

For completeness, we give here the details of a purely magnetic black hole solution that
Cacciatori and Klemm in [98] demonstrated to exist, and to exihbit a regular spherical
horizon. The solution can be found in the #3 model, for which p! = p? = p3 = p,

H'=H?=H3, g1 = g2 = g3 = g, and it is

ds? = —e2UMge? 4 ¢=2U() [dr2 + €2w(T)d92} )
) = (12 =22 e 2V = 2\/HyH, Ho Hy
Hy = e~ (cur + B;) . (7.5.89)

It can be parametrized by go , g >0, p> 0 as

==, o¥=_— 3v1+dgp
29’ 290 4g

, 7.5.90
10 ( )

(07

with a black hole horizon given by

1
TH = 5\/1 + 12¢gp . (7.5.91)

Moreover, the constraint of spherical horizon gives

o_ 1+4+3gp

= 7.5.92
g0 ( )
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