

Università degli Studi di Padova

Scuola di Dottorato di Ricerca in Bioscienze e Biotecnologie Indirizzo Biotecnologie XXIII Ciclo

Design and implementation of novel algorithms to integrate different DNA sequencing technologies for *de novo* genome assembly: *Nannochloropsis* as a test case

Direttore della Scuola:Ch.mo Prof. Giuseppe ZanottiCoordinatore d'Indirizzo:Ch.mo Prof. Giorgio ValleSupervisore:Ch.mo Prof. Giorgio Valle

Dottorando: Andrea Telatin

A. A. 2010-2011

genome assembly is an endless puzzle.

Abstract

The advent of next generation sequencing technologies marked the beginning of a new era in the production of genomic data; nonetheless it also offered novel challenges to the bioinformatics community. While resequencing of genomes was made relatively easy and cheap, *de novo* assembly of eukaryotic genomes still presents significant hurdles.

In this thesis we attempted the application of a mixed-techniques approach to the de novo sequencing of a small eukaryotic genome, that could allow us to takes advantage of both the relatively long reads obtainable using the Roche 454 and the incredibly high coverage of short reads allowed by SOLiD sequencer. The application of a hierarchical approach based on the production of reliable contigs using the 454 and the assembly of these contigs in scaffold using the SOLiD mate pairs, could represent a cost effective strategy to address this important issue.

To realize this project a contig-centered data repository, called 4NGS, was produced that allowed the real time interrogation of partially assembled data as well as the evaluation of the assembly and the design of new experiments. Moreover I designed and implemented a scaffolding algorithm, ScaMP (Scaffolding with Mate Pairs), that uses the SOLiD matepaired reads aligned to the reference contigs, to produce and store scaffolds in the 4NGS database.

To further improve the assembly results, a gap closure pipeline was also developed that allows joining adjacent contigs using the SOLiD short sequences.

I assessed the performance of both programs using as a test case the genome of a microalga, *Nannochloropsis gaditana*, which received pressing attention from the scientific community for its potential for biofuel production. The genome (that has an estimated size spanning between 30 and 40 Mbp) has been sequenced with a low-coverage 454 (that produced more than 12,000 contigs) and with SOLiD Mate Paired libraries.

Scaffolding performed with my platform produced 95 scaffolds that include 26.8 Mbp of the genome and have an average size of 285,594 bp.

The gap filling pipeline closed more than 3,000 gaps between adjacent contigs, and gave best results for scaffolded regions (the largest scaffold, composed by 140 contigs, had 106 gaps closed raising N50 of its contigs from 8.3 kbp to 77.4 kbp).

My study fulfilled the expectation that for a small eukaryotic genome, *de novo* assembly starting from next generation data alone is feasible, cheap and efficient; that a mixture of SOLiD and 454 sequencing substantially improves the assembly; and that the quality of the resulting genome draft is enough to support further analysis of comparative genomics and to obtain a valuable framework to design the application of recombinant techniques.

A good quality draft of *N. gaditana* genome was produced in this thesis, meeting the need of the scientific community for valuable tools able to boost the application of the new genomics resources to a vast plethora of biological problems and to serve new and interesting biotechnological applications.

Riassunto in italiano

L'avvento e la rapida evoluzione dei sequenziatori di nuova generazione (NGS) ha abbattuto il costo ed il tempo necessario alla produzione dei dati. La fase di assemblaggio di un genoma che porta ad ottenere la corretta sequenza genomica a partire dalle singole sequenze prodotte dai sequenziatori è sempre stato un processo complesso, e l'aumento della mole di dati prodotti non è corrisposto ad una nostra aumentata capacità di analisi degli stessi.

In questa tesi si presenta un approccio misto di sequenziamento che combina i benefici di due sequenziatori di nuova generazione (il 454 di Roche che fornisce le sequenze più lunghe ed il SOLiD di Applied Biosystems che fornisce una massiva produzione di sequenze, ciascuna di lunghezza ridotta) al fine di ottenere le informazioni per il sequenziamento di un genoma.

La strategia è stata testata sul genoma della microalga eucariote *Nannochloropsis gaditana*, un organismo che negli ultimi anni ha ricevuto notevole attenzione dalla comuntità scientifica per la sua capacità di immagazzinare energia luminosa sotto forma di acidi grassi (fino al 70% del suo peso). Questa caratteristica rende *Nannochloropsis* un valido candidato per le ricerche su fonti di energie alternative a quelle di origine fossile. La stima della dimensione del suo genoma varia tra i 30 ed i 40 milioni di paia di basi.

Il rapido miglioramento delle tecnologie di sequenziamento non è corrisposto ad una altrattanto rapida evoluzione dei programmi di analisi dei dati, che spesso risultano indeguati a gestire la nuova mole di dati o a sfruttarne le potenzialità.

Per questo ho deciso di progettare ed implementare una collezione di programmi per l'assemblaggio di genomi con dati misti (SOLiD e 454).

Le sequenze ottenute da un sequenziamento di tipo shotgun con il 454 vengono assemblate per produrre un insieme di porzioni genomiche denominate *contig*. Per il genoma di *Nannochloropsis* ne sono stati prodotti 7 035 di dimensioni superiori alle 500 paia di basi.

Sfruttando le informazioni delle librerie "mate-paired" del SOLiD, che prevedono il sequenziamento combinato di paia di sequenze ad una distanza nota nel genoma ho sviluppato un programma (ScaMP) che permette di produrre liste ordinate di contig (dette *scaffold*).

Il programma ha prodotto 95 *scaffold* di dimensione media pari a 285 594 paia di basi, incorporandovici 26,8 milioni di nucleotide in totale.

L'elevato numero di sequenze prodotte con il SOLiD permette anche, una volta ottenuti gli *scaffold*, di completare le sequenze mancanti fra un *contig* ed il successivo (dette *gap*). A tal fine ho sviluppato un ulteriore programma che estrae dall'insieme di sequenze SOLiD il sottoinsieme di quelle adiacenti ad un *contig*, ed effettua un assemblaggio locale che viene infine utilizzato per colmare *gap*. Su uno *scaffold* di 140 *contig* ha eliminato 106 regioni *gap*, portando il numero di *contig* a 36 ed aumentando la dimensione media da 8 300 a 77 400 paia di basi.

I risultati ottenuti confermano che l'approccio combinato di SOLiD e 454 permette di ottenere un buon assemblaggio di un genoma eucariotico limitando al contempo i costi di sequenziamento.

I risultati ottenuti sono stati validati tramite il sequenziamento di estremità di inserti BAC successivamente allineati contro il dataset di *scaffold*. I programmi sviluppati hanno dimostrato di essere un valido sistema di assemblaggio affidabile e di colmare una lacuna nel panorama dei programmi bioinformatici per il sequenziamento de novo con tecniche di nuova generazione.

List of abbreviations

B (kB, MB, GB, TB)	Byte (kilo-, Mega-, Giga-, Tera-)				
BAC	Bacterial Artificial Chromosome, cloning vector for large inserts				
bp (kbp, Mbp, Gbp)	Base pair (kilo-, Mega-, Giga-)				
CCD	Charge-coupled device (electronic sensor for digital imaging)				
Chl	Chloroplast				
dNTP	Deoxy-Nucleoside Tri-Phosphate				
emPCR	Emulsion PCR				
EST	Expressed Sequence Tag				
FOSS	Free and Open Source Software				
gDNA	Genomic (nuclear) DNA				
INDEL	Insertion/Deletion. «A collective abbreviation to describe relative gain or loss of a segment of one or more nucleotides in a genomic sequencetypically used to denote relatively small-scale variants» — from Scherer <i>et al.</i> 2007				
IR	Inverted Repeat				
MP	Mate-Pairs, specifically referring to SOLiD v3 Long Mate-Paired Libraries (Applied Biosystems)				
mtDNA	Mitochondrial DNA				
N50	«Given a set of sequences the N50 length is defined as the length N for which 50% of all bases in the sequences are in a sequence of length $L < N$ » — from Miller <i>et al.</i> 2010				
NGS	Next-Generation Sequencing				
OS	Operating System				
PCR	Polymerase Chain Reaction				
polyA+	mRNA preparation performed polyadenylated transcript enrichment				
SNP	Single Nucleotide Polymorphism				
WGS	Whole Genome Shotgun				

Table of Contents

A	bstract.		v
R	iassunto	in italiano	vii
L	ist of abl	breviations	ix
1	Introduction		1
	1.1 G	enome sequencing	1
	1.1.1	Shotgun assembly	
	1.1.2	Scaffolding: ordering contigs	
	1.1.3	Opportunities and challenges from technical advances	5
	1.2 Ao	dvent of "Next-Generation Sequencing"	6
	1.2.1	Emulsion PCR	7
	1.2.2	Roche 454: pyrosequencing	
	1.2.3	Applied Biosystems SOLiD: sequencing by ligation	
	1.2.4	SOLiD Mate-Paired libraries	
	1.2.5	Genome sequencing with NGS technologies: benefits and issues	
	1.3 A	mixed approach for genome sequencing	12
	1.4 N	. <i>gaditana</i> genome project	15
	1.4.1	N. gaditana samples for DNA and RNA-Seq	
2	Mater	ial and Methods	19
	2.1 Bi	ological sample preparation	19
	2.2 H	ardware and OS	19
	2.3 In	terpreters and web servers	20
	2.4 Bi	oinformatic packages	20
	2.4.1	PASS v.1.65 and PASS-Pair	
	2.4.2	Newbler 2.5.3 (January 2011)	
	2.4.3	Velvet 1.2.01	
	2.4.4	Other packages used	
	2.5 Cu	ustom tools: technical specifications	22
	2.5.1	SOLiD mate-paired reads analysis	
	2.5.2	4NGS platform	
	2.5.3	Gap closure pipeline	
	2.5.4	RNA-Seq tracks and chloroplast map	25

3	Results	s and Discussion	27
	3.1 Se	quencing data for the genome of <i>N. gaditana</i>	28
	3.1.1	454 whole genome shotgun and Newbler assembly	.28
	3.1.2	SOLiD mate-paired libraries	.31
	3.1.3	BAC-ends	.32
	3.2 Ne	ew bioinformatics tools	33
	3.2.1	4NGS: a user-friendly data repository	.33
	3.2.2	ScaMP: a tool for automatic scaffolding	.34
	3.2.3	BAC-Validate: scaffold validation and super-scaffolding	.37
	3.2.4	Manual finishing assistant	.38
	3.2.5	PatchGap: a pipeline for gap-closure via local assemblies	. 39
	3.3 N.	gaditana genome scaffolding	41
	3.3.1	ScaMP testing with selected seeds	.41
	3.3.2	N. gaditana genome scaffolding	. 42
	3.3.3	BAC-ends for scaffolds validation and superscaffolding	. 43
	3.3.4	Gap closure results	.45
	3.4 Ch	loroplast genome of <i>N. gaditana</i>	47
	3.5 W	heat: an independent test set	49
4	Conclu	usion	51
5	Bibliog	graphy	55
6	Supple	mentary material	59

1 Introduction

1.1 Genome sequencing

The importance of having the complete genome sequence of an organism became evident long before that DNA sequencing technology could sustain the amount of work required for this kind of projects. The Human Genome Project[1] itself was proposed by several leading scientists (among them J. D. Watson and R. Dulbecco) in the '80s, when no automatic sequencing machine was available, and started in 1990 with a colossal roadmap ahead and the involvement of several laboratories from all over the world that were undertaking a decades long project.

DNA sequencing – no matter which technology is used – allows to determinate the correct nucleotide sequence of a limited fraction of a DNA molecule, thus several steps divide the set of sequences produced (referred to as "**reads**") from the complete genomic sequence.

The "International Human Genome Sequencing Consortium" adopted a complex strategy that involved the preparation of several BAC libraries, the use of a physical map to determine the pool of BAC to be sequenced to avoid excessive overlap between them and finally the sequencing of each selected BAC with a shotgun approach (shearing the DNA, sequencing all fragments and finally assembling them). This approach reduces the complexity of assembly but also minimizes the amount of DNA sequencing required that was still limiting at that time, even if compared with the impressive amount of laboratory work needed.

It was clear that a "whole genome shotgun" approach could become a feasible strategy for large genomes only with important advances in both sequencing and bioinformatics technologies.

A strong supporter of this approach has been J. C. Venter who was able to sequence *H. influenzae* (1.8 Mbp) with this approach[2]. Venter became popular for pushing this strategy to the highest level with the human genome sequencing[3] carried on with his company, Celera (see Figure 1).

Venter's company started its Human Genome project several years later than the public consortium and decided to adopt a *whole genome shotgun* approach also thanks to the small advances in DNA automation and the reduction of sequencing[4].

Figure 1

J.C. Venter claimed in 1998 to be able to carry on a *«whole genome shotgun»* for the Human genome, an approach that heavily relies on robust DNA sequencing technology and assembly capabilities.

It should be taken into account, however, that Venter had access to the publicly available data from the IHGS Consortium (while keeping confidential his own data), including physical mapping, thus vanishing his claim to pursue a real WGS strategy.

1.1.1 Shotgun assembly

When sequencing a large piece of DNA with a shotgun approach, the problem is how to rebuild the original sequence starting from the small fragments sequenced (a process called *«de novo* assembly»).

By comparing a sequence with all the other it's possible to find overlapping regions and merge them together in a progressive way (assembly via overlaps, that has been the traditional approach). There are two key aspects in this process: sequencing coverage and sequence repetitiveness.

The sequencing of a G bp long molecule, using an instrument giving reads that are L bp long, can be described using a Poisson distribution model[5].

We call «**sequence coverage**» the quantity c = NL/G (*i. e.* the average number of times a single nucleotide has been sequenced). If we produce *N* reads such as NL = G (1X sequence coverage) have little probability of having sampled the whole genome at least ones. Using the Poisson distribution the probability that a single nucleotide of the genome was not sequenced is:

$$P_0 = e^{-c} = 0.367879$$
 (63.21% of the genome was sampled)

On the other hand if we sequence 10-fold the whole genome (c = 10):

 $P_0 = e^{-c} = 0.000045$ (99.99% of the genome was sampled)

Thus, theoretically, a 10X sequence coverage should suffice for the complete determination of most of the genome.

A critical aspect in sequence assembly is the presence of **repeated regions** in DNA sequences, and because of this read length acquires importance when trying to assemble DNA reads: longer reads can overcome longer repeated regions. The presence of repeats makes the output of assembly programs being set of contiguous sequences (referred to as **«contigs**») rather than a single sequence. This resulting fragmentation of the genome is a major concern in downstream analysis as gene prediction and genome annotation. The length of contigs depends on sequence coverage and read length, as well on the structure and complexity of the genome and the number and length of repeated regions (see Figure 2 for a simulation).

Reference sequence (G=76):

THE-QUICK-BROWN-FOX-JUMPED-OVER-THE-LAZY-DOG-THAT-JUMPED-OVER-THE-OLD-ROCK.

Figure 2

Sequence assembly. An English sentence is treated as a DNA molecule and exposed to "sequence shotgun" with read length of 5 letters. The presence of a repeated part ("jumped-over-the"), which is longer than the single reads, impairs the whole sentence reconstruction. An assembly program would return 4 "contigs", one with a doubled coverage being a region repeated twice.

1.1.2 Scaffolding: ordering contigs

A widely adopted strategy to overcome the technical limitations in DNA sequencing is to shear the genome in pieces much larger than the read length, and to sequence them both from the 3' and from the 5' (see Figure 3). In the past century this strategy involved the cloning of large DNA fragments into BACs and using universal primers for "BAC-ends sequencing". Cloning-free approaches are now used to achieve the same result with "next-generation sequencing".

Aligning the two paired-reads against contigs can help sorting them: if the two sequences match into two different contigs they connect them with a peculiar orientation, forming a virtual bridge between them.

A sorted array of contigs (e.g. joined via paired reads alignment) is called **scaffold**. The regions between contigs are called **gaps** because they are often non-sampled parts of the genome, or parts not included in the assembly. It can happen, however, that the length of a gap is zero.

While «**sequence coverage**» measures how many sequences cover a certain position, when dealing with mate-paired reads or pair ends we can also consider the coverage obtained by the whole fragment that generated the two pairs, that is called «**physical coverage**» (in the example below the word "fox" has 1X sequence coverage, with only one read, and 2X physical coverage).

Large fragments sequenced from both ends:

Figure 3

Three large fragments of the sentence used in Figure 2 were sequenced from both ends. Mapping the ends to the previously assembled contigs allow for contig order determination, resulting in a single scaffold. Reads are in *red*, while the physical coverage is represented by a dashed line (*gray*).

1.1.3 Opportunities and challenges from technical advances

The advent of next-generation sequencing technologies (see next paragraph) has been absolutely beneficial in terms of number of sequences per run, but with a considerable disadvantage in terms of read length, a key factor in *de novo* sequencing.

Very short reads and very high coverage make assembly via sequence overlap detection very difficult: partly because short sequences may have limited overlap with other, but mainly because an impressive all-against-all comparison is required and computationally too hard to be completed with the impressive coverage produced by NGS. A different approach has been introduced using a mathematical structure called «De Brujin graph»[6], that reduces the complexity of the input dataset (*i*. e. all the reads) to a set of *k*-mers generated parsing input reads using a *k*-long window, and incrementing a counter for each *k*-mer. A robust implementation of this principle is Velvet[7], and the Ph. D. thesis of its author, D. Zerbino, is a crystal clear reference on the topic[8].

1.2 Advent of "Next-Generation Sequencing"

The first genome projects (*S. cerevisiae, H. sapiens, A. thaliana...*) were all based on di-deoxynucleotides chain terminating chemistry, proposed by Friedrich Sanger in 1977[9]. This method was greatly improved through the years, from the original version based on radio-labeled bases and manual loading of product on polyacrylamide gels to the final fluorophores-labeled nucleotides and the introduction of automatic capillary electrophoresis, yet the overall throughput was limited by two factors: the need of bacterial cloning to amplify the input material when performing genome shotgun, and the gel-electrophoresis step. State-of-the-art Sanger sequencers could produce sequence as long as 1,000 bp, but with a poor parallelization (96 reactions loaded simultaneously)[4].

Figure 4

Increase in sequencing output during last decade. It is clear that the advent of NGS machines in 2005 provided an unsurpassed boost in DNA sequencing capacity (adapted from [4]).

In the first years of this century new sequencing methods started to be proposed that avoided both molecular cloning and electrophoresis, and they are currently referred to as **«next-generation sequencing**»[10] (abbreviated NGS). The first implementations were little or not impressive, in particular for the very short reads produced, but the research to improve them was greatly enhanced in 2006 when the X Foundation offered a prize (10 million dollars) for *"the first team that can build a device and use it to sequence 100 human genomes […] at a recurring cost of no more than* \$10,000 per genome."[11].

There are currently three major NGS sequencers available in the market:

- **454 XL by Roche** that currently sequences 1 Gbp in 7 hours, average read length of 700 bp (thus comparable with traditional Sanger sequencing);
- SOLiD 5500XL by Applied Biosystems that can provide a higher throughput, 200 Gbp per run, with a maximum read length of 75 bp;
- **Hi-Seq 2000 by Illumina** that sequences 200 Gb per run (25 Gb per day) with each single read 100 bp long.

Each sequencing machine has it advantages and disadvantages, and found a peculiar niche of applications. They have become so popular and sequencing costs are so low to date that each company proposes a "benchtop version" of their machines (e. g. the "454 junior" from Roche) for small-scale sequencing and diagnostics.

This thesis focuses on *de novo* genome sequencing using both the 454 by Roche and the SOLiD by Applied Biosystems, thus it is worthy to briefly introduce their chemistry, and then to highlight the improvements of *de novo* sequencing with NGS (§1.2.5 on page 10).

1.2.1 Emulsion PCR

Both the 454 and the SOLiD make use of a method called *emulsion PCR*[12] (abbreviated emPCR) to avoid cloning into bacterial vectors and allowing for library amplification in a single tube (see Figure 5).

All the DNA fragments to be sequenced (as in the case of sheared genomic DNA) are ligated to two adaptors. An enrichment step discards molecules that have the same adaptor at both ends or no adaptor at all, and finally all the molecules are amplified in and emulsion, prepared to minimize the

chance that two molecules fit in the same aqueous droplet of the emulsion. The aqueous phase contains the reaction mix. A peculiar difference with standard PCR is the use of a primer-coated bead instead of a free primer, making easy to recover the PCR product after emulsion breaking.

Figure 5

Simplified overview of library amplification using emulsion PCR. Adaptors (in gray and orange) are ligated to end-repaired DNA fragments. Ligation is followed by removal of molecules that ligated the same primer (or no primer) on both ends. Finally the library is added to a PCR reaction mix and emulsioned, trying to minimize the event of two templates per water droplet.

1.2.2 Roche 454: pyrosequencing

The emulsion PCR is loaded into a sequencing plate, with a bead system that ensures that each well accommodate just a DNA coated bead. Sequencing happens priming the polymerization of a strand, with the use of standard deoxynucleotides that are added one per time. The release of pyrophosphate (P_i) is coupled with light production by lucipherase enzyme and thanks to a hi-resolution CCD camera, all the beads of the plate are monitored in real time[13]. When a homopolymeric stretch in found the flash of light is higher, and quantitating the light allow for an approximate detection of the number of subsequent equal bases, yet this lack of accuracy in homopolymeric stretches is one of the weak point of the technology.

Roche 454 provides the longest reads among all NGS machines, and it is a *de facto* standard for genome sequencing. A notable drawback of this solution is the relatively small throughput (just 1 Gb per plate) and the highest price per nucleotide in the market.

1.2.3 Applied Biosystems SOLiD: sequencing by ligation

The SOLiD system uses a completely different sequencing chemistry based on oligonucleotide ligation, using a special mix of oligonucleotides composed by all possible sequences, having each probe labeled with one out of four fluorophores associated to the first two bases. This means that there are four possible sets of oligonucleotides, characterized by the color of a fluorophore, and each set can start with four different di-nucleotides (see Figure 6).

Figure 6 Simplified overview of SOLiD sequencing-by-ligation method.

(a) the bead is coated with sequencing primers and has the strand to be sequenced exposed. The mix of oligonucleotide is added and only the one complementary to the DNA molecule to be sequenced can be ligated.

(b) the ending part of the probe is cleaved after fluorophore detection.

(c) the process starts again, this time shifted downstream.

This probe mix is ligated to the sequencing primer (see Figure 6a) and a color is detected, referring to position 1 and 2 of the DNA molecule. The probe is cleaved and the process repeated (Figure 6b and c), this time probing positions 6 and 7 of the DNA molecule. At the end of the process all the ligated probes are striped away and the sequencing restarted at position -1 (changing the sequencing primer). This means that each single nucleotide is probed twice (from the dinucleotide n, n+1 and n-1, n).

As for the 454 the sequence detection is in real time, but the sequence of color detected is not directly linked to the DNA sequence as it was in Sanger sequencing. The peculiar sequence encoding (called «color space») adds an extra layer to bioinformatic pipelines that have to deal with it, but at the same time each nucleotide is called twice, enhancing the accuracy and making it easier to discriminate between sequencing errors and SNPs, because the latter involve the change of two colors, not just one, when comparing the sequence with a reference).

Color space encoded reads are easy to align against a reference (converting it into color space), yet still difficult to manipulate because of the complex

rules for color space to base space conversion, especially when dealing with SNPs or INDELs.

1.2.4 SOLiD Mate-Paired libraries

Applied Biosystems provide its own kit for sequencing of large DNA fragments' ends, and they call this approach "*Long Mate-Paired libraries*" (in this thesis referred to as "Mate-Paired" or MP), as they use the "Paired ends" term for another similar approach.

Even if the general principle of MP libraries is the same as BAC-ends sequencing, the protocol is completely different.

SOLiD Long Mate-Paired Library preparation

Figure 7

SOLID Long Mate-Paired library preparation (simplified scheme). Large fragments of DNA after size selection (*gray*) are ligated to an internal (*red*) adaptor and circularized. After nick traslation and digestion of nicked DNA the chimeric fragment carrying the two "mates" is ligated to amplification adaptors. Sequencing primers (*black*) are in the same strand.

Genomic DNA is sheared and end-repaired and large fragments are circularized with an internal adaptor, then a short incubation with *E. coli* polymerase I translates downstream the nicks created with adaptor ligation that are used to break the DNA with T7 exonuclease and S1 nuclease.

Resulting fragments are ligated to adaptors used for the emulsion PCR. One of these adaptors and the internal adaptor are used for sequencing: thus the two mate-paired sequences are in the same strand.

1.2.5 Genome sequencing with NGS technologies: benefits and issues

The unsurpassed throughput obtained with NGS technologies (see Figure 4) has been a major push in genome sequencing. With current technology even single laboratories are enabled to have the genome of their model organism to be sequenced at an affordable price.

Eliminating bacterial libraries and with real-time imaging the whole process can be carried on in a couple of month (see Figure 8).

Figure 8

Comparison of whole genome shotgun approach carried on with traditional Sanger approach and Next-Generation Sequencing. Sanger sequencing involves molecular cloning and electrophoretic separation of sequencing products: two time consuming removed NGŠ steps from approaches.

This significant advance in timing, combined with a massive parallelization gave a major boost to the overall throuput.

As an example, the research group I worked in during my Ph. D. completely sequenced the genome of a deep-sea bacterium (2 chromosomes, 6 Mb total) in 2004, using a traditional Sanger approach[14]. It took more than a year to produce the ~3X coverage and another year for the finishing step. With a single 454 run (two weeks from library preparation to raw data) it would be easy to obtain a much higher coverage (~50X with half plate).

The limiting step to date is the amount of computational power required to handle impressive sequencing outputs and the bioinformatics necessary to make sense of genomic data.

1.3 A mixed approach for genome sequencing

All the NGS machines available have their advantages and disadvantages in terms of total throughput, average read length and running costs. As mentioned before, for *de novo* genome assembly read length plays a pivotal role. This made 454 the ideal instrument for this task, even if its running cost are much higher than those of the competitors.

It should be mentioned that with the information content of mate-paired reads, even Illumina and SOLiD could be competitive because of the higher coverage produced and the much smaller cost per base pair.

I thus propose to combine the benefits of the two platforms both in term of assembly accuracy (the SOLiD being more robust with homopolymeric stretches and SNP detection, the 454 providing longer reads) and in terms of sequencing costs. There is currently a lack of bioinformatic tools able to handle short reads for genome assembly, scaffolding and gap closure.

The aim of this thesis if to fill this gap, designing and implementing novel software tools to assist the whole process.

	Roche 454			AB SOLID		
	Throughput	Read Length	\$ 1X cost	Throughput	Read Length	\$ 1X cost
2008	500 Mb/run	350 bp	1,500 \$	30 Gb/run	50+50bp	30 \$
2010	1 Gb/run	600 bp	800 \$	100 Gb/run	65+65bp	5\$

Figure 9

Comparison of sequencing costs and output for the two platforms tested in this thesis. The cost for 1X refers to the cost to sequence 35 Mbp, the estimated genome size for the case study of this project, *Nannochloropsis gaditana*. Sequencing technology evolves at a fast rate, thus here I report data available at the begin of the project (2008) and data referred to last data produced for the project (2011).

A low coverage 454 genome shotgun is cost effective in producing a set of contigs that with a mate-paired library sequenced with the SOLiD could became a good quality draft of the genome (Figure 9).

A whole-454 approach is feasible, broadly adopted yet expensive, while a whole-SOLiD approach, despite inexpensive, requires a much more complex bioinformatic analysis and has a computational demand achievable by an *élite* of groups.

Figure 10

Schematic overview of a mixed approach using Roche 454 shotgun reads to generate a set of contigs (using the software provided by Roche, Newbler), and then one or more long matepaired libraries sequenced with the SOLiD System used for scaffolding (when the two mates align on different contigs), contig validation and gap closure.

The proposed approach involves a low-coverage 454 sequencing, using a shotgun approach, combined with sequencing of SOLiD mate-paired libraries (Figure 10).

454 reads are assembled with an overlap-based program (I choose Newbler that is supplied with the instrument). A low coverage leaves several non-sampled regions, thus breaking the assembly in many positions and producing a large amount of contigs.

The SOLiD mate-paired reads (that are strand specific coming from the same strand of the DNA insert) are aligned against Newbler contigs and then the alignment file for both pairs are combined together. There are three possible alignment results, as summarized in Figure 11.

Figure 11

SOLiD mate-paired reads aligned against a set of contigs (*gray*). There are three main categories arising from pairing of alignments that are more suitable for different applications.

When both mates align uniquely within the same contig they can be used to confirm the contig itself, as long as their match is in the same strand and their distance plausible with the library insert size.

1.4 *N. gaditana* genome project

Our group, in collaboration with the Photosynthesis Group headed by Prof. G. M. Giacometti, decided to sequence the genome of the microalga *Nannochloropsis gaditana* because of its interesting biotechnological potential in biofuel production and because it belongs to a poorly known genus that has an intriguing phylogeny, since it was originated after two endosymbiotic events[15, 16].

Nannochloropsis genus is composed by six species of microalgae (their diameter being less than 5µm). The majority of these species populates marine environments, but fresh water species are also found. Their morphology, either with light or electron microscopy, is not peculiar and their classification is mostly performed via rbcL (that encodes the large subunit of the RuBisCO enzyme) and 18S gene sequencing[17].

Figure 12

Schematic representation of a typical *Nannochloropsis* cell.

The single chloroplast (P) accounts for a large fraction of overall cellular volume, and it is included with the nucleous (N) in a membrane.

A mitochondrion (*M*) is shown.

Nannochloropsis, when exposed to stressing environments as nitrogendeprived media, is able to store solar energy into lipid droplets. These lipid droplets were found to mainly contain triacylglycerols[18], which are the molecules of choice for the production of biodiesel. Even if this behavior is common among other algae, *Nannochloropsis* has been reported to store in lipids the impressive amount of 70% of the overall dry mass[19].

The genome size of *Nannochloropsis* sp. was estimated to be between 30 and 40 Mbp[20], and as we wanted to test the feasibility of the mixed

approach previously described with a relatively small eukaryotic genome, *N. gaditana* appeared to be an excellent choice.

One of the goals of the sequencing project was the production of a good annotation of *Nannochloropsis* in order to identify the set of genes involved in lipid synthesis and accumulation. Moreover there was a great interest on the genes differentially expressed in conditions that led to lipid synthesis comparing to the normal growth conditions. Therefore, to describe the pathways involved in stress sensing and in lipids biosynthesis, RNA-Seq experiments were also conducted.

1.4.1 N. gaditana samples for DNA and RNA-Seq

Dr. Elisa Corteggiani Carpinelli prepared both gDNA and mRNAs for the project, preparing cultures with both standard medium and nitrogendeprived medium. During growth, cultures were tested for the presence of neutral lipids by staining with the fluorescent dye Nile Red and measuring the average signal per cell by fluorometry.

Lipids accumulation (detected via Nile Red staining) and culture density (OD₇₅₀) of *N. gaditana* grown in complete medium (*dark brown*) and nitrogen depleted medium (*pink*). Nitrogen depletion slightly affects cell growth (*dots*), but greatly enhance lipids accumulation (*boxes*) [16].

Stressed cells were also observed with a confocal microscope (Figure 14), after staining with Nile Red. Observation showed evident lipid droplets in the stressed cells that were absent in the control.

Figure 14

Confocal microscopy of *N. gaditana* cells grown in nitrogen deficient medium, from Dr. Corteggiani Carpinelli's Ph. D. thesis [16]. Nile red stains lipids (*yellow*) and lipid bodies are clearly present in many cells, while they are not visible in control cultures (data not shown). Chloroplast autofluorescence was also recorded (*red*).

2 Material and Methods

2.1 Biological sample preparation

Cell cultures and subsequent genomic DNA, total RNA and mRNA isolation and mate-paired libraries were performed by Dr. Elisa Corteggiani Carpinelli and described in detail in her Ph. D. thesis[16].

GDNA SEQUENCING: SOLiD v.3+ (December 2009) sequencing was performed in our group by the sequencing core (Dr. M. D'Angelo, Dr. R. Zimbello and Dr. R. Schiavon).

A full run of 454 Titanium was performed in November 2009 by BMR Genomics srl (Italy), while an additional half plate of 454 XL+ was performed on October 2011 by the Ramaciotti Center at the University of New South Wales (Australia).

RNA-SEQ: cells cultured with standard medium and with nitrogen-deprived medium[16] were collected for transcriptome analysis. mRNA was prepared both via polyA+ enrichment and rRNA subtraction (the former for higher performance, the latter to enable plastidial mRNAs sequencing).

A BAC LIBRARY with an average insert size of 120 kbp was prepared by "Bio S&T" (Canada).

2.2 Hardware and OS

One of the aims of this project was to enable genome assembly on commonly available workstations and using when possible Free and Open Source Software (FOSS). When not otherwise stated the development and testing of software packages was performed on a workstation manufactured on 2009: Intel Core 2 Quad Q9300 (2.5GHz, 6MB cache) with 8 GB RAM running GNU/Linux (Ubuntu 8.04 LTS later updated to 10.04).

For Newbler assembly a DELL server with 72GB RAM was used (running Debian Etch).

For Velvet assembly with large datasets an HP server with 8 processors and 2 TB RAM was used (running CentOS 6.2). This server is part of the CRIBI

HPC cluster and tasks have to be submitted via a job scheduler (OpenPBS) installed into a "masternode" server.

2.3 Interpreters and web servers

All the scripts and packages coded for this project are cross-platform and
have been tested both in GNU/Linux and Mac OS X. Version used of the
interpreter for these languages are reported below.Relational database:MySQL (5.1.44 on Mac, 5.1.49 on Ubuntu)Scripting languages:Perl v5.10 (5.10.0 on Mac, 5.10.1 on Ubuntu)PHP (5.3.2 on Mac, 5.3.3 on Ubuntu)Web server:Apache 2.0.63 on Mac, Lighttpd 1.4.26 on Ubuntu

2.4 Bioinformatic packages

2.4.1 PASS v.1.65 and PASS-Pair

PASS is a multithreaded program for short reads alignment, with native color space implementation. It was used with a minimum identity of 90%, seed word pattern "-p 1111100111111" (as a SNP results in two mismatches in color space)[21]. Trimming was automatically optimized by PASS to maximize alignment. Prior to alignment reads were converted to FASTQ[22] format with the "csfasta_to_fastq" program provided with the suite.

Alignments were stored both in GFF format and in SAM format (as the latter was introduced later and most tool written for this project were adapted for SAM format just in a second time).

PASS-Pair is a tool of the suite that combines alignment results from both the "forward" and "reverse" of a paired end or mate-paired library. It produces several output files according to the alignment results, in particular for this project:

- UNIQUE_PAIR Both reads align uniquely within the same reference sequence ("internal pairs" in this report) with the correct mutual orientation and distance.
- UNIQUE_PAIR_OUT Both contig align uniquely, but in two distinct reference sequences ("**bridge pairs**" in this report).

These two files are in the same format alignment format provided (GFF or SAM) and the pairing information is stored in the order: each odd line is paired with the subsequent even line.

2.4.2 Newbler 2.5.3 (January 2011)

Software package for *de novo* DNA sequence assembly developed and distributed with a commercial license by 454 Life Sciences (Roche)[23]. Newbler uses an overlap detection approach.

2.4.3 Velvet 1.2.01

Software package developed by Daniel Zerbino that uses De Brujin graph to perform *de novo* assembly with huge number of short reads[7, 8]. Not developed for color space, input has to be provided in «double encoded» format (*i*. e. translating each color {0, 1, 2, 3} to a letter {A, C, G, T} even if the translation is unrelated to the original base space).

2.4.4 Other packages used

ARTEMIS is a Java program to display and annotate DNA sequences[24]. Nucleotide tracks can be added to the sequence (the format required is an integer value per line, one line for each nucleotide of the reference).

BLAST was compiled from sources for x86_64 architectures and used with multithreading support, but not with the OpenMPI implementation[25].

CIRCOS, a program to produce circular maps, has been used for chloroplast and mitochondrion genome maps[26].

CGVIEW has been used for chloroplast and mitochondrion genome maps[27].

GRAPHVIZ (<u>http://www.graphviz.org</u>/) is open source graph visualization software interpreting the DOT language. It has been used for scaffold visual representation.

PRIMER3 is a command-line program for primer design[28, 29].

SAMTOOLS were used for SAM to BAM conversion, sorting and indexing[30].

SOPRA is a scaffolding program based on paired reads. It has been tested with default parameters on *N. gaditana* data[31].

2.5 Custom tools: technical specifications

Programs written for this thesis are explained in the "Results and Discussion" chapter, technical details about them are reported below.

2.5.1 SOLiD mate-paired reads analysis

Alignments of SOLiD reads (encoded in color space[32]) were performed with the PASS and then paired with PASS-Pair (§ 2.4.1). Internal pair and bridge pair files were converted to a more compact format using, respectively, uniquepair-compact.pl and upo-compact.pl.

The compact files store in one line the name of the matching reference and starting and ending position of both mates, their size is usually ~10% of the original and being a one-line format they can be easily sorted without loosing pairing information.

A. UNIQUE_PAIR COMPACT: FILE FORMAT SPECIFICATION

The GFF input from PASS-Pair is a set of lines providing alignment information in GFF format, having each line followed by the alignmet of the other pair. An example:

contig00015passmatch294222945332-.[_]ReadName_F3[_]Hits=1;contig00015passmatch324203245132-.[_]ReadName_R3[_]Hits=1;The output stores the contig, starting position of the first mate and endingposition of the second, as well as alignment strand:contig000152942232451-

B. UNIQUE_PAIR_OUT COMPACT: FILE FORMAT SPECIFICATION

Similarly for what happens for the "internal pairs" file, the "bridge pair" is a GFF with paired lines:

contig00015 pass match 29422 29453 32 [...]ReadName_F3[...]Hits=1; . contig00211 pass match 92 127 35 [...]ReadName_R3[...]Hits=1; The output keeps information about both alignment in one line, sorting alphabetically the two contigs so that all connection between two contigs can be easily found sorting the file. The above example is converted to: contiq00015 contig00211 +-29442 32 92 35

C. PIPELINE FROM RAW READS TO MYSQL DATABASE

Figure 15

SOLiD mate-paired reads processing pipeline. SOLiD reads (F3 and R3 are the tag for the two mates) are aligned against reference contigs using the PASS program and then paired with PASS-Pair.

Two files (UNIQUE_PAIR and UNIQUE_PAIR_OUT) are used to verify the absence of misassembles in reference contigs (with the ContigCheck tool) and to create a set of connections between contigs for scaffolding (pass_2_bridges tool).

The simplified files are then parsed to check the presence of misassembles and to create bridges with tools described later.

D. CONTIGCHECK SCRIPT

The script parses the "internal pairs" file (sorted compact version) and analyzes contig-by-contig the physical coverage of the mate-paired reads (in red in the picture below). Summing the physical coverage of all mates we obtain a global plot (Figure 16, right) that should be bell-shaped for consistent contigs otherwise it is reasonable that the contig was misassembled.

E. PASS2BRIDGES SCRIPT

The script parses the "bridge pairs" file (compact version) and for each pairs aligned increment a counter and associate several other information: direction of the connection (stored as four counters: one for each possibility and finally saving the most frequent) and the positions covered. The scripts also store the covered positions in the contig, because wrong connections can arise from small duplicated regions within a contig. Output format is a tabular file and a script loads bridges into the "bridges" table of user's MySQL database.

2.5.2 4NGS platform

The web-based repository was coded in PHP and MySQL. Two Perl scripts were coded to import into MySQL both information about **contigs** ("454contigs_2_sql.pl") and the "**bridge pairs**" produced by the "gff_2_bridges.pl" script ("bridges_2_sql.pl").

Database access parameters and navigation bar are stored in a configuration file. The interface uses CSS 2.0 style sheets.

2.5.3 Gap closure pipeline

A. CSX: A CUSTOM SORTED FILE FORMAT FOR SHORT READS

Color space reads are usually stored in MultiFASTA format, with the disadvantage of making it difficult to search for a particular read given its name. I introduced a custom file format that stores both name and sequence (and optionally the quality) in the same line, separating each field with a pipe character. The script that converts the original MultiFASTA file (csfasta_2_csx.pl) immediately sorts the produced one-lined file.

B. READS EXTRACTION

Alignment files (either in SAM or GFF format) are sorted by subject sequence name (contig name), then a script (gff_2_reads.pl) saves all reads matching on each contig into a separate file, converting it in double encoded format for Velvet assembly.

C. VELVET ASSEMBLY AND GAP-CLOSING CONTIG SELECTION

Using *k*-mer size of 31 and default parameters, all reads extracted for each contig of a scaffold are assembled together.

Velvet output (contigs) is aligned with BLAST against reference contigs (produced by Newbler with 454 shotgun). A script (blast_2_patch.pl) parses BLAST output in order to identify those newly assembled contigs matching two Newbler contigs (see Figure 30 on page 40 for a graphical representation). BLAST output allows identifying the missing region, and extracts it from the query.

2.5.4 RNA-Seq tracks and chloroplast map

Data from transcriptome sequencing was added to the 4NGS framework as strand specific coverage tracks. A pipeline converting alignment results to coverage tracks and saving the track in multiple formats has been written in Perl.

For organellar genomes, and chloroplast in particular, the output is a circular map produced with Circos (Figure 17); for the 4NGS pages bitmaps were produced using the GD module Perl; for visualization in Artemis, a simple-text track was saved in Artemis format.

Figure 17

Reads to RNA-Seq coverage track pipeline. Two *ad hoc* scripts were written to save an Artemis-compatible gene expression track, and to produce the input for Circos and CGView.

3 Results and Discussion

This section describes the sequencing data available for the project (454 shotgun, SOLiD MP libraries and BAC-ends), the bioinformatic programs developed for genome scaffolding and gap closure, and finally results obtained by the programs when applied to the sequencing data.

3.1 Sequencing data for the genome of *N. gaditana*

The mixed approach for genome assembly (see §1.3) requires a set of contigs generated by whole genome shotgun with the 454 by Roche, and a set of mate-paired libraries sequenced with the SOLiD by Applied Biosystems. The sequencing of a library of BAC ends was performed to validate the scaffolding procedure and to join separated scaffolds thus creating "superscaffolds".

3.1.1 454 whole genome shotgun and Newbler assembly

A. SEQUENCING

A first shotgun was performed on November 2009 using the Roche 454 Titanium. Raw output were 741,399 reads (accounting for a total 203 Mbp) with a median read length of 400 bp. A second run using (for a half-plate) latest upgrade (XL+) was performed on September 2011 producing 715,763 reads for a total 806 Mbp (median: 1,102 bp). Read length distribution of both is plotted on Figure 18.

It should be noted that the last sequencing run was performed on late 2011, thus several analysis are still incomplete unlike the Titanium dataset that has been extensively analyzed.

The importance of read length when dealing with *de novo* sequencing has been stressed in the introduction, and will be confirmed comparing assembly performance of the Newbler package with the two datasets analyzed independently.

Figure 18

Read length distribution of the 454 Titanum runs: standard kit (gray) was run in late 2009 while latest XL+ kit (*dark red*) was done in late 2011.

Assuming a genome size of 35 Mb we can calculate a sequence coverage of \sim 6X for the Titanium run, \sim 15X for the XL and \sim 21X for both.

For a bacterial genome a 10X coverage is barely sufficient to produce a good draft, but when dealing with longer eukaryotic genomes it is common to start with a higher sequence coverage[33] (the manual of a *de novo* assembler, ABySS[34], suggests starting from a 40X coverage).

B. NEWBLER ASSEMBLY

Reads were assembled with the Newbler package using default parameters for the two sequencing run (a full run using 454 Titanium kit and half a slide using 454 XL+) and combining the two input together. It should be noted that the deep difference in read-length distribution of the two run affects the assembly results. Better performances are registered with homogeneous input data. Results obtained for the three datasets are summarized in Table 1.

A popular indicator of assembly performance is the «**N50**» index, that indicates that half of the genome is included in contigs that are greater than the index itself[23].

Table 1

Newbler assembly results for the three 454 datasets. «Titanium-09»: reads produced by a full run using 454 Titanium in 2009. «XL-11»: reads produced sequencing half a slide with the XL+ kit. «Both» refers to the two sequencing data combined.

Dataset	Estimate	Contigs pr	oduced	N50	Total
	(Mbp)	(>500 bp)	(>100 bp)	(kbp)	(Mbp)
Titanium-09	48	10,246	12,045	4.6	28.4
XL-11	29	3,410	4,862	25.5	27.2
Both	273	7,035	10,271	31.4	32.1

A deeper insight to assembly performance is given by the contig size distribution (Figure 19): the first dataset could not produce any contig longer than 50 kbp (the two 50 kbp contigs are pieces of chloroplast, that being present in multiple copies per cell, has an impressive 200X coverage). Assembly of the reads produced with the XL kit gives (in *pink* in the chart) much better results.

Figure 19

Contig size distribution chart for the three datasets mentioned in Table 1.

C. ASSEMBLY ACCURACY

The CheckContig script, that verifies the physical coverage obtained with MPs, detected only three misassembled contigs (contig12452, contig09180, contig07916) on the Titanium-09 dataset (an example in Figure 20). The shortest MP library, spanning from 1.5 to 3.0 kpb, does not give the necessary resolution power for a dataset with a short average contig size (7,494 contigs are shorter than 1.0 kbp). A first survey on other datasets showed that there isn't any evidence of misassembly. However a deeper analysis has to be performed to confirm this evidence.

When I tested the scaffolding program with and without misassembly correction, it was evident that between the few wrong scaffolds, the majority was due to misassembled contigs given in input. Therefore, the future implementation of the program that creates "bridges" will also check the coverage of MP aligned prior to pass the information to ScaMP.

Figure 20

An example of contig misassembly in a contig of the Tit-09 dataset.

D. GENOME SIZE ESTIMATE

We expected a genome size for *Nannochloropsis* raging from 30 to 40 Mbp[20]. Newbler gives an estimate of each assembly, reported in Table 1, which is however affected by the presence of high-coverage plastidial contigs. The remarkable difference emerging when combining the two

datasets, resulting in a completely wrong estimate of almost 300 Mbp, seems to be an artifact due to the deep difference between the two datasets.

3.1.2 SOLiD mate-paired libraries

Two mate-paired libraries were prepared: one with an insert size range of 1.5-3.0 kbp and a second with an insert size range of 3.0-5.0 kbp. Both libraries were sequenced in a SOLiD v.3+ slide divided in four lanes (the two lane model was not produced). This produced four data sets whose size and sequence coverage is reported below.

Table 2

Reads produced sequencing two mate-paired libraries

Mate Paired Set	Number of reads	Data produced	Coverage
1.5-3.0kbp_A	74.749.807	7.47 Gbp	213X
1.5-3.0kbp_A	69.418.621	6.94 Gbp	198X
3.0-5.0kbp_B	68.334.726	6.83 Gbp	195X
3.0-5.0kbp_B	78.164.673	7.82 Gbp	223X

Average quality was 17.5 for the first color and decreases to 12.0 for the last position (50th).

As part of the scaffolding pipeline the mate-paired reads were aligned with PASS (alignment statistics are reported in Table 6 on page 68) against reference contigs, and then the alignments of the two mates were paired using the Pass_pair tool.

The "internal pairs" can be used to have a downstream estimate of libraries insert size. Both libraries appears to be slightly shifted towards lower values, but while the short library has 99% of pairs within declared boundaries, the larger only 60%, appearing to be a 2.0–4.0 kbp (Figure 21).

Figure 21

Distribution of MP libraries insert size as appearing on alignment against reference contigs (XL-11 dataset). 1.5–3.0 kbp library (*top*) and 3.0–5.0 kbp library (*bottom*).

3.1.3 BAC-ends

The genome of *Nannochloropsis* is being used in my research group also to test a novel method of physical mapping. A first step of that project required the production of a BAC library (having the average insert size of 120 kbp), thus we decided to have a 7 96-well plates of BAC ends sequenced with traditional Sanger method accounting for a total 665 BAC-end pairs. 76 sequences failed during sequencing thus reducing the number of valid pairs to 393, accounting for a total 1.3 X physical coverage.

3.2 New bioinformatics tools

Aim of my project was the design and implementation of bioinformatic tools for genome scaffolding and finishing to assist the mixed approach described in §1.3. In this section I describe these programs while I remand to §3.3 for their performance on *N. gaditana* genome assembly.

3.2.1 4NGS: a user-friendly data repository

A first necessity arisen from this project was a repository to store data from genome and transcriptome sequencing. It's a common habit to set up a genomic browser at the end of a genome project, but what we were lacking was a tool to share (with co-workers) genomic data as it was produced, to enable cooperation and immediate access on that data.

The platform is conceived with contig-centric model (screenshot in Figure 22), showing for each contig its connection with others, the physical coverage track, RNA-Seq tracks and basic information about the contig itself (size and sequence coverage).

The interface allows for manual scaffolding following the links between on contig end and the other, thus integrates a system for manual scaffold annotation. After data production we decided to perform some manual scaffolding in order to verify its feasibility (*i.e.* that the low 454 coverage was enough).

BLAST, a query system to select contigs and a primer-design tool for scaffolding verification via PCR were also integrated. The "scaffolds" section allow for scaffold structure visualization, editing and manual annotation.

Beside this front-end, 4ngs database has two tables, «contigs» and «bridges», that are used by the scaffolding program I wrote to make scaffolds.

-	🛨 🍯 http://www.4p		contig02904 - My Happy	y Contig [beta]	T Coogle	
	Contigs Scaffolds	BAC-end	s Primers BLAST	Bridge set1	Titanium-09	
contig	02904 60	uno-onu		bildge_seti	- Trtainum-09	
Co	ntia info ^{beta}	con	tia02904			
Longet	6 607 hr					
Reads	126		Y 🛕 🔒			
Cover	age 7X		۲		Loss and Myn. A	A ath an
Scaffo	old 4 <u>98A</u> ►		Phy			
S e	dit contig					
					1	_
				-29	contig08604	
				5.945	2.1 kh - 10X	
				2:	2.1 KD - 10A	
	contig00113	<u>\ 10</u> ,	741 contig02904		1	
	4746 08	\rangle			× .	
	4.7 KD - 9X	/	6.7 KD - 7X			
	/			13	main 076 474	
			, ,	1,240 co	ntig076474	
			,	1,249 00	ntig076474 D.8 kb - 7X	\rangle
			,	1,249 00	ontig076474 0.8 kb - 7X	\rangle
			,	1,249 00	ontig076474 0.8 kb - 7X	\rangle
			,	1,249 00	ontig076474 0.8 kb - 7X	\rangle
	/		,	1,249 00	ontig076474 D.8 kb - 7X	\rangle
	/		,	1,249 00	ntig076474 D.8 kb - 7X	\rangle
	/		,	1,249 00	ontig076474 0.8 kb - 7X	\rangle
			,	1,249 00	ontig076474 0.8 kb - 7X	\rangle
Lib C	Contig1	End1	End2 Contig2	1,249 co	ntig076474 0.8 kb - 7X #arcs	>
Lib (2 <mark>c</mark>	Contig1 contig02904 (6.7 kb/7X)	End1	End2 Contig2 3 <u>contig00113</u> (4.7 kl	1,249 co Accuracy b/9X) 100%	ntig076474 0.8 kb - 7X 7 #arcs 7827	
Lib (2 [<u>c</u> 2 <u>c</u>	Contig1 Contig02904 (6.7 kb/7X) Contig02904 (6.7 kb/7X)	End 1	End2 Contig2 3 <u>contig00113</u> (4.7 kl 3 <u>contig08604</u> (2.1 kl	Accuracy b/9X) 100% b/10X) 100%	ntig076474 3.8 kb - 7X #arcs 7827 5341	
Lib C 2 <u>c</u> 2 <u>c</u> 1 <u>c</u>	Contig1 contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X)	End1	End2 Contig2 3 <u>contig00113</u> (4.7 kl 3 <u>contig08604</u> (2.1 kl 3 <u>contig00113</u> (4.7 kl	Accuracy b/9X) 100% b/10X) 100% b/10X) 99%	ntig076474 .8 kb - 7X #arcs 7827 5341 2914	>
Lib C 2 <u>c</u> 2 <u>c</u> 1 <u>c</u> 2 <u>c</u>	contig1 iontig02904 (6.7 kb/7X) iontig02904 (6.7 kb/7X) iontig02904 (6.7 kb/7X) iontig02904 (6.7 kb/7X)	End 1	End2 Contig2 3 <u>contig00113</u> (4.7 kl 3 <u>contig08604</u> (2.1 kl 3 <u>contig086013</u> (4.7 kl 5 <u>contig07674</u> (0.8 kl	Accuracy b/9X) 100% b/10X) 100% b/9X) 99% b/7X) 100%	ntig076474 0.8 kb - 7X #arcs 7827 5341 2914 640	
Lib C 2 <u>c</u> 2 <u>c</u> 1 <u>c</u> 2 <u>c</u> 1 <u>c</u>	Contig1 iontig02904 (6.7 kb/7X) iontig02904 (6.7 kb/7X) iontig02904 (6.7 kb/7X) iontig02904 (6.7 kb/7X) iontig02904 (6.7 kb/7X)	End1 5 3 5 3	End2 Contig2 3 <u>contig00113</u> (4.7 kl 3 <u>contig08604</u> (2.1 kl 3 <u>contig00113</u> (4.7 kl 5 <u>contig07674</u> (0.8 kl 5 <u>contig07674</u> (0.8 kl	Accuracy b/9X) 100% b/10X) 100% b/7X) 100% b/7X) 100%	ntig076474 0.8 kb - 7X #arcs 7827 5341 2914 640 609	>
Lib C 2 <u>c</u> 2 <u>c</u> 1 <u>c</u> 1 <u>c</u> 1 <u>c</u> 1 <u>c</u>	Contig1 contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X)	End1	End2 Contig2 3 contig00113 (4.7 kl 3 contig08604 (2.1 kl 3 contig07674 (0.8 kl 5 contig07674 (0.8 kl 3 contig07674 (0.8 kl 4 contig08604 (2.1 kl	Accuracy b/9X) 100% b/10X) 100% b/9X) 99% b/7X) 100% b/7X) 100% b/7X) 100% b/10X) 99%	ntig076474 0.8 kb - 7X 7827 5341 2914 640 609 588	>
Lib C 2 c 2 c 1 c 1 c 1 c 2 c 2 c 2 c 1 c 2	Contig1 Contig02904 (6.7 kb/7X) Contig02904 (6.7 kb/7X) Contig02904 (6.7 kb/7X) Contig02904 (6.7 kb/7X) Contig02904 (6.7 kb/7X) Contig02904 (6.7 kb/7X)	End1 5 3 3 3 3 3 3 3	End2 Contig2 3 contig00113 (4.7 kl 3 contig08604 (2.1 kl 5 contig07674 (0.8 kl 5 contig07674 (0.8 kl 5 contig07674 (0.8 kl 3 contig03532 (2.1 kl	Accuracy b/9X) 100% b/10X) 100% b/9X) 99% b/7X) 100% b/7X) 100% b/10X) 99% b/7X) 100% b/10X) 99% b/10X) 99% b/9X) 100%	mtig076474 0.8 kb - 7X ////////////////////////////////////	>
Lib C 2 <u>c</u> 2 <u>c</u> 1 <u>c</u> 1 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u>	Contig1 iontig02904 (6.7 kb/7X) iontig02904 (6.7 kb/7X)	End1 5 3 3 3 3 3 5	End2 Contig2 3 <u>contig00113</u> (4.7 kl 3 <u>contig08604</u> (2.1 kl 3 <u>contig07674</u> (0.8 kl 5 <u>contig07674</u> (0.8 kl 4 <u>contig08604</u> (2.1 kl 5 <u>contig08504</u> (2.1 kl 5 <u>contig09784</u> (56.9)	Accuracy b/9X) 100% b/10X) 100% b/10X) 100% b/7X) 100% b/7X) 100% b/10X) 9% b/10X) 100% b/10X) 9% b/10X) 9% b/9X) 100% b/9X) 100% b/9X) 100%	mtig076474 0.8 kb - 7X #arcs 7827 5341 2914 640 609 588 71 38	>
Lib C 2 <u>c</u> 2 <u>c</u> 1 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 1 <u>c</u> 2 <u>c</u> 2 <u>c</u> 1 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u>	Contig1 contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X)	End1 5 3 5 3 3 3 3 5 5 5	End2 Contig2 3 contig00113 (4.7 kl 3 contig08604 (2.1 kl 3 contig07674 (0.8 kl 5 contig07674 (0.8 kl 3 contig07674 (0.8 kl 3 contig07674 (0.8 kl 3 contig07674 (0.8 kl 4 contig07674 (0.8 kl 5 contig07674 (0.8 kl 4 contig07674 (0.8 kl 5 contig07674 (0.8 kl 6 contig07674 (0.8 kl 6 contig07674 (0.8 kl 6 contig07674 (0.8 kl 6 contig0764 (56.9 l 6 contig00001 (47.8 kl)	Accuracy b/9X) 100% b/10X) 100% b/9X) 99% b/7X) 100% b/7X) 100% b/7X) 100% b/10X) 99% b/2X) 100% b/10X) 99% b/2X) 100% b/2X) 100% b/2X) 100% b/2X) 100%	mtig076474 0.8 kb - 7X 7827 5341 2914 640 609 588 71 38 33	
Lib C 2 <u>c</u> 2 <u>c</u> 1 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u>	Contig1 contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X)	End 1 5 3 5 3 3 3 3 5 5 5 5 5	End2 Contig2 3 contig00113 (4.7 kl 3 contig0013 (4.7 kl 3 contig0013 (4.7 kl 5 contig0013 (4.7 kl 5 contig07674 (0.8 kl 5 contig07674 (0.8 kl 6 contig076	Accuracy b/9x) 100% b/10x) 100% b/7x) 100% b/7x) 100% b/7x) 100% b/10x) 9% b/10x) 9% b/10x) 9% b/10x) 9% b/9x) 100% kb/216x) 42% kb/222x) 10% b/8x) 100%	#arcs #arcs 7827 5341 2914 640 609 588 71 38 33 32	>
Lib C 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 1 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u>	Contig1 iontig02904 (6.7 kb/7X) iontig02904 (6.7 kb/7X)	End1 5 3 3 3 3 3 3 5 5 5 5 5 5	End2 Contig2 3 contig00113 (4.7 kl 3 contig08604 (2.1 kl 4 contig07674 (0.8 kl 5 contig07674 (0.8 kl 6 contig08604 (2.1 kl 5 contig07674 (0.8 kl 6 contig08504 (2.1 kl 5 contig09784 (5.6 l) 6 contig09784 (5.6 l) 7 contig09784 (5.6 l) 6 contig09784 (5.4 l)	Accuracy b/9X) 100% b/10X) 100% b/10X) 100% b/7X) 100% b/7X) 100% b/9X) 100% b/10X) 9% b/10X) 9% b/2X) 100%	#arcs 7827 5341 2914 640 609 588 71 38 33 32 32	
Lib C 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u> 2 <u>c</u>	Contig 1 contig02904 (6.7 kb/7X) contig02904 (6.7 kb/7X)	End1 5 3 5 3 3 3 3 5 5 5 5 5 5 5 5 3	End2 Contig2 3 contig00113 (4.7 kl 3 contig08604 (2.1 kl 3 contig07674 (0.8 kl 5 contig07674 (0.8 kl 4 contig07674 (0.8 kl 5 contig0764 (2.1 kl 3 contig0764 (56.9 l 5 contig00784 (56.9 l 5 contig00001 (47.8 kl 5 contig00001 (47.8 kl 5 contig00352 (4.4 kl 5 contig00784 (56.9 l 3 contig00784 (56.9 l 4 contig0784 (56.9 l) l 4 contig0784 (56.9 l) l 4 co	Accuracy b/9X) 100% b/10X) 100% b/10X) 100% b/7X) 100% b/7X) 100% b/10X) 99% b/2X) 100% b/10X) 99% b/2X) 100% b/10X) 99% b/9X) 100% b/2E(2EX) 100% b/8X) 100% b/8X) 100% b/30X) 46%	mtig076474 0.8 kb - 7X ************************************	
Lib C 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2	Contig 1 Contig 02904 (6.7 kb/7X) contig 02904 (6.7 kb/7X)	End1 5 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5	End2 Contig2 3 contig00113 (4.7 kl 3 contig00013 (4.7 kl 3 contig00604 (2.1 kl 5 contig07674 (0.8 kl 5 contig07674 (0.8 kl 6 contig07674 (0.8 kl 6 contig03532 (2.1 kl 5 contig03532 (2.1 kl 5 contig03532 (4.7 kl 5 contig03532 (4.7 kl 5 contig0784 (56.9 l 6 contig0784 (56.9 l	Accuracy b/9X) 100% b/9X) 100% b/10X) 100% b/7X) 100% b/7X) 100% b/7X) 100% b/7X) 100% b/7X) 100% b/10X) 99% b/7X) 100% b/10X) 99% b/9X) 100% kb/216X) 42% b/8X) 100% b/8X) 100% b/8X) 100% b/231X) 46%	mtig076474 0.8 kb - 7X ************************************	

Figure 22

Screenshot of a contig page from 4NGS. The complete list of bridges is presented in a table at the bottom, while high-connection bridges are summarized in the scheme in the middle.

3.2.2 ScaMP: a tool for automatic scaffolding

I developed a program called ScaMP and a pipeline for automatic scaffolding based on it. The core program starting from a seed contig ("seed") and crawling to a specified direction, and a pipeline extend the procedure genome-wide.

Figure 23 ScaMP (Scaffolding with Mate-Pairs), program logo

A. INPUT PREPARATION: CONTIGS AND BRIDGES IN A MYSQL TABLE

Data for scaffolding are stored into a MySQL database (to increase speed and reduce memory usage) composed by two main tables: contigs and bridges. The former contains name, length, coverage of all contigs produced by Newbler and is populated by a Perl script that parses the MultiFASTA output of Newbler. The latter is populated by a script that parses the compact version of UNIQUE_PAIR_OUT (containing "bridge pairs") file from Pass. Each pair alignment between two distinct contigs is counted, recording the direction of the alignment. For each "bridge" the program saves the amount of alignment that confirm that connection, the direction of the alignment (in terms of contigs extremities connected: "5-3" means that the 5′ end of the first contig is connected to the 3′ end of the other) and the consistency of alignments (all mate-pairs should connect the two contigs with the same orientation, the program saves the percentage of the prevalent orientation).

B. RECURSIVE SCAFFOLDING FROM A "SEED" CONTIG

The main program of ScaMP starts scaffolding from a given contig (called "seed") using extension algorithm accesses the MySQL database previously populated, and continues extension as long as possible.

A simplified scheme of the core function is shown in Figure 24: retrieving all connections from a contig to the desired direction (*i. e.* 5' or 3') and selecting a proper contig to continue.

Figure 24

Scheme of the basic functioning of ScaMP. Extension continues only if all possible paths (after discarding less plausible connections) converge. If this happens, the core function "extend" is called with the new contig found and the new extension direction. Some connections are discarded *a priori* either because of a much too high coverage, or because of a low consistency of direction (reliable connections have it \geq 98%).

The list of "bridges" is a priori filtered discarding connections with few arcs (a suggested threshold is contig specific and expressed as $t = \frac{1}{10} \cdot T$, where T

is the highest number of mates composing a connection from the contig of interest) and/or with a low direction concordance (suggested setting: \geq 97%). After this filter if there is only one possible connection the program proceeds, if more than one connection are still present the program extends recursively all possibilities, and if they collapse within *n* recursion steps (suggested *n* = 5, maximum *n* = 8) the programs tries solving the path if possible and proceeds. Figure 25 displays two exemplification schemes of: a completely solved paths (example on the top); a small "bubble" (on the bottom), that is a set of contigs whose mutual position cannot be solved due to missing connections.

Figure 25

A double example of extension by ScaMP. Connections starting from "contigA" are shown, and the one pointing to "contigE" is discarded *a priori*. In the first example let's consider all the connection shown in the left panel: it is possible to unravel the nodes and to determine the correct order of contigs (right panel, top), but if we suppose not having the connection from "contigD" to "contigC" (dashed line) we obtain a "bubble", meaning that we can't know it "contigB" precedes or succeeds "contigD". ScaMP takes the longest and ignore the other (in the example, "contigB").

The program stops the extension when there are no more arcs, when the different paths starting from the last contig do not collapse together or when it finds ahead a high coverage contig (coverage threshold is user defined, and usually it's safe to set it in terms of average contig coverage, C_{avg} , and its standard deviation σ : $C_{max} = C_{avg} + 4 \cdot \sigma$).

C. WHOLE GENOME SCAFFOLDING

A pipeline for whole genome scaffolding has been implemented in BaSH/Perl. A query to the "contigs" table retrieve a list of good seeding contigs (meaning that the coverage is between $C_{avg} - 2 \cdot \sigma$ and $C_{avg} - 2 \cdot \sigma$) and with a minimum length, if desired. All the seeding contigs are extended as described above: keeping track of contigs added by the scaffolding process

and removing them from the seeds list, if they were already included in a scaffold.

This generate a set of scaffolds that can still overlap, thus a Perl script performs a polishing process.

All data about scaffold is added to the MySQL database.

Whole genome scaffolding pipeline.

3.2.3 BAC-Validate: scaffold validation and super-scaffolding

BAC ends sequences are a valuable tool for scaffold validation and to connect adjacent scaffolds. The intimate logic of BAC ends is exactly the same as for mate-paired reads, but with consistent technical difference. BAC ends falls on opposite strands, while the two mate-paired reads are sequenced in the same strand, but much more important is the insert size that for BAC ends exceeds 100 kbp, allowing for resolution of virtually all sorts of repeats.

A fully automated pipeline, integrated into the 4NGS platform, processes the chromatograms and extracts the sequence, that is aligned against reference chromosomes using BLAST and if a single match is found the program associates the contig and its scaffold to the sequence.

Figure 27

BAC-ends sequence analysis workflow. See Figure 34 for a review on the relationship between BAC-ends aligment and scaffold integrity.

Each pair is classified based on BLAST result: "unknown" if one of both sequences failed or their alignment gave no match or multiple matches,

"confirmed" if both forward and reverse sequence align within the same scaffold, and "distinct pairs" if the two sequences aligned against different scaffolds (Figure 27).

BAC-ends falling in the latter class could either join two different scaffolds or be a hint of a misscaffolding: thus are loaded into a section of the 4NGS platform for manual review, consisting in browsing from the contig matching with the forward sequence to the reverse sequence best hit. When this is possible the two scaffolds are joined together, but sometimes there is a lack of coverage (*i*. e. there are no more connection in the desired direction) leading to the creation of a super-scaffold: it is known that the two scaffold should be joined together but it's not possible to verify this via mate-paired reads.

The platform ranks connections to be verified counting the number of independent and provide a graphical representation of the physical coverage of scaffolds: lack of coverage in the middle of a scaffold could suggest a possible misassembly (even if it should be noted that the number of BAC-ends sequenced is too low, accounting for a 1X physical coverage).

3.2.4 Manual finishing assistant

A scaffold is a set of contigs and gaps. To solve a gap and join the adjacent contigs it is possible to design a specific PCR and having it sequenced (a single step strategy is possible whenever the gap is smaller than the sequencing capacity of the Sanger sequencing. This condition is rarely verified when the sequence coverage is high enough).

I implemented in the 4NGS repository a tool for primer design with an Ajax interface. The user inputs the starting contig and receives a set of suggestions based on the "bridges" table (mate-paired reads). Once that starting and ending contigs, an their mutual orientation, are chosen the program invokes Primer3, retrieve a set of primer couples and aligns them with BLAST against the contigs. The user can finally add the desired primer pair into a wish list for cumulative orders.

A screenshot of the primer design results is shown in Figure 28.

	Primer picker	
 + 👪 http://www 	v.4ngs.com/alga/inc/primers.php	C Q- Google
lome Contigs Scaffolds S	Selector Editor Blast BAC ends	PickPrimers
Primer nicker inte	rface	
Timer pieker inte	liace	
From contig: contig00123C	To contig: contig00124C	Generate primers
Min amplicon size: 250	Min T _A : 52	Ideal primer size: 24
Max amplicon size: 400	Max T _A : 62	Debug mode
Primers for contig	00123C to contig001	24 <u>C</u>
PRIMER PAIR O		
PRIMER LEFT SEQUENCE	GCTTCCGAAAGGTTGCCCGGTTTA	
PRIMER RIGHT SEQUENCE	GATTCCCTCGATTGCGCTACGgTG ((2 hits)
PRIMER LEFT TM	59.942	
PRIMER RIGHT TM	60.004	
PRIMER PAIR PRODUCT SIZE	331	
Primers with list	Add primers	
PRIMER PAIR 1		
PRIMER PAIR 1 PRIMER LEFT SEQUENCE	GCTTCCGAAAGGTTGCCCGGTTTA	(<u>2 hits</u>)
PRIMER PAIR 1 PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGGAGAGCAGGTGTTCGATTT	(<u>2 hits)</u> (<u>18 hits</u>)
PRIMER PAIR 1 PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE PRIMER LEFT TM	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGAGAGCAGGTGTTCGATTT 59.942	(<u>2 hits)</u> (<u>18 hits</u>)
PRIMER PAIR 1 PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE PRIMER LEFT TM PRIMER RIGHT TM	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGAGAGCAGGTGTTCGATTT 59.942 59.875	(<u>2 hits)</u> (<u>18 hits</u>)
PRIMER PAIR 1 PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE PRIMER LEFT TM PRIMER RIGHT TM PRIMER PAIR PRODUCT SIZE	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGAGAGCAGGTGTTCGATTT 59.942 59.875 280	(<u>2 hits</u>) (<u>18 hits</u>)
PRIMER PAIR 1 PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE PRIMER LEFT TM PRIMER RIGHT TM PRIMER PAIR PRODUCT SIZE Primers with list	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGGAGAGCAGGTGTTCGATTT 59.942 59.875 280 Add primers	(<u>2 hits</u>) (<u>18 hits</u>)
PRIMER PAIR 1 PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE PRIMER LEFT TM PRIMER RIGHT TM PRIMER PAIR PRODUCT SIZE Primers with list PRIMER PAIR 2	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGGAGAGCAGGTGTTCGATTT 59.942 59.875 280 Add primers	(<u>2 hits</u>) (<u>18 hits</u>)
PRIMER LEFT SEQUENCE PRIMER LEFT TM PRIMER RIGHT SEQUENCE PRIMER RIGHT TM PRIMER RIGHT TM PRIMER PAIR PRODUCT SIZE Primers with list PRIMER LEFT SEQUENCE	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGAGAGCAGGTGTTCGATTT 59.942 59.875 280 Add primers GCTTCCGAAAGGTTGCCCGGTTTA	(2 hits) (18 hits) (2 hits)
PRIMER LEFT SEQUENCE PRIMER LEFT TM PRIMER RIGHT TM PRIMER RIGHT TM PRIMER PAIR PRODUCT SIZE Primers with list PRIMER PAIR 2 PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGAGAGCAGGTGTTCGATTT 59.942 59.875 280 Add primers GCTTCCGAAAGGTTGCCCGGTTTA CGCTACGgTGTGCACCAATACAA ((2 hits) (18 hits) (2 hits) 2 hits)
PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE PRIMER RIGHT TM PRIMER RIGHT TM PRIMER PAIR PRODUCT SIZE PRIMER PAIR PRODUCT SIZE PRIMER LEFT SEQUENCE PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE PRIMER LEFT TM	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGAGAGCAGGTGTTCGATTT 59.942 59.875 280 Add primers GCTTCCGAAAGGTTGCCCGGTTTA CGCTACCggTGTGCcACCAATACAA (59.942	(2 hits) (18 hits) (2 hits) 2 hits)
PRIMER LEFT TM PRIMER LEFT TM PRIMER RIGHT SEQUENCE PRIMER RIGHT TM PRIMER RIGHT TM PRIMER PAIR PRODUCT SIZE Primers with list PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE PRIMER LEFT TM PRIMER RIGHT TM	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGAGAGCAGGTGTTCGATTT 59.942 59.875 280 Add primers GCTTCCGAAAGGTTGCCCGGTTTA CGCTACCGgTGTGCCACCAATACAA (59.942 59.771	(2 hits) (18 hits) (2 hits) 2 hits)
PRIMER LEFT TM PRIMER LEFT TM PRIMER RIGHT SEQUENCE PRIMER RIGHT TM PRIMER PAIR PRODUCT SIZE Primers with list PRIMER PAIR 2 PRIMER LEFT SEQUENCE PRIMER RIGHT SEQUENCE PRIMER RIGHT TM PRIMER PRIME PRODUCT SIZE	GCTTCCGAAAGGTTGCCCGGTTTA TGGGGGAGAGCAGGTGTTCGATTT 59.942 59.875 280 Add primers GCTTCCGAAAGGTTGCCCGGTTTA CGCTACCGATGTGCCACCAATACAA (59.942 59.771 317	(2 hits) (18 hits) (2 hits) 2 hits)

Figure 28

Web interface for primer design. Ajax implementation helps the user choosing the correct destination contig and its orientation.

3.2.5 PatchGap: a pipeline for gap-closure via local assemblies

Scaffolding is the fundamental process in genome assembly that makes order among genome pieces. Several analyses are made on sequence level (gene prediction and annotation, regulatory elements discovery, etc.) and they are affected by the fragmentation of a genome into several contigs.

Making use of the MP libraries it should be possible to "close the gaps" between contigs, using the "single mates" (see Figure 11 on page 2), the pairs that had just one mate aligned uniquely, because the other falls in a not assembled region, a gap. Collecting these reads and performing a *de novo* assembly should help recovering these missing parts of the genome, because the complexity of assembly is greatly reduced.

The «PatchGap» pipeline that I developed aims closing gaps between contigs gathering short reads not present in the reference contigs by means of their mate-paired reads that do.

A naïve approach could involve the retrieval of all the mates aligned in the contigs surrounding the gap to perform the local assembly, but when the

size of MP library is comparable or bigger than the size of contigs this could be a less effective strategy. A simple example is depicted in Figure 29 where a gap of interest ("gapBC") is covered by MPs that don't start from adjacent contigs.

Mate-paired covering a gap:

Figure 29

A set of four adjacent contigs (*air force blu*) and the MP covering them (*gray, dashed*). Explanation in the text. In the top panel MP falling in the gap are highlighted in *dark red*.

I prepared a general pipeline that, for each contigs, saves all the reads aligning in it and their mates, then they are used for local assemblies: all reads connected to contigs part of a scaffold are assembled together, while reads connected to contigs not part of a scaffold are assembled independently.

All the resulting Velvet contigs are aligned with BLAST against Newbler contigs, and a program looks for Velvet contigs matching with two Newbler contigs. I refer to these type of contigs as **«patches»** (see Figure 30).

Figure 30

A «patch» is a contig assembled locally by Velvet using MP reads (*red*) that act as a bridge between two contigs assembled by Newbler (*gray*). Highlighted region (*organge*) contains the "gap" sequence.

3.3 N. gaditana genome scaffolding

3.3.1 ScaMP testing with selected seeds

ScaMP has been extensively tested to spot possible causes of misassembles, that were implemented in the algorithm and in the choice of parameters in order to have a conservative and less error-prone tool, even if it could break good scaffolds when facing less clear situations: high coverage contigs (could lead to a repeated region), or non-converging paths.

Figure 31

A graphical representation of the largest scaffold produced by ScaMP using the contigs generated with the Titanium dataset (magnification provided in the inset). This scaffold, 1.2 Mb long, includes 292 contigs.

The program has been tested comparing its scaffolding results with manual work performed browsing through the 4NGS interface: more than 20 large scaffolds (*i. e.* containing more than 20 contigs) have been compared. ScaMP never produced misassembled scaffolds in this small test set, but, occasionally, it interrupted the extension progress a few contigs before the manual curator. This was mainly due to the presence of regions with low coverage, where the number of "connections" between contigs was lower than the fixed threshold, and the program was therefore forced to stop.

ScaMP was implemented into 4NGS so that the user can extend a scaffold starting from any contig and tune parameters to get best results. It can print

a graphical representation of the scaffold using the GraphViz program: Figure 31 shows the graphical output of the scaffold produced from a seed. Testing of the program showed promising performance in terms of speed (from a fraction of a second to few seconds depending on the length of the final product and the number of connections to be explored), in term of number of scaffold produced but in particular in term of accuracy. ScaMP has been developed to be conservative and several events trigger the exit instead of continuing the extension of the scaffold.

A critical aspect for good scaffolding is the starting dataset: misassembled contigs (*chimeras*) lead to unfaithful scaffolding, and an even more important data is the reliability of "bridges". Being created clustering the output of an alignment program they can make use of extensive information about each read mapped, thus its is possible to improve scaffolding with a more robust alignment parser.

3.3.2 *N. gaditana* genome scaffolding

The ScaMP pipeline was run with the three Newbler datasets, all results were stored in the 4NGS framework.

Scaffolding performance was more than satisfactory for all the datasets, with substantial differences: on the Titanium-09 contigs 20.9/28.4 Mbp (72%) were included in scaffolds, 26.4/27 Mbp (97%) on XL-11 contigs and 84% for the combined datasets.

The first dataset is more fragmented, with an average contig size of just 2.7 kbp, has many contigs per scaffold (see Figure 32), and a long list of small scaffolds with just a few contigs. Total number of scaffolds for this dataset is 312, even if the first 20 scaffolds includes 11 Mb, a half of the whole scaffolds.

As emerged from Newbler assembly (Table 1 on page 29), the second dataset is more robust in terms of number of contigs (small) and contigs size (N50 of 25 kbp), but at the expense of genome sampled (only 27 Mb).

If we consider the size of scaffolds expressed as sum of their contigs length (ignoring gaps) the quality of XL-11 assembly gives better results, both alone and in the combined dataset (Figure 33).

The Titanium-09 dataset has been used for algorithm design and extensively tested to tunes the parameters. It has not been possible, yet, to perform analysis with the same level of accuracy for the last sequencing run (October 2011), but is planned to have it done soon.

Figure 32

Number of contigs per scaffold added by ScaMP. The Titanium-09 dataset is more fragmented, thus yields scaffolds with the highest contigs number.

Figure 33

Size of scaffolds expressed as sum of their contigs length (plotted in *logarithmic* scale).

3.3.3 BAC-ends for scaffolds validation and superscaffolding

BAC-ends sequenced with Sanger are a valuable tool for scaffolding, but – thanks to their average insert size of 120 kb – they has been used as a testing tool for ScaMP output.

When the two ending sequences of a BAC insert match against two contigs of the same scaffold (and the sum of the contigs size between them is compatible with BAC library), it is possible to have an independent proof of the correctness of the scaffold. On the other hand when two BAC ends falls on different scaffold and the sum of the contigs between them largely exceeds the average insert size of BAC ends it is a strong evidence of a misassembly.

When a region of a large contig has no physical coverage it is marked for manual verification: it could be a misassembly but also a lack of coverage, having just a 1X physical coverage with BAC ends.

Beside their usefulness as testing tool, BAC ends can be implemented in scaffolding by joining two independent scaffolds (forming a so-called «**superscaffold**»). All these events are summarized in Figure 34.

Figure 34

BAC-ends alignment against scaffolds: they can be used to confirm an existing scaffold or to join together independent scaffolds (two top panels). If there is a lack of physical coverage in the middle of a scaffold it could be caused by the low coverage of BAC-ends or because there is a misassembly, thus such regions have been manually controlled

A. SCAFFOLDS VALIDATION

From the alignment of BAC ends against the three datasets we had on average good results. When comparing the contig matching with the two ends, 9% (46/512) of BAC ends confirm a contig sequence for the Titanium09 dataset (that has shorter contigs, thus with a lower probability of being confirmed via BAC ends). With the XL-11 dataset this fraction raises to 22% (117/522) and reach the 24% with the combined set.

When comparing the scaffold found via alignment by the two sequences of the pair, 64% confirm a scaffold for the Titanium-09 dataset, 87% for the XL-11 and 85% for the combined dataset.

B. SUPERSCAFFOLDS

Using the connections between scaffolds obtained with BAC-ends we were able to produce 23 superscaffolds out of 98 scaffolds. These superscaffolds include 12.2 Mbp (one third of the whole genome).

It is reasonable to think that some of this could be whole chromosomes or chromosome-arms (from pulsed-field gel electrophoresis we noticed that biggest chromosomes are less than 2 Mbp long, which is the approximate size of biggest superscaffolds.

An interesting example, shown in Figure 35, is "superscaffold1" that has been originated joining five scaffolds. Scaffold136 and Scaffold122 were separated by a single contig 100 bp long and with an impressive 2000X coverage, that could be a centromeric repeat collapsed in a short sequence.

Figure 35

A superscaffold obtained joining five different scaffolds (*gray*) by means of BAC-ends sequences (*red* arcs). An interesting 100 bp contig with 2000X coverage (*red* arrow) joins two scaffolds: could be a centromeric repeat collapsed.

3.3.4 Gap closure results

The gap closure pipeline has been tested for the Titanium-09 dataset.

It should be noted that all the assembly was performed on a desktop computer with 8 Gb RAM (four assembly at the time, being a four-cores system) because local assemblies are little resource demanding. The blast_2_patches.pl script identified 3,262 contigs assembled by Velvet that could fill a gap, and 2,686 of them (82%) were found to connect two contigs of the same scaffold and only 58 connected contigs belonging to different scaffolds (patches of this kind could be misassembly, correct patches joining contigs non in the correct scaffold or repeated, or correctly joining two scaffolds). This small fraction of patches requires a manual validation that will be performed soon.

The remaining 16% of patches connects two contigs (both or one of the two) that were not included in any scaffold.

Gap size distribution (Figure 36) shows a remarkable fraction of small gaps, with a 11% of all gaps shorter than 10 bp.

Figure 36

Gap size distribution. Almost 50% of gaps identified is shorter than 50 bp (and an 11% is shorter than 10 bp).

When performing gap closure on whole scaffolds (Titanium-09 dataset) it has been noted that most patches join clusters of adjacent contigs and that long scaffolds had a higher fraction of gaps closed.

Gaps filled in Scaffold230

Figure 37

Scaffold230 as an array of contigs (*black* boxes, not in scale). Gap filling joined nine clusters of contigs (*red* boxes) raising the N50 value from 8.3 to 77.4 kbp.

As an example Scaffold230 is composed by 140 contigs with an average size of 5.3 kbp (N50: 8.3 kbp). The gap closure pipeline identified 141 patches that resulted the number of contigs to 34, and raised the average contigs size to 21.9 kbp (N50: 77.4 kbp). A schematic representation is shown in Figure 37.

3.4 Chloroplast genome of N. gaditana

Nannochloropsis has a single chloroplast with multiple copies of plastidial genome, thus resulting in much higher sequence coverage than that of the nuclear genome. Among the high-coverage contigs three were found to be plastidial via NCBI BLAST queries:

- contig09847 (56.9 kbp, 216X coverage) includes the RuBisCO large subunit coding sequence;
- contig00001 (47.8 kbp, 222X coverage) includes the *psA* gene, part of Photosystem I;
- contig14652 (5.1 kbp, 392X) includes a ribosomal operon related to other chloroplast, that because of its coverage could be the typical chloroplast IR.

Beside the presence of plastidial genes there were a relevant similarity to the plastidial DNA of *H. akashiwo* and *T. pseudonana*.

Using information from MP alignments we proposed a model (shown in Figure 38, outer ring) that was verified via PCR, designing primers spanning the four junctions between the three contigs. All the PCR were positive, confirming the model, and were sequenced via Sanger. As expected there were small gaps between the contigs (except for one out of four junctions) that have been identified and used to produce the complete sequence of the plastidial genome.

A preliminary gene prediction has been performed combining *ab initio* ORF finding and alignment of *T. pseudonana*'s genes (Figure 38, middle ring), while data from RNA-Seq (inner ring) has not been implemented yet.

It is relevant to report that RNA-Seq libraries were prepared both via PolyA+ enrichment, that is a proven and effective method to get rid of rRNAs, and with rRNA depletion. The latter method preserves polyA- mRNAs, also including plastidial transcripts. It is reasonable to think that important metabolic pathways connected with photosynthesis could be under control of plastidial genes.

Figure 38

Chloroplast genome of *N. gaditana*. *Outer ring*: the three contigs composing the plastidial genome. *Middle ring*: gene prediction. *Inner ring*: RNA-Seq track (log scale) performed with strand specific sequencing.

3.5 Wheat: an independent test set

ScaMP was designed in the context of *N. gaditana* genome sequencing, working with a very high coverage of MPs. Our group joined the international consortium for Wheat genome sequencing (for Chromosome 5A, ~500 Mbp) and I tested the ScaMP pipeline on data available for this project: a set of contigs made with a 454 shotgun (2X coverage, 229,594 contigs), but a very low coverage of SOLiD MP (approximately 1X). The whole genome size is ~16 Gbp. I worked using MP generated from whole genome preparation and contigs from a Chromosome 5A shotgun. The major problem of this dataset is the extremely poor MP coverage, which prevents the preparation of a robust datasets of "bridges".

The program produced 660 scaffolds, of which only one included 53 contigs while the remainders only 11 or less.

Dr. Nicola Vitulo aligned against the scaffolds a database of ESTs sequences. This approach provided a partial yet independent validation of 149 scaffolds. An example is reported in Figure 39.

Figure 39

EST alignment against scaffolds made using datasets from Wheat, chromosome 5A.

4 **Conclusion**

It's difficult to underestimate the radical change in today's biology that came with the advent of NGS. When I joined the Genomics Group on 2007 the sequencing core hosted four Sanger sequencers (3730XL by Applied Biosystems) that were used to produce a 2X coverage of wine grape genome and it took more than a year – having the four machines operating at full capacity – to complete the shotgun sequencing, not to mention the high cost of consumables and operators to load the instruments.

With NGS sequencing the whole process from extracted DNA to sequences is straightforward, fast and much cheaper than in the past.

Shotgun sequencing for the *Nannochloropsis* genome required approximately two months. SOLiD MP libraries have been more time consuming but yielded an impressive coverage in about six months.

Comparing the assembly results from the sequencing of a full plate in 2009 with the Titanium kit and the half plate sequenced in 2011 with the XL+ kit we can appreciate the important advance in 454 sequencing both in terms of throughput and as average read length. For complex genomes this important advance is still not enough to produce a fairly assembled draft.

A. BENEFITS OF A MIXED APPROACH

Even though 454 sequencing costs are decreasing, they are still a bottleneck especially for larger genomes (>100 Mbp). In these projects (as for Wheat, §3.5) a mixed approach is a cost effective sequencing strategy because the SOLiD MP libraries can provide a high coverage that can be used both for scaffolding and gap closure.

My project and the programs developed for it confirm the power of MP libraries in genome scaffolding and gap closure. Moreover when aligning local assemblies of MP reads against reference contigs, it has been evident that the SOLiD is more accurate in solving homopolymeric stretches. This suggest that the information content of MP libraries could be further exploited in the pipeline to remove small errors in reference.

B. SCAFFOLDING USING SOLID MATE-PAIRED LIBRARIES

SOLID MP libraries provide a valuable tool in genome sequencing. The protocol allows choosing the desired insert size and combining more insert size length can help overcome short and long repeated regions.

ScaMP, the program developed to produce scaffolds converting MP reads to directed connections between contigs is probably one of the first tools for genome scaffolding with color space reads, and addresses a need in the SOLiD community as emerged when presenting the whole pipeline at the "International SOLiD User Meeting" held in Treviso on August 2010.

Scaffolding with mate-paired reads has been proved to be effective even with a poor dataset (the low-coverage 454 Titanium made in 2009) for which it included one third of the genome into 20 scaffolds.

The highly fragmented contig dataset produced with the 454 Titanium kit (~14,000 contigs) combined with the two MP libraries gave good overall results: 77% of the sequenced genome was included in scaffold, 80 scaffold longer than 50 kbp and the N50 value of 323 kb.

ScaMP core algorithm seems valid and a paper is under preparation to release the program to the scientific community.

C. GAP CLOSURE

A remarkable advantage of using MP libraries in genome sequencing is the possibility to close gaps between contigs performing local assemblies of short MP reads.

The gap closure pipeline developed for this project can fill gaps between contigs in base space assembling selected subsets of color space reads, and Gap closure results in a raise of average contig length that is beneficial for downstream analysis as gene prediction and annotation, and it's possible to reduce the complexity of the task so that a standard desktop computer can perform it.

D. FUTURE PERSPECTIVES

The program has been developed and tested on a small genome with two MP libraries of comparable size, so no modeling of "bridge" size was implemented. It will be crucial, however, to have a correct modeling of "bridges" size for larger genome making use of different MP libraries (e. g. for the Tomato genome project our group sequenced a 25 kbp MP library). Bridge creation starting from alignment result can be further strengthened modeling the distribution of mates alignment and comparing the model with actual alignments: most artifacts in bridges can be discriminated because of their uneven distribution along the contig.

The current gap closure pipeline produce contigs with Velvet using a high coverage of MP libraries, but they are used only to recover the missing portion of the genome laying between contigs, while they could be used also for error correction of Newbler contigs as the first appears to be more accurate, not only because of the higher coverage, but also because the SOLiD chemistry is less error prone in homopolymeric stretches.

5 **Bibliography**

1. Lander ES, Linton LM, Birren B, et al.: Initial sequencing and analysis of the human genome. *Nature* 2001, **409**:860–921.

2. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. *Science* 1995, 269:496–512.

3. Venter JC, Adams MD, Myers EW, et al.: **The sequence of the human genome.** *Science* 2001, **291**:1304–1351.

4. Mardis ER: A decade's perspective on DNA sequencing technology. *Nature* 2011, **470**:198–203.

5. Lander ES, Waterman MS: Genomic mapping by fingerprinting random clones: a mathematical analysis. *Genomics* 1988, **2**:231–239.

6. Pevzner PA: **An Eulerian path approach to DNA fragment assembly**. *Proceedings of the National Academy of Sciences* 2001, **98**:9748–9753.

7. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res.* 2008, **18**:821–829.

8. Zerbino D: Genome assembly and comparison using de Brujin graphs. *Ph. D. thesis* 2009:1–164.

9. Sanger F, Nicklen S, Coulson AR: **DNA sequencing with chain-terminating inhibitors.** *Proc. Natl. Acad. Sci. U.S.A.* 1977, **74**:5463–5467.

10. Metzker ML: **Sequencing technologies** — the next generation. *Nat. Rev. Genet.* 2009, **11**:31–46.

11. **The Archon Genomics X PRIZE** [http://genomics.xprize.org/competition-details/prize-overview].

12. Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD: **Amplification of complex gene libraries by emulsion PCR.** *Nat. Methods* 2006, **3**:545–550.

13. Ronaghi M, Uhlén M, Nyrén P: A sequencing method based on real-time pyrophosphate. *Science* 1998, **281**:363, 365.

14. Vezzi A, Campanaro S, D'Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G: Life at depth: Photobacterium profundum genome sequence and expression analysis. *Science* 2005, **307**:1459–1461.

15. Gouveia L, Oliveira AC: Microalgae as a raw material for biofuels production. *J. Ind. Microbiol. Biotechnol.* 2009, **36**:269–274.

16. Corteggiani Carpinelli E: *Going ultra deep to unravel the secret recipe of biofuel*. LAP LAMBERT Academic Publishing; 2011:1–129.

17. Andersen R, Brett R, Potter D: **Phylogeny of the Eustigmatophyceae based upon 18S rDNA, with emphasis on Nannochloropsis**. *Protist* 1998.

18. **Triacylglycerol profiling of marine microalgae by mass spectrometry** [http://www.jlr.org/content/early/2011/08/11/jlr.D018408.short?rss=1].

19. Boussiba S, Vonshak A, Cohen Z, Avissar Y: Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. *Biomass* 1987.

20. Cellular DNA content of marine phytoplaknton using two new fluorochromes: taxonomic and ecological implications

[http://onlinelibrary.wiley.com/doi/10.1111/j.0022-3646.1997.00527.x/abstract].

21. Campagna D, Albiero A, Bilardi A, Caniato E, Forcato C, Manavski S, Vitulo N, Valle G: **PASS: a program to align short sequences.** *Bioinformatics* 2009, **25**:967–968.

22. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM: **The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants.** *Nucleic Acids Res.* 2010, **38**:1767–1771.

23. Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation sequencing data. *Genomics* 2010, **95**:315–327.

24. Mural RJ: **ARTEMIS: a tool for displaying and annotating DNA sequence.** *Brief. Bioinformatics* 2000, **1**:199–200.

25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: **Basic local alignment search tool.** *J. Mol. Biol.* 1990, **215**:403–410.

26. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: **Circos: an information aesthetic for comparative genomics.** *Genome Res.* 2009, **19**:1639–1645.

27. Stothard P, Wishart DS: Circular genome visualization and exploration using CGView. *Bioinformatics* 2005, **21**:537–539.

28. Koressaar T, Remm M: Enhancements and modifications of primer design program Primer3. *Bioinformatics* 2007, 23:1289–1291.

29. Rozen S, Skaletsky H: **Primer3 on the WWW for general users and for biologist programmers.** *Methods Mol. Biol.* 2000, **132**:365–386.

30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup: **The Sequence**

Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078–2079.

31. Dayarian A, Michael TP, Sengupta AM: **SOPRA: Scaffolding algorithm for paired reads via statistical optimization.** *BMC Bioinformatics* 2010, **11**:345.

32. Applied Biosystems [http://www3.appliedbiosystems.com].

33. Haridas S, Breuill C, Bohlmann J, Hsiang T: A biologist's guide to de novo genome assembly using next-generation sequence data: A test with fungal genomes. *Journal of Microbiological Methods* 2011, **86**:368–375.

34. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: **ABySS: A** parallel assembler for short read sequence data. *Genome Res.* 2009, **19**:1117–1123.
Supplementary material

Table 3

Chloroplast genes. For each predicted ORF the table indicate coordinates (start, end), gene symbol and strand of the ORF.

Start	End	Gene	Strand
1585	1998	psbV	+
2094	2360	petJ	+
2512	4755	psaA	+
4784	6991	psaB	+
7451	7546	petG	-
7602	7733	psbK	-
9097	9169	trnW-CCA	+
9320	9742	rpl11	+
10974	11453	petD	-
11489	12133	petB	-
13356	13427	trnM-CAU	+
13446	13532	trnS-GCU	+
13588	13661	trnD-GUC	+
16043	16237	psaE	+
16344	16535	psbH	-
16736	16873	psbN	+
16916	17011	psbT	-
17029	18555	psbB	_
17035	18555	Desi psbT	-
18809	19105	petF	+
19557	20783	tufA	-
20974	21438	rps7	_
21465	21716	rps12 3end	_
21720	21833	rps12 5end	_
21840	22061	rpl31	_
25222	25332	rpl36	_
29031	29393	rpl14	-
29926	30321	rpl16	-
31691	31972	rps19	-
32007	32828	rpl2	-
34923	36710	dnaK	+
36880	36946	trnF-GAA	+
36965	37035	trnC-GCA	+
36968	36996	trnQ-UUG	+
36980	37026	trnF-GAA	+
37066	37085	trnL-GAG	+
37067	37097	trnL-CAA	+
37852	38919	psbD	+
38831	40276	psbC	+
41867	42907	ycf59	-
43168	43239	trnN-GUU	-
43846	45360	chlB	-
45464	45724	ycf66	-
45930	46415	psaF	-
46533	46618	trnl-CAU	-
47099	47172	trnP-GGG	+
47100	47170	trnP-UGG	+
47137	47166	trnM-CAU	+
47989	49463	rrn16	+
49567	49640	trnl-GAU	+
49644	49717	trnA-UGC	+

50168	52676	rrn23	+
53472	53798	rpl20	-
54247	55947	ilvB	+
55996	56075	trnY-GUA	-
58082	58155	trnG-UCC	+
58219	58461	psbE	+
58467	58595	psbF	+
58627	58734	psbL	+
58813	58929	psbJ	+
59025	59117	psal	-
60856	60927	trnQ-UUG	-
60988	61058	trnR-ACG	-
60993	61054	trnR-CCG	-
62283	62356	trnH-GUG	+
63477	63563	petN	+
64511	64581	trnfM-CAU	+
64667	65062	psaD	+
65157	65241	trnS-UGA	+
65387	65488	psbl	+
65592	65663	trnV-UAC	+
65666	65736	trnR-UCU	+
65961	66803	chlL	+
66885	68183	chlN	+
68415	69491	psbA	+
69789	70205	rbcS	-
70267	71721	rbcL	-
74673	76091	atpB	-
76235	76720	ycf3	-
76995	77186	rpl33	-
88333	89037	atpl	+
89120	89362	atpH	+
91277	92788	atpA	+
92834	92906	trnE-UUC	-
93251	93322	trnG-GCC	-
93298	93315	trnN-GUU	-
93429	93524	psbY	-
93648	93719	trnK-UUU	-
96026	97444	ycf24	-
107883	108131	rpl27	+
109373	109495	psaJ	-
109515	109757	psaC	-
110115	112623	rrn23	-
113093	113166	trnA-UGC	-
113170	113243	trnl-GAU	-
113326	114800	rrn16	-

Table 4Scaffolds made with ScaMP using three reference datasets.

Titanium	(TITA	N-09)	XL	(XL-1	1)	Com	bined	(BOTH)
Scaffold name	#	Len. (bp)	Scaffold name	#	Length (bp)	name	#	Length (bp)
Scaffold190AT	294	1,203,882	contig00003	69	1,543,172	00003	59	1,546,607
Scaffold246	201	871,519	contig00002	88	1,355,202	00028	87	1,427,206
Scaffold220AT	158	798,265	contig00012	74	1,348,784	00009	87	1,367,352
230AT	141	753,407	contig00007	103	1,129,217	00294	59	1,089,509
Scaffold208AT	148	691,365	contig00001	70	1,068,942	00065	99	1,002,688
Scaffold241	110	631,398	contig00006	48	896,680	00022	62	968,996
Scaffold156AT	132	623,974	contig00019	61	883,126	00005	13	925,566
Scaffold171AT	134	618,976	contig00004	12	844,389	00203	138	920,669
Scaffold245	154	546,432	contig00087b	46	800,132	00002	39	900,935
Scaffold236	100	535 <i>,</i> 193	contig00014	20	790,684	00020	52	812,876
Scaffold8A	187	503,332	contig00005	57	762,108	00070	76	739,916
Scaffold196B	84	484,252	contig01367	107	750,208	00010	80	702,347
Scaffold243	115	465,417	contig00029	84	734,505	00004	36	674,438
Scaffold237	103	435,215	contig00031	108	712,444	00018	75	624,626
Scaffold195AT	97	434,978	contig00013	95	692,313	00301	51	622,381
Scaffold235	91	407,200	contig00065b	64	630,078	00049	137	612,401
Scaffold183AT	102	398,199	contig00038	61	602,110	00368	88	599,604
Scaffold232	74	389,026	contig00053	105	589,186	00277	59	588,168
Scaffold231	72	348,377	contig00033	93	544,704	00194	69	550,553
Scaffold229	70	323,528	contig00043	150	510,792	00015	79	548,095
Scaffold234	89	317,878	contig00040	19	474,513	00011	112	538,831
Scaffold226	66	279,688	contig00077	76	446,720	00053	50	505,214
Scaffold223	59	259,869	contig00028	44	442,654	00019	63	502,457
Scaffold218	54	253,741	contig00017	66	438,898	00064	101	477,448
Scaffold233	74	253,034	contig00171	50	430,089	00038	16	475,950
Scaffold222	57	225,212	contig00076	85	416,819	00236	49	440,935
Scaffold213	49	221,076	contig00024	17	379,540	00210	103	440,514
Scaffold216	52	220,548	contig00067	53	363,065	00084	97	432,671
Scafold71AT	88	196,934	contig01158	77	341,921	00048	45	389,720
Scaffold211	47	195,940	contig00102	34	313,442	00061	38	360,714
Scaffold214	50	186,254	contig00009	24	308,643	00091	89	332,530
Scaffold225	64	174,942	contig00062	56	296,458	00013	25	312,964
Scaffold217	54	172,127	contig00082b	80	294,387	00014	12	303,392
Scaffold210	47	168,478	contig00073	54	294,127	00189	53	278,315
Scaffold172	22	154,797	contig00101	83	279,130	00036	3	249,716
Scaffold68AT	40	154,094	contig00090	62	253,855	00112	34	237,271
Scaffold198	35	150,476	contig00604	74	210,468	00123	9	199,397
Scaffold212	49	143,558	contig01021	26	189,971	00081	29	192,629
Scaffold86AT	46	135,653	contig00134	25	152,342	00192	30	168,090
Scaffold215	51	132,562	contig00237	33	147,552	00408	22	154,061
Scaffold189	27	117,950	contig00018	58	147,440	00138	30	131,888
Scaffold185	25	116,066	contig00328	69	141,445	00298	59	129,173
Scaffold192	27	114,166	contig00210	28	125,380	00145	14	128,153
Scaffold205	40	113,818	contig00266	53	121,919	00117	25	122,971
Scaffold209	47	112,708	contig00172	26	119,752	00418	57	112,951

Scaffold174	22	110,215	contig00385	20	108,967	CHL	3	109,988
Scaffold2	3	109,822	contig00252	24	106,275	00050	2	101,062
Scaffold207	44	105,480	contig00456	15	98,778	00105	16	97,260
Scaffold182	24	103,395	contig00450	47	98,383	00313	37	86,687
Scaffold204	40	97,401	contig00335	29	94,539	00446	46	84,011
Scaffold206	42	96,802	contig00232	30	94,336	00197	13	83,930
Scaffold200	35	96,733	contig00319	32	88,964	00524	44	76,346
Scaffold197	30	93,564	chl	2	87,356	00140	6	73,903
Scaffold143	17	87,477	contig00162	17	84,174	00217	7	69,968
Scaffold184	25	83,377	contig00248	10	74,864	00234	8	69,348
Scaffold161	20	82,936	contig00439	13	72,625	00579	23	66,290
Scaffold201	42	81,842	contig00340	32	71,671	00216	12	66,090
Scaffold160	19	76,999	contig00606	32	63,958	00338	15	62,095
Scaffold187	26	76,864	contig00507	17	63,177	00196	10	59,478
Scaffold46AT	32	74,882	contig00433	19	61,365	00322	16	56,896
Scaffold193	29	74,850	contig00283	10	58,901	00299	23	56,397
Scaffold130	15	74,819	contig00673	21	58,632	00153	4	50,923
Scaffold170	22	72,856	contig00382	13	58,542	00339	17	50,553
Scaffold152	18	71,862	contig00537	38	57,010	00048b	4	49,009
Scaffold199	35	70,618	contig00363	15	54,243	00747	32	45,716
Scaffold133	15	70,118	contig00349	22	51,906	00572	21	44,871
Scaffold180	24	67,438	contig00368	15	48,084	00365	15	43,472
Scaffold186	25	66,767	contig01082	27	45,519	00308	16	42,938
Scaffold121	14	65,549	contig00858	19	45,290	MIT	1	42,216
Scaffold181	24	64,116	contig00659	20	40,896	00017	11	41,382
Scaffold163	20	63,234	contig00613	25	40,439	00582	23	39,595
Scaffold176	22	63,017	contig00463	25	37,277	00024	18	37,961
Scaffold145	17	62,927	contig01401	13	35,662	00332	7	36,837
Scaffold1CC	25	61,200	contig00418	12	32,954	00219	12	35,247
Scaffold151	18	60,578	contig00487	11	21,044	00384	9	30,847
Scaffold414A	32	56,827	contig01000	11	16,300	00474	11	27,931
Scaffold147	18	56,305	contig00826	4	15,535	00508	14	25,937
Scaffold153	18	55,793	contig00751	8	14,984	00399	4	23,504
Scaffold175	22	52,756	contig00585	6	14,696	00433	10	22,664
Scaffold165	21	52,679	contig00802	8	14,517	00647	14	21,941
Scaffold167	21	52,536	contig05405	6	9,692	00573	8	14,979
Scaffold194	29	52,133	contig00661	4	8,292	00706	7	14,172
Scaffold158	19	51,593	contig00842	7	7,594	00001	8	7,508
Scaffold136	16	49,584	contig00078	10	5,555	00708	4	7,289
Scaffold149	18	49,489	contig00872	3	5,514	00696	1	6,304
Scaffold138	15	49,118	contig00063	10	5,401	00074	13	5,537
ScaffoldA007	29	48,614	contig00508	4	3,346	00030	8	2,741
Scaffold177	23	48,109	contig01457	4	3,266	00007	7	2,160
Scaffold148	18	46,318	contig00042	4	2,854	00264	7	2,160
Scaffold45	8	46,240	contig00010	7	2,182	00067	3	1,805
Scaffold134	15	46,133				00032	4	1,785
Scaffold89	10	45,045				00034	4	1,748
Scaffold356	5	44,976				00600	2	1,187
Scaffold139	16	44,975				00006	1	248
Scaffold188	26	44,833						
Scaffold123	14	43,563						

Scaffold117	13	43,209
Scaffold1	3	41,496
Scaffold91	11	40,465
Scaffold155	19	40,359
Scaffold110	12	40,041
Scaffold85	10	39,091
Scaffold178	23	38,855
Scaffold84	10	38,784
Scaffold131	15	38,648
Scaffold157	19	37,171
Scaffold109	12	36,396
Scaffold135	15	35,707
ScaffoldA005	42	35,674
Scaffold100	11	35.604
Scaffold112	13	34.974
Scaffold126	15	34.584
Scaffold179	24	33,963
Scaffold93	11	33.865
Scaffold164	20	33,735
Scaffold20	_0 6	33 536
Scaffold132	15	33 464
Scaffold168	20	32 802
Scaffold142	17	32,630
Scaffold98	11	31 954
Scaffold119	14	31 427
Scaffold36	7	30.870
Scaffold150	18	30,666
Scaffold122	14	30,130
Scaffold137	16	28 702
Scaffold411a	15	28,702
Scaffold159	10	28,345
Scaffold81	15 Q	20,421
Scaffold104	12	27,501
Scaffold124	14	27,557
Scaffold95	11	27,405
Scaffold 4512	13	26 391
Scaffold154	19	26,351
Scaffold101	10	26,171
Scaffold120	12	25,040
Scaffold70	15 Q	25,700
Scaffold113	13	23,423
Scaffold146	17	24,001
Scaffold141	17	24,190
Scattold92	10	24,040
Scattold62	0	23,930
Scallolu62	0	23,039
Scalloldoo	9 1 E	23,003
Scaffold A004	10 10	23,171
ScalloldA004	15	22,774
Scallolu359	5 1 2	22,/66
Scallolul 15	15 1 F	∠1,/5/ 21.100
Scallolu128	15	21,109
ScalloluTU8	12	21,034
Scallolu96	11	20,86/
ScallOlu20	/	∠U,ŏ4ŏ
SCAHORASOT	Э	∠U,ŏZ4

ScaffoldA010	10	20,765
Scaffold118	13	20,533
Scaffold390	3	20,377
Scaffold106	12	20,363
Scaffold116	13	20,173
ScaffoldA009	19	20,142
Scaffold103	12	19,974
Scaffold111	13	19,916
Scaffold56	8	19,798
Scaffold88	10	19,728
Scaffold47	8	19,589
Scaffold77	9	19,534
ScaffoldA001	9	19,069
Scaffold107	12	18,905
Scaffold392	4	18,882
Scaffold99	11	18,716
Scaffold90	10	18,344
Scaffold60	8	18,278
Scaffold76	9	18,087
Scaffold127	15	18,049
Scaffold94	11	18,027
Scaffold87	10	17,737
Scaffold72	9	17,682
Scaffold79	9	17.674
Scaffold114	13	17.576
Scaffold33	7	17.532
Scaffold65	, 9	17,127
Scaffold43	7	17,101
Scaffold83	10	16 619
Scaffold41	7	16 532
Scaffold323	, 6	16 357
Scaffold105	12	16 242
Scaffold58	8	16,242
Scaffold49	8	15 961
Scaffold92	11	15,501
Scaffold35	7	15,057
Scaffold353	5	15,011
Scaffold97	11	14 790
Scaffold40	7	14,750
Scaffold336	, 2	14,751
Scaffold6	5	14,020
Scattold2E0	5	14,300
Scattold268	J 4	14,401
ScaffoldA002	4	14,329
ScalloluA002	0	14,160
Scallolul 20	14	14,114
	5	14,023
Scallolus I	0	13,917
Scattold366	4 7	13,84/
Scattold25	/	13,2/0
Scanold351	5	13,1/5
Scattold385	4	13,172
Scattold52	8	12,946
Scattold400	4	12,912
Scattold73	9	12,873
Scattold102	12	12,826

ScaffoldA003	7	12,728
Scaffold287	6	12,664
Scaffold456	2	12,645
Scaffold24	7	12,597
Scaffold379	4	12,308
Scaffold38	7	12,221
Scaffold372	4	12,023
Scaffold203	8	11,991
Scaffold395	4	11,860
Scaffold32	7	11,750
Scaffold347	5	11,278
Scaffold5	6	11,193
Scaffold23	7	11,117
Scaffold61	8	11,014
Scaffold460	4	10,989
Scaffold16	6	10,911
Scaffold373	4	10,727
Scaffold469	2	10,727
Scaffold29	7	10,624
Scaffold18	6	10,562
Scaffold357	5	10,393
Scaffold17	6	10,227
Scaffold399	4	10,165
Scaffold358	5	10,105
Scaffold31	7	10,098
Scaffold37	7	10,084

Table 5

Superscaffolds composition in terms of scaffold number and their mutual orientation (C = Complemented, U = Uncomplemented).

1 169 C 351 C 368 U 233 C 356 U 2 176 C 495 U 197 C 235 U 226 U 20 C 56 U 210 C 174 U 232 C 41 C 166 U 232 C 41 C 377 U 135 C 5 204 C 218B C 196B C 211A U 187 C 213 C 213 C 213 C 213 C 213 C 213 C 218A U 218A <	Superscaffold	Scaffolds	Orientation
351 C 368 U 233 C 356 U 2 176 C 495 U 197 C 235 U 226 U 20 C 56 U 210 C 174 U 232 C 41 C 166 U 174 U 232 C 41 C 166 U 135 C 377 U 135 C $211A$ U 1968 C $211A$ U 187 C 143 U 213 C 213 C $213A$ U 207 U 100 C 7 238 U 202 U	1	169	С
368 U 233 C 356 U 2 176 C 495 U 197 C 235 U 226 U 20 C 56 U 210 C 174 U 232 C 41 C 166 U 377 U 135 C 210 C 377 U 135 C 218B C 211A U 187 C 143 U 187 C 187 C 188 U 211A U 187 C 187 C 188 U 213 C 189 C 213A U 207 U 100 C 213 <t< th=""><th></th><th>351</th><th>С</th></t<>		351	С
233 C 356 U 2 176 C 495 U 197 C 235 U 226 U 20 C 56 U 20 C 3 366 U 210 C 4 68AT C 41 C 166 135 C 377 U 135 C 210 C 213 C 2135 C 135 C 211A U 187 C 143 U 187 C 187 C 188 C 211A U 187 C 188 U 213 C 189 C 218A U <		368	U
356 U 2 176 C 495 U 197 C 235 U 226 U 20 C 56 U 3 366 U 210 C 3 366 U 210 C 174 U 232 C 41 C 166 U 377 U 135 C 5 204 C 218B C 196B C 113 U 187 C 183 C 184 U 213 C 189 C 218A U 202 U 100 C 7 238 U 202 U 133 C		233	С
2 176 C 495 U 197 C 235 U 226 U 20 C 56 U 210 C 174 U 232 C 41 C 166 U 377 U 135 C 377 U 135 C 218B C 1968 C 211A U 187 C 143 U 187 C 143 U 187 C 213 C 143 U 213 C 189 C 218A U 207 U 100 C 7 238 U 202 U 133 C		356	U
2 176 C 495 U 197 C 235 U 226 U 20 C 56 U 210 C 174 U 232 C 41 C 166 U 377 U 135 C 218B C 218B C 1968 C 211A U 187 C 213 C 143 U 187 C 143 U 213 C 184 U 213 C 185 U 218A U 207 U 100 C 7 238 U 202 U 133 C 133 U <th></th> <th>17(</th> <th>C</th>		17(C
493 0 197 C 235 U 20 C 56 U 3 366 U 210 C 174 U 232 C 41 C 166 U 377 U 355 C 377 U 135 C 218B C 196B C 211A U 187 C 143 U 187 C 143 U 213 C 187 C 143 U 213 C 189 C 213A U 207 U 100 C 7 238 U 202 U 133 U 214 U	2	1/6	
137 C 235 U 20 C 56 U 210 C 174 U 232 C 41 C 166 U 377 U 135 C 5204 C 218B C 218B C 135 C 5204 C 218B C 196B C 211A U 187 C 143 U 187 C 213A U 213A U 213A U 207 U 100 C 7 238 U 202 U 133 U 214 U 133 U 214 U 133 U 216 U 113 U 133		495	<u>C</u>
233 0 20 C 56 U 210 C 174 U 232 C 41 C 166 U 377 U 135 C 218B C 213 C 135 C 2133 C 214 U 135 C 218B C 196B C 211A U 187 C 143 U 187 C 188 C 213 C 189 C 213 C 189 C 218A U 207 U 100 C 7 238 U 202 U 133 U 214 U		235	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		233	
10 C 56 U 210 C 174 U 232 C 41 C 166 U 377 U 135 C 377 U 135 C 5204 C 2188 C 211A U 187 C 143 U 6 185 U 213 C 187 C 213 C 187 C 213 C 143 U 213 C 213 C 213 C 213 C 100 C 7 238 U 207 U 100 C 133 U 214 U 133 U 214 U 133 C		220	0
3 366 U 210 C 174 U 232 C 41 C 166 U 377 U 135 C 5 204 C 218B C 196B C 211A U 187 C 143 U 187 C 143 U 187 C 213 C 189 C 213 C 189 C 213 C 189 C 213 C 189 C 213 C 131 U 202 U 100 C 7 238 U 202 U 133 U 214 U 133		56	<u> </u>
3 366 U 210 C 174 U 232 C 41 C 166 U 4 68AT C 377 U 135 5 204 C 218B C 196B C 211A U 187 C 143 U 187 C 213 C 189 C 213 C 131 U 202 U 100 C 7 238 U 202 U 133 C 216 U		50	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	366	U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		210	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		174	U
41 C 166 U 377 U 335 C 5 204 C 218B C 196B C 211A U 187 C 143 U 6 185 U 213 C 143 U 6 185 U 213 C 189 C 207 U 100 C 7 238 U 202 U 130 C 131 U 133 C 133 C 133 C 133 U 113 U <		232	С
166 U 4 $68AT$ C 377 U 135 C 5 204 C 218B C 196B C 211A U 187 C 143 U 6 185 U 213 C 189 C 218A U 241 C 207 U 100 C 7 238 U 207 U U 100 C C 133 U 202 133 U 202 133 U 214 133 U 214 133 U 214 133 U 214 133 U 216 113 U 133 216 U 171AT 9 212 U 171AT U 136 <t< th=""><th></th><th>41</th><th>С</th></t<>		41	С
4 $68AT$ C 377 U 135 C 5 204 C 218B C 196B C 211A U 187 C 143 U 6 185 U 213 C 218A U 218A U 241 C 207 U 100 C 7 238 U 202 U U 100 C U 13 U 202 13 U 202 13 U 202 133 C 214 133 C 214 133 U 214 133 U 214 133 U 216 113 U 133 136 U		166	U
- $ -$ <th>A</th> <th>6847</th> <th>C</th>	A	6847	C
377 0 135 C 135 C 218B C 196B C 211A U 187 C 143 U 6 185 U 213 C 189 C 218A U 207 U 100 C 7 238 U 202 U 100 C 7 238 U 202 U 100 13 U 202 133 U 214 133 C 214 133 U 214 133 C 216 113 U 133 9 212 U 171AT U 136 136 U 136	4	377	U
133 C 5 204 C 218B C 196B C 211A U 187 C 143 U 6 185 U 213 C 189 C 218A U 241 C 207 U 100 C 7 238 U 202 U 8 165 U 43 C 13 133 U 214 133 C 216 113 U 133 9 212 U 171AT U 136 47 U 136		135	0
5 204 C 218B C 196B C 211A U 187 C 143 U 6 185 U 213 C 189 C 218A U 241 C 207 U 100 C 7 238 U 202 U 100 C 7 238 U 202 U 13 U 214 U 133 C 133 U 214 U 133 C 216 U 113 U 9 212 U 171AT U 136 U		155	C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	204	С
$\begin{array}{c c c c c c c c c } & 196B & C \\ & 211A & U \\ & 187 & C \\ & 143 & U \\ \hline \\ & & & & \\ & & & \\ & & & & \\ $		218B	С
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		196B	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		211A	U
143 U 6 185 U 213 C 189 C 218A U 241 C 207 U 100 C 7 238 U 202 U 7 238 U 202 U 8 165 U 148 U 43 C 13 U 214 U 133 C 216 U 133 U 9 212 U 171AT U 10 208AT B U 136 U		187	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		143	U
133 0 213 0 189 0 $218A$ 0 241 0 241 0 207 0 100 0 7 238 0 202 0 8 165 0 148 0 43 0 13 0 214 0 133 0 216 0 113 0 9 212 0 $171AT$ 0 10 $208ATB$ 0 47 0 136 0	6	185	
189 C 218A U 241 C 207 U 100 C 7 238 U 202 U 8 165 U 148 U 43 C 13 U 214 U 133 C 216 U 113 U 9 212 U 171AT U 136 U	0	213	<u> </u>
218A U 241 C 207 U 100 C 7 238 U 202 U 8 165 U 43 C 13 214 U 133 214 U 133 216 U 113 9 212 U 10 208AT B U 47 U 136 132 C 136		189	<u> </u>
241 C 207 U 100 C 7 238 U 202 U 8 165 U 43 C 13 U 214 U 133 C 216 U 9 212 U 113 U 133 U 133 C 216 U 113 U 133 U 133 C 133 C 134 U 135 U 136 U 132 C		218A	U
207 U 100 C 7 238 U 202 U 8 165 U 148 U 43 C 13 U 214 U 133 C 216 U 113 U 9 212 U 171AT U 10 208AT B U 136 U 132		241	<u> </u>
100 C 7 238 U 202 U 8 165 U 148 U 43 C 13 U 214 U 133 C 216 U 113 U 9 212 U 171AT U 10 208AT B U 47 U 136 U		207	U
7 238 U 202 U 8 165 U 148 U 43 C 13 U 214 U 133 C 216 U 113 U 9 212 U 171AT U 10 208AT B U 47 U 136 U		100	C
7 238 U 202 U 8 165 U 148 U 43 C 13 U 214 U 133 C 216 U 113 U 9 212 U 171AT U 10 208AT B U 47 U 136 U			
202 U 8 165 U 148 U 43 C 13 U 214 U 133 C 216 U 113 U 9 212 171AT U 10 208AT B 47 U 136 U	7	238	U
8 165 U 148 U 43 C 13 U 214 U 133 C 216 U 113 U 9 212 U 171AT U 10 208AT B U 136 U 132 C		202	U
148 U 148 U 43 C 13 U 214 U 133 C 216 U 113 U 9 212 171AT U 10 208AT B 47 U 136 U 136 U	8	165	U
43 C 13 U 214 U 133 C 216 U 113 U 9 212 171AT U 10 208AT B 47 U 136 U		148	U
13 U 214 U 133 C 216 U 113 U 9 212 U 171AT U 10 208AT B U 47 U 136 U		43	C
214 U 133 C 216 U 113 U 9 212 10 208AT B 47 U 136 U		13	U
133 C 216 U 113 U 9 212 U 171AT U 10 208AT B U 47 U 136 U		214	U
216 U 113 U 9 212 U 171AT U 10 208AT B U 47 U 136 U 132 C		133	C
113 U 9 212 U 171AT U 10 208AT B U 47 U 136 U 122 C		216	U
9 212 U 171AT U 10 208AT B U 47 U 136 U		113	U
9 212 U 171AT U 10 208AT B U 47 U 136 U 122 C	-	0.6.5	
1/1A1 U 10 208AT B U 47 U 136 U 122 C	9	212	<u> </u>
10 208AT B U 47 U 136 U		171AT	U
47 U 136 U	10	208AT B	U
136 U		47	Ŭ
100 C		136	Ũ
122 L		122	C
86AT C		86AT	C

11	70	С
	61	C
	206	
	200	0
	223	L
12	126	U
.2	373	<u> </u>
	970	
	100	0
	100	U
	110	U
	198	С
10	226	C
13	230	C
	1/2	C
	183AT	U
	215	С
	110	C
14	112	C
	192	C
15	405	[]
13	226	0
	250	C
	352	C
	231	U
	368	С
	89	С
	205	U
16	201	С
	243	U
	10.	
17	184	C
	181	U
10	20	C
18	39	C
	195A1	L
10	170	11
13	350	<u> </u>
	557	L
20	106	U
	400	C
	323	C C
	24	C
	24	
	208AT A	U
21	237	U
	370	C C
	161	
	101	U
22	17	C
	116	
	120	0 C
	107	
	384	U
	217	U
าา	211 D	C
23	211.8	C
	199	C

Table 6

Aligment statistics of the two MP libraries against the three Newbler assemblies.

Dataset / Reads	Total reads	Filtered	(%)	Remaining	Aligned	(%)	Unique	(%)
XL-2011								
1.5 - 3.0 kb For	68,876,674	9,868,642	14%	59,008,032	40,270,376	58%	38,381,784	95%
1.5 - 3.0 kb Rev	68,881,266	11,373,759	17%	57,507,508	42,859,202	62%	40,893,142	95%
3.0 - 5.0 kb For	76,457,240	9,558,954	13%	66,898,286	45,894,168	0%	44,229,271	6%
3.0 - 5.0 kb Rev	76,692,245	8,933,333	12%	67,758,912	51,669,558	67%	49,949,338	97%
TITANIUM-2009								
1.5 - 3.0 kb For	68,399,694	13,364,758	20%	55,034,936	35,694,271	52%	34,014,883	95%
1.5 - 3.0 kb Rev	68,876,674	13,217,262	19%	55,659,412	38,529,736	56%	36,594,619	95%
3.0 - 5.0 kb For	74,749,807	13,348,884	18%	61,400,924	40,584,897	54%	39,163,389	6%
3.0 - 5.0 kb Rev	74,932,512	10,534,613	14%	64,397,899	46,326,028	62%	44,819,323	97%
BOTH								
1.5 - 3.0 kb For	68,876,674	9,868,642	14%	59,008,032	40,914,908	59%	38,998,161	95%
1.5 - 3.0 kb Rev	68,399,694	13,847,508	20%	54,552,186	40,480,384	59%	38,447,298	95%
3.0 - 5.0 kb For	74,749,807	7,699,419	10%	67,050,388	47,402,218	63%	45,741,930	6%
3.0 - 5.0 kb Rev	74,932,512	8,016,680	11%	66,915,832	52,529,133	70%	50,820,679	97%

Alignment statistics: SOLiD mate-paired libraries aligned against Newbler contigs (three datasets: Titanium, XL and the two combined).

Table 4

Mate-Paired reads aligned against Newbler datasets