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SOMMARIO 

 

Negli ultimi anni la ricerca biomedica si è interessata principalmente di patologie 

oncologiche, le quali causano un’elevata incidenza di morte nei Paesi sviluppati. 

Sebbene siano stati identificati numerosi target molecolari, risulta ancora necessario 

trovare nuove strategie per migliorare la chemioterapia tradizionale. 

I tumori crescono in maniera aberrante, e la loro espansione necessita dell’apporto 

di nuovi vasi sanguigni. Alcuni approcci terapeutici nella lotta contro i tumori 

prevedono l’utilizzo di farmaci antiangiogenici, tra i quali sono comprese le molecole 

che legano la tubulina (TBA). Questo studio riguarda la valutazione farmacologica  di 

molecole con struttura simile alla combretastatina (TR-644, TR-764, 3b) che sono in 

grado di legarsi alla tubulina con alta affinità. E’ stata studiata l’attività di questi 

composti sul citoscheletro di cellule endoteliali, e su processi legati all’angiogenesi, 

quali la motilità cellulare o la permeabilità. Essi alterano la struttura dei microtubuli 

e inducono un’elevata disorganizzazione dei microfilamenti di actina. Tali effetti 

danneggiano le proteine che costituiscono le adesioni focali o le giunzioni aderenti, 

compromettendo le vie di segnale di FAK/Src e VE-caderina/β-catenina. 

È stata valutata l’attività antivascolare anche in modelli in vivo, sulla membrana 

corioallantoidea di pollo (CAM) e in modelli di allotrapianto tumorale nel topo. I 

composti testati agiscono in maniera significativa sia riducendo la densità 

microvascolare, sia inibendo la crescita tumorale. Inoltre, in cellule endoteliali, il 

composto TR-764 è in grado di contrastare stimoli ipossici, che sono stati descritti 

come possibili responsabili dell’insorgenza di meccanismi di resistenza del tumore. 

Questi nuovi TBA vengono quindi proposti come potenziali agenti terapeutici per la 

monoterapia di tumori altamente vascolarizzati. 

Oltre a derivati della combretastatina è stato studiato un altro sottotipo di TBA non 

tossici, le noscapine. Una serie di derivati della noscapina è stata sintetizzata ed è 
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stato analizzato il l’effetto antimitotico su linee cellulari tumorali. Questi composti 

bloccano il ciclo cellulare in fase G2/M, e di conseguenza inducono l’apoptosi, 

attivando la via mitocondriale. Essi agiscono riorganizzando la struttura radiale dei 

microtubuli e portano alla formazione di fusi mitotici multipolari. Queste 

modificazioni stimolano l’insorgenza di danni al DNA, e l’attivazione di caspasi-9 e 

PARP, effetti già dimostrati per altri derivati della noscapina. 

Tuttavia in questo studio viene proposto un nuovo metodo molto efficace per la 

sintesi chimica dei composti (Suzuki cross-coupling). 

Infine, è stata svolta una valutazione farmacologica di una serie di piccole molecole, 

con potenziale attività inibitoria della via di segnale di Wnt/β-catenina in una linea 

cellulare di cancro al colon (HT-29). I composti più attivi inibiscono questa via di 

segnale, compromettendo l’attività del fattore di trascrizione β-catenina, inibendo i 

suoi geni target, quali la ciclina D1 e c-myc, e alterando l’attività dei suoi cofattori 

TCF-1/4. Il trattamento quindi comporta la riduzione della proliferazione cellulare 

in vitro. Gli effetti di inibizione dell’attività trascrizionale della β-catenina sono stati 

confermati anche in vivo, tramite saggi reporter di Wnt, in modelli di zebrafish. 

Gli studi farmacologici riportati in questa tesi possono essere utili per migliorare gli 

approcci terapeutici per il trattamento di alcuni tumori. 
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SUMMARY 

 

In the last years, biomedical research was focused on cancer, since it is a leading 

cause of death in the developed countries. However several molecular targets were 

identified thus making necessary to find new strategies to improve the traditional 

chemotherapy.  

Aberrant tumors grow and spread, and they require their own blood supply. Some 

approaches of anticancer therapy utilize antiangiogenic drugs, including tubulin 

binding agents (TBAs). Here we focused our studies on several combretastatin-like 

molecules (TR-644, TR-764, 3b) which bind to tubulin with high affinity. We report 

the activity of our TBAs on endothelial cell cytoskeleton, cell motility, permeability, 

and other processes involved in angiogenesis. Our compounds strongly induce 

microtubules derangement, and alter the actin microfilaments organization. These 

effects result in focal adhesions and adherens junctions impairment, by affecting 

FAK/Src and VE-cadherin/β-catenin molecular pathways. We also evaluated the 

antivascular activity in vivo both in the chick embryo chorioallantoic membrane 

(CAM) and in an allograft mouse tumor model. These compounds induce a 

significant decrease in microvascular density, and strongly inhibit the tumor growth. 

Additionally, compound TR-764 is endowed with the ability to counteract in vitro 

hypoxic stimuli on endothelial cells, which usually give rise to resistance 

mechanisms. Thus we propose our molecules as potential single agents against 

highly vascularized tumors.  

A subtype of non-toxic TBAs is represented by noscapines. Some derivatives were 

synthesized and we investigated their antimitotic effect, on cancer cell lines. They 

induce cell cycle arrest in G2/M phase and consequently they stimulate apoptosis, 

following the mitochondrial way. Radial organization of microtubules is altered and 



4 
 

multipolar spindles occur after treatment. These modifications trigger DNA damage, 

and caspase-9/PARP activation. Here we report a new effective method for chemical 

synthesis (Suzuki cross-coupling), even though the biological activity of our 

compounds is comparable to other known noscapine derivatives. 

Another part of the study concern the pharmacological evaluation of a series of 

small molecules as potential inhibitors of the Wnt/β-catenin pathway. The most 

potent compounds induce Wnt repression, in a colon cancer cell line (HT-29).  They 

impair β-catenin activity as transcription factor, by downregulating its target genes 

cyclin D1 and c-myc and altering TCF-1/4 co-factors. Therefore the treatment leads 

to a reduction of cell proliferation in vitro. Finally we confirmed the inhibitory 

effects on β-catenin transcriptional activity in vivo, in Wnt-reporter zebrafish 

models. 

All these pharmacological studies could be helpful to improve potential approaches 

for an effective anticancer therapy. 
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1.1 INTRODUCTION 

 

1.1.1 Development of vasculature 

In vertebrate development, one of the primitive processes for embryonic 

progression is the formation of circulating system, necessary to supply the growth of 

the other organs1. Starting from mesoderm, angioblasts differentiate in endothelial 

cells, giving rise to the “vasculogenesis” process. Key factors such as fibroblast 

growth factor 2 (FGF2) and bone morphogenetic protein 4 (BMP4) are involved in 

endothelial commitment, resulting in de novo blood vessels formation, which 

progressively maturate in arteries, venules and capillaries2. A second event, known 

as “angiogenesis”, includes the remodeling of primitive vessels into a mature 

vascular network, by growth, expansion and sprouting of endothelial cells. In the 

final stage, during “arteriogenesis”, pericytes or smooth muscle cells cover 

endothelial cell channels, providing the development of stable blood vessels and 

control perfusion3.  

Numerous processes and signaling pathways were described as mediators of 

vasculature development, and all of these inputs are precisely synchronized to 

produce functional blood vessels4. Particularly, growth factors and cytokines, such 

as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), tumor 

necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), the 

angiopoietins (ANG), and platelet-derived growth factor (PDGF) are direct 

contributors in the angiogenic process, and their activity is selectively regulated 

through ligand-receptor interaction systems5,6. Other mechanisms involved in 

angiogenesis regulation are the proteolysis and remodeling of the ECM, operated by 

the activity of proteolytic enzymes, such as metalloproteinases and plasmin, which 

are critical in the endothelial cells migration, the invasion into the perivascular 
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tissue, the morphological formation of luminal structures. These mechanisms are 

essential in angiogenesis regulation since the extracellular matrix is an important 

mediator for angiogenesis during development, oncogenesis and wound healing, and 

endothelial cells have been shown to require appropriate cell-matrix interactions7,8. 

The contacts to the extracellular matrix are mediated by integrins, transmembrane 

heterodimeric receptors, which transduce environmental signals to cytoskeletal 

remodeling and intracellular signaling pathways, involved in phenotypic 

modulation, cell proliferation, motility and mechanotransduction9,10. 

The signals are transduced at intracellular level and stimulate the activation of a 

plethora of signaling pathways, comprehending the Rho GTPases family, protein 

kinase C (PKC), Notch, focal adhesion kinase (FAK)/steroid receptor coactivator 

(Src)11,12,13,14,15. 

Besides the interactions between endothelial cells and the extracellular matrix, also 

cell-to-cell contacts are essential for vascular development and maturation. 

Perivascular cells, smooth muscle cells and adventitial fibroblasts are associated 

with the endothelium capillaries and contribute to stabilize vessels during the later 

stages of angiogenesis. However it has been described that they are involved in early 

events of vascular development, since they stimulate the deposition of protein of the 

extracellular matrix, or the secretion of soluble factors, such as VEGF5. 

Therefore paracrine stimuli regulate the local microenvironment, controlling also 

the development of cell polarity during lumen formation, vascular integrity and 

permeability. These processes are strictly regulated by the interaction between VE-

cadherin (vascular endothelial) and its intracellular binding partners, such as β-

catenin16,17.  

Vascular development is a highly complex process which requires the participation 

of numerous molecules, such as growth factors, cytoskeleton proteins or kinases, 

and other cell types which cooperate with endothelial cells to vessel maturation. 
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1.1.2 Physiological and pathological angiogenesis 

The development of new blood vessels from existing vasculature is a process 

relatively rare in the healthy human adult, since it occurs only in wound healing and 

during the female menstrual cycle.  

Generally, vasculogenesis and angiogenesis are processes which appear 

physiologically at embryonic stages, during mammalian development, but they are 

critical in many pathologies. Excessive or deficient angiogenesis is essential in 

different pathological conditions, such as diabetic retinopathy, arthritis, athero- 

sclerosis, psoriasis, but it is extensively investigated in human neoplasia18. 

According to Folkman and Hanahan19, the equilibrium between physiological and 

pathological conditions is regulated by a balance of several pro- and anti-angiogenic 

factors, as well the tumor progression.  

Angiogenesis is a critical phenomenon not only for tumor invasiveness, but also for 

the early events which determine tumorigenesis20. 

 

Table I. Angiogenesis-dependent diseases (adapted from Ref.21)  

Disease Symptoms 

Diabetic retinopathy Loss of vision 

Rheumatoid arthritis Pain and immobility from destroyed cartilage 

Atherosclerotic plaques Chest pain, dyspnoea 

Endometriosis Abdominal pain from intraperitoneal bleeding 

Crohn’s disease Intestinal bleeding 

Psoriasis Persistent severe  

Uterine fibroids Vaginal bleeding, abdominal pain 

Benign prostatic hypertrophy Urinary retention 

Cancer Bleeding, thrombosis, anaemia, abdominal ascites, 

bone pain, seizures from cerebral oedema around a 

tumor and others 
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1.1.3 Tumor angiogenesis 

Tumor angiogenesis was deeply studied, and it can occur following different 

mechanisms. Most tumors start growing in a dormant form, as avascular nodules, 

until cancer cells keep a balance between proliferation and apoptotic stimuli. 

Secondly, to ensure the tumor growth, the “angiogenic switch” has to occur, and the 

unvascularized tumor mass can expand in a hypervascularized proliferating tumor. 

Pro-angiogenic molecules are stimulated and prevail on antiangiogenic factors, 

promoting the development of tumor blood vessels22.  

Tumor vessels differ from normal blood vasculature in terms of structure, 

permeability and stability. They are not characterized by the classical layout 

arteries-capillaries-veins, but they can have dead ends. The organization is highly 

chaotic and vessels are tortuous, leaky and haemorrhagic, rich in proangiogenic 

factors like VEGF. The blood flow is irregular and oscillating, leading to 

dysfunctional capillaries. Sprouting of new vessel is continuously stimulated and 

uncontrolled23. 

 

Several mechanisms were identified as determiner of the tumor vasculature: 

angiogenic sprouting, vasculogenesis, intussusception, vessel co-option, vascular 

mimicry, tumor stem cell to endothelial cell differentiation24. 

Sprouting of new vessels from preexisting ones involves the loss of junctions 

between endothelial cells, degradation of basement membrane, and migration of 

endothelial cells. In particular, migrating cells which respond to angiogenic stimuli 

are “tip cells”, while “stalk cells” constitute the wall of blood vessels and proliferate 

in order to expand the tube1. This process is strictly mediated by VEGF and its 

receptors, and by the Delta/Notch pathway15,25. 
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Figure 1. Molecules involved in sprouting angiogenesis (adapted from Ref.26) 

 

 

Vasculogenesis is the formation of blood vessels from circulating cells. It is a de 

novo production of endothelial cells, derived from their progenitor cells, the 

angioblasts, which are stimulated to migrate from bone marrow to peripheral blood, 

where they differentiate to form new blood vessels. The term angiogenesis is strictly 

defined as the development of blood vessels from pre-existing ones, whereas 

vasculogenesis is used when there are no pre-existing vessels. Neverthenless, 

vasculogenesis can occur, and then vessels are extended by angiogenesis27. 

Intussusception is a more rapid and energically more economic way to generate 

new capillaries. It does not require the immediate proliferation of endothelial cells, 

but rather the rearrangement of the structure of the pre-existing vessels. Opposing 

microvascular walls protrude into the capillary lumen, creating a contact between 

endothelial cells. A perforation of the endothelial bilayer occurs, and an interstitial 

core is formed. To expand the vessel myoblasts and perycites invade the lumen, 

leading to a deposition of collagen fibrils. The new capillaries result less leaky than 

the vessels formed by other mechanisms28,29. Sprouting and intussusception can be 
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complementary and sequential processes in angiogenesis, but they can occur 

autonomously. Moreover it has been reported that muscle capillary growth results 

after an increase in blood flow through intraluminal splitting, and in absence of 

sprouting30. 

Vessel co-option, firstly described in brain, is the tumor cells migration along the 

preexisting vessels, in order to use them31. It occurs tipically in highly vascularized 

tissues, and it represents a mechanism of microcirculation provided lacking 

sprouting or angiogenesis. Tumors can grow and metastasize without a real 

formation of blood vessels, but by hijacking the existing vasculature. This 

characteristic makes vasculature hidden to therapy and could explain resistance 

mechanisms of the antiangiogenic drugs32. 

Vascular mimicry is a mechanism of angiogenesis independent from endothelial 

cells. It is described as the differentiation of highly aggressive tumor cells into 

multiple cellular phenotypes, which form a vascular channel for blood circulation. 

Vascular-like structured are formed by tumor cells and laminin, and they contain 

plasma and red blood cells. Vascular mimicry is associated to an increase risk of 

metastasis and poor prognosis, even if its occurrence in patients is relatively rare. 

It has been described that VE-cadherin is essential in vascular mimicry, and other 

factors involved in this phenomenon are FAK, phosphoinositide 3-kinase (PI3K), 

Notch and hypoxia-inducible factor-1α (HIF-1α). On the other hand, bFGF and VEGF 

were found to be unable to induce these vascular-like structure33. 

Finally, tumor stem cells can differentiate to endothelial cells, and participate to 

the developing of tumor vasculature. Thanks to their ability to undergo asymmetric 

division, cancer stem cells can program themselves to assume several phenotypes, 

among which they can be committed to the endothelial lineage. Consequently, these 

cells can be recruited for tumor vascularization34. 

 

http://en.wikipedia.org/wiki/Phosphoinositide_3-kinase
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Figure 2. Mechanisms of vessel formation (adapted from Ref.2) 

 

 

1.1.4 Hypoxia and tumor angiogenesis 

Hypoxic microenvironment is necessary to regulate homeostatic equilibrium 

between vascular oxygen supply and metabolic demand, both in physiological and in 

pathological conditions35,36.  

HIF is the key molecule regulating hypoxic-mediated processes, and it was found 

upregulated in many cancers37. Aberrant tumor growth requires additional oxygen 

supply, and HIF pathway is activated in order to stimulate neovascularization. HIF 

system activates multiple signaling pathways regulating both angiogenesis and 
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tumorigenesis, as well as the progression of tumors to malignancy38. It induces and 

in turn is amplified by a wide range of growth factors and oncogenic stimuli, and 

many HIF target genes belong to the angiogenic pathway.  These evidence support 

the HIF system as an antiangiogenic and anticancer target.  

Table II summarized the main molecules involved in angiogenesis, directly regulated 

by hypoxia. 

 

Table II. Action of hypoxia on some molecules involved in angiogenesis (adapted 

from Ref.36) 

Steps in angiogenesis  Stimulatory factors Inhibitory factors 

Vasodilation 

Increased vascular permeability 

Nitric oxide synthases 

VEGF, Flt-1, Kdr 

Angiopoietin-1  

Tie-2  

Extravasation of plasma proteins  

Endothelial sprouting 

VEGF 

Angiopoietin-2, Tie-2  

Angiopoietin-1  

Tie-2  

Degradation of extracellular 

matrix 

Balance between MMPs 

and TIMPs  

Collagen prolyl-4-

hydroxylase 

TIMP-1 

PAI-1 

Liberation of growth factors 

(including VEGF, IGF-1and bFGF) 

uPA receptor 

 

Thrombospondin-1 

PAI-1 

Endothelial cell proliferation & 

migration 

Interplay between 

VEGFs, angiopoietins 

and FGFs, MCP-1, PDGF  

 

Pericyte and smooth muscle 

recruitment  

Endothelial assembly and lumen 

acquisition 

PDGF, VEGF 

Angiopoietin-1  

Tie-2 

Integrins 

VEGF 

Thrombospondin-1 

Stabilization of nascent vessels 

Maintenance, differentiation and 

remodeling PAI-1 

PAI-1 

Angiopoietin-1 

Tie-2 

Angiopoietin-2 

Tie-2 
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1.1.5 Antiangiogenic therapy 

Since tumor growth requires blood vessel supply, targeting angiogenesis could be a 

strategy to optimize cancer therapy. Most approaches are based on combination 

treatments, focused on the inhibition both of tumor mass and its vasculature39. 

The VEGF signaling system, constituted by ligands, receptors and intracellular 

downstream molecules, is the most common target used in antiangiogenic therapy, 

together with other proangiogenic factors (i.e. FGFs, PDGFs). 

Several methods such as antibodies, soluble receptors, aptamers or peptides which 

bind the ligand, are used and tested to specifically counteract the angiogenic stimuli 

of tumors. Moreover, the receptors can be masked by decoy molecules or key 

components of the intracellular signalling cascades can be inhibited by small 

lipophilic molecules that cross the plasma membrane of the cells40. A list of drugs 

approved by FDA in March 2013 is reported in Table III. 

 

Table III. List of drugs approved by FDA for anti-angiogenic cancer treatment - 

March 2013 (adapted from Ref.40) 

Name Target Type of cancer 

Bevacizumab VEGF-A 

 

Metastatic colorectal cancer  

Metastatic non-squamous  

Metastatic breast cancer  

Recurrent GBM  

Metastatic RCC (with IFN-a) 

Aflibercept VEGF-A and partially for 

PlGF 

Metastatic colorectal cancer (second-

line) 

Axitinib VEGFRs, PDGFR, and cKIT Advanced renal cell carcinoma 

Pazopanib 

 

TKIs 

 

Renal cell carcinoma Advanced soft 

tissue sarcoma that has received 

chemotherapy 
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Regorafenib VEGFRs, PDGFR, FGFRs, 

Tie2, DDR2, Trk2A, Eph2A, 

RAF-1, BRAF, BRAFV600E, 

SAPK2, PTK5, and Abl 

Metastatic colorectal cancer  

(refractory disease) 

 

Sorafenib VEGFRs, PDGFRs, Raf, KIT Advanced renal cell carcinoma  

Unresectable hepatocellular 

carcinoma 

Sunitinib VEGFRs, PDGFs. KIT, RET, 

CSF-1R and flt3 

 

Gastrointestinal stromal tumour  

Advanced renal cell carcinoma  

Unresectable locally advanced or 

metastatic pancreatic 

neuroendocrine tumours 

Vandetanib VEGFRs, EGFRs and RET Unresectable locally advanced or 

metastatic medullary thyroid cancer 

Everolimus mTOR 

 

Advanced HER2-negative Breast 

Cancer Progressive Neuroendocrine 

Tumours of Pancreatic Origin (PNET) 

Subependymal Giant Cell 

Astrocytoma (SEGA) Advanced renal 

cell carcinoma 

Temsirolimus mTOR Advanced renal cell carcinoma 

 

FDA approved drugs include also small molecules with low specificity. Tyrosine 

kinase inhibitors (TKIs) are not directed to a single protein, but they target multiple 

pathways and several receptors. They act at intracellular levels, interfering with 

receptors kinase activity, and blocking the signal transductions necessary for the 

pro-angiogenic effect. TKIs are represented by compounds that bind to the ATP 

binding site of the tyrosine kinase receptor, preventing its activation, or by 

antibodies that block the contact between the growth factors and their receptors41. 
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Table IV. Examples of Kinase Inhibitors (adapted from Ref.41) 

INHIBITOR OTHER NAMES INHIBITS 

Axitinib AG013736  VEGFR, PDGFR, and c-kit 

Canertinib CI-1033 EGFR, HER2, HER3, and HER4 

Cediranib Recentin, AZD2171 VEGFR, PDGFR- , and c-kit 

Dasatinib Sprycel, BMS- 354825 Abl, Src, and Tec 

Erlotinib Tarceva, OSI-774 EGFR/HER1  

Gefitinib Iressa EGFR/HER1 

Imatinib  Gleevec, STI571 Abl, PDGFR, and c-kit 

Lapatinib Tykerb, GW-572016 EGFR and HER2 

Leflunomide Arava, SU101 PDGFR (EGFR and FGFR) 

Motesanib AMG 706 VEGFR, PDGFR, and c-kit 

Neratinib HKI-272 EGFR and HER2 

Nilotinib Tasigna Abl, PDGFR, and c-kit 

Pazopanib Armala, GW786034 VEGFR, PDGFR and c-kit 

Regorafenib BAY 73-4506 VEGFR-2 and Tie-2 

SemAxinib SU5416 VEGFR 

Sorafenib 

 

Nexavar, BAY 43- 9006 Raf, VEGFR-2 and -3, PDGFR, and 

c-kit 

Sunitinib 

 

Sutent, SU11248 VEGFR, PDGFR, Flt-3, c-kit, RET, 

and CSF-1R 

Tandutinab MLN518, CT53518 PDGFR, Flt-3, and c-kit 

Toceranib Zactima, ZD6474  

Vandetanib PTK787 VEGFR-2, PDGFR- , EGFR, and RET 

Vatalanib  VEGFR, PDGFR- , and c-kit 

 

In addition to VEGF, FGFs, PDGFs pathways, angiopoietins, epidermal growth factor 

receptor (EGFR), phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of 

rapamycin (mTOR), mitogen-activated protein kinases (MAPK), Delta/Notch and 

http://en.wikipedia.org/wiki/Phosphoinositide_3-kinase
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HIF signaling pathways were deeply studied in order to identify specific targets for 

antiangiogenic therapy42. 

Since angiogenesis is a process regulated by multiple signaling pathways, more wide 

approaches are still optimized, in order to target the tumor vasculature at more 

levels. Nevertheless, by targeting multiple pathways, resistance mechanisms and 

potential side effects can occur, like gastrointestinal perforations, impaired wound 

healing, bleeding, hypertension, proteinuria, and thrombosis41. 

All these drugs and others were simply categorized by D. Siemann et al. in two 

different classes: angiogenic inhibitors (AIs), or vascular disrupting agents (VDAs). 

 AIs are cytostatic molecules which prevent the formation of new blood vessels, 

while VDAs are cytotoxic and target the pre-existing tumor vasculature43. 

 

          

Figure 3. Examples of vascular-targeted therapy (adapted from Ref.43) 
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Treatment with these agents shows different responses. AIs therapy results in vessel 

normalization, whereas VDAs which disrupt the vasculature. AIs allow efficient 

delivery of chemotherapeutic drugs and increased oxygenation, which aid 

radiotherapy. VDAs therapy leads to the formation of extensive central necrosis, and 

it leaves a rim of surviving viable cells targetable with standard treatments23,44. 

 

 

 

Figure 4. Preclinical effects of AIs and VDAs on abnormal tumor blood vessels 

(adapted from Ref.23) 

 

 

1.1.6 VDA: Vascular Disrupting Agents  

VDAs are ligand-directed or small molecules which selectively target pre-existing 

tumor vasculature. They rapidly shutdown the blood flow of tumor tissue, causing 

ischaemia and secondary tumor cell death. 

It has been demonstrated that they have insufficient activity as single agents. Several 

resistance mechanisms occur, such as the resistance of the tumor rim cells, while 

promising results has been described in combination with other chemotherapeutics. 
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Moreover, their efficacy is dependent on tumor type and a moderate variability in 

patients was observed45,46. The susceptibility to VDAs treatment is primarily 

dependent on fragility, instability and cell-to-cell endothelial junctions defectiveness 

of tumor blood vessels. Secondly, the high proliferative index of tumor endothelial 

cells make them more sensitive to VDAs disruption. Finally, tumors have less 

pericytes and mural cells in contact with endothelial cells, compromising the 

vascular stability47. 

Ligand-specific VDAs are represented by antibodies, peptides or growth factors 

which selectively bind to the endothelium. They are conjugated with a toxin or a 

pro-coagulant factor which induce endothelial cell death. 

Concerning small molecule VDAs, they can be divided in two essential categories: 

flavonoids and tubulin binding agents (TBAs)48,49. Flavonoids cause partial 

derangement of the actin cytoskeleton, DNA strands breaks and apoptosis of 

endothelial cells, with macrophages activation and cytokines release50. TBAs induce 

tubulin depolymerisation and dysorganisation of both tubulin and actin 

cytoskeleton, due to their binding to different sites of tubulin. 

 

1.1.7 Tubulin Binding Agents (TBAs) as antiangiogenic drugs 

Many conventional chemotherapeutics actually have unknown antiangiogenic 

activity, such as tyrosine kinase inhibitors, hormonal ablation therapies, and 

cytotoxic drugs41. 

TBAs were originally used as antimitotics against cancer, but antivascular activities 

were reported. 

Binding to tubulin, they can promote microtubules polymerization and stabilization 

(i.e. taxanes, epothilones), or microtubules depolymerization and instability (i.e. 

colchicine, Vinca alkaloids, combretastatins)51,52.  
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The cytoskeleton organization of endothelial cells can be directly alterated by these 

agents with consequent changes in endothelial shape and vessel blockage, reduction 

in blood flow and disruption of the endothelial cell layer. The basement membrane 

is exposed, triggering the coagulation cascade, and increase in vessel permeability50. 

On endothelial cells, at low concentrations, TBAs produce subtle effects on 

microtubules dynamics, preventing their contact to transient subcellular assemblies, 

such as focal adhesion and adherens junctions. In that way, TBAs inhibit endothelial 

cell adhesion, motility and cell-to-cell interactions, acting on specific signaling 

pathways51.  

Moreover, they interfere with the normal organization of actin in stress fibers, 

causing the loss of cell polarity and they inhibit cell contractility, due to an increased 

myosin light chain phosphorylation, preventing the formation of cell protrusions 

such as lamellipodia. 

Cell shape is impaired and, in some cases, it assumes a “blebbing” and rounded 

morphology53,54. 

Migration dynamics and contacts between lamellipodia and extracellular matrix are 

processes highly regulated by integrin-dependent anchoring to the extracellular 

matrix, and by focal adhesions, transiently assembled at the cell surface, to link 

plasma membrane to the intracellular cytoskeleton.  

TBAs give rise not only to a defective or reduced focal adhesion assembly, but also 

disrupt adherens junctions formation, respectively acting on FAK and VE-cadherin 

signaling pathways55,11. 

Several proteins, like VE-cadherin, p120-catenin, β-catenins, plakoglobin, vinculin, 

functionally contribute to form adherens junctions at cell surface, which provide a 

direct connection to the actin cytoskeleton, and they are principle mediators of 

endothelial cell engagement with other endothelial cells56,57. These homotypic 
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interactions, critical for angiogenic sprouting and for maintenance of vascular 

integrity, are disrupted by TBAs58.  

Finally, all these molecules are interconnected to VEGF receptors, simplifying the 

integration of multiple extracellular signals, necessary for the response to pro-

angiogenic stimuli, and ultimately prevented by the action of TBAs51. 

 

 

Figure 5. Effects of TBAs on endothelial cells (adapted from Ref.51) 
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Among the different TBAs, we are particularly interested on combretastatin. 

Combretastatin-A4 (CA-4), isolated from the African tree Combretum caffrum, is 

structurally related to colchicine, which is too toxic for clinical use. CA-4 emerged as 

a promising VDA, and its structure was optimized in order to obtain a soluble pro-

drug, CA-4P46. Its activity was deeply studied and the mechanism of action was 

investigated in vitro, as well as the antivascular effect in various tumor models was 

described59,60,61. 

Nevertheless several CA-4 analogues were synthesized with the aim to increase the 

anticancer and antiangiogenic activity, reduce the side effects and overcome 

resistance mechanisms62,63. 

 

 

Figure 6. Endothelial morphological and signaling responses to CA-4P, associated 

with a rise in permeability (adapted from Ref.47) 
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1.1.8 Resistance to antiangiogenic therapy 

Angiogenesis is a very dynamic process, apt to continuous modifications and 

adaptive mechanisms. These compensatory effects gave rise to resistance 

mechanisms to the anti-angiogenic therapies, explaining the numerous 

unsatisfactory results of the last clinical trials with antiangiogenic drugs. New 

approaches should be directed to arrest the communications between vascular 

components and cells which gradually change the tumor microenvironment. It has 

been described that resistance phenomena are due to different mechanisms. The 

redundance of angiogenic factors (VEGF, FGFs, PDGFs, TNF-α), mostly related to 

hypoxia, is one of the cause of resistance. Secondly, as described before, several 

mechanisms can induce neovascularization and angiogenesis, so it is hard to arrest 

all of the involved signaling pathways64. Both stromal cells, which secrete pro-

angiogenic factors and stimulate paracrinally tumor cells to grow, and perycites, 

involved in vessel maturation and regulation of perfusion, are implicated in 

resistance mechanisms. Moreover, genetic instability and multiple mutations were 

found in tumor endothelial cells, particularly in glioblastomas65. These genomic 

modifications originated in endothelial cells, derived from cancer stem cell abnormal 

proliferation and differentiation and are associated to resistance to the 

antiangiogenc therapies40. 
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1.2. AIM OF THE STUDY 

 

The fight against cancer is one the main research focus of the last century, because of 

its high incidence, aggressiveness and inability to control. 

Aberrant tumor growth requires its own blood supply, so inhibiting angiogenesis 

could be an effective strategy to arrest tumor development and progression.  

Several strategies were studied to inhibit the formation of tumor vessels, and one of 

them is the use of tubulin binding agents. These drugs, binding to tubulin, cause 

cytoskeleton alterations and are able to impair endothelial cells functionality. 

This study is focused on three molecules, TR-644, TR-764 and 3b which have 

strong antimitotic activity on hyperproliferating cancer cells.  

TR-644 (2-amino-4-(3’,4’,5’-trime-thoxyphenyl)-5-aryl thiazole) is a derivative of 

combretastatin-A4, while TR-764 (2-aryl-4-amino-5-(3′,4′,5′-trimethoxybenzoyl) 

thiazole) and 3b (4-amino-2-(thiophen-3-yl)thiazol-5-yl)(3,4,5-trimethoxyphenyl)-

methanone) are new molecules. 

All of them were syntesized in order to improve CA-4 effects as anticancer and 

antivascular agent, and to overcome resistance mechanisms and side effects. 

We have investigated the role and the efficacy of TR-644, TR-764, 3b as vascular 

disrupting agents, and to examine in depth their mechanism of action as regards 

their antiangiogenic activity. 

Since an high anti-tumoral activity was already reported, our aim is to demonstrated their 

antivascular effects, thus to propose these molecules as drugs which target both the 

tumor vasculature and the tumor mass. 
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Figure 1. Chemical structures of compounds. 
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1.3. RESULTS 
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1.3.1.1. Abstract 

 

TR-644 is a novel combretastatin (CA-4) analogue endowed with potent 

microtubule depolymerizing activity superior to that of the lead compound and it 

also has high affinity to colchicines binding site of tubulin. We tested TR-644 anti-

angiogenic effects in human umbilical endothelial cells (HUVEC). It showed no 

significant effects on the growth of HUVEC cells at concentrations below 1000nM, 

but at much lower concentrations (10-100nM) it induced inhibition of capillary tube 

formation, inhibition of endothelial cell migration and affected endothelial cell 

morphology as demonstrated by the disruption of the microtubule network. TR-644 

also increased permeability of HUVEC cells in a time dependent manner.  

The molecular mechanism for the anti-vascular activity of TR-644 was investigated 

in detail. TR-644 caused G2/M arrest in endothelial cells and this effect correlated 

with downregulation of the expression of Cdc25C and Cdc2Tyr15. Moreover TR-644 

inhibited VEGF-induced phosphorylation of VE-cadherin but did not prevent the 

VEGF-induced phosphorylation of FAK. In chick chorioallantoic membrane in vivo 

assay, TR-644 (1 pmol/egg) efficiently counteracted the strong angiogenic response 

induced by FGF2. Also CA-4, used as reference compound, caused an antagonistic 

effect, but in contrast, it induced per se, a remarkable angiogenic response probably 

due to an inflammatory reaction in the site of treatment. In a mice allogenic tumor 

model, immunohistochemical staining of tumors with anti-CD31 antibody showed 

that TR-644 significantly reduced the number of vessel, after 24hours from the 

administration of a single dose (50mg/Kg). 
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1.3.1.2. Introduction 

 

The microtubule system of eukaryotic cells is a critical element in a variety of 

fundamental cellular processes, such as cell division, formation and maintenance of 

cell shape, regulation of motility, cell signalling, secretion and intracellular 

transport67. Among the various strategies developed to block mitosis, microtubules 

represent an attractive target for numerous small natural and synthetic molecules 

that inhibit the formation of the mitotic spindle67,68. Besides the ability to inhibit 

tumor cell proliferation, microtubule-targeting drugs have also been shown to have 

activity against the vasculature in tumors51,61. Since the tumor vasculature differs 

from that of normal tissues, in recent years, the abnormal structure and function of 

tumor blood vessels have been studied in the attempt to attack and destroy solid 

tumors. These vascular abnormalities consist of temporary occlusions, a rapidly 

dividing endothelial population, blind ends, leaky vessels, and a reduction in blood 

vessel coverage by pericytes. In addition, the structure of the tumor blood vessel 

wall is also abnormal, which is evident by uneven vessel diameter and defects in 

their endothelial lining, as well as the presence of endothelial cells undergoing 

apoptosis. In contrast, normal vasculature is organized with vessels close enough to 

each other to ensure adequate nutrient and oxygen supply to all cells. Tumor-

vascular disrupting agents (VDAs) are a new class of anti-cancer drugs that show 

strong promise in treating a variety of solid tumors51. In contrast to antiangiogenic 

therapy, which inhibits the outgrowth of new blood vessels, VDAs treatments 

selectively attack the existing tumor vasculature. Several low-molecular-weight 

VDAs are currently in clinical trials or undergoing preclinical testing. One of the 

most important antimitotic agents and vascular disrupting agents (VDA) is 

combretastatin A-4 (CA-4, Figure 1). CA-4, isolated from the bark of the South 

African tree Combretum caffrum is one of the well-known natural molecules that 
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strongly inhibits tubulin polymerization by binding to the colchicine binding site. 

CA-4 shows potent cytotoxicity against a wide variety of human cancer cell lines, 

including those displaying multidrug resistant. A water-soluble disodium phosphate 

derivative of CA-4 (named CA-4P) has shown promising results in human cancer 

clinical trials. The proposed mechanism of CA-4P for rapid tumor vascular 

shutdown assumes that the compound induces changes in endothelial-cell shape, 

plasma membrane blebbing, and increases the permeability of cell monolayers. 

These changes in endothelial cells result in increases in vascular resistance to blood 

flow and increases vascular permeability and in vasoconstriction, subsequently 

leading to vascular shutdown. CA-4 has tumor vascular damaging effects at well-

tolerated doses of CA-4P in animal models69. Recently, CA-4P has received orphan 

drug designation for the treatment of anaplastic thyroid cancer, medullary thyroid 

cancer, and stage IV papillary or follicular thyroid cancer. Despite its efficacy CA-4P 

presents some side-effects in particular tumor pain. 

Therefore, many synthetic analogues were synthesized making structural 

modification of the CA-4 in order to develop new compounds with more activity and 

fewer adverse reactions. Previous structure-activity relationship studies 

demonstrated that both the 3’,4’,5’-trimethoxy substitution pattern on the A-ring 

and the cis-olefin configuration at the bridge were fundamental requirements for 

optimal activity, while B-ring structural modifications were tolerated by the target70. 

However, the cis-configuration of CA-4 is prone to isomerize to the 

thermodynamically more stable trans-form during storage and metabolism, 

resulting in a dramatic decrease in its activity71. Thus, to retain the appropriate 

geometry of the two adjacent aryl groups required for a potent bioactivity, 

chemically stable cis-restricted derivatives of CA-4 were obtained by incorporating 

the olefinic double bond with vicinal diaryl-substituted five-member aromatic 

heterocyclic rings, such as pyrazole72, imidazole73, thiazole74, furazan (1,2,5-
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oxadiazole)75, isoxazole76, oxazole72, 1,2,3-thiadiazole77, triazole78 and 1,2,3,4-

tetrazole74. We recently synthesized79 a new series of 2-amino-4-(3’,4’,5’-

trimethoxyphenyl)-5-aryl thiazoles in which we identified compound TR-644 as the 

most active compound (Figure 1). It has been shown that this compound is endowed 

with high antiproliferative effects with IC50 values in the nanomolar range in 

different cancer cell lines. Here we show that this compound is endowed with 

pronounced in vitro antivascular effects at sub-toxic concentrations and appears to 

disrupt the vasculature in vivo both in tumor tissue and in the chick chorioallantoic 

membrane, without any evident toxic effect. 
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1.3.1.3. Results 

 

TR-644 inhibits HUVEC migration and tube formation 

To investigate the effects of TR-644 on endothelial cell migration, we scraped 

confluent monolayers of HUVEC to clear space for motile cells to move into. As 

shown in Figure 2 (panels A and B) we observed that TR-644 inhibited HUVEC 

migration in a concentration and time-dependent manner. For comparison, we 

studied the effects of CA-4 in the same experimental conditions. CA-4 treatment 

displayed similar effects, with a more pronounced inhibition of cell migration at the 

concentration of 5nM (Figure 2, panel C) at which TR-644 is barely effective. 
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Figure 2. TR-644 inhibits HUVEC migration. Panel A. Confluent HUVEC monolayer 

were scratch wounded and the cells were treated with different concentration of 
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TR-644 or CA-4 and at different times cells were photographed, 40x magnification; 

Bar=10µm. The dotted lines define the areas lacking cells. Panels B and C. Graphs 

show the quantitative effect of TR-644 (B) and CA-4 (C) chosen as reference 

compound. Migration was quantified by measuring the gap closure at the indicated 

times as showed in panel A. Data were represented as mean ± S.E.M. of three 

independent experiments. *p<0.01 vs control. 

 

 

We also tested the effects of TR-644 on tubules formation assay, a well known in 

vitro angiogenesis test. After 18hours from cells seeding on Matrigel, HUVEC form a 

rich meshwork of branching capillary-like tubules with multicentric junctions. In the 

presence of TR-644, at different concentration and after 3hours of incubation, we 

observed that the capillary-like tubes were interrupted (1-10nM) and at higher 

concentration (100nM) most cells were spherical either isolated or aggregated in 

small clumps (Figure 3, panel A). These effects started to occur after 1hour of 

incubation and further increased after 6hours of incubation (Data not shown). 

Quantitative image analysis showed that TR-644 (10-100nM), significantly 

decreased both dimensional (percent of area covered by HUVECs, total length per 

field) and topological parameters (number of meshes per field, and number of 

branching points) of the capillary-like network (Figure 3, panel B). Similar results 

were obtained with CA-4 (Figure 3, panel B). 

Moreover we evaluated the inhibitory effects of TR-644 on tube formation. In this 

case, drugs were added simultaneously at the time of seeding. After 3hours of 

incubation we found a strong inhibition of capillary formation in comparison to 

untreated cells, in which we observed the polygonal structures (mesh) already 

formed (Figure 3, panel C). It is interesting to note that in this case the effect of TR-

644 was evident and significant also at the lowest concentration used (1nM) and 

was higher than that of CA-4 (Figure 3, panel D), suggesting that TR-644 strongly 

interfere with the ability of HUVEC to form capillary-like structures in vitro. 
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Figure 3. Inhibition of endothelial cell capillary-like tubules formation by TR-644. 

Tubules formation on Matrigel was carried out as described in Materials and 

methods. Panel A. Representative pictures (10x magnification; Bar=10µm) of 

preformed capillary-like tubules treated with increasing concentration of TR-644 

for 3hours. Panel B quantitative analysis of the effects of TR-644 and CA-4 on the 

dimensional and topological parameters of the preformed capillary-like tubules 

network. Data were represented as mean ± S.E.M. of three independent experiments. 

Panel C Representative pictures (10x magnification; Bar=10µm) of HUVEC in 
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Matrigel treated with increasing concentration of TR-644 for 3hours. Panel D 

quantitative analysis of the effects of TR-644 and CA-4 on the dimensional and 

topological parameters of the capillary-like tubules network. Data were represented 

as mean ± S.E.M. of three independent experiments. 

 

 

TR-644 increases permeability of the vascular endothelial monolayer 

Changes in endothelial cell monolayer permeability also provide an in vitro model of 

tumor vascular disruption. The increase in permeability induced by the tested 

compounds, was evaluated in 24-well cell culture, where a confluent HUVEC 

monolayer was formed and monitoring the fluorescent signal of FITC-dextran in the 

lower chamber as a function of time. As shown in Figure 4, a significant increase in 

endothelial cell permeability was observed when the confluent monolayers were 

treated with 10 and 100nM TR-644 (panel A) whereas CA-4 (panel B) displayed a 

similar profile. 
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Figure 4. TR-644 increased the permeability of an endothelial cell layer. HUVEC 

cells were seeded onto 0.1% collagen-coated 24-well insert wells in complete 

medium until a confluent monolayer was formed. They were then treated with the 

indicated concentrations of TR-644 (Panel A) or CA-4 (Panel B). Simultaneously 

FITC-dextran was also added and its passage into the lower chamber was monitored 

at the indicated times. Data were represented as mean ± S.E.M. of three independent 

experiments. 

 

 

TR-644 is not cytotoxic at the concentrations that induce vascular effects 

To evaluate if the inhibition of cell migration and tube formation are due to a 

cytotoxic action of the drug we analyzed cell proliferation at different times of 

incubation by trypan blue count. 

As shown in Figure 5 (panel A), with TR-644 we observed a modest reduction of the 

number of cells occurring only at longer times of incubation (48-72hours). At lower 

concentration (10nM), after 24hours of incubation, no reduction of the viability was 

found while at 48 and 72hours of incubation the viability decrease to 38% and 43% 

respectively. For comparison CA-4 was also evaluated (Figure 5, panel B) and we 

observed a marked reduction of cell number also at the concentration of 10nM for 

which we note a reduction of about 45% after 24hours incubation relative to 

untreated cells. We also carried out a clonogenic assay in which we observed that 
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TR-644 had no effect at concentration lower than 10nM in comparison to CA-4 

which was more toxic than TR-644 of an order of magnitude (Figure 5, Panel C). 

To further confirm that TR-644 is not cytotoxic for endothelial cells we performed 

flow cytometric Annexin-V/PI assay of HUVEC cells. As showed in Figure 5 (panel D), 

we observed only a slight reduction of the cell viability at time points in which, as 

described above, we observed antivascular effects of the drug. Even at longer times 

of incubation (24hours) and highest concentration (100nM) no sign of apoptosis 

were detected. 
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Figure 5. Effects of TR-644 on HUVEC cells viability. HUVEC were plated on onto 

0.1% collagen-coated 24-wells and then treated with the indicated concentrations of 

TR-644 (panel A) or CA-4 (panel B). At different times (0, 24, 48 and 72hours) cells 

were trypsinized and viability was determined by trypan blue exclusion assay. Data 

were represented as mean ± S.E.M. of three independent experiments. Panel C. 

Representative dishes and quantitative data on the inhibitory effects of TR-644 and 

CA-4 on HUVEC proliferation evaluated by clonogenic assay. Data were represented 

as mean ± S.E.M. of three independent experiments. Panel D. HUVEC plated as 

described above were assayed for apoptosis by flow cytometry using an Annexin-

V/PI assay kit.  

 

 

TR-644 induce G2/M arrest of the cell cycle in HUVEC cells 

The effect of TR-644 on cell cycle progression was examined by flow cytometry. TR-

644 treatment resulted in the accumulation of cells in the G2/M phase, with a 

concomitant reduction in the proportion of cells in the G1 phase after 24hours of 

treatment. These changes started to occur at the concentration of 10nM (Figure 6, 

panel A). A small decrease, although not significant, of cells in the S phase was also 

observed.  

Next, we investigated the association between TR-644-induced G2/M arrest and 

alterations in G2/M regulatory protein expression. Cell arrest at the 

prometaphase/metaphase to anaphase transition is normally regulated by the 
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mitotic checkpoint. In eukaryotic cells the activation of Cdc2 kinase is necessary for 

occurrence of the G2/M transition of the cell cycle. Activation of the kinase requires 

its dephosphorylation at Tyr15 and Thr14 by the phosphatase Cdc25 and 

accumulation of the cyclin B protein. As shown in Figure 6 (panel B), TR-644 caused 

a decrease in cyclin B1 expression at 10nM while at 100nM we observed a 

significant increase. Cdc2Tyr15 and Cdc25 levels decreased both at 10 and 100nM. 

Altogether these results indicate that arrest at G2/M induced by TR-644 is 

accompanied by a decreased expression of cyclin B1 at lower concentration whereas 

at higher concentration by an increase and by a remarkable decrease of Cdc25c and 

p-Cdc2Tyr15. 
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Figure 6. Panel A. Effect of compound TR-644 on cell cycle distribution of HUVEC 

cells. Cells were treated with different concentrations, ranging from 1 to 100nM for 

24hours. Then the cells were fixed and stained with PI to analyze DNA content by 

flow cytometry. Data are presented as mean  SEM of three independent 

experiments. (Panel B). Effect of TR-644 on G2/M regulatory proteins. HUVEC cells 

were treated for 24hours with the indicated concentrations. The cells were 

harvested and lysed for the detection of cyclin B, p-cdc2Tyr15 and cdc25c expression 

by western blot analysis. To confirm equal protein loading, each membrane was 

stripped and reprobed with anti--actin antibody. 

 

 

 

Effects of TR-644 on microtubules and actin microfilament in HUVEC cells 

We investigated the effects of TR-644 on the cytoskeleton proteins microtubules 

and actin micrfilaments. As shown in Figure 7, the microtubule network exhibited 

normal arrangement and organization in HUVEC cells in the absence of drug 

treatment as well as when the cells were incubated with the lower concentration of 

drug (1nM). In contrast, 24hours of exposure to 10nM TR-644 caused microtubule 

disassembly, with induction, in about 20% of the cells, of spherical morphology. 

Exposure to the compound at 100nM resulted in an almost complete loss of 

microtubules. Similar results were obtained for CA-4 although the observed changes 

were more marked. In agreement to the changes in cellular microtubules, cells 

treated with TR-644 showed minimal effects in the arrangement and amount of F-

actin (Figure 8), at low concentration (1nM) respect to the untreated cells. On the 
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contrary the actin cytoskeleton started to disorganize both with TR-644 and CA-4 

(10nM), resulting in the disappearance of actin fibers and in their relocalization and 

reorganization in intracellular focal adhesion regions, whereas the cytoskeleton was 

completely altered at higher concentration of both TR-644 and CA-4.  

 

 

 

Figure 7. Effect of TR-644 on microtubules in HUVEC. Cells were incubated for 

24hours with the indicated concentration of TR-644 or CA-4 as comparison and  

stained with anti--tubulin primary antibody and secondary Alexa-conjugated 

antibody and then observed by confocal microscopy. (magnification 20x Bar= 

10µm). Cells were also counterstained with DAPI to visualize the nuclei. Insets 

represent magnification at 60x, of a portion of the field.  
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Figure 8. Effect of TR-644 on actin microfilaments in HUVEC. Cells were incubated 

for 24hours with the indicated concentration of TR-644 or CA-4 as comparison and 

stained with phalloidin-tetramethylrhodamine B isothiocyanate conjugate Cells 

were also counterstained with DAPI to visualize the nuclei (magnification 60x).  

 

 

TR-644 reduces VE-cadherin phosphorylation  

VE-cadherin is a member of cadherin superfamily, expressed by vascular endothelial 

cells80. In these cells, it is the major adherence junction protein, which, by 

modulating cell-cell adhesion, regulates angiogenesis, and vascular permeability. It 

is also required for differentiation into vasculature-like structures by endothelial 
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cells in vitro81,82. Since VE-cadherin is crucial for controlling the state of adherence 

junctions, which in turn regulate endothelial cell-cell adhesion, cell motility, 

morphogenesis and intracellular signaling pathways, this molecule has many clinical 

implications. As showed above, TR-644 increased HUVEC permeability and VE-

cadherin was mainly non-phosphorylated in quiescent vessels, thus we evaluated if 

this compound was able to reduce VE-cadherin phosphorylation following VEGF 

stimuli. VEGF rapidly induced the phosphorylation of VE-cadherin, triggering 

modifications of the adherence junction that is thought to allow for the loosening of 

cell–cell contacts that would be required for the sprouting of a new vessel83. As 

shown in Figure 9 (panel A), TR-644 remarkably reduced the VEGF-induced VE-

cadherin phosphorylation at Tyr658, both at 10 and 100nM. In comparison also CA-

4 reduced the phosphorylation as previously demonstrated58. 

VE-cadherin is linked to the actin–myosin cytoskeleton via β-catenin. The 

cytoskeleton plays a central role in the regulation of endothelial permeability and 

cell migration by controlling cell shape51,84. Activation of the endothelial contractile 

machinery and generation of contractile forces by endothelial cells can cause 

adjacent cells to retract from each other.  

The linkage of the cytoplasmic region of VE-cadherin with the actin cytoskeleton is 

mediated by a number of proteins, including α- and β-catenin, p120, and 

plakoglobin, and their interactions with VE-cadherin tend to strengthen adherens 

junctions83. Immunofluorescent analysis revealed a partial co-localization of VE-

cadherin and β-catenin in untreated cells at the junctions between cells (Figure 9, 

panel B). On the other hand, the expression of VE-cadherin was strongly reduced in 

the presence of TR-644 both at 10 and 100nM. More importantly, the cell-cell 

contacts appeared destroyed by the treatment and in control cells, VE-cadherin 

staining occurs on the surface suggesting that TR-644 is able to disrupt the 
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cadherin/catenin complex and that the disruption of this complex may be 

responsible for the disruption in cell-cell adhesion. 
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Figure 9. Effect of TR-644 on VE-cadherin and FAK. Panel A. Western blot analysis of VE-

CadherinTyr658 and FAKTyr397 after 6hours of treatment with TR-644 and CA-4 at the 

indicated concentration in the presence of VEGF. Panel B. Immunofluorescence analysis 

of HUVEC cells treated with the indicated concentration of TR-644 for 6hours and then 

stained with anti β-catenin antibody and anti VE-cadherinTyr658 antibody. Cells were also 

counterstained with DAPI to visualize the nuclei (magnification 40x). Panel C 

Immunofluorescence analysis of HUVEC cells treated with the indicated concentration of 

TR-644 for 6hours and then stained with anti β-tubulin antibody and anti FAKTyr397 

antibody. Cells were also counterstained with DAPI to visualize the nuclei (magnification 

40x). Arrows indicate focal adhesions. Panel D. TR-644 enhances HUVEC cell adhesion. 

Data represent mean ±SEM of three independent experiments performed in triplicate. 

 

 



1.Tubulin binding agents and angiogenesis RESULTS 

 
 

44 
 

TR-644 induces increase of cell adhesion without interfering with focal adhesion 

kinase (FAK) 

Focal adhesion kinase (FAK) is a 125-kDa non-receptor tyrosine kinase, which acts 

as a scaffold at sites of cell attachment to the extracellular matrix and is activated 

following binding of integrins to ECM or upon growth factor stimulation including 

VEGF85–87. As a result, it regulates cell shape, cell adhesion and cell motility87. Since 

TR-644 inhibits cell migration, we examined if it is able to inhibit the formation of 

focal adhesions and the VEGF-induced phosphorylation of FAK. As shown in Figure 9 

(panel A), VEGF induce an increase of FAK phosphorylation at Tyr397 while the 

treatment with TR-644 slight increase its phosphorylation, both at 10 and 100nM. 

CA-4 also increases the expression of FAKTyr397. To further investigate the effect of 

TR-644 on FAK we analyzed HUVEC cells by immunofluorescence. As showed in 

Figure 9 (panel C), we observed that focal adhesions were distributed in a 

punctiform pattern along the cell periphery and TR-644 did not change the 

expression of focal adhesion both in the absence and in presence of VEGF. These 

results could appear in contrast with the inhibition of cell migration induced by the 

compound, indeed they are consistent with the increase in HUVEC cells adhesion 

induced by TR-644 (Figure 9, panel D). 

 

 

TR-644 treatment inhibits in vivo angiogenesis in CAM assay.  

TR-644 was assessed for its anti-angiogenic activity in vivo on the chick embryo 

chorioallantoic membrane (CAM). To this purpose, alginate beads containing FGF 

were applied topically on the CAM at day 11 of development in the absence or in the 

presence of TR-644 or CA-4. As showed in Figure 10 (panels A and B), FGF alone, 

triggered a potent angiogenic response that was significantly inhibited by TR-644 

(panel A), also at the lowest concentration used (0.01nmol/egg). Interestingly, TR-
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644 did not induce any effect on the basal vascularization of the CAM and did not 

affect the development and survival of the chick embryos (data not shown). In 

contrast, CA-4 (panel B) in the absence of FGF, induced a significant increase of the 

basal vasculature at all the concentration used. It has recently been shown, that the 

formation of new vessels in CAM could be driven by a pro-inflammatory signature, 

characterized by the upregulation of proinflammatory cytokine/chemokines and 

their receptors, endothelial cells adhesion molecules, and members of the eicosanoid 

pathway88. Thus, this effect could be due to an inflammatory response triggered by 

cellular damage induced by CA-4. Indeed hematoxylin-heosin staining of the CAM 

showed a remarkable appearance of multiple site of inflammation along with the 

recruitment of lymphocytes and macrophages in CA-4-treated samples (Figure 10, 

panel C). 
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Figure 10. In vivo effects of TR-644 (Panel A) and CA-4 (Panel B) on chorioallantoic 

membrane (CAM) assay. A alginate sponges embedded with FGF, a stimulator of 

blood vessel formation, in the presence of the indicated doses of compounds were 

implanted on the top of the growing CAM on day 11 of development. On day 14, 
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newly formed blood vessels converging toward the implants are counted at 

microscopic levels. Data represent mean ±SEM of at least ten eggs for groups. 

*p<005 **p<0.01 vs control. Panel C. Histological pictures obtained from the CAM 

assay in the absence of FGF (hematoxylin-eosin staining 60x magnification). 

 

 

TR-644 disrupts tumor vasculature in vivo tumor model 

BL6-B16 mouse melanoma cell line were injected s.c. in syngeneic C57BL/6 mice. 

CD31 is expressed on vessels and is the most specific and sensitive endothelial 

marker currently available. A single i.p. administration of TR-644 (30mg/Kg) 

significantly reduced tumor blood vasculature as determined by 

immunohistochemical staining with the antibody reactive to CD31 in brown color 

(Figure 11 panel B). Also CA-4P significantly reduce the number of CD31 positive 

cells per field in well agreement with previous reports58. 

Moreover, we also tested whether TR-644 causes histological changes in tumor 

tissue by staining with hematoxilin and eosin (HE) and measuring proliferation 

using PCNA staining. The HE staining suggested that 24hours after a single i.p. 

injection of TR-644, there was a massive area of necrosis within tumor for both 

compounds. The number of PCNA positive cells, can be used as an index of cell 

proliferation. As showed in Figure 11 (panel C), cell proliferation in the whole tumor 

significantly decreased after TR-644, while CA-4P did not. These results are in well 

agreement with the higher antiproliferative activity of TR-644 in many tumor cell 

lines relative to the lead compound CA-479. 
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Figure 11. Efficacy in vivo of TR-644 in a syngeneic mouse model. BL6-B16 murine 

melanoma cells were injected in the right flank of C57BL/6 mice as described in 

Materials and Methods. Tumor tissues were embedded in OCT-compound and 

frozen for immunohistochemistry. Panel A CD31 immunohistochemistry and 

Hematoxylin-Eosin (HE) staining of tumor after i.p. treatment with 30mg/kg of both 

TR-644 or CA-4P (100x magnification). Panel B. Quantitative analysis of tumor 

section stained with CD31. Data are represented as mean±SEM of five mouse per 

group *P < 0.05 versus control. Panel C. Quantitative analysis of tumor section 

stained with PCNA Data are represented as mean±SEM of five mouse per group *P < 

0.05versus control. 
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1.3.1.4. Discussion 

  

We previously demonstrated that TR-644 displayed effective antiproliferative 

activity in numerous cell lines derived from human solid tumors and leukemias, 

including multidrug resistant cell lines79. We also showed that TR-644 induced 

depolymerization of tubulin and inhibited normal spindle formation in HeLa cells, 

resulting in mitotic arrest and cell death. The inhibition of tubulin polymerization 

was similar to that observed with the reference compound CA-4. Examination of the 

effects of TR-644 on [3H]colchicine binding to tubulin revealed that colchicine 

binding was efficiently inhibited, indicating that TR-644 binds tubulin in the 

colchicine site. 

In this study, we demonstrated that TR-644 is a potent vascular disrupting agent 

that exhibit antivascular activity both in vitro and in vivo experiments. Motility and 

migration of vascular endothelial cells are important in the angiogenic process. We 

found that TR-644, at namolar concentration range, induces a significant inhibitory 

effect on endothelial cell migration. In addition, TR-644 inhibits both the 

organization of HUVEC into vessel-like tubes and disrupts established endothelial 

cell tubes in a concentration dependent manner. These effects are similar to that of 

the lead compound CA-4.  

Given the correlation between G2/M phase arrest and cytoskeletal dynamics, we 

investigated the effect of TR-644 on the cell cycle. As other microtubule-binding 

agents TR-644 induces a G2/M phase arrest along with a remarkable reduction of 

the G1 phase while the S phase is only slight affected. During a normal cell cycle, the 

progression of cells in the G2 phase to M phase is triggered by the activation of the 

cyclin B1-dependent Cdc2 kinase89,90, which is regulated by a series of 

phosphorylation-dephosphorylation events and protein-protein interactions91. At 

the G2/M phase transition, Cdc2 is dephosphorylated on Tyr15 and Thr14 and this 
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event lead to activation of the Cdc2 kinase and entry of cells into mitosis. Treatment 

with TR-644 decreases the phosphorylation of at Cdc2 at Tyr15 and the expression 

of the phosphatase Cd25c both at 10nM and 100nM. Curiously enough we observed 

a dual effect of TR-644 on cyclin B1 expression: while at 10nM we observed a down 

regulation of Cyclin B1 expression at higher concentration we found the opposite. 

This could be due to the fact that at low concentration a part of the cells are still able 

to exit from mitosis, while at higher concentration the cell arrest become 

irreversible and consequently the cyclin B1 expression increased. 

TR-644 increases vascular permeability probably by disrupting endothelial cell-cell 

contact, and preventing organization of cellular connections that are critical for their 

survival and maintenance. These effects could be attributed to the inhibition of VE-

cadherin phosphorylation. Indeed TR-644 strongly inhibits the phosphorylation of 

VE-cadherin induced by VEGF and reduces cell-cell contacts. Interestingly such 

analysis also clearly show a dissociation of the VE-cadherin/β-catenin complex. 

Since VE-cadherin is linked and interacts with actin fibers via β-catenin, it is 

reasonable that the effect of TR-644 on cytoskeleton may contribute to the 

disconnection of homophilic VE-cadherin/β-catenin–mediated cell-cell interactions. 

In this context it is worthwhile to note that also CA-4 was demonstrate to increase 

endothelial cell permeability through disruption of the VE-cadherin/β-catenin 

signaling58.  

It is interesting to note that all these effects occur at concentration that per se did 

not induce significant effects on endothelial cell proliferation while it appears that in 

HUVEC TR-644 is endowed with a lower cytotoxicity in comparison to the lead 

compound CA-4. 

FAK plays a central role during focal adhesion complex assembly and disassembly, 

that are critical for cell adhesion and migration. When FAK is activated, it is 

autophosphorylated at its autophosphorylation site Tyr397, binds to Src, which in 
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turn phosphorylates other sites on FAK and the FAK-binding proteins, such as Cas 

and paxillin, which modulates cytoskeleton re-arrangement85. Moreover, inhibition 

of FAK phosphorylation greatly impairs cell spreading and adhesion85. Some anti 

mitotic drugs such as laulilamide92 and taxotere93 have been previously found to 

block the formation of focal adhesion and the autophosphorylation of FAK. 

However, in TR-644-treated HUVEC, we found that FAK phosphorylation at Tyr397 

is slight increased compared with the VEGF-treated cells. These high leves of 

FAKTyr397 could prevent focal adhesion disassembly, leading to impaired cell 

migration. Recent evidences suggest that the level of phosphorylated FAK increases 

during focal adhesion formation94. The behavior of TR-644 is similar to JG-03-14, a 

new substituted pyrrole derivative which has been showed to affect endothelial cells 

function through inhibition of VE-cadherin but without interfering with FAK 

phosphorylation or focal adhesion formation95. It is worth noting that TR-644 

increases actin stress fiber formation and in a recent study96, the increased 

formation of intracellular stress fibers were correlated with enhanced cell adhesion 

in mammary cells, whereas migrating cells had fewer stress fibers. Indeed we also 

found that TR-644 significantly increases HUVEC adhesion suggesting that 

inhibition of cell migration may be linked to an activation of FAK signaling. To 

evaluate the ability of the TR-644 to interfere with the angiogenic process in vivo, 

we used the CAM assay as a model of neovessel formation, and observed that TR-

644 significantly reduces the number of newly formed vessels in the CAM even at 

very low doses (0.01nmol/egg). The effect was observed in the absence of any effect 

on embryonic development and survival and TR-644 had no toxic effects on 

preexisting vessels (data not shown). This is in accordance with our in vitro findings 

that showed a lower cytotoxicity of TR-644 respect to CA-4. Surprisingly CA-4 at all 

concentration tested induces per se a significant increase of the vasculature 

mimicking the effects of FGF. Recent papers88,97, indicate that inflammatory 
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cytokines, as early mediators of inflammation, are a potent angiogenic factors, 

suggesting that angiogenesis and inflammation are closely integrated processes. In 

this context the pro-angiogenic effect of CA-4 in the absence of FGF could be due to a 

cell damage effect of CA-4 that in some way induce the recruitment of inflammatory 

cells that consequently induce neovascularization. Accordingly, histological 

examination of CAM showed a remarkable monocyte/macrophage infiltrate in the 

area in which the alginate pellet containing CA-4 was located. It is worthwhile to 

note that anti-inflammatory agents exert antiangiogenic effects. Further in vivo 

experiments carried out with mouse melanoma tumor model demonstrated that a 

single injection of TR-644 efficiently and selectively destroy vasculature of tumor 

tissue and induce a significant reduction of tumor cell proliferation as demonstrated 

by reduction in PCNA positive cells. In summary our study provides for the first time 

evidence that administration of TR-644 causes inhibition of angiogenesis both in 

vitro and in vivo at a concentration that is not cytotoxic for endothelial cells 

indicating that TR-644 may be a promising candidate as inhibitor of angiogenesis.  
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1.3.2.1. Abstract 

 

Tubulin binding agents (TBAs) are drugs commonly used in cancer therapy as 

antimitotics. TR-764 is a new inhibitor of tubulin polymerization, based on the 2-

(alkoxycarbonyl)-3-(3′,4′,5′-trimethoxyanilino)benzo[b]thiophene molecular 

skeleton, with high antiproliferative activity in vitro and in vivo. Recently it has been 

described that TBAs, like combretastatin A-4 (CA-4), present also antivascular 

activity. Targeting both the tumor mass and its blood vessels could be a new strategy 

to improve the traditional chemotherapy. 

TR-764 (1-10nM) antiangiogenic activity was tested in vitro on human umbilical 

endothelial cells (HUVECs), through the Matrigel-based tube formation assay. 

Tubulin and actin cytoskeleton was observed by immunofluorescence staining, and 

cell motility was monitored by the wound assay. Immunoblot analyses were helpful 

to investigate the molecular mechanisms involved in TR-764 activity on 

endothelium. Data were confirmed in vivo, on the chick embryo chorioallantoic 

membrane (CAM assay) and on BL16 mice allogenic tumors. 

TR-764 binding to tubulin triggers cytoskeleton rearrangement without affecting 

cell cycle and viability. It leads to capillary tube disruption, increased cell 

permeability, cell motility reduction and VEGF-stimulated cell adhesion impairment. 

Signal transduction between extracellular matrix and plasma membrane is arrested 

by the disruption of adherens junctions and focal adhesions, through mechanisms 

which involve VE-cadherin/β-catenin and FAK/Src. Importantly, TR-764 is active in 

hypoxic conditions and reduces significantly HIF-1α activation. In vivo TR-764 (1-

100nmol/egg) remarkably blocks the bFGF proangiogenic activity on CAM and it 

shows a strong reduction both of tumor mass and microvascular density on a 

murine allogenic tumor model, at concentrations lower than that of reference 

compound CA-4P.  
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TR-764 is a novel tubulin binding agent with a strong potential as antivascular and 

antitumor molecule that could improve the common anticancer therapies, by 

overcoming hypoxia-induced resistance mechanisms. 
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1.3.2.2. Introduction 

 

Microenvironment is very important for tumor sustenance, and angiogenesis is 

essential for tumor growth and spreading. The characterization of this process has 

been fundamental to design and optimize new therapies targeting both the tumor 

mass and the tumor blood supply, as supported by recent advanced in 

chemotherapy, focused on combination treatments50,40. 

Tumor vasculature presents abnormal and disorganized structures, lacking of the 

conventional blood vessel hierarchy. Arteries, capillaries and venules are not 

recognizable, and they are tortuous, hyperpermeable and immature23. Therefore the 

antiangiogenic therapy targeting the vascular endothelium results very efficacious 

and selective. 

Numerous mechanisms regulate tumor angiogenesis, and a series of molecular 

mediators are involved in this process, including signal transduction systems 

mediated by growth factors, proteins for cytoskeleton remodeling, paracrine and 

intracellular signaling pathways5. 

Hypoxia inducible factor-1α (HIF-1α), appears in its active form under low oxygen 

tension conditions, is the key molecule regulating hypoxic stimuli. It has been 

described that hypoxic microenvironment gives rise to proangiogenic factors 

requirement, which in turn recruit endothelial cells and stimulate sprouting, 

developing new tumor blood vessels. Moreover, hypoxia is responsible for some 

described resistance mechanisms, which make the therapy ineffective36,40. 

Several antiangiogenic strategies have been studied, most of them target the VEGF 

signaling system and are directed to tyrosine kinase receptors (i.e. VEGFR, and 

PDGFR)40, inhibiting the proliferation of new blood vessels. Other therapies target 

pre-existing tumor vasculature, and are principally represented by the so-called 

vascular disrupting agents (VDAs)50.  
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Among this class of compounds tubulin binding agents (TBAs), which are drugs 

commonly used in cancer therapy as antimitotics, represent an important group, 

since recently it has been described combretastatin A4 (CA-4), presenting in 

addition to its antimitotic properties also antivascular activity59. 

TR-764 is a new inhibitor of tubulin polymerization, based on the 2-

(alkoxycarbonyl) -3- (3′,4′,5′-trimethoxyanilino) benzo[b]thiophene molecular 

skeleton. It was selected among a series of benzothiophenes derivatives for its high 

antiproliferative activity in vitro, being endowed with GI50 values in the nanomolar 

range in different cancer cell lines. Moreover it demonstrated the ability to inhibit 

significantly in vivo the growth of a syngenic hepatocellular carcinoma in Balb/c 

mice63.  

Here we investigated the antiangiogenic activity of TR-764 in HUVEC cells, and its 

strong effect in vivo as a vascular disrupting agent, in the chick chorioallantoic 

membrane and in tumorigenic murine models. 

This compound is proposed for deepen its activity as single agent in clinical trials, 

with a dual effect against cancer cells as an antimitotic, and targeting the tumor 

vasculature exploiting its antiangiogenic activity. Traditional chemotherapy could be 

improved without falling back upon combination treatments, and overcoming 

possible resistance mechanisms. 
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1.3.2.3. Results 

 

TR-764 has a strong antivascular effect in vitro 

HUVEC cells were used as a model for the angiogenic process in vitro, and they 

organize themselves in tubule-like structures when seeded on a Matrigel matrix. TR-

764 (1-10nM) rapidly disrupted the tubes network within 1hour of treatment, as 

shown in Figure 1A. It was able to reduce the number and the area of meshes, and it 

decreased the length of tubules and the number of the branching points, formed by 

HUVECs (Figure 1B-C).  

 

A

 
B 

 

C

 
 
 

Figure 1: TR-764 disrupts tubule-like structures formed by HUVECs seeded on 

Matrigel matrix. Representative pictures of HUVECs treated with TR-764 at the 

indicated concentrations for 1hour (10x magnification, scale bar = 100µm) (A). 

Quantitative analysis of TR-764 treatment for 1hour (B) or 3hours (C) on 

dimensional and topological parameters of tubule networks. Data were represented 

as mean ± SEM of three independend experiments. 
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Endothelial cells motility is arrested by TR-764 

Cell motility is a fundamental mechanism involved in angiogenesis. TR-764 strongly 

arrested HUVECs motility, preventing the closure of endothelial monolayer after 

wounding. HUVECs were scratched and cells were allowed to migrate and restore 

the monolayer. Treated cells were arrested and they were not able to heal the 

wound, unlike control cells which moved into the scratch. As shown in Figure 2, TR-

764 1nM reduced the motility, while TR-764 at the concentration of 10nM 

definitively arrested the movement. Co-treatment with VEGF did not prevent TR-

764 activity, and the effect on cell motility resulted more statistically significant at 

10nM (Figure 2, Panel C). 
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Figure 2. TR-764 impairs HUVECs motility in presence and absence of VEGF. 

Confluent HUVECs monolayer was scratched and cells were treated with TR-764. At 

different time points cells were photographed (10x magnification, scale bar = 

100µm) (A). Quantitative analyses of the effects on wound closure after treatment 

with TR-764 alone (B) or in presence of VEGF (C). Cell motility was quantified by 

measuring the scratch gap at the set times. *p<0.05, **p<0.01, ***p<0.001 vs control. 
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TR-764 does not alter HUVEC cell cycle and cell viability, although its specific 

target is tubulin 

As previously described63, a competitive binding cell-free assay revealed that TR-

764 binds tubulin in the same binding site of colchicines, with a very strong affinity 

constant (IC50 = 77±4), comparable to that of reference compound CA-4. 

α-tubulin staining in HUVEC cells with a specific antibody for immunofluorescence 

analysis showed as the microtubules were totally disrupted after 6hours of 

treatment with TR-764 (Figure 3, microtubules stained in green). Cell nuclei were 

intact, but tubulin filaments were completely disassembled.  

 

 

 
 
Figure 3. TR-764 disrupts α-tubulin filaments and changes β-catenin organization. 

Immunofluorescence images of HUVECs treated with TR-764 10nM for 6hours in 



1.Tubulin binding agents and angiogenesis RESULTS 

 
 

60 
 

presence and absence of VEGF. Cells were fixed and stained with primary antibodies 

anti- α-tubulin (green) and β-catenin (red), and DAPI was used to visualize cell 

nuclei (60x magnification, scale bar = 10µm). 

 

 

 

Although TR-764 binds to the cytoskeleton, it did not affect cell cycle and cell 

viability of HUVEC cells. As shown in Figure 4, no cell cycle phases, assayed by PI 

staining, were modified after 24hours of treatment. Secondly, cell viability, 

measured using MTT dye, was only slightly impaired after 72hours. It was not 

possible to calculate the GI50 value in HUVECs because cell proliferation was only 

30% reduced, at the higher concentration used (100µM). Moreover clonogenic assay 

confirmed the scarse toxicity of TR-764, which presented an increased number of 

colonies at 1nM respect to CA-4, while in the other concentrations the effect was 

comparable. Altogether these results indicate that TR-764 is not toxic for HUVECs at 

the set doses and times, although it rapidly impairs cell cytoskeleton. 
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Figure 4. TR-764 is not toxic for HUVEC cells. Cell cycle was analyzed after 24hours 

of treatment with TR-764 at the indicated concentrations (A). MTT test was 

performed after 72hours of treatment with TR-764 to evaluate cell proliferation 

(B). Effects of TR-764 compared to CA-4 on cell proliferation was investigated by 

colony assay. Representative images (C) and quantitative data (D) are reported.  

 

 

 

Actin cytoskeleton is rearranged by TR-764 treatment 

TR-764, targeting specifically tubulin, was able to disrupt microtubules, but it also 

induced microfilaments rearrangement. HUVECs monolayer was scratched and cells 

were stimulate to move into the wound. As reported in Figure 5, after 6hours of 

treatment with the compound, endothelial cells showed a reorganization of actin 

filaments, marked by phalloidin in red. TR-764 increased the number of stress 

fibers and it caused blebbing, a characteristic phenomenon of cytoskeleton 

uncoupling to the extracellular matrix. In addition, control cells were able to move 

and they formed lamellipodia, projections of actin cytoskeleton on the leading edge 

of cell migration. Treated cells did not show these structures, indicating that all 

processes linked to cytoskeleton functionality could be compromised. 
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Figure 5. TR-764 induces cytoskeleton rearrangement. HUVECs monolayer was 

scratched and cells were treated with TR-764 ± VEGF. After 6hours cells were fixed 

and stained with phalloidin- tetramethylrhodamine B isothiocyanate conjugate to 

mark F-actin (red) and with primary antibody anti-FAKTyr397 (green). DAPI was used 

to visualize cell nuclei (60x magnification, scale bar = 10µm). 

In control cells lamellipodia are visible, while in treated cells blebbing occurs. Actin 

stress fibers are induced by TR-764 treatment. 
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Cell spreading is reduced with a mechanism which involves FAK/Src pathway 

Focal adhesions are necessary for cell adhesion and cell migration, particularly 

regulating endothelial cell spreading. As already observed in Figure 2, cells ability to 

heal empty areas was impaired after TR-764 treatment. Cell spreading reduction 

was due to focal adhesion kinase (FAK) inhibition. FAK activating phosphorylation 

in Tyr397, as well as total FAK, decreased after 6hours of treatment, and steroid 

receptor coactivator (Src), which regulates the focal adhesions, is dephosphorylated 

in Tyr416 by the treatment with TR-764 (Figure 6). Total level of Src was not 

modified. Proangiogenic factors, such as VEGF, are described as inducer of cell 

motility, and activators of several molecules among which are FAK and Src. TR-764 

treatment, in particular at 10nM dose, carried out its activity also in presence of 

VEGF. Focal adhesions are hard-wired to actin microfilaments, as shown in the 

control cells in Figure 7B. VEGF did not impair these connections, but after 

treatment with TR-764 the normal conformation of focal adhesions is modified, and 

they seem to lose the direct contact with actin, and they assume a more enlarged 

shape. Concurring with this fact, cell adhesion is increased after treatment with TR-

764, as showed by other TBAs66, and it was significantly increased by VEGF, but the 

co-treatment restored the normal amount of adherent cells (Figure 7A). Thus, focal 

adhesion expanded shape induced by TR-764 can be considered as a dysfunctional 

form of adhesions to the extracellular matrix.  
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Figure 6. TR-764 effects on several proteins, after 6hours of treatment. Protein 

lysates were analyzed by western blot and β-actin was used as reference protein for 

equal loading. 
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Figure 7. TR-764 alters cell adhesion impairing focal adhesions. Cells were treated 

with TR-764 ± VEGF for 6hours, removed from the plate and left to adhere for 

30min. Data represent mean ± SEM of three independent experiments. *p<0.05 vs 

control. (A). HUVECs were fixed after 6hours of treatment with TR-764, and stained 

with phalloidin- tetramethylrhodamine B isothiocyanate conjugate to mark F-actin 

(red) and with primary antibody anti-FAKTyr397 (green). DAPI was used to visualize 

cell nuclei (60x magnification, scale bar = 10µm). In control cells and after VEGF 

treatment focal adhesions are well structured and strictly in contact with actin 

filaments. They are altered by TR-764 treatment, and they assume a more enlarged 

morphology (B). 
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TR-764 strongly increases cell permeability, inhibiting VE-cadherin functionality 

and impairing cadherin- β-catenin interaction 

The permeability of a HUVEC cells monolayer was assayed monitoring the ability of 

a macromolecule, dextran-FITC, to pass through the intercellular spaces, within 

90min (Figure 8). With the passing of time, treated cells increased progressively the 

permeability to dextran-FITC, in contrast to the control. 

The observed increase in cell permeability could be explained by the reduction of 

Tyr658 phosphorylation of VE-cadherin. VE-cadherin functions as a linker between 

endothelial cells and constitutes the adherens junctions. As reported in Figure 6, 

VEGF treatment induced VE-cadherin activation, increasing its phosphorylation. In 

contrast, TR-764 reversed VE-cadherin status, restoring the normal level of 

phosphorylated protein. 

Adherens junctions are constituted not only by VE-cadherin, but also by β-catenin. β-

catenin is directly phosphorylated by FAK in Tyr142, to simplify the dissociation 

between VE-cadherin and β-catenin and disrupt the adherens junctions87. TR-764 

gave rise to a reduced β-catenin Tyr142 phosphorylation, maintaining the same 

level of the total β-catenin, as demonstrated by western blot analysis (Figure 6). In 

well agreement the integrity of β-catenin seemed preserved after treatment, as 

shown in Figure 3. In fact, β-catenin pattern was not altered, but it was relocalized, 

from an ordered structure mainly linked to the adherens junctions to a more 

diffused disposition inside the cell. 
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Figure 8. TR-764 increases endothelial cells permeability. HUVEC cells were seeded 

onto 24-well insert wells until a confluent monolayer was formed. They were then 

treated with TR-764 at the indicated concentrations. Simultaneously FITC-dextran 

was added and its passage into the lower chamber was monitored at the indicated 

times. Data were represented as mean ± SEM of three independent experiments. 

 

 

FGF-induced vascularization in CAM is highly reduced by TR-764 treatment 

Chick embryo chorioallantoic membrane (CAM) is a highly vascularized structure, 

usually utilized for angiogenesis experiments in vivo. Through alginate beads applied 

on the CAM, TR-764 (1-10-100nmol/egg) was slowly distributed within the 

membrane, starting from day 11 post egg fertilization, in the presence or absence of 

FGF (100ng/egg). As shown in Figure 9, TR-764 alone at the highest concentration 

used did not induce blood vessels increase. On the other hand, treatment with FGF 

gave rise to a massive production of new-formed blood vessels, which were strongly 

arrested by TR-764 treatment, in a significant manner also at the lowest tested 

concentration (1nmol/egg). 
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Figure 9. TR-764 reduces the number of vessels on chorioallantoic membrane 

(CAM) assay. Alginate sponges embedded with TR-764 at the indicated doses ± FGF 

(150ng) were implanted on the top of the growing CAM on day 11 of development. 

On day 14, newly formed blood vessels converging toward the implants are counted 

at microscopic levels. Data represent mean ± SEM of at least 10 eggs for groups. 

*p<0.05, **p<0.01 vs control. 

 

 

Both tumor vasculature and tumor growth are significantly inhibited by TR-764 

in a tumorigenesis murine model 

TR-764 was further evaluated in a tumor model developed in mice (Figure 10). BL6-

B16 mouse melanoma cell lines, injected s.c. in syngeneic C57/BL6 mice, are able to 

proliferate and generate tumor masses. After 8 days, TR-764 was daily i.p. 

administrated at different doses (7.5, 15, 30mg/kg), and the hydrosoluble CA-4P 

(30mg/kg) was used as reference compound. Figure 10D shows the reduction of 

tumor mass after treatment. CA-4P slightly decreased the tumor growth, but its 

effect was not significant, while TR-764 significantly arrested tumor developing. 

The maximum dosage (30mg/kg) reduced by 50% of the tumor mass, and the 

minimum concentration (7.5mg/kg) shrinked the tumor by more than 30%, after 

10days of treatment. 
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TR-764 endowed an antivascular effect also on the murine model. Blood vessels 

were stained with an antibody against the endothelial marker CD31 and counted. 

After 24hours of treatment with TR-764 30mg/kg, the number of vessels was 

significantly reduced by 40%, and this effect was duplicated respect to that of CA-4P 

(Figure 10A-B). After 10days of treatment, the microvessel number is 50% reduced 

by TR-764 30mg/kg, while it is about 40% decreased by the treatment with TR-764 

7.5mg/kg and CA-4P 30mg/kg (Figure 10C).  
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Figure 10. TR-764 significantly reduces the vasculature and inhibits the growth of 

tumor mass in vivo. 

BL6-B16 murine melanoma cells were injected in the right flank of C57BL/6 mice. 

Tumor tissues were embedded in OCT-compound and frozen. CD31 

immunohistochemistry and hematoxylin–eosin (HE) staining of tumor after i.p. 
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treatment with TR-764 or CA-4P at the indicated doses, for 24hours (10x 

magnification, scale bar = 100µm) (A). Quantitative analysis of tumor section 

stained with CD31, after treatment for 24hours (B) or after daily injection for 

10days (C). Tumor growth was monitored, and the arrow indicates the day of the 

first treatment (D). Data are represented as mean ± SEM of five mouse per group 

versus control. *p<0.05, **p<0.01, ***p<0.001 vs control. 
 

 

HIF-1α activation under hypoxic conditions is impaired by TR-764 and its 

activity on HUVEC is preserved 

It has been described that antitubulin agents stimulate hypoxic environment, and 

consequently resistance mechanisms are activated98. In this context we evaluated if 

TR-764, compared to CA-4, is able to inhibit the activation of hypoxic stimuli. 

HUVEC cells, maintained at 2% oxygen for 3-6hours are able to produce the stable 

form of HIF-1α, which is degraded in normoxic conditions. Simultaneous treatment 

with TR-764 (10nM) for 6hours prevented HIF-1α induction, as shown in Figure 11. 

Moreover, after 3hours pre-incubation of HUVECs at hypoxic conditions, HIF-1α is 

induced in the control, and further 3hours of treatment the protein activation is 

reduced. 

 

 

Figure 11. TR-764 and CA-4 inhibit HIF-1α activation. Western blot analysis was 

performed on protein lysates of HUVECs maintained in normoxic (20%O2) and 

hypoxic (2%O2) conditions. On the left side of the image, treatment was 

simultaneously performed when HUVECs were placed in hypoxia. On the right side 

HUVECs were maintained in hypoxia for 3hours and subsequently treated with TR-

764 and CA-4 both at 10nM. 
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TR-764 activity on endothelial cells was preserved also in hypoxic conditions. As 

shown in Figure 12A-E. the tubule-like structures, formed by HUVEC on Matrigel, 

were rapidly disrupted by TR-764, similarly to CA-4. Furthermore, hypoxia 

remarkably increased HUVEC migration speed, respect to normoxia (see for 

comparison Figure 2), and TR-764 is significantly more active to arrest cell motility, 

in particular at 10nM (Figure12F). 
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Figure 12. Effects of TR-764 on HUVECs in hypoxic conditions. TR-764 disrupts 

tubule-like structures formed by HUVECs seeded on Matrigel matrix, in hypoxia. 

Representative pictures of HUVECs treated with TR-764 at the indicated 

concentrations for 1hour (10x magnification, scale bar = 100µm) (A). Quantitative 

analysis of treatment with TR-764 for 1hour (B) or 3hours (C), and CA-4 for 1hour 

(D) or 3hours (E), on dimensional and topological parameters of tubule networks. 

Data were represented as mean ± SEM of three independend experiments. 

Confluent HUVECs monolayer in hypoxic conditions was scratched and cells were 

treated with TR-764, which impairs cell motility. The ability to move into the wound 

was measured at the indicated times, and data represent mean ± SEM of three 

independend experiments (F). 
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1.3.2.4. Discussion 

 

Tubulin binding agents are commonly used in cancer therapy as antimitotic drugs, 

and recently antivascular effects were described. Here we investigated the 

antiangiogenic activity of a new tubulin binding agent, TR-764, which showed a very 

strong activity in inhibiting the proliferation of several tumor cells in vitro and the 

tumor growth in vivo99. TR-764, binding to tubulin, triggers a series of events 

resulting in endothelial cells dysfunction. TR-764 revealed a marked ability to 

disrupt the tubule-like structures formed by HUVEC cells seeded on Matrigel, 

indicating its antiangiogenic activity in vitro. Secondly it significantly arrested 

endothelial cells motility, both in presence and in absence of VEGF, as well as it 

caused the increase of cell monolayer permeability. All these effects are independent 

from TR-764 toxicity in HUVECs, because it did not impair cell cycle and cell 

viability. Moreover the effects on cytoskeleton occurred rapidly, within 6hours of 

treatment. These alterations potentially could affect only the tumor blood vessels, 

composed by highly disorganized and weak structures, more sensitive to TBAs23, 

making TR-764 a selective molecule against tumor vasculature. 

The ability of TR-764 to interact with tubulin was confirmed also in endothelial 

cells. This new tubulin binding agent efficiently disrupted microtubules structures, 

causing a strong rearrangement of cytoskeleton, although microfilaments remained 

intact. Actin filaments were also reorganized, stress fibers and blebs structures 

appeared after treatment. Altogether, these effects indicate an uncoupling of plasma 

membrane to extracellular matrix, and this action ultimately is reported to abrogate 

the complex system of integrating extracellular signals directed to the endothelial 

cell51.  

Tubulin and actin filaments are both associated to focal adhesions, integrins and 

cadherins100,101. All these molecules are involved in several biological mechanisms 
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such as cell adhesion, migration, permeability. They mediate signals deriving from 

the extracellular matrix or tyrosine kinase receptors, such as VEGFR2, which 

activate intracellular cascades, mediated by Src/FAK102. Thus, targeting endothelial 

microtubules could impair this signal transduction, involved in a series of processes 

which stimulate the vascular development.  

Besides, the actin cytoskeleton is connected to the plasma membrane through VE-

cadherin and one of its intracellular binding partner, β-catenin17. 

We demonstrated that TR-764 gave rise to both Src and FAK inactivation, by 

inducing their dephosphorylation respectively in Tyr416 and Tyr397 residues. β-

catenin phosphorylation in Tyr142 decreased after treatment with TR-764, leading 

to its dissociation from VE-cadherin (immunoprecipitation experiments are 

underway to confirm the direct binding between β-catenin and VE-cadherin). 

Physiological shape of focal adhesions was impaired and adherens junctions were 

attenuated by TR-764, as indicated by VE-cadherin dephosphorylation in Tyr658. 

The uncoupling of VE-cadherin with β-catenin, as well as the relocalization of β-

catenin far from junctions, explained the elevated cell monolayer permeability 

induced by the treatment. Moreover it has been reported that Src family kinases 

stimulate VE-cadherin phosphorylation in adherens junctions, leading to increased 

vascular permeability103,56. Thus TR-764, starting from its binding to tubulin, 

induced cytoskeleton rearrangements, leading to numerous alterations in cell-to-cell 

contacts and in the interaction to the extracellular matrix. Accordingly, many 

processes involved in vascular development, such as migration and VEGF-induced 

stimulation, resulted impaired. 

Vessel growth, arise from pro-angiogenic factors, was efficiently counteracted by 

TR-764 also in vivo, as demonstrated in CAM assay. Vascular development was 

massively induced by FGF and the number of vessels was strongly reduced by the 

treatment with TR-764. Importantly, our compound alone showed no pro-
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inflammatory activity, unlike CA-4 which is able to stimulate vessel growth in basal 

conditions, as we previously described66. TR-764 demonstrated highly significant 

antivascular activity also in a tumorigenic murine model, respect to CA-4P, both in 

acute and after prolonged treatment. Interestingly, TR-764 not only prevented 

vascular development, but also arrested the tumor growth, significantly reducing the 

tumor volume. This peculiarity suggests TR-764 as a potential candidate as single 

agent for both anticancer and antivascular therapy. Moreover, numerous failures in 

recent pharmacological approaches occur, because of resistance mechanisms, 

mainly governed by hypoxia. Tumor microenvironment, as well as antiangiogenic 

therapies, give rise to hypoxic stimuli, and tumor cells adapt themselves by 

developing resistance40,38. Thus there is an emergent need to find new strategies to 

overcome tumor resistance, and in this context TR-764 could be a valuable 

candidate. It preserved its antiangiogenic properties in vitro under hypoxic 

conditions and it is endowed with the ability to inhibit or reduce HIF-1α activation, 

with the aim to prevent potential adaptive signals. Further in vivo experiments are 

underway, to confirm the anti-hypoxic activity of TR-764. 
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1.3.3.1. Abstract 

 

A new series of tubulin polymerization inhibitors based on the 2-aryl/heteroaryl-4-

amino-5-(3’,4’,5’-trimethoxybenzoyl)thiazole scaffold was synthesized and 

evaluated for growth inhibition activity on a panel of cancer cell lines, cell cycle 

effects and in vivo potency. Structure-activity relationships were elucidated with 

various substitutions at the 2-position of the thiazole skeleton. Hydrophobic 

moieties, such as phenyl and 3-thienyl, were well tolerated at this position, and 

variation of the phenyl substituents had remarkable effects on potency. The most 

active compound (3b) induced apoptosis through the mitochondrial pathway with 

activation of caspase-3. We also showed that it has potential anti-vascular activity, 

since it reduced in vitro endothelial cell migration and disrupted capillary-like tube 

formation at non cytotoxic concentrations. Furthermore, compound 3b significantly 

reduced the growth of the HT-29 xenograft in a nude mouse model, suggesting that 

3b is a promising new antimitotic agent with clinical potential. 
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1.3.3.2. Introduction 

 

Besides being critical for cell architecture, the microtubule system of eukaryotic cells 

is essential for cell division, since microtubules are key components of the mitotic 

spindle104–106. Microtubules are a dynamic cellular compartment in both neoplastic 

and normal cells. This dynamicity is characterized by the continuous turnover of αβ-

tubulin heterodimers in the polymeric microtubules. The microtubule system is also 

important in other fundamental cellular processes, such as regulation of motility, 

cell signaling, formation and maintenance of cell shape, secretion and intracellular 

transport107.  

In the last decades there has been a continuing interest in the discovery and 

development of novel small molecules able to inhibit tubulin polymerization108,109. 

Numerous chemically diverse antimitotic agents, many of which are natural 

products, interact specifically with tubulin68,110,111. Among the naturally-occurring 

derivatives, combretastatin A-4 (CA-4, 1), isolated from the bark of the South 

African tree Combretum caffrum112, is one of the well-known tubulin-binding 

molecules affecting microtubule dynamics, and compound 1 strongly inhibits the 

polymerization of tubulin by binding to the colchicine site113. Compound 1 shows 

potent cytotoxicity against a wide variety of human cancer cells, including those that 

are multidrug resistant114. 

In the course of our search for new synthetic tubulin inhibitors, we recently 

reported the synthesis and biological characterization of a series of 2-alkylamino-4-

amino-5-aroylthiazoles with general structure 2, prepared by an easy one-pot four 

step procedure115. Among the synthesized compounds, the 2-(pyrrolidin-1-yl)-4-

amino-5-(3’,4’,5’-trimethoxybenzoyl)thiazole derivative 2a was the only compound 

of this series active at submicromolar concentrations against a panel of five cancer 

cell lines, with IC50 values ranging from 0.2 to 0.4μM. Compound 2a was 10- to 100-
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fold less active than the reference compound 1 as an antiproliferative agent, while it 

was comparable to 1 as an inhibitor of tubulin polymerization. Structure-activity 

relationship studies indicated that the pyrrolidine is the only substituent tolerated 

at the 2-position of thiazole scaffold. This finding led us to assume that the tubulin 

binding pocket for this portion of the molecule is quite small and that tubulin only 

tolerated the presence of hydrophobic substituents, indicating the possibility for 

further improvement in activity. Thus, once the 4-amino-5-(3’,4’,5’-

trimethoxybenzoyl) thiazole scaffold was identified as minimum structural 

requirement for activity in this new series of compounds, our strategy for further 

development of active antimitotic agents was to perform modifications at the 2-

position of the thiazole ring. The first round of optimization included replacement of 

the pyrrolidine ring of compound 2a with a phenyl or bioisosteric 3-thienyl ring, to 

furnish derivatives 3a and 3b, respectively. As shown in Table 1, phenyl or 3’-thienyl 

substitutions at the C-2 position of the thiazole ring significantly enhanced 

antiproliferative activity. Encouraged by the increased potency obtained with 3a, we 

then synthesized compounds 3c-o to determine whether various electron-releasing 

(Me, Et, C(CH3)3, OMe, OEt and OCF3) or electron-withdrawing (F, Cl, CF3, CN and 

NO2) substituents on the para- or meta-positions of the phenyl ring would further 

enhance activity. To compare the effects of para- and meta-substitution, the chloro 

atom and the methoxy-group were also introduced at the meta-position of the 

phenyl ring. We are including 3b in this report because it had the best 

antiproliferative activity (see below) of all the compounds prepared in this study. 

We examined the efficacy of the newly synthesized compounds on a panel of human 

cancer cell lines, including multidrug resistant lines overexpressing the 170-kDa P-

glycoprotein drug efflux pump, and we investigated in detail the modalities of cell 

death induced by these derivatives. Since many antimitotic drugs, such as compound 
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1, have been shown to possess antiangiogenic and antivascular activities51,61 we also 

investigated the effects of these compounds on in vitro assays with HUVEC. 
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1.3.3.3. Results and Discussion 

 

In vitro antiproliferative activities 

The 2-aryl/heteroaryl-4-amino-5-(3’,4’,5’-trimethoxybenzoyl)thiazoles 3a-o were 

evaluated for their antiproliferative activity against a panel of six human tumor cell 

lines and compared with the reference compound 1. As shown in Table 1, the 

antiproliferative activities of the tested compounds were generally more 

pronounced against HeLa and MCF-7 cells as compared with the other cell lines. 

With the exception of MCF-7 cells, the 3-thienyl derivative 3b was the most active 

compound in this series, exhibiting IC50 values raging from 2.4 to 78nM against five 

of the six cancer cell lines and an IC50 of 210nM against the A549 cells. Moreover, 

with the MCF-7 and HT-29 cells, compounds 3a-c, 3e-f and 3k were more potent 

than 1, with IC50 values in the single- or double-digit nanomolar range. Compounds 

3b and 3e showed comparable potency to 1 against the HeLa cells. Of the fifteen 

tested compounds, 3a-b, 3e and 3k possessed the highest overall potency, with IC50 

values of 2.4-140nM against five of the six cancer cell lines, and IC50 values of 200-

700nM against the A549 cells. With the exception of MCF-7 and HT-29 cells, the 

reference compound 1 possessed the highest potency in four of the six cell lines 

tested. 

The bioisosteric replacement of the phenyl ring of compound 3a with the 3-thienyl 

group (3b) produced a 1.5- to 3-fold increase of potency against A549, Jurkat and 

HeLa cells, while the differences between 3a and 3b were minimal in HL-60 and HT-

29 cells. Only in MCF-7 cells 3b was less active than 3a (IC50 values of 51 and 2.2nM, 

respectively). Excluding the A549 cells, compounds 3a and 3b had IC50 values 

ranging from 24-80nM against the cell lines, compared with a range of 1-3100nM 

obtained with 1. 
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The data shown in Table 1 demonstrated the importance of substituents on the 

phenyl ring at the 2-position of the thiazole system for activity and selectivity 

against the different cancer cell lines. In general, all substituents caused a reduction 

in antiproliferative activity relative to 3a, except in four cases. The meta-chloro 

substituent of 3e resulted in enhanced antiproliferative activity against three cell 

lines (HeLa, A549, and Jurkat cells), while the meta-methoxy substituent of 3k 

resulted in enhanced activity in one cell line (HL-60 cells). Otherwise, all 

substituents led to reduced activity, sometimes mild to moderate (e.g., 3c, 3e, 3f), 

sometimes profound (e.g., 3h-j and 3l-o). 

Turning specifically to the para-substituted phenyl derivatives, these showed highly 

variable potencies. Generally, it was found that most substituents in the para-

position resulted in lower activity as compared to the unsubstituted parent 

compound 3a, with the least deleterious being fluorine and methyl (compounds 3c 

and 3f, respectively). Comparing the fluorine derivative (3c) with the methyl 

derivative (3f), the latter was more active in five of the six cell lines we examined, 

with the greatest difference observed in the MCF-7 cells. Comparing the fluorine  

(3c) and the chlorine (3d) derivative, increasing the size of the halide led to a large 

loss of activity with all six cell lines. In contrast, as noted above, the meta-chloro 

derivative (3e) was much more active than its para-congener 3d, including 

enhanced activity relative to 3a in three cell lines. Indeed, the activity of 3e did not 

differ greatly from the 3-thienyl analogue 3b in all cell lines.  

Turning to the electronic characteristics of the para-substituents, the introduction of 

a weak electron-releasing methyl group (3f) caused a 1.5-4-fold loss in 

antiproliferative activity in the six cell lines relative to the unsubstituted 3a. A para-

ethyl group (compound 3g) caused a further, major decrease in antiproliferative 

activity relative to 3a, 3f was 14-700-fold less active in the six cell lines. Little 
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antiproliferative activity was observed with still larger para-substituents (3h-j, 3m-

o), regardless of their electronic characteristics. 

The antiproliferative activities of compounds 3j, 3k and 3l were influenced by the 

number and position of methoxy substituents on the phenyl ring. The meta-methoxy 

derivative 3k, as noted above, was relatively active. Relative to the unsubstituted 3a, 

3k was 1.1-5-fold less active in five cell lines and twice as active in HL-60 cells. In 

contrast, the para-methoxy derivative 3j was 32-570-fold less active than 3a when 

IC50 values could be determined. The 3,4-dimethoxy substituted analogue 3l was 

generally intermediate in activity between 3j and 3k.  

In summary, comparing the effects of ERGs and EWGs on the phenyl at the C2-

thiazole position, no consistent difference on effects on antiproliferative activity 

occurred. Overall, all substituents at the para-position led to a loss of activity, and 

profound loss occurred with larger substituents. The effects of the two small meta-

substitents examined were not dramatic, leading, perhaps, to some enhancement of 

antiproliferative activity. In different cell lines, moreover, different effects were 

observed. For example, replacement of the electron-donating methoxy group with 

the electron-withdrawing chlorine atom (compounds 3k and 3e, respectively), 

resulted in a 3- and 4-fold reduction in activity against HL-60 and MCF-7 cells, while 

3k and 3e showed comparable potencies against HT-29, and 3e was 5- and 2-fold 

more active than 3k against HeLa and Jurkat cells.  
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Table 1. In vitro cell growth inhibitory effects of compounds 1 and 3a-o. 

 IC50 a(nM) 

Compd HeLa A549 HL-60 Jurkat MCF-7 HT-29 

3a 7.6 ± 1.7 367 ± 11.0 80.8 ± 7.1 58.0 ± 5.6 2.2 ± 0.8 13.2 ± 5.4 

3b 2.4 ± 0.9 210 ± 38.1 77.9 ± 2.6 26.4 ± 2.3 51.2 ± 9.3 11.4 ± 2.8 

3c 24.1 ± 4.3 1082 ± 36.7 384 ± 25.0 582 ± 15.4 29.4 ± 1.5 115 ± 3.5 

3d 188 ± 46.0 6730 ± 202 4445 ± 68.2 1749 ± 58.8 845 ± 18.5 2083 ± 50.5 

3e 2.8 ± 1.0 326 ± 14.8 137 ± 27.2 35.9 ± 4.4 41.7 ± 3.5 24.0 ± 5.8 

3f 22.7 ± 7.8 1223 ± 97.1 295 ± 27.0 201 ± 57.1 3.2 ± 0.7 53.1 ± 14.8 

3g 191 ± 44.8 5175 ± 135 1813 ± 244 2328 ± 577 1583 ± 267 1018 ± 135 

3h 4148 ± 75.4 >10,000 >10,000 >10,000 508 ± 123 9067 ± 158 

3i 1799 ± 27.6 >10,000 >10,000 >10,000 >10,000 >10,000 

3j 244 ± 41.3 >10,000 >10,000 2023 ± 75.9 1255 ± 25.7 2806 ± 72.2 

3k 13.7 ± 4.5 720 ± 28.3 41.2 ± 5.5 66.6 ± 8.9 11.3 ± 5.1 22.3 ± 4.4 

3l 191 ± 35.9 >10,000 1136 ± 74.4 606 ± 45.7 257 ± 65.4 220 ± 18.6 

3m 1981 ± 36.0 6253 ± 318 >10,000 4829 ± 64.1 >10,000 >10,000 

3n >10,000 >10,000 >10,000 >10,000 >10,000 >10,000 

3o 570 ± 10.2 6106 ± 169.9 >10,000 >10,000 >10,000 4785 ± 83.2 

1 4 ± 1 180 ± 50 1 ± 0.2 5 ± 0.6 370 ± 100 3100 ± 100 

 

aIC50= compound concentration required to inhibit tumor cell proliferation by 50%. 

Data are expressed as the mean ± SE from the dose-response curves of at least three 

independent experiments. 

 

 

 



1.Tubulin binding agents and angiogenesis RESULTS 

 
 

85 
 

Effect of compound 3b on multidrug resistant cells 

To investigate whether these derivatives are substrates of drug efflux pumps, one of 

the most active compounds (3b) was tested against a panel of drug resistant cell 

lines which either overexpress P-glycoprotein (LovoDoxo and CemVbl100)116,117 or are 

associated with tubulin gene mutations (A549-T12)118 that result in modified 

tubulin with impaired polymerization properties. As shown in Table 2, 3b exhibited 

cytotoxic activity in all three of the drug resistant cell lines. The activity in the two P-

glycopprotein overexpressing cell lines demonstrated that 3b is not a substrate for 

this important drug pump. 

 

Table 2. In vitro cell growth inhibitory effects of compound 3b on drug resistant cell 

lines. 

 

 

 

 

 

 

 

aIC50= compound concentration required to inhibit tumor cell proliferation by 50%. 

Data are expressed as the mean ± SE from the dose-response curves of at least three 

independent experiments.  

bThe values express the ratio between IC50 determined in resistant and 

non-resistant cell lines. c Data from Ref.115 

 

Compd 

IC50 a(nM)  

LoVo LoVoDoxo Resistance ratiob 

3b 18.0 ± 4.5 24.8 ± 5.3 1.4 

Doxorubicinc 120 ± 30 13150 ± 210 109.6 

 CEM CEM Vbl100 Resistance ratiob 

3b 273.3 ± 20.3 666.7 ± 12.0  2.4 

Vinblastine 0.8 ± 0.1 205 ± 46 256.2 

 A549 A549-T12 Resistance ratiob 

3b 209.6 ± 38.1 201.5 ± 46.7 0.96 

Taxolc 7.2 ± 0.1 75.2 ± 12.5 10.4 
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Inhibition of tubulin polymerization and colchicine binding 

To investigate whether the antiproliferative activities of compounds 3a-c, 3e-f and 

3k derived from an interaction with tubulin, these agents were evaluated for their 

inhibition of tubulin polymerization and for effects on the binding of [3H]colchicine 

to tubulin (Table 3)119,120. For comparison, compound 1 was examined in 

contemporaneous experiments. In the assembly assay, compounds 3a-b and 3e-f 

was found to be the most active compounds (IC50 values, 1.5-1.7M), with activity 

comparable with that of 1 (IC50, 1.2M). Compounds 3c and 3k were half as active as 

1, although they were more potent than 1 as antiproliferative agents against MCF-7 

and HT-29 cells. 

When comparing inhibition of tubulin polymerization versus the growth inhibitory 

effects, we found a positive correlation for most, but not all, of the active compounds. 

While 3f was generally less potent than 3b as an antiproliferative agent, 3f and 3b 

showed equal potency as inhibitors of tubulin assembly. Similarly, 3k is 1.5-fold less 

active than 3f in the tubulin assay, but 3k is more active than 3f in five of the cell 

lines. Nevertheless, we could not exclude the possibility that 3b and 3k may affect 

other molecular targets in addition to microtubules resulting in the enhanced 

antiproliferative activity.  

In the colchicine binding studies, derivatives 3a and 3b potently inhibited the 

binding of [3H]colchicine to tubulin, with 79% and 77% inhibition occurring with 

these agents. Inhibition of colchicine binding by compounds 3c, 3e-f and 3j was 

lower, ranging from 45 to 63%. None, however, was quite as potent as 1, which in 

these experiments inhibited colchicine binding by 98%. 

For the most active compounds 3a and 3b, a good correlation was observed 

between antiproliferative activities, inhibition of tubulin polymerization and 

inhibition of colchicine binding. In general, inhibition of [3H]colchicine binding to 

tubulin correlated more closely with antiproliferative than did inhibition of tubulin 
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assembly. It should be noted, however, that there are much larger differences in 

antiproliferative activity between cell lines and between compounds with similar 

antitubulin effects. It has to be considered that the tumor cell growth assay and the 

tubulin polymerization assay differ in a number of further important issues, such as 

tubulin concentration present within the cells and during microtubule formation 

outside a cell, the presence of different types of microtubule-associated proteins and 

the possible effects of regulatory proteins expressed in the cells but being absent in 

the tubulin assay. Alternatively, it is possible that cellular tubulin differs from the 

neural tubulin used in the biochemical assays in its affinities for the tested 

compounds.  

 

Table 3. Inhibition of tubulin polymerization and colchicine binding by compounds 

1, 3a-c, 3e-f and 3k. 

Compound 
Tubulin assembly a 

IC50±SD (μM) 

Colchicine binding b 

% ±SD 

3a 1.6±0.2 78±6 

3b 1.50.2 77±4 

3c 2.70.2 45±6 

3e 1.7±0.2 63±3 

3f 1.5±0.1 59±4 

3k 2.20.3 51±6 

1 1.2±0.1 98±0.6 

 

a Inhibition of tubulin polymerization. Tubulin was at 10μM. 
b Inhibition of [3H]colchicine binding. Tubulin, colchicine and tested compound were 

at 1, 5 and 5μM, respectively. 
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Molecular Modeling 

A series of molecular docking simulations were performed to rationalize the 

observed SARs for this series of compounds. The proposed binding mode that 

emerged from these studies is virtually identical to the pyrrolidine analogue 2a 

reported previously115. Figure 1 shows how the thienyl analogue 3b sits in a tight 

hydrophobic pocket defined by β-tubulin residues Val181, Asn258, Met259 and 

Lys352. It is interesting to note that this pocket can only accommodate an aromatic 

ring with relatively small substituents, like the ones present in 3a, 3c-f and 3k 

(Figure 2), while compounds with more sterically hindered substituents (e.g., the t-

butyl of 3h) do not dock well in the binding site. In addition to these non-polar 

interactions, the trimethoxyphenyl ring of 3b is also in contact with βCys241 while 

the amino group establishes a hydrogen bond with βThr179. These latter two 

interactions are often observed in the binding of tubulin inhibitors in the colchicine 

site121. 

 

 

Figure 1. Proposed binding mode of 3b in the colchicine binding site of β-tubulin. 
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Figure 2. Putative binding mode of 3c (in cyan), 3e (in magenta) and 3f (in orange) 

in the colchicine site of β-tubulin. 

 

 

Analysis of cell cycle effects 

The effect of 3a and 3b on cell cycle progression was examined by flow cytometry in 

Hela and Jurkat cells. Treatment with the two compounds in HeLa cells, resulted in 

the accumulation of cells in the G2/M phase, with a concomitant reduction in cells in 

both the S and G1 phases. These changes occurred in a concentration-dependent 

manner (Figure 3, Panel A), but changes were observed even at the lowest 

concentration (62nM) used. A similar behavior was observed also for Jurkat cells 

(Figure 3, Panel B), except that for compound 3a we detected a less pronounced 

G2/M arrest in comparison with 3b in the same cell lines accompanied with a 

reduction of the G1 phase while the S phase remain constant. 

Next, we investigated the association between 3b-induced G2/M arrest and 

alterations in G2/M regulatory protein expression in HeLa cells. As shown in Figure 

3 (Panel C), 3b caused an increase in cyclin B1 expression after 24 and 48hours, 
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indicating an activation of the mitotic checkpoint following drug exposure. This 

effect was confirmed by the appearance of slower migrating forms of phosphatase 

cdc25c at 24hours, followed by a strong reduction at 48hours. The phosphorylation 

of cdc25c directly stimulates its phosphatase activity, and this is necessary to 

activate cdc2/cyclin B on entry into mitosis91. In good agreement, we also observed 

at 24hours of incubation, at the concentration of 100nM, a remarkable 

dephosphorylation at Tyr15 of cdc2 kinase and this effect, although less pronounced 

also after 48hours of incubation.  
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C 

 
 

Figure 3. Effect of compounds 3a and 3b on cell cycle phase arrest in Hela (panel A) 

and Jurkat cells (panel B). Cells were treated with different concentrations of 3a or 

3b, as indicated, ranging from 62.5 to 500nM for 24hours. Then the cells were fixed 

and stained with PI to analyze DNA content by flow cytometry. Data are presented 

as mean  SEM of three independent experiments. Panel C. Effect of 3b on some 

G2/M regulatory proteins. HeLa cells were treated for 24 or 48hours with the 

indicated concentration of the compound. The cells were harvested and lysed for the 

detection of cyclin B, p-Cdc2Tyr15 and Cdc25c expression by Western blot analysis. To 

ensure equal protein loading, each membrane was stripped and reprobed with anti-

-actin antibody. 

 

 

Compound 3b induced apoptosis 

To evaluate the mode of cell death induced by compound 3b, we performed a 

biparametric cytofluorimetric analysis using propidium iodide (PI) and annexin-V-

FITC, which stain DNA and phosphatidylserine (PS) residues, respectively. 

After treatment with 3b at 50 or 100nM for 24 or 48hours, HeLa cells were labeled 

with the two dyes, and the resulting red (PI) and green (FITC) fluorescence was 

monitored by flow cytometry. As shown in Figure 4 (panel A), 3b caused a 

significant induction of apoptotic cells after 24hours. The percentage of annexin-V 

positive cells then further increased at 48hours (Figure 4, panel B). These findings 

prompted us to further investigate the apoptotic process after treatment of cells 

with 3b. 
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Figure 4. Panel A. Representative flow cytometric histograms of apoptotic HeLa cells after 

48hours treatment with 3b. The cells were harvested and labeled with annexin-V-FITC 

and PI and analyzed by flow cytometry. Panel B. Percentage of cells found in the different 

regions of the biparametric histograms after incubation with 3b for 24 or 48hours. Data are 

expressed as mean ± S.E.M. for five independent experiments. 

 

3b induced mitochondrial depolarization and ROS production 

Mitochondria play an essential role in the propagation of apoptosis122,123. It is well 

established that, at an early stage, apoptotic stimuli alter the mitochondrial 

transmembrane potential (mt). mt was monitored by the fluorescence of the dye 

JC-1124. Treated HeLa cells in the presence of 3b (50 and 100nM) exhibited a marked 

       Ctr                         50 nM                   100 nM 
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shift in fluorescence compared with control cells, indicating depolarization of the 

mitochondrial membrane potential (data not shown). Following treatment, the 

percentage of cells with low mt increased in a time-dependent fashion (Figure 5, 

panel A). The disruption of mt is associated with the appearance of annexin-V 

positivity in the treated cells when they are in an early apoptotic stage. In fact, the 

dissipation of mt is characteristic of apoptosis and has been observed with both 

microtubule stabilizing and destabilizing agents, including 1, in different cell types91. 

Mitochondrial membrane depolarization is associated with mitochondrial 

production of ROS125,126. Therefore, we investigated whether ROS production 

increased after treatment with the test compounds. We utilized the two fluorescence 

indicators hydroethidine (HE), and 2,7-dichlorodihydrofluorescein diacetate (H2-

DCFDA) 127. The results are presented in Figure 5, panels B and C which shown that 

3b induced the production of significant amounts of ROS in comparison with control 

cells, in agreement with the dissipation of mt described above.  
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Figure 5. Assessment of HeLa mitochondrial dysfunction after treatment with 

compound 3b. Panel A. Induction of loss of mitochondrial membrane potential after 24 

or 48hours incubations with compound 3b. Cells were stained with the fluorescent 

probe JC-1 and analyzed by flow cytometry. Data are expressed as mean ± S.E.M. for 

three independent experiments. Panels B and C. Mitochondrial production of ROS in 

HeLa cells. After 24 or 48hours incubations with 3b, cells were stained with H2-DCFDA 

(panel B) or HE (panel C) and analyzed by flow cytometry. Data are expressed as mean  

S.E.M. of three independent experiments. 

 

 

Effect of 3b on Bcl-2 and Bax expression and caspase-3 activation 

We evaluated the activity of caspase-3 after treatment of HeLa cells with 3b, since 

this enzyme is essential for the propagation of the apoptotic signal after exposure to 

many antimitotic compounds128. We observed a clear activation of caspase-3, as well 

as cleavage of the caspase-3 substrate PARP after 24 and 48hours of 3b exposure 

(Figure 6). In addition, after a 48  h exposure to 100nM, we also found an increase in 

the expression of phospho-H2AX, a well known marker for cellular DNA double 

strand breaks129. This suggests that DNA damage probably occurred in the 

unsegregated chromosomes resulting from the stalled replication caused by 

compound 3b. There is increasing evidence that regulation of the Bcl-2 family of 

protein shares the signaling pathways induced by antimicrotubule compounds91,130. 

The proteins of the Bcl family play a major role in controlling apoptosis through the 
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regulation of mitochondrial processes and the release of mitochondrial proapoptotic 

molecules that are important for the cell death pathway91. Our results (Figure 6) 

showed that the expression of the anti-apoptotic protein Bcl-2 was strongly reduced 

after 24hours of treatment with 100nM 3b and after 48hours with either 50 or 

100nM 3b. In contrast, expression of Bax, a proapoptotic protein of the Bcl-2 family, 

was unchanged. 

 

Figure 6. Western blot analysis for caspase-3 activation, PARP cleavage and the 

expression of Bcl-2, Bax and histone H2AX in HeLa cells. The cells were treated 

with the indicated concentration of 3b for 24 or 48hours. Whole cell lysates were 

subjected to SDS-PAGE, followed by blotting with the appropriate antibody or an 

anti-actin antibody. 

 

 

In vitro evaluation of anti-vascular activity of 3b 

Many studies have shown that most microtubule-binding drugs possess vascular 

disrupting activity, and such data suggest that this class of drugs could be useful as 

antiangiogenic compounds51,61. In this context CA-4 and its analogues in clinical 

development have been shown to quickly and selectively shut down the blood flow 
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of tumors58,95. The effect is thought to be mediated by inducing endothelial cell 

shape change, possibly through disruption of microtubule dynamics51. We tested 3b 

for its ability to induce rapid endothelial cell shape changes using a human umbilical 

vein endothelial cell (HUVEC) culture assay. We first investigated the effects of 3b on 

endothelial cell migration using an in vitro scratch assay131. We scraped confluent 

monolayers of HUVECs to clear space for motile cells to move into. As shown in 

Figure 7 (panel A), we observed that after 24hours non-treated cells migrated to 

completely fill the area that was initially scraped. In contrast, 3b significantly 

inhibited HUVEC migration in a concentration and time dependent manner (Figure 

7, panels A and B). 

We also tested the effects of 3b in a tube formation assay. After being seeded on 

Matrigel, HUVECs form a rich meshwork of branching capillary-like tubules with 

multicentric junctions. After just 1 h in different concentration (100-500nM) of 3b, 

the capillary-like tubes were interrupted. At the two higher concentrations of 3b, 

most cells were spherical and either isolated or aggregated in small clumps (Figure 

7, panel C). Quantitative image analysis (Figure 7, panel D) showed that 3b markedly 

decreased in a concentration dependent manner both dimensional (percent of area 

covered by HUVECs, total length per field) and topological parameters (number of 

mesh per field, number of branching points) of the capillary-like network. 

To evaluate if the inhibition of cell migration and tube formation was due to a 

cytotoxic action of 3b, we analyzed cell proliferation of the HUVECs by the MTT 

assay. The calculated GI50 after 72hours was 4.4±0.9µM, indicating that this 

compound inhibited proliferation of these cells only at concentrations higher than 

that required for inhibition of cell migration and tube formation. Altogether, these 

preliminary observations suggest that 3b, like CA-4, would most likely cause severe 

vascular disruption in vitro although at concentration higher than that of CA-458,95 

and warrant further studies to evaluate in deep its vascular disrupting properties. 



1.Tubulin binding agents and angiogenesis RESULTS 

 
 

97 
 

A 

 

B 

0

20

40

60

80

100

**

**

*

 

 

 

%
 r

e
d

u
c
ti
o

n
 w

o
u

n
d

 h
e

a
lin

g

 6 h

 24 h

Ctr 100        250       500

Concentration (nM)

*

 
 
 
C 

 
 

 
 
D 

0 -20 -40 -60 -80 -100

Mesh area

Mesh

Branching points

Length

 

Differences from control (%)

 500 nM

 250 nM

 100 nMArea

 
Figure 7. Antivascular activity of compound 3b. Panel A. 3b inhibits HUVEC migration. 

Confluent HUVEC monolayers were scratch wounded. The cells were treated with 

various concentrations of 3b, and at different times cells were photographed (40x 

magnification). The dotted lines define the areas lacking cells. Panel B. Graph shows the 

quantitative effect of 3b. Data are presented as mean ± S.E.M. of three independent 

experiments.*p<0.05 **p<0.01 vs control. Panel C. Inhibition of endothelial cell capillary-

like tubule formation by 3b. Tubule formation on Matrigel was performed as described 
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in Materials and Methods. Representative pictures (10x magnification) of HUVECs 

treated with the indicated concentrations of 3b for 3hours. Panel D. Graph shows the 

quantitative effects of 3b on the dimensional and topological parameters of the HUVEC 

network.  

 

 

In vivo antitumor activity of compound 3b.  

To evaluate the in vivo antitumor activity of 3b, human colon adenocarcinoma 

xenografts were established by subcutaneous injection of HT29 cells into the backs 

of nude mice. Once the HT-29 xenografts reached a size of ~300mm3, twelve mice 

were randomly assigned to one of two groups. In one of the groups, compound 3b 

dissolved in DMSO was injected intraperitoneally at doses of 100mg/kg. The drug, as 

well as the vehicle control, were administered three times a week for one week. As 

shown in Figure 8 (panel A), compound 3b caused a significant reduction in tumor 

growth (58%, p<0.01) as compared with administration of vehicle only.  

During the whole treatment period, no significant weight changes or macroscopic 

signs of toxicity occurred in the treated animals (Figure 8, panel B) suggesting that 

the administration of 3b was well tolerated. 
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Figure 8. Inhibition of human xenograft growth in vivo by compound 3b. Panel A. 

HT29 tumor-bearing nude mice were administered either vehicle control or 100mg/kg of 

3b in vehicle intraperitoneally on days 0, 2 and 4 (indicated by arrows). The figure shows 

the tumor volume (panel A) and body weight (panel B) recorded at the indicated days 

after treatments. Data are expressed as mean ± SEM of tumor volume and body weight at 

each time point for six animals per group. *p<0.01 vs. control.  
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1.3.3.4. Conclusions 

 

The structural refinement of compound 2a led to the discovery of a novel series of 

synthetic inhibitors of tubulin polymerization with general structure 3, based on 2-

aryl/heteroaryl-4-amino-5-(3’, 4’, 5’-trimethoxybenzoyl)thiazole molecular 

skeleton, prepared in a one-step procedure by Liebeskind-Srogl conditions starting 

from a easily accessible building block 5 bearing an unprotected amino group 

function. The antiproliferative activity of these compound was highly dependent on 

the structure modifications on the 2-position of the thiazole ring. The substituents 

examined included phenyl, 3-thienyl and substituted phenyl bearing EWGs or ERGs.  

The study revealed that phenyl (3a) and 3-thienyl (3b) thiazole derivatives 

exhibited improved growth inhibition activity as compared with the activity of the 

corresponding pyrrolidine analogue 2a. Moreover, compounds 3a and 3b exhibited 

the best antiproliferative activity among the compounds synthesized in this study. 

Overall, these compounds had greater potency than 1 against MCF-7 and HT-29 

cells, comparable activity against HeLa and A549 cells, and less activity against HL-

60 and Jurkat cells. Comparing 3a with the bioisosteric 3-thienyl derivative 3b, the 

latter was less active than 3a only in MCF-7 cells. In general, the introduction of 

EWGs and ERGs reduced activity compared with the unsubstituted phenyl derivative 

3a, with no clear difference in effect on potency between EWGs and ERGs. At the 

para-position, only fluorine and methyl were tolerated, while the introduction of all 

other EWGs (Cl, NO2, CF3) and ERGs (Et, C(CH3)3; OCF3, OEt) significantly reduced 

antiproliferative activity. For methoxy and chloro substituents, their position on the 

phenyl ring had a profound influence on potency. Moving the chloro group from the 

para- to the meta-position (compounds 3d and 3e, respectively), led to a dramatic 

increase in antiproliferative activity. The same effect was observed for the methoxy 

substituent (3j vs. 3k). In contrast, the insertion of an additional methoxy group, to 
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yield the m,p-dimethoxy derivative 3l, substantially reduced antiproliferative 

activity. These substituent effects are probably caused by increased steric hindrance, 

preventing efficient binding in the colchicine site, as observed in the molecular 

modeling studies. Thus, a selected, single, and small EWG or ERG could be placed on 

the phenyl ring with relatively minor effects on antiproliferative activity, but no 

modification improved activity relative to the unsubstuted phenyl or 3-thienyl 

derivatives 3a and 3b, respectively. Moreover, several compounds, such as 3c and 

3f, characterized by the presence of substituents with opposite electronic effects 

showed approximately the same potency. 

We identified tubulin as the molecular target of the compounds, since derivatives 3a 

and 3b, with the greatest inhibitory effects on cell growth, strongly inhibited tubulin 

assembly and the binding of colchicine to tubulin. Their potency for inhibition of 

tubulin polymerization was comparable with that of the reference compound 1. 

We also showed that 3b had cellular effects typical for microtubule-interacting 

agents, causing accumulation of cells in the G2/M phase of the cell cycle. Further 

studies showed that 3b was a potent inducer of apoptosis in HeLa cells. Apoptosis 

induced by antimitotic agents has been associated with alterations in a variety of 

cellular signaling pathways. As with many antimitotic drugs, compound 3b induced 

Bcl-2 down-regulation after a 24hours treatment. Bcl-2 prevents the initiation of the 

cellular apoptotic program by stabilizing mitochondrial permeability. Our results 

confirmed that the induction of apoptosis by 3b was associated with down-

regulation of Bcl-2, dissipation of the mitochondrial transmembrane potential and 

activation of caspase-3, which is coupled with terminal events of apoptosis such as 

PARP cleavage. These effects were in good agreement with the cytotoxic potency of 

this compound and occur at lower concentrations than was observed with 

compound 2a115. Compound 3b was also active in suppressing the growth of drug 

resistant cells, and, even more importantly, it had significant in vivo activity in a 
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colon cancer xenograft model. Finally, preliminary experiments were performed to 

assess the potential antivascular activity of compound 3b. The ability of this 

compound to inhibit endothelial cell migration and to destroy pre-established 

vessels using HUVEC is consistent also with antivascular agent utility and warrants 

further testing in vivo cancer models. 
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1.4. CONCLUSIONS 

 

Solid tumors require vascular supply to grow and expand. The tumor 

microenvironment stimulates the development of new vessels, which are tortuous, 

highly disorganized and unstable. Thus they represent a promising target for 

anticancer therapy, because they result more sensitive to treatment, than normal 

vasculature. 

Here we reported the antivascular activity of three compounds, TR-644, TR-764 

and 3b, with molecular structure similar to CA-4. All of them have high binding 

affinity to tubulin, leading to inhibition of microtubule polymerization. The 

trimetoxyphenyl group is conserved in the three molecules, and it is responsible for 

the binding to tubulin. 

Since microtubules are the specific target, our compounds can carry out their 

activity as both antiproliferative molecules against cancer cells and antivascular 

agents, targeting endothelial cells cytoskeleton.  

Recently, cancer therapies are based on combinatorial treatments with antimitotic 

and antiangiogenic drugs, following precise dosing schedules. Usually antimitotic 

molecules are used at high doses, necessary to kill cancer cells, while antiangiogenic 

drugs act at low concentrations to inhibit endothelial cell functions21. 

Our molecules are able to arrest cancer cell proliferation in vitro and inhibit in vivo 

the growth of tumor mass, as well as they reduce tumor vasculature at very low 

concentrations (1-500nM)66,63,79,132. These findings suggest that our novel tubulin 

binding agents could be utilized as single molecules for cancer therapy.  

The most active compound is TR-764, probably because it is endowed with the 

highest affinity constant to tubulin, among the reported compounds. As concerning 

the antivascular effects, 3b, TR-644 and TR-764 were described as inhibitors of cell 
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motility and angiogenesis in vitro. 3b was mainly described for its ability to induce 

cell death in cancer cell lines, and secondly its antivascular activity was shortly 

debated. 3b was significantly active at 250nM on HUVEC cells, while TR-644 and 

TR-764 at 1-10nM. TR-644 and TR-764 strongly impair cell cytoskeleton 

morphology, altering its role in cell motility and signal transduction. The effects 

observed in vitro explain TR-764 and TR-644 ability in vivo to significantly reduce 

the microvessel density of tumor microcirculation. 

Unlike TR-644, we evaluated TR-764 action under hypoxic conditions, in order to 

understand whether this molecule could counteract potential resistance 

mechanisms induced by tumor microenvironment or by the treatment with 

antivascular agents. We observed as TR-764 counteract the hypoxic stimuli, by 

inhibiting HIF-1α activation. 

For that reason, TR-764 is the most active and promising agent which can improve 

the traditional chemotherapy against highly vascularized tumors. 
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2.1. INTRODUCTION 

 

2.1.1 Microtubule dynamics in cell cycle regulation and apoptosis 

In eukaryotes, cell cycle and cell division are processes highly regulated by a series 

of guardian molecules and microtubule dynamics.  

Microtubules are a cytoskeleton element, composed by α-tubulin and β-tubulin 

filaments associated together by non-covalent interactions at their two ends. They 

form polarized structures, with a minus and a plus end, terminating respectively 

with α-tubulin and β-tubulin heterodimers. The main property of microtubules is 

their “dynamic instability”, that is the ability to grow and shrink very rapidly. In 

mitosis it is necessary for the rapid mitotic spindle assembling and disassembling. 

Secondly, they give rise to a three-dimensional structure, useful for chromosome 

capture and alignment at the metaphase plate133.  

Cell cycle is strictly controlled by surveillance mechanisms which arrest the 

progression in case of damage. During mitosis the spindle assembly and the 

chromosome segregation are supervised by checkpoint proteins of the spindle 

assembly checkpoint (SAC), which monitor the correct attachment of chromosomes 

to the kinetochore. This protein complex is thus considered the guardian of mitotic 

spindle formation and alignment of chromosome at metaphase134. In addition, each 

transition from a cell cycle phase to another is finely regulated by checkpoint 

proteins such as cyclins, kinases/phosphatases, DNA damage detectors135.  

A series of alterations, such as mutations and chromosome breaks, can spread if 

these checkpoints are dysfunctional. The delay in cell cycle progression, due to DNA 

damage, other stresses and dysregulation of spindle checkpoints trigger 

programmed cell death.  
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Many factors are involved in life or death related pathways, and cyclin-dependent 

kinase (Cdk1) and cyclin B have a crucial role both in mitosis establishment and in 

apoptosis regulation, by the control of several proteins, such as caspase-9 and 

surviving, indicating that these two processes are hard-wired. Thus cell fate is 

established by a balance between pro-survival mechanisms, such as cell-cycle arrest, 

and death signals which stimulate the activation of apoptotic pathways. 

Insufficient regulation of this balance is responsible associated to the development 

of pathologies and particularly cancer134,136. 

 

 

Figure 1. Mitotic proteins as antitumor targets (adapted from Ref.137) 

 

 

2.1.2 Tubulin Binding Agents (TBAs) in cancer therapy 

Defects in the regulation of cell cycle checkpoints or in microtubule spindle 

functions lead to an increase proliferation rate, characteristic of tumor cells. In many 

years a series of antimitotic drugs has been developed to arrest cell cycle and induce 

apoptosis.  
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Many antimitotic drugs are molecules that bind to tubulin, and traditionally are 

classified in two groups: microtubule stabilizing (taxanes and epothilones) and 

destabilizing agents (Vinca alkaloids and colchicines). The former group stabilizes 

the pre-existing filaments, preventing the mitotic spindle formation, the latter 

inhibits the polymerization of microtubules138.  

These kinds of molecules are currently used for the treatment of several neoplastic 

diseases, such as acute leukemia, Hodgkin’s and non-Hodgkin’s lymphoma, breast 

cancer, lung cancer, neuroblastoma, rhabdomyosarcoma. 

Nevertheless these drugs showed many side effects, due to their broad action 

against also non-proliferating cells. Peripheral neuropathy, severe 

myelosuppression and neutropenia were observed in patients during antimitotic 

therapy.  

For that reason, recently more specific molecules were developed to inhibit mitotic 

checkpoint kinases, and microtubule-related proteins (Cdks, checkpoint kinases, 

Aurora A/B/C, polo-like kinase 1, and other mitotic kinesins)137,139. 

 

 

Figure 2. Cell fate in response to anti-mitotic drug treatment (adapted from Ref.133) 
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 2.1.3 Noscapines as anticancer agents 

Among the tubulin binding agents, noscapines represent another class of molecules 

with anticancer activity.  

Noscapine is a phthalideisoquinoline alkaloid extracted from opium, originally used 

as an antitussive drug. It is water-soluble, orally bioavailable, and endowed with low 

toxicity. It has been reported that noscapine binds stoichiometrically to tubulin, 

having a structure alike to that of colchicine and podophyllotoxin. It does not impair 

the total polymer mass, but it slightly affects the dynamics of cytoskeleton. It slows 

down the dynamism of microtubules, by increasing the time of the attenuated state 

to the detriment of the polymerization/depolymerization states. This effect causes 

alterations in mitotic spindle, by altering the interaction between chromosomes and 

kinetochore microtubules. Cell cycle is arrested in a metaphase-like state, and 

consequently cells are induced to a programmed cell death. Thus the growth of 

numerous cancer cell types is inhibited by the treatment with noscapine140,141. 

By in silico molecular modeling, several derivatives have been developed and 

optimized in order to increase the binding affinity to tubulin, and to improve the 

antimitotic activity142.  

This class of molecules represents a potential strategy to overcome the high toxicity 

induced by tubulin binding drugs, which overall impair the structure of 

microtubules, unlike noscapines. 

The mostly studied analog is EM011 (9-bromonoscapine), a non-toxic brominated 

derivative which binds to tubulin with a double binding affinity (KD = 54 ± 9.1µM) 

respect to the lead compound noscapine (KD = 144 ± 1.0µM)143. EM011 is more 

potent than noscapine, as concerning the inhibition of cell proliferation too. It has 

been showed that 9-bromonoscapine decrease the proliferation of a panel of cancer 

cell lines, and it is effective also in tumor models in vivo144,145. 
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Noscapine EM011 

Figure 3. Structures of noscapine and EM011 (adapted from Ref.140,146,147)  

 

 

 2.1.4 Noscapines activity on cell cycle and apoptosis induction 

It has been described that EM011 or noscapines significantly alter cell cycle 

regulation, by suppressing microtubule instability and arresting cells in 

prometaphase143. During mitosis, the contacts between chromosomes and 

kinetochore microtubules are essential for a correct assembly of the mitotic spindle. 

It has been observed that noscapines cause mitotic arrest, DNA damage and 

subsequently activation of cell cycle and spindle checkpoints148. Abnormalities in 

spindle organization, multipolarity and centrosome amplification occur after 

treatment, and Aurora B activity results upregulated, indicating that the attachment 

of kinetochore to microtubules is disrupted. Multipolar spindle causes cytokinesis 

failure and consequently multinucleation and aneuploidy149. This phenomenon is 

called “mitotic slippage”, and cells are arrested in a pseudo G1-like interphase 

state150. Noscapines induce a chronic mitotic delay and multiple cellular catastrophic 

events, culminating in apoptosis activation. Survivin, a pro-survival signal, is 

reduced, while PARP and cleaved caspase-3 are activated, leading to a 

mitochondrial-mediated cell death146,144,151. 
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Figure 4. Centrosome amplification and cancer therapy (adapted from Ref.152) 
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2.2. AIM OF THE STUDY 

 

Noscapines represent a class of tubulin binding agents with anticancer activity and 

low toxicity. They cause mitotic spindle dysregulation, arrest in mitosis and 

consequently apoptosis. 

Here we reported an efficient strategy for chemical synthesis based on Suzuki 

coupling method, and the biological evaluation of a series of novel 9’-alkyl and 9’-

aryl derivatives from noscapine. We studied their antiproliferative activity on a 

panel of cancer cell lines, and the mechanism of action in cell cycle impairment and 

apoptosis induction. 
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2.3. RESULTS 
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2.3.1.1. Abstract 

 

Tubulin is a major molecular target for anticancer drugs. The dynamic process of 

microtubule assembly and disassembly can be blocked by various agents that bind 

to distinct sites on tubulin, usually its β-subunit. Among the antimitotic agents that 

perturb microtubule dynamics, noscapinoids represent an emerging class of agents. 

In particular, 9’-bromonoscapine (EM011) has been identified as a potent noscapine 

analog. Here we present high yielding, efficient synthetic methods based on Suzuki 

coupling of 9’-alkyl and 9’-arylnoscapines and an evaluation of their antiproliferative 

properties. Our results showed that 9’-alkyl and 9’-aryl derivatives inhibit 

proliferation of human cancer cells. The most active compounds were the 9’-methyl 

and the 9’-phenyl derivatives, which showed similar cytotoxic potency in 

comparison to the 9’-brominated derivative. Interestingly these newly synthesized 

derivatives did not induce cell death in normal human lymphocytes, suggesting that 

the compounds may be selective against cancer cells. All of these derivatives, except 

9’-(2-methoxyphenyl)-noscapine, efficiently induced a cell cycle arrest in the G2/M 

phase of the cell cycle in HeLa and Jurkat cells. Furthermore, we showed that the 

most active compounds in HeLa cells induced apoptosis following the mitochondrial 

pathway with the activation of both caspase-9 and caspase-3. In addition, these 

compounds significantly reduced the expression of the anti-apoptotic proteins Mcl-1 

and Bcl-2. 
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2.3.1.2. Introduction 

 

Antimitotic agents, primarily of natural origin, are a class of compounds that 

have been used for the treatment of a variety of malignancies for many years. 

Although they are sometimes considered “old chemotherapeutics” with respect to 

current anticancer approaches67,153, at the present time they still represent valuable 

drugs that retain high scientific interest. Their impressive success in patients is due 

to their potent anti-proliferative effects and to their particular mechanism of action 

of altering microtubule dynamics, whether their detailed mechanism of action 

involves inhibition of tubulin assembly (vinca alkaloids, eribulin, estramustine, 

drug-antibody complexes with dolastatin 10 and maytansine analogues) or 

inhibition of microtubule disassembly (taxoids, epothilones). The importance of 

microtubules in mitosis and cell division, as well as the clinical success of 

microtubule targeting drugs, has made these dynamic organelles one of the most 

attractive targets for anticancer therapy68. In 1997, Ye et al.140 discovered the anti-

cancer effect of noscapine [1, (-)-α-noscapine, (S)-6,7-dimethoxy-3-((R)-4’-methoxy-

6’-methyl-5’,6’,7’,8’-tetrahydro[1,3]dioxolo-[4,5]isoquinolin-5’-yl) isobenzofuran-

1(3H)-one], formerly known as narcotine (Figure 1), a phthalide isoquinoline 

alkaloid constituting 1–10% of the alkaloid content of opium. The antimitotic 

activity of noscapine was characterized, and it was demonstrated that the compound 

could inhibit tubulin assembly. These workers therefore embarked on an intensive 

search for more potent analogues of noscapine140,146.  
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Figure 1. The structure of natural noscapine (1) and its 9’-bromo derivative (2).  

 

 

Most importantly, 9’-bromonoscapine (2, EM011) was patented154, characterized, 

and introduced into clinical trials against non-Hodgkin's lymphoma and chronic 

lymphocytic leukemia. A few other 9’-substituted noscapine derivatives were 

reported recently144,148,155,156. For instance 9’-nitronoscapine was found to be active 

against drug-resistant ovarian cancer and T-cell lymphoma cells144, and its reduced 

congener, 9’-aminonoscapine, has good activity as a tubulin inhibitor156.  

Considering the increased cytotoxic activity of the 9’-bromo derivative of 1 as 

compared with the parent molecule, it is important to know whether the 

substitution of the phtalideisoquinoline backbone in position 9’ contributes to a 

conformational change. Besides that, it is known from previous reports that 

phtalideisoquinoline derivatives are sensitive to acidic or basic media, and in 

numerous cases epimerization occurs157,158. Therefore, it was considered important 

to unambiguously determine whether or not there is an epimerization reaction 

during the relatively harsh bromination procedure.  Thus, we obtained crystals of 9’-

bromonoscapine (2) for X-ray crystallography and investigated the circular 

dichroism of compound 2 in solution. In addition, 9’-bromonoscapine (2) prepared 
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by a modified procedure, was identified as a starting agent for the synthesis of new 

analogues through the application of modern Pd-catalyzed cross-coupling reactions 

(Scheme 1)159. These new 9’-alkyl and 9’-arylnoscapines were evaluated for their 

antiproliferative and anti-tubulin properties, as well as their apoptotic mechanism of 

action. 

 

 

 

Scheme 1. Synthesis of targeted 9’-alkyl-  and arylnoscapines 3-9 

 

 

Chemistry 

The literature procedure for the preparation of 9’-bromonoscapine (2) was 

published in 2003 by Zhou et al.148. This procedure began with noscapine free base 

and used the 48% HBr-bromine water reactant mixture for the bromination of 

noscapine at position 9’. Afterwards, the alkalinization of the reaction mixture was 

performed with cc. NH3 solution. The filtration of the crude product was followed by 

recrystallization from 96% ethanol. In our hands, this procedure gave rise to the 

desired 9’-bromonoscapine in a considerably lower yield (<10%), so we optimized 

the procedure in several steps. The application of extraction after filtration of the 
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aqueous phase of the crude product resulted in a significant amount of off-white 

product that was a mixture of 9’-bromonoscapine (2) and a large amount of 

unreacted noscapine (1). Recrystallization from 96% ethanol yielded only a very 

small amount of 2. The separation of noscapine 1 and its bromo derivative 2 was 

also attempted several times by column chromatography, but the highly similar 

retention times of the two compounds prevented their separation, even after trying 

many different mobile phases. 9-Bromonoscapine was prepared. The Zhou et al.148. 

procedure was modified and began with noscapine hydrochloride hydrate. This 

approach was found to be superior as solvation required less HBr, and this led to an 

increase in product purity and yield. The yield was further improved by processing 

the mother liquor and using less base for the neutralization step. The concentration 

of the mother liquor resulted in a significant amount of a light yellow residue that 

was found to be 9’-bromonoscapine (2) containing a small amount of noscapine 

impurity. These modifications combined afforded a total yield of 50% on average. 

The pure 9’-bromonoscapine (2) we obtained, confirmed by 1H-NMR, showed a 

higher melting point than the reported value (174-175˚C instead of 169-170˚C). The 

9’-bromonoscapine (2) obtained was used as a starting agent for its transformation 

by the application of modern Pd-catalyzed cross-coupling reactions (Suzuki 

reaction) into new 9’-noscapine derivatives. The application of Suzuki cross-

coupling reaction in the synthesis and derivatization of alkaloids is an excellent 

choice for the formation of new C-C bonds. For example, substitutions in 

morphinans and aporphinoids were successfully realized at different positions of 

the two alkaloid backbones160–162. The first tested protocol with 2 was adapted from 

these earlier procedures using K2CO3 as a base and Pd[P(Ph)3]4 as the Pd-source 

combined with ligands. As summarized in Table 1, this combination of reagents and 

reaction conditions (heating at 90oC for 2hours) led to 4-12% percent yields after 

isolation by means of column chromatography. After testing other generally used 
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reagents and conditions, we found no significant improvement with these common 

coupling methodologies. After examining the single crystal structure of compound 2 

(vide infra), especially the steric hindrance in the proximity of the bromine 

substituent, we turned to methods developed for the cross-coupling of hindered 

aromatic bromides163. The application of Pd(OAc)2 as the Pd-source, K3PO4 as the 

base and XPhos, a specific biphenyl phosphine, made possible the isolation of the 

desired products 3-8 in significantly higher yields (Table 1). 

 

Structural analysis of 9’-bromonoscapine (2) and Suzuki products 3-8 

The structure of compound 2 in solution was investigated with the use of circular 

dichroism (CD). In Figure 2 (Panel A) the CD spectra of parent compound 1 and its 

brominated congener 2  are presented. The spectrum of (-)-α-isomer 1 shows 

Cotton effects around 320 and 225nm. These data are in accordance with the most 

relevant and detailed evaluation of the circular dichroism characteristics of 

phthalide isoquinoline alkaloids by Snatzke et al.164. As concluded in this 

fundamental work, the configuration of the C5’ asymmetric centre could be 

associated with Cotton effects at around 290 (1LB transition) and 205nm (1B 

aromatic transition), while the data related to the configuration of the C3 carbon 

appear in the regions of 320 and 225nm (aromatic transitions). Comparing the CD 

specta obtained for compounds 1 and 2, it can be unambigously stated that the 

characteristics, the types and the positions of Cotton-effects confirm the high 

conformational similarity between the two molecules. On the basis of the X-ray 

crystal structure, the torsion angle between the H3-C3-C5’-H5’ atoms can be 

measured (Figure 3, panel A). These data are considered an efficient indicator for 

showing the relative positions of the tetrahydroisoquinoline and isobenzofuranone 

ring systems of the phthalide isoquinoline derivatives. The angle for natural 

noscapine base (1) was reported to be -66˚165. Interestingly, the protonation of the 



2. Noscapine derivatives as antimitotic agents RESULTS 

 
 

120 
 

tertiary amino function (formation of noscapine hydrochloride) is followed by a 

remarkable conformational change characterized by the important torsional angle of 

+78˚ for the H3-C3-C5’-H5’ atomic connections166. As presented in Figure 3 (panel 

B), the protonation evokes a significant twisting of the isobenzofuranone moiety 

relative to the tetrahydroisoquinoline group. The modified synthesis of 9’-

bromonoscapine (2) allowed us to obtain crystals of the compounds appropriate for 

single crystal X-ray structural analysis (CCDC deposition # 955643 ) (Figure 3, panel 

C). It was determined that the indicative torsion angle between H3-C3-C5’-H5’ for 

the 9’-bromonoscapine was -80.1˚. A recent study on the three dimensional chemical 

space of a pharmacophore model for noscapinoids167 allows us to determin that the 

relative positions of hydrogen bond acceptor O1’ and C7-OCH3 oxygen atoms and the 

hydrophobic C4’-OCH3 and C6-OCH3 methyl centres are within 1.2 Å of maximal 

distance. This was done after performing the overlay of the X-ray structures of the 

free bases of noscapine (1) and 9’-bromonoscapine (2) by overlaying the structures 

of both the tetrahydroisoquinoline and isobenzofuranone ring systems. In order to 

prove that the Suzuki cross-coupling conditions did not lead to epimerization of the 

original phthalide isoquinoline structure (i.e., that the conformations of the 

synthesized compounds were similar to the pharmacologically promising precursor 

2), the circular dichroism spectra of compounds 3-8 were recorded. The α-isomers 

of phthalide isoquinoline alkaloids show Cotton effects typically around 320 and 

225nm. It can be concluded from the set of CD spectra presented in Figure 2 (panel 

B), that in these regions the spectra show similar characteristics, which is a proof of 

the retention of configuration at the two chiral centers.  
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Table 1. Optimization of the Suzuki coupling of compound 2 

Compounds Pd-source Ligand Base Solvents Yields (%) 

3 Pd[P(Ph)3]4 - K2CO3 THF/MeOH 4 

3 Pd(OAc)2 XPhosa K3PO4 THF/MeOH 44 

4 Pd[P(Ph)3]4 - K2CO3 THF/MeOH 12 

4 Pd(OAc)2 Xphosa K3PO4 THF/MeOH 53 

5 Pd[P(Ph)3]4 - K2CO3 THF/MeOH 8 

5 Pd(OAc)2 Xphosa K3PO4 THF/MeOH 61 

6 Pd[P(Ph)3]4 - K2CO3 THF/MeOH 4 

6 Pd(OAc)2 XPhosa K3PO4 THF/MeOH 41 

7 Pd[P(Ph)3]4 - K2CO3 THF/MeOH 9 

7 Pd(OAc)2 Xphosa K3PO4 THF/MeOH 55 

8 Pd[P(Ph)3]4 - K2CO3 THF/MeOH 4 

8 Pd(OAc)2 XPhosa K3PO4 THF/MeOH 42 

9 Pd[P(Ph)3]4 - K2CO3 THF/MeOH 7 

9 Pd(OAc)2 Xphosa K3PO4 THF/MeOH 57 

a XPhos: (2-biphenylyl)-dicyclohexyl-phosphine  
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Figure 2. Panel A. CD spectra for natural noscapine  1 and its 9’-bromo derivative 2 

in acetonitrile. Panel B. CD spectra for natural (-)-α-noscapine 1 and for 

representative  novel 9’-alkyl and 9’-arylnoscapines in acetonitrile.  
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C 

 
 
Figure 3. The X-ray crystal structures of natural noscapine free base (1, Panel A), its 

HCl salt (Panel B) and 9’-bromonoscapine (2, Panel C).   
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2.3.1.3. Results 

 

Evaluation of antiproliferative activity  

The newly synthesized noscapine derivatives, in comparison with reference 

compound 2, were tested for their antiproliferative activity in a panel of human 

cancer cell lines. As shown in Table 2, 9’-aryl derivatives 4 and 5 and the 9’-alkyl 

derivative 3 were generally equipotent with 9’-bromonoscapine (2). Generally less 

active than 2, the three methoxyphenyl derivatives 6-8, as well as the 9’-alkyl 

derivative 9, showed similar potencies to each other. To obtain more insight into the 

potential cytotoxic activity of these new compounds for normal human cells, they 

were assayed in vitro against peripheral blood lymphocytes (PBL) from healthy 

donors (Table 3). All the compounds were ineffective in resting lymphocytes, having 

IC50 values over 200µM, in well agreement with previous reports146,148. Only some 

compounds (2, 4 and 6) proved cytotoxic in PHA-stimulated PBL, but only at higher 

concentrations (generally, 5-30 fold higher) than against the lymphoblastic cell lines 

Jurkat and CCRF-CEM. Together, these data suggest these compounds may have 

cancer cell selective killing properties.  



 

Table 2. In vitro cell growth inhibitory effects of compounds 2-9  

 

aIC50= compound concentration required to inhibit tumor cell proliferation by 50%. Data are presented as the mean ± SEM from the 

dose-response curves of at least three independent experiments. 

IC50 a (µM)  

Compounds   HeLa Jurkat SEM RS4;11 CEM LoVo HT29 A549 IGROV-1 

2 2.6±0.4 3.0±0.6 1.8±0.3 1.4±0.6 2.8±0.19 42.8±16.7 18.7±7.0 73.9±7.6 78.2±6.9 

3 5.2±0.8 5.9±0.8 4.3±0.7 15.8±2.0 8.8±3.1 66.3±10.1 34.0±10.4 >100 62.4±3.5 

4 7.4±1.6 5.4±2.1 3.2±0.4 2.4±0.7 5.2±0.8 42.8±2.8 36.5±7.1 55.3±3.2 68.1±6.1 

5 12.8±3.8 5.1±0.9 7.4±1.1 16.4±3.5 11.8±2.2 41.8±3.6 24.9±7.3 22.2±7.9 66.3±7.3 

6 30.8±1.9 33.6±5.1 22.2±3.2 13.8±5.4 6.9±1.5 57.1±4.4 72.7±12.0 59.7±5.3 90.9±11.7 

7 8.9±0.3 13.2±4.2 13.0±4.0 7.1±2.9 22.3±4.7 29.4±2.7 36.1±5.8 >100 57.2±9.3 

8 15.6±5.3 11.3±4.7 15.1±3.9 12.6±1.9 25.8±1.7 28.8±1.5 47.8±4.2 >100 55.6±2.8 

9 27.4±3.5 20.0±4.7 8.4±2.1 30.8±0.9 23.3±3.4 60.3±4.5 58.5±10.3 48.1±6.2 67.0±8.4 
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Table 3. Cytotoxicity of noscapine derivatives for human peripheral blood 

lymphocytes (PBL) 

 

 

 

 

 

 

 

 

a Compound concentration required to reduce cell growth by 50%. b PBL not 

stimulated with PHA c PBL stimulated with PHA. Values are the mean ± SEM for 

three separate experiments. 

 

 

Inhibition of tubulin polymerization and colchicine binding 

The series of new noscapine analogues was first evaluated for potential inhibition of 

tubulin assembly in comparison with the potent colchicine site agent combretastatin 

A-4 (CA-4), using a GTP- and glutamate-dependent polymerization assay that 

measured extent of assembly after 20min at 30°C (Table 1)119. It was quickly 

apparent that, while some activity was observed with several of the noscapine 

analogues, they were far less potent than CA-4, which yielded an IC50 value of 1.2µM. 

In fact, when concentrations up to 400µM were evaluated, an IC50 value was 

obtained only with compound 5. At the 400µM concentration, two of the 

compounds, 4 and 6, appeared to precipitate in the reaction mixture. The inhibition 

 

Compound 

IC50 (µM) a 

PBLrestingb PBLPHAc 

2 >200 92.2±13.8 

3 >200 >200 

4 >200 54.9±7.6 

5 >200 >200 

6 >200 42.4±5.0 

7 >200 >200 

8 >200 >200 

9 >200 >200 
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observed with 5 (IC50, 120µM) was 100-fold weaker than the inhibition observed 

with CA-4. However, besides IC50 values based on inhibition of the extent of 

assembly, it is also possible to change the parameter measured from the extent to 

the rate of assembly119,168,169. In our experience, this has the effect of reducing the 

IC50 value for compounds 2-4-fold, thus permitting measurements of IC50’s for 

weakly active compounds and, potentially, for compounds that induce aberrant 

polymer formation at higher concentrations, which is generally associated with 

turbidity development that can only be distinguished from “normal” assembly by 

electron microscopy170,171. Our concentration studies with the noscapine analogues 

did not provide any evidence for an aberrant assembly reaction, since we only 

observed progressive inhibition, albeit very weak. In addition, it should be noted 

that the typical microtubule assembly curve, as measured by turbidimetry, has a 

sigmoidal shape. We therefore measured the maximum rate of assembly at the 

inflection points of the turbidity curves. This resulted in our obtaining 3-fold 

reductions in the IC50 values for CA-4 (0.44µM) and 5 (45µM), but, in addition, we 

obtained maximum rate IC50 values for two compounds (3 and 7) (Table 4). Only, 2, 

4, and 6 failed to yield rate IC50 values. 

Because noscapine has structural similarity to colchicine, it was evaluated without 

success as a potential inhibitor of [3H]colchicine binding to tubulin140. With most 

active colchicine site inhibitors, we have been able to demonstrate significant 

inhibition of the binding of [3H]colchicine to tubulin, with tubulin at 1µM and 

colchicine and the inhibitor at 5µM. This is shown in Table 4 for CA-4, although few 

compounds are as potent as CA-4 in inhibiting this reaction. With the noscapine 

analogues, in agreement with the findings with noscapine140, in a preliminary 

experiment we found no significant activity when they were added to the reaction 

mixture at 5µM (data not shown). However, we decided to evaluate the compounds 

for potential inhibition at 500µM (Table 4). Although an additional two compounds 
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(2 and 3) appeared to precipitate in the reaction mixture, we did observe inhibition 

reasonably concordant with the effects on tubulin assembly. Thus, the best 

inhibition was observed with 5, and the worst with the three compounds that had 

assembly rate IC50 values over 400µM (2, 4, and 6). We should note here that this 

assembly assay uses reaction conditions that strongly stabilize the colchicine 

binding activity of tubulin160. Nevertheless, we generally measure inhibition of 

colchicine binding at short reaction times, such as 10min, when the reaction is 40-

60% complete, because we have found that inhibition by weakly active compounds 

is maximal at shorter incubation times172. This is probably because most colchicine 

site agents dissociate from tubulin much more rapidly than colchicine itself172,173. 

Consequently, once bound, [3H]colchicine in effect locks other agents out of the 

binding site. Under the reaction conditions used here, the half-life of the colchicine-

tubulin complex is about 24hours173. The difference in reaction conditions and 

incubation time probably explains the limited effects reported for noscapine on the 

binding of [3H]colchicine to tubulin140. We should note, however, that a recent 

report174 described inhibition of colchicine binding, measured by inhibition of the 

fluorescence that occurs when colchicine binds to tubulin175, by 9’-bromonoscapine 

(2), although noscapine (1) itself had no activity at the highest concentration 

examined (100µM). 
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Table 4. Inhibition of tubulin polymerization and colchicine binding by compounds 

1-7 and CA-4 

Compound 

Tubulin assemblya 

IC50±S.D (µM) 

Colchicine bindingb 

% ±S.D. 

Extent  Rate 5µM drug 500µM drug 

1 >400 170±4 n.d. 44±4 

2 >400 >400 n.d. 34 ± 4 T 

3 >400 220±50 n.d. 39 ± 2 T 

4 >400 >400 n.d. 14 ± 1 T 

5 120±3 45±8 n.d. 64 ± 4 

6 >400 >400 n.d. 13 ± 5 T 

7 >400 170±20 n.d. 38±4 

CA-4  1.20.09 0.44±0.03 99±0.4 n.d. 

a Inhibition of tubulin polymerization. Tubulin was at 10µM. b Inhibition of 

[3H]colchicine binding. Tubulin and colchicine were at 1 and 5µM, respectively, and 

the tested compound was at the indicated concentration.  n.d. not determined;  T = 

reaction mixture turbid before incubation, implying compound precipitation 

 

 

Effects of 9’-noscapine derivatives on the cellular microtubule network 

We investigated the effects of the new derivatives on the cytoskeletal microtubule 

and microfilament networks by immunofluorescence in HeLa cells. As shown in 

Figure 4, the microtubule network exhibited normal arrangement and organization 

in HeLa cells in the absence of drug treatment. In contrast, 24hours of exposure to 

compounds 2, 3 or 7 at 25µM caused extensive microtubule rearrangement, with 

induction of spherical morphology in 70-80% of the cells. In addition, the treatment 
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also induced mitotic arrest, characterized at the concentrations and time studied, by 

an increase in the number of cells with typical bipolar spindles with chromosomes 

arranged along the metaphase plate. We also observed abnormal microtubule 

spindles with astral or multipolar configurations as well as a disorganized or 

spherical arrangement of chromosomes.  

 

 

 

Figure 4. Effects of compounds 2, 3 and 7 on microtubule networks in HeLa cells. 

Cells were incubated with 25µM compound for 24hours and then stained with anti-

-tubulin primary antibody and secondary Alexa-conjugated antibody and then 

observed by confocal microscopy (magnification 20x,  bar = 10µm). Cells were also 

counterstained with DAPI to visualize the nuclei. Arrows indicate cells with 

disorganized spherical arrangements of chromosomes or multipolar microtubules.  
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In good agreement with microtubule rearrangement, we also observed PCM1 

alteration, after treatment of cells with the new compounds (effects of compounds 2, 

3 and 5 shown in Figure 5). PCM1 is a pericentriolar protein involved in recruiting 

proteins necessary for centrosome replication, and it dynamically fluctuates during 

the cell cycle. Late in G2, the protein dissociates from the centrosome remaining 

dispersed throughout the cell during mitosis. The mechanism is cell cycle 

dependent, with PCM1 aggregates disassembling during mitosis and reassembling in 

interphase176,177.  

As shown in Figure 5, PCM1 staining revealed an accumulation of the pericentriolar 

material in some treated cells, similar to the effects observed after treatment with 

nocodazole and other antimitotics178. Moreover, cells arrested in mitosis showed the 

characteristic rounded shape, and PCM1 was scattered and dispersed throughout 

the cell. The derivatives induced a depletion of PCM1 function, affecting its 

localization and the organization of cell cycle machinery, resulting in microtubules 

anchoring to the centrosome. The derivatives also induced a change in cell 

morphology detectable by staining with phalloidin (Figure 5). Actin filaments were 

intact but disorganized as compared with the control cells, contributing to 

impairment of cell organization. 
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Figure 5. Effects of indicated compounds on PCM1 in HeLa cells. Cells were 

incubated for 24hours with the indicated compounds (25μM) and stained with anti-

PCM1-primary antibody and secondary Alexa-conjugated antibody, phalloidin-

tetramethylrhodamine B to visualize actin microfilaments and DAPI. Images were 

captured by confocal microscopy (magnification 60x, bar = 10μm). Arrows indicate 

points of PCM1 accumulation or diffused in mitotic cells. 

 

 

9’-noscapine derivatives induce G2/M arrest of the cell cycle 

The effects of a 24hours treatment with different concentrations of compounds 2-7 

on cell cycle progression in HeLa (Figure 6) and Jurkat cells (Figure 7), were 

determined by flow cytometry. All compounds, except 6, caused a significant G2/M 

arrest in a concentration-dependent manner in both cell lines, with the new 

compounds having effects essentially identical to those observed with the reference 

compound 2. In HeLa cells (Figure 6), the rise in G2/M cells occurred maximally at a 

concentration between 10-25µM, while at higher concentrations more than 80% of 
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the cells were arrested in G2/M. A similar behavior was observed with the Jurkat 

cells (Figure 7), but, except with compound 2, maximal effects required higher 

compound concentrations. As would be expected, the cell cycle arrest in G2/M phase 

was accompanied by a commensurate reduction in cells in the other phases of the 

cell cycle. We also examined several of the compounds, in comparison with CA-4, in 

human Burkitt lymphoma CA46 cells since this cell line generally yield a very high 

mitotic index when treated with antitubulin agents. Compounds 3 and 7 yielded IC50 

values of 18 ± 8µM and 20 ± 4µM, respectively (the contemporaneously obtained 

value for CA-4 was 20 ± 7nM. At five times the IC50 concentrations, there was over 

80% G2/M cells with all three compounds. Morphological examination of parallel 

cultures stained with Giemsa yielded mitotic indices of 46% with CA-4, 38% with 

compound 3, and 28% with compound 7 indicating that they acted like antitubulin 

agents.  
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Figure 6. Percentage of cells in each phase of the cell cycle in HeLa cells, treated 

with the indicated compound at different concentrations for 24hours. Cells were 

fixed and labeled with PI and analyzed by flow cytometry as described in the 

experimental section. Data are presented as mean ± SEM of three independent 

experiments. 
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Figure 7. Percentage of cells in each phase of the cell cycle in Jurkat cells, treated 

with the indicated compound at different concentrations for 24hours. Cells were 

fixed and labeled with PI and analyzed by flow cytometry as described in the 

experimental section. Data are presented as mean ± SEM of three independent 

experiments. 

 

 

We next studied the effects of compounds 2-5, on alterations in the expression of 

proteins that regulate cell division. The cdc2/cyclin B complex controls both entry 

into and exit from mitosis. Phosphorylation of cdc2 on Tyr15 and phosphorylation of 

cdc25c phosphatase on Ser216 negatively regulate the activation of the cdc2/cyclin 

B complex134,179,180. Thus, dephosphorylation of these proteins is needed to activate 

the cdc2/cyclin B complex. Cdc25c is a major phosphatase that dephosphorylates 

the site on cdc2 and autodephosphorylates itself. Phosphorylation of cdc25C directly 

stimulates both its phosphatase and autophosphatase activities, a condition 

necessary to activate cdc2/cyclin B on entry of cells into mitosis134,179,180. As shown 

in Figure 8 in HeLa cells, treatment with 3, 4 or 5 at 25µM for 24 or 48hours caused 

an increased expression of cyclin B at 24hours, in particular for compounds 5, 

followed by its disappearance at 48hours. Similarly, slower migrating forms of 

phosphatase cdc25C appeared at 24hours following treatment with 4 or 5, 

indicating changes in the phosphorylation state of this protein, while at 48hours 

with these compounds, as well as compound 2, the expression of cdc25c strongly 
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decreased. We also observed a dramatic reduction in the expression of the 

phosphorylated form of cdc2 (Tyr15) with all tested compounds. We also examined 

the effect of the new derivatives on the expression of aurora kinase A and its 

phosphorylated form at Thr288 since the phosphorylation of aurora kinase A is a 

hallmark of the G2/M phase181. As shown in Figure 8, aurora kinase levels increased 

after a 24hours treatment with compounds 3, 4 and 5, but not 2. Altogether these 

data suggest, as did the immunofluorescence studies, that the observed G2/M arrest 

was not due to a defect in G2 to M phase progression but instead was caused by 

aberrant execution of mitosis. 

Prolonged mitotic arrest can lead to DNA damage182,183. We identified DNA damage 

through the detection of the phosphorylated histone -H2A.X. Compounds 3, 4 and 5 

induced a marked increase in the expression of -H2A.X after a 24hours treatment, 

while a similar increase was observed after 48hours with compound 2, suggesting 

that these compounds induce major DNA damage during mitotic arrest that could 

contribute to their antiproliferative activity. Since DNA damage is often linked to 

p53 induction, we evaluated the expression of p53. The immunoblot analysis 

showed an increased level of p53 expression that occurred at 48hours, as the 

increased expression of -H2A.X was declining. 
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Figure 8. Effects of 2-5 on G2/M regulatory proteins and p53. HeLa cells were 

treated for 24 or 48hours with the indicated compound at 25µM. The cells were 

harvested and lysed for the detection of cyclin B, p-cdc2Tyr15, cdc25C, H2A.X and 

p53 expression by western blot analysis. To confirm equal protein loading, each 

membrane was stripped and reprobed with anti--actin antibody.  

 

 

9’-noscapine derivatives induce apoptosis.  

To characterize the mode of cell death induced by these compounds, a biparametric 

cytofluorimetric analysis was performed using PI, which stains DNA and enters only 

dead cells, and fluorescent immunolabeling of the protein annexin-V, which binds to 

PS in a highly selective manner184. Compounds 2-5 were incubated with HeLa cells 

for 24 or 48hours and then stained with the two dyes. Dual staining with annexin-V 

and with PI permits discrimination between live cells (annexin-V-/PI-), early 

apoptotic cells (annexin-V+/PI-), late apoptotic cells (annexin-V+/PI+) and necrotic 

cells (annexin-V-/PI+). As depicted in Figure 9 (Panels A-E), the treated HeLa cells 

showed an accumulation of annexin-V positive cells in comparison with the control, 

in a concentration and time-dependent manner. In good agreement with MTT data, 

the reference compound 2 was slightly more active than the other three compounds. 
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Figure 9. Flow cytometric demonstration of apoptosis by compounds 2, 3, 4 and 5. A. 

Representative biparametric histograms obtained after a 24hours incubation of HeLa cells 

with the indicated compound at 25µM. The cells were harvested and labeled with 

annexin-V-FITC and PI and analyzed by flow cytometry. In these histograms, the lower 

left-hand segment represents the annexin-V-/PI- cells, the lower right-hand segment the 

annexin-V+/PI- cells, the upper right-hand segment the annexin-V+/PI+ cells, and the upper 

left-hand segment the annexin-V-/PI+ cells. Percentage of cells found in the different regions 

of the biparametric histograms shown in panel A and analogous histograms obtained after 

48hours incubations are shown for compounds 2 (Panel B), 4 (panel C), 5 (panel D) or 3 

(panel E) at the indicated concentrations. Data shown in panels B-E are presented as 

mean ± SEM of three independent experiments.  
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9’-noscapine derivatives induce apoptosis through the mitochondrial pathway 

Mitochondria play an essential role in the propagation of apoptosis123. It is well 

established that, at an early stage, apoptotic stimuli alter the mitochondrial 

transmembrane potential (mt)122. mt was monitored by the fluorescence of the 

dye JC-1. As shown in Figure 10 (Panels A-D), compounds 2-5 induced a time and 

concentration–dependent increase in the proportion of cells with depolarized 

mitochondria.  
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Figure 10. Assessment of mitochondrial membrane potential (mt) after treatment 

of HeLa cells with compounds 2-5. Cells were treated with different concentration of 

the indicated compounds for 24 or 48hours and then stained with the fluorescent 

probe JC-1. Data are expressed as mean ± SEM for three independent experiments.  
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Mitochondrial membrane depolarization is associated with mitochondrial 

production of ROS125. Therefore, we investigated whether ROS production increased 

after treatment with 2-5. We analyzed the production of ROS by flow cytometry 

utilizing the fluorescence indicator H2-DCFDA. The results presented in Figure 11 

(Panels A-D) show that all the tested compounds induced the production of 

significant amounts of ROS in comparison with control cells, which agrees with the 

previously described dissipation of mt. Altogether, these results indicate that 

these compounds induced apoptosis through the mitochondrial pathway in good 

agreement with previous reports91,132,185.  
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Figure 11. Mitochondrial production of ROS in HeLa cells following treatment with 

compounds 2-5. After 24 or 48hours incubations with the indicated compounds at 

the indicated concentration, HeLa cells were stained with H2-DCFDA and analyzed 

by flow cytometry. Data are expressed as mean  SEM of three independent 

experiments. 
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Effect of 9’-alkyl and 9’-arylnoscapines on caspase activation.  

The activation of caspases plays a central role in the process of apoptotic cell 

death186. Synthesized as proenzymes, caspases are themselves activated by specific 

proteolytic cleavage reactions. Caspases-2, -8, -9, and -10 are termed initiator 

caspases and are usually the first to be activated in the apoptotic process. Following 

their activation, they in turn activate effector caspases, in particular caspase-3128. As 

shown in Figure 12 (Panel A), all tested compounds induced proteolytic cleavage of 

caspase-9 and caspase-3, in good agreement with the mitochondrial depolarization 

described above. The DNA repair enzyme PARP is cleaved by caspase-3 from its full 

length 116 kDa form to an inactive 85 kDa form. We also observed that PARP 

cleavage was detectable after 24 and 48hours treatments. Altogether, these results 

showed that apoptosis induced by the 9’-noscapine derivatives was caspase-

dependent and followed the intrinsic (mitochondrial) pathway. These findings are in 

good agreement with those of Aneja et al. who found that 9’-bromonoscapine 

induces mitochondrial depolarization followed by caspase-dependent apoptosis in 

both human prostate cancer cells and leukemia cells144,145. 
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Figure 12. Effect of 2-5 on caspase activation (panel A) and on Bcl-2, Mcl-1 and Bax 

proteins (panel B) in HeLa cells. Cells were treated for 24 or 48hours with the 

indicated compounds at 25µM. The cells were harvested and lysed for the detection 

of pro-caspase-9, pro-caspase-3, PARP, Mcl-1, Bcl-2 and Bax expression by western 

blot analysis. To confirm equal protein loading, each membrane was stripped and 

reprobed with anti--actin antibody. 

 

 

 

 



2. Noscapine derivatives as antimitotic agents RESULTS 

 
 

142 
 

Effect on proapoptotic proteins and IAP expression.  

There is increasing evidence that regulation of the Bcl-2 family proteins shares the 

signalling pathways induced by antimicrotubule compounds91.  Several pro-

apoptotic family proteins (e.g., Bax, Bid, Bim and Bak) promote the release of 

cytochrome c, whereas anti-apoptotic members (Bcl-2, Bcl-XL and Mcl-1) are 

capable of antagonizing the pro-apoptotic proteins and preventing the loss of 

mitochondrial membrane potential91. As shown in Figure 12 (Panel B), after a 

24hours treatment, Bcl-2 expression was reduced with compounds 2 and 3, but not 

with compounds 4 and 5. After a 48hours treatment, however. Bcl-2 expression was 

decreased with all four compounds (2-5). The pro-apoptotic protein Bax was 

essentially unchanged after either 24 or 48hours treatments. Mcl-1 is an anti-

apoptotic member of the Bcl-2 family, and recently it was reported that sensitivity to 

antimitotic drugs is regulated by Mcl-1 levels130,187. As shown in Figure 12 (Panel B), 

the Mcl-1 band was strongly reduced after the 24hours treatment with compounds 

2, 3 and 4, but not 5. After the 48hours treatment, the Mcl-1 band disappeared with 

all four compounds. It has recently emerged that Mcl-1 acts as a controller of the 

apoptotic timing response during mitotic arrest130,187. When Mcl-1 levels fall, Bak 

and Bax form pores in the mitochondrial membrane, resulting in the release of 

cytochrome c, mitochondrial depolarization and caspase activation that ultimately 

lead to apoptosis130. 
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2.3.1.4. Conclusion 

 

We devised an efficient new synthesis for noscapine derivatives modified at position 

9’, using Suzuki cross-coupling, a specific palladium-catalyzed carbon-carbon bond 

formation reaction, on the phthalide isoquinoline backbone. The ligands examined 

here were chosen to study the general utility of the reaction and, equally 

importantly, to obtain new, potentially cytotoxic noscapine derivatives. As shown 

above, 9’-bromonoscapine (2) has a very similar conformation in solid phase as the 

noscapine free base (1). This suggests that cytotoxic activity is a consequence of 

electronic rather than structural effects. 

We also showed that the new 9’-substituted noscapines shared common properties 

with the lead compound 2 and are efficacious as antiproliferative agents in different 

cancer cell lines. Moreover, they are also strong apoptosis inducers that follow the 

mitochondrial intrinsic pathway. They did not show any appreciable activity on 

normal human lymphocytes, suggesting a low toxicity profile. It is worth noting that 

the replacement of bromine with a methyl group or a more bulky substituent such as 

4-methylphenyl (compound 5) did not substantially modify the cytotoxic potency in 

comparison with 2, suggesting the existence of a large binding pocket in tubulin. 

From the point of view of the inhibition of tubulin polymerization in vitro, 9’-

bromonoscapine and related derivatives did not show potent activity. The most 

active compound had an IC50 of 120µM, 100 fold weaker than that observed for CA-

4. However, our results indicate, as have those presented by other workers, that 

noscapine and, in particular, 9’-bromonoscapine may produce subtle effects on 

microtubule dynamics that could interfere, for example, with the proper attachment 

of chromosomes to the kinetochore microtubules149 instead of strongly binding to 

tubulin as do most well-studied antimitotic drugs. In accord with this idea, it was 

recently shown149 that 9’-bromonoscapine did not perturb the morphology of 
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microtubules but rather induced alterations in the centrosome duplication cycle and 

caused inappropriate centrosome amplification. Our data showed that 9’-substituted 

noscapine induce accumulation of round cells with condensed DNA indicative of 

mitotic arrest and in addition, PCM1 alteration disrupted the radial organization of 

microtubules. We also found that compounds 3-5 induced a substantial increase in 

the expression of the phosphorylated form of H2A.X that is indicative of DNA 

damage. This could be due to a protracted mitotic arrest that ultimately led to cell 

death. In line with these findings, we observed an activation of the tumor suppressor 

p53. In conclusion, all these findings indicate that the noscapine derivatives have 

good therapeutic potential and merit further investigation. 
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2.4. CONCLUSIONS 

 

Tubulin binding agents represent a class of drugs commonly used in chemotherapy. 

Nevertheless TBAs induce many side effects by altering the overall structure of 

microtubules. Noscapines, particularly EM011, are molecules which bind to tubulin 

with low toxic side effects, because they act without impairing the microtubule 

polymer mass. 

They reduce the dynamic instability, necessary for continuous growth and shrinking 

of tubulin cytoskeleton. Noscapines disrupt the normal association of microtubule to 

kinetochore, inducing abnormalities in mitotic spindle, cell cycle arrest in mitosis 

and consequent apoptosis following the mitochondrial pathway. 

Recently some derivatives were synthesized in order to find new molecules with 

increased antitumoral effects. Accordingly to the activity described for EM011, our 

9’-alkyl and 9’-arylnoscapines showed high antiproliferative effect on a panel of 

cancer cell lines, with GI50 which ranged between 1.4µM and 100µM, while in normal 

human lymphocytes they resulted ineffective, confirming the low toxicity of 

noscapines. The observed mechanism of action was in well agreement with lead 

compound. The more potent derivatives studied in this work endowed the ability to 

arrest cell cycle in mitosis, and to alter the radial organization of microtubules, with 

multipolar spindles. DNA damage and subsequent apoptosis occurred after 

treatment with the 9’-substituted noscapines. The intrinsic pathway was activated, 

by the involvement of caspase-9 and PARP.  

The balance between cell cycle arrest and apoptosis induction resulted in the 

activation of the cell death program, and the anticancer activity was carried out. 

Noscapine derivatives have many advantages as concern the molecular structure. 

They have similar structure to colchicine, but they demonstrated low toxicity, and 
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they are water-soluble. For these aspects, noscapines are more appealing molecules 

for delivery and specific drug therapy. Finally, although our derivatives did not show 

higher antiproliferative activity respect to other noscapines, we reported the Suzuki 

cross-coupling, an effective method for their chemical synthesis. 
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3.1. INTRODUCTION 

 

3.1.1 Wnt/β-catenin signaling pathway: discovery and molecular 

cascade 

Since when the Wnt/β-catenin signaling pathway was discovered, it raised great 

interest, and it seems to be one of the major involved pathways in embryonic 

development, in regulation of homeostatic self-renewal of many adult tissues, and in 

carcinogenesis. 

It is represented by a number of molecules which allow the communication of 

extracellular signals through membrane receptors, to the inside of the cell. Three 

signaling cascades were characterized as those which are activated upon the binding 

of Wnt ligands to their receptors. The best understood pathway is the “canonical” 

Wnt/β-catenin cascade, while the other “non-canonical” ones are the planar cell 

polarity (PCP) pathway, and the Wnt/Ca2+ pathway188.  

Firstly, in 1982, the Int-1 gene was identified in murine tumor cells, and in parallel, 

the homologous gene Wingless (Wg) was characterized in Drosophila melanogaster. 

A spontaneous loss-of-function mutation in mammalian Int1 originated a mouse 

lacking the anterior cerebellum, while mutated Wingless gave rise to a Drosophila 

melanogaster without wings. These discoveries led to the study of a lot of mutants, 

resulting in the definition of the term Wnt, as the combination of Wg and Int189,190. 

The Wnt signaling regulates different processes, such as development and cancer, 

and it is represented by a series of secreted Cysteine-rich proteins which trigger the 

transduction of signal. As already outlined, three signaling pathways were 

described: the Wnt/β-catenin mediated “canonical” way, the “non-canonical” PCP 

cascade, and the calcium-mediated pathway. They are differently activated on the 

basis of the ligand interaction to specific receptors. In fact more than 15 receptors 
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and co-receptors were described, and the particular combination between these and 

Wnt ligands triggers the activation of different pathways191,188,192. The PCP cascade 

is involved in cell polarity and morphogenesis regulation, acting on cell cytoskeleton 

through particular molecular mediators, such as c-Jun N-terminal kinases (JNK) and 

small GTPases193. 

The Wnt-Ca2+ pathway results in the activation of Ca2+ effectors, and triggers the 

transcriptional regulation by NFAT (nuclear factor associated with T cells), 

controlling processes like cancer, inflammation and neurodegeneration194,195. 

 

 

 

 

 

Figure 1. Wnt signaling pathways (adapted from Ref.192) 
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The best known and more frequently activated Wnt pathway is the canonical 

cascade, and principally we will focus on it. 

The central protein of this molecular pathway is β-catenin, a protein which, in this 

case, acts as a transcription factor. The cascade is triggered by the Wnt ligand 

binding to the receptor Frizzled, a serpentine transmembrane receptor, and its co-

factors LRP5/6. Once activated, the intracellular signaling cascade is initiated by 

dishevelled proteins (DVL) which in turn cooperate with the sequestration of a 

series of molecules. In these conditions β-catenin carries out its role, translocating 

from the cytoplasm into the nucleus. Here it associates with the DNA-binding 

proteins of the TCF/LEF family, and converts them into transcriptional activators196. 

When the ligand is not associated with the receptor, the signaling pathways is in an 

“off-state”. An inhibitory signal is activated, and a degradation complex of β-catenin 

is engaged. The tumor suppressor adenomatous polyposis coli (APC) and Axin2 

create a scaffold for the kinases CK1 (casein kinase 1) and GSK3 (glycogen synthase 

kinase 3), which successively phosphorylate β-catenin. Several Ser and Thr residues 

sites are phosphorylated and β-catenin is recluted by E3 ubiquitin ligase and 

sequestered into the proteasome. 

The co-repressor Groucho, or other repressor proteins, assembles with TCF/LEF 

proteins and represses the Wnt/β-catenin target genes197. 

 A wide list of target genes is transcribed as a consequence of the Wnt/β-catenin 

pathway activation. Cyclin D1 and c-myc are largely described as Wnt targets, and 

they regulate cell cycle progression and induce cell proliferation198. The Wnt cascade 

is strictly controlled by numerous proteins and feedback loops, and it is able to self-

maintain or auto-inhibit199,200. 
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Figure 2. The canonical Wnt signaling pathway (adapted from Ref.201) 

 

 

 

 3.1.2 Wnt pathway and stem cells 

The canonical Wnt cascade is a key regulator in stemness maintenance and 

differentiation processes, both during embryonic development and in regeneration 

or damage repair in adult tissues201. At physiological level, numerous mechanisms 

were described in which both canonical and non-canonical Wnt cascades are 

mediators of commitment phenomena for the development of different tissues, such 

as osteogenesis202. 

Moreover, the intestinal epithelium is a physiological model of stem cells regulation 

by mutual activation of Wnt signals. Wnt/β-catenin target genes control the rapid 

and continuous proliferation of stem cells in the niche, and their commitment to 

epithelial cells203,204. 
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Since the Wnt pathway has a great relevance in the tightly regulation of self-renewal 

in stem cells and progenitor cells, any alteration in the recruited molecules can give 

rise to cancer stem cells development and their progression to malignancy205. 

 

3.1.3 Wnt pathway is hyperactivated in cancer and other diseases 

Any dysregulation in Wnt/β-catenin signaling pathway leads to aberrant 

homeostasis, cell proliferation or embryonic development. Many diseases are 

related to genetic mutations or environmental perturbation of the Wnt pathway, 

particularly cancer and birth defects206,190.  

Colon cancer is the mostly described tumor induced by mutations in the Wnt 

pathway, but other pathologies are caused by Wnt deregulations, such as 

hepatocellular carcinoma, medulloblastoma, melanoma, prostate cancer and ovarian 

cancer207,208. 

Beyond cancers, other human diseases are associated to altered expression or 

mutations of components of the canonical Wnt pathway. Bone malformations, like 

osteoarthritis or osteoporosis-pseudogliome syndrome are due to an increased Wnt 

activity, as well as eye defects (familiar exudative vitreoretinopathy), acute renal 

failure (polycystic kidneys), cardiovascular diseases (cardiac hypertrophy), or 

neurodevelopment and neurogenerative diseases (schizophrenia or Alzheimer 

disease)190,209. 

Finally, given the role of Wnt signaling for stemness maintenance, and the 

involvement of stem cells in tumors and aggressiveness, it is not surprising that 

numerous mutations in this cascade occur in cancers210. Frequently, the hit tissues 

are which ones depending on Wnt regulation for their homeostasis repair. Several 

mutations take place in proteins of the degradation complex, or in β-catenin, but the 

majority of them lead to a more stabilized form of β-catenin, which shuttles into the 

nucleus to transcribe for prosurvival and self-renewal genes. In particular loss of 
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function mutations occur in APC. Generally, patients with adenomatous polyposis, a 

familiar cancer syndrome caused by APC mutations, were subjected to a first 

germline heterozygous mutation, and successively to a second hit in individual cells, 

belonging to colorectal tissues211,212,213.  

 

3.1.4 Wnt pathway in colon cancer 

One of the most aggressive tumor is represented by colorectal carcinoma, which is 

associated to high frequency of death due to neoplastic disease, in Western world. In 

the last years many advances in colon cancer knowledge were improved, but 

patients mortality is still around 40%214. 80%-85% of colorectal cancers is related to 

alterations in the canonical Wnt pathway, and they derived from adenomas. A 

precisely sequence of events and genetic alterations were described and a model for 

carcinogenesis was proposed215,216. Here APC mutations represented the first event 

initiating the tumorigenesis. Over the years, more evidences regarding colon cancer 

were examined in depth, and the cancer stem cell definition has been helpful. In fact 

the development of intestine is strictly dependent on the differentiation and 

proliferation of stem cells, localized into the bottom of intestinal crypts. 

Differentiated cells progressively go up and constitute the top of crypts, giving rise 

to a stem cell regeneration cycle, and to a migration phenomenon of differentiated 

cells on the villus, creating a crypt-villus axis. This axis is finely regulated by the Wnt 

signaling pathway, which is required physiologically to preserve the stem phenotype 

of crypt epithelial progenitors217,197. 

In addition to APC, other molecules are dysregulated in colon cancer stem cells, such 

as Axin2 or β-catenin itself. In fact the closing effect of the overall mutations is an 

upregulation of β-catenin transcriptional activity, and its binding to co-factors like 

TCF4218,219. 
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Figure 3. Wnt signaling influences on stem cells proliferation and self-renewal 

(adapted from Ref.197) 

 

 

3.1.5 Wnt inhibitors 

Aberrations in Wnt/β-catenin pathway play an important role in carcinogenesis and 

in some pathological conditions, as well as numerous target genes and proteins were 

identified in this signaling cascade, to improve pharmacological treatment. 

Several therapeutic approaches aimed to inhibit Wnt were studied, and a series of 

different molecules was developed. These molecules can perform their inhibitory 

activity on the Wnt pathway acting upstream or downstream along the signaling 

cascade. IWP is a porcupine inhibitor and prevents the secretion of Wnt ligands, 

required to preserve the iperactivated Wnt signals in cancer220. Secondly it is 

possible to interfere with the binding of the ligand to the receptor/co-receptor, 

arresting the signal transduction. For example, recombinant DKK proteins mimic the 

namesake Wnt ligand competitor, binding the LRP5/6 with high affinity221. 
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Signal transduction is avoided also by interfering with the intracellular domain of 

the receptor preventing the interaction with DVL proteins, signaling intermediates 

for the intracellular regulation of β-catenin222. 

Other identified targets for therapy in Wnt-related cancers are the proteins of the 

degradation complex. The goal of this approach is to stabilize the degradation 

complex in order to stimulate β-catenin degradation. Axin stabilizers, such as the 

tankyrase inhibitors (IWR1 or XAV939), are effective also in APC-mutated tumors, 

because they act independently of APC223. CK1 are modulated and several isoforms 

could be targeted. An example is pyrvinium which induces the CK1α kinase activity 

although it binds all CK1 isoforms, resulting in a reduced Wnt signaling224. 

Finally, the Wnt cascade converges to the β-catenin activation and TCF/LEF-

dependent transcription of its target genes. A series of other co-factors, such as 

hystone acetylases (CBP or p300) and chromatin remodeling proteins, were 

recruited to modulate specific gene transcription. The direct inhibition of β-catenin 

or the prevention of the binding to its partners cause the arrest of Wnt transduction 

signal. ICG001 and IQ-1 respectively act inhibiting CBP and p300 respectively, and 

they affect the binding of β-catenin to TCF/LEF222,208. 

Since drugs targeting the Wnt/β-catenin signaling pathway can modulate many 

cellular processes and are implicated in several human diseases, effective 

pharmacological treatments are required225. High-throughput screening methods 

were optimized to find new small molecules, comprehending both inhibitors and 

agonists of the Wnt/β-catenin signals, with different applications in a broad-

spectrum of pathologies226,227. 
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Table I. Small-molecule Wnt pathway modifiers (adapted from Ref.211) 

Small Molecule Molecular Target Function 
Effect on Wnt 

Pathway Output 

IWP Porcupine inhibitor inhibits 

XAV939 tankyrase 1/Axin activates Axin inhibits 

IWR Axin activates Axin inhibits 

Pyrvinium CK1 inhibitor inhibits 

SB-216763 GSK3 inhibitor activates 

BIO(6-bromo 

indirubin-30-oxime) 

GSK3  inhibitor activates 

ICG001 CREB-binding 

protein 

inhibitor inhibits 

PKF115-584 (and 

other compounds) 

TCF/β-catenin inhibitor inhibits 
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3.2. AIM OF THE STUDY 

 

Wnt/β-catenin pathway is involved in the regulation of embryonic development and 

tumorigenesis. Since aberrant Wnt signals give rise to severe human diseases, 

targeting this pathway is a suitable strategy with numerous implications. 

In this study we focused on Wnt-related cancers, especially APC-mutated colon 

cancer, and we identified some imidazo[1,2-a]pyrimidines and imidazo[1,2-

a]pyridines derivatives that were able to inhibit the Wnt/β-catenin signaling 

cascade. 
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3.3. RESULTS 
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3.3.1.1. Abstract 

 

Wnt/β-catenin signaling plays an important role in the regulation of embryonic 

development and tumorigenesis. Since its deregulation results in severe human 

diseases, especially cancer, the Wnt signaling pathway constitutes a promising 

platform for pharmacological targeting of cancer. In this study we synthesized a 

series of imidazo[1,2-a]pyrimidines and imidazo[1,2-a]pyridines and identified 

some derivatives that were able to inhibit the Wnt/β-catenin signaling pathway in a 

luciferase reporter assay and cell proliferation in selected cancer cell lines, endowed 

with APC or β-catenin gene mutations. The most active compounds significantly 

downregulate the expression of Wnt target genes such as c-myc and cyclin D1. 

Further studies indicated that these compounds function independently of GSK-3β 

activity. More importantly, in vivo experiments, carried out on a Wnt-reporter 

zebrafish model indicate, in particular for compounds 4c and 4i as the most active 

compounds, an activity comparable to that of the reference compound IWR1, 

suggesting their potential use not only as small molecule inhibitors of the Wnt/β-

catenin signal in Wnt driven cancers, but also in other Wnt-related diseases. 
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3.3.1.2. Introduction 

 

Wnt signaling pathway is a highly conserved system which has a crucial role in 

embryogenesis of all metazoan, in tissue regeneration in adult organisms and in 

many other processes190, including cellular proliferation, differentiation, migration 

and polarity228. Wnt ligands are a large family of secreted, hydrophobic 

glycoproteins which have many receptors on a variety of cell types191. Three 

different pathways have been described as signaling cascades activated upon the 

binding of Wnts to the receptor: the canonical Wnt/β-catenin pathway, the non-

canonical planar cell polarity (PCP) cascade, and the Wnt/Ca2+ pathway188. This 

work is focused on the best understood canonical pathway. Downstream effect of 

activation of this cascade is transcription of a new set of genes through the β-

catenin-T cell factor (TCF) complex, which regulates cell proliferation and 

differentiation219. In canonical pathway, when Wnts are associated to their cell-

surface receptor Frizzled, signal cascade is active and stable β-catenin forms a 

complex with TCF in the nucleus, recruiting transcriptional coactivators like cyclic 

AMP response element-binding protein (CBP). Such complex activates the 

transcription of Wnt target genes. If Wnt ligands are not associated to Frizzled, the 

cytoplasmic complex APC–Axin2 provides a scaffold for GSK-3β which 

phosphorylates β-catenin213. Phosphorylation is a destabilizing process for β-catenin 

which is rapidly degraded through the ubiquitin-proteasome pathway. Wnts and 

Frizzled interaction induces Dishevelled phosphorylation which, in that form, 

triggers GSK-3β inhibition229,230. Subsequently the balance between Axin2 and β-

catenin favorites the latter protein and Wnt signaling is turned on231. A critical role 

of canonical cascade has been described in regulation of stem cells, and in many 

tissues impairment of Wnt signaling is associated with cancer197. Wnt involvement 

in human cancer is not surprising given its fundamental role in homeostasis in adult 
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tissue232, and it has since been buttressed by the identification of mutations in genes 

coding for the Wnt pathway components Axin2, Adenomatous polyposis coli (APC), 

and β-catenin233. Indeed, loss of function of Wnt components (such as the 

inactivation of the APC gene) or activating mutations of β-catenin are believed to be 

the critical initiating steps in malignant transformation214. Specific genetic hit 

mutations in a series of oncogenes and tumor-suppressor genes (APC, KRAS, 

SMAD2/4, TP53) give rise to colorectal carcinomas through a series of well-

characterized histopathological changes234. Particularly, deregulation of canonical 

Wnt/β-catenin signaling through mutations in APC was recognized to be an 

initiating event in colon carcinogenesis217,235. However, despite the presence of 

constitutively activating mutations in APC or β-catenin, most colorectal cancers 

show cellular heterogeneity when β-catenin localization is analyzed, indicating a 

more complex regulation of Wnt signaling210. Anyway, the Wnt/β-catenin signaling 

pathway could be qualified as one of the promising target for innovative treatment 

strategies of colorectal cancer236. Moreover, given the fact that Wnt/β-catenin 

signaling is tightly regulated at multiple cellular levels, the pathway itself offers 

ample targeting nodal points for cancer drug development237. Recently, several Wnt 

inhibitors were identified in high-throughput screening that target the upstream 

signaling of β-catenin in order to promote β-catenin degradation223. Although these 

agents efficiently inhibit Wnt signaling in normal cells and some APC-mutated colon 

cancer cells, they may not be effective in cells containing β-catenin mutations238. 

Despite in the last years many advances have been achieved in that field, the 

majority of patients relapses and the survival with metastatic disease remains 

approximately two years, indicating the need for new therapies that may produce 

dramatic improvements239. As just noted, high-throughput screening of synthetic 

compounds libraries was used to identify several WNT inhibitors223,240,241, as well as 

agonists242,243. This method efforts several structures all characterized by a 
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pyrimidine ring decorated with a large variety of substituents or, also, condensed 

with other heterocycle rings. 

In the past years we have been engaged in the synthesis of pyrimidines 

derivatives244, imidazo[1,2-a]pyrimidines and imidazo[1,2-a]pyridines245, now we 

used our knowledge in the synthesis of these heterocycles to prepare a small library 

of 2,4,6-substituted pyrimidines and a small library of imidazo[1,2-a]pyrimidines 

and imidazo[1,2-a]pyridines that resemble geometry or functional groups of the 

known active compounds; indeed it has been reported that some NSAIDs are 

potential WNT pathway therapeutics246, and the imidazo[1,2-a]pyridine derivatives 

are often compared to indomethacin that is active on WNT pathway247. A series of 

the synthesized molecules were then evaluated for their biological activity on WNT 

pathway. 
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3.3.1.3. Results and Discussion 

 

Newly synthesized compounds impaired TCF/LEF transcriptional activity 

In order to evaluate the effect of the new compounds on the Wnt/β-catenin signaling 

cascade, we used a luciferase-reporter system. After liposomal transfection to insert 

into HT-29 cells the BAT-LUX vector, containing luciferase gene downstream the 

TCF/LEF promoter248, we treated the transfected cells with our derivatives for 

24hours. Then, the cells were assayed for the β-catenin/TCF mediated activity. The 

data are depicted in Table 1 in which the IC50 values represent the concentrations 

that cause 50% inhibition of β-catenin transcriptional activity. Two known 

inhibitors of the Wnt signaling response were used as reference compounds: IWR1, 

an Axin stabilizer240, and ICG001 which is endowed with an effect downstream the 

β-catenin degradation complex, disrupting the CBP-β-catenin interaction249. 

Pyrimidine derivatives 1a-d and 2a-2d were inactive. Among the imidazo[1,2-

a]pyridine derivatives compounds 4c, 4d, 4h and 4i showed a moderate activity, 

similar to that of the two reference compounds. The most active compound 4a has a 

p-nitrophenyl while the activity disappeared in 4b where an aminophenyl is 

present. Interestingly, 4f, that is the isomer of 4a, had reduced activity pointing out 

that the position of methyl group has an important role in modulating the activity. 

On the contrary 4g, the isomer of 4b, remained inactive.  
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Table 1. Wnt inhibitory effect in BAT-LUX system into HT-29 cells, of the newly 

investigated compounds. 

Compound IC50 (μM)a Compound IC50 (µM)a 

1a > 25 3e > 25 

1b > 25 3f 10.4 ± 0.02 

1c > 25 3g 16.1 ± 0.01 

1d > 25 4a 6.2 ± 0.003 

1e 22.3 ± 0.2 4b > 25  

1f > 25 4c 11.1 ± 0.005 

2a > 25 4d 19.5 ± 0.03 

2b > 25 4e 9.7 ± 0.007 

2c > 25 4f 23.1 ± 0.03 

2d > 25 4g > 25 

3a > 25  4h 17.8 ± 0.1 

3b 14.3 ± 0.04 4i 24.1 ± 0.02 

3c > 25 4j > 25 

3d 

 

34.6 ± 0.04 

 

IWR1 

ICG001 

24.4 ± 0.6 

18.7 ± 0.3 

 

a IC50 values represent the concentration necessary to inhibit TCF/LEF 

transcriptional activity by 50%. 

 

The 5,7-dimethoxy-2-(4-nitrophenyl)imidazo[1,2-a]pyridimidine derivatives 3a, 3c, 

3d and 3e were inactive except 3b whereas 5-(hydroxyl)-7-methyl-2-(4-

nitrophenyl)imidazo[1,2-a]pyrimidine (3f) and 5-(benzyloxy)-7-methyl-2-(4-

nitrophenyl)imidazo[1,2-a]pyrimidine (3g) exhibit a value of IC50 lower than both 

IWR1 and ICG001. 
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Biological in vitro activity: antiproliferative studies 

All derivatives were tested in a panel of four human cancer cell lines to determine 

their antiproliferative activity after 72hours of treatment. We used two human colon 

adenocarcinoma cell lines, HT-29 and LoVo, with mutated APC gene and the liver 

hepatocellular carcinoma HepG2 cell line, endowed with endogenously mutated β-

catenin gene. In addition, the pulmonary epithelial cancer cells A549, endowed with 

high levels of Wnt2 were also used. All of the reported mutations result in an 

upregulated Wnt signaling250,251. As shown in Table 2, GI50 values in all cell lines 

ranging from 5.7 to more than 100μM, and the more active compounds against all 

cell lines are 4i and 4c which exhibited a lower GI50 values in comparison to the 

reference compounds IWR1 and ICG001, in the two colon adenocarcinoma cell lines 

(HT-29 and LoVo). Compound 4i on HepG2 and A549 cells presented an higher 

activity respect to IWR1 but slightly lower than ICG001. On the other hand, 4c was 

ineffective in HepG2 and was endowed with a higher value of GI50 in A549 cells.  

 

Table 2. In vitro cell growth inhibition after 72hours treatment of the newly 

investigated compounds. 

Compound   GI50 (μM)a  

 HT-29 LoVo HepG2 A549 

1a 40.0 ± 24.7 54.5 ± 4.9 60.8 ± 2.5 18.7 ± 12.6 

1b 35.7 ± 11.7 53.9 ± 7.2 64.4 ± 3.4 19.9 ± 12.7 

1c 53.9 ± 7.1 53.7 ± 3.8 49.0 ± 7.0 46.2 ± 3.9 

1d 65.8 ± 1.5 40.0 ± 2.1 42.9 ± 22.1 35.2 ± 19.5 

1e 88.2 ± 2.9 54.2 ± 13.2 87.1 ± 6.3 51.0 ± 29.4 

1f 59.9 ± 7.9 54.9 ± 8.8 75.1 ± 3.8 75.7 ± 3.6 

2a > 100  68.0 ± 2.5 77.0 ± 11.9 83.3 ± 9.1 

2b 68.4 ± 9.4 58.5 ± 5.2 67.6 ± 19.9 46.4 ± 19.2 

2c > 100  84.9 ± 15.1 97.8 ± 1.9 > 100 

2d 79.3 ± 4.8 56.3 ±6.1 71.7 ± 9.1 50.4 ± 9.0 

3a > 100  70.6 ± 29.4 35.9 ± 27.0 36.6 ± 7.6 

3b > 100  > 100  > 100  > 100  
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3c > 100  > 100 > 100  > 100 

3d > 100  > 100 > 100 > 100 

3e > 100  61.9 ± 16.5 > 100  7.0 ± 1.0 

3f 90.1 ± 5.0 87.6 ± 6.0 > 100  38.9 ± 12.0 

3g > 100  74.9 ± 10.6 > 100 71.0 ± 3.8 

4a > 100  > 100  > 100  > 100  

4b 82.9 ± 9.0 65.2 ± 2.0 > 100  > 100  

4c 8.8 ± 0.4 42.6 ± 3.5 > 100  56.1 ± 11.2 

4d 37.6 ± 4.0 n.d. n.d. 60.0 ± 6.1 

4e > 100 90.7 ± 9.3 > 100  > 100 

4f > 100 n.d. n.d. 62.4 ± 6.5 

4g 93.6 ± 5.2 n.d. n.d. > 100 

4h 17.5 ± 2.6 n.d. n.d. 5.1 ± 0.7 

4i 6.9 ± 1.2 5.7 ± 0.5 18.4 ± 10.0 17.2 ± 6.9 

4j > 100 n.d. n.d. > 100 

IWR1 

ICG001 

> 100 

17.2 ± 2.9 

63.1 ± 7.7 

15.6. ± 2.8 

95.4 ± 4.5 

12.7 ± 1.5 

> 100  

6.1 ± 0.1 

 

[a] GI50 indicates the required concentration to inhibit tumor cell proliferation by 

50%. Data are expressed as the mean ± SEM from the dose−response curves of at 

least three independent experiments. n.d. not determined 

 

Interestingly, some of the most active compounds (3f, 4c, 4h, 4i) exhibited a lower 

activity or were ineffective in a primary cell line of human fibroblast, in which the 

Wnt/β-catenin signaling status is inactive (Table 3), suggesting that these 

compounds are selectively toxic to cell lines harboring deregulation of the Wnt/β-

catenin pathway. On the basis of the results obtained both in the luciferase-based 

assay and in the antiproliferative studies, we selected five molecules (3f, 4a, 4c, 4e, 

4i), within the more active compounds that induce antiproliferative effects and 

antagonist action to β-catenin transcriptional activity, that were further evaluated 

for their ability to decrease the expression of Wnt target genes in HT-29 cell line. 
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Table 3. In vitro cell growth inhibition after 72hours treatment of the newly 

investigated compounds. 

Compound GI50 (µM)a  

 Human Primary Fibroblasts 

3f > 100 

4c > 100 

4h > 100 

4i 52.3 ± 3.2 

a GI50 indicates the required concentration to inhibit tumor cell proliferation by 50%. 

Data are expressed as the mean ± SEM from the dose−response curves of at least 

three independent experiments. n.d. not determined 

 

β-catenin transcriptional activity was modulated independently by GSK-3β 

To evaluate on which step of Wnt/β-catenin signaling these compounds act, we 

treated HT-29 cells transfected with BAT-LUX plasmid, with selected compounds in 

the presence or absence of LiCl, a GSK-3β inhibitor. LiCl avoids β-catenin 

degradation by GSK-3β enzyme, thus the effect on luciferase activity resulted 

independent by this enzyme. As reported in Figure 1, LiCl increased the TCF/LEF 

transcriptional activity by four times respect to the untreated cells, while the 

selected compounds, at the concentration of 25μM, remarkably reduced luciferin 

luminescence both in absence and in presence of LiCl, after 24hours of treatment, 

indicating that their effect did not depend on GSK-3β activity.  
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Figure 1. Effect on TCF/LEF transcriptional activity in BAT-LUX system after 

24hours of treatment with 4e, 4i, 4a, 3f, 4c compounds, at the concentration of 

25μM alone or in combination with the GSK-3 inhibitor, LiCl (25mM). Relative 

Luminescence Unit (RLU) indicates the relative intensity of luciferine signal. Data 

are expressed as mean ± SEM of three independent experiments. 

 

 

Moreover, as shown in Figure 2, the mRNA expression of Axin2 was generally 

upregulated in particular by 4i and 3f as well as the reference compounds, 

confirming an inhibitory effect on Wnt pathway. In this context, it is worthwhile to 

note that new molecules have been described as Axin2 inducers or stabilizers240, 

given its role as Wnt signaling repressor. On the other hand Axin2 itself is also a 

direct target of the Wnt signaling and regulates the pathways through a negative 

feedback loop. Its upregulation after treatment with our compounds, suggest that a 

repressive mechanism on Wnt pathway has been activated. 
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Figure 2. Fold changes of mRNA expression of Axin2, TCF4, c-myc, AP4. Cells were 

treated with indicated compounds at the concentration of 25μM, as well as the two 

reference compounds IWR1 and ICG001. After 24hours total RNA was exctracted 

and transcribed as described in the experimental section. Quantitative real-time PCR 

was then performed and the results were calibrated to untreated cells mRNA (RQ = 

1), used as control. 

 

 

Upstream β-catenin modulators were differently regulated by selected 

compounds 

We investigated if the most active compounds alter the expression of the main 

molecules of the canonical Wnt pathway, that trigger β-catenin translocation into 

the nucleus. Immunoblot analysis depicted in Figure 3, shows that total levels of β-

catenin protein were not modified after treatment. On the other hand we observed 

β-catenin dephosphorylation in Ser33/37/Thr41 induced by 4e, 4i and particularly 

4c. Interestingly, treatment with the new compounds led to modifications in β-

catenin localization, mainly sited into the cytoplasm in its inactive form (shown in 

red, Figure 4). None of the tested compounds impaired GSK-3α/β phosphorylation 
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in Ser21/Ser9. T-cell Factors (TCF) have essential nuclear functions, they consist in 

several isoforms, and the major transducers of Wnt signaling in the intestine and the 

oncogenic drivers of colon cancer are TCF-1 and TCF4252. It is also known that TCF-1 

expression is regulated by APC and β-catenin–TCF4253. As shown in Figure 3, it 

appears that 3f, 4c and 4e induced an increased TCF-1 protein level, but on the 

contrary, 4i particularly reduced TCF-1, preventing its co-activation effect on β-

catenin. Moreover, all the selected compounds remarkably reduced the mRNA 

expression of TCF4 (Figure 2), being the more effective compound 4i. Altogether 

these effects contributed to make 4i one of the most active compounds in the 

antiproliferative assay. 

 

 

Figure 3. Effects of 4e, 4i, 4a, 3f, 4c on the main molecules implicated in Wnt/β-

catenin cascade. HT-29 cells were treated with the indicated compounds at 25μM 

concentration for 24hours, harvested and lysed for Western blot analysis. To 

confirm equal protein loading, each membrane was stripped and reprobed with 

anti--actin antibody. 



3. Small molecules as Wnt inhibitors in colon cancer RESULTS 

 
 

172 
 

 

 

 

 

Figure 4. Representative images of HT-29 cells treated with the indicated 

compounds at 25μM for 24hours. Immunostaining was performed for β-catenin 

(red), and with DAPI to stain the nuclei (blue). Pictures were acquired by fluorescent 

microscope using a 60x objective (Bar=100µm). 
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Figure 4b. Representative images of HT-29 cells treated with the indicated 

compounds at 25μM for 24hours. β-catenin (red) when it is detectable into the 

nucleus, otherwise it is localized in the cytoplasm. DAPI stained the nuclei (blue). 

Pictures were acquired by fluorescent microscope using a 60x objective 

(Bar=100µm). 
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4c and 4i compounds negatively modulated the downstream Wnt/β-catenin 

targets cyclin D1, cyclin B1 and c-myc 

Cyclin D1 is a β-catenin direct target gene, required for G1/S transition, in cell cycle 

regulation, and involved in proliferation process. We investigated its regulation 

through Western blot analysis (Figure 3), and we observed a strong impairment in 

protein levels after 3f, 4c, and 4i treatment. Cyclin B1 is highly expressed in the 

majority of colorectal cancers254, may promote carcinogenesis and later metastasis 

to lymph nodes255. It is essential for the transition from G2 phase to mitosis and it is 

linked to a high rate of cell proliferation. Also in this case a strong downregulation of 

cyclin B1 expression was noted by 3f, 4c, and 4i. In this way, both inhibition of cyclin 

D1 and cyclin B1 could contribute to reduce cell growth induced by the compounds. 

To further evaluate the consequence of cyclins downregulation we analyzed the 

effect of the compounds on cell cycle in HT-29 cells. As showed in Figure 5, 

compound 4i but not 3f and 4c, induced a significant accumulation in G1 along with 

a reduction of both S and G2/M phase. These results are in well agreement with the 

reduction of cyclin D1 and the remarkable increase of p21 (see Figure 3).  

Another important gene directly transcribed by β-catenin after Wnt signaling 

activation is c-myc, an oncogenic transcription factor. As shown in Figure 2, mRNA 

expression was not significantly modified by the selected compounds. On the 

contrary, in Western blot (Figure 3), the c-myc protein migrated as two bands. The 

upper band is probably the phosphorylated and inactive form whereas the lower 

band is the unphosphorylated and activated form of the protein256. Interestingly, 

with 4i, 4c and 3f, the lower band disappeared while the upper band remain 

substantially unmodified except for 4i in which we observed a slight increase.  
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Figure 5. Cell cycle analysis after 24hours of treatment with the indicated 

compounds at the concentration of 25μM in HT-29. Significative effects were 

detectable for 4i compound which arrested cell cycle in G1 and decreased S phase. 

Data are expressed as mean ± SEM of three independent experiments.*p<0.01 vs 

control cells. 

 

 

 

4c and 4i acted as WNT inhibitors in vivo zebrafish models 

We investigated the effects on Wnt/β-catenin pathway also in vivo, using a Wnt-

reporter zebrafish model, in order to explore the TCF/LEF functions257. These 

transgenic animals expressed a fluorescent reporter (GFP) under the control of Wnt-

responsive promoters, and they showed high levels of signal in embryonic head and 

intestine. Therefore Wnt/β-catenin signaling deregulation is easily detectable by 

fluorescence reduction. At 96hours post fertilization, zebrafish were maintained in 

E3 medium in which the compounds were solubilized and treated for 7 days at 



3. Small molecules as Wnt inhibitors in colon cancer RESULTS 

 
 

176 
 

different concentrations, to determine the survival rate. As shown in Figure 6 (panel 

A) compounds 2d and 4c showed high toxicity in the concentration range 5-25µM 

while at 1µM they did not appear toxic. On the contrary, compound 4i, showed high 

mortality only at the highest concentration used (25µM). On the basis of these 

results we set the concentration at which we investigated the GFP signal after 

72hours of treatment. The representative images concerning these experiments are 

reported in Figure 6 (panels B-C). In well agreement with Wnt inhibitory activity in 

BAT-LUX system 4c and 4i represent the most active compounds in vivo, and they 

strongly reduced the TCF/LEF transcription, in the intestinal zone. In Figure 6 

(panel B), bright field images demonstrated as larvae treated with 4i compound 

developed pericardial edema and dysmorphic craniofacial features. These 

peculiarities were described in embryos carrying null mutations in LEF1/TCF4 and 

they are typical in cases where WNT/β-catenin cascade is inhibited. Moreover, as 

reported in the magnified fluorescence images of intestine (Figure 6 panel B), 2d 

reduced the expression of TCF/LEF green signal, and the intestine resulted thinner 

than control, and in 4i treated, Wnt signal totally disappeared. A GFP signal 

quantification is depicted in Figure 6 (panel C) in which we can observe that 4i 

strongly reduced the fluorescence signal comparable to that of IWR1. 
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Figure 6. Panel A: survival curves of zebrafish larvae treated for 7 days starting at 

72hours post-fertilization. Panel B: representative images of Wnt-reporter zebrafish 

treated with IWR1 and 4i at 10μM, 2d and 4c at 1μM for 72hours, starting at 

24hours after fertilization. On the left side, bright field images, merged with GFP 

signal, were reported. The white rectangles indicate the portions reported on the 

right side, representing the intestinal zone. In control larvae TCF/LEF-GFP signal, 

characterizing the intestine, is wide and strewn, while treated zebrafish by 2d 

showed a thinner intestine. After 4i treatment the reporter signal totally 

disappeared, and the fish phenotype was characterized by pericardial edema 

(indicated by the arrow), and craniofacial dysmorphism. Panel C: the graph 

summarized the fluorescence intensity measured in the intestinal zone, after 

compounds treatment. Data represented as mean ± SEM of three independent 

experiments.  

 

 

Proposed mechanism of action for compound 4i 

4i compound was the most antiproliferative compound in tested cell lines, and it 

was able to inactivate c-myc. Moreover, after 4i treatment, AP4 mRNA is strongly 

reduced and p21 is highly expressed, as shown in Figure 2 and Figure 3 respectively. 
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Therefore 4i compound inhibits Wnt/β-catenin cascade, leading not only to cyclin 

D1 repression, but also to c-myc inactivation, and consequently to AP4 inhibition 

and p21 upregulation. This hypothesis is supported by the findings of Jung and 

Hermeking258 which reported that c-myc directly regulates the expression of AP4, a 

transcription factor which binds to recognition motifs located in the vicinity of the 

p21 promoter mediating transcriptional repression of p21 itself259. The resulting 

event is an impairment of cellular proliferation. Finally cyclin D1 and p21 stimulated 

cell cycle arrest in G1 and an antiproliferative effect, confirmed by S phase reduction 

(Figure 5). The hypothetical molecular pathway deregulated after 4i treatment is 

summarized in Figure 7. 

 

 

 

 

Figure 7. Schematic representation of Wnt signaling pathway and its downstream 

molecules probably involved in response to 4i treatment. β-catenin target genes are 

downregulated after 4i treatment, independently to GSK-3 action. c-myc 

deregulation leads to p21 upregulation and cyclin B1 reduction, resulting in cell 

cycle arrest and inhibited proliferation. 
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3.3.1.4. Conclusion 

 

Among the synthesized compounds, we found that 4i repressed Wnt signaling 

downstream of β-catenin and efficaciously inhibited the proliferation of selected 

cancer cell lines. The remarkable inhibition of our compounds on Wnt/β-catenin 

targets suggests that these derivatives may downregulate Wnt signaling 

independently by β-catenin levels. Nevertheless Wnt target genes activation, like c-

myc and cyclin D1, is severely impaired after treatment, leading to a reduced 

proliferation. Preliminary results have also indicated that these compounds are 

ineffective in normal cells suggesting that they could be selective toward cancer cells 

endowed with deregulation of the Wnt pathway. 

The Wnt-reporter zebrafish model provides an excellent experimental mean to test 

the ability of a compound to modulate Wnt signaling in vivo. The results obtained in 

this model clearly showed that our compounds are strongly inhibitors of the Wnt 

signaling, with an activity comparable to that of reference compound IWR1, 

suggesting that these compounds hold promise for potential use in the therapy of 

Wnt driven cancers but also for other Wnt related diseases. Studies are currently 

underway to identify the direct target(s) of these promising new molecules. 
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3.4. CONCLUSIONS 

 

The screening of new molecules which target the Wnt/β-catenin pathway is an 

exciting field for the broad use in numerous diseases. Wnt signals are key proteins 

regulating both embryonic development and adult tissues regeneration, so 

alterations in signal transduction lead to aberrant processes such as tumorigenesis.  

Colorectal cancers represent tumors which are common in the Western world, and 

although many advances in the colon carcinogenesis were discovered, resistance 

mechanisms and patient relapses occur. New therapeutic approaches are required 

to overcome these phenomena, and several studies for the optimization of small 

molecules are currently under developing. 

The Wnt signaling pathways has been well studied, but some molecular mechanisms 

still should be explained. However, a wide series of molecular targets has been 

identified, and numerous upstream/downstream inhibitors of the Wnt cascade have 

been found. Some pharmacological strategies comprehend recombinant proteins, 

but the use of small molecules can improve the efficacy of delivery and the costs of 

production. 

Here we studied a series of small molecules, in order to identify new structures able 

to significantly inhibit the Wnt pathway. The imidazo[1,2-a]pyridine structures 

showed a good activity, comparable to that of the reference compounds (IWR1 and 

ICG001), in inducing Wnt repression. In vitro experiments on colon cancer cell lines 

demonstrated as our compounds reduced proliferation and decreased β-catenin 

translocation into the nucleus. TCF-1/4 co-factors, as well as target genes such as 

cyclin D1 and c-myc were downregulated by the treatment. The inhibition of the 

Wnt pathway was confirmed also in vivo in Wnt-reporter zebrafish models, where β-

catenin transcriptional activity was significantly reduced. Moreover, the treatment 



3. Small molecules as Wnt inhibitors in colon cancer CONCLUSIONS 

 
 

182 
 

with the most active compound (4i) gave rise to the appearance of a craniofacial 

dysmorphism, a typical phenotype related to embryonic development defects, due to 

Wnt signaling repression. 

Although some studies to find the direct target of these structures are underway, 

these new small molecules have strong inhibitory effects on the Wnt/β-catenin 

signaling pathway, and are promising for cancer therapy. 
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MATERIALS AND METHODS 

 

Drugs 

TR-644, TR-764, 3b were synthesized as previously described63,79,132. 

Combretastatin A4 (CA-4) and CA-4P were synthesized as described112,260,261. 

Noscapine derivatives were newly synthesized with the Suzuki cross-coupling 

method, by Dott. Attila Sipos at University of Debrecen, Hungary. 

Imidazo[1,2-a]pyridine were newly synthesized by Prof. Barbara Cosimelli, at 

University of Napoli, Italy. 

Stock solutions (10mM) of the different compounds were obtained by dissolving 

them in DMSO. 

 

Molecular modeling 

All molecular modeling studies were performed on a MacPro dual 2.66GHz Xeon 

running Ubuntu 10. The tubulin structure was downloaded from the PDB data bank 

(http://www.rcsb.org/ - PDB code: 3HKC)262. Hydrogen atoms were added to the 

protein, using the Protonate3D function of Molecular Operating Environment 

(MOE)263. Ligand structures were built with MOE and minimized using the 

MMFF94x forcefield until a RMSD gradient of 0.05kcal mol-1 Å-1 was reached. The 

docking simulations were performed using PLANTS264. 

 

Cell cultures 

HUVECs were prepared from human humbelical cord veins, as previously 

described265, and they were maintained in M200 medium additioned by LSGS (Low 

Serum Growth Supplement), containing FBS, Hydrocortisone, hEGF, bFGF, heparin, 

gentamycin/amphotericin (Life technologies). Once confluent, the cells were 
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detached by trypsin–EDTA solution and used in experiments from the first to sixth 

passages.  

Human promyelocytic leukemia (HL-60), human T-cell (Jurkat) and B-cell leukemia 

cell lines (SEM and RS4;11) were grown in RPMI-1640 medium (Gibco). Breast 

adenocarcinoma (MCF-7), human non-small cell lung carcinoma (A549), human 

cervix carcinoma (HeLa), human colon adenocarcinoma (HT-29), human 

hepatocellular liver carcinoma (HepG2), ovarian carcinoma (IGROV-1) cell lines 

were grown in DMEM medium (Gibco). Both media were supplemented with 

115units/mL of penicillin G (Gibco), 115g/mL of streptomycin (Invitrogen) and 

10% fetal bovine serum (Invitrogen). LoVoDoxo cells are a doxorubicin resistant 

subclone of LoVo cells116 and were grown in complete Ham’s F12 medium 

supplemented with doxorubicin (0.1µg/mL). CEMVbl-100 cells are a multidrug-

resistant line selected against vinblastine117. A549-T12 cells are a non-small cell 

lung carcinoma line exhibiting resistance to taxol118. They were grown in complete 

DMEM medium supplemented with taxol (12nM). 

BL6-B16 murine melanoma cells were maintained in DMEM supplemented with 

10% fetal calf serum (FCS). 

 

Antiproliferative assay (MTT test) 

Individual wells of a 96-well tissue culture microtiter plate were inoculated with 

100 L of complete medium containing 8x103 cells. The plates were incubated at 

37°C in a humidified 5% CO2 incubator for 18hours prior to the experiments. After 

medium removal, 100L of fresh medium containing the test compound at different 

concentrations was added to each well and incubated at 37°C for 72hours. The 

percentage of DMSO in the medium never exceeded 0.25%. Cell viability was 

assayed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, 
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Sigma-Aldrich) test as previously described124. The IC50 was defined as the 

compound concentration required to inhibit cell proliferation by 50%. 

 

Cytotoxicity assay (trypan blue) 

Cytotoxicity assay were carried out with trypan blue test as described previously266. 

Cells were treated with the compounds at different concentrations and times. After 

incubation time, an aliquot of cell suspension was taken and marked with trypan 

blue. Cells were counted with Burker/Neubauer chamber under an optical 

microscope. 

 

Evaluation of mitotic index 

The Burkitt lymphoma CA46 cells were grown in RPMI 1640 medium supplemented 

with 17% fetal bovine serum and 2mM l-glutamine at 37°C 5%CO2 atmosphere. The 

mitotic index in the Burkitt cell cultures was determined at 16hours, the time that 

produces a near-maximal value after treatment with antitubulin drugs. About 4.5mL 

of cell culture medium was centrifuged at 1000 rpm for 1min. The pelleted cells 

were resuspended in 5mL of phosphate-buffered saline at room temperature, and 

the cells were harvested by centrifuging the suspension as before. The cell pellet was 

suspended in 0.5mL of half-strength phosphate-buffered saline, and the cells were 

allowed to swell for 10min. The cells were then fixed by adding 6mL of 0.5% acetic 

acid-1.5% ethanol. After 30min, the cells were harvested by centrifuging as before. 

The cells were resuspended in 25% acetic acid/75% ethanol, and a droplet of the 

cell suspension was spread on the slide. The slide was air-dried and stained with 

Giemsa. The slide was examined under a light microscope, with mitotic cells defined 

as those with condensed chromosomes and no nuclear membrane. At least 200 cells 

were counted for each condition examined.  
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Colony forming assay  

HUVECs were plated at 1x103 cells/well in six-well plates to provide an optimal 

counting density. Cells were treated with compounds at different concentration for 

24hours. After 24hours, medium was replaced with fresh one and cells were 

cultured for 1-2 weeks until well-defined colonies had formed (replacing culture 

medium every 2 to 3 days). Cells were briefly washed with 0.9% saline solution and 

stained with 0.5% crystal violet in 20% methanol. Colonies of ≥50 cells were then 

counted visually.  

 

Effects on tubulin polymerization and on colchicine binding to tubulin 

To evaluate the effect of the compounds on tubulin assembly in vitro119, varying 

concentrations of compounds were preincubated with 10M bovine brain tubulin in 

glutamate buffer at 30 ˚C and then cooled to 0 ˚C. After addition of 0.4mM GTP, the 

mixtures were transferred to 0C cuvettes in a recording spectrophotometer and 

warmed to 30°C. Tubulin assembly was followed turbidimetrically at 350nm. The 

IC50 was defined as the compound concentration that inhibited the extent of 

assembly by 50% after a 20min incubation. The capacity of the test compounds to 

inhibit colchicine binding to tubulin was measured as described120, except that the 

reaction mixtures contained 1M tubulin, 5M [3H]colchicine and 5M test 

compound. 

 

Flow cytometric analysis of cell cycle distribution 

For flow cytometric analysis of DNA content, 5x105 cells were treated with different 

concentrations of the test compounds. After the incubation period, the cells were 

collected, centrifuged and fixed with ice-cold ethanol (70%). The cells were then 

treated with lysis buffer containing RNAse A and 0.1% Triton X-100 and stained 

with propidium iodide (PI). Samples were analyzed on a Cytomic FC500 flow 
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cytometer (Beckman Coulter). DNA histograms were analyzed using MultiCycle for 

Windows (Phoenix Flow Systems). 

 

Annexin-V assay for testing apoptosis 

Surface exposure of phosphatidyl serine (PS) on apoptotic cells was measured by 

flow cytometry with a Coulter Cytomics FC500 (Beckman Coulter) by adding 

annexin-V-FITC to cells according to the manufacturer’s instructions (Annexin-V 

Fluos, Roche Diagnostic). Simultaneously, the cells were stained with PI. Excitation 

was set at 488nm, and the emission filters were at 525nm and 585nm, respectively, 

for FITC and PI. 

 

Assessment of mitochondrial changes 

The mitochondrial membrane potential was measured with the fluorescent 

lipophilic cationic 5,5’,6,6’-tetrachlo-1,1’,3,3’-tetraethylbenzimidazolcarbocyanine 

dye (JC-1) (Molecular Probes) by flow cytometry, as described previously124. The 

production of reactive oxygen species (ROS) was measured by flow cytometry using 

either hydroethidine (HE) (Molecular Probes) or 2,7-dichlorodihydrofluorescein 

diacetate (H2DCFDA) (Molecular Probes). The fluorescence was recorded with the 

flow cytometer, using as excitation wavelength 488nm and emission at 585nm and 

530nm for HE and H2DCFDA, respectively, as previously described267. 

 

Luciferase reporter gene assay 

Cells were transfected with the luciferase reporter plasmid BAT-LUX (kindly 

provided by Prof. Stefano Piccolo, University of Padova) which codified for LEF/TCF 

transcription factors. BAT-LUX plasmid constitutes seven repeats of TCF binding 

element and siamois minimal promoter, cloned upstream of Luciferase gene in pGL3 

backbone268. Cells (1.4 x 104) were transfected using HiPerFect Transfection 
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Reagent (Qiagen) with 1µg BAT-LUX construct and 1µg Renilla vector as an internal 

transfection control, and incubated with various concentrations of selected 

compounds at 37°C. After 24hours, the cells were lysed in 50μL passive lysis buffer 

(Promega). Firefly luciferase and Renilla luciferase activity were determined using 

the Dual-Glo Luciferase Assay System (Promega). Results are expressed as the mean 

of normalized ratios of firefly luciferase activity and Renilla luciferase activity 

measurements. 

 

Quantitative real-time RT-PCR 

To quantify Axin2, TCF4, c-myc, AP4 mRNA levels we designed real-time RT-PCR 

assays, using GUS as reference gene. Total RNA was isolated using TRIzol 

(Invitrogen) from cells treated for 24hours with the compounds. 1µg of RNA was 

transcribed using the Superscript II system (Invitrogen-Gibco) in 25μL final volume 

according to the manufacturer's instructions. Quantitative real-time PCR (qRT-PCR) 

was performed with 1μL cDNA in 20μL using the Sybr Green method (Invitrogen-

Gibco) and analyzed on an ABI PRISM 7900HT Sequence detection system (Applied 

Biosystems). 

The oligonucleotides to amplify mRNA fragments were Axin2 (forward 5’-

CAAGGGCCAGGTCACCAA, reverse 3’-CCCCCAACCCATCTTCGT), TCF4 (forward 5’-

GACGACAAGAAGGATATCAAATCA, reverse 3’-ATCCTCCGCTCCTTCTCAC), c-myc 

(forward 5’-AGGACCCGCTTCTCTGAAA, reverse 3’-TTCCTGTTGGTGAAGCTAACG), 

AP4 (forward 5’-GAGCCAGCCTGGGATTGTC, reverse 3‘-

GTGCTTAAAGGAGAAAGAAGAAAACC) and GUS (forward 5’-

GAAAATATTGTGGTTGGAGAGC, reverse 3’-CGAGTGAAGATCCCCTTTTTA). After 

normalization on GUS, expression regulation was calculated respect to untreated 

cells. 
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Western Blot Analysis 

Cells were incubated in the presence of test compounds and, after different times, 

were collected, centrifuged and washed two times with ice cold phosphate-buffered 

saline (PBS). The pellet was resuspended in lysis buffer. After the cells were lysed on 

ice for 30min, lysates were centrifuged at 15000 x g at 4°C for 10min. The protein 

concentration in the supernatant was determined using BCA protein assay reagents 

(Pierce, Italy). Equal amounts of protein (10µg) were resolved using sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (7.5-15% acrylamide gels) 

and transferred to a PVDF Hybond-p membrane (GE Healthcare). Membranes were 

blocked with I-block (Tropix), the membrane being gently rotated for 3hours at 

room temperature. Membranes were incubated overnight at 4°C with primary 

antibodies against, Bcl-2, cleaved PARP, cdc25C, Bax, phospho-histone H2AX, cdc2, 

cdc2Tyr15, cdc25c, TCF-1, β-catenin, β-cateninSer33/37/Thr41, GSK-3α/βSer21/9, 

p21Waf1/Cip1 (DCS60), cyclin D1, Src familyTyr416 (Cell Signaling), c-myc (Calbiochem), 

cyclin B, FAKTyr397 (BD Biosciences), VE-cadherinTyr658, β-cateninTyr142 (Abcam), FAK 

(C-20), Src-1 (M341) (Santa Cruz), HIF-1α (GeneTex), β-actin (Sigma-Aldrich). 

Membranes were next incubated with peroxidase-labeled goat anti-rabbit IgG 

(1:100000, Sigma-Aldrich) or peroxidase-labeled goat anti-mouse IgG (1:100000, 

Sigma-Aldrich) for 1hour. All membranes were visualized using ECL Advance (GE 

Healthcare) and exposed to Hyperfilm MP (GE Healthcare). To ensure equal protein 

loading, each membrane was stripped and reprobed with anti--actin antibody. 

 

Immunofluorescence analysis 

Cells were fixed in cold 4% formaldehyde for 15min, rinsed and stored prior to 

analysis. Primary antibody staining was performed for α-tubulin (Millipore), β-

tubulin (Sigma-Aldrich), β-catenin, FAKTyr397 (BD Biosciences), VE-cadherinTyr658 
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(Abcam), PCM1 (Abnova). After incubation, cells were washed and incubated with 

an Alexa conjugated secondary antibody (1:2000, Life Technologies).  

For F-actin visualization the cells were fixed as above and stained with phalloidin-

tetramethylrhodamine B isothiocyanate conjugate (Sigma-Aldrich). 

Cells were counterstained with 4',6-diamidin-2-fenilindole (DAPI) (Sigma-Aldrich). 

Images were obtained on a video-confocal microscope (Vico, Eclipse Ti80, Nikon), 

equipped with a digital camera.  

 

Motility assay 

Motility assay for HUVECs was based on “scratch” wounding of a confluent 

monolayer131. Briefly, HUVECs (1x105) were seeded onto 0.1% collagen type I (BD 

Biosciences)-coated twelve well plates in complete medium until a confluent 

monolayer was formed. The cells were scratch wounded using a pipette tip and 

wells were washed with PBS to remove the undetached cells. Then, the cells were 

treated with the test compounds and at different times from the scratch, the cells 

were photographed under a light microscope (10x magnification). At all indicated 

time points, the wound width was measured in four areas and compared with the 

initial width. 

 

Endothelial cell vessel formation on Matrigel matrix 

Matrigel matrix (Basement membrane matrix, BD Biosciences) was kept at 4°C for 

3hours. 230μL of Matrigel were added to each well of a 24-well plate. After gelling at 

37°C for 30min, gels were overlaid with 500μL of medium containing 6x 104 HUVEC 

cells, incubated over Matrigel for 6hours to allow the capillary tubes to form. 

Different concentrations of compound were added in the cultures and incubated for 

different times and the disappearance of existing vasculature was monitored and 

photographed (five fields for each well: the four quadrants and the center) at a 10x 

magnification. Phase contrast images were recorded using a digital camera and save 
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as TIFF files. Image analysis was carried out using the ImageJ image analysis 

software and the following dimensional parameters (percent area covered by 

HUVECs and total length of HUVECs network per field), and topological parameters 

(number of meshes and branching points per fields) were estimated269. Values were 

expressed as percent change from control cultures grown with complete medium. 

 

Endothelial cell permeability assay 

HUVEC cells were seeded at a density of 3 x 105 cells per well into 24-well cell 

culture inserts (1.0μm, Falcon) and incubated for 24hours to allow a confluent cell 

monolayer to form. Drugs at varying concentrations were added to the cells at the 

upper chamber and incubated for different times at 37°C. At the same time, FITC-

dextran (Fluorescein Isothiocyanate-dextran 40kDa, Sigma-Aldrich) was added to 

the upper chamber. The effects of the compounds on HUVEC monolayer 

permeability were monitored using a fluorescent plate reader (Victor3 Perkin 

Elmer) as measured by increased fluorescent signal in the lower chamber as a 

function of time. 

 

Cell adhesion assay 

HUVECs were seeded in six-well plates to provide an optimal density and treated 

with compounds at different concentrations. After 24hours, cells were trypsinized 

and plated in quadruplicate on a 96-well plate at 5x104 cells per well. Cells were 

allowed to attach for 30min at 37°C, and then unattached cells were gently removed. 

Adherent cells were washed three times with PBS and incubated with (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (Sigma-Aldrich). MTT test 

was performed as previously described124 to quantify the attached cells. 
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CAM assay in fertilized chicken eggs 

Alginate pellets containing the compounds were grafted on the chorioallantoic 

membrane (CAM) of fertilized chicken eggs at day 11270. After 72hours new blood 

vessels converging toward the implant were counted at 5x magnification under a 

stereomicroscope. 

 

3b antitumor activity in vivo 

Four week old female BALB/c-nu nude mice (15–18 g) were obtained from Shanghai 

SLAC Laboratory Animal Co., Ltd (Shanghai, China). The animals were maintained 

under specific pathogen-free conditions with food and water supplied ad libitum in 

Zhejiang University of Traditional Chinese Medicine Laboratory Animal Center. 

Human colon adenocarcinoma HT-29 cells in logarithmic growth phase were 

resuspended in RPMI 1640 without fetal bovine serum at 1×107cells/mL and 

inoculated (0.2mL) in the hypodermis of the pars dorsalis of each mouse. Once the 

HT-29 xenografts reached a size of ~300mm3, twelve mice were randomly assigned 

to two groups: For the first group, compound 3b was prepared in DMSO and injected 

intraperitoneally at volumes of 0.01mL/g body weight to give a dose of 100mg/kg to 

each mouse. The compound was administered three times a week for one week. 

After completing the treatment schedule and the evaluation period, tumor-bearing 

mice were euthanized. Tumor volume was calculated by the formula: V=(L ×W2)/2 

where L is the length and W is the width of the tumor nodules measured by vernier 

caliper. The study was approved by the Institutional Animal Ethical Committee of 

the Second Affiliated Hospital, School of Medicine, Zhejiang University (PRC). 

 

Tumorigenesis studies (TR-644, TR-764, CA-4P) 

Procedures involving animals and their care conformed with institutional guidelines 

that comply with national and international laws and policies (EEC Council Directive 

86/609, OJ L 358, 12 December 1987). Six week old C57BL/6 mice (Charles River, 
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Calco, Italy) were injected s.c. into the dorsolateral flank with 105 BL6-B16 murine 

melanoma cells in 200μL of total volume of PBS. When tumor volume reached 

300mm3 of volume, animals were treated i.p with 50μL of the compounds dissolved 

in DMSO. Twenty-four hours later tumors where harvested, embedded in OCT-

compound (Bio-Optica) and immediately frozen in liquid nitrogen for 

immunohistochemical analysis. 

 

Immunohistochemistry and immunofluorescence of tumor tissues 

Excised tumors were cut with a cryostat in 4-5μm sections. Immunohistochemistry 

was performed by staining samples with rat anti-mouse CD31 antibody (1:200; BD 

Biosciences) and biotinylated goat anti-rat secondary antibody (1:100; BD 

Biosciences). The detection of tumor vasculature was performed using HRP-

conjugated streptavidin (1:500; Jackson ImmunoResearch Laboratories). The 

microvessel density (MVD) was evaluated by counting the number of vessels in 5 

fields per section, using a 40x objective. For subsequent experiments, samples were 

formalin-fixed and paraffin embedded and then stained with mouse primary 

antibody against proliferating cell nuclear antigen PCNA (1:100; Santa Cruz) and 

Alexa-Fluor secondary antibody (1:2000, Life technologies, Monza, Italy). 

Proliferating cells were determined by counting the number of PCNA-positive cells 

on DAPI-positive cells (values expressed as percent of PCNA+ cells/DAPI+ cells), in 3 

fields for each section, with a 40x objective. A staining with hematoxylin and eosin 

(HE) was also performed to visualize the histological features of tumors. All 

specimens were viewed under a video-confocal microscope (Vico, Ecliple Ti80, 

Nikon), equipped with a digital camera, and images were captured using a 10x 

objective. 
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In vivo treatment on zebrafish model 

We used wild type zebrafish, raised and maintained under standard conditions, to 

test our chemical compounds. Larvae were treated at 72hours post-fertilization, 

until 7 days after treatment, in order to investigate compound toxicity and the 

survival rate. The compounds were solubilized in E3 medium, replaced every day 

with new medium with containing compounds. The effect on Wnt/β-catenin 

signaling was investigated using TCF/LEF-GFP reporter zebrafish. They were 

treated at 24hours post-fertilization, for 72hours. Reporter expression was 

visualized using the fluorescent microscope (Nikon SMZ 1500) with a GFP filter and 

objective 8x. 40x images were captured by a confocal microscope (Nikon A1R-A1). 

The quantification of fluorescence emission was carried out by ImageJ software. 

 

Statistical Analysis 

Unless indicated otherwise, results are presented as mean ± S.E.M. The differences 

between different treatments were analyzed using the two-sided Student’s t test. P 

values lower than 0.05 were considered significant. 
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ABBREVIATIONS 

 

AI angiogenic inhibitor 

ANG angiopoietin 

APC adenomatous polyposis coli 

ATP adenosine triphosphate 

Bcl-2 B-cell lymphoma 2 

BMP bone morphogenetic protein 

CA-4 combretastatin-A4 

CAM chicken embryo chorioallantoic membrane 

CBP cyclic AMP response element-binding protein 

Cdk cyclin-dependent kinase 

CK1 casein kinase 1 

DCFDA dichlorodihydrofluorescein diacetate 

DVL dishevelled 

ECM extracellular matrix 

EGFR epidermal growth factor receptor 

FAK focal adhesion kinase 

bFGF basal fibroblast growth factor 

GFP green fluorescent protein 

GSK3 glycogen synthase kinase 3 

GTP guanosine triphosphate 

HE hydroethidine 

HIF hypoxia-inducible factor 

HUVEC human umbilical endothelial cell 

JNK c-Jun N-terminal kinase 

LEF lymphoid enhancer factor 

http://en.wikipedia.org/wiki/Guanosine_triphosphate


196 
 

MAPK mitogen-activated protein kinases 

Mcl-1 myeloid cell leukemia-1 

mTOR mammalian target of rapamycin 

NFAT nuclear factor associated with T cells 

PARP poly ADP-ribose polymerase 

PBL peripheral blood lymphocytes 

PCM1 pericentriolar material 1 

PCP planar cell polarity 

PDGF platelet-derived growth factor 

PHA phytohaemagglutinin 

PI propidium iodide 

PI3K phosphoinositide 3-kinase 

PKC protein kinase C 

ROS reactive oxygen species 

SAC spindle assembly checkpoint 

SRC steroid receptor coactivator 

TBA tubulin binding agent 

TCF T cell factor 

TGF-β transforming growth factor-beta 

TKI tyrosine kinase inhibitor 

TNF-α tumor necrosis factor-alpha 

VDA vascular disrupting agent 

VEGF vascular endothelial growth factor 

 

 

http://en.wikipedia.org/wiki/Phosphoinositide_3-kinase
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