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ABSTRACT 

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of two distinct 

pathologies, adult T-cell leukemia/lymphoma (ATLL), an aggressive neoplasm of 

mature CD4+ T-cells,  and  tropical  spastic  paraparesis/HTLV-1-associated 

myelopathy  (TSP/HAM),  a  demyelinating  neurodegenerative  disease. The 

emerging importance of small noncoding RNAs in normal cell physiology and 

disease has prompted studies of their role in T-cell activation and transformation. 

The work described in the present thesis was aimed at understanding the role of 

small noncoding RNAs, in particular microRNAs and tRNA fragments (tRFs), in 

HTLV-1 infection and ATLL pathogenesis.  

The laboratory generated small RNA libraries to identify the repertoire of small 

noncoding RNAs expressed in two HTLV-1-infected T-cell lines (C91PL and MT-2) 

compared to normal CD4+ T-cells. Results revealed upregulation of miR-34a in the 

cell lines. Many tRFs were identified in both uninfected and infected cells.  One of 

the most abundant tRFs (tRF-3019) was derived from the 3’ end of tRNA-proline, 

which is considered to be the primer for HTLV-1 reverse transcriptase. Results of an 

in vitro reverse transcriptase assay verified that tRF-3019 was capable of priming 

HTLV-1 reverse transcriptase. Both tRNA-proline and tRF-3019 were detected in 

HTLV-1 virus particles. tRF-3019 may thus play an important role in HTLV-1 

reverse transcription and could represent a target to control HTLV-1 infection. 

Data from a microarray-based analysis of microRNA expression in ATLL samples 

compared to normal CD4+ T-cells revealed 21 downregulated microRNAs and 6 

upregulated microRNAs. Upregulated microRNAs included miR-34a, which is a 

member of the highly conserved miR-34 family that acts as a tumor suppressor 

induced by p53 in other cell types. However, p53 is known to be functionally 

inactivated or mutated in ATLL cells and HTLV-1-infected cell lines. Treatment of 

infected cell lines with nutlin-3a, a drug that restores p53 activity by interfering with 

MDM2, resulted in an upregulation of miR-34a and strong downregulation of several 

of its predicted targets. These findings indicate that unblocking the p53 pathway in 

HTLV-1-infected cells promotes engagement of the miR-34a/mRNA regulatory 

network.  
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The final aim of the project was to identify microRNAs regulated by the viral 

regulatory protein Tax. To this end the HTLV-1-negative T-cell line Jurkat was 

transfected with a Tax expression plasmid and assayed for changes in mRNA and 

microRNA expression by quantitative RT-PCR. Results revealed significant 

alterations in the levels of 7 microRNAs in the presence of Tax. These included let-

7g, whose levels were reduced in the Tax-expressing cells. Let-7g was also found to 

be downregulated in ATLL samples compared to normal CD4 cells analysed by 

microarrays, suggesting that this microRNA might play a tumor suppressor role in 

HTLV-1-mediated transformation. Experiments are currently underway to identify 

targets of let-7g in infected cells using as a starting point 14 genes identified by 

integrating results from microRNA target prediction programs with expression 

profiles for microRNAs and mRNAs in ATLL cells vs. CD4 controls. 
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RIASSUNTO 

Il virus T-linfotropico umano di tipo 1 (HTLV-1) è l’agente eziologico della 

leucemia/linfoma a cellule T dell’adulto (ATLL, Adult T-cell leukemia/lymphoma), 

un’aggressiva neoplasia a carico dei linfociti T CD4+ maturi, e della paraparesi 

spastica tropicale/mielopatia associata ad HTLV (TSP/HAM, Tropical spastic 

paraparesis/HTLV-associated myelopathy), una patologia degenerativa del sistema 

nervoso centrale.  

L’interesse crescente nello studio e nella comprensione della funzione degli “small 

non-coding RNA” in cellule normali e tumorali ci ha spinto ad uno  studio del loro 

ruolo nell’ attivazione e nella trasformazione delle cellule T. Il lavoro descritto nella 

presente tesi mira a comprendere il ruolo degli “small non-coding RNA” (sncRNA), 

in particolare microRNA e frammenti tRNA (tRFs), nell’ infezione da HTLV-1 e 

nella patogenesi dell’ATLL. 

Nel nostro laboratorio sono state generate librerie di “small RNA” per identificare il 

repertorio di sncRNA espressi in due linee cellulari infettate con HTLV-1 (C91PL e 

MT-2) rispetto alle cellule T CD4 + normali. I risultati hanno rivelato un’aumentata 

espressione del miR-34a nelle linee cellulari infettate. Molti frammenti di tRNA 

(tRFs) sono stati identificati sia nelle cellule infettate che non infettate. Uno dei tRFs 

più abbondanti (tRF-3019) è derivato dall’ estremità 3’ del tRNA-prolina, che è 

considerato il primer per la trascrittasi inversa dell’HTLV-1. I risultati ottenuti da un 

saggio di  trascrittasi inversa in vitro  hanno dimostrato che il tRF-3019 è in grado di 

funzionare da primer nella trascrizione inversa di HTLV-1. La presenza sia del 

tRNA-prolina che del tRF-3019 è stata evidenziata nelle particelle virali. Il tRF-3019 

potrebbe quindi svolgere un ruolo importante nella retrotrascrizione del virus e 

potrebbe rappresentare un “target” terapeutico nell’infezione da HTLV-1. 

I dati ottenuti dall’ analisi con microarray sull’ espressione di microRNA in 

campioni di ATLL e in campioni di cellule T-CD4 + normali ha rivelato una 

diminuzione nell’espressione di 21 microRNA e un’aumentata espressione di 6 

microRNA. 
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I microRNA sovraespressi comprendono anche il miR-34a, che è un membro della 

famiglia dei miR-34, altamente conservati, che agiscono come oncosoppressori 

indotti da p53 in diversi tipi cellulari. Tuttavia, p53 è inattiva o mutata in cellule 

ATLL e in linee cellulari HTLV-1-infettate. Il trattamento di linee cellulari infettate 

con Nutlin-3a, un farmaco che ripristina l'attività di p53 legandosi a MDM2, ha 

rivelato un aumeto di espressione di miR-34a e una forte riduzione dell’espressione 

di alcuni dei suoi target. Questi risultati suggeriscono che attivando il pathway di p53 

in cellule HTLV-1-infettate si potrebbe promuovere l’ingaggio del network 

regolatorio del miR-34a. 

Infine, ci siamo proposti di identificare i microRNA regolati dalla proteina virale 

Tax.  A tal fine la linea cellulare T non infetta, Jurkat, è stata transfettata con un 

plasmide di espressione per Tax e sono state testate le variazioni di espressione di 

mRNA e microRNA mediante RT-PCR. I risultati hanno rivelato che in presenza di 

Tax ci sono alterazioni significative nei livelli di espressione di 7 microRNA.  

Queste variazioni includono il microRNA let-7g, i cui livelli sono ridotti nelle cellule 

che esprimono Tax.  Da studi effettuati su microrrays, let-7g risulta sottoespresso in 

campioni ATLL rispetto alle cellule CD4 normali, suggerendo che questo microRNA 

potrebbe svolgere un ruolo di oncosoppressore nella trasformazione mediata da 

HTLV-1. Gli esperimenti, attualmente in corso, permetteranno di identificare i target 

di let-7g in cellule infettate utilizzando come punto di partenza 14 geni ottenuti 

dall’integrazione dei risultati dei programmi di predizione dei target dei microRNA 

con i profili di espressione di microRNA e mRNA in cellule ATLL rispetto ai 

controlli CD4. 
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1 INTRODUCTION 

1.1 Human T-cell leukemia virus type 1: taxonomy, epidemiology and 

pathogenesis 

Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be 

identified and acknowledged with oncogenic properties (Poiesz et al., 1980). 

Approximately 20 million people are infected worldwide, with geographical 

prevalence especially in regions of south-western Japan, Central Africa, the 

Caribbean Basin, Central and South America and the Melanesian Islands (Figure 1). 

Sporadic infection occurs in Europe and North America. Transmission of the virus 

may occur in a “vertical” manner from mother to newborn (e.g. mainly through 

breastfeeding and in few cases during gestation or peripartum), or “horizontally” 

through exchange of biological fluids (e.g. sexual contact and parenteral 

transmission) (Proietti et al., 2005; Goncalves et al., 2010).  

 

Figure 1. Worldwide prevalence of HTLV-1 (modified Proietti et al., 2005). 
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HTLV-1 is a member of the Retroviridae family, Oncovirinae sub-family, 

Deltaretrovirus genus, which also includes HTLV-2, -3, -4, the simian T-

lymphotropic viruses (STLVs), and bovine leukemia virus (BLV). STLV and BLV 

infections are associated with neoplastic diseases, while the pathogenicity of HTLV-

2, -3, -4 has not been clearly established (Araujo et al., 2004; Mahieux et al., 2009).  

Deltaretroviruses are considered to be “complex”retroviruses, as their 

genomes contain extra open reading frames (ORFs) in addition to the gag, pol, pro 

and env genes common to all retroviruses (Cavallari et al., 2011). In the case of 

HTLV-1, the extra ORFs code for a transcriptional activator named Tax, a post-

transcriptional regulatory protein named Rex and four accessory proteins named 

HBZ, p30, p13 and p12/p8 (Lairmore et al., 2011).  

HTLV-1 is the etiologic agent of two pathologies, adult T-cell 

leukemia/lymphoma (ATLL), an aggressive malignancy of mature CD4+ T-cells that 

is extremely refractory to current therapies (Uchiyama et al., 1977; Tsukasaki et al., 

2009), and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM), 

a demyelinating neurodegenerative disease (Gessain et al., 1985; Osame et al., 1986). 

In addition, accumulating evidence supports an association between HTLV-1 

infection and a number of chronic inflammatory diseases such as uveitis, arthropathy 

and infective dermatitis. 

Most HTLV-1-infected individuals remain asymptomatic throughout life; 

only 2-5% develop ATLL or TSP/HAM after a latency period of decades or several 

years, respectively.  



9 
 

ATLL is classified into four clinical forms: acute, chronic, smouldering and 

lymphoma (Tsukasaki et al., 2009). The prognosis of acute ATLL is extremely poor 

with an overall survival of a few months. ATLL cells possess multi-lobulated nuclei 

and are called “flower cells” (Figure 2); they are usually CD3+ CD4+ CD8- CD25+ 

and frequently accumulate in peripheral blood as well as in lymphoid organs and skin 

(Matsuoka, 2005). ATLL cells express very little, if any, viral protein and frequently 

carry defective proviral copies integrated in the host genome.  

          

Figure 2. Typical "flower cell" in the peripheral blood of an acute ATLL patient 
(from Matsuoka, 2005). 

HTLV-1 infection is accompanied by a high frequency of Forkhead Box P3 

positive (FoxP3+) T-cells (Kohno et al., 2005; Chen et al., 2006). FoxP3 is a marker 

of regulatory T cells (Treg), which play a critical role in suppressing the immune 

response. The increased frequency of FoxP3+ cells results from the HTLV-1-

mediated expression of the chemokine CCL22, which binds the CCR4 receptor on 

Treg cells, favouring their migration and survival. The FoxP3+ T cells suppress the 

growth of autologous ATLL clones, retarding the progression of ATLL; on the other 

hand, they suppress the host's CTL response, which normally limits HTLV-1 
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replication and reduces the risk of HTLV-1-associated diseases (Toulza et al., 2010; 

Bangham et al., 2011).  

TSP/HAM is characterized by a slowly progressive spastic paraparesis, 

associated with bladder dysfunction and sensory disorders. Parenchymal and 

perivascular infiltration of mononuclear cells occurs in the white and gray matter of 

the spinal cord, resulting in demyelization and fibrosis. The presence of infiltrating 

T-cells in the spinal cord lesions and of Tax-specific CTL in the cerebrospinal fluid 

and in the peripheral blood suggests that TSP/HAM might have an autoimmune 

basis. This hypothesis is consistent with the association between the human 

leukocyte antigen (HLA) haplotype and the risk of developing TSP/HAM (Jeffery et 

al., 1999; Barmak et al., 2003). 

1.2 Infection and virus propagation 

The HTLV-1 virion consists of a core that contains the viral-encoded enzymes 

reverse transcriptase, integrase and protease, the single-stranded diploid RNA 

genome surrounded by capsid and matrix proteins. A lipoproteic envelope, composed 

of a plasma membrane-derived lipid bilayer and the gp21 and gp46 envelope 

glycoproteins, surrounds the viral core (Figure 3). HTLV-1 presents a broad cell 

tropism in vitro (monocytes, microglial cells, epithelial cells, B- and T- 

lymphocytes), but it is mainly detected in CD4+ T-lymphocytes and dendritic cells 

of infected individuals. So far, three cellular receptors of HTLV-1 have been 

identified: the glucose transporter GLUT-1, heparan sulphate proteoglycan (HSPG), 

and neuropilin-1. Current models suggest that the virus may first contact HSPG on 

the cell surface, and then form complexes with neuropilin-1 through the viral 

envelope protein (Jones et al., 2005; Lambert et al., 2009). Afterwards, the 
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interaction between the viral envelope protein gp46 and GLUT-1 would favour 

membrane fusion and entry into the cell (Manel et al., 2003). The gp46-GLUT-1 

interaction allows the envelope protein gp21 to mediate cellular membrane fusion 

with the formation of the virological synapse. The virological synapse is an 

organized contact area whose assembly results from the polarization of the 

cytoskeleton of the infected cell and the accumulation of HTLV-1 core complexes 

and genome at the cell junction (Ikagura et al., 2003; Majorovits et al., 2008).  

In addition to the formation of the virological synapse, two other mechanisms 

have been proposed to be involved in the cell-to-cell transmission of HTLV-1. The 

first involves the storage of viral particles from HTLV-1-infected cells in 

extracellular biofilm-like structures, composed of collagen, agrin, and linker-

proteins. When infected cells attach to uninfected cells, those structures are rapidly 

transferred to the surface of the target cells, favouring infection (Pais-Correia et al., 

2010). Another mechanism of virus spread involves the activity of the viral accessory 

protein p8. p8 enhances T-cell contact by interacting with LFA-1 and ICAM-1 and 

mediates formation of intracellular conduits among T-cells, through which virions 

may be transmitted (Van Prooyen et al., 2010). All these mechanisms are consistent 

with the fact that cell-free HTLV-1 particles are usually undetectable in the serum of 

HTLV-1 infected subjects and cell-free blood products are not infectious (Fan et al., 

1992; Derse et al., 2001).  

After virus entry into the target cell, the viral genome is reverse-transcribed by 

the viral reverse transcriptase (RT), producing an RNA-DNA hybrid. The 

ribonuclease H (RNAse H) component of viral RT degrades the RNA strand, while 

the DNA strand is used as a template by RT, which also has DNA-polymerase-DNA-
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dependent activity, to synthesize a complementary DNA strand. The double-stranded 

DNA circularizes and transfers to the nucleus, where it integrates randomly in the 

host genome. Integration is mediated by the viral enzyme integrase and by the long 

terminal repeats (LTRs) located at both ends of the viral genome. Viral genes are 

then transcribed and translated by the cellular machinery. Virion assembly occurs 

through the interactions between the nucleocapsid and the genomic RNA, and the 

matrix and the host plasma membrane. Viral particles incorporate two copies of the 

single stranded RNA genome along with tRNA, RT, protease and integrase.  

 

Figure 3. Schematic representation of the HTLV-1 virion (modified from Le Blanc 
et al., 2001)  

1.2.1 Propagation of HTLV-1 in vivo 

After an individual has been infected with HTLV-1, the propagation and 

persistence of the infected cells in the host relies mainly on “mitotic transmission” of 

the integrated viral genome to daughter cells, rather than on de novo infection of new 

host cells (Overbaugh et al., 2001). 
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1.2.2 In vitro infection of T-cells by HTLV-1 

Many studies of HTLV-1 employ T-cell lines that are chronically infected with 

the virus. While some cell lines were derived by direct culture of PBMC from 

patients with ATLL or TSP/HAM, many others were generated by cocultivating 

normal mitogen-stimulated PBMC or umbilical cord blood cells with cells from 

infected patients; the donor cells are exposed to a lethal dose of gamma irradiation or 

are treated with a cytotoxic drug to ensure that they will not propagate in the co-

culture.  The newly infected cells are initially dependent on exogenous IL-2 for 

growth. After several months of culture, it is possible to detect mono- or oligoclonal 

provirus integration in the recipient cells. This profile results from a selection process 

of one or few major clones that carry several genetic alterations and acquire the 

capability to grow in an interleukin-2 (IL-2)-independent manner. These cells usually 

show a CD3+ CD4+ IL-2R+ (IL-2 receptor, CD25), or, rarely, a CD3+ CD8+ IL-

2R+ phenotype (Lairmore et al., 2007).   

1.3 HTLV-1 genetic organization and gene expression 

The genome of HTLV-1 reflects the basic structure of the Deltaretrovirus 

genus: at the 5’ and 3’ ends are located the LTRs which flank the partially 

overlapping open reading frames (ORFs) of the gag, pro, pol and env genes that code 

for enzymes and structural proteins of mature virus particles (Figure 4). The region 

between the end of the env gene and the 3’ LTR is termed the X region, and contains 

at least four partially overlapping ORFs, termed x-I through x-IV, coding for 

regulatory and accessory proteins (Figure 4A). The minus strand of HTLV-1 also 

contains an ORF located in the pX region (antisense orientation) (Larocca et al., 
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1989) which codes for the HBZ protein (HTLV-1 bZIP factor) (Figure 4B) (Gaudray 

et al., 2002).  

Expression of the highly condensed HTLV-1 genetic information is achieved 

through (i) ribosomal frameshifting, which generates a Gag-Pro-Pol polyprotein from 

the full-length transcript; (ii) alternative splicing, which produces distinct mRNAs 

coding for the Env and pX region genes; (iii) polycistronic translation, which 

produces the Tax and Rex proteins from the same mRNA; and (iv) minus-strand 

transcription, to produce HBZ. 
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Figure 4. Organization and expression of the HTLV-1 genome. A: Plus-strand 
ORFs, transcriptional map and proteins coded by each mRNA are shown. The 
numbering indicates splicing sites used for the generation of the mature mRNAs. 
Resulting exons are: 1 (1-119), 2 (4641-4831), 3 (6950-8493), B (6478-8493), C 
(6875-8493) and E (4641-8493). mRNAs are named according to their exonic 
composition. B:  For the minus-strand, the ORF, transcriptional map and proteins 
coded by each mRNA are shown. The numbering indicates the start sites used for the 
generation of the mature mRNAs. Resulting exons are: hbz us (7222-4834) and hbz 
sp1 (8471-8315 and 6915-4834) (Adapted from Rende et al., 2011). 
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1.3.1 Gag-Pro-Pol.  

An unspliced mRNA codes for Gag-Pro-Pol and also serves as genomic 

RNA. The gag gene codes for the 19 kDa matrix (MA), 24 kDa capsid (CA) and 15 

kDa nucleocapsid (NC) structural proteins. The pro gene encodes the viral protease. 

The 5' portion of the pol gene encodes the reverse transcriptase (RT) protein, while 

sequences downstream code for Integrase. These genes are translated as polyproteic 

precursors (Gag, Gag-Pro and Gag-Pro-Pol) generated through ribosomal 

frameshifting at the gag-pro and/or gag-pro-pol junction. The precursors are post-

translationally modified by myristylation at the N-terminus, an essential step for their 

insertion in the internal side of the plasma membrane of the infected cell. After 

anchoring to the plasma membrane the precursors are cleaved by the viral protease to 

generate the single mature polypeptides. 

1.3.2 Env.  

A singly-spliced mRNA contains the env gene. It codes for a 68-kDa 

precursor which is post-translationally modified by glycosylation and cleavage into 

two proteins named gp46-SU, localized at the surface of virions and responsible for 

the binding to the GLUT-1 receptor, and gp21-TM, the transmembrane protein that 

mediates membrane fusion and formation of the virological synapse. 

1.3.3 Tax 

A doubly-spliced mRNA codes for two essential regulatory proteins, Tax and 

Rex. Tax is a 353-amino acid (40-kDa), mainly nuclear, phosphoprotein that 

transcriptionally controls the expression of plus strand viral genes and a large 

number of cellular genes. Functional domains in Tax include an N-terminal nuclear 
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localization signal (NLS) and zinc finger domains that mediate binding to 

transcription factors (CREB/ATF and SRF; see below), a central domain and C-

terminal domain that  allow binding to transcriptional coactivators CBP/p300 and 

P/CAF, respectively, and a central dimerization domain (reviewed by Romanelli et 

al., 2013).  

1.3.3.1 Effects of Tax on the CREB pathway 

Tax was initially described as an activator of LTR-directed transcription 

(Felber et al., 1985). Three Tax responsive elements (TRE), within the U3 region of 

the LTR, are sufficient to confer Tax responsiveness (Brady et al., 1987). Each 

element contains an octamer motif TGACG(T/A)(C/G)(T/A) flanked by a GC stretch 

at the 5' and 3' ends (Jeang et al., 1988). The octamer motif shares homology with the 

consensus cAMP responsive element (CRE) (5’-TGACGTCA-3’). Tax binds 

indirectly to the TRE element by interacting with members of the CREB/ATF family 

(Giam et al., 1989). Tax enhances the dimerization of CREB/ATF factors, increasing 

their affinity for the TRE, and further stabilizes the ternary complex through direct 

contact of the GC-rich flanking sequences (Kimzey et al., 1998; Lundblad et al., 

1998). Tax also recruits coactivators (CBP/p300 and P/CAF) to facilitate 

transcription initiation. Physiologically, the CREB-CBP/p300 interaction is 

controlled by CREB phosphorylation in response to different signal transduction 

pathways. Through its ability to bind both CREB and CBP/p300, Tax triggers CREB 

activation even in the absence of phosphorylation. In this way, viral gene 

transcription becomes independent from cellular signals.  

Through its interactions with CREB/ATF proteins, Tax can activate a variety 

of cellular genes, including interleukin 17 (IL-17) and c-fos (Alexandre et al., 1991; 
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Dodon et al., 2004) and repress the expression of other genes such as cyclin A, p53 

and c-myb (Mulloy et al., 1998; Nicot et al., 2000; Kibler et al., 2001). 

1.3.3.2 Effects of Tax on the NF-κB pathway 

The oncogenic properties of Tax are due in large part to its ability to activate 

NF-κB, a major survival pathway engaged by HTLV-1 infection (Saggioro et al., 

2009). The mammalian NF-κB proteins consist of five structurally related members: 

p65/RelA, RelB, c-Rel, NF-κB1 (p50/and its precursor p105) and NF-κB2 (p52/and 

its precursor p100). NF-κB proteins form homo-heterodimers that regulate the 

expression of target genes bearing a NF-κB-responsive element in their promoters 

(Hayden et al., 2012). In unstimulated cells, NF-κB dimers are sequestered in the 

cytoplasm by inhibitory proteins called IκBs (comprising p105, p100, IκBα, IκBβ, 

IκBγ, IκBζ and Bcl-3) that mask the nuclear localization signal of NF-κB. Upon cell 

stimulation, IκB proteins are rapidly phosphorylated and degraded by the 

proteasome, and NF-κB translocates into the nucleus to regulate the expression of 

target genes coding for cytokines, chemokines, adhesion molecules, inhibitors of 

apoptosis, and other proteins (Hayden et al., 2012). 

Two main signalling pathways lead to NF-κB activation: the canonical (or 

classical) and the non-canonical (or alternative) pathways. The canonical NF-κB 

pathway is induced by a variety of innate and adaptive immunity mediators, such as 

pro-inflammatory cytokines (TNF-α, IL-1β), and engagement of Toll-like receptors 

(TLRs) and antigen receptors (TCR, BCR) (Pahl, 1999; Bonizzi et al., 2004). The 

crucial step in the canonical NF-κB pathway is the activation of the IκB-kinase 

(IKK) complex, which consists of the two kinases, IKKα and IKKβ (Zandi et al., 

1997), and of one regulatory subunit IKKγ, also known as NF-κB essential 
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modulator (NEMO) (Yamaoka et al., 1998) (Figure 5A). Activated IKK 

phosphorylates IκBα on serines 32 and 36, triggering its ubiquitination and 

proteasomal degradation. This unmasks the DNA binding activity of the p50/RelA 

dimer, and allows its translocation into the nucleus where it activates the 

transcription of target genes (Beinke et al., 2004) (Figure 5A).  

 

Figure 5. NF-κB activation. The figure summarizes the steps involved in activation 
of the canonical and non-canonical pathways (see text). (Adapted from Morgan et al., 
2011). 

Tax intervenes at multiple levels to activate the canonical NF-κB pathway. In 

the cytoplasm, Tax directly binds to NEMO and recruits the IKK complex to the 

perinuclear compartment, where it is phosphorylated and activated (Harhaj et al, 

1999; Xiao et al., 2000). Tax also activates kinases upstream to the IKK complex, 

including MAPK/ERK kinase kinase 1 (MEKK1) and TGF-β activating kinase 1 

(TAK1) (Wu et al., 2007), thus enhancing IKKα and IKKβ phosphorylation, and 
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IκBα and IκBβ degradation (Harhaj et al., 1999). In addition, Tax binds IKKα and 

IKKβ and activates their kinase activity independently of the upstream kinases (Chu 

et al., 1998). The binding of Tax to IκBs also enhances their degradation 

independently of IKK phosphorylation (Suzuki et al., 1995). Tax thus promotes IκB 

degradation at multiple levels, allowing nuclear translocation of NF-κB 

independently of external stimuli. In the nucleus, Tax recruits RelA, CBP/p300 and 

PCAF (Bex et al., 1998) into discrete transcriptional hot spots termed Tax nuclear 

bodies, leading to NF-κB transcriptional activation (Semmes et al, 1996; Bex et al., 

1997). 

The non-canonical NF-κB pathway is important for secondary lymphoid 

organ development and homeostasis. It is induced by B-cell activating factor (BAFF) 

(Claudio et al., 2002), lymphotoxin β (LTβ) (Dejardin et al., 2002), and CD40 ligand 

(Xiao et al., 2001a; Coope et al., 2002). The crucial step in this pathway is the 

processing of p100 into p52 by IKKα, thus allowing p52 DNA binding in association 

with its partner RelB. The phosphorylation and activation of IKKα is mediated by the 

upstream NF-κB inducing kinase (NIK) (Figure 5B) (Xiao et al., 2001b; Xiao et al., 

2004). Interestingly, NIK can also induce long-term activation of the IKK complex 

and IκBα degradation, thus activating also the canonical NF-κB pathway (Zarnegar 

et al., 2008) (Figure 5A and B). 

The induction of the non-canonical pathway is a hallmark of NF-κB 

activation by HTLV-1 infection, because this arm of the pathway usually is not 

active in normal T cells (Xiao et al., 2001a). Tax induces the non-canonical NF-κB 

pathway by promoting the processing of p100 to p52 (Xiao et al., 2006). Tax-

mediated processing of p100 requires NEMO as an adaptor protein in the assembly 
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of the Tax/IKK complex, and is independent of the NIK kinase. In contrast to the 

canonical Tax/NEMO/IKK complex, which contains both the IKKα and β, the non-

canonical complex contains only IKKα (Xiao et al., 2001b), which phosphorylates 

p100 leading to its processing to p52 (Qu et al., 2004).  

Almost all steps of the NF-κB pathway can be terminated through feedback 

inhibition mechanisms. Among the physiological NF-κB termination mechanisms, 

the most rapid and essential is mediated by PDZ-LIM domain-containing protein 2 

(PDLIM2). This protein shuttles RelA to the nuclear matrix, and ubiquitinates it, thus 

targeting it for proteasomal degradation (Tanaka et al., 2007). Tax directly shuts off 

this feedback inhibition mechanism by binding to PDLIM2, resulting in reduced 

RelA degradation, although this process results in the proteasomal degradation of 

Tax itself (Yan et al., 2009). 

Tax–mediated activation of the NF-κB pathway results in increased survival 

through the transcriptional activation of the anti-apoptotic factors Bcl-XL, Bfl1 and 

HIAP-1 (Kawakami et al., 1999, Tsukahara et al., 1999; Nicot et al., 2000; De La 

Fuente et al., 2003) and downregulation of the pro-apoptotic protein Bax (Brauweiler 

et al., 1997). In addition, Tax induces a physical interaction between RelA and p53 

that inhibits p53 transcriptional activity (Jeong et al., 2004). Furthermore, Tax 

represses p53 at the protein level via NF-κB using two different mechanisms: (i) 

activated IKK directly phosphorylates p53 to trigger p53 ubiquitination and 

proteasomal degradation by the b-TrCP ubiquitin ligase (Xia et al., 2009); (ii) 

activated NF-κB induces expression of MDM2, a ubiquitin ligase for p53 

ubiquitination and degradation (Busuttil et al., 2010). 
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1.3.3.3 Effects of Tax on the SRF/AP-1 pathway  

Tax increases the expression of the transcription factor AP-1 (activator 

protein -1) a homo- or heterodimeric complex of Fos (c-Fos, FosB, Fra1 and Fra2) 

and Jun (c-Jun, JunB and JunD) (Fujii et al., 1991; Fujii et al., 2000). Fos and Jun 

transcription is positively regulated by the serum responsive factor (SRF) in response 

to various stimuli such as cytokines, growth factors, stress signals and oncogenes. 

SRF binds to the Fos/Jun promoters through two SRF responsive elements (SRE): a 

CArG box (CC(A/T)6GG) and an upstream Ets box (GGA(A/T)). Once SRF 

occupies the CArG box, the ternary complex factor (TCF) establishes protein 

interactions with SRF and subsequently binds the upstream Ets site. This complex 

then recruits the co-activators P/CAF and CBP/p300 to activate transcription. 

Tax activates the transcription of promoters under the control of SRE motifs 

through the interaction with transcription factors associated with the SRF pathway 

(Fujii et al., 1991; Alexandre et al., 1991). This interaction results in increased 

binding of SRF to the SRE (Dittmer et al., 1997). Once the complexes are stabilized, 

Tax recruits the coactivators CBP/p300 and P/CAF and mediates transactivation 

(Shuh and Derse, 2000). 

1.3.3.4 Non-transcriptional effects of Tax 

Tax also controls the cell cycle by interacting with cyclins-D1, -D2 and -D3 

as well as with cyclin-dependent kinases (CDKs) 4 and 6 (Neuveut et al., 1998; 

Haller et al., 2002). Through these interactions, Tax stabilizes the cyclin D2/CDK4 

complex and enhances its kinase activity, leading to hyperphosphorylation of the 

retinoblastoma protein (Rb). Tax also associates with the CDK inhibitors (CDKI) 
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p15INK4b and p16INK4a and counteracts their CDK4-inhibitory activity (Suzuki et 

al., 1997; Suzuki et al., 1999). In addition, Tax binds to Rb and enhances its 

proteosomal degradation (Kehn et al., 2005). 

Tax also interacts with Tax1 binding protein (TAX1BP2) and Ran/Ran 

binding protein 1 (RanBP1), which control centrosome amplification during mitosis 

(Peloponese et al., 2005; Ching et al., 2006). Through these interactions, Tax induces 

supernumerary centrosomes and causes multipolar mitosis, thus contributing to 

aneuploidy, a hallmark of HTLV-1-infected cells (Marriott et al., 2002; Boxus et al., 

2009). Furthermore, Tax interacts with the anaphase promoting complex (APC), 

which controls the metaphase-anaphase transition (Liu et al., 2005). APC directs the 

ubiquitination and proteosomal degradation of cyclin B1 and Pds1p/securin. Securin 

and cyclin B1 inhibit separase; a protease that destroys the connection links of sister 

chromatids. In normal cells, chromosomes start to segregate only after the 

kinetochore is subjected to the mechanical tension generated by the mitotic spindle 

(Nasmyth, 2005). Tax activates APC in the S phase, before the cell enters mitosis, 

decreasing the levels of cyclin B1 and securin, and resulting in the premature 

activation of separase, thus leading to unequal chromosomal separation between cells 

(Liu et al., 2005). 

Tax also causes DNA damage generating double strand breaks both by 

modulating the timing of activation of the replication origins (Boxus et al., 2012) and 

by inducing oxidative stress (Kinjo et al., 2010). In addition, Tax attenuates the DNA 

damage response through sequestration and/or inhibition of critical proteins such as 

ATM, DNA-PK, CHK1-2 and p53 (Boxus et al., 2012). 
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Although Tax is a major target of CTLs, ATLL cells frequently lose the expression 

of Tax. Therefore, Tax is proposed to play an important role in the persistent 

proliferation of HTLV-1-infected cells mainly during the healthy carrier state. In this 

phase, the mutator phenotype conferred by Tax promotes accumulation of genetic 

and epigenetic changes that finally lead to Tax-independent proliferation and, 

following the silencing of Tax, escape from the host immune system (Yasunaga et 

al., 2007). 

1.3.4 Rex  

Rex is a 189-amino acid, 27 kDa nuclear/nucleolar phosphoprotein that is 

able to shuttle between the nucleus and the cytoplasm (Palmeri et al., 1996; Narayan 

et al., 2003), allowing the nucleo-cytoplasmic export of incompletely spliced viral 

RNA, controlling in this way viral gene expression at the post-transcriptional level. 

This function is mediated through direct interaction with a 254-nucleotide stem-loop 

cis-acting RNA element termed the Rex-responsive element (RxRE) (Grone et al., 

1994), present in the U3/R region of the 3' LTR of all HTLV-1 transcripts (Ahmed at 

al., 1990; Bogerd et al., 1992). Rex contains an N-terminal NLS that also functions 

as an RNA binding domain, and a nuclear export signal (NES) flanked by 2 

multimerization domains (reviewed by Narayan et al., 2003). The NES interacts with 

the protein chromosome region maintenance interacting protein 1 (CRM1/exporting 

1) and allows export of the Rex-viral mRNA complexes from the nucleus to the 

cytoplasm (Bogerd et al., 1995). Although Rex is not required for cellular 

immortalization in vitro, it is necessary for infectivity and viral persistence in vivo 

(Ye et al., 2003), since expression of the unspliced and singly-spliced viral RNAs 

encoding structural proteins is necessary for the assembly of virions. The fact that 
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these mRNAs depend on Rex for expression suggests that the Rex-RxRE interaction 

may function as a molecular switch controlling the transition between productive and 

latent phases of HTLV-1 infection.  

1.3.5 Accessory proteins 

p21rex. p21rex is a truncated isoform of Rex lacking the N-terminal 

NLS/RNA binding domain of the full-length protein. p21Rex might act as a repressor 

of full-length Rex, thereby inhibiting the expression of transcripts coding for 

structural proteins, enzymes and accessory proteins (Heger et al., 1999). This would 

favor entry of the virus into latency.  

p30tof. p30tof is a 241-amino acid, nucleolar-nuclear non-shuttling protein 

(Ciminale et al., 1992; D’Agostino et al., 1997). p30tof functions at the post-

transcriptional level by inhibiting the nuclear export of the tax/rex mRNA; this effect 

results in  a global inhibition of viral gene expression, suggesting that p30tof might 

act as a latency factor (Nicot et al., 2004). p30tof also interacts with the RNA-

binding domain of Rex and thereby prevents Rex from interacting with the RxRE 

(Baydoun et al., 2008). p30tof also affects transcription from promoters with cellular 

CRE and viral TRE sequences by interacting with the co-activator CBP/p300 (Zhang 

et al., 2000; Zhang et al., 2001), and can disrupt the assembly of the CREB–Tax–

p300/CBP complex on TREs. This may result in decreased transcription of the viral 

genome, thereby facilitating viral latency. By recruiting the co-activator Tat-

interacting protein 60 (TIP60) p30tof promotes the formation of the Myc/TIP60 

transcription complex on Myc-response E-box elements and thereby transactivates 

Myc-driven transcription (Awasthi et al., 2005). p30tof expression results in 
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alteration of the cell cycle events that would promote early viral spread and T cell 

survival (Datta et al., 2007). 

p13. p13 an 87-amino acid protein that corresponds to the C-terminal portion 

of  p30tof. However, the two proteins are expressed from distinct mRNAs (Figure 4) 

and have different activities.  p13 is targeted to the inner mitochondrial membrane 

and induces specific alterations in mitochondrial morphology (Ciminale et al., 1999; 

D’Agostino et al., 2002; D’Agostino et al., 2005). Functional studies of p13 revealed 

that it inhibits proliferation of HeLa cells and Jurkat T cells and sensitizes Jurkat T 

cells to apoptosis triggered by ceramide and Fas ligand (Silic-Benussi et al., 2004; 

Hiraragi et al., 2005). p13 also interferes with the ability of HeLa cells and Ras/Myc-

transformed primary fibroblasts to grow as tumors in nude mice, suggesting that it 

may exert tumor-suppressor-like activity (Silic-Benussi et al., 2004). p13 reduces the 

uptake of calcium into mitochondria (Biasiotto et al., 2010), reduces mitochondrial 

membrane potential (Biasiotto et al., 2010),  induces an influx of potassium ions into 

the mitochondrial matrix (Silic-Benussi et al., 2010a), and raises the levels of 

mitochondrial reactive oxygen species, which favors activation of primary T-cells 

(Silic-Benussi et al., 2010b).  

p12. p12 localizes in the endoplasmic reticulum (ER) and in the Golgi 

apparatus (Koralnik et al., 1993; Ding et al., 2001; Johnson et al., 2001). p12 

interacts with the  β and  γc chains of the interleukin-2 receptor (IL-2R), resulting in 

reduced surface expression (Mulloy et al., 1996). The binding to the cytoplasmic 

domain of the β chain, involved in the recruitment of Jak1 and Jak3, determines an 

increase in the transcriptional activity of STAT-5, providing a proliferative 

advantage to T cells (Nicot et al., 2001). p12 also sequesters free MHC class I heavy 
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chains (MHC-I-Hc), preventing their binding to β2-microglobulin, favouring escape 

from CTL recognition and clearance by the immune system of infected cells 

(Johnson et  al., 2001). Furthermore, p12 causes a reduction in the expression of 

ICAM-1 and  ICAM-2, which mediate adhesion of natural killer (NK) cells to the 

infected cells, resulting in the protection from NK cell-mediated cytotoxicity 

(Banerjee et al., 2007). p12 interacts with calreticulin and calnexin (Ding et al., 

2001), two ER-resident proteins that regulate Ca++ storage and release, suggesting a 

p12-mediated Ca++ leakage from the ER (Ding et al., 2002). Moreover, p12 

stimulates nuclear factor of activated T-cells (NFAT) (Albrecht et al., 2002), by 

interacting with calcineurin, a Ca++ -responsive protein phosphatase that controls 

NFAT activity (Kim et al., 2003). These effects decrease the threshold for T-cell 

activation (Nicot et al., 2005). A proteolytic cleavage product of p12 named p8 

induces the formation of small tubular structures that facilitate cell-to-cell 

transmission of the virus (Van Prooyen et al., 2010).  

1.3.6 HBZ 

The HBZ protein contains an N-terminal transcriptional activation domain, a 

central domain and a C-terminal basic ZIP domain (bZIP) and three NLS (Gaudray et 

al., 2002; Hivin et al., 2005). HBZ localizes in the nucleus with a speckled pattern 

and interacts with a number of transcription factors, including CREB-2, p300/CBP, 

Jun family members, and NF-κB (Matsuoka et al., 2009). Binding of HBZ to JunB 

and c-Jun decreases their DNA binding activity by preventing their interaction with 

Fos, leading to repression of the AP-1 complex; on the contrary the interaction of 

HBZ with Jun-D stimulates its transcriptional activity (Thebault et al., 2004), and 

results in the activation of JunD-dependent cellular genes including human 
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telomerase reverse transcriptase (hTERT) (Kuhlmann et al., 2007). HBZ inhibits the 

classical NF-κB pathway by inhibiting the DNA binding of the NF-κB subunit p65 

and by increasing the expression of PDLIM2, the E3 ubiquitin ligase of p65, leading 

to enhanced ubiquitination and degradation of p65 (Zhao et al., 2009). HBZ 

expression is associated with proliferation of ATLL cells in vivo and in vitro (Satou 

et al., 2006; Arnold et al., 2008). Mutational analyses of the hbz gene showed that 

hbz mRNA, rather than HBZ protein, has a growth-promoting effect on T-cells 

(Satou et al., 2006) possibly by up-regulating transcription of the E2F1 gene and its 

downstream targets. A major quota of HBZ RNA is retained in the nucleus, 

supporting a noncoding role (Rende et al., 2011). Transgenic expression of HBZ in 

mice leads to the development of T-cell lymphomas and systemic inflammatory 

diseases (Satou et al., 2011). 

1.4 MicroRNAs and tRNA fragments (tRFs) 

1.4.1 MicroRNAs 

MicroRNAs (miRNAs) are single-stranded RNA molecules of about 22 nt 

which play important roles in regulation of gene expression at the post-

transcriptional level by hybridizing to complementary sequences on target 

transcripts, leading to the silencing of the mRNA’s expression (Krol et al.,  2010; 

Libri et al., 2013). miRNAs play vital roles in various physiological and pathological 

processes, including tumorigenesis (Zhu et al., 2010).   

miRNAs are evolutionary conserved across broad phylogenetic distances. 

Most mammalian miRNAs are encoded by multiple genes (paralogues) with distinct 

genomic positions, probably the result of gene duplications. As an example, 
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members of the the let-7 family of miRNAs are coded by 12 different loci in the 

human genome (Guo et al., 2010). Approximately 50% of mammalian miRNA loci 

are found in clusters in the genome. Such clusters are generally transcribed as a 

single polycistronic transcription unit (Lee et al., 2002), although some individual 

miRNAs are transcribed from separate promoters. Approximately 40% of miRNA 

loci are located in introns, and about 10% are located in exons of non-coding 

transcripts (Kim et al., 2009).  

The first microRNA was discovered in 1993 in nematodes (Lee et al., 1993; 

Wightman et al., 1993). Since then, the number of known miRNAs has continually 

increased (Lau et al., 2001; Lee et al., 2001; Lagos-Quintana et al., 2001). The recent 

development of deep sequencing technologies (Lu et al., 2005; Margulies et al., 

2005) and computational prediction methods (Lai et al., 2003; Nam et al., 2005; Li et 

al., 2006; Huang et al., 2007) has accelerated the discovery of new small RNA 

sequences. miRNAs have been identified in protozoa, plants, metazoan animals and 

viruses. The sequences and genomic locations of the known miRNAs are catalogued 

in the Sanger miRBase at http://www.mirbase.org/. The current miRBase (miRBase 

version 20, released in June 2013) contains 2578 human miRNAs. Global miRNA 

profiling studies (e.g., Landgraf et al., 2007) indicate that some miRNAs are specific 

for a particular cell lineage or differentiation stage, while others are expressed in 

many cell types and thus probably play broader roles in cell physiology.  

1.4.1.1 Biogenesis of microRNA 

Transcription and processing in the nucleus. Most miRNA genes are 

transcribed by RNA polymerase II (Pol II) (Lee et al., 2004; Cai et al., 2004) and a 

few are transcribed by Polymerase III (Pol III) (Borchert et al., 2006).  
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Figure 6. microRNA biogenesis.  Shown are the canonical and mirtron pathways of 
miRNA production from RNA pol II-derived transcripts. As described in the text, 
other types of RNAs may also give rise to small RNAs with miRNA activity. From 
D’Agostino et al., 2012. 

The primary transcript produced by RNA Pol II, termed the pri-miRNA, is usually 

several thousand nucleotides long. The mature miRNA sequence is located in the 

stem portion of a local hairpin structure in the pri-miRNA (Figure 6). The first step 

of miRNA maturation (termed “cropping”) consists of the cleavage at the base of the 

stem of the hairpin structure by a complex containing the ribonuclease Drosha and a 

single-stranded RNA binding protein named DGCR8. DGCR8 interacts with the 

ssRNA tails and the stem of the pri-miRNA, while Drosha cleaves the stem ~11 bp 

from its base (Han et al., 2006).  

Most miRNAs coded within introns are processed before splicing in a co-

transcriptional event (Kim et al., 2007). The splicing commitment complex is 

thought to bind the intron and interact with the Drosha-DGCR8 complex which 

cleaves the intronic miRNA before the intron is excised. The pre-miRNA possesses a 

~2-nt 3′ overhang that is specifically recognized by the nuclear export factor exportin 

5 (EXP5) (See below). 
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A small number of miRNAs are located in short introns and do not require Drosha 

processing for their biogenesis (Ruby et al., 2007; Okamura et al., 2007; Berezikov et 

al., 2007) (“mirtrons”; Figure 6). Following splicing, the lariat-shaped intron is 

debranched and folds into a hairpin structure that resembles pre-miRNA. Some 

mirtrons contain extended tails at either the 5′ or 3′ end and undergo exonucleolytic 

trimming in order to become a substrate for nuclear export. In addition, small RNAs 

can also derive from other non-coding RNAs, such as tRNA (see below) or small 

nucleolar RNA (snoRNA) (Ender et al., 2008). Multiple non-canonical pathways can 

therefore generate, through Drosha-independent processes, miRNA precursors that 

finally enter the common miRNA pathway (Kim et al., 2009). 

Nuclear export and cytoplasmic maturation. Exportin 5 is a member of the 

nuclear transport receptor family that exports pre-miRNAs from the nucleus to the 

cytoplasm (Kim, 2004; Lund et al., 2004; Bohnsack et al., 2004; Yi et al., 2005). 

Exportin 5 binds cooperatively to the pre-miRNA and the GTP-bound form of the 

cofactor Ran in the nucleus, and releases the pre-miRNA in the cytoplasm following 

the hydrolysis of GTP to GDP. Exportin 5 is able to specifically recognize and bind 

the characteristic pre-miRNA structure, presenting a >14 bp dsRNA stem with a 

short 3′ (Gwizdek et al., 2003; Basyuk et al., 2003; Lund et al., 2004; Zeng et al., 

2004). 

In the cytoplasm, a complex containing a ribonuclease named Dicer cleaves 

the pre-miRNAs near the terminal loop, releasing a ~22 nt miRNA duplex (Bernstein 

et al.,  2001; Hutvagner et al., 2001; Ketting et al., 2001; Knight et al., 2001) (Figure 

6). Similar to Drosha, human Dicer acts in association with the dsRNA-binding 

proteins TRBP (TAR RNA-binding protein, also known as TARBP2) (Chendrimada 
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et al., 2005) and PACT (also known as PRKRA) (Lee et al., 2006), which seem to 

contribute to the formation of the RNA-induced silencing complex (RISC; see 

below). Some miRNAs (e.g. miR-451) are cleaved from a pre-miRNA by Ago2 

rather than Dicer (Cheloufi et al., 2010; Cifuentes et al., 2010). 

Argonaute loading.  The ~22 nt RNA duplex generated by the action of 

Dicer is loaded onto the effector complex, RISC (Figure 6). The RISC core contains 

proteins of the Argonaute (AGO) family. The human AGO family includes 4 

members named AGO 1-4, also known as EIf2C1-4. AGO proteins are composed of 

four domains: the amino-terminal domain; the PAZ domain, which binds the 3′-end 

of miRNAs; the MID domain, which binds the 5′-phosphate of miRNAs; and the 

PIWI domain, which adopts an RNase H-like fold and has endonucleolytic activity in 

some AGOs (Jinek et al., 2009). One strand of the ~22 nt RNA duplex is bound by 

AGO and is retained in the RISC as a mature miRNA (the guide strand), whereas the 

other strand (the passenger strand) is degraded. The relative thermodynamic stability 

of the two ends of the duplex contributes to determine which strand is incorporated 

into the RISC, with the strand having more unstable base pairs at the 5′ end typically 

retained while the other strand is degraded. However, the stringency of strand 

selection may differ for different miRNA duplexes (Khvorova et al., 2003; Han et al., 

2006). Together with AGO proteins, in humans Dicer and TRBP (and/or PACT) 

contribute to effector complex assembly by forming the RISC loading complex 

(RlC). The RlC seems to bind to RNA duplexes and facilitates mature miRNA 

loading on AGO. Another important component of the RISC complex is GW182 

(glycine-tryptophan protein of 182 kDa), which plays a role in both translational 

repression and mRNA degradation (see below).  
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1.4.1.2 MicroRNA function  

The majority of animal miRNAs bind to imperfect complementary sequences 

in the 3′-UTR of target mRNAs, leading to either translation repression or mRNA 

deadenylation and subsequent degradation.  

Silencing of an mRNA target by a miRNA usually requires nearly perfect 

base-pairing between nt 2-8 of the microRNA (the ‘seed sequence’) and a segment 

on the target mRNA (Bartel, 2009; Krol et al.,  2010; Zhu et al., 2010); other 

nucleotides in the miRNA may or may not base-pair with the target. Given its 

importance in miRNA function, many miRNA target prediction algorithms are based 

on searches for matches between seed sequences and 3’UTRs.  

miRNA-mRNA interactions that involve partial base-pairing typically lead to 

translational repression of the mRNA. Increasing evidence suggests that translational 

repression occurs predominantly at the initiation step (Huntzinger et al., 2011). 

Figure 7A depicts an mRNA that is ready to be translated. The poly(A) tail is bound 

by poly(A)-binding protein (PABPC), which interacts with eukaryotic translation-

initiation factor 4G (eIF4G), which in turn is associated with the cap structure 

through interaction with the cap-binding protein eIF4e. This interaction closes the 

mRNA in a loop structure that is efficiently translated and protected from 

degradation.  

GW182 (glycine-tryptophan protein of 182 kDa) contained in RISC is able to 

bind to PABPC. The interaction of AGO-GW182 with PABPC blocks the formation 

of the eIF4F complex and the closed conformation of the mRNA, thus inhibiting 

translation initiation (Figure 7C).   
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The AGO-GW182 interaction also directs mRNAs to the cellular 5′-to-3′ 

mRNA decay pathway (Figure 7B). mRNAs are first deadenylated by the CAF1–

CCR4–NOT complex, and then decapped by the decapping complex DCP1-DCP2. 

Finally, decapped mRNAs are degraded by the major cytoplasmic 5′-to-3′ 

exonuclease XRN1. The relative contributions of translational repression versus 

mRNA degradation by miRNAs remain to be understood (Filipowicz et al., 2008; 

Huntzinger et al., 2011; Huntzinger et al., 2013).  

When miRNAs bind to target mRNA with nearly perfect sequence 

complementarity, the mRNA can be cleaved endonucleolytically and degraded by 

RISC containing AGO 2 (Bartel, 2009; Carthew et al., 2009; Chekulaeva et al., 2009; 

Fabian et al., 2010). This is the common way of miRNA action in plants but is 

instead rare in animals. In the case of fully perfect or nearly miRNA-mRNA 

complementarity, target mRNA cleavage occurs between nucleotides 10 and 11, 

opposite the miRNA strand, and is catalysed by AGOs. The resulting mRNA 

fragments are degraded from the newly generated 3′ and 5′ ends. 

miRNAs may also exert a repressive function by binding in the 5′ UTRs or 

coding regions of mRNAs (Lytle et al., 2007). In particular contexts, translational 

activation (Filipowicz et al., 2008) and heterochromatin formation (Kim et al., 2008) 

have also been described.  



35 
 

 

Figure 7. Mechanisms of miRNA-mediated gene silencing in animals. A) Shown 
on the left is an mRNA that is closed in a loop structure mediated by interactions 
between eIF4G and PABPC and is ready to be translated.  An mRNA that is 
recognized by a miRNA within a RISC does not form the closed loop due to binding 
of PABPC to the RISC component GW182 (shown in C). This leads to a block in 
translation or destruction of the mRNA through deadenylation, decapping and 
cleavage by the major 5′-to-3′ exonuclease XRN1 (shown in B). From Huntzinger et 
al., 2011. 

miRNA sequences can be subjected to editing carried out by ADARs 

(adenosine deaminases that act on RNA), which catalyse the conversion of adenosine 

to inosine in dsRNA, thereby altering the base-pairing and structural properties of 

target RNA. Both pri-miRNAs and pre-miRNAs can be targeted by ADARs, and the 

modifications can affect Drosha and Dicer activity and also prevent the export of pre-

miRNAs. A differential editing that affects the biogenesis process may in part be 

responsible for tissue- specific miRNA expression. On the other hand, editing events 

leading to seed sequence changes can have an important impact on the target 

specificity of the miRNA (Kawahara et al., 2007; Heale et al., 2009). miRNA 
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sequences often show heterogeneous ends due to addition or deletion of 1-2 nt 

(Azuma-Mukai et al., 2008; Seitz et al., 2008). The 3′ ends tend to be much more 

variable than the 5′ ends because changes in the 5′ terminus result in shifts of the 

seed sequences, which alter the target specificity of the miRNA. The mechanisms of 

the variations are unknown but they might be explained by imprecise or alternative 

processing by RNase III enzymes or by deletions due to exonucleolytic activities. 

The 3′ ends of miRNA can often present untemplated nucleotides (mostly uracil and 

adenine), likely added by unknown terminal uridyl/adenyl transferases (Kim et al., 

2009). 

A single miRNA has the potential to regulate hundreds of different target 

genes and a gene generally contains several target sites for different miRNAs, thus 

leading the generation of an extremely complex miRNA regulatory network. 

Bioinformatic predictions estimated that 60% of all 3’UTRs of human protein-coding 

genes contain perfect binding sites for miRNA seed sequences (Friedman et al., 

2009). Consequently, the unique combination of miRNAs in each cell type regulates 

the expression of thousands of mRNAs. miRNAs are thus likely to regulate most 

normal biological processes, including developmental timing, cell differentiation, 

cell proliferation, cell death, metabolic control, transposon silencing and 

antimicrobial defense. Not surprisingly, aberrant miRNA expression or function 

contributes to the pathogenesis of many diseases, including cancer (Sayed et al., 

2011). 

The first direct evidence for the importance of miRNAs  in human cancer 

came from a study of chronic lymphocytic leukemia (CLL), which  revealed a tumor 

suppressor function for miR-15a and miR-16-1 (Calin et al., 2002). Subsequent 
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studies have identified many additional miRNAs with oncogenic or tumor suppressor 

activities in the context of solid and hematopoietic tumors (Croce, 2009). 

1.4.1.3 MicroRNAs and viruses 

All viruses rely on the host gene expression machinery for their replication 

and may therefore be affected by the host miRNA network at some level. In turn, 

viruses have evolved mechanisms that exploit the miRNA network to impinge on 

host cell turnover and immune defenses to promote expansion and persistence of 

infected cells (Umbach et al., 2009; Zhuoa et al., 2013). In addition, some viruses 

express their own miRNAs which in some cases are homologous to host miRNAs. 

For example, BLV (bovine leukemia virus) produces a viral miRNA named BLV-

miR-B4 that is very similar to human miR-29 and shares common targets (Kincaid et 

al., 2012; Zhuoa et al., 2013). KSHV (Kaposi's Sarcoma Associated Herpesvirus) 

expresses a viral miRNA named miR-K12-11 that resembles cellular miR-155 

(Zhuoa et al., 2013), a miRNA that exhibits oncogenic properties in several solid 

tumors and haematological malignancies. In addition, some viruses produce RNAs or 

proteins that suppress the RNAi pathway and thereby may have general effects on 

miRNA expression (Strebel et al., 2009). Interestingly, HTLV-1 Rex has been shown 

to interact with Dicer, inhibiting its activity and thereby reducing the efficiency of 

the conversion of shRNA to siRNA (Abe et al., 2010). This finding opens the 

possibility that HTLV-1 could control microRNA biogenesis through the action of 

Rex. 
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1.4.1.4 MicroRNAs in normal CD4+ T-cells 

miRNA profiles in T-cell development. The first experimental evidence for 

an important role of miRNAs in T-cell development and homeostasis came from 

experiments performed in mice demonstrating that conditional deletion of Dicer at 

early stages of thymocyte development reduced the populations of peripheral CD4+ 

and CD8+ cells (Cobb et al., 2006) and impaired the ability of peripheral CD4+ T 

cells to differentiate into mature helper cells (Muljo SA et al., 2005). A detailed 

study of miRNAs in human T-cell development showed that the miRNA profile in 

DP cells was distinct from those of CD4 SP and CD8 SP cells, while the SP 

populations showed important similarities; a general upregulation of miRNAs from 

the DP to the SP stage was noted (Ghisi et al., 2011). Maturation of thymocytes into 

peripheral T cells was characterized by progressive upregulation of miR-150, miR-

146a, and miR-146b and downregulation of miR-128; miR-181 was less abundant in 

mature peripheral T lymphocytes compared with DP thymocytes (Ghisi et al., 2011). 

miRNAs in activated T cells. A study of human T lymphocytes following in 

vitro activation indicated a trend toward upregulation of miRNA expression 

(Grigoryev et al., 2011). The top 5 upregulated miRNAs were miR-221, miR-210, 

miR-98, miR-29b and miR-155, and the top 5 downregulated miRNAs were miR-

181a, miR-199a, miR-223, miR-224 and miR-127-3p, most of which had not been 

previously described as being involved in the regulation of immune activation. The 

investigators identified targets for miR-155 and miR-221 and proposed that these 

miRNAs participate in a negative-feedback loop inhibiting cell proliferation and 

regulating survival in response to activation (Grigoryev et al., 2011). 
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miRNAs in Tregs. The early studies of mice with deletion of Dicer at the 

stage of thymocytes also implicated the miRNA pathway in Treg development (Cobb 

et al., 2006); deletion of Dicer after Treg lineage commitment (at the time of Foxp3 

induction) resulted in a profound impairment of Treg suppressor function and fatal 

systemic autoimmune disease (Liston et al., 2008; Zhou et al., 2008). A comparison 

of human Tregs (CD4+, CD25+, Foxp3+) vs naïve T-cells (CD4+CD25-) indicated 

that Tregs can be distinguished on the basis of their increased levels of miR-21, miR-

181c and miR-374 and reduced levels  of miR-31 and miR-125a (Rouas et al., 2009). 

This study also demonstrated the regulation of Foxp3 by miR-31, which 

downregulated expression of Foxp3 through direct targeting of its 3'UTR, and miR-

21, which upregulated its expression through an indirect mechanism (Rouas et al., 

2009).  

A detailed analysis of 17 lymphocyte subsets isolated from human peripheral 

blood identified specific patterns of miRNas in naïve, memory and Treg CD4+ T 

cells and showed that miR-125b controls a network of target genes involved in CD4+ 

T cell ontogenesis; forced expression of miR-125b resulted in a block in 

differentiation and favored a naive phenotype of CD4+ T cells (Rossi et al., 2011). 

1.4.1.5 Cellular microRNA expression in HTLV-1-infected cell lines and ATLL 

samples 

The first study of miRNAs in the context of HTLV-1 was published in 2008 

by Pichler et al. The study employed quantitative RT-PCR to detect miR-21, miR-24, 

miR-146a, miR-155, miR-191, miR-214 and miR-223 in cell lines derived from 

ATLL patients and TSP/HAM patients, cell lines generated by cocultivating 

umbilical cord blood cells with ATLL cells, and a T-cell line that expresses Tax in 
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repressible manner; controls included uninfected PBMC, CD4+ T-cells and 

uninfected T-cell lines. Results demonstrated that miR-21, miR-24, miR-146a and 

miR-155 were significantly upregulated in the HTLV-1-transformed cell lines, while 

miR-223 was downregulated. It is noteworthy that all 4 upregulated miRNAs are also 

upregulated in EBV-infected B-cells during latency III, the viral growth program that 

drives B-cell proliferation (Cameron et al., 2008). Pichler et al. (2008) showed that 

Tax is able to upregulate miR-146a through the NF-κB pathway; this was later 

confirmed by Tomita et al. (2012).   

Yeung et al. (2008) used microarrays to examine miRNAs in PBMC from 

patients with acute ATLL compared to pooled control PBMC, as well as HTLV-1-

transformed cell lines compared to umbilical cord blood cells. The ATLL samples 

and infected cell lines shared 6 upregulated miRNAs (i.e., miR-18a, 9, 17-3p, 130b, 

20b, and 93) and 9 downregulated miRNAs (i.e., miR-1, 130a, 199a*, 126, 144, 335, 

337, 338, 432). Yeung et al. also examined PBMC exposed to the tumor-promoting 

agent phorbol-12-myristate 13-acetate (PMA) compared to untreated PBMC, and 

identified 3 miRNAs that were upregulated in ATLL cells, HTLV-1-infected cell 

lines and PMA-treated cells, namely miR-93, miR-130b, and miR-18a. Yeung et al. 

showed that miR-93 and miR-130b targeted a cellular tumor suppressor protein 

named tumor protein 53–induced nuclear protein 1 (TP53INP1), and that Tax was 

able to upregulate miR-130b through the NF-κB pathway (Yeung et al., 2008). 

Bellon et al. (2009) also used microarrays to compare miRNA expression in 

ATLL cells versus control PBMC and CD4+ T-cells. miRNAs with altered  

expression levels included miR-150, miR-155, miR-223, miR-142-3p and miR142-

5p (upregulated) and miR-181a, miR-132, miR-125a and miR-146b (downregulated). 
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Examination of these miRNAs in HTLV-1-infected cells yielded similar data, with 

the exception that miR-150 and miR-223 were downregulated instead of upregulated. 

The investigators also showed that treatment of HTLV-1-infected cell lines with an 

inhibitor of NF-κB (pathenolide) or JNK (JNK II) resulted in reduced levels of the 

miR-155 precursor.  

A microarray-based study by Yamagishi et al. (2012) that compared a large 

panel of ATLL samples and control CD4+ T-cells revealed downregulation of 59 

miRNAs and upregulation of only 2 miRNAs in the tumor samples. The most 

strongly downregulated miRNA was miR-31, which had been previously identified 

as a tumor suppressor and/or metastasis-associated miRNA in breast cancer 

(Valastyan et al., 2009; Schmittgen, 2010). The investigators demonstrated that loss 

of miR-31 expression was due to epigenetic silencing mediated by recruitment of 

repressor polycomb complexes on the miR-31 promoter. The mRNA coding for NIK 

(NF-κB-inducing kinase), a positive regulator of the noncanonical NF-κB pathway, 

was identified as a target of miR-31. Forced expression of either miR-31 or a NIK-

specific shRNA in ATLL cells reduced cell proliferation and suppressed expression 

of anti-apoptotic genes such as Bcl-xl, XIAP, and FLIP, thus supporting a tumor 

suppressor function for miR-31 and an pro-survival role for NIK in the context of 

ATLL (Yamagishi et al., 2012).  

It is striking how little the results of the studies described above overlap with 

each other. This is highlighted in Table 1, which lists the miRNAs that were 

identified in at least two studies of miRNAs in ATLL samples or infected cell lines. 

The next section summarizes interesting features of some of these miRNAs. 
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Table 1. miRNAs identified in at least two studies of ATLL samples or HTLV-1-
infected cell lines 

ATLL samples Infected cell lines 

miRNA References miRNA References 

 miR-150 1,2  miR-146a 4,5 

 miR-155 1,2  miR-155 2,4 

 miR-31 1,3  miR-150 1,2 

 miR-125a 2,3  miR-223 1,2,4 

 miR-126 1,3 

 miR-130a 1,3 

 miR-146b 2,3 

 miR-181a 2,3 

 miR-335 1,3 

References: 1, Yeung et al., 2008; 2, Bellon et al., 2009; 3, Yamagishi et al., 2012; 4, 
Pichler et al., 2008; 5, Tomita et al., 2012. Upregulated, Downregulated. 

miR-150. This miRNA is was found to upregulated in ATLL but 

downregulated in HTLV-1-infected cell lines (see Table 1). As mentioned in Section 

1.4.1.5, miR-150 is gradually upregulated during T-cell development and 

downregulated in activated CD4+ T-cells, and is downregulated in Tregs through the 

action of Foxp3 (Cobb et al., 2006). Overexpression of miR-150 was shown to 

inhibit the proliferation of B-lymphoma cell lines (Chang et al., 2008) and reduce 

proliferation and induce apoptosis of NK cell lines (Watanabe et al., 2011) and T-

ALL cell lines (Ghisi et al., 2011), indicating its possible function as a tumor 

suppressor. miR-150 is also downregulated in Sezary syndrome (Ballabio, et al., 

2010), in NK/T-cell lymphomas (Watanabe et al., 2011), and in several other 

hematological tumors including pediatric acute leukemia (Zhang et al., 2009),  
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anaplastic large-cell lymphoma (Merkel et al., 2010), diffuse large B-cell lymphoma 

(Roehle et al., 2011), mantle cell lymphoma (Zhao et al., 2010; Di Lisio et al., 2010), 

chronic myeloid leukemia (Flamant et al., 2010). Cellular genes known to be targeted 

by miR-150 include c-Myb, a transcription factor that is overexpressed in some 

human leukemias and in tumors of the breast and colon (Ramsay et al., 2008), and 

NOTCH3 (Ghisi et al., 2011). The interaction of miR-150 with a component of the 

Notch pathway is particularly interesting, as this pathway plays a key role in the 

development of the T-cell compartment (Sultana et al., 2010). It would be of interest 

to investigate the influence of miR-150 on the Notch pathway in ATLL cells given 

the finding of a high rate of activating Notch mutations and constitutive activation of 

the Notch pathway in ATLL patients (Pancewicz et al., 2010). 

miR-155. This miRNA is highly expressed in Tregs and activated T cells as 

well as in activated B cells, activated macrophages and dendritic cells (Faraoni et al., 

2009). Mice deficient in miR-155 show impairments in T, B and dendritic cell 

functions (Rodriguez et al., 2007). CD4+ T-cells from miR-155-deficient mice tend 

to differentiate into Th2 cells and show reduced IL-2 and IFN-γ production in 

response to antigen stimulation (Thai et al., 2007). miR-155 expression in Tregs 

depends on the activity of Foxp3; miR-155 in turn blocks expression of SOCS1, a 

negative regulator of IL-2R signalling, thus maintaining Tregs highly sensitive to IL-

2 (Lu et al., 2009). Overexpression of miR-155 in CD4+ T-cells renders them 

resistant to Treg-mediated suppression (Stahl et al., 2009). In addition to ATLL, 

Overexpression of miR-155 has been documented in several other hematological 

malignancies and solid tumors (e.g., lung, thyroid, pancreas, breast, colon, and 

cervix) (Faraoni et al., 2009). 
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In mice, forced expression of miR-155 induces polyclonal pre-B-cell tumors 

(Costinean et al., 2006). miR-155 may also be important in the mechanisms of B-cell 

transformation driven by EBV,  which induces miR-155 expression, and KSHV, 

which codes for a miR-155 orthologue with target specificity similar to that of the 

cellular miRNA (Gottwein et al., 2007; Skalsky et al., 2007). The EBV LMP-1 

protein upregulates cellular miR-155 through NF-κB (Gatto et al., 2008; Lu et al., 

2008; Rahadiani N et al., 2008; Forte et al., 2012). miR-155 in turn targets IKKε (Lu 

et al., 2008), a transcriptional target of the NF-κB pathway that is involved in the 

interferon antiviral response, suggesting that The NF-κB pathway might be 

responsible for high levels of miR-155 in HTLV-1-infected cells. The oncogenic 

properties of miR-155 can in part be explained by its ability to block expression of 

tumor protein 53-induced nuclear protein 1 (TP53INP1) (Gironella et al., 2007), 

which, as described above, is also targeted by miR-93 and miR-130b in HTLV-1-

infected cells. 

miR-146a. miR-146a is overexpressed in various solid cancers (He et al., 

2005; Volinia et al., 2006) and in pediatric AML and B-ALL (Zhang et al., 2009). It 

was first identified as a miRNA that fine-tunes the innate immune response, as its 

expression is induced by NF-κB after Toll-like and IL-1 receptor (TIR) engagement, 

and exerts a negative feedback control on TIR signalling by targeting the adaptor 

proteins IRAK1  and TRAF6 (Taganov et al., 2006).  miR-146a is upregulated in 

CD4+ T-cells after activation through the T-cell receptor (TCR) (Cobb BS et al., 

2006), resulting in a  reduction of IL-2 production by impairing AP-1 transcriptional 

activity, leading to an attenuation of the IL-2 signal (Curtale et al., 2010; Rusca et al., 

2011). miR-146a also targets FADD (Fas-Associated Death Domain) and thereby 
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protects T-cells from AICD (Activation  Induced Cell Death), an apoptotic response 

that follows TCR stimulation and is crucial for the termination of the immune 

response and for peripheral tolerance to self-antigens (Curtale et al., 2010). Although 

in some cell contexts miR-146a can downregulate NF-κB activity (Bhaumik et al., 

2009) and therefore silence its own expression, this feedback mechanism appears to 

be blocked in HTLV-1-infected cells, likely through the action of Tax. 

miR-223. As described above, miR-223 is downregulated in HTLV-1-

infected cell lines and is instead upregulated in murine Tregs (Cobb et al., 2006). 

miR-223 is a key modulator of promeylocyte-to-granulocyte differentiation (Fazi et 

al., 2005). miR-223-deficient mice exhibit an increase in granulocytic progenitors 

and neutrophils with an unusual morphology and hypersensitivity to activating 

stimuli, accompanied by a spontaneous lung inflammation with extensive neutrophil 

infiltration (Johnnidis et al., 2008). A study by Sun et al. suggests that miR-223 is a 

hematopoietic-specific miRNA which has crucial functions in myeloid lineage 

development (Sun et al., 2010). miR-223 is upregulated in bladder cancer (Gottardo 

et al., 2007), esophageal adenocarcinoma (Mathe et al., 2009) and in recurrent 

ovarian cancer (Laios et al., 2008), but is downregulated in hepatocellular carcinoma 

(Wong et al., 2008) and gastric cancer (Kang et al., 2012). miR-223 is also 

significantly down-regulated in acute lymphoblastic leukemia compared with acute 

myeloid  leukemia and together with other miRNAs may represent a differential 

diagnostic signature for these tumors (Mi et al., 2007). miR-223 downregulation is 

also included in miRNA signatures predicting poor prognosis in CLL (Calin et al., 

2004; Fulci et al., 2007; Stamatopoulos et al., 2009). miR-223 therefore appears to 

exert either oncogenic or tumor suppressor properties depending on the cell context.  
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Deregulation of miR-223 expression is observed during infection with 

influenza virus and hepatitis B virus, and in inflammatory bowel disease, type 2 

diabetes, leukaemia and lymphoma. Evidence suggests that miR-223 may limit 

inflammation and prevent collateral damage during infection and oncogenic myeloid 

transformation (reviewed by Haneklaus et al., 2013). 

1.4.2 sncRNAs derived from tRNAs  

tRNAs are fundamental components of the translation machinery that 

function as carriers that transport amino acids to the growing polypeptide chain 

during the translation of mRNA. Mature tRNAs are approximately 73 nt in length 

and contain an amino acid attached to their 3’ends. The tRNAs contain a D loop, T 

loop, and anticodon loop, which interact with each other via conserved nucleotides to 

give a compact L-shaped tertiary structure. tRNA genes are transcribed by RNA 

polymerase III to produce precursor transcripts ending with a poly U tail. The 

precursor transcripts undergo a series of processing events including splicing (for 

some tRNAs), removal of a 5’ segment by the endonuclease RNase P, removal of a 

3’ segment by the endonuclease RNase Z, addition of a 3’CCA that accepts the 

amino acid, and modification of several bases.  

In 1970, Yudelevich’s group observed that a fragment derived from tRNAleu 

was expressed in Escherichia coli shortly after bacteriophage T4 infection (Dube et 

al., 1970; Yudelevich, 1971). Almost 30 years later in 1999, Shing’s group isolated 

fragments of tRNAs from human urinary bladder carcinoma and studied their 

function for the first time (Zhao et al., 1999). Over the last decade, advanced 

techniques in cloning and high-throughput sequencing have led to the identification 

of many sncRNAs derived from tRNAs in several organisms. These fragments are 
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17-55 nt in length and originate from different portions of the tRNA molecule 

(reviewed by Garcia-Silva et al., 2013). Deep sequencing and cloning approaches are 

now starting to address the questions surrounding small tRNA fragment biogenesis 

and function (reviewed by Martens-Uzunova et al., 2013). 

tRNA fragments are divided in two major classes: tRNA halves and small 

tRNA fragments (tRFs) (reviewed by Sobala et al., 2011; Garcia-Silva et al., 2013).  

1.4.2.1 tRNA halves  

tRNA halves (also known as tsRNAs) are derived from the cleavage of 

tRNAs at the anticodon loop in response to oxidative stress, hypoxia, or apoptotic 

inducers. tRNA halves have a size of 30–35 nt and are generated from both the 3’ 

and 5’ portions of the parent tRNA (Figure 8). Biogenesis of tRNA halves is not yet 

clear, and many models are proposed by various research groups.  

In prokaryotes, anticodon nucleases are responsible for cleavage of tRNA, 

while in higher eukaryotes cells and fission yeast stress-induced tRNA cleavage is 

catalyzed by Angiogenin (ANG) and Rny1 respectively. Cleavage seems to occur on 

mature tRNAs, since they usually have a mature 5’ end and 3’CCA (reviewed by 

Martens-Uzunova et al., 2013).  

1.4.2.2 tRNA-derived RNA fragments (tRFs)   

tRFs were recently identified by high-throughput sequencing technology. 

tRFs are about 19 nt in length and are derived from mature tRNA or tRNA 

precursors (Lee et al., 2009; Mosher et al., 2010; Loss-Morais et al., 2013). tRFs are 

the products of tRNA cleavage at specific positions, which have been associated with 
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stress responses, development, alteration of tRNA structural stability and other 

biological processes (Li et al., 2008; Thompson et al., 2009; Yamasaki et al., 2009).   

Cole et al. performed high-throughput sequencing analysis of HeLa cells and 

observed that the most abundant tRNA-derived small RNAs are products of 

processing of tRNA-Arginine, tRNA-Glutamine, tRNA-Lysine, and tRNA-Valine. 

These tRNAs were almost exclusively processed from the 5’ end, with cleavage by 

Dicer at the D-loop, resulting in small RNAs of approximately 19 nt (Cole et al., 

2009).  

A deep-sequencing analysis of sncRNA in prostate cancer cell lines revealed 

135 sncRNA derived from tRNAs (Lee et al., 2009). The fragments corresponded to 

the 3’ end of tRNA precursors or to the 5’ end or the 3’ end of mature tRNAs. The 

authors named the 3 classes tRF-1, tRF-5 and tRF-3, respectively (Figure 8). Garcia-

Silva et al. (2013) proposed the names 3’U tRFs, 5’tRFs, and 3’ CCA tRFs for the 3 

classes identified by Lee and coauthors. This more complicated naming system refers 

to the fact that tRF-1 sequences terminate with a poly (U) tract generated by RNA 

Pol III run-off, and tRF-3 sequences terminate with a 3’CCA that is added to all 

mature tRNAs.  

The biogenesis of tRFs has not yet been fully elucidated, and may vary 

among organisms. However, it is clear that various molecules associated with the 

tRNA maturation machinery and miRNA/siRNA pathways play key roles in 

biogenesis of tRFs. The tRF-1 class is generated through cleavage of tRNA 

precursors by RNAse Z. This tRNA maturation step is known to occur in the 

nucleus. Since 3’ U tRFs are abundant in the cytoplasm, it seems that newly 

generated 3’ U tRFs need to be exported from nucleus. In alternative, a cytoplasmic 
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form of tRNAseZ may give rise to tRF-1 sequences in the cytoplasm by cleaving 

tRNA precursors that have escaped the nucleus (reviewed by Garcia-Silva et al., 

2013). 

Production of tRF-5 and tRF-3 sequences must occur after cleavage of the 

tRNA precursor by RNAse P and RNAse Z and the addition of CCA (for tRF-3s). 

Dicer was shown to be responsible for cleavage to produce a tRF-5 (Cole et al., 

2009) and a tRF-3 (Maute et al., 2013) in mammalian cells. However, another study 

of sncRNA in mammalian cells indicated that most tRF-5 and tRF-3 sequences are 

produced through a mechanism that does not require Dicer (Li et al., 2012).  

1.4.2.2.1 Biological function of tRFs.  

Although the exact roles of tRFs are yet to be elucidated, evidence suggests 

that some tRFs play an important role in cellular stress responses and cell 

proliferation. In stress conditions like oxidative stress or starvation, often as a 

prelude to apoptosis, the expression of tRNA-derived fragments rises proportionally 

(Thompson et al. 2008; Thompson et al. 2009). In normal cells, it is possible that 

tRNA-derived fragments function as essential apoptotic signals or cause apoptosis 

indirectly, such as through inhibition of protein translation. Stress-related tRNA 

cleavage pathways are believed to play major roles in malignant cells by inducing 

proliferation or escape from apoptosis (reviewed by Martens-Uzunova et al., 2013). 

Recent studies that employed deep sequencing and bioinformatics have demonstrated 

the role of tRFs in the life cycle of a wide range of human pathogens, including 

Escherichia coli, Aspargillus fumigates, Giardia lamblia, and Trypanosoma cruzi as 

well viruses.  



50 
 

 

Figure 8. Biogenesis of small noncoding RNAs from tRNAs; tRNA halves and tRFs. 
These sequences are generated through multi-step processes mediated by RNaseZ, 
Angiogenin, Rny1 or Dicer (from Garcia-Silva et al., 2013). 

 



51 
 

2 Identification of tRFs in HTLV-1-infected cells 

2.1 Background aims of the study 

Our laboratory compared the profiles of sncRNAs in normal CD4+ T-cells and 

the HTLV-1-transformed cell lines C91PL and MT-2 by high-throughput sequencing 

of small RNA libraries. A search for tRFs highlighted the presence of tRF-3019, 

which is derived from the 3’ end of tRNA-proline. This was of interest, as tRNA-

proline is considered to be the primer for HTLV-1 reverse transcriptase (Seiki et al., 

1982). tRF-3019 exhibited perfect sequence complementarity to the primer binding 

site of HTLV-1. This raised the possibility that the tRF could be fully sufficient as a 

primer for reverse transcription.  

The study described in Section 2 was aimed at determining whether tRF-3019 

is incorporated into virus particles and can function as a primer for viral reverse 

transcriptase. 
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2.2 MATERIALS AND METHODS 

2.2.1 Cell culture 

The HTLV-1 infected T-cell lines C91PL and MT-2 (Popovic et al., 1983) 

were maintained in RPMI (Sigma-Aldrich) supplemented with 10% fetal bovine 

serum (FBS, Invitrogen), 2 mM glutamine (Invitrogen), 100 units/ml penicillin and 

20 units/ml streptomycin (complete RPMI). Total RNA was isolated using TRIzol 

(Invitrogen). RNA concentration was measured using a Nanodrop 

spectrophotometer. 

2.2.2 Small RNA libraries 

The construction and analysis of small RNA libraries derived from normal 

CD4+ cells (resting and in vitro-stimulated) and cell lines C91PL and MT-2 are 

described in Ruggero et al., J. Virol., in press.  Excel tools were used to search 

sequence reads for the 135 tRFs described by Lee et al. (2009).  

2.2.3 RT assay using tRF-3019 

Preparation of RNA template. A DNA fragment corresponding to nt 721-822 

of the HTLV-1 ATK reference sequence was amplified by PCR. We used HTLV-1 

molecular clone ACH (Kimata et al., 1994) as a template and primers U5-s and Gag-

as. A 20-nt tail was added to the 5’ end of the product with a second round of PCR 

using primers Tail-U5-s and Gag-as. The 129-nt fragment was cloned into vector 

pSG5E, which is a modified version of pSG5 (Stratagene) containing the polylinker 

of pBluescript (Stratagene) 3’ to the T7 promoter. The resulting plasmid (pSG-U5-

PBS) was linearized 3’ to the insert and in vitro-transcribed with T7 RNA 
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polymerase (Invitrogen). After digestion with DNase 1 to eliminate the plasmid, the 

mixture was extracted with phenol-chloroform and ethanol-precipitated to recover 

RNA. The resulting pellet was resuspended in water and stored at -80°C.  

Preparation of virus particle lysates containing HTLV-1 reverse 

transcriptase. For preparation of viral particle lysates, we used confluent cultures of 

C91PL cells (HTLV-1-infected T-cell line). The suspension cultures were 

centrifuged at low speed to remove cells. The supernatant was passed through a 0.45 

micron filter (Sartorius) and centrifuged at 24,000 rpm in an SW28 rotor for 2 hours. 

Pelleted material was resuspended in lysis buffer (50 mM Tris-HCl, pH 7.5, 50 mM 

NaCl, 0.5% Nonidet-P40; 10 µl per 10 ml centrifuged supernatant) and stored at -

80°C.  

RT assay. The RT assay was performed by using a method based on a 

published protocol (Balestrieri et al., 2011; Frezza  et al., 2014). For each RT assay, a 

100-ng  aliquot of in vitro-transcribed RNA was combined with 10 pmol of either 

tRF-3019 RNA, miR-150-5p RNA (negative control), tRF-3019 DNA (positive 

control) or water instead of primer in a 10.5-µl volume and annealed at 70°C for 10 

min and then cooled on ice. The mixtures were brought to a final volume of 20 µl 

containing 1 mM each dNTP, 10 U RNase inhibitor, RT buffer (25 mM Tris-HCl, pH 

8.3, 5 mM MgCl2, 50 mM KCl, 2 mM DTT) and 2 µl virion lysate and incubated at 

37°C for 1 hour followed by 95°C for 5 min.  

For PCR amplification, we used a 2.5-µl aliquot of the cDNA product in a 

final volume of 25 µl containing 1X Taq Gold PCR buffer, 2 mM MgCL2,  200 µM 

dNTPs, 5 pmol each of primer Tail-s and U5-as and 0.5 U AmpliTaq Gold DNA 

polymerase (Life Technologies). The PCR method consisted of a denaturation step at 
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94°C for 1 min followed by 25 cycles of denaturation at 94°C for 30 sec, annealing 

at 58°C for 30 sec and extension at 72°C for 45 sec. Products were analyzed on a 6% 

polyacrylamide gel and stained with ethidium bromide. Images were obtained using 

a BioRad Gel Doc XRS system.   

RT-PCR to detect tRFs and tRNAs. To eliminate contamination of cultures 

with exosomes that might be present in FBS, complete RPMI containing 20% FBS 

was centrifuged at 24,000 rpm for 4 hours using a Beckman-Coulter SW28 rotor to 

pellet any exosomes. Supernatant medium was then passed through a 0.2-micron 

filter and brought to 10% FBS by adding an equal volume of RPMI containing 

antibiotics and glutamine.  

C91PL cells were cultured to confluence in the exosome-depleted medium 

and virus particles were recovered by ultracentrifugation as described above. RNA 

was isolated from pelleted particles and the producer C91PL cells using TRIzol LS 

(Life Technologies) according to the manufacturer’s protocol (see Section 3.2.4 for 

details). As summarized in Figure 9, aliquots of the RNA were subjected to 

denaturing PAGE through a 15% polyacrylamide gel to separate species in the size 

range of full-length tRNAs from small RNAs, with tRNAs visible in the cellular 

RNA sample and 5 pmol synthetic miR-150-5p serving as size markers for the 2 

fractions. The gel was stained with ethidium bromide and the regions containing 

tRNAs and small RNAs (about 15-30 nt) were excised, crushed and incubated with 

gentle mixing in elution buffer (300 mM sodium acetate, pH 5.2, 1 mM EDTA) 

overnight at 4°C. RNA was ethanol-precipitated and resuspended in dH2O.  

Primer sets used amplify tRF-3019, tRF-3003 and the tRNAs from which 

they are derived (tRNA-Pro and tRN-Ala, respectively) are listed in Table 2 and 
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depicted in Figure 9. RT-PCR to detect tRF-3019 and tRF-3003 was based on a 

protocol for detecting microRNAs (Sharbati-Tehrani et al., 2008). Size-fractionated 

RNA (2 µl) was annealed with 2 pmol primer RT7-tRF-3019 or RT8-tRF-3003 at 

70°C for 10 min in a 7.5-µl volume. The mixture was brought to 10 µl with the 

addition of 1 mM dNTP, 1X RT Buffer, and 5 U AMV reverse transcriptase 

(Finnzymes) and reverse-transcribed at 40°C for 1 hr. Two-microliter aliquots of the 

resulting cDNAs were PCR-amplified in a final volume of 25 µl containing 1X Taq 

Gold PCR buffer, 1.5 mM MgCL2, 200 µM dNTP, 0.1 pmol of primer Short-tRF-

3019 or Short-tRF-3003, 2.5 pmol each of primers PCR-tRF-s and PCR-tRF-as, and 

0.5 U AmpliTaq Gold DNA polymerase. The PCR method consisted of a 

denaturation step at 95°C for 10 min, 5 cycles of denaturation at 95°C for 30 sec, 

annealing at 40°C for 45 sec and extension at 72°C for 30 sec, followed by 22 cycles 

of denaturation at 95°C for 30 sec, annealing at 60°C for 45 sec and extension at 

72°C for 30 sec.  

To detect tRNA-Pro and tRNA-Ala, 1 µl of size-fractionated RNA was 

reverse-transcribed in a 10-µl reaction at 53°C for 50 min using the antisense primer 

and Superscript III (Life Technologies). Resulting cDNA (2.5 µl) was PCR-

amplified using sense and antisense primers and AmpliTaq Gold with a denaturation 

step at 95°C for 8 min followed by cycles of denaturation at 95°C for 40 sec, 

annealing at 60°C for 40 sec and extension at 72°C for 40 sec (30 cycles for tRNA-

Ala and 26 cycles for tRNA-Pro). To detect gag/pol RNA, 0.5 µl of RNA from virus 

particles or 200 ng total RNA from producer C91PL cells was reverse-transcribed 

using primer Gag-as and Superscript III and then PCR-amplified using primers U5-s 

and Gag-as and AmpliTaq Gold as described above for 30 cycles with an annealing 
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temperature of 59°C and a final extension step for 5 min at 72°C. PCR products were 

separated on 6% polyacrylamide gels. 

Table 2. Primer sequences 

Primer  Sequence 
U5-s CTCGGAGCCAGCGACAGC 
Gag-as gaagcttGCCTAGGGAATAAAGGGGC 
Tail-U5-s agagcggattaacggcctaaCTCGGAGCCAGCGACAGC 
Tail-s agagcggattaacggcctaa 
tRF-3019 RNA AUCCCGGACGAGCCCCCA 
tRF-3019 DNA ATCCCGGACGAGCCCCCA 
miR-150 RNA UCUCCCAACCCUUGUACCAGUG 
U5-as TGTGTACTAAATTTCTCTCCTG 
RT7-tRF-3019 aacgtattcaccgtgagtggtTGGGGGC 
Short-tRF-3019 cgtcagatgtccgagtagagATCCCGGACGAG 
RT8-tRF-3003 aacgtattcaccgtgagtggtTGGTGGAG 
Short-tRF-3003 cgtcagatgtccgagtagagTCCCCGGCACC 
PCR-tRF-s cgtcagatgtccgagtagag 
PCR-tRF-as aacgtattcaccgtgagtgg 
tRNA-Pro-s GGTCTAGGGGTATGATTCTCG 
tRNA-Pro-as GCTCGTCCGGGATTTGAACC 
tRNA-Ala-s GTGTAGCTCAGTGGTAGAGC 
tRNA-Ala-as TGGAGGTGCCGGGGATTG 

Added tail sequences are indicated with lower case letters. Primers were purchased 
from Sigma-Aldrich. 
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Figure 9. Method to detect tRNAs and tRFs in virus particles and C91PL cells. 
Panel A summarizes the method described in the Materials and Methods in which 
RNA isolated from virus particles and producer C91PL cells was subjected to 
denaturing PAGE to permit separation of tRNAs from small RNAs including tRFs. 
Panel B indicates positions of RT-PCR primers in tRNA-Pro, tRNA-Ala, tRF-3019 
and tRF-3003 (Ruggero et al., J. Virol., in press). 
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2.3 RESULTS 

2.3.1 tRFs expressed in HTLV-1-infected cells.  

We analysed sequences from small RNA libraries for perfect matches to the 

135 tRFs reported by Lee et al. in a study of prostate cancer cell lines (Lee et al., 

2009). Overall, in both normal and HTLV-1-infected CD4 cells, fragments processed 

from the 3’ end of mature tRNAs (tRF-3) were considerably more abundant than 

tRFs produced from the 3’ end of tRNA precursors (tRF-1) or from the 5’ end of 

mature tRNAs, (tRF-5) (Figure 10). 

 

Figure 10. The graph shows the total numbers of sequence reads matching tRFs of 
the 3 classes (Ruggero et al., J. Virol., in press). 

Analysis of the small RNA libraries indicated that many tRFs were 

upregulated in normal CD4 cells upon mitogenic stimulation. Among the 22 
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previously described tRF-1 sequences, tRF-1001 was the most abundant. tRF-3004 

and tRF-3029 were more abundant in C91PL cells compared to stimulated CD4+ 

controls, and MT-2 cells yielded few tRF sequences compared to the other 3 cell 

types. Figure 11 shows the most abundant tRFs identified in the libraries. 

 

Figure 11. The graph compares the frequencies of tRFs with a total of at least 50 
sequence reads summed among the 4 libraries (Ruggero et al., J. Virol., in press). 

As described in the introduction to Section 2, tRF-3019 belongs to the tRF-3 

class (Lee et al., 2009), and corresponds to the 3’ end of tRNA-Pro, the tRNA 

considered to serve as the primer for HTLV-1 RT (Figure 12). tRF-3019 was the fifth 

most abundant tRF identified in our libraries, and was most abundant in stimulated 

CD4 cells. A BLAST search for tRNA genes able to produce tRF-3019 yielded 21 

tRNA-Pro genes located on chromosomes 1, 5, 6, 11, 14, 16 and 17. The four 

libraries contained several tRF-3019 isoforms with additional nucleotides at the 5’ 

end that matched perfectly to the human genome but were not complementary to the 
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viral genome. The libraries also contained a small number of reads corresponding to 

fragments derived from other portions of tRNA-ProTGG and tRNA-ProAGG.  

 

Figure 12. tRFs processed from tRNA-Pro. The top portion of the figure shows 
three examples of the 21 tRNA-Pro molecules that are able to produce tRF-3019 
(highlighted in grey). The diagrams were obtained from the UCSC database and 
modified by adding the 3’ CCA triplet which is present on mature tRNAs and tRF-3 
sequences. The table indicates the sequences of the tRFs and the number of reads 
identified in each library. 

2.3.2 tRF-3019 functions as a primer for HTLV-1 reverse transcriptase. 

Interestingly, only the portion of tRNA-Pro corresponding to tRF-3019 is 

complementary to the HTLV-1 primer binding site (PBS) (Figure 13A), suggesting 

that the tRF would be fully sufficient as a primer for reverse transcription. We thus 

tested the primer activity of tRF-3019 in an in vitro reverse transcriptase assay 

carried out using a synthetic RNA template and the reverse transcriptase contained in 

HTLV-1 virus particles recovered from culture supernatant of C91PL cells. The RT 
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assays contained either no primer; synthetic tRF-3019 RNA; tRF-3019 DNA as a 

positive control, or miR-150-5p RNA as a negative control. The PCR reaction 

contained a sense primer specific for a tail sequence present in the synthetic RNA 

template and an antisense primer positioned immediately 5’ to the PBS.  

As depicted in Figure 13B, The RT assay performed using tRF-3019 RNA 

yielded the expected 87-bp PCR product, thus confirming that tRF-3019 can function 

as a primer for HTLV-1 RT. The assay carried out using tRF-3019 DNA primer 

yielded the 87-bp product along with a longer product indicated by the grey arrow in 

Figure 13B. This second band corresponded in size to an amplicon produced with the 

tail primer and residual tRF-3019 DNA present in the cDNA (i.e. 107 bp). 

Interestingly, trace amounts of the 87-bp product were also detected in the assays 

carried out using C91PL RT and miR-150-5p or no primer. This amplicon may have 

originated from cDNA primed by tRNA-Pro or tRF-3019 present in the viral particle 

lysate that was used as a source of RT.  
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Figure 13. tRF-3019 acts as a primer for HTLV-1 reverse transcriptase. Panel A 
summarizes the RT assay. The template consisted of an in vitro-transcribed RNA 
spanning HTLV-1 nt 721-822 modified by the addition of a 20-nt tail at the 5’end.  
The template was incubated with HTLV-1 reverse transcriptase present in virus 
particles recovered from the culture supernatant of C91PL cells and either tRF-3019 
RNA, miR-150-5p RNA (negative control), tRF-3019 DNA (positive control), or no 
primer. Products of the RT reactions were amplified by PCR using PCR primers 
Tail-s and U5-as and separated by PAGE in a 6% polyacrylamide gel along with 
Msp I-digested pBluescript as a size marker. Panel B shows a composite of the 
ethidium bromide-stained gel. The black arrow indicates the position of the 87-bp 
PCR product expected using primers Tail-s and U5-as. The additional band indicated 
by the grey arrow in lane 3 was consistent with a product amplified by Tail-s and 
residual tRF-3019 DNA primer added to the RT assay. Primer sequences are reported 
in Table 2.  
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2.3.3 HTLV-1-infected cells release particles containing tRF-3019 

After confirming that tRF-3019 is capable of priming HTLV-1 reverse 

transcription, our efforts were aimed at determining whether the tRF and/or its 

partent tRNA-Pro were present in virus particles recovered from supernatants of 

C91PL cultures. As a control, we also assayed for tRF-3003, the most abundant tRF-

3 detected in the 4 libraries, along with its parent tRNA-Alanine (tRNA-Ala). As 

outlined in Figure 9 and the Materials and Methods, RNA isolated from the virus 

particles and producer cells was subjected to denaturing PAGE to separate species in 

the tRF size range from full-length tRNAs. This was necessary as the tailed RT-PCR 

primers utilized to detect the tRFs also amplified the 3’ ends of the full-length 

tRNAs.  

As shown in Figure 14A, both tRNA-Ala and tRNA-Pro were readily 

detected in the C91PL cells. Interestingly, we observed that tRNA-Pro was enriched 

in virus particles compared to tRNA-Ala. The PCR products for both tRNAs were 

much more evident in the full-length tRNA fraction than in the tRF fraction, 

indicating that the denaturing PAGE step resulted in acceptable separation of the 2 

size classes.  

We subjected the same samples to RT-PCR with sets of primers that amplifed 

the tRFs present in the tRF fraction and the 3’ ends of the tRNAs in the tRNA 

fraction (Table 2). As depicted in Figure 14B, results showed that tRF-3003 was 

much more abundant in the C91PL cells than in virus particles, while tRF-3019 was 

detected at comparable levels in virus particles and cells. Quantification of the 

intensities of the RT-PCR products confirmed that tRNA-Pro and tRF-3019 were 

enriched in virus particles compared to tRNA-Ala and tRF-3003 (Fig. 14C). As 
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shown in Figure 14D, RT-PCR assays on RNA isolated from the particles confirmed 

that they contain the HTLV-1 genomic gag/pol mRNA. 
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Figure 14. RT-PCR to detect tRNAs and tRFs in virus particles and C91PL 
cells. As described in the Materials and Methods and depicted in Figure 13, RNA 
from virus particles and producer C91PL cells was subjected to denaturing PAGE; 
regions of the gel containing tRNA and small RNA were excised and RNA was 
recovered by passive elution and ethanol precipitation. The resulting RNA fractions 
were subjected to RT-PCR to detect tRNA-Ala and tRNA-Pro (Panel A) and their 
tRF-3 sequences tRF-3003 and tRF-3019, respectively (Panel B). Shown are images 
of the products after separation on 6% polyacrylamide gels with Msp I-digested 
pBluescript as a size marker (M). Intensities of RT-PCR bands obtained for tRNAs 
and tRFs (measured in tRNA and tRF fractions, respectively) were measured using a 
BioRad Gel Doc XRS imager. Panel C shows a plot of ratios of band intensities 
obtained for virus particles vs. cells. Calculated ratios were tRNA-Ala 
(particles)/(cells)=0.46; tRNA-Pro (particles)/(cells)= 0.82; tRF-3003 
(particles)/(cells) = 0.18; tRF-3019 (particles)/(cells) = 1.07.  Panel D shows results 
of RT-PCR performed on RNA from the virus particles and producer cells to detect 
HTLV-1 genomic gag/pol RNA. RT-PCR was carried out using primers U5-s and 
Gag-as as (Table 2). RNA template was omitted from the RT reaction in lanes 
labelled C.  

These findings indicate that both tRNA-Pro and tRF-3019 are incorporated 

into particles released in the supernatant of HTLV-1-infected cells. Although we 

cannot exclude the presence of exosomes in the particle preparations, our findings 

demonstrate that these particles contain reverse transcriptase activity (Fig. 12) and 

the viral genome (Fig. 14D), and are enriched for the PBS-specific tRNA-Pro and 

tRF-3019. Taken together these results strongly suggest that tRF-3019 is likely to 

contribute to HTLV-1 reverse transcription in newly infected cells (Ruggero et al., J. 

Virol., in press). 
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2.4 DISCUSSION 

Our study of small RNA libraries revealed that normal CD4+ T-cells and 

HTLV-1-infected cell lines produce a variety of tRFs. The greater representation of 

tRF-3 sequences compared to tRF-1 and tR-5 classes detected in the libraries is in 

line with the preponderance of tRF-3 sequences found in prostate cancer cell lines 

(Lee et al., 2009) and in mature B cells (Mautea et al., 2013). Previous functional 

studies of tRF-1001, which was abundantly expressed in our libraries, revealed its 

elevated expression in cancer cell lines compared to normal tissue samples and 

indicated that it is required for cell proliferation (Lee et al., 2009). Among the tRF-3 

sequences abundantly expressed in the four libraries, functional data are available for 

tRF-3018 in the context of B-cells. This tRF, named CU1276 in the B-cell study, was 

differentially expressed in different stages of B-cell maturation, with greatest 

expression found in the germinal center (GC) stage and absence in GC-derived 

lymphoma cells. Functional studies of tRF-3018/CU1276 verified its ability to 

associate with Argonaute proteins and repress expression of RPA1, a protein 

involved in DNA replication and repair (Mautea et al., 2013). 

The present study focused on tRF-3019, as it corresponds to the 3’ end of 

tRNA-Pro, which is considered to be the primer for HTLV-1 reverse transcriptase 

(Seiki et al., 1982). tRF-3019 was capable of priming HTLV-1 reverse transcription 

and was detected in virus particles. Taken together, these observations support a role 

for tRF-3019 in the life cycle of HTLV-1. 

As shown in Figure 12, 12 of the 18 nucleotides of tRNA-Pro that are 

complementary to the HTLV-1 PBS are based-paired in the mature tRNA. This 



68 
 

positioning of the primer portion of the tRNA in a closed stem is a characteristic of 

all retroviral tRNA primers. These hydrogen bonds must be disrupted in order for the 

primer to bind to the PBS, which would not be necessary if a tRF is used as a primer.  

The use of a tRNA as a primer of reverse transcription is a property of all 

retroviruses. The libraries examined in the present study contained a few sequence 

reads for tRF-3015, which represents the 3’ end of tRNA-Lys, the primer for HIV-1. 

This tRF was identified in HIV-1-infected cells by Yeung et al. (2009). However, the 

investigators claimed that it was derived from a hybrid between HIV RNA and the 3’ 

end of tRNA-Lys and provided evidence that it functioned to silence HIV-1 

expression through an siRNA-like mechanism (Yeung et al., 2009). 

Schopman et al. pointed out the possibility that tRFs may serve as primers for 

reverse transcriptase (Schopman et al., 2010), but also presented experimental 

evidence from studies of HIV-1 that did not support this proposal. Efficient HIV-1 

reverse transcription requires interactions of tRNA-Lys with the PBS as well as other 

regions of the viral genome. Of particular importance is an 8-nt sequence termed the 

primer activation signal (PAS) located in the U5 region that binds to the third stem-

loop (T-arm) of tRNA-Lys and promotes initiation of reverse transcription and 

elongation of the cDNA (Abbink et al., 2008).  Although all retroviruses are 

predicted to contain a PAS (Beerens et al., 2002), the putative PAS in HTLV-1, 

which is positioned approximately 10 nucleotides 5’ to the PBS, has not yet been 

functionally characterized.  

The secondary structure of the tRNA primer must also be disrupted to allow 

nucleotides in the T-arm to interact with the primer activation signal (PAS). In HIV-

1 the NC protein plays an important role in unfolding tRNA-Lys to allow its binding 
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to the HIV-1 PAS (Beerens et al., 2013). Interestingly, a study of NC proteins from 

several retroviruses indicated that the HTLV-1 NC protein possesses comparatively 

weak nucleic acid chaperone activity (Stewart-Maynard et al., 2008). It is possible 

that another mechanism is responsible for unfolding of tRNA-Pro or that the PAS 

interaction is not important to HTLV-1; in alternative tRF-3019 may serve as the 

major primer. 

In fact, our in vitro assay showed that tRF-3019 permits reverse transcription 

of a segment of HTLV-1 RNA containing the PBS and predicted PAS. The detailed 

picture of the interactions between HIV-1 RNA elements and its tRNA primer raises 

the possibility that tRFs representing the 3’ end of primer tRNAs might support the 

initiation of reverse transcription but not progressivity, with failure to proceed to the 

strand transfer step. In this case, tRF-3019 might inhibit the overall process of 

reverse transcription, thus acting as a restriction factor for HTLV-1 replication. 

Further studies will be necessary to test these hypotheses by comparing the ability of 

tRF-3019 and tRNA-Pro to prime and support strand transfer. 
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3 miR-34a and the p53 pathway in HTLV-1-infected cells 

3.1 Background and aims of the study 

The studies described in this section were built upon results of a previous 

analysis of microRNA expression in ATLL samples vs. normal CD4 T-cells carried 

out using microarrays. This analysis revealed 21 downregulated microRNAs and 6 

upregulated microRNAs in the ATLL samples (Table 3). The list of upregulated 

microRNAs included miR-34a.  

Table 3. Differentially expressed microRNAs in ATLL cells vs. control CD4+ 
cells  

           
Reported are differentially expressed microRNAs identified through an analysis of 6 
ATLL samples and 4 samples of resting CD4+ cells obtained using Agilent 
microRNA arrays. The samr package for R software from Bioconductor was 
employed, considering a false discovery rate threshold of 5%. Data are from the 
doctoral thesis of K. Ruggero. 
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Table 4 reports results of an analysis to identify differentially expressed 

known microRNAs in the small RNA libraries derived from normal CD4+ cells and 

HTLV-1-infected cell lines C91PL and MT-2 described in Section 2. We observed 

significant upregulation of miR-34a and downregulation of miR-146b and miR-150 

in both infected cell lines compared to the controls. 

Table 4. Differentially expressed microRNAs in infected cell lines vs. normal 
CD4+ T- cells 

    

MicroRNAs with statistically significant differences in expression are indicated in 
bold type. The analysis was performed using edgeR software. 

Upregulation of miR-34a in ATLL cells and HTLV-1-infected cell lines was 

intriguing to us for 2 reasons: (i) as described below, miR-34a is considered to be a 

tumor suppressor; and (ii) p53, which is known to upregulate expression of miR-

34a, is either inactive or mutated in HTLV-1-infected cells (see below). 

qRT-PCR to detect miR-34a in 10 ATLL samples, in 3 chronically HTLV-1-

infected T-cell lines, in 3 uninfected T-ALL cell lines, and in 11 resting CD4+ 

samples confirmed significant upregulation of miR-34a in all ATLL samples and the 

3 infected cell lines (Figure 15). To our knowledge, this is the first description of 

upregulated miR-34a expression in a T-cell malignancy.  
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Figure 15. Quantitative RT-PCR to detect miR-34a in ATLL samples and cell 
lines. The left-hand panel shows qRT-PCR analyses carried out on 11 resting CD4+ 
controls (A-L and P) and 10 ATLL samples. Mean RQ values for ATLL samples and 
CD4+ T-cell controls were 31.91 and 0.316, respectively. The p value was calculated 
using the Mann-Whitney rank-sum test. The right-hand panel shows relative 
expression of miR-34a in T-cell lines. RQ values were normalized against the mean 
RQ of the microRNA measured in 11 CD4+ samples. The normalized mean 
expression levels of the microRNAs in the 10 ATLL samples are shown for 
comparison, with the standard error indicated. Cell lines C91PL, MT-2 and HUT-102 
are chronically infected with HTLV-1. Cell lines Jurkat, T-ALL and CEM are 
derived from T- acute lymphoblastic leukemia and are not infected. Data are from 
the doctoral thesis of K. Ruggero. 

miR-34a is known to silence the expression of SIRT1, a protein that inhibits 

the function of p53 by deacetylating it at crucial residues (see section 3.1.3.1) (Jang 

et al., 2011; Yamakuchi, 2012). Although one would expect SIRT1 to be silenced in 

cells expressing high levels of miR-34a, a recent report demonstrated that SIRT1 is 

upregulated in ATLL cells and HTLV-1-infected cell lines (Kozako et al., 2012). 

This finding suggested to us that miR-34a, although abundant, might not be 

functional in these cells. Experiments described in below tested whether treating 

HTLV-1-infected cells with drugs that activate p53 might also affect the function of 

miR-34a. 
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3.1.1 p53 structure and function  

p53 is a 393-amino acid protein, with an apparent size of 53 kDa. It is 

encoded on the short arm of chromosome 17 (17p13.1) (Miller et al., 1986; McBride 

et al., 1986).  The tetrameric form of p53 is a multidomain transcription factor, which 

binds to specific DNA response elements. p53 is integrated in various signaling 

networks by a multitude of protein–protein interactions, and is controlled by 

extensive posttranslational modifications (Hupp et al., 1994; Hupp et al., 1995; 

Tidow et al., 2007). 

Under normal circumstances, p53 expression is maintained at low levels by 

the E3 ubiquitin ligase, murine double minute 2 (Mdm2). Mdm2 (also named Hdm2 

in humans) binds p53 with high affinity in specific regions that are important for 

protein stabilization, activation, and retention within the cytoplasm (Vassilev et al., 

2004). Mdm2-mediated ubiquitination targets p53 for nuclear export and 

proteasomal degradation (Honda et al., 1997). p53 indirectly regulates itself by 

transcriptionally inducing expression of Mdm2. This feedback system leads to low 

levels of cellular p53, so that inappropriate p53-mediated cell cycle arrest and 

apoptosis are prevented (Momand et al., 1992; Barak et al., 1993; Wu et al., 1993).  

Activation of p53 is influenced by variety of stimuli including ionizing 

radiation (Kastan et al., 1991), UV radiation (Maltzman et al., 1984; Murphy et al. 

2002), hypoxia (Hammond et al., 2002; Liu et al,. 2006) and reactive oxygen species 

(Messmer et al., 1996; Kim et al., 2002). Cellular stress signals result in upregulation 

of p53 and stimulate protein kinases that phosphorylate p53, which interferes with its 

binding to Mdm2 (Adler et al., 1997; Inoue et al., 2001). p53 then accumulates in the 

nucleus and induces cell cycle arrest and apoptosis if the cell is unable to repair 
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damaged DNA (Ko et al., 1996). Nuclear localization signals (NLS) and a nuclear 

export signal (NES) control the nuclear/cytoplasmic partitioning of p53. Three 

putative NLS domains, NLSI, NLSII and NLSIII have been identified on the C-

terminus of p53 (Shaulsky et al., 1990; Ko et al, 1996; Mesaeli et al., 2004). NLSI 

(a.a.316–321) is the most conserved across different species and is mainly 

responsible for translocation of p53 to the nucleus (Dang et al., 1989; Shaulsky et al., 

1990). Defects in p53 localization to the nucleus can lead to tumor formation 

(Schlamp et al., 1997; Mesaeli et al., 2004). 

p53 is either mutated or functionally inactivated in the majority of cancers 

(Hollstein et al., 1991). ATLL is characterized by inactivation of p53 either as a 

result of inactivating mutations or more often through other mechanisms that lead to 

accumulation of the protein in an inactive state (Yamada et al., 2005; Tabakin-Fix et 

al., 2005). Tax plays an important role in p53 inactivation (Pise-Masison et al., 1998; 

Jeong et al., 2004). 

3.1.2 p53 regulatory pathways and downstream targets 

Key targets of p53 include genes for the cell cycle regulator and p21 (Wang 

et al., 2008; Millau et al., 2009; Poulsen et al., 2013) and for multiple pro-apoptotic 

proteins, such as; Bax, Noxa, Puma, Bid, Fas, DR5, APAF-1, p53AIP1, TP53INP1, 

FADD and FOXO1A (Miyashita et al., 1995; Wu et al., 1997; Muller et al., 1998; 

Oda et al., 2000; Moroni et al., 2001; Nakano et al., 2001; Sax et al., 2002; Fuhrken 

et al., 2007). As described above, p53 also targets its antagonizer Mdm2 (Toledo et 

al., 2007). Interestingly, p21 binds caspase-2 (Baptiste-Okoh N et al., 2008) and 

procaspase-3 (Suzuki A et al., 1999) with the effect of reducing apoptosis.  
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Recent discoveries revealed that p53 directly and indirectly regulates the 

expression of numerous genes via regulation of microRNAs in various cell types. 

These include miR-34a, miR-15a, miR-16-1, miR-23a, miR-26a, miR-103, miR-143, 

miR-145, miR-203, miR-206 and mir-605 (Suzuki et al., 2009; Xiao et al., 2011). 

p53-mediated microRNA regulation affects multiple cellular processes including cell 

cycle progression, migration, epithelial–mesenchymal transition, stemness, 

metabolism, differentiation and cell survival (Hermeking et al., 2012). 

3.1.2.1 MDM2 

MDM2/HDM2 is located on chromosome 12q13. As stated above, Mdm2 is a 

ring finger E3-ubiquitin ligase that acts as the predominant negative regulator of p53 

(Oliner et al., 1993; Haupt et al., 1997; Momand et al., 2000, Sosin et al., 2012). 

Overexpression of MDM2 is associated with cancer development and progression in 

several tumor types and is often found in hematological malignancies including B-

cell chronic lymphocytic leukemia (B-CLL) and non-Hodgkin's lymphoma (B-NHL) 

(Watanabe et al., 1994). 

Mdm2 also affects the cell cycle, apoptosis and tumorigenesis through 

interactions with other molecules, such as ribosomal proteins, including ribosomal 

protein L26 (RPL26). RPL26 modulates Mdm2–p53 interactions by forming a 

ternary complex, which stabilizes p53 through inhibiting the ubiquitin ligase activity 

of Mdm2 (Zhang et al., 2010). Interestingly, Mdm2 can also ubiquitinate itself, 

which leads to its proteasomal degradation (Fang et al., 2000; Honda et al., 2000). 

Reports suggest that microRNAs play an important role to reactivate the p53 

pathway in cancer cell types via repressing MDM2 expression or destabilizing 

Mdm2-p53 interactions. Mir-605 inhibits the p53-Mdm2 interaction by reducing 
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MDM2 expression; in a positive feedback loop, p53 regulates miR-605 expression 

(Xiao et al., 2011). Pichiorri et al. reported that miR-192, 194, and 215 are induced 

by p53 and that these microRNAs may affect the expression of MDM2 in myeloma 

cells (Pichiorri et al., 2010). Mir-143 and miR-145 are posttranscriptionally activated 

by upregulated p53. In vitro and in vivo, over expression of mir-143/mir-145 

suppresses cellular growth and triggers the apoptosis of epithelial cancer, by 

enhancing p53 activity via MDM2 turnover (Zhang et al., 2013).  

miR-18b stabilizes p53 in melanoma cells by targeting MDM2 (Dar et al., 

2013). Expression of MDM2 and MDM4 are controlled by miR-661 (Hoffman et al., 

2013).  

Overexpression of MDM2 is associated with cancer development and 

progression in several tumor types and is often found in hematological malignancies 

including B-cell chronic lymphocytic leukemia (B-CLL) and non-Hodgkin's 

lymphoma (B-NHL) (Watanabe et al., 1994). 

3.1.2.2 P21/CDKN1A  

p21 (also called WAF1) is encoded by the CDKN1A gene located on 

chromosome 6 (6p21.2). p21 is a 165-amino acid residue protein, which belongs to 

the Cip/Kip family of cyclin-dependent kinase (cdk) inhibitors (Gu et al., 1993; 

Gartel et al., 1996, Abbas et al., 2009). p21 binds to and inactivates cyclin-CDK2 

and -CDK4 complexes (Gu et al., 1993; He et al., 2005). This blocks the transition 

from G1 to S-phase and inhibits cell proliferation (Waldman et al., 1995; Knights et 

al., 2006; Noske et al., 2009). p21 is induced by p53 in response to DNA damage or 
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other stress signals and represents a surrogate marker for p53 activation (Suzuki et 

al., 2012; Kim et al., 2013). 

p21/CDKN1A expression is controlled by various microRNAs including the 

miR-17-92 polycistron (Inomata et al., 2009), miR-106b and miR-93 (Ivanovska et 

al., 2008; Petrocca et al., 2008).  

3.1.2.3 TP53INP1 

TP53INP1 is a key participant in p53-mediated cell cycle arrest and death. 

TP53INP1 is a tumor suppressor gene located on the chromosome 8q22 (Nowak et 

al., 2002; Jiang et al., 2006a). The gene encodes two protein isoforms, TP53INP1α 

and TP53INP1β, which interact with p53 and modify its transcriptional activity of 

p53 on some target genes, such as CDKN1A and MDM2. This leads to cell cycle 

arrest in the G1-phase (D'Orazi et al., 2002; Tomasini et al., 2003; Ito et al., 2006).  

TP53INP1 is down regulated in various types of cancer such as gastric, 

pancreatic (Jiang et al., 2006b; Gironella et al., 2007), liver (Ma et al., 2010), and 

breast cancer (Ito et al., 2006; Yamamoto et al., 2011). However, it is highly 

expressed in prostate cancer and anaplastic carcinoma of the thyroid (Ito et al., 

2006). TP53INP1 expression is controlled by miR-155 in pancreatic cancer 

(Gironella et al., 2007; Seux et al., 2011) and by miR-130b and miR-93 in HTLV-1-

transformed cells (Yeung et al., 2008). (See Section 1.4.1.5). 

3.1.3 miR-34a and its downstream targets 

The miR-34a gene is located on chromosome 1p. It was discovered as a 

tumor suppressor gene in neuroblastoma (Welch et al., 2007). Reduced levels of 
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miR-34a expression are also found in other tumors such as colon cancer, ovarian 

cancer, prostate cancer, liver cancer, chronic lymphocytic leukemia (CLL). Lodygin 

et al. reported downregulation of miR-34a in cancer due to aberrant CpG methylation 

of the promoter of miR-34a (Lodygin et al., 2008). p53 regulates the expression of 

miR-34a through binding to its promoter. Functionally active p53 is directly 

associated with miR-34a upregulation. The functional inactivation or mutation of p53 

that characterizes more than 50% of cancers is a another potential cause of 

downregulation of miR-34a in transformed cells. Ectopic expression of miR-34a 

induces cell cycle arrest in the G1 phase and apoptosis in several experimental 

systems. Many potential targets of miR-34a have been identified (Yamakuchi et al. 

2008; Hermeking, 2010; Atchison et al., 2011; Yamakuchi et al., 2012). The 

following sections summarize information on targets examined in the present study: 

SIRT1, SP1, CDK4, VEFGA, BIRC5, YY1, BCL2, MYC, and Notch pathway 

components.  

3.1.3.1 SIRT1 

Sirt1 is an NAD-dependent deacetylase that plays an important role in the 

maintenance of homeostasis and cell survival (Milner. 2009). Sirt1 deacetylase 

activity has been well documented in the regulation of several stress-induced 

transcription factors including p53 (Luo et al., 2001; Vaziri et al., 2001), HSF1 

(Westerheide et al., 2009; Raynes et al., 2013) and NF-κB (Yeung et al., 2004; 

Salminen et al., 2008). Sirt1 is a 747–amino acid protein that contains 2 pairs of 

nuclear localization and nuclear export sequences that allow it to shuttle between the 

cytosol and nucleus (Lee et al., 2013).  
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Altered Sirt1 activity is associated with variety of human diseases such as 

metabolic syndrome, inflammation, neurodegeneration, and cancer (Saunders et al., 

2007; Haigis et al., 2010; Stunkel et al., 2011; Yamakuchi et al., 2012). Recent 

reports suggest that SIRT1 may play dual roles in cancer promotion and suppression, 

depending on tissue contexts and the temporal and spatial distribution of SIRT1 

upstream and downstream factors (Saunders et al., 2007; Yuan et al., 2013). Several 

studies found deregulation of Sirt1 in various tumor entities including breast cancer 

(Lee et al., 2011), ovarian epithelial tumours (Jang et al., 2009), non-small cell lung 

cancer (Noh et al., 2013), gastric carcinoma (Cha et al., 2009), thyroid cancer 

(Herranz et al., 2013), prostate cancer (Wang et al., 2011; Herranz et al., 2013), 

colorectal cancer (Nosho et al., 2009), and hepatocellular carcinoma (Choi et al., 

2011).  

Overexpression of SIRT1 is also reported in many leukemia/lymphoma cell 

types including B-cell lymphoma (Jang et al., 2008), acute myelogenous leukemia 

(Bradbury et al., 2005), chronic myelogenous leukemia (Li et al., 2012; Wang et al., 

2013), and ATLL (Kozako et al., 2012). In HTLV-1 infected cells, SIRT1 

knockdown induces apoptosis via activation of caspase-3 and PARP (Kozako et al., 

2012). 

miR-34a is a negative regulator of SIRT1 in various cancer cell types 

(Yamakuchi et al., 2008; Lou et al., 2013; Yuan et al., 2013). miRNA-29c is also 

reported to target oncogenic SIRT1 in hepatocellular carcinoma (Bae et al., 2013). 
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3.1.3.2 SP1 

Sp1 is a ubiquitously expressed transcription factor that plays an important 

role in the regulation of a numerous genes (Black et al., 2001; Chu, 2012). Sp1 

overexpression is reported in various cancer cell types including cancer of the breast 

(Zannetti et al., 2000), thyroid (Chiefari et al., 2002), liver (Lietard et al., 1997), 

pancreas (Abdelrahim et al.,  2004), colon-rectum (Hosoi et al., 2004), stomach 

(Wang et al., 2003), and lung (Kong et al., 2010). 

Sp1 can bind to at least 12,000 sites in the human genome (Cawley et al., 

2004). Sp1 has been reported to control cell cycle progression and arrest 

(Abdelrahim et al., 2002), both pro- and anti-apoptotic factors, proteins involved in 

genomic stability (Kavurma et al., 2001; Kavurma et al., 2003), proto-oncogenes 

(e.g. c-myc) and tumor suppressors (e.g. p53) (DesJardins et al.,  1993; Olofsson et 

al., 2007; Li et al., 2010).  

Sp1 expression is controlled by numerous microRNAs that are linked to 

cancer including mir-29b (Garzon et al., 2009), miR-149 (Wang et al., 2013) and 

miR-34a and miR-93 (Li et al., 2011). 

3.1.3.3 CDK4 

In mammalian cells, the cell cycle is governed by two key classes of 

molecules, the regulatory cyclins and the catalytic CDKs that form active 

heterodimers leading to phosphorylation of target proteins. CDK4 and its close 

homolog CDK6 are serine/threonine kinases that form heterodimers with D-type 

cyclins and are central regulators of the G1–S transition of the cell cycle (Sheppard 

et al., 2013). Cyclin E–CDK2 complexes and cyclin D–CDK4/6 complexes together 
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phosphorylate the retinoblastoma protein (RB1), resulting in dissociation and thereby 

activation of E2F transcription factors and initiation of the S phase gene expression 

program (Malumbres et al.,  2009). CDK4/6-mediated deactivation of RB1 is critical 

for cell-cycle progression. Tumor suppressor p16INK4A inhibits the assembly and 

activation of cyclin D-CDK4/6 complexes and thereby represses RB (Li et al., 1994).  

CDK family members are activated by numerous oncogenic viruses including 

Kaposi’s sarcoma-associated herpesvirus (KSHV) and HTLV-1 (Godden-Kent et al., 

1997; Haller et al., 2002). Haller et al. (2002) reported that HTLV-1 Tax enhanced 

the cell cycle in the G1 phase by modulating activaty of CDK4 and CDK6 

holoenzyme complexes. 

CDK4 has been shown to be regulated by miR-34a in prostate tumor cell lines 

(Fujita et al., 2008; Navarro et al., 2009; Hou et al., 2013). 

3.1.3.4 VEGFA  

VEGF-α is a 45-kDa homodimeric glycoprotein with a diverse range of 

angiogenic activities. It belongs to the VEGF-related gene family of angiogenic and 

lymphangiogenic growth factors which comprises six secreted glycoproteins (Ferrara 

et al., 2003; Gorski et al., 2003; Hicklin et al., 2005). VEGF-α plays an important 

role in a number of postnatal angiogenic processes such as wound healing, ovulation, 

menstruation, maintenance of blood pressure, and pregnancy (Brown LF et al., 

1992), and it has also been linked to several pathologic conditions associated with 

increased angiogenesis, including cancer, arthritis, psoriasis, macular degeneration, 

and diabetic retinopathy (Inoki I et al., 2002; Ferrara et al., 2003; Hicklin et al., 

2005). 
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The VEGFA gene is highly expressed in many cancer types, including 

cervical cancer (Zhu et al., 2013), lung cancer (Liu et al., 2009), liver cancer (Bi et 

al., 2012), cutaneous squamous cell carcinoma (Kanitz et al., 2012), colon cancer 

(Yamakuchi et al., 2011), and breast cancer (Cascio et al., 2010; Zhu et al., 2011). 

VEGF-α may participate in cell growth and angiogenesis in ATLL (Bazarbachi et al., 

2004). VEGF-α is also potent competitor of HTLV-1 SU binding in HTLV-1 

infected cells (Jones et al., 2008; Lambert S et al., 2009).  

Several microRNAs reduce cell proliferation, motility, and angiogenesis by 

inhibiting the expression of VEGFA, including miR-20b (Cascio et al., 2010), miR-

22 (Yamakuchi et al., 2011), miR-29a/b/c (Yang et al., 2013), miR-34a (Kumar et 

al., 2012), miR-125a (Bi et al., 2012), miR-126 (Liu et al., 2009), miR-128 (Shi et 

al., 2012), miR-192 (Geng et al., 2013), miR-199a-5p (Hsu et al., 2013), miR-200b 

(Choi et al., 2011), miR-200c (Chuang et al., 2012), miR-203 (Yang et al., 2013; Zhu 

et al., 2013), miR-297, miR-299 (Jafarifar et al., 2011) and miR-361-5p (Kanitz et 

al., 2012). 

3.1.3.5 Survivin (BIRC5) 

Survivin is a member of the inhibitor-of-apoptosis proteins (IAPs) family that 

is encoded by the BIRC5 gene, located on chromosome 17q25. It is a 16.5-kDa 

protein that contains a single 70-amino acid BIR (baculovirus repeat) domain and an 

extended α-helical coiled-coil C-terminus (Ambrosini et al., 1997; Waligórska-

Stachura et al., 2012; Cheung et al., 2013). Survivin exhibits multiple pro-mitotic and 

anti-apoptotic functions that are conferred by differences in subcellular localization, 

phosphorylation, and acetylation (Cheung et al., 2013; Coumar et al., 2013). Survivin 

is ubiquitously distributed during embryonic and fetal developmental stages.  
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Survivin is overexpressed in various types of cancers including lung cancer 

(Kapellos et al., 2013), prostate cancer (Kishi et al., 2004), gastric carcinoma (Lu et 

al., 1998), colon cancer (Hernandez JM et al., 2011), bladder cancer (Margulis et al., 

2008; Jeon et al., 2013) esophageal cancer (Kato et al., 2001), osteosarcomas (Trieb 

et al., 2003; Osaka et al., 2006), diffuse large B-cell lymphomas (Adida et al., 2000) 

and ATLL (Pise-Masison et al., 2009). Overexpression of survivin is associated with 

a poor prognosis and decreased survival rates in breast cancer (Nassar et al., 2008; 

Jha et al., 2012), oral carcinoma (Freier et al., 2007) and colorectal carcinoma (Sarela 

et al., 2000). 

p53 suppresses BIRC5 expression, thereby favoring apoptosis (Waligórska-

Stachura et al., 2012). Several microRNAs also inhibit expression of survivin in 

various cell types, including miR-203 (Wei et al., 2013), miR-218 (Alajez et al., 

2011), miR-542-3p (Yoon et al., 2010) and miR-34a (Cao et al., 2013). 

3.1.3.6 YY1  

Yin Yang 1 (YY1) is a ubiquitous and multifunctional zinc-finger 

transcription factor with diverse and complex biological functions (Zhang et al., 

2011; Atchison et al., 2011). YY1 influences transcriptional regulation, cell growth, 

apoptosis, large-scale chromosomal dynamics, X-chromosome inactivation and DNA 

repair, and it can act as a transcriptional activator, repressor, or initiator protein 

depending upon DNA binding site context or cell type (Galvin et al., 1997; Gordon 

et al., 2006; Atchison et al., 2011). One of its major roles is to recruit the Polycomb 

repressive complex (PRC) to DNA. Interestingly, YY1 is also a negative regulator of 

p53 via regulating Mdm2-mediated p53 ubiquitination through a direct physical 
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interaction mechanism, which reveals an important role in tumorigenesis (Sui et al., 

2004).  

Expression of YY1 has been reported to vary in different cell contexts, and 

some cancers show increased expression while other show reduced expression. 

Overexpression of YY1 is observed in cancers of the prostate, colon, breast, bone, 

liver, lung, bladder, cervix, skin, and blood (includes B and T acute lymphoblastic 

leukemia, diffuse large B-cell lymphoma, acute myeloid leukemia, chronic myeloid 

leukemia, chronic lymphocytic leukemia, Hodgkin lymphoma, Burkitt lymphoma, 

mantle cell lymphoma, and follicular lymphoma) (Erkeland et al., 2003; Pilarsky et 

al., 2004; de Nigris et al., 2006; Chinnappan et al 2009; Deng et al., 2009; Zaravinos 

et al., 2010; Castellano et al., 2010; Atchison et al., 2011). A recent study revealed 

that YY1 is important in the polycomb-mediated silencing of miR-31 expression in 

ATLL cells (Yamagishi et al., 2012) (see Section 1.4.1.5). 

microRNAs that target and suppress the expression of YY1 include miR-7 

(Zhang et al., 2013) and miR-34a (Chen et al., 2011). 

3.1.3.7 BCL2  

Bcl2 and its related family members play an important role in apoptosis. 

Abnormal regulation of Bcl2 (B-cell lymphoma/leukemia-2) family members is a 

frequent characteristic of malignant diseases and is associated with resistance to 

therapy (Frenzel et al., 2009; Willimott et al., 2010). The Bcl2-family includes 

proteins that promote cell survival such as Bcl-2, Bcl-XL, Mcl-1, A1, Bcl-W and 

others that promote cell death e.g. Bax, Bak, Bcl-XS, and Bok. The equilibrium 

between these pro- and anti-apoptotic proteins influences the susceptibility of cells to 
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a death signals (reviewed by Burlacu, 2003; Christodoulou et al., 2013). Bcl-2 is the 

prototypic pro-survival protein and was discovered by cloning of chromosomal 

translocations from cases of the human B-cell non-Hodgkin’s lymphoma, follicular 

lymphoma (Willimott et al., 2010). Overexpression of the Bcl-2 protein is reported in 

many types of human cancers, including leukemias, lymphomas, and carcinomas 

(Sánchez-Beato et al., 2003). p53 is a negative regulator of BCL2 (Basu et al., 1998; 

Wu et al., 2013). Inactivation or mutation of p53 associated with upregulation of 

BCL2 expression drives cell survival pathway in cancers. 

Various microRNAs directly or indirectly suppress the expression of BCL2. 

Willimott et al demonstrated that miR-125b and miR-155 repressed Bcl-2 mRNA 

expression, in human leukemic B-cells (Willimott et al., 2011). miR-15a, miR-16, 

miR-24-2, miR-30b, miR-34a, miR-125b, miR-129, miR-155, miR-181b, miR-182, 

miR-184, miR-195, miR-196b, miR-205, mR-210, miR-365-2, miR-449a, miR-497, 

miR-503 and miR-708, other microRNAs are validated to target and suppress the 

expression Bcl2 in various cancer types. miR-31 indirectly downregulates BCL2 

expression via direct targeting of PRKCE (Koerner et al., 2013) 

3.1.3.8 MYC 

MYC, a proto-oncogene located on chromosome 8q24, encodes an 

evolutionarily conserved basic helix-loop-helix leucine zipper transcription factor 

that is commonly dysregulated in cancer. Deregulation of MYC results pleiotropic 

effects on cancer cell growth, proliferation, survival, angiogenesis, and metastasis. c-

Myc is a widely expressed transcription factor. Myc uses distinct mechanisms for 

activating and repressing gene expression, and it is known that Myc binds to 

approximately 10–15% of genes, whether protein-encoding or transcribing non-
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coding RNA (reviewed by Bui et al., 2010; Tripaldi et al., 2013). As a transcriptional 

regulator, Myc dimerizes with its binding partner Max and binds to genomic DNA 

directly upstream or within the first introns of target genes (Blackwood et al., 1991; 

Zeller et al., 2006; Chang et al., 2008). 

In 2005, O'Donnell et al demonstrated that Myc directly activates 

transcription of the polycistronic miR-17-92 cluster by binding directly to an E-box 

within the first intron of the gene encoding the miR-17-92 primary transcript 

(O'Donnell et al., 2005). The miR-17-92 cluster consists of miR-17, miR-18a, miR-

19a, miR-20a, miR-19b-1, and miR-92a-1. Chang et al. observed that overexpression 

of Myc represses the maturation of Let-7 microRNA without affecting transcription 

of the pri-miRNA (Chang et al., 2008). In liver cancer cell lines, Myc upregulates 

miR-371-3 and inhibits miR-100, let-7a-2 and miR-125b-1. let-7, miR-23, miR-26, 

miR-29, and miR-30 families, and miR-150 were negatively regulated by Myc in 

hepatoblastoma (Buendia et al., 2012). Upregulation of miR-34a targets Myc 

expression and controls the cell cycle (Christoffersen et al., 2010).  

3.1.3.9 Notch signaling pathway components  

The Notch signaling pathway plays a vital role in the regulation of multiple 

cellular processes such as proliferation, differentiation and apoptosis. It is implicated 

in the maintenance of self-renewal potential in stem cells, binary cell-fate 

determination in progenitor cells, and induction of terminal differentiation in 

proliferating cells (Artavanis-Tsakonas et al., 1999; Katoh et al., 2006) In 

mammalian cells, there are four Notch receptors; NOTCH-1, NOTCH-2, NOTCH-3 

and NOTCH-4, and five ligands; Jagged 1 (JAG1), Jagged 2 (JAG2), DLL1, DLL3 

and DLL4 (reviewed by Katoh et al., 2007; Kume, 2009).  
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In many solid tumors and hematological malignancies, the expression of 

Notch receptors, ligands and target genes is deregulated (reviewed by Ranganathan 

et al., 2011; Jonusiene et al., 2013). 

miR-34a can affect the regulation of Notch signaling by repressing the 

expression of NOTCH1, JAG1 and DLL1. 

3.1.4 Modulation of p53 activity  

The presence of functionally inactivated or mutant p53 is a major cause of 

resistance of tumor cells to death signals and makes them less sensitive or resistant 

toward chemotherapeutic agents and radiotherapy. Several strategies to activate p53 

or ‘cure’ mutated p53 have been described (Wiman, 2006). 

3.1.4.1 Nutlin-3a  

A number of compounds target the p53-Mdm2 interaction, most notably 

RITA and Nutlin-3a (Issaeva et al., 2004; Shen et al., 2011). RITA (Reactivation of 

p53 and Induction of Tumor cell Apoptosis) binds to wild-type p53 and prevents its 

interaction with Mdm2, resulting in accumulation of p53. RITA induces p53 target 

gene expression and triggers massive apoptosis in various tumor cell types (Issaeva 

N et al., 2004).  

Nutlin-3a is one of several cis-imadazoline analogues (‘Nutlins’) that were 

identified in a screen of synthetic chemicals for inhibitory effects upon p53-Mdm2 

binding (Vassilev et al., 2004). Nutlin-3a competitively occupies the p53 binding site 

on Mdm2, which results in an increase in p53 activation (Vassilev et al. 2004; 

Ohnstad et al., 2011; Manfe et al., 2012). Nutlin-3a is non-genotoxic and appears to 
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be highly selective for the p53-Mdm2 binding site on Mdm2 with no direct activity 

on other proteins (Vassilev 2005; Shen et al., 2011) or upon MdmX (Hu et al., 2006). 

Antagonism of Mdm2 by Nutlin causes a post-translational increase in the activity of 

p53, p21, Mdm2 and the BH3 proteins, Noxa and Puma (Shen et al., 2011). The 

overall effect of p53 activation by Nutlin is to induce apoptosis and cause an increase 

in cell cycle arrest in the G1/S and G2/M phases. Nutlin-3a induced cell cycle arrest 

at the G1/S and G2/M boundaries and the depletion of S-phase cells in wild-type p53 

cancer cell lines from different tumor types, including colon, breast, lung, prostate, 

melanoma, osteosarcoma, and renal cancer (Tovar et al., 2006). A study by 

Hasegawa et al. (2009) showed that Nutlin-3a induced cell-cycle arrest or apoptosis 

in ATLL cell lines containing wild-type p53 but did not affect cell lines containg 

mutated p53. 

3.1.4.2 Etoposide 

Etoposide (VP-16, 4′-dimethylepipodophylloxin-9-[4,6-O-ethylidene-beta-D-

glucopyranoside]) is an antineoplastic drug that induces DNA damage via inhibiting 

topoisomerase II, which plays pivotal roles during both DNA replication and 

transcription. Etoposide stabilizes the complex formed by topoisomerase II and the 

5′-cleaved ends of the DNA, thus forming stable (nonrepairable) protein-linked DNA 

double-strand breaks. Cells are able to recognize such DNA damage and, in turn, 

eliminate the injured cells by p53-mediated apoptosis (Karpinich et al., 2002; 

Grandela et al., 2008). Reports suggest that caspase-2 provides a connection between 

etoposide-induced DNA damage and the engagement of the mitochondrial apoptotic 

pathway (Robertson et al., 2002). Etoposide has been widely used for the treatment 
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of various types of cancers, but it also associated with increased risk of secondary 

leukemia (reviewed by Ratain et al., 1998; Ezoe, 2012).  

3.1.4.3 Pifithrin-α  

In 1999, Komarov et al. isolated a small molecule that inhibits p53 and named 

it pifithrin-α (Komarov et al., 1999). pifithrin-α can block p53-dependent 

transcriptional activity in normal cells and protect them from lethal side effects 

associated with anticancer treatment (Komarov et al., 1999; Strom et al., 2006; 

Suzuki K et al., 2011). The exact mechanism of action for pifithrin-α is not currently 

known. However, it has been hypothesised that pifithrin-α reduces nuclear 

translocation of p53 (Komarov et al., 1999).  



91 
 

3.1.5 Aim of the study 

Differentially expressed microRNAs play important roles in the development and 

progression of cancers, and can act as tumor suppressors or oncogenes. Our 

laboratory’s data from small RNA libraries, microarrays and real time RT-PCR 

revealed increased expression of miR-34a in ATLL samples and in HTLV-1 infected 

cell lines, compared to CD4+ T-cells.  

p53 is known to regulate miR-34a but is functionally inactive or mutated in ATLL 

cells and in HTLV-1 infected cells. The experiments described below were aimed at 

investigating the influence of p53 on miR-34a activity in HTLV-1-infected cells.   
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3.2 MATERIALS AND METHODS 

3.2.1 Cell culture 

 Cell lines C91PL and MT-2, chronically infected with HTLV-1, were 

maintained in as described in Section 2.2.1. 

3.2.2 Drug treatments 

  Nutlin-3a (Sigma-Aldrich or Tocris Bioscience), Etoposide (Sigma-Aldrich) 

and Pifithrin-α (Sigma-Aldrich) were dissolved in dimethyl sulphoxide (DMSO; 

Sigma-Aldrich) to generate 10 mM stock solutions. C91PL and MT-2 cells 

(3x105cell/ml) were seeded in 6-well microplates (34.8-mm diameter) and exposed to 

Nutlin-3a (1 and 5 μM), Etoposide (5 μM), Pifithrin-α (10 μM), or DMSO (vehicle 

control). After 48 hours, cells were harvested for immunoblots and RNA analysis. 

Some cultures were also analyzed for cell death by staining with propidium iodide or 

Sytox Red (Invitrogen). 

3.2.3 Immunoblotting 

 Cells to be analysed by immunoblotting were lysed in 20 mM Tris (pH 7.5), 

100 mM KCl, 5 mM MgCl2, 0.3% Nonidet-P40, and protease inhibitor mix 

(Complete, Roche). Protein concentrations were determined by a BCA assay (micro-

BCA protein assay; Pierce). Samples were diluted with lysis buffer to reach 

equivalent total protein concentrations, denatured by adding Laemmli buffer and 

heated at 70°C for 5 min. Lysates were subjected to 12% (w/v) sodium dodecyl 

sulphate–polyacrylamide discontinuous gel electrophoresis (SDS-PAGE) and 

electrotransferred to Hybond-C Extra nitrocellulose membrane (GE Healthcare) for 
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90 minutes at 1 mAmp per cm2 of membrane using a semi-dry blotter (GE 

Healthcare). Blots were blocked for 1 h in 2% blocking agent (Roche)-0.05% Tween 

20-PBS, washed with 0.05% Tween 20-PBS and incubated for 90 minutes with goat 

anti-p53 polyclonal antibody (1:500; Santa Cruz), mouse anti-MDM2 monoclonal 

antibody (1:500; Santa Cruz), rabbit anti-SIRT1 polyclonal antibody (1:300; Santa 

Cruz), rabbit anti-YY1 polyclonal antibody (1:500; Santa Cruz) or rabbit anti-β-

Actin (ACTB) polyclonal antibody (1:2000; Sigma-Aldrich) in 3% BSA-0.05% 

Tween-PBS followed by 45 minutes’ incubation with horseradish peroxidase-

conjugated anti-mouse, anti-rabbit or anti-goat secondary antibody (Pierce) diluted 

1:5000 in 2% blocking agent-0.05% Tween-PBS. Blots were developed using 

chemiluminescence reagents (Supersignal, Pierce) and immunoreactive bands were 

visualized and quantified using a BioRad ChemiDoc XRS imager. Immunoblots 

shown in the thesis are representative of three experiments. 

3.2.4 Extraction and quantification of RNA  

 Cells to be processed for RNA analysis were lysed in TRIZol (Invitrogen). 

Chloroform (200μl per 1ml of Trizol-sample) was added, mixed by vigorous shaking 

and incubated at room temperature for 5 minutes. Samples were then centrifuged at 

12,000g for 15 minutes at 4°C to separate the mixture into a lower red phenol-

chloroform phase, an interface and an upper colorless aqueous phase containing 

RNA. The upper aqueous phase was transferred to a 1.5-ml microfuge tube, 

combined with 0.7 volume isopropanol and centrifuged at 12,000g for 30 min at 4°C. 

The resulting RNA pellet was washed twice with 70% ethanol and centrifuged at 

12,000g for 15 minutes at 4°C. The ethanol supernatant was removed and the RNA 
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pellet was air-dried and then resuspended in 30μl RNase free water. Samples were 

stored at -80°C.  

 To calculate the concentration and purity of RNA, samples, the absorbance 

was measured at 230 nm, 260 nm and 280 nm in NanoDrop 1000 Spectrophotometer 

V3.7 (Thermo Fisher Scientific). The wavelength 260 nm was used to measure the 

concentration of RNA; a wavelength of 1 being equal to 40μg/ml of RNA. A ratio of 

260nm/280nm of ~2.0 is generally accepted as “pure” for RNA. 

3.2.5 Elimination of contaminating DNA 

 RNA samples to be analysed for levels of mRNAs were combined with 0.1 

volume 10X DNase I Buffer (Invitrogen) and 1 µL rDNase I (Invitrogen), mixed 

gently, and incubated at 37°C for 15 minutes. DNase was inactivated by adding 

EDTA (Invitrogen) and incubation at 70°C for 10 minutes. 

3.2.6 Quantitative RT-PCR 

 RT-PCR for microRNAs. Total RNA was subjected to reverse transcription 

and quantitative PCR to detect miRNAs using Applied Biosystems Taqman 

microRNA assays and a 7900HT Fast Real-Time PCR System, according the 

manufacturer's protocol; RNU44 was used as an endogenous control. Fold changes 

reported in the thesis were calculated from three independent experiments. 

Differences in expression of miRNAs were calculated using formulas for relative 

quantification (RQ), where Ct is the threshold cycle. 

ΔCt = CtmiRNA of interest−CtRNU44 

∆∆Ct =ΔCtDrug treated cells −ΔCtDMSO control 

RQ = 2-∆∆Ct 
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 RT-PCR for mRNAs. For quantitative RT-PCR of MDM2, CDKN1A, 

TP53INP1, BCL2, BIRC5, CDK4, MYC, DLL1, SP1, JAG1, SIRT1, YY1 and 

VEGFA, total RNA was reverse transcribed using SuperScript II reverse 

transcriptase (Invitrogen) and random hexamers according to the manufacturer's 

protocol. Aliquots of the resulting cDNA were PCR-amplified by using specific 

primers listed in Table 5 and a PCR master mix containing SYBR Green (Roche or 

Thermo Scientific). The PCR reactions were performed in a LightCycler 480 

(Roche) thermal cycler according the manufacturer's protocol; ACTB was used as an 

endogenous control. Fold changes reported in the thesis were calculated from three 

independent experiments. Differences in expression of miRNAs were calculated 

using formulas for relative quantification (RQ), where Cp the ‘crossing point’ 

indicated in the Light cycler analysis. 

ΔCp = CpGene of interest −CpACTB 

∆∆Cp =ΔCpDrug treated cells −ΔCpDMSO control 

RQ = 2-∆∆Cp 

 

3.2.7 Primer design  

 Primer sequences were chosen by using the Primer3 online tool (Table 5). 

Gene specificity of primer sequences was confirmed with a Basic Local Alignment 

Search Tool (BLAST) assessment. Annealing temperatures were between 60°-62°C 

for all primers. Primers were purchased from Sigma-Genosys. 
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Table 5. Primers for RT-PCR.  

Primer  Forward primer sequnce (Sense) Reverse primer sequnce (Antisense) 

MDM2 CTTCGGAACAAGAGACCCTG TCTTTCACAGAGAAGCTTGGC 
TP53INP1 CTTCCTCCAACCAAGAACCAG CAAGCACTCAAGAGATGCCG 
CDKN1A AGACTCTCAGGGTCGAAAAC TTCCAGGACTGCAGGCTTC 
SIRT1 ACATAGACACGCTGGAACAGG GATAGCAAGCGGTTCATCAGC 
CDK4 GAAACTCTGAAGCCGACCAG AGGCAGAGATTCGCTTGTGT 
VEGFA AAGGAGGAGGGCAGAATCATC ACACAGGATGGCTTGAAGATG 
DLL1 ACAGATTCTCCTGATGACCTC TCACACACGAAGCGGTAGGA 
SP1 ATGATGACACAGCAGGTGGAG AGGTCTTGCCATACACTTTCC 
BCL2 ATGTGTGTGGAGAGCGTCAA GCCGTACAGTTCCACAAAGG 
MYC TGGATTTTTTTCGGGTAGTGG CTCGTCGCAGTAGAAATACG 
BIRC5 TTCTCAAGGACCACCGCATC TGAAGCAGAAGAAACACTGGG 
YY1 TCAGGGATAACTCGGCCATG TGTGCGCAAATTGAAGTCCAG 
JAG1 CGGCCTCTGAAGAACAGAAC CAATGGGGTTTTTGATCTGG 
ACTB AGCACAGAGCCTCGCCTTTG GGAATCCTTCTGACCCATGC 
 

 

 



98 
 

 

 

 

 

 

 

 

 



99 
 

3.3 RESULTS 

3.3.1 Effect of Nutlin-3a on viability of HTLV-1 infected cells.  

The aim of this part of the study was to test the hypothesis that the 

modulation of p53 activity in HTLV-1 infected cells activates the p53 regulatory 

network and induces cell death. As shown in Figure 16, treatment of infected cell 

lines C91PL and MT-2 with nutlin-3a resulted in a dose-dependent decrease in cell 

viability in C91PL cells and MT-2 cells.  

 

Figure 16. Cell death induced by treatment with nutlin-3a. C91PL cells and MT-
2 cells that had been incubated with 1 µM or 5 µM nutlin-3a or with an equal volume 
of DMSO for 44-48 hrs were labelled with propidium iodide or Sytox Red for 20 min 
and then analysed using a BD FACSCalibur. Percentages of dead (i.e. stained) cells 
were used to calculate the specific cell death using the formula SCD = (% dead cells 
in treated culture-% dead cells in control culture/% living cells in control culture) X 
100. The plots show mean SCD values with standard errors calculated from 6 
experiments performed with C91PL cells and 5 experiments with MT-2 cells. 

Cell-cycle analysis of C91PL cells and MT-2 cells revealed that Nutlin-3a 

treatment resulted in a block in the G1 phase (data not shown). 
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3.3.2 Nutlin-3a induces the stabilization of p53 protein in HTLV-1-infected 
cells.  

Modulation of p53 levels by Nutlin-3a was assessed by immunoblotting. As 

depicted in Figure 17, we observed that Nutlin-3a upregulated expression of p53 

protein in a dose-dependent manner in the HTLV-1 infected cell line C91PL. A 

similar trend of p53 upregulation was observed in Nutlin-3a- treated MT-2 cells (data 

not shown). 

           

Figure 17. Stabilized p53 expression by Nutlin-3a in HTLV-1 infected cells. 
Immunoblot analysis of p53 protein expression in C91PL cells after treatment with 
1- or 5 µM Nutlin-3a or an equal volume of DMSO for 48 hrs. β-actin (ACTB) was 
used as a loading control. 

3.3.3 Increased expression of p21 (CDKN1A) and TP53INP1 through 
modulating p53 activity in HTLV-1 infected cells 

3.3.3.1 Increased expression of p21 in Nutlin 3a-treated cells 

The cyclin-dependent kinase inhibitor p21 (CDKN1A) is a known 

transcriptional target of p53. As shown in Figure 18, Nutlin-3a treatment resulted in a 

dose-dependent upregulation of p21 mRNA.  



101 
 

 

Figure 18. Induced expression of p21 (CDKN1A) in Nutlin-3a-treated cells. The 
plots show the fold induction of the p21 mRNA in C91PL cells and MT-2 cells after 
48 hrs’ treatment with Nutlin-3a compared to DMSO (set at 1). The RT-PCR method 
is described in the Materials and Methods. ACTB mRNA was used as an endogenous 
control. 

3.3.3.2 Induction of TP53INP1 expression in Nutlin 3a-treated cells 

The tumor suppressor protein TP53INP1 is a key factor in p53-mediated cell 

cycle arrest and death (Nowak J et al., 2002; Jiang et al., 2006). TP53INP1 

expression is directly influenced by p53. As shown in Figure 19, we observed a 

substantial increase in the expression of TP53INP1 in Nutlin-3a-treated C91PL and 

MT-2 cells. 

 

Figure 19. Induction of TP53INP1 expression in Nutlin-3a treated cells. The 
plots show the fold induction of the TP53INP1 mRNA in C91PL cells and MT-2 
cells after 48 hrs’ treatment with Nutlin-3a compared to DMSO (set at 1). ACTB 
mRNA was used as an endogenous control. 
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These observations showed that treatment of the infected cell lines with 

Nutlin-3a resulted in stabilization of p53 and induction of its activity as a 

transcription factor that upregulates expression of proteins that block the cell cycle 

and promote cell death.  

3.3.4 Elevated expression of MDM2 after stabilization of p53 in HTLV-1 

infected cells 

As depicted in Figure 20, we also observed an increase in the expression of 

MDM2 in Nutlin-3a-treated cells. This result demonstrated that p53 was able to 

activate expression of its negative regulator Mdm2. However, as the activity of 

neosynthesized MDM2 would be blocked by Nutlin-3a, the p53-Mdm2 negative 

feedback loop will be interrupted.  

 

Figure 20. Upregulation of MDM2 in Nutlin 3a-treated cells. The plots report the 
fold induction of MDM2 mRNA in C91PL cells and MT-2 cells after 48 hrs’ 
treatment with Nutlin-3a compared to DMSO (set at 1). ACTB mRNA was used as 
an endogenous control.  
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3.3.5 Nutlin-3a activates miR-34a expression and suppression of downstream 

targets 

Having verified that Nutlin-3a is able to restore p53 function in the HTLV-1-

infected cell lines, we next tested whether this would affect the expression of miR-

34a and activate miR-34a regulatory pathways. Results of RT-PCR confirmed that 

miR-34a expression increased in Nutlin-3a-treated C91PL cells and MT-2 cells 

(Figure 21).  

 

Figure 21. Upregulation of miR-34a through modulation of p53 activity in 
HTLV-1 infected cells. The results are shown as fold induction of miR-34a 
compared to DMSO-treated cells (set at 1). RNU44 was used as an endogenous 
control. 

Studies carried out in other cell systems demonstrated that miR-34a inhibits 

the expression of the SIRT1 and YY1 mRNAs via binding to their 3’ UTR regions 

(Yamakuchi et al. 2008; Lou W et al., 2013; Gordon S et al., 2006; Atchison M et al., 

2011). We therefore performed immunobloting to identify the change in protein 

expression of SIRT1 and YY1. Immunoblot analysis revealed that the levels of 

SIRT1 and YY1 proteins were reduced in Nutlin-3a-treated cells, in comparison to 

the untreated cells (Figure 22).  
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Figure 22. Reduced expression of SIRT1 and YY1 proteins as a consequence of 
miR-34a upregulation in Nutlin-3a treated cells. Shown is an immunoblot analysis 
of SIRT1 and YY1 expression in C91PL cells, after treatment with 1 and 5 µM 
Nutlin-3a or an equivalent amount of DMSO for 48 h. β-actin (ACTB) was used as a 
loading control.  

We also analyzed the expression of the SIRT1 and YY1 mRNAs using 

quantitative RT-PCR. As shown in Figures 23 and 24, both mRNAs were 

downregulated in C91PL and MT-2 cells following Nutlin-3a treatment. 

 

 

Figure 23. Downregulation of SIRT1 expression in Nutlin-3a-treated cells. The 
plots report show the fold reduction in the levels of SIRT1 mRNA after 48 hrs’ 
treatment with Nutlin-3a compared to the DMSO control (set at 1). ACTB mRNA 
was used as an endogenous control. 
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Figure 24. Downregulation of YY1 expression in Nutlin-3a treated cells. The 
plots report show the fold reduction in the levels of YY1 mRNA after 48 hrs’ 
treatment with Nutlin-3a compared to the DMSO control (set at 1). ACTB mRNA 
was used as an endogenous control. 

We next broadened our screening of miR-34a targets to BCL2, BIRC5, 

CDK4, DLL1, MYC, SP1, JAG1, and VEGFA mRNAs. As depicted in Figure 25, 

we observed downregulation of all of these transcripts in the Nutlin-3a-treated 

C91PL cells. A similar trend of BIRC5, CDK4, SP1, and VEGFA downregulation 

was observed in Nutlin-3a treated MT-2 cells (data not shown).  
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Figure 25. Expression profiles of additional miR-34a downstream targets in 
Nutlin-3a-treated cells. The plots report show the fold reduction in the levels of the 
indicated mRNAs in C91PL cells after 48 hrs’ treatment with Nutlin-3a compared to 
the DMSO control (set at 1). ACTB mRNA was used as an endogenous control. 
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These observations showed that miR-34a is upregulated and is able to 

suppress its targets in response to Nutlin-3a treatment. 

3.3.6 Changes in expression of other microRNAs in Nutlin-3a treated cells 

In addition to miR-34a, we analyzed the expression of the following 

microRNAs in Nutlin3a-treated C91PL cells: miR-125a, miR-125b, miR-141, miR-

142-5p, miR-142-3p, miR-106a, miR-107, miR-29c, miR-26a, miR-146a, miR-155, 

miR-221, miR-223, miR-93, miR-130b and let-7e. As depicted in Figure 26, miR-

125a, miR-141, miR-142-5p, miR-142-3p, miR-106a, miR-93 and miR-130b were 

all downregulated, while miR-125b was upregulated in Nutlin-3a-treated cells.  
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Figure 26. microRNA expression in Nutlin-3a-treated cells. The plots report fold 
changes in microRNA expression in C91PL cells after 48 hrs’ treatment with Nutlin-
3a compared to DMSO-treated cells (set at 1). RNU44 was used as an endogenous 
control. 
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3.3.7 Effect of etoposide and pifithrin-α on viability of HTLV-1 infected cells 

To complement experiments performed using Nutlin-3a, we also treated the 

HTLV-1-infected cell lines with etoposide and pifithrin-α. As described in Section 

3.1.2.2, etoposide is an antineoplastic drug that induces DNA damage via inhibiting 

topoisomerase II, which may lead to activation of the p53 pathway; pifithrin-α 

inhibits p53 through an unknown mechanism. We treated C91PL and MT-2 cells 

with either 5 µM etoposide, 10 µM pifithrin-α or an equal volume of DMSO 

(untreated) for 48h. 

Treatment with etoposide or pifithrin-α resulted in decrease in cell viability in 

C91PL cells and MT-2 cells. Forty-eight hours after incubation with 5 µM etoposide, 

~ 35% and ~25% specific cell death observed in C91PL cells and MT-2 cells, 

repectively. In both cell lines, ~ 10% specific cell death observed after treatment with 

10 µM pifithrin-α (Figure 27). 

 

Figure 27. Cell death induced by treatment with etoposide or pifithrin-α. C91PL 
cells and MT-2 cells that had been incubated with 5 µM etoposide or 10 µM 
pifithrin-α or with an equal volume of DMSO for 48 hrs were labelled with 
propidium iodide for 20 min and then analysed using a BD FACSCalibur. 
Percentages of dead (i.e. stained) cells were used to calculate the specific cell death 
using the formula SCD = (% dead cells in treated culture-% dead cells in control 
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culture/% living cells in control culture) X 100. The plots show mean SCD values 
with standard errors calculated from 3 experiments performed on each cell line. 

3.3.8 Effects of etoposide and pifithirin-α on p53 and its downstream targets 

Immunoblotting results showed that p53 protein was upregulated in the 

etoposide-treated cells but not in the pifithrin-α-treated cells (Figure 28). 

 

Figure 28. Modulation of p53 activity via etoposide and pifithrin-α in HTLV-1 
infected cell lines. Shown are immunoblots to detect p53 and β-actin (ACTB) in 
lysates of cells treated with 5 µM etoposide or 10 µM pifithrin-α or an equivalent 
amount of DMSO (untreated) for 48 h. β-actin was used as a loading control.  
 

3.3.9 Expression of p53 downstream targets in cells treated with etoposide  

Figure 29 shows results of RT-PCR to compare the levels of MDM2, 

CDKN1A (p21), TP53INP1, miR-34a and miR-125b in etoposide-treated cells with 

respect to untreated cells. 
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Figure 29. Expression pattern of p53 downstream targets induced by etoposide 
in HTLV-1 infected cells. The plots report fold changes in expression of the 
indicated mRNAs and microRNAs in MT-2 cells after 48 hrs’ treatment with 
etoposide compared to DMSO-treated cells (set at 1). ACTB and RNU44 were used 
as endogenous controls for quantification of mRNAs and microRNAs, respectively. 
 

3.3.10 Expression of miR-34a downstream targets in etoposide-treated cells 

As shown in Figure 29D, treatment of MT-2 cells with etoposide resulted in a 

slight upregulation of miR-34a. Our next goal was to test the expression of the 

following miR-34a downstream targets: BCL2, BIRC5, CDK4, SIRT1, VEGFA and 

YY1. As depicted in Figure 30, the expression of mRNAs coding for BCL2, BIRC5 

and CDK4 was reduced upon etoposide treatment. However, the expression of 

SIRT1, VEGFA and YY1 remained unchanged.  
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Figure 30. Expression of targets of miR-34a in etoposide-treated cells. The plots 
report fold changes in expression of the indicated mRNAs in MT-2 cells after 48 hrs’ 
treatment with etoposide compared to DMSO-treated cells (set at 1). ACTB was used 
as an endogenous control. 
 

3.3.11 Effect of pifithrin-α on p53 targets.  

Results of RT-PCR assays on pifithrin-α–treated MT-2 cells revealed reduced 

expression of p53 downstream targets MDM2, CDKN1A, TP53INP1 and miR-34a 

(Figure 31). miR-125b expression was also downregulated in pifithrin-α-treated cells 

(Figure 31E). 
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Figure 31. Expression pattern of p53 downstream targets in Pifithrin-α-treated 
cells. The plots report fold changes in expression of the indicated mRNAs and 
miRNAs in MT-2 cells after 48 hrs’ treatment with pifithrin-α compared to DMSO-
treated cells (set at 1). ACTB and RNU44 were used as endogenous controls for 
quantification of mRNAs and microRNAs, respectively. 
 

3.3.12 Expression of targets of miR-34a in Pifithrin-α-treated cells 

The observation that pifithrin-α resulted in downregulation of miR-34a in 

MT-2 cells led us to perform RT-PCR to detect the miR-34a downstream targets 

BCL2, BIRC5, CDK4, SIRT1, VEGFA and YY1. As shown in Figure 32, BCL2 and 

YY1 were upregulated in pifithrin-α-treated cells relative to untreated cells. 

However, we did not find changes in the expression of BIRC5, CDK4, SIRT1 or 

VEGFA (Figure 32). 
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Figure 32. Expression profiles of miR-34a downstream targets in pifithrin-α-
treated cells. The plots report fold changes in expression of the indicated mRNAs in 
MT-2 cells after 48 hrs’ treatment with compared to DMSO-treated cells (set at 1). 
ACTB was used as an endogenous control. 
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3.4 DISCUSSION 

This study investigated whether restoration of the p53 pathway in HTLV-1-

infected cell lines might activate miR-34a, a tumor suppressor microRNA that is 

already expressed at high levels in ATLL cells and HTLV-1-infected cell lines 

(Figure 15) but appears unable to silence at least one confirmed target, i.e., the 

deacetylase SIRT1 (Kozako et al., 2012). 

Treatment of C91PL cells and MT-2 cells for 48 hrs with Nutlin-3a, a drug that 

interferes with the ability of Mdm2 to destabilize p53, resulted in increased levels of 

p53 protein (Figure 17), and upregulation of the p53-regulated genes CDKN1A, 

TP53INP1 and MDM2 and miR-34a (Figures 18-21). These results indicated that 

that Nutlin-3a was effective rescuing p53 activity. 

The further increase in miR-34a abundance was accompanied by a substantial 

reduction in expression of 9 genes that were previously identified as targets of miR-

34a (SIRT1, BCL2, BIRC5, CDK4, MYC, YY1, DLL1, SP1, VEGFA; Figures 22-

25). These findings lead us to conclude that induction of p53 by Nutlin-3a results in 

engagement of the miR-34a regulatory pathway (Sharma et al, Manuscript in 

preparation). 

We can highlight the consequences of the loss of some of these miR-34a 

targets in ATLL cells and/or HTLV-1-infected cell lines: 

• Loss of SIRT1 would allow p53 to remain in its active, acetylated form 

(Yamakuchi, 2009; Hermeking, 2010). 

• Loss of Bcl-2 and Survivin would subtract important anti-apoptotic signals. 
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• Loss of CDK4 would interfere with progression through the cell cycle. 

• Loss of Myc would interfere with the expression of many genes involved in 

cell proliferation. 

• In the absence of YY1, miR-31 expression might be de-repressed; miR-31 

would in turn block expression of NIK, a component of the NF-kB pathway 

that is upregulated in ATLL cells (Yamagishi et al., 2012) (see Section 

1.4.1.5). Loss of YY1 would also interfere with the ability of MDM2 to 

ubiquitinate p53 (Gronroos et al., 2004; Sui et al., 2004). 

Treatment of the cell lines for 48 hrs with the topoisomerase II inhibitor 

etoposide also increased the levels of p53 protein, especially in MT-2 cells (Figure 

28). Further analyses of the effects of etoposide in MT-2 cells revealed substantial 

upregulation of the p53 targets CDKN1A, TP53INP1, MDM2 and miR-34a. 

However, the induction of miR-34a produced with etoposide was less evident than 

that produced with Nutlin-3a (about 1.4-fold vs. 3-fold, respectively).  In line with 

obervations made using Nutlin-3a, treatment of MT-2 cells with etoposide resulted in 

downregulation of the miR-34a targets BCL2, BIRC5 and CDK4. However, unlike 

Nutlin-3a, etoposide did not affect the expression of SIRT1 or YY1. As described 

above, both SIRT1 and YY1 negatively affect p53 function. Therefore etoposide may 

have a less broad effect on p53 compared to Nutlin-3a. 

Treatment of MT-2 cells with the p53 inhibitor Pifithrin-α caused a reduction 

the expression of downstream mRNA targets including MDM2, CDKN1A and 

TP53INP1 as well as miR-34a (Figure 31). This finding indicates that p53 is at least 
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in part responsible for the high levels of miR-34a detected in HTLV-1 infected cell 

lines.  

miR-34a expression and regulation has not been studied extensively in hematological 

malignancies. Downregulation of miR-34a was reported in aggressive chronic 

lymphoid leukemia (CLL) with inactivated p53 (Mraz et al., 2009) but appears to be 

upregulated in acute myelogenous leukemia (AML) blasts compared to normal bone 

marrow cells or CD34+ hematopoietic progenitor cells (Isken et al., 2008). It is 

noteworthy that the upregulation of miR-34a was also indicated in an analysis of 

EBV-transformed B-cells (Mrazek et al., 2007). Subsequently, another study 

indicated the increased expression of pre-miR-34a and other cellular miRNAs during 

latency type III (the growth program phase) compared to latency I (Cameron et al., 

2008).  

Upregulation of miR-34a in HTLV-1-infected cells and ATLL cells might be 

a marker of persistent ‘oncogenic stress’ and/or engagement of the DNA damage 

repair pathway induced by HTLV-1 expression (Marriott et al., 2005). In alternative, 

a subset of activated T-cells expressing miR-34a may present a favourable 

environment for HTLV-1-replication and persistence. Future experiments will be 

aimed at understanding whether HTLV-1-infected cells may develop a high 

threshold of ‘resistance’ against miR-34a activity, or if some as yet unknown 

function of p53 is required for miR-34a to suppress its targets.  

To gain more information on the interaction between p53 and microRNA 

regulation in HTLV-1 infected cells, we analyzed the expression of many additional 

microRNAs in Nutlin-3a-treated C91PL cells. Results demonstrated upregulation of 

miR-125b and downregulation of miR-125a, miR-141, miR-142-5p, miR-142-3p, 
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miR-106a, miR-93 and miR-130b (Figure 26). These observations suggest that p53 

directly or indirectly regulates expression of these microRNAs. 

The downregulation of miR-93 and miR-130b upon stabilization of p53 

merits discussion in light of a study by Yeung et al. (2008), which showed that these 

microRNAs are highly expressed in ATLL cells and HTLV-1-infected cell lines(see 

Section 1.4.1.5). Yeung et al. observed that these microRNAs provide a survival 

advantage to HTLV-1-infected cells by suppressing the expression of TP53INP1, one 

of the p53 targets that was upregulated in cells treated with Nutlin-3a or etoposide 

(Figures 19 and 29, respectively). Yeung et al. (2008) also showed that Tax is able to 

upregulate miR-130b expression. Our experiments reveal a role for p53 in negatively 

regulating both microRNAs that overrides the effects of Tax.  

miR-93 as well as miR-106a are also known to suppress the expression of 

CDKN1A; Petrocca et al. (2008) observed that these microRNAs are upregulated in 

gastric cancer and impair the TGFβ tumor suppressor pathway by inhibiting 

expression of p21. This finding suggests that the upregulation of CDKN1A seen in 

cells treated with Nutlin-3a may reflect both activation of p53 and suppression of 

miR-93a and miR-106a.  
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4 The impact of Tax on microRNA expression  

4.1 Background and aim of the study 

The transforming potential of HTLV-1 is attributed primarily to the viral protein Tax, 

which, in addition to transactivating the viral promoter, affects the expression and 

function of cellular genes controlling signal transduction, cell growth, apoptosis and 

chromosomal stability, resulting in clonal proliferation of infected cells (Satou Y et 

al., 2006; Boxus et al., 2009; Tang et al., 2013; Zhao et al., 2013) (see Section 1.3.3).   

The aim of this study was to test the impact of Tax on microRNA regulation by 

expressing Tax in the T-cell line Jurkat followed by analysis of mRNA and 

microRNA expression using quantitative RT-PCR. 
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4.2 MATERIALS AND METHODS 

4.2.1 Cell culture 

The Jurkat T-cell line was maintained in RPMI 1640 medium (Sigma-

Aldrich) supplemented with 10% fetal bovine serum (FBS, Invitrogen), 2 mM 

glutamine (Invitrogen), 100 units/ml penicillin and 20 units/ml streptomycin 

(complete RPMI).  

4.2.2 Transfection of Tax expressing plasmids 

Jurkat cells were transfected with plasmid pcTAX, which expresses HTLV-1 

Tax protein driven by the HCMV promoter (Smith et al., 1990). The transfection 

protocol was set up using the Neon transfection system (Life Technologies). Cells 

were counted and resuspended in aliquots of 5 x 106 cells in 100 µl of T buffer 

(Neon, Life Technologies) for each electroporation. The transfection mixture 

contained 1.5 μg of pcTAX or pBluescript, 1 μg of pMACS-LNGFR (Miltenyi 

Biotec), and pBluescript up to 4 μg total DNA. Transfections were carried out in 100 

µl tip-electrodes of the Neon transfection system with one 1410-V, 30-msec pulse, 

following the manufacturer's recommendations. The cells were then seeded in 6-well 

microplates (34.8-mm diameter) containing complete RPMI lacking antibiotics. 

After 48 hrs aliquots of the cells were labeled with FITC-anti-LNGFR and analyzed 

by flow cytometry to check the efficiency of transfection. Transfected cells were then 

selected using magnetic beads conjugated with anti-LNGFR antibody (Miltenyi 

Biotec) and lysed for RNA analysis. The percentage of LNGFR-positive cells in the 

live-cell population ranged from 49.06 to 55.47%. 
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Cells were lysed in TRIZol (Invitrogen) for isolation of total RNA as 

described in Section 3.2.4.  

4.2.3 Quantitative RT-PCR. 

RT-PCR for microRNAs was carried out as described in Section 3.2.6. 

Differences in expression of miRNAs were calculated using formulas for relative 

quantification(RQ), where Ct is the threshold cycle. 

ΔCt = CtmiRNA of interest−CtRNU44 

∆∆Ct =ΔCtTax positive−ΔCt control (Tax negative) 

RQ = 2-∆∆Ct 

mRNAs coding for OX40, OX40L and 4-1BB were detected by RT-PCR 

using a PCR mix containing SYBR Green as described in Section 3.2.6. Primer 

sequences are listed in Table 6A. 

Tax expression was measured by quantitative RT-PCR using the custom-

designed primers and probe listed in Table 6B (Rende et al., 2011). Probes were 5′ 

end-labeled with FAM and 3′end-labeled with TAMRA.  As an internal control, 

GAPDH mRNA was  analyzed  in  parallel  by  using  the  Endogenous  Control  

Human GAPDH  kit Reagents  (Applied  Biosystems).  PCR reactions were 

performed with an ABI Prism 7900 HT  Sequence Detection System by  using  5  µl  

of  each  diluted  RT  sample  (10  ng/µl)  and  20  µl  of  diluted  Taqman Universal  

PCR  Master  Mix  (Applied  Biosystems)  and  primers  and  probe ;  each  reaction  

was  performed  in  duplicate.  The cycling conditions comprised an initial step at 

50°Cfor 2 min, denaturation at 95°C for 10 min, and 40 cycles at 95°C for 15 sec and 

60°C for 1 min.  
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The  absolute  copy  number  of  each  transcript  was  determined  and  

normalized (normalized copy number, NCN) for the copy number of the GAPDH 

mRNA in the transfected cells.  

Table 6A. Primers to detect NF-κB-responsive genes and ACTB 

Primer  Forward primer (Sense)  Reverse primer (Antisense) 

OX40 
(TNFRSF4) 

CCTGCACAGTGGTGTAACCT AGCGGCAGACTGTGTCCT 

OX4OL 
(TNFSF4) 

TTGCTGGTGGCCTCTGTAAT TTGAATTCGAGGATACCGATG 

4-1BB 
(TNFRSF9) 

GCTCTCGATATCCGGTAGGA GCCTGACCTAGCTAAGACACTTCT

ACTB AGCACAGAGCCTCGCCTTTG GGAATCCTTCTGACCCATGC 

 

Table 6B. Primers and probe to detect Tax mRNA 

TaxRex forward 
primer 

Env s GTCCGCCGTCTAG^CTTCC 

reverse 
primer 

TaxRex as CTGGGAAGTGGG^CCATGG 

probe ENV-G (FAM)-CCCAGTGGATCCCGTGGAG-(TAMRA) 
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4.3 RESULTS 

4.3.1 Identification of the expression of Tax in transfected Jurkat T-cells 

To identify Tax-regulated microRNAs, the T-ALL cell line Jurkat was 

electroporated with a Tax-expressing plasmid or control plasmid along with a 

plasmid expressing LNGFR, which served as a marker to identify transfected cells. 

After evaluating transfection efficiency, LNGFR-positive cells were isolated using 

magnetic beads conjugated with anti-LNGFR antibody. RNA was isolated from the 

cells and subjected to quantitative RT-PCR to detect the Tax mRNA. As shown in 

Figure 33, results verified the expression of Tax in cells transfected with the Tax 

plasmid. 

 

Figure 33. Expression of Tax in Jurkat T-cell line transfected with a plasmid 
expressing Tax. Panel shows the absolute copy number of the Tax mRNA measured 
using quantitative RT-PCR in Jurkat cells (Tax-positive) compared to controls (Tax-
negative), 48 hrs after transfection. Mean values of six independent experiments and 
standard error bars are shown.  
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4.3.2 Elevated expression of OX40, OX40L and 4-1BB in Jurkat cells 

expressing Tax 

To determine whether Tax was functionally active in the Jurkat cells, we 

measured the expression levels of 3 genes of the tumor necrosis factor receptor 

superfamily:  TNFRSF4 (coding for OX40), TNFSF4 (coding for OX40L) and 

TNFRS9 (coding for 4-1BB). OX40 and 4-1BB are costimulatory receptors for TNF 

receptor-associated factor (TRAF) (Kanamaru et al., 2004), and OX40L (gp34 or 

TNFSF4) serves as a ligand for OX40. The ability of Tax to activate expression of 

OX40, OX40L and 4-1BB was demonstrated by Ohtani et al. (1998), Higashimura et 

al. (1996), and Pichler et al. (2008), respectively. Tax-mediated upregulation 

upregulation of these genes was proposed to promote  survival  and  proliferation  of  

long-lived  T  cell  clones  (Pichler et al., 2008; Kress et al.,2011).  

Figure 34 shows that the cells transfected with Tax exhibited increased 

expression of OX40, OX40L and 4-1BB. The strongest upregulation was seen for 

OX40L (about 300-fold). These observations provided indirect evidence that the Tax 

protein was expressed and functionally active in the transfected Jurkat cells. 
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Figure 34. Upregulation of OX40, OX4OL and 4-1BB mRNAs in Jurkat T-cells 
expressing Tax. The plots show the fold induction measured by quantitative RT-
PCR 48 hrs after transfection of Jurkat cells with a plasmid expressing Tax compared 
to controls (Tax negative). Shown are mean values from 6 independent experiments 
with standard error bars.  

4.3.3 The impact of HTLV-1 Tax on microRNA regulation 

As described in Section 3.1, our microarray-based analysis revealed 27 

microRNAs that were differentially expressed in ATLL samples compared to normal 

CD4+ T-cells. To better understand the impact of Tax on microRNA regulation, we 

selected 19 microRNAs to analyze in Jurkat cells transfected with Tax compared to 

control cells (Table 7). Seventeen of these microRNAs were identified using array-

based analysis from our lab (miR-18a, miR-20b, miR-26a, miR-29c, miR-30b, miR-

31, miR-34a, miR-125a, miR-125b, miR-130b, miR-142-5p, miR-146a, miR-146b, 

miR-451, miR-212, let-7e and let-7g). The remaining 2 microRNAs were found to be 

upregulated in ATLL samples or HTLV-1 infected cells in previous studies; these 
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were miR-93 (Yeung et al., 2008) and miR-155 (Pichler et al., 2009; Bellon et al., 

2009; Tomita, 2012).  

Table 7. MicroRNAs analyzed in Jurkat cells transfected with Tax compared to 
control cells 

Expression in ATLL cells or 
infected cell lines 

Deregulated microRNAs 

Upregulated miR-18a, miR-34a, miR-93, miR-130b, 
miR-146a, miR-155, miR-451 

Downregulated miR-20b, miR-26a, miR-29c, miR-30b, 
miR-31, miR-125a, miR-125b, miR-142-
5p, miR-146b, miR-212, let-7e, let-7g 

 

4.3.4 Elevated expression of miR-146a and miR-155 in Jurkat T-cells 

expressing Tax 

Findings from previous studies indicated the ability of Tax induce expression 

of miR-146a and miR-155 (Pichler et al., 2009; Tomita et al., 2009; Tomita, 2012). 

As shown in Figure 35, miR-146a and miR-155 were upregulated in Tax-expressing 

Jurkat cells by about 5.5-fold and 12-fold, respectively, compared to control cells.  

 

Figure 35. Induction of miR-146a and miR-155 expression in Jurkat T-cells 
expressing Tax. The plots show the fold induction of miR-146a and miR-155 in 
Jurkat cells (Tax-positive) compared to controls (Tax-negative), 48 hrs after 
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transfection. RNU44 was used as an endogenous control. The plots report mean 
values from 6 independent experiments with standard error bars. 

4.3.5 The impact of Tax on the microRNA expression profile 

Having verified the ability of Tax to upregulate miR-146a miR-155 in our 

experimental system, we proceeded with the analysis of the other microRNAs listed 

in Table 7.  Results of RT-PCR revealed that Tax did not alter the expression of miR-

26a, miR-29c, miR-30b, miR-31, miR-34a, miR-93, miR-125a, miR-125b, miR-

130b, miR-451, miR-212 or let-7e. However, we observed a modest induction of 

miR-146b and miR-18a, a slight decrease in expression of miR-20b and miR-142-5p, 

and a more substantial decrease in expression of let-7g (Figure 36).   
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Figure 36: Changes in microRNA expression in Jurkat T-cells expressing Tax. 
The plots show the alterations in levels of the indicated microRNAs in Jurkat T-cells 
expressing Tax, compared to controls. RNU44 was used as an endogenous control. 
The plots report mean values from 6 independent experiments with standard error 
bars. 
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4.4 DISCUSSION 

The aim of the present study was to identify microRNAs that are regulated by 

Tax in T-cells. The experimental setup consisted of transient transfection of the T-

ALL cell line Jurkat with a plasmid expressing Tax, isolation of transfected cells, and 

analysis of microRNA levels by RT-PCR. This approach led to the identification of 4 

microRNAs that were induced by Tax (miR-146a, miR-155, miR-146b, and miR-

18a) and one microRNA that was downregulated in Tax-expressing cells (let-7g).  

Among the 4 upregulated microRNAs, miR-146a and miR-155 showed the 

strongest induction (~6 fold and ~12 fold, respectively. The upregulation of these 2 

microRNAs is in line with observations made by Pichler et al. (2008) (see Section 

1.4.1.5). It is noteworthy that we did not observe an increase in the levels of miR-

130b in the Tax-expressing Jurkat cells, as this microRNA was reported to be 

upregulated by Tax via the NF-κB pathway by Yeung et al. (2008). 

Tax-mediated stimulation of the NF-κB pathway is a very important alteration 

induced by the virus that promotes survival and proliferation of infected T-cells and 

their transformation into tumor cells  (Sun  et al.,  2005; Sun, 2011). Indeed, NF-κB 

activation is a hallmark of HTLV-1-infected cells (Watanabe et al., 2005) (see 

Section 1.3.3.2). However, Tax also influences several other transcription factors, 

including CREB, p53, AP-1, Myc, NFAT, SRF, p53, and TGF-β (reviewed by Hall 

and Fujji, 2005). It will therefore be important to identify the mechanism by which 

Tax up- or downregulates the individual microRNAs identified in the present study. 

This question could be approached by transfecting Jurkat cells with mutant forms of 

Tax that are unable to activate or repress specific transcription factors. 
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The upregulation of miR-146b and miR-18a by Tax (Figure 36) has not been 

reported before. miR-146b has the same seed sequence as miR-146a, and their entire 

sequences differ by only two nucleotides (Rusca et al., 2011). Given such a high 

degree of similarity, miR-146a and miR-146b should recognize the same targets. 

This is supported by studies on certain solid tumor cell lines which indicated that 

miR-146a and 146b interfere with invasion and metastasis (Bhaumik et al., 2008; 

Hurst et al., 2009).  

miR-146a and miR-146b are processed from distinct precursors that are coded 

by different genes. Studies based on microarray analysis and quantitative RT-PCR 

revealed downregulation of miR-146b in ATLL cells versus normal CD4+ T-cells 

(Bellon et al. 2009; D’Agostino, unpublished). Further studies are needed to 

understand the mechansims regulating expression of miR-146a and miR-146b in 

Tax-expressing cells vs. ATLL cells.  

miR-18a is a member of the oncogenic miR-17-92 cluster. In some types of 

cancer, upregulation of the miR-17-92 cluster promotes angiogenesis during tumor 

growth (Dews et al., 2006; Olive et al., 2010). miR-18a is known to suppress Dicer1 

(Yao et al., 2012; Luo et al., 2013), and can thereby cause global downregulation of 

microRNA expression levels (Luo et al., 2013).  

We observed reduced levels of let-7g in Tax-expressing Jurkat cells Let-7g is a 

member of the let-7 family. Let-7 was discovered in C. elegans and was shown to 

regulate development, cellular proliferation and differentiation (Pasquinelli et al., 

2000). Let-7 family members control the expression of various targets such as 

BRCA1, BRCA2, FANCD2, PLAGL1, E2F6, E2F8, CHEK1, BUB1, BUB1B, 

MAD2L1, and CDC23 (Johnson et al., 2007) 
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Let-7g was reported to be upregulated in colon cancer (Nakajima et al., 2006), 

suggesting an oncogenic role. However, subsequent studies favored a tumor 

suppressor function for this microRNA. For example, let-7g represses the growth of 

lung cancer cells and lung tumor development (Kumar et al., 2007; Kumar 2008). In 

cancer cells, overexpression of let-7g alters cell cycle progression and reduces cell 

division (Charles et al., 2007). Let-7g expression is downregulated various cancers 

including breast cancer. Observations suggest that reduced expression of let-7g is 

associated with progression of cancer cells (Boyerinas et al., 2010; Qian et al., 2011).   

Yan et al. (2013) reported that TNFRSF4 (OX40) is a target of let-7g. It will 

therefore be of interest to test whether let-7g is able to suppress TNFRSF4 

expression in HTLV-1-infected cells. 

As described in Section 1.4.1.2,  microRNA-mRNA  target  interactions  often  

result  in  degradation  of  the  mRNA. Comparison of microRNA target predictions 

with expression profiles for microRNAs and mRNAs can therefore help in 

identifying mRNA targets for specific microRNAs that are biologically relevant in a 

particular cell system (Lionetti et al., 2009; Sales et al., 2010).  

In collaboration with S. Bortoluzzi (University of Padova), our laboratory 

integrated Affymetrix gene expression data obtained for ATLL samples compared to 

CD4+ controls (Pise-Masison et al., 2009) with Agilent microRNA expression data 

to predict potential targets for differentially expressed microRNAs. Results revealed 

that let-7g is anticorrelated with 14 genes listed in Table 8.  Future experiments will 

be aimed at validating targets of let-7g in infected cells using as a starting point these 

14 genes. 



134 
 

Table 8. Lists of predicted targets of let-7g 

Gene Protein  Associated 
diseases 

Expression in 
ATLL vs. 
CD4 

References 

SUOX Sulfite oxidase Hepatocellular 
carcinoma  

Downregulate
d  

Jin et al., 2012 

DARS2 Aspartyl-tRNA 
Synthetase 2, 
Mitochondrial 

- - - 

CCNF Cyclin F Malignant germ 
cell tumors 

Upregulated Murray et al., 
2013 

SCD Stearoyl-CoA 
Desaturase 

Breast cancer and 
Prostate cancer  

Upregulated Hilvo  et al., 
2011; Kim et 
al., 2011 

NEK3 NIMA-related kinase 
3 

Breast cancer Upregulated McHale et al., 
2008 

RFX5 Regulatory Factor X, 5 - - - 

ATP8B4 ATPase, class I, type 
8B, member 4 

- - - 

SEC14L1 SEC14-Like 1 Prostate cancer Upregulated Agell et al., 
2012 

PGRMC1 Progesterone Receptor 
Membrane 
Component 1 

Breast cancer Upregulated Neubauer et 
al., 2013 

RDX Radixin - - - 

DPP3 Dipeptidyl-Peptidase 3 - - - 

DCLRE1B DNA Cross-Link 
Repair 1B 

- - - 

PTPN7 Protein Tyrosine 
Phosphatase, Non-
Receptor Type 7 

Childhood B-cell 
lymphoma 

Downregulate
d 

Fridberg et al., 
2008 

TTLL4 Tubulin Tyrosine 
Ligase-Like Family, 
Member 4 

Pancreatic ductal 
adenocarcinoma 
cells 

Upregulated Kashiwaya et 
al., 2010 
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ABSTRACT

The present study employed mass sequencing of small RNA libraries to identify the repertoire of small noncoding RNAs ex-
pressed in normal CD4� T cells compared to cells transformed with human T-cell leukemia virus type 1 (HTLV-1), the causative
agent of adult T-cell leukemia/lymphoma (ATLL). The results revealed distinct patterns of microRNA expression in HTLV-1-
infected CD4� T-cell lines with respect to their normal counterparts. In addition, a search for virus-encoded microRNAs yielded
2 sequences that originated from the plus strand of the HTLV-1 genome. Several sequences derived from tRNAs were expressed
at substantial levels in both uninfected and infected cells. One of the most abundant tRNA fragments (tRF-3019) was derived
from the 3= end of tRNA-proline. tRF-3019 exhibited perfect sequence complementarity to the primer binding site of HTLV-1.
The results of an in vitro reverse transcriptase assay verified that tRF-3019 was capable of priming HTLV-1 reverse transcriptase.
Both tRNA-proline and tRF-3019 were detected in virus particles isolated from HTLV-1-infected cells. These findings suggest
that tRF-3019 may play an important role in priming HTLV-1 reverse transcription and could thus represent a novel target to
control HTLV-1 infection.

IMPORTANCE

Small noncoding RNAs, a growing family of regulatory RNAs that includes microRNAs and tRNA fragments, have recently
emerged as key players in many biological processes, including viral infection and cancer. In the present study, we employed
mass sequencing to identify the repertoire of small noncoding RNAs in normal T cells compared to T cells transformed with hu-
man T-cell leukemia virus type 1 (HTLV-1), a retrovirus that causes adult T-cell leukemia/lymphoma. The results revealed a dis-
tinct pattern of microRNA expression in HTLV-1-infected cells and a tRNA fragment (tRF-3019) that was packaged into virions
and capable of priming HTLV-1 reverse transcription, a key event in the retroviral life cycle. These findings indicate tRF-3019
could represent a novel target for therapies aimed at controlling HTLV-1 infection.

Adult T-cell leukemia/lymphoma (ATLL) is an aggressive neo-
plasm of mature CD4� cells that is etiologically linked to

infection with human T-cell leukemia virus type 1 (HTLV-1).
About 15 to 25 million people are infected with HTLV-1 world-
wide, with infection most prevalent in southwestern Japan and the
Caribbean basin. The virus is transmitted through blood, semen,
and breast milk. While most infected individuals remain asymp-
tomatic, about 3% eventually develop ATLL after decades of
clinical latency. HTLV-1 also causes tropical spastic paraparesis/
HTLV-associated myelopathy (TSP/HAM), a progressive demy-
elinating disease that targets mainly the thoracic spinal cord; sim-
ilar to ATLL, TSP/HAM arises in about 3% of infected individuals,
but after a latency period of years rather than decades (for reviews
of HTLV-1 pathogenesis, see references 1 and 2).

HTLV-1 was the first human retrovirus to be identified and is
the only one with a direct etiological link to cancer. HTLV-1 is
classified as a “complex” retrovirus, as its genome contains extra
open reading frames (ORFs), in addition to the gag, pol, pro, and
env genes common to all retroviruses (reviewed in reference 3).
The extra ORFs in HTLV-1 code for a transcriptional transactiva-
tor named Tax, a posttranscriptional regulatory protein named
Rex, and four accessory proteins named HBZ, p30, p13, and
p12/p8 (4).

HTLV-1 is found mainly in CD4� T cells in vivo. Infection of
peripheral blood mononuclear cells (PBMC) with HTLV-1 yields
interleukin 2 (IL-2)-dependent immortalized T cells, some of
which progress to a fully transformed phenotype with IL-2-inde-
pendent growth. The immortalizing potential of HTLV-1 is at-
tributable primarily to the viral protein Tax. In addition to trans-
activating the viral promoter, Tax affects the expression and
function of cellular genes controlling signal transduction, cell
growth, apoptosis, and chromosomal stability (5) and is able to
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cause leukemia when expressed as a transgene in mice (6). HBZ
also likely contributes to the oncogenic properties of HTLV-1; it is
mitogenic for T cells (7) and is able to induce leukemia in trans-
genic mice (8). Other accessory proteins may affect viral transmis-
sion and persistence (9–11).

In the present study, we investigated the expression repertoire
of small noncoding RNAs, in particular microRNAs (miRNAs)
and tRNA fragments (tRFs), in HTLV-1-infected cells. MicroRNAs
negatively regulate gene expression at the posttranscriptional level
by base pairing to specific target mRNAs in RNA-induced silenc-
ing complexes (RISC) containing Argonaute proteins. Perfect
base pairing leads to degradation of the mRNA in an RNA inter-
ference (RNAi)-like manner, while imperfect base pairing (the
more frequent interaction) results in a block of translation (12).
Posttranscriptional regulation of gene expression by microRNAs
is of critical importance in normal cell physiology, and aberrant
expression of microRNAs is emerging as a key component of a
wide range of pathologies, including solid and hematological tu-
mors (13).

Expression studies based on quantitative reverse transcriptase
(RT) PCR and microarray analysis identified a number of cellular
microRNAs that are downregulated or upregulated in infected
cell lines and ATLL cells (14–17). Viruses may also produce
microRNAs as a means of regulating the expression of viral or host
genes (18). Recent studies of bovine leukemia virus (BLV), a ret-
rovirus in the same subfamily as HTLV-1, revealed the expression
of a cluster of viral microRNAs (19, 20). A computational analysis
of the HTLV-1 genome identified 11 sequences with potential to
form stem-loop structures that could yield viral microRNAs (21).

tRFs are produced from the 3= ends of tRNA precursors or
from the 5= ends or the 3= ends of mature tRNAs and are designated
tRF-1, tRF-5, and tRF-3, respectively (22). tRFs have an average
length of 19 nucleotides (nt) (23) and, similar to microRNAs, are
produced by specific cleavage events rather than through degra-
dation. tRF-1 sequences are cleaved from tRNA precursors by the
RNase ELAC2, while Dicer was shown to be responsible for cleav-
age to produce tRF-5 (23) and tRF-3 (24). Although not much is
known about the function of tRFs, tRF-5 and tRF-3 were shown to
form complexes with Argonaute proteins (23, 24), and tRF-3 re-
pressed expression of specific mRNA targets through a mi-
croRNA-like mechanism (24).

We employed 454 massive sequencing to identify the reper-
toire of microRNAs and tRFs expressed in HTLV-1-infected cells
compared to normal CD4� T cells. Comparison of the frequencies
of known microRNAs in the libraries revealed 3 microRNAs that
were differentially expressed in the infected cell lines compared to
CD4 controls, 2 small RNAs that matched HTLV-1 sequences,
and several abundant tRFs. We provide evidence that a tRF corre-
sponding to the 3= end of tRNA-proline is incorporated into virus
particles and can function as a primer for viral reverse transcrip-
tase.

MATERIALS AND METHODS
Cell culture. Cell lines C91PL and MT-2, chronically infected with
HTLV-1 (25), were maintained in RPMI (Sigma-Aldrich) supplemented
with 10% fetal bovine serum (FBS) (Invitrogen), 2 mM glutamine (Invit-
rogen), 100 units/ml penicillin, and 20 units/ml streptomycin (complete
RPMI). PBMC were isolated from buffy coat fractions obtained from
healthy plasma donors attending the Transfusion Unit of Padua City Hos-
pital by centrifugation through Ficoll-Hypaque (GE Healthcare). Half of

the PBMC sample was immediately processed using the MACS CD4� T
cell Isolation Kit II (Miltenyi Biotec), and the resulting CD4 cells were
harvested for total RNA (see below). The other half of the PBMC prepa-
ration was placed in complete RPMI (1 � 106 cells/ml) supplemented
with 100 �g/ml phytohemagglutinin (PHA) (Sigma-Aldrich) and cul-
tured for 48 h. The culture was then supplemented with 50 U/ml IL-2
(Proleukin-Chiron), incubated for an additional 48 h, and harvested for
isolation of CD4 cells with the MACS kit. Flow cytometry analysis revealed
that the isolated cell preparations contained more than 99% and 94% CD4
cells in the unstimulated and stimulated preparations, respectively. Total
RNA was isolated using TRIzol (Invitrogen). The quality of the RNA was
assessed by electrophoresis using the RNA 6000 Nano Assay LabChip Kit
and Agilent 2100 Bioanalyzer, and the RNA concentration was measured
using a Nanodrop spectrophotometer.

Generation of small RNA libraries. Small RNA libraries were gener-
ated according to the method of Lau et al. (26) as follows. A 10-�g aliquot
of each total RNA preparation was spiked with a 32P-labeled 23-nt RNA
tracer and then subjected to polyacrylamide gel electrophoresis (PAGE)
through a 15% denaturing gel, along with a 32P-labeled aliquot of Decade
RNA ladder (Ambion); the presence of the RNA tracer permitted visual-
ization of each modification and purification step after exposure of the gel
to a phosphorimaging screen (Storm; GE Healthcare). Species migrating
in the �18- to 25-nucleotide size range were excised from the gel, eluted,
and ethanol precipitated. The RNA was then modified by addition of a
17-nt oligonucleotide linker (miRNA Cloning Linker 1; IDT) at the 3= end
with RNA ligase (GE Healthcare), PAGE purified through a 12% denatur-
ing gel, modified with a second 17-nt oligonucleotide linker at the 5= end,
and PAGE purified again through a 10% denaturing gel. The resulting
modified RNA was reverse transcribed and PCR amplified in preparation
for sequencing according to a protocol provided by G. Hannon (Cold
Spring Harbor Laboratory), as described previously (27). The resulting
samples were subjected to 454 massive sequencing using a Roche Life
Sciences platform. The total numbers of sequence reads were 7,709
(freshly isolated CD4), 7,818 (stimulated CD4), 7,603 (C91PL), and 6,801
(MT-2). The library prepared from freshly isolated CD4� cells was de-
scribed previously (27). Lists of sequence reads are available upon request.

Identification of microRNAs and tRFs by bioinformatics analysis.
The sequence reads were trimmed from matches with sequencing primers
or linker sequences and subjected to nonredundancy analysis with the
NCBI nrdb program of the BLAST suite (28).

The sequences were compared with the mature microRNA subset of
the mirBase database, version 18 (http://www.mirbase.org/) using the
Smith-Waterman search program from the FastA sequence analysis suite
(29), allowing a maximum of one mismatch between the sequence read
and the reference mature miRNA. Read counts annotated with the mature
microRNA names were tested for differential expression with the Biocon-
ductor edgeR package (30). Reads that did not match mature microRNAs
were subjected to a further comparison with mirBase precursor sequences.
Sequences that did not map to known microRNA precursors were compared
with the downloaded FastA sequences from the Genomic tRNA database
(http://gtrnadb.ucsc.edu/) and tRNA-derived fragments (7) using the
SHRiMP program (http://compbio.cs.toronto.edu/shrimp/). tRF-3019 and
other tRFs were identified by searching sequence lists with Excel tools. The
small RNA sequences that did not correspond to known microRNAs or tRFs
were subjected to novel small RNA prediction with the mirDeep2 pipeline
(31), but no suitable novel candidates were found. All the analyses were inte-
grated with ad hoc written perl scripts.

To identify potential viral microRNAs, the sequence sets were com-
pared to the HTLV-1 genome sequence ATK (GenBank accession no.
J02029 and DDBJ accession no. M33896). Sequences with �90% identity
with HTLV-1 and �2 gaps and �2 mismatches were further analyzed as
described in Results below.

RT assay using tRF-3019. (i) Preparation of RNA template. A DNA
fragment corresponding to nt 721 to 822 of HTLV-1 ATK was PCR am-
plified using the HTLV-1 molecular clone ACH (32) as a template and
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primers U5-s and Gag-as (see Table S1 in the supplemental material). A
20-nt tail was added to the 5= end of the product with a second round of
PCR using primers Tail-U5-s and Gag-as. The 129-nt fragment was
cloned into vector pSG5E, which is a modified version of pSG5 (Strat-
agene) containing the polylinker of pBluescript (Stratagene) 3= to the T7
promoter. The resulting plasmid (pSG-U5-PBS) was linearized 3= to the
insert and in vitro transcribed with T7 RNA polymerase (Invitrogen).
After a DNase 1 digestion to eliminate the plasmid, the mixture was ex-
tracted with phenol-chloroform and ethanol precipitated to recover the
RNA. The resulting pellet was resuspended in water and stored at �80°C.

(ii) Preparation of virus particle lysates containing HTLV-1 reverse
transcriptase. Confluent cultures of C91PL cells were centrifuged at low
speed to remove the cells. The supernatant was passed through a 0.45-�m
filter (Sartorius) and centrifuged at 24,000 rpm in an SW28 rotor for 2 h.
The pelleted material was resuspended in lysis buffer (50 mM Tris-HCl,
pH 7.5, 50 mM NaCl, 0.5% Nonidet-P40; 10 �l per 10 ml centrifuged
supernatant) and stored at �80°C.

(iii) RT assay. The RT assay was based on a published method (33, 34).
For each RT assay, a 100-ng aliquot of in vitro-transcribed RNA was com-
bined with 10 pmol of either tRF-3019 RNA, miR-150-5p RNA (negative
control), tRF-3019 DNA (positive control), or water instead of primer in
a 10.5-�l volume; annealed at 70°C for 10 min; and then cooled on ice.
The mixtures were brought to a final volume of 20 �l containing 1 mM
each deoxynucleoside triphosphate (dNTP), 10 U RNase inhibitor, RT
buffer (25 mM Tris-HCl, pH 8.3, 5 mM MgCl2, 50 mM KCl, 2 mM di-
thiothreitol [DTT]), and 2 �l virion lysate and incubated at 37°C for 1 h,
followed by 95°C for 5 min. A 2.5-�l aliquot of the cDNA product was
amplified in a final volume of 25 �l containing 1� Taq Gold PCR buffer,
2 mM MgCl2, 200 �M dNTPs, 5 pmol each of primers Tail-s and U5-as,
and 0.5 U AmpliTaq Gold DNA polymerase (Life Technologies). The PCR
method consisted of a denaturation step at 94°C for 1 min, followed by 25
cycles of denaturation at 94°C for 30 s, annealing at 58°C for 30 s, and
extension at 72°C for 45 s. The products were analyzed on a 6% polyacryl-
amide gel and stained with ethidium bromide. Images were obtained us-
ing a Bio-Rad Gel Doc XRS system.

RT-PCR to detect tRFs, tRNAs, and gag/pol RNA. FBS may contain
exosomes carrying small RNAs; to avoid this possible source of contami-
nation, complete RPMI containing 20% FBS was centrifuged at 24,000
rpm for 4 h using a Beckman-Coulter SW28 rotor to pellet any exosomes.
The supernatant medium was then passed through a 0.2-�m filter and
brought to 10% FBS by adding an equal volume of RPMI containing
antibiotics and glutamine. C91PL cells were cultured to confluence in the
exosome-depleted medium, and virus particles were recovered as de-
scribed above. RNA was isolated from the pelleted particles and the pro-
ducer C91PL cells using TRIzol LS (Life Technologies). Aliquots of the
RNA were subjected to denaturing PAGE through a 15% polyacrylamide
gel to separate species in the size range of full-length tRNAs from the small
RNAs, with tRNAs visible in the cellular RNA sample and 5 pmol syn-
thetic miR-150-5p serving as size markers for the 2 fractions. The gel was
stained with ethidium bromide, and the regions containing tRNAs and
small RNAs (about 15 to 30 nt) were excised, crushed, and incubated with
gentle mixing in elution buffer (300 mM sodium acetate, pH 5.2, 1 mM
EDTA) overnight at 4°C. RNA was ethanol precipitated and resuspended
in distilled H2O (dH2O) (10 �l per 19 ml of original culture supernatant)
(see Fig. 6, where the fractions are labeled tRNA and tRF).

The primer sets used to amplify tRF-3019, tRF-3003, and the tRNAs
from which they are derived (tRNA-Pro and tRN-Ala, respectively) are
listed in Table S1 in the supplemental material (also see Fig. 6A). RT-PCR
to detect tRF-3019 and tRF-3003 was based on a protocol for detecting
microRNAs (35). Size-fractionated RNA (2 �l) was annealed with 2 pmol
primer RT7-tRF-3019 or RT8-tRF-3003 at 70°C for 10 min in a 7.5-�l
volume. The mixture was brought to 10 �l with the addition of 1 mM
dNTP, 1� RT buffer, and 5 U avian myeloblastosis virus (AMV) reverse
transcriptase (Finnzymes) and reverse transcribed at 40°C for 1 h. Two-
microliter aliquots of the resulting cDNAs were PCR amplified in a final

volume of 25 �l containing 1� Taq Gold PCR buffer, 1.5 mM MgCl2, 200
�M dNTP, 0.1 pmol of primer Short-tRF-3019 or Short-tRF-3003, 2.5
pmol each of primers PCR-tRF-s and PCR-tRF-as (specific for tails added
by the RT primer and Short-tRF primer), and 0.5 U AmpliTaq Gold DNA
polymerase. The PCR method consisted of a denaturation step at 95°C for
10 min and 5 cycles of denaturation at 95°C for 30 s, annealing at 40°C for
45 s, and extension at 72°C for 30 s, followed by 22 cycles of denaturation
at 95°C for 30 s, annealing at 60°C for 45 s, and extension at 72°C for 30 s.

To detect tRNA-Pro and tRNA-Ala, 1 �l of size-fractionated RNA was
reverse transcribed in a 10-�l reaction mixture at 53°C for 50 min using
the antisense primer and Superscript III (Life Technologies). The result-
ing cDNA (2.5 �l) was PCR amplified using sense and antisense primers
and AmpliTaq Gold, with a denaturation step at 95°C for 8 min, followed
by cycles of denaturation at 95°C for 40 s, annealing at 60°C for 40 s, and
extension at 72°C for 40 s (30 cycles for tRNA-Ala and 26 cycles for tRNA-
Pro). To detect gag/pol RNA, 0.5 �l of RNA from virus particles or 200 ng
total RNA from producer C91PL cells was reverse transcribed using
primer Gag-as and Superscript III and then PCR amplified using primers
U5-s and Gag-as (see Table S1 in the supplemental material) and Ampli-
Taq Gold as described above for 30 cycles with an annealing temperature
of 59°C and a final extension step for 5 min at 72°C. The PCR products
were separated on 6% polyacrylamide gels.

RESULTS
Generation, sequencing, annotation, and quantification of
small RNA libraries. Total RNA was isolated from the HTLV-1-
infected cell lines C91PL and MT-2 (25), which have a CD4�

phenotype, and from control normal unstimulated and in vitro-
stimulated CD4� T cells. RNA species of �18 to 25 nt were sepa-
rated by polyacrylamide gel electrophoresis and modified with
tags at the 5= and 3= ends according to the method of Lau et al. (26)
and sequenced using a Roche 454 Life Sciences platform. Se-
quence reads were mapped against mirBase release 18 to identify
the populations of mature known microRNAs in the investigated
cell lines, and the edgeR Bioconductor statistical package (see Ma-
terials and Methods) was employed to identify statistically signif-
icant differences in the frequencies of known microRNAs.

The graphs in Fig. 1 illustrate the 10 most abundant known
microRNAs identified in the libraries. miR-142-3p, a marker of
hematopoietic cells, stood out as the most abundant microRNA in
freshly isolated CD4� T cells and in the infected cell line MT-2,
with a frequency more than triple that of the other microRNAs.
miR-21, a microRNA known to be linked to T-cell activation and
transformation (36), became nearly as frequent as miR-142-3p
upon in vitro stimulation of CD4� cells and was also abundant in
the two infected cell lines.

To identify the microRNAs connected with HTLV-1 infection,
we calculated differences in the frequencies of microRNAs in in-
fected cell lines versus resting and stimulated CD4� T cells. Three
microRNAs were differentially expressed in both infected cell lines
compared to control CD4 cells (indicated in boldface in Table 1:
miR-34a-5p was upregulated, and miR-150-5p and miR-146b-5p
were both downregulated). An analysis performed using the
miRDeep2 software did not yield any putative new microRNA
candidates among the sequence reads detected in this study.

Small RNAs expressed by HTLV-1. With the aim of identify-
ing viral microRNAs, the reads obtained from MT-2 and C91PL
cells were aligned to the HTLV-1 genome. This analysis yielded 25
sequences with �90% identity with HTLV-1 and �2 gaps and �2
mismatches (data not shown). Two sequences shown in Fig. 2A
perfectly matched the primary plus-strand HTLV-1 transcript.
Both sequences were present only in the MT-2 library. Sequence
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MT-2/A was positioned in exon 3, between the stop codons for
p30/p13 and Rex. Sequence MT-2/B was located in the R region, in
a position within stem-loop D of the Rex response element
(RXRE) (37). This segment of the HTLV-1 genome was predicted
to form a pre-miR-like structure and thus to have the potential to
give rise to a viral microRNA (21). Figure 2B shows the predicted
secondary structures of genomic regions containing MT-2/A or
MT-2/B with 5= and 3= flanking sequences to simulate their posi-
tion in the 5= portion of a pre-miR. Results showed that sequence MT-2/A is likely to be present mostly in an unstructured region,

while sequence MT-2/B has a high probability to be positioned in
a stem.

tRFs expressed in HTLV-1-infected cells. We next tested the
sequences identified in the libraries for perfect matches to the 135
tRFs reported by Lee et al. in a study of prostate cancer cell lines
(22). Table S2 in the supplemental material lists the number of
sequence reads for each tRF, as well as isoforms showing varia-
tions at the 5= or 3= end. Overall, in both normal and HTLV-1-
infected CD4 cells, fragments processed from the 3= ends of ma-
ture tRNAs (tRF-3) were considerably more abundant than tRFs
produced from the 3= ends of tRNA precursors (tRF-1) or from
the 5= ends of mature tRNAs (tRF-5) (Fig. 3B).

Figure 3C shows the most abundant tRFs identified in the li-
braries. Among the 22 previously described tRF-1 sequences, tRF-
1001 was the most abundant. tRF-1001, as well as the other tRFs,
were upregulated in normal CD4� cells upon mitogenic stimula-
tion. tRF-3004 and tRF-3029 were more abundant in C91PL cells
than in stimulated CD4� controls, and MT-2 cells yielded few tRF
sequences compared to the other 3 cell types.

The tRF-3 class also includes tRF-3019 (22). This tRF corre-
sponds to the 3= end of tRNA-Pro, the tRNA considered to serve as
the primer for HTLV-1 RT (38). tRF-3019 was the fifth most
abundant tRF identified in our libraries and was most abundant in

FIG 1 Relative abundances of microRNAs identified by 454 sequencing.
Shown are the 10 most abundant microRNAs in normal CD4 T cells and
HTLV-1-infected cell lines. Frequencies were calculated by dividing the num-
ber of sequence reads for each microRNA by the total number of sequence
reads for all known microRNAs.

TABLE 1 Differentially expressed microRNAsa

Cells MicroRNA Log2 FC P value

MT-2 vs. CD4 miR-34a-5p 6.15 0.00015
miR-4448 4.89 0.00366
miR-7-5p 4.35 0.01564
miR-150-5p �10.08 0.00327
miR-30c-5p �8.05 0.01329
miR-146b-5p �7.52 0.03318
miR-29c-3p �6.87 0.03802

C91PL vs. CD4 hsa-miR-34a-5p 6.66 0.00001
hsa-miR-92b-3p 3.82 0.01313
hsa-miR-23a-3p 3.15 0.01166
hsa-miR-150-5p �10.61 0.00127
hsa-miR-342-5p �7.02 0.02719
hsa-miR-26a-5p �6.84 0.00776
hsa-miR-20b-5p �6.74 0.03088
hsa-miR-146b-5p �4.76 0.02268
hsa-miR-19b-3p �3.83 0.03015
hsa-miR-16b-5p �3.65 0.02867

a MicroRNAs with statistically significant differences in expression are indicated in
boldface.

FIG 2 Small RNAs expressed by HTLV-1. (A) Positions and nucleotide se-
quences of the two small RNA species identified in MT-2 cells. MT-2/A corre-
sponded to nt 7582 to 7602 in exon 3 of the HTLV-1 ATK sequence. MT-2/B
corresponded to nt 513 to 530 of the 5= R region and nt 8792 to 8808 of the 3=
R region of ATK. (B) Secondary structure predicted by RNAfold (http://rna
.tbi.univie.ac.at/cgi-bin/RNAfold.cgi; University of Vienna) for HTLV-1 se-
quences containing MT-2/A and MT-2/B with 15 nt added at the 5= end and 50
nt at the 3= end to simulate a pre-miR. The optimal secondary structures and
their minimum free energy (MFE) values are indicated.
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stimulated CD4� cells. A BLAST search for tRNA genes able to
produce tRF-3019 yielded 21 tRNA-Pro genes located on chromo-
somes 1, 5, 6, 11, 14, 16, and 17 (see Table S3 in the supplemental
material). The four libraries contained several tRF-3019 isoforms
with additional nucleotides at the 5= end that perfectly matched
the human genome but were not complementary to the viral ge-
nome (Fig. 4). The libraries also contained a small number of
reads corresponding to fragments derived from other portions of
tRNA-ProTGG and tRNA-ProAGG.

tRF-3019 functions as a primer for HTLV-1 reverse trans-
criptase. It is noteworthy that only the portion of tRNA-Pro cor-
responding to tRF-3019 is complementary to the HTLV-1 primer
binding site (PBS) (Fig. 5A), suggesting that the tRF would be fully
sufficient as a primer for reverse transcription. We thus tested the
primer activity of tRF-3019 in an in vitro reverse transcriptase
assay carried out using a synthetic RNA template and the reverse

transcriptase contained in HTLV-1 particles recovered from the
culture supernatant of C91PL cells (Fig. 5A). The RT assay mix-
tures contained either no primer, synthetic tRF-3019 RNA, or
tRF-3019 DNA as a positive control or miR-150-5p RNA as a
negative control. The PCR mixture contained a sense primer spe-
cific for a tail sequence present in the synthetic RNA template and
an antisense primer positioned immediately 5= to the PBS. Figure
5B shows the results of the assays. The RT assay performed using
tRF-3019 RNA yielded the expected 87-bp PCR product, thus
confirming that tRF-3019 can function as a primer for HTLV-1
RT. The assay carried out using a tRF-3019 DNA primer yielded
the 87-bp product, along with a longer product indicated by the
gray arrow in Fig. 5B. This second band corresponded in size to an
amplicon produced with the tail primer and residual tRF-3019
DNA present in the cDNA (i.e., 107 bp). Interestingly, trace
amounts of the 87-bp product were also detected in the assays

FIG 3 Relative abundances of tRFs. (A) The 3 classes of tRFs aligned to the tRNA precursor. (B) Total numbers of sequence reads with perfect matches to each
of the tRF classes, together with 5= and 3= isoforms (see Table S2 in the supplemental material). (C) Sequence reads for tRFs with a total of at least 50 sequence
reads summed among the 4 libraries.
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carried out using C91PL RT and miR-150-5p or no primer. This
amplicon may have originated from cDNA primed by tRNA-Pro
or tRF-3019 present in the viral particle lysate that was used as a
source of RT (see below).

HTLV-1-infected cells release particles containing tRF-3019.
Having established that tRF-3019 is capable of priming HTLV-1
reverse transcription, we next tested for the presence of tRNA-Pro
and tRF-3019 in virus particles recovered from supernatants of
C91PL cultures. As a control, we also assayed for tRF-3003, the
most abundant tRF-3 detected in the 4 libraries, along with its
parent, tRNA-Ala. As described in Materials and Methods, RNA
isolated from the virus particles and producer cells was subjected
to denaturing PAGE to separate species in the tRF size range from
full-length tRNAs. This was necessary, as the tailed RT-PCR prim-
ers utilized to detect the tRFs also amplified the 3= ends of the
full-length tRNAs (Fig. 6A). RT-PCR products were separated by
PAGE; the intensities of the resulting bands were measured to
estimate relative abundances of the tRNAs and tRFs in virus par-
ticles versus cells.

Figure 6B shows PAGE analyses of the RT-PCR products ob-
tained for tRNA-Ala and tRNA-Pro. As expected, both tRNA-Ala
and tRNA-Pro were readily detected in the C91PL cells. However,
a plot of the ratios of the band intensities (Fig. 6D) revealed that
tRNA-Pro was enriched in virus particles compared to tRNA-Ala.
The RT-PCR products for both tRNAs were much more evident in
the full-length tRNA fraction than in the tRF fraction, indicating
that the denaturing PAGE purification step resulted in acceptable
separation of the 2 size classes.

Figure 6C shows the results of RT-PCR carried out on the same
samples using primer sets that amplified the tRFs present in the

tRF fraction and the 3= ends of the tRNAs in the tRNA fraction.
Calculation of band intensity ratios (Fig. 6D) showed that tRF-
3003 was much less abundant in the virus particles than in the
cells, while tRF-3019 was detected at comparable levels in virus
particles and cells. Therefore, we concluded that tRF-3019 was
enriched in virus particles compared to tRF-3003.

These findings indicate that both tRNA-Pro and tRF-3019 are
incorporated into particles released in the supernatant of HTLV-
1-infected cells. It is necessary to point out that these particles may
also contain exosomes, which may also package proteins and
RNA. However, the observation that the particles were enriched
for tRNA-Pro and tRF-3019 compared to tRNA-Ala and tRF-3003
supports a specific packaging process directed by interaction of
the tRNA/tRF with the HTLV-1 PBS. As shown in Fig. 6E, RT-
PCR assays on RNA isolated from the particles confirmed that
they contain the HTLV-1 genomic gag/pol mRNA. Therefore, al-
though we cannot exclude the presence of exosomes in the particle
preparations, our findings demonstrate that these particles con-
tain reverse transcriptase activity (Fig. 5) and the viral genome and
are enriched for the PBS-specific tRNA-Pro and tRF-3019. Taken
together, these results strongly suggest that tRF-3019 is likely to
contribute to HTLV-1 reverse transcription.

DISCUSSION

In the present study, we employed mass sequencing to identify the
repertoire of small noncoding RNAs expressed in normal T cells
compared to cells transformed with HTLV-1. The results revealed
a distinct pattern of microRNA expression in HTLV-1-infected
cells, two virus-encoded small RNAs, and a number of tRFs. In-
terestingly, the tRNA fragment tRF-3019 was detected in virus

FIG 4 tRFs processed from tRNA-Pro. (Top) Three examples of the 21 tRNA-Pro molecules that are able to produce tRF-3019 (shaded). The diagrams were
obtained from the UCSC database and modified by adding the 3=CCA triplet that is present on mature tRNAs and tRF-3 sequences (Fig. 3). (Bottom) Sequences
of the tRFs and number of reads identified in each library.
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particles and was capable of priming HTLV-1 reverse transcrip-
tion.

Three microRNAs were differentially expressed in both in-
fected cell lines compared to control CD4� cells: miR-34a-5p was
upregulated, and miR-150-5p and miR-146b-5p were both down-
regulated. Their shared pattern of regulation in the two infected
cell lines suggests that these microRNAs play important roles in
HTLV-1 infection/transformation, rather than representing
markers of T-cell activation, which are also present in HTLV-1-
infected cells.

The observation that miR-150-5p expression is reduced in
HTLV-1-infected cell lines is consistent with other studies (15,
16). miR-150-5p undergoes upregulation during T-cell develop-
ment (27) but is diminished upon stimulation of normal murine
CD4� T cells (39). Expression of miR-150-5p is increased in sev-
eral hematological tumors, including ATLL samples (15, 16), but
is downregulated in the cutaneous CD4� T-cell lymphoma Sézary
syndrome (40), in NK/T-cell lymphomas (41), and in several
other hematological malignancies (reviewed in reference 42).
Forced expression of miR-150-5p in B-lymphoma cell lines (43),
T-acute lymphoblastic leukemia (T-ALL) cell lines (27), and NK

cell lines (41) produced antiproliferative and/or proapoptotic ef-
fects. Validated targets of miR-150-5p include the oncogenes
c-Myb (44) and NOTCH-3 (27), as well as the HIV-1 3= untrans-
lated region (UTR) (45). It is noteworthy that the minus-strand
HTLV-1 transcripts coding for HBZ contain 2 potential binding
sites for miR-150-5p (46).

miR-146b-5p is gradually upregulated during T-cell develop-
ment from the double-positive CD4� CD8� to the single-positive
CD4� or CD8� stage (27). The sequence of miR-146b-5p is al-
most identical to that of miR-146a, which was identified as up-
regulated through the action of Tax in previous studies of HTLV-
1-infected cell lines (14, 47). miR-146b-5p mRNA targets,
therefore, likely overlap those identified for miR-146a, which in-
clude the Toll-like receptor signaling pathway proteins TRAF6
and IRAK1 (48), the apoptosis signaling protein FADD (49), and
the chemokine receptor CXCR4 (50). miR-146b-5p is downregu-
lated in ATLL (16, 17), Sézary syndrome (40), and several other
hematological malignancies but is upregulated in mycosis fungoi-
des (51) and pediatric acute myeloid leukemia (52; reviewed in
reference 42).

miR-34a-5p is known to be upregulated by p53 in response to

FIG 5 tRF-3019 acts as a primer for HTLV-1 reverse transcriptase. (A) Summary of the RT assay. The template consisted of an in vitro-transcribed RNA spanning
HTLV-1 nt 721 to 822 modified by the addition of a 20-nt tail at the 5= end. The template was incubated with HTLV-1 reverse transcriptase present in virus particles
recovered from the culture supernatant of C91PL cells and either tRF-3019 RNA, miR-150-5p RNA (negative control), tRF-3019 DNA (positive control), or no primer.
The products of the RT reactions were amplified by PCR using PCR primers Tail-s and U5-as and separated by PAGE in a 6% polyacrylamide gel, along with
MspI-digested pBluescript as a size marker. (B) Composite of the ethidium bromide-stained gel. The black arrow indicates the position of the 87-bp PCR product
expected using primers Tail-s and U5-as. The additional band in lane 3 indicated by the gray arrow was consistent with a product amplified by Tail-s and residual
tRF-3019 DNA primer added to the RT assay. The primer sequences are reported in Table S1 in the supplemental material.
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genotoxic and oncogenic stresses. miR-34a-5p targets genes af-
fecting cell proliferation and survival, resulting in growth arrest,
senescence, and apoptosis; its downregulation in several solid tu-
mors suggests a tumor suppressor role (53). miR-34a-5p was
found to be more abundant in memory versus naive CD4� T cells

(54) and is upregulated in Epstein-Barr virus-transformed B
cells (55) during latency type III (56) and in hepatitis B virus-
associated hepatocellular carcinoma (57) and might thus exert
diverse effects depending on the cell context (58). The results of
RT-PCR assays indicated strong upregulation of miR-34a-5p

FIG 6 RT-PCR to detect tRNAs, tRFs, and gag/pol RNA in virus particles and C91PL cells. (A) As described in Materials and Methods, RNA from virus particles
and producer C91PL cells was subjected to denaturing PAGE; regions of the gel containing tRNA and tRFs were excised, and RNA was recovered by passive
elution and ethanol precipitation. The resulting fractions were subjected to RT-PCR to detect tRNA-Ala, tRNA-Pro, and their tRF-3 sequences, tRF-3003 and
tRF-3019, respectively. (B and C) Images of the RT-PCR products after separation on 6% polyacrylamide gels. The intensities of RT-PCR bands obtained for
tRNAs and tRFs (measured in tRNA and tRF fractions, respectively) were measured using a Bio-Rad Gel Doc XRS imager. (D) Plot of ratios of band intensities
obtained for virus particles versus cells. The calculated ratios were as follows: tRNA-Ala, particles/cells � 0.46; tRNA-Pro, particles/cells � 0.82; tRF-3003,
particles/cells � 0.18; tRF-3019, particles/cells � 1.07. (E) Results of RT-PCR performed on RNA from the virus particles and producer cells to detect HTLV-1
genomic gag/pol RNA. RT-PCR was carried out using primers U5-s and Gag-as as described in Materials and Methods. The dashed white lines were added to
panels B and C to aid in their alignment. The first lane on each gel contained MspI-digested pBluescript as a size marker; band sizes in basepairs are indicated on
the left. The plus and minus signs above the lanes indicate RT reactions carried out in the presence (�) or absence (�) of reverse transcriptase. RNA template was
omitted from the RT reaction in lanes labeled nt.
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in primary samples from ATLL patients (D. M. D’Agostino,
●●●, unpublished data).

Recent studies revealed that BLV, a complex oncogenic retro-
virus related to HTLV-1, encodes a cluster of viral microRNAs
(19, 20). Our deep-sequencing analysis also revealed two virus-
encoded small RNA species (MT-2/A and MT-2/B). However, the
fact that MT-2/A and MT-2/B were detected with only one
sequence read each suggests that, in contrast to BLV, HTLV-1
may not rely on viral microRNAs as a mechanism of posttran-
scriptional regulation. Alternatively, the production of viral
microRNAs might not be favored in cells that are chronically in-
fected, such as MT-2 and C91PL. Therefore, before concluding
that HTLV-1 does not produce microRNAs, it will be important
to measure their levels of expression in the context of primary
samples obtained from infected patients.

The greater representation of tRF-3 sequences than of tRF-1
and tR-5 classes in the libraries is in line with the preponderance of
tRF-3 sequences found in prostate cancer cell lines (see Table S2 in
reference 22) and in mature B cells (24). Previous functional stud-
ies of tRF-1001, which was abundantly expressed in our libraries,
revealed its elevated expression in cancer cell lines compared to
normal tissue samples and indicated that it is required for cell
proliferation (22). Among the tRF-3 sequences abundantly ex-
pressed in the four libraries, functional data are available for tRF-
3018 in the context of B cells (24). This tRF, named CU1276 in the
B-cell study, was differentially expressed in different stages of B-
cell maturation, with the greatest expression found in the germi-
nal center (GC) stage while it was absent in GC-derived lym-
phoma cells. Functional studies of tRF-3018/CU1276 verified its
ability to associate with Argonaute proteins and to repress expres-
sion of RPA1, a protein involved in DNA replication and repair
(24).

The present study focused on tRF-3019, as it corresponds to
the 3= end of tRNA-Pro, which is generally considered to be the
primer for HTLV-1 reverse transcriptase (38). tRF-3019 was ca-
pable of priming HTLV-1 reverse transcription (Fig. 5) and was
enriched in virus particles (Fig. 6). Taken together, these observa-
tions support a role for tRF-3019 in the life cycle of HTLV-1.

As shown in Fig. 4, 12 of the 18 nucleotides of tRNA-Pro that
are complementary to the HTLV-1 PBS are based paired in the
mature tRNA. This positioning of the primer portion of the tRNA
in a closed stem is a characteristic of all retroviral tRNA primers.
These hydrogen bonds must be disrupted in order for the primer
to bind to the PBS, which would not be necessary if a tRF is used as
a primer.

The libraries examined in the present study contained a few
sequence reads for tRF-3015, which represents the 3= end of
tRNA-Lys, the primer for HIV-1 (see Table S2 in the supplemental
material). Schopman et al. (59) pointed out the possibility that
tRFs may serve as primers for reverse transcriptase but also pre-
sented experimental evidence from studies of HIV-1 that did not
support this proposal. Efficient HIV-1 reverse transcription re-
quires interactions of tRNA-Lys with the PBS, as well as other
regions of the viral genome. Of particular importance is an 8-nt
sequence termed the primer activation signal (PAS) located in the
U5 region that binds to the third stem-loop (T arm) of tRNA-Lys
and promotes initiation of reverse transcription and elongation of
the cDNA (reviewed in reference 60). Although all retroviruses are
predicted to contain a PAS (61), the putative PAS in HTLV-1,

which is positioned approximately 10 nucleotides 5= to the PBS,
has not yet been functionally characterized.

The secondary structure of the tRNA primer must also be dis-
rupted to allow nucleotides in the T arm to interact with the PAS.
In HIV-1, the NC protein plays an important role in unfolding
tRNA-Lys to allow its binding to the HIV-1 PAS (62). Interest-
ingly, a study of NC proteins from several retroviruses indicated
that the HTLV-1 NC protein possesses comparatively weak nu-
cleic acid chaperone activity (63). It is possible that another mech-
anism is responsible for unfolding of tRNA-Pro or that the PAS
interaction is not important for HTLV-1.

Alternatively, tRF-3019 may serve as the major primer. In fact,
our in vitro assay showed that tRF-3019 permits reverse transcrip-
tion of a segment of HTLV-1 RNA containing the PBS and pre-
dicted PAS. The detailed picture of the interactions between
HIV-1 RNA elements and its tRNA primer raises the possibility
that tRFs representing the 3= ends of primer tRNAs might support
the initiation of reverse transcription, but not progressivity, with
failure to proceed to the strand transfer step. In this case, tRF-3019
might inhibit the overall process of reverse transcription, thus
acting as a restriction factor for HTLV-1 replication. Further stud-
ies will be necessary to test these hypotheses by comparing the
abilities of tRF-3019 and tRNA-Pro to prime and support strand
transfer.
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