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Summary

Hearing loss is the most common form of sensory impairment, with approx-
imately one infant/1000 born with profound congenital deafness. Nonsyn-
dromic hearing loss and deafness (DFNB1) is an inherited condition with a
mild to severe deafness phenotype caused by mutations in GJB2 (which en-
codes the protein connexin26) and GJB6 (which encodes connexin30). Gap
junction channels formed primarily by these two connexin protein subunits
couple non-sensory cells (supporting and epithelial cells) of the mammalian
cochlea, forming vast functional syncytia. Previous work has shown that
electrical and metabolic coupling mediated by gap junction channels is fun-
damental for the development and maintenance of hearing. However, precise
estimates of the degree of coupling and its alterations under DFNB1 con-
ditions are lacking, notwithstanding the vast body of studies conducted in
recombinant expression systems.
In this thesis work, we combined large scale optical recordings, single cell

electrophysiology and computer simulations to elucidate the mechanisms that
underlie intercellular communication in cochlear supporting cells from juve-
nile mice (first postnatal week). First, we developed a novel technique based
on voltage imaging to map the extent and the degree of electrical coupling in
non-sensory cell networks of the developing mouse cochlea. We also quantified
precisely the reduction of electrical coupling in cochlear organotypic cultures
from transgenic mice with hearing defects due to absence or mutation of
connexin30 compared to wild type animals. By comparing our experimental
results with numerical simulations, we estimated that cochlear supporting
cells in the mouse are already well coupled in the first postnatal week by
as many as ∼ 1500 channels per cell pair. In age-matched cultures from
connexin30(T5M/T5M) and connexin30(−/−) mice, junctional conductance
was reduced respectively by 14% and 91%, and these data account for the
increased hearing thresholds exhibited by these animals in the adult stage.
Besides electrical coupling, inner ear gap junction channels and hemichan-

nels have been shown to participate in ATP- and IP3- dependent intercellular
Ca2+ signaling, and alterations of these signaling mechanisms in the postna-
tal cochlea have been linked to impairment of hearing acquisition. We thus
performed Ca2+ imaging experiments aimed at elucidating the mechanisms
underlying the generation and intercellular propagation of ATP-mediated
Ca2+ signals in cochlear non-sensory cells. We determined that ATP- and
IP3- dependent Ca2+ oscillations in cochlear non-sensory cells can occur at
constant intracellular IP3 concentration. We then combined the information

vii



Summary

gathered from the two types of experimental approaches in a mathematical
model that (i) correctly reproduces the range and propagation speed of inter-
cellular Ca2+ waves and (ii) indicates that inception and culmination of self-
sustained Ca2+ oscillations are marked by supercritical Hopf bifurcations at
ATP concentrations of ∼ 100 nM and ∼1 µM, respectively.
Finally, we investigated the relationship between spontaneous Ca2+ transients

in cochlear non-sensory cells and spontaneous Ca2+ action potentials in sen-
sory inner hair cells. Our preliminary results suggest that Ca2+ signaling
in non-sensory cells may have a modulating effect on spontaneous electrical
activity, which is intrinsically generated in inner hair cells.
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Riassunto dell’attivitá svolta

La perdita dell’udito è la forma più comune di disabilità sensoriale: circa
un bambino su 1000, infatti, è affetto alla nascita da sordità congenita pro-
fonda. La sordità non sindromica (DFNB1) è una malattia ereditaria con un
fenotipo di sordità che va da lieve a grave, causata da mutazioni nei geni GJB2
(che codifica la proteina connessina26) e GJB6 (che codifica la connessina30).
Canali giunzionali formati prevalentemente da queste due proteine accoppiano
le cellule non sensoriali (cellule di sostegno e cellule epiteliali) della coclea dei
mammiferi, le quali formano vasti sincizi funzionali. Studi precedenti hanno
dimostrato che l’accoppiamento elettrico e metabolico mediato da canali giun-
zionali è fondamentale per lo sviluppo e il mantenimento dell’udito. Tuttavia,
nonostante il gran numero di studi condotti in sistemi di espressione, mancano
stime precise del grado di accoppiamento e delle sue alterazioni in condizioni
DFNB1.
In questo lavoro di tesi, sono state combinate registrazioni ottiche su larga

scala , registrazioni elettrofisiologiche su singola cellula e simulazioni al com-
puter per chiarire i meccanismi che sono alla base della comunicazione inter-
cellulare nelle cellule cocleari non sensoriali in topi giovani (prima settimana
post-natale) . In primo luogo, abbiamo sviluppato una nuova tecnica basata
sull’imaging del potenziale di membrana cellulare per mappare l’estensione
e il grado di accoppiamento elettrico nelle reti cellulari non sensoriali della
coclea in via di sviluppo . Abbiamo anche quantificato con precisione la
riduzione dell’accoppiamento elettrico in colture organotipiche cocleari da
topi transgenici con difetti uditivi causati dall’assenza o da mutazioni della
connessina30 rispetto ad animali wild type. Confrontando i nostri risultati
sperimentali con simulazioni numeriche , abbiamo stimato che le cellule non
sensoriali della coclea nel topo sono già ben accoppiate nella prima settimana
post-natale da ben ∼ 1500 canali per ogni coppia di cellule. Nelle colture
di pari età provenienti da topi connexin30(T5M/T5M) e connexin30(−/−),
la conduttanza giunzionale è ridotta rispettivamente del 14% e del 91% , e
questi dati sono in accordo con l’aumento delle soglie uditive mostrato da
questi animali nella fase adulta .
Oltre a fornire l’accoppiamento elettrico , é stato dimostrato che i canali

giunzionali dell’orecchio interno partecipano alla segnalazione Ca2+ intracel-
lulare dipendente dall’ATP e dall’IP3, e l’alterazione di questi meccanismi
di segnalazione nella coclea postnatale é stata collegata alla compromis-
sione dell’acquisizione dell’udito. Abbiamo quindi eseguito esperimenti di
imaging dello ione Ca2+ volti a chiarire i meccanismi alla base della ge-
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Riassunto dell’attivitá svolta

nerazione e propagazione intercellulare dei segnali Ca2+ mediati da ATP
nelle cellule non sensoriali della coclea. Abbiamo determinato che le oscil-
lazioni Ca2+ dipendenti dall’ATP e dall’IP3 nelle cellule non sensoriali co-
cleari possono verificarsi in presenza di una concentrazione intracellulare di
IP3 costante. Abbiamo poi combinato le informazioni raccolte attraverso i due
diversi approcci sperimentali in un modello matematico che (i) riproduce cor-
rettamente la velocità e il range di propagazione delle onde Ca2+ intercellulari
e (ii) indica che l’inizio e il culmine delle oscillazioni Ca2+ sono contrassegnati
da biforcazioni di Hopf supercritiche a concentrazioni di ATP di ∼ 100 nM e
∼ 1 µM, rispettivamente .
Infine , abbiamo studiato la relazione tra transienti Ca2+ spontanei delle

cellule non sensoriali e i potenziali d’azione spontanei delle cellule ciliate in-
terne. I nostri risultati preliminari suggeriscono che i transienti Ca2+ delle
cellule non sensoriali potrebbero avere un effetto modulante sull’attività elet-
trica spontanea , che è intrinsecamente generata nelle cellule ciliate interne.
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1 Introduction

Our auditory system provides us with an incredibly rich source of information about
the world around us. From a physical point of view, what we refer to as “sounds” are
pressure waves generated by vibrating air molecules. The job of the auditory system is
to transform these sound waves into distinct patterns of neural activity, which are then
integrated with information from other sensory systems to guide behavior, including
intraspecies communication.
The first stage of this transformation occurs at the external and middle ears, which

collect sound waves and amplify their pressure, so that the sound energy in the air can
be successfully transmitted to the fluid-filled cochlea of the inner ear. The external ear,
which consists of the pinna, concha, and auditory meatus, gathers sound energy and
focuses it on the eardrum, or tympanic membrane. The external ear collects sound and
channels via the ear canal to the tympanic membrane, or eardrum (Figure 1.1).
As oscillations in air pressure hit on the eardrum, its vibrations are transmitted to the

middle ear’s ossicles, named malleus, incus, and stapes. The major function of the middle
ear is to match relatively low-impedance airborne sounds to the higher-impedance fluid
of the inner ear (the term “impedance” in this context describes a medium’s resistance to
movement). The middle ear ensures transmission of the sound energy across the air–fluid
boundary by boosting the pressure measured at the tympanic membrane almost 200-fold
by the time it reaches the inner ear (Figure 1.1).
In the inner ear, a series of biomechanical processes occur that break up the signal into

simpler, sinusoidal components, with the result that the frequency, amplitude, and phase
of the original signal are all faithfully transduced by the sensory hair cells and encoded
by the electrical activity of the auditory nerve fibers. One product of this process of
acoustical decomposition is the systematic representation of sound frequency along the
length of the cochlea, referred to as tonotopy, which is an important organizational feature
preserved throughout the central auditory pathways.

1.1 Inner ear

The inner ear is situated within the petrous portion of the temporal bone and is
composed of the vestibular system (semicircular canals, utricle, and saccule), which senses
linear and angular acceleration and inclination of the head with respect to gravity, and the
cochlea, which mediates sound perception . In the inner ear, the membranous labyrinth
is contained within the bony labyrinth. The bony labyrinth consists of the vestibular
system (composed by the vestibule and the semicircular canals) and the spirally coiled
cochlea. Within each structure is the corresponding portion of the membranous labyrinth:

1



1 Introduction

Figure 1.1: Anatomy of the human ear. The external ear, which consists of the pinna, concha,
and auditory meatus, collects sound and channels via the ear canal to the tympanic
membrane, or eardrum. As oscillations in air pressure hit on the eardrum, its vibra-
tions are transmitted to the middle ear’s ossicles, named malleus, incus, and stapes.
Finally, the stapes transmits vibrations to the oval window, a membrane-covered
opening to the inner ear. (Figure from Ref. [Purves et al., 2001])

Figure 1.2: The two labyrinths of the inner ear. The bony labyrinth, a cavity in the temporal
bone, is divided into three sections: the vestibule, the semicircular canals, and the
cochlea. Within the bony labyrinth there is a membranous labyrinth, which is also
divided into three parts: the semicircular ducts; two saclike structures, the saccule
and utricle, located in the vestibule; and the cochlear duct, which is the only part
of the inner ear involved in hearing. (Figure from http://www.britannica.com/
EBchecked/topic/288499/inner-ear)

2
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1.1 Inner ear

the vestibule contains the utricle and the saccule, each semicircular canal contains a
semicircular duct (Figure 1.2).
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1 Introduction

Figure 1.3: Anatomy of the cochlea and cochlear duct.
(A) Schematic drawing of the cochlea: BC, bony capsule shown fenestrated near the base to
expose scala vestibuli (SV) and scala tympany (ST), both filled with perilymph; CD, cochlear
duct, filled with endolymph. (B) CD from a P5 mouse after removal of the bony capsule; scale
bar, 1 mm. (C) Schematic diagram of a cross section of the cochlear canals. Scala media (or
cochlear duct) lies between the larger vestibular and tympanic scalae. The base of scala media is
formed by the osseous spiral lamina (OSL) and the basilar membrane (BM). The organ of Corti
rests on the basilar membrane. The organ of Corti contains inner and outer hair cells (IH, OH),
separated by pillar cells (P) that form the tunnel of Corti. In the mature mouse cochlea afferent
synapses typically have a single ellipsoid ribbon per active zone in both inner and outer hair
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1.1 Inner ear

cells. Inner hair cells form afferent synapses only with afferent dendrites (AD) of type I spiral
ganglion neurons. Lateral olivocochlear neurons synapse onto boutons of type I spiral ganglion
neurons in close proximity to inner hair cells. Medial olivocochlear neurons contact outer hair
cells directly. Each outer hair cell is supported by an outer phalangeal cell (OPh), or supporting
cell of Deiters, which holds the base of the hair cell in a cup-shaped depression. From each
Deiters’ cell, a phalangeal projection extends upward to a stiff membrane, the reticular lamina,
that forms the upper layer of the organ of Corti. The apices of the outer hair cells are firmly
held by the reticular lamina but the cell bodies are suspended in fluid that fills the space of
Nuel and the tunnel of Corti. Although this fluid is sometimes referred to as cortilymph, its
composition is thought to be similar, if not identical, to that of the perilymph. Inner hair cells
are supported and enclosed by inner phalangeal cells (IPh) which rest on the thin outer portion,
called the tympanic lip, of the spiral limbus. The latter rests on the margin of the osseous spiral
lamina and hosts interdental cells (Id) and fibrocytes (not shown). Inner border (B) and cuboidal
epithelial cells line the spiral limbus on the inner sulcus (IS) side. Stereocilia on the apical tips
of inner hair cells are arranged in parallel rows. In contrast, stereocilia on outer hair cells form
a “W”-shaped pattern. The longest stereocilia of outer hair cells contact the overlying acellular
structure, the tectorial membrane (TM). The tectorial membrane covers the reticular lamina
and reaches the cells of Hensen (H). Two other types of epithelial cells, cells of Claudius (C)
and Böttcher (B), cover the outer sulcus. The spiral prominence (SP) and the stria vascularis
(SV) are situated at the upper margin of the outer sulcus. Some cells of the outer sulcus send
projections, called root cells (R), into the substance of the fibrous spiral ligament. The spiral
ligament lies between the stria vascularis and the bony wall of the cochlea and hosts numerous
fibrocytes (not shown). Like the adjacent stria vascularis, the spiral ligament is well supplied
with blood capillaries (Cp). The vas spiralis (V) is a blood vessel running in the tympanic layer
of the basilar membrane just beneath the tunnel of Corti. The transparent vestibular membrane
of Reissner (RM), which consists of only two layers of flattened cells, stretches from the stria
vascularis to the medial margin of the spiral limbus.(Figure from Ref. [Mammano, 2013])

1.1.1 Developmental anatomy of the mammalian cochlea

The cochlea is a snail–shaped inner ear structure divided in three chambers, namely
the scala vestibuli, the scala tympani, and the scala media (also known as cochlear
duct) [Krstic, 1997,Raphael and Altschuler, 2003] (Figure 1.3A and B). The scala tym-
pani is connected by the cochlear aqueduct to the subarachnoidal space of the cranial
cavity, which is filled with cerebrospinal fluid. The scalae vestibuli and tympani are
connected through an opening at the apical end of the cochlea, called the helicotrema
and are both filled with perilymph, a fluid whose composition is similar to that of cere-
brospinal fluid. The mature cochlear duct is filled with endolymph, an unusual extracel-
lular fluid containing 150 mM K+, 2 mM Na+ and as little as 20 µM extracellular free
Ca2+ concentration ([Ca2+]o) [Bosher and Warren, 1978].
The isolation of endolymph from perilymph depends on cells that form the cochlear

duct epithelium. These epithelial cells are connected by a network of tight and adherens
junctions near their apical surfaces (i.e. in facing the scala media). The duct epithe-
lium includes the organ of Corti (Figure 1.3C) [Lim, 1986], which is the sensory organ
responsible for sound transduction. The organ of Corti rests on the basilar membrane
and has the form of an epithelial ridge encompassing highly specialized sensory inner
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1 Introduction

and outer hair cells. Hair cells possess an apical stereociliary bundle that is the site of
sound transduction. In the adult human cochlea there are about 3500 inner hair cells,
organized in a single row. There are approximately three times as many outer hair cells,
organized in three parallel rows. Preceding the acquisition of hearing, the sensory ep-
ithelium comprises the greater epithelial ridge (GER), which gives rise to the inner hair
cells and medial non–sensory cells, and the adjacent lesser epithelial ridge (LER), which
is thought to generate the outer hair cells and lateral non–sensory cells [Eggston and
Wolff, 1947,Lim and Rueda, 1992]. Cells providing mechanical support to hair cells are
designated as supporting cells. In the mature organ of Corti, supporting cells include
inner phalangeal cells, inner and outer pillar cells, outer phalangeal cells (also known
as Deiters’ cells), and Hensen’s, Böttcher’s and Claudius’ cells. The rows of inner and
outer hair cells are separated by the triangle of Corti, formed by the apposition of inner
and outer pillar cells. The inner phalangeal cells completely surround the inner hair
cells. The outer phalangeal cells form cups holding the synaptic poles of the outer hair
cells and send fine processes, or phalanges, to the reticular lamina. This is a thin, stiff
cytoplasmic plate that extends from the innermost row of outer hair cells to the Hensen’s
cells sealing the apical (endolymphatic) poles of outer hair cells within a mosaic of ap-
posing phalangeal process of outer pillar cells and outer phalangeal cells. The tectorial
membrane covers the organ of Corti throughout the cochlea, from base to apex. It is
medially attached at the spiral limbus to interdental cells. The inferior aspect of the tec-
torial membrane is in contact with the stereocilia of outer hair cells and with Hensen’s
cells at the lateral edge of the organ of Corti. Hensen’s stripe is an area in the inferior
aspect of the TM, with which inner hair cell stereocilia are thought to interact. Medial to
the organ of Corti, the cochlear duct epithelium comprises interdental cells of the spiral
limbus. Lateral to the organ of Corti, the duct epithelium consists of spiral prominence
cells and marginal cells of the stria vascularis. The remainder of the duct wall is formed
by the Reissner’s membrane [Krstic, 1997,Raphael and Altschuler, 2003].

1.1.2 Physiology and development of the cochlea

The stria vascularis transports K+ into the endolymph and generates the endocochlear
potential [Hibino and Kurachi, 2006,Zdebik et al., 2009,Patuzzi, 2011a,Patuzzi, 2011b].
This is an electrical potential difference between endolymph and perilymph. The en-
docochlear potential appears around postnatal day 5 (P5, where P0 indicates the day
of birth) in rodents and increases progressively to reach levels in excess of +100 mV
by P17 [Schmidt and Fernandez, 1963,Uziel et al., 1981,Rybak et al., 1992]. The high
potassium concentration in mature endolymph (150 mM) is a necessary but not sufficient
condition for the endocochlear potential. A study perfomed by Yamasaky et al. [Ya-
masaki et al., 2000] was specifically designed to clarify the chronological developmental
process of monovalent ions (Na+, K+, Cl−) in the endolymph of the mouse in relation to
the development of the endocochlear potential. In that study, the concentrations of all
three monovalent ions in endolymph reached adult levels at P7, when the endocochlear
potential was still under +20 mV, whereas the endocochlear potential increased abruptly
after P7 and reached approximately +80 mV at P14 [Yamasaki et al., 2000].
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1.1 Inner ear

Both the endocochlear potential and the high endolymphatic potassium are key fac-
tors for the mechanotransduction process performed by cochlear hair cells [Wangemann,
2006, Fettiplace et al., 2006, Schwander et al., 2010, Richardson et al., 2011]. Mechan-
otransduction is initiated by mechanical stimuli applied to the stereociliary bundle due
to the sound–evoked shearing motion between the reticular lamina and the tectorial
membrane. Movement of the hair cell stereocilia in the direction of the taller row opens
transduction ion channels in the stereocilia [Beurg et al., 2009]. The large potential dif-
ference between the endolymph and the cytoplasm of inner and outer hair cells drives
potassium ions into hair cells through these mechanically gated channels. In adult hair
cells, K+ influx generates a receptor potential, which is a graded change of membrane
potential, Vm. Hair cell depolarization triggers glutamate release at specialized affer-
ent synapses, known as ribbon synapses, located on their basal pole [Glowatzki et al.,
2008, Meyer and Moser, 2010, Matthews and Fuchs, 2010]. Ribbon synapses connect
hair cells to (afferent dendrites of) spiral ganglion neurons, which transmit impulses into
central nervous system activating central pathways that lead to hearing [Rusznak and
Szucs, 2009,Meyer and Moser, 2010,Nayagam et al., 2011]. Type I spiral ganglion neu-
rons are large bipolar neurons that comprise the major population (90–95%) of spiral
ganglion cells and are postsynaptic to inner hair cells, the auditory sensory cells of the
mammalian cochlea. The features of the inner hair cell ribbon synapses combine with
the firing properties of spiral ganglion neurons to generate the auditory temporal code
with high precision [Rutherford et al., 2012].

It is well established that receptor potentials in outer hair cells drive a local mechanical
amplification process [Ashmore, 2008, Dallos, 2008], carried out by the motor protein
prestin [Zheng et al., 2000, Schaechinger et al., 2011]. This mechanical amplification is
required for the high sensitivity and sharp frequency selectivity of mammalian hearing
( [Dallos, 2008,Ashmore, 2011,Johnson et al., 2011a]). In contrast, the synaptic function
performed by outer hair cells is poorly understood. They are presynaptic to type II spiral
ganglion neurons that have small unmyelinated axons and constitutes only 5% of the
cochlear nerve. While the type I fibers turn upwards toward the inner hair cells, the type
II fibers cross the tunnel of Corti along its floor in a radial trajectory and then turn toward
the basal end of the cochlea (these fibers were called outer spiral fibers before it was known
that they were connected to type II neurons). The peripheral endings of type II spiral
ganglion neurons branch extensively and innervate a dozen outer hair cells, generally in
the same row. Recent data suggest that type II fibers could communicate centrally by
maximal activation of their entire pool of presynaptic outer hair cells [Weisz et al., 2012].
Type II afferents also contact Deiters’ and Hensen’s cells in the apical cochlear turn,
but these cells lack presynaptic ultrastructure and are considered postsynaptic to type II
afferents [Burgess et al., 1997,Fechner et al., 2001]. Thus it is possible that type II fibers
establish local circuit interactions between outer hair cells and supporting cells; however
the function of this putative interaction remains elusive. Reciprocal synapses between
outer hair cells and their type-II terminals have been detected in human, chimpanzee, cat,
guinea pig, and mouse throughout the cochlear spiral and in all three rows of outer hair
cells [Nayagam et al., 2011]. Thiers et al. [Thiers et al., 2008] think that this local circuitry
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may mediate feedback control of, and bidirectional communication among, outer hair
cells. In addition, modulatory top-down control is effected by neurons of the superior olive
forming efferent synapses on hair cells and postsynaptic boutons [Robertson, 2009,Guinan
Jr., 2006].
While the human full–term neonate can hear at birth, auditory function in most ro-

dents begins between P10 and P14, reaching adult–level thresholds between by the 3rd

postnatal week [Mikaelian et al., 1965,Ehret, 1977,Uziel et al., 1981]. Of notice, inner
hair cells of neonatal mice and gerbils generate spontaneous Ca2+ action potentials [Mar-
cotti, 2012] throughout pre-hearing stage of development [Johnson et al., 2012, Johnson
et al., 2011b]. Beurg et al. [Beurg et al., 2008] reported that also immature outer hair
cells fire regenerative action potentials, which are presumably Ca2+–dependent as they
are not eliminated by tetrodotoxin but are abolished by nifedipine, a blocker of L-type
Ca2+ channels. The complete disappearance of spontaneous action potentials and re-
placement by graded receptor potentials is mainly due to the expression of K+ ion chan-
nels characteristic of mature cells [Kros et al., 1998].
While spontaneous action potentials are occurring in immature hair cells, the audi-

tory afferent fibers undergo extensive reorganization (reviewed in refs. [Defourny et al.,
2011,Appler and Goodrich, 2011,Bulankina and Moser, 2012]; summarized schematically
in Figure 1 of ref. [Greenwood et al., 2007])The more numerous type I spiral ganglion
neurons that initially innervate both inner hair cells and outer hair cells undergo pruning.
This pruning results in the retraction of neurites that innervate outer hair cells and the
refinement of innervation to the inner hair cells. The end result is a one–to–one axoso-
matic innervation characteristic of mature inner hair cells. Conversely, the less abundant
type II spiral ganglion neurons that also initially innervate both inner and outer hair cells
lose their connections with inner hair cells. Maturation of mechanotransduction parallels
these events. Details of mechanotransduction have been investigated in acute explants
and in organotypic cultures of cochlear tissue [Waguespack et al., 2007,Lelli et al., 2009].
These explant cultures (Figure 1.4) preserve the architecture and functional relationships
among the cells observed in vivo and are readily obtained from mice before the onset of
hearing [Van de Water and Ruben, 1971,Sobkowicz et al., 1975,Sobkowicz et al., 1993].
Electrophysiological recordings indicate that hair cells in rat organotypic cultures show
normal immature development of mechanotransduction properties [Waguespack et al.,
2007].

1.2 Connexins and gap junctions

Hearing relies not only on the functional maturation of hair cells, but also on differen-
tiation and proper organization of non–sensory cell networks that transfer signaling, ion,
and nutrient molecules through gap junction channels [Cohen-Salmon et al., 2005,Kelly
and Chen, 2009]. The network of epithelial gap junctions forms around embryonic day
16 and interconnects all supporting cells in the organ of Corti as well as adjacent ep-
ithelial cells. The epithelial gap junction network apparently subdivides further in two
separate, medial and lateral, buffering compartments. These two distinct compartments
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1.2 Connexins and gap junctions

Figure 1.4: The sensory epithelium of the developing cochlea. Top: Differential interference con-
trast (DIC) micrograph of the sensory epithelium in the basal turn of an organotypic
cochlear culture, viewed from the scala media. LER, lesser epithelial ridge; GER,
greater epithelial ridge; HCR, hair cell region; scale bar, 50 µm. Bottom: Schematic
diagram of the epithelium viewed in transverse section, i.e. in a plane that contains
the axis of the modiolus. Abbreviations as in Figure 1.3 (Figure from Ref. [Mam-
mano, 2013])
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are believed to be individually dedicated to the homeostasis of inner and outer hair cells,
respectively [Spicer and Schulte, 1998,Jagger and Forge, 2006]. A second network, named
the connective tissue gap junction network, starts to develop around birth. This latter
network comprises interdental cells and fibrocytes in the spiral limbus, fibrocytes of the
spiral ligament, basal and intermediate cells of the stria vascularis [Cohen-Salmon et al.,
2005].

1.2.1 The potassium recycle hypothesis

A long–standing tenet is that gap junction networks of mature cochlea intervene in
the recycling of potassium ions to the endolymph (reviewed in refs. [Kikuchi et al.,
2000,Wangemann, 2002, Zhao et al., 2006, Mistrik and Ashmore, 2009]). In such K+

recycle hypothesis, cochlear non–sensory cells are presumed to buffer the K+ that enters
apical channels on the stereocilia of hair cells during auditory transduction, diffuses to
the soma, and is released there through basolateral K+ channels. Because epithelial and
connective gap junction networks are discontinuous at the lateral wall of the cochlea, the
recycle scheme requires K+ leaving the epithelial or diffusing through perilymph to be
taken up by the fibrocytes in the spiral limbus [Cohen-Salmon et al., 2005]. To complete
the circuit, intercellular transport of K+ might occur along the cochlear wall via gap
junctions that link fibrocytes with basal and intermediate cells of the stria vascularis
[Kelly et al., 2011]. After reaching the stria vascularis, potassium ions are then released
by intermediate cells into the lumen of the stria vascularis and are finally transported
into strial marginal cells for secretion back into endolymph, thereby completing the K+

cycle (Figure 1.5) [Kikuchi et al., 2000, Wangemann, 2002, Zhao et al., 2006, Mistrik
and Ashmore, 2009]. The K+ recycle hypothesis, although lacking experimental proof, is
indirectly supported by the widespread distribution of gap junction channels [Lautermann
et al., 1999,Lautermann et al., 1998,Kikuchi et al., 1995], K/Cl cotransporters [Boettger
et al., 2002], and aquaporins [Huang et al., 2002]. The K+ recycle hypothesis is also
consistent with the observation that several classes of supporting cells in the cochlear
sensory epithelium express glial fibrillary acidic protein (GFAP) [Rio et al., 2002]. GFAP
is a classic marker for astrocytes that, in the central nervous system, spatially buffer
K+ through the glial syncytium [Kofuji and Newman, 2004]. However the K+ recycle
hypothesis also meets some difficulties, as detailed hereafter.

1.2.2 Cochlear connexins and deafness

Gap junction channels in the mammalian cochlea are formed primarily by connexin26
and connexin30 protein subunits [Lautermann et al., 1999,Lautermann et al., 1998] en-
coded by nonsyndromic hearing loss and deafness (DNFB1) genes GJB2 and GJB6,
respectively (reviewed in refs. [Nickel and Forge, 2008,Martinez et al., 2009]); see also
http://www.ncbi.nlm.nih.gov/books/NBK1272/). The fact that DFNB1 is the most
common form of inherited deafness in Caucasian populations highlights the importance of
connexins for hearing (reviewed in refs. [Hilgert et al., 2009,del Castillo and del Castillo,
2011]). Connexin26 and connexin30 share 77% amino acid identity and may assemble
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1.2 Connexins and gap junctions

Figure 1.5: Potassium spatial buffering in the cochlea. K+ released from the hair cells has been
proposed to flow through scala tympani perilymph before entering the spiral ligament
and being secreted back into endolymph. Conversely, according to the potassium
recycle hypothesis, K+ released from cochlear hair cells is taken up by adjacent
supporting cells and flows from cell to cell through the gap junction network towards
the spiral ligament, thereby never entering the perilymph. Figure from [Mammano
et al., 2007]
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Figure 1.6: Connexin26 channels and hemichannels. (A) Topology representation and sequence
alignment of the human connexin26. NT, N-terminus; CT, C-terminus; TM1-TM4,
transmembrane helices 1 to 4; CL, cytoplasmic loop connecting TM2, TM3; EC1,
EC2, extracellular loops connecting TM1 to TM2 and TM3 to TM4, respectively.
Residue color code: blue, positive; red, negative; white, hydrophobic; green, hy-
drophilic. (from [Zonta et al., 2012]) (B) Left: side view of the structure of the
human connexin26 gap junction channel in ribbon representation. The correspond-
ing protomers in the two hemichannels, which are related by a two-fold axis, are
shown in the same colour. Right: Vertical cross-section through the gap junction
channel, showing the surface potential inside the channel. The channel features a
wide cytoplasmic opening, which is restricted by the funnel structure, a negatively
charged path and an extracellular cavity at the middle. The electrostatic potentials
range from 240 (red) to 40 (blue) kT e−1 (from [Maeda et al., 2009]). (C) Connexin26
connexon model in a lipid bilayer (from [Zonta et al., 2012]).(D) Left: atomic force
microscopy tomograph showing the connexon arrangement in the extracellular sur-
face. Right: average atomic force microscopy tomograph of connexon hemichannels
in Ca2+ free (top) and 0.5 mM Ca2+ extracellular solution (bottom) (from [Muller
et al., 2002])

12



1.3 Calcium signaling in the cochlea

to form heteromeric and heterotypic gap junction channels [Forge et al., 2003, Ahmad
et al., 2003,Yum et al., 2007]. To date, the human connexin26 gap junction channel is
the only structure that has been resolved by X-ray diffraction (at 3.5 åresolution, Figure
1.6) [Maeda et al., 2009]. The structure of connexin30 channels has been inferred by a
combination of homology modeling and molecular dynamics [Zonta et al., 2012]. Mouse
models confirm that connexin26 and connexin30 are essential for auditory function and
for survival and development of the organ of Corti [Cohen-Salmon et al., 2002, Kudo,
2003,Teubner, 2003,Chang et al., 2008,Sun et al., 2009,Schutz et al., 2011,Schutz et al.,
2010]. These animal models also reveal critical gaps in our current understanding of the
role played by connexins in the inner ear and the etiology of deafness due to absent or
mutated connexins. Deafness and absence of an endocochlear potential in mice lacking
connexin30 correlate with: (1) disruption of the endothelial barrier of the capillaries
supplying the stria vascularis before endocochlear potential onset; (2) down–regulation
of betaine–homocysteine S–methyltransferase; and (3) local increase in homocysteine, a
known factor of endothelial dysfunction [Cohen-Salmon et al., 2007] with no obvious link
to gap junction channel function. Similarly, the hypothesis that connexin dysfunction im-
pacts primarily on K+ recycling is challenged by the identification of connexin26 human
recessive deafness mutants, e.g. V84L [Kelley et al., 1998], that are capable of forming
functional channels [Bruzzone et al., 2003]. Studies performed in model cells indicate
that connexin26 V84L mutant channels are as permeable to K+ as wild type channels.
However, the transfer of the second messenger IP3 (and possibly of other key metabo-
lites) through the mutant channels is impaired [Beltramello et al., 2005,Decrock et al.,
2011]. Thus, the permeability of connexin gap junction channels to metabolites [Hernan-
dez et al., 2007,Harris, 2007], and not simply to small inorganic ions, is likely to play
an important role in development, physiology and etiology of connexin–related hearing
impairment. For an in–depth analysis of other difficulties confronting the K+ recycle
hypothesis, see refs. [Patuzzi, 2011a,Patuzzi, 2011b] . Chloride ions also play an impor-
tant role in cochlear function. For example, a mouse model of Bartter syndrome (an
autosomal recessive disorder characterized by congenital deafness and severe renal salt
and fluid loss) showed that barttin in the marginal cells of stria vascularis is essential for
the generation of the endocochlear potential [Rickheit et al., 2008]. Barttin is an impor-
tant subunit of certain chloride channels (ClC–Ka, ClC–Kb). Impairment of this Cl−

path causes a reduction of endocochlear potential, but not the high K+ concentration of
endolymph, leading to deafness [Rickheit et al., 2008].

1.3 Calcium signaling in the cochlea

Calcium ions (Ca2+) play numerous and fundamental roles in the inner ear. In sec-
tion 1.3.1 and 1.3.2 of this chapter, we focus on the aspects of sound transduction that
are influenced by Ca2+, including mechanotransduction function and neurotransmitter
release at the hair cell synapse. In the last part, we concentrate on Ca2+ signaling in the
network of non-sensory cells in the developing cochlea.
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1.3.1 Calcium signaling at the hair cell endolymphatic pole

In the cochlea, the relative motion between the sensory cells and their overlaying struc-
ture, the tectorial membrane, causes the deflection of the hair bundle and the opening
of mechanotransduction channels, one of the few ion channels not yet conclusively iden-
tified [Peng et al., 2011]. Stereocilia in the hair bundle are arranged in rows of graded
height [Lin et al., 2005] and a fine extracellular filament, termed the tip link, connects
the top of each stereocilium to the side of its taller neighbor, parallel to the bundle’s axis
of mechanical sensitivity [Kachar et al., 2000]. Tip-links are mechanically in series with
a yet unidentified elastic element, termed gating spring [Kachar et al., 2000, Gillespie
et al., 2005], which pulls on transduction channels and whose stiffness may be Ca2+-
dependent [Cheung and Corey, 2006]. It is thought that the hair cell receptor potential
is caused by deflection of the hair bundle towards the tallest stereocilia, which increases
the tension in the tip link causing the opening of mechanotransduction channels located
at its bottom end [Beurg et al., 2009]. Indeed, application of the Ca2+ chelator BAPTA
to the hair bundle disrupts the tip links and abolishes mechanotransduction currents [As-
sad et al., 1991,Zhao et al., 1996,Furness et al., 2008]. Cadherin 23 and protocadherin
15, respectively comprising 27 and 11 cadherin repeats, with Ca2+ binding sites in the
interrepeat regions, interact at their N termini forming the upper (cadherin 23) and lower
(protocadherin 15) part of tip links [Kazmierczak et al., 2007]. Furthermore, Molecular
Dynamics simulations of the first two repeats of cadherin 23 suggest that binding at inter-
repeat sites is essential to determine cadherin 23 stiffness and folding strength [Sotomayor
et al., 2010]. A Ca2+ binding motif has also been identified at the N terminus of cadherin
23 [Elledge et al., 2010], which could play an important role in the formation of the tip
link and might also account for the disruptive effects of BAPTA [Assad et al., 1991,Zhao
et al., 1996]. Recent results in transgenic mice provide genetic evidence consistent with
protocadherin 15 and cadherin 23 being part of the tip-link complex and necessary for
normal mechanotransduction [Alagramam et al., 2011]. Further support to the tip-link
model of transduction is derived from the evidence that mutations in genes encoding
for cadherin 23 and protocadherin 15 have been associated with Usher syndrome type
1 and nonsyndromic hearing loss DFNB12 and DFNB23 [Bolz et al., 2001,Bork et al.,
2001,Ahmed et al., 2003].
Not only is Ca2+ essential to preserve the structure of the tip-links, but it also con-

tributes to the mechanotransduction current. Based on early experiments performed
under mM levels of extracellular Ca2+ concentration ([Ca2+]o), it had been concluded
that ∼10% of the total mechanotransduction current was carried by Ca2+ [Ricci et al.,
1998]. However, as previously mentioned, [Ca2+]o in endolymph is as low as a few tens of
µM [Bosher and Warren, 1978,Corey and Hudspeth, 1983] and recent work indicates that
the fraction of mechanotransduction current attributable to Ca2+ decrease in proportion
to [Ca2+]o; at endolympatic levels of [Ca2+]o, it accounts for only the ∼0.2% of the total
mechanotransduction current [Beurg et al., 2010b]. In a standard experimental protocol,
adaptation is measured by the decrease in mechanotransduction current, which occurs
during a sustained deflection of the hair bundle [Howard and Hudspeth, 1987]. Under
these experimental conditions, adaptation shifts the relationship between the channel
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open probability (P0) and the bundle displacement (X) in the direction of the applied
stimulus, canceling the effects due to sustained stimuli while maintaining the sensitivity
to transient stimuli [Fettiplace and Ricci, 2003]. In this complex phenomenon, at least
two phases, both Ca2+-dependent, can be distinguished: (i) fast adaptation, which oc-
curs when Ca2+ enters transduction channels, then closes them within a few milliseconds
or less; (ii) slow adaptation, which occurs with a time constant that spans a wide range
of 10-50 ms depending on the type of hair cells studied (reviewed in [Peng et al., 2011]).

Fast adaptation is thought to be caused by the direct binding of Ca2+ to an intracellu-
lar site of the mechanotransduction channel or a closely associated subunit which closes
the channel itself [Cheung and Corey, 2006,Howard and Hudspeth, 1988,Crawford et al.,
1991,Ricci et al., 2005,Wu et al., 1999]. Slow adaptation, which has been studied exten-
sively in vestibular hair cells, has been linked to activity of molecular motors [Howard and
Hudspeth, 1987], composed of unconventional myosin molecules [Holt et al., 2002,Kros
et al., 2002,Grati and Kachar, 2011], which interact in a Ca2+-dependent manner with
actin filaments at the core of stereocilia [Gillespie and Muller, 2009]. The known stere-
ocilia myosins that could affect adaptation in both inner hair cells and outer hair cells
are myosin-Ic, VIIa, and IIIa [Hasson et al., 1995, Schneider et al., 2006,Dumont et al.,
2002]. Another unconventional myosin, XVa, which is required for normal growth of hair
cell stereocilia, has been implicated in fast adaptation based on a study of P1-P4 shaker 2
mice (that have no functional myosin-XVa) [Stepanyan and Frolenkov, 2009]. This study
indicates that: (i) Ca2+ sensitivity of the mechanotransduction channels and the fast
adaptation require a structural environment that is dependent on this unconventional
myosin; (ii) this environment is disrupted in inner hair cells of this mutant strain, but
not in outer hair cells. However, available data indicate that myosin-XVa is present at
the tips of wild-type stereocilia in both inner hair cells and outer hair cells [Belyantseva
et al., 2003,Rzadzinska et al., 2004]. Thus, to account for the different effects of myosin-
XVa deficiency in outer hair cells and inner hair cells, it has been suggested that the loss
of fast adaptation in inner hair cells of shaker 2 mice is associated with an unusual hair
bundle architecture in these cells [Stepanyan and Frolenkov, 2009].

As for the mechanism of slow adaptation, in the classical scheme the motor complex is
located in series with the transduction channel and its spring and is continuously trying
to “climb up” the stereocilium, changing the position of the upper end of the tip link,
thus increasing tension. Following a positive stimulus, the motor complex “slides down”,
decreasing tension in the tip link and closing the channel [Gillespie and Muller, 2009].
However, analysis of the time course and pattern of myosin-Ic expression in inner and
outer hair cell stereocilia [Schneider et al., 2006,Waguespack et al., 2007] poses several
challenges to the motor model of adaptation [Peng et al., 2011]. Furthermore, a motor
complex located at the upper end of the tip link is hard to reconcile with the localization
of the mechanotransduction channel, and thus of the site of Ca2+ entry, at the lower
end of the tip link [Beurg et al., 2009]. In order to resolve this conundrum, it has been
proposed that Ca2+ entering through a transduction channel might affect the adaptation
motor hooked up to the next tip link lower down the same stereocilium (for an explicative
scheme, see Fig.5 of Ref. [Gillespie and Muller, 2009]). This implies that the tallest rows
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of stereocilia, which do not admit Ca2+ through mechanotransduction channels, are not
likely to present Ca2+ -dependent adaptation.
It is probably worth mentioning also that Ca2+ can influence mechanotransduction via

cyclic adenosine monophosphate (cAMP), which has been shown to affect the response-
displacement curve of the transducer [Ricci and Fettiplace, 1997]. This signaling pathway
may involve cAMP produc tion by Ca2+-calmodulin activated type I adenyl cyclase
[Drescher et al., 1997], cAMP-induced activation of protein kinase A and phosphorylation
of the mechanotransduction channel or the myosin motor [Fettiplace and Ricci, 2003].
After entering the stereocilia through mechanotransduction channels, Ca2+ is rapidly

bound by endogenous Ca2+ chelators, present at millimolar concentration [Hackney et al.,
2005], which restrict the distance Ca2+ diffuses to a few tens of nm from the mouth of
the channel [Ricci et al., 1998]. Also mitochondria, conspicuously concentrated in a band
beneath the cuticular plate (the cytoskeletal anchor for the stereociliary bundle) [Spicer
et al., 1999,Mammano et al., 1999b], can act as large-capacity Ca2+ store [Beurg et al.,
2010b]. In outer hair cells, the mitochondrial barrier may be bypassed by ATP-induced
release of Ca2+ from a system of endoplasmic reticulum membranes located beneath the
cuticular plate known as Hensen’s body [Mammano et al., 1999b].

Ca2+ is eventually exported back to endolymph by plasma membrane Ca2+-ATPase
(PMCA) pumps, which are highly expressed in the hair bundle of vestibular and cochlear
outer hair cells and, to a lesser extent, inner hair cells [Dumont et al., 2001]. The
stereociliary PMCA can be sufficiently active to elicit a substantial membrane current
during transduction [Yamoah et al., 1998,Apicella et al., 1997]. The pump isoform of the
stereocilia is the PMCA2, encoded by the ATP2b2 gene [Noben-Trauth et al., 1997,Kozel
et al., 1998, Street et al., 1998, Takahashi and Kitamura, 1999]. The extrusion task is
performed by the w/a splicing isoform of PMCA2 [Hill et al., 2006,Grati et al., 2006].
Ablation of the ATP2b2 gene causes deafness and balance disorders in mice [Kozel et al.,
1998], further more, various PMCA2 mutations have been linked to hereditary hearing
loss in mice and humans. Some of the mutations described so far led to the truncation of
the molecule and to its eventual disappearance from the stereocilia of the hair cell [Kozel
et al., 1998,Takahashi and Kitamura, 1999,McCullough and Tempel, 2004]. Three of the
described mutations were instead point mutations that did not compromise the reading
frame of the gene and were, thus, compatible with the expression of the full length
PMCA2w/a variant of the pump; they all affected residues that are highly conserved in
all PMCA isoforms across species and in other P-type pumps [Street et al., 1998, Tsai
et al., 2006, Spiden et al., 2008]. Recently, the Tommy mouse mutation was identified
as a new PMCA2 pump mutant with progressive deafness from an ENU mutagenesis
screen [Bortolozzi et al., 2010]. These mice show profound hearing impairment from P18,
with significant differences in hearing thresholds between wild type and heterozygotes.
Furthermore, immunofluorescence studies of the organ of Corti in homozygous Tommy
mice showed a progressive degeneration of hair cells after P40 from the base of the cochlea
(where high frequencies are detected) to its apex (low frequency region).
Due to the crucial role of Ca2+ at the endolymphatic pole of the hair cell for the perfor-

mance of the mechanotransduction channel, a diminished Ca2+ removal from the stere-
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ocilia is expected to affect the mechanotransduction currents. Indeed, pharmacological
blockade [Beurg et al., 2010b], as well as mutation or knock out of the PMCA2 pump [Fi-
carella et al., 2007] have been reported to shift the current-displacement (I−X) curve in
the positive direction and to reduce its slope considerably. Moreover, the only cochlear
PMCA2 exposed to endolymph is that of the stereocilia [Dumont et al., 2001,Wood
et al., 2004]. Thus if less Ca2+ is exported from the stereocilia , its concentration in
the endolymph is expected to fall [Wood et al., 2004]. This may provide a clue as to
why, in some cases, mutations in the gene of the PMCA2 pump potentiated the deafness
phenotype induced by coexisting mutation of cadherin 23 [Ficarella et al., 2007,Schultz
et al., 2005,Noben-Trauth et al., 2003].

1.3.2 Calcium regulation of synaptic transmission

As previously mentioned , mature hair cells respond to hair bundle deflection with
graded changes in their membrane potential, which ultimately result in neurotransmitter
release from the cell synaptic pole (see [Glowatzki et al., 2008] for review). In contrast,
before the onset of hearing, inner hair cells do not generate graded sound-driven receptor
potentials but fire spontaneous Ca2+-driven action potentials [Johnson et al., 2011b,
Marcotti et al., 2003a,Marcotti et al., 2003b]. These are prevented in mature inner hair
cells by the expression of the rapidly activating large conductance Ca2+-activated K+

current [Kros et al., 1998,Marcotti et al., 2004] and the negatively activating delayed
rectifier IK,n, carried by KCNQ4 channels [Marcotti et al., 2003a] (see [Marcotti, 2012]
for a review). The inner hair cells synapses are already functional in the pre-hearing
period [Beutner and Moser, 2001], and glutamate release triggered by action potentials
may be important for the refinement of the synaptic connections in the auditory pathway
[Appler and Goodrich, 2011].
The hair cell synaptic machinery is unique in its genre, because of the special tasks it

is required to accomplish. This is especially evident for the afferent synapse of cochlear
inner hair cells, which must encode a wide range of external sound stimuli with the
sub-millisecond temporal precision required for sound localization and phase locking;
moreover, the constant presence of acoustic stimulation requires the prolonged mainte-
nance of synaptic transmission [Fuchs, 2005]. The ability to produce both rapid and
sustained neurotransmitter release is thought to be conferred to the hair cell synapse by
the presence of the synaptic ribbon, a specialized electron-dense proteinaceous structure
anchored at the synapse’s active zone, where synaptic vesicle exocytosis occurs [Nou-
vian et al., 2006]. This organelle, also found in retinal photoreceptor and bipolar cells
(see [Matthews and Fuchs, 2010] for a review), tethers ∼100-400 glutamate-containing
synaptic vesicles through thin filaments [Lenzi et al., 1999,Fuchs et al., 2003]. Some of
these vesicles (around 16-30) are kept in direct contact with the plasma membrane [Lenzi
and von Gersdorff, 2001,Khimich et al., 2005] and it has been suggested that the ribbon
may be important for synchronous multi-vesicular release [Khimich et al., 2005,Glowatzki
and Fuchs, 2002,Keen and Hudspeth, 2006,Graydon et al., 2011].
Vesicle exocytosis is triggered by the influx of Ca2+ through class-D L-type Ca2+ channels

(CaV1.3) clustered at each active zone [Platzer et al., 2000,Spassova et al., 2001,Brandt
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et al., 2003] (∼80 per active zone in mouse inner hair cells [Brandt et al., 2005]), where,
they operate in close proximity with Ca2+-activated K+ channels (BK channels) [Kros
et al., 1998]. In mammalian inner hair cells and outer hair cells, the majority of the total
Ca2+ current (>90%) is carried by CaV1.3 channels [Platzer et al., 2000,Michna et al.,
2003]. It has been proposed that harmonin, a scaffolding protein that has been also im-
plicated in mechanotrasduction at the level of the hair bundle [Boeda et al., 2002,Grillet
et al., 2009], tags CaV1.3 channels for ubiquitination and may thus constrain the number
of presynaptic CaV1.3 channels in inner hair cells [Gregory et al., 2011]. The biophysical
properties of these channels make them particularly suitable for the demands of synaptic
transmission in these cells. First, CaV1.3 channels activate at relatively hyperpolarized
membrane potential, as negative as −70 mV in immature inner hair cells [Platzer et al.,
2000, Zampini et al., 2010], indicating that they would be capable of generating both
the spontaneous action potentials in immature inner hair cells and the fast synaptic re-
sponse of mature hair cells [Marcotti et al., 2003b]. Second, they activate very rapidly
(∼300-400 µs in gerbil basal inner hair cells) and show very little inactivation in mature
hair cells [Johnson and Marcotti, 2008,Grant and Fuchs, 2008], a characteristic that is
required for sustained release. The exocytosis of individual fusion-competent vesicles is
mediated by the stochastic gating of one or few CaV1.3 channels located within a few
nanometer from the release site and such “nanodomain control” of neurotransmitter has
been proposed to permit temporally precise synaptic coding even for weak stimuli [Brandt
et al., 2005].
Because CaV1.3 channels show strong Ca2+-dependent inactivation when studied in

heterologous expression systems [Koschak et al., 2001], it has been proposed that calmodulin-
like Ca2+ binding protein (CaBP), which are expressed within the organ of Corti, may
moderate the inactivation in cochlear inner hair cells by competing with calmodulin
binding to the channel’s C-terminus [Cui et al., 2007, Yang et al., 2006]. Recent work
has suggested that Rab3-interacting molecule-2 (RIM2) proteins may represent another
possible molecular mechanism capable of inhibiting Ca2+- and voltage-dependent inac-
tivation of CaV1.3 channels in inner hair cells [Gebhart et al., 2010].
Similarly to stereociliary Ca2+ , presynaptic Ca2+ domains are presumably spatiotem-

porally restricted by the presence of mobile, proteinaceous Ca2+ buffers calretinin, cal-
bindin and parvalbumin, which have been found in a variety of cochlear and vestibular
hair cells with concentration in the mM range [Hackney et al., 2005,Hackney et al., 2003].
However, discrepancies regarding both the amount and kinetic properties of such buffers
in different hair cells suggest that their exact role and scope of function need to be an-
alyzed further [Bortolozzi et al., 2008]. It has also been suggested that the restriction
of the available presynaptic space due to the presence of the ribbon and its associated
vesicles defines a small cytoplasmic volume where Ca2+ buffers are saturated, thus per-
mitting fast and large Ca2+ rises near release sites beneath the synaptic ribbon [Graydon
et al., 2011].
The stimulus-secretion coupling between the inward Ca2+ current and transmitter re-

lease has been investigated by measuring the increase in the hair cell membrane capaci-
tance (∆Cm) following depolarization-triggered Ca2+ entry [Brandt et al., 2005,Beutner
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et al., 2001,Johnson et al., 2005,Johnson et al., 2008,Schnee et al., 2005]. In these stud-
ies, at least two kinetic components of exocytosis are commonly distinguished: a fast
initial component, which saturates within a few milliseconds, and one or more slower
components, triggered by prolonged (tens of ms to s in duration) depolarizing steps; for
a summary of different studies on size and kinetics of synaptic release components in hair
cells see [Nouvian et al., 2006]. The fast component is generally thought to represent
the release of a ready releasable pool (RRP) of vesicles which might co-localize with
Ca2+ channels [Moser and Beutner, 2000,Spassova et al., 2004,Rutherford and Roberts,
2006]. However, data establishing a direct link between vesicle location and release pools
are limited [Nouvian et al., 2006].

Transmitter release evoked by membrane depolarization over the physiological voltage
range (between the resting potential and ∼ −20mV [Glowatzki et al., 2008]) shows a
linear dependence on Ca2+ influx , at least in high frequency inner hair cells [Brandt
et al., 2005, Johnson et al., 2005, Schnee et al., 2005, Goutman and Glowatzki, 2007].
This linear relationship, which extends to the postsynaptic current [Keen and Hudspeth,
2006, Goutman and Glowatzki, 2007], is believed to allow the synapse to respond effi-
ciently to both small and large stimuli, thus broadening the hair cell’s dynamic range.
Transmitter release shows a higher order (3rd-5th power) Ca2+-dependance when the
hair cell is depolarized to positive holding potentials [Goutman and Glowatzki, 2007]
or when exocytosis is triggered by Ca2+ uncaging (7 µM to 110 µM) [Beutner et al.,
2001]. Recently, using real-time capacitance measurements to identify saturable pools of
vesicles, a superlinear release component requiring recruitment of vesicles to release sites
has been identified, leading to the suggestion that Ca2+-dependent vesicle trafficking is
responsible for this movement, which is required for hair cell synapses to maintain high
rates of sustained vesicle fusion [Schnee et al., 2011].

The identification of the molecular composition of the synaptic machinery of the hair
cell remains a major challenge. The hair cell synapse lacks the most common protein
involved in exocytosis, for example complexins, synapsins and synaptophysins [Safieddine
and Wenthold, 1999,Uthaiah and Hudspeth, 2010,Strenzke et al., 2009]; moreover, even
though neuronal SNARE proteins are expressed in inner hair cells, they may not be
required for vesicle fusion at the inner hair cell ribbon synapse [Nouvian et al., 2011]. A
major gap in our understanding of the components of the synaptic ribbon relates to the
identification of the Ca2+ sensor. Synaptotagmins (Syt) I-II are the conventional Ca2+-
sensing proteins at neuronal synapses [Sudhof, 2004], but their role at the hair cell ribbon
synapse is debated. Though earlier studies suggested that Syt I-II were not present in
mature inner hair cells [Safieddine and Wenthold, 1999], more recent work has shown
that they are transiently expressed in the cochlea [Beurg et al., 2010a, Johnson et al.,
2010,Reisinger et al., 2011]. However these studies came to different conclusions about
Syt I-II importance for inner hair cell synaptic transmission, since some of them suggest
their involvement (Syt1: [Beurg et al., 2010a, Johnson et al., 2010], Syt II: [Johnson
et al., 2010]) while others exclude it (Syt1: [Reisinger et al., 2011]. Syt II: [Beurg et al.,
2010a,Reisinger et al., 2011]). The observation that otoferlin deficient mice (Otof−/− )
are profoundly deaf [Yasunaga et al., 1999], and show impaired synaptic development and
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lack of exocytosis [Roux et al., 2006] prompted the proposal that otoferlin is the major
Ca2+ sensor of synaptic vesicle fusion in cochlear hair cells [Roux et al., 2006,Beurg et al.,
2008]. However, even though recent evidence has shown that otoferlin may be involved
in synaptic vesicle replenishment [Pangrsic et al., 2010], its role as the Ca2+ sensor for
exocytosis remains indetermined. Indeed, otoferlin is not found in inner hair cells of
a hypothyroid rat model, even though those inner hair cells exhibited Ca2+-dependent
exocytois [Johnson et al., 2010,Brandt et al., 2007]. Moreover, another study showed that
Ca2+-evoked exocytosis in the first postnatal days (P0-P4) is both otoferlin- and Syt-
independent [Beurg et al., 2010a]. Finally, the transition from a nonlinear to a linear order
of exocytotic Ca2+-dependance observed before and after the onset of hearing doesn’t
correlate with the qualitatively similar distribution of otoferlin found in immature and
mature inner hair cells [Johnson et al., 2008,Johnson et al., 2009], and seems to depend
on another molecular factor, which has been recentely identified as Synaptotagmin IV,
an unconventional synaptotagmin [Johnson et al., 2010].
Besides Ca2+ influx through voltage-gated Ca2+ channels of the basolateral plasma

membrane, two other mechanisms, both implicated in the efferent control of hair cell
function [Bruce et al., 2000, Bulankina and Moser, 2012], may promote an increase of
intracellular free Ca2+ concentration ([Ca2+]c) at the basal pole of the hair cell.
The first mechanism is Ca2+ entry through α9α10 nicotinic acetylcholine receptors

(nAChR) [Vetter et al., 2007, Plazas et al., 2005], which activates, via calmodulin, a
hyperpolarizing small conductance potassium current (SK, for review, see [Adelman et al.,
2012]). The hyperpolarizing SK current (i) is required for sustaining the action potential
activity and modulating action potential frequency when activated by ACh in immature
inner hair cells [Marcotti et al., 2004,Johnson et al., 2007,Glowatzki and Fuchs, 2000] and
(ii) mediates fast Ca2+ -dependent decrease of axial stiffness in outer hair cells [Oliver
et al., 2000,Frolenkov et al., 2000].
The second (interrelated) mechanism is calcium-induced calcium release (CICR), an

autocatalytic mechanism whereby [Ca2+]c elevation induces Ca2+ release from internal
stores through channels such as inositol-1, 4,5-trisphosphate (IP3) receptors (IP3Rs)
or ryanodine receptors (RyRs) [Berridge et al., 2003]. CICR has been investigated in
mammalian inner hair cells [Kennedy and Meech, 2002], outer hair cells [Frolenkov et al.,
2000, Sridhar et al., 1997, Dallos et al., 1997, Evans et al., 2000, Frolenkov et al., 2003,
Frolenkov, 2006] as well as in vestibular hair cells [Lelli et al., 2003]. In particular, in
inner hair cells, Ca2+ release from intracellular store has been found to modulate the fast
outward Ca2+ activated K+ current (BK) [Marcotti et al., 2004,Beurg et al., 2005], thus
suggesting that RyRs and BK channels are functionally coupled and act to suppress fast
neurotransmission [Beurg et al., 2005].

1.3.3 Calcium signaling in cochlear non-sensory cells

As mentioned above, cochlear non-sensory cells form vast syncytia coupled by gap
junction channels that, in the mammalian cochlea, are formed primarily by connexin26
and connexin30 protein subunits [Lautermann et al., 1999, Lautermann et al., 1998],
respectively encoded by DNFB1 genes GJB2 and GJB6 (reviewed in refs. [Nickel and
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Figure 1.7: Scheme of the molecular mechanisms underlying Ca2+ signaling in non-sensory cells
of the cochlea. The drawing shows ATP release through connexin hemichannels.
P2Y receptors (P2YR), a family of G protein-coupled purinoceptors, are stimulated
by ATP, ADP, UTP, UDP and UDP-glucose; IP3R (inositol trisphosphate receptor)
is a membrane glycoprotein complex; IP3Rs are Ca2+ channels in the endoplasmic
reticulum (ER) that are activated by inositol trisphosphate (IP3); FFA (flufenamic
acid) and NFA (niflumic acid) are non-specific inhibitors of connexin hemichannels.
CBX (carbenoxolone) blocks both hemichannels and gap junction channels. ATP
degradation by ectonucleotidases terminates signaling. ARL67156, 6-N,N-Diethyl-
D-β,γ-dibromomethyleneA is a selective inhibitor of ectoATPases. Apyrase is an
enzyme that catalyzes the hydrolysis of ATP to yield AMP and inorganic phosphate.
La3+ is a blocker of connexin hemichannels that does not affect gap junction channels
when applied extracellularly to cochlear cultures. (Figure from Ref. [Majumder et al.,
2010])
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Forge, 2008,Martinez et al., 2009]). The fact that DFNB1 is the most common form of
inherited deafness in Caucasian populations highlights the importance of connexins for
hearing (reviewed in ref. [Hilgert et al., 2009]).
While the exact function of connexins expressed by non–sensory cells of the inner ear

remains unclear, it is important to mention that they also form unpaired connexons,
i.e. non−junctional connexin hemichannels [Bennett et al., 2003,Goodenough and Paul,
2003, Evans et al., 2006]. Experiments performed with a combination of genetic inter-
ference in four different mouse lines and ATP biosensors [Huang et al., 2007] apposed
to cochlear non−sensory cells indicate that connexin26 and connexin30 protein subunits
form functional hemichannels, which can be detected at the endolymphatic surface of
the sensory epithelium with CELAb antibodies [Clair et al., 2008], and release ATP into
endolymph under physiological conditions (Figure 1.7) [Anselmi et al., 2008,Majumder
et al., 2010]. ATP release had been previously proposed on the ground of experiments
in which mechanical stimulation was applied by gently pipetting (once per 3–4 s with
a 20 µl pipette) a solution containing glass beads (with a diameter of 30-50 µm) over a
cochlear explant for a 15-min period [Zhao et al., 2005].
The binding of extracellular ATP to G–protein coupled P2Y2 and P2Y4 receptors,

also expressed on the endolymphatic surface of the developing sensory epithelium, acti-
vates phospholipase–C dependent generation of IP3 [Beltramello et al., 2005,Gale et al.,
2004,Piazza et al., 2007]. While gap junction channels allow IP3 diffusion through these
coupled cells, IP3 binding to its receptors (IP3R) promotes Ca2+ release from the endo-
plasmic reticulum raising the cytosolic free Ca2+ concentration ([Ca2+]c, Figure 1.7). The
probability of connexin hemichannel opening is a bell–shaped function of the [Ca2+]c,
peaking at ∼500 nM [De Vuyst et al., 2006]. This is a key feature that enables the
propagation of Ca2+ signals as regenerative and coordinated intercellular Ca2+ waves,
with peak amplitude of ∼500 nM, sustained by ATP–induced ATP–release [Mammano
et al., 2007, Beltramello et al., 2005, Anselmi et al., 2008,Majumder et al., 2010, Gale
et al., 2004, Piazza et al., 2007]. Mitochondria function as spatial Ca2+ buffers and
play a significant role in regulating the spatio–temporal properties of these intercellular
Ca2+ waves [Mann et al., 2009].
This was demonstrated by blocking mitochondrial Ca2+ uptake by dissipating the

mitochondrial membrane potential using the protonophore carbonyl cyanide m–chloro-
phenylhydrazone (CCCP) and oligomycin, an inhibitor of oxidative phosphorylation, or
using Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, which enhanced the
peak amplitude and duration of ATP–induced transients. The numerous roles played by
extracellular ATP in the adult cochlea are reviewed in ref. [Housley et al., 2009]; the rest
of this chapter focuses on some critical signalling events that occur during maturation of
cochlear tissue.
Rhythms are ubiquitous at all levels of biological organization. At the cellular level,

they involve biochemical oscillations that modulate the concentration of key metabolic
substrates and second messengers. Among these, rhythmic variations in the [Ca2+]c have
been found in a variety of cells and shown to arise spontaneously or after stimulation by
hormones or neurotrasmitters.
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In non–sensory cells of the lesser epithelial ridge, ATP–dependent [Ca2+]c oscillations
occur (i) as consequence of intercellular Ca2+ wave propagation, (ii) sustained ATP deliv-
ery in the submicromolar range or (iii) during pharmacological inhibition of ectonucleoti-
dases, a manipulation which highlights the tonic release of ATP from these cells [Anselmi
et al., 2008] and their sensitivity to ATP degradation by ectonucleotidases [Vlajkovic
et al., 2002].
In rat cochlear explants [Tritsch et al., 2007, Tritsch and Bergles, 2010], as well as

in mouse organotypic cochlear cultures [Schutz et al., 2010], [Ca2+]c transients due to
release of ATP in rhythmic bursts have been reported also for a class of non–sensory cells
of the greater epithelial ridge (first described by Kölliker) which transiently populate
the sensory epithelium from spiral limbus to inner hair cell [Hinojosa, 1977, Kamiya
et al., 2001]. These periodic Ca2+ signals can be blocked by apyrase, as shown for
the propagation of intercellular Ca2+ waves in the lesser epithelial ridge. Furthermore,
the frequency of spontaneous [Ca2+]c transients is significantly decreased by purinergic
receptor antagonists PPADS (50 µM) and suramin (150 µM), the gap junction channel
inhibitor carbenoxolone (100 µM) as well as flufenamic acid (50 µM), a bona–fide inhibitor
of connexin hemichannels.
Both the propagation range of intercellular Ca2+ waves in the lesser epithelial ridge

and the frequency of spontaneous [Ca2+]c transient in the greater epithelial ridge increase
when the extracellular free Ca2+ concentration ([Ca2+]o) is decreased [Anselmi et al.,
2008, Tritsch et al., 2007, Tritsch and Bergles, 2010], and this manipulation is known
to increase the open probability of connexin hemichannels [Muller et al., 2002,Gomez-
Hernandez et al., 2003, Saez et al., 2005, Gonzalez et al., 2007]. Finally, focal UV
photolysis of a caged intracellular IP3 precursor in the greater epithelial ridge evokes
Ca2+ transients similar to those that arise spontaneously in this region [Majumder et al.,
2010]. Thus it seems reasonable to hypothesize that release of ATP through connexin
hemichannels activates similar IP3 receptor–dependent signal transduction cascades in
non–sensory cells of the lesser and the greater epithelial ridge.
These findings are particularly interesting if viewed from the perspective that con-

nexin dysfunction may ensue in a deafness phenotype through a bidirectional link to
impaired ATP–dependent Ca2+ signaling in the develop ing cochlea. This tenet is ex-
emplified by a study of hearing loss based on the substitution of an evolutionarily con-
served threonine by a methionine residue at position 5 near the N–terminus of con-
nexin30 (connexin30 T5M) [Grifa et al., 1999]. In connexin30(T5M/T5M) knock in
mice, obtained by homologous recombination in mouse embryonic stem cells, expres-
sion of the mutated connexin30 T5M protein is under the control of the endogenous
connexin30 promoter [Schutz et al., 2010]. When probed by auditory brainstem record
ings, connexin30(T5M/T5M) mice exhibit a mild, but significant increase in their hear-
ing thresholds of about 15 dB at all frequencies. Western blot analysis of adult inner
ear tissue shows significantly down–regulated expression levels of connexin26 and con-
nexin30. In the developing cochlea, electrical coupling, probed by dual patch–clamp
recordings, is normal; however, transfer of the fluorescent tracer calcein between cochlear
non–sensory cells is reduced, as is the intercellular Ca2+ signaling due to spontaneous

23



1 Introduction

ATP release from connexin hemichannels [Schutz et al., 2010]. Previous studies had noted
that ATP–dependent Ca2+ oscillations in non–sensory cells of the cochlear feed–back on
connexin expression and participate in the coordinated regulation of connexin26 and
connexin30 through NF–kB [Ortolano and Pasquale, 2008,Crispino et al., 2011] (nuclear
factor kappa–light–chain–enhancer of activated B cells). Of notice, these articles also
show that gene delivery with recombinant bovine adeno associated virus (BAAV) vec-
tors restores connexin expression and rescue intercellular coupling and Ca2+ signaling in
cochlear organotypic cultures from mice with defective expression of connexin26 and con-
nexin30 [Ortolano and Pasquale, 2008,Crispino et al., 2011]. A widely held hypothesis
is that information is encoded mainly by the frequency of [Ca2+]c oscilla tions [Dol-
metsch et al., 1998,Li et al., 1998], however, a possible role of amplitudes and duration
in signal transduction has been discussed [Dolmetsch et al., 1997, Prank et al., 2000].
It has also been argued that amplitude modulation and frequency modulation differen-
tially regulate distinct targets [Berridge, 1997]. Note that NF–kB is just one of the several
Ca2+-dependent transcription factors used by non–excitable cells [Mellstrom et al., 2008].
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2 Aims of this work

In this thesis work we investigated the biophysical properties of intercellular coupling
in non-sensory cell networks of the developing organ of Corti, and the functional conse-
quences of connexin mutations implicated in genetic deafness. Part of this work was also
dedicated to the design and construnction of a confocal fluorescence imaging apparatus
and to the development of image processing software used for data analysis. We combined
large scale optical recordings, single cell electrophysiology and computer simulations with
the specific aim to

1. quantify the degree of electrical intercellular coupling provided by connexin26 and
connexin30 in the developing mouse cochlea using a novel technique the develop-
ment of which was integral part of this thesis work;

2. quantify the reduction in the degree of intercellular coupling in two different trans-
genic mice (connexin30(−/−) and connexin30(T5M/T5M));

3. characterize ATP- and IP3- dependent intracellular Ca2+ signaling in cochlear non-
sensory cells and its relationship with connexin expression and function ;

4. formulate a minimal mathematical model of intracellular Ca2+ oscillations and in-
tercellular Ca2+ waves in strict and quantitative adherence to experimental data;

5. investigate the relationship between spontaneous Ca2+ transients of cochlear non-
sensory cells and the spontaneous electrical activity of immature cochlear inner
hair cells;
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3 General methods

3.1 Animal handling

Animal handling was approved by the Ethical Committee of Padua University (Comi-
tato Etico di Ateneo per la Sperimentazione Animale, C.E.A.S.A.) project n. 54/2009,
protocol n. 51731.

3.2 Reagents and drugs

Vf2.1.Cl [Miller et al., 2012] was provided by Roger Y. Tsien (University of Califor-
nia, San Diego). Carbenoxolone (CBX), pluronic F–127, Hanks’ balanced salt solutions
(HBSS) and the salts used to prepare solutions were purchased from Sigma–Aldrich.
Calcium dyes Fluo-4 AM and Fura-2 AM, lipofectamine, Dulbecco’s modified Eagle’s
medium (DMEM/F12), amino acids, vitamins and fetal bovine serum (FBS) were pur-
chased from Life Technologies. Cell Tak was purchased from Becton Dickinson.

3.3 Cochlear organotypic cultures

Cochleae were dissected from P5 mouse pups, where the day of birth is P0, in ice−cold
Hepes buffered (10 mM, pH 7.2) HBSS, placed onto glass coverslips coated with 185
µg/ml of Cell Tak and incu- bated overnight at 37°C in DMEM/F12 supplemented with
FBS 5%.

3.4 HeLa cells

A clone of HeLa cells essentially devoid of connexins was provided by Klaus Willecke
(University of Bonn, Germany) and cultured according to standard procedures. Twenty
four hours after plating, a lipofectamine transfection system was used to transiently
transfect these communication–incompetent HeLa cells with hCx26–CFP, a previously
described human connexin26 construct tagged with the cyan fluorescent protein (CFP)
at its carboxyl terminal end [Beltramello et al., 2005].
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3.5 Electrophysiology from cochlear non-sensory cells and
HeLa cells

All experiments were performed at room temperature (22–25°C). Cochlear or HeLa cell
cultures were transferred to the stage of an upright wide–field fluorescence microscope
(BX51, Olympus) and continually superfused with EXM, an extracellular medium con-
taining (in mM): NaCl 138, KCl 5, CaCl2 2, NaH2PO4 0.3, KH2PO4 0.4, Hepes−NaOH
10, d−glucose 6 (pH 7.2, 300 mOsm). Glass capillaries for patch clamp recordings were
formed on a vertical puller (PP–83, Narishige, Japan) from 1.5−mm outer diameter
borosilicate glass (G85150T–4, Warner Instruments) and filled with an intracellular solu-
tion containing (in mM): KCl 134, NaCl 4, MgCl2 1, HEPES 20, EGTA 10 (adjusted to
pH 7.3 with KOH, 290 mOsm) and filtered through 0.22 µm pores (Millipore). Pipette
resistances were 3–4 MΩ when immersed in the EXM bath. For whole−cell patch clamp
recordings performed on pairs of cochlear non-sensory cells, cell 1 was maintained un-
der voltage clamp conditions with a patch clamp amplifier (Model 2400, AM Systems)
while cell 2 was kept under current clamp conditions with a second amplifier (EPC−7,
HeKa). Current and voltage were filtered at 3 kHz by an 8 pole Bessel filter and sampled
at 20 kHz using a standard laboratory interface (Digidata 1440A, Molecular Devices)
controlled by the PClamp 10 software (Molecular Devices).

3.6 Voltage imaging and immunofluorescence

To visualize hCx26–CFP, transfected HeLa cells were illuminated by light from a 385
nm LED (M385L2, Thorlabs) passing through a D390/70X filter (Chroma) and directed
onto the sample through a 440 dclp dichromatic mirror (Chroma) while CFP emission
was selected by an ET480/40M filter (Chroma). For voltage imaging, cochlear or HeLa
cell cultures were incubated for 15 min at 37°C in EXM supplemented with Vf2.1.Cl (200
nM) and pluronic F–127 (0.1% w/v), thereafter cultures were continually superfused with
EXM.
Vf2.1.Cl fluorescence was excited by light from a 470 nm LED (M470L2, Thorlabs)

passing through a BP460–480 filter (Olympus) and directed onto the sample through a
515 dcxr dichromatic mirror (Chroma) while Vf2.1.Cl fluorescence emission was selected
by an ET535/30M filter (Chroma). All fluorescence images were formed by a 60× water
immersion objective (NA 1.0, Fluor, Nikon) and projected on a scientific–grade CCD
camera (SensiCam; PCO AG) controlled by software developed in the laboratory. Image
sequences of Vf2.1.Cl fluorescence were acquired continuously at 10 frames per second
with 100 ms exposure time. To synchronize image acquisition and electrical recordings,
we sampled the 5 V pulse (FVAL) that signals active exposure of the CCD camera [Mam-
mano et al., 1999a]. Vf2.1.Cl signals were measured as relative changes of fluorescence
emission intensity (∆F/F0 ), where F0 is prestimulus fluorescence, F is fluorescence at
time t and ∆F = F − F0. Miller et al. reported that Vf2.1.Cl and other PeT–based
voltage indicators have a slower rate of bleachingand are less toxic than the FRET–based
dyes [Miller et al., 2012]. We did not make a direct comparison between these two classes
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of indicators. However, in our hands patch clamp recordings from cochlear non–sensory
cells in Vf2.1.Cl loaded cultures were stable for tens of minutes during continuous illu-
mination with the LED used to excite dye’s fluorescence. In addition, we did not notice
any visible sign of cellular degeneration.

3.7 Ratiometric calcium imaging

Cochlear cultures were incubated for 40 min at 37° in DMEM, supplemented with
fura–2 AM (16 µM). The incubation medium contained also pluronic F–127 (0.1%, w/v),
and sulphinpyrazone (250 µM) to prevent dye sequestration and secretion [Di Virgilio,
1989]. Cultures were then transferred on the stage of an upright microscope (BX51,
Olympus) and perfused in EXM for 20 min at 2 ml/min to allow for de−esterification.
For recording, EXM was substituted by ECM, a medium obtained by replacing 2 mM
Ca2+ in EXM with an endolymph-like concentration of Ca2+ (20 µM). Fura–2 fluores-
cence was excited using alternatively two light emitting diodes (LEDs, center wavelengths
365 nm and a 385 nm, M365L and M385L, Thorlabs) passing through a FF01-360/12-2
and FF01-387-11 filter respectively (Semrock, Rochester, NY, USA) and directed onto
the sample through a dichromatic mirror (T400LP, Chroma, Rockingham, VT). Flu-
orescence emission was selected by a BA495-540HQ filter (Olympus, Tokyo, Japan) to
form fluorescence images on a scientific–grade CCD camera using a 60× water immersion
objective (NA 1.0, Fluor, Nikon).
Image sequences were acquired using software developed in the laboratory, stored on

disk and processed off–line using the Matlab 7.0 software package (The MathWorks,
Inc., Natick, MA, USA). Signals were measured as dye emission ratio changes, ∆R =
R(t) − R(0) , where t is time and R(t) is emission intensity excited at 365 nm divided
by the intensity excited at 385 nm, and R(0) indicates pre−stimulus ratio.
To directly compare fluorescence measurements to Ca2+ concentrations computed with

computer simulations, we converted fluorescence intensity ratios R to cytosolic Ca2+

concentration values ([Ca2+]c) by the following equation [Grynkiewicz et al., 1985]

[Ca2+]c = KD ·
R−Rmin
Rmax−Rmin

· Fmin
Fmax

(3.1)

where

• KD = 287.3 nM is the Fura-2 dissociation constant at 25°C [Larsson et al., 1999]

• Rmin andRmax are ratio values in Ca2+ free conditions and in saturating Ca2+ conditions
respectively

• Fmin/Fmax is the ratio of the fluorescence intensity after excitation at 385 nm in
free and saturating Ca2+ conditions respectively.

Rmax and Fmax were measured by perfusing cochlear cultures with an extracellular so-
lution containing 10 µM ionomycin and 5 mM Ca2+ for 2 minutes. Rmin and Fmin were
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measured after perfusion with a solution containing 100 µM EGTA and 10 µM ionomycin
for 30 minutes. The overall [Ca2+]c of the cell was computed by averaging R values on
a region of interest centered on it.
For ATP stimulation experiments, ATP dissolved in ECM was applied by pressure

using glass micro-capillaries (puff pipettes) that were pulled to a tip of 2−10 µm on a
vertical puller, similarly to patch clamp electrodes (PP80, Narishige) and placed near
the target cell. Pressure was applied at the back of the pipette by delivering a transistor-
transistor logic (TTL) pulse of carefully controlled duration to a Pneumatic PicoPump
(PV800, World Precision Instruments) under software control. All cells tested responded
to ATP, whereas no response was detected when ATP (or other P2YR agonists) was omit-
ted from the solution used to fill the puff pipette, indicating that accidental mechanical
activation of the cells was negligible.

3.8 Statistical analysis

Means are quoted ± standard error of the mean (s.e.m.) and p–values are indicated
by letter P. Statistical comparisons were made using the Mann–Whitney U test [Mann
and Whitney, 1947] and p < 0.05 was selected as the criterion for statistical significance.

3.9 Photostimulation with caged IP3

Cochlear cultures were incubated for 30 min at 37° in DMEM supplemented with the ca
dye fluo–4 AM (16 µM), caged IP3 AM (5 µM), pluronic F–127 (0.1%, w/v), and sulphin-
pyrazone (250 µM) and thereafter perfused in EXM for 10 min at 2 ml/min to allow for
de−esterification. Fluorescence emission was selected by a ET535/30M filter (Chroma,
Rockingham, VT), centred around a 535 nm wavelength, to form fluorescence images
on a scientific– grade CCD camera (SensiCam; PCO AG) using a 20× water immersion
objective (NA 0.95, LumPlanFl, Olympus) connected to a microscope (BX51, Olympus)
and illuminated by a collimated 470 nm light emitting diode (M470L2, Thorlabs) di-
rected onto the sample through a dichromatic mirror (505 dcxr, Chroma, Rockingham,
VT, USA). For focal photostimulation with caged IP3, the output of a TTL−controlled
semiconductor lased module (20 mW, 379 nm, part number FBB–375–020– FS–FS–1–1,
RGBLase LLC, CA, USA) was injected into a UV permissive fibre optic cable (multi-
mode step index 0.22 N.A., 105 µm core, part number AFS105/125YCUSTOM, Thorlabs
GmbH, Dachau, Germany). Fibre output was projected onto the specimen plane by an
aspheric condenser lens (20 mm effective focal length, part number ACL2520, Thorlabs)
and the re−collimated beam was directed onto a dichromatic mirror (400 dclp, Chroma)
placed at 45° just above the objective lens of the microscope. By carefully adjusting the
position of the fiber in front of the aspheric lens we projected a sharp image of the illumi-
nated fiber core (spot) onto the specimen focal plane selected by the (infinity corrected)
objective lens. Under these conditions, the fiber optic diameter determined accurately
the laser irradiated area, which encompassed one to few cells. Baseline (pre–stimulus)
fluorescence emission (F0) was recorded for 2 s, thereafter a UV laser pulse of 170 ms was
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Figure 3.1: Schematic drawing of a Nipkow disk used for confocal microscopy.[From http://
zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html]

applied to release IP3 and fluorescence emission was monitored for up to 60 sec. Signals
were measured as relative changes of fluorescence emission intensity (∆F/F0 ), where F
is fluorescence at post–stimulus time t and ∆F = F − F0.

3.10 Microscope design

Spontaneous Ca2+ signals in cochlear non-sensory cells were recorded using a custom
made spinning disk confocal microscope, whose design and development was part of the
work performed during this thesis work.
Confocal microscopy is an optical technique in which the sample is illuminated point-

by-point with a finely focused spot. Point wise illumination improves contrast in the lat-
eral direction. For ordinary single-photon confocal microscopy, spatial filtering through
a pinhole located in a plane conjugated with the objective focal plane improves contrast
further, reduces axial blurring and enables optical-sectioning. This is particularly im-
portant in thick samples, where, compared to wide field microscopy, confocal microscopy
shows a dramatic improvement in axial resolution thanks to the ability of this technique
to reject the out of focus background [Pawley, 2006]. A spinning-disk confocal micro-
scope, tipically uses a rotating Nipkow disk with thousands of pinholes arranged in an
Archimedes spiral (Figure 3.1). The disk lies in a plane that is optically conjugated with
that of the specimen (object plane). Illumination light passes through the pinholes whose
images are projected onto the object plane where they trace concentric arcs across the
sample as the disk revolves; fluorescence light emitted by the specimen returns along
the same path through the objective lens and the pinholes, and is projected through a
relay lens onto the detector (tipically a CCD or a sCMOS 2D sensor) which also sits
in a plane conjugated with the object plane. The whole field of view is scanned in this
way during the time interval required to form a (confocal) image onto the detector. The
spinning disk confocal microscope parallelizes the illumination and detection processes
and therefore is intrinsically faster and less prone to photobleaching than the single point
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3 General methods

Figure 3.2: Olympus DSU confocal slit disk.

laser scanning microscope as light from the excitation source is distributed over multiple
foci rather than a single one.
For cost reasons, we opted for a cheaper version based on the Olympus striped disk

in which pinholes are replaced by two orthogonal Ronchi ruling patterns (Figure 3.2).
The microscope, whose optical scheme is shown in Figure 3.3 consisted of three parts:

1 - Fluorescence illumination system. fluorescence excitation was produced by light emit-
ted from a custom built illumination system comprising an array of four high power
LEDs (center wavelengths: 365 nm, 385 nm, 470 nm, 490 nm). Light from each
LED was passed through a narrow band interference filter; the LEDs were activated
in sync with the acquisition camera by a programmable microcontroller (Arduino
Mega 2560, Smart Projects, Italy) connected to a computer.

2 - Spinning disk After reflection off a dichromatic mirror (515 dcxr, Chroma), excita-
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Figure 3.3: Scheme of the confocal microscope. See main text for a full description
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tion light was fed to a unit gain keplerian telescope formed by two identical UV
permissible achromatic doublets (L2 and L3). An x-y-z precision manipulator was
used to place the slit disk in the focal plane shared by these two doublets, which
is also a primary image plane for the entire microscope. The slit disk was spun
by a DC motor up to a speed of 7200 rpm. To avoid transmitting vibrations to
the optical table supporting the microscope, the disk, the DC motor and the x-y-z
manipulator attached to it were suspended on a horizontal beam connected to the
frame of the Faraday cage that encased the entire system and was mechanically
uncoupled from the rest of the microscope.

3 - Imaging system Emitted light collected by the objective was spatially filtered through
the slit disk, traversed the illumination dichroic and an emission filter and was fi-
nally focused onto a sCMOS detector (PCO.edge, PCO, Germany) by a projection
lens (L4, Thorlabs). The detector was located in a plane optically conjugated both
with the spinning disk and the object plane.

To test the optical sectioning capabilities of the microscope, we imaged fluorescent
beads (15 µm diameter, Figure 3.4A) while stepping the objective in 2 µm increments
along its optical axis (z direction) with a piezoelectric actuator. We then measured the
average fluorescence intensity collected by the sCMOS sensor within a region of interest
with a diameter of 15 µm centered on the bead. Figure 3.4B plots this average signal as
a function of defocus. The full width at half maximum of the two intensity vs. defocus
curves were 37 µm when the disk was excluded from the optical path and 12 µm when
the disk was inserted.

3.11 Simultaneous recording of spontaneous action
potentials in immature inner hair cells and
spontaneous calcium transients in cochlear non-sensory
cells of the GER

Apical cochlear coils from mice of either sex were studied in acutely dissected organs
of Corti from P4 to P6. Cochleae were dissected in an extracellular solution containing
(in mM): NaCl 135, KCl 5.8, CaCl2 1.3, MgCl2 0.9, NaH2PO4 0.7, Hepes 10, pyruvate 2,
amino acids and vitamins. Sodium pyruvate, MEM amino acids solution (50X, without
L-Glutamine) and MEM vitamins solution (100X) were added from concentrates (Fisher
Scientific, UK). The pH was adjusted to 7.5 (osmolality ∼ 308 mmol kg−1).
Explants were incubated for 30 min at 37° in DMEM supplemented with Fluo–4 AM

(16 µM) pluronic F–127 (0.1%, w/v), and sulphinpyrazone (250 µM) and then perfused
for 20 minutes for de-esterification in the extracellular solution .
The pipette solution used for cell-attached recordings contained (in mM) 140 NaCl,

5.8 KCl, 1.3 CaCl2, 0.9 MgCl2, 0.7 NaH2PO4, 5.6 d-glucose, 10 HEPES- NaOH (pH 7.5).
Patch pipettes were made from soda glass capillaries (Harvard Apparatus) and coated
with surf wax (SexWax, Mr. Zoggs) to minimize the fast transient due to the patch
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Confocal disk in

Confocal disk out

Figure 3.4: Optical sectioning capabilities of the confocal microscope. See main text for a full
description.
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pipette capacitance. Experiments were performed at near body temperature (35–37 °C)
and with 1.3 mM Ca2+ and 5.8 mM K+ in the extracellular solution, concentrations
similar to those of perilymph, to mimic normal physiological conditions as best as pos-
sible. Electrophysiology recordings were performed using an EPC−7, (HeKa) amplifier.
Current and voltage were filtered at 2.5 kHz by an 8 pole Bessel filter and sampled at 5
kHz.
Fluo-4 fluorescence was excited using the 460 nm LED and its emission was filtered

through a 535/43M bandpass interference filter (Edmund). Images were acquired at 10
frames per second and synchronized to electrophysiological recordings as described above
(see section 3.6).
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4 A voltage sensitive dye assessment of
electrical coupling in cell networks of
the inner ear

4.1 Introduction

The most widely used approach to monitor intercellular communication employs optical
methods to track the movement of tracer molecules between neighboring cells. However,
the sensitivity of this technique depends on the junctional permeability of the tracer
employed, which varies significantly with the size of the permeant molecule and the
type of gap junction channels. Sensitivity can be increased by prolonging the loading
time or by employing smaller tracer molecules (e.g. serotonin [Hou et al., 2013]). Here,
we used cochlear organotypic cultures to unravel the potential of Vf2.1.Cl, a member
of the novel VoltageFluor (VF) family of fluorescent sensors [Miller et al., 2012]. VF
dyes detect voltage changes by modulation of photo–induced electron transfer (PeT)
from an electron donor through a synthetic molecular wire to a fluorophore. They have
large, linear, turn–on fluorescence responses to depolarizing steps (20–27% fluorescence
change per 100 mV), fast kinetics (τ << 140 µs) and negligible capacitative loading. We
exploited the Vf2.1.Cl voltage sensitive dye [Miller et al., 2012] to probe dynamically
the extent of gap junction coupling by a combination of single cell electrophysiology,
large scale optical recordings and digital phase–sensitive detector of fluorescence signals.
Our method is readily applicable to a variety of cellular systems, as it requires only
a patch–clamp amplifier to inject sinusoidal electrical signals at fixed frequency and
amplitude in a single cell and a fluorescence microscope to track optically the VF dye
response at the frequency of the stimulus throughout the network.

4.2 Results

4.2.1 In situ calibration of the Vf2.1Cl voltage sensitive dye

Organotypic cultures of cochlear explants from postnatal mice permit to investigate the
patho–physiology of gap–junction–mediated intercellular signaling in a readily accessible
whole–organ context [Gale et al., 2004,Beltramello et al., 2005,Piazza et al., 2007,Anselmi
et al., 2008,Majumder et al., 2010,Mammano, 2013]. In order to calibrate the voltage
response of the fluorescent sensor in our experimental conditions (see Methods), we loaded
organotypic cultures from wild type mice, euthanized at postnatal day 5 (P5), with
Vf2.1.Cl. We then performed paired whole–cell patch clamp recordings from cochlear
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non−sensory cells of the lesser epithelial ridge. We stepped the voltage V0 of the patch
clamp amplifier connected to one cell (cell 1, Figure 4.1A) in 10 mV increments from
the zero current potential (−61±2 mV, n = 15 cells) while monitoring the membrane
potential (Vm) (Figure 4.1B, red trace) of a nearby cell (cell 2, Figure 4.1A) maintained
under current–clamp conditions with a second amplifier. At the same time, we measured
Vf2.1.Cl fluorescence emission (F ) from cell 2 (Figure 4.1B, blue trace). Data in Figure
4.1B,C highlight a linear relationship between the change in membrane potential (∆Vm )
and the corresponding fractional change (∆F/F0 ) in Vf2.1.Cl fluorescence emission.
Note that both ∆F/F0 and ∆Vm were detected from cell 2. The correlation coefficient
between ∆F/F0 and ∆Vm was R = 0.98 (n = 5 paired recordings in 3 cultures) and a
linear fit to the data (Figure 4.1C, solid line) yielded a responsivity (slope) m = 0.23
± 0.03 ∆F/F0 /mV (i.e. 23 ± 3% per 100 mV). Both ∆Vm and ∆F/F0 responses were
suppressed after incubating the culture for 20 minutes in 100 µM carbenoxolone (CBX,
Figure 4.1D), a non−selective blocker of gap junction channels [Verselis and Srinivas,
2013]. Based on this calibration, we estimated optically the voltage step in cell 1 (∆V1)
corresponding to a given voltage command ∆V0 delivered by the patch clamp amplifier.
On average, ∆V0 = 70 mV yielded a ∆V1 = 22 ± 4 mV (n = 5) in wild type cultures.
We then derived the access resistance of the patch pipette connected to cell 1 as Ra =
∆(V0 − V 1)/∆I, where ∆I = 6.8 ± 1.1 nA (n = 5) is the current step measured by
the amplifier. The value we obtained, Ra = 7.8 ± 0.9 MΩ(n = 5), is in excellent
agreement with the estimate provided by the membrane test of the patch clamp software,
Ra,(patch) = 7.5± 1.2 MΩ(n = 5).

4.2.2 A digital phase-sensitive detector of Vf2.1Cl signals visualizes and
quantifies network connectivity

Paired electrophysiological recordings, such as those in Figure 4.1, have excellent time
resolution but provide extremely limited spatial information regarding network connec-
tivity. The main goal of the present study was to visualize rapidly network connectivity
using large−scale optical recordings of Vf2.1.Cl florescence in different preparations and
experimental conditions. The calibration procedure reported in Figure 4.1 yielded max-
imal fluorescence changes ∆F/F0 in cell 2, close to cell 1, which rarely exceeded 10%.
Electrical signals spreading passively through a resistive network are expected to attenu-
ate rapidly with distance from the source (i.e. cell 1) and fluctuations due to photon shot
noise hamper their detection [Davies et al., 2013]. We sought to overcome these limita-
tions by the following procedure. We loaded cochlear organotypic cultures from P5 mice
with the Vf2.1.Cl dye and delivered a sinusoidal voltage command, also named carrier
wave (frequency ν = 0.5 Hz, amplitude 35 mV) to the patch clamp amplifier connected
to one cell of the network (cell 1, Figure 4.2A). In wild type cultures, this stimulation
elicited instantly sinusoidal optical signals of Vf2.1.Cl fluorescence at the frequency ν
of the carrier wave (reference frequency) in virtually all cells of the network within the
field of view. We then used the off−line digital phase–sensitive detector (also known as
lock–in amplifier) described in Section 4.3 to extract Vf2.1.Cl signal amplitude A(x, y) at
each network location (x, y) at the reference frequency (Figure 4.2B). This method works
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Figure 4.1: Calibration of Vf2.1Cl voltage responses by paired patch clamp recordings in cochlear
organotypic cultures. (A) Differential interference contrast (DIC) image showing two
patch clamp pipettes, each one sealed to a non−sensory cell of the lesser epithelial
ridge; scale bar, 25 µm. (B) Representative traces showing simultaneous membrane
potential (red) and Vf2.1.Cl fluorescence (blue) from cell 2, in the neighborhood of the
stimulated cell (cell 1); the black trace (top) represents the waveform of the stimulus
delivered by the patch clamp amplifier connected to cell 1. (C) Fractional fluorescence
signal change (∆F/F0 ) vs. membrane potential change ∆Vm (both signals are from
cell 2); dots are individual measurements from n = 5 cells in 3 cultures; the straight
line is a linear fit to the data. (D) Both voltage and fluorescence responses of cell 2
were suppressed after incubating the culture for 20 minutes in 100 µM carbenoxolone
(CBX).
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because noise at frequencies other than ν is rejected and does not affect the measure-
ment [Cova et al., 1979]. Throughout this article, relative amplitude refers to A(x, y)/A1

where A1 is signal amplitude at the reference frequency in the stimulated cell. At each
point (x, y), relative amplitude values remained stable for tens of seconds during carrier
wave delivery to cell 1, but decreased rapidly with distance from this cell (Figure 4.2C
and D). At the single pixel level, the standard deviation σ of the signal A(x, y) returned
by the digital phase–sensitive detector scaled correctly as the square root of the number
N of integration cycles (Figure 4.2E). Note that σ ' 2.2 mV at N = 1 and σ ' 0.5 mV
at N = 25; reaching sub–mV sensitivity required N ≥ 5.
To estimate cell network extension, we computed A(x, y) by integrating Vf2.1.Cl sig-

nals over N = 5 carrier wave cycles (Figure 4.3). This approach permitted us to dis-
criminate rapidly (10 s per recording) network connectivity of wild type cultures (Figure
4.3A, top left) from that of genetically modified connexin30(T5M/T5M) (top right) and
connexin30(−/−) (bottom left) cultures [Schutz et al., 2010]. Incubating wild type cul-
tures for 20 minutes in 100 µM CBX confined the Vf2.1.Cl signal to the stimulated cell
(bottom right), indicative of junctional conductance (gj) collapse over the entire network.
For statistical comparison, we increased the precision of these steady–state measure-

ments by integrating Vf2.1.Cl signals over N = 25 carrier wave cycles (50 s per recording)
and measured the culture area where A(x, y) exceeded an arbitrary threshold value corre-
sponding to 2σ ≈ 1.0 mV (suprathreshold area; pooled results are summarized in Figure
4.3B). Compared to wild type cultures, suprathreshold areas in connexin30(T5M/T5M)
and connexin30(−/−) cultures were significantly shifted towards lower values (P = 0.03
and P = 0.006, respectively; Mann–Whitney U test; n = 5 cultures for each geno-
type). In wild type cultures, the lower quartile, the median, and upper quartile of
suprathreshold area values were respectively: 17230, 18430, 18970 µm2; the correspond-
ing values in connexin30(T5M/T5M) cultures were: 10730, 13550, 15100 µm2; finally, in
connexin30(−/−) cultures, they were: 2730, 3550, 5300 µm2.

4.2.3 A simple resistive network model accounts for the spatial
dependance of Vf2.1Cl signals

To gain further insight into the spatial dependence of the data shown in Figure 4.3, we
modeled the cell network as a collection of nodes (individual non–sensory cells) forming
an hexagonal mesh that reflects the anatomy [Lagostena et al., 2001]. In this model,
nodes were coupled by resistive links with identical junctional conductance gj . Each
node was also connected to ground by a resistor with conductance gm representing cell
membrane (Figure 4.4). We pooled data from n = 5 cultures for each genotype at equal
distances from the stimulated cell along the coiling axis of the cochlea and plotted the
result versus this distance. Finally, we obtained least–square fits to these averaged data
using the network model with gj as the only free parameter. The results were: gj = 206
nS for wild type, 177 nS for connexin30(T5M/T5M) and 19 nS for connexin30(−/−)
cultures.
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Figure 4.2: Illustrating phase-sensitive detection of Vf2.1Cl fluorescence responses. (A) DIC im-
age showing a single patch clamp pipette sealed to a non−sensory cell of the lesser
epithelial ridge (cell 1, zero current potential −66 mV); scale bar, 25 µm. (B) Black
diamonds: normalized optical signals from a specific cell network location; green
trace: unit amplitude carrier wave delivered to cell 1; blue trace: its phase–shifted
counterpart used in the computation of signal amplitude (see Section 4.3). (C) Cali-
brated optical responses from the five regions of interest (ROIs) shown in (A) during
a typical stimulation protocol. A low order polynomial fit was subtracted to the raw
traces to compensate for the effects of photobleaching (see Section 4.3). (D) Relative
amplitude signals derived by integrating traces shown in (C) over a single carrier
wave cycle (N = 1). (E) The standard deviation σ of the single pixel amplitude
signal A(x, y) is plotted against the number N of integration cycles (see Section 4.3);
the black solid line is a least-square fit to the data with the function σ1/

√
N1 where

σ1 = 1.9 mV.
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Figure 4.3: Direct readout of network connectivity by large-scale optical recordings of Vf2.1Cl
fluorescence responses to a 0.5 Hz, 35 mV carrier wave. (A) Representative
false–color images showing the spatial distribution of Vf2.1.Cl relative amplitude
signals in cultures from P5 wtype (top left), connexin30(T5M/T5M) (top right) and
connexin30(−/−) (bottom left) mice; the bottom right image refers to a wild type
culture in which gap junction channels were blocked by 20 min incubation with CBX
(100 µM); in this image, the area with a residual relative amplitude signal (226 µm2)
is very close to the average area of a single cell in this part of the culture (210 ± 7
µm2 , n = 10 cells); scale bars, 25 µm. (B) Suprathreshold area distributions shown
in box plot form; see main text for details.
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Figure 4.4: Data fit by a simple resistive network model that reflects the anatomy. The in-
set shows model scheme. Simulations were performed using the ngspice software
(http://ngspice.sourceforge.net). Nx = 45 and Ny = 15 indicate the number of
rows and columns in the grid, respectively. Each node represents one cell and each
link represents a resistive connection between adjacent nodes. The patch pipette
connected to cell 1 was simulated as a variable voltage source connected to one node
of the grid through an access resistance Ra = 7.8 MΩ(not shown). A single value
for membrane conductance (gm = 8.3 nS) and junctional conductance (gj) were used
throughout the network. gj was left as the only free parameter in the simulations
and its value was derived using a maximum–likelihood algorithm.
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4.2.4 Application to network dynamics

In patho–physiological conditions, gap junction networks are dynamically regulated by
a variety of mechanisms that govern connexin channel permeability and gating [Good-
enough and Paul, 2009, Hernandez et al., 2007, Harris, 2007, Beltramello et al., 2005,
Bukauskas and Verselis, 2004]. Our next goal was to track dynamical changes in cell
network connectivity by applying a digital phase–sensitive detector to Vf2.1.Cl signals.
For this series of recordings, we limited time integration to N = 4 carrier wave cycles
while transiently superfusing cochlear cultures with an extracellular medium saturated
with 100% CO2 to produce carbonic acid (H2CO3). In its non−dissociated form H2CO3

is membrane permeable and causes a rapid and reversible closure of gap junction chan-
nels [Hernandez et al., 2007,Bukauskas and Verselis, 2004]. This manipulation led to a
reduction in the number of cells coupled to the stimulated cell, accompanied by a tran-
sient increase in Vf2.1.Cl fluorescence in the neighborhood of this cell (Figure 4.5A, B).
To mimic the time course of the events shown in Figure 4.5A, B, we simply assumed
that the gj of the network model represented in Figure 4.4 undergoes a time−dependent
exponential decrease from 206 nS to 2 nS with a time constant of 7 s (Figure 4.5C).

4.2.5 Application to immortalized cell lines

A number of gap junction communication studies are performed in expression systems
and/or immortalized cell lines. To demonstrate the applicability of the method high-
lighted above to this important area of research, we used a clone of HeLa cells virtually
devoid of connexins (see Methods, Chapter 3) that were either left untreated (HeLa
parental) or transiently transfected with a construct expressing human connexin26 fused
in tandem with a cyan fluorescent protein (CFP) reporter (hCx26–CFP) [Beltramello
et al., 2005]. These chimerical proteins localized to the plasma membrane at regions of
contact between adjacent cells and also formed distinct fluorescent puncta in the cyto-
plasm, as previously described [Beltramello et al., 2005,Beltramello et al., 2003,Bicego
et al., 2006]. Confluent HeLa cell cultures were loaded with the Vf2.1.Cl dye and sub-
jected to the same patch–clamp protocol used in organotypic cochlear cultures. In HeLa
parental cultures, the Vf2.1.Cl signal remained confined to the stimulated cell (Figure
4.6A). In transfected cultures, the Vf2.1.Cl signal displayed variable degrees of cell–to–cell
spreading, reflecting the number of transfected cells connected to the stimulated cell by
hCx26–CFP gap junction channels (Figure 4.6B, C and D).

4.3 Imaging methods and phase-sensitive detection of
Vf2.1.Cl fluorescence signals

Vf2.1.Cl fluorescence image sequences were stored on disk and processed off–line using
the Matlab R2011a software package (The MathWorks, Inc.) as described hereafter.
Following electrical stimulation of cell 1 with a carrier wave at frequency ν, each image
was preprocessed by applying a 3–by–3 mean spatial filter to reduce acquisition noise.
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Figure 4.5: Effects of cell uncoupling by CO2. (A) Four selected frames from the same image
sequence showing the progressive reduction of the number of cells coupled to the
stimulated cell before and during exposure to 100% CO2; the top left image was
captured 10.0 s before the delivery of the carrier wave stimulus to cell 1; CO2 delivery
started at 25 s and was maintained thereafter; scale bar, 25 µm. (B) Time course of
pixel averages from the color−coded ROIs shown in (A). (C) Numerical simulation
of the electrical uncoupling process; the effect was mimicked by rapidly decreasing
the value of junctional conductance gj (black dashed line) in the network model of
Figure 4.4 from an initial value of 206 nS to 2 nS.
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4 A voltage sensitive dye assessment of electrical coupling in cell networks of the inner ear

Relative amplitude 100%0%
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B
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Vf.2.1.ClhCx26-CFP

Figure 4.6: Optical readout of network connectivity in HeLa cells loaded with Vf2.1.Cl. (A)
HeLa parental cells. (B, C, D) Transiently transfected HeLa cells showing increasing
amounts of interconnectivity provided by hCx26–CFP gap junction channels; images
of CFP fluorescence emission from chimerical proteins are shown at left, the corre-
sponding Vf2.1.Cl relative amplitude data at right (integration cycles N = 25); scale
bars, 25 µm.
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4.3 Imaging methods and phase-sensitive detection of Vf2.1.Cl fluorescence signals

To correct for photobleaching, we first estimated its time course by performing a low
order polynomial fit to the (∆F/F0)(t;x, y) data at each pixel location (x, y); the fitting
function P (t;x, y) was then subtracted from the (∆F/F0)(t;x, y) signal, yielding an
effectively high–pass filtered trace

f(t;x, y) =
∆F (t;x, y)

F0(x, y)
− P (t;x, y) (4.1)

The purpose of using a phase–sensitive detector is to extract the signal amplitude
A(x, y) from the preprocessed single pixel signal

f(t;x, y) = A(x, y) cos(2πνt− θ) (4.2)

where θ is a constant phase delay [Cova et al., 1979]. We performed the extraction
procedure in two steps:

Step 1: Demodulation f(t, x; y) was multiplied by two orthogonal reference signals

V ref
1 (t) = cos(2πνt) (4.3)

V ref
2 (t) = sin(2πνt) (4.4)

(see Figure 4.2B) yielding two output signals of the form

f1(t;x, y) = V ref
1 (t) · f(t;x, y) = A(x, y) cos(2πνt− θ) cos(2πνt) (4.5)

f2(t;x, y) = V ref
2 (t) · f(t;x, y) = A(x, y) cos(2πνt− θ) sin(2πνt) (4.6)

Considering the trigonometric identities

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] (4.7)

cos(a) sin(b) =
1

2
[sin(a+ b)− sin(a− b)] (4.8)

the two output signals can be written as

f1(t;x, y) =
1

2
A(x, y) [cos(θ) + cos(2π(2ν)t− θ)] (4.9)

f2(t;x, y) =
1

2
A(x, y) [sin(2π(2ν)t− θ) + sin(θ)] (4.10)

and are seen to consist of a DC signal proportional to the amplitude A(x, y) of the
original function f(t;x, y) and a time-dependent component with frequency 2ν.
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4 A voltage sensitive dye assessment of electrical coupling in cell networks of the inner ear

Step 2: Amplitude estimation The time-dependent component was filtered out by time
integration of f1(t;x, y) and f2(t;x, y). In the absence of noise, integration over a
single carrier wave cycle would yield the DC components of f1(t;x, y) and f2(t;x, y):

a1(x, y) =
1

2
A(x, y) cos(θ) (4.11)

a2(x, y) =
1

2
A(x, y) sin(θ) (4.12)

In practice, integration is better performed over a number N of cycles to reduce the
contributions from various noise sources (see Figure 4.2E). Finally, the amplitude
of f(t;x,y) was computed as

A(x, y) = 2

√
[a1(x, y)]2 + [a2(x, y)]2 (4.13)

The reference level A(x, y) = 0 was set by applying the above algorithm to the
pre-stimulus trace (i.e. to the trace segment that preceded cell 1 stimulation by
the carrier wave).

4.4 Discussion

We report here the application of the novel Vf2.1.Cl fluorescent sensor [Miller et al.,
2012] to voltage imaging in cell networks coupled by gap junction channels. We fo-
cused our attention on non−sensory cell networks of the developing cochlea and used
organotypic cultures from P5 mice as model system. Our in situ calibration yielded an
estimated responsivity of 23 ± 3 % ∆F/F0 per 100 mV change of the cell membrane
potential Vm (Figure 4.1), in substantial agreement with measurements performed in
HEK293 cells (26% per 100 mV) [Miller et al., 2012]. The limited dispersion of the data
in Figure 4.1C, which were acquired under different F0 conditions, indicates that the
responsivity is fairly independent of the loading conditions. However, F0 does affect the
signal−to−noise ratio, which is ultimately dictated by fluctuations in the number of col-
lected photons (see, e.g. Ref. [Davies et al., 2013]), and consequently also the sensitivity
of the measurement.
The Vf2.1.Cl signal tracks the membrane potential with no detectable delay [Miller

et al., 2012], a highly desirable feature that distinguishes this dye from the substantially
slower voltage sensors based on fluorescent proteins. The use of these proteins is also
hindered by the necessity of transfecting/transducing target cells with a suitable expres-
sion vector [Jin et al., 2012]. In contrast, Vf2.1.Cl loads readily (15 min) and our use of
a digital phase–sensitive detector (see Section 4.3 and Figure 4.2) allowed us to rapidly
map cellular connectivity over vast network areas (Figures 4.3, 4.4, 4.5 and 4.6). With
our methodology, the time required for data collection is a multiple of the carrier wave
period (2 s in our conditions). Increasing the integration interval slows down the acqui-
sition (i.e. it reduces the temporal resolution of dynamical measurements such as those
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4.4 Discussion

presented in Figure 4.5) but reduces fluctuations (Figure 4.2E) and thus increases both
sensitivity and precision (defined as the degree to which repeated measurements under
unchanged conditions show the same result).
By integrating the Vf2.1.Cl signal over N = 5 carrier wave cycles (10 s), we detected

intercellular connectivity down to (at least) 10
th order cells (i.e. to cells that were sepa-

rated from the stimulated cells by a linear sequence of 10 adjacent neighbors), in wild type
cultures. For comparison, microinjection experiments with fluorescent tracers that per-
meate cochlear gap junction channels (e.g. calcein, a relatively large permeant tracer that
barely fits into the pore of connexin26 channels [Zonta et al., 2013]) require typically 4
minutes to allow dye transfer to 3rd or 4th th order cells (e.g., see Supplementary Figure 6
of ref. [Anselmi et al., 2008]). Comparable time intervals are necessary to assay gap junc-
tion communication by fluorescence recovery after photobleaching (gap–FRAP) [Wade
et al., 1986] (see, e.g. Figure 5 of ref. [Ortolano and Pasquale, 2008]).
The exact stoichiometry of cochlear gap junction channels in terms of connexin26 and

connexin30 subunits is not known. Single channel currents from HeLa cells overexpressing
either connexin26 or connexin30 homomeric channels yielded respectively values of 115 pS
and 160 pS for the unitary conductance γ [Beltramello et al., 2005,Bicego et al., 2006]. A
study in HeLa cells co–transfected with the cDNA of both proteins, and thus presumably
forming heteromeric/heterotypic channels, reported γ values in a comparable range of
110–150 pS [Yum et al., 2007]. The junctional conductance gj = 206 nS we obtained by
fitting wild type culture data in Figure 4.3 with the resistive network model of Figure
4.4 suggests that cochlear non−sensory cells are already well coupled at P5, by as many
as Nopen = gj/γ = 1300 to 1800 open channels per cell pair. It must be noted that
cochlear organotypic cultures used for this study were obtained from the basal turn of
the cochlea of P5 mice. Studies performed with the gap-FRAP assay using the fluorescent
tracer calcein in P5 mice revealed a base-to-apex gradient of dye coupling, with a 30%
reduction in apical compared to basal supporting cells [Schutz et al., 2010]. Hence, we
estimate that the number of channels coupling neighboring non-sensory cells in the apical
part of the cochlea is 910 to 1260 open channels per cell pair.
An older study in isolated pairs of supporting cells of the adult guinea pig organ of

Corti reported that junctional conductance may exceed non−junctional conductance by
three orders of magnitude and, at least in some cell pairs, gj was as large as 1 µS [Santos-
Sacchi, 1991] corresponding to Nopen ' 104. We are not aware of structural investigations
performed in the developing cochlea. However, Forge et al. [Forge et al., 2003] noted that
gap junction plaques in the supporting cells of the mature cochlea are “enormous” and
they often occupy a major fraction of the plasma membrane between two adjacent cells
(from 25% to almost 100% in pillar cells). From their freeze fracture studies, Forge et
al. concluded that plaques containing about 104 channels are not rare and some may
even contain 105 channels, such as those coupling inner pillar cells in the longitudinal
direction. Thus our gj estimate is not in contrast with the proposal that only about 10%
of channels within a plaque are in the open state [Bukauskas et al., 2000,Palacios-Prado
et al., 2009,Palacios-Prado et al., 2010].
Data in Figure 4.3 show a 27% and 80% reduction in the median suprathreshold area
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4 A voltage sensitive dye assessment of electrical coupling in cell networks of the inner ear

respectively for connexin30(T5M/T5M) and connexin30(−/−) cultures relative to wild
type cultures. Our resistive network model suggests that these reduced areas correspond
to a gj decrease of 14% and 91% for connexin30(T5M/T5M) and connexin30(−/−) cul-
tures, respectively. We previously reported massive down–regulation of connexin26 in
the developing organ of Corti of connexin30(−/−) mice [Ortolano and Pasquale, 2008].
Connexin26 is similarly reduced, to 10% of the wild type level, in the cochlea of adult
connexin30(−/−) mice. These findings complement and extend our prior work [Schutz
et al., 2010], which highlighted a significant reduction in the level of dye coupling in con-
nexin30(T5M/T5M) cultures, whereas dye coupling was absent in connexin30(−/−) cul-
tures. We also showed that adult connexin30(T5M/T5M) mice, when probed by auditory
brainstem recordings, exhibit a mild but significant increase in their hearing thresholds,
of about 15 dB at all frequencies [Schutz et al., 2010]. By contrast, connexin30(−/−)
mice are profoundly deaf [Schutz et al., 2010,Teubner, 2003]. The present experiments
and our previous work confirm cochlear organotypic cultures as an attractive test ground
to explore the intricacies of connexin expression regulation and function. In addition,
our findings support the notion that connexin30(−/−) mice are a model for humans in
which large deletions in the DFNB1 locus lead to down–regulation of both GJB6 and
GJB2 and to profound deafness [del Castillo and del Castillo, 2011].
It is well known that electrical conductance and permeability to solutes other than

small inorganic ions are not directly related [Harris, 2007,Beltramello et al., 2005,Gold-
berg et al., 1999]. Even the junctional permeability to fluorescent probes may not be
directly related to electrical coupling [Schutz et al., 2010, Ek-Vitorin et al., 2006]. We
believe that the methodology described in the present article may help clarifying this
complex relationship when used in combination with other complementary techniques,
particularly those that (i) provide a direct estimate of the unitary permeability to sig-
naling molecules [Hernandez et al., 2007] and (ii) aid data interpretation by the use of
Molecular Dynamics [Zonta et al., 2013].
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5 ATP-dependent calcium signaling in
non-sensory cells of the developing
cochlea: experiments and simulations

5.1 Introduction

As mentioned before, ATP-mediated Ca2+ signals propagate in a coordinated fash-
ion as intercellular Ca2+ waves across non-sensory cells (supporting and epithelial cells)
of the polarized neuro-epithelium that lines the developing cochlear duct [Gale et al.,
2004, Piazza et al., 2007, Majumder et al., 2010]. ATP–dependent oscillations of the
cytosolic Ca2+ concentration ([Ca2+]c) in cochlear non–sensory cells occur as a conse-
quence of intercellular Ca2+ wave propagation or due to sustained ATP stimulation in
the submicromolar range (reviewd in [Mammano, 2013]).
It has long been known that intracellular Ca2+ oscillations in non-excitable cells, such

as cochlear non-sensory cells, arise from the interplay between Ca2+-permeable channels
in the endoplasmic reticulum (ER), that release Ca2+ into the cytosol, and Ca2+ pumps
and exchangers that remove Ca2+ from the cytosol either by re-uptaking it into the ER
or by exporting it through the cell plasma membrane [Berridge and Galione, 1988,Tsien
and Tsien, 1990].
Part of this thesis work was devoted to the development of a minimal mathematical

model of intracellular Ca2+ oscillations and intercellular Ca2+ waves in strict and quanti-
tative adherence to experimental data. This study was based on previous work conducted
in the laboratory as well as on a new set of experiments performed in organotypic cultures
of apical cochlear coils obtained from mice at postnatal day 5 (P5).

5.2 Computational Methods

A schematic representation of the model is shown in Figure 5.1. Letters J and K,
both expressed in µM/s, indicate fluxes through channels/pumps and rate of produc-
tion/degradation, respectively. The model is composed of three main building blocks,
namely: the Ca2+ subsystem, the IP3 subsystem and the ATP subsystem, which are
detailed below.

5.2.1 Calcium regulation: the two-variable Li-Rinzel model

Intracellular calcium levels can be modulated by a large variety of mechanisms, which
include Ca2+ influx from the extracellular space or release from various intracellular
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5 Calcium signaling in non-sensory cells of the cochlea: experiments and simulations

Figure 5.1: Schematic representation of the mathematical model of Ca2+ dynamics in cochlear
non-sensory cells. See chapter 5.2 for details.

stores (such as the endoplasmic/sarcoplasmic reticulum and mitochondria). In our model,
we considered IP3-dependent Ca2+ induced Ca2+ release (CICR) from the ER as the only
mechanism responsible for the observed changes of the [Ca2+]c, akin to similar models
of Ca2+ dynamics in non-excitable cells [De Young and Keizer, 1992, De Pittà et al.,
2009, Agulhon et al., 2008]. Model parameters are summarized in Table 5.1. Treating
the whole cell cytoplasm as a well stirred compartment, the continuity equation for
Ca2+ reads:

d[Ca2+]c
dt

= Jrel + Jleak − Jserca (5.1)

where:

• Jrel is the rate of change of [Ca2+]c due to the (IP3-dependent) Ca2+ release from
the ER through IP3 receptors (IP3Rs)

• Jleak is the rate of (IP3-independent) Ca2+ leakage from the ER

• Jserca is the rate of Ca2+ clearance due to uptake into the ER by sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA pumps).

Experimental data show that [Ca2+]c oscillations in cochlear non-sensory cells persist for
tens of minutes even in the absence of extracellular Ca2+ [Gale et al., 2004,Piazza et al.,
2007]. We thus neglected Ca2+ exchange through the plasma membrane, reducing our
model to a close cell compartment in which the total intracellular free Ca2+ concentra-
tion ([Ca2+]tot) is constant. We also neglected other intercellular compartments other
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5.2 Computational Methods

than the ER. Consequently, the Ca2+ concentration in the ER ([Ca2+]ER) is linked to
that of the cytosol by the conservation equation:

α · [Ca2+]ER = [Ca2+]TOT − [Ca2+]c (5.2)

where α denotes the ratio of ER to cytosol volume.
We described the SERCA pump rate as a Hill function of [Ca2+]c with exponent 2:

Jserca = vserca
([Ca2+]c)

2

([Ca2+]c)2 + (kserca)2
(5.3)

where vserca is the maximum rate of the pump and kserca its Ca2+ affinity [Lytton et al.,
1992].
The leakage rate was assumed to be proportional to the concentration difference be-

tween the ER and the cytosol:

Jleak = rleak([Ca
2+]ER − [Ca2+]c) (5.4)

The rate of Ca2+ release through IP3R was described by the following equation:

Jrel = rrelPIP3R ·
(
[Ca2+]ER − [Ca2+]c

)
(5.5)

where rrel is the maximum rate of release and PIP3R, the open probability of the IP3R,
is given by

PIP3R = m3
∞n

3
∞ [h(t)]3 (5.6)

m, n and h (with values comprized between 0 and 1) are the three adimensional
variables of the DeYoung-Keizer model [De Young and Keizer, 1992] which, respectively,
account for IP3 binding, activation by Ca2+ and inactivation by Ca2+ of the IP3R. In the
Li-Rinzel reduction of the DeYoung-Keizer model [Li and Rinzel, 1994], which we adopted
here, IP3 binding and activation by Ca2+ are assumed to happen on a faster time scale
than Ca2+ inactivation. Consequentlym and n are assumed in instantaneous equilibrium
(hence the ∞ subscript in equation 5.6) and to obey a Hill function of the intracellular
IP3 concentration ([IP3]c) with affinity d1 and [Ca2+]c with affinity d5, respectively:

m∞ =
[IP3]c

[IP3]c + d1
(5.7)

n∞ =
[Ca2+]c

[Ca2+]c + d5
(5.8)

Finally, the time-dependent, Hodgjkin and Huxley-like variable h is a solution to the
differential equation

dh

dt
=
h∞ − h
τh

(5.9)

where
τh =

1

a2(Q2 + [Ca2+]c)
(5.10)
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5 Calcium signaling in non-sensory cells of the cochlea: experiments and simulations

h∞ =
Q2

Q2 + [Ca2+]c
(5.11)

Q2 = d2
[IP3]c + d1
[IP3]c + d3

(5.12)

The parameters d1, d3, d5 and the power of 3 in equation 5.6 were chosen by DeYoung
and Keizer [De Young and Keizer, 1992] in order to fit the steady-state open probability
of the IP3R measured experimentally by Bezprozvanny et al. [Bezprozvanny et al., 1991].
In summary, the balance of cytosolic Ca2+ is dictated by equation 5.9 and the following

equation:

d[Ca2+]c
dt

=(rrel ·m3
∞n

3
∞ [h(t)]3 + rleak)

(
[Ca2+]ER − [Ca2+]c

)
− vserca

([Ca2+]c)
2

([Ca2+]c)2 + (kserca)2

(5.13)

5.2.2 IP3 regulation

The dynamics of IP3 was described by the equation

d[IP3]c
dt

= KPLC −KIP3
deg + JIP3

GJ (5.14)

where:

• KPLC indicates the rate of IP3 production due to phospholipase-C activity;

• KIP3
deg indicates IP3 degradation;

• JIP3
GJ is the rate of change of [IP3]c due to the intercellular flux from adjacent cells

through gap junction channels.

A detailed mathematical description of agonist-dependent IP3 production is provided in
ref. [Lemon et al., 2003]. To limit the number of variables in our model, we assumed
KPLC to be a Hill function of the extracellular concentration of ATP ([ATP]e)

KPLC = vPLC
([ATP ]e)

nPLC

([ATP ]e)
nPLC + (kPLC)nPLC

(5.15)

where vPLC , nPLC and kPLC are empirically fitted parameters (see Figure 5.5B and
Table 5.1).
Following Sneyd et al. [Sneyd et al., 1995], we modeled IP3 degradation as a linear

function of [IP3]c:
KIP3
deg = rIP3

deg [IP3]c (5.16)
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5.2 Computational Methods

The flux of IP3 between each pair of neighboring cells was assumed to be proportional
to the difference of [IP3]c between them:

JIP3
GJ = kj ·

∑
<i>

([IP3]c,i − [IP3]c) (5.17)

where
∑

<i> indicates the sum over all nearest neighboring cells and [IP3]c,i indicates the
cytosolic IP3 concentration in the i-th neighbor [Hofer et al., 2001]. The IP3 junctional
transfer rate

kj = pu
Nch

V
(5.18)

depends on the number of channels, Nch, their unitary permeability to IP3, pu, and the
volume of the cell, V [Hernandez et al., 2007].

5.2.3 ATP release to and diffusion through the extracellular space

Experimental data indicate that a key component of Ca2+ signaling in cochlear non-
sensory cells is extracellular ATP which is released through connexin hemichannels at
the endolymphatic surface of the sensory epithelium and is degraded by ectonucleotidases
[Mammano, 2013]. To incorporate the effects of ATP in our model, we used the following
reaction diffusion equation:

∂[ATP ]e
∂t

= D∇2[ATP ]e + JATP −KATP
deg (5.19)

The first term on the right hand side describes ATP diffusion in the extracellular space
(D is the diffusion coefficient of ATP in the extracellular medium and ∇2 is the laplacian
operator in space); JATP represents the ATP efflux through connexin hemichannels and
KATP
deg represents the rate of ATP degradation by ectonucleotidases.
Akin to equation 5.16, we modeled ATP degradation rate as a linear function of [ATP]e:

KATP
deg = rATPdeg [ATP ]e (5.20)

JATP was assumed to be proportional to the hemichannels open probability, PHC , ac-
cording to the equation:

JATP = vHCPHC (5.21)

To account for the experimentally determined bell-shaped dependence of PHC on [Ca2+]c
(Figure 5.3) [De Vuyst et al., 2006], we formulated the four-state model described in Fig-
ure 5.2. Each state is indicated as Si,j , where i = 0, 1 indicates Ca2+ binding to a
putative activating site and j = 0, 1 indicates Ca2+ binding to a putative inactivating
site. We also assumed that the rate of Ca2+ binding to the activating site is indepen-
dent of whether or not Ca2+ is present at the inactivating site and vice versa (4 rate
constants). The channel is open if Ca2+ is bound to the activating site and not bound
to the inactivating site (state S1,0). Thus, denoting with xi,j the fraction of channel
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Figure 5.2: State diagram of the hemichannel model. See text for details.

subunits in the state Si,j , the scheme in Figure 5.2 is equivalent to the following set of
equations

dx0,0
dt

= −k1[Ca2+]c · x0,0 + k−1 · x0,1 − k2[Ca2+]c · x0,0 + k−2 · x1,0 (5.22)

dx1,0
dt

= −k1[Ca2+]c · x1,0 + k−1 · x1,1 + k2[Ca
2+]c · x0,0 − k−2 · x1,0 (5.23)

dx0,1
dt

= k1[Ca
2+]c · x0,0 − k−1 · x0,1 − k2[Ca2+]c · x0,1 + k−2 · x1,1 (5.24)

x1,1 = 1− (x0,0 + x1,0 + x0,1) (5.25)

and the open probability is given by

PHC = β · (x1,0)γ (5.26)

where β is a normalization constant. Values for the other parameters in equations 5.22-
5.26 (Table 5.1) were selected by fitting the data of DeVuyst et al. [De Vuyst et al., 2006],
see Figure 5.3.

We solved the above set of time-dependent ordinary differential equations iteratively
using Euler’s method [Butcher, 2008] with time step ∆tord = 1 ms. The partial differen-
tial equation 5.19 was solved on a bidimensional grid with spacing ∆x = ∆y = 1 µm using
the Crank-Nicholson algorithm [Crank and Nicolson, 1996] with time step ∆tpart = 10
µs.
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Figure 5.3: Hemichannel open probability as a function of [Ca2+]c. Black squares : data from [De
Vuyst et al., 2006]; blue solid line: model fit (equations 5.22−5.26)

5.3 Results

5.3.1 ATP-dependent calcium oscillations in cochlear non-sensory cells
can be described by a class 1 mathematical model

Ca2+ oscillations may or may not require oscillations of the cytosolic IP3 concentra-
tion. Accordingly, models of Ca2+ dynamics have been grouped into two broad families,
named Class 1 and Class 2 by Sneyd et al. [Sneyd et al., 2006]. In Class 1 models,
Ca2+ oscillations derive solely from the properties of the IP3R, and in particular from
the bell-shaped dependence of the channel open probability on Ca2+ [Bezprozvanny
et al., 1991]. In these models, [Ca2+]c oscillations may occur at constant [IP3]c. In Class
2 models, Ca2+ oscillations are driven by [IP3]c oscillations due to Ca2+ modulation of
IP3 levels through feedback regulation of IP3 degradation or production [Sneyd et al.,
2006].
To determine the type of mathematical model that best represents oscillatory phe-

nomena in cochlear non-sensory cells, we adopted the protocol designed by Sneyd et
al. [Sneyd et al., 2006] whereby [Ca2+]c oscillations are elicited by agonist application
followed by photostimulation with caged IP3 to increase the [IP3]c at a specific time
point. If [Ca2+]c oscillations do not depend on IP3 oscillations (class 1 models) an in-
crease in the oscillation frequency is expected. Conversely, if Ca2+ coscillations depend
on IP3 oscillations, a delay in the occurrence of the peak after the flash is expected [Sneyd
et al., 2006]. To implement this protocol, we co-loaded cochlear organotypic cultures with
Fluo-4 and caged IP3 (see Chapter 3.9) and pressure-applied ATP (200 nM) from a glass
microcapillary positioned above the sensory epithelium while imaging Fluo-4 fluores-
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Figure 5.4: Determination of the type of mathematical model. (A) Representative trace from
one cell during the application of the protocol detailed in 5.3.1. ATP (200 nM) was
applied after a baseline of 20 s for all the duration of the experiment. The black arrow
indicates IP3 photoactivation by a pulse of UV light. (B) Summary of the results.
An 88% increase in the mean oscillation frequency was detected after photoactivation
of caged IP3.

cence using a wide-field microscope. This procedure reliably elicited [Ca2+]c oscillations,
as previously reported [Majumder et al., 2010]. After a suitable time interval (40 s after
starting ATP application), we activated a 365 nm light emitting diode (LED) for 400 ms
to stimulate all cells in the field of view by the uncaging of IP3 (Figure 5.4A). Follow-
ing IP3 photoactivation, we consistently detected a significant (P<0.001, Mann-Whitney
U test) nearly two-fold increase in the frequency of [Ca2+]c oscillations (Figure 5.4B,
n = 29 cells in 3 cultures). Consistent with this result, no delay was observed in the
occurrence of the first peak after photoactivation. Altogheter ,these data indicate that
ATP-dependent [Ca2+]c oscillations in cochlear non-sensory cells can be described by a
Class 1 model [Sneyd et al., 2006].

5.3.2 Intracellular calcium oscillations are governed by a Hopf-type
bifurcation

The model components we selected based on the results highlighted above, and our
prior work, are summarized schematically in Figure 5.1 and described in detail in the
Computational Methods section (Chapter 5.2). To fine tune model parameters, we per-
formed a set of experiments in apical cochlear cultures from P5 mice loaded with the
ratiometric Ca2+ reporter Fura-2.
Consistent with previous reports [Gale et al., 2004, Piazza et al., 2007], [Ca2+]c os-

cillations were evoked only within a limited range of ATP concentration. Specifically,
Ca2+ responses, although detectable, failed to exhibit an oscillatory character at [ATP]e <
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10 nM. Damped oscillations were detected between approximately 20 nM and 50 nM
[ATP]e . [Ca2+]c oscillations could be reliably elicited in 9 out of 9 organotypic cultures
between 50 nM and 1 µM [ATP]e . Above this level, oscillations displayed a damped or
overdamped character.
We obtained what appears a satisfactory match between experimental data and model

responses (Figure 5.5A) using the set of parameter values reported in Table 5.1. We then
constructed ATP dose-response curves both for the peak ATP-evoked Ca2+ response and
for the peak-to-peak amplitude of [Ca2+]c oscillations and used the model to fit exper-
imental data (Figure 5.5B). Altogheter, these results indicate that model components
represented in Figure 5.1 account for the observed behaviour with a satisfactory degree
of precision.
Although only a discrete set of [ATP]e values can be tested experimentally (in a finite

time), the mathematical model allowed us to explore ATP-dependent Ca2+ responses in
silico over a continuum of values comprised between 1 nM and 5 µM. This analysis showed
that the appearance and disappearance of [Ca2+]c oscillations in a certain [ATP]e range
are governed by what are technically known as supercritical Hopf bifurcations [Strogatz,
2000] (Figure 5.6) occurring at about 178 nM and 1.59 µM [ATP]e.

5.3.3 The mathematical model also accounts for intercellular calcium
wave propagation

As mentioned in Chapter 1.3.3, a critical component of Ca2+ wave propagation through
the syncytium of cochlear non-sensory cells is ATP release through connexin hemichan-
nels located at the endolimphatic surface of the epithelium. The other critical component
is the cell-to-cell diffusion of IP3, which depends on (a) the unitary permeability pu of
gap junction channels to this second messenger and (b) the number of channels (Nch)
that couple adjacent cell pairs.
To directly compare propagation experiments to computer simulations, we recon-

structed cell network topology by laser scanning confocal imaging of actin filaments
stained with Texas Red conjugated phalloidin, highlighting cell boundaries (Figure 5.7).
In a first set of experiments, we evoked radially propagating intercellular Ca2+ waves

by focal photoactivation of caged IP3 in cochlear cultures co-loaded with the AM ester
forms of this compound and of Fluo-4 (see Methods). We applied a brief (170 ms),
focalized pulse of UV light which elicited the (non-regenerative) spreading of oscillatory
Ca2+ signals (Figure 5.9). The size of the irradiated area was estimated by measuring the
dimensions of the spot carved by the focused laser into a thin film of black ink deposited
on a microscope coverslip located at the front focal plane of the objective. On average,
this area comprized a central cell and its six nearest neighbors (Ca2+ signal generators),
from which radial Ca2+ waves propagated to 18±1 cells of the culture (n=4 experiments
in 3 cultures).
We then simulated the experimental conditions by imposing an increase of [IP3]c in a

group of neighboring cells (5 µM in one cell and 0.7 µM in its nearest neighbors). As
previously done for the experiments, we evaluated the number of cells (Ncells) whose
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Figure 5.5: Setting of model intracellular parameters. (A) Side-by-side comparison between rep-
resentative traces recorded from individual non-sensory cells and model simulations
for three different concentrations of ATP. (B) The model successfully reproduced the
peak of ATP-induced Ca2+ response (black line) and the mean oscillation amplitude
(red line). Each data point represents the average response of at least 30 non-sensory
cells in 3 different cultures.
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Figure 5.6: Bifurcation diagram of the model. The solid and the dashed lines indicate stable and
unstable solutions of the system of differential equations, respectively. Circles indicate
the amplitude of steady state oscillations. The appearance and disappearance of
[Ca2+]c oscillations are determined by two supercritical Hopf bifurcations (HB) at
[ATP]e = 0.178 µM and [ATP]e = 1.59 µM

intracellullar [Ca2+]c reached an arbitrary threshold value of 10% of the peak value in
the flashed cell.

In the model, Ncells depended on the junctional conductance kj and, therefore, on the
number of gap junction channels, Nch, coupling each pair of neighboring cells (see equa-
tions 5.17 and 5.18). The model reproduced the propagation range of the experiments
assuming a unitary permeability to IP3 pu = 72 · 10−3 µm3·s−1 [Hernandez et al., 2007],
a cell volume V = 3900 µm3 and Nch = 935 (Figure 5.8). Of notice, this number of
channels is compatible with the one estimated in our voltage imaging experiments (see
Chapter 4).

Ca2+ waves can also be triggered by focal application of brief ATP puffs (4 µM, 50
ms) from a glass microcapillary placed in close proximity to a non-sensory cell. In this
case, waves propagate radially over distances in excess of 150 µm, with a speed of 13 to
17 µm/s [Gale et al., 2004,Piazza et al., 2007]. Focal application of ATP was reproduced
in the computational model by setting the ATP concentration value to 4 µM in a focal
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Greater epithelial ridge Hair cell 
region

Lesser epithelial ridge

Figure 5.7: Construction of a realistic tissue morphology. We built a realistic tissue morphol-
ogy starting from a confocal fluorescence image of a cochlear organotypic culture
where actin filaments were stained with Texas Red conjugated phalloidin (top fig-
ure), highliting cell boundaries. Contrast was enhanced by application of an unsharp
mask filter and an edge detection algorithm. Bottom figure shows the digitally recon-
structed epithelium; the set of differential equations of the model (see chapter 5.2)
was solved iteratively for all the cells and intercellular diffusion of IP3 was computed
for each pair of neighboring cells.

spot of 2 µm diameter for 50 ms. The propagation speed of the ensuing Ca2+ waves de-
pended mainly on three model parameters: the number of gap junction channels between
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Figure 5.8: Estimation of the number of gap junction channels coupling each pair of non-sensory
cells. Number of cells involved in the propagation of Ca2+ signals after photolitic
release of IP3 (see text for details) plotted as a function of the number Nch of gap
junction channels coupling each pair of non-sensory cells. The straight line through
the model data points is a fit with a function f(x) = A log(x/B) where A = 6.31
and B = 47.08, The red dashed line indicates the average number of cells invaded
by the Ca2+ signal computed from experiments, which could be reproduced by the
model assuming Nch = 935, in accord with the value determined in voltage imaging
experiments (chapter 4)

neighboring cells, Nch, the maximal rate of ATP release through connexin hemichannels,
vHC , and the ATP degradation rate by ectonucleotidases, rATPdeg . For the latter, data in
the literature is lacking; therefore, we assumed a value in the same physiological range
of other models [Warren et al., 2010,Zuo et al., 2008] (see table 5.1).

As noted previously [Gale et al., 2004], a regenerative mechanism is necessary in or-
der to account for the constant propagation speed and the propagation range of these
Ca2+ waves, which cannot be reproduced by a simple diffusion model from a point source
(Figure 5.10A) as proposed in ref. [Arcuino et al., 2002]. The regenerative mecha-
nism depends on ATP release through connexin hemichannel and cell-to-cell diffusion
of IP3 [Anselmi et al., 2008]. As one would expect, the propagation speed estimated
by the model was an increasing function of vHC ; experiments could be reproduced by a
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Figure 5.9: Focal photoactivation of caged IP3. Comparison between experiments and simula-
tions. (A) Cochlear cultures were loaded with the photoactivatable precursor of IP3

and the propagation of Ca2+ signals between adiacent cells, and the insurgence of
Ca2+ oscillations, was elicited by flashing a single cell, indicated by the white arrow,
with a brief pulse of UV light. In the simulations, photolitic release of IP3 was repro-
duced by increasing the value of the intracellular IP3 concentration. (B) Time course
of Ca2+ signals in experiments (top) and simulations (bottom) from the regions of
interest shown in (A)

range of parameter values, ranging from ∼ 600 µM/s to ∼ 1500 µM/s (Figure 5.11).
Impairing IP3 diffusion by setting Nch = 0 reduced the propagation speed by 17%

(Figure 5.10B), indicating that the major contributor to the long range propagation of
intercellular Ca2+ waves in cochlear non-sensory cells is ATP release through connexin
hemichannels. A side-by-side comparison between experiments and simulations is shown
in Figure 5.12.

5.4 Discussion

The minimal mathematical model we present here capture the essential biochemical
features of ATP- ant IP3- dependent Ca2+ signaling in cochlear non-sensory cells, namely:

i the dose-response relationship between [ATP]e and [Ca2+]c

ii the range of values of [ATP]e which evokes [Ca2+]c oscillations in non-sensory cells

iii Speed and propagation range of intercellular Ca2+ waves

To keep the model as simple as possible, thus minimizing the number of unknown
parameters, we neglected several regulatory processes, such as Ca2+ modulation of IP3
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Figure 5.10: Contribution of ATP release and intercellular IP3 propagation to the speed of ATP
evoked Ca2+ waves. (A) Comparison between regenerative and non-regenerative
mechanisms of Ca2+ wave propagation. Simulation of Ca2+ waves triggered by focal
application of ATP with (cyan circles) and without (blue circles) ATP release from
connexin hemichannels; the maximal radius of the wave Rmax is plotted against the
time since its onset. vHC = 600 µM/s for the regenerative case and vHC = 0 µM/s
for the non-regenerative case. The constant speed and the propagation range of
this kind of Ca2+ waves found in experiments [Gale et al., 2004,Piazza et al., 2007]
cannot be reproduced by the simple diffusion of ATP from a point source. (B) The
contribution of the intercellular diffusion of IP3 through gap junction channels to
the long range propagation of Ca2+ waves triggered by focal ATP application was
evaluated by setting Nch = 0 in the model; a 17% reduction of the Ca2+ wave speed
(13.7 µm/s vs. 11.4 µm/s) was found in these conditions. vHC = 600 µM/s

levels either through feedback regulation of IP3 degradation or production (PLC-δ, PLC-
β and PLC-γ isoenzymes, all present in cochlear non-sensory cells [Okamura et al., 2001],
use Ca2+ as a cofactor [Fukami, 2002]). It must be noted, however, that in Class 1 models,
as the one developed here, Ca2+ regulation of IP3 is not required for [Ca2+]c oscillations
[Sneyd et al., 2006], which instead arise from the kinetics of the IP3R. In this Class of
models, Ca2+ can both increase and decrease the IP3R open probability, thus Ca2+ os-
cillations are caused by sequential positive and negative feedback of Ca2+ on the IP3R
[De Young and Keizer, 1992, Li and Rinzel, 1994]. One important consequence is that
[Ca2+]c oscillations can occur at constant IP3 values [Sneyd et al., 2006].

The physiological intracellular signals controlling hemichannel opening are currently
not known. Leybaert and collaborators showed that IP3 and downstream signals can ac-
tivate hemichannel opening [Leybaert et al., 2003]; furthermore, DeVuyst et al. demon-
strated that an increase of cytoplasmic calcium concentration is sufficient to trigger
hemichannel opening in ECV304 cells expressing connexin32, and that the hemichannel
open probability has a bell shaped relationship with [Ca2+]c [De Vuyst et al., 2006]. Our
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Figure 5.11: Relationship between the speed of Ca2+ waves triggered by focal application of
ATP and the hemichannel maximal release rate. In the model, vHC controls the
propagation speed of Ca2+ waves triggered by focal application of ATP. A value of
this parameter in the range 600 − 1500 µM·s−1 could account for the wave speed
observed in experiments (13 to 17 µm/s).

hemichannel model (Figure 5.2 and Figure 5.3), although oversimplified, captures these
experimental results. It must be noted that a bell shaped dependence on [Ca2+]c has
been demonstrated for connexin32 [De Vuyst et al., 2006] and connexin43 [De Vuyst
et al., 2009]; whether this mechanism occurs for connexin26 and connexin30 is currenty
unknown.

In scientific fields as diverse as fluid mechanics, electronics, chemistry and theoretical
ecology, performing a local bifurcation analysis (i.e. the analysis of a system of ordinary
differential equations under variation of one or more parameters) is often a powerful
way to predict what kind of behaviour (equilibrium, cycling) occurs. Indeed, bistabil-
ity is a phenomenon common to many biological systems (see for example [Fukai et al.,
2000, Fussmann, 2000,Ozbudak et al., 2004]). We show here that the appearance and
disappearance of ATP-evoked Ca2+ oscillations in cochlear supporting cells are mathe-
matically represented by a Hopf-type bifurcations (Figure 5.6). Interestingly, the high
degree of coupling provided by gap junction channels may eventually lead to synchroniza-
tion of Ca2+ oscillations in a vast number of cells. This might have broad implications
for the encoding of information and intercellular communication.
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Figure 5.12: Side-by-side comparison between experiments (left column) and simulations (right
column). In the simulation vHC was set to 1000 µM/s

We also used our model to investigate the intercellular spreading of Ca2+ signals in
cochlear non-sensory cells. One of the key parameters in this contest is the unitary perme-
ability pu for IP3. However, the pu for connexin26 and connexin30 heterotypic channels
is not known, therefore we used that of homotypic connexin26 channels previously mea-
sured in HeLa cells [Hernandez et al., 2007]. Using voltage imaging, we estimated that
non-sensory cells in the apical coil of the cochlea are coupled by 910 to 1260 open channels
per cell pair (see Chapter 4). We think that it is a remarkable outcome of this thesis work
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that this value is consistent with the one determined by a completely different approach
(Nch = 935) to account for the propagation range of Ca2+ signals evoked by photolitic
release of IP3 (Figure 5.8).
Two mechanisms are responsible for the intercellular spreading of Ca2+ signals in

cochlear non-sensory cells: a) IP3 diffusion through gap junction channels and b) ATP re-
lease from connexin hemichannels. One important prediction of the model is the relative
contribution of this two mechanisms in the long range propagation of Ca2+ waves elicited
by focal ATP release. In the past, these phenomena have been proposed as a mechanism
to sense noise damage in the inner ear [Gale et al., 2004]. Pharmacological isolation
of the two components is difficult to achieve, since no specific blocker of gap junction
channels or hemichannels is known. In our model, IP3 propagation through gap junction
channels accounted for the 17% of the wave speed (Figure 5.10B). Conversely, blocking
ATP release through connexin hemichannels by setting vHC = 0 resulted in Ca2+ waves
that remained confined in an area of ∼ 40 µm diameter (Figure 5.10A). Thus, the model
predicts that ATP release through connexin hemichannels is the primary mechanism re-
sponsible for the long range propagation of Ca2+ signals in the developing cochlea. By
binding to P2Y receptors on neighboring cells, the released ATP activates PLC-dependent
IP3 production. This in turn promotes Ca2+ release from intracellular stores raising the
cytosolic Ca2+ concentration up to 500 nM, which increases the hemichannel open prob-
ability, fostering further ATP-dependent ATP release in a self-regenerative cascade of
biochemical reactions.
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Table 5.1: Model parameters

Parameter Unit Description Value Reference

Li-Rinzel model
rrel s−1 Maximal rate of Ca2+ release 1.11 [Li and Rinzel, 1994]
rleak s−1 Maximal rate of Ca2+ leak 0.02035 [Li and Rinzel, 1994]
vserca µM·s−1 Maximal rate of SERCA

pumps
0.9 [Li and Rinzel, 1994]

kserca µM Ca2+ affinity of SERCA
pumps

0.111 fitted, Fig. 5.5B

d1 µM IP3 dissociation constant for
the IP3R

0.13 [Li and Rinzel, 1994]

d2 µM Ca2+ inactivation dissociation
constant for the IP3R

1.049 [Li and Rinzel, 1994]

d3 µM IP3 dissociation constant for
the IP3R

0.9434 [Li and Rinzel, 1994]

d5 µM Ca2+ activation dissociation
constant for the IP3R

0.08234 [Li and Rinzel, 1994]

a2 s−1 IP3R binding rate for
Ca2+ inhibition

0.2 [Li and Rinzel, 1994]

α - Ratio between cytosol and ER
volume

0.185 [Li and Rinzel, 1994]

[Ca2+]TOT µM Total free Ca2+ concentration
referred to the cytosol volume

2 [Li and Rinzel, 1994]

IP3 subsystem
vPLC µM·s−1 Maximal rate of IP3 produc-

tion by PLC
1 fitted, Fig. 5.5

kPLC µM ATP dissociation constant 0.047155 fitted, Fig. 5.5
nPLC − Hill exponent for ATP-

dependent IP3 production
0.3 fitted, Fig. 5.5

rIP3
deg s−1 Rate of IP3 degradation 1.42 fitted, Fig. 5.5
pu µm3·s−1 Unitary IP3 permeability of

gap junction channels
72× 10−3 [Hernandez et al., 2007]

V µm3 Cell volume 3900
Nch - Number of channels between

two adjacent supporting cells
935 fitted, Fig. 5.8

ATP subsystem
rATPdeg s−1 Rate of ATP degradation 0.01 [Zuo et al., 2008]
vHC µM·s−1 ATP maximal production rate 0− 2000 see text
D µm2·s−1 ATP diffusion coefficient 363 [Hubley et al., 1996]
k1 µM−1·s−1 hemichannel model constant 8.9 fitted, Fig. 5.3
k2 µM−1·s−1 hemichannel model constant 5.0 fitted, Fig. 5.3
k−1 s−1 hemichannel model constant 5.8 fitted, Fig. 5.3
k−2 s−1 hemichannel model constant 3.2 fitted, Fig. 5.3
γ - hemichannel model constant 9 fitted, Fig. 5.3
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6 Ongoing work: spontaneous activity in
sensory and non-sensory cells of the
developing cochlea

6.1 Introduction

It is well established that immature inner hair cells (IHCs) transiently generate Ca2+ action
potentials (APs) before the onset of hearing (at around postnatal day 12 in most ro-
dents) [Marcotti, 2012]. The periodic increase in intracellular Ca2+ associated with this
firing activity in immature IHCs, which is known to regulate gene expression in other cells
(particularly neurons), is thought to control the maturation of the mammalian cochlea
and therefore it is crucial for sound acquisition [Kros et al., 1998,Kandler et al., 2009].
The evidence that signaling from non-sensory cells could directly influence IHC firing
activity, and so cochlear development, has generated a lot of interest within the hear-
ing community with several recent publications [Tritsch et al., 2007,Tritsch and Bergles,
2010, Johnson et al., 2011b, Johnson et al., 2012]. However, the specific contribution of
ATP on IHC electrical activity is still hotly debated. Some studies have proposed that
waves of ATP from cochlear non-sensory cells transiently depolarize immature IHCs caus-
ing them to generate action potentials (AP origin mechanism) [Tritsch et al., 2007,Tritsch
and Bergles, 2010]. By synchronizing the output of neighboring IHCs, this ATP–mediated
firing activity in IHCs is proposed to play a specific role in the postnatal refinement of
synaptic connections to/from the brain [Tritsch et al., 2007,Tritsch and Bergles, 2010].
Other recent studies have instead shown that: a) Ca2+ APs are intrinsically generated
by IHCs; b) endogenous ATP modulates the frequency and/or pattern of IHC intrinsic
electrical activity (AP modulating mechanism) [Johnson et al., 2011b, Johnson et al.,
2012].

In order to define how connexins influence sensory hair cell function via ATP-dependent
Ca2+ signaling, we complemented single-cell electrophysiological recordings (performed
by Dr. Stewart Johnon and Prof. Walter Marcotti, University of Sheffield, UK) with
non-invasive large scale optical imaging using the confocal microscopy system developed
in our laboratory and described in detail in section 3.10, which enables data collection
from vast population of cells at high spatial and temporal resolution.
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6.2 Preliminary results

In order to validate whether ATP release by non-sensory cells is required for the ori-
gin (AP origin mechanism) or modulation (AP modulating mechanism) of AP activity
in IHCs, we performed simultaneous Ca2+ imaging from cochlear non-sensory cells and
extracellular recordings in the cell–attached mode under voltage–clamp from IHCs (Fig-
ure 6.1A). Cell-attached patch clamp recording has the advantage, compared to the more
classical whole–cell technique, of preserving the intracellular milieu including the endoge-
nous Ca2+ buffers. These recordings tend to be more stable and long–lasting (>10min),
which is essential when investigating the frequency and pattern of action potential activ-
ity. For these experiments, the patch pipette contained extracellular solution, instead of
the normal K+–based intracellular solution, and the pipette potential was set to 0 mV.
Cochlear explants were obtained from mice during the first postnatal week, loaded with

the Ca2+ dye Fluo-4 acetoxymethyl ester (16 µM, see Chapter 3) and maintained at 37°C
in a perilymph–like extracellular solution (1.3 mM Ca2+ and 5.8 mM K+) throughout
the experiment.
In these conditions, we detected action potentials from IHCs even in the absence of

detectable Ca2+ waves in nearby non-sensory cells (Figure 6.1B and 6.2A), therefore
confirming that spontaneous activity is intrinsically generated in IHCs during develop-
ment [Johnson et al., 2011b]. Furthermore, we found an increase in the frequency of
action potentials in IHCs during spontaneous Ca2+ activity in supporting cells (Figure
6.2B).
We performed cross correlation analysis between the Ca2+ signals detected from a

region of interest of ∼ 700 µms in the proximity of the patched cell and the firing rate
of the IHC (see Chapter 3.11). We found a significative increase of the frequency of
action potentials in IHCs during spontaneous Ca2+ activity in supporting cells (frequency
of APs correlated to Ca2+ signals: 5.5 ± 0.09 Hz, n=1500 events; frequency of APs
uncorrelated to Ca2+ signals: 3.4± 0.12 Hz, n=589 events, P<0.001, Mann-Whitney U
test.), which suggests that endogenous ATP has a modulating effect on IHC intrinsic
electrical activity (AP modulating mechanism) [Johnson et al., 2011b, Johnson et al.,
2012].

6.3 Discussion and future perspectives

Overall, these preliminary data support the hypothesis that inner hair cells are intrin-
sically active during development and calcium waves in non-sensory cells are not required
to trigger calcium APs in inner hair cells [Johnson et al., 2011b]; however, calcium waves
may modulate AP firing rate in inner hair cell. This suggests that extracellular ATP
could be involved in setting the different pattern of AP activity along the cochlea, a role
currently ascribed only to the inhibitory efferent system [Johnson et al., 2011b] .
We already have evidence that alteration in Ca2+ signaling due to impairment of the

PLC- and IP3- dependent cascade described in this thesis ensues in defects of hearing
acquisition [Schutz et al., 2010,Rodriguez et al., 2012]. Investigating the physiological
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6.3 Discussion and future perspectives

mechanisms that link Ca2+ signaling in non-sensory cells to IHC function and develop-
ment will be essential to understand the pathophysiology of DFNB1 and, in a broader
perspective, to uncover critical determinants of cochlear development and hearing acqui-
sition.

A

GER

HCR

Patch pipette

4%

0%

ΔF/F0
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C D

Figure 6.1: Simultaneous recording of inner hair cell and non-sensory cells spontaneous activity.
Four selected frames from the same image sequence. (A) The IHC was approached
with the patch pipette from the outer hair cell side, in order to avoid the disruption of
the epithelium in the non-sensory cell region. The IHC exhibited basal spontaneous
electrical activity (white trace) (B) whose frequency increased when a Ca2+ wave
was detected in nearby non-sensory cells (C). (D) The firing rate decreased towards
baseline values at the end of the Ca2+ signal. GER: greater epithelial ridge; HCR:
hair cell region. Scale bar: 25 µm
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Figure 6.2: Cross-correlation analysis. (A) Representative trace from one recording in which the
IHC exhibited spontaneous electrical activity, while no spontaneous Ca2+ activity
was detected in neighboring supporting cells. (B) Recording from one IHC whose elec-
trical activity exhibited a high degree of correlation with spontaneous Ca2+ signals
in nearby cochlear non-sensory cells.
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