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Abstract 

Sinusoidally patterned metallic surfaces, known as plasmonic gratings, constitute one of the 

principal structures which allow to achieve the coupling between an incident light beam and a 

Surface Plasmon Polariton mode. A variety of phenomena are available when the grating is 

rotated of an azimuthal angle with respect to the incidence plane.  

Aim of this work is a comprehensive investigation of the propagation properties of the surface 

mode under this configuration, correlating the role of the anisotropy introduced by the grating to 

the position and shape of the plasmonic resonance dip in the reflectance spectra. Analytical 

models and physical interpretations are provided; both experimental and computational means 

are exploited in order to validate the models, including the observation of innovative effects. Thin-

film coupled modes, the Long Range and Short Range Surface Plasmon Polaritons, are studied 

and experimentally observed in the azimuthally rotated configuration. 

Special attention is paid to the role of the plasmon radiative losses, due to the scattering by the 

grating. Their dependence on the grating amplitude and the plasmon propagation direction is 

unraveled, and correlated to the width of the observed plasmonic resonances.  

The outcomes of these analyses lead to the evaluation of the sensitivity and Figure of Merit 

achievable when the considered configurations are exploited in the framework of Surface Plasmon 

Resonance sensing. 

The developed concepts and methods are proved to be valuable tools to predict and understand 

the response of actual plasmonic structures applied as sensing devices against gaseous analytes. 

Experimental tests of the plasmonic platforms as TNT, hydrogen and aromatic compounds 

sensors are reported, giving promising results. A particularly remarkable experiment is the 

combined exploitation of Long Range modes and azimuthally rotated configuration to sensibly 

enhance the performance of a xylene sensor. 
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Sommario 

Superfici metalliche con modulazione sinusoidale, note come grating plasmonici, costituiscono 

una delle principali strutture che permettono di ottenere l’accoppiamento tra un fascio di luce 

incidente e un Plasmone Polaritone di Superficie. Una varietà di fenomeni sono accessibili quando 

il grating viene ruotato di un angolo azimutale rispetto al piano di incidenza. 

Scopo di questo lavoro è uno studio approfondito delle proprietà di propagazione del modo di 

superficie  in questa configurazione, correlando il ruolo dell’anisotropia introdotta dal grating con 

la posizione e forma del dip di risonanza plasmonica negli spettri in riflettanza. 

Vengono presentati modelli analitici e interpretazioni fisiche; metodi sia sperimentali che 

computazionali vengono impiegati per validare i modelli, includendo l’osservazione di nuovi 

effetti. I modi accoppiati di film sottile, ovvero i Plasmoni Long Range e Short Range, vengono 

studiati e osservati sperimentalmente nella configurazione ad azimuth ruotato. 

Una particolare attenzione è dedicata al ruolo delle perdite radiative del plasmone, dovute allo 

scattering da parte del grating. La loro dipendenza dall’ampiezza del grating e dalla direzione di 

propagazione del plasmone è spiegata, e correlata con la larghezza delle risonanze plasmoniche 

osservabili. 

I risultati di queste analisi conducono alla valutazione delle sensibilità e Figura di Merito che si 

possono ottenere quando le configurazioni considerate sono sfruttate nell’ambito della sensoristica 

a Risonanza Plasmonica di Superficie. 

I concetti e metodi sviluppati si dimostrano strumenti di valore per predire e interpretare la 

risposta di strutture plasmoniche reali, applicate come dispositivi di sensing verso analiti allo stato 

gassoso. Le piattaforme plasmoniche vengono testate come sensori per TNT, idrogeno e composti 

aromatici, con risultati promettenti. Un esperimento particolarmente interessante è l’uso 

combinato dei modi Long Range e della configurazione ad azimuth ruotato per incrementare 

notevolmente le performance di un sensore di xylene. 
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Preface 

Plasmonics is the branch of Nanophotonics that studies the interaction of optical-frequency 

electromagnetic waves with collective electronic excitations in metal films or nanoparticles, called 

Surface Plasmons.  

Strong enhancement of the electromagnetic field and 1D or 2D confinement at sub-wavelength 

scales, sensitivity to changes in the environment and optical non-linearity are among the 

remarkable effects related to Surface Plasmons, that make them a valuable resource for application 

in fields like biosensing, nanoelectronics, energy harvesting, optical communications. 

If the first observations of effects ascribable to the existence of Surface Plasmons date back to 

one century ago, only the last decades showed a breakout of this field, leading to cross-

disciplinary researches worldwide. 

The main reason is related to the advancements in nanofabrication and characterization 

technologies, which provided the possibility to realize and study suitable structures for the 

excitation and manipulation of Surface Plasmons; in fact, features at the nanometer scale are 

needed to this aim. 

In parallel, improved computational power allows today full modelling and design of the 

structures before actual fabrication. 

This thesis is devoted to the study of propagating plasmonic modes, known as Surface Plasmon 

Polaritons, on nanostructured metallic surfaces, and to their application to gas sensing devices. 

Surface Plasmon Polaritons (SPP) are surface waves, localized at an interface between a metal and 

a dielectric, or in a thin metal film immersed in a dielectric environment, and propagating along it.  

Since their momentum is higher than the one of free radiation at the same frequency, they cannot 

be directly excited by light in normal conditions. 

In the present work, the chosen strategy to provide extra momentum is diffraction, obtained by 

modelling the metal surface with a sinusoidal pattern of period of some hundreds of nm, 

comparable to the visible light wavelength. With this approach, a Surface Plasmon Polariton can 

be excited by illuminating the surface under the conditions that provides momentum-matching, 

called Surface Plasmon Resonance conditions, which appear as a dip in the reflectance spectrum. 

When the surface mode is excited, the electromagnetic energy comes to be strongly confined in 

the proximity of the surface, with the fields evanescently probing the surrounding environment. 

Any change in the refractive index of the medium have the effect to alter the propagation constant 

of SPPs; then it comes natural to exploit them as probes for surface analysis and sensing devices.  

A gas sensor is a device capable to recognize the presence of a specific analyte in the environment 

and traduce it into an electrical or optical signal. The principle of Surface Plasmon Resonance 

sensing is to bind the analyte molecules close to the metal surface, thus causing a change in 

refractive index of the dielectric medium probed by the evanescent fields of a propagating surface 

mode; the consequent alteration of the propagation constant of the mode affects the reflectance 

spectrum, appearing as a shift of the dip.  

In this framework, a sensitive layer capable to selectively and efficiently capture the analyte 

molecules has to be deposited over the metallic grating; thus the same plasmonic platforms can 

then be exploited towards different analytes, possibly chemical or biological in nature, in liquid or 

gaseous environment, finding applications in different fields including medical diagnostics, 

environmental monitoring, food safe and security.  
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This is the reason why the research for plasmonic sensing devices involve many different 

specialists, from chemists to biologists for the sensitive layer optimization, together with 

physicists, material scientists and engineers for the investigation and characterization of the SPPs 

properties and for design, nanofabrication and characterization of the structures. 

Of particular interest are the modes supported by metallic films of sub-wavelength thickness 

immersed in a symmetrical dielectric environment. Under these conditions, an hybridization of 

the surface modes of the two interfaces of the film occurs, resulting in two hybrid modes with 

different momentum for each frequency: a Long Range SPP and a Short Range SPP. 

The first aim of this thesis was to provide an extensive investigation of the excitation of SPPs by a 

grating coupler and their propagation along an arbitrary direction with respect to the grating 

grooves, i.e. their propagation on an anisotropic surface. The results, in addition to their intrinsic 

interest, can also be seen as useful tools to understand and optimize the optical response of 

plasmonic structures to the aim of gas sensing. 

The analysis includes issues related both to anisotropic coupling configuration, known as “conical 

mounting”, and anisotropic propagation on the surface, with particular attention to the imaginary 

part of the SPP momentum and its physical meanings. 

More specifically, a generalized analytical model, supported by geometrical schemes, have been 

provided to treat the excitation of SPPs under conical mounting configuration, allowing to 

calculate the position of the resonance dips in the reflectance spectra of a given structure and the 

corresponding propagation direction of the excited modes. 

The imaginary part of the SPP propagation constant have been correlated to the width of the 

resonance dip, the losses suffered by the surface mode and consequently its propagation distance, 

with particular attention to radiative losses due to the scattering by the grating. Effects related to 

the polarization of the incident light, the grating amplitude and the conical mounting have been 

investigated and physical interpretations provided.  

Any means on disposal was exploited to the aim of the analysis, in a synergy between 

analytical, numerical and experimental approaches. This included modal analysis of the plasmonic 

structures by Finite Element Method simulations, computation of the optical response of the 

structures by Chandezon’s algorithm, and optical characterization of actual samples.  

The models have been exploited to perform the first analysis and experimental observation of 

the coupling and propagation of Long Range and Short Range modes in conical mounting. Finally, 

estimations of the performances of SPPs as probes for SPR sensors have been provided, in term of 

sensitivity and Figure Of Merit, both under angular and spectral interrogation and with particular 

attention to the conical mounting configuration. 

The second aim of this thesis was to collaborate to projects aimed to the development of actual 

sensing devices, to be tested against different kinds of analytes in gaseous state. In this framework, 

concepts and methods previously introduced proved to be valuable tools to predict and 

understand the response of complex structures.  

The tested analytes included trinitrotoluene (TNT), hydrogen and aromatic Volatile Organic 

Compounds (VOCs), in particular xylene. Each analyte required the use of a specific sensitive 

layer, that could be a thick porous matrix or a molecular monolayer; the nature of the supported 

surface modes, i.e. single-interface or Long/Short Range modes, strongly depended on this choice. 

In the TNT case, a monolayer, self-assembled over a gold surface, was exploited as a sensitive 

layer. The corresponding mode was a single-interface SPP, excited in conical mounting. 



 

 

- 9 - 

 

Preliminary tests of the sensor response in time to a certain analyte concentration have been 

performed, to put the basis for further developments. 

Two kinds of nanocomposite, nanoporous matrices were tested against both hydrogen and 

aromatic VOCs, with promising results, that could give an insight into the interaction mechanisms 

between the sensitive layer and the analytes. 

A symmetrical environment was produced, exploiting a material suitable both as a patternable 

substrate and as a thick sensitive layer, in order to provide a sensor based on Long and Short 

range SPPs. This device was tested against xylene, demonstrating the improved sensitivity of the 

Long Range mode in conical mounting. 

These last two applications were developed in the framework of the PLATFORMS - “PLAsmonic 

nano-Textured materials and architectures FOR enhanced Molecular Sensing” strategic project of 

the University of Padova, STPD089KSC. 

In summary, this thesis work is organized as follows: 

Section 1: Fundamentals of Plasmonics 

A concise but comprehensive treatment of the essential basis is provided. Derivation of the 

dispersion relation of the basic Surface Plasmon Polariton, propagating along a flat interface 

between a metallic and a dielectric medium, is outlined. Basic properties of confinement and 

propagation are introduced. 

For the thin film case, the implicit dispersion relation of the supported modes is given, with 

particular attention to the symmetrical case. Approximated explicit dispersion relations are 

derived for the Long Range and Short Range SPPs. 

In the Chapter “Excitation of Surface Plasmon Polaritons”, the problem of SPP coupling to 

incident light is then addressed, presenting the two basic coupling strategies: the prism and the 

grating. Conical mounting configuration for gratings is introduced, with a geometrical 

representation of the momentum matching conditions, and the role of the incident light 

polarization in the coupling efficiency is explained. 

The Lorentzian shape of the plasmonic resonance is given, pointing out the relation between the 

resonance width, the mode dissipation and the imaginary part of the momentum, and their role in 

the coupling efficiency. 

The Chapter “SPPs on realistic multilayer structures” is devoted to some complications related to 

SPP excitation and propagation on realistic samples; in particular, Effective Medium 

Approximation is introduced in order to keep the multilayer into account. Some remarks are made 

about the SPP coupling by conformal gratings and in symmetrical environment. Finally, it is 

pointed out that some guided modes into dielectric layers may be encountered. 

In the last Chapter, the basic theory of the optical properties of dielectric and metallic media is 

presented. In particular, relations are given between the complex refractive index and the complex 

dielectric function, and, in the case of metals, the density and collision frequency of free electrons, 

according to Drude model. 

Section 2: Surface Plasmon Resonance sensing 

Basic principles of SPR sensing are introduced, with a concise review of their performances and 

advantages. The principal parameters to characterize a sensor performance are defined. 

In the second Chapter, a priori estimates of sensitivity and Figure of Merit of SPP modes are 

introduced, followed by an analysis of basic sensitivity enhancement strategies: the exploitation of 

Long Range modes and the conical mounting. 
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Section 3: Computational methods 

Two useful computational tools are here described. 

First, Chandezon’s method, to rigorously solve the problem of a plane wave incident on a 

diffraction grating. This method, implemented on MATLAB, will be used to generate reflectance 

spectra similar to the experimental ones. 

Second, Modal Analysis through Finite Element Method, to calculate the plasmonic 

eigenmodes of a given structure. This method was implemented on the COMSOL Multiphysics 

software, and can provide complementary information, including an analysis of the loss channels 

for an SPP propagating on a grating. 

Section 4: Experimental 

This Section is devoted to materials, fabrication techniques and characterization instruments. 

Choice and synthesis of the materials to realize the actual plasmonic structures are presented in 

the first Chapter. This includes metals, functional materials for the fabrication steps and functional 

materials to be used as sensitive layers. 

Fabrication techniques are briefly described in the second Chapter: thin film deposition 

procedures, Interferential Lithography and Nano-Imprinting. 

Morphological characterization of the samples have been performed by Scanning Electron 

Microscope and Atomic Force Microscope, as described in the third Chapter. 

Finally, the principal instrument for optical characterization, the Variable Angle Spectroscopic 

Ellipsometer, is introduced. Some of its functions, relevant for the present work, are briefly 

described: reflectance measurements to collect experimental spectra, spectroscopic ellipsometry to 

determine the dielectric function of thin films, and scatterometry to estimate the grating period. 

Section 5: Advancements in Plasmonics 

This Section represents the core of the thesis, providing an extensive investigation of SPPs 

propagation on the anisotropic surface defined by the grating. 

The first Chapter, “Two-dimensional SPP coupling and propagation”, is devoted to the real part of 

the SPP momentum. The concept of momentum-matching scheme is generalized to previously not 

considered conditions, achieving a general treatment of the grating coupling in conical mounting. 

The position of the resonance dips in the reflectance spectra can be analytically predicted; as an 

handy method to do this, maps can be generated with minimum computational effort. 

In the last paragraph, the viewpoint is shifted from the coupling setup to the grating surface, 

calculating the propagation direction of the SPPs with respect to the grating grooves. Maps of the 

angle of propagation achievable through the grating coupling are generated and commented. A 

remarkable configuration is identified, in which it is achieved the simultaneous excitation of two 

identical SPP modes, by the same light beam, propagating along different directions. 

The second Chapter, “Resonance shape and SPP propagation”, is devoted to the study of the 

imaginary part of the SPP momentum, in relation to the intrinsic and radiative losses and the 

width of the SPR dip.  

It is shown and explained that the incident light polarization does not affect the resonance width, 

since it only determine what fraction of incident light intensity does couple to the grating. 

Then, a deep investigation of the dependence of radiative losses on the grating amplitude is 

performed, by means of both Modal Analysis and Chandezon’s methods, verifying consistency 

between the results.  

The main result is the demonstration that radiative losses are proportional to the square of the 

total amplitude; a physical interpretation of this fact is suggested, based on the interpretation of 

the resonant coupling as a quantum interference phenomenon. 
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In the “Anisotropy” Paragraph, the dependence of the radiative losses on the propagation direction 

with respect to the grating grooves is derived, by building an index ellipse for the SPP complex 

effective refractive indexes.  

Some remarks follow, about the translation of these results to the reference system related to the 

coupling setup, through the coupling relations. 

Finally, the model is validated by comparison to experimental data. 

The developed models and methods find a first application in the Chapter “Coupled modes in 

conical mounting”, where they are exploited to find a suitable configuration in which to satisfy the 

second resonant coupling conditions for Long Range and Short Range SPPs, and identify the 

corresponding dips in experimental spectra. As a complementary analysis, the propagation 

direction and length of the observed modes are also investigated, suggesting in particular that the 

Long Range SPP propagation length can be sensibly enhanced in conical mounting with respect to 

the null-azimuth case. 

The last Chapter addresses the problem of theoretically calculate the sensitivity of an SPR 

sensor. 

An analysis is exposed of the various terms that contribute to the overall sensitivity, starting with 

some remarks about the role of the sensitive layer.  

A first attempt to evaluate the intrinsic sensitivity of the Long Range and Short Range modes is 

proposed; even if it comes to be a rough approximation, it preserves some qualitative results. 

The factor related to the conical mounting is generalized to all the available coupling 

configurations, and the meaning of divergences is clarified. 

The calculation of the sensitivity of an SPP mode excited in conical mounting is calculated for the 

spectral interrogation case, for the first time. 

Finally, it is shown that the Figure of Merit is the same for the angular and spectral interrogation 

cases, and that its enhancement under conical mounting is essentially due to the reduction of 

radiative losses. 

Section 6: Sensing applications 

In this Section, actual sensing experiments are reported, in which SPR sensors are tested against 

analytes of strategic interest for security and health safety. 

The first Chapter describes a sensing test of a basic gold plasmonic platform in conical 

mounting against TNT, with a molecular monolayer as a sensitive layer. Both the implemented 

SPR setup and the sensitive layer were well-established, but never combined together. The sensor 

response in time until saturation was investigated, and detection of explosive traces down to some 

tens of ppb was achieved. 

In the second Chapter, two kinds of functional materials were exploited as sensitive layer 

against both hydrogen and aromatic VOCs. Reflectance spectra presented a number of dips; the 

corresponding modes were identified by comparison with theoretical expectations. Both sensitive 

materials showed satisfactory optical response, with reversible dynamics, against both analytes; 

the detection of hydrogen or VOCs can be discriminated through the direction of the dip shift.  

The final Chapter presents the result of 30 ppm xylene detection by means of symmetrical thin-

film plasmonic structure. This represents the first example of a sensing device that combines the 

two strategy, namely the Long Range SPP and the conical mounting, to achieve a great 

improvement in sensitivity. 

 
29 January 2014, Padova 

Enrico Gazzola 
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1. Fundamentals of Plasmonics 

This Section provides a background on the essential notions of Plasmonics on which the present 

work is based.  

It starts with the introduction of the most common Surface Plasmon Polariton modes on single 

interfaces and thin films, including the definitions of their basic properties. An approximate 

analytical treatment of the dispersion relation of thin-film modes is also derived. 

The common strategies to provide coupling between free radiation and Surface Plasmon 

Polaritons are introduced; the grating coupling strategy is developed including a treatment of 

conical mounting configuration and coupling efficiency. Some remarks about the shape of the 

resonance curve and its relation to losses are made. 

One Chapter addresses some issues related to realistic multilayer structures; in particular, an 

effective refractive index approach is introduced, together with some considerations about 

coupling configurations. The possible existence of waveguide modes into dielectric layers is also 

addressed. 

The last Chapter is devoted to materials and includes an insight into the meaning of the optical 

constants from a Solid State Physics point of view. 

1.1.  Surface Plasmon Polaritons 

Conductor-dielectric interfaces are known to support nonradiative propagating waves. They have 

long been known as Zenneck waves [1], Sommerfeld waves [2] or Fano modes [3], and in modern 

Optics are called Surface Plasmon Polaritons (SPPs) [4]. From the point of view of Solid State 

Physics, they can be described as quasi-particles originated by the coupling of surface plasma 

charge oscillations and the electromagnetic fields [5] (see also Appendix 8.1[a]). 

a. SPP dispersion relation 

Their dispersion relation can be derived through by classical Electrodynamics [6]; only the main 

results will be reported here. 

Referring to Fig. 1, we look for a solution of the wave equation in the form of a wave propagating 

along the  ̂ direction along the metallic surface and evanescent along the  ̂ direction. Two 

independent solutions of this kind can be given that satisfy the boundary conditions for the 

continuity of the fields at the interface [7; 8], corresponding to transverse magnetic (TM) and 

transverse electric (TE) waves, respectively. 

The equations for TE modes only admit the trivial solution of all fields to be equal to 0, meaning 

that no surface mode exist for this polarization. An intuitive explanation is that electron plasma 

oscillations would not occur, since they require a component of the electric field normal to the 

surface, while in TE modes the only non-zero component would be Ey. 

The TM solutions for the magnetic and electric fields can be expressed by the following set of 

equations: 
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Fig. 1: Magnetic field profile of a single-interface surface plasmon polariton, propagating along the 

interface between a dielectric, of real relative permittivity εd, and a metal, of complex permittivity εm = 

εmr+ εmi. The field presents an exponential decay into both the materials. The  ̂ direction is defined as an 

arbitrary direction along the surface, while the  ̂ direction is perpendicular to the surface. 

With standard notation, ω is the wave frequency and ε0 the vacuum permittivity. H0 is related to 

the wave intensity and will not be a relevant parameter in the following treatment. Kspp is the 

propagation constant of the travelling wave, corresponding to the component of the wave vector 

in the direction of propagation, while km and kd represent the perpendicular components in the 

two media, namely the metal and the dielectric, respectively.  

The requirement to fulfill the wave equation in the two half-spaces yields the following 

expressions for km and kd (being c the light speed in vacuum): 
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And also the SPP dispersion relation: 
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Fig. 2 reports a plot of this relation for the case of silver/air interface, in a frequency range 

including visible light and infrared radiation. It can be observed that Kspp is higher than the 

momentum of a free wave with the same frequency. 
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Fig. 2: Plot of the dispersion relation for an air/silver interface SPP in the infrared and visible spectrum, 

compared to the dispersion relation for a light wave in vacuum. It is apparent that, given the frequency, 

the SPP wavenumber, i.e. its momentum, is higher than the free wave one. 

b. SPP confinement and propagation 

The SPP is localized close to the surface, since it exponentially decays along   ̂ as       | |. 

The penetration depth into a material is defined as the distance at which the field falls of a 
 

 
 factor. 

Thus the penetration depths into the dielectric and metal respectively are obtained as follows [9]: 
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Typical values are of few thousands of nm into the dielectric and few tens into the metal. 

Since the metal permittivity is complex, also the SPP momentum is in general complex, with the 

imaginary part representing energy dissipation [4; 9]: 

                           

This implies that the SPP has a finite propagation distance before being completely dissipated, due 

to the      factor. An attenuation length can be defined as the distance at which the SPP intensity 

falls of a 
 

 
 factor. Since the intensity           , the attenuation length is given as follows: 

  
 

  
 

And it assumes values ranging from few μm to hundreds of μm, depending on the SPP frequency 

and on the materials. 

Under the reasonable approximation |   |  |   |, the following approximated equations are 

obtained (see Appendix 8.1[b]) for the real and imaginary parts of Kspp: 
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The second formula shows that losses have a strong dependence on εd and εmr, besides the obvious 

one on εmi. In fact, if the dielectric refractive index is high, the field is forced to “spend more time” 

into the metal, thus increasing the dissipation [7; 8]. 

1.2.  Surface Plasmon Polaritons on thin films 

In principle a metal slab immersed in a dielectric environment, like the one depicted in Fig. 3, 

could support two SPPs, one on each interface. When the slab thickness is of the order of the SPP 

penetration depth, the interaction between the two modes can produce new phenomena [10-13].  

a. Implicit dispersion relation 

In the same way as for the single interface, one can look for TM modes propagating along  ̂, 

evanescent along  ̂ and independent on  ̂.  

Applying the Superposition Principle to the two single interface SPPs, the generic solution can be 

expressed as follows [6]: 
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The wave equation requires for the three layers that   
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  , for j = m, d1 and d2. A, B, 

C and D are free parameters corresponding to H0 in the single-interface case. 

Imposing the boundary conditions, an implicit expression for the SPPs dispersion relation is 

obtained as follows: 

      
      

      

      

      

 

Having define    
  

  
. This expression could be reformulated using the properties of the 

hyperbolic tangent as follows: 
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Where two branches are separated. This equation has in general four solutions, two of which 

correspond to bounded modes, while the other two are leaky waves [12]. 

 

Fig. 3: A metal slab of thickness 2a, between two dielectric semi-spaces. 

b. Symmetrical case and coupled modes 

Most interesting is the case when the two dielectrics are the same, i.e. the metal slab is immersed 

in a symmetrical environment. Since                                    , the 

implicit dispersion relation becomes: 
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The two bounded solutions represents two Fano modes resulting from the coupling between the 

two single-interface SPPs [11; 12]; for this reason they are addressed as “coupled modes”. Their 

peculiar properties will now be analyzed in detail. 

The first one is called Long-Range SPP (LR SPP) and its implicit dispersion relation is:  
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  ;    
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  .  

Using this relation into the general form of the fields, it follows that A = B and C = D, and 

consequently: 

{

  ( )    (  )

  ( )    (  )

  ( )     (  )

 

The mode is then even in Hy and Ez and odd in Ex, as graphically shown in Fig. 4. This symmetry 

lowers the penetration of the evanescent fields into the metal layer, resulting in a weakened 
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confinement and low dissipation; this is the reason for its longer propagation, from which the 

label “Long Range” [11; 13]. An estimation of the LR SPP propagation distance is reported in 

Appendix 8.1[c], showing a strong dependence on εmr and, inversely, εd. Again, this is understood 

considering that under these conditions the field spends less time into the metal layer, thus 

reducing dissipation. 

 

Fig. 4: Fields profile for the Long Range mode 

Its more interesting property is that when the metal film thickness tends to 0, the mode tends to 

become a free plane wave propagating along  ̂ in the dielectric.  

In fact,     implies that     (   )     ,      and       
 

 
√  . 

From a momentum viewpoint, the following consideration can be made about      (     ), 

neglecting the imaginary part of   .  

The hyperbolic tangent needs the geometrical constraint     (   )  (    ), corresponding to the 

requirement (
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  . Keeping into account that |  |    , this easily leads 

to the following condition: 

   
 

 
√

    
     

    

It means that, on equal frequency, the LR SPP momentum is smaller than the momentum of a 

single-interface SPP between the same materials.  

The other solution, described by the implicit dispersion relation  

    (   )   
    
    

 

 is called Short Range SPP (SR SPP). Contrary to the LR mode, it is even in the Ex and odd in the Ez 

and Hy field profiles, as shown in Fig. 5: 

{

  ( )     (  )

  ( )     (  )

  ( )    (  )

 

This mode is strongly confined and strongly dissipated into the metal layer, resulting in short 

propagation. When the metal film thickness tends to 0, more and more energy is concentrated and 
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dissipated into the metal film, and βS has to diverge in order to increase enough the decay constant 

km [12]. 

If      (      ), the condition on the hyperbolic tangent gives:       . 

The generation of these hybrid modes when the layer is thin enough can be seen as a strong-

coupling condition between the two single-interface modes, that is generally known to produce 

modes hybridization and frequency splitting [14]. 

If the symmetry is broken, the electromagnetic energy of the LR SPP tends to concentrate in the 

medium with lower refractive index and the SR SPP energy in the other. With increasing refractive 

index asymmetry, their dispersion relations will accordingly tend to the ones of the two single-

interface modes on the two interfaces [12]. 

 

Fig. 5: Fields profile for the Short Range mode 

c. Approximated dispersion relations 

Explicit dispersion relations for the coupled modes cannot be analytically obtained, but it is useful 

for practical purpose to give  approximated expressions [15].  

The approximation consists in 
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  , that is immediately verified for the LR SPP on a 

sufficiently thin film, since   
     when     as seen before.  

Thus we can take   
   √     

  (
 

 
)
 

   
 

 
√       and put it into the implicit LR SPP 

dispersion relation, that becomes: 
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This expression can be inverted to extract the LR SPP momentum: 
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It is less immediate to justify the approximation for the SR SPP case. The assumption is equivalent 

to: 



1 - Fundamentals of Plasmonics 

 

 

- 20 - 

 

(
 

 
 )

    
(   

     
 ) 

(   
     

          )    

Usually the condition is quite well satisfied for thin films (a ≈ few tens of nanometers) thanks to 

the hierarchy           . 

 

Fig. 6: Dispersion relations for the coupled modes supported by a 40-nm thick silver film in air, compared 

to the dispersion relation of a single-interface silver/air SPP. 

The approximation then gives, for the SR SPP momentum: 
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In Fig. 6 the real part of these formulas is taken, in order to plot the dispersion relations for the 

coupled modes, in comparison to the one of a correspondent single-interface modes. The hierarchy 

         at equal frequency is verified. 

A useful approximated expression for the real part of the coupled modes momenta is provided in 

Appendix 8.1[d]. 

1.3. Excitation of Surface Plasmon Polaritons 

a. Basic coupling strategies 

SPPs are nonradiative modes, which remain confined to the surface because their momentum β is 

greater than the momentum    
 

 
√   of a free light wave propagating through the dielectric [6]. 

This implies that they cannot be excited by a light beam simply impinging on the metal surface. 

Two main strategies are widely used in order to couple the incident beam with an SPP mode: a 

prism coupler and a diffraction grating. 

The first strategy is based on the attenuated total reflection (ATR) method and exploit a prism with 

refractive index np greater than the dielectric refractive index √  . Two configurations exist, 

namely the Otto’s and the Kretschmann-Raether’s [16; 17].  

In the Kretschmann-Raether’s configuration, shown in Fig. 7(a),  the metallic film is placed 

between the dielectric media and the prism. The incident light wave goes through the prism, 
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increasing its momentum of a factor np, and hits the metal film at an incidence angle θ greater than 

the critical angle of total internal reflection [18]. An evanescent wave penetrates the metal film and, 

if the film is sufficiently thin, it can couple with an SPP on the opposite surface when a resonance 

condition     
 

 
     is matched.  

 

Fig. 7: Scheme of the two prism-coupling configurations. (a) Kretschmann-Raether’s configuration and (b) 

Otto’s configuration. 

In the Otto’s configuration, shown in Fig. 7(b), it is the dielectric layer to be placed between the 

prism and the metal. In the total internal reflection regime, the evanescent wave penetrates the 

dielectric layer and can couple with the SPP when the resonance condition is satisfied. 

The main drawback of this coupling strategy is that the use of a prism constitutes a limit to the 

possibility of miniaturization of SPP based devices. 

The alternative method to provide additional momentum is the diffraction of light incident on 

a metallic grating [18]. This requires to fabricate a periodic pattern at the metal/dielectric interface, 

with periodicity Λ of the same order of  magnitude of the incident wavelength [3; 19; 20]. 

The basic configuration is as in Fig. 8, with a light beam of momentum  ⃗   impinging the surface 

with an incident angle θ. The component of its momentum projected to the surface constitutes the 

transferred momentum  ⃗    ⃗       from the light to the surface plasmon. The  ̂ direction is 

conventionally taken as antiparallel to  ⃗  . 

It is well known from Solid State Physics that for a periodic structure of period Λ the Bragg vector 

of modulus   
  

 
 and direction along the grating grooves represents the grating momentum [21; 

22]. When the incident light is diffracted by the periodic structure, additional momentum is 

provided by the grating as an integer multiple of G.  

If j is the diffraction order, the momentum of the diffracted beam is given by  ⃗    ⃗      . Usually 

for plasmonic gratings at optical frequencies only the first diffraction order is relevant. The 

coupling between the incident light and the SPP is then realized when the momenta match the 

following resonance condition:     ⃗     .  

In the basic configuration shown in Fig. 8, all these vectors are parallel, so the condition can be 

projected along  ̂ as follows:   

           

When the metallic surface is illuminated by a light beam, as sketched in Fig. 9(a), with a scan in 

incidence angle, the plasmonic resonance manifests itself as a dip in the reflectance spectrum, that 
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appears as in Fig. 9(b). In fact, when the resonance condition is fulfilled, the energy of the light 

beam is transferred to the SPP mode. 

While the resonance condition only provides momentum matching, the depth and shape of the 

resonance curve depend on other parameters, as it will be shown in the following chapters. 

 

Fig. 8: Scheme of the basic grating coupling configuration. The incident light transfers the component of 

its momentum parallel to the surface. 

 

 

Fig. 9: (a) Concept of the reflectance measurement. (b) Plasmonic resonance dip seen in an angular scan, 

corresponding to the excitation of gold/air single-interface SPP with light of wavelenght 650 nm 

impinging on a 470-nm grating. 

b. Conical mounting 

In the last paragraph only the basic     ̂ case has been considered. New features of the plasmonic 

response arise when the plane of incidence is rotated with respect to the grating grooves, a 

configuration known as conical mounting [23-25].  

The 3D configuration is represented in Fig. 10; the sample surface lies on the ( ̂  ̂) plane, while the 

scattering plane is defined as the ( ̂  ̂) plane, with the x-component of the incident light 

momentum directed along – ̂. The angle between  ̂ and    is called the azimuth and conventionally 

labeled φ. 

At non-zero azimuth the transferred momentum  ⃗   is not parallel to the grating vector, thus the 

symmetry of the incidence configuration is broken and the resonance condition becomes two-

dimensional. The component of the grating vector normal to the scattering plane is transferred to 

the SPP, which as a consequence propagates along a direction non parallel to the scattering plane. 

In particular, it has been shown that two SPPs can be excited by the same incident wavelength, 
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propagating on the surface in different directions [26]. The demonstration is straightforward with 

the advantage of a geometrical representation in the reciprocal space of the sample plane, as 

shown in Fig. 11(a). The scheme assumes G>β, that is usually true for SPPs at optical frequencies 

at an air/metal interface; for this reason only the j = -1 diffraction order can possibly satisfy the 

momentum matching condition     ⃗     . 

 

Fig. 10: Scheme of the vector conventions for a 1D grating of Λ period in conical mounting. The on-plane 

component     of the incident radiation is oriented along   ̂.  ⃗⃗  is the grating Bragg vector and it is rotated 

of an azimuthal angle φ with respect to the x axis. The SPP momentum  ⃗⃗  is the result of the vector sum of 

 ⃗⃗  and    . 

Since the incident light will usually come from air, it will be assumed    
  

 
 hereafter. 

The vector condition can then be projected on the x and y axis as follows: 

{
    ̂        

  

 
    

    ̂       

 

For a given azimuthal angle φ and wavelength λ, two incidence angles θ can possibly satisfy the 

condition,  corresponding to the excitation of two SPPs of     and     momenta equal in modulus 

but propagating along different directions; green arrows in Fig. 11(a). Correspondingly, two dips 

for each single wavelength are observed in the experimental reflectance spectra of Fig. 11(b). This 

cannot be observed for too low values of φ since the second excitation would require too high 

values for  ⃗  . 

For increasing wavelength,  ( ) decreases until the condition represented by the dashed line in 

the coupling scheme is reached, when the transferred momentum vector is tangential to the β 

circle. At this critical wavelength λc , only one mode can be excited, which propagates along the 

direction orthogonal to the incidence plane: a condition known as “merging condition” [26]. In the 

corresponding spectrum in fact, like the one in Fig. 11(b), for increasing wavelengths the dips are 

seen to get closer and merge as λ approaches the critical value. For λ > λc the coupling becomes 

impossible. On the other hand the “merging condition” can also be explored by keeping the 

wavelength fixed and increasing  . 
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Fig. 11 (a): Sketch of coupling scheme in the G > β regime for a generic azimuth φ. It represents the 

reciprocal space of the sample plane, with the on-plane component of the incident light directed along – ̂. 

It shows that for each wavelength λ two SPPs,  ⃗⃗   and  ⃗⃗  , are excited, presenting the same modulus  ( ) 

and propagating along different directions, through the transfer of the    
  and    

  momenta respectively. 

The “merging condition” is satisfied when, for a certain wavelength λC, the two SPPs degenerate into a 

single SPP propagating along the y-axis. (b) Typical high-azimuth reflectance spectra associated to the 

coupling scheme shown in (a) for grating period  = 590 nm and azimuth  = 56°. The existence of two 

resonances for a single wavelength, and of a single resonance at the merging condition, is shown. 

It can be useful to solve  in θ the resonance conditions (see Appendix 8.2.[a] for the derivation), for 

a fixed azimuthal angle, to extract the following two solutions, corresponding to the     and     

SPPs [27]: 

      
 

 
     √  ( )  (

 

 
    )

 

 

Where N(λ) is defined as the effective refractive index    
 

 
, that is   √

     

      
 in the single-

interface case. The request of reality of the square root term fixes the maximum azimuth that 

allows a plasmonic resonance to exist, namely:  

        (
 

 
) 

c. Coupling efficiency 

The momentum matching conditions determine the position of the plasmonic dip in the angular 

scan, but they do give no information about the dip depth, that is correlated to the coupling 

efficiency. 
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It is known that the coupling efficiency strongly depends on the grating amplitude, defined as the 

vertical peak-to-valley distance. This dependence has been treated only through computer 

simulations by now, aimed to identify the amplitude that optimize the coupling efficiency for 

every specific structure and configuration [27]. 

The other crucial parameter is the incident light polarization [23]. It is known that a metallic grating 

only diffracts light with the electric field oriented along the grating vector, and completely reflects 

the other components [28]. This condition can be expressed by saying that only incident light with 

the electric field lying on the grating symmetry plane ( ̂  ̂) can couple to the grating. In the φ = 0 

configuration, the plane of incidence ( ̂  ̂)  coincides with the grating symmetry plane, thus the 

condition is fulfilled by p-polarized light. 

In conical mounting the two planes no longer coincide, and    has an out-of-plane component 

        ; for this reason the right polarization to optimize the coupling is not the p-

polarization any more. Defining the polarization as the α angle rotating counterclockwise from the 

plane of incidence to the electric field vector, as in Fig. 12, the optimal polarization αopt is a 

periodic function of θ and φ, that can be easily derived as follows [29].  

 

Fig. 12: Scheme of the vector conventions for a 1D grating of Λ period in conical mounting, with the 

definition of the incident light polarization. The electric field lies along the  ̂ direction. The polarization 

angle, α, is defined as the counterclockwise rotation with respect to the plane of incidence, i.e. the ( ̂  ̂) 

plane. 

Assuming that all the diffracted power goes into the SPP excitation, the reflectance R is 

proportional to the electric field fraction perpendicular to the grating symmetry plane, that 

depends on both the azimuthal rotation and the incidence angle as follows: 

  | ̂  ( ̂   ̂)|  

Where  ̂ and  ̂ are the versors of the electric field and grating vector respectively, defined as 

follows: 

 ̂  
 ⃗ 

 
 (                        )

 ̂  
  

 
 (           )

 

Using these definitions, R becomes: 

  |                     |  
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That is 0 under the following condition, which defines the optimal polarization αopt:         

          

Due to the π periodicity of the polarization, αopt can be extracted as: 

           (        )         (        ) 

Since this formula only depends on the φ and θ angles, curves of constant αopt can be plotted on 

the (φ, θ) plane, obtaining the map in Fig. 13 valid for any value of the other parameters.  

 

Fig. 13: Solutions of the optimal polarization formula are plotted on the (φ, θ) plane. Along each coloured 

curve, the optimal polarization has the value indicated in the corresponding label. 

 

Fig. 14: Angular scan of the plasmonic resonance on a 500-nm grating, for 650-nm incident wavelength. 

The azimuthal angle is set to 40° and the spectrum is collected for various polarizations. It is in good 

agreement with the theoretical formula, which predicts the optimal polarization around 140°, and the 

worst polarization at about 50°. 

When the polarization is optimized for the resonant θ and φ, the reflectance is minimum, while if 

the polarization is set to      
 

 
 the dip disappears. The obvious reason is that at the orthogonal 

polarization no component of the field can couple to the grating. When the incident light is 

orthogonal to the grating vector (φ = 90°), p-polarized light is completely reflected but s-polarized 

is diffracted. 

The complete dependence of R on the polarization can be derived as in Appendix 8.2.[b] and is 

given by [29]: 
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[     (     )] 

With         [
          

                
]. This formula is in good agreement with the observed trends, 

like the one reported in  Fig. 14. 

d. Losses and linewidth 

The excitation of an SPP mode by ATR is equivalent to the prism coupling with a dielectric 

waveguide [30]; in particular the coupling is reciprocal and the energy propagating along the 

surface, or into the guide, tends to radiate back (“leak”). The main difference is that in the 

plasmonic case there are strong losses, due to the metal; losses are described by the imaginary 

part, Г, of the SPP momentum, that can be decomposed into a term related to the intrinsic losses 

and a term related to leakage [31; 32]: Г = Гi + Гr.  

Since the dispersion of Chapter 1.1 has been derived for a flat surface, it represents a bound mode, 

thus it only gives the intrinsic term and not the radiative one, which depends on the coupler: 

           
 

 
√

    
     

 

Introducing the coupler (prism or grating), Kspp is perturbed in this general way:  

    
( )

       (     ) 

In the prism case, it is know that the reflectance in the proximity of the resonance can be 

approximated by the Lorentzian profile [4; 31; 33]: 

    
     

(             )
 
 (     )

 
 

From which it is apparent that the width of the dip is strictly related to the total losses. In 

particular, the less loss, the sharper the resonance, since the lorentzian Full Width at Half 

Maximum is equal to 2(Гi + Гr). 

In addition, it can be seen that R = 0 at the resonance only if Гi = Гr: thus this is the conditions that 

provides the optimal coupling between radiation and the SPP. This phenomenon can also be seen 

as an example of impedance matching: the SPP can be thought as a damped oscillator driven by a 

transmission line (the probe beam); only when the characteristic impedances of the oscillator and 

the beam (given by the coupling strength) are equal the back-reflection towards the source is 

cancelled [8; 31].  

A deeper picture of what the dip in reflectance actually represents can be provided, using the 

concept of destructive interference between reflected and reradiated beam, or more precisely of a 

quantum interference between two indistinguishable paths [34]. The two paths are represented in 

Fig. 15: the incident photon either is reflected or it is converted into a surface mode, and then 

reradiated with a π phase shift. The paths destructively interfere, leaving as a result the excitation 

of the surface mode with the cancellation of the outgoing radiation. 
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Fig. 15: Pictorial representation of the destructive interference between the two paths for the incoming 
photon. (a) reflection. (b) excitation of a surface mode and further re-emission. (c) eventually, the result is 

the cancellation of the outgoing beam for destructive interference. 

The Гi = Гr condition is found to be a universal condition for the coupling between a radiation field 

and a local oscillator [34], and it generally corresponds to a critical coupling regime, when the 

electromagnetic energy stored in the mode is maximal, since the re-radiated wave is suppressed 
[35]. 

Although this model has been developed for prism-coupled SPR sensors, it is also a good 

approximation for gratings [36]; in fact, since the grating acts as a coupler, an SPP propagating on a 

patterned metal surface will leak [23]. The          factor in the Lorentzian resonance is replaced, 

in this case, by | ⃗     |. 

The field profiles symmetry of the thin-film coupled modes determine an enhancement of intrinsic 

losses for the SR SPP and a reduction for the LR SPP; the reason can be found in a deep analysis of 

the physical origin of this loss term. From a multipole Lorentz model approach, a relation can be 

derived between the SPP mode loss rate and the fraction of its energy stored as kinetic energy of 

the metals electrons, and an inverse relation between such kinetic energy and the magnetic energy 
[37].  

Due to the inverse relation between propagation and losses, LR SPPs present a much sharper 

resonance, whose FWHM decrease with the film thickness [38; 39]. Obviously, the SR SPP shows the 

opposite behavior. 

1.4.  SPPs on realistic multilayer structures 

Actual plasmonic structures are multilayer, due to the fabrication techniques, as it will be 

explained in Chapter 4.2.  

 

Fig. 16: Scheme of a realistic plasmonic grating; the structure is fabricated layer by layer. The resist is 

needed to realize the sinusoidal pattern. An upper dielectric layer can be deposited over the metal slab. 

Typical thicknesses are 100-200 nm for the dielectric layers and some tens of nm for the metal layer. 

Substrate is a quartz or silicon slide. 
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A typical stack is shown in Fig. 16: a patternable material called “resist” is deposited over a 

substrate and the metal layers are evaporated over it, following its sinusoidal shape. The metal 

layer can be exposed to air or a second dielectric layer can be deposited on it. The metal is usually 

a thin slab of some tens of nanometer, rather than a bulk, even when designed to support single-

interface SPPs.  

Such kind of structures is the same described in Chapter 1.2 and can in principle support two 

SPP modes, one at each metal/dielectric interface. If the upper dielectric is air or another medium 

with permittivity quite different from the resist permittivity, the two modes are decoupled. 

Some remarks about the modes that can be supported by these structures and their excitations will 

now be made. 

a. Effective Medium Approximation 

Being the metal film thickness of the same order of the SPP penetration depth, a precise treatment 

of a single-interface SPP propagating on one of the surfaces should keep into account the 

interaction of its evanescent fields with the dielectric on the opposite side.  

An approximation is introduced that provides an effective permittivity which includes this effect, 

treating the underlying layers as an effective medium. In the Effective Medium Approximation 

(EMA) the contribution of every underlying layer to the effective permittivity εEMA is weighed by 

its distance from the surface, using the exponential decay of the field [40]. 

Thus for a structure made of N layers, being    the thickness of the j-th layer of permittivity εj, and 

   the SPP propagation depth (as defined in Paragraph 1.1.[b]), the general expression for the 

effective permittivity is as follows: 
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Since    depends on      itself, according to    
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 , a recursive calculation will be 

carried out until convergence. 

For example, the upper layer could be a thin protective gold film of thickness dAu, deposited over 

a thicker silver layer (of thickness dAg) and then the resist, as in the inset of Fig. 17. The zeroth 

order step would be to take    
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The penetration depth is then recalculated inserted      
( )

 instead of     and used to calculate a 

more realistic     
( )

. The iterations quickly converges and the last      can be used into: 
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The result for the typical exemplifying case is represented by the red curve in Fig. 17, compared to 

the dispersion relation of a single-interface air/gold SPP (blue curve). 
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Fig. 17: (Inset) Profile of a typical multilayer structure; the thin gold layer protects the silver layer from 

oxidation. (Main figure) Dispersion relation of a air/gold single-interface SPP compared to the one of the 

actual multilayer structure, calculated through EMA. 

 

Fig. 18: A thin dielectric layer of permittivity εl is placed over the metal surface. 

The same approximation can be used for the dielectric semi-space, when a thin dielectric layer is 

deposited over the metal surface for functional reasons (see Chapters 4.1 and 4.2). In particular, 

when the layer is much thinner than the SPP penetration depth, a straightforward analytical 

approximation can be provided as follows.  

If t is the layer thickness, t << δ, and εl its permittivity, as in Fig. 18, and with the usual 

approximation     |   |      , the SPP dispersion relation will become [41]: 

  
 

 
√

     
      

  (
 

 
)
 (     )

 
  (                   

 )

  (   
    

 )(      )
 

If εl or t is individually modified, the change in β is unique and predictable. 

b. Coupling issues 

Since the structure examined in the last paragraph can support two SPP modes, it is reasonable to 

expect to observe two dips in the spectra; actually only the resonance corresponding to the mode 

propagating on the directly illuminated surface is observed. 

The explanation of this phenomenon requires a deeper insight into the coupling process [42]. Since 

the momentum enhancement is provided by diffraction, it is the evanescent diffracted orders 

which excite the SPPs. To treat the coupling of the incident light to the SPP on the opposite 
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surface, all the transmitted fields through the metal slab have to be considered. They include the 

zeroth transmitted order and the evanescent diffracted orders; all these fields can pass through the 

second interface or be diffracted by it. The total transmitted field that can provide the SPP 

excitation is calculated with good approximation, showing that it is very weak, due to the 

reciprocal cancellation of the various contributions when both surfaces are conformally patterned, 

as in our case, depicted in Fig. 16. In fact, if only one surface is patterned, or if the two sinusoidal 

patterns are out of phase, both SPPs could be excited.  

When a symmetrical environment is produced, the metal film supports the two coupled 

modes, that can be observed together in a single spectrum, as in Fig. 19. In fact, in this case each of 

the two modes involves both the interfaces and  the previous reasoning does not apply. Moreover, 

due to the symmetry of the structure spectra acquired by illuminating the upper or lower surface 

of the sample are indistinguishable. 

 

Fig. 19: Experimental spectra showing the dips corresponding to the coupled modes on a thin film, excited 

through a 590-nm grating. 

c. Guided modes in a dielectric layer 

In the multilayer structure, guided modes into a dielectric layer may exist and be excited by the 

grating coupler. In particular, a thick sensitive layer of thickness t of the order of some hundreds 

of nanometers, embedded between a lower index environment and the metal, constitutes in fact a 

dielectric/dielectric/metal waveguide (see Fig. 20). 

 

Fig. 20: A thick sensitive layer of thickness t seen as a dielectric/dielectric/metal waveguide. 



1 - Fundamentals of Plasmonics 

 

 

- 32 - 

 

Such a waveguide can support both TE and TM modes; with the quantities defined as in figure 

and being Kwg the (complex) momentum of the mode along the propagation direction, an implicit 

dispersion relation can be given, including the two cases [30]: 
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Where N = 0, 1, 2 … and the RD and RM factors are given by: 

{
   

  

  

   
  

  

     for TM modes 

            for TE modes 

Bragg diffraction can provide coupling of the incident light with a waveguide mode in the same 

way described in Chapter 1.3, observed as a dip in the reflectance spectrum. An example is 

reported in Fig. 21. 

 

Fig. 21: Reflectance spectrum for the structure represented in the inset. The first dip corresponds to a 

guided TM mode of order 1, while the second dip to the SPP on the silver surface. Simulation based on 

Chandezon’s method (see Chapter 3.1) 

1.5.  Optics of solids 

The basic theory of optical functions of non-absorbing and absorbing media is here introduced, 

illustrating their meanings and pointing out the relations between the complex refractive index, 

the complex dielectric function and the electrons response to oscillating electromagnetic fields, 

according to Drude model. 

a. Real and complex refractive index 

The propagation of a monochromatic plane wave of wavelength λ and period   is described by the 

oscillating factor:   (     ), with   
  

 
 the wavenumber and   

  

 
 the wave frequency.  

According to basic Electrodynamics [7; 18; 43], the refractive index for transparent (non-absorbing) 

homogeneous media is defined as the ratio of the phase velocity of the wave in vacuum to that of 

the wave in the medium:   
 

 
. 
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The velocities can be expressed in relation to the magnetic permeabilities, μ0 and μ for the vacuum 

and the medium respectively, and dielectric permittivities, ε0 and ε, as follows:   
 

√    
 ;   

 

√   
. 

The relative dielectric permittivity εd is introduced such as ε = ε0εd, while for most materials   

  ; thus the refractive index can be rewritten as:   √   

√    
 √  . 

The wavenumber and the wavelength in the medium differ from the vacuum ones (k0, λ0) 

according to  
  

 
 

 

  
  , while the wave frequency ω is the same:         . 

In the more general case of an absorbing medium, a damping term has to be introduced [44 - 47]. A 

complex wavenumber     ( )     ( ) is defined through a complex “refractive index”      

such as   (     )  . This gives an exponential decay of the electromagnetic wave driven by the 

factor:     ( )         .  

The physical interpretation of the so-called “complex refractive index” is subtle, since its real part 

does not in general satisfy the Snell’s law for refraction as the real refractive index for transparent 

media does [48]. Concerning the imaginary part, the extinction of the wave will in general include 

not only the absorption but also the scattering [46]. Moreover, the damping of the wave does not 

even necessarily imply energy dissipation; in fact, such a dissipation is due to complex ε or μ, 

while к may be non-zero also if ε and μ are real but negative [47]. 

The n and к parameters are related to the real and imaginary part of the relative permittivity 

according to: (    )        , that gives: 

{
        

      
 

And the inverse system: 

{
 
 

 
 

  
 

√ 
√   √  

    
 

  
 

√ 
√    √  

    
 

 

For a weakly absorptive dielectric, with real εr and εi << εr, the condition к << n also holds, and the 

relations can be simplified as: 

  √  

  
  

 √  

 

This however is not valid for metals, due to the fact that εr is usually negative, thus the condition εi 

<< |εr| does not imply к << n, but the contrary. 

b. Drude-Lorentz model for metals 

From a microscopic point of view, the meaning of the permittivity can be explained in terms of the 

electrons response to oscillating electromagnetic fields [43 - 46; 49]. Since the conduction electrons in 

metal are almost free to move, metals (and doped semiconductors) can be treated with good 

approximation as electrons/ions plasmas, when interband transitions can be neglected: this is the 

basis for Drude-Lorentz model.  
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Defining the constant factor    
  
 

    
 (with qe = electron charge, me = electron mass and ε0 = 

vacuum permittivity) the frequency-dependent complex (relative) permittivity takes the form: 

 ( )    
    

 

    

 

      
 

Where Ne is the free electrons number density and γ represents a damping term. The value of Ne 

for common metals is in the range 1028 – 1029 m-3, meaning that a metal is a very dense plasma [50].  

In principle the damping parameter γ is due to different contributions, that includes the damping 

of atomic oscillators (bound electrons) and, in the case of metals, collisions of the free conduction 

electrons, and in general it could be frequency-dependent [43]. Since in metals the free-electrons 

contribution is dominant, damping is mainly due to the momentum losses by the electrons 

through collisions, thus γ can be identified with good approximation with the collision frequency 

ν [45; 49].  

Separating the real and imaginary parts of the complex permittivity, the following relations are 

finally obtained, linking the three sets of parameters (n, к), (εr, εi) and (Ne, ν): 

{
     

    
     

      

   
 

 
 

    
     

    

 

The electronic density and the collision frequency can be a fortiori extracted through the inverted 

formulas: 

{
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]  
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Since usual values of ν for metals and doped semiconductors range between 1013 and 1014 Hz [45], 

for optical frequencies the approximation ω >> ν holds, thus the equations could be simplified as 

follows: 

{
     

    
  

      

   
 

 
 
    
  

    

 

This also implies that the weak absorption approximation εi << |εr| is good at optical frequencies. 

As said before, for materials of negative εr this means that к >> n, and in particular it gives the 

approximated relations:    
  

 √   
;   √   . 

The electronic density and the collision frequency can be a fortiori extracted through the inverted 

formulas: 

{
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That under the weak absorption condition become: 
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While the meaning of Ne is clear, a complete calculation of the contributions to ν would require a 

quantum-mechanical approach. Anyway, since the collisions involving appreciable momentum 

transfer occur between the electrons and phonons or defects [7], the collision frequency does 

not depend on the electron density, thus (Ne, ν) can be treated as a set of independent variables. 
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2. Surface Plasmon Resonance sensing 

One of the main applications of Surface Plasmon Polaritons is as probes for sensing devices.  

Basic principles of Surface Plasmon Resonance sensing are introduced in the first Chapter of this 

Section, also defining the main parameters to be considered to characterize their performances. 

In the second Chapter, the problem of theoretical estimations of SPR sensitivity is addressed, and 

common strategy to enhance the sensitivity are presented, including the exploitation of thin-film 

coupled modes and the conical mounting configuration. 

2.1.  Basic principles 

Optical sensing technology is knowing a great growth during the last decades. General 

advantages of sensors of this king are the wide available range of operative parameters and the 

stability of the device. In fact, variations in frequency, intensity, polarization, phase of the reflected 

or transmitted light can be analysed [51]; the devices are resistant to heat, corrosion, fire and 

electrical interferences, and they are suitable for in-situ operation [52].  

a. SPR sensing strategies 

Since SPPs are highly sensitive to changes of the refractive index in the vicinity of the surface, they 

are widely recognized as suitable probes for sensing devices [53-57]. The Surface Plasmon Resonance 

(SPR) sensors exploits the SPP properties to detect by optical means chemical or biological species, 

with aim of medical diagnostics, environmental monitoring and food safety. Among optical 

sensors, they are appreciated for the possibilities of extreme miniaturization and integration and 

for being a label-free technology. 

The concept of SPR sensing is illustrated in Fig. 22. An SPP is excited on a metallic surface by an 

incident light beam; the excitation manifests itself as a fall of intensity of the reflected beam, as 

shown in Fig. 9. The SPP evanescent field probes the surrounding environment; if the refracting 

index of the surrounding medium changes, the propagation constant of the SPP changes too, 

affecting the reflectance spectrum through the coupling conditions.  

 

Fig. 22: Concept of SPR sensing. A functional sensitive layer, deposited over a metal surface, is optimized 

to capture a specific analyte present in the environment. The fields of an SPP propagating along the metal 

surface probe the sensitive layer. The SPP properties are investigated through reflectance measurements. 
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The principle can be exploited for a variety of different applications, both for detection of chemical 
[58; 59] and biological [60-62] analytes, both in gaseous [63-66] or liquid [67-69] environment.  

In order to have an optical response only to the presence of a specific substance in the 

environment, a functional layer is needed, capable to capture the desired analyte and bound it 

close to the surface. In some cases, especially for biosensors, the sensitive layer can be made of a 

specific biorecognition element immobilized on the metal surface, such as antibodies [70; 71] or DNA 

sequences [72; 73]. For gas sensing applications other strategies are usually exploited, as it will be 

described in detail in Section 6. 

Since the first reported SPR sensor [74], most SPR sensors employ the prism as a coupling strategy 
[75; 76], because they are of simple and cheap fabrication and demonstrate higher performances [77]. 

Their main drawbacks are the cumbersome optical alignment and the impossibility of 

miniaturization and integration, since they employ a refractive optical element. This is the reason 

for a growing interest in grating-coupled devices [78]; their potential for miniaturization provides 

the possibility to fabricate arrays of multiple gratings on a chip [79]. 

SPR sensors can be classified as sensors with angular, wavelength, intensity or phase 

interrogation, depending on which parameter of the reflected light is measured. 

In sensors with angular interrogation, the incident light is monochromatic while the incident angle 

is scanned. The SPP resonance is observed as a dip in the angular reflectance spectrum [76; 80].  

On the contrary, in the wavelength interrogation case the incidence angle is fixed and the incident 

wavelength is varied, performing a spectral scan. The resonance appears as a dip in the spectrum 
[58; 81; 82]. 

Within the intensity interrogation and the phase interrogation strategies, both the incidence angle and 

the light wavelength are fixed, and the variation of the intensity of the reflected beam [74], or its 

shift in phase respectively [83], is taken as sensor output. 

b. Performance parameters 

The main parameters that characterize a generic SPR sensor performances are: sensitivity, 

linearity, resolution, accuracy, range, limit of detection [84, 85]. 

Sensitivity is the ratio of change of the sensor output signal, Y, to the change in measurand, that is 

the analyte concentration:   
  

  
. It can be decomposed in two factors: the sensitivity of the sensor 

output to a change of the dielectric refractive index, also called refractometric sensitivity, Σn, and the 

conversion efficiency of the capture of the analyte into a change in refractive index: 

  
  

  

  

  
   

  

  
 

In real cases, in the presence of a functional sensitive layer, it is useful to further decompose the 

sensitivity as follows: 

  
  

     

     

   

   

  
 

where nl is the refractive index of the sensitive layer and neff the effective refractive index felt by 

the SPP mode. Thus 
   

  
 represents the response of the sensitive layer to the analyte concentration 

and it depends on the adopted materials and binding techniques; 
     

   
 represents the consequent 

effective modification of the whole structure from the SPP point of view. This last term is 
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particularly relevant in the case of thin sensitive layers, when the SPP fields penetrate deeply into 

the dielectric, as in Fig. 23, and it can be treated with the approximations provided in Paragraph 

1.4.[a], but requires the knowledge of both the SPP mode and the supporting structure. 

Considerations about the refractometric sensitivity of SPR sensors will be developed in the next 

Chapter. 

 

Fig. 23: When the sensitive layer is thinner than the SPP penetration depth into the dielectric region, an 

Effective Medium Approximation can be used for the effective dielectric permittivity felt by the SPP. 

For practical purposes it usually is more significant to define a Figure of Merit (FOM) of the 

resonance, which keeps into account the difficulty to resolve the variation of the dip spectral 

position. Since this depends on the resonance width, FOM is commonly defined as 
 

    
, where 

FWHM = Full Width at Half Maximum of the resonance dip [86]. 

Linearity quantify the extent to which the sensor output response to the measurand is linear. It is 

usually defined as the maximum deviation from a linear function over the working range. SPR 

sensors response is usually a non-linear function of the analyte concentration; as a consequence, a 

careful calibration is essential to interpret their output.   

Resolution is defined as the smallest change in the bulk refractive index that produces a detectable 

change in the SPR sensor output, and it is related to the noise of the system. The dominant sources 

of noise are the intensity fluctuations of the light source, the shot noise associated with photon 

statistics and the conversion of the light signal into an electric signal [85]. The standard deviations 

associated with these noise sources present different dependence on the light intensity, I, as 

follows: 

 The noise in the intensity of the emitted light is proportional to the intensity itself: 

  ( )    
  , having define    

  as a relative standard deviation, independent on I. 

 The shot noise is related to the random arrival of photons to a photodetector. Since the 

photon flux from conventional light sources usually obeys Poisson statistics, the shot noise 

is proportional to the square-root of the light intensity [87]:   ( )    
 √  

 The detector noise includes several contributions, mostly related to the temperature 

fluctuations, and it is independent on the light intensity:    

The total noise on the measured light intensity is given by a statistical superposition of the three 

components, as follows:   ( )  √(   
 )  (  

 √ )
 
   

 . 

It can be reduced with a time averaging over N repeated measures, according to:   
  

  

√ 
 

In order to translate the noise in the light intensity into a sensor output noise, the data processing 

algorithm has to be considered. Various algorithm have been developed: the centroid method [88], 

the polynomial fitting [89] and the optimal linear analysis [90] among them; since there is no relevant 

difference in the way they transform the noise from an angular of wavelength spectrum [91], the 
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simplest one will be considered. The centroid method calculates the geometric centre of the SPR 

dip below a set threshold IT, using the following weighted centroid algorithm [92]: 

   
∑   (     )

 
 

∑ (     )
 

 

 

Where xi is the spectral position of the intensity contribution Ii. If the noise σi associated to each Ii 

can be treated as independent, the resulting standard deviation on the dip position will be given 

by the usual propagation formula:   
  ∑ (

   

   
)
 

  
 

 . 

Finally, if the portion of the SPR dip used for the centroid calculation can be approximated by a 

lorentzian profile, the following expression can be derived for the resolution [93]: 

   
 

√  

  

  

 

  

 

Where Nc is the number of points used for the centroid estimation, σT is the total intensity noise at 

the threshold, dI the difference of intensity between IT and the SPR minimum, w the width of the 

lorentzian resonance, Σn the refractive index sensitivity and K a factor that keeps into account the 

relative contribution of the different noise sources. 

This formula shows that the ways to lower the resolution are: reduce the noise and the resonance 

width, increase the resonance depth and the sensitivity. 

Accuracy quantifies the agreement between the measured value and the true value of the 

measurand, while reproducibility is the ability of the sensor to provide the same output when 

measuring the same value of the measurand. 

The range is the span of the values of the measurand that can be measured by the sensor.  

Limit of Detection (LOD) is the analyte concentration cL that produces the smallest detectable 

output YL.  

YL is usually taken as 3 standard deviations from the blank sample output YB (the signal in the 

absence of analyte), thus, if σB is the standard deviation of the blank measure, it is given by [94]: 

         . 

If the blank concentration cB = 0, the LOD concentration cL is: 

   
    

 
 

2.2.  Sensitivity enhancement strategies 

a. Basic performance estimates 

Several authors reviewed and compared the sensitivity performances of the various kind of SPR 

sensors, providing some general results [31; 32; 36; 77; 95-98].  

The expression for a single-interface SPP propagating on a flat surface is considered, which 

constitutes a good approximation also for grating-based sensors, since the surface modulation 

affects the real part of Kspp in a negligible way [23; 99]: 
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Being n the refractive index of the probed medium. 
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As far as grating-based sensors are concerned, the refractometric sensitivities Σn are given as 

follows, for angular or wavelength interrogation, respectively:  
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Being j the diffraction order.  These relations assume that the incident radiation comes from air or 

vacuum and enters the sensitive layer with a certain incidence angle  ; in these means they differ 

from the ones reported in some literature, which are immersed into the medium of n refractive 

index [77; 98] . The transformation between the two forms is reported in Appendix 8.2[c]. 

Two contributions can be recognized to the overall Σn, one due to the SPP mode intrinsic 

sensitivity and one related to the interrogation strategy: 

   
  

  
 
  

  
 

with Y = θ or λ. The second factor is independent on the chosen interrogation strategy and 

provides the following contribution: 
  

  
 (

 

 
)
 

. The trend of the N/n factor is reported in Fig. 24, 

showing a much higher contribution at lower wavelengths. 

 
Fig. 24: Trend of the N/n factor for different interfaces, including gold or silver as the metal, and as the 

dielectric air or a sol-gel material with the refractive index of Fig. 30 of Chapter 4.1[b], that is of about 1.52. 

Under the Lorentzian approximation, the widths of the resonances in the two cases are obtained 

by the imaginary part of the SPP momentum as follows:        
 

 
(     )

  

  
. 

As a consequence, the Figure of Merit is the same for the two approaches and is given by: 
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When considering the intensity interrogation case, the maximum sensitivity is achieved when the 

slope 
  

   
 is maximum. It can be shown for prism-based sensors, under the lorentzian 

approximation for the reflectance introduced in Paragraph 1.3[d], that the slope is maximized 
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under the    
  

 
 condition [31]. Interestingly enough, this does not correspond to the optimal 

coupling condition, given by Гi = Гr; in fact, the reflectance depends more strongly on the coupling 

when under a weak coupling regime. This has been shown to be a general result and a crucial 

parameter for the SPR sensor resolution [36]. 

b. Superior performances of the Long Range modes 

Generally speaking, the sensitivity of the plasmon as a probe depends on the interaction volume 

of the SPP evanescent field with the analyte [97]. A long propagation, a deep penetration into the 

sensitive layer and a strong enhancement of the field intensity are advantageous properties for 

sensing applications. 

In realistic configurations, with the incident light spot much greater than the SPP wavelength, 

during the propagation more and more energy leaks into the guided mode, increasing the field 

enhancement in the proximity of the surface with respect to the incident wave [31; 100]. A longer 

propagation implies a superior sensitivity and a sharper resonance curve: for this reason Long 

Range modes are broadly recognized as promising probes for sensing applications [101-106]. In fact, 

great enhancement in sensitivity [101; 103], resolution [106] and limit of detection [102; 104] have been 

demonstrated.  

Theoretical evaluations of the LR SPP sensitivity are not found in literature. 

c. Sensitivity enhancement in conical mounting 

It has been established that the conical mounting provides an enhancement in sensitivity, 

especially when the second resonance is exploited as a probe [107-110]. The reason of this 

enhancement can be understood both geometrically and analytically. 

 

Fig. 25: Geometrical proof of the sensitivity enhancement associated with the azimuthal rotation, if the 

exposure to the analyte induces a variation of the SPP momentum from β0 to β. The ΔkT segment, 

representing the corresponding variation in the transferred momentum, clearly increases with φ, for the 

same variation of β. 

The geometrical proof is represented in Fig. 25, where β0 is the momentum of the SPP resonance 

for the unperturbed structure and β the one after the exposure to the analyte. Obviously, the 

momentum variation, Δβ = β – β0, does not depend on the azimuth, but the read quantity, Δθ or 
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Δλ, does. In fact, the variation of the transferred momentum, ΔkT, increases with φ as it is apparent 

from the figure. 

The analytical proof is given as follows. Having defined 𝜒 as the angle between    and  ̂, the 

coupling conditions becomes: 

{
     ̂                

    ̂             
 

From the second condition, an expression for      can be derived as follows: 

     √        √  (
 

 
    )

 

 

Together with the first condition, it leads to:  √  (
 

 
    )

 

          for a generic β. 

The variation of transferred momentum due to the interaction with the analyte can then be 

evaluated as follows: 

             √   (     )  √  
  (     )   √   (     )    

It is reasonable to introduce the approximation: β ≡ β0 + δ with δ << β    =>        
        

Thus: √   (     )  √  
       (     )    

   

 
 

That gives, in conclusion:  
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This formula shows that     increases in modulus for increasing azimuthal angle φ.  

In particular, |   |  | | for φ = 0, and it increases until the maximum allowed φ is reached, given 

by         (
 

 
), when the square-root vanishes and |   | formally diverges. This divergence 

arises from the fact that, according to the coupling conditions, around φ* a slight variation in β 

could abruptly cancel the possibility to excite the SPP. Actually, this would be rigorously true only 

if the resonance had null width, thus the divergence is not seen in real cases. 

It is observed that the width of the resonance also increases with φ, but the sensitivity increases 

faster, in such a way that an overall improvement of the Figure of Merit is achieved in conical 

mounting [107]. 

d. Factorization 

To conclude, an analytical expression for the sensitivity which includes the contribution of conical 

mounting can be derived as [107]: 
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To give: 
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Introducing the solutions for θ of the resonance conditions, taken from Chapter 1.3[b] or Appendix 

8.2[a], a plot of the modulus of the refractometric sensitivity as a function of the azimuth can be 

drawn, as in Fig. 26. 

 

Fig. 26: Modulus of the refractometric sensitivity of the two resonances of an air/gold SPP at λ = 550 nm, 

under angular interrogation on a Λ = 500 nm grating. The blue curve is referred to the first resonance and 

its sensitivity formally diverges at the maximum azimuth φ*, the red one to the second, diverging both at 

φ* and at the minimum azimuth to be excited. 
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3. Computational Methods 

In order to completely describe the coupling of light with plasmonic structures and the plasmon 

propagation and interactions, computational approaches are needed. 

In this Section two useful tools will be introduced:  

 Chandezon’s method, which provides a rigorous solution to the problem of a 

monochromatic wave incident on a diffraction grating 

 The modal analysis through Finite Element Method, which allows to calculate the 

plasmonic modes supported by a certain structure 

This two methods provide different and complementary information, useful to model a plasmonic 

structure and investigate its response. 

3.1.  Chandezon’s method 

Among the algorithms developed to compute the optical response of periodically patterned 

multilayer structures, Chandezon’s method (also called C-method) proved to be one of the most 

efficient and stable.  

In its original form, introduced by Chandezon et al., it solved the problem of a monochromatic 

plane wave incident on a perfectly conducting grating [111; 112]. Working with a non-orthogonal 

coordinate system to map the sinusoidal interfaces into parallel planes, it expands the fields in 

Fourier series and reduce the problem to an eigenvalue problem to be solved in each medium. 

Many author contributed to extend and improve the method, allowing application to conical 

mounting configuration [113], to multilayer gratings of arbitrary profile [114-116] and to the digital 

grating case [117]. Numerical stability [118] and efficiency [119] have also been improved over the 

years. 

The C-method has been implemented in MATLAB environment by G. Ruffato [27] in order to 

compute the optical response of sinusoidal multilayer plasmonic gratings and produce reflectance 

spectra directly comparable to experimental data [120]. 

The basic feature of the method is to map the sinusoidal interfaces into parallel planes, through 
the introduction of a non-orthogonal coordinate system. Maxwell’s equations are solved in their 
covariant formulation in the new reference system [121]. To do this, the fields are expanded in 
pseudo-Fourier series, according to Bloch-Floquet’s theorem applied to the periodicity along the x 
direction [122; 123]. With a truncation to the order N, a set of 8N+4 partial differential equations is 
derived for each medium. It can be demonstrated that the calculated solution tends to the exact 
solution for N → ∞ for a broad class of configurations [124]. 

The multilayer structure is built in the code by setting the proper geometrical parameters (grating 

period and peak-to-valley height, layer thickness) and refractive index of each layer. The radiation 

wavelength, polarization, incidence angle and azimuth can be set. The obtained spectra show a 

very good agreement with experimental data [125]. 
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3.2.  Modal Analysis 

It is known that Maxwell equations can be cast as an eigenvalue problem, in strong analogy with 

Schrödinger equation in Quantum Mechanics. This fact is widely applied in Photonics to calculate 

the optical Bloch modes supported by photonic crystals, characterized by translational symmetries 
[122]. In this framework, transparent non-dispersive materials only are typically involved, leading 

to a generalized linear eigenvalue equation. Frequency can be taken as eingenvalue and the 

dispersion relation is straightforwardly calculated as  ( ⃗ ), for each chosen value of the 

momentum. This does not happen in the plasmonic crystal slabs analyses, where material 

dispersion plays a crucial role and dissipation is strong, so the resulting eigenvalue equation 

remains nonlinear. 

In order to solve this eigenvalue problem, a finite-elements-based numerical method for the modal 

analysis of such structures is proposed, which allows to retrieve complex Bloch modes 

dispersions. 

The foundation of the method consists in considering as eigenvalue the wave vector instead of the 

frequency, i.e. specifying the frequency and solve for the wave vector to obtain  ⃗ ( ). There are 

many reasons for this choice [126]. First, in plasmonic materials the dielectric function strongly 

depends upon frequency, thus only if the wavevector is calculated as a function of frequency the 

eigenvalue problem has to be solved only once, and not iteratively. Second, the wavevector is 

more useful as a complex eigenvalue because it contains all the information about propagation 

and losses of the mode. Third, the external exciting field has fixed real frequency, that is the same 

of the excited plasmonic mode, so to fix the frequency is a more suitable description for this kind 

of experiments. 

To this aim, Helmoltz equation is reformulated in a weak form, leading to a quadratic eigenvalue 

equation in k [127]. This formulation finds a natural solution in the frame of the Finite Elements 

Method, which inherently handles weak forms of partial differential equations, and it allows 

dealing with a general class of materials: dispersive, lossy and possibly anisotropic [128]. 

A crucial point is that the analysis of plasmonic crystals requires to handle not only proper bound 

modes but also leaky modes, i.e. modes that can couple to propagating waves in the surrounding 

environment, leading to radiative losses. This gives rise to a complication in the models, because 

proper boundary conditions have to be imposed at the edge of the computational domain, in order 

to simulate an open space, avoiding back-effects of the emitted radiation that perturb the 

calculation of the eigenmode profile. 

One approach uses a discretization of the wave vectors space, called Plane Wave Expansion 

method, with Perfectly Matched Layers (PMLs) which correctly absorb leakage radiation at the 

boundary [129]. PMLs are characterized by slowly space varying relative permittivity and 

permeability, properly designed in order to minimize reflection of plane waves impinging on 

them at arbitrary incidence. This method can well deal with arbitrary dispersive  materials, but not 

with losses. Other methods based on discretization of real space (like Finite Elements and Finite 

Differences) can handle the lossy dispersive problem but are computationally very expensive. 

Our chosen approach to calculate the Bloch band structure of dispersive lossy photonic crystal 

slabs adopts the weak formulation of the Helmholtz’s equation, with FEM discretization of the 

system, and with the addition of PMLs to deal with leakage radiation at the boundary of the unit 
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cell domain [99]. The method was fully implemented by P. Zilio in the commercial software 

COMSOL  Multiphysics, suitable to deal with an approach of this kind [130]. 

This analysis allows to extract information about the real and imaginary parts of the plasmonic 

mode propagation vector for the actual structures, including the presence of the grating. As an 

example, Fig. 27(a) reports the imaginary parts of the dispersion relations of the plasmonic modes 

propagating on a symmetrical dielectric-metal-dielectric structure. For both the LR and SR SPP, a 

comparison is made between the values calculated under flat structure approximation and the 

ones obtained by Modal Analysis for the real patterned structure, showing that the effect of the 

grating cannot be neglected. In addition, the plot of the eigenmode field profiles displays the 

symmetric or antisymmetric nature of the fields, thus allowing a clear identification of the LR SPPs 

and SR SPPs, and shows possible waveguide modes in the dielectric layers. Fig. 27(b) shows the 

distribution of the longitudinal electric field for the LR and SR SPPs into a symmetrical multilayer 

structure; leakage radiation is seen as plane waves into the two half-spaces. 

 

Fig. 27: Some illustrative results of Modal Analysis on a symmetrical multilayer structure with grating 

period = 570 nm and peak-to-valley amplitude 70 nm. (a) scatter plot of the imaginary part of the 

dispersion relation for LR and SR SPPs: a comparison between the full calculation (blue dots) and the 

outcomes of a flat-structure approximation. (b) longitudinal electric field profiles for the two coupled 

modes: antisymmetric for the LR and symmetric for the SR; color scale in arbitrary normalization. 

A model was prepared in order to study the losses of an SPP mode propagating on a particular 

structure. The scheme of the simulation domain can be seen in Fig. 28(a), together with an actual 

simulation in Fig. 28(b). 

The desired multilayer structure  is built and meshed and the modes supported by the structure 

are identified by Modal Analysis. A specific mode can be selected and launched on a flat metal-air 

interface at the left boundary of the model. The SPP wave then reaches a sinusoidal profile, where 

it is partially reflected and partially couples to the grating Bloch-mode. Once the SPP Bloch mode 

is correctly excited, it propagates along the grating with its own complex propagation constant, 

being its energy partially dissipated into the metal and partially irradiated, since the grating 

provides coupling with free radiation. Leakage radiation is clearly visible in Fig. 28(b), as plane 

waves in the upper and lower half-spaces, then absorbed by PML at the boundaries. Radiative 

losses in each half-space are measured as fluxes through a certain set surface, represented by the 
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red line in Fig. 28(a), while intrinsic losses are directly calculated as dissipation into the metal 

layers; eventually, the relative weight of the various loss channels can be extracted. The reason 

why the red line is not closer to the surface is that this produces artefacts in the outcome, probably 

due to near-field effects.  

This model provides valuable information, but it requires careful design of the boundaries of the 

simulation domain for each specific case. Many parameters need to be carefully controlled, in 

order to correctly gather the leakage radiation avoiding back-reflections, that would cause 

overestimation, or leakage from the integration domain, resulting in underestimation. In 

particular, PMLs provide absorption without reflection at the upper and lower boundaries, while 

lateral boundaries have to be dealt with by positioning perfect mirrors that reflect the radiation 

towards the integration surface. A different setup is required, depending on the direction of 

leakage radiations, that may be emitted onwards or backwards by the propagating SPP.  

Moreover, the left side of the simulation domain cannot be closed, since a slit is needed to allow 

the mode to be launched into the system, and it has to be large enough to avoid undesired 

interactions of the SPP field with its borders. Finally, a sufficiently long waveguide has to be 

designed in order to almost completely dissipate the SPP and ensure a correct calculation of the 

losses. 

 

Fig. 28: (a) The simulation domain scheme with the multilayer structure and the appropriate boundaries. 

(b) Map of the electric field norm produced by a simulation of an air/gold single-interface SPP 

propagating on a grating with a 400 nm period and 30 nm amplitude, with a  frequency corresponding to a 

free-radiation wavelength of 650 nm.  
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4. Experimental 

In this Section, experimental procedures and instruments are introduced. 

The first Chapter is devoted to materials; in particular the choice of suitable metals to support 

SPPs and the special materials exploited for specific fabrication steps and for sensing. The 

synthesis of some polymeric materials is briefly described. 

In the second Chapter, nanofabrication techniques are addressed. This includes thin-film and 

monolayer deposition techniques, Laser Interference Lithography for the fabrication of 

periodically patterned surfaces and Nano-Imprint Lithography for a quick, high throughput, 

replication of the structures. 

Finally, in the last two Chapters characterization  techniques are described, related both to the 

morphological characterization of the samples, by Scanning Electron Microscopy and Atomic 

Force Microscopy, and to the optical characterization. This last task is performed with a 

Spectroscopic Ellipsometer, an instrument capable of many different kind of measurements, 

included the reconstruction of the refractive index profile of a multilayer structure. 

4.1.  Materials 

a. Metals 

The SPP dispersion relation only has a solution if one of the media has a negative real part of the 

permittivity. This condition occurs in a plasma for electromagnetic waves of frequency higher 

than the plasma frequency, a characteristic quantity defined as    √     and related to the 

proper frequency of oscillation of the free electrons [7; 50]. This is also valid for metals or doped 

semiconductors since, according to the Drude-Lorentz model, their optical properties depend on 

the conduction electrons, that can be treated as a free electron gas [45; 46]. 

The choice of the metal is crucial, because it strongly affects both the real and the imaginary parts 

of Kspp: high dissipation implies a shorter propagation, a larger FWHM and eventually a lower 

FOM. Fig. 29 shows the propagation length calculated through the theoretical formula reported in 

Paragraph 1.1[b] for various interfaces. Gold is much more dissipative than silver, but silver 

presents poor chemical stability; in fact it quickly oxidates if exposed to air.  

A good compromise is to fabricate a bimetallic structure, where silver guarantees a narrow 

resonance while a gold layer protects silver from oxidation [132-134]. Sometimes an adhesion layer is 

introduced between the resist and the gold or silver layer, typically a few nanometers of 

chromium [108].  The main role of the adhesion layer is to avoid detachment of the metals when the 

structure is exposed to liquids.  The main drawback is that, since Cr is strongly dissipative, the 

possibility to excite the SPP with a light beam incident through the substrate is prevented. 

It is important to note that the optical constants of films can considerably vary with the 

preparation conditions and techniques;  moreover, different characterization techniques may 

provide different results  [48]. All the materials used for the present work have been characterized 

by Spectroscopic Ellipsometry (see Paragraph 4.4[b]).  
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Fig. 29: Theoretical propagation length for SPP modes propagating on silver/air, silver/quartz, gold/air and 

gold/quartz interfaces, as a function of the corresponding free radiation wavelength (  
   

 
 ). The 

dispersion relation for single-interface SPPs on a flat surface has been used, thus radiative losses are not 

kept into account. The optical constants of the actual materials used in our laboratory have been 

measured. 

b. Functional materials for fabrication 

Different kinds of functional materials are needed for fabrication and applications. 

As far as fabrication steps are concerned, a photoresist is needed to perform Laser Interferential 

Lithography, described in Paragraph 4.2[b], while an appropriate patternable material has to be 

employed for Nano-Imprinting Lithography (see Paragraph 4.2[c]). 

A photoresist is a dielectric material that changes its solubility to a particular solvent (the 

developer ) after exposure to radiation of specific energy, usually UV or X radiation [135]. There are 

two types of resist materials: the “positive tone resist” becomes more soluble when exposed to 

radiation, while the “negative tone” becomes less soluble. The commercial S1805 positive 

photoresist (Microposit, Shipley) has been used to fabricate samples for the present work. 

A polydimethylsiloxane mold (PDMS) is typically used to produce negative replica of a master 

sample. PDMS preparation was done using the Sylgard 184 Silicone Elastomer Kit (Dow Corning), 

which comes in two parts: a prepolymer and a curing agent. A mixture of the two components 

was prepared in 1 to 10, curing agent to prepolymer, weight ratio and outgassed inside a 

desiccator connected to a vacuum pump for about 1 hour. Polymerization can be thermally 

induced.  

Using the negative replica, the pattern can be transferred through Nano-Imprinting to films of 

different kinds of suitable materials, which will support the final structure. 

Two different kind of materials were used to this aim. A thiolene resin film (NOA 61) was 

employed to support decoupled thin films, that effectively support single-interface surface 

plasmons on the interface with the environment [136]. NOA is a UV-curable polymer, meaning that 

it hardens by cross-linking of the polymer chains under UV exposition.  

A more versatile material was developed and exploited for many applications, namely a 

functional and porous sol-gel film of phenyl-bridged polysilsesquioxane (ph-PSQ) [137]. Ph-PSQ is 

an organic-inorganic hybrid sol-gel material synthesized via a sol-gel process using the 1,4-

bis(triethoxysilyl)benzene monomer (96% purity, Sigma-Aldrich) at room temperature [138]. 



4 - Experimental 

 

 

- 51 - 

 

Its most interesting characteristic is the possibility to be used both as a patternable layer for the 

sinusoidal nanostructure fabrication,  for which it works as a thermoset resist (meaning that the 

curing process is triggered by heat), and as a sensitive layer, due to the possibility to incorporate 

active species into the hybrid network [139]. 

c. Functional materials for sensing 

The sensitive layer is a crucial component of the sensing device, the functional film optimized to 

capture a specific analyte (see Section 2). In the present work, different kinds of sensitive 

materials, aimed to detect different analytes, have been prepared and tested; in particular, ph-PSQ 

have been exploited for xylene detection after suitable functionalization. 

A solution of 1,4-bis(triethoxysilyl)benzene, ethanol (EtOH) and bi-distilled water was mixed 

in monomer/H2O=1/6 molar ratio, using hydrochloric acid (HCl) 1M as catalyst. The Si-C bonds 

linking two ethoxysilanes to the bridging benzene ring are hydrolytically stable. As hydrolysis 

and condensation progress, a three dimensional SiOx network, incorporating benzene rings as 

network formers, grows and the solution becomes more viscous. 

These rings constitute the recognition elements for the analyte, and the porosity of the matrix 

provides an high specific surface area for the interaction. 

Fig. 30 reports the measured refractive index of a ph-PSQ film in the visible and near-infrared 

range. This material offers a combination of sensitivity, transparency and patternability, making it 

a valuable resource for many applications. 

 

Fig. 30: Refractive index profiles of a 200 nm thick ph-PSQ layer, after a thermal treatment at 80°C for 30 

min, and with an additional annealing step at 300°C for 30 min. Data were obtained by Spectroscopic 

Ellipsometry (see Chapter 4.4[b]). 

 

 

Fig. 31: Plot of the refractive index of the TiO2 and SiO2 sols, measured by Spectroscopic Ellipsometry. 
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Two kinds of sensitive layer have been produced and tested against hydrogen and Volatile 

Organic Compounds (see Chapter 6.2): a SiO2 and a TiO2 sol. The silica sol was prepared starting 

from tetraethyl orthosilicate (Si(OC2H5)4, TEOS), ethanol, trimethoxy phenylsilane 

(C6H5CH2CH2Si(OCH3)3, PTMS), water and hydrochloric acid [140], with molar ratios: 

TEOS/PTMS=1, H2O/(TEOS+PTMS))=4.5, EtOH/(TEOS+PTMS)=4, HCl/(TEOS+PTMS)=0.05. 

After 2 hours of reaction, a solution of Gold(III) chloride hydrate (HAuCl4) in ethanol, 8%-molar 

with respect to the SiO2, was added and the sol was further stirred for 1 hour. 

TiO2 nanoparticles were synthesized by adding 10.5 mmol of Titanium Tetraisopropoxide 

(Ti(OPri)4) into a previously prepared solution containing water, hydrochloric acid and methanol 
[141] with molar ratios H2O/TiOPr=12.25, HCl/ TiOPr=1.72. The solution was stirred for 60 

minutes at room temperature and then heated in an oil bath at 70 °C and kept at this temperature 

for four hours under reflux. Particles were then precipitated and dispersed in methanol obtaining 

a clear TiO2 anatase sol. 

 

Fig. 32: Chemical formula of the 6-mercaptonicotinic acid (6-MNA) molecule, with its thiol group (HS). 

Finally, 6-mercaptonicotinic acid (6-MNA), commercially available (Sigma-Aldrich), was 

exploited as sensitive layer for TNT traces detection. The formula of this organic molecule is 

represented in Fig. 32, showing the presence of a thiol group, H-S. Thanks to the thiol group, 6-

MNA is capable of self-assemble into a monolayer over a gold surface (see Chapter 4.2[a]), and it 

is known to provide high sensitivity and specificity towards TNT detection [142]. 

4.2. Fabrication 

Sinusoidal gratings were obtained by soft Nano-Imprint Lithography (NIL), using elastomeric 

stamps replicating sinusoidal masters. A set of masters were fabricated on silicon wafers by Laser 

Interferential Lithography (LIL) in Lloyd’s mirror configuration [143] using the S1805 photoresist. 

Negative replicas were fabricated by using a polydimethylsiloxane(PDMS) mold, and the pattern 

was transferred to a ph-PSQ or a NOA film. 

 

Fig. 33: Sketch of the final multilayer structure. 
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Metal layers were evaporated over the patterned resist with the following receipts: 5 nm of 

chromium and 40 nm of gold over the NOA structures, while 37 nm of silver and 7 nm of gold 

over ph-PSQ gratings. Finally, the desired sensitive layer was deposited over the metals. The final 

structures appear as in Fig. 33. 

a. Thin film deposition techniques 

The fabrication of plasmonic crystals requires the deposition of thin films both of metals (from few 

nanometers to tens) and dielectrics (few hundreds of nm), and also of molecular monolayers. 

 

Electron-gun evaporation is a suitable technique to deposit thin metal films [48]. A source is forced 

to sublimate by electron bombardment and the vapor is transported to a substrate where it 

condense to a solid film. The process is performed in high vacuum to avoid contaminations of the 

film. The silver, gold and chromium layers for our structures were deposited by e-gun 

evaporation, with nm-level control of the film thickness [144]. 

All the other layers (photoresist, patternable materials and thick sensitive layers), except for the 

6-MNA monolayers, were deposited by spin coating. 

An excess amount of a resist solution is placed on the substrate, which is then rotated at high 

speed [145]. In this way the fluid is spread until the desired thickness is achieved, controlled by the 

initial solution concentration and the rotation speed. 

Finally, the 6-MNA layer for TNT sensing is self-assembled, since this molecule spontaneously 

bonds to the gold surface by adsorption, being the anchoring promoted by the thiol group [146]. In 

fact, gold is preferred to silver for SAMs formation, as it binds thiols with a high affinity and it 

does not undergo any undesired reactions with them. The procedure simply consist in cleaning 

the grating surface (10 minutes in a 5:1:1 dd-H2O:NH4OH:H2O2 solution) and then immerse it in a 

6 mM 6-MNA in ethanol solution for 24 hours.  

b. Interferential Lithography 

Highly regular large area gratings were fabricated by Laser Interference Lithography (LIL), since 

this technique is very suitable to achieve periodic patterns [143]. 

A photoresist film, the Microposit S1805, was applied to a flat substrate by spin coating and then 

exposed to an appropriate pattern of UV radiation. The fundamental concept of LIL is to obtain 

periodicity by interference between two LASER wavefronts. 

A simple configuration to achieve this is Lloyd's-Mirror Interferometer, represented in Fig. 34, 

which exploit as the two interfering beams a direct beam and a reflected one [147]. 

 

 

Fig. 34: Schematic representation of Lloyd’s configuration for Interferential Lithography. 



4 - Experimental 

 

 

- 54 - 

 

Pictures of the LIL setup in National Laboratory IOM-CNR at Basovizza (Trieste) can be seen in 

Fig. 35. It is based on Lloyd’s mirror configuration and employs a continuous-wave 50mW Helium 

Cadmium (HeCd) LASER emitting a TEM00 single mode at 325 nm as light source, with a 30 cm 

coherence length [144]. 

The beam is spatially filtered to remove noise and, after a 2 m long free-space propagation, it 

illuminates both the sample and a mirror perpendicular to it. Thus, interference between the direct 

light and its mirror image forms a standing wave pattern on the photosensitive substrate.  The 

setup need to be optimized for a specific value of the grating period, that is controlled by the θ 

angle according to:  

  
      

     
 

After the exposure, a developer solution removes the more soluble areas and the result is a 

modulated surface. The desired grating periodicity is obtained by adjusting the incident angle, 

while the grating amplitude depends on the light intensity: the higher the intensity, the higher the 

amplitude. Light intensity is controlled through the distance of the mirror from the beam source. 

 

Fig. 35: Pictures of the LIL setup in use at IOM-CNR, with tagged optical elements. A – LASER source; 

B – mirrors; C - spatial filter; D – interferometer. 

c. Nano-Imprinting 

Soft lithographic techniques provide a low-cost and high throughput way to fabricate many 

replicas of a given master structure, with features from 30 nm to 100 μm [148; 149]. The fabrication 

process consists in the realization of negative replica made of polydimethylsiloxane (PDMS) of the 

nanostructured masters, in our case the gratings produced by LIL, and in the pattern transfer by 

soft Nano-Imprint Lithography (NIL) on another suitable material, like ph-PSQ or NOA. 

Two different receipts were used. 

Decoupled thin films for single-interface SPP propagation were based on NOA, that works as a 

UV-curable polymer [136]. The PDMS mold was fabricated curing the PDMS layer dropped onto the 

resist grating, provided by LIL, at 60°C for 4 hours. The nano-pattern was then imprinted onto a 

NOA film supported onto a microscope glass slide, illuminating the PDMS mold with Ultra-Violet 

(UV) light (λ=365 nm) for 30 s, using a standard metal halide 50 mW/cm2 lamp (DYMAX UV 

Light flood lamp curing system). A 12 hour thermal treatment at 50°C was then performed in 

order to increase the resin adhesion onto the glass substrate. A 5 nm chromium adhesion layer and 

a 40 nm gold film were evaporated to obtain the final metallic grating. This kind of structures have 

been applied to TNT sensing (see Chapter 6.1). 
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Thin films for symmetric structures were fabricated with ph-PSQ, that works as a thermoset resist 

for the NIL. The procedure consists on pouring the prepolymer and curing agent mixture for 

PDMS on the master, thermally curing it at 70° C in a convection oven for about 1 hour to promote 

polymerization, and successively peeling the replica off the master [150]. 

In order to transfer the pattern on ph-PSQ, the sol-gel films were deposited on fused silica slides, 

using a solution of 30 g/l SiO2 concentration, by spin coating at 5000 rpm for 60 s, resulting in a 

200 nm thick layer. PDMS replica were gently pressed with a finger on fresh-deposited ph-PSQ 

films, and the assembly was cured with a 30 min thermal treatment at 80 °C in an oven, before 

delicately peeling the mould off the sample. 

Some examples of the good results achievable by means of this relatively simple technique are 

shown in the figures of the next Chapter. Appendix 8.2[d] addresses a possible bad result to be 

avoided, related to an incomplete filling of the mold by the fluid resist. 

4.3.  Morphological Characterization 

Two main instruments were used in order to provide morphological characterization of the 

plasmonic structures. 

The Scanning Electron Microscope (SEM) can image the samples surface in a wide range of 

scales, allowing to evaluate the pattern uniformity over large area but also estimate the grating 

period and check the possible roughness. Examples of a wide-area image and a detailed one are 

reported in Fig. 36. 

The Atomic Force Microscope provides a reconstruction of the grating profile, allowing to 

measure both the period and the amplitude of the grating, and the possible presence of higher 

harmonics. Examples of an AFM surface reconstruction and profile are shown in Fig. 37(a) and (b). 

The two methods will be briefly described in the following paragraphs. 

 

Fig. 36: Two examples of SEM images of plasmonic gratings fabricated by NIL: (a) a large area scan shows 

the remarkable homogeneity of the structure over a quite large scale; (b) a zoomed image allows to 

estimate the grating period using a measuring tool. (The images are relative to different samples and have 

an illustrative purpose). 
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Fig. 37: Four kinds of graphs provided by AFM analysis of samples fabricated as described in the previous 

Chapter: (a) plane reconstruction of the patterned surface; (b) graph of the sinusoidal grating profile with 

estimation of its period and amplitude; (c) three-dimensional reconstruction of the grating profile; (d) 

Fourier coefficients of the Fourier transformed pattern, showing its almost pure sinusoidal nature, since 

superior order harmonics are suppressed. (The images are relative to different samples and have an 

illustrative purpose). 

a. Scanning Electron Microscopy 

The Scanning Electron Microscope scans the sample with a high energy electron beam and 

produces high resolution 2D images [151]. 

Electrons are produced by thermoionic emission from a metallic cathode and then accelerated 

towards an anode, with an energy ranging from hundreds of eV to 40 keV, while electromagnetic 

lenses focus the beam to a diameter of the order of nm. In order to avoid scattering of the beam by 

air molecules, the sample chamber and the beam itself are kept in high vacuum. 

The interaction volume of the electrons into the material is teardrop-shaped and extends from 

about 100 nm to 5 μm into the sample, depending on electron beam energy, material atomic 

number and sample density. Into this volumes the primary beams electrons can undergo 

scattering and absorption processes. 

Emitted signals are: 

- high energy electron reflection by elastic scattering 

- secondary electrons emission by inelastic scattering processes 

- electromagnetic radiation emission 

We typically set a beam current of 98 pA and a beam voltage of 5 keV for the surface scan and 

used the low energy secondary electrons as the signal for the image collection. 

These electrons are detected through the use of a scintillator photomultiplier device and a 

distribution map of the signal intensity is reconstructed. 
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If the beam is perpendicular to the surface a symmetrical signal is expected. Varying the incidence 

angle, the signal will be brighter where the secondary electrons have a minor distance to cover to 

get out from the sample: in this way surface deformations are highlighted. 

Typical SEM resolutions are from 1 to 20 nm: small features and nanoparticles are visible. In Fig. 

38 two detailed images are reported. 

 

Fig. 38: Two examples of observation of very small features by SEM: (a) single gold nanorods scattered on 

a Si substrate; (b) gold “nanostars” nanoparticle, scattered on a Si substrate; the points are visible in some 

of them. Images taken on commission from M. Cittadini, who synthetized the nanoparticles [152]. 

A limitation of the instrument is that electrons incident on the sample need to flow away, 

otherwise the charge accumulates in the scanned region and tends to repel more incoming 

electrons. This means that a conductive surface is needed to obtain clear images. In the case of 

plasmonic gratings, this limits the application of this instrument to the observation of the 

structures after the evaporation of the metal layers and before the deposition of a thick sensitive 

layer. 

b. Atomic Force Microscopy 

The Atomic Force Microscope is a kind of microscope that perform a scan by a microscopic probe, 

a tip that is moved close to the sample surface and detect attractive or repulsive forces of the order 

of the nanoNewton [153]. 

The AFM tip, of nanometric dimension, is supported by an oscillating cantilever. Working in non-

contact mode, the tip is brought close to the surface and the cantilever is put in oscillation using a 

piezoelectric. Weak Van der Waals forces at sample-tip interface cause a shift of the cantilever 

oscillation frequency, that is detected by optical means. In fact, a LASER beam illuminates the 

cantilever and the reflected beam is detected by a quad photodetector, consisting in two pairs of 

photodiodes: differential signals from the photodetector reveals variations in the oscillation 

frequency, traducing in an overall resolution of the instrument down to 0.1 nm. 

Moreover, a 3D reconstruction of the sample surface is possible, like the one reported in Fig. 37(c). 

The peak-to-valley height of the grating profile can be estimated from the Abbot curve as the 

height variation between the values corresponding to the 3% and 97% of the bearing area. The 
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grating period is calculated from the position of the peak in the Fourier spectrum of the grating 

profile obtained averaging over the horizontal scanned lines in an AFM image; see Fig. 37(d). 

4.4.  Optical Characterization 

All the optical measurements have been performed with a J.A. Woollam Co. Variable Angle 

Spectroscopic Ellipsometer (VASE), like the one in Fig. 39. This versatile instrument can provides 

many different working configurations  and techniques [154]. The relevant ones for the present 

work are reflectance measurements, spectroscopic ellipsometry, and scatterometry. 

 

Fig. 39: A Variable Angle Spectroscopic Ellipsometer, with the main components tagged. 

The light source is composed by a xenon lamp, a monochromator and a polarizer, allowing to 

obtain approximately monochromatic beams with arbitrary polarization in the visible and near-

infrared range.  

The sample-holder and the arm supporting the detector can be separately moved to perform 

different kind of scans, with angular and wavelength spectroscopic resolution of 0.05°0.5° and 

0.20.5 nm respectively. A minimum angular distance of 30° between the source and the detector 

is required, otherwise they would collide. The spot size is normally of some mm2 but it can be 

reduced mounting focusing probes.  

A manual goniometer can be mounted on the sample holder in order to control azimuthal rotation 

with an accuracy estimated in about 1°. 

a. Reflectance measurements 

This simple configuration is the main way to investigate the optical response of plasmonic 

gratings. The source and the detector are set in a θ/2θ configuration, i.e. the detector always 

receives the reflected beam, or, more precisely since the sample surface is periodically patterned, 

the zero-order diffracted beam. Since the detector need to be at least 30° away from the source to 

avoid collision, the minimum incidence angle is 15°. 

Wavelength, polarization and incidence angle of the incident light can be set, and an angular or 

spectral scan can be performed: in both cases, the excitation of a surface mode reveals itself as a 

dip in the reflectance spectrum. A goniometer can be mounted on the sample-holder, which 

allows to set the azimuthal angle, realizing the configuration known as conical mounting. 
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In order to perform gas sensing tests, the sample has to be placed into a sealed chamber in which a 

gas carrying the analyte flows. For most tests of this kind reported in the present work, the 

Woollam HTC-100 heat stage and chamber was adopted, shown in Fig. 40. In this setup, the light 

beam can only enter through the portholes, visible at the sides of the chamber, thus the only 

available incidence angle is fixed to 70°. 

 

Fig. 40: Picture of a Woollam HTC-100 chamber, mounted on its stage. 

b. Spectroscopic Ellipsometry 

Spectroscopic Ellipsometry is a well-established and widely used method to determine the 

dielectric function of a material [48; 155]. Linearly polarized light, that is neither s- nor p-polarized, 

impinging at oblique angles becomes elliptically polarized after the reflection. From the 

orientation and ratio of the axes of the ellipse, the ratio of the reflectance coefficients for p- and s- 

polarized light can be calculated,   
  

  
. This operation is performed for a certain range of 

wavelenghts; then from  , that is in general complex, and the incidence angle, the real and 

imaginary parts of the refractive index are derived.  

When Ellipsometry is performed, effects due to diffraction by the grating are undesirable: for this 

reason, flat layers of the material to be characterized have to be prepared. Through fitting 

procedures, both the optical properties and the  film thickness may be obtained. 

In particular, normal dispersion regimes, for materials almost transparent over the measured 

wavelength range, can be described by the Cauchy dispersion function, while Urbach absorption 

tail far away from resonances is treated through an exponential model [46]. This approach fails for 

strongly absorbing materials; anomalous dispersion and resonant absorption are described 

implementing the Lorentz Oscillator model [45]. 

c. Scatterometry 

Scatterometry, or Diffrattometry, basically consists in looking for the first-order diffraction peak, 

and it 

allows to estimate the grating period by means of an optical measurement. 

Due to the Bragg diffraction by the grating, the diffracted beam of n-th order comes out from the 

sample at an angle θn satisfying the following relation [21]: 
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The n = ± 1 peak can be searched by fixing the incidence angle and light wavelength and moving 

the detector in an angular scan. Once located the angular position of a first-order peak, θ±1, the 

grating period can be extracted according to: 

  
  

            

 

The dominant source of uncertainty comes from the determination of θ1, while uncertainties on the 

values of λ and θi can be neglected. The error on Λ, given by the propagation formula, typically 

comes to be below 5 nm, making it a good estimation of the grating period: 
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5. Advancements in Plasmonics 

This Section represents the core of the present work. An extensive investigation on the 

propagation of Surface Plasmon Polaritons on the anisotropic surface defined by the 1D grating is 

performed, taking into consideration both the real part of the momentum, related to the coupling 

conditions and the propagation direction, and the imaginary part, related to its linewidth and 

losses. 

In the first Chapter, the coupling scheme introduced in Chapter 1.3[b] is generalized to the 

other available experimental configurations; general geometrical and analytical treatments are 

provided to be able to predict the optical response of a generic plasmonic grating. This includes 

maps of the angular position of an SPR resonance, from the point of view of the coupling 

configuration. 

Moreover, the possible propagation directions of the SPP with respect to the grating grooves, 

achievable through the grating coupling, are found. 

The second Chapter is devoted to the study of the imaginary part of the SPP momentum, in 

relation to the SPP losses and the width of the SPR dip. In particular, effects related to the incident 

light polarization, the grating amplitude and the propagation direction are investigated, with a 

physical interpretation of the results. 

Exploiting the predictive power of the developed tools, we were able to study the behaviour of the 

coupled modes in conical mounting. In particular, the second resonance dip of the LR mode and 

the SR mode have been observed for the first time. The observations are reported together with a 

study of their losses. 

Finally, the problem of theoretically calculate the sensitivity of an SPR sensor is addressed. 

Different contribution factors are evaluated, both under angular and spectral interrogation, with 

particular attention to the effect of azimuthal rotation. The Section ends with some considerations 

on the Figure of Merit. 

5.1.  Two-dimensional SPP coupling and propagation 

In this Chapter a general treatment of the coupling conditions will be introduced. The matching 

between the real part of the SPP momentum and the incident radiation will be unravelled by 

geometrical and analytical means. A handy way to generate predictive maps of the achievable 

resonances on a given structure is provided. This treatment have been recently published in the 

Plasmonics journal [156]. 

The propagation direction of a grating-excited SPP mode with respect to the grating grooves is 

also calculated and general remarks are made. 

a. Generalized coupling scheme 

The geometrical representation of the vector coupling conditions described in Chapter 1.3[b] does 

not include every available configuration, since it is limited to the case in which the Bragg grating 

vector,     
 ⁄ , is greater in modulus than the SPP momentum, β. 

As seen before, in that case the resonance conditions are expressed by: 
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The geometrical representation looks as in Fig. 41 (that is the same as Fig. 11). Recalling the results 

of  Chapter 1.3[b], it can be seen that, for a range of φ and λ values, two solutions are allowed,  

corresponding to the excitation of two SPPs of momentum equal in modulus but different in 

direction. Correspondingly, two dips for each single wavelength are observed in the experimental 

reflectance spectra. For increasing wavelength a critical condition λc is reached, when the 

transferred momentum vector is tangential to the β circle and the two solutions become 

degenerate. For λ > λc the coupling becomes impossible. The same happens when keeping the 

wavelength fixed and increasing  ; in this case the maximum azimuth that allows a plasmonic 

resonance to exist is given by the formula:          (
 

 
).  

 

Fig. 41: In order to recall the results of Chapter 1.3.b, Fig. 11 is reproduced here. (a) Vector coupling 

scheme in the G > β regime for a generic azimuth It shows the double resonance for a generic 

wavelength and the degenerate case for the critical wavelength λC, corresponding to the maximum 

wavelength that allows the excitation of the SPP. (b) Typical high-azimuth reflectance spectra associated 

to the coupling scheme shown in (a). 

This model will now be extended to the G < β case.  

The new vector scheme is represented in Fig. 42(a) and looks quite different from the previous. 

The G circle is now inside the β circle and again there are two ways to satisfy the resonance 

conditions, which in this case are:  

{
     ̂           

    ̂        
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Unlike the previous case, the evolutions of the spectra in response of an increase in φ or in λ are 

different from each other. When two resonances exist, by increasing the azimuth a “merging 

condition” will be reached as in the G > β case, but only at   
 

 
 for any wavelength. On the 

contrary, at fixed azimuth and for increasing  values, the dips are expected to move towards 

smaller incidence angles. This behaviour can be experimentally verified on long-period gratings, 

for example with ≈1 μm, as the ones used to collect the spectra reported in Fig. 42(b). 

 

Fig. 42: Analogue to Fig. 41 for the G < β regime. (a) Sketch of the coupling scheme, and (b) corresponding 

reflectance spectra collected at high azimuthal angle for grating period =1 μm and azimuth =70°. 

b. General treatment of the resonance conditions 

It is useful to classify all the possible conditions that allows one, two or no SPP to be resonantly 

excited.  

In order to lighten the notation, we introduce the adimensional R and N parameters, where   
 

 
 

and   
 

  
. Recalling the conventions of Chapter 1.3,    

  

 
 is the momentum of the incident light 

and N can be intended as an effective refractive index for the SPP. In the case of single-interface 

SPP, for instance, N is known to be √
     

      
, being εmr and εd the relative permittivity of the metal 

and dielectric respectively. 
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The G > β case corresponds to the R>N condition. The expression that gives the angular positions 

of the two resonances, which is derived in Appendix 8.2(a), can then be rewritten as: 

            √     (    )  

For a certain fixed wavelength λ, the values of N and R are also determined. The requirement of 

reality for the square-root term, together with the       [   ] condition, set the whole conditions 

for the existence of one, two or no solutions, as reported in the first three ranges of Table 1. In 

particular: 

 From the requirement of reality of the square-root term, the value of the azimuth   is 

limited by the condition:       
 

 
, corresponding to:      √  

  

   

 The         condition is satisfied either for      
 

 
 or for      Max (

 

 
 
       

  
).  

 The condition for the second resonance,        , can be satisfied only if      
 

 
 and 

gives the further condition      
       

  
. 

Putting together the conditions, and defining         (
       

  
) and          

 
, the first 

resonance can be excited for every   that satisfies:       

 
       or  

    Min {      

 
      } 

And the second resonance for: Max {      

 
   }       

At this point the number of allowed solutions depends on the relation between, R and N: 

 If       √     the hierarchy of the terms comes to be: 

 

 
 

       

  
 √  

  

  
 

Thus the first resonance is excited for every   between 0 and    and the second when 

       ; this case is reported in the third line of Table 1.  

 If √           the hierarchy becomes  

       

  
 √  

  

  
 

 

 
 

In this case the first resonance exists for each   between 0 and    while the second cannot 

be excited. This is the second line of the Table. 

 If       also    becomes negative and no solution of the resonance conditions is 

allowed. 

In the G<β case, corresponding to R<N, the resonance conditions are given by:  

      √     (    )        

The main difference is that this time the square root is always real for   [  
 

 
]. 
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The request that         gives      
       

  
 while         gives the same conditions as in 

the R>N case: 

      Min {
 

 
 (

       

  
)}  

       

  
 

Again, three cases can be distinguished, as reported in the last three lines of Table 1.  

 If √          then 
       

  
  , implying that the first resonance is excited for 

  [  
 

 
], while the second exists when      

 

 
. 

 If instead       √     it happens that  
       

  
  , implying that the second 

resonance cannot exist, while the first is allowed only in the azimuthal range between 0 

and          (
       

  
).  

 If       also    becomes negative and no resonance is allowed. 

Obviously, if G = β the conditions become degenerate. Since this treatment only generically 

involves the β value of the SPP momentum, and not its dispersion relation, it is valid for any kind 

of SPP mode under grating coupling. 

Conditions Dip 1 Dip 2  

       / / 

        √     [    ] / 

√          [     ] [      ]  

    √     [  
 

 
] [   

 

 
] 

√           [    ] / 

       / / 

Table 1: Angular ranges allowing plasmonic resonance dips, for each R/N relation. 

c. Existence maps 

Mapping the conditions of existence of the resonances, for any azimuthal angle, provides a 

straightforward tool to predict the behaviour of the dips under operative conditions. This can be 

simply done at a fixed wavelength implementing the equations derived in the previous Paragraph 

and drawing a curve on the (φ, θ) plane, described by the points that fulfil the resonance 

conditions. Two examples are shown in Fig. 43, for two cases corresponding to the central lines of 

Table 1.  

The lower branch of each curve is the locus of the points in which the first resonance dip is found, 

while the upper branch corresponds to the second dip. An angular interrogation spectrum 

corresponds to a vertical slice of such a map: the intersections between a vertical line at the set 

azimuthal angle and the curve give the angular positions of the SPP resonances. 
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Fig. 43: Existence maps of the dip position in the (φ, θ) plane, for a plasmonic grating with 37 nm of silver 

and 7 nm of gold. The dashed curve that ends at a certain azimuth refers to a G > β case with incident 

wavelength λ = 700 nm and shows the known fact that over a certain maximum azimuth the SPP cannot be 

excited for any incidence angle. The intersection with the dashed line of a 56° azimuth corresponds to the 

spectrum at λ = 700 nm in Fig. 41(b). The solid curve is relative to a G < β case, with λ=800 nm. The 

intersection with the dashed line of a 70° azimuth shows the resonances of the corresponding spectrum in 

Fig. 42(b). The superior branch of the curves indicates the (φ, θ) values to visualize the second dip. The 

horizontal dotted line, set at θ = 15°, represents the lower limit of accessible angles for the ellipsometer 

optical bench (see Chapter 4.4). 

Since the generation of the maps is not based on complicated calculations, they can be a quick way 
to scan different sets of parameters and predict the optical response of plasmonic gratings, 
provided that one also has a quick way to calculate the momentum of the expected SPP modes 
with little computational effort. 

d. Analysis of the SPP propagation direction 

Since the coupling schemes are represented in the (x,y) base, they do not allow to appreciate the 

propagation direction of an SPP mode with respect to the grating grooves.  

 

 

Fig. 44: Definition of γ in the four cases: (a) first and second resonances in the G>β case; (b) first and 

second resonances in the G<β case. Quantities related to the first and second resonances are identified 

with a minus and a plus sign, respectively. The γ angle defines the propagation direction on the plane, 

with respect to the grating Bragg vector. 

The direction can be defined as in Fig. 44 as an angle between    and   , hereafter called γ, and 

some general results can be given. A case-by-case analysis follows. 

 



5 – Advancements in Plasmonics 

 

 

- 67 - 

 

 G>β; first resonance 

In this case the following  formula for γ holds: 

          
     

√          
 

and γ(φ) is a monotonically increasing function of φ. 

 

Proof: 

The resonance conditions, including the γ angle, are: 

    (   )          

    (   )       
 

From which γ can be extracted as follows: 

          
     

        

 

Considering fixed values for G and β, φ and kT are not independent variables, since they 

are bound by the     |    ̂|
 
 |    ̂|

 
 constraint, that, under these resonance conditions, 

gives: 

         √           

The right solution is the one with the minus sign, since the other is relative to the second 

resonance. Thus: 

 ( )          
     

√          
 

By calculating its first derivative, we obtain: 

  

  
    

     

√          
 

That is positive under the G>β condition, proving that γ(φ) is monotonically increasing. 

∎ 

As a consequence, γ reaches its maximum value under these conditions at the maximum available, 

φ*, derived in the previous Paragraph as the limiting condition for the reality of the square-root 

term. This maximum value is then        
 

 
 

 

 
       

 
, or equivalently: 

        (
 

 
) 

 G<β; first resonance 

Here the γ angle obeys to the following formula: 

         
     

√          
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that again is a monotonically increasing function of φ. 

Proof:  

Resonance conditions for this case are as follows: 

    (   )          

    (   )       
 

From which γ can be extracted according to: 

         
     

        

 

The     |    ̂|
 
 |    ̂|

 
 constraint gives, under these conditions, only one physical 

solution: 

          √           

And consequently: 

         
     

√          
 

This time the derivative has the following form: 

  

  
   

     

√          
 

Due to the sign inversion and the inverted relation between G and β, it is positive all the 

same, i.e γ(φ) is a monotonically increasing function. 

∎ 

The highest γ value achievable under these conditions is then:     (
 

 
)     

 

 
       

√     
,  

or equivalently: 

        (
 

√     
) 

 Second resonances  

There is no need to separate the two cases, since the resonance conditions are the same. 

Unlike before, for the second resonances γ(φ) is a monotonically decreasing function of φ and it is 

given by: 

           
     

√          
 

Proof:  

The resonance conditions may be written as follows: 

     (     )          

    (     )       
 

From which γ is extracted as: 
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The    constraint is in this case: 

         √           

Thus: 

           
     

√          
 

Its first derivative has the following form: 

  

  
    

     

√          
 

And it is clearly negative, meaning that in this case γ decreases for increasing φ values. 

∎ 

These results imply that the γ* and γM limiting values, previously derived as maximum angles 

achievable through the first coupling, represent minimum γ values achievable through the second 

resonance, in the G>β and G<β case respectively. 

 

Fig. 45: γ-maps, describing the propagation direction of SPP modes as a function of φ, having G and β 

fixed; the modes are the same investigated in Fig. 43 and are supported by 37 nm Ag / 7 nm Au plasmonic 

gratings.  (a) a choice of λ and Λ which implies G > β; (b) a G<β case. 
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However, a maximum γ achievable through the second resonance, and then generally 

achievable by grating coupling, exists for any G, β set and it is fixed by the minimum azimuthal 

angle at which the second resonance appears: φ+. 

As derived in the previous Paragraph, it is given by: 

        
  

       

    

 

These equations may be implemented to obtain maps similar to the ones produced in the 

previous Paragraph, but in the (φ, γ) plane. As an example, Fig. 45 shows the γ-maps 

corresponding to the two cases already studied in Fig. 43: one for G>β and one for G<β.  

It is worthwhile to point out that φ and γ must not be confused, and in particular an SPP can 

never be excited along the direction perpendicular to the grating Bragg vector, i.e. at γ=90°. This is 

simply understood by noting that, in order to such a coupling to happen,   ,    and  ⃗   should be 

the sides of a rigth triangle with  ⃗   as the hypotenuse, implying the impossible condition that kT 

should be greater than β. 

From another point of view, the relation between λ and θ could be investigated for G and β fixed. 

By comparing the γ-maps to the (φ, θ) maps, it is clear that γ increases with θ, but θ increases 

faster, leaving γ at a value less than 90°. 

 

Fig. 46: The condition of simultaneous excitation of two different SPP modes by the same light beam. (a) 

the resonance scheme in the momentum space; (b) a sketch of phenomenon on the grating surface, with 

the yellow arrow representing the incident light and the blu arrows the excited plasmons. 

As a final remark, we point out that an unique configuration exists in the G<β case, for φ = 90°, 

in which two SPP modes propagating towards different directions are simultaneously excited by 

the same light beam, as represented in Fig. 46. 

The angular separation, ξ, between     and     is given by                 (
 

√     
), that 

can be simplified into: 
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      (
 

√     
) 

These two modes are identical because, due to the symmetry of the grating, γ presents a γ = - γ 

symmetry, besides the π periodicity. 

5.2.  Resonance shape and SPP propagation 

A deep investigation on the SPR dip shape in relation to losses will now be performed.  

In order to provide “optimal coupling” between free radiation and an SPP mode, commonly 

intended as the condition in which the reflected intensity in a spectrum fall to 0, grating amplitude 

and incident light polarization can be set, as described in Chapter 1.3[c]. Anyway, the 

dependences of the dip shape on polarization and on amplitude have a deeply different physical 

meaning.  

According with the interpretation given in Chapter 1.3[d], losses are responsible for the FWHM of 

the plasmonic resonances. A study of the relation between FWHM, losses and the experimental 

parameters is performed in this Chapter in three steps: 

 Analysis of the independence of the FWHM on the incident light polarization 

 Analysis of the dependence of radiative losses on the grating amplitude 

 Analysis of the effect of the azimuthal rotation 

The aim is to give a physical insight into the meaning of the “optimal coupling” in relation to the 

shape of the resonance peak and the mode losses and propagation length. The understanding of 

the mechanisms that determine the resonance width (and consequently the Figure of Merit) and 

the propagation length of the SPP could reasonably prove useful for various applications. 

In this chapter the resonances will be studied in the momentum space, i.e. the usual dips in the 

spectra will be transformed, through the coupling conditions, into peaks described by functions 

[1-R](k), of approximate Lorentzian shape. 

a. Effects of polarization 

As it is apparent from the analysis in Chapter 1.3[c], wrongly polarized light (the TE component in 

the null azimuth case) is just reflected by the surface, since it does not interact with the grating. 

This implies that polarization does not affect at all the behavior of the SPP mode, in particular its 

losses, because it only determines the fraction of the incident intensity that will be involved in the 

coupling mechanism.  

This explanation is consistent with the fact that plasmonic resonances relative to the same mode 

excited at different polarizations present the same FWHM, as in the example reported in Fig. 47. 

The only effect is a rescale of the Lorentzian curve area. 

For this reason, effects related to polarization setting can be ignored in the following analyses. In 

particular, when working at an arbitrary azimuth, optimal polarization to achieve coupling can be 

freely set without consequences on the FWHM of the SPR. 
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From the viewpoint of losses, the procedure of setting the optimal polarization for a generic 

azimuth does not correspond to set the Γi=Γr condition, which is related to the interaction between 

free radiation and SPP mode through the coupler.  

 

Fig. 47: Resonance peaks in the momentum space corresponding to the excitation of a single-interface 

gold/air SPP at λ=600 nm, for different values of the incident light polarization. These are experimental 

data from a NOA / 5 nm chromium / 40 nm gold structure (see Chapter 4.2) with a 500 nm grating period 

and a 20 nm amplitude. Lorentzian fit provides the FWHM, that comes to be equal within the error for all 

polarization values. 

b. Dependence on the grating amplitude 

As far as the effect of the grating amplitude on losses is concerned, we had the following 

expectations based on reasonable considerations: 

 The loss term representing dissipation into the metal layer, Γi, should be independent on 

the grating amplitude, due to its intrinsic nature. In particular, it should have the same 

value it has in the flat case, that can be analytically predicted in simple configurations, as 

seen in Section 1. 

 The radiative loss term, Γr, should strongly depend on the amplitude in a continuous way. 

In particular, it should tend to 0 with the amplitude, since in that case there would be no 

coupling between the SPP mode and a free radiation field. 

 Optimal coupling should be achieved when the Γi=Γr condition is satisfied, according to 

the analysis reported in Chapter 2.2[a]. 

 The same results should be achieved both by measuring the SPR Full Width at Half 

Maximum or the directly the losses of a launched plasmon. 

Computational methods introduced in Section 3 provide a fast and cheap way to test these 

predictions; the two methods produce independent and complementary data to be compared for 

consistency. In particular, in Chandezon’s simulations, spectra were produced setting different 

values for the grating amplitudes, then the plasmonic resonances were transformed into the  

momentum space and lorentzian fits were performed in order to extract the FWHM. 



5 – Advancements in Plasmonics 

 

 

- 73 - 

 

By Modal Analysis, the same modes were selected and launched along the same patterned surface 

until they were dissipated, as described in Chapter 3.2 with particular reference to Fig. 28. The 

model provided the power fractions dissipated by radiative and intrinsic losses; the total losses 

could be extrapolated by fitting the exponential decay of the intensity of the propagating SPP. 

 

Fig. 48: Results of the simulations of a single-interface SPP excited with λ = 650 nm on an Au/air 

plasmonic grating with period Λ = 400 nm. (a) SPR peaks in the momentum space, for different values of 

the total amplitude A; the optimal amplitude is identified as 30 nm. (b) Trend as functions of the 

amplitude A of the SPR  half width at half maximum (black line), approaching the fixed value of the 

intrinsic losses (blue line) as A→0, and of the radiative losses (red line), crossing Γi at the above-

mentioned optimal amplitude. (c) Comparison between Chandezon’s and COMSOL data, showing their 

consistency within errors. (d) A second-order polynomial fit of the radiative losses trend gives a 

proportionality to A2 within the error. 

The data provided by Chandezon’s simulations are found to be consistent with the 

expectations. As an example, Fig. 48 reports the analysis of a set of data, related to a single-

interface air/gold SPP excited with 650 nm incident light on a grating of period 400 nm. Box (a) 

shows the resonance peaks in the momentum space for various values of the total (peak-to-valley) 

amplitude; optimal coupling is achieved for A ≈ 30 nm, with the reflectance nearly going to zero. 

Lorentzian fits provided the FWHM of each resonance, that is known to be equal to 2(Γ i + Γr); we 

estimated Γi with the analytical formula for a flat surface and verified consistency. In fact, the 

black curve in Fig. 48(b) shows the trend of FWHM/2, i.e. the total losses, approaching the 
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theoretical value of Γi as the amplitude goes towards 0.  Thus it is suitable to calculate Γr as 

  ( )  
    ( )

 
–   , that is represented by the red curve going to 0 with A in Fig. 48(b). 

In Fig. 48(c) the consistency between the data generated by the Chandezon’s method and the ones 

provided by COMSOL simulations is demonstrated. As explained in Chapter 3.2, the model 

implemented in COMSOL suffered a series of issues related to the correct evaluation of incoming 

and outgoing energy: this fact produces a significant uncertainty in the results. 

The final and most interesting result of this Paragraph is found by fitting Γr as a function of A with 

a polynomial of second degree, as shown in Fig. 48(d). We observe that not only the intercept is 

zero within the errors, as it had to be, but also the linear term, meaning that Γr is proportional to 

A2 with a very good agreement: 

       

By varying the wavelength or the grating period, some fluctuations of the coefficient of 

proportionality have been observed, but without recognizing a regular pattern. 

We suggest a possible interpretation of the quadratic relation, from the point of view of  the 

quantum interference model for the surface plasmon resonance. The idea, introduced in Chapter 

1.3[d], consists in interpreting the reflectance dip as the result of destructive interference between 

two indistinguishable paths for a photon that travels from the source to a detector [34]. Then we 

could draw the two corresponding Feynman diagrams as in Fig. 49, where the SPP mode is treated 

as a virtual intermediate state, and develop the model as follows [123; 157; 158]. 

 

Fig. 49: Feynman diagrams for (a) the 0-th order diffraction of the photon by the surface and (b) virtual 

excitation of a surface mode and re-emission. 

If ra and rb are the probability amplitudes of the two diagrams, respectively, the total probability of 

the process is given by their interference: R =|ra + rb|2. We assume ra ≈ 1 and look for the phase 

difference between ra and rb.  

According to Feynman Rules, rb is given by the product of a √  factor for each vertex, 

representing a coupling parameter between the SPP and the photon, and a propagator GSPP 

associated to the internal line: 

   (√ )
 
     (  ) 

Since SPPs are electronic excitations, we assume the following form for its momentum space 

propagator, i.e. the one corresponding to a Dirac field:     ( )  
  

      
. 

Here β+iΓ is the complex eigenvalue of the SPP mode, and      ⃗      the momentum provided 

by the incident photon and the grating. We obtain a total probability amplitude: 

    
      

(   )    
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Remembering that Γ=Γi+ Γr, this equation is to be compared to the Lorentzian form for the SPR 

resonance: 

    
     

(   )  (     )
 
 

In order to have consistency between the two, we get: σ = 2Γr and thus √   .  

In conclusion, in this framework the proportionality of Γr to A2 becomes natural, by associating 

the amplitude to the vertex constant, as the parameter that gives the coupling strength. A better 

formalization of the assumption is needed, and a further analysis is worthwhile in order to 

understand the origin and properties of the coefficient of proportionality. 

c. Anisotropy 

We now intend to address the effects of the surface anisotropy on the loss terms. In particular, we 

will demonstrate that the following relation holds for the total losses along an arbitrary direction, 

defined by the γ angle with respect to the grating Bragg vector as in Chapter 5.1[d]: 

 ( )       ( )       ( )        

Where Γr(γ) represents the radiative loss term as a function of γ, and in particular Γr(0) gives losses 

along   . 

Proof: 

We can keep into account the system anisotropy by building the two index ellipses for the 

real and imaginary parts of the complex effective dielectric functions, defined in relation 

to the SPP propagation along the two principal directions: parallel to    and perpendicular 

to it [18; 43; 44].  

  
 

  (  )
 

  
 

  (  )
        

  
 

  (  )
 

  
 

  (  )
     

We need to pass to the effective refractive indexes: 
 

  
, describing the SPP propagation, and 

 

  
, which contains the information about its dissipation. Due to the quadratic relation 

between dielectric functions and refractive indexes (see Chapter 1.5[a]), the four axes of 

the new two ellipses are: 

√  (  )  
√  

    
 

  

 √  (  )  
√    

  

√  (  )  
√  

    
 

  

 √  (  )  
√    

  

 

Hereafter we will drop the ki normalization and work directly with the complex SPP 

momenta. 

With reference to Fig. 50, we recall that, according to the parametric equations for an 

ellipse of a1, a2 axes, the coordinates of a generic point along the curve are given by: 

(             ). 

Thus we can write the following equations for β and Γ of an SPP propagating along an 

arbitrary direction: 
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{
      (  

    
 )       (  

    
 )      

                      
 

 
Fig. 50: Quadrant of an ellipse, with the coordinates of a generic point according to the parametric 

equations. 

At this point we exploit the knowledge acquired in the previous Paragraph, to introduce 

the relations:  

             

             ( )
 

Where β0 is the momentum calculated for the SPP propagating on a flat surface, and the 

small perturbation δ<< β0 keeps into account the slight difference between β0 and βG, the 

momentum for propagation along   . 

Inserting these relations into the previous equation, we get: 

{
      (    )       [     ( )]

       (  
    

 )      

   (    )[     ( )]    
          

  
 

Since all the loss terms are much smaller than the real momenta, we can neglect into the 

first equation all the terms quadratic not only in δ but also in Γ, Γi, Γr(0). Under this 

approximation, that equation gives the solution:  ( )           . 

To obtain our final result, we will introduce this relation into the second equation, 

together with the substitution: Γ(γ) = Γi + Γr(γ). This is based on the assumptions that an 

SPP mode propagating along any direction should have an intrinsic and a radiative loss 

term, physically distinguished, and that the intrinsic term should not depend on the 

propagation direction. The final equation becomes: 

  (         )    ( )(         )

   (    )              
     ( )  (    )       

That gives:   ( )  (         )    ( )  (    )      . This can also be rewritten as 

follows: 

  ( )    ( )     
   

    ( )

  

           

Since δ is very small, tipically three order of magnitude with respect to β0, it is safe to 

neglect the second term of Γr(γ) to come to our conclusion. 

■ 

According to the results of the previous Paragraph, we can also say that 

  ( )          
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Meaning that the amplitude has to be “reduced” of a      factor to keep into account the 

anisotropic propagation. 

d. Azimuthal effect 

In addition to the dependence of losses on γ, a geometrical distortion of the resonance shape is 

also created by the azimuthal rotation: a corrective factor to calculate the SPR FWHM need to be 

derived. To this aim, we report in Fig. 51 the usual resonance scheme including a finite width of 

the resonance. 

 

Fig. 51: The usual resonance scheme is drawn pointing out the width of the plasmonic resonance. The red 

arrow represents the momentum β of an SPP propagating along the direction defined by the γ angle with 

respect to the grating Bragg vector G. Its own linewidth is proportional to the imaginary part of its 

momentum. The inset shows a detail that clarifies the geometrical relation between W and the measured 

width.  

The red arrow represents the momentum β of an SPP propagating along the direction defined by 

the γ angle with respect to   . Its own width is given by: W ≡ FWHM = 2Г(γ).  

Experimentally we scan the transferred momentum           to couple the SPP, observing a 

certain spread    . Correspondingly, a certain spread of the SPP propagation direction exists, 

represented by the small δ angle. 

The relation between W and     can be derived from geometrical considerations under some 

approximations, all related to the fact that δ is small. The first is to neglect any possible variation 

of W in the angular range 2δ, that is  (   )   (   )   ( ). The second is to approximate 

the annular sector as a rectangle. The result is the scheme in the inset of Fig. 51, from which it is 

apparent that: 

        (   ) 

 and consequently: 

  ( )  
   

 
   (   )     

With analogous geometrical considerations, a similar expression can be derived for the other 

coupling configurations, where the corrective factors for the width are: 
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   (   )                       

   (     )                         
 

Combining these equations to the ones, for the calculation of γ, of Chapter 5.1[d], an unified 

expression is immediately derived for the corrective factor in all the four cases, that is: 

   [          

√          
]. 

Using the trigonometric relation    (      )  
 

√    
, it can be rewritten as follows: 

   [     
     

√          
]  √  (

 

 
    )

 

 

Eventually, our result can be expressed by the following relation, valid for any configuration: 

   ( )  
 ( )

√  
  

       

  
     ( )     

  

√  
  

       

 

We will discover in Chapter 5.4[e] how this result is of great importance for the sensing strategy 

based on the conical mounting configuration.  

This approximation is expected to be good as long as the configuration is far from the top of 

the β circle, i.e. far from the merging point of the two resonances. This condition is represented in 

Fig. 52. Before a certain azimuth, the two resonances are still separated, but the approximation 

made could become rough, due to the increase of the spread angle δ. At a certain point the two 

resonances merge into one, with a very large width and then, increasing further the azimuth, its 

width decreases until the dip disappears. 

 

Fig. 52: At the top of the scheme of Fig. 51, the merging condition is approached. For lower φ values, the 

two resonances are separated (segment 1), then the merging produces a single large dip with the width 

represented by segment 2. Increasing further the azimuth, the width gradually decreases (segment 3) until 

the dip disappears. 

With reference to Fig. 53, we suggest how to address the two situations. 

With the help of Fig. 53(a), the length of segment 3 can be derived by elementary geometrical 

considerations as: 

    √[   (  )]
  (     )  √[   (  )]

  (     )  

Where: 
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The case relative to segment 1 is represented in Fig. 53(b), where we assume this time that δ is 

not negligible. Thus, we need to subtract an half-chord of the smaller ellipse from the one of the 

larger, keeping into account the different angular positions, as follows: 

    √[   (   )]  (     )  √[   (   )]  (     )  

The value of δ is needed; it can be extracted by exploiting the previous approximation as a first-

order step to give the length of the AB segment as:   ̅̅ ̅̅   ( )    (   ). 

This is the length of a chord which can also be written in terms of the distance between the two 

points, A and B, that have coordinates: 

  [(   ( ))        (    )     ]

  [(   ( ))    (   )    (    )    (   )]
 

In conclusion, δ can be extracted by the following equation for the   ̅̅ ̅̅  distance: 

[ ( )    (   )]  [   ( )]  [   (   )      ]  [    ]
  [   (   )      ]  

And used to calculate a more accurate value for ΔkT. 

 

Fig. 53: (a) Scheme to illustrate how to calculate ΔkT after the merging of the resonances. (b) Scheme to 

illustrate how to calculate the δ angle. 
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e. Validation 

We verified the validity of our model by collecting experimental spectra from a plasmonic grating 

of period 465 nm and amplitude 15 nm. The stack was made of a gold film, of thickness 40 nm, 

over a chromium adhesion layer of 5 nm, over a resist layer (see Section 4 for the experimental 

details). Angular spectra were collected under conical mounting at φ = 0, 10, 20, 30 and 40°, setting 

the optimal polarization according to the formula of Chapter 1.3[c], for three different 

wavelengths. With these parameters, the configuration falls into the G>β case, first resonance. 

For each SPR dip, the angular spectrum was transformed into a transferred-momentum 

spectrum, and ΔkT was extracted as the FWHM of a Lorentzian fit around the resonance. For each 

wavelength, we theoretically calculated Γi and then we used ΔkT at null azimuth to calculate Γr(0) 

as: 

  ( )  
   (   )

 
    

This was used as a reference point; for each wavelength, a theoretical curve defined by the 

function   ( )     
   was compared to the experimental points for Γr(γ). 

 

Fig. 54: Validation of the model by comparison to experimental data. 

Such points were provided as follows. Among the formulas on disposal to calculate γ and Γr from 

the data, we chose to work with the following, from Chapter 5.1[d], because they do not require to 

calculate the SPP momentum, β: 

          
     

        

   
   

 
 

        

√     
          

 

Uncertainties on γ and Γr were obtained from the errors on the measured quantities or fit outputs, 

through the propagation formulas: 
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The error on Λ comes from the AFM, SEM and scatterometry measurements, errors on kT and ΔkT 

are among the outputs of the resonance fits, and σφ is due to the experimental setup. From a 

comparison of the terms, the dominant source of error comes to be the determination of the 

azimuthal angle φ, that is estimated in about 1° due to the manual regulation of the goniometer. 

The results of this procedure are reported in Fig. 54 and show a good agreement with the 

expectations. 

5.3. Coupled modes in conical mounting 

An extensive investigation of the behaviour of coupled modes on thin films in the conical 

mounting configuration were missing in the literature and will now be presented. The theoretical 

treatment introduced in Chapter 5.1 will now be exploited to predict the angular positions of the 

second resonant coupling of both SR and LR SPPs. The corresponding dips will be experimentally 

observed for the first time, fulfilling the predictions. 

The propagation length of the modes will also be investigated, combining simulations by Modal 

Analysis with the results of the previous Chapter. In particular, it is suggested that the Long 

Range SPP propagation length can be sensibly enhanced in conical mounting with respect to the 

null-azimuth case. 

All the results exposed in this Chapter have been recently published in the Plasmonics journal [156]. 

a. Theoretical and computational approaches 

Generalized coupled conditions and maps introduced in Chapter 5.1 were applied to the coupled 

modes case, by exploiting the approximated formulas derived in Chapter 1.2[c] to calculate their 

momenta in a quick and computationally cheap way. 

 

Fig. 55: Existence maps for different values of the grating period Λ, at fixed incident wavelength λ = 650 

nm. The solid lines show the SR SPP resonances, while the dashed lines show the LR SPP modes. Lower 

values of Λ provide better conditions to experimentally see the second resonance dips. 

We were interested in exploring a suitable configuration to observe the second resonant excitation 

of a LR and a SR SPP on a multilayer structure as the one represented in Fig. 33 of Chapter 4.2, 
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where the thin metal film consists in 37 nm of Ag and 7 nm of Au, and the symmetrical dielectric 

layer is achieved with two thick layers of ph-PSQ (see Paragraph 4.1[b]). 

Fig. 55 shows the LR and SR existence maps for increasing values of the grating period, at a fixed 

typical wavelength widely used for most optical applications. A period around 400 nm turns out 

to allow favourable configurations where the second resonant coupling can be observed for both 

LR and SR SPP, while for higher values of the period the superior branch goes out of the angular 

range. 

These models do not allow to address issues related to the imaginary part of the SPP momentum, 

because they are based on an implicit dispersion relation that would be strictly valid only in the 

case of flat surfaces. In presence of a sinusoidal modulation of the surface, however, it is known 

that the use of these formulas is a good approximation to calculate the real part, β, of the SPP 

momentum, but not the imaginary part, Г [99]. In fact, the grating turns out to strongly enhance the 

radiative losses and consequently Г.  

For this reason, in order to get a deeper view of SPP propagation and field distribution, we 

performed numerical Finite Elements simulations by means of the commercial software COMSOL 

Multiphysics. The modal analysis method introduced in Chapter 3.2 has been applied, providing 

the real and imaginary parts of the SPP momentum, for a SPP propagating along a direction 

parallel to    or perpendicular to it:         and        . 

As demonstrated in Chapter 5.2[c], the total losses along a generic direction defined by the γ 

angle are given by: 

 ( )     (     )    
   

The γ angle is calculated from experimental data through the coupling conditions, with the 

formulas introduced in Chapter 5.1[d]: the               

        
 relation works for the first 

resonance in the G < β case, while                

        
 can be used in all the other cases, 

provided that the π periodicity can be exploited to bring the obtained values into the [0°, 90°] 

interval. 

For each calculated eigenmode of interest, its electric or magnetic field profiles into the multilayer 

structure have been plotted, visually displaying the symmetric or antisymmetric nature of the 

mode, its properties of confinement and irradiation.  

b. Results and discussion 

Exploiting the predictive power of the existence maps, we were able to identify the suitable 

conditions to observe the second resonant coupling of SR and LR SPPs, hereafter called S2 and L2 

respectively. The first SR and LR dips will be instead identified as S1 and L1 respectively. 

Some limitations to the experimental observations need to be taken into account. The minimum 

angle of incidence available on the ellipsometer optical bench is 15°, represented by the horizontal 

dotted line in the maps: resonances at lower angles will not be accessible. Moreover, due to dip 

broadening at high azimuthal and incidence angles, resonances should have a sufficiently large 

angular separation to be resolved, otherwise they superpose. These restrictions do not allow to 

clearly observe the four resonances in a single reflectance spectrum, and we are forced to choose 

different configurations in which the selected modes can be clearly and separately recorded. 



5 – Advancements in Plasmonics 

 

 

- 83 - 

 

We chose to work with wavelengths in the visible range, since this is the typical working 

condition for most optical applications in plasmonics. Fig. 55 shows the LR and SR existence maps 

for increasing values of the grating period. Since short periods allow more favourable conditions 

for the second resonant coupling to be observed, we fabricated plasmonic structures with periods 

around 400 nm, characterized by the metal layer immersed into a symmetric dielectric 

environment. This was obtained through the procedures described in Chapter 4.2, using as a 

functional material for the final symmetric structure the porous hybrid sol-gel ph-PSQ introduced 

in Chapter 4.1[b]. 

Considering a plasmonic grating of 400 nm period, we built the map of resonance for an incident 

wavelength of 633 nm, which is suitable for practical applications employing widespread used 

He-Ne lasers. The map is shown in Fig. 56(a). For       the L2 dip is visible together with the S1 

one, while the L1 dip cannot be measured with the ellipsometer and the S2 mode cannot be 

excited at this azimuth. 

The experimental reflectance spectrum of Fig. 56(b) reveals the two expected dips, whose angular 

position well agrees with theoretical predictions. The incident polarization α was set to its optimal 

value (see Chapter 1.3[c]) in order to minimize the reflectance at the second resonant angle θ of the 

LR mode. 

 

 

Fig. 56: Prediction and observation of the second LR resonant coupling (L2) on a sample of period Λ=400 

nm. (a) The map predicts that for incident wavelength =633 nm the L2 dip can be observed at azimuth φ= 

75° together with the S1 dip, while the L1 falls below the ellipsometer angular range and the S2 cannot be 

excited at this azimuth. (b) Experimental reflectance spectrum for Λ=400 nm, =633 nm and φ= 75°. Well 

defined dips are observed where expected, confirming the theoretical prediction. The polarization was 

chosen to minimize the reflectance at the L2 resonant polar angle θ. 

As an additional analysis, we calculated the propagation angle of each SPP and considered it as a 

parameter in the COMSOL software simulations, in order to obtain the real and imaginary parts of 

the SPP momentum propagating along that specific direction. From the imaginary part Г achieved 
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in this way, the propagation length L is extrapolated as the distance after which the field intensity 

decays of a factor 1/e, according to the general definition given in Paragraph 1.1[b]. Its values are 

reported in Table 2, compared to the case of a flat surface, showing the increase of the propagation 

length as the direction of propagation deviates from the    direction. It is worthwhile to note that 

the SPP propagation distance on a flat surface is much longer than the one over the grating; by 

increasing the γ angle this value can be approached. 

Incident λ = 633 nm γ (deg) L (μm) 

Flat, or  ⃗   ⃗⃗  on a grating 90 13.2 

 ⃗    ⃗⃗  on a grating 0 4.3 

L1 at φ= 75° 6 4.3 

L2 at φ= 75° 32 5.3 

Table 2: Propagation length of the LR SPP excited with light of wavelength =633 nm for different 

propagation directions, defined as the γ angle between the grating vector  ⃗⃗  and the SPP momentum  ⃗⃗ . 

The propagation lengths are numerically calculated for our experimental structure. 

Through COMSOL simulations we also produced the plots of the profile of the transverse 

magnetic field intensity into the multilayer structure, depicted in the ( ̂  ̂) plane. Results are 

reported in Fig. 57 for both a mode propagating along    and along the direction perpendicular to 

  . It is apparent how the radiation field is very strong in the γ=0° case, while it is absent in the 

γ=90°, when the mode is almost identical to a SPP propagating on a flat surface. 

 

Fig. 57: Longitudinal electric field profile in the ( ̂  ̂) plane, for a LR SPP excited with incident 

wavelength λ = 633 nm over a 400 nm grating with 30 nm amplitude, along the directions (a) parallel to the 

 ⃗⃗  vector and (b) perpendicular to it. The colours represent arbitrary units for the field intensity. 



5 – Advancements in Plasmonics 

 

 

- 85 - 

 

On the same sample, by increasing the wavelength, it is possible to excite the LR mode in the G > 

β regime, as shown in the map of Fig. 58(a). Choosing a sufficiently high azimuth only the SR 

modes can be excited: we show the map for λ = 660 nm and intersect the curves for the azimuth 

     . The experimental reflectance spectrum shown in Fig. 58(b) fully confirms the theoretical 

prediction. 

The incident polarization was set to its optimal value in order to maximize the depth of the S2 dip, 

which is around 100°, therefore it was tuned at different values in order to show its effect on the 

dip depth. It is verified that the depth is maximum for the optimal polarization while the dips 

disappear when the polarization is rotated of 90°, as expected. This constitutes a further validation 

of the plasmonic nature of the observed dips. 

 

Fig. 58: Prediction and observation of the S2 dip on the same sample. (a) The existence map shows that the 

LR-SPP can be put in the G > β regime by setting an higher wavelength (660 nm, in this case) for the 

incident light. For a sufficiently high azimuth only the SR mode can be excited. (b) The experimental 

spectra at azimuth = 84° show the dips S1 and S2 where predicted. A further check of the plasmonic 

nature of the dips is their dependence on the polarization. In fact the coupling with the radiation is 

optimized for the theoretical optimal polarization, while the dips disappear for orthogonal polarization. 

 

Incident λ = 660 nm γ (deg) L (μm) 

Flat, or  ⃗   ⃗⃗  on a grating 90 3.4 

 ⃗    ⃗⃗  on a grating 0 2.1 

S1 at = 84° 12 2.1 

S2 at = 84° 24 2.2 

Table 3: propagation length of the SR SPP excited with light of wavelength =660 nm for different 

propagation directions, defined by the angle  between the grating vector  ⃗⃗  and the SPP momentum  ⃗⃗ . 

The propagation lengths are numerically calculated for our experimental structure. 
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Following the same procedure as for the Long Range modes, we report in Table 3 the propagation 

lengths for the different observed Short Range modes, also compared with the flat surface case. 

We also report the magnetic field intensity profile in Fig. 59 for the SR modes, verifying the 

presence of a radiation field produced by the presence of the grating also in this case.  

 

Fig. 59: Longitudinal electric field profile in the (  ̂  ̂) plane, for a SR SPP excited with incident 

wavelength λ=660 nm over a 400 nm grating with 30 nm amplitude, along the directions (a) parallel to the 

 ⃗⃗  vector and (b) perpendicular to it. The colours represent arbitrary units for the field intensity. 

 

Mode 
LR, = 633 

nm 
SR, = 633 

nm 

LR, = 660 
nm 

SR, = 660 
nm 

Dissipation inside 
the metal slab 

0.42 0.73 0.33 0.70 

Radiative losses in 
air 

0.27 0.13 0.37 0.13 

Radiative losses in 
quartz 

0.31 0.14 0.30 0.17 

Total radiative 
losses 

0.58 0.27 0.67 0.30 

Table 4: Radiative losses versus dissipation for SPP modes propagating along the direction of the G vector 

on a 400 nm pitch grating of 30 nm amplitude. The values are calculated by COMSOL simulations and 

represent the dissipated power fractions. 

By comparing the data reported in Table 2 with Table 3, it clearly emerges that the propagation 

direction on the grating affects the value of the propagation length in a more effective way for the 

LR SPP modes with respect to the SR SPP ones; in particular, the propagation length along a flat 

surface with respect to a grating is much higher for the LR. The reason can be comprehended by 

examining the data shown in Table 4: the grating-induced radiative losses contribute to the total 
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dissipation of the SPP power for more than the 50% in the case of LR modes, while in the SR case 

such a contribution represents less than the 30%. It is reasonable to suppose that the SR modes are 

proportionally less affected by the radiative losses, due to their strong dissipation into the metal 

and their shorter propagation distance. 

c. Conclusions and perspectives 

In conclusion, we performed an optimization of the plasmonic structure for the excitation of 

double Long Range and Short Range SPPs with the same frequency and for different propagation 

directions. We fabricated the plasmonic gratings and observed for the first time the second 

resonant coupling of LR and SR SPP modes at high azimuthal angles, fulfilling our predictions. 

We also performed, with the aid of COMSOL simulations, a deep investigation of the propagation 

distance of the modes on the surface showing the strong connection of this property to the 

propagation direction with respect to the grating grooves. In particular, the LR propagation length 

is strongly affected by the grating-induced radiative losses. 

This result opens the way for innovative configurations of plasmonic architectures, suitable for 

instance for the realization of miniaturized portable gas sensing or biosensing devices.  We 

introduce the possibility to take advantage of the combination of two contributions to the 

sensitivity enhancement: the choice of the suitable SPP mode for a specific sensing configuration 

and the achievement of sensitivity-enhanced resonant coupling through azimuthal rotation. In 

Chapter 6.3 a first experimental validation of this purpose will be provided, concerning the 

application to a gas sensing device, in particular exploiting the sensitivity of the L2 resonance for 

xylene detection. 

5.4.  SPR sensitivity calculations 

This Chapter is devoted to theoretical calculations of the sensitivity of an SPP mode in a multilayer 

structure. This is a somewhat subtle problem; a general solution cannot be given, since the 

calculation strongly depends on the structure details and the specific sensing mechanism. 

A decomposition into relevant factors, in the way introduced in Section 1.5, may be useful to 

better understand the contributions of different mechanisms to the overall sensitivity. In this 

Chapter, contributions related to the choice of the sensitive layer, the particular SPP mode and the 

conical mounting will be analyzed in angular scan; after this, the extension to the spectral scan 

case will be addressed. 

a. Role of the sensitive layer 

The first step is to separate the contribution related to the sensitive layer only from the 

refractometric sensitivity related to the SPR response, as follows: 

  
  

  

  

  
 

Where Y represents the final read quantity, that is θ or λ in the cases of our interest, and 
  

  
 is the 

sensitive layer response to a certain concentrations of analyte in the environment. This factor 

cannot be expressed in a general form, valid for any kind of sensitive layer, due to the very 

different mechanisms that may be involved [41]. 



5 – Advancements in Plasmonics 

 

 

- 88 - 

 

For example, in some cases the sensitive layer is constituted by a monolayer of molecules 

immobilized close to the surface, designed to bind to the analyte molecules; in this case an analysis 

of the response needs to keep into account the evolution in time of the fraction of surface coverage 

towards some equilibrium condition or the saturation of the sensitive layer [159]. 

A treatment based on an effective refractive index approach, as introduced in Chapter 1.4[a], is 

simpler but it only makes sense in the case of sufficiently uniform films.  

Attention should be paid also in the case of a thick porous sensitive layer. Methods exist to 

approximately calculate the optical constants change due to the filling of the pores with a 

substance of different refractive index [160], but such an approximation is unlikely to be good. In 

fact, interaction mechanisms between the analyte and the porous matrix are generally involved, 

otherwise the sensitive layer would not be selective; mechanisms of this kind, which have the 

effect to inject or subtract electrons, are addressed in Chapter 6.2. 

b. Generalized modal factor 

A second step is to extract a term describing the contribution of the particular plasmonic mode: 

  

  
 

  

  
 
  

  
 

Assuming n to be an effective refractive index felt by the propagating SPP mode, we know that for 

a single-interface SPP the modal factor is:  
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. 

Incidentally, we note that, thanks to the symmetry of N with respect to εd and |εm|, this factor 

would have the same form if n was effectively interpreted as     √|  |. 

For the coupled modes, the sensing mechanism consists in the change of the effective refractive 

index only on one side of the thin film, leading to a symmetry breaking. For this reason, in order 

to estimate the sensitivity of a LR or SR SPP, it is necessary to evaluate its response to a small 

deviation from the symmetry of the structure. Approximate analytical expressions for 
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may be given as follows: 
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Proof: 

We have to start from the general implicit dispersion relation for thin-film modes, as 

derived in Chapter 1.2: 

    (   )  
√      √       √      √      

√      √       √      √      

 

A slight asymmetry can be introduced assuming                ; by neglecting 

terms of the second order in Δ we obtain: 
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The almost-symmetric dispersion relations for the LR and SR SPPs then become: 
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At this point, we want to derive the new approximated dispersion relations for the real 

part of the SPP momenta, βL’ and βS’, as perturbations to the ones derived in Chapter 

1.2[c], hereafter labelled βL,0 and βS,0. In order to do this, we proceed exploiting the usual 

approximations for the unperturbed terms of the equations and introducing the 

unperturbed solutions into the perturbation terms, as follows: 
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 Carrying the calculations, we obtain for the LR SPP: 
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And in a similar way, for the SR SPP: 
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Now we have the responses of the LR and SR modes to a change in the ρd parameter, 

which are: 
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In order to transform this into a response to a refractive index change, we have to explicate 

the origin of Δ. If a slight change in the refractive index of one half-space is introduced, as 

n2 = n1 + δ, what happens to the momenta is as follows (with        
  and kd1 ≡ kd):  

   
       

   
    

 (     ) 

Thus             and finally:              (  
 

 
)       . This means that 

we just need to multiply the found relations for the factor: 
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And introduce the corresponding expressions for kd, to obtain our result.  

∎ 

These formulas constitute a first attempt to evaluate a priori the intrinsic sensitivity of the coupled 

modes, but they prove to be too rough an approximation, especially in the SR SPP case. Anyway, 

they point out the notable information, supported by simulations with Chandezon’s method, that 
   

  
 is greater than 

   

  
, meaning that the superior performances of the LR modes in sensing 

applications is likely to be ascribed to the deeper penetration of their fields into the dielectric, that 

implies a different response of the effective refractive index to the presence of an analyte. 

c. Generalized coupling factor 

As shown in Chapter 2.2[c], it is known that the azimuthal rotation provides an enhancement in 

sensitivity. This information is enclosed in a 
   

  
 factor that transforms a variation of the SPP 

momentum into a variation of the transferred momentum from the incident light to the mode, and 

is included into the further decomposition of 
  

  
 

  

   

   

  
.  

It can be easily demonstrated that this enhancement factor is independent on the particular 

coupling configuration between the four examined. 

In fact, it is sufficient to take the four possible resonance conditions for the grating coupling at a 

generic azimuth φ: 
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And observe that the modulus of the derivative comes to be the same for all four cases: 
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Where the   
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 notation of Chapter 5.1[b] have been recalled, and the transferred 

momentum have been renormalized according to    
  

  
. 

This formula predicts a sensitivity enhancement associated to the azimuthal rotation, for a 

fixed value of the 
 

 
 ratio; in fact |

   

  
|    for     and it increases with  . 
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In the G > β case, |
   

  
| diverges when the well-known limiting azimuth,         (

 

 
), is reached, 

while in the G < β case it tends to the finite maximum value  
 

√     
  for   

 

 
. This difference 

between the two cases is apparent in the plots of Fig. 60. 

 

Fig. 60: Trends of the azimuthal factor for an air/gold SPP on a Λ = 600 nm grating. (a) At λ = 600 nm it 

falls into the G>β case, thus it shows a divergence at φ=φ*; (b) At λ = 500 nm it falls into the G<β case, it 

shows no divergence and it reaches a maximum value for the enhancement at φ=90°. In both cases there is 

no enhancement for φ=0°. 

Keeping the sign into account, a minus sign appears for the first G > β resonance, because it is the 

only one in which an increase in β requires a decrease in kT to be compensated, as it can be noticed 

by observing the resonance schemes. 

In the θ-scan case, the complete factorized form for any coupling condition can then be written 

as follows: 
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Having introduced the scan factor   
  

   
 

 

    
 that provides a divergence for theta = 90°. 

The existence of divergences in the expressions for the sensitivity are due to the fact that, 

ideally, the resonance would suddenly disappear when certain conditions are reached. However, 

this would really happen only for infinitely sharp resonances; in reality, due to the finite width of 

any resonance, its disappearance is seen as a progressive flattening. 

For example, Fig. 61 analyzes the evolution of the SPR around the maximum azimuth for a G>β 

case. Increasing φ, the two resonant dips get closer to each other and merge into one; increasing 

further, the single dip gradually disappears. The corresponding evolution of the dips width is 

clarified by the scheme in Fig. 52. 

 

Fig. 61: Simulated angular spectra for a gold/air interface at λ=600 nm, Λ=500 nm, collected around the 

limiting azimuth φ* ≈ 59.6°. 

The factorization approach is good to clarify the contributions of different physical aspects and 

the meaning of divergences. However, fixed Λ and λ, the θ and φ angles are not independent 

variables, because they are bound by the coupling conditions; an expression for the total 

refractometric sensitivity should keep this into account in order to be useful to characterize real 

sensors.  

In Fig. 62 we chose to plot Σn,θ as a function of θ, since from this viewpoint the whole angular 

range is always continuously scanned from 0° to 90°, with a transition from the first to the second 

resonance at a critical angle         √|
  

     |, and with only one resonance for each angle. To 

generate this plot, Σn,θ have been rewritten using the fact that, from the coupling conditions, the 

following relation holds: 

      [
        (     ) 
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Leading to: 
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Where, again, the minus sign only holds for the first G>β resonance (in this case the expression 

into the modulus would in fact be negative; we preferred to keep the formula in this more 

informative format). 
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Fig. 62: Total refractometric sensitivity for air/gold SPPs excited through a Λ = 600 nm grating. The blue 

curve, at λ = 600 nm, is in the G>β regime and it shows a divergence at θ=θ*, indicated by the green line, 

where it transit from the first to the second resonance. The red curve is at λ = 500 nm and falls into the 

G<β regime; the vertical black dotted line marks where it transit from the first to the second resonance 

(this happens at φ=90°). Both curves diverges at θ=90°, due to the tan(θ) factor. 

d. The spectral-scan case 

In the case of spectral scan, we need to consider the variation of n(λ) at least over an interval 

around the resonance; this makes problematic a factor-by-factor approach. An overall 

refractometric sensitivity can be derived by total differentiation on the coupling conditions. 

Exploiting the    |    ̂|
 
 |    ̂|

 
 constraint, they can be stated in the following general form, 

where the plus sign holds for the first resonance in the G < β case only: 
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If this expression is differentiated in n and λ, one obtains: 

  
  

  
     

  

  
   

  

  
   

 

 
           

And so: 

  

  
 

  

  

 

 
   

 
 
          

  
  

 

It can be easily proved that, for φ=0, this expression for Σn,λ is equal to the one reported in Chapter 

2.2[a]. 

As in the θ-scan case, we can still use the resonance conditions to eliminate a variable from the 

equations; the sign ambiguity will also disappear. We eventually come to:  
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It is interesting to observe that the modal contribution 
  

  
 remained as a separate factor, allowing 

us to identity the rest of the expression as 
  

  
. 
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Anyway, the 
  

  
 factor also depends on the chosen mode and its role is crucial. Since the rest of the 

denominator is always globally positive, the existence of divergences depends in fact on this last 

term.  

We also note that the explicit presence of the θ angle is due to the fact that, fixed λ and Λ (thus 

all the other explicit parameters in the formula), it always exists a value of the azimuth φ for 

which the resonance is at a certain θ. Usually, for our applications θ is fixed to 70°, due to the 

characteristics of the setup, as presented in Chapter 4.4[a]. 

Without loss of generality, 
  

  
 can be decomposed into 

  

   

   

  
 

  

   

   

  
, where εm is the real part of 

the metal permittivity and εd=n2, redefined to uniform the notation. It is immediately clear that, for 

an evaluation of this factor, the knowledge of the dielectric functions of both materials are needed, 

at least.  

If we limit our analysis to the single-interface SPP case, we know that 
  

   
 

  

   
 , and the same 

for the εm term. Thus 
  

  
 can be rewritten as:  
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Where the two terms in brackets could in general have the same order of magnitude. 

These formulas will prove to be useful to evaluate the sensor response in Chapter 6.2. 

e. Figure of Merit in conical mounting 

As introduced in Chapter 2.1, sensitivity alone does not keep into account the accuracy with which 

the dip position can be determined; for this reason, the Figure Of Merit represents a more 

significant parameter to characterize the performance of an SPR sensor. 

Thanks to the analysis of the resonance width exposed in Chapter 5.2, we can now examine the 

evolution of the FOM under conical configuration. What we will find is that the improved 

performances of SPR sensors under conical mounting are in fact due to the reduction of the 

FWHM of a mode propagating along a direction different than   . 

Recalling from Chapter 2.2[a] that       
 

  
 
  

  
, where Y can correspond to either λ or θ, we 

obtain: 
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Introducing the trend of Γr as a function of the propagation direction, we come to our final result: 

       
  

  
 

  

 [     ( )     
  ]

 

As an example, in Fig. 63(a) we plot this function for the same two cases as in Fig. 62, and in Fig. 

63(b) the cases relative to a structure with the same parameters but silver instead of gold; radiative 

losses were assumed to be equal to intrinsic losses at γ = 0°. Since these maps neglect the behavior 

of the resonance width in the proximity of the merging conditions, as described in Chapter 5.2[d], 

the blue curves are expected to strongly deviate from the real case around the pink line. 
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Fig. 63: Trend of the Figure of Merit versus the γ angle for SPP single-interface modes excited through a 

grating of Λ = 600 nm. Blue curves are for λ = 700 nm and red curves for λ = 500 nm, the green lines marks 

the maximum γ achievable in each case. It has been assumed   ( )    . (a) Gold/air interface: the mode at 

λ = 500 nm is strongly suppressed by the resonant absorption of gold around this wavelength. (b) For 

comparison, the silver/gold case is reported. Higher wavelengths are favoured due to the ki factor. The 

pink line marks the merging conditions for the G>β case (blue curve). 
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6. Sensing applications 

The concepts introduced in Section 5 have been applied to the realization of actual sensing 

devices, in particular for Xylene and other Volatile Organic Compounds, hydrogen and 

explosives. 

The availability of sensing devices capable to detect explosive traces is of great importance to the 

environmental monitoring of pollution from unexploded land mines, industrial leakage at 

manufacturing facilities and improper disposal, but most of all to terrorism related safety issues 
[161; 162]. In order to satisfy the growing demand, currently adopted explosive detection systems 

require an improvement in term of sensitivity, costs and handiness.  

Commonly used explosives are organic compounds and can be classified into six broad classes 

based on their chemical properties, most of them having extremely low vapor pressures at room 

temperature, indicating that these molecules are extremely sticky and easily adsorbed by surfaces 
[163]. Among all the types of explosives, its stability and explosive power make the Trinitrotoluene 

(TNT) a favorite choice for terrorist activities; for this reason the ability of TNT trace detection on 

clothes or baggage is crucial to ensure safety of airports and other potential targets. 

Rapid and accurate hydrogen detection in air is an essential safety issue related to present and 

future technology, in order to prevent the possibility of explosions due to mixtures with air [164]. 

Hydrogen may be produced by many industrial chemical or metallurgical processes, and by 

undesirable reactions in nuclear plants. Moreover, hydrogen represents a clean, sustainable and 

abundant energy carrier and chemical reactant, thus the demand for safe production, storage, 

transportation and application is growing. 

At standard temperature and pressure, it is colorless, odorless, tasteless, non-toxic, but on the 

other hand is volatile and extremely flammable, making it complex to be handled and stored. A 

leakage of hydrogen more than 4% in volume concentration (the lower explosive limit, LEL) in air 

would lead to an explosive atmosphere. Many kinds of hydrogen detection techniques are 

available, with no one showing optimum performance overall, including sensitivity, selectivity, 

resolution, detection range, cost-effectiveness, stability; the most suitable technology for a certain 

specific application depends on the operating requirements. 

Volatile Organic Compounds (VOCs) are organic chemicals with high vapor pressure at room 

temperature, resulting in a large evaporation or sublimation from the liquid or solid form into the 

surrounding air. The need of devices for the detection of some Volatile Organic Compounds is 

dictated by their dangerousness to human health or to the environment [165]. 

Aromatic hydrocarbons are a kind of  VOCs which constitute a common and serious threat to 

groundwater reservoirs deriving from contaminated sites, including areas used for fuel 

operations, refineries, gasoline stations, and gasification sites. Moreover, they are indoor air 

pollutants emitted by daily life objects and construction materials, such as adhesives, paint, 

manufactured wood products, cleaning agents, etc. They are strongly related to sick syndrome, 

such as headache, sickness, skin allergy. In particular, benzene is known to be a strong carcinogen, 

which is highly mobile in the environment [166]. 
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6.1.  TNT sensing 

The main pressure towards the development of more sophisticate devices for the detection of 

explosive traces is due to the growing of terrorist activity. 

At the present time, the most common techniques for the explosive detection include ion 

mobility spectrometry (IMS), mass spectrometry (MS), and gas chromatography (GC). Most of 

these devices are, however, rather bulky, expensive, and require time-consuming procedures. 

Thus, the research in explosive trace detection has been moved to nanosensors, thanks to their 

potentially high sensitivity, miniaturization and scalability [163].  

In general explosive nanosensors can be divided into two categories: receptor-free and receptor-based 

nanosensors. Receptor-free nanosensors are based on detecting physical properties of explosives (e.g. 

thermodynamic, chemical, or optical properties), while receptor-based nanosensors achieve 

selectivity through the specific interaction between the receptor molecule and the explosive 

analyte, and they currently are the most explored type of explosive sensors. 

Chemical selectivity in explosive detection based on receptors originates from the chemical 

interaction between the explosive molecules and the receptor molecules. For reversible detection, 

explosive molecules must bind to the receptors with weak chemical bonds that can be broken at 

room temperature, like van der Waals interactions or hydrogen bonding.  

In this Chapter we present some preliminary results aimed to the realization of a new TNT sensor 

prototype, in which the high sensitivity achieved by SPR in conical mounting is combined with 

the use a suitable sensitive layer for TNT detection, well known in literature. A 6-MNA SAM was 

deposited onto a gold sinusoidal grating and the whole system was then characterized under 

azimuthal control. The adsorption kinetics of TNT onto the SAM sensing layer was monitored as a 

function of sensor exposition time to TNT gaseous flow.  

a. Estimate of TNT saturation concentration 

In order to perform experimental tests of TNT detection, an environment with known TNT 

concentration has to be provided. The simplest way is to work in the saturation condition, when 

an equilibrium is established between a TNT source that sublimates and the environment of a 

small recipient. 

When the equilibrium is reached, the concentration can be given with good approximation by the 

Ideal Gas Law, since low pressures are involved [167]: 

  
 

   
 

Where P is the pressure, T the temperature and kB the Boltzmann constant. For a generic 

substance, the pressure under saturation condition, called “saturated vapour pressure”, depends 

itself on the temperature, according to the Antoine equation [168]: 

       (  
 

   
) 

The A, B and C parameters are called “Antoine constants” and depends on the material. Literature 

is not unanimous in the determination of the Antoine constants  for TNT [168; 169].  Different slopes 

for the dependence of Psat on the temperature are found, and the reason for this discrepancy is 

unclear, the only common information being that C = 0 in the temperature range of interest, the 
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temperature being expressed in the absolute scale, which implies that Psat only vanishes at the 

absolute zero [170]. Two sets of the Antoine constants at room-temperature are reported in Table 5. 

Ref. Temperature range A B [K] 

Handbook [168] 293 to 353 K 16.596 5874.238 

Pella [169] 287 to 330 K 14.435 5175 

Table 5: Two different sets of Antoine constants for TNT, taken from the literature. 

Taking the Antoine equation for TNT with C=0, together with the Ideal Gas Law, the saturated 

vapour concentration can be given by the following formula: 
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Which quickly increases with the temperature. If A and B are given in SI units, this formula gives 

the concentration in m-3. The conversion into mass fraction expressed in ppb is obtained 

introducing the TNT molecular mass, mTNT = 227 amu = 3.769x10-25 kg, and the air density, ρ = 1.3 

kg/m3, into the equation: 
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With the Antoine constants reported in Table 5, the concentration is calculated and reported in 

Fig. 64. Due to the exponential growth, a wide range of concentration values can be provided 

heating the chamber with a common hot-plate, ranging from some tens to some thousands of ppb. 

 

Fig. 64: Saturated vapor concentration as a function of the temperature in the chamber. The two different 

trends are obtained using the two sets of Antoine constants reported in Table 5. The inset focus the detail 

of the curves at low temperatures. 
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In conclusion, the equation allow to estimate the TNT concentration in a saturated environment, 

with the limitation that, since the correct Antoine constants for our specific TNT sample are 

unknown, the concentration under our experimental conditions will fall into a certain range of 

variability. 

b. Transient to saturation 

An estimation of the time required to the chamber to reach saturation is given, in order to know 

for how long the sensor will find itself in transient conditions. In order to saturate the chamber, 

enough mass has to sublimate from a TNT sample and diffuse. 

The sublimation rate from a disk of r radius is given by [170]: 

  

  
           

where D is the diffusion coefficient. On the other hand, the total mass needed to saturate the V 

volume of the chamber is M = csatV. Thus the total time τ can be extracted by the integrated 

expression: 

 

 
 

     

 
           

And it comes to be   
 

   
, that is temperature-independent, because both the sublimation rate 

and the saturated vapour concentration depend in the same way on the temperature, 

compensating each other. For an hypothetical volume of 10 cm3 and r = 1 cm, the time is estimated 

in about 1 minute. 

Diffusion obeys the Fick’s law, which states that the flux of particles is proportional to the gradient 

of concentration, through the diffusion coefficient [167]:        
  

  
 .The diffusion time  can be 

estimated as   
  

 
 where d is the dimension of the system. The values of the TNT diffusion 

coefficient found in literature present discrepancies up to the 30%, while its dependence on the 

temperature is negligible; the mean value is D = 5.59x10-6 m2/s [170]. For this estimation a prudent 

value of D = 5x10-6 m2/s could be taken: if d≈10 cm, the formula gives a time of 2000 s, i.e. about 30 

minutes. 

According to these calculations, the sublimation is relatively fast and the dominant factor is the 

diffusion. Moreover, the process is approximately temperature-independent. For a chamber of 

major dimension of less than 10 cm, half an hour is a reasonably overestimated time scale to 

ensure the saturation of the chamber.  

On the opposite, an optimistic estimate may be given by taking the distance of the sensor from 

the source as the relevant dimension scale, instead of the chamber dimension. For a distance of 5 

cm, the transient time goes down to less than 10 minutes, likely underestimated. 

c. Adsorption Kinetics 

Antoine equation links the concentration into the chamber to the temperature, but experimental 

data give the plasmonic resonance shift as a function of the temperature. In order to fit the data, a 

theoretical relation between the shift, Δθ, and the concentration has to be provided. This means 

that the adsorption kinetics of the analyte by the sensitive layer has to be investigated. 
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The problem can be approached through the model introduced by Langmuir for the adsorption of 

gas molecules into adsorption centers on a solid surface [171; 172]. Generally speaking, the number 

Na of adsorbed molecules evolves according to the following equation, based on a balance 

between the adsorption and desorption rates [159]:  

   

  
     (       )       

Where Ng is the number of free gas molecules, Nsat the maximum possible number of adsorbed 

molecules (i.e. the total number of adsorption sites, and thus a saturation condition for the layer) 

and the ka, kd parameters determine the rates of adsorption and desorption, respectively. The 

equation expresses the fact that the absorption rate depends on the number of free molecules and 

the number of free adsorption centers, while desorption only depends on the number of adsorbed 

molecules. 

Some approximations could be made for our experimental conditions. Since the environment is 

kept saturated by a TNT source, the molecules reservoir Ng will be kept constant in spite of the 

adsorption. The desorption rate parameter kd, that can be rewritten as 1/τr for a certain mean 

residential time of an adsorbed molecule before being released, is expected to be much smaller 

than ka, because the sensitive layer is optimized in order to bond to the TNT molecules and hold 

them for a relatively long τr.  

Thus the desorption rate may be neglected, meaning that molecules will be go on being adsorbed 

until the filling of all the sites on disposal, i.e. until saturation of the sensitive layer. A further, 

reasonable, assumption will be the resonance shift to be proportional to the number of adsorbed 

molecules,       , and in particular         will represent the maximum shift at saturation [40]. 

Eventually, rewriting the equation in term of the TNT concentration into the saturated chamber 

instead of the total number of free molecules,            , we obtain: 

   

  
       (    ) 

That can be integrated until a generic τ time to give:  

     (             ) 

This result is useful to fit the data from a so-called kinetic measurement, where a sensor is exposed 

to an atmosphere saturated of TNT at constant temperature, and the shift of the SPP resonance 

position over time is measured.  

d. Experimental 

6-Mercaptonicotinic acid (6-MNA) is well-known in literature as an high performance sensitive 

element towards TNT detection [142]. As introduced in Chapter 4.1[c], 6-MNA molecules have the 

tendency to bind to a gold surface forming a self–assembled monolayer. 

In order to exploit it as a sensitive layer on an SPR sensor, a sinusoidal master of period 500 nm 

were fabricated through LIL and replicas were made following the first receipt of Chapter 4.2[c]. 

The pattern was finally transferred onto a NOA film; a 5-nm thick chromium adhesion layer and a 

40-nm thick gold layer were evaporated on the patterned surface. 
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The presence of the adhesion layer was essential to guarantee the stability of the structure during 

the cleaning of the surface and the deposition of the 6-MNA layer, because these steps required to 

expose the samples to liquids. 

 

Success of the sensitive layer self-assembly was checked through the SPR response of the 

structure. 

Fig. 65 shows a plasmonic resonance dip in a spectral scan, for λ = 625 nm at φ = 52° and 

polarization set to its optimal value α = 140°, taken before and after the exposure to the 6-MNA 

solution. A shift of 1.2 ± 0.1 is observed. 

 

 

Fig. 65: Spectral scans with parameters: λ = 625 nm, φ = 52° and α = 140°, before (red curve) and after 

(green curve) the deposition of 6-MNA over the gold surface; it shows the SPR response to the 

functionalization.  

The TNT detection test was performed by mounting onto the ellipsometer the usual incubation 

chamber (see Chapter 4.4[a]), of main dimension of about 10 cm. Inside the chamber, an 

aluminium box containing the TNT powders was placed at about 5 cm from the sample holder, 

where the sensor was fixed. After sealing the chamber, the sysem was left at room temperature for 

the time needed to reach the environment saturation and then sensing measurements were 

performed. 

The chamber windows allowed a single entering angle for the incident light, corresponding to 

an incidence angle of 70°; spectra were then collected in spectral scan. A kinetic measurement was 

performed at room temperature, collecting data points at scheduled times after the beginning of 

the exposition: 30, 45, 60, 90, 120 min and overnight. 

e. Results 

The collected spectra of the TNT kinetic measurement are reported in Fig. 66. 

The first spectrum was collected as a reference before the exposition to TNT; the second was taken 

after 30 minutes to ensure that chamber saturation had been reached. The SPR response after 30 

minutes suggests that this time was reasonably overestimated as a transient. 

The errors on the dips positions were provided by Lorentzian fits of the SPRs and then 

propagated to the shifts; the shift of the resonance dip as a function of the incubation time was 

fitted with the Langmuir formula for the adsorption kinetics, as reported in Fig. 67. 

The output gave a shift at saturation s = 17.91 nm, and a characteristic time scale of the 

exponential of                    . 
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The concentration was estimated, by applying the Antoine equation, to be in the range 45 ± 15 

ppb, depending on the chosen set of Antoine constants, at a temperature of 22 ± 1 °C.  

 

Fig. 66: Experimental spectra collected at scheduled times, being time = 0 the moment in which the sample 

was put into the incubation chamber together with the TNT source. The last measure was taken after one 

night, for a total of about 17 hours. 

 

Fig. 67: Fit of the experimental data points with the Langmuir formula; errors on the dips positions were 

provided by Lorentzian fits and propagated to the shifts. The saturation level indicated by the green 

dotted line is an output of the Langmuir fit and corresponds to a shift of 17.91 nm. 

In conclusion, we performed an experiment that demonstrates the possibility to detect TNT traces 

down to concentrations of a few tens of ppb, combining the azimuthally rotated SPR approach 

with a standard SAM-based sensitive layer. The response of the sensor in time has been 

investigated by studying the adsorption kinetics at room temperature. A perceivable shift is 

observable after less than 30 minutes and saturation is reached within 20 hours. 

These results are to be intended as preliminary, and they open the way to a number of 

improvements, including optimization of the sensor structure and the sensing configuration, and 

tests against other explosives. 
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6.2.  H2 and VOCs sensing with a nanocomposite matrix 

In this Chapter, the SiO2 and TiO2 based functional materials described in Chapter 4.1[c] will be 

exploited as sensitive layers for both hydrogen and aromatic hydrocarbons; the main difference 

between the two materials is that the SiO2 is an insulator while the TiO2 is a semiconductor. 

Good performances are obtained with both the sensitive layers, including the possibility to 

distinguish the interaction with hydrogen from the one with VOCs looking at the direction of the 

SPR dips shift. 

Although in this case all measures were taken at null azimuth, theoretical approaches and 

methods introduced in Section 5 came into aid in the identification of the resonances and 

interpretation of the results. 

a. Experimental 

Two kinds of plasmonic crystals were fabricated by Nano-Imprinting Lithography on a 200-nm 

patternable ph-PSQ film treated at 500°C, as described in Chapter 4.2. The period of these gratings 

was of 570 nm, as confirmed by AFM characterization. 

Over some of them the SiO2 solution was spin-coated as a sensitive layer, and the TiO2 solution 

over the others. All the thin films were deposited by spin coating at 3000 rpm for 30 s over the 

metallic gratings, dried at 100°C for 5min and finally annealed in a muffle furnace at 300°C for 1 h 

in air. With the same procedure, the same films were also deposited over flat SiO2 substrates to 

perform spectroscopic ellipsometry (see 4.4[b]). 

Thickness and refractive index of the functional layers have been measured by spectroscopic 

ellipsometry on the flat samples, in the 400-1500 nm wavelength range. The results gives a 

thickness of 180 nm for the SiO2 film and of 130 nm for the TiO2 film; their refractive index is 

reported in Fig. 68, compared to that of the ps-PSQ underlying film. 

 

 

Fig. 68: Refractive indices of the three functional materials involved in the structures in exam. 

In order to evaluate the effective symmetry of these structures, we calculated the effective 

refractive index approximately perceived by an SPP propagating along the film, according to EMA 

(as introduced in Chapter 1.4[a]). EMA was applied considering a single-interface SPP mode on a 

silver surface, with the boundary conditions of an infinite semi-space filled of air over the sensitive 

layer and an infinite quartz substrate under the ph-PSQ layer. The resulting dielectric functions 
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are plotted in Fig. 69, showing that SiO2-based structures are symmetrical at low wavelengths and 

TiO2-based at wavelengths around 930 nm. 

When the structures are effectively symmetrical, they can support the thin-film coupled modes as 

described in Chapter 1.2. 

 

 

Fig. 69: Effective dielectric functions evaluated by EMA for the actual structures in exam. The green and 

red curves represents the εEMA for the upper half-space for SiO2 and TiO2 structures, respectively, while 

the blue curve represents the εEMA for the lower half-space. Thus where the green or red curve is close to 

the blue one, the corresponding structure is effectively symmetric. The vertical dotted lines locate the 

wavelengths at which the observed resonances fall. 

 

Fig. 70: Experimental reflectance spectra (black lines) compared to simulations (red lines) for the 

plasmonic crystals with: (a) TiO2 sensitive layer and (b) SiO2 sensitive layer. The illumination is front-side 

at a fixed incidence angle of 70° and null azimuth. The nature of the modes is identified through 

comparison to their theoretical momenta, as follows: the dips labelled SI corresponds to single-interface 

modes, with a sign indicating if the coupling is additive or subtractive and a number “2” for a mode 

coupled through the second diffraction order, while LR is a Long Range and SR a Short Range. 

In Fig. 70 typical experimental reflectance spectra are shown, compared to the simulated one, at an 

incident angle of 70° and null azimuth, for both the fabricated plasmonic crystals. A set of dips can 

be seen, associated to the resonant coupling of the incident radiation with SPP modes supported 

by the thin-film structure. The simulations are in good agreement and the nature of the modes can 

be identified through a comparison with theoretical expectations, provided by the EMA analysis 

and the methods of Chapter 5.1.  
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All the modes labelled SI are recognized as Single-Interface modes on the upper surface of the 

metal layer. In particular, the SI- modes are excited via subtractive coupling, i.e.       , since 

they falls into the G>β case; on the opposite, the mode labelled SI+ is excited via additive 

coupling,       , being into the G<β case. At, lower wavelengths the spectrum of the TiO2-

based structure presents an SPR dip corresponding to a second order additive excitation,    

     , thus it is labelled as SI2
+. Finally, the SiO2-based structure is effectively symmetrical at 

low wavelengths, according to the EMA analysis reported in Fig. 69; in fact, coupled modes (Long 

Range, LR, and Short Range, SR) are visible in the simulated spectrum, even if only partially in the 

experimental one, where the SR SPP seems to be suppressed. 

The quite well defined dips, SI- and SI+, will be exploited for the sensing tests. We can give an 

estimation of their refractometric sensitivity, using the formulas derived in Chapter 5.4[d]; for 

single-interface modes and with θ=70°, the refractometric sensitivity is given by: 
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For the cases of interest, it gives the values reported in Table 6. The sensitivities are comparable, 

with a slight enhancement at lower wavelengths. 

Resonance region      (estimated) 

TiO2 
700 nm 650 nm/RIU 

1200 nm 600 nm/RIU 

SiO2 1200 nm 580 nm/RIU 

Table 6: Estimation of the refractometric sensitivity in spectral scan for the resonances of interest. 

b. Hydrogen sensing 

Although great number of hydrogen sensors is found in literature, based on many different 

operation principles, each one presents specific advantages and disadvantages that make it 

suitable for some applications and unsuitable for others [164]. 

Optical sensors are safe, since they do not provide a potential source of ignition in explosive 

atmospheres, and they are almost unaffected by electromagnetic noise. Grating-based SPR sensors 

have the further advantage of great miniaturization and integration possibility. 

Usually, this kind of devices exploit a thin palladium layer as a sensitive layer [173; 174] because 

palladium acts like a catalyst to split the H2 molecules into atomic hydrogen. As a drawback, 

palladium makes the structures susceptible to mechanical damage on exposure to hydrogen. 

We propose a grating-coupled SPR sensing device for hydrogen detection, fabricated with low-

cost techniques and materials, avoiding the use of palladium, or other expensive materials like 

platinum. The possibility to detect little volumetric concentrations down to 1% is demonstrated. 

 

Gas sensing tests have been performed at 300 °C, with H2 10000 ppm, in N2 flux with a flow rate of 

0.4 L/min. Reflectance spectra have been acquired, scanning the wavelength in the 300-1500 nm 

range. The results are reported in Fig. 71 and in Table 7 for the two main dips of the TiO2 sample 

and the only well-defined dip of the SiO2 phenyl functionalized sample. The exposure of the 
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sensor to the gas produces a blue shift of all the resonances. Both layers demonstrated to be 

sensitive to low concentrations of hydrogen, down to 10000 ppm. 

 

Fig. 71: Sensing tests towards hydrogen at 300°C with sensitive layer of (a) SiO2 and (b) TiO2. 

 

Resonance dip Shift 

TiO2 
700 nm 3 nm 

1200 nm 1 nm 

SiO2 1185 nm 1 nm 

Table 7: Shift of the SPR dips under H2 flux. 

Comparing the performances of the two different sensitive layers with the expectances, we 

observe that the much greater response of the dip of the TiO2 at 700 nm is hardly justified by the 

refractometric sensitivity alone. Moreover, neither of the two layers prove to be sensitive at room 

temperature. 

Further investigations are in progress to understand the reason for this discrepancy, that we 

believe to be due to the different nature of the sensitive layers, since SiO2 is an insulator and TiO2 

is a semiconductor. A hint comes from the nature of the interaction mechanism with the analyte, 

that is presumed to be related to the injection of electrons, provided by the reducing reaction of 

H2, into the conduction band of the sensitive material [175]. In both materials, at high temperature 

the oxygen vacancies in the oxide matrix result in the formation of intragap states in the band gap. 

At room temperature they are absent, but at 300°C they constitute the crucial element that allows 

the injected electrons to jump to the conduction band, increasing the free electron density and thus 

affecting the optical properties. In addition, since the TiO2 has a band gap of 3.2 eV, an energy that 

falls in the near UV, it is reasonable that lower wavelengths can promote the electronic transition, 

resulting in an enhanced response. 

c. Aromatic VOCs detection 

As introduced at the beginning of this Section, aromatic hydrocarbons are a threat for health 

and environment, resulting in a growing the demands for simple, cost-effective, selective and 

highly-sensitive methods of detection is growing. The sol materials introduced in the previous 

Paragraphs are promising candidate to monitor A-VOCs because of the strong interaction between 
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the benzene rings of the target gas with the phenyl group of the SiO2 matrix [176], or with the Ti4+ 

group in the case of the TiO2 matrix [177]. 

The tests have been performed at room temperature, with three different Aromatic Volatile 

Organic Compound (A-VOC), namely benzene 30 ppm, toluene 30 ppm and xylene 10 ppm, in air 

flux with a flow rate of 0.4 L/min. 

Fig. 72 shows some reflection spectra of the samples TiO2 and SiO2 phenyl functionalized when 

exposed to multiple air-A VOC cycles, producing a red-shift of the dips. The results of the sensing 

tests are summarized in Table 8. 

Again, the dip at lower wavelength proves to be the most sensitive. The comparison between the 

performances of the two sensitive layers at high wavelength suggests a superior efficiency of the 

sensing mechanism of the SiO2 phenyl functionalized. However, a deeper investigation should be 

performed in order to understand the reasons of this discrepancy.  

 

Fig. 72: (a) Sensing test with xylene, toluene and benzene on the plasmonic crystal with sensitive layer of 

SiO2 phenyl functionalized; (b) Sensing test with xylene, toluene and benzene on the plasmonic crystal 

with sensitive layer of TiO2 (dip at 730nm). 

 

Analyte 
Shift of the SPR at 1250 nm 

(TiO2) 

Shift of the SPR at 730 

nm (TiO2) 

Shift of the SPR at 1190 nm 

(SiO2) 

Xylene 2nm 11nm 6 nm 

Toluene 1nm 5nm 2,5 nm 

Benzene / / 0,5 nm 

Table 8: Measured shifts in the sensing tests of the two sensitive layers towards A-VOCs. 

A clear information that emerges from the data is that the shift increases with the number of CH3 

groups in the A-VOC molecules: no one for benzene, one for toluene and two for xylene. This is in 

accordance with the literature, since the binding of the VOCs to the sensitive layer is expected to 

be promoted by this group [178]. In addition, since this mechanism is based on the subtraction of 
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electrons from the sensing material, the opposite response, in term of direction of the shift, with 

respect to the hydrogen case is reasonable. 

d. Conclusions 

Both sensitive materials, one insulating and functionalized with phenyl groups and the other 

semiconductor, showed good optical response, with reversible dynamics, towards different kinds 

of analytes.  

Hydrogen detection, characterized by a blue shift of the SPR dips, have been demonstrated 

down to 10000 ppm at 300 °C; detection of  30 ppm of benzene, toluene and xylene has also been 

achieved at room temperature.  

Further investigations are suggested in order to well understand the mechanisms of interaction 

between the analytes and the sensitive layers, but such analysis is beyond the purposes of the 

present work. 

6.3.  Xylene sensing with coupled modes in conical mounting 

Sinusoidal surface plasmon metallic gratings (SPGs) were fabricated, embedded in a functional 

material, phenyl-bridged polysilsesquioxane (ph-PSQ). The metal layer is in contact with the 

environment through the sol-gel film, that works as sensitive element, changing its dielectric 

properties upon interaction with aromatic hydrocarbons. The combination of sensitivity, 

transparency and patternability offered by ph-PSQs gives the exceptional possibility to fabricate 

innovative optical sensors with straightforward processes. An embedded SPG is a thin metal slab 

waveguide, in which coupled modes introduced in Chapter 1.2 can be excited. An extended 

experimental and theoretical characterization of the optical properties of the plasmonic device was 

performed. The sensor performance was tested against the detection of 30 ppm xylene, monitoring 

the influence of the target gas on the SPPs modes. A reversible red-shift of the reflectance dips of 

both LR and SR SPP resonances in the 1.9-2.9 nm range was observed and correlated to the 

interaction with the analyte. An enhancement in sensitivity associated with the rotation of the 

grating grooves with respect to the scattering plane (azimuthal rotation) was verified within the 

experimental errors. Collected data are compatible with theoretical predictions assuming a 

variation of the film refractive index of 0.011  0.005. 

a. Experimental 

Nanostructured plasmonic sensors were fabricated as sinusoidal SPGs embedded in a porous 

sol-gel film of ph-PSQ, following the procedure described in Chapter 4.2. Ph-PSQ is an organic-

inorganic hybrid sol-gel material synthesized by acid catalyzed sol–gel process from phenyl-

bridged silsesquioxane (ph-SQ) precursors (see Paragraph 4.1[b]). It has the crucial property of 

being suitable both as a patternable material for soft lithography at the nanoscale and as a 

sensitive layer. In fact, recognition elements for the analyte are incorporated in the hybrid 

network, that presents a large specific surface area due to his porosity. 

The ph-PSQ films were deposited by spin coating on the substrates, tuning solution concentration 

in EtOH and/or spin coating speed in order to obtain, after a thermal treatment at 80 °C for 30 

min, a thickness of about 200 nm. The post deposition bake is necessary to promote solvent 

evaporation and to reach a stable cross-linking degree. 

Before metal deposition, the ph-PSQ film coating the fused silica slab was patterned through Nano 

Imprint Lithography using soft stamps, which are elastomeric replica of masters. The employed 

masters had been fabricated through Laser Interference Lithography on commercial resist films 



6 – Sensing applications 

 

- 110 - 

 

and exhibited a sinusoidal pattern, of 570 nm pitch and 70 nm peak-to-valley height. The substrate 

size was approximately 2×2 cm2. The fabrication process consists in the realization of negative 

replica made of polydimethylsiloxane (PDMS) of the nanostructured masters, and in the pattern 

transfer by soft NIL on ph-PSQ films coating fused silica slabs, obtaining a uniformly patterned 

area of about 1.5×1.5 cm2. The fabricated sinusoidal patterns, positive replica of the master 

structures, were imaged through an AFM in non-contact mode for a morphological 

characterization. 

Then, a metallic bilayer made of 7 nm of gold (Au) on top of 37 nm of silver (Ag) was deposited in 

vacuum onto the sinusoidal ph-PSQ gratings; AFM images of the metalized sinusoidal structures 

were again recorded to characterize the structure morphology. Finally, the sensitive layer 

deposition was performed: a ph-PSQ film was spin-coated on top of the metallic grating, setting 

the same deposition parameters as for the first resist film. The sample was thermally treated at 80 

°C for 30 min to promote solvent evaporation. 

The functionality of ph-PSQs is conveyed by the presence of an organic group incorporated into 

the hybrid network, the benzene ring, which interacts through an affinity binding, reasonably a π - 

π stacking, with aromatic hydrocarbons [176; 179]. In particular, in the present work the study is 

concentrated on the detection of xylene molecules. An annealing treatment at 300 °C for 30 min 

was made on the samples before gas sensing tests, in order to stabilize the structure in terms of 

cross-linking degree, and to promote outgassing of adsorbed species. 

Ph-PSQ films are optically transparent and they were deposited on transparent fused silica 

substrates, thus allowing the two illumination configurations: the standard ‘direct’ illumination 

condition, with the light beam incident on the sensitive layer first, and the ‘reverse’ side mode 

illumination, with the light beam incident on the substrate first [180]. 

Optical characterization of the structures was performed by collecting reflectance spectra using a 

variable-angle spectroscopic ellipsometer and comparing them to simulated spectra, produced 

through Chandezon’s method (see Chapter 3.1). The SPP modes can be identified by the values of 

their momentum. 

In order to test the gas sensing performance, samples were mounted in gas chambers optically 

coupled to the ellipsometer and reflectance spectra were recorded. 

The sensor was probed in a direct illumination condition, when using the customized commercial 

cell shown in Chapter 4.4[a], equipped with fixed input and output windows perpendicular to the 

incoming and reflected beams. In this case, measurements could be carried out at a single, fixed 

angle of incidence of 70°. Alternatively, the sensor was mounted in reverse side mode inside a 

home-made gas [180].  

The sample was probed on the back side, and reflectance data could be collected at different 

values of the angle of incidence. 

Spectra were recorded during successive cycles of exposures to nitrogen (N2, the carrier) and 

to xylene at a concentration of 30 ppm xylene (10 ppm orto-xylene, 10 ppm meta-xylene, and 10 

ppm para-xylene concentration in N2), being the exposure to N2 atmosphere aimed to regenerate 

the sensor. Plasmonic dips were monitored, and their angular shift for a fixed wavelength of the 

incident light beam, or their red-shift for a fixed angle of incidence, were correlated to the 

interaction with the analyte. 

Such measurements were repeated for a number detection/regeneration cycles, each exposure 

step lasting few tens of minutes. The sensor was mounted in the null azimuth and in the 

azimuthally rotated configuration, choosing the wavelengths and incidence angles giving the best 
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SPR response for each configuration. A comparison between the reflectance signals in the two 

controlled atmospheres was performed to estimate sensor sensitivity. 

 

b. Characterization of the plasmonic structures 

An analysis of the surface morphology of the imprinted ph-PSQ layer, before metal deposition, 

and of the SPGs has been performed using AFM in non-contact mode. Fig. 73 shows the 2D image 

of the sinusoidal profile transferred onto ph-PSQ films. The grating periodicity is 570 nm while the 

peak-to-valley height is 70 nm, with a few percent precision due to AFM calibration issues. In Fig. 

74 the 2D image of the sinusoidal structure obtained after metal evaporation are shown. The 

grating periodicity and the peak-to-valley height are basically unchanged within the experimental 

errors, and the estimated roughness of the metal coating is of 2.7 nm RMS. The sensitive layer was 

also deposited on the SPG by spin coating. 

 
Fig. 73: (a) 2D AFM recording of a ph-PSQ film, imprinted using a PDMS replica of a sinusoidal master. 

The scanning area is of 5x5 μm2. (b) Cross-sectional profile of the pattern obtained averaging about one 

hundred scanned lines. 
 

 
Fig. 74: (a) 2D AFM recording of a SPG, before deposition of the sensitive layer on top. The scanning area 

is of 5x5 μm2. The roughness of the metal coating is 2.7 nm RMS. (b) Cross-sectional profile of the pattern 

obtained averaging about one hundred scanned lines. 

Figures from Fig. 75 to Fig. 77 show the reflectance spectra of a fabricated sample, both 

experimentally measured and simulated. Well defined dips corresponding to single-interface SPPs 

are observed for SPGs, before the deposition of the sensitive layer, in standard illumination 

configuration of the surface (Fig. 75).  
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The spectra are perfectly reproduced by simulations with the Chandezon’s method.  

Attention has to be paid when reverse illumination is simulated: since the program deals with 

layers much thinner than 1 mm, the sample substrate is treated as an infinite half-space. This 

means that the program works as the light source was into the glass; in order to compare 

simulated spectra with experimental ones, they have to be transformed using the Snell’s Law into 

the realistic case of light entering the glass substrate from air. 

After deposition of the sensitive layer, the sensor structure is symmetric, and two coupled 

plasmonic modes are observed in both configurations for sensor illumination. The two dips in the 

reflectance curves, for a fixed wavelength of the incident light, have been identified by the values 

of their momenta as LRSPP and SRSPP. Also in this case, simulated curves show a good 

agreement with experimental data (Fig. 76 and Fig. 77). 

 
Fig. 75: Experimental and simulated reflectance spectra of a SPG, before sensitive layer deposition, for p 

polarized incident light in standard illumination mode, and null azimuth. The spectra are reported as a 

function of the angle of incidence for a set of wavelengths in the 780-960 nm range. They show a single 

dip for each wavelength, which is a single-interface SPP. 

 
Fig. 76: Experimental and simulated reflectance spectra of a SPG embedded in ph-PSQ films, for p 

polarized incident light in standard illumination mode, and null azimuth. The spectra are reported as a 

function of the angle of incidence for a set of wavelengths in the 630-690 nm range. They show two dips 

for each wavelength: the LRSPP at smaller angles, the SRSPP at higher angles of incidence. 

The resonance depth is probably altered by the surface roughness, which was not taken into 

account in the numerical simulations. Moreover, the experimentally observed dip widening 
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provides an indication of the degree of disuniformity of the grating within the illumination spot of 

the ellipsometer. The spectrum in Fig. 77 is taken under reverse side illumination. Thanks to the 

symmetry of the structure, the angular position of the dips is the same they have in the standard 

illumination mode. 

 

Fig. 77: Experimental and simulated reflectance spectra of a SPG embedded in ph-PSQ films, for p 

polarized incident light in reverse side illumination mode, and null azimuth. The spectra are reported as a 

function of the angle of incidence for the same set of wavelengths as in figure 6. They show the LRSPP at 

smaller angles, the SRSPP at higher angles of incidence. 

The results of the modal analysis carried out with COMSOL for the complete plasmonic 

architecture are shown in Fig. 78, Fig. 79 and Fig. 80. In Fig. 78(a) the real part of the Transverse 

Magnetic (TM) plasmonic mode dispersions is superimposed to reflectance maps obtained with 

the Chandezon’s method, illuminating the structure from the air side with p polarized light. Two 

modes appear from the modal analysis, which are clearly correlated to reflectance dips. An 

inspection of the eigenmode magnetic field profiles, in the direction orthogonal to the incidence 

plane, into the multilayer structure (Fig. 79) allows to identify the modes as one LR SPP 

(symmetric magnetic field profile) and one SR SPP (antisymmetric magnetic field profile). 

Propagation length and penetration depth of the plasmonic modes are calculated from the 

imaginary part of the propagation constant. This is readily obtained with the present analysis by 

taking the imaginary parts of the calculated complex eigenvalues. In Fig. 78(b) we report the 

imaginary part of the LR SPP and SR SPP propagation constants in flat structure approximation 

(black dots) and for a sinusoidally corrugated structure of 570 nm period and 70 nm peak-to-

valley height (blue dots). A relevant increase, almost an order of magnitude for the LR SPP mode, 

in the imaginary parts is found in presence of a sinusoidal modulation of the surface. Such 

behavior is mainly ascribed to strongly increased radiative losses, as explained in Chapter 1.3[d]. 

The values of the propagation constants and penetration depth obtained at 633 nm wavelength of 

the incident light are reported in Table 9. 

In Fig. 80 the same analysis is performed for the Transverse Electric (TE) polarization case. One 

single mode is found which corresponds to a narrow dip in reflectance. The mode is a waveguide 

mode of the upper dielectric layer (exposed to the environment), of the kind introduced in 

Chapter 1.4[c], as can be verified looking at the electric fields calculated with a modal analysis 

(Fig. 80(b)). 
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Fig. 78: (a) Scatter plot of the TM eigenmodes of the structure calculated by COMSOL (white dots) 

superimposed to the TM reflectance calculated through the Chandezon’s method. (b) Dispersion relation 

of the imaginary part of the propagation constant for the plasmonic modes in flat structure approximation 

(black dots) and for a sinusoidally corrugated structure of 570 nm period and 70 nm peak-to-valley height 

(blue dots). 

 
Fig. 79: Profiles of the magnetic field component orthogonal to the incidence plane into the multilayer 

structure calculated with the modal analysis at λ = 633 nm: (a) shows the symmetric Bloch mode, or LRSPP 

and (b) the antisymmetric Bloch mode, or SRSPP. In the plot, the orthogonal and vertical axis scales are in 

units of meter. 

 

λ = 633 nm LRSPP SRSPP 

Propagation length 3 μm 2 μm 

Penetration depth 115 nm 85 nm 

Table 9: Estimates of propagation length and penetration depth of the excited LRSSP and SRSSP, for 

incident wavelength λ = 633 nm. 
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Fig. 80: (a) Scatter plot of the TE eigenmodes of the structure calculated by COMSOL (white dots) 

superimposed to the TE reflectance calculated by means of the Chandezon’s method. (b) Distribution of 

the electric field component orthogonal to the incidence plane, calculated with the modal analysis at λ = 

710 nm. This is identified as a waveguide mode guided into the sensitive layer. In (b), the orthogonal and 

vertical axis scales are in units of meter. 

c. Xylene sensing with LR and SR SPPs 

For gas sensing tests, reflectance spectra were acquired in N2 atmosphere and in the presence 

of xylene at a concentration of 30 ppm, after exposing the sensor alternatively to the two different 

environments for tens of minutes. In this way, gas molecules were reasonably given the time to 

diffuse through the sensitive layer until a dynamic equilibrium with the environment was 

achieved. The data acquisition time for a single spectrum varied, according to the investigated 

wavelength range, from a few minutes to a few tens of minutes. Thus, the amount of detected 

analyte molecules interacting with the sensitive porous film underwent a negligible variation 

during spectra acquisition. 

Exploring the output of gas sensing preliminary tests (not shown) revealed the importance of a 

pre-annealing step at 300 °C for 30 min on the plasmonic sensors, to achieve a long-term stability 

for the cross-linking degree of the sol-gel film, and to promote the elimination of adsorbed species. 

Fig. 81 shows the reflectance spectra of the sensor after the thermal treatment at 300 °C in standard 

illumination mode at a fixed incidence angle of 70° at null azimuth (a), and at 60° azimuth (b). 

Since coupling strength and plasmonic resonance depth strictly depend on the polarization angle 

of the incident light (see Paragraph 1.3[c]), such angle was set to 0° (p polarization) in the first 

case, and to 150° in the rotated grating case, respectively, to optimize reflectance dips. The spectra 

are characterized by a number of plasmonic dips identified through simulations. For increasing 

wavelengths, in plot (a), LRSPP at 455 nm, SRSPP at 560 nm and a second LRSPP resonance at 

1255 nm. In plot (b), LRSPP at 550 nm, SRSPPs at 610-625 nm, TE mode at 710 nm, the second 

LRSPP at 940 nm and the second SRSPP at 1030 nm. The spatial extension of the LRSPPs 

determines a lower spread of the momenta in the reciprocal space with respect to the SR modes, 

generally resulting in a higher figure of merit for the resonance. 

The results from xylene sensing are reported in Fig. 82 and Fig. 83. The plots of Fig. 82 show in 

detail the three plasmonic dips characterizing the reflectance spectra of the sensor at 70° incidence 

angle, in standard illumination mode, for p polarized incident light at null azimuth. When the 

sensor was immersed in xylene atmosphere at a concentration of 30 ppm, the plasmonic dips 
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corresponding to the excitation of LRSPPs underwent red-shifts of 2.51.3 nm and of 2.90.9 nm, 

for the first and the second resonance respectively, and the dip corresponding to the excitation of 

the SRSPP of 1.90.8 nm. During regeneration, the minimum position moved back towards the 

starting point. 

 

Fig. 81: Experimental and simulated reflectance spectra, at 70° incidence angle, of a SPG embedded in ph-

PSQ films, after a 30 min annealing at 300 °C. (a) Spectrum acquired in standard illumination mode at null 

azimuth with p polarized incident light: the set of plasmonic dips, for increasing wavelength, were 

identified as LRSPP, SRSPP and a second LRSPP resonance. (b) Spectrum at 60° azimuth with a 150° 

polarization angle for the incident light: the dips are identified as LRSPP, SRSPPs, TE mode, and the 

second LRSPP and SRSPP resonances. 

 
Fig. 82: Reflectance spectra measured in N2 atmosphere and in xylene at a concentration of 30 ppm, at 70° 

incidence angle, in standard illumination mode at null azimuth with p polarized incident light. The shift 

in wavelength is of 2.51.3 nm, 1.90.8 nm and 2.90.9 nm for the three plasmonic dips ordered by 

increasing wavelength, respectively. 

 

 
Fig. 83: Reflectance spectra measured in N2 atmosphere and in xylene at a concentration of 30 ppm, at 70° 

incidence angle, in standard illumination mode at 60° azimuth with a 150° polarization angle for the 

incident light. The measured shift in wavelength is of 1.20.9 nm, 3.80.9 nm, and 4.41.1 nm for the three 

resonances ordered by increasing wavelength, respectively. 
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The estimated error associated to the wavelength shifts is a standard deviation over multiple 

repeated cycles: the major contribution is given by the initial variation in sensor response before a 

regime behaviour is reached (after about a ten of exposure/regeneration cycles) and by statistical 

fluctuations. Such an error is really significant and substantially contributes to the final sensor 

response, for to the very small wavelength shifts to be measured. 

Analogue data in terms of response and regeneration behavior were collected rotating the 

sensor at 60° azimuth for 150° polarization angle of the incident light (Fig. 83). Only the three 

deeper and sharper modes of the spectrum in Fig. 81(b) were examined: the two LR resonances 

and the TE mode propagating in the dielectric layer. The recorded red-shifts taking place during 

exposure to 30 ppm xylene were of 3.80.9 nm for the TE mode, 1.20.9 nm and 4.41.1 nm for the 

first and second LRSPP resonances respectively. All collected data are summarized in the plot of 

Fig. 84. 

An attempt to experimentally measure the variation Δn in the refractive index of the active sol-

gel film, corresponding to analyte interaction, was performed via spectroscopic ellipsometry on 

flat films. Such a variation resulted to be very small ( 0.01), and limited by the resolution of the 

technique. Thus, we cannot define the experimental sensitivity in terms of Δ/RIU. 

From simulations at 0° azimuth, we calculated a theoretical sensitivity, Δ/Δn, of 150 nm for 

the first LR SPP, 350 nm for the second LR resonance, and of 100 nm for the SR SPP. Rotating the 

plasmonic sensor at 60° azimuth, the sensitivity at fixed angle of incidence became 200 nm and 500 

nm for the first and second LRSPPs respectively, 350 nm for the SRSPP, and 450 nm for the TE 

mode. 

Combining the theoretical sensitivity with measured values of Δ returned by a set of different LR 

and SR modes, we estimate the film Δn after interaction with 30 ppm xylene as 0.0110.005. It was 

obtained by averaging over the variations in refractive index calculated for a set of sensing data. 

From such numbers, we clearly comprehend that the plasmonic gas sensor was exploited in 

conditions close to the limits of its performance, but still a measurable shift of the plasmonic 

resonance could be appreciated. At high azimuth an increase in sensitivity is theoretically 

expected. The experimentally measured wavelength shifts for the different plasmonic modes at 

60° azimuth are compatible with predicted values within the experimental errors. 

 

 

Fig. 84: Summary of the measured wavelength shifts for exposure to xylene at a concentration of 30 ppm, 

in standard illumination mode at null azimuth with p polarized incident light and at 60° azimuth with a 

150° polarization angle for the incident light. 
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7. Conclusions 

The propagation of Surface Plasmon Polaritons on anisotropic surfaces represented by sinusoidal 

gratings have been extensively investigated. 

The outcomes of the present work include results in basic Plasmonics, the development of 

concepts and methods useful for the prediction of the optical response of a generic plasmonic 

grating, and also some promising applications to actual sensing devices. 

A general analytical treatment of the conditions for grating coupling between free radiation and 

SPP modes have been derived and validated, producing maps capable to predict the angular 

position of the resonance dips in the reflectance spectra with minimum computational effort. 

While the exploitation of powerful and expensive computational methods is growing, this 

approach represents a handy and quick tool to design or characterize a plasmonic structure. 

The analysis have been extended to the mapping of the propagation direction of the excited 

SPP mode on the grating surface, defined by its angle with respect to the grating Bragg vector. The 

relation between the propagation angle and the azimuthal angle is thus unravelled. 

A unique configuration have been identified, in which two identical SPP modes are 

simultaneously excited by the same light beam and propagate along different directions. 

A deep investigation of how the propagation on the patterned surface affects radiative losses have 

been performed, providing interesting results. 

The expected relations between losses and resonance width have been verified, and it has been 

shown and explained that they are unaffected by the incident light polarization. 

The dependence of radiative losses on the grating amplitude have been found to be a quadratic 

law, and a physical interpretation of this result have been suggested, through a quantum 

mechanical model of the resonant coupling. 

The dependence of radiative losses on the propagation direction has also been derived, from a 

model of anisotropic effective refractive index. 

These results have been transformed, through the coupling relations, to the reference system of the 

coupling setup, in order to directly compare the predictions to experimental data. The model is in 

fact validated by this comparison. 

The second resonant coupling of Long Range and Short Range SPPs in conical mounting have 

been predicted and the corresponding dips observed for the first time. It has been shown that a 

relevant enhancement of the propagation length of a Long Range mode can be achieved in conical 

mounting, with respect to the null-azimuth case. 

Theoretical formulas to evaluate the sensitivity of SPP modes for sensing applications have been 

derived, including configurations that had not be considered before. In particular, the factor 

related to conical mounting have been generalized and applied to the spectral interrogation case. 

A general expression for the Figure of Merit have been derived, showing that the sensitivity 

enhancement in conical mounting is primarily due to the reduction of radiative losses. 

Some structures have been tested as gas sensing devices for analytes of interest for health and food 

safety, environmental monitoring and counter-terrorism. 

The possibility to detect traces of TNT, hydrogen and aromatic Volatile Organic Compounds, by 

means of SPR grating-based sensors, have been demonstrated. 

In particular, the superior sensitivity achievable by combining the exploitation of Long Range 

SPPs with the conical mounting configuration have been demonstrated, in a test against xylene. 
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8. APPENDICES 

8.1.  Fundamentals of plasmonics 

Mainly calculations and proofs, apart for some basic remarks on the view of a SPP as a quasi-

particle in a Solid State Physics framework. 

a. SPPs as quantum quasi-particles 

In a Quantum Field Theory framework, SPPs may be seen as a kind of quasi-particles [46]
. 

Electric field in matter always produces a polarization wave, according to  ⃗    [ ( )   ] ⃗ . As a 

consequence, light travelling in a solid is a superposition of an electromagnetic wave and the 

polarization wave, and this mixed state is quantized, i.e. it can exchange energy only by integer 

multiples of  ω. 

The polarization wave includes several kind of excitations, that are considered “quasi-

particles” for two reasons: because they exist only in matter and not in vacuum, and because their 

momentum is a “quasi-momentum”, defined within an arbitrary additive constant vector [181]. 

These quasi-particles are: 

 Phonons, representing relative motion of different ions in the material 

 Excitons, associated to electron-hole pair excitations 

 Plasmons, describing collective motions of the electron cloud with respect to the nuclei 

and inner shells 

The general case will be a quantized mixed state of an electromagnetic wave and a polarization 

wave, i.e. of photons and quasi-particles: due to their nature, these are themselves quasi-particles 

called “polaritons”, a name composed of the terms “polarization” and “photon”. They can be 

depicted as a continuous energy exchange between an electromagnetic wave exciting the 

oscillators, which in turn re-radiate an electromagnetic wave, and so on. 

In a second quantization picture, the interaction Hamiltonian between photons and a generic 

quasi-particle is written as follows: 

  ∑      
   

 
 ∑  (  ) 

  
    

  
   ∑   (  

      
   )

 
 

The first two terms contain the number operators of the photons (  
   ) and the quasi-particles 

( 
  
    ), and correspond to the hamiltonian of the non-interacting system [123]. The third term 

describes the interaction and contains the creation/annihilation operators (for example,   
    

destroys a photon and creates a quasi-particle); gk contains the information about the transition 

probability. 

Introducing a linear combination of creation and annihilation operators of photons and quasi-

particles,             , with a proper choice of the uk and vk coefficients the Hamiltonian 

could be diagonalized into the interaction-free form: 

  ∑     
   

 
 

Where    and   
  are the annihilation and creation operators for the mixed state corresponding to a 

free quasi-particle: the polariton [182]. 
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b. Real and imaginary parts of the SPP momentum 

The SPP momentum      
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 is in general complex, because the metal dielectric function 

            is usually complex. 

In an explicit form, the effective refractive index:    √
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In conclusion, the approximated explicit forms for the real and imaginary parts of the momentum 

are: 
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In particular, it is demonstrated that β has the same expression than KSPP, substituting εm with εmr. 

This result will be extended to the coupled modes in the next section. 

Relaxing the approximation, the real part would be: 
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c. Long Range propagation 

Some information about the propagation length of a LR SPP may be extracted by an approximated 

expression for ΓL. Under the quite strong assumption that the film is thin enough to approximate 

the hyperbolic tangent to its argument, i.e.     (   )     , the real and imaginary parts of the 

LR SPP dispersion relation take the following form [13]:  
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Using also the fact that        , they become: 
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The propagation length is given by: 
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Interesting enough, εmr and, inversely, εd affect L in a more effective way than εmi; a low refractive 

index of the dielectric and a high real part of the metal permittivity ensure a long propagation 

distance. The reason is that under these conditions the field spends less time into the metal layer, 

thus reducing dissipation [7; 8].  

d. Real part of the coupled modes momentum 

Starting with the approximated expression for the LR SPP, 
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, it will now be proved that  
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The first step is to decompose the square root term inside the hyperbolic tangent in its real and 

imaginary parts, using the known generic formulas: 
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For the hyperbolic tangent, the procedure is as follows: 
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The next step is to expand in series the following polynomial: 
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Calling this block A+iB, what we need is to take the real part of the square root of        . 

Using the formulas for the square root:    
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This is a complicated expression, but it is reasonable to neglect the quadratic terms in εmi with 

respect to the ones in εmr. 

With this approximation, 
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As a consequence,              and then: 
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That can be approximated as follows: 
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It can be observed that B<<A, due to the 
   

   
 factor. For this reason, B2 can be neglected in (  

 )    . 

In conclusion: 
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As previously claimed. 

In the same way, it could be proved that: 
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8.2.  SPP/radiation coupling 

This appendix includes the explicit derivation of some formulas related to the SPP coupling and 

sensitivity, and some remarks about Nano-Imprinting. 

a. Explicit solutions of the coupling conditions 

Defining the 𝜒 angle as the angle between    and  ̂, the coupling conditions can be rewritten as 

follows: 
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Introducing the effective refractive index    
 

  
, the second equation gives       
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 to be used into the first as follows: 
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This is the general solution for the angular positions of the two resonances. 

b. Dependence of the reflectance on the polarization 

As discussed in Chapter 1.3, the reflectance at a plasmonic resonance is expected to depend on the 

polarization angle α, the incidence angle θ and the azimuthal angle φ according to: 
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This formula can be developed as follows: 
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The terms containing the polarization angle can be rewritten using the relation: 
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In this specific case, this means: 
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In conclusion, the reflectance has the form: 
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c. Sensitivity calculations 

Two different forms are found in the literature for the spectral sensitivity of grating-based SPR 

sensors, for both the angular and spectral interrogation cases. In fact, they are derived under 

somewhat different assumptions. 

The formula for the sensitivity under angular interrogation,      
  

  
, is found in the two 

following forms: 
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The second one [77; 98] is valid if the whole apparatus, included the light source, is immersed into a 

dielectric half-space of refractive index n, or, in other words, it is valid inside the sensitive layer. In 

fact in this case the coupling condition assumes the form: 

          
 

 
 

Where θn is the incidence angle of the impinging light measured inside the mentioned layer. 

Differentiating this formula in n and θn, one obtains 
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That corresponds in modulus to     
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. 

In realistic situations, light comes from air with a θ0 incidence angle and enters the sensitive layer, 

being deflected according to Snell’s Law:             . Since the measurand is the variation of 

θ0, the sensitivity to be calculated should be 
   

  
. Differentiating the Snell’s Law one obtains the 

following equation:  

                       

   

  
   

That, using the previously derived expression for 
   

  
, becomes:  
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This corresponds in modulus to     
(   )

, which could also have been directly derived through 

differentiation of the coupling condition in air:          
 

 
. 

The same happens in the spectral interrogation case, with the two definitions: 
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The differentiation inside the sensitive layer gives in fact: 
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The crucial difference between this case and the angular interrogation one is that, while in that 

case the fixed parameter λ was the same for     
(  )

 and     
(   )

, here the fixed parameter is θ0 for     
(   )

 

and θn for     
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.  

From Snell’s Law: 
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 that permits to transform     

(  )
 into     

(   )
. 

d. Second harmonic in imprinting 

During the fabrication of replicas via NIL as described in Chapter 4.2[c], when the mould is 

pressed on the patternable film, the polymer should fill for capillarity the sinusoidal profile. If this 

filling is not complete, thus the reproduction of the mould not faithful, the final structures may 

present a particular defect, consisting in a splitting of the peaks of the sinusoid, due to their 

flattening combined to the effect of capillary action at the sides. 

This is clearly visible in the AFM analyses of such samples, as the ones reported in Fig. 85: the split 

peaks can be seen in the profile reconstruction, while Fourier analysis shows a secondary peak 

corresponding to a Λ/2 periodicity. These also have consequences on the reflectance spectra, since 

this second harmonic works in fact as a secondary periodicity    
  

 
 which provides momentum 

for the coupling. A second series of dips appears in the spectra when such a defect is present. 

 

Fig. 85: AFM analysis of a defected sample; the presence of a second harmonic is visible in the grating 

profile and confirmed by the Fourier spectrum.  
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