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Abstract
Tidal Effects on the Oort Cloud Comets and Dynamics of the Sun in the

Spiral Arms of the Galaxy

The Solar System presents a complex dynamical structure and is not isolated from the

Galaxy. In particular the comet reservoir of our planetary system, the Oort cloud, is

extremely sensitive to the the galactic environment due to its peripheral collocation

inside the Solar System. In this framework, the growing evidences about a possible

migration of the Sun open new research scenarios relative to the effects that such kind

of migration might induce on the cometary motion. Following several previous studied,

we identified the spiral arm structure as the main perturbation that is able to produce

an efficient solar migration through the disk. Widening the classical model for the spiral

arms, provided by Lin& Shu to a 3D formalism, we verified the compatibility between the

presence of the spiral perturbation and a significant solar motion for an inner Galactic

position to the current one, in agreement with the constrains in position, velocity and

metallicity due to the present conditions of our star. The main perturbers of the Oort

cloud, the close stellar passages and the tidal field of the Galaxy, might be both affected

by the variation of Galactic environment that the solar migration entails. Despite that,

in order to isolate the effects to the two different perturbators, we decided to focus

our attention only on the Galactic tide. The perturbation due to the spiral structure

was included in the study on the cometary motion, introducing the solar migration and

adding the direct presence of the non-axisymmetric component in the Galactic potential

of the tidal field. The results show a significant influence of the spiral arm in particular

on cometary objects belonged to the outer shell of the Oort cloud, for which provides

an injection rate three times bigger than the integration performed without the spiral

arms. The introduction of the spiral perturbation seems to bolster the planar component

of the tide, indeed it produces the most significant variation of the perihelion distance

for moderate inclination orbits with respect to the plane. The peak for the cometary

injections has been registered between 6 and 7 kpc. If this evidence will be confirmed by

more realistic cometary sample, it might involve a redefinition of the habitability edges

in the Galaxy (GHZ). In particular regions not precluded to the formation of life, may

compromise the development of the life with a high cometary impact risk.
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Riassunto
Tidal Effects on the Oort Cloud Comets and Dynamics of the Sun in the

Spiral Arms of the Galaxy

Il Sistema Solare è una struttura con una dinamica complessa e non isolata da quella

galattica. In particolare la riserva cometaria del nostro sistema planetario, la nube di

Oort, a causa della sua periferica collocazione all’interno del Sistema Solare, risulta es-

tremamente sensibile all’ambiente galattico circostante. In questo contesto, le crescenti

evidenze di una possibile migrazione del Sole, aprono un nuovo scenario di indagine rela-

tivo ai cambiamenti che tale migrazione potrebbe indurre sul moto cometario. Seguendo

un filone di ricerca già tracciato, abbiamo identificato nella struttura a spirale la princi-

pale perturbazione in grado di produrre un efficace effetto migratorio per il Sole. Am-

pliando il classico modello di Lin & Shu con una modellizzazione 3D per i bracci a

spirale considerati in regime transiente, siamo stati in grado di verificare la compati-

bilità tra tale perturbazione e un moto solare attraverso il disco, in accordo con i vincoli

di posizione, velocità e metallicità imposti dalla attuale condizione della nostra stella.

Malgrado i maggiori perturbatori della nube di Oort, i passaggi stellari ravvicinati e il

campo mareale della Galassia, siano entrambi potenzialmente sensibili alla variazione di

ambiente galattico che una migrazione solare comporta, abbiamo concentrato il nostro

studio unicamente sulla marea galattica. La perturbazione dovuta alla spirale, è stata

incorporata nello studio dei moti cometari, sia attraverso l’introduzione della migrazione

solare, che come effetto diretto sulle comete grazie alla presenza della componente non-

assisimmetrica nel campo mareale. I risultati mostrano un’influenza significativa della

spirale, in particolar modo sulla popolazione cometaria del guscio più esterno della nube,

per la quale si sono registrati tassi di immissione cometaria 3 volte maggiori rispetto

al caso senza tale perturbazione. La spirale sembra rinforzare l’azione della compo-

nente piana della marea, producendo infatti le maggiori variazioni sui perieli cometari

in corrispondenza di orbite con inclinazioni moderate rispetto al piano galattico. Si è

inoltre rilevato che il picco di immissione cometaria si trova in corrispondenza di dis-

tanze galattiche per il Sole comprese tra 6 e 7 kpc. Se tale evidenza fosse confermata

anche da campioni cometari più realistici, potrebbe comportare un vincolo ulteriore alla

definizione della zona di abitabilità galattica (GHZ). In particolare, regioni del disco
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non attualmente precluse alla formazione della vita, potrebbero risultare inadatte allo

sviluppo della stessa per un rischio di impatto cometario troppo elevato.
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Introduction

Comets are the celestial bodies that had deeply fascinated the human mind in every

time: their motion, apparently unpredictable with respect the fixed stars, produced an

halo of mystery around these objects, impeding their complete comprehension for a long

time. Man fears everything is not able to explain, for this reason comets became the

messanger of bad luck and divine fury. This vision lasted up to 17th-century, when the

astronomer Edmond Halley demonstrated the true nature of comets: bodies belonging

to our Solar System with periodic orbits. After Halley the next fundamental step in

the comet science was made by the American astronomer Fred Whipper that in 1950

formulated the theory that will become famous under the name of “dirty snowballs“:

according with his model a comet is not a diffused aggregate of particles but a solid

core of few kilometers radius, composed by ice mixed with solid particles. Finally the

Estonian astronomer Ernest Öpik and the Dutch astronomer Jan Oort postulated, in-

dependently, a theory concerning the origins of comets in our Solar System in 1932 and

1950 respectively: comets represent the remnants of the planetary formation and are

stored in a spherical cloud, in a very peripheral zone of our planetary system, now well-

known as Oort cloud.

It is interesting to notice how one of the most ancient phenomena detected by men

(recorded observations stretch back more than 2000 years, with a comet noted in Chi-

nese records in the years 240 B.C,) has takes thousands years to find a full explanation.

Presently comets are considered to be the key to understand the Solar System formation

and evolution. Indeed they are probably the most primitive objects of the Solar System,

because they formed and stored in distant regions where the cold temperature preserved

the pristine chemical conditions. The orbital structure of the main comet reservoir, the

Oort cloud, is the more ancient fossil about the dynamical processes that occurred at the

beginning of the Solar System formation. Building a good model for these dynamical

processes is a way to reconstruct the framework in which our planetary system formed

1



2 Introduction

and evolved.

The growing evidences about the possibility of a migration of our Sun through the disk,

from an inner position to the current one, may change the point of view about one of

the main perturbed of Oort cloud: the tidal field of the Galaxy. If the Sun may experi-

enced a different Galactic environment, that could also modify the evolution of the main

cometary reservoir of our planetary system. It results particularly relevant remembering

that comets are also strictly linked with the theme of the Life, playing a twofold role

into the processed of life formation and development. On one side cometary impacts

might brought the fundamental bricks of the living organisms, like water and prebiotic

organic compounds, but on the other side a heavy comets bombardment could compro-

mise the planetary environment, making it unable to host the life. In this prospective,

the mechanisms that injected the comets in the inner region of our planetary system,

might also establish some constrains for the Galactic habitability.

The thesis is divide in 5 main parts, each of them dedicated to the dissertation of a

fundamental aspect of the subject of the study:

• Chapter 1: is devoted to a brief overview about the cometary objects. We listed

the different cometary family, analyzing the difference in their origin and dynamical

behaviors. We also dedicated wide paragraphs to the formation and the evolution

of the Oort cloud, looking to the conditions that may make the formation of

this kind of structure possible in a more general Galactic environment, following

theoretical dissertation presented in the literature.

• Chapter 2: in this second chapter the axisymmetric model for the Galaxy po-

tential is provided. It represents the start point of our study and that will be

used to compare the results that will obtain with the addition of a spiral arms

perturbation.

• Chapter 3: is completely dedicated to the structure that we have identified as

a possible responsible of the solar migration: the spiral arms. This, partially still

unknown, non-axisymmetric structure belonging to the Milky Way, may produce

the motion of the Sun breaking the cylindrical symmetric of the Galactic poten-

tial. We will probe this possibility and provide a statistical study about the main

parameters that may influence the structure and the action of the spiral arms on

the Solar System.

• Chapter 4: in this chapter we introduce the concept of Galactic Habitable Zone

(GHZ), producing a small summary about the main approaches to this idea present

in the literature, and as different authors tried to define the edges and requirements

to encompass the Galactic area with the most suitable conditions for the arise
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of Life. We will compare our results about the solar migration, verifying the

agreement with the constrains fixed by the canonical model of Lineweaver et al.

(2004).

• Chapter 5: finally we devoted the last chapter to the investigation about the

Galactic tide. First we performed a calculation for the cometary orbits in the

usual axisymmetric potential with a Sun nearly fixed around its birth position,

model the tidal effects due only to bulge, disk and dark matter halo of the Galaxy.

In a second moment we made a comparison with cometary samples integrated in

a Galactic potential with the presence of a spiral structure, following a Sun with

a migration through the disk, probing the strong effects on the Oort cloud due to

the additional perturbation of the spiral arms.

The work that we are going to present tried to find a place in this very complex frame-

work, in which the Galactic dynamics is strongly tied to the planetary one, and a very

fine balance between different factors is required in order to preserve life as we know it.





1
Comets: a brief overview

When we speak about comets, we involve different categories of objects with a wide

range of dynamical features and different type of evolution. In this chapter we try to

summarize the differences among the cometary families. We start distinguishing different

classes of objects inside the huge whole called trans-Neptunian population and after we

will look to each particular cometary family. Few paragraphs are also devoted to the

description of the formation and evolution of the Oort cloud also in Galactic environment

different from the solar one.

1.1 Comets in general: the trans-Neptunian population

The trans-Neptunian population is a population of numerous small bodies that orbit the

Sun at greater average distance than Neptune. That population is usually subdivided

in two sub-populations: the scattered disk and the Kuiper Belt. The definition of these

sub-populations is not unique and various authors often using slightly different criteria.

Here we follow Morbidelli (2005), that proposed a partition based on the dynamics of

the objects and their relevance for the reconstruction of the primordial evolution of the

outer part of our planetary system, reminding that all bodies in the Solar System must

have been formed on orbits typical of an accretion disk (with very small eccentricities

and inclinations).

The scattered disk is the region of the orbital space that can be visited by bodies that

have encountered Neptune within a Hill radius1, at least once during the age of the So-

lar System, assuming that planetary orbits did not suffer significant modification. The

bodies do not provide us any relevant information about the primordial structure of the

Solar System. Indeed their current eccentric orbits might have been the transformation

of quasi-circular ones in Neptune’s zone by pure dynamical evolution, in the framework

1see Eq. (A.32) in § A

5



6 Chapter 1. Comets: a brief overview

Figure 1.1: The orbital distribution of multi-opposition trans-Neptunian bodies, as of
Aug. 26, 2005 (top panel: inclination i in deg vs semimajor axis a, bottom panel: ec-
centricity e vs semimajor axis a). Scattered-disk bodies are represented in red, extended
scattered-disk bodies in orange, classical Kuiper Belt bodies in blue and resonant bodies
in green. The dotted curves in the bottom left panel denote q = 30 AU and q = 35 AU;
those in the bottom right panel q = 30 AU and q = 38 AU. The vertical solid lines mark
the locations of the 3:4, 2:3 and 1:2 mean motion resonance with Neptune. The orbit

of Pluto is represented by a crossed circle Morbidelli (2005).

of the current architecture of the planetary system.

The Kuiper belt is the trans-Neptunian region that cannot be visited by bodies encoun-

tering Neptune. Therefore, the non-negligible eccentricities and/or inclinations of the

Kuiper belt bodies cannot be explained by the scattering action of the planet on its

current orbit, but they reveal that some excitation mechanism, which is no longer at

work, occurred in the past.

In order to divide the observed trans-Neptunian bodies into these two different classes,

we can use a dynamical criteria. For the region with semimajor axis2 values a < 50

AU we can refer to the result by Duncan et al. (1995) and Kuchner et al. (2002), who

numerically mapped the regions of the (a, e, i) space with 32 < a < 50 AU, that can lead

to a Neptune encountering orbit within 4 Gy. Because dynamics are reversible, these are

also the regions that can be visited by a body after having encountered the planet, in

other word the scattered disk. For the a > 50 AU region, it is possible to use the results

in Levison and Duncan (1997) and Duncan and Levison (1997), where the evolution

of the particles that encountered Neptune in Duncan et al. (1995) have been followed

2see §A.2.1 for the definition of all the orbital elements.
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for another 4 Gyr. The initial conditions did not cover all possible configurations, but

it is reasonably to assume that these integrations cumulatively show the regions of the

orbital space that can be potentially visited by bodies transported to a > 50 AU by

Neptune encounters: so we are again inside the scattered disk.

In Fig.(1.1) is possible to see the (a, e, i) distribution of the trans-Neptunian bodies

during at least three oppositions. The bodies of the scattered disk are represented as

red dots. We identified two sub-population for the Kuiper belt: the resonant popu-

lation (green dots) and the classical belt (blue dots). The former is made of objects

located at the major mean-motion resonances with Neptune (with perihelion distances

much smaller than the classic population due to the mechanism against close encounters

provided by mean-motion resonances), while the classical belt objects do not present

any particular resonant configuration. According to Trujillo et al. (2001), the scattered

disk and the Kuiper belt have about an equal populations, while the resonant objects,

altogether, make about 10% of the classical objects.

In Fig. (1.1) with magenta dots is highlighted the existence of bodies with a > 50 AU, on

highly eccentric orbits, which do not belong to the scattered disk according to the given

definition. Among them in orange are 2000CR105 (a = 230 AU, perihelion distance

q = 44.17 AU and inclination i = 22.7◦), Sedna (a = 495 AU, q = 76 AU) and 2003

UB313 (a = 67.7 AU, q = 37.7 AU but i = 44.2◦). Following Gladman et al. (2002), we

can call these particular objects extended scattered-disk objects for three reasons:

(i) They are very close to the scattered-disk boundary.

(ii) They presumably formed much closer to the Sun, because to achieve their size (300-

2000 km) they need an accretion timescale sufficiently short Stern (1996), implying

that they have been transported in semi-major axis space (e.g. scattered), to reach

their current locations.

(iii) The lack of objects with q > 41 AU and 50 < a < 200 AU should not be due to

observational biases, given that many classical belt objects with q > 41 AU and

a < 50 AU have been discovered. This suggests that the extended scattered-disk

objects are not the highest eccentricity members of an excited belt beyond 50 AU.

From these considerations it possible to argue that in the past the true scattered disk

extended well beyond its present boundary in perihelion distance Morbidelli (2005).

As perihelion distance and semi-major axis increase, the observational biases grows, then

the currently known extended scattered-disk objects may be the emerging representa-

tives of a conspicuous scattered-disk population.
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1.2 Comets in particular: different comet families

Comets are usually classified in categories according to their orbital period (see Mor-

bidelli (2005) and Fig. 1.2), the first classification for the comet orbits was made by

Lardner (1853) Dones et al. (2004) and his main categories survive still today. Comets

with orbital period P > 200 yr are called long period comets (LPCs); those with shorter

period are called short period comets (SPCs). The threshold of 200 yr has been chosen

has not a scientific motivation, but mostly depends on the facts that modern instrumen-

tal astronomy is about two centuries old, so that the long period comets that we see

now are unlikely to have been observed in the past.

Through a backward numerical integration it is possible to compute the orbital elements

Figure 1.2: The distribution of comets according to their orbital semi-major axis and
inclination (in deg). The separation between Halley-types and Jupiter family comets
has been made according to the value of their Tisserand parameter. The vertical dashed

line correspond to orbital periods P = 20 yr and P = 200 yr.

that the comets had when they last passed at aphelion, plotting the cometary orbital

distribution a clustering of long period comets with a ∼ 104 AU becomes evident(see

also §1.3.1). Since these comets must pass through the giant planets system for the first

time they are called new comets. Indeed a passage through the inner Solar System likely

will modify the semi-major axis that could not longer remains of order 104 AU, typically

decreases up to 103 AU or the orbit becomes hyperbolic. The reason is that the binding



Chapter 1. Comets: a brief overview 9

energy of a new comet is E = −GM�/2a ∼ 10−4, but typically, during a close perihelion

passage, the energy suffers a change of order of the mass of Jupiter relative to the Sun:

10−3. This change is due to the fact that the comet has a barycentric motion when it

is far away, an heliocentric motion when it is close, and the distance of the barycenter

from the Sun is of the order of the relative mass of Jupiter.

The short period comets are also subdivided in Halley-type (HTCs) and Jupiter family

(JFCs). In the past, the edge between the two classes was the orbital period respectively

longer or shorter than 20 yr. This threshold has been chosen because of the significant

change in the inclination distribution at the corresponding value of semi-major axis (see

Fig. 1.2). The continuous change of comets semi-major axis, due to the encounters with

the planets, forces modification of this criteria. In particular, all short period comets

had to have a larger semi-major axis in the past, given that they come from the trans-

planetary region. Adopting the partition based on orbital period, the possibility that

some objects will change their classification during their lifetime is not negligible.

For this reason Levison Levison (1996) decided to classify short period comets according

to their Tisserand parameter relative to Jupiter, that we can express as

TJ =
aJ
a

+ 2

√
a

aJ
(1− e2)cosi. (1.1)

The robustness of this classification is established by the quasi-conservation of the Tis-

serand parameter during the comet’s evolution. In Levison’s classification, Halley-type

and Jupiter family comets have TJ respectively smaller and larger than 2.

It could be useful, in order to understand the importance of the Tisserand’s parameter,

to derive its expression and discuss its properties.

The Tisserand parameter is an approximation of the Jacobi constant that is an invariant

of the dynamics of a small body in the restricted circular three-body problem expressed

as follow3

CJ = −(ẋ2 + ẏ2 + ż2) + 2

(
1

r
+
mp

∆

)
+ 2Hz, (1.2)

where GM⊕ = ap = 1 are assumed, and ap,mp are the semi-major axis and mass of the

perturbing planet, Hz is the z-component of the small body’s angular momentum and

∆ the distance between the small body and the planet.

The kinetic energy of the small body can be expressed as a function of its semi-major

axis and heliocentric distance:

1

2
(ẋ2 + ẏ2 + ż2) = − 1

2a
+

1

r
, (1.3)

3see §A.3. We can rewrite and rename Eq. (A.27.)
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while the z-component of the angular momentum can be written:

Hz =
√
a(1− e2)cosi. (1.4)

Substituting Eq. 1.3 and 1.4 into Eq. 1.2 and neglecting the term mp/∆ one obtains

CJ ∼ TJ ≡
1

2
+ 2
√
a(1− e2)cosi, (1.5)

where the right hand side coincides with Eq. 1.1, if a is expressed in units of the planet’s

semi-major axis. This derivation shows that the Tisserand parameter is constant as

long as the Jacobi constant is preserved, and mp/∆ is small, condition equivalent to

impose that the comet is not in a close encounter with the planet. The Tisserand

parameter change abruptly during a close encounter, but it returns to the value that

it had before the encounter, once the distance to the planet increases back to large

values. The conservation of the Jacobi constant, conversely, requires that the conditions

of the restricted three-body problem are fulfilled, it means that the comet’s motion

has to be dominated by one planet almost on a circular orbit and then the comet can

not be in a region where encounters with two planets is possible, otherwise the one-

planet approximation does not hold. Also, it requires that the comet is not in a secular

resonance with the planet, otherwise the effects of the planet’s small eccentricity are

enhanced. It is possible to demonstrate that, if a comet intersects the orbit of a planet,

the Tisserand parameter TJ is related to the unperturbed relative velocity U at which

it encounters the planet:

U =
√

3− TJ (1.6)

where U is expressed in units of the planet’s orbital velocity. It is easy to see that

the formula is not defined for TJ > 3, which implies that comets with such values

of Tisserand parameter cannot intersect the orbit of the planet. Note however that

comets non-intersecting the orbit of the planet can have TJ < 3. Only objects with

TJ < 2
√

2 ∼ 2.83 can be ejected on hyperbolic orbit in a single encounter with a planet.

1.2.1 Short period comets

In the following paragraphs we give a brief description about the two short period

comets families, in particular we will focus on the origin and dynamical properties of

each categories.

The long period comets will analyzed in details in the next chapter, since they are the

central object of the research of this thesis.
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1.2.1.1 Jupiter family comets

The JFCs have a Tisserand parameter with respect to Jupier that is distinct from the

others cometary families, it suggests that they are not the small semi-major axis end of

the distribution of HTCs and LPCs Morbidelli (2005). Some clues about the origin of

these objects are provided by the average low inclination of this particular comet family,

and the absence of retrograde comets in the JFC population that suggests as source

of this bodies a disk-like structure. The Kuiper Belt (see §1.1), a comet belt beyond

Neptune suggested in 1980 by Fernandez (1980a), was indicated as the source of JFCs.

Today we know that there are two distinct disk-like structures in the trans-Neptunian

region: the Kuiper belt and the scattered disk. The scattered disk is too populated to

be sustained in steady state by the objects leaking out of the Kuiper belt; it means that

the number of objects that leave the scattered disk is larger than the number of objects

entering the scattered disk from the Kuiper belt. Thus, JFC production is dominated

by the scattered disk over the Kuiper belt. A detailed study, with a large number of

numerical simulations, about the dynamical evolution of objects from the scattered disk

to the JFC region has been done by in Levison and Duncan (1997). The simulations

show that to evolve from the scattered disk to the JFC region, a comet has the need to

pass from a Neptune-dominated dynamics to a Jupiter-dominated dynamics (see Fig.

1.3).

Figure 1.3: The evolution of an object from the scattered disk up to its ultimate
ejection, projected over the plane representing perihelion vs. aphelion distance. Blue
lines denote the evolution before that the object becomes a visible JFC, red lines afters

(see Levison and Duncan (1997)).
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Since the transfer process involving different planets, in principle the Tisserand param-

eter is not preserved. However, the particular structure of the planetary system makes

possible that each piece of the transfer chain from Neptune to Jupiter is dominated by

one single planet (see Fig. 1.3), and the values of the Tisserand parameters relative to

the dominating planets remain almost the same. In others words the body never spends

much time in a region where it can encounter two planets and entails that Tisserand

parameter is therefore piece-wise conserved, and the final Tisserand parameter (with

respect to Jupiter) is very close to the initial one (with respect to Neptune). The ma-

jority of the observed population in the scattered disk has 2 < TN < 3. The bodies

coming from the scattered disk, at the end of the transfer chain, will have the Tisserand

parameter encompass in the same range (2 < TJ < 3), namely they will be JFCs.

Figure 1.4: The distribution of short period comets projected over the (TJ , a) and
(TJ , i) planes. In the top panels: the observed distribution. In the bottom panels: the
distribution of the objects coming from the scattered disk, when they are visible (q < 2.5

AU) for the first time (see Levison and Duncan (1997)).

Because the Tisserand parameter remains close to 3, the inclination cannot achieve a

large values (since the growth of i would decrease TJ , as it is possible to see in Eq. 1.1).

In this way the final inclination distribution is mostly confined within moderate inclina-

tions and comparable to the inclination distribution in the scattered disk (30 degrees).
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In Fig. 1.4 is shown the comparison between the (a, i, TJ) distribution of the observed

short period comets (top panels) with the one obtained in the numerical simulations for

the objects coming from the scattered disk, when their perihelion distance fist decreases

makes the comet visible (i. e. below 2.5 AU). We can underline that the objects with

TJ < 2 (HTCs) are not reproduced, while the observed JFCs population is in good

agreement with the simulations. We can conclude that the scattered disk origin for the

JFCs is well confirmed also by the numerical simulations.

1.2.1.2 Halley-type comets

The similarity between distribution of the Halley-type comets and the returning LPCs

(see 1.2, apart from the semi-major axis range that they cover, was usually interpreted

as an indication that the HTCs are the low semi-major axis end of the returning LPC

distribution Morbidelli (2005).

Some returning comets can have their semi-major axis decreased to less than 34.2 AU,

due the action of close encounters with Jupiter and Saturn, with orbital period that

becomes shorter than 200 yr, so that they are classified as short period comets. Their

Tisserand parameter relative to Jupiter is typically smaller than 2, it means that these

objects are predominantly HTCs, and not JFCs. Indeed new comets from the Oort

cloud, having q < 3, a ∼ ∞, e ∼ 1 must have TJ < 2.15, and the Tisserand parameter

remains roughly conserved during the evolution down to the SPC region, since that the

scattering action is mainly dominated by Jupiter. The transfer of comets from the Oort

spike (see §1.3.1) to the HTC region typically requires a large number of revolutions.

Thus, the HTCs should belong to the small fraction (∼ 4%) of new comets that do not

fade away rapidly.

Figure 1.5: Comparison between the cumulative orbital element distribution of the
observed HTCs(dotted line) and those produced in the integrations of Levison et al.

(2001). Only comets with q < 1.3 AU are considered.
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Actually this transfer process from the Oort cloud to the HTC region is not completely

understood. The work Levison et al. (2001) has revised that problem with the contri-

bution of numerical simulations. The results show a semi-major axis distribution of the

HTCs obtained in the simulations in good agreement with the observed distribution,

but with a deep difference in the inclination distributions (Fig. 1.5). In particular, the

median inclination distribution of the observed HTCs is 45 degrees with an high per-

centage of 80% for prograde orbits over the total; whereas the median inclination of the

HTCs obtained in the simulation is 120 degrees and only 25% of them have prograde

orbit. The simulated distribution is skewed towards retrograde objects because of the

latter have a longer dynamical lifetime (100,000 yr, as opposed to 60,000 yr for prograde

HTCs).

Different solutions to solve this mismatch have been proposed Levison et al. (2001, 2004),

but in conclusion, the problem about the origin of HTCs is currently unsolved and a

quantitative model of their distribution remains to be done.

1.3 The Oort cloud: the long period comets reservoir

1.3.1 Origin and evolution of Long period comets

In 1950 Oort in his historical paper Oort (1950), finding a spike in the distribution of

1/a of the LPCs (see Fig. 1.6) for a > 104 AU, suggested the existence of a reservoir

of objects in that distant region. The essentially isotropic n distribution of new comets

not only in cosi (from -1 to 1, i.e. including also retrograde orbits), but also in ω and

Ω (see §A.2.1), suggested that this reservoir must have a quasi-spherical symmetry: a

spherical cloud surrounding the Solar System. This cloud is now well-known as the Oort

cloud with a population estimated between 5× 1011 − 1012 objects Dones et al. (2004),

a total mass (strongly dependent from the model population) between 3.3M⊕ Heisler

(1990) and 38M⊕ Weissman (1996).

Oort argued that all long period comets come from this cloud. The LPCs with a <

104 AU are returning comets, which originally belonged to the new comet group when

they first entered into the inner Solar System, but subsequently under the gravitational

influence of external bodies effects their orbit are perturbed and acquired a more negative

binding energy (smaller semi-major axis). This view remains essentially valid even today.

The Oort cloud then is the natural reservoir for long period comets of our Solar System:

it is an outer shell structure roughly placed between 10000 AU and 100000 AU. The

characteristic size of the Oort cloud is set by the condition that the timescale for changes

in the cometary semi-major axis is comparable to the timescale for changes in perihelion
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Figure 1.6: The differential distribution of LPCs as a function of the inverse semi-
major axis. It is possible to see the big spike at 1/a < 10−4 AU due to the new comets

and usually called the Oort spike. Oort (1950).

distance due to passing stars. In others words the comet must be perturbed to a semi-

major axis large enough that the orbit is significantly perturbed by the passing stars,

but not so large that the orbit is too weakly bound to the Solar System and the comet

escapes (Dones et al. (2004), Tremaine (1993)), we will see this type of constraints in

details in §1.5.1.

1.3.2 Perturbers of the Oort cloud

When Oort, Oort (1950), introduced the concept of the Oort cloud, he was aware of

the need for an efficient mechanism to bring the perihelia of comets from an extremely

peripheral region of our Solar System into the observable range. If this does not happen

during just one orbit, likely the planetary perturbations eject it from the Solar System

or capture it into a much more tightly bound orbit. Oort identified the impulses im-

parted to comets by passing stars as the only mechanism that was able to prodeuce an

injection in the inner region of our planetary system. Later,Hills (1981) confirmed the

Oort’s hypothesis, pointing out that the Oort cloud could be perturbed by close stellar

encounters, that could produce an episodic very large increase in the flux of new comets:

the comet showers.

In the mid-1980’s, it was realized that the Galactic tidal force also plays an important
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role in the framework of the comet injection, and may in fact represent the predominant

effect Duncan et al. (1987). In particular, Heisler and Tremaine (1986) showed that the

”vertical“ disk tide is an efficient perturber, causing regular q oscillations in the range

of a of about 30000− 40000 AU.

The galactic tide perturbation is a smooth long term effects that causes cometary peri-

helion distance to cycle outward from the planetary region and back inward again on the

timescale as long as billion of years. Assuming that the Galaxy has a disk-like structure

and considering that the Sun is not at the center, the galactic tide has both ”disk“

and ”radial“ force components. In order to describe the galactic tidal perturbation, we

consider a coordinate system centered on the Sun, with x-axis pointing away from the

galactic center, y-axis in the direction of the galactic rotation and z-axis towards the

south galactic pole. The radial component of the galactic tide is well expressed with

forces along the x and y directions:

Fx = Ω2
0x; Fy = Ω2

0y, (1.7)

where Ω0 is the frequency of revolution of the Sun around the Galaxy, if the solar motion

is supposed along a circular orbit. The disk component of the tide is due to a force along

the z direction:

Fz = −4πGρ0z, (1.8)

where ρ0 is the mass density in the solar neighborhood (see Heisler and Tremaine (1986)

for the full galactic tide expressions). The disk component is stronger than the radial one

by a factor 8-10 at solar distance, so in the past typically only the disk components was

considered. Nowadays different works have pointed out the importance to include the

radial components of the tide Masi et al. (2009) and also the real solar motion Gardner

et al. (2011) (the radial motion and the motion across the galactic plane) and not just

its circular approximation, to model a more realistic galactic perturbation on the Oort

cloud.

In addition rare, but large perturbers are the giant molecular clouds (GMCs), that may

be important for the long-term stability of the Oort cloud (Dones et al. (2004)), but

their behavior is difficult to figure out.

Then we can summarize the perturbations acting on the Oort cloud in the following

way:

• The Stellar Perturbations: is a perturbation that occurs at random and then

may be treated as a stochastic process. A close or penetrating stellar passage

through Oort cloud may deflect a large number of comets that enter in the plan-

etary region forming a strong temporary enhancement of the flux of observable

comets called ”comet shower“.
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• The Galactic Tidal Force: is a quasi-integrable perturbation which acts con-

tinuously, changing the cometary orbital elements and in particular the perihelion

distance. The galactic tidal produces a constant cometary flux in the inner part

of Solar System.

• The Giant Molecular Clouds: a penetrating encounter of the Solar System

with a GMC is a rare event, but it may have considerable effects, in particular

a double action of erosion and mass increase that may change the dynamics of

comets. However, due to the rarity (occurring with a mean interval of perhaps

3−4×108 yr Dones et al. (2004)) and the poor knowledge of the circumstances of

such encounters, they are generally omitted from studies of Oort cloud dynamics.

The relative importance of these three different perturbations in the injection of new

comets in the inner part of our planetary system was debated for long time. As we have

seen in the first moment, the Galactic tidal perturbation was completed unknown, while

in a second time became the most important one obscurating the stellar contribution.

Lastly we can also add the GMCs’ action, but its contribution is not completely un-

derstood . In recent work Fouchard et al. (2011) argued that the final solution could

be that the injection process is dominated by a synergy between the major perturbers

(stellar passages and galactic tide). While it may be that this synergy is largely due to

the stars filling the ”tidally active zone”, from where the disk tide may bring the comets

into observable orbits. In the frame of this synergy five different injection scenarios

were identified in Fouchard et al. (2011). These processes are summarized in Fig. 1.7

in which they represent the generally decreasing trend of perihelion distance associated

with injections by arrows directed toward the center.

The yellow region highlights the observable orbits, and the white, surrounding one rep-

resents the Jupiter-Saturn barrier4. The red and blue arrows show the evolution (in-

creasing in time) due to the stellar impulses and the galactic tides, respectively. Dashed

blue arrows are used to indicated how the tidal perturbation would have continued to

act in the absence of the stellar impulse. The green arrows show the backward evolution

starting from the time of the stellar perturbation, if only the tides are allowed to act.

It was assumed, in order to simplify the model, that there is only one significant stellar

impulse during the last revolution of the comet. The majority of all injections are en-

compassed in the cases numbered 1-4, but it could be useful to give a brief description

of each case:

4New comets must have decreased their perihelion from q > 10 AU to q < 5 − 3 in less than an
orbital period, otherwise, they would have encountered Jupiter and Saturn during an earlier evolution,
and most likely they would have been ejected from the Solar System.
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Figure 1.7: Schematic representation of the variation in the angular momentum for
different injection scenarios. The distance to the center in this diagram represents the
angular momentum of the comets, i.e., the perihelion distance in the present case of

quasi-parabolic orbits Fouchard et al. (2011).

• Case 1 refers to tidal injections, where the role of stellar perturbation is in-

significant role. They may perturb the comets, thus affecting somewhat the post-

injection orbits, but their effects in not crucial for the injection that occurred, even

in their absence, because of the tides. It is possible to distinguish two subclasses

called a and b, depending on the outcome of a backward integration with only

tides. In case 1a, the comets cross the barrier into orbits with q > 15 AU, while

in case 1b they do not.

• Case 2 the injection would have failed in the absence of the stellar impulse.

However, the stellar perturbation is not able to inject the comet by itself, it is

only a helper to the tides.

• Case 3 the star performs the injection with a insignificant tidal action. Also in

this case is possible to distinguish two subclasses. The rare case 3b in which comets

that get injected by a stellar impulse, would appear to have been tidally injected

as judged from a purely tidal backward integration. Case 3a is the more common

one, where the injected comets bear no clues of tidal injection.

• Case 4 the perfect real-time synergy between the stars and tides where an injection

is achieved, but it is impossible to ascribe it to either stars or tides: two mechanisms

interact in a constructive way to ensure that the comets are injected.

• Case 5 it must also happen that an injection, which the tides alone would have

achieved, fails because of a stellar impulse.
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Figure 1.8: Number of observable comets per interval of 20 Myr versus time for the
three simulations. When the number exceeds 300, it is written above the respective
graph. The crosses give the number of comets in the Oort cloud as counted every 500

Myr Fouchard et al. (2011).

In Fouchard et al. (2011) was performed a simulation for the evolution of the Oort cloud

over 5 Gyr for three different Oort clouds with 106 fictitious comets under the effect of

the galactic tidal and of three different sample of 197906 stellar encounters occurring at

random time, in order to understand the cooperation between the stellar and the tidal

perturbation. The number of injected for each “Oort cloud” analogs comets is shown

in Fig. 1.8, in which the threshold for the cometary injection is q < 15 AU. The large

number of high peaks corresponding to the comet showers, while the background flux

is the result of the tidal perturbation. From the simulation the authors were able to

conclude that the number of injected comets peaks at semi-major axis a ∼ 33000 AU,

but the comets spread over a wide range around this value. The galactic tide is unable

to inject any comets at a < 23000 AU but would be able to inject almost all of them at

a > 50000 AU. The synergy between two perturbers are indentified to extend between

a ∼ 15000 AU and a ∼ 45000 AU and to be the main contributor at a ∼ 25000 AU.
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1.3.2.1 Cometary Fading and Destruction

Oort pointed out in his 1950 paper Oort (1950) that the number of returning comets in

the low continuous distribution decayed at larger values of E. That is, as comets random-

walked away from the Oort cloud spike (see Fig. 1.6), the height of the low continuous

distribution decline more rapidly than could be explained by a purely dynamical model

using planetary and stellar perturbations. This problem is commonly referred to as

cometary fading.

At the present moment it is still not clear what the exact mechanism for fading is. Three

physical explanations have been proposed to figure out the failure to observed as many

returning comets as are expected. These include:

1. random disruption or splitting due to, e.g., thermal stresses, rotational bursting,

impacts by other small bodies, or tidal disruption Boehnhardt (2004);

2. loss of all volatiles;

3. formation of a nonvolatile crust or mantle on the nucleus surface Whipple (1950).

In these three cases the comet is referred to as, respectively, disrupted, extinct or dor-

mant. In any case the “fading” mechanism must be a physical one: the missing comets

cannot be removed by currently known dynamical process alone Wiegert and Tremaine

(1999).

1.4 The formation of the Oort cloud

Comets have been driven into the Oort cloud through a scattering process induced by

proto-planets combined with a Galactic tidal torque effect at the beginning of the history

of the Solar System Tremaine (1993). Following Morbidelli (2005), in order to figure

out this formation process we can imagine an early time when the Oort cloud was still

empty and the giant planets’ neighborhoods were full of icy planetesimals. The planets

perturb with a scattering action the planetesimals, causing a dispersion throughout the

Solar System. Some planetesimals were moved onto eccentric orbits with large semi-

major axis, but with perihelion distance still in the planetary region. Those of them

which reached a semi-major axis of ∼ 10000 AU achieved a position susceptible to a

galactic tide strong enough to modify their orbit on a timescale of an orbital period. We

denote the inclination of the comet relative to the galactic plane by ĩ and the argument of

perihelion by ω̃5. During the scattering process, these planetesimals remained relatively

5 not to be confused with the inclination i and the argument of perihelion ω relative to the Solar
System plane; the two planes are inclined at 120 degrees relative to each other.
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close to the ecliptic plane, with an inclination relative to the galactic plane ĩ of about

∼ 120◦. Due to their large e and ĩ the effect of the tide dominated the evolution of e and

ĩ. The planetesimals with ω̃ between 90◦ and 180◦ (or, symmetrically, between 270◦ and

360◦) had their eccentricity decreased. In this way their perihelion achieved a distances

beyond the planets’ reach, so that they could not be scattered any more: they became

Oort cloud objects. The precession of Ω̃ and the random passage of stars randomized

the planetesimals’ distribution, giving to the Oort cloud the spherical symmetry that is

inferred from the observations.

This scenario, proposed for the first time in Kuiper (1951), was simulated in Fernandez

(1978), Fernandez (1980b) using a Monte Carlo method to obtain the effects of repeated,

uncorrelated encounters of the planetesimals with the giant planets and passing stars

(the role of the galactic tide was not yet taken into account since its importance in this

process was still unknown).

Figure 1.9: Evolution of a comet from the vicinity of Neptune into the Oort cloud,
from Dones et al. (2004). The top panel shows the evolution of the object’s semi-major
axis (red) and perihelion distance (blue). The bottom panel shows the inclinations rela-
tive to the galactic plane (green) and Solar System invariable plane (the plane orthogonal

to the total angular momentum of the planetary system; in magenta).

The extension to the galactic tide contribution during the formation of Oort cloud for-

mation using direct numerical simulations was done in Duncan et al. (1987). In order to

minimize the computing time, the simulations were started with comets already on low

inclination, high eccentricity orbits: initial a = 2000 AU and q uniformly distributed

between 5 and 35 AU. The integration scheme adopted was a generalization of that

proposed by Stiefel and Scheifele (1971) for the restricted three-body problem with an

additional conservative, perturbing potential Dybczyński et al. (2008). It was found that

the density profile between 3000 and 50000 AU is roughly proportional to r−3.5 (where
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r is the heliocentric distance) and about 20% of comets, which survive inside the cloud

after 4.5 Gyr, reside in the classical Oort cloud (semi-major axes, a > 20000 AU). The

directional distribution of the orbits appeared completely randomized after about 1 Gyr

of orbital evolution, apart from the most-inner part of the cloud.

A more recent simulation for the Oort cloud formation was performed by Dones et al.

(2004), using more modern numerical simulation techniques. The initial conditions are

more realistic, assuming planetesimals initially distributed in the 4-40 AU zone with

small eccentricities and inclination. The giant planets were assumed to be on their cur-

rent orbits, and the migration of planets was not taken into account. They also assumed

that the Solar System was situated in a galactic environment identical to that presently

observed, with the current frequency value of stellar passages around the Solar System

and present density of galactic matter in the solar neighborhood. The evolution of the

planetesimals was followed for 4 Gyr, under the gravitational influence of the 4 giant

planets, the two components of the Galactic tide, and passing stars. A stellar density of

0.041M�pc−3 was setted at the beginning, with stellar masses distributed in the range

0.11− 18.24M� and relative velocities between 1. 7 and 158 km/s (with a median value

of 46 km/s). A total number of ∼ 50000 stellar encounters within 1 pc from the Sun

occurred during the integration time of 4 Gyr in Dones et al. (2004). In order to un-

derstand the main processes that probably occurred during the formation of the Oort

cloud, we can analyze the results of this work.

In Fig. 1.9 is possible to see an example of the evolution of a comet from the neigh-

borhood of Neptune to the Oort cloud. With consecutive encounters, the object is first

scattered by Neptune to larger semi-major axis, with a perihelion distance slightly be-

yond 30 AU, as typical of scattered-disk bodies. After about 700 My, the random walk

in semi-major axis increases the body’s semi-major axis up to ∼ 10000 AU. At this point

the galactic tide action becomes significant, and the perihelion distance is rapidly lifted

above 45 AU. Neptune’s scattering action ceases to modify the orbit and the further

changes in semi-major axis are due to the effects of distant stellar encounters. When the

body starts to feel the galactic tide, its inclination relative to the galactic plane is 120

degrees. As the perihelion distance is lifted, the inclination decreases towards 90 degrees.

A stellar passage causes a sudden variation of ĩ down to 65◦ just before t = 1 Gy. This

allows the galactic tide to act on the body, bringing the perihelion distance beyond 1000

AU and the inclination ĩ up to 80◦ at t = 1.7 Gy, when ω̃ is 0 or 180 degrees. From this

time onwards the galactic tide reverses its action, decreasing q and ĩ. In principle the

action of the galactic tide is periodic, so that the object’s perihelion should be decreased

back to planetary distances. This reversibility is broken by the jumps in a, q, ĩ due to

the stellar encounters: the oscillation of q becomes more shallow and the return of the

object into the planetary region is impeded within the age of the Solar System. During

this evolution, a strong change occurs in the inclination relative to the invariable plane.
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Figure 1.10: Scatter plot of osculating barycentric pericenter distance vs. osculating
barycentric semi-major axis, at various times in the Oort cloud formation simulations

of Dones et al. (2004), see text..

It is turned to retrograde, and then back to prograde values, as the longitude of galactic

node Ω̃ precesses.

Not all particles follow this evolution previously described. It was found that if the

objects have a close interaction with Jupiter and Saturn, they are mostly ejected from

the Solar System. Particles that experienced a distant encounters with Saturn are trans-

ported more rapidly and further out in semi-major axis with respect to the evolution

shown in Fig. 1.9. The perturber action of the galactic tide increases with a; thus, for

the comets that are scattered to a ∼ 20000 AU or beyond, the oscillation period of q

and ĩ is shorter than for the particle in Fig. 1.9.

Figures 1.10 and 1.11 are snapshots of the (a, q) and (a, i) distributions of all planetes-

imals from the beginning to the end of the simulation, with planetesimals color-coded

according to their initial position: Jupiter region objects are magenta; Saturn region

objects are blue; Uranus region objects are green; Neptune region objects are red and

trans-Neptunian objects are black. In Fig. 1.10 is possible to see the formation of a

scattered disk after only 1 Myr, operated by Jupiter and Saturn, out of particles initially

in the Jupiter-Uranus region, while particles originally in Neptune’s region or beyond

have not been scattered out yet. This scattered disk differs from the current one because

most of its objects have q < 10 AU. At 10 Myr the action of the galactic tide starts

to be visible: particles with a > 30000 AU, mostly from Jupiter-Saturn region, have
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Figure 1.11: Scatter plot of osculating barycentric inclination relative to the Solar
System mid-plane vs. osculating barycentric semi-major axis, at various times in the

Oort cloud formation simulations of Dones et al. (2004), see text..

their perihelia lifted beyond the orbits of the planets and Neptune’s particles start to

populate the scattered disk. From 100 Myr to 1 Gyr, a continuous flux of particles enters

in the Oort cloud from the scattered disk. The population of the Oort cloud achieves

its maximum at 840 Myr, when 7.55% of the initial particles occupy the cloud. Objects

from the Uranus-Neptune region gradually replace those from Jupiter-Saturn zone. The

latter have been lost during stellar encounters, as they predominantly occupied the very

outer part of the Oort cloud (a > 30000 AU). The inner Oort cloud usually corresponds

to semimajor-axis values a < 20000 AU. The distribution in Fig. 1.10 at 4 Gy, should

correspond to the current structure of the Oort cloud. The distribution does not differ

very much from that we have at 1 Gyr, but the Oort cloud population has declined

slightly in number.

Another point of view to look at the Oort cloud formation processes is represented in

Fig. 1.11 by evolution of the particles inclinations. After 1 Myr the planets have scat-

tered the comets into moderately inclined orbits. After 10 Myr is clear the participation

of the galactic tide and the passing stars to the evolution of the particles with a > 30000

AU, that have been perturbed into a nearly isotropic distribution of inclinations. As

time continues, tides affect the inclinations of particles closer to the Sun, so that at 4

Gyr inclinations are clearly isotropic for a > 20000 AU.
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Figure 1.12: Fraction of the initial planetesimal population that is in the Oort cloud,
in its inner and outer parts and in the scattered disk, as a function of time Dones et al.

(2004).

The final Oort cloud’s population is almost equally divided in the inner and outer parts,

with radial distribution N(r)/dr ∝ 1/r3. About 5% to 9% of the planetesimals initially

in the Uranus-Neptune-transneptunian region remain in the Oort cloud at the end of the

simulation. Conversely, only 2% of the planetesimals originally in the Jupiter-Saturn

region are collected in the cometary cloud, due to the too strong scattering action of

these planets, that pushes the particles directly from a scattered-disk orbit to unbound

orbit, without passing through the Oort cloud. These result are slightly revisited by the

more recent work Dybczyński et al. (2008), in which the authors point out the possibility

that the Jupiter-Saturn region should have given a stronger contribution to populate the

Oort cloud, so it could be possible that not all (or almost all) the Oort cloud comets

formed in a cool region of the solar nebula, as it believes nowadays

Figure 1.12 shows the evolution of the mass in the Oort cloud as a function of time,

highlighting that formation and erosion are not separate processes in the Oort cloud.

Throughout the Solar System history, in parallel with new planetesimals entering the

Oort cloud from the scattered disk, other comets left the cloud, because the galactic

tide pushed their perihelion back into the planetary region or passing stars put them

on hyperbolic orbits. The mass in the cloud peaks at about 800 Myr, before this maxi-

mum the formation process dominated over the erosion process. Then, because the mass

of the scattered disk dropped, the erosion process became predominant, and the total

mass in the cloud decayed to ∼ 5.5% of the mass originally in the planetesimals’ disk.

The outer Oort cloud formed faster then the inner cloud, because of the contribution of

planetesimals from Jupiter-Saturn region, but then it eroded faster, because its objects

are less gravitationally bound to the Sun.

In disagreement with observations, in the simulation Dones et al. (2004) obtained a far
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larger simulated population in the scattered disk, with respect to the population of the

Oort cloud and an original mass in planetesimals, between 4 to 40 AU, that exceed

between 2 and 8 times the mass of solids in the minimum-mass solar nebula.

Also for the formation and evolution of our cometary cloud a full agreement between the

different performed simulations and the observed data has not been completely achieved.

Furthermore a new and important feature could play a crucial role in the shape and evo-

lution of the Oort cloud: the solar migration through the Galaxy. The motion of the

Sun inside the galactic disk should completely change the environment in which the Oort

cloud formed, with significant repercussions on this structure. A first tentative step to

include the solar migration has been done by Kaib et al. (2011) as we see in §3.1.

1.5 Exo Oort cloud

1.5.1 “Oort-type comet Cloud” structure around different stars

Comets represent the remnants of the formation of our planetary system, for this reason

a comet cloud similar to the Oort cloud is probably a common feature around extra solar

planetary systems spread out inside the Galaxy. The existence of other comet clouds

in different planetary systems is suggested by recent evidences of dusty excess on debris

disks in exoplanetary systems observed by Spitzer at 70 µm Greaves and Wyatt (2010).

From this point of view it could be interesting to apply our understanding of the forma-

tion of the Oort cloud to deduce the properties of Oort-type comet clouds around other

stars, that kind of analysis was made by Tremaine (1993).

As we have already seen, comets remaining in the disk after planet formation have two

possible dynamical fates: comets on near-circular orbits that are well separated from the

planets will survive on these orbits with little or no dynamical evolution, while comets on

orbits that approach too close to a planets are chaotic and could became planet-crossing

orbits.

In Tremaine (1993) an Oort-type cloud is defined to be a roughly spherical distribution

of bound comets with typical semi-major axis af , formed by ejection of comets from a

planetary system with characteristic size ap << af .

1.5.2 Constraints for the formation of Oort-type comet clouds

Following Tremaine (1993), we consider a system containing a central star of mass M∗,

a single planet of mass Mp on a circular orbit of radius ap, and a number of comets in

planet-crossing orbits.

Usually, ejection occurs by a gradual random walk or diffusion of the comet orbit towards
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escape energy. This process leads to highly eccentric orbits, since the semi-major axis of

the comet a becomes large while its perihelion q remains comparable to ap. The comet

receives a kick from the planet’ s gravity each time it passes through perihelion; the

orbit is chaotic because the kick depends on the phase of the planet in its orbit.

As usual it is possible to describe the cometary energy as x ≡ 1/a, and we can also

introduce the diffusion coefficient Dx = 〈(∆x)2〉1/2 be the root mean square change in

x per perihelion passage arising from planetary perturbations. Numerical integrations

of highly eccentric, low-inclination, planet crossing orbit yield Duncan et al. (1987)

Dx '
10

ap

Mp

M∗
. (1.9)

The characteristic diffusion time is then

tdiff ≡ P
x2

D2
x

, (1.10)

dove P = 2πa3/2/(GM∗)1/2 is the comet orbital period. Thus

tdiff (x) = 1.1× 109 yr

(
M∗
M�

)3/2(Mp

M⊕

)−2( x

1 AU−1

)1/2 ( ap
1 AU

)2
. (1.11)

The diffusion rate speeds up (tdiff decreases) as the comet energy increases (x decreases).

Initially the comets are on orbits similar to the planetary one, so we have x ≈ a−1
p . It

means that the orbit evolution occurs if and only if

tev ≡ tdiff (x = a−1
p ) . t∗, (1.12)

where t∗ is the age of the planetary system. Substituting in the previous expression the

definition for tdiff we obtain:
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From the previous expression we can find a necessary condition for the formation of an

Oort-type comet cloud is:
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)3/4
. (1.14)

In an isolated system, most comets on planet-crossing orbits would escape in a few times

tev. However in practice, once the orbit becomes large, the torque from the Galactic tide

changes the orbital angular momentum and thus the perihelion distance q. Once q is a

few times ap, planetary perturbations become ineffective, and the random walk of the

comet’s energy ceases: planet-induced diffusion in energy at fixed angular momentum is

replaced by Galaxy-induced evolution in angular momentum at fixed energy. For highly

eccentric orbits, we can express the specific angular momentum:

L = (2GM∗q)1/2 ≈ (2GM∗ap)1/2 (1.15)

and its torque per unit mass is:

dL

dt
= 5πkGρa2 (1.16)

where ρ is the local Galactic mass density (ρ = 0.15M� pc−3 in Tremaine (1993) that we

are following, values slightly different are possible in the literature) and k is a geometrical

factor that varies between 0 and 1 depending on the orientation of the orbit Heisler

and Tremaine (1986). The time required for the Galactic tide to change the angular

momentum by of order itself if then Duncan et al. (1987)

ttide = 1× 1015 yr
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Tidal torques freeze the comet out of the random walk in energy at the semi-major axis

af where ttide(q = ap) = tdiff , that is

af = 104 AU
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Many comets escape on their next orbit if x = 1/a . Dx. Thus freezing is an effective

barrier to the escape process only if

1

af
& Dx; (1.19)
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or in other words if there is a significant amount of energy at the end of that process.

This condition implies that many of the comets escape unless

Mp
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. 1.7
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The frozen comets form an extended disk in the plane of the planets, which is steadily

thickened by perturbations from passing stars and the Galactic tide. The timescale to

convert the disk into a roughly spherical cloud is simply ttide, evaluated at q = a = af .

The requirement that this timescale be less than the age t∗ yields the condition expressed

by Eq. 1.14. Thus comet clouds formed by this process should be approximately spher-

ical.

The cloud can not extend beyond the Roche surface of the star, set by the tidal field of

the Galaxy. The size of the Roche surface can be roughly estimated by comparing the

tidal force between two points separated by a vertical distance z, 4πGρz, to the star’s

gravitational force at that distance, GM∗/z2. If we denote the distance at which these

forces are equal as the Roche or tidal radius at, we have

at = 1.7× 105 AU
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Planets cannot survive outside the tidal radius, so

ap . at. (1.22)

A comet cloud can only form if the freezing semi-major axis is less than the tidal radius,

af . at, substituting in the corresponding expressions we obtain
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If the previous condition is not satisfied, the value of af is so high to unbound the comet

to the cloud.

In addition the formation process as described here only applies if the freezing semi-

major axis exceeds the planet’s semi-major axis af & ap, which implies

Mp
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An additional constraint is that the comets must not impact the planet before they

diffuse to the cloud. Comets initially on orbits with a ≈ ap make roughly N = (xp/Dx)2

orbits before reaching the cloud. If their typical inclination is ∆θ and the escape speed

from the planets is less that the orbital speed so that the gravitational focusing is



30 Chapter 1. Comets: a brief overview

Figure 1.13: A plot of planet mass against semi-major axis showing the region that
are able to create an Oort-type cloud efficiently for the Solar System (yellow region),
see text. The constraints plotted are: Eq. 1.14 (dotted line); Eq. 1.20 (short-dashed
line); Eq. 1.22 (vertical short dash-long dashed line); Eq. 1.23 (dot-short dashed line);
Eq. 1.24 (dot-long dashed line); 1.26 (solid line); Eq. 1.28 (long-dashed line) Tremaine

(1993).

negligible, the impact probability on each perihelion passage is

p =

(
Rp
ap

)2

∆θ
, (1.25)

where Rp id the planetary radius. In order that most of the comets do not strike the

planet we must have Np . 1 or
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where ρp is the planet density.

Comets are ejected from the cloud by gravitational perturbations from passing stars and

other objects. The half-life of a comet orbiting a star in a region with kinematics similar

to the solar neighborhood is Weinberg et al. (1987)

t1/2 = 1010 yr
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This result neglects the uncertain contribution from the molecular clouds, and is strictly

valid only a << at. Replacing a by the cloud radius af and requiring that t1/2 exceed



Chapter 1. Comets: a brief overview 31

the age of the system t∗ we obtain the last constraint

Mp

M⊕
. 6

(
M∗
M�

)5/4( t∗
109 y

)−3/4( ρ

0.15M� pc−3

)−1/4 ( ap
1 AU

)3/4
. (1.28)

Then we found the range
Mp

M⊕
for which the formation of an Oort-type cloud is possible.

That range is given by the intersection of all the constraints for the birth of the cloud

itself.

Figure 1.14: The same constraints plotted in Fig. 1.13, except the parameters are
chosen to match those of the pulsar: a 1.4M� star of age 0.8× 109 yr, located in solar

neighborhood Tremaine (1993).

1.5.3 Applications

In Fig. 1.13, obtained by Tremaine (1993), are showed the constraints discussed in

the previous paragraph for parameters appropriate for the Solar System: M∗ = 1M�,

t∗ = 4.5 × 109 yr and ρ = 0.15M�pc−3. The positions of the eight planets are also

plotted and the region of parameter space allowed by the constraints is highlight. We

can summarize the results as follow:

• Comets crossing the orbit of Jupiter and Saturn can not create an Oort-type cloud:

the planet are so massive that most comets are ejected. The consequence is that

Oort cloud comets must come from the Uranus-Neptune region.

• The typical semi-major axis of the comet cloud formed by Uranus or Neptune is

af ≈ 104 AU, close to the semi-major axes of new comets.
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• Venus and Earth could not efficiently form an Oort-type cloud, even if the massive

outer planets were not present: most comets on Venus- or Earth-crossing orbits

collide with these planets before reaching the cloud.

• At any planetary semi-major axis ap there is only a narrow range (less than a

factor 5) of planetary masses that are large enough to create a cometary cloud

within the Solar System age, yet small enough not to eject most comets.Within

this allowed range, the typical size of the comet cloud, af , is almost independent

of ap. Outside this range, cloud formation can still occur, but with low efficiency.

Figure 1.15: The same constraints plotted in Fig. 1.13 but with parameters chosen
to represent those of halo stars than the Solar System: a 0.5M� star with an age of
1010 yr, and a local density of 0.01M� pc−3. The constraint that comets are not ejected
by passing stars or other objects is not plotted, since the effects of such stars are weak

Tremaine (1993).

Exploring different possible planetary environment, Tremaine (1993) also analyzed the

constraints for a planetary system around a pulsar (in particular PSR1257+12) and a

typical halo star.

Fig. 1.14 plots the same previous constraints for PSR1257+12 M∗ = 1.4M�, t∗ = 8×108

yr, and a planetary semi-major axes and massed: ap1 = 0.36 AU, ap2 = 0.47 AU,

Mp1 = 3.4M⊕, Mp2 = 2.8M⊕. The conditions on the planets that can efficiently form

an Oort-type cloud are similar to those in the Solar System. However, the allowed range

of parameter space is even smaller, mainly because more massive planets are needed to

create a cloud within the shorter age of the system. Comets crossing the orbits of the

planets would mostly be ejected or collide with the planets. Those that did manage to

reach the cloud would be found at semi-major axes of a few times 104 AU.
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Finally Fig. 1.15 shows the case of the formation of Oort cloud around a typical halo star

(M∗ = 0.5, t∗ = 1010 yr, ρ = 0.01M� pc−3). The constraints are qualitatively similar to

those for the Solar System, but the planets that are most effective in producing a cloud

are about a factor three smaller at a given semi-major axis.

This theoretical analysis could be very useful in order to understand which are the phys-

ical processes that drive the formation of a cometary cloud like our Oort cloud. On the

other hand is also important to underline that the previous treatment is based on many

assumptions and does not consider the perturbations due to a multiple planetary system.





2
The Galactic Environment

The starting point for the study of the dynamical behavior of a comet cloud in the

Galactic potential is to build a realistic matter distribution for the most important

dynamical components of the Milky Way. In the next paragraphs the description and

the values for the main parameters for bulge, disk and dark matter halo will be provided

in details.

2.1 The model for the Milky Way

A standard method in many dynamical problems is to build the galactic potential as a

simple azimutally symmetric Galactic model, and decompose the total mass distribution

in its different symmetric components, i.e. the bulge, the disk and the dark matter

(DM) halo. This approach does not take into account of irregularities and asymmetries

in the mass distribution (like the spiral structure, the bulge triaxial form), that may be

have an non-neglected importance for the dynamics inside the Galaxy. Moreover the

axisymmetric model is the first step on the way to build a more sophisticated pattern

for our Galaxy as we will consider in the next chapter. The following sections are then

dedicate to a brief description of this basic axisymmetric model.

We define a the total Galactic potential Φ(R, z), in which R is the Galactocentric radius

and z the distance above the plane of the disk. The complete dynamical effect of the

Galaxy could be expressed by the sum of the potentials due to bulge (ΦBG), disk (ΦD)

and DM halo (ΦDH):

ΦG = ΦBG + ΦD + ΦDH (2.1)

35
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2.1.1 The Bulge

The bulge is one of the less extended components of our Galaxy: its maximum radius is

evaluated between 2.5 - 3.5 kpc. For our aims its triaxial structure may be neglected con-

sidering as a good approximation the spherical model of the Plummer sphere, see Binney

and Tremaine (2008), that has the following analytical expression for its gravitational

potential:

ΦBG(r) = − GMBG√
r2 + r2

c

(2.2)

where MBG = 1.6×1010 M� is the bulge total mass and rc = 0.42 kpc is the core radius

Flynn et al. (1996).

2.1.2 The Disk

The disk presents a mixed composition in age, metallicity, velocity and velocity dis-

persion of its stars that complicates the disk modeling based on radial and vertical

mass-luminosity distributions. A wide range of options is available in the literature, as

shown by Binney and Tremaine (2008), to model a three-dimensional axisymmetric disk

distinguishing the two main contributions due to the thin and the thick disk as discov-

ered by Burstein (1979). Because the existence of the thich disk as a distinct component

appears to be uncertain Bovy et al. (2012) and owing to its contribution to the total

surface density is only of about 5% at solar distance Dehnen and Binney (1998), as first

approximation we limit ourselves only to consider the thin disk.

Our starting point is the infinitely thin Freeman model Freeman (1970), having an ex-

ponential radial surface mass density distribution:

Σ(R) = Σ0e
−R/Rd , (2.3)

where Σ0 ' 359 M� pc−2 is the central disk surface mass density and Rd = 4.1 kpc is

the disk scale length in agreement with the observations provided by Lewis and Freeman

(1989) and with the surface density at the solar distance Σ0(R�) ' 50 M� pc−2 (see

Kuijken and Gilmore, 1991).

The corresponding potential for the mass distribution (2.3) is:

ΦD(R) = −πGΣ0R [I0(R/2Rd)K1(R/2Rd)− I1(R/2Rd)K0(R/2Rd)] , (2.4)

where In andKn are modified Bessel functions of order n. Even when using Hankel trans-

form and the cylindrical Bessel function of order zero, J0, obtaining a two-dimensional
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gravitational potential ΦD(R, z), this kind of modeling is affected by two difficulties:

the typical vertical extension of our comet orbits turns to be less than the scale height

observed for the Galaxy disk which is about 200 pc, with the consequence that only a

fraction of the whole disk mass is involved in the tide; moreover this parametrization of

the disk potential is slow to integrate. We may overcome both the problems combining

three Miyamoto-Nagai disks Miyamoto and Nagai (1975) of differing scale lengths and

masses:

ΦMN (R, z) = −
3∑

n=1

GMn√
R2 +

[
an +

√
b2 + z2

]2
. (2.5)

The parameter b is related to the disk scale height, an to the disk scale lengths and

Mn are the masses of the three disk combined components. We list the values of the

constants an, b, Mn, according with Flynn et al. (1996), in Tab. 2.1. It is to be noticed

that the potential trend given by (2.4) results in fair agreement with that provided by

Eq. (2.5) at the mid-plane (z = 0).

Component Parameter Value

Bulge MBG 1.6× 1010M�
rc 0.42 kpc

Disk a1 5.81 kpc
a2 17.43 kpc
a3 34.86 kpc
b 0.3 kpc

M1 6.6× 1010M�
M2 −2.9× 1010M�
M3 3.3× 109M�

Dark Halo (NFW) rH 12.36 kpc
ρ1/2 0.02166M� pc−3

VTot(R�) 233.805 km s−1

Rvir/rH 17

Dark Halo (MPI) rH 12.36 kpc
ρ0 0.01566M� pc−3

VTot(R�) 196.003 km s−1

Rvir/rH 20

Table 2.1: Parameter values for each galactic components.
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2.1.3 The DM Halo

The Galactic mass distribution of the DM halo is still uncertain and there are several

models in the literature. The general representation of the DM spherical distribution is

given by the Zhao’s radial density profiles Zhao (1996):

ρ(r) =
ρS(

r
rH

)γ [
1 +

(
r
rH

)α]β−γα (2.6)

where α, β and γ are three slope parameters, while rH and ρS are two scale parameters.

This pattern models the density as a double power law with a limit slope −γ toward the

center of the halo (r → 0) and −β to the infinity ( r →∞).

Inside this general class of mass profiles we consider two alternative formulations: the

first coming from the numerical simulations and the second one from the observations.

We refer firstly to the Navarro-Frank-White (NFW) Navarro et al. (1997) density profile.

It was obtained by N-body simulations in an hierarchical clustering cosmological scenario

(CDM) and it could be reproduced by (2.6) with (α, β, γ) = (1, 3, 1), and scale density1:

ρS = ρ(1
2rH) = ρcrit · δc, where ρcrit and δc are respectively the critical density and

the overdensity on the mass scale of DM halo scaled from formation epoch to z = 0.

Introducing the virial radius Rvir, the NFW gravitational potential turns to be:

ΦNFW
DH (r) = −4πGρSr

2
H

(
ln(1 + r/rH)

r/rH
− 1

1 +Rvir/rH

)
, (2.7)

The second profile is a modified pseudo-isotherm (MPI) Spano et al. (2008) that has

been introduced to obtain the best fits of rotation curves in spiral galaxies, taking into

(2.6), (α, β, γ) = (2, 3, 0)).

The corresponding gravitational potential is given by:

ΦMPI
DH (r) = −4πGρ0r

2
H


ln

(
r/rH +

√
1 +

(
r
rH

)2
)

r/rH
− 1√

1 +
(
Rvir
rH

)2

 . (2.8)

with ρ0 the central dark halo density. The two profiles are characterized by different

limits for the inner slopes: the NFW model has a slope limit equal to -1, while the

MPI presents an inner slope limit equal to 0. The choice between the two previous

models for the DM halo opens the wide cusp/core chapter. Whithout entering the

complex, still open problem, we may summarize it as a deep mismatch between the DM

1Introducing the normalization of the general profile (2.6) at rH , the scale density becomes: ρS =
ρ(rH) · 2χ;χ = (β − γ)/α.
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model provided by the collisionless simulations and by the observational data. Strictly

speaking, if the radial density profile for DM halo toward the center follows an universal

trend ρ(r) ∝ r−γ , we have a cuspy profile for γ ≥ 1 (e.g., NFW profile) and a cored

profile for γ < 1 (e.g., MPI profile). At this time a definitive answer does not exist, even

if there are some lines of evidence that suggest 0.4 could be the best observed value, see

Binney and Evans (2001), Merrifield (2004).

Figure 2.1: Contributions to the circular velocity plotted vs. r from the different
Galaxy components. DM halo has a MPI profile (see text).

In order to choose suitable values for the parameters that appear within the two pre-

sented DM halo models, we follow the pattern proposed by Klypin et al. (2002), in

particular the model A1 (with no exchange of angular momentum), bounded to the cos-

mological constraint of the collapse (or formation) redshift, zF . In a CDM cosmology,

with H0 = 75 kms−1Mpc−1 and Ω0 = 1, the virial mass of the DM halo has been set

at: Mvir = 1012M�. Using the subroutine of Navarro et al. (1997), in which zF is pre-

cisely defined as the redshift z at which half of final mass is in progenitors more massive

than 1% of the final mass itself, we obtain: zF = 2.68, the corresponding value for the

overdensity δc = 1.179 · 105 (in units of critical density at z= 0) and then the value ρ1/2

in the NFW density profile and that of ρo = ρ(0) for the MPI profile, assuming both

profiles reach the same density value at their corresponding scale radius rH .

To conclude our Galaxy modeling we have to verify if the trend for the total circular

velocity obtained turns to be in agreement with that observed next to the Sun. The val-

ues provided for the total circular velocity next to the solar system by the two different
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halos considered are reported in Tab.2.1. The values are respectively below and above

the mean observed value of Vtot(R�) = 220 km s−1, however they are both inside the

measured error bar for these distances, see Klypin et al. (2002).

From all the previous considerations, it follows that both the NFW and MPI profiles

have in principle to be considered as able to describe a DM halo, but according to the

conclusions on cusp/core problem, we think the MPI profile, with its better agreement

with the observations, is more suitable to contribute in the right way to the total Galaxy

potential. The contributions to the total circular velocity trend vs. r for the different

Galaxy components are plotted in Fig.2.1.

2.1.4 The Galactic mass distributions

Finally we can compose the total trend of the Galactic mass distribution as function of

the distance r from the Galactic center. In Fig. 2.2, where the single mass distribu-

tion relative to bulge, disk and DM halo (MPI) are also shown. The Galactic mass is

dominated by the bulge contribution until about 4 kpc from the center, and beyond this

threshold, approaching the solar neighborhood, the contribution of the disk becomes

the strongest one. The DM halo, though not negligible, has always a lower weight for

distances smaller than the solar ones.

Figure 2.2: Contributions to the mass distribution plotted vs.r from the different
Galaxy components. DM halo has a MPI profile (see text).
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2.2 The solar motion in an axisymmetric potential

As seen, the galactic potential formed by the contribution of bulge, disk and dark halo

is essentially axisymmetric, in other words in a cylindrical coordinate system (R, θ, z),

we can express the total potential as:

ΦG = ΦB(R, z) + ΦD(R, z) + ΦDH(R, z) = Φ(R, z). (2.9)

Solving Newton’s equation of motion in cylindrical coordinates for this axisymmetric

potential yields: 

R̈−Rθ̇2 = −∂Φ

∂R

d

dt
(R2θ̇) = 0

z̈ = −∂Φ

∂z

(2.10)

The second of the previous ones expresses the conservation of the angular momentum

component about the z-axis: Lz = R2θ̇, while the other two equations describe the

coupled oscillation in R and z-direction. For the previous galactic potential we also find

another integral of motion: the energy

E =
1

2
[Ṙ2 + (Rθ̇)2 + ż2] + Φ(R, z). (2.11)

If we integrate the equations of motion Eq. 2.10, taking into account the solar peculiar

velocity components, U� = 11.1 ± 0.74 km/s, V� = 12.24 ± 0.47 km/s,W� = 7.25 ±
0.37 km/s, Schönrich et al. (2010), the results is a rosette orbits with an oscillation in

the radial direction of about 1 kpc around a galactocentric distance of 8 kpc and a

smaller oscillation (±100 pc) above and below the galactic plane, as we will explicitly

see in the next chapter.





3
The Spiral Arms Effects on the Solar Path

The spiral arm structure is the main candidate as the perturbation able to induced an

efficient stellar migration. We will explored the effects of this non-axisymmetric com-

ponent of the Galaxy on the solar path, starting from the spiral parameters associated

with the solar environment.

3.1 The solar migration: a new framework of research

The small value for the solar peculiar velocity suggested for a long time that the Sun has

not experienced many orbital perturbations in the past. The Sun, as all the galactic disk

stars, has been assumed to remain near its birth radii. Indeed when the solar path is

integrated in an analytical axisymmetric potential (as the potential modeled by the sum

of bulge, dark halo and disk) it is found a nearly fixed galactocentric distance (between

8-9 kpc) and a small vertical oscillation (within∼ 100 pc) Matese et al. (2005).

Despite that, the assumption of a time-invariant axisymmetric potential may not be a

good approximation for our Milky Way, since the structure of the galactic disk contains

irregular non-axisymmetric components such the bar and the spiral arms. The latter

in particular may play a crucial role for the understanding of the solar dynamics inside

the Galaxy. It was found by Sellwood and Binney (2002) and more recently by Roškar

et al. (2008a), that stars orbiting near the corotation resonance of the spiral arms could

experience significant changes in their angular momentum. As a result, many stars

had their mean orbital distances significantly changed, yet their peculiar velocities were

not substantially increased in many cases and in particular stars on nearly circular

orbits (with low peculiar velocities as our Sun) were particularly sensitive to this type of

dynamical evolution since their angular orbital velocities remain nearly fixed, allowing

them to undergo resonant interaction with the spiral arms for longer period. Then the

solar dynamical history may be more complex than that suggested by its low peculiar

43
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velocity, and the Sun’s evolution could has been driven and modified by the presence of

non-axisymmetric components in the Galaxy’s potential.

The idea of a stellar migration in the disk actually is present from many years, already

in Yuan (1969a) pointed out that the perturbation due to the spiral structure may entail

a variation for the birth radii for the stars in galactic disk. Despite that, only recent

numerical simulations focused the migration on the Sun and our planetary system. Kaib

et al. (2011) in particular have demonstrated that the Sun may have radially migrated

through the galactic disk by up to 5-6 kpc. The hypothesis of a solar migration could

also explain why the solar metallicity is about 0.14 dex Nordström et al. (2004), Wielen

et al. (1996), larger than the mean value of the nearby solar-age stars. Indeed if the Sun

formed closer to the galactic center it may have been in a more metal rich environment.

In order to understand if this type of solar migration could be possible, Kaib et al. (2011)

perform a N-body simulation for an integration time of 4 Gyr, in which the tidal field is

built directly from the accelerations calculated by galactic simulation code and reloaded

for each time step. In their sample they identified some solar analogs, i.e. particles

chosen based on the stellar age, position, and kinematics almost compatible with the

solar current one at the end of the simulation. They found 31 stars in a simulated galaxy

of 2.5 ×106 star particles, that met all of the fixed criteria and display a diverse variety

of orbital histories. The dynamical evolution of some solar analogs points out that a

closer solar position to the galactic center in the beginning of the Sun’s history it is

compatible with the current one. Indeed a large fraction of the solar analogs in their

simulation spent at least a few hundred Myr orbiting within 5 kpc or less of the galactic

center (See Fig.3.1). They then draw a new framework for the solar dynamical evolution

in which the Sun may have been born a smaller galactocentric distances and it could

have encountered much higher disk densities, entailing that also the stellar encounters

and galactic tides that imprinted the structure of the Oort cloud would likely have been

stronger in the past.

The non-axisymmetric components of the galactic potential, in particular the spiral

arms, may be crucial in order to obtain a full description of the solar path inside the

disk and of the Oort cloud formation and evolution, then they could not be neglected.

3.1.1 Metallicity gradient

To build up the metallicity gradient of our Galaxy’s thin disk is not an easy task. Also

the simplest model has indeed to be consistent with:

i) the story of a disk galaxy formation inside the cosmological environment,

ii) the disk dynamical evolution,
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Figure 3.1: Galactocentric distance vs time for two solar analogs in the simulation
performed by Kaib et al. (2011). Both simulations show a change for the solar position
during the history of the Solar System: one oscillating between 6 and 10 kpc (A),
while the other exhibits a stronger variation from a very close position (3 kpc) at the

beginning of the Sun’s history up to the current solar position (B)

iii) the local star formation prescription

iv) the standard chemical evolution once assumed a given initial mass function and a

model for spectral evolution of stellar populations

Moreover, from one side the description of so many physical processes composing the

whole picture needs the introduction of many parameters, from the other side the ob-

servational comparison to match them has to deal with a very large spread. So if there

are many good models considering the cosmological, dynamical and chemical evolution

Chiappini et al. (2001), Fenner and Gibson (2003), Lineweaver et al. (2004), Naab and

Ostriker (2006), Pagel (1997), Piovan et al. (2011), Portinari and Chiosi (1999), Prantzos

and Silk (1998) which are able to reproduce in a consistent way the mean metallicity

distribution function (MDF) and the age-metallicity relationship (AMR), however evi-

dence suggests that a large amount of scatter is present in the AMR of field stars and

open clusters probably due to the superposition of stellar migration across significant

galactocentric distances, in turn a result of scattering with transient spiral arms Roškar

et al. (2008a,b).
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3.1.1.1 Starting Sun’s position

If also the Sun has undergone migration, how may one to re-build its path on the basis

of metallicity distribution on the disk? The overall observational uncertainties, which

enormously increase considering the different chemical species (see, e.g., Table 1, in

Portinari and Chiosi (1999), Fig. 3.2), give the impression that reference to one exper-

imental mean metallicity gradient could be meaningless. In spite of that the different

models considered lead to an intrinsic self-consistency, i.e., they are able to point out a

mean value for the metallicity gradient on the disk without so large a spread among the

models. As a good reference we take the paper of Naab and Ostriker (2006) by compar-

ing their results with the other relevant contributions, in particular that of Lineweaver

et al. (2004).

Naab and Ostriker (2006) obtain, at the present time, a mean metallicity gradient as:

dlogZ

dR
= −0.05/dex · kpc−1

not too much different from:

dlogZ

dR
= −0.06/dex · kpc−1,

given by Lineweaver et al. (2004)(interpolation of their Fig. 1). In both papers the

gradient becomes significantly steeper in the past:
dlogZ

dR
= −0.07/dex · kpc−1 Naab and Ostriker (2006)

and:
dlogZ

dR
= −0.08/dex · kpc−1 Lineweaver et al. (2004)

at epoch of solar system formation.

Figure 3.2: Observed abundance gradients of various elements by Portinari and Chiosi
(1999). ∆r is the galactocentric radial range covered by each respective study (in kpc).

Gradients are expressed in dex/kpc.
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If we assume that Sun has a mean over-metallicity of about 0.1dex (about 20%) in

respect to its nearby stars and the local ISM at its present position Lineweaver et al.

(2004), Naab and Ostriker (2006), Pagel (1997), possible values for galactic distance Ri

corresponding to the metallicity at its formation, may be:

Ri = 5.8− 6.3 kpc

considering the two limits of the present gradient given by Naab and Ostriker (2006)

and Lineweaver et al. (2004) respectively.

Taking into account the values of the past gradients in both cases, we would obtain,

respectively:

Ri = 6.6− 6.7 kpc

Summarizing the results, we may take the two limits for the mean metallicity gradient

and Sun’s starting position, respectively as:

dlogZ

dR
= (−0.05)− (−0.08)/dex · kpc−1 (3.1)

Ri = 5.8− 6.7 kpc (3.2)

It should be noted that also the observed mean logarithmic gradient of oxygen over H

for Galactic HII regions, is believed by Pagel (1997) to be: −0.07/dex ·kpc−1, which falls

in the range of (3.1). The same value (which corresponds to about the mean between

the limit values of (3.1)) with error of 0.01/dex · kpc−1, is also given by Mo et al. (2010)

to characterize the Milky Way.

3.2 Spiral arms theory

The main features of the Milky Way’s spiral arms are known over the last 40 years,

however theory and observation still do not agree. Indeed questions about their nature

(transient or quasi-stationary), about their structure (e.g. the number of arms) and

dynamics such as their amplitude and pattern speed are still open.

The present knowledge about the structure and the behavior of spiral arms relies both

on:

• the gas (observed longitude-velocity diagram)

Binney et al. (1991), Bissantz et al. (2003)

• maser in high mass stars forming region

Reid et al. (2009)

• the stars

e.g. Binney et al. (1997), Georgelin and Georgelin (1976b), Lépine et al. (2011)
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In a recent study by Vallée (2008), all the spiral arms constraints are taken into account

in order to obtain an average cartographic model for the location in space and velocity

for the spiral arms (see Fig. 3.3).

Figure 3.3: Spiral arms 2D cartographic model performed by Vallée (2008). The
actual arm tangents obtained from observations of gas, dust and stars are underlined

by the dashed line.

3.2.1 The long-live density waves model

In addition to many constraints for the structure of the spiral arms, often not in agree-

ment among them, also the real nature of this non-axisymmetric component of our

Galaxy is still an intricate riddle. The classical description for the spiral arms as long-

live density waves was proposed by Lin and Shu (1964). From a theoretical point of

view the correspondence with this theory seems strictly linked with the presence and

the features of a bar in the disk (see 3.2.1.2). Despite that also the relation between the

spiral arms life and the presence of a bar is a problem not completely clarified. Indeed it

seems that the radial velocity dispersion profile support the Lin & Shu theory in a barless

disks but in the same time it may be strongly unstable. On the other side the presence

of center bar, without nonlinear mode coupling with the spiral arms structure, could

support a long-lived spiral pattern, but also a transient spiral arms structure was found

even in presence of a bar. Another result, favourable to the Lin & Shu model, comes

from the recent simulation performed by D’Onghia et al. (2013). They obtained locally

long-lived self-perpetuating spiral arms (as response of a modest overdensity corotating

with the galactic disk) which could be locally consistent with density waves, but fluctu-

ating in amplitude with time. In addition also a flyby galaxy encounter could develop a

long-lived spiral arms sustained by the coherent oscillation Struck et al. (2011). Finally
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it is useful to underline that also the coexistence of both transient and long-lived spiral

arms is equally possible Siebert et al. (2012).

Nothing changes on the observational side, also in this case evidence seems to exist for

both transient and long-lived spiral arms. Indeed if some galaxies, as M81, show features

in agreement with the classical density wave theory Kendall et al. (2008), Lowe et al.

(1994), other objects, e.g. M51, presents mass fluxes inconsistent with a steady flow

Shetty et al. (2007)

In despite of the difficulties to circumscribe the behavior for the spiral arms perturba-

tion in an unique framework in agreement both with the observative and theoretical

evidences, the description provided by Lin and Shu (1964) remains a solid way to ap-

proach the perturbation due to the main non-axisymmetric component of our Galaxy.

The long-lived density wave theory is a self-consistent formulation that predicts the for-

mation of a spiral arms structure as consequence of the disk instability. It will allow

us to mimic the spiral action within the Galaxy potential. The following paragraphs

provide more detail regarding the theory.

3.2.1.1 Instabilities on the disk

The disk instability has a crucial role during the genesis of the spiral arms in the Lin&

Shu theory. We have to distinguish between local instability and global instability. The

former controls whether or not perturbations much smaller than the size of the disk can

grow. Since star formation requires the fragmentation and collapse of gas clouds, local

instability is likely to be a necessary condition for star formation in the galaxy disks.

The global instability can cause a significant transformation of the overall disk structure.

Its analysis is related to perturbations with wavelengths that are comparable to the disk

size. Even if there does not exist an unique explanation for the spiral arms formation,

Lin and Shu (1964) hypothesis seems to be related with this global kind of instability.

The disk instability analysis is based on first-order perturbation theory. The same strat-

egy is adopted for the gravitational Jeans’ instability, as the mechanism able to increase

the initial density perturbations in Cosmology. A set of fundamental hydrodynamical

equations, like continuity, Euler and Poisson equations are introduced the solution of

which are the unperturbed values of density, pressure and eulerian velocity Mo et al.

(2010). Then each quantity is written as a sum of its static value plus a small pertur-

bation. A new set of linear equations is obtained keeping only terms that are first order

in the small perturbations. Expanding the perturbations in terms of eigenmodes (e.g.

Fourier expansion) a dispersion relation is achieved in order to investigate the unstable

modes.

Following Mo et al. (2010), we consider a thin, self-gravitating gaseous disk which is
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axisymmetric so that it is convenient to work with cylindrical coordinates (R,φ, z),

(vR, vφ, vz) being the respective velocities and z = 0 corresponds to the disk plane.

Neglecting the thickness of the disk, the continuity equation reads as:

∂Σ

∂t
+

1

R

∂

∂R
(ΣRvR) +

1

R

∂

∂φ
(Σvφ) = 0 (3.3)

where Σ is the disk surface density. The Euler equations in these coordinates becomes:

∂vR
∂t

+ vR
∂vR
∂R

+
vφ
R

∂vR
∂φ
−
v2
φ

R
= − ∂

∂R
(Φ + h) (3.4)

∂vφ
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∂vφ
∂R

+
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∂vφ
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+
vφvR
R

= − 1

R

∂

∂φ
(Φ + h) (3.5)

where Φ is the gravitational potential at z = 0 and Σ is related to it by Poisson equation:

∆Φ = 4πGΣδ(z) (3.6)

the δ(z) being the Dirac delta function. The quantity h represents the pressure force.1

• Local Instability

Setting:

1) Σ = Σ0 + Σ1

2) vR = vR0 + vR1

3) vφ = vφ0 + vφ1

4) Φ = Φ0 + Φ1

5) h = h0 + h1

where the subscripts ”0” and ”1” refer to unperturbed and perturbed quantities,

respectively, a new set of linear equations is obtained (see Mo et al. (2010)).

In general, we may expand a perturbation in the form:

Q1 = ΣQa(R)e−i(ωt−mφ) (3.7)

where Q1 means the perturbation quantity and the summation is over all modes

a with ω its angular frequency and m its azimuthal wavenumber. In the case of

a perturbation on a scale much smaller than the size of the disk, the analysis is

simplified. In particular under the tight-winding approximation (see next sub-

sect.5.3), in which the variations with angle φ are negligible with respect to the

1Since we do not care about the vertical structure of the disk, we may assume the disk to be uniform
in the z direction. It follows that: dh = c2sdlnΣ, cs being the sound velocity
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radial ones, the following dispersion relation for axisymmetric perturbations (i.e.

m=0) may be achieved:

ω2 = κ2 − 2πGΣo |k|+ k2c2
s (3.8)

taking into account that the mechanism which resists the growth of perturbations

is due to the damping of a sound wave with velocity cs, κ being the epicyclic

frequency of the unperturbed disk at the radius considered. It should be noted that

Eq. (3.8) corresponds, without the term κ2, to the Jeans’ criterion for gravitational

instability. The κ term is owing to the Coriolis force which acts with pressure

against the increasing perturbations. Modes with ω2 < 0 grow exponentially with

time and so are unstable, while those with ω2 > 0 are stable.

So a gaseous disk becomes locally stable against all local perturbations if the

following condition for the quantity Q, holds:

Q ≡ csκ

πGΣo
> 1 (3.9)

In the case of a stellar disk in which the ”effective pressure” is due to the random

motions of the stars, the stability criterion becomes:

Q ≡ σRκ

3.36GΣo
> 1 (3.10)

The two inequalities are known as Toomre’s stability criterion Toomre (1964),

derived for axisymmetric perturbations with wavelengths that are much smaller

than the size of the disk.

• Global Instability

In this case is not possible to write down an universal dispersion relation or stability

criterion. In few simple cases is possible work analytically in order to get insight

to the problem. For example in the case of McLaurin disk the perturbation can

be expanded in the following modes:

Pml (ξ)eimφ, ξ ≡ (1−R2/a2)1/2

with a the disk radius and Pml an associated Legendre function with 0 ≤ m ≤ l.

The first modes corresponding to real perturbations of the disk are : l = 2,m = 0

or m = 2:

a) l = 2,m = 0, corresponds to an axisymmetric pulsation (expansion and

contraction);
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b) l = 2,m = 2, corresponds to a rotating, elliptical deformation of the disk,

called bar mode corresponding to the bar instability.

This bar is a highly flattened triaxial structure whose figure rotates as a solid

body with an angular frequency Ωp, called the pattern speed.

3.2.1.2 Formation of Spiral Arms

The formation of the main non-axisymmetric structure of our Galaxy is a very complex

phenomenon. Here we’ll sketch only some of the main current ideas, (for more detail

see Binney and Tremaine (2008), Mo et al. (2010)) The mathematical form f(R), which

gives a reasonable description of the shapes of observed spirals, is the logarithmic spiral

f(R) = foln(R) + φo, where the constant fo describes how tightly the spiral pattern is

wound.

Figure 3.4: Geometrical feature of a spiral arm in a differentially rotating disk with
Ω(R) ∝ R−1. ip is the pitch angle Binney and Tremaine (2008).

That may be better described by the pitch angle , ip, which at any given point (R,φ)

along the spiral is defined as the angle between the local tangent of the spiral and the

circle of radius R (see Fig. 3.4):

tanip = m

∣∣∣∣R ∂f∂R
∣∣∣∣−1

(3.11)

where m is the arm number. The logarithmic spiral is special in having a constant pitch

angle.

Spiral arms can be classified by their orientation relative to the direction of rotation of

the galaxy. A trailing arm is one whose outer tip points in the direction opposite to
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Figure 3.5: Leading and trailing arms Binney and Tremaine (2008).

galactic rotation. On the contrary, the outer tip of a leading arm points in the direction

of rotation (see, Fig. 3.5).

The most basic reason for the formation of spiral arms is the differential rotation of disks.

In a disk with constant rotational velocity Vrot = V and angular velocity Ω = V/R a

circular patch is sheared into a spiral arm due to the differential rotation (Fig. 3.6).

The differential rotation of the galaxy winds up the arm in a time short compared with

the age of the galaxy. For a typical galaxy with a flat rotation curve, V = 220Kms−1, at

R = 10kpc after the time t = 1010yr, the pitch angle would be ip = 0.25o, and the inter-

arm separation would be ∆R = 0.28kpc, implying that the spiral is much too tightly

wound to be observed Binney and Tremaine (2008). To overcome this problem, well-

known as the winding problem, the Lin-Shu hypothesis may help according to which

the spiral structure is a stationary density wave in the stellar density and gravitational

potential of the disk and hence not subject to the winding problem. Coming back to the

global instability, and taking into account the case previously underlined, i.e., the mode:

l = 2,m = 2, two different instabilities may arise. One is the bar-like, with a limit

pattern speed Ωp = Ω which produces a deformation in the circular orbits into elliptical

ones simply aligned along the bar (Fig. 3.7, case (a)). The other one corresponds to a

spiral-like perturbation.

The circular orbits are deformed again in elliptical orbits but their orientations tend to

align in such a way to cause a crowding of the orbits along a two-armed spiral pattern

(Fig. 3.7 case (b) or (c)) with a pattern speed Ωp 6= Ω. The challenge is to demonstrate

that a self-consistent model can be constructed. It means finding a set of orbits in the

perturbed potential that, once stacked together, can reproduce the density distribution

of the perturbed disk. That appears really occur as it appears in the Fig. 3.7 according

to the development of Lin and Shu (1964) idea, when the disk material is compressed
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Figure 3.6: A circular patch at t = 0 is sheared into a spiral arm due to the differential
rotation in the direction indicated by the arrow Mo et al. (2010).

and swepts by a spiral density wave. If the stellar gas is cold enough, its reaction to

a spiral wave produces narrow gaseous arms with enhanced density, where young stars

may form. Hence, spiral density waves can naturally explain why star formation occurs

along the spiral arms in a dominant way. One of the most important predictions of

the Lin-Shu hypothesis is that spirals are trailing because unstable modes are usually

trailing.

3.2.2 Spiral arms associated with the solar environment

The determination of the true nature and detailed structure of the spiral arms are chal-

lenging problems, but new spectroscopic and astrometric surveys provided six-dimensional

phase-space information for a large volume of stars around the Sun, allowing Siebert

et al. (2012) to set a new dynamical constraint on the spiral arms structure inside our

galactic potential: the galactocentric radial velocity gradient of ∼ 4 km s−1kpc−1 by

Siebert et al. (2011a), obtained using more than 200.000 stars from the RAVE survey
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Figure 3.7: Self-consistent construction of density perturbations in a disk. In the case
of a bar-like perturbation with Ω = Ωp (case (a)), the deformed orbits align along the
bar. In the case of spiral-like perturbation (cases (b) and (c)), the orbit orientation
changes as function of radius. The crowding of the orbits gives rise to a self-consistent

reproduction of the induced spiral pattern Mo et al. (2010).

(see B). They linked the observed radial velocity gradient for the solar neighborhood

(up to a distance of 2 kpc from the Sun) with the presence of a relatively long-lived

spiral arm structure. Assuming, to first order, that the behavior above the plane is a

reflection of what would happen in the whole razor-disk, they were able to constrain

the spiral arms structure using the densities wave description Lin and Shu (1964), valid

only in the regime of weak, long- lived and tightly wound spirals (small pitch angle).

As in Minchev (2008), the spiral structures may be treated like a small deviation to the

axisymmetric model of the Galaxy by expressing them as a quasi-steady density waves

following the Lin-Shu hypothesis Lin et al. (1969). The gravitational potential of each

spiral wave could be expanded in Fourier series and expressed as a function of the radial

distance from the galactic center R, the solar angular position θ and the time t:

ΦSA(R, θ, z) =
∑
m

Amexp[i(ωt−mθm + Φ(R))] (3.12)

with corresponding surface density:

ΣSA(R, θ, z) =
∑
m

Σmexp[i(ωt−mθm + Φ(R))] (3.13)

with Am and Σm amplitudes of the corresponding spiral perturbations. In particular

the potential for the single spiral pattern takes the form:

ΦSA(R, θ, t) = A(R) exp[i(ωt−mθ + Φ(R))] (3.14)

where A(R) is the amplitude of the perturbation that may be expressed as a fraction

of the galactic background potential, m the number of arms and Φ(R) a monotonic
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function which, in case of logarithmic spiral, can be expressed as:

Φ(R) = ω cotgip lnR, (3.15)

with ip pitch angle and Ωp = ω/m angular frequency of the perturbation (i.e. the pat-

tern speed).

As we have already seen, there is not a single accepted pattern of the the spiral arms

structure of our Galaxy. The same uncertainty comprises also the values of the param-

eters involved in the expression of the spiral arm perturbation. We find models that

differ in the value of the pitch angle ip and the pattern speed Ωp, and there is not an

agreement also with the number of arms m. Even if form the literature is not possible

to outline an univocal framework for the major non-axisymmetric perturbation of the

Galaxy, previous works may give some indications about the range of these parameters,

that was summarized by Garćıa-Sánchez et al. (2001):

• the pitch angle ip results to be ranging from ∼ 5◦ to ∼ 27◦ (see Elmegreen (1985)

for more details)

• for the value of m the different studies provide essentially two possibility. The first

one is a four arms model (see for example Henderson (1977) and Blitz et al. (1983)

that obtained a four-armed spiral structure from HI and CO data; Simonson (1976)

that provided a two-armed inner pattern with two additional more peripheral

arms; or Georgelin and Georgelin (1976a) that indicated a four arm structure

using optical HII regions). On the other side we can find a two-armed spiral

(suggested by the density-wave spiral arms for the study of young objects in the

solar neighborhood or by Bash (1981) also using the HII regions).

• the results about the pattern speed mainly cluster around two different range of

values, depends on the techniques used during the estimation of this parameter:

Ωp ∼ 11− 14km s−1kpc−1 (see Lin et al. (1969); Yuan (1969a,b); Gordon (1978))

and Ωp ∼ 20 − 28km s−1kpc−1 (provide for example by Creze and Mennessier

(1973); Nelson and Matsuda (1977); Avedisova (1989); Amaral and Lepine (1997);

Mishurov and Zenina (1999)).

In particular the different values of Ωp entails a change in the behavior of spiral arm

perturbation. Indeed with largest values for pattern speed imply that the spiral waves

travel outwards from the center of the Galaxy, the opposite propagation direction pro-

vides lower values for Ωp. Following the theory of Lin et al. (1969), the density wave

pattern propagates around the Galaxy with a pattern speed Ωp that can extend over
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part of the disk delimited by the inner and the outer Lindblad resonances as follow:

Ω− κ

m
< Ωp < Ω +

κ

m
(3.16)

where Ω is the angular velocity of rotation at a distance R, m the number of spiral

arms and κ the epicyclic frequency2 at this distance. At resonance locations energy is

dissipated and can lead to damping of spiral structure. In addition to the outer and the

inner resonance, a corotation resonance can occur when Ωp = Ω where the wave can

start to grow through over-reflection as obtain by Lin and Bertin (1985). The Lindblad

resonances determine the edges of the region within the spiral structure can exist, but

we can constrained the zone between the inner and the corotation resonance, as the area

in which the density wave theory works well according to Garćıa-Sánchez et al. (2001).

Taking into account the previous indications about the spiral arm parameters, we

Figure 3.8: Table of different set of spiral arms parameters that reproduce the current
radial velocity gradient in the solar neighborhood, provided by Siebert et al. (2012).

The best fit solution is highlighted by the color yellow.

want also anchor our study on some observative results in agreement to the solar local

environment, since we are interested into recreate the solar path. For this reason, the

start point of our investigation has been the spiral arm parameters chosen according

to the best fit model provided by Siebert et al. (2012) using the RAVE survey data.

They analyzed a wide range of possible sets of parameters (amplitude, pattern speed,

pitch angle and number of arms) in order to characterize the spiral arms structure

and reproduce the observed radial velocity for the solar environment. In Fig. 3.8 are

quoted all the solutions in agreement with the observed velocity field. The analysis

favors a two-armed spiral (m = 2), since for the m = 4 solution with a comparable

value of chi-square, the predicted pitch angle is too large. The best fit solution presents

an amplitude A = 0.550.02
−0.02% of the background potential ( equivalent to 14% of the

background density), a pattern speed Ωp = 18.6 km s−1kpc−1 and a pitch and angle

2κ2 = Ω2
(

1 + R
2Ω

d
dR

)
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ip = −10.0+0.4
−0.4 deg. A useful visualization may be seen in Fig 3.10.

Remembering the constrains due to the Lindblad resonance we can check if the value
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Figure 3.9: Resonances in rotation curve of the Galaxy. Rotation curve of the Galaxy
Ω (heavy line), that corresponds to the corotation resonance and inner and outer Lind-
blad (dashed line) in correspondence of Ω± κ/m for a two-armed spiral arms (m = 2).
The pattern speed Ωp = 18.6 km s−1 kpc−1 (horizontal dotted line) encloses the region

in which the spiral perturbation is well described by the density-wave

for Ωp allows to obtain a spiral structure enough extended in our model for the Galaxy.

As we can see in Fig. 3.9, the pattern speed Ωp = 18.6 km s−1 kpc−1 (horizontal

dotted line) encloses the region in which the spiral perturbation is well described by

the density-wave theory between 4 and 11 kpc, that is in agreement with the range of

galactic distance for a possible solar migration. Using the best fit model provided by

Siebert et al. (2012) we can define the set of parameters which referring from now on as

the “standard spiral arms” (summarized in Tab. 3.1). It represents the start point of

our study: we will investigate the effects of spiral arms varying the parameters around

the central value indicated by the standard case. It very important to stress the fact

Parameter Standard value

Pattern Speed Ωp 18.6 km s−1 kpc−1

Amplitude A 0.55 % Φback

Scale height hs 200.0 pc
Pitch angle ip -10.0 deg

Table 3.1: Spiral arm parameters for the standard case, defined using the best fit in
Siebert et al. (2012)

that Siebert et al. (2012) restricted the study on the radial velocity field 〈VR〉, building
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Figure 3.10: Visualization of spiral arms 2D perturbation potential ΦSA obtained
using the best fit parameters values reported in Fig. 3.8.

only a bidimensional model for the spiral arms. This choice arose from the difficulty

to estimate the contribution of the asymmetric drift that enters the calculation of the

transverse velocity field 〈Vθ〉. It means that the factor A(R) involves only a flat galactic

potential; despite this, we used this 2D spiral arm potential description in order to go

beyond the classical potential for the Galaxy and add an non-axisymmetric component,

breaking its cylindrical symmetry.

3.2.3 Results for a 2D fixed spiral arms

The bidimensional spiral arms perturbation, obtained from the Lin & Shu theory and

the physical constrains due to the radial velocity gradient in the solar neighborhood,

may be used to modify the Galactic potential. As we have seen in the section §2.2,

the solar motion in the axisymmetric potential is a rosette orbits, oscillating close to

the current solar position. Such type of small perturbation along the motion around

the Galaxy justified the circular approximation for solar motion in many simulations

focused on the Oort Cloud dynamics. But this type of approximation could no longer

be valid when a non-axisymmetric perturbation, like a spiral arms structure, is acting.
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The presence of the spiral arm breaks the cylindrical symmetry of potential, indeed

ΦTOT = ΦBG(R, z) + ΦD(R, z) + ΦDH(R, z) + ΦSA(R, θ, t) = Φ(R, θ, z, t) (3.17)

The equation system (2.10) may be rewritten as follow

R̈−Rθ̇2 = −∂Φ

∂R

d

dt
(R2θ̇) = −∂Φ

∂θ

z̈ = −∂Φ

∂z

(3.18)

It is clear that in presence of a non-axisymmetric potential the conservation of the

angular momentum and the total energy is not possible.

Integrating the solar path for 4 Gyr, using the perturbation potential shown in Fig. 3.10,

we obtained a stronger variation of the solar position in the radial direction (between

5.5-9.5 kpc) and a trend for the radial position less periodic with respect to the motion

under the axisymmetric potential (see Fig. 3.11). This result is in agreement with the

initial position provided in the simulation performed by Kaib et al. (2011) to probe the

possibility of a migration of our Sun within the galactic disk at the beginning of the Solar

System history. The perturbation affects also the z-axis component of the solar motion,

changing the oscillation phase, but it has not an important effect on the amplitude, as

expected given the 2D nature of the spiral arms model.

The strong variation for the solar position with respect to the galactic center also entails

a strong variation in the solar angular velocity around the Milky Way (see Fig. 3.12).

The circular approximation for the solar orbit could no longer be a good one in the study

on cometary dynamics, and the real solar path may have important repercussions in the

total perturbation effect due to the galactic tidal field. It is important to stress that the

model assumed for the spiral arms is constrained by observations for the current solar

position. The coefficients involved in that formulation could present a modulation with

respect to the radial position of the Sun, which we are at the moment not able to take

into account during the integration.

The bidimensional approach for the spiral arms perturbation may overestimate the effect

along the radial direction for the solar path, indeed all the strength of the perturbation

is concentrated in the disk plane, while a particle that present a z-position6= 0 but very

close to the disk, is completely insensitive to the spiral arms action: the change in the

perturbation power could be too abrupt. Also the assumption of a constant spiral arm

action, without any variation in time, could be a description far from the real physical

framework. For these reasons the first aim of this work has been the extension of the
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Figure 3.11: Solar path with (red) and without (green) the action of the bidimensional
spiral arms perturbation of Fig. 3.10 on an integration time of 4 Gyr

spiral arms potential formulation to a 3D time dependent expression.

3.3 3D extension for the spiral arms

The starting point for a 3D extension for the spiral arms perturbation is its description

in a flat disk. The spiral arm properties are assumed to be slowly varying functions of

radius H(R, t), multiplied by more rapidly varying, periodic (mod 2π) function F (Ψ) of

Ψ = mφ+ f(R, t), where

• m is the number of spiral arms;

• φ is the azimuthal angle in the inertial Galactic coordinate system;

• R is the radius;
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Figure 3.12: Solar angular velocity with (red) and without (green) the bidimensional
spiral arms perturbation of Fig. 3.10 on an integration time of 4 Gyr.

• f is the shape function f(R, T ) ≡ mg(R, t) see Binney and Tremaine (2008).

This description entails that any physical function Q (density, velocity, etc.) in the 2D

disk which nominally depends upon all the separate independent variables, i.e. Q =

Q(R,φ, t), actually has the simpler form Q = H(R, t)F (Ψ). Moreover, since H varies

slowly, dQ ≈ HdF with dF = F ′dΨ = F ′(mdφ+fRdR+ftdt), where f∗ = ∂f(R, t)/∂∗.
Likewise, F repeats when κdR = 2π at fixed t, where we write the spiral density wave as

radial wavenumber κ = fR. In addition, F is unchanged at fixed t when we contemplate

small changes that satisfy (mdφ+ fRdR) = 0 or equivalently |fR| = |mdφ/dR|.
Consider the locus of the maximum of F in the plane. The tangent of the pitch angle

of the locus is tanα = |∆x/∆y| where

• ∆x is the change along the radial direction;

• ∆y is the change in the azimuthal direction;

the angle is taken to lie between 0 ≤ α ≤ 2π and k can be either positive or negative

(k < 0 for the leading spiral arms and k > 0 for the trailing spiral arms) . In the same

way we can write cotα = |Rdφ/dR| = |RfR/m| = |Rk/m|.
At this point we consider a 2D (surface-density) perturbation in the z = 0 plane, see

Binney and Tremaine (2008). The superficial density of an infinitely thin disk may be

represented from a mathematical point of view as the sum of a unperturbed superficial

density Σ0(R) plus a perturbed one Σ1(R,φ, t). We can write Σ1 separating the fast

variation part, due to the passage through the spiral arms, from the slower variation
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linked to motion along the spiral arms, in the following form

Σ1(R,φ, t) = H(R, t)ei[mφ+f(R,t)] = H(R, t)eiΨ (3.19)

where Ψ = Ψ(R,φ, t) as above. The next step is determine the gravitational potential

due to the perturbation Σ1. Since the perturbation of the superficial density oscillates

quickly around the average zero value, there is an almost full cancellation of the contri-

bution due to the far components of the structure on the local potential; in other words

the perturbed potential of a certain position would be completely determined by the

structure properties within few wavelengths from that particular position. In order to

determine the potential in close to the point (R0, φ0), we can replace the shape function

f(R, t) with the first two terms of the Taylor’s series

f(R0, t) + fR(R0, t)(R−R0) = f(R0, t) + k(R0, t)(R−R0) (3.20)

then we obtain

Σ1(R,φ, t) ' Σae
ik(R0,t)(R−R0) where Σa = H(R0, t)e

i[mφ+f(R,t)]. (3.21)

The variations with the angle φ are not taken into account since they are much slower

than the ones in the radial direction when the density waves are tightly wrapped as in

our case.

The potential expression for a bidimensional wave on a infinitely thin disk is

Φ1(x, y, z, t) = −2πGΣa

|k| ei(kx−mt)−|kz| (3.22)

that we can rewrite as

Φ1(R,φ, z, t) ' Φae
ik(R0,t)(R−R0)−|k(R0,t)z| where Φa = −2πGΣa

|k| (3.23)

Considering R = R0 and φ = φ0, we can obtain the 3D potential expression due to the

density in Eq. 3.21, using the relation obtained, as follows:

Φ1(R,φ, z, t) = Φae
ik((((((R,t)(R−R)−|k(R,t)z|

= −2πG

|k| Σae
−|k(R,t)z|

= −2πG

|k| H(R, t)ei[mφ+f(R,t)]−|k(R,t)z|

= −2πG

|k| H(R, t)eiΨ−|k(R,t)z| + (O|kR|−1

= Φs(R,φ, z, t).

(3.24)
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The 2D form that Siebert et al. (2012) quote is

Φs(R,φ, 0, t) = AΦback(R)eiΨ, (3.25)

comparing the last expression of Eq. 5.12 with the previous one and noting that AΦback

is equivalent to the factors that multiply the oscillatory piece in the former3, we can

obtain the 3D generalization for the 2D potential provided by Siebert et al. (2012)

Φs(R,φ, z, t) = AΦback(R)eiΨ−|kz| (3.26)

This implies that the characteristic scale height above and below the plane is 1/|k| which

is quite large4. Our initial problem was about how the potential varied as |z| increased.

This shows that the potential is almost constant, i.e. the 2D Siebert form is going to be

“close” to right answer as long as the Sun does not lie at kz > 1. On the other hand, it

is also possible to see that the potential has a discontinuity in slope that occurs at z = 0.

It’s equivalent to the force changing sign as one crosses the plane. This is unphysical

and comes from the assumption that the surface density is all at z = 0. In fact, the

material that makes up the spiral arm has a scale height that is at least 100 pc. Not

only is the jump unphysical but it is also fatal as far as a smooth numerical integration

is concerned.

In order to fix up the problem we started with a volume density instead of a surface

density. Assume that the density has a Gaussian form

ρ(z) =
Σ(R)√

2πh
e−z

2/(2h2), (3.27)

where h is the scale height. Integrating over all z we obtain the surface density as

Σ(R) =

∫ +∞

−∞
ρ(z′)dz′ (3.28)

We will evaluate the contribution to the potential generated at each level z′ by the

infinitesimal surface density dΣ = ρ(z′)dz′ and then sum the results to find the full

potential. The key is that z → z − z′ in the solution from 3.22. The logical steps are:

Φs(R,φ, z, t) = −2πG

|k|

∫
dΣeiΨ−|k(z−z′)|

= −2πG

|k| e
iΨ

∫
dz′ρ(z′)e−|k(z−z′)|

= AΦbacke
iΨ

∫
dz′ρ(z′)e−|k(z−z′)|

(3.29)

3AΦback = − 2πG
|k| H(R, t)

4 Since we have e−|kz| = e−1 → |zk| = 1→ |z| = 1/|k|
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where I’ve inserted the Eq. 3.25 for the planar result. So the 3d potential is

Φs(R,φ, z, t) = Φs(R,φ, 0, t)χ(z, h, k) (3.30)

where χ encapsulates the changes from the pure 2D result when the sources are smeared

with scale height h, explicitly

χ(z, h, k) =

∫
dz′ρ(z′)e−|k(z−z′)|

=

∫
dz′√
2πh

e−z
′2/(2h2)e−|k(z−z′)|.

(3.31)

The only remaining issue is determine the way in which we choose the scale height h.

This describes the vertical extent of the distribution of the material responsible for the

spiral arms’ density excess. A reasonable strategy consist in to calculate h by making

an assumption about the velocity dispersion of the material.

The total gravitational potential in the vicinity of the plane is Φ(z) = Φ(0) + Φ′(0)z +

Φ′′(0)z2/2. Symmetry implies Φ′(0) = 0. Consider a 1D Gaussian velocity distribution

for a distribution function ∝ eE/σ2
where E = v2/2+Φ(z). The rms vertical component

of the velocity at any given z is

〈v2
z〉 =

∫
v2e−v

2/2σ2
dv∫

e−v2/2σ2dv

= σ2

(3.32)

and we can calculate the density variation with height as follow

ρ(z)

ρ(0)
=

∫
e−(Φ(z)+v2/2)σ2

dv∫
e−(Φ(0)+v2/2)σ2dv

= e−(Φ(z)−Φ(0))/σ2

= e−(Φ′′(0)z2)/(2σ2)

(3.33)

and in the last step we have assumed that the Taylor series approximation about the

plane is sufficient. So, we can make the identification with the exponential presents in

Eq. 3.27 and using the Poisson equation we obtain

h =
σ√

Φ′′(0)

=
σ√

4πGρ(0)

(3.34)

We can choose σ arbitrarily and evaluate ρ(0) from the model for the potential to infer

h ∼ 100− 200 pc; this show that fixed h implies σ ∝
√
ρ(0).
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3.3.1 Summary for the 3D spiral arms model

It may be useful to summarize the results about the 3D spiral arms model. The general

transient 3D spiral arms perturbation could be expressed, taking into account only the

real part of the of the exponential, as follow:

Φspiral(R, θ, t, z) = e
−(∆t)2

2W2 AΦbackcos[ω(∆t)+m(−θ+cotg(ip) ln(R/R0))+ϕmax]·χ(z, hs, κ),

(3.35)

where ∆t = t− tmax and R0 the initial position for the Sun.

It could be useful to divide the different terms inside Eq. 3.35 in order to analyze the role

and summarize of the different terms inside Eq. 3.35 and summarize the parameters

inside of each one.

• transient term e
−(∆t)2

2W2 : gaussian profile to modulate the spiral perturbation

intensity from 0 to a maximum value in correspondence to the time tmax and then

decreases it again for t > tmax. Within this term we find

– W = σ = 0.5 · (galactic rotational period at R0), the time width of the per-

turbation, approximately identified as the life scale for the spiral arm;

– ∆t = t− tmax with tmax = 6σ the time for the maximum power for the spiral

arm perturbation

• 3D term χ(z, hs, κ) =
∫

dz′√
2πhs

e−z
′2/(2h2

s)e−|κ(z−z′)|: to introduce the third dimen-

sion for the perturbation, where

– hs = 200 pc is the scale height

– κ = −(mcotgip)/R0 is the wave number with m = 2 the number of arms,

ip = −10 deg is the pich angle and R0 is the initial solar position with respect

to the galactic center as usual.

• amplitude term AΦback that determines the power of the spiral arm perturbation

with respect to the background galactic potential, in particular

– Φback = ΦG = Φbulge + Φdisk + Φhalo (see §2.1)

– A = 0.55% is the amplitude following Siebert et al. (2012)

• periodic term cos[ω(∆t)+m(−θ+cotg(ip)Ln(r/R0)+ϕmax] expresses the period

nature of the spiral arm perturbation, in which we find

– ω = m·Ωp with Ωp = 18.6 km s−1kpc−1 angular frequency of the perturbation

– ϕmax the spiral phase at the time of maximum spiral intensity
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3.4 Overlapping vs separate spiral arms perturbations

The Sun’s motion is driven by all the spiral arms present in the disk. Some are forming,

some are winding up and some are decaying away. Presumably, at any time there are

just a few important ones that influence the dynamics of the Sun. The crucial point

to investigate is whether the effect of multiple spiral arms on the Sun be approximated

as a sequence of independent encounters. This issue is important because independent

encounters bring great simplifications to modeling, for example it may allows us to take

into account only the total number of encounters and not the detailed time-dependent

arrival sequence. In particular we can ask how many spiral arm encounters will move

the Sun from its birth position to the current position without describing exactly when

the encounters occurred. Conversely, it might be possible to prove the impossibility to

move the Sun from its birth position to its current position, irrespective of the specifics

of when the encounters took place.

The simplest possible experiment to check the agreement between the effects due to

overlapping and separate sequence of spiral arms, is the investigation on two spirals

with a given separation. Starting from a fixed position and velocity for the Sun a

straightforward integration gives the final dynamical state of the Sun. All times and

frequencies are quoted in terms of half rotation period and frequency of the Sun at its

current location.

For each calculation each spiral arm started with zero amplitude, grew to a maximum

value and then diminished to zero again. The parameters of each spiral were fixed:

amplitude, scale height and pattern speed. The separation of the two spirals was varied:

from 0 to 4 rotation periods plus the limiting case of infinite separation. The width W

of the spiral was fixed at one time scale. The plot in Fig. 3.13 illustrates the sum of the

spiral amplitudes for a specific peak separation and peak width. These two spirals are

almost fully separated.

A set of encounters with randomly sampled spiral pattern phase ψmax provided the initial

conditions for each calculation. For each final result the post-encounter epicycle guiding

center radius, radial velocity amplitude and vertical velocity amplitude were calculated.

The statistical distributions of the post-encounter dynamical quantities were compared.

From the results we:

• obtained the trends in the epicycle parameters (radial migration Rg, radial heating

A(vR) and vertical heating A(vz), see §3.4.1) as functions of the spiral amplitude,

scale height, and pattern speed for two infinitely separated spirals;
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Figure 3.13: The sum of the amplitudes of two separate spiral patterns shows some
overlap when the peak separation is 4 time scale (2 rotation periods) and the peak

width is 1 time scale.

• tried to understand if these trends are modified when the spirals have a finite

separation;

• investigated if the differences that are present between the infinite and finite sep-

arations are important for an experiment consisting of a limited number of spiral

encounters.

3.4.1 The epicycle parameters

In order to check if two joined spiral arms versus two separate and consecutive spiral

perturbation act in a different way, we performed a comparison between the epicycle

parameters produced by these two different type perturbations. Before proceeding, it

would be well to spend few words about the epicycle approximation itself, to under-

stand if these quantities provide a correct description for the physical framework of our

research.

For nearly circular orbit generated by an axisymmetric potential it is useful to derive

an approximate solution to the equations system in Eq. 2.10, Binney and Tremaine

(2008). It is possible to define

x ≡ R−Rg (3.36)

where Rg(Lz) is the guiding-center radius, i.e. the radius for the circular orbit of angular

momentum Lz. In correspondence to (R = Rg, z = 0) we find a minimum for the effective
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potential defined as

Φeff = Φ +
L2
z

2R2
→

(
∂Φeff

∂R

)
(Rg ,0)

=

(
∂Φ

∂R
− L2

z

R2

)
(Rg ,0)

= 0. (3.37)

Expanding Φeff in a Taylor series about x and neglect all terms in Φeff of order xz2 or

higher, we obtain the epicycle approximation. Using this approximation the equa-

tions of motions become very simple, introducing two new quantities: the epicycle or

radial frequency:

κ2 ≡
(
∂2Φeff

∂R2

)
(Rg ,0)

=

(
∂2Φ

∂R2

)
(Rg ,0)

+
3Lz2

R4
g

(3.38)

and the vertical frequency

ν2 ≡
(
∂2Φeff

∂z2

)
(Rg ,0)

=

(
∂2Φ

∂z2

)
(Rg ,0)

. (3.39)

The equations of motions then become

ẍ = −κ2x

z̈ = −ν2z

θ̇ = Lz
R2

(3.40)

According to these equations, x and z evolve like the displacements of two harmonic

oscillations, with frenquencies κ and ν, respectively.

In the epicycle approximation the motion is then very simple



R(t) = Acos(κt+ a) +Rg

z(t) = Bcos(νt+ b)

θ(t) = Ωg + θ0 −
2ΩgA

κRg
sin(κt+ a)

(3.41)

with A, B, a, b and θ0 all constants. In particular from the constants A and B we can

calculate the amplitude for the radial and vertical direction of the motion, we expressed

A and B as  A =

√
x2

0 +
v2
x0
k2

B =

√
z2

0 +
v2
z0
ν2

(3.42)
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Using x0 = (Rf −Rg), vx0 = vx(Rf ), z0 = zf and vzo = vz(zf ) where the quantities with

the subscript f are the final results at the end of the integration. Finally the amplitudes

for vR and vz were obtained {
A(vR) = k ·A
A(vz) = ν ·B

(3.43)

In addition the epicycle approximation has the following integrals of motion:

• the angular momentum Lz,

• the energy radial component ER = 1
2(ẋ2 + κ2x2),

• the energy z- component Ez = 1
2(ż2 + ν2z2)

• the total energy E = ER + Ez + Φeff (Rg, 0)

Using the 3D model, presented in the previous sections, we considered a spiral pertur-

bation with a modulation in time: the perturbation grows, achieves a peak and after

decreases until it disappears. That means that very far from the peak, the galaxy po-

tential is approximately axisymmetric and a stellar motion around the galactic center

could be described by the epicycle approximation.

We considered an integration time of 12 σ, where σ is half characteristic lifetime chosen

for the spiral arms structure (see §3.3.1; in this way at the beginning and at the end

of the integration we are enough far from the maximum power of the spiral arms per-

turbation, to consider the galaxy potential axisymmetric. If the previous assumption is

correct, considering only one spiral arms perturbation, in an integration time equals to

12 σ, the results provided by the full expression for the equations of motion (Eq. 2.10)

and the epicycle approximation (Eq. 3.40) will be overlapping before and after the full

development of the spiral arm.

This check is useful in order to understand if it is right to consider the epicycle param-

eters as representative for the real orbit at the end of the integration time, and if they

can be used in order to simplify the comparison between the joined and separate spiral

arms perturbation.

We make the comparison between the results come from the full integration and those

coming from the epicycle approximation. We consider a stellar orbit that was not circular

from the beginning, i.e. a stellar orbit with a peculiar motion in its initial conditions.

In particular we use exactly the solar peculiar motion.

First at all we verified if the behavior for the integrals of motion is as expected. For the

full integration we analyzed the trend for the total energy E and the angular momentum

LZ (see Fig. 3.14).
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Figure 3.14: Trend for the energy E and the angular momentum Lz of the Sun under
the spiral arms perturbation (full integration)

We underline that the conservation for E and Lz, before and after the perturbation due

to the spiral arms, is verified.

The second step is to check the correspondence between the full integration (in red) and

the exact (blue) for the quantities R, z, and total energy E. As you can see in Fig 3.15,

Figure 3.15: Comparison between the trends of E, R and z obtained integrating the
equation of motion in the full (red) and in the epicycle approximation (blue) form.

the agreement between approximate and not approximate trends look like very good at

the beginning of the integration time, when the spiral arms perturbation have not been

born yet, and at the end when the perturbation completely disappears. The two trends

drift apart in-between as it was expected, when the spiral arm perturbation works at

the maximum of its power. It confirms that the epicycle parameters are powerful tools,

that may be utilized to probe also the joined vs the separate spiral arms perturbation

behavior.
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3.4.2 Joined vs separate spiral arms code

The following paragraphs provide a brief description about the code to compare the

action of two overlapping and separate spiral arms perturbations.

3.4.2.1 Joined perturbations

We have to consider a sum of two perturbations that perturb the solar path and that

we can express

Φstot = Φs1 + Φs2; (3.44)

where Φs1 and Φs2 are the perturbing potentials respectively of the first and the second

spiral arm structures considered, each one expressed by Eq. 3.35. For each of these per-

turbations we can define a time for the maximum tmax perturbation and a corresponding

spiral phase ψmax, in particular we have:

• For Φs1:

– ψ1max = RandomReal[0, 2π];

– t1max = 6σ with σ = 1
2 rotational period at the present position of the Sun

with respect the galactic center (∼ 8000 pc);

• For Φs2:

– ψ2max = RandomReal[0, 2π];

– t2max = RandomReal[t1max − 3σ, t1max + 3σ]

Starting from an initial solar state

wi� = {Ri�, zi�, θi�, vRi�, vzi�, vθi�} (3.45)

we runned the integration over the integration time [Tmin, Tmax], where

• Tmin = Min[t1max, t2max]− 6σ;

• Tmax = Max[t1max, t2max] + 6σ;

obtained a final solar state at the end of the integration,

wf� = {Rf�, zf�, θf�, vRf�, vzf�, vθf�}. (3.46)

We close the code relative to the overlapping perturbations, storing
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• the integration time: Tmin, Tmax;

• two times of maximum perturbation: t1max, t2max;

• two spiral phases for the maximum: ψ1max, ψ2max;

• two solar phases in correspondence to the two maxima ( t1max, t2max): θ1max,

θ2max;

• vector solar state at the beginning and at the end of the integration: wi�, wf�.

3.4.2.2 Separate perturbations

In order to make a comparison between the results obtained by the overlapping pertur-

bations with the effects due to two distinct spiral arm perturbations, we have to reload

the initial solar conditions wi� as the new starting conditions for the integration.

If t1max < t2max we can divide in two following steps the procedure:

• STEP 1

We reloaded from the overlapping perturbation:

– the previous initial conditions as the new ones → wi1� = wi�;

– the maximum spiral phase ψ1max

– the time for the maximum perturbation t1max

We integrated the solar motion under the single perturbation potential:

Φs1(t1max, ψ1max), (3.47)

over an integration time T1int = [t1max−6σ, t1max+6σ] = [t1start, t1end], obtained

an intermediate solar state:

wmiddle� = {Rm�, zm�, θm�, vRm�, vzm�, vθm�}. (3.48)

At the end of this first step we can record

– the intermediate solar state: wmiddle�;

– the integration time: t1start, t1end;

– the solar phase at maximum time t1max, θ′1max.

• STEP 2

We reloaded from the previous step:



74 Chapter 3. The Spiral Arms Effects on the Solar Path

– the intermediate conditions as the new starting ones → wi2� = wmiddle�;

– the solar phase in correspondence to the maximum perturbation in the over-

lapping case: θ2max

From these new initial conditions we integrated the solar motion under the single

perturbation potential:

Φs2(t′max, ψ
′
max), (3.49)

over an integration time T2int = [t1end, t1end + 12σ] = [t1end, tfinal].

For this second perturbation potential we can define:

– t′max = t1end + 6σ as the time in correspondence of the maximum spiral

perturbation;

– ψ′max = ψ2max − θ2max + (θm� + Ω�6σ), where θ2max is the solar angular

position for the time t2max. In this way we conserved the quantity (ψmax−θ)
for the second perturbation both for the overlapping and the separate case.

So we obtained the final solar state for two separate and consecutive spiral arm

perturbation:

wfinal� = {Rff�, zff�, θff�, vRff�, vzff�, vθff�}. (3.50)

At the end of the second step we can record

– the intermediate solar state: wfinal�;

– the integration time: t1end, tfinal;

– the solar phase at maximum time t′max, θ′max.

Otherwise if t1max > t2max we have to invert 1 with 2, inside the two previous

steps.

3.4.3 Runs

A large number of runs is necessary for faithful representation of the distribution of the

galactocentric radius and of the vertical and radial velocity amplitudes.

For every calculation with finite separation there was a corresponding case run with

infinite separation. This allowed detailed comparison to be made to investigate how the

probability distribution function (PDF) for correlated encounters compared to that for

two independent encounters. The statistical approach we are considering is the most

suitable to face the many unknown aspects of the problem we are dealing with. As

we underline at the beginning of §3.2.1.1 and 3.4 there is not probably an unique way
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Dynamics Overlapping & separate
Initial conditions Sun’s current values
Number of cases 10,000 & 10,000
Amplitude A 0.5, 1, 2
Scale height hs 0.5, 1, 2
Pattern speed Ωp 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4
Peak separation 0, 1, 2, 4

Table 3.2: Range of parameters to check the overlapping vs separate spiral arms
dynamics. The amplitude A, the scale height hs and the pattern speed Ωp are expressed

as multiplies of the “standard case” quoted in §3.3.1

to explain the complex phenomenon of the spiral arms formation. Moreover, at any

time some of them are forming, some are winding up and are decaying away. For the

complexity of the framework, the statistical method allow an investigation to different

possible scenarios.

3.4.3.1 Trends for two infinitely separated encounters

The more suitable framework in which we can study the effects on the solar path,

due to the different choices for the spiral arm’s parameters is considering two infinitely

separated perturbations. Starting from the “standard case” with amplitude 1 (0.55% of

the background potential) and scale height 1 (200 pc) for range of pattern speeds, it is

possible to find the PDF trend of each epicycle parameter. The trends of the PDF for the

guiding center position, Rgc, after two independent encounters for the considered values

of patterns speeds, are collected in Fig. 3.16, where the lines are color-coded according

to the Ωp. The Sun lies at 8 kpc at the beginning and the figure shows that spiral arms

with Ωp < 1 (where 1 means the rotation frequency obtained by the best fit in Siebert

et al. (2012) provided by the current solar environment) tend to pull the Sun inward;

conversely ones with Ωp > 1 tend to move it outward. For Ωp ∼ 1 the distribution

spreads more than it shifts (green and cyan lines for Ωp = 1 and 1.5). In other word we

can conclude that advection dominates away from Ωp ∼ 1 and diffusion near it and we

can call these “advective” and “diffusive” encounters, respectively. Varying the other

spiral arms parameters the same PDF trends for RG are seen for all amplitudes and scale

heights: larger (smaller) amplitudes yield larger (smaller) effects as one would expect.

However, the effect of scale height variation is small.

We repeated the same investigation on the effect due to the variation of the spiral arms

parameters for the radial and vertical velocity.

The Sun’s initial radial velocity is about 11.1 km/s Schönrich et al. (2010), so we can

note that the PDF for vR (Fig. 3.17, when Ωp ∼ 1 (green and cyan lines), is peaked
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Figure 3.16: The PDF for Rgc (in pc) after two infinitely separated encounters where
Ωp = 0.25 (red), 0.5 (orange), 0.75 (yellow), 1 (green), 1.5 (cyan), 2 (blue), 3 (brown),

4 (black).

near the Sun’s starting conditions. The implication is that the diffusive encounters min-

imize radial heating, while other pattern speeds lead to more substantial heating. It is

important to note, for example, the black and red lines, corresponding to maximum and

minimum pattern speeds simulated respectively, that give broader and hotter distribu-

tions. These are substantially similar which implies that heating occurs whichever way

the Sun is pulled. On the other hand the radial heating is not significantly altered by

the scale height of the spiral arm disturbance. Finally we analyzed the variation of the

vertical velocity depending on Ωp, A and hs. Recalling the Sun’s initial vertical velocity

of 7.25 km/s Schönrich et al. (2010), we can underline that the diffusive encounters

minimize the vertical heating (see Fig. 3.18). In addition, unlike the radial case, the

vertical heating is substantially reduced when the spiral arm scale height increases.

After this study on the spiral arm parameters, we can summarize the main evidence as

follow

• the pattern speed Ωp is the parameter most crucial for the perturbation effects

of the spiral arms, in particular: the radial quantities (the guiding center radius

Rg and amplitude for the radial velocities A(vR)) undergo net changes far from

Ωp ∼ Ωstandars = 18.6km s−1 kpc−1 and diffusion (increase in variance) near it.

On the other hand, the diffusive encounters minimize the vertical heating.
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Figure 3.17: The PDF for vR (in pc/Myr) after two infinitely separated encounters
where Ωp = 0.25 (red), 0.5 (orange), 0.75 (yellow), 1 (green), 1.5 (cyan), 2 (blue), 3

(brown), 4 (black).

Figure 3.18: The PDF for vz after two infinitely separated encounters where Ωp = 0.25
(red), 0.5 (orange), 0.75 (yellow), 1 (green), 1.5 (cyan), 2 (blue), 3 (brown), 4 (black).
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• the amplitude A also plays an important role with the same variation trend,

although in a way less significant than what produced by the changing in Ωp.

• the variation of the scale height hs involves especially the vertical motion indeed:

the radius and the radial heating are not significantly altered by the scale height

of the spiral arms disturbance: While the amplitude of the vertical veolocity A(vz)

is substantially reduced when hs increases.

These investigations provide a simple way to anticipate the general effect of encounters

at other radii and for a range of conditions, that may be different from that considered

in 3.1. In particular, we compare Ω(R) (the angular velocity in correspondence of the

galactocentric position R) to Ωp to decide whether encounters tend to advect the orbit

(i.e. systematically push it in or out in galactocentric radius) or to increase its spread.

Radial heating may be minimized by Ωp with a value lying midway between the Ω’s at

the beginning and ending galactocentric radii. So if metallicity dictates, for example, a

starting position of about 6 kpc and the current position is 8 kpc, and if Ω varies roughly

linearly, then the more efficient way to influence a stellar orbit is with pattern speed

with Ωp ∼ Ω(Rgc = 7 kpc). In addition we have also some evidence that the vertical

heating is easily controlled by altering the scale height of the spiral arms. From these

results we can obtain a simple prescription for how to arrange to move the Sun without

overheating in either the vR or vz directions.

In conclusion we can underline that the main thing that we missed in this study is an

understanding of how changing the width of the spiral arm alters these results, indeed

W is been fixed at half of the rotation period. This might be important since all the

characteristic epicycle frequencies are of that order. The width W of the spiral arms

perturbation may be another crucial parameter, but additional investigations are needed.

3.4.3.2 Effect of finite separation

When two spirals influence the orbit at the same time the results will differ from those

obtained from two infinitely separated encounters. The PDF of final galactocentric ra-

dius after two coherent encounters with the “standard parameters” is shown in Fig 3.19.

The red line corresponds to the final distribution of radii when the two spirals arm

amplitudes have zero separation (though in space the arms will generally have different

phases); the blue line when the encounters are infinitely separated. The sequence of

colored lines shows the PDF as the separation increases. The bumps and wiggles in

individual PDFs are not noise or errors. They are probably related to frequency match-

ing between the spiral arms and specific orbital frequencies (radial, vertical, angular

frequencies of the epicycle). Obviously the PDFs are not identical and the differences
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Figure 3.19: The final PDF’s for Rgc for calculations with different peak separations.
In rotation periods the separations are 0 (red), 1 (orange), 2 (yellow), 4 (green); and
the infinitely separate calculations (blue). As the time between encounters increases

the PDFs approach the PDF for independent encounters (see text).

between them diminish as the separation in time of encounter increases. Similar com-

parisons can be made for vR and vz, as is shown in Fig. 3.20 and 3.21 respectively.

Certainly more careful study could be made of the distributions but one should first

average over small ranges in all the parameters that might be relevant for resonant-like

behavior. This includes spiral width, spiral separation and spiral pattern speed. None of

these is expected to be the same from spiral to spiral nor to have a precise relationship to

the rotation frequency. It is very likely that averaging will smooth out the complicated

behavior and make any trends more apparent.

In lieu of completing that study one can simply ask whether the difference between

the calculated distributions is important. In order to quantify this difference we have

to introduce a statistical indicator, that allow as to highlight the gap between the two

considered distribution.
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Figure 3.20: The PDF’s for vR for different peak separations (see Fig. 3.19).

Figure 3.21: The PDF’s for vz for different peak separations (see Fig. 3.19).
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3.4.4 A statistical measure of the difference in distributions

Discrimination in favor of a hypothesis H2 against H1 may be quantified in terms of the

mean information per observation. The KL or Kullback-Leibler divergence of H1 from

H2 is

KL(2 : 1) =

∫
f2 log

f2

f1
dx (3.51)

where f1 = f1(x) and f2 = f2(x) are the probability densities for H1 and H2 respectively.

For our purpose, we can define H2 as the “true overlapping” dynamics and H1 as the

“approximate separate” dynamics. We are interested into how many identically and

independently distributed data items are needed (for f2) before it becomes clear that

this distribution is different from the approximate one.

The answer is that each unit of likelihood requires on average roughly 1/ KL(2 : 1)

independently and identically distributed samples; for typical scientific conclusions one

might require 3 sigma. In that case, roughly N = 3/ KL(2 : 1) samples are needed.

There is a rather stringent limit to the number of encounters that the Sun might ex-

perience. We denote that number by Nmax. If KL(2 : 1) < 3/Nmax then the PDFs

for the dynamical outcomes do not distinguish independent from overlapping physical

encounters. In other words, if Nmax ≤ 30 then KL(2 : 1) < 0.1 implies that the true

and approximate distributions are indistinguishable at the 3 σ level. If Nmax is less than

30 then, of course, KL could be higher and the differences between the distributions

are even harder to measure.

The Sun’s rotation period of ∼ 200 Myr permits no more than ∼ 20 full orbits in a 4

Gyr lifetime. If spiral arms grow/decay on an orbital timescale and there is only 1 arm

at a time then Nmax = 20 encounters, so the choice of 30 is conservative. On the other

hand, the spiral arms may be short-lived and Nmax may be larger. It then becomes

essential to study cases with smaller peak widths. At present that case has not been

studied.

The KL divergence is not a metric since KL(2 : 1) 6= KL(1 : 2); it has a sense of

direction since one distribution is regarded as true and the other is approximate. A

symmetrized form J(1, 2) = KL(1 : 2) + KL(2 : 1) has some of the properties of a

distance-like quantity. It can be regarded as a measure of the divergence between H1

and H2, i.e. a measure of the difficulty of discriminating between them.

Another choice to quantify the different between the two distribution may be the KS or

Kolmogorov-Smirnov test. The KL divergence and KS test are quite different. KL(2:1)

is a measure of the difference between f1 and f2 given that the data are distributed

according to f2; KS tests the null hypothesis that f1 and f2 are the same (small p-value
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Figure 3.22: KL divergence (for the standard case) for distributions of guiding cen-
ter radius (purple), radial velocity amplitude (brown) and vertical velocity amplitude
(green). The red horizontal line is an approximate cutoff: when KL lies below the line
it will be difficult to distinguish (at 3σ) true from approximate distributions within 30

encounters.

means unlikely). In a qualitative sense (and not a technical one) the KL divergence is a

more powerful discriminant than the KS test and for this reason was been preferred as

indicator. Finally, the dynamical distribution is multidimensional but it is difficult to

work with the joint distribution. Instead, a comparison is made of individual 1D PDF’s

for 3 different quantities. The “standard case” is shown in Fig. 3.22.

When the separation of the two peaks is ≥ 2 rotation periods the distributions are

indistinguishable for ≤ 30 samples.

The KL divergence ultimately decreases with the peak separation for all parameter

sets (pattern speed, amplitude, spiral scale height) but not all cases are as clean as

the standard case (Fig. 3.22). An example with Ωp = 0.75 and otherwise standard

parameters shows non-monotonic behavior for vR, the radial velocity amplitude (brown

line). The KL divergence does not fall below the red horizontal line until the separation

is about 4 rotation periods. The actual crossing point is likely between 2 and 4 rotation

periods but the resolution in time of separation is insufficient to be more accurate.

The KL behavior for vR may be traced back directly to the PDF. The distribution is

complex, probably from exceptional resonant-like interactions. The complexity means
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Figure 3.23: Same as Fig. 3.22 but for Ωp = 0.75.

that distinguishing the two distributions is somewhat easier.

It is difficult to give a definitive summary of the results for the reasons already alluded

to: (1) fixed width for the peaks, (2) resonant-like interactions that need to be averaged

over. Both of these could be addressed by doing more runs.

3.4.5 The spiral arms perturbation on the solar path

In the previous paragraph we have seen that the distribution originated by two joined

spiral arms is almost indistinguishable with respect to one due to two separate and

consecutive spiral arms perturbations. From a computation point of view the last one is

the better approach in order to make less burdensome the integration for the equation

of motion.

Our main aim consists now in the extrapolation of the previous results, to probe the

effect due to a three-dimensional spiral arms on the sun-like stars after a multi-encounter

(more than 2) perturbation, in order to verify if a non-axisymmetric component may

have a crucial role in the explanation of the solar migration phenomenon. Adopting

again the formulation summarized in §3.3.1 and setting the code in order to obtain 20

consecutive spiral arm encounters, we have integrated the motion for a sample of 100

sun-like particle, changing their intial positions and the parameters of the spiral arms
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perturbations. This procedure allowed us to point out if the spiral arms perturbation

has been able to produce a solar migration at the beginning of the history of our Solar

System, underlining which feature of the spiral arm model could determine a sensitive

change in the solar position.

The sample of 100 “solar analogs” for each set of spiral arms parameter (see Tab. 3.3).

By solar analog we mean a star with the same mass as our Sun and the same initial

peculiar velocity components (U� = 11.1 ± 0.74 km/s, V� = 12.24 ± 0.47 km/s,W� =

7.25± 0.37 km/s, Schönrich et al. (2010)). Since the solar peculiar velocity is the result

of primordial events occurred during the virialization of the Galaxy, like as the violent

relaxation (see, Bindoni and Secco (2008)), we can assume that it did not change even if

the solar position of the Sun may be evolved during its life. Indeed, as it was already said

Sellwood and Binney (2002), the spiral arms perturbation could move the stars without

changing in a significant way their peculiar velocities. In the table 3.3 it is possible to

see the range of initial positions and parameters of the spiral arms that were explored

with the simulation. The samples for the initial positions, the pattern speed Ωp and

Parameter Range of values

Initial Position R0 6, 6.1, 6.2, 6.3, 6.4, 6.5,
6.6, 6.7, 6.8, 6.9, 7, 8

Amplitude A 0.5, 1, 2

Pattern speed Ωp 0.5, 0.9, 1, 1.1, 1.2,
1.3, 1.4, 1.5, 2

Scale height hs 0.5, 1, 2

Spiral width W 0.5, 0.75, 1, 1.5, 2

Table 3.3: Set of parameters for each simulation with a sample of 100 particles sun-
like and 20 consecutive encounters with a spiral arms perturbation. The spiral arm

parameters are expressed as multiplies of the “standard case” quoted in §3.3.1

the spiral width W are not equally distributed in the considered range. This choice was

determined by two requirements

• to ensure that the initial position are consistent with the over-metallicity gradient

of the Sun (see §3.1.1);

• to better investigate the spiral parameters that have showed a greater importance

in the determination of the solar orbit. Indeed we started with an homogeneous

sample for each quantities (0.5, 1, 2 multiplies with respect to the standard case),
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Figure 3.24: Evolution through 6 spiral encounters for a sample with initial position
of 6.5 kpc in the standard case.The number of spiral arms encounters increases from

left to right and from the top to the bottom of the figure.
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Figure 3.25: Evolution through 6 spiral encounters for a sample with initial position
of 6.5 kpc for Ωp = 1.2Ωstandard. The number of spiral arms encounters increases from

left to right and from the top to the bottom of the figure.
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to test the sensitivity of the solar path to each parameter. After these fist sets

of simulations, we focused with more details on those quantities that induced the

most significant changes in the orbits of the solar analogs.

In order to establish if a particle achieved a position compatible with that of the Sun

at present after one, two or more spiral encounters, we had to impose some criteria. In

particular we defined a box of the positive suns based on the present solar position Rg

(intended as the guiding center radius), radial velocity vR and the vertical velocity vz.

Indeed we could not consider only the agreement with the final position of the particle

and the Sun, but we have also to avoid excessive heating effects, since, as we have

already said, the peculiar velocities are determined by different dynamical events at the

beginning of the Milky Way history and did not change in a significant way during its

evolution. So the three edges are defined as follow:

• Rg → (R� ± 500)pc where R� = 8000 pc as usual;

• A(vR)→ (U� ± U�) km/s

• A(vz)→ (W� ±W�) km/s
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Figure 3.26: The number of solar analogs starting from different initial position (on
the x-axis in pc) that reach the “positive box” just after one encounter with the spiral
perturbation. The distribution of the results are strongly dependent from the value of
Ωp, the other parameters (the amplitude A, scale height hs and spiral width W are set

to the standard case values).

We are interested in whether a sun-like star that was located in a inner position (∼ 6−6.5

kpc) from the galactic center at the beginning of the Solar System, could move to the
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Figure 3.27: Collocation of the different patter speeds considered, with respect the
Lindblad resonances

present solar position under the effects of one or more spiral encounters. We imposed

that each spiral arms perturbation be born, grow and die in a total integration time

of 12σ. In particular σ is equal to half rotation period at the initial position of the

particles, then it changes as a function of R; in other words the overall duration of

the perturbation depends on the initial position. However the difference between the

galactic period of a particle at 6 or 8 kpc does not produce a significant difference in

the final distribution of results, then we will not commit a serious mistake if we have

ignored this dependence. In both cases the single spiral perturbation lasts about of the

order of 1 Gyr (precisely between 1.2 and 1.5) Gyr), so it is easy to compute that after

4 or 5 spiral arm encounters we cover the total life of our Solar System.

Twenty spiral arms events is longer than the entire life of the Universe. But we know

that the distribution due to two joined spiral arms is compatible with the distribution

due to two separate and consecutive perturbations. Then 20 encounters allow us to

consider different combinations of perturbing situations (single and consecutive spiral

or multi-ovelapping perturbations), probing also some extreme cases and determining
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the parameter space within which the current solar configuration can be achieved. We

can follow the evolution of our sample through these spiral arm multi encounters for

the standard case spiral in Fig. 3.24. The 100 particles start from an initial position of

6500 pc, the box of the positive suns is highlighted by the red rectangle, the blue points

are the particles that do not satisfy the dynamical situation of the Sun today, while

the red points are particles with velocities and position compatible with the current

solar parameters. For the standard case, the spiral arm perturbation obtained by the

snapshot of the RAVE data, it is very difficult for the particles with initial position 6.5

kpc or less to achieve a configuration in agreement with the solar one. The situation

changes if we increase the pattern speed Ωp, considering for example a Ωp equals to 1.2

times the values provided by Siebert et al. (2012). As it is possible to see in Fig. 3.25,

some particles with the same initial position (6.5 kpc) reach the solar configuration after

only one encounter with the spiral arms perturbation. It confirms the importance of the

parameter Ωp in determining a significant change of the solar motion under the spiral

arms action.From these results we can argue that a solar migration, from a inner galactic

position to the current one, may be likely determined by a spiral arms with a pattern

speed higher than the value fixed by the current solar environment (Ωp = 18.6 km s−1

kpc−1). Despite that, we can not increase Ωp indefinitely to produce a more efficient

stellar migration, since for a double values of Ωp in the standard case, none particle

achieves the current solar area starting from an inner galactic position, also considering

greater and smaller initial position. A useful summary is visible in Fig. 3.26, in which we

can see the number of solar analogs starting from different initial position (on the x-axis

in pc) that reach the “positive box” after one encounter with the spiral perturbation.

The distribution of the results are strongly dependent from the value of Ωp (line are

color-codes with respect to the values of Ωp), while all the other parameters are set to

the standard case values.

These results are expected from the preliminary study on the spiral arm parameters (see

§3.4), where it was identified that in order to produce a efficient migration outward we

need Ωp > Ωstandard. It is useful to highlight the previous study is referred to the current

solar position (∼ 8 kpc), but we can argue that the rough outline about the parameters

remains valid also in other range of distance. In Fig. 3.27 is possible to see the collocation

of some patter speeds considered in the study with respect to the Lindlad resonances.

As was argued in the previous paragraphs, another important parameter in the spiral

arm action may be the spiral width W . Performing a very preliminary investigation also

for this parameter (see Tab. 3.3), we found out that the more efficient migrations are

obtained for a W = 2Wstandard, in other words if the temporal width of the perturbation

is equal to 1 solar rotational period around the Galaxy. The physical reason as to why if

varying the width makes a difference is the following: the characteristic epicycle periods

are of order the rotation period. So, holding the width fixed (equal to a rotational
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Figure 3.28: Bubble histogram for the particles with respect to the more important
parameters for the spiral arms perturbation (amplitude, pattern speed and scale height).
The dimensions of the bubble are proportional to the particles number that represent.
The particles starting from different initial positions are color coded as quoted in the
legend. In the top panel are quoted the numbers of particles that achieve the current
solar position after one single encounter with the spiral arms perturbation. In the bot-
tom panel we find the full set of integration, with black symbols for those combinations
of parameters that did not produce any particle in the present solar position. The

parameters’ values are expressed as multiplies of the “standard case” (see §3.3.1)
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period) it couples to a particular epicycle variation. This will be true even when one

considers that all such interactions of the Sun with the spiral arm are averaged over

phase.

We can collect all the information about the different spiral arms parameters in the

Fig. 3.28, in which are quoted all the initial conditions and the combined effects of the

different quantities that play an important role in the spiral arms perturbation.





4
Solar motion on the Galactic Habitable Zone

The position and the motion of the Sun inside the Galaxy may assume some importance

when we look to the conditions that have allowed the development of life on Earth. In

the following sections we will see how the idea of habitability in the Galaxy has been

built and revisited during the years, traducing the habitability requirements in edges of a

zone in which we meet the most suitable conditions to host complex Life. Even if we are

very far to find a definite view about the challenging topic of Galactic habitability, we

can use the present knowledge in order to figure out into the contest the star migration,

in particular the solar one, inside the framework of the galactic habitability.

4.1 The Galactic Habitable Zone

The birth and the development of life, as we know it, are based on a very fine balance

between many factors and conditions that involves different areas of study from chem-

istry to dynamics.

There are two main research branches on this topic:

• the planetary one, which is mainly connected to the presence of the liquid water

on the planetary surface that depends on planetary distance, the mass of the

central stars etc.;

• the Galactic one, that tries to figure out what would be the more suitable Galactic

environment for the emergence of life.

In order to define the Galactic Habitable Zone (GHZ) we have to take into account several

galactic-scale factors, they include those which are relevant to the formation of planets,

such as radial disk metallicity gradient, and moreover the events that could threaten the

life (nearby supernovae and gamma ray burst). Many efforts have been done in order

93
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Figure 4.1: Space-time distribution of metals obtains by Lineweaver et al. (2004).
Metallicities at different Galactocentric distances (from 2.5 kpc, upper curve, to 20.5
kpc, lower curve, with 2 kpc increments) can be compared with the probability of
harboring terrestrial planets as a function of the metallicity of the host star. The solar

time formation at the current galactocentric distance is highlighted by a white dot.

to identify and correlate the different factors that may influence the rise of life from a

galactic point of view, see Gonzalez et al. (2001), Gowanlock et al. (2011), Lineweaver

et al. (2004). The most effective summary for the life requirements inside the Galaxy was

provided in the work by Lineweaver et al. (2004). In this study was combined a model

of the evolution of the Galaxy Fenner and Gibson (2003) with metallicity constraints

derived from extrasolar planet data (radial distributions of stars, gases and metals, the

metallicity distribution of nearby stars and the solar chemical composition) Lineweaver

(2001), in order to define the GHZ’s size with respect to the time and distance from the

galactic center. It is important to stress that the GHZ limits in metallicity the galactic

area in which a star meets conditions compatible with the habitability at the moment

of its birth. Indeed a star formed with the right metallicity will be able to produce

Earth-like planets, no matter if it will leave the GHZ immediately after its formation.

In Lineweaver et al. (2004) four prerequisites for complex life have been identified and

quantified by a probability:

1. presence of a host star: the most convenient way to describe the stars distri-

bution is to use the SFR that indicates how many stars are available to host a

planetary system;

2. a sufficient amount of heavy elements to form terrestrial planets: the

metallicity to build efficiently a terrestrial planet presents an upper and a lower
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limit. Indeed too little metallicity does not allow to form a Earth-mass planet,

while with too much metallicity, giant planets could destroy the terrestrial ones.

A metallicity-dependent probability, Pmetals, of harboring terrestrial planets has

been assigned to the space-time distribution of metals (see Fig. 4.1)

3. enough time to allow biological evolution: they assumed the Earth’s time

scale as typical and adopted 4±1 Gyr as the characteristic time for the development

of complex life. This constraint is modeled as a probability Pevol(t), defined as the

cumulative integral of a normal distribution of mean 4 Gyr and dispersion 1 Gyr;

4. an environment free of supernovae: the high energy radiation due to a su-

pernovae’s explosion can be fatal to the rise of life. It is not easy to determine the

real effect of this emission on an organism, but it surely depends sensitively on the

thickness and composition of an atmosphere and on the density of dust and gas.

The probability that complex life survives supernovae is defined as PSN = 0.5ξ(r, t)

where ξ(r, t) is the supernovae danger factors depending on the galactocentric dis-

tance r and the stars’ formation time t.

The total probability to obtain a galactic environment favourable to complex life PGHZ

could be expressed as

PGHZ = SFR× Pmetals × Pevol × PSN . (4.1)

The factors PSN and SFR of Eq. 4.1 are not independent, but since they grow in

opposite ways (with a higher SFR, the supernovae danger increase reducing PSN and

viceversa) finally results in a compensation between them.

PGHZ(r, t) expresses the number of planetary system with suitable condition for life as

a function in time and space. In Lineweaver et al. (2004) the GHZ is identified as the

region that includes from 68% to the 95% of these systems: a region centered at ∼ 8

kpc from the Galactic center broadens with time, that includes stars formed between 8

and 4 billion years ago (see Fig. 4.2). The 68% edge encompasses less than ∼ 10% of

the stars that are born in our Galaxy and comparing the age distribution of complex

life (in green on the right in Fig. 4.2) it appears that ∼ 75% of the stars that could host

life are on average 1 Gyr older than the Sun.

In their work Lineweaver et al. (2004) did not impose that a condition life be probable,

but assuming the current solar condition as a template to find similar systems, a natural

consequence is that the Sun itself lies inside the GHZ defined using those constraints.

A generalization for the result shown in Fig. 4.2 may be achieved looking not to the

development of complex life, but to life in general; in other words they removed the 4

Gyr limit in time excluding Pevol from Eq. 4.1, extending the GHZ as showed in Fig. 4.3.
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Figure 4.2: The GHZ in the disk of the Galaxy obtained using the requirements
based on host stars presence, suitable metallicity (blue), sufficient time for evolution
(gray), and freedom from life-extinguishing supernova explosions (red). The white
edges encompass 68% (inner) and 95% (outer) of the origins of stars with the highest
potential to be harboring complex life today. The green line on the right shows the age
distribution of complex life, obtained by integrating PGHZ(r,t) over r, Lineweaver et al.

(2004)

In this way the mean age for a star hosting life is shifted ahead in time: ∼ 1 Gyr younger

than the Sun.

In spite of the fact that the procedure followed in the previous study is solar-centric, the

final conclusions are reasonable in the frame of our Galaxy; indeed it would be true in

general that:

• the early intense star formation in the inner part of the Galaxy provided the heavy

elements necessary to the formation of terrestrial planets at the beginning of the

galactic history, but also produced unacceptably strong supernovae emission that

did not allowed the arising of life for several billion years;

• the stellar halo and the thick disk, because of their low metallicity, unlikely host

terrestrial planets;

• the bulge is not a suitable environment for life too, since it suffers from a high

density of stars with intense radiation field and close encounters between stars.
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The limits of the habitability in Galaxy have been revisited in few recent works, in

particular by Prantzos (2008) and Gowanlock et al. (2011). The criticism of the first

one is very useful. He highlights the two different approaches to the GHZ idea. One

is related with the probability of complex life around one star at a given space-time

location; the other one involves the volume (or surface) probability density of having

complex life in a given position of the Galaxy at a given time. In other words: in the

first case we are dealing with the probability for a star which arises at a given time in a

given place of Galaxy to develop in one of its Earth-like planets a complex life; in the

second one how many stars are able to do that at the same space-time location. The two

approaches are clearly shown in Prantzos (2008). The overall probability for Earth-like

planets with life is given at the bottom right of Fig.5 in Prantzos (2008), where the

product of the two probabilities for Earths surviving Hot Jupiters and Earths surviving

SN is considered. Substantially the calculation of PGHZ of Lineweaver et al. (2004) has

been redone after a strong critical revision on the constraints on which the definition

adopted for the GHZ is based (in particular the requirements linked to the surviving

supernova explosions , and the metallicity-dependent probabilities of forming Earth-like

planets and Hot Jupiters).

Despite that , the study provides the GHZs size for five different epochs during the

Figure 4.3: The GHZ in the disk of the Galaxy without the temporal requirement
(4± 1 Gyr) for the complex life, Lineweaver et al. (2004)
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Figure 4.4: The probability of the events that constrain the GHZ’s size provided by
Prantzos (2008) for five different epochs (1, 2, 4, 8 and 13 Gyr) in the Galaxy history.
The overall probability for Earth-like planets with life is shown in the bottom right
panel, and defines a ring in the Milky Way disk extremely narrow at the beginning of
the Galactic history, but progressively achieves the quasi-total extension of the galactic

disk at present time peaking at about 10 kpc.

evolution of the Milky Way (namely 1,2,4,8 and 13 Gyr) (see Fig. 4.4). The GHZ has a

ring-like shape, quite narrow at the beginning of Galaxys history (around 3 kpc), but it

progressively widens, achieving the quasi total- extension of the galactic disk at present

time peaking at about 10 kpc. Fig.6 (left panel) of Prantzos (2008) shows the same result

as Fig.5 (bottom right) in space-time diagram, comparable with Fig. 4 of Lineweaver

et al. (2004). Conversely Fig.6 (right panel) is obtained multiplying the probability dis-

tribution of the left panel with the corresponding surface density of stars which is much

larger in the inner disk than in the outer one. Owing to that the main result becomes:

it is the inner disk the place relatively more hospitable than the outer one and it is more

interesting to seek complex life there than in the outer disk. The result is not too much

different from that found by Gowanlock et al. (2011), who describe the GHZ in terms

of the spatial and temporal dimensions of the Galaxy that may favor the development

of complex life, it means following the second approach to the GHZ idea. The first one

is strongly critical of the GHZ’s edges provide in Lineweaver et al. (2004), and with
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respect to the possibility to define a limit for a habitable zone in general inside the

Galaxy. Indeed Prantzos (2008) pointed out that the constraints on which the definition

of the GHZ is based (in particular the requirements linked to the supernovae rate, and

the metallicity) depends heavily on the assumption about the evolution of the Milky

Way and the probability of having stars that host terrestrial planets, which are far from

be univocally defined at present. Despite that, the study provides the GHZ’s size for

five different epochs during the evolution of the Milky Way (namely 1, 2, 4, 8 and 13

Gyr) (see Fig. 4.4). The requirements in metallicity are represented as the probability

of Earth-like planets to survive Hot Jupiter. The GHZ has a ring- like shape, quite

narrow at the beginning of Galaxy’s history (around 3 kpc), but it progressively widens,

achieving the quasi-total extension of the galactic disk at present time peaking at about

10 kpc.

Figure 4.5: The GHZ in the disk provided by Gowanlock et al. (2011). The number
of habitable planets per parsec (number provided by the color-coded vertical bar) is
plotted as a function of radial distance and birth date. In this study the negative effects
of supernovae action are reduced, obtaining in this way that the habitable planets are

most prevalent in the inner part of the Galaxy.

They in fact found that our current location is not particularly favorable to host life

and pointed out that the more suitable environment lies in the inner part of the Galaxy

(with a peak in correspondence of 2.5 kpc, see Fig. 4.5). This extreme result is due

to the reshaping of the supernovae effects in the balance between metallicity and high

frequency emission: reducing the negative effects of supernovae action, the GHZ may

be extended at r ∼ 2.5 kpc from the center, thanks to the metallicity that in the inner

Galaxy produces a high planet formation rate for long time scale and makes the inner
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region able to support the greatest number of planets with the suitable conditions to

host complex life. In addition Gowanlock et al. (2011) redefined also the morphology of

the GHZ that is not longer a annular region, as in Lineweaver et al. (2004), but consists

of a region near to the Galactic center, without a precise inner boundary and strongly

dependent on radial distance.

After this kind of clarifications we stipulate to refer our study to the canonical model of

Lineweaver et al. (2004), substantially not too much changed by the revision of Prantzos

then conserving the first idea of GHZ. Our innovation will be rather to consider hab-

itability in the context of solar migration. That is the research field in which we are

moving in the present work

4.2 Sun position on the GHZ

The solar migration inside the galactic disk may become relevant also in the framework

of the habitability. Indeed if the Sun is not in a fixed position from the beginning of its

history, it could spend a significant fraction of its life outside the galactic region more

suitable for life.

As we have already seen (§ 4.1) the GHZ was identified by Lineweaver et al. (2004) as a

region centered at the current Sun’s position that becomes wider with time. According

to the metallicity gradient and the perturbation due to the spiral arms that we obtained,

the Sun could lie at the beginning of its history closer to the galactic center, in particular

around 6 kpc. We are interested to check if the perturbed solar path is compatible with

the galactic conditions that allow the life to arise. Otherwise if we will find that the solar

motion due the spiral perturbation entails a violation of the requisites for habitability,

we should exclude this mechanism. An example of this violation is provided by the solar

paths obtained by Kaib et al. (2011): in Fig. 4.6 projecting over the GHZ the solar paths

of Fig. 3.1, if the motion in the left panel (A path in Fig. 3.1) is compatible with the

habitability conditions, conversely the right panel (B path in Fig. 3.1) shows a motion

of the Sun in totally disagreement with the possibility of life: indeed the environment

of the solar formation and evolution is compromised by a too high metallicity and the

destructive effects of the supernovae emissions.

So we superimposed on the GHZ few our solar paths under the effects of non-asymmetric

spiral arms component, in order to understand if the variation of position for the Sun

may compromise the development of life in the Solar System. In Fig. 4.7 it is possible

to see the motion of a solar analog that starts this evolution closer to the galactic center

(Rin = 6.1 kpc) and current solar peculiar velocities, under the effect of a multi-spiral

arms perturbation with a faster rotation than the values in the current solar environment

(Ωp = 1.1 Ωstandard, a reasonable assumption for the past). The sun-like star, although
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Figure 4.6: Solar paths by Kaib et al. (2011) superimposed on the GHZ Lineweaver
et al. (2004). One the right side is shown a solar evolution in disagreement with the
habitability conditions, while the solar path on the left panel is compatible with the

arise of life (see text).

it starts its evolution closer to the galactic center, is still inside the GHZ. That is im-

portant, since in order to have the correct metallicity composition to form and conserve

terrestrial planets, it is crucial the position at which the star was born. Indeed a later

solar relocation outside the GHZ which should not have a significant relevance on the

composition of the star and a its possible planet system. Conversely, an exposure to the

supernovae emissions could compromise the development of life also after the formation

of the central star. Indeed, it may sterilize the planetary surface, impeding the growth

of complex organisms or completely destroying them.

It easy to see that this sterilization does not occur for the considered solar path, that

moves outside the GHZ (left panel) only because of the request of 4 Gyr to the devel-

opment of the complex life. Indeed if we remove the constrain about the complex life

(right panel), looking to the formation of life in general, the solar motion lies totally

inside the GHZ.

We see that the migration from a inner position due to the spiral arms action, even

modified the solar motion, does not preclude to achieve the arise of life. An other point

of view could be wondering if a star in the current position of the Sun at the beginning

of its history may be pushed out of the GHZ, or also, if our Sun will be expelled from

the GHZ in the future with negative consequence for the organisms jet present in the

planetary system around the star. In Fig. 4.8 are showed two different solar paths, both

with initial position of 8 kpc and the other initial conditions equal to the 6 kpc case,

perturbed by a multi-encounters standard (see § 3.3.1) spiral arms perturbation, i.e. a

spiral structure with features equal to those obtained in solar neighborhood Siebert et al.

(2012).The difference between the two path are due to the variation for the encounters

geometry (distinct value of ψmax. On the left panel the solar analog suffers a strong

change of its position with a maximum excursion of 3 kpc and it is pushed close the edge
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Figure 4.7: Solar path, with initial position of 6.1 kpc, perturbed by a multi-
encounters spiral arms superimposed on the GHZ Lineweaver et al. (2004), with (left
side) and without (right side) the requiring 4± 1 Gyr for the evolution of complex life

(see text).

of the GHZ, instead on the right panel a star with the same initial conditions remains

nearly fixed around the position in which the simulation started. Both these paths,

although with different behaviors, show the same results: the perturbed effect produces

a motion, more or less strong, but completely within the GHZ’s edge.

Figure 4.8: Two different solar paths, with initial position of 8 kpc, perturbed by
a multi-encounters standard spiral arms superimposed on the GHZ Lineweaver et al.
(2004) without the requiring 4 ± 1 Gyr for the evolution of complex life. The vertical

red lines delimit the maximum excursion for the motion.

In conclusion the possible perturbation effects due to the spiral arms action on the solar

path in relation to the GHZ’s contours may open a new framework for the habitability

and stellar migration research, indeed new works could be focused not only about where

the single system lies at the present time, but in which galactic region it has spent the

most part of its evolution time and if its path is in agreement with the development of

the complex life. The GHZ may be also improved and better defined by the dynamics

issues that take a role during the evolution of a star and its planetary system, taking
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into account for example the consequence that a different position in the galactic envi-

ronment may have on the small bodies, like comets, that could hit the planetary surface

with a devastating effect for the life. As we already seen in §4.1, a deep uncertainty rules

over the definition of the GHZ; then it is very important to underline that the present

results are only a first attempt to introduce the problem of a possible solar migration in

the framework of the requirements for the complex life in the Galaxy. It is clear that our

conclusion should be completely revisited if the GHZ’s edges indicated by Lineweaver

et al. (2004) will be no longer valid or will be subverted. In addition our conclusion are

limited by the not perfect agreement between the galactic model on which is based the

GHZ and the potential that produce the solar motion, lack that also may entail some

inaccuracies in our understanding of the constraints to impose for the solar path, in

order to meet the most suitable conditions for the arise of Life.





5
The Spiral Arms Effects on the Oort Cloud

Several perturbers act on the main cometary reservoir of our planetary system. The main

ones, the Galactic tide and the close stellar passages, might be both affected by a possible

solar migration. We decide to focus our attention only on the first of these perturbations,

in order to identify clearly the consequences that a change in solar position may have

on the Galactic tidal field. In this chapter we will describe the cometary motion under

the Galactic field with and without the spiral arms perturbation, in order to underline

the main differences between the two treatments.

5.1 Cometary Orbits

It is well-know (see §1.3.2) that the quasi-integrable perturbation due to the Galactic

action produces a significant change in cometary orbital elements, in particular inter-

esting the perihelion distance q. A crucial aim of this work is tried to understand the

effects of a different Galactic environment on a comet reservoir like the Oort cloud. This

study may flow into several research fields:

• a deeper understanding of our planetary system: investigation about the

solar motion inside the Galaxy and the cometary dynamics that this motion entails,

that may be the key to figure out the behavior of the peripheral objects of our

Solar System (for example the unexpected path of body like Sedna, see Kaib et al.

(2011);

• a redefinition of the GHZ boundaries: since the Oort cloud is the remnant of

the planetary formation, an Oort-like cometary cloud may be a commons structure

around the many exoplanetary systems discovered in growing number from the first

claim in 1995, see Mayor and Queloz (1995). Understanding the way in which these

105



106 Chapter 5. The Spiral Arms Effects on the Oort Cloud

structures could have evolved, it may throw light on the ambivalent role played by

the comets in arise of life, leading to a redefinition of the GHZ’s edges.

As in the study about the solar path we proceeded with a gradually increasing in the

perturbation of the cometary motion. First we analyzed the Galactic tidal effect on the

Oort cloud in an axisymmetric potential for a nearly circular solar motion, trying to

identify the contribution of each galactic component (bulge, disk and dark matter halo),

in a second moment we introduced the spiral perturbation, studying cometary object

that follow the solar path through its migration on the Galactic disk.

5.2 Integration in an axisymmetric potential

In a Galactic potential devoid of components that break the cylindrical symmetry, as

that of bulge, disk and dark matter halo, it is possible to simplify the integration of

the comet motion under some reasonable assumptions. In particular allow us to use

the formalism of the Hill’ s approximation, to make easier, from a computation point of

view, the integration of the cometary motion.

The Hill’s approximation adapts the formalism of the restricted three-body problem for

the case in which the dimension of satellite system is much smaller than the distance

to the center of the host system. The previous condition suits our problem, in which

the system Sun-comet achieves the maximum size of 1 pc, while the distances from the

galactic center are about three orders of magnitude larger. In this type of situation we

may also assume that the variation of the gravitational potential along the cometary

orbits is very smooth, making possible the application of the distant-tide approximation

(see Binney and Tremaine (2008)). This treatment considers a spherical host system,

with a gravitational potential Φ(R) at the distance R from its own center. Of course our

problem does not enjoy this kind of symmetry, owing to the presence of the disk. So we

have re-considered the Hill’s approximation in 3D-dimensions changing the symmetry

of the host system potential from a spherical to an axial one (see §C for more details).

The consequence for this change in the potential symmetry, has not relevant fallout on

the cometary equations if the comet orbit remains into the galactic equatorial plane.

Indeed the two equations describing the comet movement on the plane, do not change

with respect to the spherically symmetric 2D-dimension case. Conversely the equation

along the z-axis becomes completely different, as expected, in order to take into account

the cylindrical symmetry along the z-axis. We also assume that the center of mass of the

satellite system (e.g. the Solar System) travels on a circular orbit with angular velocity

Ω0, at the distance R0, the initial solar position from the center of the host system (the

Galaxy). This assumption appears reasonable, due to the small variation of the radial
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position for the motion of a Sun-like star under the action of an axisymmetric potential

(see §3.2.3). Further we follow the analysis of the comet motion in a co-rotating Sun

centered system in which the x-y plane coincides to the stellar orbital plane, êx points

directly away from the center of the host system and êy points in direction of the orbital

motion of the satellite (see Fig.5.1).

This reference system, called synodic, rotates with the frequency Ω0 ≡ Ω0êz and in this

system the acceleration of a particle is described by the following expression:

d2x

dt2
= −∇ΦT − 2Ω0 ×

dx

dt
−Ω0 × (Ω0 × x), (5.1)

where ΦT is the total potential acting on the comet. The corresponding force may be

decomposed in two different contributionss as follows:

∇ΦT = ∇Φs +
3∑

j,k=1

Φjkxk. (5.2)

∇Φs, equal to GM�/r2 in the solar case, represents the part of gravitational poten-

tial due to the satellite system1, while the second term, due to the extended galactic

component, comes from the distant-tide approximation once expanded the gravitational

potential of the host system Φ(R) in Taylor series, starting from the center-of-mass of

satellite system. In Eq. (5.1) it is possible to separate the effect of the Coriolis force

from the centrifugal one and analyze the two contributions separately.

In our coordinate system the center of the host system lies in X = (−R0, 0, 0) and the

components of angular velocity are Ω0 = (0, 0,Ω0). Introducing the satellite system

of reference x = (x, y, z) (see §C) it turns that: Φxx = Φ′′(R0); Φyy = Φ′(R0)
R0

6= Φzz
2;

Φxy = Φxz = Φyz = 0. Then, the motion equations may be expressed as follow:



ẍ(t) = 2Ω0ẏ(t) + [Ω2
0 − Φ′′(R0)]x(t)− ∂Φs

∂x
;

ÿ(t) = −2Ω0ẋ(t) +

[
Ω2

0 −
Φ′(R0)

R0

]
y(t)− ∂Φs

∂y
;

z̈(t) = −4πGρ(z)z(t)− ∂Φs

∂z
;

(5.3)

where ρ(z) ' ρ̄ ' 0.1M� pc−3 is the mean density in the Sun’s neighborhood, along

z-direction (see Brasser et al. (2010)). Using the relation Φ′(R0) = R0Ω2
0, due to the

assumption of a circular motion of the star around the Galactic center and introducing

1Not the first order term in the Taylor development of the gravitational force due to the host system
(see §C).

2It becomes equal only in the case of a spherically symmetric potential (see §C).
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the Oort’s constants in the following form:

A(R) ≡ 1

2

(
vc
R
− dvc

dR

)
= −1

2
R

dΩ

dR
,

B(R) ≡ −1

2

(
vc
R

+
dvc
dR

)
= −

(
Ω +

1

2
R

dΩ

dR

)
,

(5.4)

where vc(R) = RΩ(R) is the circular velocity at the radius R, we can rewrite the system

(5.3) as: 

ẍ(t) = 2Ω0ẏ(t) + 4Ω0A0x(t)− ∂Φs

∂x
;

ÿ(t) = −2Ω0ẋ(t)− ∂Φs

∂y
;

z̈(t) = −4πGρ(z)z(t)− ∂Φs

∂z
.

(5.5)

Where the equations of motion are in Hill’s approximation form. This last formu-

lation has many advantages: first of all it avoids the problem of the loss of significant

numerical digits, that affects approaches in which the Galactic tidal term is directly

integrated (as we will see in §5.3.1.1). Further we have only one system of differential

equations to integrate, indeed the contribution of all the Galaxy components is inside

the total angular velocity Ω0, thanks to the additivity of the potentials and to the as-

sumption of circular motion of the Sun. That means a significant simplification from a

computational point of view. The same reasons allow us to consider an analogous set of

equations for each Galactic component, in order to underline the specific contribution

to the total tide due to bulge, disk and dark mater halo. The Eqs. of system (5.3) have

only to be transformed taking into account Eq.s (C.20, C.21) reported in §C.

Despite that computational simplification, this treatment is an approximated one and

the assumptions on which it is based could not be fulfilled in every cases of our analysis.

5.2.1 Results for the cometary integration in a 2D axisymmetric po-

tential

We have considered the comet body like a test particle for the galactic tide and chosen a

comet belonging to the outer shell of the Oort Cloud, where the solar gravitational force

is lower and the galactic perturbations are then more evident. The comet has initial

aphelion Q = 140000 AU, initial perihelion q 2000 AU, inclination i equals to zero with

respect the Galactic plane and galactic longitude which l = 3π
2 rad (see Fig.5.1), with a
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direct motion direction, that has been integrate for 100 Myr. Our preliminary aim is to

focus on the single contribution to the comet motion due to each Galactic components

of the potential and their relative weight in to influence the comet path. The choice to

restrict the cometary motion to the plane, and in fact investigating a two-dimensional

orbit, finds an explanation in our purpose to provide a deepening about all the galactic

perturbations that are usually neglected in cometary dynamics studies. Constraining

the motion on the plane allow us to focus our attention on the planar component of the

Galactic tide that, as we already seen, it is very small with respect to the orthogonal one

at solar distance, see ?. Despite that, the planar tide may play a not completely marginal

role, as suggested by Masi et al. (2009), expecially in the perspective of a Galactic inner

collocation for the Sun at the beginning of its history, inside the framework of a solar

migration.

Figure 5.1: Picture of the initial conditions for a comet orbit with galactic longitude
3π
2 in the reference system with the origin on the galactic center (X,Y). The heliocentric

system (x,y) in Hill’s approximation is also shown.

To test the influence of the position with respect the Galactic center on the comet’s

perihelion distance, we have integrated the cometary orbit for different distances, de-

composing each time the total tidal perturbation into the contributions of the single

Galactic components. To take into account that a generic central star, that hosts an

analogs of Oort cloud, may have undergone a possible migration owing to the spiral

arms effect stronger that in the solar case, we investigate the tides at two limit solar

collocations r = 4, and 8 kpc, without considering shorter distances in order to preserve

the spherical structure for the bulge.

As expected the integrated orbit shows that the total galactic tidal perturbation in-

creases moving toward the center of the Galaxy (compare Fig. 5.3 with Fig. 5.2). In

addition, the analysis for the single Galactic components underlines that the strongest
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Figure 5.2: Zoom of the perihelion zone for the comet orbit at 8 kpc from the Galactic
center (Hill’s approximation). The different contributions from the Galaxy components
to the perihelion variation are shown. The order of time-sequence is marked by numbers
in the ”‘Total”’ case, obtained by the sum of the contributions due to bulge, disk and

dark halo.

perturbation effect is caused by the Galactic disk at 8 kpc (see Fig. 5.2). Conversely for

a comet orbit closer to the Galactic center (4 kpc), the main role is played by the bulge,

while the disk has only a secondary influence.

The reason may be clearly understood considering the Hill’s approximation. Indeed Eqs.

(C.20, C.21) tell us that the contribution of the Galaxy tide (x-component), together

with the partially compensation due to the variation of centrifugal force at x-coordinate,

turns out to be depending on the radial velocity contribution of each Galactic compo-

nent. This contribution is factorized into two terms: one due to the trend of the radial

velocity (the term in brackets at the second member of Eq.(C.21), the other one due

to the amount of the corresponding square radial velocity. So at fixed distance of 8

kpc the first factor due to the disk is about equal to 1. Looking at Fig.2.1, the disk

shows indeed a maximum in its circular velocity trend. The same term due to the DM

halo turns to be, in absolute value < 1, due to its increasing velocity trend (less than

a quadratic one). Conversely the bulge has a logarithmic derivative equal to −1
2 and

then the same term reaches the value 1.5. But at fixed R the ratio between the second

factors: (vcD/vcBG)2 = 2.1 is great enough in order to explain the dominance of the

disk. Similar considerations allow us to predict that DM halo becomes relevant at about

15-20 kpc.
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Figure 5.3: Zoom of the perihelion zone for the comet orbit at 4 kpc from the Galactic
center (Hill’s approximation). The different contributions from the Galaxy components
to the perihelion variation are shown. The order of time-sequence is marked by numbers
in the ”‘Total”’ case, obtained by the sum of the contributions due to bulge, disk and

dark halo.

At the distance of 4 kpc, the first factor due to the disk and DM halo are, in absolute

value, < 1 (the velocity due to disk and DM halo are increasing), on the contrary the

term due to the bulge is 1.5. So the bulge dominance is manifest even without consid-

ering the contribution due to its second factor (vcBG)2.

Starting from this very basic example, we will add details to our model, introducing the

spiral arms perturbation and consequently deserve the Hill’s approximation. We will

also build a random 3D sample of comets to integrate around a Sun in motion through

the Galactic disk.

5.3 Integration in a non-axisymmetric potential

The introduction of the spiral arms in the galactic potential, breaks the cylindrical

symmetry which usually holds for the cometary motion under the effect of the tidal

field of the Galaxy (like the Hill’s approximation, that we have seen in the previous

paragraph, and other simplified expressions of the equations of motion suggested by

Trumpler and Weaver (1953), Heisler and Tremaine (1986), Levison et al. (2001)). To

probe the spiral arms perturbation on the comet orbits, the lack of symmetry forced us
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to use a non-approximated expression for equations of motion in which a main keplerian

motion around the Sun is perturbed by the action of the Galaxy. The surrounding

galactic environment is introduced by a perturbative function. It may be useful, before

proceed with applications on the comet motion, to draft the system of equations of

motion by a theoretical point of view.

5.3.1 The relative form and the perturbative function R

Following Danby (1962), we consider a generic system on N bodies and transfer the

origin of the reference system to the N -th particle. The position vector of the i-th body

with respect to N -th one may be expressed as:

ri = r′i + rN (5.6)

Deriving twice with respect to the time we obtain:

r̈′i = r̈i − r̈N (5.7)

where the accelerations on the right side of the previous equation are calculated as follow:

mi
d2ri
dt2

= G

N∑
j=1

j 6=i

mimj

r3
ij

rij (i = 1, 2, ..N). (5.8)

In particular we have the expression of the accelerations due to all the N particles on

the i-th:

r̈i = G
N∑
j=1

j 6=i

mj

r3
ij

rij (i = 1, 2, ...N) (5.9)

and the acceleration due to all the N − 1 particles on the N -th:

r̈N = G

N−1∑
j=1

mj

r3
Nj

. (5.10)

Then we can write the acceleration of the i-th particles in the reference system centered

on N -th the body as:

r̈
′
i = G

N∑
j=1

j 6=i

mj

r3
ij

rij −G
N−1∑
j=1

mj

r3
Nj

rNj (i = 1, 2, ...N). (5.11)

If we isolate the term relative to the mass of the N -th particle from the first summation
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Figure 5.4: The transfer of the origin for the reference system to the N -th particle.

and the term that included the mass of the i-th particles from the second one, we have:

r̈
′
i =G

mN

r3
iN

riN +G

N−1∑
j=1

j 6=i

mj

r3
ij

rij −G
mi

r3
Ni

rNi −G
N−1∑
j=1

j 6=i

mj

r3
Nj

rNj

=−G(mN +mi)
rNi
r3
Ni

+G
N−1∑
j=1

j 6=i

mj

(
rij
r3
ij

− rNj
r3
Nj

)
(i 6= N),

(5.12)

pointing out that:

rNi = ri − rN = r
′
i, (5.13)

rij = rj − ri = r
′
j − r

′
i, (5.14)

we can obtain the relative form for the equations of motion :

r̈i +G(mN +mi)
ri
r3
i

= G

N−1∑
j=1

j 6=i

mj

(
rj − ri
r3
ij

− rj
r3
j

)
︸ ︷︷ ︸

PERTURBATIV E COMPONENT

, (i 6= N) (5.15)

where we have deleted the superscripts, considering that the vectors involved inside the

last expression are all referred to the central body PN , placed on the origin of the refer-

ence system.

We can underline that if the body number of the system is equal to N = 2, the term

on the right side in the previous expression becomes identically null and the equation

is reduced to the relative two-body motion equation, moving under the mutual gravita-

tional forces. It means that the motion of each particle is regulated by the equation of

motion of the two-body system, composed by the primary and the particle itself, under

the perturbation force term due to the presence of the other particle.
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If the primary body has the dominant mass in the system 3, then the member on the

right side in Eq. 5.15 presents small terms with respect to the left one. If conversely,

the central body does not correspond with the most massive one or with the main

gravitational contribution, the treatise is still working, since it is not grounded on ap-

proximations due to the smallness of the perturbed component.

Inside the perturbation terms we can identify two different types of accelerations. The

first, inversely proportional to the square distance between each couple of particles, is

the direct acceleration. The second one, inversely proportional to the square distance of

each particle to the origin on which the primary body lies, is the indirect acceleration.

The last one represents the central body acceleration due to all the system particles and

it is an expression of the fictitius forces associated to the non inertial reference system

assumed.

The perturbed forces could be also deduced from the perturbative function Ri, de-

fined as

Ri =

N−1∑
j=1

j 6=i

Rij = G

N−1∑
j=1

j 6=i

mj

(
1

rij
− ri • rj

r3
j

)
, (5.16)

and the equations of motion could be written:

r̈i +G(mN +mi)
ri
r3
i

=
∂Ri
∂ri

(i = 1, 2, ...N − 1). (5.17)

It is useful to underline that the system Eq. (5.17) contains N −1 different perturbative

functions. Indeed, this function acquires different expressions varing the particle of the

system for which the correspond equation of motion is written.

We considered the previous formalism to describe the cometary motion around the

Sun, perturbed by the tidal field of the Galaxy. If the origin is taken coinciding with

Sun position and introducing a general formulation for the potential of the Galactic

components, we have:
r̈C +G(mS +mC)

rC
r3
C

= ∇ΦG(rCG)−∇ΦG(rG)

r̈G +GmS
rG
r3
G

+∇ΦG(rG) = ∇ΦG(rGC)−GmC
rC
r3
C

(5.18)

where the subscripts C, G and S are referred to the cometary, Galactic and solar quantity

respectively.

To describe the cometary orbit we integrate the system of equations (Eq. 5.18): the

first equation is about the heliocentric cometary motion around the Sun perturbed by

the presence of the Galaxy, and the second one expressed the motion of the Galactic

3When this condition is verified, the condition mN >>
∑n−1
i=1 mi is satisfied.
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components around the Sun perturbed by the comets (absolutely negligible). The last

one is the reflection of the solar motion, in other words, fixing the new origin of the

reference frame at the Sun, we see the Galaxy moving around the solar position with

the same path of the Sun but in the opposite direction.

The next calculations for the comet orbits will use the galactic potential that involve all

the components already included in the study for the solar motion: the bulge, the disk,

the dark halo and the 3D spiral arms (see § 2). Explicitly:

ΦG(R, θ, z, t) = ΦBG(R, z) + ΦD(R, z) + ΦDH(R, z) + Φs(R,φ, z, t) (5.19)

The integration of the cometary paths in the total potential ΦG(R, θ, z, t), with the non-

approximated formulation of the equations of motion, is particularly challenging from a

computational point of view, as we will see in the next paragraph.

5.3.1.1 Numerical problems

The tidal perturbation is contained in the difference between the gradient of the galactic

potential at the comet place and the Sun position: ∇ΦG(rCG) −∇ΦG(rG). These two

quantities are very close, entailing a loss of numerical accuracy during the integration

of the cometary orbits. In order to remedy this loss of accuracy, that results particu-

larly significant for cometary distance rC < 102 AU (see blue line in Fig. 5.5), we have

introduced a Taylor series expansion (TSE) of the gradient difference around zero. This

substitution allow us to conserve enough digits (red line in Fig. 5.5) and improve the

accuracy for the results obtained from the integration of the equations of motion.

rC (AU) Digits Digits TS Error (Exact vs TSE)
(∇Φcomet −∇Φsun) 1st 2nd 3rd

100 4.63 13.25 10−12 10−20 10−29

101 5.63 13.25 10−10 10−17 10−25

102 6.63 13.25 10−8 10−14 10−21

103 7.63 13.25 10−6 10−11 10−17

104 8.63 13.25 10−4 10−8 10−13

105 9.63 13.25 10−2 10−5 10−9

Table 5.1: Evaluation for the numerical errors. Comparison between the number of
digits provide by the exact tidal term and the TSE expression (columns 2 and 3). In
columns 4, 5 and 6 are reported the errors due to the introduction of the approximation
of the TSE itself, with respect the cometary position and the series order considered.

The use of a TSE to express the tidal perturbation, if from one side avoids the reduction
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Figure 5.5: Loss of digits during the integration of the equations of motion. Compar-
ison between the accuracy for the full expression and the Taylor series expansion

of digits, at the same time introduces an approximation in the tidal term itself. It is

crucial to verify if the error due to the TSE approximation may be worse than that

introduced by the loss of significant numerals. In other words we have to check the bal-

ance between accuracy and precision inside the integration process. As it is well known,

higher is the order of the series, bigger is the agreement between TSE and the exact

expression.

Figure 5.6: Comparison between errors in the integration process due to the loss of
digits and the approximation introduced by the TSE for different series order (1st, 2dn

and 3rd order).

In Fig. 5.6, we can see the comparison between the errors introduced by the loss of
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digits and the TSE approximation (1st, 2dn and 3rd order). The TSE is more precise

than the exact tidal terms for cometary distance rc < 103 AU, no matter which order

are considered. The situation gets worst increasing rc: for distance of order 104 AU

the first order TSE fails to give a enough precise description of the orbit, while for

rc ∼ 105 AU only the 3rd order of the TSE could be used in order to obtain a consistent

description. The semi-major axis of a typical object belongs to the Oort cloud is inside

the range 103−105 AU, but during its life, especially under the action of a perturbation,

the comet may be achieved distance that can also differ in orders of magnitude. In

addition, we have to take into account that the aphelion position, where comet meets

the greatest distance with respect to the Sun, is the most sensitive to the Galactic tidal

action, since in corresponding of the aphelion, the comet undergoes the gravitational

“kick” due to the tide. From the previous considerations arise the need to adopt the

better description in order to provide an accurate and precise calculation for the orbit

on a wide range of distance. The 3rd order of the TSE is the most reasonable choice

to combine computational efficiency and an accurate description. All the values of the

numerical analysis are listed in Tab. 5.1.

5.3.2 Initial conditions for Sun and comets

5.3.2.1 The solar path

The main goal of this work is to understand the influence that a possible solar migration,

induced by a non-axisymmetric structure like the spiral, may have on the Oort cloud

dynamics. We have also seen in the previous paragraphs, that the introduction of a

component that breaks the cylindrical symmetric is no longer compatible with a treat-

ment that simplifies the equations of motions, like the Hill’s approximation. We need

to make a comparison between the behavior of a comet around a Sun with a position

nearly fixed in the Galactic disk (the type of orbit that we obtain with an integration

in the axisymmetric potential), and a comet that follows a Sun dragged in the disk by

the action of the spiral arms perturbation. In addition we want to be sure that the

difference that may be observed is not due to the features that deviate from the circular

motion integrating the solar path in axisymmetric potential (i.e. the motion along the

vertical direction of about 100 pc and along the radial direction of about 1 kpc), but

really by the action of the spiral arms. In this framework, the choice to deserve the

circular approximation for the solar orbit, appears obliged both for the integration with

and without the spiral arms perturbation.

From the results of the study about the Sun, we select one solar path with an inner

position with respect to the Galactic center (R�i=6.2 kpc), that achieved the current
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Figure 5.7: Comparison between the solar path with and without the spiral arm
perturbation. The radial (top panel) and vertical (bottom panel) motion are shown:
the green line is the usual motion of the Sun integrated in axisymmetric potential, while
the red trend is the results of the perturbation provide by three transient spiral arms.

solar position with the current velocities, after 3 encounters with the spiral arms, for a

total integration time Tint =4 Gyr. In Fig. 5.7 are shown the two different solar path

used for the integration of the cometary orbits. The green line is the usual motion of

the Sun calculated in an axisymmetric potential, while the red trend is the results of

the integration in a Galactic potential perturbed by three consecutive transient spiral
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arms (top panel), action of which is particularly evident in the radial direction. The

perturbation of the solar path on the vertical direction is less important, as we expected

by a structure strongly flatten as the spiral (bottom panel).

5.3.2.2 The 3D cometary samples

In order to investigate the effects of the loss of symmetry in the Galactic potential and

the consequences of a not fixed solar position on the cometary behavior, we use different

sample of comets, each of them composed by 30 objects. The choice to limit ourselves

at a small number of body in this first survey, was imposed by the need to test different

combination of cometary features and, of course, by the integration time requested for

such type of calculations, especially those under the perturbation of the spiral arms. A

sample of 104 - 105 comets will be provide a more realist sample for the Oort cloud, but

our first aim is to probe if the spiral perturbation is relevant for the comet dynamics,

as it seems to be for the solar one, and identify the way in which the perturbation acts

on the cometary objects. The specific properties of each sample will be listed in detail

in §5.4. Here we simply indicate the outlines about how building up the sample.

Following Fouchard et al. (2011), we obtain a random sample with a non flat distribution

for all the initial orbital elements Fig. 5.8, in particular:

• the semi-major axis a is chosen between 3× 103 < a < 1× 105 AU, with a density

probability ∝ a−1.5
0 ;

• the eccentricity e follows a density probability ∝ e0 with the constraint q0 > 32 AU,

the limit below that comets may be undergone to the planetary effects, changing

in a completely different way their motion, going out of our present aims;

• the argument of perihelion ω0, the longitude of ascending node Ω0, mean anomaly

M0 and the cosine of inclination cosi0 are chosen completely randomly with a flat

density distribution in agreement with the spherical symmetry of the Oort Cloud.

Using the previous criteria we obtained samples completely random, or with only one

elements that varies spreading on the initial conditions of the comets.

5.3.3 Results for the cometary integration in a 3D non-axisymmetric

potential

We performed 5 simulations, using different cometary samples with initial conditions

chosen as explained in the previous paragraph. Since we were mainly interested into the
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Figure 5.8: An example for a cometary random sample, built using a non flat dis-
tribution of the semi-major axis a and the eccentricity e, following Fouchard et al.

(2011).

galactic field, our model do not include the stellar passages and the planetary action

on the comets. We integrated the cometary path on a total time of 4 Gyr, making the

assumption to have a well defined Oort cloud 500 Myr after the birth of the Sun.

5.3.3.1 Samples with only inclination varied

We started our investigation with several cases in which are fixed all the orbital elements

but the inclination i. In these way it will possible to isolate the effect due to the

variation of this parameter alone, that is particularly relevant in the understanding of

the balance between the planar and the orthogonal components of the Galactic tide along

the cometary path. For each sample was computed the number of objects that achieve

the most internal planetary region, in order to underline also an effect of the spiral

structure on the cometary injection rate, with some consequence also for habitability

in the Galaxy. We fixed the threshold to the entry in the inner part of our planetary

system equals to 32 AU, assuming the same criteria used building the initial conditions

of the samples.
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Figure 5.9: Minimum perihelion distance qmin vs inclination i for a cometary sample
with fixed a0 = 104 AU, e0 = 0.7, ω0 = 0.147 rad, Ω0 = 0.592 rad, M0 = 3.846 rad
and i0 randomly chosen. The red points are relative to comets integrated in a Galactic
environment with a spiral arms structure, while the green points are referred to the
motion of the same comets in axisymmetric potential. The black solid line highlights
the threshold for the cometary injection in the inner part of Solar System. The values
of qmin do not evidence relevant differences between the two Galactic environment

considered

• SAMPLE 1

The first sample considered has fixed semi-major axis a = 104 AU and fixed

eccentricity e = 0.7. In Tab. 5.3 are listed the minimum perihelion values qmin

and the maximum aphelion values Qmax that each comet achieved during the whole

integration time, with an without the perturbation effect due the spiral arms. The

comets that are indicated as “Null”, are those objects that do not belong to the

system at the end of the integration time due to the tidal action. In Fig. 5.9 are

shown the cometary qmin vs the initial inclination i0, the red points are relative to

comets integrated in a Galactic environment with a spiral arms structure, while

the green points are referred to the motion of the same comets in axisymmetric

potential. The comets that undergone the stronger reduction of the perihelion

distance present inclination close to π/2, where the orthogonal components of the

tides are strongest. The comets of this samples appear enough bounded to the Sun,

and not sufficiently sensitive to the tidal effects of the Galaxy, to highlight some

difference in the comet behavior due to the addition of the spiral structure. Indeed
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the minimum position with respect to the Sun shows a substantial agreement

between the two approaches (with and without the spiral arms).

Figure 5.10: Minimum perihelion distance qmin vs inclination i for a cometary sample
with fixed a0 = 105 AU, e0 = 0.7, ω0 = −1.615 rad,Ω0 = 4.476 rad, M0 = −2.011
rad and i0 randomly chosen. The red points are relative to comets integrated in a
Galactic environment with a spiral arms structure, while the green points are referred
to the motion of the same comets in axisymmetric potential. Some differences in qmin
start to arise due to the spiral arms perturbation, in particular for orbits with small
inclinations with respect to the Galactic plane. The bottom panel shows the details

about the injection threshold for the comets in correspondence to q = 32AU .

• SAMPLE 2

In the second sample we maintained the same choice for the eccentricity e = 0.7

and increases the semi-major axis a = 105 AU. We kept fixed these orbital elements

on the sample, as Ω0, ω0 and M0, varying the inclination as in the previous example
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Figure 5.11: Minimum perihelion distance qmin vs inclination i for a cometary sample
with fixed a0 = 105 AU, e0 = 0.7, ω0 = −2.909 rad,Ω0 = 5.882 rad, M0 = 0.873 rad and
i0 randomly chosen. The red points are relative to comets integrated in a Galactic envi-
ronment with a spiral arms structure, while the green points are referred to the motion
of the same comets in axisymmetric potential. The gap in qmin increases: for cometary
orbits with small inclinations the qmin obtained under the spiral arms perturbation
are significantly smaller with respect to the values achieved without. Despite that the
injection rates are substantially in agreement with the unperturbed case (bottom panel

and Tab. 5.2)

(details and results for each comets listed in Tab. 5.4). The graph in Fig. 5.10

about the qmin vs the random inclination begins to manifest a gap between the

perihelion position due to the spiral action, in particular the perturbation seems

to reduce q for comets with a small inclination with respect the galactic plane.

• SAMPLE 3

We widened in eccentricity the investigation around the maximum value of a = 105
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Figure 5.12: Minimum perihelion distance qmin vs inclination i for a cometary sample
with fixed a0 = 105 AU, e0 = 0.9, ω0 = 0.633 rad, Ω0 = 4.162 rad, M0 = 0.744 rad
and i randomly chosen. The red points are relative to comets integrated in a Galactic
environment with a spiral arms structure, while the green points are referred to the
motion of the same comets in axisymmetric potential. The effects of the spiral becomes
more evident, determining many injections in the inner part of the solar system, that
will has not verified without the presence of the spiral (bottom panel and Tab. 5.2).

AU, that seems to be enough sensitive to the field of the Galactic tide to display

the effects of the introduction of the spiral arms perturbation. In order to look to a

more extreme cometary orbits we increase the eccentricity to the values of e = 0.8

(see Tab. 5.5). These most eccentric orbits emphasize the discrepancy between

the Galactic perturbation with and without the break of the potential cylindrical

symmetry. For small inclinations the qmin obtained under the spiral arms pertur-

bation are significantly smaller than those without (see Fig. 5.11). The agreement
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between the two set of results was recovered for the cometary orbits with high

inclinations, where the orthogonal component of the tide is completely dominant

in the injection process, as is possible to infer from the absolutely compatible

injection rate obtained in the two different cases (see Tab. 5.2).

• SAMPLE 4

The most extreme case is a sample with the maximum value for the semi-major

axis a = 105 AU and the high eccentricity e = 0.9 (all details of the sample

reported in Tab. 5.6). In Fig. 5.12 it is possible to see the stronger action of

the spiral arm perturbation, that for comet orbits close to the plane, produces

an accentuate reduction of the perihelion distance, determining several injections

in the inner part of the planetary system, that will has not verified without the

presence of the spiral structure.

The results obtained for the different samples considered highlight a growing influence

of the spiral arms on cometary objects with wide and elongate orbits, and with a mod-

erate inclination with respect the Galactic plane. In Tab. 5.2 has been summarized the

injection efficiency for each sample, with an without the present of the spiral perturba-

tion. The spiral structure perturbs in significant way every samples with a = 105 AU,

but it is only for an extreme eccentricity e = 0.9 that becomes crucial for the injection

rate, leading to the inner part of the planetary system the 73% of the objects, while

the axisymmetric potential injects only the 20% of the sample in the regions close to

the Sun. It is important to stress that in a real cometary cloud (i.e. with a non flat

distribution in a and e) this huge rate may be not so exaggerated, since the numbers of

cometary objects with a so wide and elongate orbits are non the major part of the cloud

(as we will see in §5.3.3.2) . Despite that the perturbation due to the tide, in presence

of the spiral perturbation, on the outer shell of the Oort cloud is not negligible. In

particular, the spiral perturbation seems to bolster the action of the planar component

of the tide, indeed this action becomes evident for small inclination, where the influence

of the orthogonal component decreases. It easy to understand that this results is in

agreement with the flatten geometry and the mass distribution of a structure like the

spiral arms, that is concentrated on the plane, and exercises a small influence along the

vertical direction. In other words, the planar component of the Galactic tide, may be

not longer negligible in presence of a components that breaks the cylindrical symmetry

of the potential.

Looking to the graphs (Figs. 5.9, 5.10, 5.11, 5.12) it is possible to notice that the sym-

metry with respect to the inclination central values π/2, decreases as the growing of

the semi-major axis. This behavior may be explained as a consequence of the position
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DIFFERENCE IN INJECTION RATE FOR EACH SAMPLE

Injection Rate (%)
a0 (AU) e0 i0 (rad) Ω0 (rad) ω0 (rad) M0 (rad) With SP Without SP

1 104 0.7 RC 0.592 0.147 3.846 0 0
2 105 0.7 RC 4.476 -1.615 -2.011 13.3 10
3 105 0.8 RC 5.882 -2.909 0.873 10 13.3
4 105 0.9 RC 4.162 0.633 0.744 73.3 20
R RC RC RC RC RC RC 6.7 6.7

Table 5.2: Difference in injection rate for each cometary sample. The orbital elements
that are chosen randomly are indicate as RC.

of the Sun during its oscillation through the galactic plane during the integration of

the cometary orbit. The solar oscillation period along the vertical direction is about

Pz� = 90 Myr. The orbital period of a comets around the Sun (in a keplerian motion),

may be calculated by the simple relation:

T = 2π

√
a3

µ
, (5.20)

where µ = GM� as usual.

A comet with a semi-major axis of about 104 AU results to have an orbital period Pc

equals to about 1 Myr, while an object with a = 105 AU completes its orbit in a period

of 31 Myr. The tidal field is symmetric with respect to the i, that means that will have to

register a completely symmetric trend around the maximum inclination i = π/2, if the

Sun is in the same conditions during the integration of the comet motions. For comets

with a = 104 AU, the cometary period is small compare to Pz�, makes the orbits not

sensitive to the vertical motion of the Sun. Indeed, as it is possible to see in Fig. 5.13,

where the black points represent the position of the Sun when the comets of the sample

with a = 104 AU achieve the minimum perihelion distance. The minimum perihelion

distance are registered in correspondence of symmetric solar distance from the galactic

plane. In the same way we can explain the lack of a perfect symmetry for comet orbits

with a wider a. The comet with a = 105 AU has a period of about a third of Pz�, that

becomes compatible with the period of the solar oscillation along the vertical direction.

In this way the Sun may be found in different distance along the z-axis during the

integration of the cometary motions. This effects is clearly shown in Fig. 5.14, about

the integration of the sample with a = 105 AU and maximum eccentricity e = 0.9. The

qmin for each comets of the sample are in correspondence to very different solar distances

from the Galactic plane. This analysis allow us to obtain some clues about the influence
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Figure 5.13: Solar position along the vertical motion during the integration of the
cometary sample with a0 = 104 AU in a potential without (green trend, top panel) and
with the spiral arm perturbation (red trend, bottom panel). The black points represent
the position of the Sun when the comets of the sample achieve the minimum perihelion
distance qmin. The minimum perihelion values are registered in correspondence of

symmetric solar distances from the galactic plane.

of the vertical motion of the Sun on the comets dynamics. The relative position of our

star with respect the plane of the Milky Way, seems to have a specific weight on the

comet dynamics, as some recent works already claimed, see Gardner et al. (2011). This

may be another argument against the assumption of a circular approximation for the

solar orbit in studied about the Oort cloud evolution.

The last issue about this first set of results, is to understand in which way the radial

migration could influence the extreme large injection rate registered for the most elongate

and eccentric cometary sample. The point is to clarify if the peak for the cometary

injections occurs at some particular distance from the center of the Galaxy, entailing

possible consequences for the GHZ’s edges, or if the cometary entries are spread over
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Figure 5.14: Solar position along the vertical motion during the integration of the
cometary sample with a0 = 105 AU in a potential without (green trend, top panel) and
with the spiral arm perturbation (red trend, bottom panel). The black points represent
the position of the Sun when the comets of the sample achieve the minimum perihelion
distance qmin. The qmin for each comets of the sample are reached in correspondence
to very different solar distances from the Galactic plane, as consequence of an orbital

cometary period comparable with Pz�.

the whole the solar path, from the initial inner position of 6 kpc to the final one, in

agreement with the current Sun collation of 8 kpc from the Galactic center. In Fig.

5.15, we marked with black points the position of the Sun along its migration motion

at the moments in which the comets are injected in the inner part of the planetary

system (i. e. the comets have q ≤ 32 AU), for the sample that produces the greatest

injection rate under the spiral perturbation (a0 = 105 AU and e0 = 0.9). It is possible

to see that the major part of the comets are pulled inside the inner planetary region

in the firsts 2 Gyr, for solar position between (6 and 7 kpc), while no comets has been

sufficiently perturbed to entry in the Solar System during the last 1 Gyr of integration,
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when the migrated Sun reaches a position in agreement with the current one. The

evidence of a region in the Galactic disk with a so high injection rate, even if for the

outer part of our cometary cloud, may involve a redefinition of the habitability edges in

the Galaxy. In particular region not precluded to the formation of a planetary system,

i. e. that satisfied the requirements of metallicity and presence of a suitable host star,

may compromise the development of the life with a high cometary impact risk.

Figure 5.15: Solar position along the vertical motion during the integration of the
cometary sample with a0 = 105 AU and e = 0.9, in a potential perturbed by the spiral
arms. The black points represent the position of the Sun when the comets of the sample
reach the perihelion threshold of 32 AU, to enter in inner region of the planetary system.

The injections are concentrated in solar position encompassed between 6 an 7 kpc.

5.3.3.2 Random Sample

The results provided by the cometary samples of the previous paragraph showed a

significant perturbation of the outer shell of the Oort cloud, i.e. for those comets with

the most elongate orbits. For this kind of comets the perihelion distance seems to be

strongly affected by the present of the spiral arms, producing an extreme elevate rate of

injection for the sample with the extreme conditions (a0 = 105 AU, e = 0.9). In order

to generalize the conclusions about the role played by the spiral arms in the cometary

dynamics, we considered a small completely random sample of 30 objects (the details

for the comets in the sample are listed in Tab. 5.7), and repeated the same study done

for the previous samples.

Unfortunately the very small number of comets considered and the non flat distribution

in the semi-major axis assumed for the Oort cloud, produced a sample imbalanced to tiny

a, provided only two comets with an orbit enough large to highlight the presence of the
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Figure 5.16: Minimum perihelion distance qmin vs semi-major axis a0 for a cometary
sample completely random. The red points are relative to comets integrated in a Galac-
tic environment with a spiral arms structure, while the green points are referred to the
motion of the same comets in axisymmetric potential. The sample appears unbalanced
to tiny semi-major axis for which the action of the spiral arms is barely recognizable
and produce a injection rate identical for axisymmetric and non-axisymmetric potential

(see Tab. 5.2).

non-axisymmetric perturbation (see Fig. 5.16). We did not recognize a particular clue

of the spiral perturbation, obtained also the same injection rate both for axisymmetric

and non-axisymmetric potential (see the last line in Tab. 5.2).

We also built a graph about the distribution of the minimum perihelion qmin vs the

eccentricity (Fig. 5.17) and the inclination (Fig. 5.18), that shown again a sample in

which is difficult to identify a proof of the spiral presence for the comets represented

by the red dots. In conclusion it was not possible to highlight a tangible action of the

spiral arms perturbation for a sample closer to the real orbital distribution presents in

the Oort Cloud. That is due both by the very limited number of comets considered,

but also by the strong concentration around semi-major axis values of a = 104 AU

for the real comets distribution (the Oort spike). Despite that, the elevate injection

rate triggered by the presence of the non-axisymmetric structure, that involves a solar

migration and seems to reinforce the influence of the planar component of the tide,

producing an depletion effect that may entail a redefinition for the external bound of

the cloud, and may be a significant importance in the past injection processes.
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Figure 5.17: Minimum perihelion distance qmin vs eccentricity axis a0 for a cometary
sample completely random. The red points are relative to comets integrated in a
Galactic environment with a spiral arms structure, while the green points are referred
to the motion of the same comets in axisymmetric potential. In the sample appears

difficult to identify the proof for the presence of the spiral arm perturbation.

Figure 5.18: Minimum perihelion distance qmin vs inclination i0 for a cometary
sample completely random. The red points are relative to comets integrated in a
Galactic environment with a spiral arms structure, while the green points are referred

to the motion of the same comets in axisymmetric potential.
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5.4 Data cometary sample

FIXED ORBITAL ELEMENTS: a = 104 AU, e = 0.7, q0 = 3000 AU
ω0 = 0.147 rad,Ω0 = 0.592 rad and M0 = 3.846 rad

With spiral arms Without spiral arms
Comet i0 (rad) qmin (AU) Qmax (AU) qmin (AU) Qmax (AU)

1 2.578 2101.950 17895.0 2103.540 17891.0
2 2.814 2651.430 17345.7 2655.430 17339.8
3 2.703 2420.510 17575.8 2423.240 17570.3
4 0.456 2380.550 17611.1 2395.660 17590.8
5 2.573 2087.840 17909.1 2089.390 17904.8
6 2.137 819.424 19175.9 819.247 19172.0
7 1.787 130.235 19875.3 139.761 19863.1
8 0.500 2269.690 17720.8 2284.630 17700.1
9 0.590 2027.700 17961.1 2041.890 17940.8
10 0.616 1954.900 18034.3 1968.760 18013.1
11 0.986 870.996 19113.0 877.789 19094.6
12 1.019 782.285 19200.8 789.300 19181.7
13 1.644 Null Null Null Null
14 3.031 Null Null 2928.290 17064.2
15 0.537 Null Null 2187.640 17795.4
16 2.809 2641.980 17354.7 2645.910 17348.7
17 0.688 1743.260 18244.5 1755.890 18224.3
18 3.107 2942.240 17056.1 2961.280 17033.7
19 0.421 2461.340 17531.2 2476.550 17510.9
20 1.420 58.515 19897.5 Null Null
21 0.827 1328.280 18657.7 1336.970 18641.5
22 3.135 2943.650 17054.7 2963.350 17033.3
23 0.652 1849.720 18138.5 1863.030 18118.1
24 0.825 1334.810 18651.9 1343.580 18634.6
25 0.203 2843.100 17150.4 2857.940 17132.5
26 0.685 1751.850 18235.8 1764.540 18215.7
27 1.847 Null Null 202.921 19797.8
28 1.643 Null Null Null Null
29 0.958 946.810 19038.0 953.469 19019.0
30 0.231 2808.020 17185.2 2823.100 17166.7

Table 5.3: Data about the cometary sample with fixed a0 = 104 AU, e0 = 0.7,
ω0 = 0.147, Ω0 = 0.592, M0 = 3.846 and i0 randomly chosen. The comets indicated
as “Null” do not belong to the system at the end of the integration time for the tidal

action
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FIXED ORBITAL ELEMENTS: a = 105 AU, e = 0.7, q0 = 30000 AU
ω0 = −1.615 rad,Ω0 = 4.476 rad and M0 = −2.011 rad

With spiral arms Without spiral arms
Comet i0 (rad) qmin (AU) Qmax (AU) qmin (AU) Qmax (AU)

1 2.300 22896.600 235721.0 24104.200 208992.0
2 2.363 25917.900 227237.0 21622.700 211410.0
3 1.822 Null Null 2648.170 267396.0
4 2.357 25679.200 226300.0 21930.400 210697.0
5 0.293 21003.700 180289.0 25501.900 172480.0
6 0.630 2517.750 221963.0 23690.100 189192.0
7 2.623 2790.060 260104.0 12027.500 211800.0
8 0.622 9484.180 216028.0 22316.500 189817.0
9 1.765 Null Null 346.307 283269.0
10 2.999 6933.340 203208.0 17152.600 187630.0
11 2.147 4.459 372451.0 18521.200 228384.0
12 0.750 0.333 267710.0 21262.300 196448.0
13 0.467 20713.000 193021.0 27303.400 175461.0
14 1.034 2502.200 271129.0 2047.980 244068.0
15 1.548 Null Null 382.351 301024.0
16 2.910 10074.600 207262.0 17311.600 188784.0
17 0.232 20390.200 182913.0 25445.600 170811.0
18 2.242 18331.700 266965.0 22862.800 216696.0
19 2.173 4119.530 356916.0 18989.900 230352.0
20 1.097 16.939 314366.0 718.755 254041.0
21 0.607 16173.600 202712.0 26964.000 184614.0
22 1.110 325.029 316749.0 296.814 261042.0
23 1.104 28.786 317489.0 1.772 249779.0
24 1.345 Null Null 2.200 270202.0
25 2.452 20027.100 232933.0 15925.200 217286.0
26 2.908 10110.100 207390.0 17450.300 188761.0
27 0.087 14268.900 197450.0 25040.500 171573.0
28 1.331 Null Null 0.635 270831.0
29 0.771 Null Null 22091.800 202647.0
30 2.429 18369.400 225314.0 17931.100 214580.0

Table 5.4: Data about the cometary sample with fixed a0 = 105 AU, e0 = 0.7,
ω0 = −1.615, Ω0 = 4.476, M0 = −2.011 and i0 randomly chosen.
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FIXED ORBITAL ELEMENTS: a = 105 AU, e = 0.8, q0 = 19999 AU
ω0 = −2.909 rad,Ω0 = 5.882 rad and M0 = 0.873 rad

With spiral arms Without spiral arms
Comet i0 (rad) qmin (AU) Qmax (AU) qmin (AU) Qmax (AU)

1 0.005 3372.520 217199.0 19548.000 187815.0
2 2.069 32.933 223368.0 707.563 207006.0
3 3.086 4922.990 203790.0 10520.400 192476.0
4 0.142 3935.720 217112.0 19139.400 188046.0
5 1.706 80.332 222382.0 6.156 208805.0
6 1.833 0.417 222286.0 0.789 208619.0
7 0.089 3584.720 217557.0 19416.400 187866.0
8 0.410 6862.590 215398.0 15947.300 190526.0
9 1.673 40.094 222190.0 3.590 208707.0
10 1.560 Null Null 1.819 207949.0
11 2.040 16.450 223314.0 577.201 207331.0
12 2.748 1895.470 211738.0 8299.070 195349.0
13 0.289 5650.130 215351.0 17608.400 189845.0
14 2.496 41.890 233197.0 5160.790 199716.0
15 0.482 7072.300 214187.0 14610.000 191803.0
16 0.099 3638.360 217509.0 19374.000 187894.0
17 0.363 6489.430 215438.0 16662.200 189785.0
18 0.289 5648.500 215355.0 17610.700 189843.0
19 1.399 53.301 221391.0 Null Null
20 2.829 1886.990 216049.0 9122.850 194282.0
21 1.256 507.501 216234.0 653.696 204082.0
22 2.727 1754.080 214569.0 8086.770 195774.0
23 2.695 1716.920 217419.0 7766.820 196326.0
24 2.528 12.719 218781.0 5504.910 199101.0
25 0.386 6698.010 215462.0 16365.700 190146.0
26 0.354 6408.620 215415.0 16718.400 189667.0
27 3.062 4933.450 203873.0 10490.600 192476.0
28 0.855 3973.520 211252.0 7483.910 198007.0
29 0.597 6677.990 208815.0 12226.600 193938.0
30 0.913 3047.810 212278.0 5397.870 198770.0

Table 5.5: Data about the cometary sample with fixed a0 = 105 AU, e0 = 0.8,
ω0 = −2.909, Ω0 = 5.882, M0 = 0.873 and i0 randomly chosen.
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FIXED ORBITAL ELEMENTS: a = 105 AU, e = 0.9, q0 = 9999 AU
ω0 = 0.633 rad,Ω0 = 4.162 rad and M0 = 0.744 rad

With spiral arms Without spiral arms
Comet i0 (rad) qmin (AU) Qmax (AU) qmin (AU) Qmax (AU)

1 1.399 0.356 213594.0 5.202 200194.0
2 0.971 10.112 199793.0 73.395 198466.0
3 0.096 210.273 219485.0 2059.360 197980.0
4 2.444 0.149 233982.0 2109.100 205472.0
5 1.527 0.068 206657.0 6.030 206617.0
6 2.889 1.483 228682.0 2738.740 207745.0
7 0.575 615.893 199595.0 1177.000 194749.0
8 1.824 223.776 204734.0 1.758 207127.0
9 2.779 0.055 219599.0 2244.360 206502.0
10 2.411 630.512 218192.0 1810.030 205279.0
11 1.398 14.779 201648.0 0.320 203114.0
12 2.831 0.896 225756.0 2429.510 207648.0
13 2.926 12.482 230721.0 2696.180 207533.0
14 0.744 0.134 202449.0 1131.140 197459.0
15 1.335 8.197 193595.0 Null Null
16 1.383 0.098 198183.0 0.314 198345.0
17 1.735 259.409 213671.0 Null Null
18 2.188 0.397 214907.0 796.962 207313.0
19 1.907 372.871 212004.0 440.882 200887.0
20 2.910 1.073 227102.0 2820.160 207635.0
21 2.875 19.347 227802.0 2693.620 207881.0
22 2.311 721.558 226186.0 748.959 206660.0
23 1.883 0.508 222442.0 43.941 205109.0
24 0.143 787.932 217488.0 2100.790 197767.0
25 2.694 0.187 221471.0 2417.740 209746.0
26 0.752 3.743 199572.0 906.070 196999.0
27 2.619 0.477 248534.0 2256.020 208396.0
28 3.058 0.102 226038.0 3047.670 207162.0
29 0.778 0.693 196744.0 1265.620 196501.0
30 1.232 12.084 200176.0 5.583 198812.0

Table 5.6: Data about the cometary sample with fixed a0 = 105 AU, e0 = 0.9,
ω0 = 0.633, Ω0 = 4.162, M0 = 0.744 and i0 randomly chosen.
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Conclusions

The Solar System is not a completely isolate structure with an independent dynamics,

but it is immersed into a wider Galactic environment that may influence its evolution.

The Galaxy is not only a silent observer, but it is directly involved in many processes

that might modify the history of the Sun and its main cometary reservoir: the Oort

cloud. The comets are the more ancient witnesses of the formation of the Solar System,

these object conserve the marks of the primordial chemical and dynamical conditions in

which the Sun was born. The spherical structure where the comets are stored, lies in

the most peripheral region of the Solar System, constantly prone to the perturbations of

the Galaxy, in particular due to the stellar passages and the Galactic tidal field, that are

able to inject these fossils of the past, close the central star. The Oort cloud is frontier

between out Solar System and the Milky Way, the point in which we have the contact

between the planetary and the Galactic dynamics.

The idea of a solar migration is finding a growing consensus, supported by the exigence

to explain some observative evidence, like the gap in metallicity between the Sun and

its current local environment. The identification of the spiral arms structure as the

principal responsible of the stellar migration through the disk was suggested by several

authors (e. g. Roškar et al. (2008a), Sellwood and Binney (2002)). Despite that, the

effects of the such type of non-axisymmetric perturbation, with the solar migration that

seems to entail, is less considered in the past studies about the Oort cloud. Indeed,

the inclusion of the spiral structure in the studies related to the Oort cloud dynamics is

challenging essentially for two reasons: the strong uncertainties about the dynamical and

morphological characterization of the spiral arms and the lack of symmetric that this

structure originate in the potential of the Galaxy, making the integration of cometary

orbits more heavy from a computation point of view.

The work done has the main aim to introduce a spiral structure that may produce

a solar migration compatible with the constraints given by the solar history (current
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position, peculiar velocity and metallicity), in order to study the comet behavior around

a Sun that experience different galactic environment over its evolution. We built our

model using the observational data provided by Siebert et al. (2012), about the spiral

structure in the current solar environment, and we extended the classical theory of

Lin & Shu to a 3D-dimensional model for the spiral arms perturbation. The need

to add the third dimension in the spiral model, was born by the requirement to not

overestimate the perturbation on the plane, as may happen considering an infinitely

thin structure. In order to take into account the wide range of uncertainties around the

spiral arms structure and evolution, we performed a statistical investigation for the main

parameters that characterize this structure, trying to identify which of these parameters

may be crucial to obtain an efficient solar migration from an inner position in the disk,

fixed by metallicity requirements, to the current one. We find that this type of non-

axisymmetric perturbation is able to move the Sun from an closer initial position around

6 kpc up to the present solar collocation, if the pattern speed is higher with the respect

the value obtained for the data concerning the solar environment.

The solar migration inside the galactic disk may become relevant also in the framework

of the habitability. Indeed if the Sun is not in a fixed position from the beginning of

its history, it could spend a significant fraction of its life outside the galactic region

considered as the more suitable for life. For these reasons we have taken into account

approaches to the Galactic habitability in order to insert our results in the framework of

the Galactic Habitable Zone (GHZ), founding that the obtained solar path is compatible

with the galactic conditions that allow the life to arise, at least according to the canonical

model of Lineweaver et al. (2004).

We devoted the final part of our investigation to apply the spiral perturbation to the

comets, introducing the solar migration and adding the direct presence producing the

non-axisymmetric component in the galactic potential of the tidal field. We considered

few cometary samples, each composed by 30 objects, integrated in a potential with

and without the spiral perturbation modulating it by a transient regime. The results

show a growing influence of the spiral arm on cometary objects with large and elongate

orbits, and with moderate inclination with respect to the Galactic plane. The spiral

structure perturbs in a significant way the comets belonged to the outer shell of the

Oort cloud (a = 105 AU), and for extreme eccentricity provides a injection rate three

times bigger than the integration performed without the spiral arms on the same objects.

The introduction of the spiral perturbation seems to bolster the planar component of

the tide, that may be not longer negligible in affecting the cometary perihelion. We

also tried to understand in which way the radial migration could influence the extreme

large injection rate registered for the most elongate and eccentric cometary sample. The

point to clarify was if the peak for the cometary injections occured at some particular

distance from the center of the Galaxy, entailing possible consequences for the GHZ’s



Conclusions 139

edges, or if the cometary entries were spread over the whole solar path, without any

preferential collocation for the Sun. It turned out that the major part of cometary

injections were registered between 6 and 7 kpc. Looking to these very promising results

for strong elongate orbit, we have to take into account that the major number of objects

in the Oort Cloud is concentrated around a = 104 AU (the Oort spike), where the spiral

arm perturbation seem to be not so effective. Indeed when we tried to build a more

realistic cometary sample, with a non flat distribution for the semi-major axis and the

eccentricity, we were not able to highlight a statistically significant action of the spiral

arms perturbation due to the very limited number of comets considered in the sample.

In conclusion it seems not possible at the moment to highlight a tangible action of the

spiral arms perturbation for a sample closer to the present orbital distribution in the

Oort Cloud. That might have a threefold meaning:

a) the result is due simply to the number of comet considered which is too much low;

b) the real comets distribution shows a spike around a = 104 AU and then the Galaxy

tide (including that of spiral arms) plays a smaller role for more bound objects

biasing our results found for larger semi axes;

c) the present distribution in the semi major axis is indeed the result of a strong

depletion of larger semi axis values due to the past injection effect produced by

all the components of Galactic tide during the Sun migration as addressed by our

preliminary results.

In this frame work the very next improvement of this work will be the integration of

number of comets at least comparable with the real Oort cloud (104 − 105objects), in

order to provide more details about the three previous issues.





A
Tutorial of orbital dynamics

A.1 Fundamental Laws

Motions inside our Solar System could be explained and described, in first approxima-

tion, using the basic laws of the celestial mechanics as the Kepler’s laws, the Newton’s

Universal law of gravitation, the formalism for two and (restricted) three-body problem.

In following sections we will summarize the most important notions about these topics.

A.1.1 Kepler’s Laws of planetary motion

Kepler derive his three laws of planetary motion between 1609 and 1619, using an

empirical approach (Murray and Dermott, 1999). From observations, including those

made by Thyco Brahe, Kepler deduced that:

1. The planets move in ellipses with the Sun at one focus.

2. A radius vector from the Sun to a planet sweeps out equal areas in equal times.

3. The time square of the orbital period of a planet is proportional to the cube of its

semi-major axis.

The geometry implied by the first two laws is an ellipse has two foci and according to

the first law the Sun occupies one focus while the other one is empty (Fig. A.1a). In

Fig. A.1b each shaded region represents the area swept out by the radius from the Sun

to an orbiting planet in equal time intervals, and the second law states that these areas

are equal.

Half the length of the long axis of the ellipse is called the semi-major axis a. Kepler’s

141
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Figure A.1: The geometry implied by Kepler’s first two laws of planetary motion

third law relates a to the planetary orbital period T . He deduced that

T 2 ∝ a3, (A.1)

so that if two planets have semi-major axes a1 and a2 and periods T1 and T2 then

T1/T2 = (a1/a2)3/2, which is consisted with his original formulation of the law.

It is important to remember that Kepler’s laws were purely empirical: he had no physical

understanding of why the planets obeyed these law. The explanation will be provided

by Newton about seventy years after, and in that way the Kepler laws could interest not

only the planetary motion but a large sample of different celestial bodies.

A.1.2 Newton’s Universal Law of Gravitation

In 1687 Isaac Newton proved that a simple, inverse square law of force gives rise to all

motion in the Solar System (Murray and Dermott, 1999) . There is a good evidence that

Robert Hooke, a contemporary and rival of Newton, had proposed the inverse square

law of force before Newton (Westfall 1980) but Newton’s great achievement was show

that Kepler’s laws of motion are a natural consequence of this force and the resulting

motion is described by a conic section.

In scalar form, Newton proposed that the magnitude of the force F between any two

masses in the universe, m1 and m2, separated by a distance d is given by

F = G
m1m2

d2
, (A.2)

where G = 6.672× 10−11 m3 kg−1 s−2 is the universal costant of gravitation.

In his Principia Newton also propouned his three laws of motion:
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1. Bodies remain in a state of rest or uniform motion in a straight line unless acted

upon a force.

2. The force experienced by a body is equal to the rate of change of its momentum.

3. To every action there is an equal and opposite reaction.

The combination of these laws with the universal law of gravitation was to have a pro-

found effect on our understanding of the universe. By extending Newtonian gravitation

to more than two bodies it was shown that the mutual gravitational interaction result

in ellipses that are no loger fixed. Indeed in our solar system, the orbits of the planets

slowly rotate or precess in space over timescale of ∼ 105 years.

We now know that Newton’s universal law of gravitation is only an approximation, al-

beit a very good one, and that a better model of gravity is given by Eistein’s general

theory of relativity, but the classical gravitation approach fits well the purposes of the

following chapters.

A.2 The two-body problem

The two-body problem is the simplest, integrable problem in Solar System dynamics

(Murray and Dermott, 1999) . It concerns the interaction of two point masses moving

under a mutual gravitational attraction described by Newton’s universal law of gravita-

tion Eq. (A.2).

Consider the motion of two masses m1 and m2 with position vectors r1 and r2 referred

to some origin O fixed in inertial space (see Fig. A.2.

m

1

F
2

1
F

r

r r

m

2

O

1 2

Figure A.2: A vector diagram for the forces acting on two masses m1 and m2, with
position vectors r1 and r2

The vector r = r2 − r1 denotes the relative position of the mass m2 with respect to

m1. The gravitational forces and the consequent accelerations experienced by the two
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masses are:

F1 = G
m1m2

r3
r = m1r̈1 and F2 = −Gm1m2

r3
r = m2r̈2 (A.3)

respectively and where G is the universal gravitational constant. Thus

m1r̈1 +m2r̈2 = 0, (A.4)

which can be integrated direcly twice to given

m1ṙ1 +m2ṙ2 = a and m1r1 +m2r2 = at+ b, (A.5)

where a and b are constant vectors. If R = (m1r1 + m2r2)/(m1 + m2) denotes the

position vector of the center of mass, then Eqs. (A.5) can be written

Ṙ =
a

m1 +m2
and R =

at+ b

m1 +m2
(A.6)

This implies that either the center of mass is stationary (if a = 0) or it is moving with

a constant velocity in a straight line with respect to the origin O.

Now consider the motion of m2 with respect to m1. This allow us to simplify the problem

without losing any of its essential features. Writing r̈ = r̈2 − r̈1, and using Eq. (A.3),

we obtain
d2r

dt2
+ µ

r

r3
= 0, (A.7)

where µ = G(m1 +m2). This is the equation of relative motion. In order to solve it and

find the path of m2 relative to m1 we must first derive several constans of the motion.

Taking the vector product of r with Eq. (A.7) we have r× r̈ = 0 which can be integrated

direcly to given

r× ṙ = h, (A.8)

where h is a costant vector perpendicular to both r and ṙ. Hence the motion of m2 about

m1 lies in a plane perpendicular to the direction defined by h. This also implies that

the position and velocity vectors always lie in the same plane. Eq. (A.8) is commonly

referred to as the angular momentum integral.

Since r and r̈ always lie in the orbital plane we can restrict ourself to considering motion

in that plane. We now transform to a polar coordinate system (r, θ), referred to an origin

centred on the mass m1 and an arbitrary reference line corresponding to θ = 0. If we let

r̂ and θ̂ denote unit vectors along and perpendicular to the radius vector respectively,

then the position, velocity, and acceleration vectors can be rewritten in polar coordinates

as

r = rr̂, ṙ = ṙr̂ + rθ̇θ̂ r̈ = (r̈ − rθ̇2)r̂ +

[
1

r

d

dr
(r2θ̇)

]
θ̂. (A.9)
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Substituting the expression for ṙ into Eq. (A.8) gives h = r2θ̇ẑ, where ẑ is a unit vector

perpendicular to the plane of the orbit forming a right-handed triad with r̂ and θ̂. Hence

h = r2θ̇. (A.10)

m
2

m
1

r

t = 0δ

δ

A

δθ

t =   t

r+ rδ

Figure A.3: The area δA swept out in a time δt as a position vector moves through
an angle δθ

Consider the motion of the mass m2 during a time interval δt (see Fig. A.3). At time

t = 0 it has polar coordinates (r, θ), while at time t + δt its polar coordinates have

changed to (r + δr, θ + δθ). The area swept out by the radius vector in time δt is

δA ≈ 1

2
r(r + δr)sinδθ ≈ 1

2
r2δθ (A.11)

neglecting second- and higher-order terms in the small quantities. By dividing each side

by δt and taking the limit as δt→ 0 we have

dA

dt
=

1

2
r2 dθ

dt
=

1

2
h. (A.12)

Since h is a constant this implies that equal areas are swept out in equal times and

hence Eq. (A.12) is the mathematical form of Kepler’s second law of planetary motion.

Note that this does not require an inverse square law of force, but only that the force is

directed along the line joining the two masses.

We obtain a scalar equation for the relative motion by substituting the expression for r̈

from Eq. (A.9) into Eq. (A.7); comparing the r̂ components gives

r̈ − rθ̇2 = − µ
r2
. (A.13)

To solve this equation and find r as a function of θ we need to make the substitution

u = 1/r (Binet’s transformation) and to eliminate the time by making use of the constant
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h = r2θ̇. By differentiating r with respect to time, we obtain:

ṙ = − 1

u2

du

dθ
θ̇ = −h du

dθ
and r̈ = −h d2u

dθ2
θ̇ = −h2u2 d2u

dθ2
(A.14)

and Eq. (A.13) can be rewritten

d2u

dθ2
+ u =

µ

h2
. (A.15)

This is a second-order, linear differential equation with a general solution

u =
µ

h2
[1 + ecos(θ −$)] , (A.16)

where e (an amplitude) and $ (a phase) are two constants of integration. Substituting

back for r we have the final expression

r =
p

1 + ecos(θ −$)
, (A.17)

which is the general equation of a conic in polar coordinates where e is the eccentricity

and p is the semilatus rectum given by

p = h2/µ. (A.18)

The four possible conics are:

cicle: e = 0 p = a

ellipse: 0 < e < 1 p = a(1− e2)

parabola: e = 1 p = 2q

hyperbola: e > 1 p = a(e2 − 1)

where the costan a is the semi-major axis of the conic. In the special case of the parabola

p is define in terms of q, the distance to the central mass at closest approach. The conic

section curves derive their name from the curves formed by the intersection of various

planes with the surface of a cone (Fig. A.4)

The type of conic is determined by the angle the plane makes with the horizontal. If the

plane is horizontal, that is, perpendicular to the axis of symmetry of the cone, then the

resulting curve is a circle. If the angle is less than the slope angle of the cone then an

ellipse results, whereas if the plane is parallel to the slope of the cone a parabola results.

A hyperbola result if the angle is anywhere between the slope angle of the cone and the

vertical.

To conclude this very brief explanation about the two-body problem, we can derive

another very important constant of the motion by taking the scalar product of ṙ with
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Figure A.4: The intersection of planes at different angles with the surface of a cone
form the family of the conics section curves

Eq. (A.7).This gives the scalar equation

ṙ · r̈ + µ
ṙ

r2
= 0 (A.19)

which can be integrated to give
1

2
v2 − µ

r
= C, (A.20)

where v2 = ṙ · ṙ is the square of the velocity and C is a constant of the motion. Equation

(A.20), often called vis viva integral, shows that the orbital energy per unit mass is

conserved. Thus the two-body problem has four constants of the motion: the energy

integral C and the three components of the angular momentum integral, h.

A.2.1 Orbital elements

We can extend the previous notions from the planets to the others objects presented in

our planetary system, indeed neglecting mutual perturbations, all bodies in the Solar

System move relative to the Sun in an elliptical orbit, the Sun being at one of the two foci

of the ellipse (Morbidelli, 2005) . Since we are not interest about unbounded motions,

we will concentrate on the elliptic case. Therefore, it is convenient to characterize the

relative motion of a body by quantities that describe the geometrical properties of its

orbital ellipse and its instantaneous position on the ellipse. These quantities are usually

called orbital elements.

The shape of the ellipse can be completely determined by two orbital elements that we
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have already met in the previous paragraph about the conics: the semi-major axis a and

the eccentricity e (Fig. A.5). The eccentricity is the ratio between the distance of the

focus from the center of the ellipse and the semi-major axis of the ellipse and describe

the deviation from the circular orbit.

On an elliptic orbit, the closest point to the Sun is called the perihelion, and its

Figure A.5: The definition of orbital elements a, E and e (Morbidelli, 2005)

heliocentric distance q is equal to a(1− e); the farthest point is called the aphelion and

its distance Q is equal to a(1 + e). To denote the position of a body on its orbit, it is

convenient to use an orthogonal reference frame q1, q2 with origin at the focus of the

ellipse occupied by the Sun and q1 axis oriented towards the perihelion of the orbit.

Alternatively, polar coordinates r, f can be used. The angle f is usually called the true

anomaly of the body. From Fig. A.5, with geometrical relationships we obtain:

q1 = a(cosE − e), q2 = a
√

1− e2sinE (A.21)

and we can rewritten the Eq. (A.17)

r = a(1− ecosE) with cosf =
cosE − e
1− ecosE

(A.22)

where E, as Fig. A.5 shows, is the angle subtended at the center of the ellipse by the

projection of the position of the body on the circle which is tangent to the ellipse at

perihelion and aphelion, it is called eccentric anomaly. The quantities a, e and E are

enough to characterize the position of a body in its orbit.
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From Newton equations, it is possible to derive (Danby, 1962) the evolution law of E

with respect to time, usually called the Kepler equation:

E − esinE = n(t− t0) (A.23)

where

n =
√
G(m0 +m1)a−3/2 (A.24)

is the orbital frequency, or mean motion, of the body, m0 and m1 are the masses of the

Sun and of the body respectively and t0 is the time of passage at perihelion.

Figure A.6: The definition of orbital elements i, Ω and ω (Morbidelli, 2005)

It could be useful also introduce a new angle:

M = n(t− t0) (A.25)

called mean anomaly, as an orbital element that changes linearly with the the time.

To characterize the orientation of the ellipse in space, with respect to an arbitrary

orthogonal reference frame (x, y, z) centered on the Sun, we have to introduce three

new orbital elements, in particolar three angles (see Fig. A.6). The first one is the

inclination i of the orbital plane with respect to the (x, y) reference plane. If the orbit

has a nonzero inclination, it intersects the (x, y) plane in two points, called the nodes of

the orbit. Astronomers distinguish between an ascending node, where the body passes

from negative to positive z, and a descending node, where the body plunges towards

negative z. The orientation of the orbital plane in space is then completely determined
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when one gives the angular position of the ascending node from the x axis. This angle

is traditionally called the longitude of ascending node, and is usually denoted by Ω.

The last angle is the argument of perihelion ω defined as the angular position of the

perihelion, measured in the orbital plane relative to the line connecting the central body

to the ascending node; it characterizes the orientation of the ellipse in its plane.

In the definition of the orbital elements above, note that when the inclination is zero, ω

and M are not defined, because the position of the ascending node is not determined.

Moreover, M is not defined also when the eccentricity is zero, because the position of

the perihelion is not determined. Therefore, it is convenient to introduce the longitude

of perihelion $ = ω+ Ω and the mean longitude λ = M +ω+ Ω. The first angle is well

defined when i = 0, while the second one is well defined when i = 0 and/or e = 0.

In absence of external perturbations, the orbital motion is perfectly elliptic: the orbital

elements a, e, i,$,Ω, are fixed, and λ moves linearly with time, with frequency (A.24).

When a small perturbation is introduced, two effects are produced:

1. the motion of λ is no longer perfectly linear. Correspondingly, the other orbital

elements have short periodic oscillations with frequencies of order of the orbital

frequencies;

2. the angles $ and Ω start to rotate slowly. As we have already mentioned this

motion is called precession. Typical precession periods in the Solar System are

of order of 10,000.100,000 years. Correspondingly, e and i have long periodic

oscillations, with periods of order of the precession periods.

The regularity of these short periodic and long periodic oscillations is broken when one

of the following two situations occur:

i. the perturbation becomes large, for instance when there are close approaches be-

tween the body and the perturbing planet, or when the mass of the perturber is

comparable to that of the Sun;

ii. the perturbation becomes resonant1.

In either of these cases the orbital elements a, e, i can have large non-periodic, irregular

variations.

1A resonance occurs when the frequencies of λ, ω̃ or Ω of the body, or an integer combination of them,
are in integer ratio with one of the time frequencies of the perturbation.
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A.3 The restricted three-body problem

The last topis of this small tutorial is the three-body problem. Unlike the simple and

integrable two-body problem the three-body problem has not an analytic solution. In

this section we give only the most important notions about this wide and complex

problem and refer to the references for more details (in particular (Murray and Dermott,

1999)).

(Binney and Tremaine, 2008) The restricted three body-problem is to find the trajectory

of a massless test particle that orbits in the combined gravitational field of these two

masses.

The two masses, m and M with m < M , travel in a circular orbit around their common

center of mass with angular speed

Ωc =

√
G(M +m)

R3
0

(A.26)

where R0 is the separation between the two bodies; so the gravitational field is stationary

when referred to a coordinate system centered on the center of mass that rotates at

speed Ωc. We orient this coordinate system so that two masses are centered at rm =

[MR0/(M +m), 0, 0]] and rM = [−mR0/(M +m), 0, 0] and the angular speed id Ωc =

(0.0.Ω). It is possible to show that on any orbit in such a system, the quantity called

Jacobi integral

EJ =
1

2
v2 + Φ(r)− 1

2
|Ωc × r|2

=
1

2
v2 + Φeff (r)

(A.27)

is conserved. Since v2 ≥ 0, a particle with Jacobi integral EJ can never trepass into a

region where Φeff (r) > EJ . Consequently, the surface Φeff (r) = EJ , the zero surface

for stars of Jacobi integral EJ , forms an impenetrable wall for such particles. Fig. A.7

shows contours of constant Φeff in the equatorial plane of two orbiting point masses;

the Lagrange points are the extrema (maxima and saddle points) of this surface.

From the figure we see that the zero-velocity surfaces near each body are centered on it,

but farther out the zero-velocity surfaces surround both bodies. Hence, at the critical

value of Φeff corresponding to the last zero-velocity surface surrounding a single body

is called its tidal or Roche surface; since this surface touches the Lagrange point L3 that

lies between the two masses on the line connecting them2, it is natural to identify the

outermost radius of orbits bound to m as the distance rJ between m and L3.

2Different authors use different conventions for numbering of the L3
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Figure A.7: Countours of equal effective potential Φeff for two point masses in a
circular orbit (Binney and Tremaine, 2008)

We may evaluate rJ by noticing that at (xm−rJ , 0, 0) the effective potential has a saddle

point, so (
∂Φeff

∂x

)
(rm−rJ ,0,0)

= 0 (A.28)

For two point masses a distance R0 apart, Eq. (A.26) and Eq. (A.27) imply:

Φeff (r) = −G
[

M

|r− rM |
+

m

|r− rm|
+
M +m

2R3
0

(x2 + y2)

]
. (A.29)

At a point between the two masses, Eq. (A.28) is satisfied if

0 =
1

G

(
∂Φeff

∂x

)
(xm−rj ,0,0)

=
M

(R0 − rJ)2
− m

r2
J

− M +m

R3
0

(
MR0

M +m
− rJ

)
. (A.30)

This equation leads to a fifth-order polynomial whose roots give rJ . In general these

roots must be found numerically. However if m << M , then rJ << R0, and we can

expand (R0 − rJ)−2 in powers of rJ/R0 to find

0 =
M

R2
0

(
1 +

2rJ
R0

+ . . .

)
− m

r2
J

− M

R2
0

+
M +m

R3
0

rJ '
3MrJ
R3

0

− m

r2
j

. (A.31)

Then to first order in rJ/R0,

rJ =
( m

3M

)1/3
R0. (A.32)

We call the radius rJ the Jacobi radius of the mass m; alternative names are the

Roche or Hill radius. The Jacobi radius of an orbiting mass is expected to correspond

to its tidal radius.



B
Data from the RAVE survey

The RAVE survey Siebert et al. (2011b), Steinmetz et al. (2006), Zwitter et al. (2008)

provides along the line-of-sight with a precision of 2 km s−1 for a large number of stars

in the southern hemisphere with 9 < I < 12. The targets have been selected randomly

by RAVE within the I-band interval, in this way the properties of RAVE are similar

to a magnitude limited survey. In order to provide additional information about the

proper motions and magnitudes the RAVE catalogue is cross-matched with astrometric

(PPMX, UCAC2, Tyncho-2) and photometric catalogues (2MASS, DENIS). In their

work Siebert et al. (2012) use the internal version of the catalogue which contains data

for 434 807 spectra, corresponding to 393 9.3 starts. In addition the star distances,

necessary to compute the galactocentric velocity, are available for the 30% of the RAVE

starts in three studies Breddels et al. (2010), Burnett et al. (2011), Zwitter et al. (2010).

The final sample in Siebert et al. (2012) consists in 213 713 stars from the survey limit

to a distances of 2 kpc from the Sun and to 1 kpc along the vertical direction above and

below the plane.
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C
Hill’s approximation in 3D axisymmetric potential

C.1 Extension in 3D axisymmetric potential

Referring to Fig.5.1 (see Fig. 8.7 of Binney & Tremaine, 2008, Chapt. 8) we consider

the general gravitational potential Φ due to the host system on the point X ≡ (X̂ + x)

of the satellite system which has the center of mass at X̂. By expansion in Taylor series

we get:

Φ(X̂ + x) ' Φ(X̂) +

3∑
k=1

(~x)k

(
∂Φ

∂Xk

)
X̂

(C.1)

In the case of the Solar system inside the Galaxy it turns to be X̂ ≡ Ro ≡ (Xo, Yo, 0)

the coordinate system (X,Y, Z) having the origin into the Galaxy center.

Taking into account the Xj (j=1,2,3) component of the gradient ∇Φ, Eq.(C.1) yields:

∂Φ

∂Xj
'
(
∂Φ

∂Xj

)
Ro

+
3∑

k=1

(~x)k

(
∂2Φ

∂Xj∂Xk

)
Ro

(C.2)

According to Binney & Tremaine (2008, sect. 8.2.1) the first term of Taylor’s expansion

disappears as soon as we refer the movement of an object in the satellite system to

the center of mass of the same Solar System, choosing it as origin of reference system

x ≡ (x, y, z) (Fig.5.1). To understand it let us remember that the acceleration a′ of the

object considered, in respect to that of the center of mass acm, becomes:

a = a′ − acm (C.3)

155
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The consequence is that the second term of (C.2) yields for acm into (C.3):

1

MS

∑
β

mβ

−∑
j,k

Φjk(~x)βk

 =
1

MS

−∑
j,k

Φjk

∑
β

mβ(~x)βk

 (C.4)

which becomes zero due to the definition of the center of mass for a system of β particles

of total mass MS once it is assumed as the origin of the reference system. Conversely

the contribution of the first derivative,
(
∂Φ
∂Xj

)
Ro

= Φj into Eq.(C.2) due to the center

of mass acceleration is:

− 1

MS

∑
β

(mβΦj) = −Φj (C.5)

by definition of center of mass. Then Eq.(C.3) for the object considered transforms into:

a = −Φj −
∑
j,k

Φjk(~x)k + Φj = −
∑
j,k

Φjk(~x)k (C.6)

Considering then two new reference systems with the center on Sun: X′,x, which differ

from the old reference one simply by a translation along X, so that:

X ′ = X −Ro = x

Y ′ = Y = y

Z ′ = Z = x

Due to the same differentials in the old and new systems we may calculate the force

components of the host system, with the center located now at X′
c ≡ (−Ro, 0, 0), over

the Solar system as follows:

∂Φ

∂X
' x

(
∂2Φ

∂X2

)
Ro

+ y

(
∂2Φ

∂X∂Y

)
Ro

+ z

(
∂2Φ

∂X∂Z

)
Ro

(C.7)

∂Φ

∂Y
' y

(
∂2Φ

∂Y 2

)
Ro

+ z

(
∂2Φ

∂Y ∂Z

)
Ro

+ x

(
∂2Φ

∂Y ∂X

)
Ro

(C.8)

∂Φ

∂Z
' z

(
∂2Φ

∂Z2

)
Ro

+ x

(
∂2Φ

∂Z∂X

)
Ro

+ y

(
∂2Φ

∂Z∂Y

)
Ro

(C.9)

without distinguishing the derivatives respect to the system X from those respect to

X′.

We consider now the case of an axisymmetric potential:
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• Φ = Φ(R,Z); R =
√

(X ′ +Ro)2 + Y ′2; R� = Ro

• ∂Φ
∂R = Φ′; ∂

2Φ
∂R2 = Φ′′,

then:

∂Φ

∂X ′
=
∂Φ

∂R

∂R

∂X ′
= Φ′

X ′ +Ro
R

(C.10)

∂Φ

∂Y ′
=
∂Φ

∂R

∂R

∂Y ′
= Φ′

Y ′

R
(C.11)

∂2Φ

∂X ′i∂X
′
j

=
∂

∂X ′i

(
Φ′
X ′j
R

)
=

(
Φ′′ − Φ′

R

)
X ′iX

′
j

R2
+

Φ′

R
δij ; (C.12)

(i, j = 1, 2; X ′1 = X ′ +Ro, X
′
2 = Y ′)

From the last relationships we obtain that on the equatorial plane:

(Φ)xx =

(
∂2Φ

∂X ′2

)
R�

= Φ′′(Ro) (C.13)

(Φ)yy =

(
∂2Φ

∂Y ′2

)
R�

=
Φ′(Ro)
Ro

(C.14)

(Φ)xy = (Φ)yz = 0 (C.15)

For the vertical z-component of gravitational force:

∂2Φ

∂Z∂X ′j
=

∂

∂Z

(
Φ′
X ′j
R

)
=
X ′j
R

∂2Φ

∂Z∂R
(C.16)

It means:

(Φ)xz =

(
X ′ +Ro

R

∂2Φ

∂Z∂R

)
R�

=

(
X ′ +Ro

R

∂Φ′

∂Z

)
R�

(C.17)

(Φ)yz =

(
Y ′

R

∂2Φ

∂Z∂R

)
R�

=

(
Y ′

R

∂Φ′

∂Z

)
R�

(C.18)

which are both equal zero due to the assumption of a circular motion of Sun on the

Galactic plane around the Galactic center: Φ′ = RΩ2. That occurs also as a request of

the symmetry of the system respect to the equatorial plane according to which the force

component (C.9) on the plane (z=0) has to be zero.
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Moreover, remembering Poisson’s equation it follows:

(Φ)zz =

(
∂2Φ

∂Z2

)
R�

' 4πGρ̄ (C.19)

where ρ̄ is the mean density in the Sun’s neighborhood along z-direction. From the Eq.s

(C.14, C.19) the breaking of spherical symmetry is manifest.

According to this result and taking into account that the comet orbits we are considering

lie on the equatorial plane (z = 0) the two first equations of the system (5.3) follow.

As soon as the 3D orbits are considered, the Eq. (C.19) yields the third equation to be

added into the same equation system.

C.1.1 On tide contributions in Hill’s approximation

Due to the additive contribution of each Galaxy component to the total gravitational

potential (see Eq.2.1) and to the assumption of the Sun’s circular motion it follows

that the corresponding circular and angular velocity contribution of each dynamical

component, vci and Ωoi, respectively, turns to be:

v2
ci

Ro
= (−∇Φi)Ro = Ω2

oiRo; i = BG,D,DH (C.20)

Then, in the first equation of the system (5.3), the following transformation holds for

the term in square brackets as soon as it refers to a specific dynamical component:

Ω2
oi − Φ′′i =

(
−2ΩiΩ

′
iR
)
Ro

= 2
v2
ci

R2
o

(
1− dln vci

dln R

)
Ro

(C.21)

The x-component Galaxy tide with its partial compensation due to the variation of

centrifugal force at x-coordinate turns then to be depending on the radial velocity con-

tribution of each Galactic component.

From the other side the y-component Galaxy tide (see, second equation of system (5.3)),

is fully compensated by the corresponding variation of centrifugal force at y-coordinate

so that the term in brackets:

Ω2
oi −

Φ′i(R0)

R0
(C.22)

turns to be zero no matter what is the component considered.
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