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1. Riassunto dell'attività svolta 

I mitocondri sono organelli estremamente dinamici, che sono dotati di un complesso 

apparato per fusione e fissione. La fissione viene regolata da Dynamin related protein 1 

(DRP1), che trasloca ai mitocondri in seguito a defosforilazione mediata da calcineurina 

(Yoon et al., 2001;Smirnova et al., 2001a;Cereghetti et al., 2008a). Le due Mitofusine 

presiedono la fusione della membrana mitocondriale esterna (Santel and Fuller, 

2001a;Legros et al., 2002a;Chen et al., 2003a;Santel et al., 2003a), mentre Optic Atrophy 

1 (OPA1), una proteina appartenente alla famiglia delle dinamine, coopera con MFN1 per 

la fusione della membrana mitocondriale interna (Cipolat et al., 2004b). OPA1 ha il ruolo 

chiave nel regolare la forma delle cristae, strutture pleomorfe della membrana 

mitocondriale interna. In particolare, OPA1 è localizzata a livello delle cristae junctions,  

formando oligomeri che regolano l'apertura delle cristae, e quindi il citocromo c, un fattore 

solubile che regola l'apoptosi (Cipolat et al., 2006b;Frezza et al., 2006a). Recentemente è 

stato dimostrato che OPA1 ha un ruolo addizionale nell'assemblaggio dei supercomplessi 

della catena respiratoria attraverso la modulazione dell'ultrastruttura della membrana 

mitocondriale interna (Cogliati et al., 2013).  

Opa1 è mutata nell'atrofia ottica dominante (ADOA), la neuropatia ottica ereditaria più 

diffusa, dovuta alla degenerazione selettiva dei neuroni gangliari della retina (RGC). La 

fisiopatologia dell'ADOA non è ancora nota. Osservazioni da studi in vitro su colture 

neuronali mostrano alterazioni mitocondriali morfologiche e funzionali: i mitocondri sono 

frammentati, impropriamente aggregati nel soma e con ridotta capacità di fare buffer di 

calcio (Kamei et al., 2005;Dayanithi et al., 2010;Bertholet et al., 2013;Kushnareva et al., 

2013).  

Nei neuroni, i mitocondri vengono trasportati lungo i microtubuli in siti con alta richiesta 

energetica, come i nodi di Ranvier e le sinapsi, dove fanno buffer di calcio e generano 

ATP per sostenere l'attività neuronale (Sheng and Cai, 2012;Itoh et al., 2013).  

Inoltre, molte patologie neurodegenerative, quali Alzheimer, Parkinson e Sclerosi Laterale 

Amiotrofica, presentano una forte relazione tra mitocondri disfunzionali e autofagia  

(Schapira et al., 1990;Betarbet et al., 2000;Nixon et al., 2005;Sasaki et al., 2005;Magrane 

et al., 2009;Yao et al., 2009;Chinta et al., 2010). La degradazione di mitocondri non 

funzionali è un processo chiamato mitofagia. I mitocondri frammentati e stazionari sono 

più propensi ad essere circondati da una vescicola con doppia membrana, 
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l'autofagosoma, e successivamente degradati (Twig et al., 2010). La depolarizzazione dei 

mitocondri induce l'attivazione della Pink1/Parkin pathway  (Greene et al., 2003;Park et al., 

2006;Narendra et al., 2008;Matsui et al., 2013), che poliubiquitina proteine della 

membrana mitocondriale esterna che indirizza i mitocondri all'autofagia  (Gegg et al., 

2010;Geisler et al., 2010;Ziviani et al., 2010a;Chan et al., 2011). Nel 2007, Davies e 

collaboratori hanno dimostrato  un ruolo centrale dell'autofagia nell'ADOA. In particolare, 

analisi ultrastrutturali hanno mostrato l'aumento di vescicole autofagiche prima dello 

sviluppo di atrofia ottica in un modello murino di ADOA (Davies et al., 2007;White et al., 

2009). I RGC sono il modello più adeguato per lo studio dell'ADOA. Questi neuroni 

presentano mitocondri particolarmente concentrati nel segmento prossimale dell'assone, 

che richiede molta energia per sostenere i potenziali d'azione  (Carelli et al., 2004). 

L'inattivazione di OPA1 potrebbe essere particolarmente importante in RGC, che hanno 

bassa attività glicolitica e dipendono quasi esclusivamente dall'energia fornita dai 

mitocondri. Pertanto, lo scopo di questa tesi era di studiare l'effetto di mitocondri non 

funzionali portatori di mutanti patogenici di Opa1 in colture primarie di RGC.  

In questo modello, l'espressione di mutanti patogenici di Opa1 causa diverse 

disfunzionalità mitocondriali, come frammentazione, depolarizzazione e immobilità. Questo 

fenotipo è caratteristico di mitocondri destinati all'autofagia. Dati di live imaging mostrano 

che i mitocondri si accumulano in prossimità dell'ilo assonale, dove vengono degradati 

mediante autofagia, in questo modo impendendo il loro ingresso negli assoni. Quindi, 

abbiamo modulato l'autofagia usando diversi inibitori e quando l'autofagia è inibita, i 

mitocondri esprimenti mutanti patogenici di Opa1 si ridistribuiscono negli assoni. Inoltre, i 

RGC sono meno sensibili a induttori di apoptosi. Questo fenotipo potrebbe essere dovuto 

a due diversi meccanismi concomitanti. Osservazioni farmacologiche e genetiche 

sostengono un ruolo per meccanismi mediati da Ca2+-calcineurin e AMP/AMPK 

nell'accumulo di mitocondri nell'ilo assonale e loro degradazione autofagica. Inoltre, la 

sensibilità all'apoptosi dei RGC viene ridotta dall'inattivazione di calcineurina. In 

conclusione, noi abbiamo dimostrato che l'inattivazione di Opa1 induce un'autofagia 

disregolata in prossimità all'ilo assonale, dove i mitocondri non funzionali vengono 

attivamente degradati, e questo meccanismo potrebbe essere fondamentale nella 

patogenesi dell'ADOA. 
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2. Summary 

Mitochondria are dynamic organelles that are endowed by a complex fission/fusion 

machinery. Fission is regulated by the Dynamin related protein 1 (DRP1), which 

translocates to mitochondria by calcineurin dependent dephosphorylation (Yoon et al., 

2001;Smirnova et al., 2001a;Cereghetti et al., 2008a). The two Mitofusins orchestrate the 

fusion of the outer mitochondrial membrane (Santel and Fuller, 2001a;Legros et al., 

2002a;Chen et al., 2003a;Santel et al., 2003a), while Optic Atrophy 1 (OPA1), a dynamin 

related-protein, cooperates with MFN1 in fusion of the inner mitchondrial membrane 

(Cipolat et al., 2004b). OPA1 has a key role in regulating the shape of mitochondrial 

cristae, pleomorphic structures of the inner mitochondrial membrane. In particular, OPA1 

is localized at the level of cristae junctions, forming oligomers that regulate the opening of 

the cristae and thus, the release of cytochrome c, a soluble factor involved in apoptosis 

(Cipolat et al., 2006b;Frezza et al., 2006a). Recently, it has been shown that OPA1 has an 

additional role in the assembly of respiratory chain supercomplexes by modulating the 

ultrastructure of the inner mitochondrial membrane (Cogliati et al., 2013).  

Opa1 is mutated in autosomal dominant optic atrophy (ADOA), the most common of 

inherited optic neuropathy, caused by the selective loss of retinal ganglion cells (RGCs). 

The pathophysiology of ADOA is still unknown. Evidences from in vitro studies on neuronal 

cultures reveal mitochondrial abnormalities in morphology and function: mitochondria 

appear fragmented, improperly accumulated in the soma, and with impaired potential and 

Ca2+ buffer capacity (Kamei et al., 2005;Dayanithi et al., 2010;Bertholet et al., 

2013;Kushnareva et al., 2013). 

In neurons, mitochondria are transported along microtubules in sites of high energy 

demand as Ranvier Nodes and synapses, where they buffer Ca2+ and produce ATP to 

sustain neuronal activity (Sheng and Cai, 2012;Itoh et al., 2013).  

Moreover, many neurodegenerative diseases, as Alzheimer's disease, Parkinson's 

disease and Amyotrophic Lateral Sclerosis, present a strong relationship between 

dysfunctional mitochondrial and autophagy (Schapira et al., 1990;Betarbet et al., 

2000;Nixon et al., 2005;Sasaki et al., 2005;Magrane et al., 2009;Yao et al., 2009;Chinta et 

al., 2010). The degradation of dysfunctional mitochondria trough autophagy is a process 

called mitophagy. Fragmented and stationary mitochondria are easily engulfed by a 

double-membrane vesicle, the autophagosome, and subsequently degraded (Twig et al., 
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2010). Depolarization of mitochondria triggers the activation of the Pink1/Parkin pathway 

(Greene et al., 2003;Park et al., 2006;Narendra et al., 2008;Matsui et al., 2013), which add 

ubiquitin chains on proteins of the outer mitochondria membrane targeting mitochondria to 

the autophagosome (Gegg et al., 2010;Geisler et al., 2010;Ziviani et al., 2010a;Chan et al., 

2011).  

In 2007, Davies and collegues have demostransted a central role of autophagy in ADOA. 

In particular, ultrastructural analysis revealed increased autophagic vesicles preceding 

optic atrophy in an ADOA mouse model (Davies et al., 2007;White et al., 2009). RGCs are 

the adequate model to study ADOA pathology. These neurons are enriched in 

mitochondria in the proximal segment of the axon, that has high energy demand to sustain 

action potentials (Carelli et al., 2004). OPA1 inactivation could be particularly important in 

RGCs, which have a poor glycolitic activity and thus depend almost exclusively on the 

energy provided by mitochondria. Therefore, the aim of this thesis was to study the impact 

of dysfunctional mitochondria carrying Opa1 pathogenic mutants in primary RGCs.   

In this model, the expression of Opa1 mutants caused mitochondrial dysfunction, including 

fragmentation, depolarization and immobility. Indeed, this phenotype is representative of 

mitochondria targeted to autophagy. Live imaging data revealed that mitochondria 

accumulated in proximity of the axon, where they were actively degraded by autophagy 

that prevented their entry into the axons. Therefore, we modulated autophagy using 

different inhibitors and when autophagy was blocked, mitochondria expressing pathogenic 

Opa1 mutants redistributed in axons. Moreover, RGCs were less sensitive to apoptotic 

inducers. This phenotype could be due by two different/concomitant mechanisms. 

Pharmacological and genetic evidences support both a role for a Ca2+-calcineurin and one 

for AMP/AMPK in mitochondrial accumulation at the axonal hillock and degradation by 

autophagy. Interestingly, blockage of calcineurin reduced RGCs sensitivity to apoptosis. In 

conclusion, we demonstrated that OPA1 dysfunction induces abnormal autophagy close to 

the axonal hillock, where dysfunctional mitochondria are actively degraded, and this 

mechanism could be fundamental in the pathogenesis of ADOA. 
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3. Introduction 

3.1. Mitochondria  
 

Mitochondria are double membrane cellular organelles which contain about one tenth of all 

cellular proteins. On a weight basis proportion, it has been calculated that mitochondria 

can convert between 10.000 and 50.000 times per second more energy than the sun 

(Schatz, 2007;Bolanos et al., 2010).   

The establishment of a technique to isolate mitochondria (Claude, 1946) and the discovery 

of the biochemical properties of mitochondria, that is, the presence of a respiratory system, 

the tricarboxylic acid cycle and fatty acid oxidation (Kennedy and Lehninger, 1949), 

permitted the start of the so called bioenergetics era. This period peaked with Peter 

Mitchell’s chemiosmotic theory (Mitchell and Moyle, 1965), that deserved him the Nobel 

Prize for chemistry in 1978. According to his theory, the free energy of respiration is used 

to pump protons (H+) from the matrix to the inter-membrane space (IMS), generating an 

electrochemical gradient. It is defined as the sum of the proton concentration difference 

and the electrical potential difference across the membrane. An electrochemical gradient 

(ΔµH+) builds-up across the membrane because the inner mitochondrial membrane (IMM) 

is characterized by an extremely low passive permeability to H+. In normal conditions, the 

majority of the gradient is constituted by the electrical potential difference, which has been 

estimated to measure about -220 mV (negative inside). The F1F0-ATP synthase converts 

the proton gradient in ATP, combining the reversal transport of H+ in the matrix with the 

phosphorylation of ADP to ATP. 

 

 

3.2. Mitochondria ultrastructure 

 

Studies from Palade and Sjostrand revealed that mitochondria present two membranes – 

an outer mitochondrial membrane (OMM) and a highly convoluted IMM, folded in a series 

of ridges that were named cristae by Palade (Palade, 1952;SJOSTRAND, 1953). In the 

classical model (the baffle models) described by Palade and still reported in many text 



 

books, cristae are considered invaginations of the IMM with broad openings to the IMS 

(Fig. 1A).  

The improvements in electron

mitochondrial ultra-structure. The electron tomography applied to mitochondria revealed 

that cristae are not simple invaginations of the IMM, but they represent a distinct 

compartment that connects to t

junctions (Mannella et al., 1994;Perkins et al., 1997)

junctions is 28 nm and the distance across the OMM and IMM is about 20 nm (Fig.1B).

Cristae junctions act as a functional barrier between the 

1C,D). The presence a distinct compartment has important functional consequences 

because it suggests a limited diffusion between 

phosphorylation takes place on 

equipped with oxidative phosphorylation proteins and ATP synthase dimers are assembled 

at tips of the cristae (Giraud et al., 2002;Strauss et al., 2008)

compartmentalization suggests 

block the passive diffusion of important players of respiration, such as H

(Demongeot et al., 2007). Moreover, the respiratory condition of mitochondria alters shape 

and density of the cristae (Hackenbrock, 1968;Hackenbrock et al., 1980)

note that the majority of cytochrome 

2002) and it may suggest that 

apoptosis, when cytochrome c

 

 

are considered invaginations of the IMM with broad openings to the IMS 

The improvements in electron microscopy allowed researchers to better investigate 

structure. The electron tomography applied to mitochondria revealed 

are not simple invaginations of the IMM, but they represent a distinct 

compartment that connects to the IMS by narrow tubular connections, called 

(Mannella et al., 1994;Perkins et al., 1997). The average diameter of

the distance across the OMM and IMM is about 20 nm (Fig.1B).

junctions act as a functional barrier between the cristae space and the IMS (Fig. 

The presence a distinct compartment has important functional consequences 

a limited diffusion between cristae and IMS. Oxidative 

phosphorylation takes place on cristae (Gilkerson et al., 2003). Accordingly, 

equipped with oxidative phosphorylation proteins and ATP synthase dimers are assembled 

(Giraud et al., 2002;Strauss et al., 2008). This highly defined 

compartmentalization suggests cristae as optimal niches for ATP production because they 

block the passive diffusion of important players of respiration, such as H

. Moreover, the respiratory condition of mitochondria alters shape 

(Hackenbrock, 1968;Hackenbrock et al., 1980)

that the majority of cytochrome c is also localized into the cristae

and it may suggest that cristae have a regulatory role not only in respiration 

c is released from mitochondria to the cytoplasm.

Fig.1. Mitochondrial ultrastructure.

like representation of the baffle model adapted from 

(Frey and Mannella, 2000). 

reconstructions of isolated rat liver mitochondria 

obtained by high-voltage electron tomography. OM: 

outer membrane, IM: inner membrane, C: selected 

cristae; arrowheads point to narrow tubular regions that 

connect cristae to periphery and to each other. Bar, 0.4 

µm. Adapted from (Frey and Mannella, 2000)

Representative surface-rendered views of electron 

microscopy tomography reconstructions of mitochondria 

before (C) and after (D) remodelling. The OM is 

depicted in red, the inner boundary membrane in 

yellow, and the cristae in green 
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are considered invaginations of the IMM with broad openings to the IMS 

microscopy allowed researchers to better investigate 

structure. The electron tomography applied to mitochondria revealed 

are not simple invaginations of the IMM, but they represent a distinct 

he IMS by narrow tubular connections, called cristae 

. The average diameter of cristae 

the distance across the OMM and IMM is about 20 nm (Fig.1B). 

space and the IMS (Fig. 

The presence a distinct compartment has important functional consequences 

and IMS. Oxidative 

. Accordingly, cristae are 

equipped with oxidative phosphorylation proteins and ATP synthase dimers are assembled 

. This highly defined 

as optimal niches for ATP production because they 

block the passive diffusion of important players of respiration, such as H+ or ADP 

. Moreover, the respiratory condition of mitochondria alters shape 

(Hackenbrock, 1968;Hackenbrock et al., 1980). It is intriguing to 

cristae (Scorrano et al., 

in respiration but also 

is released from mitochondria to the cytoplasm. 

Mitochondrial ultrastructure.  (A) A text book-

like representation of the baffle model adapted from 

 (B) Three-dimensional 

tions of isolated rat liver mitochondria 

voltage electron tomography. OM: 

outer membrane, IM: inner membrane, C: selected 

cristae; arrowheads point to narrow tubular regions that 

connect cristae to periphery and to each other. Bar, 0.4 

(Frey and Mannella, 2000). (C-D) 

rendered views of electron 

tructions of mitochondria 

before (C) and after (D) remodelling. The OM is 

depicted in red, the inner boundary membrane in 

yellow, and the cristae in green (Scorrano et al., 2002). 
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3.3. Mitochondrial dynamics 

 

Mitochondria undergo cycles of fusion and fission and change their shape continuously, 

assuming the form of spheres and interconnected tubules (Bereiter-Hahn and Voth, 1994). 

Two mitochondria may come in contact and fuse (Bereiter-Hahn and Voth, 1994;Chen et 

al., 2003b) but mitochondria can also divide, giving rise to two or more daughter 

mitochondria. A transient form of fusion, called "kiss-and-run", was recently described; two 

mitochondria contact each other, exchange soluble and matrix components, and separate 

without changing morphology (Liu et al., 2009). Mitochondria are equipped by two 

membranes and during fusion and fission cycles, the fusion and division of four lipid 

bilayers must be finely regulated. Thus, fusion and fission events are controlled by a 

growing number of mitochondrial-shaping proteins.  

 

3.3.1 Fusion machinery  

 

Mitochondrial fusion is a mechanism that is thought to be conserved from lower to higher 

eukaryotes. An intact membrane potential is a prerequisite for mitochondrial fusion, which 

is independent of a functional cytoskeleton (Legros et al., 2002b;Mattenberger et al., 

2003). In yeast, the fusion of outer mitochondrial membranes (OMMs) requires homotypic 

trans-interactions of the Fzo1, the proton gradient component of the inner membrane 

electrical potential, and low levels of GTP hydrolysis. Fusion of inner mitochondrial 

membranes (IMMs) requires the electrical component of the inner membrane potential and 

high levels of GTP hydrolysis. Time-lapse analysis of mitochondrial fusion in yeast and 

mammalian cells, in vivo, clearly shows that fusion of the OMM and IMM are temporally 

linked. These observations indicate that individual fusion machineries exist in each 

membrane, but they can communicate in vivo, resulting in coupled outer and inner 

membrane fusion (Meeusen et al., 2004). The major components and regulators of the 

fusion machinery will be discussed below.  

The Drosophila Fuzzy onions 1 protein (Fzo1) is a large transmembrane guanosine 

triphosphatase (GTPase) essential for the genesis of the giant mitochondrial derivative 

during spermatogenesis (Hales and Fuller, 1997). The S. Cerevisiae ortholog of Fzo1 

induces mitochondrial fusion during mitotic growth and mating (Hermann et al., 1998). 

Mitofusin (MFN) 1 and 2 are Fzo1 mammalian homologues (Eura et al., 2003;Rojo et al., 
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2002;Santel et al., 2003b) which conserve the GTPase domain, even if MFN1 shows a 

higher GTPase activity than MFN2 (Ishihara et al., 2004). Drosophila presents another 

MFN homologue, the mitochondrial assembly regulatory factor (Marf) (Deng et al., 2008). 

MFN1 and 2 have the 81% of identity, similar topologies and localization in the inner 

mitochondrial membrane (Chen et al., 2003b;Legros et al., 2002b;Rojo et al., 2002;Santel 

and Fuller, 2001b;Santel et al., 2003b). Both present a cytosolic coiled coil motif (Koshiba 

et al., 2004;Rojo et al., 2002;Santel, 2006) which is necessary for protein-protein 

oligomerization (Oakley and Hollenbeck, 2001). Thus, two MFNs on opposing membranes 

can bind in trans to bridge mitochondria (Koshiba et al., 2004).  

However, Mfn1-/- and Mfn2-/- cells  show different mitochondrial fusion rates; resulting in 

higher fusion events in cells containing only MFN1 (Chen et al., 2003b). Finally, MFN1, but 

not MFN2, is essential for OPA1-dependent mitochondrial fusion in embryonic fibroblasts 

(Cipolat et al., 2004a). In addition, MFN2 is very abundant at the level of the mitochondria-

ER interface and present (albeit to a lesser extent) at the ER, where it tethers mitochondria 

to ER and regulates ER shape. As a regulator of the ER-mitochondria interaction, MFN2 

generates Ca2+ micro-domains between ER and mitochondria and, thus, regulates Ca2+ 

uptake (de Brito and Scorrano, 2008a). Several regulators of MFNs activity have been 

characterized. Mitofusin-binding protein interacts with MFN1 and causes mitochondrial 

fragmentation (Eura et al., 2006). MFN1 and MFN2 expression levels have been reported 

to increase upon inhibition of the proteasome, suggesting its involvement in MFNs 

degradation (Karbowski et al., 2007). PARKIN, an E3-ubiquitin ligase discussed below, 

ubiquitinates MFN1, MFN2 (Gegg et al., 2010;Tanaka et al., 2010a) and MARF (Ziviani et 

al., 2010b), targeting them to proteasomal degradation (Tanaka et al., 2010a). BAX and 

BAK have been found in a high-molecular weight complexes with MFN2, which inhibit 

fusion by altering  the assembly, mobility and distribution of MFN2 complexes (Karbowski 

et al., 2006).   

Optic atrophy 1 (OPA1) is a dynamin-related protein located in the IMM which has been 

identified by two independent groups (Alexander et al., 2000b;Delettre et al., 2000b). 

OPA1 has two yeast homologues, Mgm1 (Jones and Fangman, 1992) and Msp1 

(Pelloquin et al., 1998). Mgm1, Msp1 and OPA1 are localized in the intermembrane space 

(IMS), tightly associated with the IMM (Guillou et al., 2005;Herlan et al., 2003;Olichon et 

al., 2002;Sesaki et al., 2003;Wong et al., 2003). These proteins display 20% of sequence 

identity but show a highly conserved secondary structure, consisting of two coiled coils, 

one amino-terminal to the GTPase domain and the other at the carboxy-terminus. The 
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carboxy-terminal coiled coil domain of OPA1 may function as a GTPase effector domain 

(GED). On its amino-terminal, OPA1 possesses a mitochondrial targeting sequence which 

is cleaved by the mitochondrial processing peptidase upon import in mitochondria (Satoh 

et al., 2003). Mgm1 and Msp1 maintain fusion events in yeast and Mgm1 complexes with 

Fzo1 to coordinate the fusion of the IMM and OMM (Wong et al., 2003). Overexpression of 

OPA1 or its downregulation by siRNA in mouse embryonic fibroblasts (MEFs) discloses a 

linear relationship between OPA1 levels and mitochondrial fusion (Cipolat et al., 2004a). 

Interestingly, OPA1/Mgm1 controls cristae structure and remodelling (Griparic et al., 

2004a;Olichon et al., 2003a;Sesaki et al., 2003). Our laboratory demonstrated that OPA1 

can regulate cytochrome c mobilization and apoptotic cristae remodelling independently of 

its pro-fusion activity; OPA1 organizes into high molecular weight complexes, that control 

cristae morphology and are targeted by BID during apoptosis (Frezza et al., 2006b). Also 

Mgm1 maintains cristae structures through Mgm1 interactions on opposing inner 

membranes (Meeusen et al., 2006). In human, OPA1 is present in 8 splicing isoforms 

(Delettre et al., 2001), which can be post-translationally cleaved in two sites, S1 and S2, 

resulting in five bands on a western-blot. The two higher molecular weight bands represent 

proteins integrated into the IMM, whereas the three lower molecular weight bands lack the 

transmembrane domain and are localized in the IMS (Duvezin-Caubet et al., 2007). In 

particular, it seems that mainly long forms support mitochondrial fusion (Song et al., 2007). 

Different proteases regulates OPA1 processing. The ATP-dependent matrix AAA (m-AAA) 

protease paraplegin, when the membrane potential is dissipated, stimulates OPA1 

processing and mitochondrial fragmentation (Ishihara et al., 2006). OMA1 is an ATP-

independent peptidase in the IMM, which mediates OPA1 processing in absence of m-

AAA proteases or impairment of mitochondrial activity (Ehses et al., 2009). Mitochondrial 

membrane potential modulates the i-AAA protease YME1L (Guillery et al., 2008). 

Prohibitins processes long forms of OPA1 and their ablation causes fragmentation and 

aberrant cristae (Merkwirth et al., 2008). Finally, PARL is involved in OPA1 processing, 

resulting in the generation of a soluble form of OPA1 localized in the IMS (Cipolat et al., 

2006a). Regulation of OPA1 processing by PARL regulates exclusively its role in 

apoptosis (Frezza et al., 2006b). Higd-1a binds and inhibits Opa1 cleavage and trough its 

interaction with OPA1 is required for mitochondrial fusion (Hyun-Jung et al.,2013).  

Another regulator of fusion activity is MitoPLD. It localizes to the OMM and hydrolyzes 

cardiolipin to form phosphatidic acid, which facilitates fusion driven by specialized SNARE-

complexes (Choi et al., 2006).  
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3.3.2 Fission machinery  

 

Dynamin-related protein 1 (DRP1) is a protein similar to dynamin, a large GTPase involved 

in membrane scission in multiple endocytic and secretory organelles (Praefcke and 

McMahon, 2004). The majority of DRP1 fraction is cytosolic but it could be also found in 

mitochondrial sites of constriction (Labrousse et al., 1999;Smirnova et al., 2001b). DRP1 in 

vitro oligomerizes in ring-like structures similar to those at membrane constriction sites. 

DRP1 regulates fission trough GTP hydrolysis and mitochondrial membrane constriction 

(Hinshaw, 1999;Smirnova et al., 2001b). DRP1 can be phosphorylated at serine 637 by 

the cAMP-dependent protein kinase A (PKA) halting fission; whereas the phosphorylation 

at serine 637 by calcium/calmodulin-dependent protein kinase I alpha (CAMKIα) (Han et 

al., 2008a) or at serine 616 by cyclin-dependent kinase 1 (CDK1) (Taguchi et al., 2007) 

causes mitochondrial fission. Conversely, DRP-1 Ca2+-dependent dephosphorylation by 

calcineurin at serine 637 induces translocation of DRP1 to mitochondria (Cereghetti et al., 

2008b). DRP1 SUMOylation by mitochondrial-anchored protein ligase (MAPL) blocks 

ubiquitin attachment sites and thus inhibits proteasome degradation (Braschi et al., 2009). 

Conversely, the SUMO protease SENP5 deSUMOylates DRP1 and its ablation induces 

mitochondrial fragmentation (Zunino et al., 2007). MARCH5 is an OMM E3 ubiquitin ligase 

which ubiquitinates DRP1 (Nakamura et al., 2006;Yonashiro et al., 2006), thus regulating 

DRP1 localization and assembly at the scission sites on mitochondria (Karbowski et al., 

2007). Moreover, overexpression of MTP18 causes DRP1-dependent mitochondrial 

fragmentation (Tondera et al., 2004;Tondera et al., 2005), even if its relation with DRP1 is 

still unclear.  

FIS1 is an OMM protein present on the surface of mitochondria (James et al., 2003). Even 

if it does not show any enzymatic activity, FIS1 overexpression fragments mitochondria. 

Crosslinking and co-immunoprecipitation studies show the DRP1 and FIS1 interaction 

(Yoon et al., 2003). Thus, FIS1 probably recruits DRP1 to constriction sites on 

mitochondria. However, downregulation of FIS1 only partially diminishes DRP1 recruitment 

to mitochondria (Lee et al., 2004a) and it seems that other proteins are involved in the 

fission machinery. Indeed, mitochondrial fission factor (MFF) is an integral protein of OMM 

recruits DRP1 to the OMM independently of FIS1 (Otera et al., 2010).  Another pro-fission 

candidate is LETM1, which fragments mitochondria indipendently of DRP1 (Dimmer et al., 

2008). 
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3.4. Mitochondrial transport 

 

Mitochondria are transported along microtubules in mammals and along actin filaments in 

yeast (Frederick and Shaw, 2007), even if an actin-based mechanism could regulate a 

subset of mitochondria movements, mostly localized in dendrites, nerve terminals, and 

growth cones (Chada and Hollenbeck, 2004). For instance, the disruption of the actin 

cytoskeleton in locust photoreceptors interrupts the photo-dependent movement of 

mitochondria (Sturmer et al., 1995). Myo19, Myosin V and Myosin VI are good candidates 

to mediate the actin-based transport of mitochondria (Quintero et al., 2009;Pathak et al., 

2010). 

The direction of the transport depends largely on the polarity and organization of neuronal 

microtubules. All axonal microtubules are oriented with their minus ends towards the soma 

and their plus ends towards the axon terminal, whereas microtubules in dendrites show 

mixed orientations. Mitochondrial transport in these compartments is mediated by two 

motor proteins. Kinesin superfamily proteins (KIFs) move towards the microtubule plus end 

and dynein mediates the minus end transport. Thus, in the axon KIFs and dynein regulate 

the anterograde (from the soma to the periphery) and retrograde (from the axon terminal to 

the soma) transport of cargoes, respectively. The KIF5 family mediates the transport of 

neuronal organelles, including mitochondria (Tanaka et al., 1998;Pilling et al., 2006). 

Mammalian KIF5s have three isoforms; KIF5B is abundantly expressed in different cell 

types, whereas KIF5A and KIF5C are neuronal specific (Kanai et al., 2000). Motor 

adaptors recognize and mediate the transport of mitochondria. The first studies on 

mitochondrial adaptors have been carried in Drosophila (Stowers et al., 2002). The motor 

adaptor Milton binds directly to the C-terminal cargo domain of KIF5 (Glater et al., 2006) 

and to mitochondrial rho (MIRO), a RHO family GTPase localized on the mitochondrial 

outer membrane (Frederick et al., 2004). Mutations of Milton or MIRO in Drosophila 

disrupts anterograde trafficking of mitochondria and depletes mitochondria from neurites 

(Stowers et al., 2002;Guo et al., 2005). There are two proposed models for the MIRO 

regulation of mitochondrial trafficking (Fig.2). MIRO contains two EF-hands motifs which 

bind Ca2+. In neurons, Ca2+ varies according to synaptic activity or Ca2+ signalling 

pathways. In absence of Ca2+, the C-terminal region of KIF5 binds the MIRO-Milton 

complex and the N-terminal region of KIF5 contacts microtubules, allowing the transport of 

the mitochondrion. In presence of Ca2+, mitochondria arrest. According to the "motor-
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MIRO binding" model (Wang and Schwarz, 2009b), Ca2+ binding by MIRO EF-hands 

induces the exposure of a KIF5 binding domain, which is sequestered from microtubules. 

In the "motor-releasing" model proposed by (MacAskill et al., 2009), Ca2+ induces the 

dissociation of KIF5 from the MIRO-Milton complex.  

 

 

Fig. 2.The Miro/Milton transport of mitochondria.  Two models 

of the KIF5 based mitochodnrial transport have been described. 

(A) In the "motor-MIRO binding" model, Ca2+ bins to MIRO and 

induces the exposure of a KIF5 domain sequestered from 

microtubules. (B) In the "motor-releasing" model, KIF5 

dissociates from the MIRO-Milton complex. From (Sheng and 

Cai, 2012). 

 

 

However, these conclusions derive from MIRO EF-hand mutants which fail to stop 

mitochondria even at high Ca2+ concentrations. Interestingly, MIRO EF-hand mutants 

reduce the Ca2+ entry in mitochondria, which is correlated with the speed of mitochondrial 

movement  in axons (Chang et al., 2011). Mitochondria buffer Ca2+ to maintain the 

homeostatic levels and in normal conditions, Ca2+ enters in matrix trough the mitochondrial 

calcium uniporter, named MCU (Baughman et al., 2011;De et al., 2011). The blockage of 

MCU in high cytoplasmic Ca2+ do not alter mitochondrial motility (Chang et al., 2011). 

Thus, an intriguing hypothesis is to state mitochondrial Ca2+ as a determinant of 

mitochondrial transport (Niescier et al., 2013), even if the mechanism is not yet clear.  

In mammals, two orthologues of Milton (TRAK1 and TRAK2) and MIRO (MIRO1 and 

MIRO2) have been described. TRAKs bind the first GTPase domain of MIROs (Fransson 

et al., 2006). Interestingly, TRAK1 and TRAK2 mediates the transport of endosomes and 

neuronal proteins, for instance the GABAa receptor and the K+ channel Kir2.1 (Grishin et 

al., 2006;Webber et al., 2008;Stephenson, 2013). It has been shown that dynein interacts 

with Milton and MIRO and in Milton mutant flies the dynein-dependent movement of 

mitochondria is disrupted (Stowers et al., 2002). Further studies reported that TRAK1 

binds kinesin and dynein but TRAK2 shows a preferential interaction with dynein, thus 

regulating mitochondrial trafficking in axon and dendrites (van et al., 2013).  

Another subset of mitochondrial adaptors is emerging from other studies. Syntabulin and 

FEZ1 are two novel interactors of KIF5. SiRNA downregulation of them reduces 
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anterograde transport of mitochondria in axons of hippocampal neurons (Cai et al., 

2005;Fujita et al., 2007;Ikuta et al., 2007). Another candidate is RANBP2, which links 

mitochondria to KIF5B or KIF5C. Inhibition of RANBP2 induces the perinuclear clustering 

of mitochondria but its relevance in neurons is still not clear (Cho et al., 2007). Moreover, 

two other mitochondrial motors are emerging candidates for mitochondrial trafficking. 

KIF1Bα and KLP6 belong to the kinesin motor family; mutants of both protein result in 

variations of the mitochondrial velocity in the axon (Tanaka et al., 2011).  

The dynein binding to mitochondria is a field not very explored, since just few dynein 

heavy chains have been characterized. However, some studies identified VDAC1 and 

MIRO as possible dynein adaptors (Schwarzer et al., 2002;Russo et al., 2009).  

Even if mitochondrial transport is essential for cell function and survival, only the 10% of 

mitochondria are in state of transport in hippocampal neurons. Among stationary 

mitochondria, the 40% of them conserves the same position for days (Obashi and Okabe, 

2013). Thus, a special "stationary" apparatus is needed.  

Syntaphilin anchors mitochondria to microtubules (Kang et al., 2008) and this interaction is 

stabilized by LC8, a dynein light chain (Chen et al., 2009). Overexpression of syntaphilin or 

LC8 recuits mobile mitochondria in the stationary state; conversely, deletion of syntaphilin 

increases the percentage of mobile mitochondria. Microtubules-associated proteins 

(MAPs) and Tau are proteins which stabilize microtubules polymerization. MAP2 is 

localized in dendrites, whereas MAP1B and Tau are axon specific. Accumulation of Tau in 

neuroblastoma cell lines, cortical neurons, and retinal ganglion cells disrupts the kinesin-

dependent transport of mitochondria. Tau association to microtubules reverses the 

direction of dynein transport, and kinesin fails to contact microtubules (Dixit et al., 2008). 

MAPB1 is also an inhibitor of the axonal retrograde transport of mitochondria (Jimenez-

Mateos et al., 2006). Mitochondria can be docked also by the stability of the actin 

cytoskeleton, since WAVE1 regulates mitochondrial movement in dendritic spines in an 

actin polimerization-dependent mechanism, which is regulated by NMDA activity-

dependent phosphorylation of WAVE1 (Sung et al., 2008). After exposure to the growth 

factor lysophosphatidic acid, the GTPase RhoA sequesters mitochondria from 

microtubules to actin (Minin et al., 2006).  

Mitochondrial transport and stability is mainly regulated by neuronal activity, which 

regulates the intra- and extra-cellular levels of second messengers. Elevated neuronal 

activity increases intracellular Ca2+ trough voltage-dependent Ca2+ channels, which stops 

mitochondria trough the mechanisms discussed above. In organotypic slices of 
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cerebellum, time-lapse experiments show that repetitive firing accumulates mitochondria in 

nodal and paranodal axoplasm and decreases the transport of mitochondria in the 

internodal axoplasm of nodes of Ranvier. The removal of extracellular Ca2+ or the 

blockage of voltage-dependent Ca2+ channels abolishes the recruitment of mitochondria to 

nodes of Ranvier (Ohno et al., 2011). Ca2+ influx also induces mitochondrial fragmentation 

trough the activation of Drp1 (discussed above). Another study shows that the blockage of 

the Na+/K+ ATPases also halts mitochondria in nodes of Ranvier, even if the mechanism is 

not clear (Zhang et al., 2010). These data explain the increase in mitochondrial density in 

absence of myelin, where Na2+ channels are dispersed (Andrews et al., 2006;Hogan et al., 

2009) and show the physiological function of mitochondria in neurons, that is, to maintain 

the homeostatic levels of Ca2+ and ATP. For instance, in the calyx of Held mitochondria 

buffer Ca2+ in the order of milliseconds and thus, influence the neurotransmitter release 

(Billups and Forsythe, 2002). Any alteration in Ca2+ homeostasis disrupts neuronal 

functions: in Drosophila Miro mutants mitochondria are spared from the neuromuscular 

junction and neurotransmitter is not longer released after prolonged stimulation (Guo et al., 

2005). To the same extent, the blockage of mitochondrial stability by syntabulin depletion 

accelerates synaptic depression. Addition of ATP rescues this defect (Ma et al., 2009). 

Mitochondrial movement or stability can be regulated also by neurotransmitters or growth 

factors, including NGF (Chada and Hollenbeck, 2004), serotonin (Chen et al., 2007), 

dopamine (Chen et al., 2008) and nitric oxide (Rintoul et al., 2006;Zanelli et al., 2006). 

Moreover, also mitochondrial health influences the proper moving; it has been shown that 

high membrane potential drives mitochondria towards periphery, whereas acute 

depolarization induces the retrograde transport of mitochondria (Miller and Sheetz, 2004). 

Indeed, damaged and depolarized mitochondria are sequestered by autophagic 

membranes for degradation upon Parkin activation, as we will discuss below. 

Alteration in mitochondrial movement is reported in many neurodegenerative diseases. In 

Huntington's disease (HD), mutations in the huntingtin (htt) gene disrupts the association 

of organelles, including mitochondria, to kinesin and dynein, thus impairing their transport 

in cortical neurons (Chang et al., 2006). To the same extent, the AD-linked amyloid-β 

treatment of hippocampal neurons reduces mitochondrial transport (Rui et al., 2006) and 

accumulates mitochondria in AD patients (Stokin et al., 2005). Finally, two genes mutated 

in familiar amyotrophic lateral sclerosis (ALS), alsin and TDP-43, cause impairment in the 

mitochondrial trafficking in vitro (Millecamps et al., 2005;Shan et al., 2010;Wang et al., 

2013). 
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3.5. Macro-autophagy 

 

Autophagy is a degradative process that targets portions of cytosol or organelles to the 

lysosomal compartment for the breakdown and recycling of nutrients. It is composed by 

four stages (Fig. 3): initiation, elongation, maturation, and fusion. All these stages are 

controlled by more than 30 autophagy-related genes (ATGs), which have been 

characterized in yeast and then in mammals (Levine and Klionsky, 2004). 

 
Fig.3. Schematic overview of macroautophagy. A portion of the cytoplasm containing macromolecules 

and organells in engulfed by a double-membrane vescicle, the autophagosome. It subsequently fuses with 

the endosome and the lysosome, where the internal material is degraded. From (Mizushima, 2007). 

 

3.5.1 Initiation 

 

Autophagy is induced by the mammalian target of rapamycin (mTOR)-dependent or 

independent pathways (Fig. 4). mTOR is a nutrient sensor: in nutrient-rich conditions, 

mTOR is sequestered by the ULK1:ATG13:ATG101:FIP200 complex and phosphorylates 

ULK1 and ATG13 to inhibit autophagy (Mizushima, 2010). Deficits in autophagy induction, 

for example inhibition of Ulk1, suppress neurite outgrowth (Tomoda et al., 1999). On 

nutrient starvation, mTOR is inhibited (see below) leading to the activation of the ULK1 

complex, which in turn activates the class III phopshoinositide 3-kinase (PI3K CIII) 

complex containing Beclin-1 and AMBRA1. This triggers the translocation of the complex 

to a preautophagosomal structure to initiate the autophagosome formation (Suzuki et al., 

2007), even if the origin of the membrane is not univocally identified (Hayashi-Nishino et 

al., 2009;Yla-Anttila et al., 2009;Hailey et al., 2010;Ravikumar et al., 2010;van, V et al., 

2010). This step is crucial during the development of the nervous system, since AMBRA1 

deficiency prevents the closure of the neural tube (Fimia et al., 2007) and neurogenesis in 

cultured cells from the olfactory bulb (Vazquez et al., 2012). 

mTOR is regulated by different stimuli which are fully reviewed by Yang and Klionsky 

(2009). Briefly, the mTOR regulation is focused on the TSC-Rheb axis: in resting 
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conditions, the GTP-ase activating complex TSC1:TSC2 is inactive and stabilize Rheb-

GTP, which activates mTOR, therefore inhibiting autophagy. The TSC complex is 

regulated by the PI3K-AKT pathway, which is sensitive to growth factors (insulin/IGF) and 

associated with autophagy during the genesis of the axon (Shi et al., 2003;Jiang et al., 

2005). TSC is localized in developing axons and their overexpression causes a poor axon 

growth (Choi et al., 2008). Mutations of TSC1 or TSC2 cause tuberous sclerosis which 

specific hallmarks are non-malignant tumors in different organs. TSC model mice show 

cognitive impairment (Goorden et al., 2007), and impairment of hippocampal mGluR-long-

term depression (LTD) (Bateup et al., 2011) and dendritic spine plasticity (Tavazoie et al., 

2005). The TSC complex is activated also in response to AMPK phosphorylation;  

moreover AMPK activates ULK1 independently of mTOR (Lee et al., 2010b;Kim et al., 

2011). AMPK is a sensor of energy deficiency and other stresses (Mihaylova and Shaw, 

2011): it is activated by lowering the AMP:ATP ratio and increasing Ca2+ and ROS 

concentration.  

Autophagy is regulated by other mTOR-independent pathways. In nutrient-rich conditions, 

the antiapoptotic protein Bcl-2 sequesters and inhibits Beclin-1; during starvation, the 

activation of Jun-N-terminal kinase 1 (JNK1) phosphorylates Bcl-1 which allows the 

release and activation of Beclin-1 (Wei et al., 2008). Another mTOR-independent pathway 

is activated upon elevated intracellular Ca2+ that triggers calpain-dependent cleavage of G 

stimulatory protein α and production of cAMP. cAMP, in turns, stimulates IP3 production 

via Epac-Rap2B-PLC cascade which induces the release of Ca2+from intracellular stores 

(Cardenas et al., 2010). 

 
Fig. 4. Signalling pathways upstream mTORC1 regulat ing autophagy.  From (Yang and Klionsky, 2009). 



20 
 

3.5.2 Elongation and maturation  

 

After induction, the elongation and maturation of the autophagosome are sculpted by two 

complexes which are formed by two ubiquitin-like conjugation systems: the first conjugates 

Atg12 to Atg5 and the second conjugates the LC3I protein to lipid 

phosphatidylethanolamine to form LC3II, which is inserted in the inner and outer 

autophagosome membrane (Yang and Klionsky, 2009). Many Atg proteins are required for 

the two reactions, but they both require Atg7. Depletion of Atg7 in Purkinje cells causes 

accumulation of autophagosomes in the axon, leading to its degeneration (Komatsu et al., 

2007). Moreover the same results are achieved by conditionally excising the Atg5 gene 

(Nishiyama et al., 2007), pointing out the essential role of autophagy in the maintenance of 

homeostasis in neurons. 

 

3.5.3 Fusion. 

 

When the autophagosome is formed, in neurons it is delivered to lysosomes along 

microtubules from distal neurites towards the soma (Maday et.al, 2012). The retrograde 

transport requires the dynein-dynactin complex; mutations of the dynein complex increase 

the autophagosome number in motor neurons of models of sporadic amyotrophic lateral 

sclerosis (Laird et al., 2008). Even if the fusion mechanism needs still to be elucidated, 

several proteins have been showed to be required, such as LAMP2, SNAREs, the UVRAG 

complex, Rab, ESCRT, HOPS, and LC3 (Eskelinen, 2005;Lee et al., 2007;Furuta et al., 

2010). After the fusion, LC3II in the inner membrane is degraded whereas LC3II in the 

outer membrane is recycled by Atg4 (Kirisako et al., 2000). The material sequestered by 

the autophagosome is degraded by lysosomal enzymes, which are active at acid pH. 

Lysosomes are equipped with ionic channels and pumps to maintain  the pH of 5.5 

constant; mutations in any of this protein – presenilin in Alzheimer’s disease (Lee et al., 

2010a), TRP-ML1 in mucolipidosis type IV (Soyombo et al., 2006), and vATPase in 

osteopetrosis with neurodegeneration (Wartosch and Stauber, 2010) – interfere with 

lysosomal acidification and therefore with autophagosome clearance. Lysosomal storage 

disorders (LSDs) are severe neurodegenerative disorders caused by mutations of 

lysosomal enzymes, which in general lead to protein aggregates unable to be digested. 

The most common LSD is Gaucher disease type II; mutations of the glucorerebrosidase 

gene (GBA) cause the accumulation of substrate within lysosomes and loss of 
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dopaminergic neurons in the substantia nigra, resembling clinical symptoms of Parkinson 

disease (Osellame and Duchen, 2013). Protein aggregates in lysosomes are found in 

other diseases, such as mutations of chatepsin D in Batten’s disease causing the 

accumulation of lipofuscin (Siintola et al., 2006). 

 

 

 

3.6. Mitophagy 

 

3.6.1 Mitochondrial signaling for mitophagy 

 

Mitochondria are at the center of most metabolic pathways and therefore during evolution 

cells developed special quality control apparatuses in order to cope with mitochondrial 

dysfunction. The ubiquitin-proteasome system (UPS) recognizes misfolded or damaged 

proteins covalently modified by a poly-ubiquitin addition, and transport them to the 

proteasome for degradation (Korolchuk et al., 2010). The second and more complex 

system is mitophagy, a selective form of autophagy of mitochondria, which appears to be 

finely regulated by mitochondrial dynamics. In healthy conditions, a fission event usually 

follows a fusion. The daughter mitochondria show different potentials; mitochondria with 

normal potential will undergo other fusion/fission dynamics, whereas depolarized 

mitochondria are degraded by mitophagy (Twig et al., 2008). Interestingly, fragmented and 

depolarized mitochondria are stationary (Twig et al., 2010) and degrade the pro-fusion 

machinery (Head et al., 2009;Poole et al., 2010;Tanaka et al., 2010b) to decrease the 

probability of fusion; indeed, inhibition of fragmentation reduces mitochondrial removal 

(Cheung and Ip, 2009). Thus, depolarization is a key signal to induce mitophagy since it is 

conserved also in lower eukaryotes (Priault et al., 2005). Depletion of mitochondria and 

accumulation of autophagosomes have been reported in brains of Alzheimer’s disease 

(AD) patients (Nixon et al., 2005). Mitochondrial dynamics appear to be dysregulated also 

in AD, even if it is a complex pathology that still needs to be investigated. Amyloid β 

precursor protein (AβPP), mutated in familial AD, presents a mitochondrial targeting signal 

at the N-terminal which induces the accumulation of AβPP in the mitochondrial 

compartment in cortical neurons of a mouse model of AD (Devi et al., 2006), causing 

different mitochondrial dysfunctions when AβPP mutants are expressed. Mitochondrial 
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depolarization has been also reported in other protein-aggregate disorders, such as 

Huntington (Bossy-Wetzel et al., 2008) and Gaucher diseases (Osellame and Duchen, 

2013). Mitochondria exhibit enhanced fragmentation through regulation of fusion and 

fission proteins (Wang et al., 2008) and complexes I, III and IV of the respiratory chain are 

inhibited (Pereira et al., 1998), therefore the mitochondrial potential is greatly impaired. 

Similarly, mutations of the mitochondrial fission/fusion apparatus induce depolarization and 

neurodegeneration; for example, Opa1  pathogenic mutants – associated to dominant 

optic atrophy – or Opa1 downregulation causes mitochondrial dysfunction in mouse 

embryonic fibroblasts and in cortical neurons (Frezza et al.,2006; Bertholet et al.,2013). 

The same phenotype is achieved by downregulation of Mnf2 – associated to Charchot 

Marie-Tooth 2A – in muscle and HeLa cells (Pich et al., 2005). However, mitochondrial 

depolarization could be the direct consequence of oxidative phosphorylation (OXPHOS) 

impairment: for example, complex I mutations cause mitochondrial depolarization in 

cybrids derived from Leber’s hereditary optic neuropathy (Giordano et al., 2011). 

Interestingly, also PD patients show a reduced complex I activity and the associated 

mitochondrial depolarization. Complex I inhibitors – MPTP and rotenone – induce 

parkinsonism in healthy animals and degeneration of dopaminergic neurons of the 

substantianigra pars compacta (Dauer and Przedborski, 2003). Pink1 and Parkin are 

genes mutated in certain forms of autosomal recessive PD (Kitada et al., 1998;Valente et 

al., 2004) and have been found to be key regulators of depolarization-induced mitophagy. 

 

3.6.2 PINK1/Parkin regulation of mitophagy 

 

Pink1 is a serine/threonine kinase and Parkin is a E3 ubiquitin ligase. Genetic studies in 

Drosophila and vertebrates demonstrate that the two genes participate in the same 

pathway to control the mitochondrial integrity, where Pink1 acts upstream of Parkin 

(Greene et al., 2003;Park et al., 2006;Matsui et al., 2013). Pink1 contains a mitochondrial 

targeting sequence (Valente et al., 2004), which allows its import in healthy mitochondria 

probably by the TIM/TOM complex. After the import in the inner membrane, Pink1 is 

cleaved by the mitochondrial proteases MPP (Greene et al., 2012) and PARL (Deas et al., 

2011;Meissner et al., 2011), and sub sequentially degraded. In damaged mitochondria, the 

loss of membrane potential is the trigger event activating mitophagy: unprocessed Pink1 

accumulates on the mitochondrial outer membrane where it associates with the TOM 

complex (Lazarou et al., 2012). Even if the mechanism is still to be clarified, uncleaved 
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Pink1 stabilizes cytosolic Parkin to mitochondria (Narendra et al., 2010), which in turn 

promotes autophagy (Narendra et al., 2008). 

 

 

Fig. 5. The Pink1/Parkin pathway of mitophagy.  In 

healthy mitochondria, Pink1 is imported in the inner 

mitochondrial membrane (IM), where is degraded by 

MPP and PARL. In damaged mitochondria, the loss 

of membrane potential stabilizes Pink1 on the outer 

mitochondrial membrane (OM), which induces the 

accumulation of Parkin on mitochondria. From 

(Ashrafi and Schwarz, 2013). 

 

 

Stabilized Parkin enhances the E3 ubiquitin ligase activity (Matsuda et al., 2010) and 

forms two different polyubiquitin chains on mitochondrial proteins: ubiquitin linked to lysine 

48 is associated with proteasome degradation, and polyubiquitination at lysine 63 is 

associated with autophagy (Tan et al., 2008). Several mitochondrial proteins have been 

shown to be target of Parkin before mitophagy, including Miro, Mitofusins, Fis1, Tom 70 

and VDAC (Gegg et al., 2010;Geisler et al., 2010;Ziviani et al., 2010a;Chan et al., 2011). A 

recent screening of Parkin-mediated ubiquitylome identified dozens of proteins involved in 

potential Parkin regulation in mitochondrial fusion/fission, small molecule transport, 

apoptosis, iron-sulfur shuttling, protein translocation and proteasome assembly or activity 

(Sarraf et al., 2013). However, detailed downstream mechanisms activating mitophagy 

remain still unclear and controversial. One possible candidate is p62, which has been 

shown to accumulate on depolarized mitochondria (Okatsu et al., 2010), but its role in the 

Pink1/Parkin pathway is not clear (Geisler et al., 2010;Narendra et al., 2010). However, 

two independent studies suggest that Pink1 (Michiorri et al., 2010) and Parkin (Van et al., 

2011) interact with Beclin1 and Ambra1, respectively, to induce autophagy. As mentioned 

above, Beclin1 and Ambra1 are two members of the PI3K CIII complex, which recruits 

membranes for the formation of the autophagosome. Parkin translocation triggers the 

accumulation on mitochondria of the histone deacetylase HDAC6, which binds 

ubiquitylated proteins, and promotes autophagy (Lee et al., 2010c). As discussed above, 

the Pink1/Parkin activation recruits several proteins by promoting mitochondrial fission and 

immobilization to facilitate autophagy. Indeed, polyubiquitinated mitofusins are removed 
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from mitochondria by the p97 AAA-ATPase and targeted to proteasome in neuroblastoma 

cell lines (Tanaka et al., 2010b) and in flies Pink1 and Parkin promotes fission (Poole et 

al., 2008), but it is still under debate in mammals (Ashrafi and Schwarz, 2013). Following 

mitochondrial depolarization, Pink1 and Parkin translocate to mitochondria and interact 

with Miro that anchors mitochondria to a kinesin motor complex. Phosphorylation and 

ubiquitination of Miro mediates its proteasomal degradation and arrest mitochondrial 

motility (Wang et al., 2011). Moreover, Parkin replaces degraded mitochondria with 

healthier ones by promoting mitochondrial biogenesis; indeed active Parkin degrades 

PARIS, the transcriptional repressor of PGC1α, which induces the expression of genes 

promoting mitochondrial biogenesis (Shin et al., 2011). Despite the growing body of 

evidence pointing out the central role of the Pink1/Parkin pathway of mitophagy, studies 

carried on neurons are quite confusing. In these studies, Parkin translocation to 

mitochondria is observed when Parkin itself is overexpressed (Seibler et al., 2011;Cai et 

al., 2012;Joselin et al., 2012); on the contrary, in non-transfected cells Parkin translocation 

(Van Laar et al., 2011) or Parkin-independent mitophagy (Rakovic et al., 2013) are 

reported. In addition, in vivo experiments are far to show Parkin recruitment or mitophagy 

in neurons with dysfunctional mitochondria (Sterky et al., 2011;Lee et al., 2012). Dissimilar 

results in vitro could be due to different supplements in the media that may facilitate or 

inhibit Parkin translocation (Grenier et al., 2013). In particular, Parkin fails to translocate to 

mitochondria in neurons treated with supplements containing antioxidants. DJ-1, a gene 

liked to ROS management and mutated in recessive PD, modulates Parkin translocation 

and mitophagy during oxidative conditions in flies (Joselin et al., 2012), even if its role is 

not conserved in mammals (Haque et al., 2012). Another upstream regulator of mitophagy 

is p53, which sequesters Parkin in the cytosol and prevents its translocation to 

mitochondria (Hoshino et al., 2013).  

Despite the significant body of evidence supporting the Pink1/Parkin dependence of 

mitophagy, new alternative regulators are emerging. Recently, cardiolipin has been 

proposed as mitophagy driven signal. In healthy mitochondria, cardiolipin localizes to the 

outer membrane, where it modulates respiratory chain complexes, autophagy and cell 

death (Beyer and Nuscher, 1996;Singh et al., 2010). (Chu et al., 2013) found that in 

response to pro-mitophagy stimuli, cardiolipin is externalized to the mitochondria surface, 

where it binds LC3 and induces mitophagy in cortical neurons and in a neuronal cell line. 

Thus, the molecular pathways regulating mitophagy are more complex than expected and 

further studies are needed to fully elucidate the process. 
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3.7. Mitochondrial dynamics and autophagy in neurod egeneration 

 

3.7.1 Alzheimer's disease (AD) 

 

AD is a devastating neurodegenerative disorder in which patients show an initial memory 

loss followed to broad cognitive dysfunction. At histological level, AD patients show 

extracellular deposition of amyloid plaques and accumulation of intraneuronal 

neurofibrillary tangles of hyperphosphorylated tau. This is coupled to synaptic loss and 

then neuronal death, initially in the entorhinal cortex and hippocampus, and finally more 

broadly in the cortex (Cummings, 2009). AD is a very complex disease, but recent 

evidences point out mitochondria aberrations in the disease. Indeed, mitochondrial 

bioenergetic deficits precede AD symptoms in a mouse model (Yao et al., 2009). 

Changes in the expression of mitochondrial fission and fusion proteins has been reported 

by (Wang et al., 2009b), suggesting an imbalance in the fusion–fission process. Drp1 

levels are increased in AD patients and it interacts with amyloid β (Aβ) and phosphorylated 

tau (Manczak and Reddy, 2012). Another study demonstrates that increased Aβ fragments 

mitochondria and decreases mitochondrial mass in the neurites of cultured neurons. This 

process seems to be mediated by Drp1 activation following S-nitrosylation (Cho et al., 

2009) but another study reports Drp1 phosphorylation as the activating mechanism (Bossy 

et al., 2010). However, the pathological meaning of these studies is unclear and other 

studies report normal or decreased levels of Drp1 in AD patients and animal models 

(Wang et al., 2009b;Bossy et al., 2010;Trushina et al., 2012). A recent study identifies the 

CAMKK2-AMPK pathway to mediate the early synaptotoxic effects of Aβ fragments in vitro 

and in vivo (Mairet-Coello et al., 2013), which may also be linked to autophagy induction 

since Aβ treatment activates the CAMKK2-AMPK pathway (Thornton et al., 2011). 

Upregulated depletion of mitochondria and accumulation of autophagosome have been 

shown in brains of AD patients (Nixon et al., 2005). Amyloid β precursor protein (AβPP), 

mutated in familial AD, presents a mitochondrial targeting signal at the N-terminal which 

induces the accumulation of AβPP in the mitochondrial compartment in cortical neurons of 

a mouse model of AD (Devi et al., 2006), causing different mitochondrial dysfunctioning 

when AβPP mutants are expressed. Indeed AβPP overexpression fragments and clusters 

mitochondria in the perinuclear area, elevates reactive oxygen species, decreases 
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mitochondrial membrane potential, and reduces ATP production, and also reduces 

neuronal differentiation deficiency upon retinoic acid treatment (Wang et al., 2008). 

Axonal degeneration in AD patients is characterized by regions in which mitochondria and 

other organelles accumulate (Stokin et al., 2005). The Aβ treatment of hippocampal 

neurons reduces mitochondrial transport (Rui et al., 2006). 

In AD brains, autophagosomes accumulate in dystrophic neurites, indicating impaired 

autophagy (Nixon, 2007), in particular in pyramidal neurons, hippocampus, and prefrontal 

cortex (Nixon and Yang, 2011). mTOR signalling and the levels of lysosomal hydrolases 

are increased (Yang et al., 2011), possibly reflecting impaired clearance of 

autophagosomes/lysosomes (Boland et al., 2008). Some evidences suggest a possible 

role for autophagy in Aβ metabolism. Autophagosomes generate and contain Aβ (Yu et al., 

2005) and oxidative stress-induced autophagy increases Aβ generation (Zheng et al., 

2011). Moreover, induction of autophagy decreases Aβ levels and improves cognition 

(Caccamo et al., 2010). Conversely, depletion of Beclin1 increases Aβ load (Pickford et al., 

2008), which in turn inhibits autophagy by mTOR activation (Caccamo et al., 2010). A 

recent study reports that autophagy influences secretion of Aβ to the extracellular space 

and thereby affecting Aβ plaque formation (Nilsson et al., 2013). Interestingly, Parkin 

clears damaged mitochondria and ubiquitinated Aβ in a beclin-dependent mechanism 

(Khandelwal et al., 2011), which can be activated also by prion protein (Nah et al., 2013). 

 

3.7.2 Parkinson's disease (PD) 

 

In PD, the accumulation of α-synuclein in Lewy bodies is the hallmarck preceding 

nigrostriatal dopaminergic neurons degeneration, which result in the characteristic deficits 

in movement (Braak et al., 2003). The pathogenesis of PD is still unclear but some 

evidences from AD patients and dopaminergic neurotoxins indicates a pivotal role for 

mitochondria (Schapira et al., 1990;Betarbet et al., 2000). Additional evidence for 

mitochondrial involvement comes from genes mutated in familial forms of PD, in particular 

in the autosomal recessive PD genes PINK1 and Parkin. In Drosophila, PINK1 and Parkin 

act as fission proteins and regulation of the network in absence of one or the other protein 

depends on the abundance of Drp1 (Poole et al., 2008;Yang et al., 2008). Parkin and 

PINK1 may regulate mitochondrial dynamics through their role in mitophagy and in 

mitochondrial motility in axons, as discussed above.  

Interestingly, another autosomal recessive PD protein, DJ-1, regulates mitochondrial 
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morphology, possibly as a consequence of increased reactive oxygen species. Parkin or 

PINK1 overexpression reverts the effects of DJ-1 on mitochondrial fragmentation (Irrcher 

et al., 2010;Wang et al., 2012a). 

Mutations of PINK1, Parkin, or DJ-1 are peculiar of rare forms of PD which show 

degeneration mainly restricted to dopamine neurons than idiopathic PD. Familiar PD also 

lacks Lewy bodies, and this may restrict the relevance of this genes in idiopathic PD 

(Ahlskog, 2009). α-synuclein is the major component of Lewis bodies and aggregates in 

high molecular weight oligomers (Spillantini et al., 1998). In vitro evidences report α-

synuclein localization to the IMM, where it may interact with complex I and reduce 

mitochondrial respiration (Devi et al., 2008;Shavali and Sens, 2008). Therefore it is not 

surprising that α-synuclein increases the sensitivity of dopaminergic neurons to 

mitochondrial toxins such as MPP+ and 6-hydroxydopamine (Orth et al., 2004). Indeed in 

α-synuclein overexpressing mice, α-synuclein is found in mitochondrial aggregates where 

it disprupts complex I activity and increases mitophagy (Chinta et al., 2010). Inhibition of 

autophagy promotes α-synuclein and LRKK2 presynaptic accumulation and causes 

dopaminergic axons and dendrites degeneration (Friedman et al., 2012). 

Overexpression or mutation of the autosomal dominant PD proteins α-synuclein and 

LRRK2 can also affect mitochondrial dynamics (Kamp et al., 2010;Wang et al., 2012b). 

These proteins may have a role in idiopathic PD, since α-synuclein aggregates in the 

brains of sporadic PD patients, in Lewy bodies and Lewy neurites (Jellinger, 2012). LRRK2 

is the most common genetic cause of PD (Clark et al., 2006) and regulates mitochondrial 

fragmentation through interaction with Drp1 (Niu et al., 2012;Wang et al., 2012b).  

 

3.7.3 Huntington's disease (HD)  

 

HD is a neurodegenerative disease caused by the expansion of CAG triplet repeat in the 

polyglutamine region of the huntingtin gene (Htt). Mutant Htt forms intracellular aggregates 

mainly in the striatum (Zheng and Diamond, 2012), which are coupled to mitochondrial 

failure (Bossy-Wetzel et al., 2004) and in particular, enhanced sensibility to complex I 

inhibition (Massieu et al., 2001). HD patients and HD animal models show fragmented 

mitochondria and decreased motility and respiration (Bossy-Wetzel et al., 2008). Indeed, 

increased levels of Drp1 and decreased Opa1 and Mfns are found in HD patients 

(Shirendeb et al., 2012), suggesting a shift toward mitochondrial fission. Interestingly, 

mutant Htt is found on mitochondrial surface (Panov et al., 2002), where it colocalizes with 
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Drp1 (Wang et al., 2009a;Song et al., 2011). Htt aggregates bind to Drp1 and increases its 

GTPase activity in vitro (Song et al., 2011). Thus, Drp1 is a good candidate in the 

pathogenesis of HD since the introduction of a Drp1 dominant negative reverts 

mitochondrial fragmentation and cell death induced by mutant Htt (Wang et al., 

2009a;Song et al., 2011). Moreover, increased levels of Ca2+ can activate Drp1 trough 

dephosphorylation by the calcium-dependent phosphatase calcineurin (Costa et al., 2010) 

and inhibition of Drp1 by FK506 reduces cell death in striatal neurons of HD models 

(Rosenstock et al., 2011). Recently, Htt has been proposed to regulate mitochondrial 

dynamics at the transcription level, possibly trough PGC1α (Cui et al., 2006). 

 

3.7.4 Amyotrophic lateral sclerosis (ALS)  

 

Motor neuron degeneration is the major hallmark of ALS. Familiar ALS related studies are 

mainly focused on mutant SOD1, which has been found in a subset of ALS patients (Duffy 

et al., 2011). Animal models expressing mutant SOD1 show fragmented mitochondria 

(Magrane et al., 2009) and the expression levels of the fusion/fission proteins are altered 

(Ferri et al., 2010). Mutant SOD1 disrupts mitochondrial transport and bioenergetics in 

motor neurons, which show tremendous synaptic alterations (Magrane et al., 2009) and 

defective mitochondrial transport has been suggested also in axons of ALS animal models 

(De Vos et al., 2007;Bilsland et al., 2010). However, this hypothesis is still debated since 

ablation of syntaphilin does not rescue ALS-like symptoms in G93A-SOD1 mice (Zhu and 

Sheng, 2011). A fraction of normal SOD1 is localized in mitochondria, where it apparently 

prevents oxidative damage (Fischer et al., 2011). However, mutant SOD1 is present in 

high levels on the OMM (Vande et al., 2008), where it associates to VDAC1 (Israelson et 

al., 2010). Mitochondrial mutant SOD1 affects protein import in mitochondria of spinal cord 

but not of other tissues (Li et al., 2010) and is necessary and sufficient to induce 

mitochondrial damage and cell death (Cozzolino et al., 2009;Magrane et al., 2009). 

TDP-43 is a DNA and RNA binding protein which is mutated in certain forms of ALS and 

found in aggregates in the anterior horns of spinal cord (Xu et al., 2011). Mutant TDP-43 

mice show depletion of mitochondria from neuromuscular junctions, probably explained by 

abnormal mitochondrial trafficking due to cytoplasmic inclusions containing KIF3a (Shan et 

al., 2010). Another TDP-43 mice shows elevated levels of Drp1 and Fis1 and reduced 

Mfn1 (Xu et al., 2010). 
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3.7.5 Charchot-Marie-Tooth (CMT) 

 

CMT is one of the most common inherited disorders in humans, with an estimated 

prevalence of 1: 2500. CMT neuropathies can be divided into two main, type 1 and type 2. 

In Charchot-Marie-Tooth type 1, nerve conduction velocities are considerably reduced. 

Charchot-Marie-Tooth type 2a (CMT2a) is due to Mfn2 mutations in the 50% of cases. In 

CMT2a, the nerve conduction velocities are normal but conduction amplitudes are 

decreased, due to the loss of nerve fibers (Zuchner et al., 2004). 

CMT2a is characterized by distal muscle weakness and sensory loss, decreased reflexes 

and foot deformities. Other symptoms include cranial nerve involvement, scoliosis, vocal 

cord paresis and glaucoma. At the cellular level, CMT2 include loss of sensory and motor 

axons at early stages of the disease followed by the degeneration of the neurons 

themselves during a later stage of the disease. 

The prevalence of MFN2 mutations in CMT2A are missense mutations concentrated in the 

GTPase and the RAS-binding domains (Kijima et al., 2005;Lawson et al., 2005;Zuchner et 

al., 2004). A de novo truncation mutation in MFN2 has been associated to CMT2 and optic 

atrophy (also known as hereditary motor and sensory neuropathy VI, HMSN VI) (Zuchner 

et al., 2006). 

Loss of Mfn2 increases mitochondrial DNA mutations and reduces mitochondrial DNA 

copy number, resulting in impaired aerobic respiration in mice (Chen et al., 2010). An 

alternative study points out the improper mitochondrial trafficking in axons, since Mfn2 

interacts with the Miro/Milton complex (Misko et al., 2010), which in turn may causes 

bioenergetic failure in the axon. Indeed, a further study shows segmental axonal 

degeneration without cell body death, suggesting the improper mitochondrial positioning, 

rather than global mitochondrial dysfunction, as the main cause of CMT2a (Misko et al., 

2012). 

Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) are 

associated to Charchot-Marie-Tooth type 4a (Niemann et al., 2005). GDPA1 is an outer-

membrane protein which is involved in fission (Niemann et al., 2009;Estela et al., 2011). 
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3.8. The retina: anatomy and development 

 

The eye is a structure which derives from different embryonic cellular populations, that is, 

the anterior neuroectoderm, the epidermic neuroectoderm and the neural crests. The 

morphogenesis of the eye begins after the closure of the neural tube, when two optic 

vesicles emerge from the diencephalic vesicle. The optic vesicle moves laterally and form 

a bistratified structure (the optic cup), which will generate the neural retina (internal layer) 

and the surrounding pigmented epithelium (external layer). 

The retina is a pluristratified structure. In transversal sections, from the pigmented 

epithelium to the crystalline lens, the retina is divided in five layers (Fig. 6). The outer 

nuclear layer (ONL) is constituted by cell bodies of photoreceptors (rods and cones), the 

external plexiform layer (EPL) presents axons and dendrites of photoreceptors, bipolar 

cells, amacrine cells and horizontal cells, their cell bodies form the inner nuclear layer 

(INL). An intricate net of axons and dendrites of retinal ganglions cells and cells of INL give 

rise to the internal plexiform layer (IPL). Ultimately, somas of RGCs form the ganglion cell 

layer (GCL). 

 

 

 

 

Fig. 6. Anatomy of the retina.  GCL, ganglion cell layer; 

IPL, inner plexiform layer; INL, inner nuclear layer; OPL, 

outer plexiform layer; ONL, outer nuclear layer; RGC, 

retinal ganglion cell; A, amacrine cell; B, bipolar cell; H, 

horizontal cell; P, photoreceptor. IPL is subidivided in 

sublayer a and b. From (Sernagor et al., 2001). 

 

 

 

Cell differentiation in the retina begins from retinal progenitors in the ventricular zone, 

starting from the central portion of the optic cup and continuing to the periphery of the 

retina (Fig. 7).  

RGCs are the first cells to differentiate. Following the proliferation phase (from embryonic 

day 11, E11 to E19 in mouse), post-mitotic cells migrate apically in the ventricular zone 

retaining a radial connection in the apical and basal sides of the retina. When they reach 



31 
 

the final position, RGCs loose radial connections and begin to establish a polarity 

generating axonal (start at E16) and dendritic projections (start at E17). The initial segment 

of axon is generated during the retraction of radial processes; it then grows towards the 

optic papilla and exits the lamina cribrosa in an unmyelinated state. After passing the 

lamina cribrosa, RGCs projections are wrapped by myelin and form the optic nerve, which 

convey the visual information from the retina to the lateral geniculate nucleus. It in turns 

projects to the primary visual cortex. The dendritic arborization of RGCs is packed in the 

IPL, where it establishes synapses with amacrine cells. Following RGCs, cones and 

horizontal cells differentiate and mature reciprocal connections, giving rise to the EPL. 

Vertical connections between inner and external retina are completed after differentiation 

of bipolar cells, which contact RGCs.  

RGCs maturation depends on genetic programs and external factors, as 

neurotransmitters, gap junctions or surface receptors. These factors control the correct 

number of neuronal populations, refine synaptic connections, eliminate topographically 

incorrect projections and control cell density, generating the final neuronal architecture. In 

particular, it has been proposed that these mechanisms regulate RGCs apoptosis, since 

the phase of apoptosis coincides with the phase of synaptogenesis (between postnatal 2, 

P2 and P5 in mouse). Likewise, rats show the 50% of apoptosis during the formation of 

synapses (Perry et al., 1983) and eliminate 90% of RGCs in the first week after birth (Galli-

Resta et al., 2008). 

 

 
Fig. 7. RGCs development.  From left to right, postmitotic RGCs migrate apically from the ventricular surface 

to the ganglion cell layer, where they generate axons and dendrites. Dendrites of ON or OFF RGCs stratifies 

in the internal plexiform layer or in the outer plexiform layer, respectively. Stratification occurs during the 

establishing of synapses with amacrine and bipolar cells. GCL, ganglion cell layer; IPL, inner plexiform layer; 

VS, ventricular sueface. From (Sernagor et al., 2001). 
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3.9. Retinal ganglion cells 

 

RGCs elaborate and send retinal information to the visual centers of the brain. These 

neurons are represented by different populations with different structure and function 

(Sernagor et al., 2001). The morphology of RGCs is not conserved. Their soma and their 

dendritic harborization have various dimensions and also the architecture of dendrites 

(Wassle and Boycott, 1991;Rodieck and Watanabe, 1993) and the pattern of axonal 

harborizations (Garraghty and Sur, 1993;Yamagata and Sanes, 1995a;Yamagata and 

Sanes, 1995b) are different.  

At the functional level, the same light input causes different electrical responses among 

RGCs (Wassle and Boycott, 1991). Their activity can be transient or sustained, fast or 

slow, tonic or phasic. Some RGCs are good sensors of movement, whereas others show a 

preferential direction of a moving stimulus, and others are particularly sensitive to 

orientation of the stimulus but not to its direction. Moreover RGCs differs according to the 

sensibility of contrast and visual acuity. Some electrophisiological studies depict a strict 

relationship between morphology and function of these cells in vertebrates (Saito, 

1983;Stanford and Sherman, 1984). Some data about structure and function of RGCs 

belonging to different species permitted to identify RGCs subclasses. In the Primate retina 

two functional classes of RGCs are described; type M (from latin magnus, which means 

big) and type P (from latin parvo, which means small). Both types include cells having ON-

centre and OFF-centre.  

RGCs type M present huge receptive fields and big dendritic harborizations and respond 

transiently to sustained illumination. They respond preferentially to big objects and follow 

greatly fast changes of the stimulus. They localize mainly in the peripheral retina. 

RGCs type P are the most abundant. Despite to RGCs type M, they are characterized by 

small receptive fields and are distributed in the central retina. They respond to specific 

wavelengths and they are involved in the perception of color and shape. P cells are 

essential for the perception of fine details in images, even if also some M cells behave this 

function.  

The koniocellular type are bistratified RGCs representing the 10% of all RGCs. They have 

been identified very recently because of their relavely small size (indeed, koniocellular 

means "cells as small as dust"). RGCs type K have very large receptive fields, which only 

have centers and are ON to the blue cone, but always OFF to the red and the green cone. 
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These neurons show moderate spatial resolution and respond to moderate contrast 

stimuli. 

Photosensitive ganglion cells include mailny RGCs type M. These cells express the 

photopigment melanopsin, which allows them to directly respond to the light input. 

Photosensitive ganglion cells project to the suprachiasmatic nucleus for circadian rhythm 

regulation and send collaterals to the Edinger-Westphal nucleus to control the pupillary 

light reflex.  

In the Cat retina, which is the best studied one, α RGCs and β RGCs have been identified. 

In general, every subclass of RGCs can be divided in depolarizing cells (ON RGCs) and 

iperpolarizing cells (OFF RGCs). Every subtype shows typical features. For instance, the 

pattern and dimension of their dendrites are similar in any position inside the retina and 

their dendritic fields overlap, shaping a kind of mosaic covering the entire retinal surface 

(Wassle et al., 1983;Cook and Chalupa, 2000). Moreover, they receive the same complex 

of synaptic inputs and they project to the same regions located in the same cerebral target. 

However, RGCs subclasses differ and are not conserved among species, even if they 

share the anatomical organization. Indeed, the IPL, in which RGCs give rise to intraretinal 

connections, is divided in two sublayers which differs in anatomy and function. 

Independently of the subclass, the dendrites of ON RGCs stratify in the inner IPL (sublayer 

B), whereas dendrites of OFF RGCs stratify in the external IPL (sublayer A) (Famiglietti, 

Jr. and Kolb, 1976;Nelson et al., 1978). Cells having the dendritic harborization in both 

sublayers show ON and OFF responses. 

 

 

 

3.10. Autosomal dominant optic atrophy 

 

Autosomal dominant optic atrophy (ADOA) is the most common form of inherited optic 

neuropathy, with a frequency of 1:50.000 (Alexander et al., 2000a;Delettre et al., 2000a). 

ADOA clinically is characterized by the slow, progressive and bilateral decrease in visual 

acuity, by tritanopia (dyschromatopsia characterized by confusion in the blue-yellow hues), 

by sensitivity loss in the central visual fields, and by pallor of the optic nerve (Ferre et al., 

2005;Votruba et al., 1997). Classic ADOA usually begins in early childhood, with a large 

variability in the severity of clinical expression, which may range from non-penetrant 
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unaffected cases up to very severe, early onset cases, even within the same family 

carrying the same molecular defect (Carelli et al., 2004;Ferre et al., 2005). 

Histopathological analysis in post-mortem ADOA patients reveal the selective loss of 

retinal ganglion cells (RGCs) with a prevalence in the central retina and optic atrophy, 

characterized by loss of myelin and nerve tissue (Johnston et al., 1979;Kjer et al., 1983). 

Linkage studies identifies three genes associated to ADOA (Alexander et al., 

2000a;Delettre et al., 2000a); Opa1, Opa3 and Opa7 and 75% of ADOA patients show 

mutations in Opa1 (Lenaers et al., 2012). The intriguing aspect of the disease is that 

RGCs are particularly affected, even if Opa1 is ubiquitously expressed throughout the 

body: in the heart, skeletal muscle, liver, testis, brain and retina (Alexander et al., 2000a). 

Moreover, OPA1 is not more abundant in RGCs than in other retinal cells (Kamei et al., 

2005). 

The majority of the mutations associated with ADOA are mainly concentrated in the 

GTPase and in the coiled coil domain of Opa1 (Ferre et al., 2005) and the 50% of 

mutations are predicted to lead to a truncated protein, suggesting that haploinsufficiency is 

the cause of the disease (Ferre et al., 2005;Pesch et al., 2001;Marchbank et al., 2002). 

However, nearly 40% of mutations occurs in the GTPase domain and may cause a 

dominant negative effect, impairing the mechanoenzymatic activity of the protein 

complexes. Three ADOA mouse models have been generated. The mouse model of Alavi 

and co-workers (2007) presents a STOP mutation at Gln 285, which causes protein 

truncation at the beginning of the GTPase domain. In the second model, an in-frame splice 

site mutation (329-355del) deletes 27 amino acids in the GTPase domain (Davies et al., 

2007). Finally, a frame shift mutation (delTTAG) generates  a protein lacking 58 amino 

acids (Sarzi et al., 2012). The mutations result from 30% to 50% reduction of OPA1 levels 

in heterozygous. Homozygous mutants are embrionically lethal at E8.5, E13.5 and E10.5, 

demonstrating the importance of Opa1 for proper development. The first two models of 

Opa1 in the heterozygous status display minimal retinal defects and normal myelination 

until 24 months and start to decrease visual function and visual evoked potentials (VEP) 

amplitude at 20 and 12 moths, respectively (Alavi et al., 2007;Davies et al., 2007;Barnard 

et al., 2011). Morphologically, the only difference is reported in dendritic atrophy at 10 

months (Williams et al., 2012). The Opa1delTTAG mutant decrease VEP amplitude at 9 

months and shows a significant axonal degeneration and demyelination at 16 months, 

starting from 5 months. Interestingly, electron microscopy reveals increased autophagic 

vesicles in optic and sciatic nerves (Sarzi et al., 2012).  
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However, the two Opa1 mice do not follow the early onset of ADOA and, therefore, do not 

represent a valid in vivo model of the pathology. The detailed mechanisms of the 

pathology remain still elusive in vivo, however the in vitro approach has been severely 

restrained by the lack of techniques to isolate RGCs from mouse, which is one of the most 

genetically engineered organisms. Recently, different methods have been reported (Hong 

et al., 2012;Winzeler and Wang, 2013). However, the first studies of Opa1 dysfunction 

have been performed on primary neurons or cell lines. 

RGCs display a unique distribution of mitochondria, which are particularly enriched in the 

unmyelinated part of the axon, which has high energy requirements to conduct action 

potentials since Na2+ channels are dispersed. There, mitochondria accumulate in 

varicosities of single axons, where also the high energy demand gap junctions have been 

described. Gap junctions are responsible for the centripetal extension of spreading neuron 

death, allowing the passage of Ca2+ and ROS (Rawanduzy et al., 1997). Conversely, the 

myelinated axons beyond the lamina cribrosa have lesser energy demand because the 

presence of saltatory conduction of Ranvier Nodes; thus requiring a smaller number of 

mitochondria in this region (Carelli et al., 2002). Indeed, the retina is one of the highest 

oxygen-consuming tissues of the body (Yu and Cringle, 2001). The RGCs layer has a 

richer body supply than the IPL, presenting a dense capillary network with additional radial 

peripapillary capillaries and astrocytic processes which help to maintain the brain blood 

barrier. Neuroglobin is a protein belonging to the family of globins, which contain a heme 

prostatic group that allows the binding of oxygen, nitric oxide and carbon monoxide. It is 

speculated neuroglobin may facilitate oxygen diffusion from capillaries to mitochondria, 

where it matches especially to axonal mitochondria reaching a concentration up to 100 fold 

higher than in the brain. Neuroglobin knockdown reduces activity of respiratory complexes 

I and III and cause RGCs degeneration (Lechauve et al., 2012;Lechauve et al., 2013). 

Mutations in complex I lead to Leber's hereditary optic neuropathy (LHON), characterized 

by asymmetric rapid loss of central vision in young males due to selective RGCs 

degeneration and optic atrophy. Despite the different clinical evolution, the clinical 

endpoint of ADOA and LHON is identical and the few histological studies showed the 

same massive RGCs death respect to an intact retina. LHON electron microscopy studies  

show an abnormal distribution of mitochondrial number along the axon profile (Carelli et 

al., 2004), reflecting changing in energy requirements or impaired axonal transport of 

mitochondria. Therefore, RGCs may be more vulnerable to OPA1 inactivation because 

they could be particular susceptible to mitochondrial membrane disorders inducing 
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mitochondrial dysfunction or improper localization. Indeed, reports describe altered 

mitochondrial ATP synthesis and respiration in OPA1-inactivated cells (Amati-Bonneau et 

al., 2005;Chen et al., 2005). Moreover, recent studies show the effect of mitochondrial 

morphology regulation by OPA1 on mitochondrial distribution in primary cortical neurons 

and their contribution to dendrite formation and synaptic plasticity, which may affect the 

overall neuronal maturation (Bertholet et al., 2013). Indeed, Opa1 downregulation 

fragments and aggregate the mitochondrial network in primary rat RGCs (Kamei et al., 

2005), altering essential mitochondrial functions in RGC neurons, as Ca2+ homeostasis 

(Kushnareva et al., 2013). Additionally, the defects in ADOA can be ascribed to the loss of 

the crucial control exerted by OPA1 on the structural organization of the cristae and 

apoptosis (Olichon et al., 2003b;Griparic et al., 2004b;Lee et al., 2004b;Arnoult et al., 

2005;Frezza et al., 2006a). Indeed, Opa1 upregulation restores mitochondrial morphology 

and protects neurons from excitotoxic cell death (Jahani-Asl et al., 2011). 

 

 

 

3.11. Calcineurin 

Calcineurin (Cn) is a Ser/Thr phosphatase. It consists on a heterodimer of a catalytic A 

subunit (CnA) and a regulatory B subunit (CnB). Cn activation requires CnB and 

calmodulin: CnB is thightly associated with CnA thanks to two high affinity Ca2+-binding 

sites that stabilize the heterodimer; other two low affinity Ca2+-binding sites serve as Ca2+ 

sensors, since their occupancy results in the calmodulin binding to Cn and allows the full 

activation of the enzyme (Yang and Klee, 2002). Cn is inactive at resting Ca2+ 

concentrations (100 nM or less), but the activity is considerably increased in the range of a 

few hundred nM to a few µM (Stemmer and Klee, 1994). However, prolonged stimulation 

inactivates Cn through a time-dependent accumulation of superoxide ions (Bito et al., 

1996). Cn is distributed throughout the body, but it is particularly enriched within post-

synaptic densities and cell soma of neurons in the central nervous system (Kincaid et al., 

1986) with some exceptions; in fact, in the developing retina RGCs are the only neurons 

expressing Cn, which then becomes consistently expressed by mature amacrine cells 

(Nakazawa et al., 2001). Cn has a restively narrow substrate specificity and it can also 

indirectly regulate other proteins in neurons through regulation of protein phosphatase 1 

(PP1) (Winder and Sweatt, 2001). In neurons, Cn regulates stabilization of microtubules, 
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neurotransmitter synthesis and release, vesicle recycling, activity of neurotransmitter 

receptors and gene expression (Groth et al., 2003). Cn has a central role in mitochondrial 

dynamics, since it is required for the Drp-1 dependent fission of mitochondria (Cereghetti 

et al., 2008b) and improves mitochondrial movement in glutamate-treated hippocampal 

neurons (Han et al., 2008b). 

 

 

 

3.12. AMPK 

AMP-activated protein kinase (AMPK) is a Ser/Thr kinase with a key role in maintaining 

energy metabolism at cellular and body levels. Mammalian AMPK is a complex composed 

by catalytic α subunit (α1 and α2 isoforms), regulatory β (β1 and β2), and γ (γ1, γ2 and γ3) 

subunits. The AMPK subunits display tissue-specific expression patterns. In the nervous 

system, the α2 subunit is predominant in adult brain and spinal cord with the highest 

expression in neurons of cortex and hippocampus and in Pukinje cells in the cerebellum 

(Turnley et al., 1999). The γ1 subunits share the same expression pattern of α2 subunit 

(Turnley et al., 1999). The α1 subunits is mainly expressed in embryos (Culmsee et al., 

2001). β1 and β2 subunits are expressed in adult neurons of the whole nervous system 

(Turnley et al., 1999). AMPK subunits are expressed in activated astrocytes. 

AMPK is a sensor of energy deficiency and other stresses (Mihaylova and Shaw, 2011): it 

is activated by a low AMP:ATP ratio and high Ca2+ and ROS concentrations. There are 

three kinases which activate AMPK by phosphorylating Thr172 in the regulatory T-loop of 

the α subunit. Ca2+/calmodulin-dependent protein kinase 2 (CaMKK2) (Woods et al., 

2005), liver kinase B1 (LKB1) (Jansen et al., 2009), and transforming growth factor-β-

activated protein kinase 1 (TAK1) (Xie et al., 2006). Conversely, protein phosphatases 

PP2Cα and PP2A are crucial inhibitors of AMPK (Sanders et al., 2007;Wu et al., 2007). 

AMPK stimulates energy production via glucose and lipid metabolism; it increases fatty 

acid oxidation and mitochondrial biogenesis through transcriptional regulation (Hardie, 

2008). Indeed, AMPK controls the cellular stress defence trough a downstream network of 

signalling pathway, including cAMP-responsive element binding protein (CREB), forkhead 

box O (FOXO), peroxisome proliferator-activated receptor 1α co-activator (PGC1α) 

andsilent information regulator I (SIRT1) and mammalian target of rapamycin (mTOR) 

(Canto and Auwerx, 2010).  



38 
 

AMPK is one of the major activators of autophagy by a double-pronged mechanism in 

which it activates unc-51-like kinase (ULK1) and inhibits mTOR trough phopshorylation of 

the mTOR regulators TSC2 and Raptor (Lee et al., 2010b;Kim et al., 2011). AMPK 

controls microtubule-based transport, since it phosphorylates and inactivates Tau 

(Thornton et al., 2011;Mairet-Coello et al., 2013) and kinesin light chain (Amato et al., 

2011), inhibiting protein and organelle trafficking in neuronal compartments; therefore 

reducing axonal growth and dendritic spine maintenance. 
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Summary 

Mutations in proteins that control mitochondrial sh ape result in neurodegenerative 

diseases like Autosomal Dominant Optic Atrophy (ADO A), associate to mutated 

Optic Atrophy 1 (Opa1) and caused by retinal gangli on cell (RGC) loss. Intense 

research on Opa1 elucidated its multiple functions in mitochondrial fusion, 

apoptosis and metabolism, but the pathomechanisms o f ADOA remain unknown. 

Here we show that an autophagic filter reduces axon al mitochondria in RGCs 

expressing pathogenic Opa1. Mutated Opa1 triggers a  loop of mitochondrial 

dysfunction and localized autophagosome accumulatio n at the axonal hillock. 

Pharmacological or genetic inhibition of autophagy restores axonal mitochondrial 

entry and rescues RGCs from excess apoptosis caused  by mutated Opa1. Thus 

localized autophagy contributes to define axonal mi tochondria and pathogenesis of 

ADOA.  
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Introduction 

Mitochondria possess several mitochondria shaping proteins responsible for their very 

dynamic nature. Mitochondrial fusion is regulated by two Mitofusins (MFN1 and MFN2) 

and Optic Atrophy 1 (OPA1). Mfns orchestrate outer mitochondrial membrane fusion 

(Santel and Fuller, 2001a;Legros et al., 2002a;Chen et al., 2003a;Santel et al., 2003a), 

while OPA1 cooperates with MFN1 to fuse the inner mitochondrial membrane (Cipolat et 

al., 2004b). OPA1 has an additional role in regulating cristae shape, preventing cytocrome 

c-dependent apoptosis and maintaining mitochondrial respiration (Cogliati et al., 

2013;Zanna et al., 2008;Cipolat et al., 2006b;Frezza et al., 2006a). Moreover, MFN2 has 

an additional role in ER-mitochondria tethering (de Brito and Scorrano, 2008b). Dynamin 

related protein 1 (DRP1) is a cytoplasmic protein that during fission following its calcineurin 

dependent dephosphorylation (Yoon et al., 2001;Smirnova et al., 2001a;Cereghetti et al., 

2008a) translocates to mitochondria where it binds to adapters such as mitochondrial 

fission factor (MFF), Fission 1 (Fis1) and Mitochondrial division (MiD) 49 and 51 (Loson et 

al., 2013).  

Mitochondrial morphology and function are intimately related (Campello and Scorrano, 

2010). In neurons a further complication exists in that mitochondria must be transported 

along microtubules to sites of high energy demand such as Ranvier Nodes and synapses, 

where they buffer Ca2+ and produce ATP to sustain neuronal activity (Sheng and Cai, 

2012;Itoh et al., 2013), and by the high Ca2+ fluxes of these cells. Indeed, Ca2+ can 

regulate mitochondrial trafficking trough the Miro/Trak complex (MacAskill et al., 

2009;Wang and Schwarz, 2009b), and Ca2+ plus ATP dock mitochondria to Ranvier Nodes 

(Zhang et al., 2010;Ohno et al., 2011). High Ca2+ concentrations can also be deleterious 

for mitochondria: they can trigger the permeability transition causing their depolarization 

(Scorrano et al., 1997). These stationary, depolarized mitochondria can be easily engulfed 

by a double-membrane vesicle, the autophagosome, and degraded by mitophagy, a 

selective form of mitochondrial autophagy (Twig et al., 2010) which targets depolarized 

mitochondria through the Pink1/Parkin pathway (Greene et al., 2003;Park et al., 

2006;Narendra et al., 2008;Matsui et al., 2013;Gegg et al., 2010;Geisler et al., 2010;Ziviani 

et al., 2010a;Chan et al., 2011). In addition, mitochondrial depolarization promotes a 

compensatory loop that consumes ATP, increasing AMP levels (St-Pierre et al., 2000) 

activating AMPK which in turn triggers autophagy (Mihaylova and Shaw, 2011).  
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Opa1 is mutated in Autosomal Optic Atrophy (ADOA), the most common inherited optic 

neuropathy with an incidence of 1:50.000 (Alexander et al., 2000a;Delettre et al., 2000a). 

ADOA symptoms include trithanopia, progressive loss of central vision, and optic nerve 

pallor (Ferre et al., 2005;Votruba et al., 1997). Histological studies in post-mortem ADOA 

patients showed selective loss of central retinal ganglion cells (RGCs) and optic atrophy, 

with demyelination and loss of nerve tissue (Johnston et al., 1979;Kjer et al., 1983). RGCs 

are therefore the major target of ADOA, even if Opa1 is ubiquitously expressed in all 

retinal layers and other tissues (Alexander et al., 2000a;Kamei et al., 2005). The majority 

of the ADOA-associated mutations cluster in the GTPase and in the coiled coil domain of 

Opa1 (Ferre et al., 2005) and ~50% of them are predicted to lead to a truncated protein 

(Ferre et al., 2005;Pesch et al., 2001;Marchbank et al., 2002). Three ADOA mouse models 

have been developed, carrying the most frequent mutations described in patients (Alavi et 

al., 2007;Davies et al., 2007;Barnard et al., 2011). In the mutant mice, mitochondria 

appear granular, are depleted from dendrites and display disorganized cristae (Alavi et al., 

2007;Davies et al., 2007;Williams et al., 2012), yet these mice develop visual loss only 

around 24 months, when an ultrastructural analysis indicated also the accumulation of 

autophagosomes in the optic nerve (Davies et al., 2007;White et al., 2009). Accordingly, 

mutated Opa1 causes mitochondrial fragmentation, aggregation and depletion from 

dendrites as well as cristae derangement when expressed in primary neurons (Kamei et 

al., 2005;Bertholet et al., 2013). These morphologically altered mitochondria are also 

dysfunctional: they are unable to buffer Ca2+ and to maintain the membrane potential 

(Dayanithi et al., 2010;Bertholet et al., 2013;Kushnareva et al., 2013).  

Despite the availability of mouse models and intense studies in cell cultures, ADOA 

pathophysiology is not well understood. A plausible explanation resides in the peculiar 

anatomy of RGCs, which are enriched in mitochondria in the proximal part of the axon, 

where energy demand to sustain action potentials is high (Carelli et al., 2004). Yet, a 

molecular explanation that unifies the observations in cellular and mouse models is 

lacking. We therefore set out to investigate the molecular mechanisms linking mutated 

Opa1 to death of primary RGCs isolated from mouse (Hong et al., 2012;Winzeler and 

Wang, 2013). We discovered that an autophagic filter actively degrades mitochondria in 

the soma, impairing axonal mitochondrial entry and survival in RGCs expressing 

pathogenic Opa1 mutants. 
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Results 

OPA1 mutants alter mitochondrial distribution in en riched primary RGCs 

Histopathology analysis from post-mortem ADOA patients show specific RGCs loss in the 

context of an otherwise intact retina (Johnston et al., 1979;Kjer et al., 1983). Despite the 

availability of animal models (Alavi et al., 2007;Davies et al., 2007;Barnard et al., 2011), 

the molecular mechanisms causing ADOA are still unclear and our knowledge on OPA1 

functions derives from cellular models poorly related to RGCs (Misaka et al., 2002;Olichon 

et al., 2003b;Griparic et al., 2004b;Cipolat et al., 2004b;Cipolat et al., 2006b;Frezza et al., 

2006a;Bertholet et al., 2013). Recently, magnetic labeling and immuno-panning have been 

described to purify RGCs from mouse (Hong et al., 2012;Winzeler and Wang, 2013), 

allowing to bypass the poorly informative experiments performed in total retinal cellular 

populations where RGCs represent a minor population (Barres et al., 1988;Williams et al., 

2012). We purified RGCs via magnetic labeling and immuno-panning (Fig.1A,S1A) and we 

evaluated the enrichment by immunocytochemistry of the RGCs marker Brn3a and RT-

PCR of markers described for other retinal cells (Fig.1B,S1B). Magnetic labeling enriched 

RGCs cultures up to 30% (Fig.1C), whereas immuno-panning excluded all contaminants, 

with the exception of macrophages and endothelial cells which express the same marker 

used for RGCs selection (Barres et al., 1988) (Fig. S1B). A point Lys 301 to Ala mutation 

(OPA1K301A) and a truncated OPA1 due to the introduction of a stop codon in position 905 

(OPA1R905STOP) mimic the most common ADOA OPA1 mutations (Griparic et al., 2004b). 

Independently from the RGC isolation technique, the pathogenic mutants OPA1K301A and 

OPA1R905STOP fragmented mitochondria, whereas OPA1 and a constitutively active 

OPA1Q297Vmutant (Yamaguchi et al., 2008) increased mitochondrial length in neurites 

(Fig.1D,E and S1C). Mitochondria in the soma qualitatively reflect the morphology of 

mitochondria in the axon, but their dense packing impeded to perform a quantitative 

morphometric analysis. Since pathogenic OPA1 mutants have been shown to alter 

mitochondrial function in other cellular models (Frezza et al., 2006a;Dayanithi et al., 

2010;Bertholet et al., 2013;Kushnareva et al., 2013), we wished to verify if the same was 

true in RGCs. Somatic as well as neurites OPA1K301A and OPA1R905STOP but not OPA1 and 

OPA1Q297V mitochondria lost their membrane potential when the reversal of the 

mitochondrial ATPase was inhibited with oligomycin (Fig.1F), a well-established assay for 

latent mitochondrial dysfunction (Irwin et al., 2003). These data confirm previous 

observations from other cellular models and show that the method of RGC purification 

does not bias the effect of Opa1 on RGC mitochondria, allowing us to use the more 
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efficient magnetic labeling purification. Since mitochondrial depolarization triggers their 

axonal retrograde transport (Miller and Sheetz, 2004), we investigated mitochondrial 

distribution upon expression of pathogenic Opa1 mutants. The fragmented ADOA 

mitochondria accumulated in proximity of the axonal hillock and were depleted from the 

axon, without loss of cellular processes or microtubule alteration. The few mitochondria 

retrieved in the axon were also fragmented. Conversely, OPA1 and OPA1Q297V did not 

alter the normal distribution and elongated morphology of mitochondria in the soma and in 

the axon of RGCs (Fig.2A,B and S2). We next tested whether alterations in mitochondrial 

transport could explain the observed loss of axonal mitochondria. Kymographic analysis 

revealed no differences in anterograde or retrograde mitochondrial velocities among the 

studied Opa1 mutants. However, fragmented ADOA mitochondria were more stationary, 

whereas mitochondrial trafficking was not altered in RGCs expressing OPA1 and 

OPA1Q297V (Fig.2C,D,E). Taken together, these data confirm the mitochondrial 

morphological abnormalities reported in other cellular models and indicate that Opa1 

mutants alter mitochondrial axonal distribution in RGCs, similarly to what observed in 

dendrites of cortical neurons (Bertholet et al., 2013) and RGCs (Fig.S2A,S2B). 

 

Mitochondria expressing pathogenic Opa1 mutants dis play hallmarks of mitophagy 

Since mitochondria expressing the pathogenic Opa1 mutants display all the hallmarks 

preceding mitophagy (depolarization, fragmentation and immobilization), (Twig et al., 

2008;Twig et al., 2010;Head et al., 2009;Poole et al., 2010;Tanaka et al., 2010b), we 

tested the hypothesis that they are excluded from axons because of increased autophagy. 

Measurements of autophagic vesicles by expression of a yellow fluorescent protein (YFP)-

LC3 sensor did not indicate gross changes in steady state autophagosome accumulation 

or in autophagic flux (Fig.S4), whereas it showed that autophagosomes localized at the 

axonal hillock when pathogenic Opa1 mutants were expressed (Fig.3A,B). The 

autophagosomes accumulated proximal to the fragmented mutant Opa1 expressing 

mitochondria (Fig.3C,D) and were basically absent from axons and dendrites (Fig.3E). 

Indeed, mutant OPA1 expressing mitochondria were significantly engulfed by autophagic 

vescicles (Fig.S3A,S3B) and overexpressed Parkin decorated OPA1K301A and 

OPA1R905STOP mitochondria, whereas it remained cytosolic in OPA1 and OPA1Q297V 

expressing RGCs (Fig.S3C,S3D), suggesting that ADOA mitochondria sent pro-mitophagy 

signals. Thus, in RGCs expressing pathogenic OPA1 mutants autophagosomes 

accumulate and engulf mitochondria at the axonal hillock. 
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AMPK and Ca 2+/calcineurin sustain the localized RGC autophagy 
 

We next addressed the molecular mechanisms leading to localized autophagosome 

accumulation. AMPK activates unc-51-like kinase (ULK1) and inhibits mammalian target of 

rapamycin (mTOR) (Lee et al., 2010b;Kim et al., 2011) to trigger autophagy. We reasoned 

that AMPK could be locally activated by mitochondrial depolarization at the axonal hillock. 

Because active AMPK is phosphorylated on Thr172 by the AMP-dependent kinase LKB1 

(Jansen et al., 2009) as well as by the Ca2+-dependent kinase CaMKK2 (Woods et al., 

2005), we investigated the subcellular localization of Thr172 phosphorylated AMPK. 

Interestingly in RGCs expressing pathogenic Opa1 phosphorylated AMPK accumulated 

proximal to the axonal hillock, where mitochondria and autophagosome congregated. 

Conversely, a low signal of phosphorylated AMPK was diffuse in the soma in OPA1 and 

OPA1Q297V expressing RGCs (Fig.4A,B). A non-phosphorylable Thr 172 to Ala AMPK 

mutant (AMPKT172A) which almost completely abolishes its kinase activity (Stein et al., 

2000), corrected mitochondria and autophagosomes distribution only partially (Fig.4C,D 

and E), which was however sufficient to allow axonal mitochondrial entry.  

Since AMPK was not the sole player regulating mitochondrial and autophagosome 

distribution in ADOA RGCs, we decided to modulate its upstream regulators. Ca2+ 

chelation by a cell permeant chelator in OPA1K301A and OPA1R905STOP expressing RGCs 

fully corrected mitochondria and autophagosomes distribution in soma and axon (Fig.4F-I). 

The Ca2+-dependent phosphatase calcineurin (Cn) is expressed in RGCs but not in the 

other cells of the retina (Nakazawa et al., 2001) and it restores mitochondrial motility in 

cells blocked by Ca2+ (Han et al., 2008b), making it an attractive candidate downstream 

Ca2+. A dominant negative mutant of Cn (delCnAH151Q) (Cereghetti et al., 2008a) fully 

corrected mitochondrial and autophagosomes clustering (Fig.4J-M); moreover, a 

constitutively active mutant of Cn (delCnA) (Cereghetti et al., 2008a) was able to induce 

axonal hillock accumulation of mitochondria and autophagosomes even when OPA1 and 

OPA1Q297V were expressed (Fig.4J-M). Interestingly, delCnAH151Q did not alter the 

autophagic flux in OPA1K301A overexpressing RGCs (Fig.S4), suggesting that the position 

of autophagosomes, instead of degradation efficiency, is the main regulator of 

mitochondrial distribution. In conclusion, a Ca2+-dependent mechanism involving Cn and 

AMPK controls autophagosome and mitochondrial accumulation. 
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An autophagic filter compromises mitochondrial axon al mobility and RGCs survival 

If our model of abnormal mitochondrial distribution caused by localized autophagy was 

correct, mitochondria shall enter into the axons if autophagy is inhibited. Inhibition of 

autophagosome induction with 3-Methyladenine and of autophagosome fusion with the 

lysosome with Bafilomycin A1 fully restored axonal entry of OPA1K301A and OPA1R905STOP 

mitochondria (Fig.5A,B), despite that mitochondria and autophagosomes remained 

accumulated in the axonal hillock (Fig.S5A,S5B). Moreover,  blockage of autophagy by 3-

Methyladenine and of autophagosomal axonal hillock localization by delCnAH151Q 

corrected the increased susceptibility of RGCs expressing OPA1K301A and OPA1R905STOP to 

apoptosis even in presence of pathogenic concentrations of Ca2+ triggered by glutamate 

(Fig.5C). The blockage of autophagy trough drastically promoted RGCs survival, providing 

evidence that mitochondria distribution dictates RGCs susceptibility to cell death. Thus, 

inhibition of autophagy restores mitochondrial distribution and viability of RGCs carrying 

ADOA mutations.  
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Discussion 

Our data demonstrate that a form of localized autophagy defines mitochondrial distribution 

in highly polarized cells like neurons. By using RGCs and pathogenic Opa1 mutants as a 

model, we discovered that mitochondrial dysfunction results in accumulation of 

mitochondria at the axonal hillock, where they trigger local Ca2+/calcineurin/AMPK 

dependent autophagosome buildup and where they are marked for autophagic 

degradation. When autophagy is inhibited, mitochondria can escape this filter and enter 

into the axon. 

Mitochondrial motility is a highly regulated process where motors, anchors adaptors and 

sensors cooperate to define organellar speed, direction and position. Our results provide 

evidence that autophagy contributes in determining mitochondrial subcellular distribution at 

least in highly polarized cells like RGCs and other neurons. Whether the same system 

works in other cell types and for other organelles is of great interest and remains to be 

explored. Interestingly, evidence of increased autophagy has been collected in animal 

models of ADOA where Opa1 is haploinsufficient, but its relevance in the pathogenesis of 

the disease was unclear. Our data connect autophagy to the essential role of axonal 

mitochondria for RGCs survival and lend support to the so called anatomical hypothesis of 

ADOA, according to which the initial axon is the most vulnerable part of RGCs (Carelli et 

al., 2004).  

RGCs belong to a subset of neurons having long axons that are the first to degenerate in 

many neurodegenerative diseases, including neurons of superordinate centers of 

somatomotor, visceromotor, and limbic systems in Parkinson's disease (Braak et al., 2004) 

and motorneurons affected in Amyotrophic lateral sclerosis and Charchot-Marie-Tooth 2a 

(Sau et al., 2011). In all these diseases, trafficking of dysfunctional mitochondria is altered 

(Orth et al., 2004;De Vos et al., 2007;Sasaki and Iwata, 2007;Bilsland et al., 2010;Misko et 

al., 2010;Misko et al., 2012) and autophagosomes aggregate in the soma (Sasaki et al., 

2005;Chinta et al., 2010). However, whether the two are functionally linked and this 

connection is pathophysiologically relevant has never been explored. Our data indicate 

that the these two processes are intimately linked and open the possibly to treat ADOA 

and other neurological disorders where mitochondria are defective and neurons with a 

long axon degenerate. 

It is surprising that axon mitochondrial re-distribution is sufficient to correct viability of 

ADOA RGCs. Our data indicate that mitochondria are collectively dysfunctional and 

indeed, they are massively decorated with Parkin that accumulates on depolarized 
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mitochondria. It is therefore likely that upon autophagy inhibition, the mitochondria entering 

in the axon are still diseased. It is possible that the dysfunctional mitochondria 

accumulating in the soma amplify apoptosis, and by allowing their axonal re-entry 

apoptosis is reduced. Functional mitochondria are however essential to provide ATP and 

buffer Ca2+ to sustain the electrical activity of neurons: further studies are required to 

understand whether inhibition of autophagy fully restores neuronal functions.  

The presence of autophagy has always been considered protective in neurons. 

Surprisingly, in our study its inhibition mechanism improves cell survival. In principle, 

dysregulated and aspecific autophagy triggered by mitochondrial dysfunction could impair 

entry in the axon of other organelles and molecules, a condition reported in many 

neurological disorders (Sau et al., 2011) and an amplifying factor for cell death. However, 

we measured autophagy-related benefits in the short period and a major caveat is that 

when a quality-control apparatus is blocked, dysfunctional mitochondria may take over the 

functional one sin the long run, further precipitating the pathological condition. Thus, for 

how tempting it is to extend our findings to the possibility of treating neurodegenerative 

diseases, our model shall be tested in vivo in models of chronic mitochondrial dysfunction 

and autophagy inhibition. 
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Experimental procedures 

 

Molecular Biology 

peYFP-hLC3 (YFP-LC3) was kindly provided by Dr. M. Sandri (Venetian Institute of 

Molecular Medicine, Padua, Italy).  Mitochondrially targeted dsRED (mtRFP) was a kind 

gift from M. Zaccolo (Venetian Institute of Molecular Medicine, Padua, Italy). pDCRHA-

CnA was from Dr. S. Schiaffino (Venetian Institute of Molecular Medicine, Padova, Italy). 

pEYFP-C1-Parkin was a gift from Dr. E. Ziviani (Venetian Institute of Molecular Medicine, 

Padua, Italy). pDCRHA-CnAH151Q, pEYFP-Mito (mtYFP), mito-dsRED (mtRFP) were 

described (Cereghetti et al., 2008b).  

pMSCV, pMSCV-OPA1, pMSCV-OPA1K301A and pMSCV-OPA1R905STOP were described 

(Cipolat et al., 2004b) and pMSCV-OPA1Q297(Yamaguchi et al., 2008). pCMV-AMPKT172A 

mutant (described by (Stein et al., 2000)) was prepared from wt (provided by Dr. 

Campello) by site directed point mutagenesis. 

All constructs were confirmed by sequencing. 

To generate pCMV-AMPKT172A mutant site directed mutagenesis was performed using the 

following primer sequence: 5'- GAATTTTTAAGAGCAAGTTGTGGCTC -3' and 5'- 

GAGCCACAACTTGCTCTTAAAAATTC -3'. 

Total RNA from 300.000 RGCs was purified with Absolutely RNA Microprep Kit (Ambion) 

and the full-length complementary DNA was obtained by RT–PCR. Primers against the 

following target sequences from the following mouse genes were synthesized:  

Brn3c, 5’- GTCTCAGCGATGTGGAGTCA -3’ and 5’- GAGCTCTGGCTTGCTGTTCT -3’; 

Gfap, 5'- GCTGCGTATAGACAGGAGGC -3' and 5'- CGGCGATAGTCGTTAGCTTC -3'; 

Iba1, 5'- CGATGATCCCAAATACAGCA and 5'- GACCAGTTGGCCTCTTGTGT -3'; Lhx1, 

5'- CAGTGTCGCCAAAGAGAACA -3' and 5'- ACCAGACCTGGATAACACGC -3'; 

Pecam1, 5'- GCCCAATCACGTTTCAGTTT -3' and 5'- GGCTTCCACACTAGGCTCAG -3'; 

Rcvr, 5'- ATTCCAAGTTTTTCCCGGAC -3' and 5'- ATTCCAAGTTTTTCCCGGAC -3'; 

Thy1, 5'- CGCTCTCCTGCTCTCAGTCT -3' and 5'- GCTCACAAAAGTAGTCGCCC -3'; 

Stx1a, 5'- ATGATGCCCAGAATCACACA -3' and 5'- ATGATGCCCAGAATCACACA -3'; 

Vsx2, 5'- ATCCCCCTGCCAGAGTCTAT -3' and 5'- TACAGTCCCCAGAACCTTGG -3'. 

 

Animals and cell culture 

From 8 to 10 P0-P2 C57Bl/6J mice were sacrifiedin compliance to local animal welfare 

regulations, retinas dissected and digested with papain 15U/ml (Worthington) in Earle's 
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Balanced Salt Solution (Sigma) containing EDTA 0.5 mM (Sigma), β-mercaptoetanol 143 

mM (Sigma), L-Cys-HCl 1 mM (Sigma), DNase I 125 U/ml (Worthington) at 33°C for 30 

minutes. Digestion was blocked with ovomucoid inhibitor 1.2 mg/ml (Worthington), BSA 

0.8 mg/ml and DNase I 125 U/ml (Worthington). Following dissociation, RGCs were 

purified with two protocols. 

Immuno-panning  

We modified the protocols of (Winzeler and Wang, 2013;Hong et al., 2012). Briefly, 

dissociated cells were incubated with α-mouse-macrophage antiserum 1:100 (Fitzgerald 

Industries) for 20 min and then in the subtraction plate functionalized with α-rabbit IgG 

antibody 1:100 (Sigma) for 45 min, which sequesters endothelial cells and macrophages 

(Thy1+ cells) from the supernatant. The supernatant was collected and incubated in the 

selection plate functionalized with α-Thy1 antibody (Sigma), which binds RGCs. Then, 

RGCs were detached using trypsin 0.25% (Invitrogen). 

Magnetic separation  

We modified the protocol of (Hong et al., 2012). Dissociated cells were incubated with α-

Thy1 antibody conjugated to microbeads 1:100 (MiltenyiBiotec) at 4°C for 15 min. After 

careful washing, the cells were applied onto a MACS MS Column (MiltenyiBiotec) placed 

in a MiniMACS Separator (MiltenyiBiotec). The column was removed from the separator, 

and the retained cells were eluted as a magnetic-labeled RGC fraction. 

Following purification, 100.000 cells were transfected with the indicated plasmids using 

Neon Transfection System (Invitrogen) according to manufacturer’s instructions. Then, 

RGCs were seeded onto 24-mm round glass coverslips, which were coated with poly-L-

ornitine 0.2 mg/ml (Sigma) and laminin 0.5 mg/ml (Roche). Cells were coltured in 

Neurobasal A Medium supplemented with B27 (Gibco), N2 (Invitrogen), L-glutamine 1% 

(Invitrogen) and NGF 25 ng/ml (BD Bioscience) at 37°C in a 5% CO2 atmosphere. 

 

Imaging 

For confocal imaging of fixed cells, 100.000 cells seeded onto 13-mm round glass 

coverslips transfected and stained as indicated. Cells were placed on the stage of a Nikon 

Eclipse TE300 inverted microscope equipped with a PerkinElmer Ultraview LCI confocal 

system, a piezoelectric z-axis motorized stage (Pifoc, PhysikInstrumente, Germany), and a 

Orca ER 12-bit CCD camera (Hamamatsu Photonics, Japan). Cells expressing mtRFP 

and FITC stained were excited using the 488 nm or the 543 nm line of the HeNe laser 

(PerkinElmer) using a 60x 1.4 NA Plan Apo objective (Nikon). 70 confocal images of 
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mtRFP and FITC  fluorescence were acquired along the z-axis, deconvolved and 3D 

reconstructed using the adequate plugins of ImageJ(National Institutes of Health, 

Bethesda). 

For confocal imaging of living cells, 100.000 cells seeded onto 24-mm round glass 

coverslips transfected with mtRFP, YFP-LC3 and with the indicated plasmids. After 24 hrs, 

cells were placed on the stage of a laser scanning microscope (TCS SP5, Leica). Using 

the LasAF software (Leica), RFP and YFP were excited using the 488 nm or the 543 nm 

line of the HeNe and Argon with a 63X, 1.4NA objective. 30 confocal images of mtRFP 

and YFP fluorescence were acquired along the z-axis, deconvolved and 3D reconstructed 

using the adequate plugins of ImageJ. 

For mitochondrial transport imaging, 100.000 cells seeded onto 24-mm round glass 

coverslips transfected with mtRFP and with the indicated plasmids. After 24 hrs, cells were 

placed on a thermostated chamber at 37°C and maintained on the stage of an Olympus 

inverted microscope equipped with a CellR imaging system. Sequential images of the 584 

nm fluorescence emission were acquired every 1 s with a 60x, 1.4 NA objective (Olympus) 

using the CellR software and then processed using the straighten plug-in of Image J 

(Kocsis et al., 1991). Mitochondrial velocity was measured as described (Wang and 

Schwarz, 2009a). 

For evaluation of membrane potential, 100.000 RGCs were plated on 24 mm round 

coverslips and loaded with tetramethyl methyl ester 0.5 nM (TMRM, Sigma) dissolved in 

Hanks' balanced salt solution (HBSS, Invitrogen) supplemented 10 mM HEPES pH 7.4 in 

the presence of cyclosporine H 2 mg/ml, a P-glycoprotein inhibitor for 30 min at 37°C. 

Cells were then placed on the stage of an Olympus IMT-2 inverted microscope (Melville, 

NY) equipped with a CellR imaging system. Cells were excited using a 525/20 BP 

excitation filter, and emitted light was acquired using a 570/LP filter. Imaging and analysis 

of TMRM fluorescence over mitochondrial regions of interest was performed as described 

(Scorrano et al., 2003). 

 

Immunofluorescence  

Primary RGCs were seeded onto 13-mm round glass coverslips coated with poly-L-

ornitine and laminin. After 24 hrs cells were treated as indicated and fixed for 10 min at 

room temperature with 3.7% (w/V) formaldehyde (Sigma), permeabilized for 10 min with 

Triton-X-100 0.1% (Sigma), blocked for 1 hour with BSA 1% (Sigma) and incubated with 

primary antibodies. Staining was revealed with a goat anti-rabbit or anti-mouse IgG 
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conjugated to fluorescein-isothiocyanate (FITC) or tetramethylrhodamine (TRITC). Nuclei 

were stained with  4',6-diamidin-2-fenilindolo (DAPI). 

The following antibodies were used: Phospho-AMPKα (Thr172) (1:200, Cell Signalling), 

SMI-312 (1:100; Abcam), β-Tubulin III (1:500, Sigma), Brn3a (1:500, Santa Cruz 

Biotechnology), Tom20 (1:1000, Santa Cruz Biotechnology). 

 

Apoptosis  

Primary RGCs were seeded onto 13-mm round glass coverslips coated with poly-L-

ornitine and laminin. Cells were treated as indicated and apoptosis was induced with 

glutamate 100 µM (Sigma) and glycine 20 µM (Sigma). After 24 hours cells were fixed for 

10 min at room temperature with 3.7% (w/V) formaldehyde and permeabilized for 10 min 

with Triton-X-100 0.1% (Sigma). Apoptosis was evaluated by tunel staining with In Situ 

Cell Death Detection Kit (Roche) following manufacturer's instructions. 

 

Treatments 

Autophagy was inhibited with Bafilomycin A1 200nM (Sigma) for 30 min or 3-

Methyladenine 10mM (Sigma) for 24 hours in complete medium. 

Ca2+ was chelated with BAPTA 40µM (Sigma) for 30 min. 

 

Colocalization Analysis  

Colocalization between autophagosomes and mitochondria was quantified using Manders’ 

coefficient (de Brito and Scorrano, 2008b). 
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Figure legends 

 

Figure 1. Opa1 pathogenic mutants fragment and depo larize mitochondria of 

primary RGCs 

(A) Schematic representation of the magnetic isolation of RGCs. Cells dissociated from P0 

murine retinas are magnetically labeled with Thy1 antibody (orange circles), a RGCs 

surface marker. Cells labeled with Thy1 antibody are retained on the column while 

unlabeled cells pass through (green circles). The column is removed from the separator. 

The retained cells are eluted as the enriched, positively selected cell fraction.  

(B) Representative immunofluorescence of RGCs isolated with magnetic purification, 

marked with Brn3a (red). The nuclear DNA is marked by DAPI (blue). Bar, 20 μm.  

(C) Analysis of enrichment on Brn3a cells after magnetic purification. The number of Brn3a 

cells is normalized to the number of total cells, positive for DAPI. The data represents the 

average ± SD of 3 experiments (n=150-250 cells/experiment).  

(D) Representative 3D reconstructions of stacks of confocal images of the fluorescence 

ofmtRFP  in primary RGCs cotransfected with the indicated plasmids and fixed after 24 

hours. 70 confocal images of mtRFP fluorescence were acquired along the z-axis, 

deconvolved and 3D reconstructed (mtRFP) using the appropriate plugins of ImageJ. Bar, 

20 μm.  

(E) Quantitative analysis of mitochondrial length in fixed RGCs contransfected with mtRFP 

and the indicated plasmids. Data represent average ± SEM of 4 independent experiments 

(n=30 cells/experiment).  

(F) Quantitative analysis of TMRM fluorescence changes over somatic mitochondria of 

GFP-positive RGCs. Oligomycin and FCCP were added. Data represent average ± SEM 

of 6 independent experiments (n=4 cells/experiment). 

 

Figure 2. Opa1 pathogenic mutants deplete mitochond ria from axons of RGCs 

 

(A) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and β-tubulin III (green) in primary RGCs cotransfected with the indicated 

plasmids. RGCs were cotransfected with mtRFP (red) and the indicated plasmids. 24 

hours after transfection cells were fixed and immunostained with β-tubulin III (green). The 

images were acquired and processed as described in Fig.1C. Bar, 20 μm. 

(B) Quantitative analysis of the mitochondrial content of axons in RGCs cotrasfected with 



54 
 

mtRFP and the cited plasmids. Data represent average ± SEM of 4 independent 

experiments (n=20 cells/experiment).  

(C) Representative kimographs of movies of the fluorescence ofmtRFP in primary RGCs 

cotransfected with mtRFP and the indicated plasmids. 24 hours after transfection cells 

were analyzed at 37°C.   

(D) Analysis of mitochondria in motion in neurites. The number of moving mitochondria is 

normalized to the number of total mitochondria. Data represent average ± SEM of 5 

independent experiments (n=5 cells/experiment).   

(E) Analysis of anterograde (black) and retrograde (red) velocity of mitochondria. Data 

represent average ± SEM of 5 independent experiments (n=5 cells/experiment). 

 

Figure 3. Mitochondria and autophagosomes clusteriz e in proximity of the axonal 

hillock of RGCs expressing pathogenic mutants of Op a1 

(A) Representative z-projects of stacks of confocal images of the fluorescence of YFP-LC3 

in primary RGCs cotransfected with the indicated plasmids. Bar, 20 μm. 

(B) Quantitative analysis of autophagosomes accumulation in the axonal hillock in RGCs 

contransfected with YFP-LC3 and the indicated plasmids. Data represent average ± SEM 

of 6 independent experiments.  

(C) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in the soma primary RGCs cotransfected with the 

indicated plasmids. The asterisk indicates the axon. Bar, 20 μm.  

(D) Quantitative analysis of the mitochondrial accumulation in the axonal hillock. Data 

represent average ± SEM of 6 independent experiments.  

(E) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in primary RGCs cotransfected with the indicated 

plasmids. Bar, 20 μm.  

 

Figure 4. Retrograde Ca 2+/Calcineurin-AMPK signalling localizes autophagy at  the 

axonal hillock 

(A) Representative z-projects of stacks of confocal images of the fluorescence of phospho-

AMPK (red) and GFP (green) in the primary RGCs cotransfected with the indicated 

plasmids. Bar, 20 μm.   

(B) Quantitative analysis of the fluorescence intensity of phospho-AMPK in the soma of 

RGCs. Data represent average ± SEM of 5 independent experiments.  



55 
 

(C) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in the soma and in the cell body of primary RGCs 

cotransfected with the indicated plasmids. The asterisk indicates the axon. Bar, 20 μm.  

(D) Quantitative analysis of autophagosomes accumulation in the axonal hillock in RGCs 

contransfected with YFP-LC3 and the indicated plasmids. Data represent average ± SEM 

of 3 independent experiments.  

(E) Quantitative analysis of the mitochondrial accumulation in the axonal hillock (left) and 

of the mitochondrial content in the axon (right) of RGCs. Data represent average ± SEM of 

3 independent experiments.  

 (F) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in the soma of primary RGCs cotransfected with the 

indicated plasmids and treated with BAPTA. The asterisk indicates the axon. Bar, 20 μm.  

(G) Quantitative analysis of autophagosomes and mitochondria accumulation in the axonal 

hillock in RGCs contransfected with YFP-LC3, mtRFP and the indicated plasmids. Data 

represent average ± SEM of 3 independent experiments.  

(H) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in primary RGCs cotransfected with the indicated 

plasmids and treated with BAPTA. The asterisk indicates the axon. Bar, 20 μm. 

(I) Quantitative analysis of the mitochondrial content in the axon of RGCs. Data represent 

average ± SEM of 3 independent experiments.  

(J) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in the soma of primary RGCs cotransfected with the 

indicated plasmids. The asterisk indicates the axon. Bar, 20 μm.  

(K) Quantitative analysis of autophagosomes and mitochondria accumulation in the axonal 

hillock in RGCs contransfected with YFP-LC3, mtRFP and the indicated plasmids. Data 

represent average ± SEM of 3 independent experiments.   

(L) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in primary RGCs cotransfected with the indicated 

plasmids. Bar, 20 μm.  

(M) Quantitative analysis of the mitochondrial content in the axon of RGCs. Data represent 

average ± SEM of 3 independent experiments.  
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Figure 5. Inhibition of macroautophagy reverts mito chondria localization and 

rescues ADOA RGCs viability  

(A) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in primary RGCs cotransfected with the indicated 

plasmids and treated with Bafilomicyn or 3-Methyladenine. Bar, 20 μm.  

(B) Quantitative analysis of the mitochondrial content in the axon of RGCs. Data represent 

average ± SEM of 4 independent experiments.  

(C) Analysis of apoptotic cells trasnsfected with the indicated plasmids and stained by 

TUNEL assay. Apoptosis was induced by glutamate and autophagy was inhibited with 3-

Methyladenine. The number of apoptotic RGCs is normalized to the number of total 

transfected RGCs. Data represent average ± SEM of 4 independent experiments. 
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Supplementary online Figures 

 

Figure S1. Opa1 pathogenic mutants fragment and dep olarize mitochondria of 

primary RGCs harvested by immunopanning. 

(A) Schematic representation of double-step immunopanning. Cells dissociated from P0 

murine retinas are incubated on the first plate binds macrophages and endothelial cells 

(big orange circles). The supernatant contains Thy1- cells (green circles) and RGCs (small 

orange circles), which are further bound to the selection plate. 

(B) PCR products amplified from mouse cDNA obtained from RGCs harvested by 

immuno-panning. The further retinal cells markers were amplified: Brn3c (RGCs), Thy1 

(RGCs, macrophages and endothelial cells), Iba1 (macrophages), Pecam1 (endothelial 

cells), GFAP (astrocytes), Lhx1 (horizontal cells), Stx1a (amacrine cells), Rcvr 

(photoreceptors) and Vsx2 (bipolar cells).  

(C) Representative 3D reconstructions of stacks of confocal images of the fluorescence 

ofmtRFP  in primary RGCs cotransfected with the indicated plasmids and fixed after 24 

hours. 70 confocal images of mtRFP fluorescence were acquired along the z-axis, 

deconvolved and 3D reconstructed (mtRFP) using the appropriate plugins of ImageJ. Bar, 

20 μm. 

 

Figure S2. Opa1 pathogenic mutants deplete mitochon dria from RGCs axons and 

reduces dendritic spines.  

(A) Representative 3D reconstructions of stacks of confocal images of the fluorescence 

ofmtRFP (red), SMI-312 (green) and GFP (blue) in primary RGCs cotransfected with the 

indicated plasmids. Bar, 20 μm.  

(B) Representative z-projects of stacks of confocal images of the fluorescence of GFP in 

primary RGCs cotransfected with the indicated plasmids. Bar, 20 μm. 

(C) Quantitative analysis of the spine density in cellular processes of RGCs cotrasfected 

with GFP and the indicated plasmids. Data represent average ± SEM of 4 independent 

experiments. 

 

Figure S3. Mitochondria expressing Opa1 pathogenic mutants present hallmarks of 

mitophagy. 

(A) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in primary RGCs cotransfected with the indicated 
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plasmids. Bar, 20 μm.  

(B) Quantitative analysis of autophagosomesand mitochondrial colocalization using 

Manders' coefficient (min colocalization = 0; max colocalization = 1). Data represent 

average ± SEM of 6 independent experiments.  

(C) Analysis of cells presenting Parkin surrounding mitochondria. The number of Parkin 

positive RGCs is normalized to the number of total transfected RGCs. Data represent the 

average ± SEM of 2 independent experiments.  

(D) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-Parkin (green, trasnlocated to mitochondria; grey, cytosolic) in 

primary RGCs cotransfected with the indicated plasmids. Bar, 20 μm. 

 

Figure S4. Calcineurin do not alter autophagic flux  in RGCs expressing Opa1 

pathogenic mutants. 

(A) Analysis of the autophagic flux in RGCs expressing the indicated plasmids and treated 

with Bafilomicyn. Data represent the average ± SEM of 2 independent experiments. 

 

Figure S5. The blockage of autophagy do not rescue autophagosome and 

mitochondria distribution in the soma. 

(A) Representative 3D reconstructions of stacks of confocal images of the fluorescence of 

mtRFP (red) and YFP-LC3 (green) in the soma of primary RGCs cotransfected with the 

indicated plasmids and treated with Bafilomicyn or 3-Methyladenine.The axon is indicated 

by an asterisk. Bar, 20 μm.  

(B) Quantitative analysis of autophagosomesand mitochondria accumulation in the axonal 

hillock in RGCs contransfected with YFP-LC3, mtRFP and the indicated plasmids. Data 

represent average ± SEM of 4 independent experiments. 
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5. Future perspectives 

 

 

Our in vitro data suggest that inhibition of autophagy could be a feasible therapeutic 

strategy to treat ADOA. However, we need to test if in a mouse model autophagosomes 

accumulate in the axonal hillock together with mitochondria that are excluded from the 

axon, and whether the progressive blindness is blunted by autophagy inhibition. Since the 

currently available mouse models of ADOA develop blindness in advanced age, we 

decided to develop a different model based on the conditional ablation of Opa1 in the 

retinal ganglion cells. This mouse model will be instrumental in testing the efficacy of 

autophagy inhibition to treat ADOA, but it requires first to be characterized. We therefore 

present here an account of our initial characterization of the conditional Opa1 ablation in 

RGCs.  
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Introduction 

Autosomal dominant optic atrophy (ADOA) is the most common form of inherited optic 

neuropathy (Alexander et al., 2000a;Delettre et al., 2000a). ADOA onset is usually during 

childhood and it is characterized by the slower, progressive and bilateral decrease in 

visual acuity, tritanopia, sensitivity loss in the central visual fields, and pallor of the optic 

nerve (Ferre et al., 2005;Votruba et al., 1997). ADOA presents a large variability in the 

severity of clinical expression. Indeed, the same molecular defect may result in non-

penetrant unaffected cases or in very severe, early onset cases (Carelli et al., 2004;Ferre 

et al., 2005). 

Histopatological analysis in post-mortem ADOA patients reveal the selective loss of retinal 

ganglion cells (RGCs) with a prevalence in the central retina and optic atrophy, 

characterized by loss of myelin and nerve tissue (Johnston et al., 1979;Kjer et al., 1983). 

Linkage studies identifies three genes associated to ADOA (Alexander et al., 

2000a;Delettre et al., 2000a) and the 75% of ADOA patients show mutations in Optic 

Atrophy 1 (Opa1) (Lenaers et al., 2012). Opa1 is ubiquitously expressed throughout the 

body: in the heart, skeletal muscle, liver, testis, brain and retina (Alexander et al., 2000a). 

Moreover, OPA1 is not more abundant in RGCs than in other retinal cells (Kamei et al., 

2005). Thus, OPA1 levels do not explain the selective loss of RGCs in ADOA. 

Three ADOA mouse models have been generated carrying the most frequent mutations 

observed in patients. In the mouse model described by Alavi and co-workers (2007), a 

STOP codon is inserted in position 285, truncating theprotein at the beginning of the 

GTPase domain. In the second model, an in-frame splice site mutation (329-355del) 

deletes 27 amino acids in the GTPase domain (Davies et al., 2007). Finally, a frame shift 

mutation (delTTAG) generates  a protein lacking 58 amino acids (Sarzi et al., 2012). The 

mutations result in 30% to 50% reduction of OPA1 levels in the heterozygous animal, 

whereas homozygous mutants are embryonically lethal at E8.5, E13.5 and E10.5. The first 

two models of Opa1 display minimal retinal defects and normal myelination until 24 

months and start to decrease visual function and visual evoked potentials (VEP) amplitude 

at 20 and 12 moths, respectively (Alavi et al., 2007;Davies et al., 2007;Barnard et al., 

2011). Morphologically, the only difference is reported in dendritic atrophy at 10 months 

(Williams et al., 2012). The Opa1delTTAG mutant decrease VEP amplitude at 9 months and 

shows a significant axonal degeneration and demyelination at 16 months, starting from 5 

months. Interestingly, electron microscopy reveals increased autophagicvesicles in optic 
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and sciatic nerves (Sarzi et al., 2012). Moreover, the same mouse model present 

mitochondrial abnormalities in heart and muscles.  

However, these mouse models of ADOA do no show RGCs loss not follow the early onset 

of the disease, reducing their usefulness to investigate ADOA pathogenesis and most 

importantly treatment. We therefore set out to generate and characterizeamouse model 

where Opa1 is specifically ablatedina subset of RGCs. 

 

Results 

Opa1flx/flx mouse were generated following the strategy depicted in Fig. 1A and described 

in (Cogliati et al., 2013). In order to delete Opa1 specifically in a subset of RGCs, we 

crossed  Opa1flx/flx mice with aGrik4-Cre line, which expresses the recombinasein a subset 

of RGCs (Ivanova et al., 2010). Mice were viable and fertile and did not show any defect in 

growth (Fig.1C). Moreover, histology was not altered in the whole body (data not shown) 

or cerebral districts where the Grik4 promoter has been reported to be active (Fig.1D). 

Histological studies revealed a slight reduction in Opa1flx/flx RGCs number at 6 months as 

compared to Opa1flx/-RGCs (Fig.2A), but the diameter or in the density of axons, measured 

by radial distribution of neurofilament intensity  (Fig.2B,2C). Visual acuity was reduced 

already by 50% in 4-months old but not in 3 months old Opa1flx/flx mice at every tested 

spatial and temporal frequency (Fig.2D).  

 

Discussion 

We generated an Opa1 conditional knock-out mice in a subset of RGCs. Opa1flx/flx  mice 

impaired visual sight much earlier than ADOA mouse models present so far (Alavi et al., 

2007;Davies et al., 2007;Barnard et al., 2011), representing a model more adequate to 

follow the early onset of the disease in humans. Where Opa1 is supposed to be ablated, 

that is, in RGCs, cerebellum and in CA3 area of the hippocampus, we did not detect 

apoptosis or necrosis, suggesting that mechanisms responsible for ADOA are much more 

complex than simple cell death. Moreover, the impressive loss of sight observed in 

Opa1flx/flx mice depends on a minor population of RGCs. This suggests the great impact of 

Opa1-dependent mitochondrial dysfunction on RGCs functioning, and how this may 

influence the overall RGCs network, since gap junctions in the retinal axons have been 

described. Gap junctions are responsible for the centripetal extension of spreading neuron 

death, allowing the passage of pro-apoptotic signals like calcium and ROS (Rawanduzy et 

al., 1997). Thus, even if the characterization is not complete, preliminary data suggest the 
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great potential of this new ADOA mouse model that, in turn, may be a useful tool to 

investigate possible treatments for the disease. 

 

Experimental procedures 

 

Animal generations 

Opa1flx/flx mice were described in (Cogliati et al., 2013) following the strategy depicted in 

Fig.1A. Opa1flx/flx mice were crossed with Grik4-Cre mice (Jackson laboratories). 

Genotypes were assessed using tail genomic DNA ant the following primers. For Opa1flx/flx:  

PRIMER Ck1 5′-CAG TGT TGA TGA CAG CTC AG-3′; PRIMER Ck2 5′-CAT CAC ACA 

CTA GCT TAC ATT TGC-3′; for Cre: PRIMER forward 5'- GCG GTC TGG CAG TAA AAA 

CTA TC-3'; PRIMER reverse 5'- GTG AAA CAG CAT TGC TGT CAC TT-3'. All mice 

procedures were performed according to protocols approved by the local Ethic committees 

(protocol 32/2011 CEASA University of Padova, Venetian Institute of Molecular Medicine). 

Histology 

Animals were anesthetized and perfused with paraformaldehyde 4% (w/v) (Sigma). Eyes, 

cerebelli and hippocampi were dissected, included in paraffin and cut with 0.5 µm sections 

using aultramicrotome (Leica). Section were stained using haematoxylin and eosin 

(Sigma) or with anti-neurofilament200 antibody 1:500 (Sigma). 

Number of axons in the optic nerve was assessed by measured by radial distribution which 

measures average signal intensity of neurofilament along an arc of the circle at various 

radii. 

 

Visual acuity 

Visual acuity was measured using the AgorsOptokinetic Drum (Instead technologies), 

following manufacturer's instructions using spatial and temporal frequencies listed in 

Fig.2D. 
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Figure legends 

 

Figure 1. Opa1 ablation in cerebral districtsdo not  alter mouse growth or cerebral 

histology. 

(A) Schematic diagram of conditional targeting constructs for Opa1. The 5′ UTR, exons 

(black boxes), LoxP sites (white arrows), FRT recombination sites, and PGK-neomycin 

cassette (white box) are indicated. The locations of PCR primers (ck1 = primer check1 

forward, ck2 = primer check2 reverse) are indicated. Dimensions are not in scale. 

Opa1flx/flx, Opa1flx/- and, Opa1-/- indicate homozygous and heterozygous for the floxed 

allele, and Opa1 wt gene, respectively. 

(B) PCR analysis of tail genomic DNA showing the genotypes of the mice. Opa1 is 

amplified at 700 bp and Opa1 floxed sequence shifts the band at 800 bp (left panel). Cre is 

amplified at 100 bp (right panel).  

(C) Quantification of mouse weight in OPA1flx/flxCre+/- and OPA1flx/-Cre+/- mice classified per 

sex. Data represent average ± SEM of 7 mice.  

(D) Representative haematoxylin and eosin staining of transversal sections of cerebellum 

and hippocampus from OPA1flx/flxCre+/- and OPA1flx/-Cre+/- mice. 4 months-old mice were 

sacrificed, eyes dissected and fixed. After fixation and inclusion in paraffin, eyes were 

sectioned and stained 
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Figure 2. Opa1 ablation in a subset of RGCs does no t alter retinal and optic nerve 

but impairs visual acuity . 

(A) Representative haematoxylin and eosin staining of transversal sections of retinas from 

OPA1flx/flxCre+/- and OPA1flx/-Cre+/- mice. 4 months-old mice were sacrificed, eyes 

dissected and fixed. After fixation and inclusion in paraffin, eyes were sectioned and 

stained.  

(B) Representative neurofilament staining (left) and enlargements (right) of transversal 

sections of optic nerves from OPA1flx/flxCre+/- and OPA1flx/-Cre+/- mice. 6 months-old mice 

were sacrificed, eyes dissected and fixed. After fixation and inclusion in paraffin, optic 

nerves were sectioned and immunostained.  

(C) Quantitative analysis of radial distribution of neurofilament in cross-sectional areas of 

optic nerves of 6 months-old OPA1flx/flxCre+/- and OPA1flx/-Cre+/- mice. Data represent 

average ± SEM of 3 mice.  

(D) Quantitative analysis of visual acuity in 3 (left) and 4 (right) months-old OPA1flx/flxCre+/- 

and OPA1flx/-Cre+/- mice using the optokinetic drum device. Mice were subjected to visual 

stimuli with temporal and spatial frequencies indicated. Visual acuity is proportional to the 

percentage of correct answers to the stimulus. Data represent average ± SEM of 6 mice. 
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