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Abstract

In recent times, the rise of ‘big data’ has brought along major computational challenges

in all the main disciplines of scientific research, including the field of spatial statistics.

Some of these challenges include parametric estimation and quantification of estimation

uncertainty that, when building statistical models using big data, pose an important

computational load. Many methods have been proposed to address these challenges

such as dimension reduction, approximation by Markov random fields, tapering of the

covariance matrix, and subsampling based approaches. In this thesis a new divide-and-

conquer approach is proposed that we call farmer for providing effect size and standard

error estimates in spatial models of big data. According to the proposed approach,

all observations are divided into blocks that are mutually exclusive according to their

position. For each block, the model parameters are estimated and recombined using

a fixed or random meta-model to take into account the (possible) spatial dependence.

This generalized method can be applied to a wide range of spatial models. For example,

consider a linear Gaussian spatial model. In a simulation study, the farmer estimators

were compared with estimators based on methods with similar sampling ideas. In the

context of the Gaussian model, two applications with real data are presented. The

proposed method appears computationally efficient compared to equivalent methods

and has lower bias in the estimates. Furthermore, the proposed approach provides a

more realistic estimate of standard errors. Finally, we propose an application of the

method to generalized linear spatial models for simulated and real counting data.





Sommario

Negli ultimi due decenni l’avvento dei big-data ha portato sfide computazionali in tutte

le principali discipline della ricerca scientifica. Anche la Statistica spaziale sta affrontan-

do questa sfida. Quando un modello parametrico viene proposto per big-data, la stima

parametrica e la quantificazione dell’incertezza nella stima comporta un carico compu-

tazionale importante. Per questo sono stati proposti molti metodi per gestire queste

sfide quali la riduzione della dimensionalità, l’approssimazione mediante campi casuali

di Markov, la rastremazione tapering della matrice di covarianza e approcci basati sul

campionamento. In questa tesi si propone un nuovo approccio divide-and-conquer detto

farmer per la stima e la valutazione dell’incertezza dei parametri in modelli spaziali in

presenza di grandi moli di dati spaziali. Secondo l’approccio proposto tutte le osser-

vazioni vengono divise in blocchi mutualmente esclusivi secondo la loro posizione e per

ogni blocco si stimano i parametri del modello. Le stime vengono quindi ricombinate

tramite un meta-modello a effetti fissi o casuali per tenere conto della (eventuale) di-

pendenza spaziale. Il metodo risulta completamente generale e pu essere applicato ad

un ampia gamma di modelli spaziali A titolo d’esempio viene considerato un modello

spaziale lineare gaussiano. In uno studio di simulazione gli stimatori farmer sono stati

confrontati con stimatori che si basano sulla medesima idea di campionamento Sempre

nel contesto del modello gaussiano si presentano due applicazioni con dati reali. Il me-

todo proposto è risultato computazionalmente efficiente rispetto ai metodi concorrenti,

con distorsione delle stime inferiore. Inoltre, l’approccio proposto fornisce una stima più

realistica degli errori standard. Infine si propone un’applicazione del metodo a modelli

spaziali lineari generalizzati per dati di conteggio simulati e reali.
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Introduction

Overview

During the last few decades, there has been a data explosion by virtue of technological

advancement. Mayer-Schönberger and Cukier (2013) explained nicely how every simple

digital device generates millions of data points. Some of the fields where the datafication

has made significant impacts include neuroscience, astronomy, nanoscience, finance and

business, transportation, biology and medicine, health-care and environments.

Figure 1: Some big data sources

More than three billion search queries are re-

ceived by the Internet giant Google every day.

Google engineers make use these data in innova-

tive ways; for e.g. they have shown how the search

query data can be used in predicting the spread of

flu in the United States even at the regional level

(Ginsberg et al. (2009)). Another giant data gen-

erator is Facebook, that receives more than 10 mil-

lion new photos with more than three billion com-

ments and clicks in like button Mayer-Schönberger

and Cukier (2013). Uber - a digital tech start-

up that uses a geographic information system to

make everyday transport easy for millions of peo-

ple around the world, has operations in 785 metropolitan areas worldwide, and manages

millions of geographic locations every day. Uber’s engineers introduced kepler.gl,

which is an open source large scale geospatial data-agnostic, high-performance web-

based toolbox to get actionable insights from beautiful maps (He (2018)). An additional

big data source is the large online marketplaces such as Amazon, AliExpress, and the

air agencies that receive millions of purchase orders every day globally. These start-

up techs have leveraged big data analytics to reshape their business policies for profit

maximization. Satellite images are a rich source of information for astronomers; they

3



4 Main contributions of the thesis

have now also become a vast trove of data for other uses. For instance, from satellite

images many environmental data such as carbon dioxide (CO2), carbon monoxide (CO)

and total column ozone (TCO) are being extracted. Among the myriad data types,

genetics, brain imaging technologies, and other multi-dimensional databases are being

generated at an accelerated rate for analysis. The 4 Vs that characterize big data -

volume, veracity, variety and velocity of data, are increasing rapidly and new companies

are leveraging big data in the hopes of creating artificial intelligence engines to reliably

answer the most important questions. Big data analytics has emerged as a billion dollar

industry and the number of big data companies is growing faster than ever (Grover

et al. (2018)). Fortunately or unfortunately all the aforementioned data sources are

associated with geographic location. There is of course information in the geo-location

however to be most useful, that information needs to be turned into data. To datafy the

locations of nature, objects and people specialized techniques are needed. The location

associated data are called spatial data and special branch of statistics has been born to

handle this type of data. The first formal and classic text on this issue came out two

decades back (Cressie (1992)).

The three presidents of the American Statistical Association (ASA) mentioned big

data as the big topic in the President’s Corner of the June 2013 issue of AMStat News.

The media coverage, conference announcements, celebration of the Big Data Week, and

special initiatives taken from the White House drew attention of the world to the issue

of big data. The presidents of ASA also motivated statisticians to come forward and

collaborate more with other researchers for taking the lead in dealing with big data.

This was also echoed by the president of Institute of Mathematical Statistics Yu (2014).

Kettenring (1997) has described six approaches to handle massive data. These in-

clude adaptive sampling, guided visualization, reliance on approximations, distributed

work, divide and conquer, and exploit the context. During the last couple of decades,

large number of methods focusing on these approaches have been introduced. Some of

them are applicable to non-spatial settings only but some focused on large spatial data.

The methods mostly aim to reduce computational cost. However some were designed

for better prediction and statistical inference. The ideal methods would reduce compu-

tational cost, provide bias-reduced estimate, and realistic measures of standard error for

the estimates when analyzing large spatial data types. In this thesis, we propose such

an approach for handling large spatial data. The main contributions are described in

the next section.
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Main contributions of the thesis

In the current thesis we propose a new divide and conquer approach which we call

farmer approach where er employ meta analysis techniques. Our proposed method is

expected to be free from major shortcomings of the previous methods. In the first

contribution, we have developed a divide and conquer approach for Gaussian random

fields. According to our proposal we split the entire dataset into K mutually exclusive

and exhaustive blocks. At each block we estimate the model parameters and respective

covariance matrix using some method, such as maximum likelihood procedure. The

point estimate θ̂i and respective covariance matrix V (θ̂i) at block i are then considered

as the outcome from a ith single study in meta analysis setting. In this way, we have

K studies those are not necessarily independent. We propose to combine outcome of

these studies using fixed and random effect meta analysis models(Hedges and Vevea

(1998)). To estimate the parameters of the random effect meta analysis model we fit

the multivariate conditional auto-regressive (MCAR) model. Fitting MCAR model is

motivated by the fact that splitting the data into mutually exclusive and exhaustive

blocks leaves us lattice. This approach provides analytical standard error of the global

estimators. The spatial dependence parameters were negatively biased and we have

proposed to apply bias correction technique proposed by Kosmidis et al. (2017) at

block level which removes the bias. We have experienced empirical consistency of the

estimators from simulation experiments. Also, we have compared the results with two

existing methods and observed that farmer approach outperforms. We have applied

the Gaussian geostatistical model to US precipitation data through farmer approach

and found comparable results with MLE obtained from entire dataset. As a second

application we applied trans-Gaussian model to river-blindness data over 18 African

countries using proposed approach.

The proposed approach is intuitive, easy to apply, computationally efficient, feasible

to parallelize, and provide bias reduced estimate and more realistic standard error of

the estimates.

The second contribution in the thesis is to extend the approach for non-Gaussian

large spatial data. For, non-Gaussian data there is no closed form nice likelihood func-

tion as in Gaussian case. This makes it more challenging to handle the large data. We

proposed to employ the generalized linear geostatistical modeling approach (Diggle et al.

(1998)) at block level and estimate the parameter using some methods such as, Monte

Carlo maximum likelihood, Laplace approximation, hierarchical likelihood method or
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generalized estimating equation. These methods allow us to find the point estimate θ̂i

and covariance matrix V (θ̂i). We then proposed to apply the meta-analysis models as

described before for obtaining the global estimates. For non-normal case since we do

not have analytical form of the variance we cannot apply the bias correction method.

We have shown application of binomial logistic model to river-blindness data again and

obtained comparable results with MLE.

The rest of the thesis is organized in the following manner. In chapter 1, we have

presented spatial big data computation methods and the room for improvements. The

general formulation of the divide and conquer approach is also discussed in the same

chapter. Chapter 2 will describe the mathematical details, implementation and other

necessary adjustments of farmer approach. In the third chapter the performance of the

farmer approach is evaluated using Monte Carlo simulation experiments and applied to

two real life data sets. In chapter 4, the extension of the proposed approach is discussed

for non-Gaussian data. Finally, in the last chapter, some concluding remarks are pointed

out and the way forward are discussed.



Chapter 1

Spatial big data methods

1.1 Spatial big data methods

As mentioned, big spatial data is frequent in many fields. This chapter aims to provide

a snapshot of methods available for spatial big data computation and explore the gap

that needs to be addressed.

Before describing the methods we introduce first the notations used for spatial data

using a Gaussian model. Let us assume Y (s) is measurement of a random process at

location s; s ∈ D ⊂ R2. We are interested to study the behavior of the data generating

process through Y (s) measured at n different locations. The model of the process is

defined as,

Y (s) = µ(s) + S(s) + e(s) (1.1)

where µ(s) = E(Y (s)), and S(s) is a stationary Gaussian spatial process which cannot

be observed directly, also called latent process, with zero mean and covariance function

σ2ρ(hij, φ), where σ2 is the variance parameter and φ is the scale or range parameter,

hij is the distance between two points si and sj. We assume that e(s) is Gaussian white

noise with variance τ 2, which is independent from S(s). The τ 2 is also called nugget

effect. Here, the process S(s) represent the spatial variation in the process, on the other

hand e(s) explains the unstructured variation over and above sampling variation. The

log likelihood function of the model is,

l(θ, y) = −1

2
n log(2π)− 1

2
log |Σ| − 1

2
(y − µ)>Σ−1(y − µ), (1.2)

where y = (y(s1), . . . , y(sn))> is the vector of realization of Y = (Y (s1), . . . , Y (sn))>,

θ = (µ, σ2, φ, τ 2) is the vector of unknown parameters, µ = (µ(s1), . . . , µ(sn))> is the

7



8 Section 1.1 - Spatial big data methods

vector of mean, Σ = σ2R(φ) + τ 2I is the variance covariance matrix of Y where R(·)
has ijth element Ri,j = ρ(hij, φ), hij being the distance between ith and jth locations.

Among many, we present two classes of correlation models here for convenience of the

readers. The correlation models that we present here are Matérn class and Powered

exponential class.

Matérn class

The Matérn class is a two parameter flexible class of correlation model which is defined

as,

ρ(h) =
1

2κ−1Γ(κ)

(
h

φ

)κ
Kκ
(
h

φ

)
,

where κ is the smoothness parameter, Kκ(·) is the modified Bessel function of order κ,

Γ(·) is the gamma function. The exponential correlation model is the special case of

Matérn model when κ = 1/2. Also, the Gaussian correlation model is the limiting case

of Matérn model, that is, when κ −→∞, Matérn −→ Gaussian model. The graphical

representation of the model is,

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

distance

ρ(h
)

k=0.5, phi=0.25
k=1.5, phi=0.15
k=2.5, phi=0.10

Figure 1.1: Matérn correlation model for three different values of scale and smooth-
ness parameters.

Powered exponential class

The powered exponential class is also a two parameters family of correlation model

which is defined as,

ρ(h) = exp

(
−h
φ

)κ
,

where κ is the smoothness parameter and φ is the scale. The exponential and Gaussian

correlation models are the special case of powered exponential model when κ = 1 and
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κ = 2 respectively. The graphical representation of the powered exponential model is

shown below.
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Figure 1.2: Powered exponential correlation model for three different values of scale
and smoothness parameters.

Maximum likelihood estimation and assessing the quality of the estimates are compu-

tationally intractable for medium to large size spatial data. This is because evaluation

of log likelihood function (1.2) requires O(n3) operations and O(n2) memory. The vol-

ume, veracity, variety and velocity of spatial data are increasing. These are the known

four V’s of big data. In case of spatial data there is another feature which is the re-

flection of Tobler’s law. The law states that all the objects are associated but nearer

objects are more alike than the distant one. This feature added an extra challenge to

the statistician. Tobler’s law enters into the analysis through ρ(·).
Many methods have been proposed to overcome the challenges of big spatial data.

Broadly, they are based on covariance tapering, lower dimensional approximation, Markov

random field approximation, composite likelihood-based approaches, and sub-sampling.

Tapering sets of covariance to zero deliberately after certain range which produce

sparse linear system to solve in kriging setting(see for details Furrer et al. (2006), Stein

(2013), Hirano and Yajima (2013)). Solving the sparse linear system is then become

efficient to solve. The tapered covariance is defined as,

Σtap = Σ ◦ Σδ,

where ◦ represents the direct or Schur product, Σδ is the sparse covariance matrix whose

elements are zero after range defined by δ. Inverting Σtap instead of Σ is computation-

ally efficient. However, all the covariance parameters can not be estimated consistently

in this method. Also, tapering may not be effective when there exists long range corre-

lation.
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There are several developments focused on lower dimensional space approximation

that utilize either Kalman filter, basis function or kernel convolutions (see for example

Wikle and Cressie (1999), Banerjee et al. (2008), Cressie and Johannesson (2008)). In

these methods the spatial process is approximated through lower dimensional space

process. For example, in fixed ranked kriging, Cressie and Johannesson (2008) the

spatial process are decomposed into a linear combination of K basis functions, such as

S(s) =
K∑
k=1

hk(s)θk,

where hk(s) is the basis function and θk is the coefficient of that function. By doing this

we have to inverse K ×K matrix instead of n× n where K << n. On the other hand,

Stein (1999) and Fuentes (2007) have proposed to approximate the likelihood avoiding

the matrix computation but rather working in the spectral domain of the process. For

the approximation methods adequacy is always a concern. Approximating random fields

by a Markov random field is another approach for approximation (see for example RUE

and Tjelmeland (2002) Rue and Held (2005)). This approach uses the Markov property

that is the distribution at a particular location and only depends on the observations at

neighbor locations, simplifying the problem. While Markov random field is suitable for

regular points over grid, it can also be fitted to irregular points by some modifications

but at the cost of introducing some unquantifiable errors in precision.

Several statisticians have proposed to optimize the composite likelihood function in-

stead of likelihood function (Curriero and Lele (1999), Bevilacqua et al. (2012), Eidsvik

et al. (2014)). Composite likelihood is a general class of pseudo-likelihoods constructed

based on marginal or conditional likelihoods of subsets of data. In this method, a set of

marginal or conditional events are taken and the log-likelihood function for these obser-

vations set is constructed. The log-composite likelihood is then obtained by adding the

individual log-likelihood from each set as if the components are independent. Curriero

and Lele (1999) fist proposed to estimate the semivariogram parameters based on com-

posite likelihood method. Later, Bevilacqua et al. (2012) proposed to use the weighted

composite likelihood approach for estimating space and space-time covariance function.

Instead of simply adding the component likelihoods, Bevilacqua et al. (2012) suggested

weighted summation of the components. This approach allows us to strike a balance

between computational complexity and statistical efficiency. Block composite likelihood

approach is another proposal in this domain by Eidsvik et al. (2014). According to this

approach entire domain is split into many smaller blocks and likelihood constructed in

each block is considered as a component in composite likelihood setting. This approach



Chapter 1 - Spatial big data methods 11

allows parallel computation. Sub-sampling is another approach for handling large data

which is also known as the divide and conquer approach. Several studies have investi-

gated this for non-spatial settings however few have examined in spatial settings. This

method aims to split the entire data into many smaller subsets and estimate the model

in the subset. The estimates obtained from subset are combined to obtain an overall

estimate (see for example Liang et al. (2013), Barbian and Assunção (2017), Bickel et al.

(2012), Chang et al. (2017), Zhang et al. (2015), Zhou and Song (2017)).

In the spatial setting, the few methods that exist include resampling based stochas-

tic approximation (RSA) (Liang et al. (2013)), spatial subsemble (SpSub) estimator

(Barbian and Assunção (2017)) and Meta-Kriging in Bayesian setting (Guhaniyogi and

Banerjee (2018)). In the RSA method, a random subsample is drawn and the parame-

ters set θ of the spatial model are estimated minimizing the Kullback-Leibler divergence

and denoted as θ̂(1). A second subsample is drawn randomly and the estimate θ̂(1) is

updated based on the second subsample using a set of equations. The set of equations

are derived based on stochastic approximation of Kullback-Leibler divergence. The es-

timate obtained after updating in second step is denoted by θ̂(2). This process continues

until convergence of θ̂(k) obtained, where θ̂(k) is the estimate from the kth subsample.

The authors have showed that under infill asymptotic, the final estimator θ̂(k) converges

to the θ̃, where θ̃ is minimizer of Kullback-Leibler divergence for entire data set. The

estimator have asymptotic normality as well; however there are some concerns about

this method. Firstly, the subsample is taken randomly in the spatial setting shape and

size of the subsample can affect the inference (see Lahiri (2013), Hall et al. (1995)).

This important fact is completely ignored when the sample is selected. Secondly, two

sequential subsample could have overlapped observations. In that case there should be

an extra correlation between the subsample which is also ignored. Thirdly, the approach

selects the samples sequentially and updates the previous estimates which does not al-

low implementation of the the process in parallel. Moreover, there is no clear guide

to estimate the standard error (SE) of the estimates. Indeed, the process needs to be

repeated many times to calculate the SE empirically, adding to the computational load.

The SpSub method, on the other hand, select the spatially structured subsample ran-

domly. At first, j centers are selected and around each centers, k nearest neighbors are

selected therefore the subsample consists of jk observations. In this way the subsample

contains nearer as well as distant observation. At the same time there is another center

and same number of neighbor observations. This last small subsample are divided into

two subsets, the validation subset (Y (s)v) and prediction subset (Y (s)p). The model

parameter set θ are then estimated based on the main subsample using some method
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such as maximum likelihood and the estimate is denoted by θ̂i. The prediction is done

for the validation subset (Y (s)v) based on θ̂i and (Y (s)p). The process is repeated B

times and the global estimate is obtained by the weighted average, where the weight is

the inverse prediction error at respective repetition. The standard error of the estimate

are the weighted average of inverse Fisher information matrix calculated from subsets.

The weight is the square of inverse prediction error. In this method, the prediction

error is used as an weight for combining. However, the quantity of prediction error

depends on the quality of the estimate θ̂i and the prediction subset data (Y (s)p). If

the prediction subset is very similar to that of validation subset then prediction error

could be lower even the quality of estimator is bad and vice versa. Another issue could

be due to repeated observation in the two consecutive subsamples as described before.

Also, there is no guarantee about the convergence of the estimators. Moreover, the scal-

ability claimed by these methods assumes block-independence at some level but when

the blocks borrow information across sub-regions, the scalability is lost. Furthermore,

partitioning is always an issue.

The Meta-Kriging also splits the data and conduct Bayesian modeling at subset level

to construct the posterior. The local posterior is then combined for obtaining the global

posterior using geometric median approach. This method reduces computational cost

but comes at a cost of less reliable inference. Also, the method has chance to miss the

local feature of the spatial process and the between block dependence has been ignored.

In summary, although there are pitfalls, developments are ongoing in the large spatial

data methods especially for estimating spatial dependence parameters. Some methods

suffer from inconsistency and some from inadequacy and some are biased. In subsam-

pling based methods, the between subsamples correlation has been ignored that possibly

resulted in spuriously reduced standard errors. Moreover, non-Gaussian large data have

not been dealt yet.

The current thesis aims to develop a new divide and conquer approach for big spatial

dataset which consider the existing issues in the subsampling techniques. This approach

aims to reduce the computational cost and provide more realistic standard error of the

estimate. In this approach we propose to employ the fixed and random effect meta

analytic tools for obtaining the global estimates suitably combining the local estimates.

We named the approach as "farmer" approach due to its similarity to the technique

that farmers in the developing countries adopt in harvesting large fields with limited

resources. Also, since we apply the fixed and random effect meta analytic tools for

obtaining the global estimators, the name "farmer" can be elaborated as fixed and

random effect meta, estimator → farmer. Moreover, the author was a farmer during
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1998−2005. The followings are two images from Bangladesh that resemble the existence

of divide and conquer approach in nature.

Figure 1.3: (left) Paddy harvesting from large field with limited resource in
Bangladesh, (right) natural splitting of large field.

In the left it is shown that how farmers harvest from their huge fields in the absence

of big machines but employed many human in the same field. This is the real parallel

work. At the right the splitting of large area based on ownership or due to feasibility of

cultivation of land are shown. These motivated the name farmer approach.

In the next section we discuss very briefly the general formulation of divide and

conquer approach.

1.2 Divide and conquer approach: general frame-

work

Divide and conquer method is basically a two steps approach similar to MapReduce

program (Yang et al. (2007)). In the first step, the large data set is split into smaller

sets and in the second step the information obtained from each of the smaller sets are

combined together. These information from smaller sets are obtained in the form of

point estimates, uncertainty of the estimate or some function of the both. The targeted

statistical procedures are employed over the smaller data sets for obtaining these infor-

mation. This process of obtaining information could be titled as the intermediate step.

The hypothetical splitting and generated lattice after splitting are shown in the figure

below.
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Figure 1.4: (left) A partitioned field, (right) generated lattice after spitting.

As shown in the first image of figure (1.4) the large field is divided into 16 small

blocks. The picture in right is the lattice induced by splitting where the red colored

block is connected with blue colored blocks. This blocking is done artificially and the

respective lattice is very regular. However in the real field the lattice is not regular as

this one rather they are similar as the right panel of figure (1.3).

Let us denote the ith block estimate by θ̂i, i = 1, . . . , K, where K is the number of

blocks. Then according to divide and conquer paradigm the global estimator is obtained

as,

θ̂global =
K⋃
i=1

ωiθ̂i (1.3)

where ωi is the block specific weight and
⋃

meaning combination. The form of ωi and⋃
varies depends on the methods. For example, ωi is the inverse of prediction error and⋃
is the summation for spatial subsemble estimator.

This is the general form of global estimator under divide and conquer framework in

both spatial and not spatial settings. Many proposals came out during last couple of

decades for dividing and recombine the local results. Most but not all the methods aim

to handle the big data problem. Some of the approaches apply combining technique in

the meta-analysis setting. Most of the proposal aimed to achieve computation efficiency,

scalability and drawing statistical inference(see for example, Liang et al. (2013), Yang

et al. (2007), Dean and Ghemawat (2008), Liu et al. (2018), Barbian and Assunção

(2017), Bickel et al. (2012), Zhou and Song (2017), Jordan et al. (2013), Guhaniyogi

and Banerjee (2018)).

The significant proposal includes but not least simple averaging, weighted averaging

of local estimates, combining functions, iterative updating. In the farmer approach

model-based combining is proposed.
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In the next chapter we describe the mathematical details, implementation and other

necessary adjustments of the farmer approach.





Chapter 2

The farmer approach: theory

2.1 Introduction

In this chapter we discuss the mathematics behind farmer approach, derivation of the

estimator, their standard error and necessary adjustments. We derive the results consid-

ering the geostatistical model as an example model however for any large data model, the

farmer approach can be applied following the proper procedure. The following sections

sequentially describe the entire approach in a sequential manner.

The first step of the approach is to split the data which is similar to the MapReduce

scheme. The next section focus on the splitting procedure proposed in farmer approach.

2.2 Splitting the data and estimation in block

This is a general divide and conquer framework where we split the data in the first

step. An example of splitting is shown in figure (2.1). The splitting mechanism of

the entire field into sub-fields may vary based on the situation. When the locations

are uniformly distributed over the whole region or if the study variable is some natural

phenomena that do not depend on the region-specific social policies, that is they are free

from the social effects, such as measurement of carbon monoxide or dioxide, the region

is split into blocks in rectangular shape without considering the natural boundaries.

However, if there are meaningful natural boundaries with a good number of locations

then naturally generated blocks can be considered. For example, the United States has

the state boundary which can be considered as splitting rule for any type of variable

over the US. On the other hand, if the study variables have a strong dependence on

social or country policies we propose to split the region keeping the natural boundaries

unbroken. An example could be the epidemiological problem where the disease status

17
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outbreaks strongly depend on the country’s health system. In these types of cases,

random rectangular splitting could mislead the inference. If some parts of a region

enter into the adjacent region with completely different scenarios, this can affect the

estimates and their error in blocks. Also, as mentioned earlier that the shape and

size of the blocks influence the inference therefore care should be taken in splitting the

data. As an example, consider the African river-blindness data where we split the data

keeping the national boundaries unbroken. Rather we split the big country into parts

and smaller countries we merged together. Depending on the splitting mechanism the

induced lattice could be regular or irregular.

(a) (b)

Figure 2.1: The locations of river-blindness data in Africa before (a) and after (b)
splitting.

Once the data is divided we denote the data at block i as zi = {yi, Xi, si} where yi is the

vector if response, Xi is the design matrix and si is the set of locations at that block.

The subscript i takes the values 1, 2, . . . , K for K mutually exclusive and exhaustive

blocks. As we have defined the notations and parameters of the spatial process in the

previous chapter, the process is defined by a set of parameters θ = (µ, σ2, φ, τ 2). We

then estimate the model parameters and their variances at each block based on data zi

using some method, such as maximum likelihood. We denote the block summaries by

the pair,

{θ̂i, V (θ̂i)}; i = 1, 2, . . . , K

The idea is to combine the local estimators even they are weaker. We propose to combine

the block summaries using fixed and random effect meta analysis models. To do that we

consider ith block summary is the outcomes of a single study in meta analysis setting.
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In our case we have multiple parameters in each block therefore we have to consider the

multivariate meta analysis model.

In the next section, we describe how meta analysis model is used to obtain the farmer

estimators and the related assumptions.

2.3 The farmer estimators

Meta analysis measures the common effect of some intervention programs based on

multiple studies. This statistical technique generates very strong evidence in favor or

disfavor of a treatment. This is now being widely used in different fields such as public

health, psychology, medicine, and the social sciences. Long since there are two families

of statistical models for performing meta analysis, the fixed and random effect models.

The fixed effect model assumes the homogeneity of unknown effect across studies while

the other assumes that the effect parameter is a random sample from a population

(for details see Hedges and Vevea (1998)). However, there is some advance method for

allowing heterogeneity in the meta analysis for multivariate case (see Liu et al. (2015)).

Based on these two families of models we propose to pool the block estimates imagining

each block estimate is the effect measure of a single study.

2.3.1 The fixed effect meta (fem) estimator

The fixed effect pooling assumes the following working model

θ̂i = θ + εi; i = 1, 2, . . . , K; θ̂i ∈ Rp (2.1)

where θ̂i is the block estimates, θ is the parameter vector that defines the process, the

vector of random errors εi’s are assumed independent.

We will make the following further assumption,

� A1.0 the block errors, εi ∼ Np(0,Γi) =⇒ θ̂i ∼ Np(θ,Γi) and Γi = V (θ̂i)

where, p is the number of parameters to be estimated in the original model .

However this is not always the case that the estimates are normally distributed, specially

the estimate of the parameters (σ2, φ, τ 2). This is a challenge. To overcome this challenge

log transformation of parameters is a possible solution. The another useful solution is

to adopt the Box-Cox transformation of the local estimates.
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Then the fixed effect estimation procedure assumes the true model for θ̂ = (θ̂>1 , θ̂
>
2 , . . . , θ̂

>
K)

is,

θ̂ ∼ NKp(1K ⊗ θ,Γ), (2.2)

where 1K is a K-dimensional vector of ones, Γ is the block diagonal Kp×Kp covariance

matrix with each block Γi is the p×p non spatial covariance matrix of the block estimates.

The fixed effect meta estimator of θ is the generalized least square solution of the

model (2.1). The estimator is,

θ̂fem = {D>Γ−1D}−1D>Γ−1θ̂, (2.3)

where D = 1k ⊗ Ip, with Ip the identity matrix of dimension p, Γ−1 is the inverse of Γ.

To obtain the estimate (2.3) we need to estimate Γ which is a block diagonal matrix.

Under the assumption A1.0 the fixed effect meta estimator estimator is the maximum

likelihood estimator for the model (2.1).

A simpler version of the estimator is obtained with equal weight for each block, that

is if we replace Γi = γ, where, γ is a p × p common covariance matrix of the block

estimates at every block, that is considering every block contribute equally which is

statistically very naive. The simpler version is the block average which is obtained as,

θ̂bar = {D>Γ̃−1D}−1D>Γ̃−1θ̂, (2.4)

where Γ̃ is a block diagonal matrix with common ith diagonal element γ. The variance

of θ̂fem is obtained as below,

var(θ̂fem) = {D>Γ−1D}−1D>Γ−1var(θ̂)Γ−1D{D>Γ−1D}−1 (2.5)

If the model (2.1) is true, that is the working model coincides the true model then the

variances reduced to,

var(θ̂fem) = {D>Γ−1D}−1. (2.6)

The two versions of variance for the estimator θ̂bar can be obtained as well by replacing

Γ = Γ̃ in (2.5) and (2.6).
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Now, if the assumption A1.0 is correct then (2.5) and (2.6) should be same. However,

this is better to estimate the variance (2.5) using some method. One way of doing this

is to employ spatial heteroscedastic and auto-correlation consistent (SHAC) estimation

procedure. We will describe the SHAC estimation procedure later section.

The next subsection describes the procedure of obtaining random effect meta estima-

tor and its variances. We have employed the random effect meta analysis model which

allows us to take into account the between block dependence.

2.3.2 The random effect meta (rem) estimator

To account for the between block dependence we propose to combine the local estimators

through a random effect meta analysis model which assumes that the local estimators

differ from the true parameter value by a random quantity that smoothly varies across

the blocks. The assumed working model is,

θ̂i = θ + ηi + εi, (2.7)

where ηi are zero-mean random effects designed in a way to describe the spatial variation

of the local estimators (i = 1, . . . , K) and εi accounts for within block variation, also

can be termed as estimation error.

In addition to the assumptions made for fixed effect meta estimation we make the

following further assumptions,

� A2.0 the random effects ηi are independent from the estimation errors εi.

� A2.1 the random effects η ∼ NKp(0,Ω), where η = {ηi; i = 1, . . . , K}.

Hence, the random effect meta-analysis model assumes that,

θ̂ ∼ NKp(1K ⊗ θ,Γ + Ω), (2.8)

where Ω is the covariance matrix of the random effects which represent the between block

dependence and Γ is the matrix of withing block dependence of the block estimates. In

the case of random effect meta estimation the covariance matrix (Γ + Ω) is not block

diagonal anymore. Generalized least square is the classical approach usually adopted

for obtaining the random effect meta estimator in meta analysis settings. Therefore, in

the farmer approach the random effect meta estimator, θ̂rem is obtained following the

generalized least square approach. The estimator is obtained as,
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θ̂rem = {D>(Γ + Ω)−1D}−1D>(Γ + Ω)−1θ̂, (2.9)

where D is defined as in previous section and the value of Γ is obtained as described

in previous subsection. The Ω needs to be estimated. The estimation procedure will

be discussed in the next subsection. This is easy to notice that if the between block

covariance Ω become null then the θ̂rem reduces to θ̂fem. Also, the θ̂rem reduces to θ̂bar if

we replace (Γ + Ω) = Γ̃.

In the similar way as described for fixed effect meta estimation the variance of the

random-effects meta estimator is

var(θ̂rem) = {D>(Γ + Ω)−1D}−1D>(Γ + Ω)−1var(θ̂)(Γ + Ω)−1D{D>(Γ + Ω)−1D}−1.
(2.10)

If the working model (2.7) coincides the true model in (2.8) then the variance of the

farmer rem estimator reduces to,

var(θ̂rem) = {D>(Γ + Ω)−1D}−1 (2.11)

Again, replacing the estimate for Ω we will obtain the farmer rem estimator and related

variances.

Both the fixed and random effect meta analysis models provide us the analytical

solution for farmer estimators and their variances. Specially, for farmer θ̂fem estimator

all the required quantities are readily available from the block estimates except the

term var(θ̂) in the variance formula. The estimation procedure of this quantity will be

discussed in the later section. However, for the farmer rem estimator we have to specify

the covariance for the random effect which is Ω.

Splitting of large data domain into mutually exclusive and exhaustive blocks leave

us the lattice. The generated lattice can be regular or irregular based on the splitting

mechanism. There is huge literature for modeling the lattice data. The seminal article

of Besag (1974) has opened the windows for dealing with Gaussian and non-Gaussian

lattice data. Later Gelfand and Vounatsou (2003), Jin et al. (2005) have done further

developments in the multivariate case of lattice data and suggested of multivariate

conditional autoregressive (MCAR) models and the generalized version of MCAR. In

our problem we have multiple parameters in each block therefore we fit the MCAR model

for estimating the random effect covariance parameter Ω. In the following subsection
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estimation procedure for Ω is detailed out.

2.3.3 The specification of Ω

As we mentioned earlier partitioning the domain into mutually exclusive and exhaustive

blocks produces either regular or irregular lattice based on the splitting rule. In a

lattice, the blocks share their borders with their neighbors’ blocks. The blocks that

share a common border are correlated and if there is no common border between two

blocks they are uncorrelated. This is the simple intuitive idea behind the conditional

autoregressive (CAR) model. The model is formulated using the hierarchical approach.

Let us consider the figure (2.2) which is an example of regular lattice consists of 16

areal units induced by splitting. The blocks are usually called an areal unit in spatial

literature. Here, the block 6 (in red) shares it’s border with blocks (2, 5, 7, 10) therefore

the block 6 is associated with blocks (2, 5, 7, 10), also block 4 shares border with blocks

(3, 8) and similarly they are associated. This is called the first level of correlation. For

simplicity, we will consider the first level of correlation only in this thesis.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.2: Blocking generated lattice

For the convenience of readers we first discuss briefly the formulation of MCAR

model starting from univariate case that is the formulation of CAR model. Let us

consider ηi is a random variable observed at K areal units, that is in K blocks in our

setting. Then under MRF assumptions and following the Besag (1974)’s formulation,

the K full conditionals are defined as,
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p(ηi|ηj, i 6= j, λi) = N

(
ν
∑
i∼j

bijηj, λi

)
, i, j = 1, 2, . . . , K, (2.12)

where i ∼ j means that the unit i is a neighbor of unit j, λi is the conditional vari-

ance of ηi, bij conveys the spatial dependence between the ith and jth location. From

Hammersley-Clifford Theorem and Brook’s Lemma (see Banerjee et al. (2014), section

4.2) the joint distribution of η = (η1, η2, . . . , ηK) can be obtained as,

η ∼ NK

(
0, [Dλ(I − νB)−1]

)
, (2.13)

which is a multivariate normal distribution with mean vector 0 and covariance matrix

Dλ(I − νB)−1. Where B = {bij} is a K × K matrix with element bii = 0, Dλ is

K × K diagonal matrix with non-zero entries λi. The parameter ν is a smoothness

parameter which controls the spatial dependence among the blocks, ν = 0 implies an

independent model however ν = 1 does not imply a completely dependent model rather

the distribution becomes improper. This parameter lies inside 0 and 1. In the analysis

of lattice data the adjacency matrix W is an important matrix which represent the

neighborhood structure among the blocks. There are many ways to define the matrix

W however the simple definition is,

wij =

{
1 if i and j share a common border

0 otherwise .
(2.14)

This definition is not always recommended for irregular lattice. In that case, some

weighting scheme based on distance is recommended (see for example Banerjee et al.

(2014)). Once the W is defined the we set bij = wij/wi+, where, wi+ =
∑

j wij. If

λi = λ/wi+ holds, then we have,

D−1λ (I − νB) =
1

λ
(DW − νW ) ,

where λ is the common variance of the random variable ηi across the blocks and DW =

diag(w1+, w2+, . . . , wK+). This model is denoted by CAR(ν, λ). Based on the values of

ν there could be variants of the CAR model. Then the variance in the model (2.13)

becomes λ (DW − νW )−1.
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Now, let us consider that η> = (η>1 , η
>
2 , . . . , η

>
K) where each ηi is a p× 1 vector. The

the full conditional is defined as,

p(ηi|ηj, i 6= j,Λi) = Np

(
ν
∑
i∼j

bijηj,Λi

)
, i, j = 1, 2, . . . , K, (2.15)

where the smoothness parameter ν is common for all p elements in ηi, also, the bij’s are

same for all the elements in ηi and Λi is the p× p covariance matrix of vector ηi. Then

the univariate CAR model is not suitable rather we have multivariate CAR (MCAR)

models. Following the similar formulation, we have the MCAR(ν,Λ) model as,

η ∼ NKp

(
0, [(DW − νW )−1 ⊗ Λ]

)
, (2.16)

where Λi = Λ/wij and Λ is the p × p common covariance matrix of vector ηi, W and

DW are now Kp×Kp matrices. Under the assumption in (2.8) and formula (2.16) the

variance of vector η is given by,

Ω = (DW − νW )−1 ⊗ Λ, (2.17)

where every components has same interpretation as mentioned before.

According to the model (2.8) the var(θ̂) = Γ+Ω, therefore the log-likelihood function

ignoring the constant terms is,

l(θ, ν,Λ) =− 1

2
log|Γ + (DW − νW )−1 ⊗ Λ|

− 1

2
(θ̂ − 1K ⊗ θ)>(Γ + (DW − νW )−1 ⊗ Λ)−1(θ̂ − 1K ⊗ θ). (2.18)

This is the likelihood function for all parameters. However, we have the analytical

estimator for θ which is a function of ν,Λ through Ω as,

θ̂rem = {D>(Γ + Ω)−1D}−1D>(Γ + Ω)−1θ̂.

Therefore we need to estimate the last two parameters ν,Λ involved in Ω only. We

can express estimator of θ as θ̂rem(ν,Λ) and replace this into (2.18) to get the profile

likelihood for (ν,Λ) as,
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l?(ν,Λ) =− 1

2
log|Γ + (DW − νW )−1 ⊗ Λ|

− 1

2
(θ̂ − 1K ⊗ θ̂rem(ν,Λ))T (Γ + (DW − νW )−1 ⊗ Λ)−1(θ̂ − 1K ⊗ θ̂rem(ν,Λ)).

(2.19)

We have to maximize the (2.19) for estimating (ν,Λ), where Γ is known from block

estimates as described before. The farmer θ̂rem estimator for θ is then be defined by

plugging (ν̂, Λ̂) in (2.9).

At this point, there are several possibilities for specifying the matrix Λ. Firstly, we

can set all the p + p(p − 1)/2 parameters included in the matrix as unknown; second,

the off-diagonal block between regression parameters and spatial parameters can be set

equal to zero; thirdly, fixing all the elements of Λ by either empirical covariance matrix

from the block estimates or average of block covariance matrix V (θ̂i). The dimension of

Λ depends on the number of parameters to be estimated in the model. If there are many

covariates included in the model then the dimension of Λ explodes. Considering this

issue we have adopted the last option. This makes the estimation of the MCAR(ν,Λ)

model computationally efficient and we need to estimate a single parameter only. At

this stage, we have a further modification of the profile likelihood which is,

l??(ν) =− 1

2
log|Γ + (DW − νW )−1 ⊗ Λ̃|

− 1

2
(θ̂ − 1K ⊗ θ̂rem(ν, Λ̃))T (Γ + (DW − νW )−1 ⊗ Λ̃)−1(θ̂ − 1K ⊗ θ̂rem(ν, Λ̃)).

(2.20)

where

Λ̃ =
1

K

K∑
i=1

V (θ̂i).

Now, the problem is simplified, computation is feasible and the number of parameters

is independent of the number of blocks and p.

Since we are not sure that the working model coincides with the true model we

think this is not wise to use the simplified formula for variance estimation. In this

regards it is necessary to consider the term var(θ̂) in the variance formulas. As said

earlier, we propose to adopt the non-parametric approach Spatial Heteroscadastic and

Autocorrelation Consistent (SHAC) estimation procedure for the required estimation.

Through SHAC we estimate the variances for farmer fem and rem estimators. The next
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section is focused on describing the SHAC estimation procedure for variance estimation.

2.3.4 Estimation of variances for θ̂bar, θ̂fem, and θ̂rem

Heteroscedasticity and autocorrelation consistent (HAC) estimator is a non-parametric

estimator that can be used for many sample statistics. This method is more frequent

in the time series and econometric literature. Grenander and Rosenblatt (1957) in their

book described the nut and bolts of the estimator which is a classical reference to go

through. For recent updates please see the latest version of the book (Grenander and

Rosenblatt (2008)). Priestley (1964) for the first time introduced the HAC estimator

in the spatial context for estimating the spectral densities of stationary random fields.

Further development on this estimator is done by Kelejian and Prucha (2007) in the

spatial setting and the name Spatial HAC (SHAC) is introduced by them. They establish

the non-parametric SHAC based on estimated disturbances for estimating the variance-

covariance matrix for the sample moments and demonstrated the consistency of the

estimator under mild conditions. We have adopted the SHAC estimator defined by

Kelejian and Prucha (2007) which is suitably fit to our problem.

To explain the methodology we consider the following example of specific regression

model:

y = Xβ + e (2.21)

where y is the vector of n data points associated with n locations, X is the n× p design

matrix and β is the vector of regression parameters associated with the p covariates, n is

the number of spatial units in the sample. The OLS estimator of regression coefficient,

β̂ is defined as,

β̂ = (X>X)−1X>y (2.22)

Now, the question is to estimate the covariance matrix of β̂ considering the spatial

association between the points and correlation structure is unknown. In this situation

the variance covariance of β̂ is defined based on SHAC procedure as,

Ψ = var
(√

n(β̂ − β)
)

= n−1X>ΣeX (2.23)
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where Σe is the covariance of error. Then the SHAC estimator of Ψ is given by,

Ψ̂ = n−1X>ê>ê ◦K(d/dn)X, (2.24)

where ◦ means element by element multiplication, K(·) is the kernel function, ê is the

estimtaed error vector, d is the distance matrix, dn is the scaling factor of distance.

The scaling factor dn has similar type of interpretation of the spatial scale parameter

φ however depends on the kernel function used. The large value of dn means that the

distant blocks are also correlated on the other hand the smaller value indicate that the

closer blocks are only correlated. When dn takes the value equal maximum distance

then all the blocks are correlated and when it takes the value equal 1 then the blocks

with distance less than or equal 1 unit are correlated others not. The dimension of Ψ̂ is

p× p, p is the dimension of β. This is the formulation in Kelejian and Prucha (2007).

The authors have suggested several different kernel functions. The example of some

kernels is mentioned below. The ijth element of which is defined as,

Truncated:

KTR(dij) =

{
1, if |dij| 6 1

0, otherwise ,

Bartlett:

KBT (dij) =

{
1− |dij|, if |dij| 6 1

0, otherwise ,

Parzen:

KPR(dij) =


1− 6d2ij + 6|dij|3, if 0 6 |dij| 6 1/2

2(1− |dij|)3, if 1/2 6 |dij| 6 1

0, otherwise ,

Tukey-Hanning:

KTH(dij) =

{
(1 + cos(πdij))/2, if |dij| 6 1

0, otherwise ,

Quadratic Spectral:

KQS(dij) =
25

12π2d2ij

(sin(6πdij/5)

6πdij/5
− cos(6πdij/5)

)
.
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Now, this is clear that the θ̂bar, θ̂fem and θ̂rem have the similar structure with (2.22).

We can easily replace theX by (D>Γ−1D)−1D>Γ−1 for fem and (D>(Γ+Ω̂)−1D)−1D>(Γ+

Ω̂)−1 for rem. Also, the ê is replaced by (θ̂− θ̂farmer). Replacing this we obtain the SHAC

estimators for the variances as below:

v̂ar(θ̂farmer) = A{(θ̂ − θ̂farmer)>(θ̂ − θ̂farmer) ◦ (K(d/dn)⊗ 1)}A> (2.25)

where A = (D>(Γ + Ω̂)−1D)−1D>(Γ + Ω̂)−1 and A = (D>Γ−1D)−1D>Γ−1 for farmer

rem and fem respectively and 1 is p× p matrix of 1.

To get the three versions of farmer estimate bar, fem and rem and their variances

we now have all the requirements. However, to follow the process properly, we have

organized the entire process in the form of an algorithm. The farmer algorithm is

presented in the following section.

2.4 The farmer algorithm

To implement the farmer approach the following algorithm need to be followed up. The

simple and intuitive farmer algorithm are elaborated in a step-wise manner to follow

through easily.
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Algorithm 1 farmer algorithm

ó Partition the data set, z = (y,X, s) into K non-overlapping subsets and label

the subsets from 1, 2, . . . , K each of which are called as ”block”. The set (y,X, s)

are respectively the observed realization of study variable, a possible vector of

covariates, and set of locations. Denote the data in block i as zi with zi =

(yi, Xi, si).

ó Obtain the block estimates θ̂1, . . . θ̂K using some method (for example maximum

likelihood) from the data zi; i = 1, 2, . . . , K and calculate θ(0) =
∑K

1 θ̂i/K.

ó Calculate V (θ̂i); i = 1, . . . , K. Also, set Λ̃ =
∑K

1 V (θ̂i)/K.

ó Minimize the negative log likelihood (2.20) to obtain ν̂ and then calculate Ω̂.

ó Calculate three versions of farmer estimators θ̂bar, θ̂fem, and θ̂rem using the for-

mulas (2.4), (2.3) and (2.9) respectively.

ó Obtain variances for different farmer estimators using equation (2.25). The

simplified versions of the variances are obtained by the formula defined in (2.6)

and (2.11).

2.5 Likelihood and Fisher information matrix for

Gaussian random fields

We explain the parameter estimation and finding the respective variance in block using

maximum likelihood approach as an example. However, the farmer approach is a general

platform where other method of estimation can be employed too. Let us consider Y (s)

is a Gaussian random field observed at location s ∈ R2. The simple geostatistical model

for Y (s) is,

Y (s) = X(s)>β + S(s) + e(s) (2.26)

where X(s) are the possible vector of known covariates associated with locations s,

and β is a vector of parameters associated with the covariates. S(s) has a zero mean

Gaussian process which represent the spatial variation in the process also known as

latent process. If there is n locations then the latent vector S = (S(s1), . . . , S(sn)) has

an n dimensional multivariate normal distribution which is N(0, σ2R(φ)), where σ2 is
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the variance parameter, R(φ) is the n × n correlation matrix with scale parameter φ.

The nugget vector e = (e(s1), . . . , e(sn)) assumed to have N(0, τ 2I), where τ 2 is called

the nugget variance and I is the identity matrix of order n. Then the variance covariance

matrix of Y = (Y (s1), . . . , Y (sn)) is Σ = σ2R(φ) + τ 2I. The log likelihood function for

the model under consideration is then be expressed as,

l(θ, y) = −1

2
n log(2π)− 1

2
log |Σ| − 1

2
(y −Xβ)>Σ−1(y −Xβ) (2.27)

where y is the vector of realizations of Y , θ = (β, σ2, φ, τ 2) is the vector of parameters

to be estimated, the last three parameters are termed commonly as spatial dependence

parameters. Let us divide the parameter set into two subsets θ = (β, %), where % =

(σ2, φ, τ 2). For any fixed value %, say, %0, the MLE for β can be obtained maximizing

(2.27). The MLE for β is obtained as,

β̂ =
(
X>Σ−1(%0)X

)−1
X>Σ−1(%0)y.

Unfortunately there is no closed form solution for the parameters %. Therefore, we have

to estimate % by numerically maximizing the profile likelihood. Replacing β by β̂ we

obtain the profile likelihood function for % as,

lp(%, y) = −1

2
n log(2π)− 1

2
log |Σ(%)| − 1

2
y>H−1(%)y, (2.28)

where H(%) = Σ−1(%) − Σ−1(%)X(X>Σ−1(%)X)−1X>Σ−1(%), and the estimate of β is

updated β̂ =
(
X>Σ−1(%̂)X

)−1
X>Σ−1(%̂)y.

The covariance matrix of the estimate θ̂ can be obtained inverting the Fisher infor-

mation matrix. The Fisher information matrix based on (2.27) is obtained as,

I(θ) =


Iββ Iβσ2 Iβφ Iβτ2

Iσ2β Iσ2σ2 Iσ2φ Iσ2τ2

Iφβ Iφσ2 Iφφ Iφτ2

Iτ2β Iτ2σ2 Iτ2φ Iτ2τ2

 (2.29)



32 Section 2.6 - A first performance checking of farmer algorithm

where the elements are defined as,

Iββ = X>Σ−1X

Iσ2σ2 =
1

2
tr
[
Σ−1R(φ)Σ−1R(φ)

]
Iσ2φ =

1

2
tr
[
Σ−1R(φ)Σ−1σ2R

′
(φ)
]

Iσ2τ2 =
1

2
tr
[
Σ−1R(φ)Σ−1I

]
Iφφ =

1

2
tr
[
Σ−1σ2R(φ)

′
Σ−1σ2R

′
(φ)
]

Iφτ2 =
1

2
tr
[
Σ−1σ2R

′
(φ)Σ−1I

]
Iτ2τ2 =

1

2
tr
[
Σ−1IΣ−1I

]
Iβσ2 = Iβφ = Iβτ2 = 0,

where R
′
(φ) the first derivatives of correlation matrix R(·) with respect to φ. We can

obtain the I(θ̂) by replacing the θ with respective estimated value. We apply the ML

estimation procedure based on above formulation to obtain the θ̂i and I(θ̂i) at every

block. Then we obtain the V (θ̂i) = I−1(θ̂i).

This is to be noted that we have assumed the asymptotic normality of block estimates

θ̂i when fixed and random effect meta analysis applied. However, this is not always the

case, especially for the estimate of the spatial dependence parameters ϑ. This is a chal-

lenge. To overcome this challenge log transformation of these parameters is a possible

solution. Another useful solution is to adopt the Box-Cox transformation of the local

estimates. For this example, we have re-parameterized the block likelihood to obtain the

log-transformed spatial parameters and respective information matrix. Which provides

the closer approximation to the normality. This is a simple and intuitive solution to the

problem. This transformation makes us free from constrained optimization that is all

the parameters can take values over −∞ to ∞.

In the following section, we have checked how farmer approach performs with a

simple simulation example. Details are described in the section below.

2.6 A first performance checking of farmer algorithm

For assessing farmer algorithm’s performance we have experimented. We have consid-

ered the model (2.26) with a single covariate. We have generated n = 20, 000 non-regular

locations uniformly over a range of (0, 30) × (0, 30). The true values are considered as
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β0 = 1, β1 = 1. We have considered the exponential covariance model with parameters

values σ2 = 1, φ = 0.15, τ 2 = 0. The covariate is considered as known which comes from

N(0, 0.52). We have split the region into 80 mutually exclusive blocks of size ≈ 250

each. The likelihood is defined in a way to accommodate the log transferred spatial

parameters. The proposed farmer approach is applied to this generated data set for

obtaining the estimates of the model. We have repeated the experiment 200 times. The

outcomes are presented in table (2.1) and figure (2.3). In the table, we have presented

10% trimmed mean.

Estimators β0 β1 log(σ2) log(φ)
true 1.00 1.00 0.00 -1.8971
bar 0.9998 0.9999 -0.0233 -1.9259
fem 0.9998 0.9999 -0.0233 -1.9259
rem 0.9998 0.9999 -0.0233 -1.9259

Table 2.1: The bar, fem, rem estimates from 200 experiments
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Figure 2.3: Boxplots of the bar, fem, rem, for betas, log sigma square and log phi.

Conducting the first set of simulation experiments we understood that the farmer

approach is easy to apply and computationally efficient. The regression parameters are

captured very well by the proposed approach which is the case for other approaches as

well. The estimation time is also within the minutes’ range, on average 15 minutes for

each iteration using a personal computer of core i7, 2.7GHz processor, Ubuntu 18.04 OS.

However, there is evidence of downward bias in spatial parameters (σ2, φ). Therefore
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we may say that using the farmer approach it is easy to catch the mean however for the

variance part there is some disturbance. This downward bias in the maximum likelihood

estimator is not new, some other authors also noted before (Viechtbauer (2005)). Also,

in spatial setting Barbian and Assunção (2017) and Liang et al. (2013) have experienced

underestimation of these parameters and instead they reported the ratio σ2/φ of these

two parameters and they left the problem unsolved.

Smith (2009) has detailed out the root causes of the downward bias of spatial de-

pendence parameters. The strong connectivity is the main culprit for this type of bias.

The authors mentioned several studies that experienced the same issue. That is the

strongly connected or high-density weight matrics are the cause of happening this bias.

The authors identified the cause however no remedial measure has been suggested. This

is is still now an open question. Firth (1993) suggested a bias correction method in the

likelihood. Further development has been done on this later by Kosmidis et al. (2017)

who implemented the former idea for improving the accuracy of likelihood inference for

random effect meta analysis and meta-regression.

In the next section, we describe the procedure of adjustment for bias correction for

farmer estimators.

2.7 Bias reduction for farmer estimators

We propose further improvements of farmer estimators by employing this bias correction

method at the block level.

In the farmer approach, the likelihood method is being applied in two stages, first,

at the block level and second for estimating the MCAR model. Therefore the problem

of bias can occur in both of the stages. Based on the source of bias the reduction

strategy can be different. According to the first simulation results presented in figure

(2.3) this is clear that every estimator such as bar, fem and rem have this problem of

underestimation. It is clear that the second stage model is only applied for rem estimator

and bias have occurred for every estimator. This is suggestive that the bias actually

occurs when estimating in blocks. Therefore, we propose to apply the bias correction

technique at the block levels.

Firth (1993) proposed a bias correction technique in likelihood estimation settings

for independent data. In this method instead of reducing bias he has suggested to

introduce some bias into the score function. This modification of score function is done

based on simple triangle geometry (see figure 1 in Firth (1993)). Let us consider the log

likelihood function l(θ) to be maximized for estimating the parameter θ. According to
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the proposal for positive bias, the modified log likelihood function is,

l?(θ) = l(θ) +
1

2
log|I(θ)|, (2.30)

where |I(θ)| 12 is the Jeffreys invariant prior penalty function. Based on Firth (1993)’s

works, Kosmidis et al. (2017) suggested more specific correction as mean bias correction

and later Kyriakou et al. (2018) have updated it and proposed a median bias correction

method for random effect meta analysis model. They proposed the modification of score

function for downward bias of maximum likelihood estimators. Recently, Kosmidis et al.

(2018) have proposed the mean and median bias reduction techniques for generalized

linear models.

In our case, we have experienced downward bias too. Therefore we propose to apply

the Kosmidis et al. (2017)’s technique to the log-likelihood function (2.27). and we

obtain the mean bias-adjusted log-likelihood function,

l?(θ, y) = −1

2
n log(2π)− 1

2
log |Σ| − 1

2
(y −Xβ)>Σ−1(y −Xβ)− 1

2
log|Iββ(θ)|. (2.31)

Maximizing the equation (2.31) for each block we obtain the mean bias corrected

block estimates. The algorithm (1) will then be employed on mean bias corrected block

estimates. The author showed that the inference based on penalized likelihood is same

as the inference based on the usual likelihood. We will denote the bias reduced estimates

by θ̂†bar, θ̂
†
fem, and θ̂†rem.

To see the impact of the bias reduction method we have estimated bias reduced pa-

rameters on the same simulated data presented in the previous section. The comparative

results are as presented below table and figure.

The output from 200 experiments are presented below in table (2.2) and in figure

(2.4).
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type Estimators β0 β1 log(σ2) log(φ)
true 1.00 1.00 0.00 -1.8971
bar 0.9998 0.9999 -0.0233 -1.9259

No BC fem 0.9998 0.9999 -0.0233 -1.9259
rem 0.9998 0.9999 -0.0233 -1.9259
bar 0.9998 0.9999 -0.0066 -1.9057

Mean BC fem 0.9998 0.9999 -0.0066 -1.9057
rem 0.9998 0.9999 -0.0066 -1.9057

Table 2.2: The bar, fem, rem estimates and their bias corrected forms from 200
experiments
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Figure 2.4: Boxplots of the bar, fem, rem, for betas, sigma square, and phi. In
each panel, the first three boxes are bias-uncorrected and the last three are mean
bias-corrected ones. The sigma square and phi are on the log scale.

From figure (2.4) this is evident that the bias of all the parameter has been reduced

significantly. Now both types of parameters are well captured. This is an improve-

ment over existing methods where the underestimation problem left unsolved by other

aforementioned authors. This is to be noticed that the simple average of the block

estimates, θ̂bar performs almost similar ways as the θ̂fem and θ̂rem did. According to

our expectations, this should no be the case. The issue is not why the simple average

performs equally with other methods that utilize more information, rather the issue is

why the methods that exploit more information do not outperform. We flag this issue

for further investigation. This could be because the φ parameter is chosen small for the

experiments. That is the correlation vanishes inside the blocks. However, in the case of
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simple average, the spatial dependence between blocks, block sizes, and distribution of

the locations inside the block are completely ignored. Although, all the three estima-

tors bar, fem, and rem provide similar values which can be used for prediction. There is

another question regarding the estimators which is robustness. That is if the estimators

perform similarly in different settings. That is, for the different number of blocks and

sizes, for low and high parameter values, etc.

In the next chapter we perform some more simulation experiments for assessing

spatial asymptotic of farmer approach empirically. Also, the outcome of comparative

experiments is presented. The results from the real applications are also presented in

the next chapter.





Chapter 3

Performance evaluation and real

applications

In this chapter, we present the empirical results of a set of simulation experiments, two

real applications and comparative performance of farmer approach with two existing

similar methods. The geostatistical regression model formulated in (2.26) is the target

model. Our target is to estimate the parameters of the model with analytical standard

errors. All the experiments and applications in the case of Gaussian random fields are

considered here in this chapter. The simulation experiments are designed to understand

how the farmer approach performs in the presence of nugget effect, what if the block size

m increases with the fixed number of blocks K, what is the trade-off between increasing

m and K. Measuring the time required in farmer approach is an objective too. For

conducting simulation experiments we have considered the model (2.26) which we recall

here for the convenience of readers.

Y (s) = X(s)>β + S(s) + e(s) (3.1)

As we know that exact inference in the spatial context is often not available (Cressie

(1992)). The alternative is to draw inference based on asymptotic results. In the spatial

context, there are two types of asymptotic scenarios through which the asymptotic

behavior of estimators is studied usually. We introduce them briefly in the next section

prior to move to the simulation experiments.

39
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3.1 Spatial asymptotics

Asymptotic results in statistics are derived by letting the sample size n tend to infinity.

This can be done in various ways based on situations. When replication involve in the

analysis the number of replications is allowed to tend to infinity. In time series this can

be done by observing the series for an infinite period. In the spatial setting, this can be

done in two ways.

Let us assume, D ⊂ Rd is the domain of observations. In the first case, we can let

n −→ ∞ by allowing |D| −→ ∞, where |D| is the size of the domain. In this scenario,

the number of observation increased by increasing the domain infinitely. This is similar

to observing a time series over an infinite period. The number of sample locations

per unit area remains finite over space. This asymptotic is called domain-increasing

asymptotics. Most often in the lattice scheme, this is prohibitive to apply where space

is bounded. Such as the data over a specific country where the boundary of the country

can not be expanded.

On the other hand, when 0 < |D| < ∞, that is the locations are distributed over a

finite space D ⊂ Rd. In this scenario, we can let n −→ ∞ by infinitely sampling loca-

tions between existing locations. In mining, this is known as infill sampling. Therefore,

the asymptotic behavior when 0 < |D| < ∞ but n −→ ∞ is called the infill asymp-

totics. The minimum distance between points tends to zero as n −→∞ in this type of

asymptotic.

In case of farmer estimators,

ó Infill asymptotic is represented as m −→∞ when K fixed, 0 < |D| <∞.

ó Increasing-domain asymptotic is represented as K −→∞ for fixed m.

where, m is the block size and K is the number of blocks.

3.2 Simulation experiments

3.2.1 (a) Checking performance under domain infilling

We have designed this experiment to understand how the farmer approach performs

in the presence of nugget effect and what happens when the block size m gets larger

and larger with the fixed number of blocks K and 0 < |D| < ∞. This allows us to

check the asymptotic behavior of farmer estimators under infilling. We consider the

model (3.1) for simulation experiments. We have fixed the number of blocks to K = 80



Chapter 3 - Performance evaluation and real applications 41

and repeated the experiments for average block sizes m ≈ {150, 250, 400}. The total

number of locations are then n = {12000, 20000, 32000} for three different scenarios

over the domain (0, 30) × (0, 30). The size of the block is not the same for all the

blocks after splitting the data rather there is a slight variation. The number of blocks

80 is reasonable here. The reason is that we have formulated the MCAR(ν,Λ) model

such a way that we required to estimate only one parameter ν whatever be the number

of parameters in the original model. We have included a single explanatory variable

in the linear spatial regression model which is known and generated from N(0, 0.52).

The true parameter values are considered as β0 = β1 = σ2 = 1, φ = 0.15, τ 2 = 0.1

for all the scenarios. We have implemented the algorithm with spatial dependence

parameters σ2, φ, and τ 2 in log scale which ensures the the estimate can take values over

(−∞,+∞). Moreover, log transform estimates of these parameters are more probable

to closer normal approximation which validates our assumptions for MCAR models.

The experiments are repeated 200 times for every case.

The results from the set of experiments are presented in figures (3.1, 3.2, 3.3, 3.4,

3.5) and table (3.1). In the table, we have presented the ten percent trimmed mean. All

the versions of estimates for β parameter, perform excellently in all the settings. The

variance is reduced with larger block size which is expected. However, performance in

the case of spatial dependence parameters is not as good as the regression parameters.

This is the usual case in the estimation problem of the spatial model. The dependence

parameters are always harder to estimate. We observe that correction of bias is working

in the presence of nugget effect however not as faster as before. As the block size

increases performance improved. Similar, behavior also observed by Liang et al. (2013)

and Barbian and Assunção (2017) for their methods. In our case, the improvement is

two folds, first bias reduction due to increase block size and secondly employing the bias

reduction method. Therefore, with block size m = 400 we have reached a reasonable

level of bias reduction in both the σ2 and φ. However, for the parameter nugget variance

τ 2 improvement is not as faster as the others do. Even with block size 400 the downward

bias is still there. Though bias is not reduced that much for nugget effect the variance

does. There is one interesting observation for nugget variance that farmer fem and

rem performing better than simple average which is not the case with other parameters.

The ratio of φ/σ2 has also been plotted. The performance improves as the block size

increases. The difference between bias-corrected and uncorrected decreases with the

larger blocks.

This is clear that as the block size gets larger the variance of all the farmer estimators

including both bias-corrected and uncorrected decreases. At block size, m = 400 all
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the versions of all the parameters performs better in terms of empirical consistency.

Therefore, a flavor of infill asymptotic behavior of the farmer estimators is suggestive.

That is, as more sample is drawn over a fixed domain the estimate become consistent at

least empirically. However, without mathematical derivation, we can not confirm this

claim.

Scenarios Pars(truth) θ̂bar θ̂fem θ̂rem θ̂†bar θ̂†fem θ̂†rem
β0(1.00) 0.9994 0.9994 0.9994 0.9992 0.9992 0.9992
β1(1.00) 1.0004 1.0002 1.0002 1.0004 1.0003 1.0003

K = 80,m = 150 log(σ2)(0.00) -0.0492 -0.0492 -0.0493 -0.0358 -0.0368 -0.0368
log(φ)(−1.897) -1.9182 -1.9182 -1.9183 -1.8554 -1.8548 -1.8549
log(τ 2)(−2.303) -9.1877 -4.0033 -4.0160 -8.4382 -4.0923 -4.0922
β0(1.00) 1.0002 1.0002 1.0002 1.0002 1.0002 1.0002
β1(1.00) 1.0001 1.0001 1.0001 1.0001 1.0000 1.0000

K = 80,m = 250 log(σ2)(0.00) -0.0251 -0.0262 -0.0262 -0.0155 -0.0171 -0.0171
log(φ)(−1.897) -1.9255 -1.9239 -1.9239 -1.8888 -1.8865 -1.8865
log(τ 2)(−2.303) -6.5994 -5.6011 -5.6011 -6.1164 -5.2542 -5.2542
β0(1.00) 1.0013 1.0012 1.0012 1.0013 1.0012 1.0012
β1(1.00) 1.0002 1.0003 1.0003 1.0002 1.0003 1.0003

K = 80,m = 400 log(σ2)(0.00) -0.0161 -0.0183 -0.0183 -0.0071 -0.0098 -0.0098
log(φ)(−1.897) -1.9278 -1.9242 -1.9242 -1.9011 -1.8969 -1.8969
log(τ 2)(−2.303) -4.2135 -3.9946 -3.9946 -3.9728 -3.7902 -3.7902

Table 3.1: Estimates obtained from the set of experiments (a)



Chapter 3 - Performance evaluation and real applications 43

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●●

● ●

●
●

●

●

●

●
●
●
●

●
●●

●
●

●
●●

●
●

●
●

●

●

●

●
●●
●

●
●●

●
●
●
●

●
●●

●
●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

beta1 (K=80, m=150) beta1 (K=80, m=250) beta1 (K=80, m=400)

beta0 (K=80, m=150) beta0 (K=80, m=250) beta0 (K=80, m=400)

bar fem rem mbar mfem mrem bar fem rem mbar mfem mrem bar fem rem mbar mfem mrem

0.90

0.95

1.00

1.05

1.10

0.90

0.95

1.00

1.05

1.10

Figure 3.1: Box-plots represent the outcome of experiment (a). Each of boxes
represents different versions of estimates of (β0, β1).
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Figure 3.3: Box-plots represent the outcome of experiment (a). Each of boxes
represents different versions of estimates of log(φ).
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In summary, we observed that,

ó Downward bias has been reduced by a reasonable amount however not removed

completely. This was a known problem in literature and through the proposed

approach solved partially.

ó Estimates are found to be consistent at least empirically under infill asymptotic.

To be confirmed, the mathematical proof is required.

ó The nugget parameter is not improved that much in terms of bias reduction.

Now, we present another set of experiments in the next subsection for assessing the

performance of farmer estimators under increasing domain settings.

3.2.2 (b) Checking performance under increasing domain

In this set of experiments, we have considered the same model (3.1) and specifications

in terms of true values and number of experiments as done in (a). However, we have

fixed the block size m equal to 250 and conducted the experiments for different values

of K = {48, 300}. These leave us the n = {12000, 75000}. The results are presented

similar way using box plots. To see the patterns we have presented the box plots

for K = {48, 80, 300}, where results for K = 80 are taken from the experiments set

(a). For the first scenario, we have generated Gaussian random field over the domain

(0, 18)×(0, 18) and for the last scenario, we have expanded the domain to (0, 60)×(0, 60).

For K = 80 we have domain (0, 30)× (0, 30) in the previous experiments.
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The performance in the case of regression parameters is similar to before. However,

in the case of spatial dependence parameters behavior contrasting to the previous ex-

periments is observed. The variance parameter σ2 is overestimated when the number

of blocks gets larger. On the other hand, the scale parameter φ is more underestimated

in the same situation. One thing is common that the variance of the estimates reduced

with larger number of blocks which again provide empirical evidence of consistency un-

der increasing domain setting. The increasing number of blocks has added some extra

bias to all the spatial dependence parameters in different directions. The added bias is

positive to the variance parameter however negative to the scale and nugget parameters.

In both the experience set (a) and in (b), the value of the parameter φ is chosen

a bit smaller. However, when we have compared the performance in the next section

a bit larger value (σ2 = 3.0, φ = 0.2) is chosen. Also, we have performed some more

simulation considering φ = 2.0 which is quite large. The results of these simulation

experiments are presented in . In that simulation, we found similar performance for

regression parameters however for spatial dependence parameters the results are not as

convincing as before. There is downward bias in all three dependence parameters. For

σ2 and φ, we obtain the estimates with some positive bias. The nugget parameter τ 2

and the ration φ/σ2 performs better with bias correction.
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Figure 3.6: Box-plots represent the outcome of experiment (b). Each of boxes
represents different versions of estimates of (β0, β1).

●● ●

●

●

●

●

● ●

●

●

●

●●

●

● ●●

●

●
● ●●

●

●
● ● ● ●

log sig sq (K=48, m=250) log sig sq (K=80, m=250) log sig sq (K=300, m=250)

bar fem rem mbar mfem mrem bar fem rem mbar mfem mrem bar fem rem mbar mfem mrem

−0.2

−0.1

0.0

0.1

0.2

Figure 3.7: Box-plots represent the outcome of experiment (b). Each of boxes
represents different versions of estimates of log(σ2).



48 Section 3.2 - Simulation experiments

●

●

●

●

●
●

●

●
●

●

●
●

●

● ● ●

log phi (K=48, m=250) log phi (K=80, m=250) log phi (K=300, m=250)

bar fem rem mbar mfem mrem bar fem rem mbar mfem mrem bar fem rem mbar mfem mrem

−2.25

−2.00

−1.75

−1.50

Figure 3.8: Box-plots represent the outcome of experiment (b). Each of boxes
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Figure 3.9: Box-plots represent the outcome of experiment (b). Each of boxes
represents different versions of estimates of log(τ2).

The possible interpretation of this results could be due to negative correlation between

σ2 and φ.
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Figure 3.10: Scatter plot with smoothed line between log(σ2) and log(φ), outcome
of experiment (b).

The association is negative which is also observed from the box plots above. Therefore,

this graph suggests that the positive bias in the variance induce negative bias in scale

or vice versa.

Based on the experiments sets in (b), the following points are observed,

ó The regression parameters are empirically unbiased and consistent under the

increasing-domain setting.

ó The estimates for the spatial dependence parameters are empirically consistent

however extra bias has been added at increasing domain scenario.

ó Another note is that the farmer approach works for the lesser number of blocks

as well.

In the next section, we discuss the variance estimation procedure for the estimate. If

the working model for meta analysis models coincides with the assumed true models

then this estimation is not required by the approach.
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3.2.3 Variance estimation and internal efficiency of farmer es-

timators

In the thesis, our focus is on both reducing computational burden and estimating more

realistic standard errors of the estimate. Realistic standard error estimation in the

subsampling scheme is lacking. Liang et al. (2013) has provided no specific guideline for

estimating standard error for their estimate rather suggested to repeat the estimating

process many times and compute the standard error empirically. On the other hand,

Barbian and Assunção (2017) proposed an approach based on the covariance matrix

computed from subsamples. There is similarity between the variance estimation in

the latter approach and the variance estimation for farmer fem estimator though the

weights are completely different. We have estimated the standard error for farmer

estimators from simulation experiments of model (3.1) with n = 20, 000, K = 80,m ≈
250 and true parameter were considered same as before (β0 = β1 = σ2 = 1, φ =

0.15, τ 2 = 0.1). We have applied the SHAC estimation procedure for estimating the

variance of the estimates as proposed in the second chapter. Considering the simplicity

we have applied the Tukey-Hanning kernel with distance matrix as the distance among

the centroid of the blocks. We have computed the variances considering two scenarios for

the distance scale factor dn = {5, 10}. We have presented the 95% confidence interval of

farmer bar, fem, and rem in figure (3.11). Both the analytical and simplified versions

are presented.
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Figure 3.11: farmer estimators with respective 95% CI are plotted. From top to
bottom CI for β0, β1, log σ2, log φ, log τ2 are plotted respectively. Among two main
columns, in left 95% CI of bias uncorrected and their simplified versions with dn = 5
are presented and in right same with dn = 10 are presented. The CI for bar, fem,

rem are presented from left to right in each of blocks. In the x− axis the iteration
numbers are presented.
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From the figure, we notice that all the farmer estimators provide similar results

for both the regression as well as the spatial dependence parameters except the nugget

parameter. In case of nugget parameter the fem and rem produce wider CI than that

of bar. However, we can not say based on this that which one is closer to true. This

is suggestive that any form of the farmer estimators can be applied when the locations

are uniformly distributed over the space. Also, there is no visual difference between the

CI estimates for different values of the distance scale factor. This is empirical evidence

that the standard error of farmer estimators are robust to the choice of dn which is

not expected though. This could be because the variance is driven by the block fisher

information matrix. Therefore, the kernel in the SHAC estimator does not have that

much influence on this experiment. The simplified variances are found similar to those

of analytical ones. This is supportive of assumptions in equations (2.2) and (2.8), that

is assumed model is somehow similar to the true model. Therefore, it is reasonable to

assume the normality of the block estimates.

Till now all the simulation is done over location uniformly distributed. Simulating

over non-uniformly distributed locations could give more insight. This can be done using

the locations from a real dataset and assigning the realization of a random variable to

each of the locations. We skip this part now and focus on completing other necessary

parts of methods comparison and real applications.

We have a good experience that the farmer approach is time efficient and provides

an analytical solution for estimating the confidence interval. Comparing with other

similar methods we would be able to say firmly about the performance of the proposed

approach. The next section focus on comparing the performance of farmer approach

with two other similar approaches.

3.3 Comparison of performance

In this section, we compare the performance of farmer approach with two approaches

proposed by Liang et al. (2013) and Barbian and Assunção (2017). The description of

these methods can be found in chapter 1 and the reference thereof. These two are chosen

because they are in the same domain of literature as ours. The first one is known as

resampling based stochastic approximation (RSA) and the latter one is defined as spatial

subsemble (SpSub) estimator. Both of these methods aimed to handle large spatial data.

The main strategy behind these methods is subsampling however in different ways. The

RSA iteratively updated the estimator based on a new subsample. On the other hand,

SpSub combines the subsample outcome using a weighted average scheme. We have
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conducted simulation experiments for comparison purposes.

Again, we have chosen the geostatistical model (3.1) for simulation study. The true

values of the parameters are chosen as, β0 = β1 = 1 which is similar as before. The

single known explanatory variable are the realization from N(0, 0.52) is considered as

done before. We have considered comparetively larger values of variance and scale

parameters as, σ2 = 3, φ = 0.2 and the τ 2 = 0.1 remains same. We have generated

Gaussian random fields at 20, 000 irregular uniformly distributed locations over the

domain (0, 30)× (0, 30).

For implementing the farmer approach we have split the domain into K = 80 mu-

tually exclusive and exhaustive blocks which leave us m ≈ 250 block size. The spatial

dependence parameters are estimated on the log scale. The RSA is implemented through

the archived R package RSAgeo version 1.2. To keep similarity, we choose the subsample

size is equal to 250 which is a bit lower for this method. For estimating the parame-

ters we have run 2500 iterations with warm up parameter equal 20 and the stepscale

parameter is 40 which is following the original article by the authors. For spatial sub-

semble implementation the authors Barbian and Assunção (2017) have kindly shared

their R-code. Among the various subsampling techniques, we have chosen five centers

technique for comparison purpose. There is no issue of comparing just one splitting tech-

nique because they all are comparable among themselves. Similarly, we have selected

the subsample of size 250 for this method. For all three methods, we have repeated

the experiments 100 times. The computation is conducted in a personal computer with

Ubuntu 18.04 operating system, 2.7GHz core i7 processor. The estimates are presented

using the box plot below.

From the figure (3.12) we observed that the farmer method performs similarly with

larger variance and scale parameter. This is an indication of the robustness of the

method. The computation time is also within 2 minutes limit. Both the regression

parameters and spatial dependence parameters captured very well however downward

bias is still there in nugget variance. The farmer estimators are empirically consistent

as well.
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Figure 3.12: Comparison of farmer method with RSA method by Liang et al. (2013)
and SpSub method by Barbian and Assunção (2017). The bar plot in the bottom right
corner represents the average time in seconds required for computation in each run
for various methods.

The graph shows the superior performance of the farmer approach in terms of bias-

ness, consistency, and efficiency. The regression parameters are estimated well by every

method without any bias however the length of the box suggests that the RSA and

SpSub produce variances larger than that of farmer approach.

In estimating the spatial parameters farmer approach is more consistent and efficient

than RSA and SpSub approaches. The farmer approach estimates the σ2 and φ with

minimal bias and variance while other methods produce large bias and large variance

as well. This could be improved with larger subsample size. The authors reported their

original articles about this biasness. They also reported that with larger subsample size

the bias reduced and produce less variance. This is evident that the farmer approach is
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faster in reducing bias and variance. Regarding the nugget parameter τ 2, all methods

suffer from downward bias. Even after bias correction applied to the farmer approach,

bias is still there. One possibility to try the median bias correction approach (Kosmidis

et al. (2017)) at block level with farmer approach could improve the results.

The average time in seconds required to complete a single experiment is presented

by methods in bar chart. The black and red horizontal lines represent 1 minute and 2

minutes limit respectively. The chart shows that the highest time required for farmer

bias-corrected approach however it is below the red line. The RSA requires less than 1

minutes even however with a single experiment this method does not provide the esti-

mate of standard error. To get the estimate of standard error it is required to run the

method a reasonable number of times and calculate the empirical standard error. In

that case, the required time to be multiplied by the number of runs.

Based on the experiments sets in (a), (b) and comparative study following points are

observed,

ó The regression parameters are easy to estimate with farmer approach. They are

unbiased and consistent at least empirically under both the infill and increasing-

domain asymptotics.

ó The farmer approach provides bias reduced and empirically consistent estimates

for the spatial dependence parameters under infill asymptotic. On the other hand,

the method provides empirically consistent but biased estimates under increasing-

domain scenarios.

ó The computational burden has been reduced by a great amount. The computa-

tional gain is also achieved by other methods.

In the next section we present two real data applications of farmer approach. We also

apply the RSA (Liang et al. (2013)) for comparison purposes. The results are compared

with MLE obtained from the entire dataset

3.4 Real examples

Two examples covering two diverse fields, climate and health are considered. In the

first example, we have fitted the Gaussian geostatistical model to the precipitation data

and in the second model, we transformed the river-blindness case count data to logit

and fitted Gaussian geostatistical model to that transformed data. The details of the

process are described in the following two subsections.
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3.4.1 US precipitation data analysis

The same data set has also been used by several authors for different purposes (see

for example Liang et al. (2013), Johns et al. (2003), Furrer et al. (2006), Kaufman

et al. (2008)). A cleaned version of the data is also available in fields R-package titled

USprecip. The publicly available (see www.image.ucar.edu/GSP/Data/US.monthly.

met/) data set contains raw monthly total precipitation measured in millimeters and

precipitation anomaly for April 1948 in 11, 918 locations over the contiguous United

States. The longitude and latitude are also available with the data set. The precipita-

tion anomaly is defined as the monthly totals standardized by the long-run mean and

standard deviation for each station. The locations of the data are as follows.
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Figure 3.13: US precipitation data location and generated blocks

We have excluded 190 locations which are observed outside the national boundaries.

This decision is taken because we have created the blocks considering the natural bound-

aries. Using map.where() function we could not identify these locations associated with

any state. Finally, we have analyzed the 11, 728 locations and have split the region into

42 block. This number comes considering the minimum block size of 200 observation

however at the end we have reached an average block size of m ≈ 280. To split the

region into blocks we keep the natural boundaries unbroken rather the states with the

larger number of locations are split into several blocks. The states of size 200 to < 400

www.image.ucar.edu/GSP/Data/US.monthly.met/
www.image.ucar.edu/GSP/Data/US.monthly.met/
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have been considered as a single block. The states of size ≥ 400 split up into blocks of

average size ≥ 200. In this process of splitting, we obtained smaller blocks. The states

with size lower than 200 are merged and formed blocks of size greater than 200. We have

constructed the neighborhood structure of the blocks considering that a block should

be associated with surrounding blocks. To ensure this we have considered a distance

within which if the centers of any neighbor blocks fall we considered they are connected.

The distance between two points is calculated based on longitude and latitude and 8 is

considered as the criteria within which if two centers fall they are considered as associ-

ated. The number 8 is chosen based on the fact that every neighbor of a block should

be connected. Based on this we have constructed the adjacency matrix for the second

level of modeling, that is the MCAR model.

We have considered the following model keeping similarity with Liang et al. (2013),

Y (s) = β0 + S(s) + e(s), (3.2)

where S(s) Gaussian process which follows exponential covariance model where σ2, φ

are the variance and scale parameters respectively. The nugget variance τ 2 is considered

here and estimated.

We have implemented the farmer approach through algorithm (1). At the same

time the RSA method is also applied using RSAgeo package in R with subsample size

280, 2500 iterations, stepscale parameter 40 and warmup parameter 20. The results are

presented in table (3.2) and figure (3.13). The MLE on entire data set were obtained

by Barbian and Assunção (2017) for the same data set however on randomly selected

11, 000 locations. We have included MLE as well from that article directly due to

computational issue.
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BC ests β0 log(σ2) log(φ) log(τ 2) time(s)

farmer bar 0.0615 -0.8051 0.4031 -3.8824

SE 0.0925 0.0532 0.0601 0.2257

no farmer fem 0.0816 -0.8213 0.4516 -3.6360 38.15

SE 0.0801 0.0434 0.0297 0.2216

farmer rem 0.1055 -0.8332 0.4503 -3.5841

SE 0.0695 0.0404 0.0260 0.2259

farmer bar 0.1622 0.2931 1.5336 -3.8451

SE 0.0868 0.3837 0.4032 0.2175

yes farmer fem 0.1654 0.0944 1.3922 -3.6187 46.84

SE 0.0739 0.2821 0.2868 0.2181

farmer rem 0.1946 0.0432 1.3523 -3.5671

SE 0.0695 0.0404 0.0260 0.2259

RSA 0.1570 -0.1865 1.1663 -2.6683 2327.97

SE 0.0170 0.0401 0.0803 0.0788

MLE 0.256 1.0872 2.3025 -3.0159 1.32e6

Table 3.2: Estimates of parameters and their standard errors obtained using farmer

approach (K = 42,m ≈ 280), RSA (m = 280) and MLE. Estimation times in seconds
are also reported in the last column.

From, the table this is clear that there is variation among methods and even within

methods for different scenarios. Also, no method captures the MLE rather they are

underestimated. The results from this application seem to are not consistent with

simulation experiences. From figure (3.14) we notice that the confidence interval for

bias-corrected bar is even wider for some parameters. Unfortunately, the confidence

interval for RSA is too narrow that it does not cover the MLE for any parameter. This

could be due to the reason that the same algorithm is run multiple times on the same

data and the empirical standard error calculated. Barbian and Assunção (2017) also

experienced lots of variation for different subsample size as reported in their article.

This is still a mystery. However, a note about this dataset is that around 50% of the

data are infilled using some mathematical model. This may explain some extents of the

cause of variations of findings.
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Figure 3.14: US precipitation data: comparison of various estimates with
MLE(dashed line).

There is an interesting pattern in the above figure. Almost all the bias-corrected

farmer estimators capture or close to capture the MLE. In the next subsection, we

present another real application of farmer approach to the Gaussian geostatistical

model.

3.4.2 Onchocerciasis data over 18 African countries

Figure 3.15: Macrofilariae(left), an adult
blackfly(right)

Onchocerciasis is a disease caused by On-

chocerca volvulus, which is a worm (fi-

laria). Usually, the human eye and skin

are affected by this worm. Simulium

species which is the scientific name of a

blackfly is the main culprit for it which

transfers the larvae of the worm into the

human body. These flies breed in fast-flowing streams and rivers. Therefore the indi-

viduals living nearby are mostly at increasing risk of blindness, hence the name river
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blindness. Thousands of larval worm or baby(microfilariae) are produced inside the

human body from a single adult worm(macrofilariae) and migrate to the skin and eye.

Various eye and skin problems caused by the toxicity of dead microfilariae. Such as ter-

rible itching, lesions, repeated occurrence of which could lead to irreversible blindness.

Various dis-figuration of skin such as “leopard” skin and “lizard” skin occurred due to

the toxicity of dead microfilariae.

About 50% of men over the age of 40 years in some West African communities, had

been blinded by the disease and the people from the affected area had to move in a less

productive upland country which induces the economic losses. Onchocerciasis Control

Programme in West Africa (OCP) was a successful program for reducing the problem

by a large scale in West Africa. The African Programme for Onchocerciasis Control

(APOC) was created to implement community-based treatment with ivermectin in all

remaining areas in Africa where onchocerciasis was a public health problem.

This dataset contains information on 13, 681 villages over 18 African countries. At

every village, 30− 50 adult males were sampled and tested for the presence of nodules.

This produces two variables Ex and Pos which represent the number of adults examined

and number diagnosed as positive. The geographic coordinates longitude and latitude

of the center of the village were captured using Global Positioning System (GPS). The

locations of the villages are presented in the figure below. The generated blocks and

their networks are shown in chapter 2.
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Figure 3.16: River blindness data test locations spanned over 18 countries of Africa

The observed and estimated distribution of palpable nodules with other details is
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presented in detail in Zouré et al. (2014). To show the application of farmer approach

for Gaussian data we have converted the data to logit using the following formula,

logit = log

(
Pos + 0.5

Ex− Pos + 0.5

)
. (3.3)

In both numerator and denominator, 0.5 is added to avoid the infinite value produced

by log function. We followed the similar mechanism of data splitting as done before for

precipitation data, that is we split inside the natural boundaries of countries. For this

example, we have considered the splitting criteria to 500 locations. That is if the number

of test locations for a specific country exceeds the 500 limit we split the country. For

example the country DR Congo we obtained 20 blocks. Also, there are some countries

where the number of sample locations is very less, in that case, we have merged with

the nearest country. Such as EQUATORIAL GUINEA and GABON has 134 and 59

locations therefore we have merged these two countries to create a single block. In this

way, we keep the natural boundary unbroken. We found in total 61 blocks in total with

average size m = 235.

After transforming the data to logit we have applied the farmer approach, RSA and

MLE on entire data set for estimating the geostatistical model (3.2) and the results

are presented in the table (3.3) and figure (3.17). The RSA is applied with subsample

size m = 250, 2500 iteration, stepscale parameter 40 and warmup parameter equal 20.

To estimate the standard error of the RSA method we have repeated the method 25

times and the empirical standard error is reported. The MLE is obtained using PrevMap

package in the cluster. This data was used by Noma et al. (2014) and Zouré et al. (2014)

with a view to Rapid Epidemiological Mapping of Onchocerciasis. More details of the

original objectives and data collection procedure can be found in the aforementioned

two references.
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BC ests β0 log(σ2) log(φ) log(τ 2) time(s)

farmer bar -2.1145 0.2229 -0.3797 -0.3725

SE 0.1121 0.0000 0.0611 0.0525

no farmer fem -2.3717 0.1648 -0.4048 -0.4325 48.044

SE 0.0760 0.1444 0.1163 0.0818

farmer rem -2.4894 0.0964 -0.4034 -0.4485

SE 0.0000 0.1801 0.1299 0.0702

farmer mbar -2.1628 1.2620 0.7566 -0.3565

SE 0.1165 0.1900 0.2172 0.0531

yes farmer mfem -2.3445 0.9226 0.5386 -0.3988 56.121

SE 0.1045 0.2030 0.1713 0.0826

farmer mrem -2.4495 0.8254 0.5263 -0.4135

SE 0.0583 0.2092 0.1686 0.0723

RSA -1.9524 1.2605 1.5885 0.2823 1404.416

SE 0.8116 0.5844 0.9156 0.1144

MLE -2.8027 0.9232 0.2624 -0.1791 22204.87

SE 0.1568 0.0710 0.0826 0.1437

Table 3.3: Estimates of parameters and their standard errors obtained using farmer

approach (K = 61,m ≈ 235), RSA (m = 250) and MLE. Estimation times in seconds
are also reported in the last column.

In the table (3.3) and figure (3.17) we have presented the β0 and log of spatial depen-

dence parameters σ2, φ, τ 2 for all methods. The standard error of the log-transformed

estimates are also in log scale. The solid vertical line is the MLE and two other dashed

vertical lines represent the 95% confidence interval of MLE. The standard errors of

farmer estimators are reasonably similar to that of MLE however for RSA the standard

error is a bit higher. Larger subsample may solve this problem as the author suggested

in the original paper (see Liang et al. (2013)).
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Figure 3.17: African river-blindness data: comparison of various estimates with
MLE(solid vertical line) and 95% CI of MLE (dashed vertical lines).

The figure suggests that for β0, farmer fem and rem overlap their confidence interval

with MLE however bar does not. The RSA is the farthest one from the MLE however

the confidence interval overlaps with the interval of MLE though the interval for RSA is

much wider. farmer method works better in the case of spatial parameters, especially

after bias correction. For τ 2 all the estimates are inside the interval of MLE except RSA

although the error of MLE is larger for this parameter.

Therefore, based on simulation experience and real application results it is easily

recommended to use farmer approach for large spatial data, which provide less biased

and consistent estimates at least empirically. Also, the approach provides a more real-

istic standard error of the estimate which is very important for making the inference.

Moreover, the method is time efficient. The average time for a moderate to large data

set (n = 20, 000) is around two minutes.

With this application, we would like to close the chapter and topic on Gaussian

farmer. In the next chapter we introduce farmer approach for non Gaussian data. Non

Gaussian is data are more frequent in global health and social studies.





Chapter 4

The farmer approach for

non-Gaussian data

4.1 Motivation

The farmer approach is expanded for non Gaussian data of many types, specially bi-

nomial or Poisson type count. Method to deal with the large non-Gaussian data is

less frequent however the non-Gaussian data is not less frequent. In spatial setting the

authors have not seen any methodology for handling large non-Gaussian spatial data

yet however the existing subsampling approaches may be adaptable.

In the real field, there are many problems where the Gaussian model is not appro-

priate. Rather the variable of interest is binary or count. For example, the presence

or absence of a disease, the number of diseased people in an area. These types of data

are very common in practice and for analyzing them the classical models are (a) Binary

logistic, (b) Binomial logistic, and (c) Poisson models. Based on sampling assumptions

and structure of data different versions of these models have been evolved. As long as

the independence assumption holds the model estimation, prediction and inference are

simple otherwise the situation becomes a bit complicated.

Diggle and Giorgi (2019) in their book dedicated a section on motivating examples

at the beginning chapter. In that section, the authors pose a problem of mapping river-

blindness data from 20 African countries which is a big data problem indeed. The data

is not Gaussian and geographic location is associated with each data point. The river-

blindness data has already been presented in chapter three. In public health problems,

one of the primary targets is to produce a map to identify the potential hot spots.

We would like to present another motivating ongoing problem that needs to be con-

sidered immediately. At this moment while we are writing this section, Bangladesh is

65
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facing one of the biggest dengue outbreaks. Especially the capital is under severe attack.

From January to August 2019 around 30, 000 people have been hospitalized with the

disease over the country and in the past week around 2, 000 patients have been admitted

to hospitals every day1. Recently died more than 100 of this disease. The conditions of

hospitals are presented below:

Figure 4.1: Snaps of hospital and surroundings in Dhaka, Bangladesh during dengue
outbreak, August 2019. The beds are full and patients are on the floor, the huge queue
outside the hospital for the diagnostic test for dengue.

The government agencies and various NGOs are trying to control the situation how-

ever the situation getting worse gradually. This suggests that efforts should be given

in the right way. Analyzing real-time data could help to improve the situation. One

solution could be to identify the priority areas based on prevalence mapping and to

administer the anti-mosquito medicine.

This is a real big data problem and to handle this huge amount of data needs a

computationally efficient approach. When the patients are getting admitted to hospitals

they are leaving their demographic information, locations, etc. This huge amount of data

can help to find out the solutions.

Diggle and Giorgi (2019) showed that mapping based on the geostatistical model

is more useful than the simple map. More useful information can be generated from

the model-based maps. When a statistical model enters into the problem, the task

of estimation, model validation and prediction comes along with. Based on location

1https://www.channelnewsasia.com/news/asia/we-are-scared-deadly-dengue-outbreak-overwhelms-
bangladesh-11792080
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patterns, the data can be classified into two broad classes, such as regular or irregular

grid. The regular grid point is also known as lattice. Analysis of lattice data has its

paradigm and many developments came out in the last several decades.

We focus to handle the big non Gaussian data through generalized linear geostatis-

tical modeling(GLGM) approach which is more general in nature. The lattice data can

be fit too into the GLGM framework by some modification in the dependence structure.

The major development in this domain done by Diggle et al. (1998), Diggle and Ribeiro

(2007), and Diggle and Giorgi (2019). We expand the farmer approach for GLGM

which necessarily covers binary and binomial logistic models, Poisson models. In the

following section, we discuss the model formulation, estimation and inference procedure

for GLGM under farmer approach platform.

4.2 Model formulation and estimation procedure

Let us recall the model (1.1) in our mind where the dependent variable Y (s) were consid-

ered as continuous and to follow the Normal distribution. Now, instead we consider the

non Gaussian case for Y (s), where, Y (s) is the count of an event could follow a binomial

or Poisson model. Therefore, according to the GLGM formulation the observed response

Y (s) is mutually independent conditioned on S(s) with conditional expectation, µ(s).

The linear predictor is expressed as,

g(µ(s)) = X(s)>β + S(s) + e(s), (4.1)

where g(·) is known as the link function, µ(s) is the conditional expectaion of the

response Y (s), X(s) is the vector of possible of covariates, β is vector of length p for the

covariates, S(s) is unobserved Gaussian processes through which the spatial dependence

induced in the system. The specification of distribution of S(s) is same as done in the

previous chapters. e(s) is zero-mean independent normally distributed random effects

with common variance τ 2 which is also known as nugget effect. In the generalized linear

model setting this term can be interpreted as the error in the response uncaptured

by the predictor variables. Our target is to estimate the parameters associated with

the model (4.1). Let us represent the parameter set into two as θ = (ς, τ 2) where ς =

(β, σ2, φ), σ2 and φ are the variance and scale parameters associated with spatial process

S(s). The joint distribution of Y = (Y (s1), . . . , Y (sn)), S = (S(s1), . . . , S(sn)) and e =

(e(s1), . . . , e(sn)), following the hierarchical structure can be presented as,
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[Y, S, e; ς, τ 2] = [S; ς]× [e; τ 2]× [Y |S, e; ς, τ 2], (4.2)

where the square bracket [A] represents the probability distribution of A. Then the likeli-

hood function for parameter θ = c(ς, τ 2) given the observed data y = (y(s1), y(s2), . . . , y(sn))>

is obtained by integrating out S from the (4.2), i.e.,

L(θ = (ς, τ 2)) =

∫
[S; ς]× [e; τ 2]× [y|S, e; ς, τ 2]dS. (4.3)

Unfortunately this (4.3) integrals does not have a closed form solution. This is always

a big challenge to find likelihood in closed form for non Gaussian dependent data.

However, there are alternatives. There are several alternative ways to estimate the

parameters from the model (4.3).

A mention can be made of four approaches, (i) Hierarchical likelihood method (Lee

and Nelder (1996)), (ii) Laplace approximation (Wolfinger (1993)), (iii) Monte Carlo

sampling (Geyer and Thompson (1992)), and (iv) Generalized estimating equation

(Zeger et al. (1988)). A summary of the processess can be found in Diggle and Ribeiro

(2007) and Diggle and Giorgi (2019) and the references thereof. For convenience of

reader we have echoed here the objective functions or equation to solve for all the four

methods very briefly.

The hierarchical likelihood function is defined avoiding the integration with respect

to S. The logarithm of hierarchical likelihood function is defined by Lee and Nelder

(1996) as,

LHL(ς, τ 2) = log[S; ς] + log[e; τ 2] +
∑
s

log[y(s)|S(s), e(s); ς, τ 2] (4.4)

Laplace approximated log likelihood (4.3) based on second order Taylor expansion is

obtained,

logLla(ς, τ
2) = log[Ŝ, y; ς]− 1

2
|H(Ŝ)|, (4.5)

where Ŝ is the maximized value of S and H(S) = −∂2log[S,y;ς,τ2]
∂2S

, y is the observed data,

ς and τ 2 are the vector of parameters including regression and spatial parameters, the

subscript la means the Laplace approximation.
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Monte Carlo sampling based approximation gives the likelihood(MCML),

Lmc(ς, τ
2) =

1

B

B∑
k=1

[s(k), y; ς, τ 2]

[s(k), y; ς0, τ 20 ]
, (4.6)

where B is the number of samples drawn, s(k) represents the realization of the vector S

at kth draw from the multivariate normal distribution with specified parameter values

ς0, τ
2
0 , similarly the subscript mc represent the Monte Carlo.

There is the fourth method where instead of maximizing likelihood function Zeger

et al. (1988) proposed to solve the estimating equation which is called generalized es-

timating equation(GEE). This primarily developed for analyzing the correlated longi-

tudinal data. The β parameter can be estimated consistently solving the estimating

equation,

∂µ

∂β
Σ−1(Y − µ) = 0 (4.7)

where µ is the mean vector of Y which is a function of β, Σ = var(Y ) is function of

mean µ. Through the off-diagonal element of Σ, the spatial dependence can be intro-

duced. Later, Gotway and Stroup (1997) adopted this approach in spatial setting. The

authors suggest estimating the regression parameters temporarily ignoring the spatial

dependence and then estimate the spatial parameters by smoothing the variogram of

standardized residuals.

Now, optimizing (4.4), (4.5) and (4.6) or adopting GEE approach we can estimate the

parameters of our interests. However, all the methods do not perform similarly in every

situation. Such as, the Laplace approximation performs well when the number of trials

n(s) at location s are large enough and the probability of success p(s) at location s closer

to boundary, on the other hand, the estimators obtained using MCML converges to the

Maximum likelihood estimators when the number of draws increases to infinity (see

Diggle and Giorgi (2019)). Based on researchers’ interest the approach can be chosen.

For time constraint we could not apply all four approaches in the current thesis.

In farmer framework we propose to implement any of the four approaches at block

level to obtain the block estimates θ̂i and respective observed information matrix J(θ̂i).

The unavailability of the Fisher information matrix is a limitation of the non Gaussian

farmer approach. However, the observed information matrix is also a good approxima-

tion of Fisher’s information and usefulness of it is argued by Efron and Hinkley (1978).
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Due to the same reason, we will be unable to apply the bias correction technique at this

point. This is a limitation however we have already brought this issue in our to-do list.

The second stage modeling for combining local estimates and variance estimation has

been proposed to do in the same fashion as done for the Gaussian case. Therefore, the

description of the MCAR model fitting and variance estimation procedure will not be

repeated for the binomial case. As a replacement of the Fisher information matrix, the

observed information matrix will be used.

The following section describes the farmer approach for logistic models.

4.3 Binomial data

This section is dedicated to model formulation, estimation and inference of GLGM for

binomial count under the farmer framework.

Let us assume that the response Y (s) comes from a binomial population with n(s)

be the number of trails and p(s) is the probability of an event which is common to all

the trails at location s. Then the link function in equation (4.1) is the logit link and

the model is binomial logistic model for Y (s) which can be expressed as,

logit(p(s)) = log

{
p(s)

1− p(s)

}
= X(s)>β + S(s) + e(s), (4.8)

where e(s) has the zero-mean normal distribution with common variance τ 2, X(s) is the

possible vector of covariates and β is the associated vector coefficients, S(s) is the latent

process. Our target is to estimate the parameters associated with the model (4.8). This

can be done replacing [y(s)|S(s), e(s); ς, τ 2] by the Binomial probability mass function

at location s. This will give us the likelihood function for binomial data. We can follow

the algorithm (1) with slight modification as described in previous section for obtaining

the model parameters and their variances.

In the next section, we present the output from a set of simulation experiments.

We have designed the simulation experiments based on experience gathered from the

Gaussian part. The detailed procedure is explained in the following subsection.

4.3.1 Simulated example for binomial data

In these simulation examples we have considered the simple model (4.8) with one single

explanatory variable. We have assumed the Matérn covariance model for the spatial

process S(s). This covariance function has already been introduced in the first chapter
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of this thesis. We have considered the true values are β0 = β1 = σ2 = 1, φ = 0.15, τ 2 =

0.1, and κ = 0.5, where κ is the smoothness parameter of the Matérn covariance model.

The exponential covariance model is the special case of Matérn covariance model when

κ = 0.5. The one single explanatory variable is considered which is known realization

from N(0, 0.52). We have generated two dimensional coordinates uniformly over the

domain (0, 30)×(0, 30). To allow different block size we have done two different scenarios

with n = {20, 000, and 32, 000} locations which gives average block sizes 250 and 400

locations with 80 blocks. At each of these locations we have generated,

d1(s) = 1 +X1(s) + S(s) + e(s),

where S(s) comes from Gaussian process with aforementioned parameter values. These

generated realizations are then converted into probability scale using the following for-

mula,

p(s) =
exp(d1(s))

1 + exp(d1(s))

The p(s) is now considered the true probability of success at sth location for simulation.

Considering this probability and the number of trials, n(s) = 40 we have generated a

single binomial count at that location.

To estimate the model parameters and respective observed information we have ap-

plied the MCML method using the PrevMap R package available at the comprehensive

R archive network (CRAN). Of-course other methods could also be applied however due

to time constraints we could not do at this moment. This package allows us to esti-

mate the parameters for Gaussian, binomial as well as Poisson model along with their

observation information matrix with no difficulties. However, this taking a bit more

time. The MCML, Laplace and low-rank approximation methods for binomial logistic

and Poisson log-linear models are implemented in this package. There is also flexibility

of practicing Bayesian inference and multivariate prediction through this package. The

outputs of the experiments are presented in the box plots and table below. In the table,

we have presented ten percent trimmed mean.

From the table (4.1) and figures (4.2, 4.3, 4.4, 4.5, 4.6) we see the similar behavior

of farmer approach for estimating regression parameters as seen before for Gaussian

regression case. They are well estimated for medium and large block sizes. All the

three farmer estimators bar, fem, and rem perform equally which was observed for

Gaussian spatial regression too. The scale parameter φ is underestimated by fem and

rem however the bar captured the true value very well. For variance parameters, the
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Scenarios Pars(truth) θ̂bar θ̂fem θ̂rem
β0(1.00) 1.0012 0.9996 0.9996
β1(1.00) 1.0004 0.9975 0.9975

K = 80, m ≈ 250 log(σ2)(0.00) -0.0504 0.0092 0.0091
log(φ)(−1.897) -1.9076 -1.9709 -1.9708
log(τ 2)(−2.303) -7.1085 -1.7923 -1.7915
β0(1.00) 1.0068 1.0055 1.0055
β1(1.00) 0.9996 0.9983 0.9983

K = 80, m ≈ 400 log(σ2)(0.00) -0.0417 -0.0057 -0.0059
log(φ)(−1.897) -1.9141 -1.9742 -1.9740
log(τ 2)(−2.303) -3.2868 -1.7772 -1.7763

Table 4.1: Estimates obtained from the set of experiments for binomial data using
farmer approach.

performance is the opposite. Both the σ2 and τ 2 are estimated well closer to true

values by fem and rem however the bar is underestimated. The nugget parameter is

always harder to estimate and which is happened here too. The bar is underestimated

and fem, rem is bit overestimated. One important observation is that for the spatial

binomial model, the performance of all three estimators for any parameter does not

improve after increasing the block size from 250 to 400. This could be due to several

reasons. Firstly, the likelihood is not maximized using the exact method rather has been

approximated using MCML. The MCML estimates tend to MLE when the number of

draws gets larger. Therefore, if MLE’s are underestimated or overestimated then it less

probable to cover the true value by this approach. The approximation methods have

asymptotic properties however at block level that may not always be true. Also, the

behavior of approximation methods depends on the low and high value of parameters of

the binomial distribution. Other approximation methods could be tested to conclude.

Secondly, due to unavailability of the closed form of likelihood, we could not estimate

the Fisher’s information matrix. Instead, we have used the observed information matrix.
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Figure 4.2: Box-plots of the farmer estimates of β0 for (K × m) = (80 ×
250), and (80× 400) in column 1 and 2.

●

K=80, m=250 K=80, m=400

bar fem rem bar fem rem

0.90

0.95

1.00

1.05

1.10

B
e

ta
 1

Figure 4.3: Box-plots of the farmer estimates of β1 for (K × m) = (80 ×
250), and (80× 400) in column 1 and 2.
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Figure 4.4: Box-plots of the farmer estimates of log(σ2) for (K × m) = (80 ×
250), and (80× 400) in column 1 and 2.
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Figure 4.5: Box-plots of the farmer estimates of log(φ) for (K × m) = (80 ×
250), and (80× 400) in column 1 and 2.
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Figure 4.6: Box-plots of the farmer estimates of log(τ2) for (K × m) = (80 ×
250), and (80× 400) in column 1 and 2.

The contrasting behavior of farmer estimators in estimating variance parameter σ2

and scale parameter φ could be explained by the following figure (4.7). In the following

plot, we have plotted the log σ2 versus log φ. The association is negative for every

case though the strength of the association varies. This is suggestive that if log σ2 is

overestimated then there is a possibility that the log φ will be underestimated or vice

versa.
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Figure 4.7: Scatter plots of log(φ) (y-axis) and log(σ2) (x-axis) for different scenarios
and type of estimators.

In the following figures (4.8, 4.9, 4.10, 4.11 and 4.12) we have presented the confidence

interval (CI) of estimated parameters of the model (4.8). The farmer bar, fem and

rem produce very small standard error for the regression parameters. The length of

95% CI’s are similar among the three versions of estimators however the rem expected

to provide a bit wider CI than others because this estimator accounts for the between

block dependence. The CI for rem is very slightly wider for smaller block size however

this is hardly visible with open eyes for two regression parameters β0 and β1. On the

other hand for spatial dependence parameters σ2, φ, and τ 2 the difference is visible.

fem and rem produce wider CI than that of bar. Also, the estimates of these three

parameters produce comparatively larger standard errors where the estimate of the

nugget parameter produces the largest one. For both the σ2 and τ 2 the variance reduces

as the sample size increases while for φ that is not the case. This is an indication that

the farmer estimators have empirical infill asymptotic behavior for some parameters.

However, this is empirical evidence only, the mathematical investigation is required

to conclude. If we could use the Fisher information matrix instead of the observed
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information matrix in the farmer algorithm the bias correction techniques could be

applied. This would improve performance.
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Figure 4.8: Estimate for β0 and their confidence interval.
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Figure 4.9: Estimate for β1 and their confidence interval.
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Figure 4.10: Estimate for log σ2 and their confidence interval.
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Figure 4.11: Estimate for log φ and their confidence interval.
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Figure 4.12: Estimate for log τ2 and their confidence interval.

Another important observation is that the CI of bar, fem and rem for σ2 and τ 2

become closer in length as the number of observation increase inside the block. This

is suggestive that if the block size is sufficiently large then blocks generate similar in-

formation matrix and that is why the weight becomes almost unit for every block. In

the following subsection, we present the application of the spatial binomial regression

model to the same African data presented in section (3.4).

4.3.2 Application to African river blindness data

The detail description of the data set can be found in section (3.4). Since in the data

we do not have any covariate we have considered the simple binomial logistic model

(4.8) excluding the covariate. The same blocking strategy is used as done in section

(3.4). The difference is that in the previous section we have used the Gaussian model

after logit transformation of the count but here we have used GLGM with logit link

for family binomial. In the previous section, we have not presented the blocks and

their connections. In the figure (4.13) we have presented the constructed blocks and

the between block connections. The connection is defined based on the distance 1000

kilometers(km). That is if centers of two blocks are within 1000 km they are assumed

to be associated. The threshold is determined by trial and error with the objective

that every adjacent block should be connected. This produces an irregular network. To

accommodate the irregularity we have constructed the adjacency matrix W in a way
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that the strength of association between two blocks varies based on the number of blocks

they are associated. The row total of the matrix W is equal to 1.

Figure 4.13: African river-blindness data blocks and network.

We have considered the Matérn covariance model for the spatial process with smooth-

ness parameter κ = 0.5 and κ = 2. Where the first case gives us the parameter esti-

mation of the exponential covariance model and the second case provides estimates for

Matérn model. The second choice is following Noma et al. (2014) for comparison pur-

poses. They applied the Laplace approximation for estimating the parameters of the

model with Matérn covariance model with κ = 2. We have employed the Laplace ap-

proximation method for estimating the parameters and observed information matrix at

block level using PrevMap package. The results are presented in figure (4.14).

In the figure we have plotted the three point estimates bar, fem and rem along with

their 95% CI’s obtained for exponential and Matérn model. We have also plotted the

MLE obtained using the entire data set as reference. The MLE is taken from Noma

et al. (2014).
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Figure 4.14: African river-blindness data: comparison of various estimates with
MLE(vertical solid black line).

It seems hard to reach a discrete conclusion about the results. Estimates are showing

varying behavior by type. However, estimates for mean β0, variance σ2 and scale φ show

similar behavior. For, κ = 2 they are quite closer to the MLE. In case of nugget effect

fem and rem are very close to the reference line while bar is not. The behavior of

farmer estimators in simulation experience are reflected here in real the example too.

The CI in case of Matérn model is too narrow for all versions of estimators however that

is very wide for fem and rem in case of the exponential model. Based on these results

we may recommend this approach however extra care should be taken in selecting an

appropriate covariance model. This should be a challenge still now. Unfortunately,

at this point, we are unable to suggest any approach to select the covariance model.

However, a possibility could be to estimate the smoothness parameter of Matérn family

in farmer fashion through variogram estimation.

This is not exactly the “end” however have to stop now. Further, developments

needed in this area aiming to find ways to incorporate the bias reduction method,

improving the information matrix estimation, data-based selection of likelihood ap-

proximation approach and selecting the appropriate covariance model. The generalized
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estimating equation approach could be a possible way to incorporate the bias reduc-

tion technique. In the next section, we mention some possible applications of farmer

approach where big spatial data is a big challenge to handle.

4.4 Other potential applications of farmer approach

The farmer approach is a general framework and has the potentials to apply in diverse

fields including both spatial and nonspatial data. Up to this point we have shown ap-

plication of farmer approach in geostatistics. However, the application of the approach

is not limited to that specific field. In this section, we show some possible application

of the proposed approach in other scenarios.

4.4.1 Poisson log linear model

Another widely used non Gaussian data is open ended count. Let us assume the Y (s)

is the count of the target event at location s with expected value λ(s). Then using log

link the Poisson log linear model is expressed as,

log λ(s) = X(s)>β + S(s) + e(s), (4.9)

where β,X(s), S(s), and e(s) have similar interpretation as in previous section. To

estimate the parameters of the model we propose to follow the similar procedure as

proposed for binomial data. However, in case of Poisson log linear model we have to

replace [y(s)|S(s), e(s); ς, τ 2] with the Poisson distribution for the sth location. We can

follow the algorithm (1) with modification described for binomial case for obtaining the

model parameters and their variances.

One characteristic of Poisson distribution is that the mean is equal to its variance.

However, this is not guaranteed always rather there are many cases where the data

generated variance is larger than the mean. This is called extra-Poisson variance or

overdispersion. The last term in the model (4.9) is some times interpreted as the combi-

nation of both extra-Poisson variance and the effect of unmeasured covariates however

they are not easily distinguishable.
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4.4.2 Ising model estimation

Besag (1974) discussed spatial interaction and the statistical analysis of lattice sys-

tems in his seminal papers utilizing the Hammersley-Clifford theorem and Markovian

properties. He suggested the auto-models, such as auto-normal, auto-logistic and auto-

binomial for off and on lattice systems. Based on auto-models the full conditional

distribution for binary and count data can be constructed feasibly. The auto-logistic

or binary Markov Random Field (MRF) is basically same as the Ising model which

primarily developed for studying the ferromagnetism in physics (see Ising (1925)). The

Besag (1974)’s work has opened the window for analyzing the non-Gaussian spatial data

however the methods are computationally expensive. The estimation of the auto-logistic

model involves summation over 2n terms, where n is the number of data points. Even for

a low medium size sample, such as, on a 10× 10 lattice its a challenge. Several authors

have proposed solutions based on approximating likelihood,, recursive algorithm, ap-

proximating pseudo likelihood to overcome this challenge (Bartolucci and Besag (2002),

Hardouin and Guyon (2014), Tjelmeland and Austad (2012)). These approaches can

handle medium size sample. Therefore, big binary spatial data handling is still an open

challenge. farmer approach could be a hope to overcome this challenge.

Let us assume Y = (Y1, Y2, . . . , Yn) is a binary random vector associated with n−
locations. A snap of realization of the Y is presented in figure (4.15). In this figure, we

notice that the 6th cell (red in color) is connected with cells (blue in color). A clique is

a set of locations in which every location is a neighbor of all other locations in the set

or contains a single element only. For simplicity we will assume the clique of size k = 2

which gives us first order dependence. Adding second or more order dependence have

not much benefits rather invites complications. Let us denote the conditional probability

of success at location s is π(s)(·) which is defined as,

π(s)(·) = P (Y (s) = 1| y(s
′
); s

′ 6= s) (4.10)

For a clique of size k = 2 the y(s
′
) = (y(s + 1, s

′
), y(s − 1, s

′
), y(s, s

′
+ 1), y(s, s

′ − 1)).

From figure (4.15), the red cell will depend on only the blue cells.
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1 0 0 1

0 1 1 1

1 1 0 0

0 1 1 1

Figure 4.15: Example of binary spatial data on regular lattice

The probability distribution in equation (4.10) is constructed by Besag (1974) and

later Carlin et al. (2014) described in details with recent developments and other pos-

sibilities. The full conditional is defined as

π(s)(·) =
eψS(s,1)

eψS(s,1) + eψS(s,0)
, (4.11)

where S(s, 1) =
∑

s∼s′ 1(y(s
′
) = 1) and S(s, 0) =

∑
s∼s′ 1(y(s

′
) = 0) and ψ controls the

weight on matching as described in the aforementioned book. We can easily obtain the

logit function for π(s)(·) as,

log

{
π(s)(·)

1− π(s)(·)

}
= logit(π(s)) = ψ(S(s, 1)− S(s, 0)). (4.12)

and for regression setting with vector of covariates X(s) the model in equation (4.12)

becomes,

logit(π(s)) = ψ(S(s, 1)− S(s, 0)) +X>(s)β (4.13)

where, β is the vector of regression coefficients. Now, we have two unknown parameters

(ψ, β) needs to be estimated.

This model is computationally intractable for medium size data. We can apply the

farmer algorithm to handle the large binary lattice data.

This is not the least there could be other spatial and nonspatial area where the
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farmer approach can be applied suitably. Such as point pattern analysis, image anal-

ysis, functional data analysis, etc. The main task is to define a suitable model at the

block level and estimate them appropriately. The quality of estimators in the proposed

approach greatly depends on the quality of local estimates. In the next chapter, we

point out some concluding remarks and limitations. Also, there is a lot to do therefore

we discuss briefly the way forward.





Chapter 5

Conclusions and way forward

All scientific work is incomplete

—Austin Bradford Hill (1897-1991)

5.1 Concluding remarks

All the mainstream disciplines have experienced data explosion due to technological

advancements in recent times. Many of these data are location associated and they are

called spatial data. The volume, veracity, variety, and velocity along with the dependence

structure of spatial data have made the analysis more challenging. To overcome this

challenge we have developed a new divide and conquer approach which we call farmer

approach. In this method, we propose to split the data into mutually exclusive blocks

and estimate the block summaries by some method such as the maximum likelihood

estimation procedure. Block summaries are combined using fixed and random effect

meta analysis models. The estimators that we obtain are called fem and rem estimators.

This is a general platform by which many big data problems can be dealt with.

The proposed approach is intuitive, easy to implement and computationally effi-

cient. This is multiple times faster than the novel maximum likelihood approach and a

good competitor in the same domain. The farmer approach is suitable to implement

in parallel. Parallelization allows conducting very very big computation faster using

multi-threading. Therefore, the approach has potentials in the big data computations

industry who use multiple machines. The performance of the estimates in the subsam-

pling approach depends on the blocking strategy. This is a common pitfall of this type

of approach. Our method is not free from this objection. Finding an optimal blocking

strategy could be cumbersome.

The farmer approach provides a more realistic measure of the standard error of the

87
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estimate. Not only reducing the computational burden but also estimating standard er-

ror is equally important. This contribution will enable assessing the quality of estimates

in large data modeling. When multiple machines are employed where some are nearer

and some are distant this approach can help to assess the quality of estimates.

Downward bias in the subsampling approach is a known problem. Adjusting score

function using Jeffreys prior penalty function at block level reduces the bias by a great

amount. This is an advancement over existing approaches. Though the bias correction

method was proposed for independent data however working nicely for dependent data

as well. The bias correction method applied here in the farmer approach does not have

the invariance properties. That is for the re-parameterized model there could have some

disturbance in standard error estimate.

Consistency is a question in the estimation of the spatial model, especially for the

spatial dependence parameters. Our approach provides estimates that are empirically

consistent under infill as well as increasing-domain asymptotics. However, to confirm

this a proper mathematical investigation is required. The random quantity included in

the farmer estimators could be a hurdle to prove the asymptotic properties.

Another important advancement from our method is proposing a way to deal with

large non-Gaussian data. Non-Gaussian spatial data is computationally intractable.

Accommodating approximation techniques the farmer approach can handle large data

faster with some limitations. The bias correction technique was not possible to apply

therefore the dependence parameters found to be biased in simulation experiments. We

need to find a way to apply the bias correction method for nonnormal data.

The theory behind the approach is excellent, novel techniques are utilized however

evaluation of the method has not been sufficient yet. More rigorous simulation exper-

iments are required with regular and irregular points settings. We have tested only

simple models with a single covariate only while in real life this is not always the case.

The prediction is a major interest in spatial data analysis which we have not dealt with

yet. Another lacking is that no guideline is provided to deal with the non-stationary

process. Not only our method but many other methods in the domain of big spatial

data computation suffer from this drawback. In the next section we present some future

research directions surrounding farmer approach.

5.2 Way forwards

Firstly, we would like to fill the gaps by mathematically investigating the asymptotic

properties of the farmer estimators, adopting bias correction technique for non normal
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data and conducting more rigorous simulation experiments. The presence of randomness

in weight involved in estimators could make the mathematical investigation harder.

Need to find a way out. Application of generalized estimating equation approach at block

level for nonnormal data could be a possible way to adopt the bias correction technique.

This could be done estimating the mean parameters ignoring the spatial dependence

and then estimate the spatial dependence parameters from the standardized residuals.

In the second stage, residuals can be assumed to come from the Gaussian process. This

will allow us to adopt the bias correction method for spatial dependence parameters.

Finding out optimal blocking strategy is also a target.

Secondly, the proposed approach possibly be extendable for spatial point pattern

analysis. Spatial point pattern is useful for many scientific questions in forestry, oceanog-

raphy and chemical research. Another challenge in the spatial arena is Besag (1974)’s

auto models estimation for large data. Splitting the domain into smaller subdomains

farmer approach would be an optimal solution for this.





Appendix

We consider the model (3.1) for simulation experiments. We have considered the number

of blocks to K = 80, average block size m ≈ 250, the total number of locations is n =

20000 over the domain (0, 30)× (0, 30). We have included a single explanatory variable

in the linear spatial regression model which is known and generated from N(0, 0.52).

The true parameter values are considered as β0 = β1 = σ2 = 1, φ = 2.0, τ 2 = 0.1. The

results are presented in the figures below.
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Figure .1: Boxplots of the bar, fem, rem, for β0 and β1. In each panel, the first
three boxes are bias-uncorrected and the last three are mean bias-corrected ones.
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Figure .2: Boxplots of the bar, fem, rem, for log σ2 and log φ. In each panel, the
first three boxes are bias-uncorrected and the last three are mean bias-corrected ones.
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Figure .3: Boxplots of the bar, fem, rem, for log τ2 and the ratio of φ/σ2. In
each panel, the first three boxes are bias-uncorrected and the last three are mean
bias-corrected ones.
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