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Abstract

This PhD thesis deals with the modelization of financial time series by

means of the application of a non-Markovian non-stationary model, based

on the scaling properties of the returns. Some of the theoretical forecasts

of the model are compared to historical data of different market indexes

and financial instruments and predictive properties of the model are then

employed to determine trading strategies, efficient in an intraday context.

After an introductory chapter, where the main stylized facts and financial

models are illustrated, in Chap. 2 the model under discussion is described,

in its double specialized intra- and inter-day formulation. A particular at-

tention is devoted to the importance of the scaling property in constructing

the joint probability distributions for the returns.

In Chap. 3 the model in its interday formulation is applied, with the result

of reproducing the statistics of large returns (aftershocks) following main

shock events in the market (the financial analog of the Omori law for seismic

events). It is also discussed whether this analysis may be useful for the

calibration of the model’s parameters.

In Chap. 4 the model in its intraday version is utilized in applications re-

garding foreign exchange rates, market indexes, and single stocks quotes.

The predictive power of the model is evaluated both with respect to some of

the classical correlators (as the volatility autocorrelation) and to the yield

obtained by employing trading strategies.
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Riassunto

Questa tesi di dottorato riguarda la modellizzazione delle serie temporali

finanziarie mediante l’applicazione di un modello non Markoviano e non

stazionario basato sulle proprietà di scala dei ritorni/rendimenti. Riferen-

dosi a diversi indici di mercato e a diversi strumenti finanziari, vengono

verificate alcune delle previsioni teoriche del modello e si sfruttano le pro-

prietà predittive dello stesso per determinare alfine delle strategie di trading

efficaci in abito giornaliero.

Dopo un capitolo introduttivo, nel quale si illustrano i principali modelli

utilizzati in ambito finanziario, nel Cap. 2 viene descritto il modello in

oggetto, che viene peraltro specializzato nella duplice versione inter- ed

intra-giornaliera. Particolare attenzione è dedicata alla centralità dello scal-

ing per la costruzione delle distribuzioni di probabilità congiunte dei ritorni.

Nel Cap. 3 il modello viene applicato nella sua versione inter-giornaliera, al

fine di riprodurre la statistica dei grandi ritorni (aftershocks) susseguenti il

verificarsi di eventi di shock nel mercato (l’analogo finanziario della legge

di Omori per gli eventi sismici). Viene valutato quanto questa analisi possa

essere utile per calibrare i parametri del modello stesso.

Nel Cap. 4 viene utilizzato il modello nella sua versione intra-giornaliera, in

applicazioni riguardanti il tasso di cambio, gli indici azionari e il prezzo

di singole azioni. Viene valutata la capacità predittiva del modello sia

rispetto ad alcuni classici correlatori, quali l’autocorrelazione di volatilità,

sia rispetto al rendimento ottenuto dallo sfruttamento di strategie di trad-

ing.
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To Him, who gives me the strenght.
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1

Introduction

Aus Pflicht.

E. Kant

1.1 Stylized facts

1.1.1 Invitation

The statistical properties of financial indexes have been investigated for more than a

century, since the first studies of Bachelier (6). The availability of large, high frequency

datasets1 and the application of computer analysis and simulation methods have re-

cently led to the consolidation of data-based approaches in financial modeling.

The financial time series constitute a rich source of data for statistical studies,

especially because these series show non-trivial, but to a certain degree universal,

statistical properties (see, e.g., 17, 20, 33). One of the key roles of the modeling

techniques is to capture these properties, common across different financial instruments,

markets and periods, which are usually referred to as stylized facts.

Stylized facts emerge as a common denominator among the properties observed in

studies of different markets and instruments. They are, to some extent, qualitative

properties of asset returns and so it is not clear whether they identify in an unique way

a financial model.

Far from being a fully solved problem (15), the characterization of the underlying

process for the financial indexes has received contributions both from economics and

mathematical finance, but recently also from statistical physics. Physicists’ natural ten-

dency to focus on universal laws is often regarded with skepticism by some economists,

1Since 1993 financial and market data have been recorded ’tick-by-tick’, transaction-by-transaction,

which implies that the average time between two successive records can be as short as a few seconds.

1



1. INTRODUCTION

but the development of the theory of complex systems in the last decades have brought

a significant number of results, that are now relevant in financial and market contexts,

too. Achievements made by physicists in various fields of statistical mechanics, like

disordered systems or phase transitions, have thus found applications in the financial

context, too, where the concepts of unpredictable time series, scaling, self-organized

systems and power laws are today of common knowledge.

As a matter of fact, the modeling of the random fluctuations of asset prices is of

obvious importance in financial applications as risk assessment and derivative pricing:

correct predictions and estimates on indexes can only be achieved through an as precise

as possible characterization of the stochastic process related to the observed indicator.

Indeed, the classic and widely applied Brownian walk model, dating back to Bache-

lier (6), has proven to be unfit and has been ultimately invalidated, as anticipated by

Mandelbrot (31), after intensive statistical studies, e.g. on the recently available high

frequency time series.

1.1.2 Universal features of financial indicators

Let us primarily fix some notations. Denoting with S(t) the value at time t of a certain

financial asset (a stock price, an exchange rate or a market index), following (39) it

is usual to define the return xτ (t) at time t and at scale τ as the difference of the

logarithms of the prices at times t+ τ and t:

xτ (t) = lnS(t+ τ) − lnS(t). (1.1)

Most of the times, the value of S(t) is assumed to be detrended, so that

lnS(t) 7→ lnS(t) − ρt, (1.2)

where ρ is the average linear growth of the logarithm of the values of the asset over the

whole time series. This exponential trend is related to the exponential growth followed

by an amount stored in a bank account, usually used as a reference in finance; this

trend is actually a first example of stylized fact, which is commonly detected in stock

prices and other market indexes (see, e.g., Fig.1.1).

We summarize as follows the most relevant stylized facts:

• Absence of (linear) autocorrelations:

Given a discrete-time series of successive returns xτ (0), xτ (τ), . . . xτ (nτ) and a

time interval T = k · τ, with k ∈ N the empirical linear autocorrelation function,

2



1.1 Stylized facts

1900 2010
Year

10

100

1000

10000

S(t)

Figure 1.1: DJI index values from 1900 to 2010. Notice the log scale in the vertical axis

and the quasi-linear trend in this scale.

defined as

〈xτ (t)xτ (t+ T )〉e ≡ 1

n− k + 1

n−k∑

i=0

xτ (iτ)xτ (iτ + T ) , (1.3)

vanishes if T is longer than 5-10 minutes1. This has proven to be a direct con-

sequence of the efficiency of a market, which quickly suppresses any arbitrage

opportunity (23).

• Presence of correlation on absolute returns and higher order long-

ranged correlations:

The autocorrelation function of the absolute returns

〈|xτ (t)||xτ (t+ T )|〉e ≡ 1

n− k + 1

n−k∑

i=0

|xτ (iτ)||xτ (iτ + T ) |, (1.4)

is positive and slowly decaying, as a function of T . The decay is well reproduced

by a power law, 〈|xτ (t)||xτ (t+ T )|〉e ≃ A
T β , with β ∈ [0.2, 0.4] (see, e.g., 33).

Moreover, different measures of volatility (e.g., the squared returns), display sim-

ilar positive autocorrelation (persistence) over several days. The effect is called

1In the following, we will use the notation 〈·〉e for the empirical averages, 〈·〉p for the averages

calculated on the basis of a probability density function p and 〈·〉 when addressing to both.

3
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Figure 1.2: An example of histogram of returns, taken from the high frequency S&P500

index (1985-2010). A tentative fitting function (PDF) is given, too.

volatility clustering and measures the tendency of the market to cluster large

returns (see, e.g., 17, 33). Interestingly, the volatility has a power law decay in

time (30) after very large returns (shocks).

• Heavy-tailed distributions:

For sufficiently long historical time series, the probability density function (PDF)

of the returns pXτ (x) can be estimated1. This function seems to show fat tails,

with a decay index approximately in the range 2÷5, for most assets (an example

is given in Fig. 1.2). However, the fitting of the tails, being related to extreme

events in limited time series, usually gives a non-reliable result.

• Skewed distributions:

The PDF of the returns pXτ (x) displays an asymmetry, which privileges large

negative returns rather than positive equally large movements (see, e.g., 44).

• Leverage effect:

A negative correlation is detected between returns and volatilities: the leverage

correlation function, defined as Lτ (T ) = 1
K 〈|xτ (t+T )|2xτ (t)〉 (K is an appropriate

1In the following, as a common rule, we will denote with the capital letter X the stochastic variable

associated to the return x.

4



1.1 Stylized facts

normalization factor), is very small, indistinguishable from noise, for T ≤ 0,

negative and asymptotically increasing toward zero for T > 0. In a nutshell, large

negative returns are usually associated to a following period of high volatility (see,

e.g., 16).

• Scaling properties:

– Simple scaling: For τ ’s in the range from one day to a few months, the PDF

pτ approximately obeys a simple-scaling symmetry: pXτ (x) = ( 1
τD )g( x

τD ),

where the scaling exponentD is close to 1/2 for the indexes of the most devel-

oped markets. The scaling function g(x) is non-Gaussian and has power-law,

Pareto tails at large |x| (see, e.g., 34).

– Aggregational Gaussianity: The above stated simple scaling property

breaks for longer time lags. As one increases the τ ’s, the distribution of the

returns progressively deforms from an heavy tailed distribution to a nearly

Gaussian shape. This has proven to be a consequence of the Central Limit

Theorem (CLT) (9), valid on a time-scale in which all correlations vanish.

– Multiscaling: A more detailed analysis of the non-linear empirical moments

Mτ (q) ≡ 〈|xτ (t)|q〉e ≡ 1

n+ 1

n∑

i=0

|xτ (iτ)|q (1.5)

invalidates the simple scaling assumption and shows the presence of a mul-

tiscaling behaviour: Mτ (q) ∝ τ f(q), being f(q) a non-linear function of q.

More details on scaling will be discussed in Sec. 3.1.

• Intraday seasonalities:

Both for foreign exchange rates (11), stock markets (3) and market indexes (4) a

clear intraday pattern for the volatility and, more in general, for the even moments

of the PDF of the returns can be detected. One may calculate, for instance, the

volatility of stock prices at a scale of a few minutes or even as low as a few seconds:

the result, depicted in a daily scale, shows a clear U-shaped pattern (1), with a

decay in the first two hours of trading as a power law with an exponent around

0.3 (3). In addition, cross correlation between stock values increases throughout

the day (3).

For foreign exchange rates the detectable peaks in the volatility pattern coincide

with the opening and closure time of the main world stock exchange markets (11).

5



1. INTRODUCTION

1.2 Financial models: classification

After the publication of the Black and Scholes option pricing model (13), back in 1973,

which was essentially based on the geometric Brownian motion (see Sec. 1.2.2), theorists

and practitioners developed analyses and studies that clearly demonstrated the need

of corrections to the model. So, alternative models started being considered and built:

up to now the problem of the identification of the stochastic process describing the

financial returns remains open.

As already stated, the problem is of utmost importance, for it involves delicate

matters as the fair price of the derivatives and the estimate of the portfolio-associated

risks, which are crucial in an economic and financial perspective.

One of the key aspects, somehow characterizing the analysis of the financial and

economic data, is that the empirical analyses which can be performed on these data

are not equivalent to those used in the usual experimental investigations in physical

sciences. Large scale and repeated experiments are not possible, and one single, not so

long, history is usually available1. So this is a problem from the point of view of the

validation of the models. As an example, we may cite the fact that, after the studies

of Mandelbrot (31), a question about the finiteness of the variance of the data arose.

It may seem a simple check to do, but the community has finally completely agreed on

its finiteness only after dedicated studies on high frequency datasets (17, 26).

Since the core argument of this thesis is the study of the properties and the predic-

tive power of a novel financial model, I think it relevant to spend a few words about

the zoo of the so far proposed models, with a focus on their assumptions and on their

mathematical and statistical characteristics.

As a general overview, we can identify several studies focusing on different aspects of

the analyzed stochastic processes: the shape of the PDF of the returns (17, 24, 33, 40),

the memory of the process (35), the higher-order statistical properties (37). Moreover,

other studies have proposed models attempting to describe the features of the real

markets, and even if many of them are able to reproduce many of these features (as

fat-tailed or non-Gaussian shape of the PDF), they all ultimately fail somewhere else

(e.g. time invariance or leverage effect). Finally other studies consider the analogies

and differences between the dynamics of prices and that of ecological or social systems

(40), or even turbulent regimes in fluidynamics (24, 35).

We will focus on the most common models.

1Actually, this limitation is also affecting other developed areas of physics as astrophysics, geo-

physics, atmospheric physics; ultimately, this analogy justifies the task.
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1.2 Financial models: classification

1.2.1 Brownian motion (simple)

The very first financial model, proposed by Bachelier (6) in 1900, described the evo-

lution of the time-series of the returns as a stochastic process that is currently named

Brownian motion. Actually, Bachelier defined the return just as the difference of sub-

sequent prices, not as the difference of the logarithm of the prices. So, just for this

section, we define xτ (t) ≡ S(t+ τ)− S(t). The properties of the Brownian motion are:

(i) the returns are independent random variables;

(ii) the returns are stationary (e.g. their distribution pXτ (t) is t-independent);

(iii) each return calculated over a time interval of duration τ follows a Gaussian dis-

tribution with zero mean and variance σ2τ .

Therefore, because of (ii) and (iii), the PDF of the single returns over a time τ is:

pXτ (t)(x) =
1√

2πσ2τ
exp

(

− x2

2σ2τ

)

, (1.6)

which is independent of t. Moreover, from (i), the joint PDF for n consecutive returns

follows:

pXτ (0)Xτ (τ)...Xτ ((n−1)τ)(x0, x1, . . . x(n−1)) =
n−1∏

i=0

1√
2πσ2τ

exp

(

− x2
i

2σ2τ

)

. (1.7)

However the description of the evolution of the prices according to a Brownian

motion generates some inconsistencies with respect to the observed asset behaviour:

• the Brownian assumption states that the fluctuations of the prices are indepen-

dent of the size of the price itself, while empirical evidence shows that the ampli-

tude of the fluctuations is related to the values of the asset;

• the price of the asset, can go below zero, whereas most financial time series are

strictly positive.

Thus the model required refinements, especially for long-time analyses, where market

values make large changes. The first result of this refinement was the Geometric Brow-

nain motion model, that has been for a long time the most common and widely used

model for financial price dynamics.

7



1. INTRODUCTION

1.2.2 Geometric Brownian motion

In this model, differently from the simple Brownian motion, the logarithm of the price,

rather than the price itself, follows a simple Brownian motion. It’s quite common in

finance to say that the returns are Log-normal distributed.

Log-normal distributions forbid negative prices, by construction. Moreover, the size

of the fluctuations is dependent on the value of the asset. So, both of the problems

encountered in the simple Brownian motion are overcome. The Eqs. 1.6 and 1.7 are

still valid, but with the returns re-defined as difference of the logarithms of the prices,

as in Sec. 1.1.2.

Given the gaussianity of the PDF, an important property, called self-similarity, can

be easily proven. A process is said to be self-similar if, for any τ > 0, the PDF of the

return xτ (t) satisfies the following rule

pXτ (x) =
1

τD
g
( x

τD

)

. (1.8)

The formula indicates that, up to a rescaling factor dependent on τ , the returns Xτ are

all identically distributed according to a function g(x), which is called scaling function.

The parameter D is called self similarity or scaling exponent. By direct inspection, it’s

clear that the Brownian and the geometric Brownian motion are self-similar processes

with D = 1/2 and with g(x) Gaussian.

The model accounts for many stylized facts of financial data, but it provides just

a first approximation, although still widely used in finance. Actually, systematic de-

viations from the model prediction are observed: the empirical distributions are more

leptokurtic than Gaussian distributions, with fatter tails than in the Gaussian case.

1.2.3 Lévy flights

The first model to account for the leptokurtic shape of the PDF, originally for cotton

prices, was proposed by Mandelbrot back in 1963 (31). In his work the logarithmic

return of the cotton price is stated to follow a stochastic process with Lévy stable

non-Gaussian increments. Lévy processes are self-similar processes with independent

increments. The difference respect to the previous models is that the distribution of the

returns is no longer a Gaussian, but a Lévy distribution. The characteristic function

of a (symmetric) Lévy distribution is

L̂µ(k) = exp (−aµ|k|µ), (1.9)

8



1.2 Financial models: classification

while an analytical form for the distribution itself is not generally available. An im-

portant property of these symmetrical distributions is the power-law behaviour of the

tails (the so called Pareto tails):

Lµ(x) ∼ µAµ

|x|1+µ
for x→ ±∞, (1.10)

where a simple relation Aµ = k(µ)aµ, between aµ and Aµ, holds (see, e.g., 17).

Mandelbrot assumed the following:

(i) the returns are independent random variables;

(ii) the returns are stationary (i.e. their distribution is time-independent);

(iii) each return obeys a Lévy distribution described by the following characteristic

function:

p̂1(k) = exp (−a|k|µ), (1.11)

with 0 < µ < 2 and a > 0. These rules define the Lévy flights stochastic process.

It’s easy to prove that the Lévy flights are self-similar processes with D = 1/µ

and that the relative distribution is stable, i.e. the Lévy distributions share with the

Gaussians the property of being an attractor in probability space in the sense that,

under repeated convolution, a large class of distributions converges towards it (29).

It is evident from the tail decay that, for µ ≤ 2, the variance of the distribution1 is

formally infinite. As previously noted in Sec. 1.2, the problem of the finiteness of the

variance is an important topic.

Although accounting for some stylized facts, this model cannot explain:

• the multiscaling behaviour;

• the scaling breakdown at large τ ’s;

• the finiteness of the variance;

• higher order, long range correlations (and particularly the volatility clustering)

1The variance σρ of a (zero-mean) distribution ρ(x) is defined as follows: σρ =
R

∞

−∞
x2ρ(x)dx.

9



1. INTRODUCTION

1.2.4 Fractional Brownian motion

One way to explain the long range correlations is that of relaxing the request for in-

dependence of the returns. An example of model which combines self-similarity and

stationarity, but at the same time imposes non-independence, is given by the Fractional

Brownian motion. Without entering the details of the model, originally proposed again

by Mandelbrot together with van Ness (32), it suffices here to state that the model

explains the long range correlations and the all-important property of volatility clus-

tering.

On the other hand the model poses serious problems of ergodicity1 and does not

show the vanishing of linear correlations.

1.2.5 Truncated Lévy flights

The problem of the finiteness of the variance, generated by the studies of Mandelbrot

and posed by the Lévy flights has led to the definition of a new stochastic process with

finite variance: the truncated Lévy flight (TLF) process. Its distribution is simply

defined as a truncation of the Lévy symmetric distribution:

p(x) =







0 x < ℓ
cLµ(x) −ℓ ≤ x ≤ ℓ
0 x > ℓ

(1.12)

The TLF is a non-stable stochastic process but, possessing finite variance, it converges,

in a CLT sense, to a Gaussian process (36). So it can bypass the limit of the (simple)

Lévy flight model in that it accounts for the scaling breakdown at large τ ’s.

Still based on the assumption of i.i.d. (independent, identically distributed) returns,

the model fails to describe in a proper way the time-dependent volatility observed in

market data (33).

1.2.6 Mixture of Gaussian distributions

One alternative model to take into account the leptokurtic features of the empirical

PDF of the returns was originally proposed in 1973 by Clark (19). Starting from the

observation that trading operations are inhomogeneous in time and volume, he specifies

and applies the concept of subordinate stochastic process to justify the inapplicability

of the standard CLT to financial series (e.g. cotton price). He selects the stochastic

process coming from the, possibly inhomogeneous, time series and further defines a

1The ergodicity property guarantees that the sample averages, calculated along a single realization

of the process, tend to the ensemble averages as the length of the sample tends to +∞.
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1.2 Financial models: classification

new process, which turns to be a weighted mixture of Gaussians, which has stationary

independent increments, zero mean and finite variance. The time-independent PDF for

the return x can be expressed in a Gaussian mixture form as follows:

p(x) =

K∑

k=1

wkN(x;µk, σk) (1.13)

with w1, . . . , wK normalized weights and N(x;µ, σ) a Gaussian of mean µ and variance

σ2. In its continuous form, Eq. 1.13 reads:

p(x) =

∫ ∞

−∞
dµ

∫ ∞

0
dσ ψ(µ, σ)N(x;µ, σ). (1.14)

Generally speaking, the model has no definite scaling properties.

1.2.7 ARCH/GARCH processes

In section 1.1.2 we pointed out the time dependence of the volatility, which takes high

levels in periods of uncertainty or after large returns, and reverts to lower values in

calmer periods. This phenomena is called heteroskedasticity and suggests that the

variance itself can be then modeled as a stochastic process.

Some models have been proposed to explain and to describe such a behaviour.

Generally speaking, in these models the random part of the return can be written as:

xk = ǫkσk, (1.15)

where ǫk are i.i.d. random variables with zero mean and unit variance, and σk are

deterministic constants or random processes (a process generally correlated in time

and, possibly, with the variables ǫj with j < k) corresponding to the local size of the

fluctuations. To reproduce the market behaviour, one may want, for example, that a

large σi is followed with high probability by a large σi+1, although with an arbitrary

sign for the return.

In this context of volatility modelization, a rich class is represented by the ARCH

models, introduced by Engle in 1982 (22). The acronym stands for autoregressive

conditional heteroskedasicity and well describes its characteristic: the variance at time

t depends, conditionally, on some past values of the square value of the random signal

itself. The different choice for the PDF of the process generating the random variable at

time t, and the number of conditioning terms (the memory p), span a class of stochastic

models that have found wide application in finance and are, to some extent, a reference

for testing other models, too.

11



1. INTRODUCTION

An ARCH(p) model is defined by:

σ2
k = α0 + α1ǫ

2
k−1 + . . . + αpǫ

2
k−p, (1.16)

with α0, . . . , αp positive variables and ǫk random variables with zero mean and variance

σk. The PDF for the ǫ’s is usually taken to be a Gaussian, but that’s not restrictive.

The choice of the parameters α determines the shape of the PDF of the process, and

particularly its kurtosis. Even in case of Gaussian distributed ǫ’s, the resulting process

can have a leptokurtic PDF, with fat tails resulting from the volatility fluctuations and

correlations (17). However, it is still an open question what is the asymptotic PDF of

the ARCH process, given the PDF for the ǫ’s.

An extension of the ARCH models was introduced in 1986 by Bollerslev (14), to

overcome the problem of the optimization of the α parameters. In these generalized

ARCH models, the so called GARCH(p,q), the following stochastic process is defined:

σ2
k = α0 + α1ǫ

2
k−1 + . . . + αqǫ

2
k−q + β1σ

2
k−1 + . . .+ βpσ

2
k−p, (1.17)

with α1, . . . , αq, β1, . . . , βp control parameters. A quite large zoo of GARCH models is

used in finance. One of these models, the asymmetric GJR-GARCH by Glosten, Jagan-

nathan and Runkle (25) will be used as reference and competitor model in Sec. 4.2.3.

A crucial limitation of ARCH/GARCH models is that they generate histories for

which the scaling properties of the sampled PDF are not guaranteed (33).
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2

A model based on scaling

All models are wrong, but some are useful.

G.E.P. Box

2.1 The scaling properties of financial data

The idea of studying and applying the concept of scaling in finance dates back to the

last half of the past century, following the ideas generated by the works of Osborne and

Mandelbrot (see, e.g., 34, 37, and references therein). This key concept plays a central

role in the analysis of a wide class of complex systems, where a large number of degrees

of freedom are strongly correlated with each other.

The scaling laws were first introduced during the 1960s in independent works by

Kadanoff, Fisher and Widom on the thermodynamics of systems around critical points

(in proximity of phase transitions). Their assumptions of scaling in the critical region

found a consistent interpretation and foundation during the 1970s, when the ideas of

renormalization group were defined and took appropriate form.

The renormalization method and the self-similarity approach, originally developed

for the critical phenomena in thermodynamics, has found wide application in different

fields of natural and social sciences (from geology to ecology, from fluidynamics to

human geography), especially in systems where consistent dynamic equations are not

available or known. In these fields the study of the scaling transformation properties

can be of help.

Effectively, after some pioneering, isolated contributions, physicists entered the

scene of finance around 1995, with the ingenious invention of the provocative brand

name of econophysics, right with the application of scaling concepts to market series

(for an introduction on the subject see, e.g. (45)).

13



2. A MODEL BASED ON SCALING

2.2 The interday formulation

2.2.1 The stationarity and self-similarity assumptions

The model presented in this chapter, which is the ground of the entire thesis work,

bases its development on the self-similarity assumption and on the concept of scaling

of financial data over different time lags. The foundations of the model have been laid

down in 2007 by Baldovin and Stella (8, 48), whose reasoning will be hereafter reported.

As formerly stated, the concept of self-similarity for the PDF of the financial returns

is summarized by the Eq. 1.8, which characterizes a process which has, upon rescaling

the variables with a proper normalization, the same statistical distribution over different

(but limited) times.

To introduce the model, we consider a discrete series of equally spaced in time

returns {x1(t)}, for t = 1, . . . , T , defined as in section 1.1.2. Taking advantage of the

additive properties of the definition of the returns, different series of returns can be

built, over different time lags. For example, being x2(1) = x1(2) + x1(1), the series

{x2(t)} of non-overlapping returns can be extracted, for suitable values of t.

To start with, we suppose that the series is generated by a stochastic process with

the following properties:

(i) the returns {x1(t)} are identically distributed1;

(ii) the self-similarity property (Eq. 1.8) holds, with a given scaling exponent D (sim-

ple scaling).

The (i) property implies that the marginal ensemble PDF of the returns is the same

for every return of the series, pX1(1)(x) = . . . = pX1(T )(x) ≡ p1(x). The same

property holds for the series constructed for different τ ’s: pXτ (1)(x) = pXτ (1+τ)(x)=

pXτ (1+2τ)(x) = . . .≡ pτ (x). These PDF’s can be empirically built, given a sufficiently

long series of market data.

It is useful to switch into a Fourier transformed space, where the characteristic func-

tion p̃X1,...,Xn(q1, . . . , qn) is defined, starting from a joint probability density function

pX1,...,Xn(x1, . . . , xn), by the formula:

p̃X1,...,Xn(q1, . . . , qn) =

(
n∏

i=1

∫

dxie
iqixi

)

pX1,...,Xn(x1, . . . , xn). (2.1)

From (i) one has:

p̃Xτ (t)(q) = p̃Xτ (1)(q), for τ = 1, 2, . . . and t = 1 + τ, 1 + 2τ, . . . . (2.2)

1This assumption will be relaxed in Sec. 2.2.3
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2.2 The interday formulation

Upon setting p1(q) ≡ g(q), Eq. 1.8 can be rewritten in terms of characteristic

function:

p̃τ (q) =

∫

dxeiqxpτ (x)

=

∫

dxeiqx 1

τD
p1

( x

τD

)

=

∫

dxeiqτDxp1(x) = p̃1(τ
Dq) = g̃(τDq). (2.3)

The expression in Eq. 1.8 for the scaling of the PDF can be extended to the case of

a joint PDF, obtaining the most complete definition of self-similarity, in the following

way:

pXτ (1),...,Xτ (1+(n−1)τ)(x1, . . . , xn) =
1

τnD
pX1(1),...,X1(1+(n−1)τ)

( x1

τD
, . . . ,

xn

τD

)

, (2.4)

or equivalently, in the Fourier space,

p̃Xτ (1),...,Xτ (1+(n−1)τ)(q1, . . . , qn) = p̃X1(1),...,X1(1+(n−1)τ)

(
τDq1, . . . , τ

Dqn
)
. (2.5)

Where clear, the following easier notations will be in use:

pXτ (1) ≡ pτ ,

p̃Xτ (1) ≡ p̃τ ,

pXτ (1),...,Xτ (1+(n−1)τ) ≡ p(n)
τ ,

p̃Xτ (1),...,Xτ (1+(n−1)τ) ≡ p̃(n)
τ .

2.2.2 The stationary model with D=1
2

An interesting key observation is that the joint PDF is constrained by the stationarity

and the simple scaling assumptions of Sec. 2.2.1. Let us consider two successive returns

x1 ≡ xτ (1) and x2 ≡ xτ (1 + τ) and the total return x ≡ x2τ (1) = xτ (1) + xτ (1 + τ) =

x1 + x2. The following relations naturally follow:

∫
dx1dx2p

(2)
τ (x1, x2)δ(x − x1 − x2) = p2τ (x), (2.6)
∫
dx2p

(2)
τ (x1, x2) = pτ (x1), (2.7)

∫
dx1p

(2)
τ (x1, x2) = pτ (x2). (2.8)

where the results in Eq. 2.7 and Eq. 2.8 follow from the fact that the joint PDF p
(2)
τ

is sampled from a sequence of intervals of length 2τ , whose first and second halves
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2. A MODEL BASED ON SCALING
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Figure 2.1: Scaling collapse of the PDF of the returns over different time intervals for the

S&P500 index (1985-2010). The collapse has been obtained by using Eq. 1.8, with D=0.5.

The details of the derivation of this picture are presented in Sec. 3.1

can both be used to equivalently sample the PDF pτ . In the Fourier space, the above

relations read:

p̃
(2)
τ (q, q) = g̃

(
(2τ)Dq

)
, (2.9)

p̃
(2)
τ (q, 0) = g̃

(
τDq

)
, (2.10)

p̃
(2)
τ (0, q) = g̃

(
τDq

)
. (2.11)

Now we take advantage of the market behaviour, where successive returns (for τ larger

than few minutes) are uncorrelated:

〈x1x2〉p(2)
τ

≡
∫

dx1dx2 x1x2p
(2)
τ (x1, x2) = 0, (2.12)

that is one evidence of the efficient market hypothesis (23) which inhibits from taking

profit from the sign values of asset returns. Eq. 2.12 implies 〈x2〉p2τ
= 〈(x1 + x2)

2〉
p
(2)
τ

=

2〈x2〉pτ . Using the self-similarity property Eq. 1.8, one easily gets: 〈x2〉pτ =
∫
x2pτ (x)dx=

∫
x2 1

τD g
(

x
τD

)
dx ∝ τ2D. And so 2τ2D = (2τ)2D, whence the result: D = 1/2.

So self similarity, stationarity and absence of linear correlations imply D = 1/2,

a value confirmed by repeated analysis of data for all developed markets (21). One

example of this scaling is shown in Fig. 2.1.
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2.2 The interday formulation

One important step is then to generalize the content of equation Eq. 2.9 in order

to write a general expression for p
(2)
τ in terms of pτ alone. If the increments x0 and x1

were independent, the result would be straightforward:

p̃(2)
τ (q1, q2) =

∫

dx1dx2e
iq1x1eiq2x2p(2)

τ (x1, x2)

=

∫

dx1dx2e
iq1x1eiq2x2pτ (x1)pτ (x2),

= g̃
(

τ1/2q1

)

g̃
(

τ1/2q2

)

. (2.13)

But to take into account the strong non linear correlations of the financial data (see

Sec. 1.1.2) one may introduce a generalized product, consistent with the set of equations

Eq. 2.9 - Eq. 2.11, to write an expression like p̃
(2)
τ (q1, q2) = g̃

(
τ1/2q1

)
⊗ g̃

(
τ1/2q2

)
. As

can easily be checked, one possible formal solution is obtained by defining: g̃ (q1) ⊗
g̃ (q2) ≡ g̃

(√

q21 + q22

)

. And so:

p̃(2)
τ (q1, q2) = g̃

(

τ1/2q1

)

⊗ g̃
(

τ1/2q2

)

= g̃

(√

τq21 + τq22

)

. (2.14)

The generalization to more than two consecutive returns is performed following

the same reasoning. The characteristic function of n consecutive increments obeys the

following relation:

p̃(n)
τ (

j
︷ ︸︸ ︷

0, . . . , 0,

m
︷ ︸︸ ︷

q̃, . . . , q̃,

n−j−m
︷ ︸︸ ︷

0, . . . , 0) = g̃
(

(mτ)D q̃
)

(2.15)

= g̃
(√
mτq̃

)
, (2.16)

where in Eq. 2.16 the result D = 1
2 coming from self-similarity and uncorrelation of

returns has been introduced. Following the steps leading to Eq. 2.14, a possible formal

solution for the general case is analogously found:

p̃(n)
τ (q1, . . . , qn) = g̃

(√

τq21 + . . . + τq2n

)

. (2.17)

Provided that this g̃ function is a well-defined characteristic function1, i.e. its

inverse-transform satisfies all the defining conditions of a PDF, Eq. 2.14 determines the

construction of the joint PDF for the successive returns from the knowledge of a single

1Schoenberg’s theorem states that this condition is satisfied, for every n ∈ N1, only if g is a Gaussian

mixture (2, 43, 49).
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2. A MODEL BASED ON SCALING

univariate function g(x), whose choice describes the entire process. A really remarkable

point!

In the next section we will relax the stationarity assumption to include in the model

stylized facts related to the non-stationarity of the returns.

2.2.3 The non-stationary model

The rich and powerful framework developed in the previous section is based on self-

similarity, market efficiency and stationarity of increments. Both in an intra- and

an inter-day context, this last assumption on market data crashes against the pres-

ence of exogenous dynamical effects that, in specific time windows, may generate non-

stationary effects and so a reasonable bit of non-stationarity must be included in the

model, in some way. Fortunately the model is flexible enough to be enriched with such

a feature.

The introduction of a time-inhomogeneous dynamics should in principle give the

same results as those of the forementioned model, when long time windows are consid-

ered. In fact, when looking at the returns over large time lags or averaging over large

time windows, one suppresses the peculiar time-inomogeneities through the averaging

process. For instance, the scaling exponent D that, as will be discussed in a moment,

can be empirically evaluated below or over 1/2 in specific parts of the series, reverts

back to the value 1/2, expected for the stationary case, when the analysis extends over

larger times, when the singular, exogenous events undergo the averaging process.

In the stationary case of Eq. 2.2 the unconditional PDF is identical for every in-

crement. Now we want to develop a time-inhomogeneous scheme, to be applied after

the occurrence of strong exogenous events, that are supposed to affect the dynamics.

A simple assumption of time-inhomogeneity due to exogenous effects is given by this

alternative property:

p̃Xτ (1+(i−1)τ)(q) = p̃Xaiτ (1)(q), for τ = 1, 2, . . . and i = 1, 2, . . . . (2.18)

In this non-stationarity property the unconditional PDF is still identical for every

increment, but only up to a rescaling factor ai depending on the chosen time interval

(i− 1) τ . The coefficients ai characterize the inhomogeneity.

The ensemble PDF’s become time-dependent and, in general, pXτ (t)(x) 6= pXτ (1)(x).

Instead, from Eq. 2.18 the following relation holds:

pXτ (1+(i−1)τ)(x) = pXaiτ (1)(x). (2.19)
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2.2 The interday formulation

The set of equations Eq. 2.6 - Eq. 2.8 becomes:

∫
dx1dx2pXτ (t),Xτ (t+τ)(x1, x2)δ(x − x1 − x2) = pX2τ (t)(x), (2.20)

∫
dx2pXτ (t),Xτ (t+τ)(x1, x2) = pXτ (t)(x1), (2.21)

∫
dx1pXτ (t),Xτ (t+τ)(x1, x2) = pXτ (t+τ)(x2). (2.22)

Because of inhomogeneity, the right hand side of the two last equations no longer

coincides. However, we proceed still assuming that a scaling property holds, possibly

with different D and g. Here is the self-similarity hypothesis in the special case of

time-inhomogeneity:

p̃Xτ (1+(i−1)τ)(q) = p̃Xaiτ (1)(q) = p̃X1(1)

(

(aiτ)
Dq
)

≡ g̃
(

(aiτ)
Dq
)

, (2.23)

while the equivalent property in the inverse-transformed space reads:

pXτ (1+(i−1)τ)(x) =
1

(aiτ)D
g

(
x

(aiτ)D

)

. (2.24)

We are now ready to determine the coefficients ai. Clearly, a1 = 1 (see Eq. 2.18).

To calculate ai for i > 1, we start setting t = 1 and we again impose that the successive

increments are linearly uncorrelated

〈xτ (1)xτ (1 + τ)〉pXτ (1)Xτ (1+τ)
≡
∫

dx1dx2x1x2pXτ (1)Xτ (1+τ)(x1, x2) = 0, (2.25)

and we match the following conditions:

〈x2τ (1)2〉 ≡
∫

dxx2p
(2)
X2τ (1)(x) = (2τ)2D

∫

dyy2g(y) (2.26)

〈(xτ (1) + xτ (1 + τ))2〉 ≡
∫

dx1dx2(x
2
1 + x2

2)pXτ (1),Xτ (1+τ)(x1, x2)

= (τ)2D
∫

dyy2g(y) + (a2τ)
2D
∫

dyy2g(y). (2.27)

Thus we obtain a2D
2 = 22D − 1.

By iteratively matching relations as 〈xiτ (1)2〉 =〈(xτ (1) + . . .+ xτ (1 + (i− 1)τ))2〉
we are able to derive all the ai’s:

a2D
i = i2D −

i−1∑

l=1

al

= i2D − (i− 1)2D. (2.28)

We are now able to write a solution for the set of equations

p̃Xτ (1),Xτ (1+τ)(q, q) = p̃X2τ (1)(q) = g̃
(

(2τ)Dq
)

, (2.29)

p̃Xτ (1),Xτ (1+τ)(q, 0) = p̃Xτ (1)(q) = g̃
(

(τ)Dq
)

, (2.30)

p̃Xτ (1),Xτ (1+τ)(0, q) = p̃Xτ (1+τ)(q) = g̃
(

(a2τ)
Dq
)

. (2.31)
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2. A MODEL BASED ON SCALING

derived, using Eq. 2.23, from Eq. 2.20 - Eq. 2.22 (for t = 1).

Using again the aforementioned generalized product, it’s easy to check that one

possible formal solution is given by

p̃Xτ (1),Xτ (1+τ)(q1, q2) = g̃
(
τDq1

)
⊗ g̃

(
a2τ

Dq2
)

= g̃

(√

τ2Dq21 + (a2τ)2Dq22

)

, (2.32)

and, extending the result for k consecutive intervals, the more general relation can be

verified:

p̃Xτ (1),...,Xτ (1+(k−1)τ)(q1, . . . , qk) = g̃
(
(a1τ)

Dq1
)
⊗ . . .⊗ g̃

(
(akτ)

Dqk
)

= g̃

(√

(a1τ)2Dq21 + . . . + (akτ)2Dq2k

)

. (2.33)

Now that Eq. 2.33 has been established, we can obtain an important scaling relation

for the PDF of the return Xτ (1 + t), for τ = 1, 2, . . . and t = 0, 1, . . ..

In the Fourier space the following relations hold:

p̃Xτ (1+t)(q) = p̃X1(1+t),...,X1(t+τ)(q, . . . , q
︸ ︷︷ ︸

τ

)

= p̃X1(1), . . . , X1(t)
| {z }

t

,X1(1 + t), . . . , X1(t + τ)
| {z }

τ

(0, . . . , 0
︸ ︷︷ ︸

t

, q, . . . , q
︸ ︷︷ ︸

τ

). (2.34)

Using the result of Eq. 2.33, one finally gets:

p̃Xτ (1+t)(q) = p̃X1(1), . . . , X1(t)
| {z }

t

,X1(1 + t), . . . , X1(t + τ)
| {z }

τ

(0, . . . , 0
︸ ︷︷ ︸

t

, q, . . . , q
︸ ︷︷ ︸

τ

)

= g̃

(√

a2D
t+τ + . . . + a2D

t+1 q

)

(2.35)

= g̃

(√

(t+ τ)2D − t2D q

)

. (2.36)

We may now revert to the ordinary probability space to obtain the generalized

time-inhomogeneous scaling property:

pXτ (1+t)(x) =
1

√

(t+ τ)2D − t2D

g




x

√

(t+ τ)2D − t2D



 . (2.37)

It is evident that if D = 1
2 the process is still stationary (the t-dependence vanishes),

while the choice D 6= 1
2 may account for non-stationarity features. When scaling

relations with D 6= 1
2 and/or g non-Gaussian are in force, the associated process is

said to scale anomalously. One consequence of the anomalous scaling is the presence of

strong non-linear correlations in the process. As shown by Baldovin and Stella (9, 49),
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2.2 The interday formulation

this generalized product can be the basis of a CLT for the probability distribution of

the sum of many critically correlated random variables.

Summarizing the so far depicted results, we may say that the introduction of a

generalized product can be used to express the joint characteristic function of returns

in term of a single function g. This function can also be used to take into account the

time-inhomogeneous properties of the return series and to write an anomalous scaling

relation, valid across large time intervals (t) and across different time lags (τ).

2.2.4 Specializing the model

The results of the previous section need to be specialized and clarified. In this section

we want to specialize the model for an application on a long series of daily returns. To

do so, we need to answer some important questions.

The model assumes that there is a time (t = 1) where the process starts and the

subsequent return PDF are shaped and derived from the PDF of this first return. Can

this special time be identified? Are there some or many restarts in the series, that reset

the value of the coefficients ai? Is it important to identify them or not?

After these general remarks, another important question is about the value of the

scaling parameter D and the shape of the scaling function g. How can these be deter-

mined?

One first key observation is that the time-inhomogeneity must vanish, for t exceeding

a value t̃, where the Gaussian crossover occurs in force of CLT (scaling breakdown).

So, if the available history is sufficiently long (of the order of the year), we assume the

validity of the following approximation:

pτ (x) =
1

t̃

t̃∑

t=1

pXτ (t)(x). (2.38)

A second remark is about the volatility. The model predicts that the volatility, i.e.

the second moment of the returns, should have the following behaviour, as a function

of t:

〈x2〉pXτ (1+t)
=

∫

x2pXτ (1+t)(x)dx

=

∫

x2 1
√

(t+ τ)2D − t2D

g




x

√

(t+ τ)2D − t2D



 dx

∝
(

(t+ τ)2D − t2D
)

. (2.39)
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For D = 0.5 the volatility is constant in time t. For D < 0.5 the volatility decreases,

with a maximum for t = 1; the opposite when D > 0.5. This remark suggests that

(see, e.g., 18), as far as D is estimated to be below 0.5, the times when local bursts in

volatility occur may be considered as times where the process has a restart, so that the

ai are reset to 1. We will go deep along this line of thought in Sec. 3.3.

Baldovin and Stella have also shown (8) that for the DJI index the value of the

empirically evaluated scaling exponent D that accounts for the time-inhomogeneity is

approximately 0.24. The result is derived through a multiscaling analisys and in their

work they show that the value is confirmed by the behaviour of the volatility autocor-

relation. Nevertheless, when the analysis extends across the restarts (the exogenous

events), the value D = 0.5 for the scaling exponent is confirmed.

In general, the value of D is established through an analysis of the non-linear

moments, but also through a χ2 minimization of the fitting of the scaling function g.

We’ll see this later in some applications.

The most delicate point of the theory is perhaps the identification of the restarts.

The idea of identifying them with the local bursts in the volatility is not always sat-

isfactory, and the more recent developments suggest that they can be also introduced

by means of a stochastic Poisson process (working paper by Stella, Baldovin and Zam-

paro).

From all the above discussion, it seems obvious that the contact with real data

is made by choosing a specific scaling function g, which best fits the rescaled and

aggregated data over different τ ’s. Some efforts have been made to identify the more

suitable function; in the following we report four possible candidates.

• The first proposal by Baldovin and Stella was the 3-parameter CF

g̃(k) = exp

( −Bk2

1 + Cα|k|2−α

)

. (2.40)

In (46) it has been shown that the PDF associated to this CF has power law tails

with exponent 5 − α. However this choice is not satisfying in that the explicit

formula for the PDF is not computable, thus preventing from an explicit unfolding

of the theory.

• Challet and Peirano (18) proposed instead a 2-parameter function: the multivari-

ate Student distribution, defined as

s
(n)
ν,λ(x1, . . . , xn) =

Γ
(

ν
2 + n

2

)

π
n
2 Γ
(

ν
2

)
λn

1
(

1 +
x2
1

λ2 + . . .+ x2
n

λ2

) ν
2
+ n

2

(n ≥ 1). (2.41)
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2.2 The interday formulation

The choice of these authors has been that of setting

pXτ (1),...,Xτ (1+(n−1)τ)(x1, . . . , xn) =
1√
τn
s
(n)
ν,λ(

x1√
τ
, . . . ,

xn√
τ
). (2.42)

This Student distribution provides both analytic tractability and good fit to real

market data (see (18) for the details).

• Convex combinations of Gaussian PDF’s with varying widths (see, e.g., 52, and

references therein) have been used for example in (7). The idea has been de-

veloped in an intraday context, but can be naturally extended to an interday

landscape, too. The g function is the following:

g(x) =

∫ +∞

0
dσρ(σ)

e−
x2

2σ2

√
2πσ2

. (2.43)

where ρ(σ) is a normalized, positive measure in ]0,+∞[. Incidentally, the nor-

malization of ρ implies the correct normalization of g:

∫ +∞

−∞
g(x)dx =

∫ +∞

0
dσρ(σ)

∫ +∞

−∞
dx

e−
x2

2σ2

√
2πσ2

=

∫ +∞

0
dσρ(σ).

As already mentioned, the Schoenberg’s Theorem (2, 43, 49) shows that the more

general g’s that satisfy the model conditions are in the form of Gaussian mixtures.

For this reason, in the following, we will exclusively refer to this choice.

2.2.5 The Gaussian mixture formulation

Given the form of Eq. 2.43 for the scaling function g, one naturally faces the task of

detecting the most suitable form for the ρ(σ). This can be easily identified, e.g. by

matching its moments with those of g, and by relating the large behavior of ρ(σ) with

the large |x| behavior of g(x). For instance, ρ may decay as a power law at large σ’s if

the moments of g are expected to be infinite above a given order.

The choice for the shape of the ρ function can be guided, although not directly, by

the distribution of the volatility. Anyway, the evaluation of the parameters of these ρ’s

is done by fitting the scaling function g.

We will use, e.g., the following alternative parametrizations:

i) A form that provides power law decay for large σ is:

ρ(σ) = A
bν−λ−1σλ

bν + σν
. (2.44)
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2. A MODEL BASED ON SCALING

This parametrization, used for instance in (49), has three free parameters (ν, λ

and b), while A = A(ν, λ, b) is a normalization factor derived by imposing:

1 ≡
∫ +∞

0
dσρ(σ) =

∫ +∞

0
dσA

bν−λ−1σλ

bν + σν
. (2.45)

ii) A common choice is to use the inverse gamma function:

ρ(σ) =
σα

0

Γ(α)σ1+α
exp

(

−σ0

σ

)

; (2.46)

as will be clear in a moment, this function probably best fits the data both for

low and large values of σ. It has two parameters.

iii) Finally, another standard reference function is the log-normal distribution:

ρ(σ) =
1

σ
√

2πσ2
0

e
− (ln σ−µ)2

2σ2
0 , (2.47)

which again has only two parameters.

To evaluate the difference between these three, we show how they best approximate

the daily volatility of the S&P500 in the period 1983-2010. To do so, according to (17),

we use the following definition of the daily volatility proxy :

σp =
1

Nd

Nd∑

i=1

|x5′(i)|, (2.48)

where x5′(i) is the i-th return of the day, on a 5 minutes scale, and Nd is the total

number of these intraday returns.

The distribution of the so defined σ’s is shown in Fig. 2.2, as long with the three

different fitting functions.

Looking at Fig. 2.2, the inverse gamma seems to be the best fitting function for

the volatility proxy. This evidence is not directly related to the optimal choice of the

ρ function and, as will be seen hereafter, the other choices give a comparably good

agreement for the scaling collapse, too.

2.2.6 The model for daily series

In this section we summarize the results so far achieved and we describe the model

for reproducing daily series. The subject is still developing in these days (10) and

particular efforts are devoted to the problem of the calibration, which is essential in an

interday context.

Anyway, the results so far established are:
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Figure 2.2: Empirical distribution of the volatility proxy of the S&P500 dataset (from

1983 to 2010, 4969 days, Nd=75). The best fits with the candidates for the ρ functions are

given, too.

• The time-inhomogeneous scaling property of Eq. 2.37 of the returns of a financial

time series suggests a general form for the ensemble PDF of the returns them-

selves.

• Starting from particular days, which can be identified with peculiar events or

shocks in the market history (or possibly also with a realization of a stochastic

Poisson process), the PDF of the daily returns evolves in time as follows (see

Eq. 2.37, specialized for τ = 1, and for t = 1, 2, . . .):

pX1(t)(x) =
1

√

t2D − (t− 1)2D
g




x

√

t2D − (t− 1)2D



 . (2.49)

• The scaling function g can be written as a Gaussian mixture (Eq. 2.43), weighted

with a ρ function which assumes, e.g., one of the forms of Eq. 2.44, Eq. 2.46 or

Eq. 2.47. The resulting form reads:

g(x) = pX1(1)(x) =

∫ +∞

0
dσρ(σ)

e−
x2

2σ2

√
2πσ2

. (2.50)

• According to Eq. 2.24, the same scaling function can be used to build the ensemble

PDF at different times, distant (i − 1) unit time intervals from the origin time
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2. A MODEL BASED ON SCALING

t = 1. The PDF is simply rescaled via the ai parameters.

pX1(1+(i−1))(x) = pX1(i)(x) =
1

aD
i

g

(
x

aD
i

)

=

∫ +∞

0
dσρ(σ)

e
− x2

2a2D
i

σ2

√

2πa2D
i σ2

. (2.51)

At the initial, special time i = 1 one has ai = a1 = 1. Analogous results can be

derived for different τ ’s:

pXτ (1)(x) =
1

τD
g
( x

τD

)

=

∫ +∞

0
dσρ(σ)

e
− x2

2τ2Dσ2

√
2πτ2Dσ2

. (2.52)

• The joint PDF function for k successive returns can be constructed, thanks to

the introduction of a generalized product in Fourier space, using Eq. 2.33, which

again is based on the same scaling function g. As an example, one can write

pXτ (1),...,Xτ (1+(k−1)τ)(x1, . . . , xk) =

∫ +∞

0
dσρ(σ)

k∏

i=1

e
−

x2
i

2(aiτ)2Dσ2

√

2π(aiτ)2Dσ2
. (2.53)

Eq. 2.53 can easily be checked to be in agreement with Eq. 2.33. Noticing that

g̃(q) =
∫ +∞
−∞ eiqxg(x) =

∫ +∞
0 dσρ(σ)e−

σ2q2

2 , one easily gets:

p̃Xτ (1),...,Xτ (1+(k−1)τ)(q1, . . . , qk) =

=

∫ +∞

0
dσρ(σ)

k∏

i=1

e−
(aiτ)2Dσ2q2i

2

=

∫ +∞

0
dσρ(σ)e−

σ2

2 (
Pk

i=1 (aiτ)2Dq2
i )

= g̃





√
√
√
√

k∑

i=1

(aiτ)2Dq2i



 . (2.54)

• The main practical issues associated with the model are:

– Identifying the scaling parameter D and the scaling function g.

– Identifying (whenever possible) the days when restarts occur (and wherein

ai = a1 = 1).
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2.3 The intraday formulation

2.3 The intraday formulation

The powerful scheme for the modeling of financial data in an interday scale can be

applied in an intraday scale, too. If the discussed model is able to reproduce the

financial time series of daily returns, this is essentially due to the scaling hypothesis.

Looking back at the equations derived in Section 2.2, and particularly at Eq. 2.18,

one immediately realizes that the model is constructed so as to be applied to different

time-scales τ . The parameters ai ruling the rescaling of the PDF of the returns are

τ -independent (see Eq. 2.28) and so the rescaling of a PDF at time t depends only on

the number of time intervals separating the time t from the initial, special time where

i = 1.

So it is possible to extend the results of Sec. 2.2 to an intraday scale, as long as the

linear correlations still vanish (we will confirm that, for the more recent high frequency

databases, Eq. 2.25 is valid down to a 5-10 minutes scale).

To do so, it is important to identify the counterpart of the market events (or shocks)

that act as a restart for the model. In other words we should define a procedure to

highlight the particular times along the series where the condition ai = a1 = 1 can be

imposed. Since every day is composed of many intervals, the restarting event should

be identified in a higher detail. In principle we need to identify the restart time with a

precision that matches the time width τ .

Within the intraday range, another procedure is available. It takes its origin from

the results of Bassler et al. (11) who analyzed the EUR/$ exchange rate in an intraday

scale, identifying a general behaviour of the volatility, which can be at the basis of

a restarting procedure for this intraday model, too. Following the evidence that the

volatility shows a clear intraday pattern, the cited authors assume that the stochastic

part of the intraday variations of the prices follow the same underlying stochastic

process every day. Even if these realizations, corresponding to the prices of every

single day, are not independent (and higher order correlations over different days are

effectively detected), these realizations constitute an ensemble of histories that can be

used, e.g., to calculate ensemble averages.

But what is more relevant, for our present ideas, is the fact that the beginning of

the day can be considered, for all practical purposes, as a restart point, a time where

we can reset the ai’s.

The generalization works as follows: be

x
(1)
1 (1), x

(1)
1 (2), . . . , x

(1)
1 (Nd), . . . , x

(M)
1 (1), x

(M)
1 (2), . . . , x

(M)
1 (Nd)
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2. A MODEL BASED ON SCALING

a given interday series of returns, being Nd the number of daily successive intervals

of given size τ = 1 and M the number of days in the series. So, from Eq. 2.49 the

following scaling relation holds, for j = 1, . . . ,M and i = 1, . . . ,Nd:

p
X

(j)
1 (i)

(x) =
1

√

i2D − (i− 1)
2D
g




x

√

i2D − (i− 1)
2D



 . (2.55)

This scaling property is valid for every day in the series, given that a scaling function

g and a scaling parameter D may be uniquely identified.

As in the interday model, the scaling function defines a PDF for the first return of

the day:

p
X

(j)
1 (1)

(x) = g(x) =

∫ +∞

0
dσρ(σ)

e−
x2

2σ2

√
2πσ2

. (2.56)

By employing Eq. 2.55, one may analogously derive the PDF for the i-th return of the

day (i = 1, . . . ,Nd). Remembering that aD
i =

√

i2D − (i− 1)2D (Eq. 2.28), one finally

gets:

p
X

(j)
1 (i)

(x) =

∫ +∞

0
dσρ(σ)

e
− x2

2a2D
i

σ2

√

2πa2D
i σ2

. (2.57)

Along the same reasoning as before, one can define a joint PDF for k successive

returns. In the present case, Eq. 2.53 takes the following special form:

p
X

(j)
1 (1),...,X

(j)
1 (k)

(x1, . . . , xk) =

∫ +∞

0
dσρ(σ)

k∏

i=1

e
−

x2
i

2a2D
i

σ2

√

2πa2D
i σ2

. (2.58)

Note that the j-dependence is suppressed, in the previous formulas, according to

the hypothesis that every single day is a realization of the same stochastic process. We

will use all these results in Chap. 4.

2.4 Introducing the skewness: the leverage effect

As remarked by some authors (18), one of the main deficiencies of the theory so far

explained is the lack of skewness for the PDF’s and the failure to reproduce one impor-

tant stylized fact as the leverage effect. In this section we investigate the matter and

we try to show a possible solution.

The leverage effect can be defined in various ways, but essentially it is a negative

correlation between past returns and future volatilities (i.e. large returns are associated

to future periods of high volatility). An economic interpretation of this effect is still
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2.4 Introducing the skewness: the leverage effect

controversial (see (12) for a review) and as long with a satisfying quantitative descrip-

tion of it. This is also reflected by the lower number of investigation papers devoted to

it with respect to other stylized facts as, e.g., the volatility clustering.

A suggested indicator for the quantitative analysis of the leverage effect is the

leverage correlation function, defined in (16) as:

Lτ (T ) =
1

K
〈|xτ (t+ T )|2xτ (t)〉 (2.59)

where the normalization factor K takes the following suitable form:

K = 〈xτ (t)
2〉2. (2.60)

The empirical average is thus realized by averaging over t.

We want to investigate if the model described in the previous sections may approx-

imate the empirical results. The model generates symmetric PDF’s. Looking at the

general form of the model PDF’s (Eq. 2.43) one immediately realizes that g(x) = g(−x)
and this symmetry extends, due to scaling, to all the PDF’s, for every t and τ (Eq. 2.37).

There is a link between the leverage effect and the skewness of the price returns distri-

bution: if we look at the theoretical counterpart of Eq. 2.59, taking e.g. τ = T = 1, we

have (for i = j + 1)

L
(th)i,j

1 (1) = 〈x2
ixj〉p

=

∫ +∞

0
dσρ(σ)

∫ ∫

dxidxj x
2
ixj

e
−

x2
i

2a2D
i

σ2

√

2πa2D
i σ2

e
−

x2
j

2a2D
j

σ2

√

2πa2D
j σ2

. (2.61)

Clearly the integral vanishes, because of the symmetry properties of the xj integrand.

The same result is obtained for different T ’s and τ ’s. Thus, the absence of skewness of

the PDF’s in this symmetric model forbids any correlation of odd powers of x, leverage

effect included.

One possible way to introduce a certain degree of skewness, without altering the

general scheme of the so far exposed model, is that of defining the scaling function g

as a Gaussian mixture not only with respect to the variance σ, but also with respect

to the mean µ, as follows:

g(x) = pX1(1)(x) =

∫ +∞

0

∫ +∞

0
dσdµ ψ(σ, µ)

e−
(x−µ)2

2σ2

√
2πσ2

. (2.62)

As a simplest example, one may write

ψ(σ, µ) =
1

2
ρ1(σ)δ(µ − µ1) +

1

2
ρ2(σ)δ(µ − µ2), (2.63)
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with ρ1 and ρ2 two normalized measures. The ψ function is itself a normalized measure,

as

∫ +∞

0

∫ +∞

0
dσdµ ψ(σ, µ) =

1

2

∫ +∞

0
dσρ1(σ) · 1 +

1

2

∫ +∞

0
dσρ2(σ) · 1 = 1. (2.64)

The introduction of a mixture of non-zero centered Gaussians provide a good scheme

for obtaining non-zero odd-power moments. In fact, with the definition of Eq. 2.63,

Eq. 2.62 becomes:

g(x) = pX1(1)(x) =

∫ +∞

0
dσ

ρ1(σ)

2

e−
(x−µ1)2

2σ2

√
2πσ2

+

∫ +∞

0
dσ

ρ2(σ)

2

e−
(x−µ2)2

2σ2

√
2πσ2

. (2.65)

and so, for instance, the mean value of the distribution of the first return is:

〈x〉p =

∫

dx xPX1(1)(x)

=

∫ +∞

0
dσ

ρ1(σ)

2

∫

dx x
e−

(x−µ1)2

2σ2

√
2πσ2

+

∫ +∞

0
dσ

ρ2(σ)

2

∫

dx x
e−

(x−µ2)2

2σ2

√
2πσ2

=
µ1

2
+
µ2

2
. (2.66)

As long as µ1 6= −µ2 the PDF of the first return is non-zero centered. One may keep the

non-arbitrage condition by imposing µ1 = −µ2 = µ. Even with this choice the model

can have an asymmetry in the PDF, thanks to the arbitrary form of the ρi functions.

In passing, we notice that one can always impose µ ≥ 0, upon possibly exchanging the

indexes of the ρ’s.

Baldovin and Stella have shown (49) that a generic form for the joint PDF of N

successive returns pN that preserves the scaling hypothesis is possible even with these

non-zero centered mixtures:

pX1(1),...X1(N)(x1, . . . , xN ) =

∫ +∞

0

∫ +∞

0
dσdµ ψ(σ, µ)

N∏

i=1

e
−

(x−biµ)2

2a2
i

σ2

√

2πa2
i σ

2
, (2.67)

with1 ai = i2D − (i − 1)2D and bi = iD − (i − 1)D. This formula is compatible with

Eq. 2.62, as it should.

We can use Eq. 2.67 and Eq. 2.63 (with µ1 = −µ2 = µ) to calculate the expected

values of the generic i-th return (i = 1, 2, . . .):

〈xi〉p =

∫

dx x pX1(i)(x)

1Notice the slight change in the notations: the exponent D is now included in the definition of ai

(compare with Eq. 2.28).

30



2.4 Introducing the skewness: the leverage effect

=

∫ +∞

0
dσ

ρ1(σ)

2

∫

dx x
e
−

(x−biµ)2

2a2
i

σ2

√

2πa2
i σ

2
+

∫ +∞

0
dσ

ρ2(σ)

2

∫

dx x
e
−

(x+biµ)2

2a2
i

σ2

√

2πa2
i σ

2

=
biµ

2
− biµ

2
= 0. (2.68)

Analogously, upon defining 〈σα〉ρ ≡
∫
dσσαρ(σ), we derive the second and the third

moment:

〈x2
i 〉p =

∫

dx x2 pX1(i)(x)

=

∫ +∞

0
dσ

ρ1(σ)

2

∫

dx x2 e
−

(x−biµ)2

2a2
i

σ2

√

2πa2
i σ

2
+

∫ +∞

0
dσ

ρ2(σ)

2

∫

dx x2 e
−

(x+biµ)2

2a2
i

σ2

√

2πa2
i σ

2

=

∫ +∞

0
dσ

ρ1(σ)

2

∫

dx (x+ biµ)2
e
− x2

2a2
i

σ2

√

2πa2
i σ

2

+

∫ +∞

0
dσ

ρ2(σ)

2

∫

dx (x− biµ)2
e
− x2

2a2
i

σ2

√

2πa2
i σ

2

= b2iµ
2 +

a2
i

(
〈σ2〉ρ1 + 〈σ2〉ρ2

)

2
(2.69)

and

〈x3
i 〉p =

∫

dx x3 pX1(i)(x)

=

∫ +∞

0
dσ

ρ1(σ)

2

∫

dx (x+ biµ)3
e
− x2

2a2
i

σ2

√

2πa2
i σ

2

+

∫ +∞

0
dσ

ρ2(σ)

2

∫

dx (x− biµ)3
e
− x2

2a2
i

σ2

√

2πa2
i σ

2

=

∫ +∞

0
dσ

ρ1(σ)

2
(b3iµ

3 + 3biµa
2
iσ

2)

+

∫ +∞

0
dσ

ρ2(σ)

2
(−b3iµ3 − 3biµa

2
iσ

2)

=
3

2
bia

2
iµ
(
〈σ2〉ρ1 − 〈σ2〉ρ2

)
(2.70)

The skewness γ1 ≡ 〈x3〉

〈x2〉
3
2

of the distribution, defined as the third standardized mo-

ment, is then larger than zero if 〈σ2〉ρ1 > 〈σ2〉ρ2 and negative if 〈σ2〉ρ1 < 〈σ2〉ρ2 (we

had set µ ≥ 0). Referring to the financial data we may impose the second inequality,

since we want the fatter tail on the right (negative) side of the PDF’s.
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We are now ready to verify the existence of a leverage effect in this model: the new

form of Eq. 2.61 is:

L
(th)i,j

1 (1) = 〈x2
i xj〉p

=

∫∫

dσdµ ψ(σ, µ)

∫∫

dxidxj x
2
ixj

e
−

(xi−biµ)2

2a2
i

σ2

√

2πa2
i σ

2

e
−

(xj−bjµ)2

2a2
j

σ2

√

2πa2
jσ

2
,

=

∫

dσ
ρ1(σ)

2

∫

dxi x
2
i

e
−

(xi−biµ)2

2a2
i

σ2

√

2πa2
i σ

2

∫

dxj xj
e
−

(xj−bjµ)2

2a2
j

σ2

√

2πa2
jσ

2

+

∫

dσ
ρ2(σ)

2

∫

dxi x
2
i

e
−

(xi+biµ)2

2a2
i

σ2

√

2πa2
i σ

2

∫

dxj xj
e
−

(xj+bjµ)2

2a2
j

σ2

√

2πa2
jσ

2

=

∫

dσ
ρ1(σ)

2

[(
b2iµ

2 + a2
i σ

2
)
· bjµ

]

−
∫

dσ
ρ2(σ)

2

[(
b2iµ

2 + a2
iσ

2
)
· bjµ

]

=
a2

i bjµ

2

(
〈σ2〉ρ1 − 〈σ2〉ρ2

)
. (2.71)

We will check later (Sec. 4.1.3.1) the agreement of this formula with the data. Here we

just stress what follows:

• the asymmetric features of the g(x) make a leverage effect emerge in the model;

• the sign of the effect is in agreement with the choice 〈σ2〉ρ1 < 〈σ2〉ρ2 that, as seen

above, gives a negative skewness;

• the effect is not symmetric under i ↔ j exchange, as expected. As a drawback,

the effect is not zero for j > i, even if smaller than for i > j.
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The interday formulation

An approximate answer to the right problem

is worth a good deal more than

an exact answer to an approximate problem.

J.W. Tukey

For in a minute there are many days.

W. Shakespeare

3.1 Detecting scaling symmetries

In the present and in the following chapter we will separately study interday (Chap. 3)

and intraday returns statistics (Chap. 4). We will verify, over different time scales

and time lags, the scaling assumption of Eq. 1.8 on which the theory of Chap. 2 is

based. Moreover, we will explore some consequences and effects deriving from this

scaling approach, that also focus on the predictive power of the model. However,

before approaching this task, some general remarks about the way of detection of

scaling symmetries are in order.

Since the idea of scaling was brought into the financial market analysis, many studies

have been devoted to the verification of the scaling hypothesis and to its consequences

(see, e.g., 11, 21, 34, 37, 48). Given the importance of the topic, we decided to explore

and to test further the scaling hypothesis, principally aiming at the validation of a

method that may drive with sufficient reliability to the identification of the scaling

function and of the scaling exponent. In addition, in case of returns calculated over

different trading days in non continuous markets, we explored the effect of the inclusion

or of the exclusion of the overnight return. We will refer in particular to the following

high frequency dataset: the collection of S&P500 index values from 9:35 to 16:00 NY
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3. THE INTERDAY FORMULATION

time, from September 30th 1985 to October 20th 2010. We deal altogether with 6253

days, with 78 returns per day (and one additional overnight return).

3.1.1 The scaling over different time scales: dealing with overnight

returns

The range of validity of Eq. 1.8 is not obviously infinite. As already noted in Sec. 2.2.4,

the CLT generates a crossover to normal scaling for sufficiently large time lags τ . On

the other hand, the financial series are finite and actually not so long. Therefore it is

difficult to build rich statistics of returns over long times: with our 25 years of data,

e.g., only 6252 non overlapping daily returns can be obtained, a really unsatisfactory

value to investigate the shape of the histogram of the returns, particularly in the tails!

One solution may be that of taking also overlapping returns1, but at the costly price

of having strongly correlated returns.

The construction of the returns preliminarily proceeds as follows: first of all we

construct the series of 5-min returns2 {x5(t)} (neglecting the overnight). Therefore,

having obtained 78 returns per day (487734 returns altogether), we profit of the additive

property of log returns, to build the returns over different time lags: to generate the

series of (overlapping) returns at a (5 ·n)-min scale (n ∈ N≥2), we simply add successive

returns:

x(5·n)(t) = x5(t) + . . .+ x5(t+ (n − 1)), t = 1, 2, . . . , 487734 − (n− 1). (3.1)

The returns series obtained in this way are rescaled according to Eq. 1.8. When dealing

with a long time series, the time-inhomogeneous effects, that are evident only in limited

time windows, disappear: the inhomogeneities are also leveled off by the sliding window

sampling, and then one has D = 1/2. The returns on a time scale τ are then divided

by τ1/2. The returns are aggregated on an histogram and normalized, again according

to Eq. 1.8. The result is presented in Fig. 3.1 for τ = 10 min, . . . , 5 days3. In any case,

for τ ’s larger than 10 days, some problems arise with these returns, as can be seen in

Fig. 3.2.

The reason for this scaling breakdown must be found in the way the returns are built

in Eq. 3.1. When times larger than one day are considered, the overnight return starts

1With the expression overlapping returns we refer to the returns generated across overlapping time

intervals. For instance, given the historical series S(1), S(2), S(3), S(4)... the returns x2(1) = S(3)−S(1)

and x2(2) = S(4) − S(2) are overlapped in the time interval 2 − 3.
2We remember that with return we actually decided to refer to the log-returns as defined in Sec. 1.1.2
3For clarity, we highlight that the returns over a time lag of 1 day (5 days) are built by summing

78 (390) consecutive 5-min returns. We stress again that the overnight return is left out.
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Figure 3.1: Scaling collapse of S&P500 returns (1985-2010), without overnight returns.

The returns over a time lag of 1 day (5 days) are built by summing 78 (390) consecutive

5-min returns, again without the overnight return. The scaling hypothesis of Eq. 1.8 is

reasonably well verified on the reported time scales.

-0.01 0 0.01 0.02

0.01

1

100

10 min - 5 h
1 day
5 days
10 days
20 days
50 days
100 days

Figure 3.2: Scaling collapse of S&P500 returns (1985-2010), without overnight returns.

The returns over a time lag of n days are built by summing 78 ·n consecutive 5-min returns,

without the overnight return. The scaling breaks for τ ’s larger than 10 days.
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Figure 3.3: Difference between the S&P500 index value and the virtual S&P500 value

reconstructed from the returns calculated via Eq. 3.1, without the overnight contribution.

The overnight returns significantly contribute to the trend of the index.

being important because it is essential to the trend of the index itself, as evident from

Fig. 3.3 where the S&P500 index value is compared to the virtual S&P500 value recon-

structed from the returns calculated via Eq. 3.1, without the overnight contribution.

Therefore another procedure has been used to investigate the scaling over large

times: directly calculate the return from the index value, neglecting the presence of a

peculiar return (or better, of a peculiar time window where the market is closed and no

trading occurs). The result of this scaling collapse, obtained for τ = 3 days 150 days,

is displayed in Fig. 3.4. The inclusion of the overnight returns appears to be essential

to the validation of the scaling assumption for time intervals of more than some days.

A direct comparison between the results of Fig. 3.1 and Fig. 3.4 is not possible,

essentially because of the different way in which the returns are calculated and of the

different treatment of the overnight returns. Moreover in Fig. 3.1 the collapse is referred

to a 5 minutes scale, while in Fig. 3.4 to a 1 day scale. Nevertheless, it’s surprising to

see in Fig. 3.5 the good overlap of the two different sets of returns: those calculated up

to a time lag of 5 days via Eq. 3.1 (without the overnight) and the interday sets with

the overnight included.

In conclusion, the scaling is verified for both sets of returns. The mixing of the two

should be done only after a deep analysis of the effect of the overnight return has been

made. In particular, the inclusion of the overnight return is essential to reproduce the
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Figure 3.4: Scaling collapse of S&P500 returns (1985-2010) with overnight returns in-

cluded. The scaling lasts for τ ’s larger than 10 days, up to about 100 days and more.

Compare with Fig. 3.2

-0.01 -0.005 0 0.005 0.01

1

100

intraday sets
interday sets

Figure 3.5: Comparison between the scaling collapse of S&P500 intraday and interday

(overnight included) returns (1985-2010). The expression intraday sets here refers to re-

turns calculated via Eq. 3.1, up to a time lag of 390 · 5 min = 5 days. The overlap of the

two sets of histograms is not fully expected (see text).
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3. THE INTERDAY FORMULATION

scaling collapse for series of interday returns (Fig. 3.4).

In the following, however, we will keep these two worlds separate, dealing separately

with interday (in this chapter) and intraday (in Chap. 4) returns statistics.

3.1.2 Overnight vs. over-weekend returns

In the previous section we left out one potentially relevant issue: during some days

(Sundays, holidays, ...) the market is closed. We discarded this problem by linking

every market day with the following one, irrespective of the presence of holidays, and

then neglecting to discriminate between the different time lag of the returns. We

generally referred to overnight returns, but actually the difference in time can be as

large as one overnight and one day (the return after one single day of holiday) or one

overnight and two days (the return after the weekend). Substantially, we assumed that

every weekend and every holiday lasts exactly one night.

In the following, we want to verify whether this assumption is justified. A first key

observation is that the scaling collapse of Fig. 3.4 seems not to be affected by problems

of this kind: actually, a careful check of the legend suggests that the scaling collapse

is obtained right with time lags that do not include the days of market closure. This

is a very different result, with respect to the result of Fig. 3.2, obtained neglecting the

overnight return, where the scaling was not verified.

Furthermore, a detailed work of selection permits us to separate the overnight from

the over-weekend returns. So, leaving out the poor statistics for returns over single

days of holiday and for those of more than two days of market inactivity, we can build

an histogram for both sets of selected returns: the result is displayed in Fig. 3.6. The

graphs highlight a good overlapping of the two statistics and clearly suggest that the

assumption of treating overnight and over-weekend returns in the same way is valid.

The result can be extended by induction to the other, more rare, closing intervals.

3.2 Simulating histories

The computer simulation of stochastic series obeying given statistics is a complex task

and, unavoidably, we will only face the problem with methods and tools commensurated

with the limits and the aims of this thesis. Nevertheless a glimpse of the adopted

procedures for the generation of intraday and interday series of returns will be given,

for completeness.

The central issue, in this specific context, is the necessity of generating returns series

according to PDF’s defined as in Eq. 2.52 or in Eq. 2.57 for intraday and interday
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Figure 3.6: Comparison between the returns (S&P500 1985-2010) over one single night

and over one weekend (left). To smooth the graph, the average (over 15 bins) has been

run (right).

returns, respectively. As a preliminary to this, one must also decide how to spot

the days (in the interday context) or the minutes (in an intraday context) when the

reset of the ai parameters occurs. One adopted solution for the interday scheme is to

randomize the reset of the ai’s according to a Poisson distribution of a given variance

(typically ranging between 30− 150 days). For the intraday scheme, instead, following

the reasoning already exposed in Sec. 2.3, the generation of the returns is done according

to the choice ai = a1 = 1 for the first return of the day.

The goal of generating returns with probability given by the desired PDF’s is ul-

timately achieved by application of the so called rejection sampling, a method first

proposed by von Neumann (50) and also called accept-reject algorithm (41). It unfolds

in two steps:

I a σ̃ is chosen, according to the PDF expressed by the ρ(σ) function;

II for every t = 1, 2, . . . , tf , with tf the time of the next restart, a Gaussian stochastic

variable is generated, with 0 mean and a2
t σ̃

2 variance.

Let us give some more details for I. The procedure necessarily passes through the

discretization of the σ variable and of the ρ function: the σ’s range in the interval

σmin → σMax, where the limits are chosen according to the given statistics (for instance,
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3. THE INTERDAY FORMULATION

σmin may be half the lowest and σMax twice the highest absolute return in the history

of real market data to be replicated by the model).

The ρ function is discretized as follows: ρ(σ) → ρ(σl) with l = 1, 2, . . . , lMax and

σ1 = σmin, σ2 = σmin + ∆, . . . σlMax
= σmin + (lMax − 1)∆ = σMax.

The interval ∆ is chosen so that ∆ = (σMax−σmin)/(lMax−1) and the normalization

condition for the ρ is
∑lMax

l=1 ∆ · ρ(σl) = 1.

The choice of the σ̃ is made in the discrete range σ1, σ2, . . . σlMax
. One random,

uniformly chosen r is picked in the interval [0, 1[ ; then if ∆ · ρ(σ1) > r the choice is

σ̃ = σ1 otherwise if
∑l̃−1

l=1 ∆ ·ρ(σl) ≤ r and
∑l̃

l=1 ∆ ·ρ(σl) > r the choice is σ̃ = σl̃. It is

easy to convince oneself that, drawing more and more σ̃’s, one finally gets a distribution

that approximates the ρ function, in its discretized form.

After a σ̃ is picked, with the right probability, a Gaussian variable is easily generated,

with time-dependent variance a2
t σ̃

2.

3.3 Omori law for financial aftershocks

3.3.1 Introduction

One critical observation suddenly emerges as one approaches the study of the statistical

properties of the returns of the financial time series: intermittent volatility bursts occur,

usually followed by periods of relatively high volatility (if compared to the average value

of the previous periods) where possibly other bursts occur (see, e.g., 47). These events

are referred as ”shocks” of the market, and are often anticipating periods of financial

crisis (see, e.g., 28). This stylized fact shows clearly the statistical non-independence

of successive returns, in an appropriate time scale.

The analysis of shocks and rare events in complex systems is not uncommon in

different fields of natural and social sciences. For example we may cite earthquakes,

landslides, forest fires and scale free networks: the power-law distributions characteriz-

ing these different areas imply that rare, extreme events may occur with a non-negligible

probability (see, e.g., 27, and references therein).

In particular, a question may arise, concerning the behaviour of a complex system

after a shock or an extreme event. Clearly this is crucial in fields, like earthquakes,

where a correct evaluation of the risks related to aftershocks can be useful both from

a social and a financial point of view. Omori (38), more than a century ago, described

with his famous Omori-law the behaviour of the statistics of aftershocks in the non-

stationary period following a big earthquake.

40



3.3 Omori law for financial aftershocks

According to his formulation, the number of aftershocks per unit time can be de-

scribed by a power law, implying also that a characteristic time-scale for the relaxation

of the system does not exist.

The idea of Omori (38) was applied in finance by Lillo and Mantegna (30): the

authors analyzed the period following two extreme events in the S&P500 index and

found good indications of power law relaxation regimes, leading ultimately to the result

that, in a given horizon after a financial shock, index returns above a large threshold

obey a power-law function which is the analogue of the Omori-law in geophysics.

We want to generalize the idea of Lillo and Mantegna (30), trying to investigate the

possibility of an ensemble analysis of different shocks, in order to compare the empirical

results with those of the model presented in Chap. 2 and in (8, 48).

3.3.2 From the non-stationary behaviour of financial series to the

Omori law for finance

The empirical investigation of the behaviour of a financial time series shows the non-

stationarity of the underlying stochastic process, in particular time intervals. The

volatility of an asset or of an index which is here defined as the absolute value of the

asset return, is itself a stochastic process, fluctuating in time. This evidence is clear,

e.g., for one of the set we analyze in the following: the S&P500 index daily returns1

from 1950 to 2010 (see Fig. 3.7). The non-stationarity is revealed in periods of increased

and of persistence of high volatility after the occurrence of main shocks. In fact, if we

zoom the graph in Fig. 3.7 around one of the peaks of volatility, we can see, for example

as in Fig. 3.8, that even before and particularly after the large return X1, the volatility

has a mean value that largely exceeds the average value of the, let say 100, previous

days and that a certain evolution in time of the distribution of the volatility is also at

first sight detectable.

To be more precise and to try to define a strategy for an application of the Omori

law in an interday scale, we wish to adhere as much as possible to the model of Omori

(38) in the formulation of Lillo and Mantegna (30). The Omori law n(t) ∝ t−p asserts

that the number of expected aftershock earthquakes per unit time at time t after the

main shock decays as a power law with an exponent p that for earthquakes ranges

between 0.9 and 1.5. To avoid divergence at t = 0, the Omori law is often rewritten as

n(t) = K(t+ τ)−p, (3.2)

1More precisely, the difference of the log of the S&P500 index values at close time.
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Figure 3.7: S&P500 index log-returns from 1950 to 2010 (15386 records).
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Figure 3.8: S&P500 index log-returns (zoom)
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with K and τ two positive constants. For our present purposes it’s convenient to write

it in an integrated form: the cumulative number N(t) of expected aftershocks is

N(t) = K[(t+ τ)1−p − τ1−p]/(1 − p), (3.3)

when p 6= 1 and N(t) = Kln(t/τ + 1) for p = 1. This formulation of the Omori law is

more convenient because, integrating over time, it reduces the fluctuations due to the

limited size of the sample histories. Since the validity of the law is limited to aftershock

periods, when applying this law it’s important to state what do we mean with ”shock”.

In our financial context, we will refer to a ”shock” as to an event (a single return x)

whose absolute value exceeds a given threshold XTh which is supposed to be ”large” if

compared to the average value of the absolute returns. A different number of shocks

can be highlighted from the time series, depending on the size of the chosen threshold

XTh.

Another question arises as one considers the time distance between successive

shocks. Following Lillo and Mantegna (30), we may assume that the time over which

the Omori effect can be spotted and analyzed is in the maximum range of 50-70 days,

values that come from maximizing the time period investigated whilst assuring that the

relaxation is still in progress. What if another shock occurs during that period? How

is the process affected? Several different choices have been made during our analysis,

both including and disregarding such overlapping events. We will come later to that

point: by now we just wanted to focus on the, possibly relevant, freedom of choice for

the selection rules for the shocks, affecting the total number of shock events in the time

series.

The goal of our study is to spot the Omori-like pattern of the aftershocks statistics

by averaging over different events, which are, for the sake of simplicity, supposed to be

independent and different realizations of the same stochastic process. We will find a

substantial agreement with the Omori law and we will test the empirical results with

the related predictions which can be derived from the model presented by Baldovin and

Stella (8, 48), that will be hereafter explained.

3.3.3 Aftershocks analysis via Omori law

The datasets used in this analysis are:

(i) S&P500 index daily log-returns (close to close) from 1950 to 2010 (15386 records)

(ii) DJI index daily log-returns (close to close) from 1900 to 2010 (26588 records)
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The analysis of the series starts from the definition of the value XTh and X, the

threshold for the main shocks and for the aftershocks, respectively. Working in day

time units (1 = 1 day), we scroll the time series of the returns xt top down until we

detect a return xt for which |xt| > XTh. From that point on (we will set x1 ≡ xt)
1 we

focus on the tmax − 1 successive returns x2, . . . xtmax
2. We calculate, for that particular

time window, the cumulative number of aftershocks (i.e. the cumulative number of

returns exceeding the threshold X from t = 2 to t = tmax, as a function of t). We will

denote with N(1, t), for t = 2, . . . tmax, the cumulative number of detected aftershocks

relative to this 1st shock, up to time t.

If |xk| > XTh, for some tk in the interval 2 ≤ t ≤ tmax, we set xk ≡ x1 and we

start again selecting tmax −1 successive returns, on which we apply the aforementioned

procedure of aftershock detection, deleting the results for N(1, t) calculated up to that

point. In this way we assume that only the last large shock is important and that the

presence of main shocks occurred just before the last one doesn’t affect the aftershocks’

statistics. The efficiency of this assumption has been checked.

After evaluating N(1, tmax), we start scrolling down again the series until we reach

another day t̃ for which |xt̃| > XTh. Again we set x1 ≡ xt̃ for this new large shock and,

with the same rules as before, we evaluate N(2, t), for t = 2, . . . tmax, and so on and so

forth until we reach the end of the series.

We end up with a set of NS different shocks, for each one of which we have a

detailed record of the cumulative aftershocks occurrence: N(n, t) for n = 1 . . . NS and

t = 2 . . . tmax. Taken one by one these NS series of data are very noisy3 and don’t

show a clear adherence with the Omori law, but, assuming that the same Omori like

behaviour for all the shocks4 holds, we can tentatively average them over the different

n’s. We will call N(t) this average taken over the different n’s. The results are presented

in Fig. 3.9 for the S&P500 dataset. The fluctuations are larger in Fig. 3.9(b) than in

Fig. 3.9(a), because of the smaller number of shocks spotted for the choice of a larger

threshold XTh.

The fit with the Omori law gives the results of Tab. 3.1. However a simple debug-

ging of the fitting process reveals that these parameters do not represent an efficient

1The reason for setting t = 1 at the shock and not t = 0 as prescribed by Eq. 3.3 will be clear

below, in section 3.3.4. However, this is related to our choice of numbering the returns of the model

series stating from 1.
2tmax is chosen in the range of 30 − 40 days, to maximize the number of valid shocks.
3After all this is not surprising, since the performed analysis highlights aftershock events, that are

rare events, statistically distributed in the tails of the returns distribution.
4This is an arbitrary assumption, to be checked a posteriori after the Omori law parameters have

been estimated.
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Figure 3.9: Cumulative number of aftershocks till time t for the S&P500 index shocks

(two different choices for XTh are shown). The Omori-law fit is dashed. Notice the larger

fluctuations in (b)
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Table 3.1: Omori law parameters for the shock of Fig. 3.9

X = 0.018 0.022 0.026

xTh = 0.44

K 1.62 0.74 0.63

τ 7.73 2.99 4.00

p 0.71 0.68 0.83

xTh = 0.54

K 0.63 0.66 0.42

τ 1 1 1

p 0.51 0.77 0.86

parametrization of the process. Moving or fixing one of the parameters gives indistin-

guishable dashed curves in Fig. 3.9 (but significantly different values for the other two).

This suggests that a lower number of parameters may suffice to describe the process.

This was particularly evident for the records for XTh = 0.054, where we decided to set

τ = 1 to find reasonable values for K and p.

The choice of the thresholds is crucial, as can be argued comparing the graphs in

Fig. 3.10. If XTh is too small, as in Fig. 3.10(a), the growth of N(t) is almost linear,

indicating that we’re not in an Omori regime (the shocks are not sufficiently large). On

the other side, if XTh is too large, as in Fig. 3.10(c), the number of shocks is low and

the aftershocks’ statistics is very poor.

In any case it’s remarkable the verification of an Omori-like behaviour, obtained by

this averaging process over different shock events. This is another stylized fact which

should be predicted by a good model for financial returns. That’s what we check in

the next section.

3.3.4 The model predictions for the Omori regimes

We want now to show that the model presented in Chap. 2 predicts the Omori-like

features highlighted in the previous section, and we check to what extent the Omori-

like behaviour of financial aftershocks can be used to calibrate the model itself.

One of the key aspect of the model is the capability of writing explicit expressions

for the joint probability of multiple successive returns. Working again in a one-day time

scale, indicating with xi the daily close to close return of the i-th day, we can write down
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Figure 3.10: Cumulative number of aftershocks till time t for the DJI index shocks (three

different choices for XTh are shown).
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in the following form the expression for the joint probability density p(x1, x2, . . . , xt) of

getting the returns x1, x2, . . . , xt at day 1, 2, . . . , t, respectively:

p(x1, x2, . . . , xt) =

∫ ∞

0
dσρ(σ)

t∏

i=1

exp
(

− x2
i

2σ2a2
i

)

√

2πσ2a2
i

, (3.4)

where

ai ≡
[
i2D − (i− 1)2D

]1/2
, i ∈ N1 (3.5)

and where ρ(σ) is a normalized function, obtained by fitting the scaling function g(x)

of the single returns (see Chap. 2 for the details).

The model can be applied as follows: the basic formulation of the intraday model

is that the average stationarity detected across the long time series is caused by the,

more or less randomly occurring, resets of the ai parameters. Here we assume that

the occurrence of an extreme event, like the shock, may reset the process, leading to

the setting ai = a1 for the day of the shock. From that day on, unless other shocks

occur, the ai’s evolve daily according to Eq. 3.5, at least in the range of interest of

the Omori-like decay. This assumption is quite strong and, ultimately, not strictly

verifiable. However, we take it as an ansatz, and in a following section we will discuss

the problem from an alternative perspective, leading to similar results.

To investigate the probability P (|xt| > X | x1) of getting in the day t a return

|xt| > X , given a shock at day 1 (|x1| > XTh), we can make use of the definition of

conditioned probability density

p(x2, . . . , xt|x1) =
p(x1, x2, . . . , xt)

p(x1)
. (3.6)

We can explicitly write that probability by integrating Eq. 3.6 over the variables

x1, x2, . . . , xt, with the conditions:

(i) x1 = x1,

(ii) |x2|, . . . |xt−1| < XTh ≃ ∞,

(iii) |xt| > X.

In (i) we condition the probability to the size of the shock at t = 1 while in (iii) we

restrict the range of the return at time t to values above the aftershock’s threshold.

With the approximation (ii), for simplicity, we just neglect the conditional constraint

from the t − 2 returns x2, . . . , xt−1
1. However, since the threshold XTh is chosen to

1The inclusion of the more correct condition |x2|, . . . |xt−1| < XTh may be tested, too. Further

developments may include the verification of the influence of this choice, also in combination with the

different possible methods for the selection of the shocks.

48
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be large, compared to the square root of the second moment of the distribution of the

returns, the assumption (ii) is guaranteed in practice. The result is straightforward:

P (|xt| > X | x1) =

2

∫ ∞

0
dσρ(σ)

exp
(

− x2
1

2σ2

)

√
2πσ2

∫ ∞

X

exp
(

− x2
t

2σ2a2
t

)

√

2πσ2a2
t

dxt

∫ ∞

0
dσρ(σ)

exp
(

− x2
1

2σ2

)

√
2πσ2

, (3.7)

where, as can be seen from the factor 2, the parity properties of p(x1, x2, . . . , xt) have

been taken into account.

To compare the results of the previous section with the theoretical ones, we also

write the average total number of expected aftershocks from day 2 to day t in the

following way:

N(t) =
1

K

K∑

k=1

t∑

i=2

P (|xik | > X | x1k
). (3.8)

where K is the total number of shocks in the series, and x11 , x12 . . . x1K
the amplitudes

of the shocks themselves.

Given the shape of ρ(σ), the model has only one parameter, the scaling exponent

D, which turns out to be crucial. To see it, we first define the explicit shape of the

ρ(σ), by taking an inverse-gamma density:

ρ(σ) =
σα

0

Γ(α)σ1+α
exp

(

−σ0

σ

)

, (3.9)

where σ0 > 0 is the scale factor, and α > 0 is the form factor. This function is a conve-

nient and common choice in finance when one wants to fit the realized volatilities of an

asset (see, e.g., 17). The scaling collapse is done according to the time-inhomogeneous

scaling formula Eq. 2.37 with t = 1 and τ = 1, 2, . . . , 20. The fit of the factors has been

obtained via χ2 minimization and the results are presented, both for S&P500 and DJI,

in Fig. 3.11.

The results of the fitting show that this model cannot grasp the asymmetry of the

scaling function, for which an extended development of the theory is in progress (see,

e.g., the results anticipated in Sec. 2.4).

Now the key parameter is the scaling exponent D, which has been estimated dur-

ing the scaling collapse procedure, by optimizing the collapse itself. The theoretical

behaviour of the aftershocks’ statistics (calculated via Eq. 3.7 and Eq. 3.8) is deeply

affected by the value of D. The results are plotted in Fig. 3.12 and Fig. 3.13.
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Figure 3.11: Scaling functions for the S&P500 (a) and DJI (b) datasets. The best fit with

an inverse-gamma ρ function is also shown. The collapse has been realized with D = 0.25

for (a) and D = 0.2 for (b).

3.3.5 Further detailed analysis

Remarkably the model is able to reproduce the general feature of the Omori-like af-

tershocks’ statistics, but a detailed check of Fig. 3.12 and of Fig. 3.13 shows that the

values of D appear somewhat larger than those derived via scaling analysis (Fig. 3.11).

However, given the variability over different choices ofX (compare, e.g. Fig. 3.12(a) and

Fig. 3.12(e) or Fig. 3.12(b) and Fig. 3.12(f)), we can accept the result of D ≈ 0.25÷0.30

for the S&P500 dataset and D ≈ 0.22 ÷ 0.27 for the DJI dataset.

We must remember, in any case, that the empirical results also have a statistical

error, coming from the averaging process over the different shocks. This error is quite

large, as can be seen for example in Fig. 3.14.

In addition to this, the model is really sensible to the fitted parameters of the scaling

function, too. In fact, as can be seen by parallel comparison of the Fig. 3.15(a) and

Fig. 3.15(b), even if, with different tuned values of σ0 and α, a substantial agreement on

the shape of the scaling function can be still detected in Fig. 3.15(a), the results for the

aftershock statistics depicted e.g. in Fig. 3.15(b) are significantly different, eventually

leading, in our scheme, to a different estimation on the value of D.

This result is not surprising indeed, and takes us back to the problem of the poor

statistics of our datasets: a good fitting of the scaling function, especially on the tails of

the distribution, is not possible, because of the limited size of the datasets themselves.

Even in the largest of the two, the DJI index, the number of data is just 26588, a
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Figure 3.12: Empirical vs. theoretical results for the S&P500 dataset, for two different

values of XTh (left and right columns) and three different values of X (rows). These values

of the thresholds are the same as those of Fig. 3.9. The best value for the scaling exponent

is around D = 0.3.
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Figure 3.13: Empirical vs. theoretical results for the DJI dataset, for the choice XTh =

0.050 (see Fig. 3.10(b)). The best value for the scaling exponent is around D = 0.27.
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Figure 3.14: Error bars for the empirical averages over different shocks in one of the

studied cases (DJI dataset, XTh = 0.050, X = 0.030, 23 shocks). Notice that this graph is

that for which we detected the Omori effect with the largest number of aftershocks; in all

the other cases, e.g. in the S&P500 dataset, the number of events was smaller, ultimately

leading to even larger error bars.
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Figure 3.15: DJI dataset: a slight difference in the fits of the scaling function g(x) (a)

leads to significantly different theoretical predictions for the aftershock statistics (b). In

(a) and (b), to highlight the influence of the parameters σ0 and α, the same value D = 0.24

has been used.
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number far not sufficient for good statistical stability, especially considering the fat-

tailed behaviour of the scaling function.

3.3.5.1 Beyond Omori law: an ensemble description of the shocks

Given our ansatz of setting ai = a1 for the day of the shock, we can see that, at least

formally, all the shocks and the subsequent 39-days long periods are treated by the

model in the same way, as they were realizations of the same stochastic process (with

the only difference that the conditioning size of the shock varies).

In this sense, we can assume that the collection of 40-returns long periods that is

extracted for every choice of XTh constitutes a small ensemble of histories obeying the

same statistics. Tentatively, on this dataset of ”shock periods” we can try to investigate

the model predictions, in comparison to the empirical evidences coming from averaging

procedures.

We will focus on the DJI index dataset, with XTh = 0.05. This choice gives 23

shock events and consequently an ensemble of L = 23 periods, each with 40 returns

xt,l, t = 1, 2, . . . 40, l = 1, . . . L. Even within the choice of this largest dataset, the

expected agreement will be surely affected by large statistical errors.

We want to check, in particular, the behaviour of the empirical moments of the

distribution of the returns, after the shock, as a function of time:

〈|xt|α〉e =
1

L

L∑

l=1

|xt,l|α t = 1, 2 . . . 40. (3.10)

and compare it with the theoretical counterpart:

〈|xt|α〉p =

∫ ∞

0
dσρ̃(σ)

∫ XTh

−XTh

|x|α
exp

(

− x2

2σ2a2
t

)

√

2πσ2a2
t

dx, t = 1, 2, . . . 40. (3.11)

where ρ̃(σ) is the scaling function obtained by scaling collapse of the considered returns

only (see the aforementioned procedure). It’s no surprise that, having only 23×40 = 920

returns, the scaling collapse will have a poor statistical stability, especially on the tails.

Anyway, a scaling function can be found, via χ2 minimization. This gives, for the series

in object, the following results: D = 0.25, α = 3.68, σ0 = 0.012. The scaling function

and the comparison between the empirical and the theoretical results for the moments

with α = 1, 0.5, 0.25 are given in Fig. 3.16.

Despite the statistical uncertainties and the relevant fluctuations emerging from the

analysis, the result proves that the aggregation of the different shocks can be useful

to validate the model forecasts, especially for what concerns the time-inhomogeneity
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Figure 3.16: DJI dataset: (a) The scaling collapse and the scaling function of the returns

of the 23 detected shock periods; (b)(c)(d) Comparison between the empirical absolute

moments and the model prediction, as a function of time. For the theoretical prediction, the

optimized scaling function calculated in (a) has been used. The agreement is remarkable,

despite the statistical uncertainty coming from the limited size of the dataset.
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Figure 3.17: DJI dataset. Comparison between the model predictions of the behaviour

of the 0.5 moment, over different scaling parameters (D). The fluctuation of the empirical

data forbids any preferable selection of D.

properties of the returns. The agreement between the empirical and the theoretical

values is verified upon different choices of α, and it’s remarkable that the result is

obtained just via χ2 minimization of the scaling collapse.

Nevertheless, the strong uncertainties deriving from the limited size of the dataset

forbids us a deeper, more interesting, step. The described analysis, in fact, does not

seem to represent a good method for calibrating the model itself, or to define the

limits of the scaling parameter D. Every choice of D, in fact, gives a slightly different

scaling function (i.e. different α and σ0). The combination of the three new parameters

produces not so different theoretical predictions (Fig. 3.17).

At this level of analysis, however, a joint check of the behaviour of the moments

and of the scaling should be done, in order to find the optimizing parameter for both

indicators. Ultimately this check produces, for the DJI dataset, an optimized value of

D around 0.25 (the details are not given).

3.3.6 Stability of the analysis vs. stability of the model

After checking the consistency of the aforementioned results, one of the questions that

may naturally arise regards the stability of the system. In a nutshell, given the wide
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Figure 3.18: Results of the cumulative aftershock analysis for the whole DJI history and

for tho subsets (the 1st and the 2nd half of the history, respectively). The error bars for

these two last sets are given. [For ease of reading, the sets have been slightly horizontally

shifted]

error bars coming from the empirical analysis (see, e.g., Fig. 3.14) and given the large

fluctuations of the checked indicators, how does the model deal with (and describe)

such a variability? In addition, in Eq. 3.8 and Eq. 3.7 the shock sizes enter in the

calculation and might have an important effect.

We want to check, in the present section, if the variability of the sizes of the shocks,

their order, and, more generically, the realized history of returns affect the results of the

analysis. For example what happens if we split our dataset and we check the Omori-law

behavoiur in the two subsets, separately? Do we obtain analogous results?

Again, we focus on the largest of the two datasets at our disposal, the DJI index.

We split the history into two parts and we perform the same empirical analysis as in

section 3.3.3; we set XTh = 0.05 and X = 0.03 and we present the results in Fig. 3.18,

together with the result coming from the whole DJI history.

Some remarks are necessary, here. First of all, we see that the empirical averages

significantly differ from each other, though showing the same Omori-like pattern. Sec-

ondly we emphasize the relevance of the error bars, coming from the averaging process

over the shocks: the regions of uncertainty overlap for all the three sets. Finally, we

highlight that the curves, coming from different sets (roughly the entire, the first and

the second part of the last century of data), may not be directly comparable, because

57



3. THE INTERDAY FORMULATION

-0.04 -0.02 0 0.02

1

100

DJI 1st half 
scaling function
D=0.25

inverse gamma: 
α  =4.3 
σ0=0.011

DJI 2nd half
scaling function
D=0.20

inverse gamma: 
α  =3.15 
σ0=0.035

Figure 3.19: Scaling functions for the 1st and the 2nd half of the DJI history, respectively.

In the legend, the values of the evaluated fitting parameters are shown.

the statistics of the underlying process (or, in our framework, the scaling function) may

be different.

To check this idea in detail, we build the scaling function for both sets and we

try to evaluate the model prediction on the basis of the two different scaling functions,

separately. The resulting scaling functions have been plotted together in Fig. 3.19. The

fitting of the scaling collapse gives a different scaling exponent for the tho halves of the

dataset. In particular, there seems to be a scaling exponent D = 0.25 for the first half

of the last century and D = 0.20 for the second half.

The comparison between the empirical and the theoretical curves of the Omori

aftershocks’ statistics is given in Fig. 3.20. The result is good for Fig. 3.20(b), with

the value of the scaling parameter D well reproducing the statistics of the expected

aftershocks. On the other hand, the result of Fig. 3.20(a) highlights an overestimation

of D.

The result and the poor agreement must be read in comparison with all the results

presented up to now. We have found altogether the existence of an Omori-like behaviour

over different indexes and for different levels of the threshold XTh, but with a quite large

statistical error affecting our estimations of the scaling exponent D. Moreover, having

one only history for each index, and having such large error bars, we cannot decide

upon the goodness of our estimate. We should do statistics over different histories, too.

In order to proceed further in this direction, numerical simulation is needed.
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Figure 3.20: Comparison between model prediction and empirical data for the two dis-

tinct subsets of the DJI history. The value of D is larger in the first subset than in the

second, as expected from the results on the scaling collapse (see Fig. 3.19). In (b) the

estimated value of D agrees with the scaling analysis: 0.20 − 0.22 vs. 0.20. On the other

hand, in (a) the estimated value is definitely larger than expected: 0.30 − 0.33 vs. 0.25.
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3.3.7 Omori law verification in computer generated histories

The above quoted analyses and results have shown a general qualitative agreement

between the Omori-like features of the aftershock statistics and the model predictions

following from the Baldovin and Stella model assumptions (8). On the other hand, a

large statistical uncertainty always accompanies these results, sometimes being so large

to make the model predictions very poor: certainly the Omori analysis seems unfit for

the calibration of the model itself.

One of the problems affecting this study is the presence of one single (and not so

long) history, for both indexes. One should in fact be aware of the chance of getting

scattered results, far from the expected averages, especially when dealing with statisti-

cally non significant events. This is in fact the case here, as can be checked by looking

at the error bars in Fig. 3.14: dealing with a low number of shocks ultimately leads

to a large standard deviation for the expected number of aftershocks, increasing as a

function of t.

There is a double source of uncertainty: from one side, dealing with a low number

of shocks ultimately leads to a large, increasing as a function t, standard deviation for

the expected number of aftershocks. From another side, being the historical series not

so long, we cannot be sure that the selected samples (the spotted aftershock regimes)

are good statistical representatives for the process.

First of all, in this section, we want to make this last remark more quantitative.

To do so, we generate many histories taking advantage of a calibration system for the

model that is actually in course of development (10). Using the calibrated parameters

coming from the analysis of the given S&P500 historical series we generate histories

of different length and we compare the results of the aftershock statistics analysis as

a function of the length of these series. Supposing that the model is ergodic, and the

analyses performed until now seem to guarantee it, the results should be more and

more stable as the length of the histories increases, ultimately leading to an asymptotic

result that can be considered, in the ergodic hypothesis, as the model prediction for the

process. This asymptotic convergence is quite easily verified taking very long series.

In Fig. 3.21 the results coming from eight simulated histories of length equal to that

of the available real S&P500 history (15386 returns in Fig. 3.21(a)) and eight histories

ten times longer (153860 returns in Fig. 3.21(b)) are depicted. The graphs show that

we’re still too far from the ergodic convergence, especially in the case of Fig. 3.21(a).

The error bars should have been depicted, too, but they have been omitted for

sake of clarity. Anyway, these error bars, coming from the averaging process over the

different shocks are approximately of the same size of the spread between the different
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simulations, both for Fig. 3.21(a) and Fig. 3.21(b). As expected, a longer history has

also a larger number of shocks, and so the standard deviation for N(t) is lower, too.

The model prediction is achieved taking very long series (more than 6 million re-

turns): the error bars, in this case, are below the size of the circular markers in the

graphs.

It should be now clear that with a single history of small length, as that of our

datasets, the Omori-like analysis cannot precisely identify the value of the scaling ex-

ponent. Due to the fact that our histories are far from the lenght needed to satisfy

ergodicity, the stability of the result is not guaranteed, and the value of D which best

fits the curves may significantly differ from the correct one.

The agreement between the simulations and the real history is confirmed, in a

statistical sense, for different choices of the threshold (Fig. 3.22). The behaviour of the

historical S&P500 series lays in the range of those of the simulated ones, for different

choices of the thresholds.

Thus the particular realized history can be considered as one peculiar, non represen-

tative, sample in an ensemble of short histories. Even if it has the statistical properties

of the ensemble (and actually it generates the ensemble itself), the series cannot be

useful for the detection of some parameters, such as the scaling exponent D, just by

mere application of an Omori-like analysis.

On the other hand, the analysis provides a further test of the capabilities of the

model and defines a new indicator for checking the calibration of the model: even if

it cannot help as a stand-alone calibrating machine, the Omori analysis can be used

in combination with the estimation of other indicators for the determination of the

parameters of the model.

3.3.8 Final remarks

In this chapter the Omori law for earthquakes initially presented by Omori (38), and

verified in a financial context on the basis of high frequency data by Lillo and Mantegna

(30), has been tested in the day to day return series of the DJI and S&P500 indexes.

The validation of the law in this field suggested to test the capability of the model of

Baldovin and Stella (8) with respect to the prediction of the aftershocks’ statistics.

A key role is played by the scaling exponentD, which sensibly affects the predictions.

However, this role cannot be exploited to try to determine its correct value, because,

due to the poor statistics of the shock events and to the short length of the aftershocks’

histories, the results of the prediction are not stable, as verified by splitting in two the

series or by running computer simulations.
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Figure 3.21: Each graph presents the Omori-like behaviour detected analyzing eight

different simulations of the S&P500 index. In (a) the length of the time-series is equal to

that of the historical studied series. In (b) the simulation is ten as longer. The theoretical

result coming from the ergodic assumption is also shown.
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Figure 3.22: For two different choices of the thresholds, the comparison between the

simulation results, the ergodic theoretical model prediction and the result from the available

S&P500 are given. The choice for the scaling parameter is D = 0.25. The error bars for

N(t) in the empirical and the simulation data are not shown for clarity, but they are

approximately the same size as the spread between the different simulations.
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3. THE INTERDAY FORMULATION

Eventually we can say that the model suggests that the detection of the scaling

parameter D cannot rely on the Omori analysis alone. Even if a value for D can be

derived from the aftershocks’ analysis, this value is influenced and weakened in its

stability by the low numbers of aftershocks that can be isolated in so short series.

However it is remarkable that the Omori-like features can be reproduced by the

model and that, if the statistical uncertainties are taken into account, this analysis

may represent a further test for the calibration of the model.
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4

The intraday model

Winning is optional, trying your best is not.

J. Parshall and A. Tully

4.1 The intraday analysis of returns series

In this chapter we take advantage of the scheme developed in Section 2.3 to reproduce

the financial data in an intraday context. The aim of this work is to calibrate the

model to reproduce the features of the available histories of high frequency data as well

as possible and to try to develop an intraday strategy that can possibly employ the

predictive power of the model to generate useful and profitable indications of buy and

sell operations. Since the scheme applies to high frequency data (with a time interval

between the returns that is typically as low as 5 or 10 minutes), the possible available

datasets are only those of the last 20-30 years, back to the time when the first high

frequency registrations were made in the markets.

We will concentrate our analysis mainly on these two datasets:

• EUR/$ exchange rate from March 1st 2000 to March 1st 2005,

• S&P500 index from September 30th 1985 to October 20th 2010;

but some compendiary analyses will be performed on the following two assets, too:

• IBM stock price from January 2nd 2003 to March 30th 2010,

• CAT stock price from January 2nd 2003 to December 12th 2008.

The idea we will follow is that of applying the model to the different datasets, to

derive the scaling exponent D and the scaling function g(x). We will then compare the

empirical results of some particular correlators with the theoretical predictions: we will

65



4. THE INTRADAY MODEL

verify the agreement between them. Finally, and specifically for the S&P500 dataset

only, we will develop a buy/sell strategy to take profit of the predictive power of the

intraday scheme. The resulting strategy will give a total gain/loss amount that can be

easily compared to analogous results derived from other standard strategies (GARCH

models). In this way the accuracy of the model will be verified. And its usefulness,

too.

4.1.1 Testing the intraday model: ensemble of histories from EUR/$

exchange rate

In order to detect the possible presence of nonstationarity at an intraday time-scale for

the distribution of the increments, one would need to have access to many realizations of

the same process, repeated under similar conditions. Quite remarkably, high-frequency

financial time series offer an opportunity of this kind, in which it is possible to directly

sample an ensemble of histories. The themes exposed in this section follow the scheme

of (7).

In (11) it has been proposed that when considering high-frequency EUR/$ exchange

rate data as recorded during the first three hours of the New York market activity,

different process realizations can tentatively be identified in the daily repetitions of the

trading. This idea is motivated by the detection of a daily pattern in the evolution of

the intraday volatility, which is particularly evident in specific time windows, that are

associated with the opening and closure time of the main stock exchange markets.

This gives the interesting possibility of estimating quantities related to ensemble-,

rather than time-averages. In this section we profit of this opportunity by showing that

a proper analysis of the statistical properties of this ensemble of histories naturally

leads to the identification and validation of the stochastic model of market evolution

presented in Chap. 2. As therein already described, the main idea at the basis of this

model is that the scaling properties of the return distribution are sufficient to fully

characterize the process in the time range within which they hold.

The main feature of this time-inhomogeneous model is the reconstruction of the joint

PDF of the returns, p(t)(x1, x2, . . . , xt), on the basis of the scaling symmetry revealed

by the PDF of the total return1 xt(t) ≡ lnS(t)− lnS(0) =
∑t

i=1 x1(i) ≡
∑t

i=1 xi. The

PDF of the variable Xt(t), pXt(t)(x), satisfies a scaling symmetry with scaling exponent

D and scaling function g, if, for every t,

tDpXt(t)(t
Dx) = g(x). (4.1)

1In this chapter, we switch to the more intuitive notation for the returns: xτ (t) ≡ lnS(t)−ln S(t−τ ).

The important formulas Eq. 4.1 and Eq. 2.37 are identical as one sets in Eq. 2.37 t = 0 and τ = t.
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4.1 The intraday analysis of returns series

Under the premises of this scaling symmetry, p(t)(x1, x2, . . . , xt) is then reconstructed

as

p(t)(x1, x2, . . . , xt) =

∫ ∞

0
dσρ(σ)

t∏

i=1

exp
(

− x2
i

2σ2a2
i

)

√

2πσ2a2
i

, (4.2)

where we used the notation

ai ≡
[
i2D − (i− 1)2D

]1/2
, (4.3)

and ρ(σ) ≥ 0 is a PDF for a mixture of Gaussian distributions with different widths σ.

See Chap. 2 and (8) for additional details.

We are working under the hypothesis of Section 2.3. In particular, we will focus on

the historical returns of the EUR/$ exchange rate, on a 10 minutes scale. The period

under analysis is from March 1st 2000 to March 1st 2005, with t ranging in almost

three hours after 10.00 a.m., NY time.

Following the ideas of (11), we also assume that every single day may be considered

as a repetition of a random stochastic process and that the opening time of the NYSE,

a particular moment of the day where a lot of information is delivered into the market,

represents a restart for the process itself. We therefore set ai = a1 = 1 for the first

return after 10.00 a.m.

Working in time units of tens of minutes, we thus obtain an ensemble of M =

1, 282 realizations
{
xl

1(t)
}

l=1,2,...,M
of the discrete-time stochastic process X1(t), with t

ranging in almost three hours after 10.00 a.m., i.e., 1 ≤ t ≤ 17. Below, the superscript

“e” labels quantities empirically determined on the basis of this ensemble.

A fundamental element for the use of the model is the calibration of the parameters.

The scaling exponent D and the scaling function g have here a central role as they

appear in Eq. (4.1) and thus influence the joint PDF of a given daily realization of the

process.

For the purposes of this study, we follow the practice of adopting a two step cali-

bration procedure. First we evaluate D, and then we use the calibrated D in order to

obtain a data-collapse which allows identifying g.

A quantitative way to calibrate D is offered by the analysis of the moments of Xt(t):

〈|xt(t)|q〉e ≡ 1
M

∑M
l=1 |xl

t(t)|q. These indicators have a theoretical counterpart: a simple

integration shows that if pXt(t)(x) satisfies Eq. (4.1) independently of g, one must also

have 〈xq〉pXt(t)
=
∫
xqpXt(t)(x)dx=

∫
xq 1

tD
g
(

x
tD

)
dx ∝ tqD. The comparison between

theoretical and empirical non-linear moments is displayed in Fig. 4.1(a) and the best

fitted value for the scaling exponent is D = 0.364... Another key observation is that

the empirical second moment 〈x1(t)
2〉e ≡ ∑M

l=1[x
l
1(t)]

2/M systematically decreases as
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Figure 4.1: EUR/$ dataset: empirical ensemble analysis of the returns. (a) Analysis

according to the ansatz in Eq.4.1. The straight line characterizes a simple-scaling behavior

with a best fitted D = 0.364. (b) The line is given by 〈σ2〉ρ
[
t2D − (t− 1)2D

]
, with

〈σ2〉ρ = 〈x2
1〉p = 2.3 · 10−7 and the best fitted D = 0.358. (c) The linear correlation

vanishes for non-overlapping returns.
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4.1 The intraday analysis of returns series

a function of t in the interval considered (see Fig. 4.1(b)). Its theoretical counterpart

is

〈x2
t 〉p ≡ 〈x2〉pX1(t)

=

∫

x2pX1(t)(x)dx =

∫

x2

∫ ∞

0
dσρ(σ)

exp
(

− x2

2σ2a2
t

)

√

2πσ2a2
t

∝ a2
t =

[
t2D − (t− 1)2D

]
. (4.4)

Here we can also see if the form of the ai coefficients is compatible with the i-dependence

already implied by the non-stationarity. Eq. 4.3 appears to be reasonably well compat-

ible with the trend of the empirical mean square elementary returns 〈|x1(t)|2〉e. Indeed,

given 〈σ2〉ρ = 〈x2
1〉p = 2.3·10−7, the best fit in Fig. 4.1(b) is obtained withD = 0.358 . . .

in the expression for 〈x2
t 〉p. The expectation value of σ2 is with respect to the ρ entering

the integral representation (Eq. 2.56) already chosen for g. Remarkably, the value of D

is very close to the estimate of D obtained above through the analysis of the moments

of pXt(t).

In passing, an important empirical fact (Fig. 4.1(c)) is that the linear correlation

between returns for non-overlapping intervals

celin(1, t) ≡
1
M

∑M
l=1

[
xl

1(1) x
l
1(t)
]

√

〈|x1(1)|〉e 〈|x1(t)|〉e
, (4.5)

with t = 2, . . ., is negligible in comparison with the correlation of the absolute values

of the same returns. At this time scale, also correlators of odd powers of a return with

odd or even powers of another return are negligible. Only even powers of the returns

are strongly correlated. This element is at the basis of our choice to set at 10 minutes

the shortest time scale and justifies the application of the model [see, e.g. Eq. 2.12 or

Eq. 2.25].

The scaling collapse, obtained via Eq. 4.1, is depicted in Fig. 4.2. The scaling

function g identified by that collapse plot is manifestly non-Gaussian. It may also be

assumed to be even to a good approximation1. In our case the set of data on which we

can count to construct histograms of g is relatively poor. So, our determinations of ρ

will be rather qualitative.

Once identified ρ, we use it for a weighted representation of the joint PDF’s of

the successive elementary returns xt ≡ x1(t), t = 1, 2, . . . , 17 generated in the process

(Eq. 4.2).

1 We have detrended the data by subtracting from xl
1(t) the average value

PM

l=1 xl
1(t)/M . Data

skewness can be shown to introduce deviations much smaller than the statistical error-bars in the

analysis of the correlators.
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Figure 4.2: EUR/$ dataset. Non-Gaussian scaling function g. Empty [full] symbols are

obtained by rescaling pXt(t) [pX1(t)] according to Eq. (4.1) [Eq. (2.55)] for t = 1, 5, 10, 17.

4.1.1.1 Correlations analysis

As discussed above, the identified ρ function may be used to reconstruct the joint PDF

of the returns xi’s as in Eq. 4.2. In this section we elaborate further on this point,

by performing a detailed comparison between model predictions (based on an explicit

expression for ρ) and empirical determinations of various two-point correlators.

Considering the data collapse of both pXt(t) and pX1(t) in Fig. 4.2, we use the power

law functional form of Eq. 2.44 for ρ [see also (49)]:

ρ(σ) = A
σλ

d+ σν
, σ ∈ [σmin,+∞[, 0 < λ < ν, (4.6)

where A is a normalization factor, and d > 0 is a parameter influencing the width of the

distribution g. Notice that ρ(σ) ∼ σ−(ν−λ) for σ ≫ 1. The rational behind this choice

for ρ is that one can use the exponents λ, ν to reproduce the large |x| behavior of g(x),

and then play with the other parameters to obtain a suitable fit of the scaling function,

for instance the one reported in Fig. 4.2. In any case, at this level of analysis, a clear

indication about the tail behaviour is not available, and so the distinction between

power-law or exponential tails is merely arbitrary.

The first two-point correlator we consider in our analysis is

κα,β(1, n) ≡ 〈|x1(1)|α |x1(n)|β〉p
〈|x1(1)|α〉p 〈|x1(n)|β〉p

=
〈|x1|α |xn|β〉p

〈|x1|α〉p 〈|xn|β〉p
, (4.7)
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Figure 4.3: Constancy of κe
α,β for the EUR/$ dataset. Dashed lines are model predic-

tions.

with n > 1, and α, β ∈ R+. A value κα,β 6= 1 means that returns on non-overlapping

intervals are dependent. Using Eq. 4.2 it is possible to express a general many-return

correlator in terms of the moments of ρ. For example, from Eq. 4.2 we have

〈|x1|α |xn|β〉p = BαBβ aα
1 a

β
n 〈σα+β〉ρ, (4.8)

with

Bα ≡
∫ +∞

−∞
dx |x|α e−x2/2

√
2π

. (4.9)

and

〈σλ〉ρ =

∫ +∞

0
dσ ρ(σ)σλ. (4.10)

Thus we obtain

κα,β(1, n) =
〈σα+β〉ρ

〈σα〉ρ 〈σβ〉ρ
=
BαBβ

Bα+β

〈|x1|α+β〉p
〈|x1|α〉p 〈|x1|β〉p

. (4.11)

Two model predictions in Eq. 4.11 are: (i) Despite the non-stationarity of the in-

crements xi’s, κα,β(1, n) is independent of n; (ii) The correlators are symmetric, i.e.,

κα,β − κβ,α = 0.

We can now compare the theoretical prediction of the model for κα,β(1, n), Eq. 4.11,

with the empirical counterpart

κe
α,β(1, n) ≡

∑M
l=1

[∣
∣xl

1

∣
∣α
∣
∣xl

n

∣
∣β
]

1
M

∑M
l=1

∣
∣xl

1

∣
∣α
∑M

l=1 |xl
n|β

, (4.12)
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Figure 4.4: Symmetry of κe
α,β for the EUR/$ dataset. Error-bars are determined as in

Fig. 4.3.

which we can calculate from the EUR/$ dataset. Notice that once ρ is fixed to fit the

one-time statistics in Fig. 4.2, in this comparison we do not have any free parameter

to adjust. Also, since our ensemble is restricted to M = 1, 282 realizations only, large

fluctuations, especially in two-time statistics, are to be expected.

Fig. 4.3 shows that non-overlapping returns are strongly correlated in the about

three hours following the opening of the trading session, since κe
α,β 6= 1. In addi-

tion, the constancy of κe
α,β is clearly suggested by the empirical data. In view of this

constancy, we can assume as error-bars for κe
α,β the standard deviations of the sets

{

κe
α,β(1, n)

}

n=2,3,...,17
. The empirical values for κe

α,β are also in agreement with the

theoretical predictions for κα,β based on our choice for ρ. In this and in the following

comparisons it should be kept in mind that, although not explicitly reported in the

plots, the uncertainty in the identification of ρ of course introduces an uncertainty in

the model predictions for the correlators.

In Fig. 4.4 we report that also the symmetry κα,β = κβ,α is empirically verified for

the EUR/$ dataset. The validity of this symmetry for a process with non-stationary

increments is quite remarkable.

A classical indicator of strong correlations in financial data is the volatility auto-
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Figure 4.5: Volatility autocorrelation for the EUR/$ dataset. Dashed line is the model

prediction.

0 5 10 15
t
2
 [×10 min]

1

1.5

2

2.5

3

3.5

4
K

e

α,β(5, t
2
)

β=0.5
β=1
β=2

α=1
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correlation, defined as

c(1, n) ≡ 〈|x1| |xn|〉p − 〈|x1|〉p 〈|xn|〉p
〈|x1|2〉p − 〈|x1|〉2p

. (4.13)

In terms of the moments of ρ, through Eq. 4.8 we have the following expression for c:

c(1, n) =
B2

1 a1 an

[
〈σ2〉ρ − 〈σ〉2ρ

]

a2
1

[
B2 〈σ2〉ρ −B2

1〈σ〉2ρ
] . (4.14)

Unlike κα,β , c is not constant in n. The comparison with the empirical volatility

autocorrelation,

ce(1, n) ≡
∑M

l=1

[∣
∣xl

1

∣
∣
∣
∣xl

n

∣
∣
]
− 1

M

∑M
l=1

∣
∣xl

1

∣
∣
∑M

l′=1

∣
∣
∣xl′

n

∣
∣
∣

∑M
l=1

∣
∣xl

1

∣
∣2 − 1

M

∑M
l=1

∣
∣xl

1

∣
∣
∑M

l′=1

∣
∣xl′

1

∣
∣

, (4.15)

yields a substantial agreement (see Fig. 4.5). The error-bars in Fig. 5 are obtained

by dynamically generating many ensembles of M = 1, 282 realizations each, according

to Eq. 4.2 with our choice for ρ, and taking the standard deviations of the results.

Again, the uncertainty associated to the theoretical prediction for c is not reported in

the plots. Problems concerning the numerical simulation of processes like the one in

Eq. 4.2 are discussed in (49) and in Sec. 3.2.

A further test of our model can be made by analyzing, in place of those of the

increments, the non-linear correlators of xt(t), with varying t. To this purpose, let us

define

Kα,β(t1, t2) ≡
〈|xt1(t1)|α |xt2(t2)|β〉
〈|xt1(t1)|α〉 〈|xt2(t2)|β〉

, (4.16)

with t2 ≥ t1. Model calculations similar to the previous ones give, from Eq. 4.2,

Kα,β(t1, t2) =
B

(2)
α,β(t1, t2)

tαD
1 tβD

2 Bα+β

〈|x1|α+β〉p
〈|x1|α〉p 〈|x1|β〉p

, (4.17)

where

B
(2)
α,β(t1, t2) ≡

∫ +∞
−∞ dx1 |x1|α

exp(−x2
1/(2t2D

1 ))√
2πt2D

1

∫ +∞
−∞ dx2 |x2|β

exp[−(x1−x2)2/(2t2D
2 −2t2D

1 )]
q

2π(t2D
2 −t2D

1 )
. (4.18)

According to Eq. 4.17, Kα,β is now identified by both ρ and D. Moreover, it explicitly

depends on t1 and t2. The comparison between Eq. 4.17 and the empirical quantity

Ke
α,β(t1, t2) ≡

∑M
l=1

[∣
∣xl

t1(t1)
∣
∣
α ∣
∣xl

t2(t2)
∣
∣
β
]

1
M

∑M
l=1

[∣
∣xl

t1(t1)
∣
∣α
] ∑M

l=1

[∣
∣xl

t2(t2)
∣
∣β
] , (4.19)

reported in Fig. 4.6 (the error-bars are determined as in Fig. 4.5) supplies an additional

validation of this intraday model.
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4.1.2 A lesson form larger datasets: the S&P500 index

In this section we develop the intraday analysis for the dataset of the S&P500 index

ranging from September 30th 1985 to October 20th 2010. For each single day l (1 ≤ l ≤
M), we consider the index values,

{
sl(t)

}
(t = 0, 1, . . . , 20), every 10 minutes between

9:40 a.m. (when we set t = 0) and 13:00 a.m. (t = 20), New York time1. With

respect of the previous Section, we are working with a larger set: we have M = 6283

realizations of the stochastic variable X1(t) ≡ lnS(t) − lnS(t − 1) with 1 6 t 6 20.

This larger database reduces to some extent the statistical fluctuations of the empirical

quantities. Interestingly, the same features extracted from the EUR/$ exchange rate

also characterize the S&P500. The results of this section will be used as a basis for the

development of an intraday trading strategy in Section 4.2.

The procedure for the analysis follows the same steps as above, but with a different

choice for the form of the ρ function. In fact, we adopt here the inverse gamma function

of Eq. 2.46, that we rewrite here for clearness:

ρ(σ) =
σα

0

Γ(α)σ1+α
exp

(

−σ0

σ

)

. (4.20)

The parameter σ0 > 0 is called scale factor, whilst α > 0 is named form factor. The

choice of this function is here motivated by the wish to adhere to the common choice

in finance to fit the realized volatilities of an asset (see, e.g., 17) with such a function.

Nevertheless, as already remarked, the differences between the results obtained with

different forms of the ρ, at this level of analysis, are not discriminable. As a simplifying

assumption, we disregard the weak skewness of the return distribution, whose inclusion

in the modeling framework is delayed till Section 4.1.3.

The resulting scaling function

g(x) =

∫ ∞

0
ρ(σ)

e−
x2

2σ2

√
2πσ2

dσ (4.21)

has then a power-law decay for large |x| with exponent α + 1, whereas σ0 simply sets

the scale of its width. Within this parametrization, g is thus identified in terms of the

two parameters σ0 and α.

The scaling parameter D is again selected (see Section 4.1.1) by checking the

consistency of the analysis of the non linear moments 〈|xt(t)|q〉e ≡ 1
M

∑M
l=1 |xl

t(t)|q

(Fig. 4.7(a)) with the trend of the second moment, with respect to the time t, 〈x1(t)
2〉e ≡

∑M
l=1[x

l
1(t)]

2/M (Fig. 4.7(b)). Taking advantage of the knowledge of the scaling ex-

ponent D = 0.36, a χ2 minimization algorithm shows that the values σ0 = 0.0045

1Again, we work in a 10 minutes’ time scale
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Figure 4.7: Empirical ensemble analysis of the returns (S&P500 dataset). (a) Analysis

according to the ansatz in Eq. (4.1). The straight line characterizes a simple-scaling

behavior with a best fitted D = 0.36. (b) The line is given by 〈σ2〉ρ
[
t2D − (t− 1)2D

]
,

with the best fitted D = 0.35.

and α = 3.69 adequately fit (see Fig. 4.8) the data-collapse obtained via Eq. (4.1).

These parameters, calibrated upon the entire available history of the S&P500 consti-

tute the basis for the development of the in sample testing of the strategy presented in

Section 4.2.

But, before approaching the strategy problem, we want to see what are the differ-

ences with respect to the EUR/$ analysis. First of all, referring to Fig. 4.7(a), we can

see that the analysis is limited to q = 2, while we went up to q = 5 in Fig. 4.3. That

is because in the present case we detect a multiscaling effect at q ≃ 2 [for multiscaling

in S&P500 index see, e.g., (51)]. So, the linear fitting must be restricted only to the

region of low moments. Correspondingly, the analysis of the correlators of Eq. 4.11 and

Eq. 4.12 that leads to Fig. 4.9 must rise some remarks:

• The error bars in Fig. 4.9 are reduced with respect to those in Fig. 4.3. This is

essentially due to the larger dataset of the S&P500, that reduces the uncertainty

in the empirical indicators.

• There is a slight discrepancy for what concerns the two graphs for β = 0.5 and

β = 1, where the theoretical prediction seems too large.

• Even if the top graph in Fig. 4.9 seems to show correct results, it has to be noticed

that the data are in a multiscaling regime, since α+ β = 3.
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Figure 4.8: The scaling function for the S&P500, after aggregation. The g function is

constructed via Eq. 4.21 with a ρ function chosen in the form of an inverse gamma, whose

best fitted parameters are σ0 = 0.0045 and α = 3.69. A certain asymmetry is clearly

spotted.
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Figure 4.9: Constancy of κe
α,β for the S&P500 dataset. Dashed lines are model predic-

tions. Note the slight discrepancy and compare with the later results of Fig. 4.15
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Figure 4.10: Correlators Ke
α,β for the S&P500 dataset. Dashed lines are model predic-

tions. Note, again a certain discrepancy and compare with the later results of Fig. 4.16

.

We will settle these last two questions in Section 4.1.3. By now we content ourselves

with having lower statistical errors, as can also be seen from the analysis of the the-

oretical (Eq. 4.17) and empirical (Eq. 4.19) process correlators, reported in Fig. 4.10.

Despite the slight discrepancies, the general trend of the curves is replicated by the

model, together with the symmetry of the empirical correlators κα,β = κβ,α, as shown

in Fig. 4.11.

For what concerns the volatility autocorrelation (see Eq. 4.14 and Eq. 4.15) the

agreement is remarkable for this dataset: the results are presented in Fig. 4.12.

The results of this section have highlighted some discrepancies between the empirical

and the theoretical results. The presence of multiscaling effects and the asymmetry of

the scaling function make the above related analysis too approximate. In the next

section the asymmetric model will be employed, with significantly improved results.

4.1.3 The skewed intraday model: an improved analysis for the S&P500

index

In this section we profit from the scheme of Sec. 2.4 to try to improve the results of the

above reported analysis on the S&P500 dataset.
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Figure 4.11: Symmetry of κe
α,β for the S&P500 dataset. Error-bars are determined as

in Fig. 4.3.
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Figure 4.12: Volatility autocorrelation for the S&P500 dataset. Dashed line is the model

prediction.
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Figure 4.13: The skewed scaling function for the S&P500. The gS function is constructed

via Eq. 2.62 with a ψ function chosen in the form of ψ(σ, µ) = kρ1(σ)δ(µ − µ) + (1 −
k)ρ2(σ)δ(µ + µ) with k = 0.7, µ = 4 · 10−4 and ρi(σ) two inverse gamma functions of the

form Eq. 2.46 with parameters α1 = 3.7, σ01
= 0.0045, α2 = 3.4 and σ02

= 0.0049. The

asymmetry is grasped. The old symmetric g function of Fig. 4.8 is given, for reference.

The first goal will be that of correcting the fit of the scaling function of Fig. 4.8.

Therein, some fitting problems can be detected, both in the center of the distribution

and in the first part of the tails, closer to the maximum (and in particular to the right).

The introduction of two non zero-centered inverse gamma functions provides a certain

evident improvement: we write a skewed scaling function gS(x) using Eq. 2.62 with a

ψ form that is a simple modification of Eq. 2.63:

ψ(σ, µ) = kρ1(σ)δ(µ − µ) + (1 − k)ρ2(σ)δ(µ + µ). (4.22)

As before, the fitting of the parameters has been produced by means of a χ2-

minimization algorithm, for different choices of the weight k and of the shift parameter

µ.

The qualitative agreement that is recognizable in Fig. 4.13 can find a strong quan-

titative support through the analysis of the above considered correlators (Sec. 4.1.1.1).

To start with, let us check the all important volatility autocorrelation c(1, n) (Eqs.

4.14, 4.15 and Fig. 4.14). The introduction of a skewed model generates a little correc-

tion, whose effect is to approximate better the empirical data.
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Figure 4.14: Volatility autocorrelation for the S&P500 dataset. The asymmetric model

gives a theoretical prediction that is more centered with the empirical data.

But the most significant improvement can be found when analyzing the correlators

κe
α,β of Eqs. 4.11 and 4.12. The agreement, especially for the two lower moments

depicted in Fig. 4.15, is remarkable. The same degree of improvement is to be found

by comparing the graphs of Fig. 4.16: there, in the asymmetric model, the empirical

(Eq. 4.19) and the theoretical (Eq. 4.17) behaviour for the Ke
α,β correlators is found in

good agreement, especially for the lowest moments.

We’ve already noticed that, for problems of multiscaling, the analysis of the cor-

relators should be limited to overall values of the moments below, let say, 2. Beyond

this limit the scaling exponent D takes other, more unstable, values. For this reason,

for lower values of α and β, the analysis of Fig. 4.15 has been be repeated. The results

are displayed in Fig. 4.17, where the agreement between the theoretical and empirical

values is relevant.

In this section we significantly improved the results of Sec. 4.1.2 for the S&P500

intraday dataset by introducing a skewed scaling function gS in the form of Eq. 4.22.

The asymmetric features of the scaling function of the returns forces the employment

of the model detailed in Sec. 2.4. The model grasps the features of the scaling function

as well as all the so far studied low-order correlators.

Differently from the EUR/$ dataset, where the symmetric model already produced
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Figure 4.15: Constancy of κe
α,β for the S&P500 dataset. Dashed lines are model pre-

dictions for the skewed model. Note that the theoretical lines are much more centered,

compared to Fig. 4.9.
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Figure 4.16: Correlators Ke
α,β for the S&P500 dataset. Dashed lines are model predic-

tions. (a) The theoretical results for the skewed model; (b) the same graph of Fig. 4.10

(symmetric model) is given for reference.

.
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Figure 4.17: S&P500 dataset. Correlators κe
α,β for lower moments. Dashed lines are

model predictions for the skewed model.

satisfactory predictions for the correlators and for the scaling collapse (7), the S&P500

intraday dataset requested the application of a skewed scheme, whose introduction

produced so relevant improvements to be regarded as a good test for the applicability

of the general theory of the model of Baldovin and Stella (8, 49) to non-symmetric

datasets.

4.1.3.1 Sneaking a look at the intraday leverage effect

As a concluding task, thanks to the relevant presence of asymmetry, the leverage effect

for this S&P500 intraday dataset can tentatively be investigated.

In particular, we want to analyze the return-volatility correlation during the con-

sidered three hours of market. To do so, we might look at the natural intraday specifi-

cations of Eq. 2.59 :

L1(n) =
〈x1(1)|x1(n)|2〉e

〈x1(1)
2〉e

2 (4.23)

and

L1(n) =
〈|x1(1)|2x1(n)〉e

〈x1(1)
2〉e

2 . (4.24)

where, as before, the subscript e indicates the average taken over the ensemble of

histories and n is the intraday time, in 10-min units. The idea is here to refer to the first
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Figure 4.18: Return-volatility correlators. (a) L1(n) correlator between the first return

and the following absolute returns of the day (leverage effect); (b) L1(n) correlator between

the first absolute return and the following returns of the day. Notice the large fluctuations

of the indicators (larger in (b)). Dashed lines are model predictions [as an approximation

we depict the trend ∼ (n2D − (n− 1)2D)1/2 in (a) and ∼ (nD − (n− 1)D)1/2 in (b)].

return of the day and to watch at the n-dependence of L1(n) and L1(n). Unfortunately,

the empirical results are affected by large statistical noise, so it’s convenient to verify

the following two indicators instead:

L1(n) =
〈x1(1)|x1(n)|〉e
〈x1(1)|x1(1)|〉e

(4.25)

and

L1(n) =
〈|x1(1)|x1(n)〉e
〈|x1(1)|x1(1)〉e

. (4.26)

Looking at the results in Fig. 4.18, some remarks are to be highlighted:

• the indicators of Eq. 4.25 and Eq. 4.26 are still very noisy. Some more definite

trend can be spotted for L1(n) in Fig. 4.18(a) , but the overall result is not

significative;

• given these fluctuations, the theoretical results are not comparable with the em-

pirical evidence. Moreover, given the level of uncertainty, the approximation

depicted in Fig. 4.18 is justified;
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4.2 Intraday trading rules

• the lower level of noise in Fig. 4.18(a) with respect to Fig. 4.18(b) may indicate

that a leverage effect is effectively present, in the sense that there is a certain def-

inite negative correlation between the first return of the day and the subsequent

absolute returns. The opposite, i.e. the correlation between the first absolute

return and the following signed returns, is less evident, as expected from consid-

ering the efficient market hypothesis. Nevertheless, we remind that the model in

analysis prescribes a negative correlation for these returns, too (see Eq. 2.71).

We need to remind that in Eq. 4.25 and Eq. 4.26 the total exponent of the correlators

is 2: near to the upper boundary of the scaling validity range. To get rid of possible

multiscaling effects, one may consider e.g. the following correlators, instead:

L
(0.25)
1 (n) =

〈x1(1)|x1(n)|0.25〉e
〈x1(1)|x1(1)|0.25〉e

(4.27)

and

L
(0.25)
1 (n) =

〈|x1(1)|0.25x1(n)〉e
〈|x1(1)|0.25x1(1)〉e

. (4.28)

However, the behaviour of these two indicators is still affected by large statistical error.

As a conclusion, we may say that the model prediction for the leverage effect cannot

be directly verified on the data, because the statistical fluctuations derived from the

relatively small size of the ensemble do not allow a clear identification of the trends of

the leverage effect indicators. The testing of the model predictions for the leverage effect

in an intraday scale certainly needs other techniques and indicators to be adequately

investigated.

4.2 Intraday trading rules

4.2.1 Building in sample and out of sample quantiles sets

The analysis performed in Sec. 4.1.2 on the full history of the S&P500 dataset (from

1985 to 2010) will be here used to analyse the in − sample performances of a trading

strategy based on the model outcomes, as discussed in the following sections. However,

out of sample analyses are also needed. Starting from our 25 years’ database, we de-

cided to use 15 years of data (from 1985 to 1999) to build a scaling function to be used

to initialize the trading strategy for the year 2000. We then repeatedly shifted year by

year, always using the 15 previous years to calibrate the model, until 2009 (the last com-

plete year). So, e.g., we used the data from 1994 to 2008 to fit the scaling function for

the strategy to be used for year 2009. As a simplifying assumption, we employ a sym-

metric model, with a scaling function g built with a ρ(σ) shaped as an inverse gamma
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Figure 4.19: Fitting parameters for the ρ(σ) in the out of sample analysis (history = 15

previous years) of the S&P500 dataset.

function (Eqs. 4.20 and 4.21). Fig. 4.19 shows the results of the χ2-minimization, and

the optimal values of the parameters used for running the out of sample strategies

from 2000 and 2009. Notably, the scaling parameter D is increasing over time and sta-

bilize from 2005 to 2009. Differently, the parameters characterizing the inverse-gamma

density show evidence of a clear drop once the crisis period of 2008 is introduced in

the calibration sample. See, e.g., the comparison between the inverse-gamma’s of year

2005 and 2009 presented in Fig. 4.20.

4.2.2 Density forecasts and trading signals

The model described in Chap. 2 has implicit density forecasting abilities. In fact,

assuming correct model specification, given the parameter values and the first daily

return, we know the PDF of the daily evolution of returns. Furthermore, the knowl-

edge is not limited to each single return, but extends to any aggregation of returns.

Such understanding allows the construction of a trading strategy based on the density

forecasts. Furthermore, at each point in time within the day, the forecasts for the re-

maining part of the day might be updated using the additional intra-daily information.

For this reason, we consider in the following two different trading approaches: the first

just makes use of the index value, the first available for the day, and then considers
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Figure 4.20: Comparison between the inverse-gamma functions for the S&P500, cali-

brated before and after the 2008 crisis.

the density forecasts made for the remaining part of the day (we call it Unconditional

trading); the second approach allows for an update of the density forecasts using more

recent returns, too (we denote it Conditional trading, since it conditions the forecasts

to the new information). Both trading approaches extract trading signals from density

forecasts: if at a given point within the intra-daily range under study the observed

market price is above (below) the 1 − q (q) quantile of the predicted price density we

have a buy (sell) signal.

4.2.2.1 Unconditional trading

Taking advantage of the predictive features of the model, we calculate for every day

the quantiles for the expected price at time t, starting from the opening value S0 which

is the only conditioning information. Note that the model, in computing the density

forecasts, does not include the set of information of the prices observed in the past.

It is assumed that all the information contained in the past observations has been

compressed in the model parameter, namely the scaling exponent D. At this stage

we consider an unconditioned situation. We assume that the probability density for

the return is shaped according to the formula for the historical g(r), with the time
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Figure 4.21: Upper and lower expected index values for the first day of the S&P500

dataset (September 30th, 1985), compared to real prices (in circles)

inhomogeneity enclosed in the at’s:

Pt(x) ≡ P (xt) =

∫ ∞

0
ρ(σ)

e
− x2

2σ2a2
t

√

2πσ2a2
t

dσ , at ≡
[
t2D − (t− 1)2D

]1/2
.

The values of the expected limit returns xmin
t , t = 1, . . . , 20 for the lower quantiles q

(for q = 5% (0.05), 10% (0.1), 25% (0.25)) are then easily obtained by numerically

solving the following equation with respect to xmin
t

q =

∫ xmin
t

−∞
dx

∫ ∞

0
ρ(σ)

e
− x2

2σ2a2
t

√

2πσ2a2
t

dσ. (4.29)

Due to the symmetry of the employed scaling function, the corresponding values xmax
t

are simply obtained via sign flip: xmax
t = −xmin

t .

The upper (Sq,max
t ) and lower(Sq,min

t ) expected values of S(t) can be easily calcu-

lated, because S(t) is an increasing function of xt and so the quantiles of S are directly

related to the quantiles of x. Summarizing, for every choice of q, for every time t from

1 to 20, two price values are obtained. With probability 1 − 2q the price at time t

is placed between these values Sq,min
t and Sq,max

t . As an illustration, in Fig. 4.21 the

results of the in sample analysis for the first day of the dataset (September 30th, 1985)

are shown.

88



4.2 Intraday trading rules

The comparison between these extreme values and the actual real market price can

lead us to the definition of a buy or sell strategy.

The empirical analysis considers both in sample and out of sample cases. The

difference between the two is that for the former a unique PDF is used, calibrated

within the 25 years’ dataset, while in the latter case the scaling function is calibrated

every year taking into account the previous 15 years’ history. For both approaches we

follow the aforementioned calibration and forecasting procedure.

4.2.2.2 Conditional trading

More interestingly, exploiting the non-Markovian character of our model, we can use the

value of, say, the first return of the day to condition the subsequent expected evolution

of the index. Using our model prediction for the joint PDF of the returns [Eq. (4.2)]

we thus can build a conditioned scheme where the first return is used to condition the

successive probability densities:

P (t|1)(x2, . . . , xt|x1) ≡
P (t)(x1, x2, . . . , xt)

P (1)(x1)
=

∫∞
0 dσρ(σ)

∏t
i=2

exp

„

−
x2

i

2σ2a2
i

«

√
2πσ2a2

i

∫∞
0 dσρ(σ)

exp

„

−
x2
1

2σ2a2
1

«

√
2πσ2a2

1

, t ≤ 20.

(4.30)

More generally, we can write the following expression, conditioning to the first s returns

the PDF of the successive t− s returns, with t ≤ 20 and s ≤ t:

P (t|s)(xs+1, . . . , xt|x1, . . . xs) ≡
P (t)(x1, x2, . . . , xt)

P (s)(x1, . . . , xs)
=

∫∞
0 dσρ(σ)

∏t
i=s+1

exp

„

−
x2

i

2σ2a2
i

«

√
2πσ2a2

i

∫∞
0 dσρ(σ)

∏s
k=1

exp

„

−
x2

k

2σ2a2
k

«

√
2πσ2a2

k

.

(4.31)

In Fig. 4.22 some interesting features of the applied model can be detected. In

particular, it is clear the influence of the nearest past returns to determine the expected

amplitude of the next ones. Conditional trading will thus be based on bounds which

are not fixed within the day but may vary according to the new information included

in the most recent market prices.

4.2.3 Developing and applying intraday strategies

Denoting as t the time in days, and as tk the period k within day t, the analysis

described above permits the detection of all those times tk when the index value S(tk)
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Figure 4.22: Upper and lower expected index values [q=10%] for one random day of the

dataset (February 4th, 1994). Different number of conditioning returns are considered.

brakes through the expected upper (Sq,max
tk

) or lower (Sq,min
tk

) quantile1. This quantile

violation can be used to define a trading strategy. Buy and sell signals will be identified

comparing the observed stock price at time tk with the quantiles at level q. Note that

the ensemble property we observe lasts from 9:30 a.m. to 1 p.m. As a consequence, the

trading strategy we consider operates within this time lapse. Furthermore, to avoid the

impact of news arrivals between 1 p.m. and the opening of the next day, the trading

strategy opens and closes positions within the day. As we mentioned when describing

the dataset we are using, the time interval we consider is 10 minutes and the model we

propose provides a sort of price density forecasts given (conditioning on) the opening

price of a given day. In addition, as the model works using returns, the density forecasts

(and therefore the quantiles at level q) will be available from 9:40 a.m.

Within a given day, given the quantiles at level q, the trading signals and the trading

activity are defined as follows:

A: If there are no open positions

1We recall that quantiles for time tk have been simulated using the proposed model and conditioning

on some information set within the day (see the previous section; a discussion on this aspect will follow

in this empirical analysis).
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A.i: Buy if S(tk) > Sq,max
tk

A.ii: Sell if S(tk) < Sq,min
tk

B: If there are open positions

B.i: Close a long position if S(tk) < Sq,max
tk

B.ii: Close a short position if S(tk) > Sq,min
tk

B.iii: Close long or short positions if they are still in place at 1 p.m.

By construction, multiple trades are possible within volatile days. Differently, in

trending days, single operations will take place, while during stable days no positions

will be taken.

Our purpose is to monitor the performances of the trading strategy defined above.

Therefore, we simulate the evolution of a trader using our strategy and having an

initial cash amount equal to 1 million. Given the previous comments on the ensemble

property and its link with the trading strategy, at the beginning of the day and at 1

p.m. the simulated portfolio is entirely composed by cash. Furthermore, in order to

avoid losses larger than the portfolio value when implementing short positions, we limit

the investment value to 90% of the overall portfolio value1. For symmetry, we apply

the same rule also for long positions. As a result, when trades are created, 10% of the

portfolio remains in cash. Once a signal is observed, the trade is executed at the price

S(tk).

Three different quantile levels will be considered: 5%, 10%, and 25%. Furthermore,

given the discussion in the previous section, we simulated both unconditional and con-

ditional quantiles for all the three levels previously defined. When conditioning will be

considered, we produce quantiles using the opening price (no conditioning), or condi-

tioning on the first 3, 6 or 9 returns. Higher numbers of conditioning points are not

used given that, within the day, the model proposed works only from the opening up

to 1 p.m at a 10-minute frequency, thus with a total of 21 observations per day.

We first analyse the trading strategy in-sample, in order to evaluate its abilities in

terms of yearly profits and average return by trade (in basis points). At this stage, we

also verify the impact of the different number of conditioning returns.

1We do not take into account the margins generally required when creating short position. We

motivate this choice by the need of evaluating the strategy abilities on both long and short trades

without penalizing short positions, as would be the case when margins larger than 10% would be

required. Furthermore, given that the trades will last at maximum for 4 hours and 20 minutes (from

9:40 to 1 p.m.), we believe that an implicit margin of 10% will be sufficient.
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Table 4.1: Average profit per trade in basis points (1985-2010)

25% 10% 5%

All trades

0 2.619 1.602 0.590

3 3.788 2.842 1.862

6 3.449 3.027 2.313

9 3.243 3.070 2.184

Long trades

0 1.599 1.180 -0.483

3 3.409 2.748 1.840

6 3.094 2.942 2.564

9 2.529 2.652 1.886

Short trades

0 3.577 1.977 1.470

3 4.173 2.932 1.882

6 3.824 3.110 2.087

9 3.996 3.469 2.455

The first column reports the conditioning elements (0 stands for no conditioning). The first

row reports the quantile level.
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Table (4.1) reports the average return of the trades generated by the strategy during

the range from October 1985 to October 2010. Profits are indicated as average basis

points per trade, and distinguishing also between long and short trades. This allows

verifying if the strategy better identifies signals in a specific direction. Three elements

clearly appear. At first, the profit decreases with decreasing quantile values, as if

stronger signals provide smaller performances (such an evidence is not related to the

trade sign). We explain such an unexpected result by the fact that trades are valued

at the price S(tk) and not at the price at which a trade could have been executed

once the quantile violation had been observed. This inconsistency (which cannot be

easily solved) reduces the potential profit coming from relevant (and unexpected) price

movements. Those, in fact, are the price changes detected by the model-based quantiles

at the 5% level.

The second relevant comment we make refers to the relation between average profit

and conditioning information. We observe that a conditioning on the first returns of

the day increases the profit. Such a result holds independently of the trade sign. This

is somewhat expected as during the first part of the day the model adapts its behaviour

to the most recent data. Therefore, it provides a better fit to the ensemble property

within the remaining part of the day. Considering the number of conditioning, we

note that the relation between conditioning points and profits is not linear, and has

a maximum between one and six conditioning points. Considering this result and the

previous comment on the quantile/profit relation, we decided to use in the out-of-sample

analysis just three conditioning points (value with maximum profit for 25% quantiles).

Table (4.2) reports the same quantities as Table (4.1), but by year (we drop 1985 and

2010 where only part of the year was available). In general, the use of a 25% quantile

provides the higher average profit. Furthermore, we observe that the largest part of

negative values are identified in the range 2004-2007, where the market was clearly

upward trending and in a low volatility phase. This is a further expected outcome,

since the model detects violations which are associated with large movements. The

largest profits are located during 1986 and 1987, in a high volatility period.

Overall, the average profit per trade is relatively small, if not negative. A first

not completely satisfactory result. Nevertheless, we observe that during some specific

market phases, the trading strategy provides large average profits per trade, see for

instance the 90’s.

Beside the impact of conditioning and quantile level, a further element is of relevant

interest: the number of trades created by the strategy in a given time interval. Table

(4.3) reports several elements for the most recent years. The first column just repeats
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4. THE INTRADAY MODEL

Table 4.2: Average profit per trade in basis points (yearly values)

Year Unconditional Conditional 3 points Conditional 6 points

Quantile 25% 10% 5% 25% 10% 5% 25% 10% 5%

1986 8.31 6.06 6.02 11.39 9.95 9.96 11.84 12.21 12.13

1987 12.32 11.87 12.79 17.14 15.50 13.60 15.04 11.31 12.11

1988 3.26 1.98 1.24 7.34 6.00 4.02 8.83 8.37 7.43

1989 5.11 2.69 -1.33 6.88 5.87 7.83 7.26 5.95 4.02

1990 9.00 8.20 5.58 11.11 10.19 5.64 10.90 7.84 3.62

1991 4.46 1.13 1.58 6.35 5.65 2.55 7.54 7.48 4.12

1992 3.16 -0.25 -3.76 4.45 5.29 7.71 3.62 3.78 3.71

1993 1.54 -0.30 -2.39 3.38 4.51 2.87 3.15 4.04 3.80

1994 1.90 -0.13 -3.79 2.76 1.48 -0.89 3.77 2.10 1.18

1995 0.08 -2.36 -11.08 2.31 1.46 -0.26 2.14 1.23 0.13

1996 0.84 -1.63 -2.36 2.16 0.89 -1.28 3.19 2.37 0.28

1997 2.62 1.33 1.48 4.85 3.90 2.90 3.81 3.49 1.51

1998 3.37 3.49 0.37 4.73 0.35 -0.76 3.91 3.96 4.24

1999 1.48 0.84 -2.02 2.82 2.57 0.79 3.18 6.09 4.98

2000 0.02 -2.81 -0.88 2.78 0.81 1.72 0.32 1.14 3.74

2001 0.60 0.29 0.29 2.69 1.64 2.23 0.03 -2.14 -2.33

2002 2.65 0.28 0.35 3.49 0.17 -0.62 -0.55 -0.77 -2.64

2003 1.81 0.38 2.29 0.40 -0.30 -1.96 0.99 -0.51 -0.52

2004 -1.26 -1.66 -1.74 -0.38 -0.37 0.16 0.02 0.90 0.47

2005 -1.91 -2.06 0.52 -1.23 -0.25 0.98 -0.58 -1.36 -1.22

2006 0.38 -0.34 -1.20 -0.68 -1.63 -1.70 0.21 -0.52 -2.29

2007 -1.68 -4.88 -9.35 -1.55 -3.42 -4.99 -0.91 -2.49 -3.36

2008 4.06 2.37 -1.73 4.37 3.43 -0.50 3.03 -1.08 -2.16

2009 2.20 4.23 2.88 3.48 2.19 2.63 2.49 3.88 2.85
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4.2 Intraday trading rules

the content of Table (4.2), while the following columns separately consider Long and

Short trades, and for those distinguish between true and false signals, where the for-

mer are the signals really providing a positive trade profit. Note that in the trading

simulations we execute trades at the 10 minute frequency; the distinction between true

and false signals might not be optimal. In fact, executing trades few seconds after the

violation of quantiles would improve the model performances, thus potentially increas-

ing the number of true signals. In light of this comment, the relative small number of

true signals leading to positive trade profits [see the last two columns of Table (4.3)]

would increase and should not be considered as a negative outcome. A further element

supporting the strategy is the average profit of trades where the signals are considered

as true. In fact, both for long and short trades, average profits are sensibly larger,

peaking around 80 basis points (on average). Furthermore, false signals lead to trades

with small losses (compared to the gains). We also note that the losses due to false

signals are larger during volatile market phases, as in 2008 and 2009 (and this holds

for both long and short trades).

With respect to the number of trades, this is much larger when using 25% quantiles

compared to 5% quantiles, while there are small differences between the use of Con-

ditional and Unconditional quantiles. Long and short trades are almost numerically

equivalent and there are no differences between trending and volatile market phases.

Overall, the number of trades, irrespectively of the sign, increases during volatile pe-

riods, an expected result. Finally, as we previously anticipated, the number of true

signals is relatively small, and there are again not many differences with respect to the

trade sign.

Overall, Table (4.3) show evidence of some potential interest in the strategy, since

the average profit for true signals is quite elevate (in particular compared to the overall

average profit).

While the previous tables where focusing on the return over single trades (on aver-

age), Table (4.4) focuses on the overall profit of the strategy over single years (assuming

a starting cash amount of 1 million). The returns are reported in percentages, and show

evidence of positive performances in most periods. Comparing first the Conditional ver-

sus Unconditional quantiles, we observe that conditional modeling is clearly better: its

returns are higher apart in few cases and its the standard deviation is smaller1. Con-

trasting the 25% and 5% quantiles, the use of narrower bands for the identification of

1The standard deviation is computed over the daily returns of the simulated portfolio and then

annualized. Note that days when trades are not created will provide a zero return since we did not

assume any remuneration for the bank account.
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4. THE INTRADAY MODEL

the signals provide larger returns over the years. This potentially exposes the portfo-

lio to a number of trades generated by false signals, but the profits coming from true

signals will balance them. Such a result holds irrespectively of the conditioning type.

Finally, if we compare the performances of the trading strategy (25% quantiles) to

that of the underlying equity index [see the last two colums of Table (4.4)], we note a

relevant positive result: when the market is experiencing high volatility, our strategy

provides positive returns with a volatility smaller than that of the market, and this

is particularly evident when the market has yearly negative returns; on the contrary,

when the market is in a low volatility, our strategy has small or negative returns;

finally, our strategy has always a volatility smaller than that of the market. This

finding suggests that our strategy could be used to hedge the market volatility, since it

provides positive returns in case of high market volatility, and with smaller risk. This

is further confirmed by the correlation between market returns and standard deviation

with the corresponding values of our strategy [see the last row of Table (4.4)]: positive

and very high correlation between standard deviations, and low negative correlation

between returns.

The promising in-sample performances of our strategy are confirmed in the out-of-

sample results. In this further evaluation, we compare our model to a more traditional

approach based on GARCH models [see (22) and (14)]. Moving from the point of

view of ensembles toward that of financial time series, several elements characterizing

high frequency data have to be considered. First of all, and most relevant, the entire

daily set of high frequency returns will be used, and not just the range 9:30 a.m. to

1 p.m. Second, the periodic behaviour of the intra-daily volatility is considered [see

(4), among others]. To capture this element, together with variance asymmetry, we

consider as a competing model an asymmetric GARCH, the GJR [see (25)] with a

periodic deterministic variance component. Our choice is motivated by the relative

simplicity of the competitor, a kind of benchmark, and by the possibility of easily

generating from that model density forecasts at a given quantile under a distributional

assumption for the model innovations. The competing model is given as follow:

• the empirical returns on a 10-minute time scale are represented as: xl
t = ml

t ǫ
l
t,

where t identifies the 10-minute period within day l with a range which is now

t = 1, 2, ...T (T = 39 for our dataset), ml
t is a deterministic periodic function, and

ǫlt is the stochastic component; this model implies that returns are generated as

X l
t = N

(
0,ml

t Vǫ

)
, where N(µ, σ) indicates a Gaussian random variable of mean

µ and variance σ, and Vǫ is the (stochastic) variance of the random component;
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Table 4.3: Average profit per trade and number of trades: long/short trades, false/true signals

Average profit (bp) Number of trades

All Long Short All Long Short % True

All True False All True False All True False All True False Long Short

25% - Conditional 3 points

2005 -1.23 -0.10 21.43 -6.76 -2.24 15.63 -7.15 422 199 47 152 223 48 175 23.6% 21.5%

2006 -0.68 -0.58 15.16 -6.28 -0.76 15.29 -5.65 438 207 55 152 231 54 177 26.6% 23.4%

2007 -1.55 -4.01 13.05 -9.36 1.73 29.41 -9.19 462 264 63 201 198 56 142 23.9% 28.3%

2008 4.37 -0.67 51.60 -20.27 9.90 66.53 -18.77 505 264 72 192 241 81 160 27.3% 33.6%

2009 3.48 2.57 36.17 -12.87 4.42 53.20 -16.31 463 235 74 161 228 68 160 31.5% 29.8%

5% - Conditional 3 points

2005 0.98 2.36 25.96 -3.26 -0.63 9.69 -1.92 97 52 10 42 45 5 40 19.2% 11.1%

2006 -1.70 -0.91 15.26 -4.69 -2.25 27.18 -6.01 90 37 7 30 53 6 47 18.9% 11.3%

2007 -4.99 -6.31 17.56 -6.71 -3.86 11.24 -8.34 130 60 1 59 70 16 54 1.7% 22.9%

2008 -0.50 -3.59 31.85 -16.55 2.61 61.09 -19.88 253 127 34 93 126 35 91 26.8% 27.8%

2009 2.63 2.68 53.40 -10.21 2.59 53.19 -13.78 169 79 16 63 90 22 68 20.3% 24.4%

25% - Unconditional

2005 -1.91 0.36 21.13 -7.61 -3.48 15.40 -8.67 407 166 46 120 241 52 172 27.7% 21.6%

2006 0.38 0.47 19.63 -7.50 0.30 26.70 -7.78 369 177 52 125 192 45 131 29.4% 23.4%

2007 -1.68 -3.21 16.58 -9.91 -0.13 35.74 -11.42 479 241 61 180 238 57 169 25.3% 23.9%

2008 4.06 -4.02 57.18 -28.56 13.19 71.86 -21.66 560 297 85 212 263 98 158 28.6% 37.3%

2009 2.20 0.01 50.94 -23.19 4.41 55.57 -19.72 521 262 82 180 259 83 167 31.3% 32.0%

5% - Unconditional

2005 0.52 -0.75 14.39 -6.25 2.64 26.78 -0.38 24 15 4 11 9 1 8 26.7% 11.1%

2006 -1.20 -1.08 22.61 -4.82 -1.33 22.42 -9.81 41 22 3 19 19 5 14 13.6% 26.3%

2007 -9.35 -9.69 38.70 -12.62 -9.17 18.42 -16.98 103 35 2 33 68 15 53 5.7% 22.1%

2008 -1.73 -8.57 58.81 -31.19 5.59 83.91 -28.44 362 187 47 140 175 53 122 25.1% 30.3%

2009 2.88 5.61 62.38 -14.47 0.71 53.57 -18.05 302 134 35 99 168 44 124 26.1% 26.2%
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4. THE INTRADAY MODEL

Table 4.4: In sample yearly return and standard deviation compared with the S&P500

Index

25% - C. 3 p. 5% - C. 3 p. 25% - Unc. 5% - Unc. S&P500

Return Dev.st Return Dev.st Return Dev.st Return Dev.st Return Dev.st

1986 40.47 4.88 11.36 2.98 33.53 5.23 5.06 2.99 14.620 14.635

1987 79.71 7.78 21.58 6.31 61.65 12.98 24.05 11.28 2.028 32.013

1988 26.55 4.41 5.33 2.47 12.14 4.99 0.97 2.68 12.401 17.019

1989 23.91 3.81 7.67 2.55 16.45 4.09 -0.88 1.82 27.250 13.006

1990 47.37 4.98 9.65 3.19 40.56 6.21 7.07 3.83 -6.559 15.886

1991 23.62 4.20 3.43 2.18 17.52 4.86 1.33 2.37 26.307 14.242

1992 14.84 3.26 5.99 1.68 9.97 3.29 -1.82 1.11 4.464 9.644

1993 10.39 2.76 2.27 1.65 4.06 2.96 -0.76 1.27 7.055 8.567

1994 9.55 3.04 -0.67 1.14 6.03 3.61 -1.98 1.40 -1.539 9.805

1995 7.54 2.59 -0.22 1.36 0.28 2.93 -2.80 0.99 34.111 7.776

1996 7.87 4.15 -1.38 2.14 2.97 4.68 -1.61 1.87 20.264 11.734

1997 20.57 6.02 4.86 4.38 12.49 6.30 2.06 3.45 31.008 18.059

1998 20.03 5.58 -1.40 3.26 15.79 8.29 -0.07 5.95 26.669 20.207

1999 11.98 5.77 1.53 3.13 6.65 7.40 -3.95 3.90 19.526 17.999

2000 11.47 8.30 2.48 5.05 -2.08 10.07 -2.99 6.39 -10.139 22.134

2001 11.63 7.07 4.26 4.41 1.80 9.57 0.80 6.18 -13.043 21.471

2002 15.22 8.26 -1.74 5.40 11.67 10.65 0.43 7.68 -23.366 25.926

2003 1.90 5.38 -2.91 2.80 9.45 7.79 3.99 4.80 26.380 17.000

2004 -1.61 3.56 0.20 1.74 -4.92 3.77 -0.75 1.05 8.993 11.049

2005 -4.68 3.21 0.97 1.19 -6.81 3.39 0.10 0.57 3.001 10.243

2006 -2.82 2.80 -1.42 1.15 1.22 3.70 -0.48 0.92 13.619 9.985

2007 -7.40 3.90 -6.06 1.49 -7.96 4.83 -8.67 2.39 3.530 15.928

2008 19.95 10.70 -2.23 6.99 18.47 15.45 -8.63 12.55 -38.486 40.810

2009 15.43 7.97 3.99 5.43 9.63 10.29 8.29 7.68 24.707 27.177

Corr. -0.08 0.95 0.04 0.94 -0.08 0.98 0.15 0.98
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4.2 Intraday trading rules

• ml
t is a periodic deterministic variance modeled similarly to (5), but using dummy

variables instead of harmonics; we might represent returns as

ln[(X l
t)

2] = ln[(ml
t)

2] + ln[(εlt)
2], (4.32)

with

ln[(ml
t)

2] = a1 +
T∑

j=1

ajd
l
t,j , (4.33)

where d l
t,j, j = 2, ...T is a dummy variable assuming value 1 when j = l and zero

otherwise, while a1, a2 . . . aT are parameters to be estimated;

• furthermore, the stochastic term εlt follows a GJR model (Glosten et al. 1993)

allowing thus for the decomposition

εlt = σl
t Z

l
t, (4.34)

where Z l
t = N(0, 1) and the conditional variance is given by

(σl
t)

2 = ω +
(

α0 + α1 I(ǫ
l
t < 0)

)

(ǫ l
t )

2 + β (σ l
t )

2, (4.35)

where

– (ǫ l
t )

2 ≡ (ǫlt−1)
2 if t > 1 and (ǫ l

t )
2 ≡ (ǫl−1

T )2 if t = 1,

– (σ l
t )

2 ≡ (σl
t−1)

2 if t > 1 and (σ l
t )

2 ≡ (σl−1
T )2 if t = 1,

– I(ǫ l
t < 0) is equal to one when ǫ l

t is negative and zero otherwise,

– ω, α0, α1 and β are parameters to be estimated. These parameters must

satisfy the constraints for variance positivity and covariance stationarity

ω > 0, α0 > 0, α1 > 0, β > 0 and α0 + 0.5α1 + β < 1 (under an assumption

of symmetry for the density characterizing Z l
t.

The estimation of the model proceeds by steps. At first the periodic component is

estimated by linear regression using equations (4.32) and (4.33). The fitted periodic

component is used to recover the estimated values of ǫlt. Over those, the GJR pa-

rameters are estimated by Quasi Maximum Likelihood approaches using a Gaussian

likelihood. Given the estimated parameters, and under a Gaussian density for the

innovations zl
t, we generate possible paths for the future evolution of the conditional

variance (σl
t)

2, of the innovations ǫlt, and of the returns xl
t (the periodic component ml

t

is purely deterministic and is thus simply replicated in the forecasting exercise). Under

the distributional hypothesis, the needed quantiles are then determined and used as an

alternative input for the identification of the trading signals.
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Table 4.5: Out of sample average profit per trade in basis points (2000-2010)

25% 10% 5%

All trades

Unc. 0.772 -0.058 -0.267

Cond. (3) 1.565 0.465 -0.098

GARCH -1.488 -3.207 -0.628

Long trades

Unc. -1.131 -0.854 -1.260

Cond. (3) 0.962 0.250 -0.513

GARCH -2.812 -3.950 -0.546

Short trades

Unc. 2.597 0.661 0.613

Cond. (3) 2.145 0.655 0.284

GARCH -0.489 -2.594 -0.696

The first column reports the model: Unc. stands for our model with no conditioning; Cond.

(3) refers to the model with a conditioning to the first three returns of the day; finally, GARCH

identifies the conditional variance specification with deterministic periodic component. The

first row reports the quantile level.

In Table 4.5 we report the out-of-sample average profit per trade considering our

Unconditional and Conditional quantiles as well as the GJR model. As we mentioned

in the previous section, the out-of-sample evaluation focuses only of the range 2000

to 2010, since the period 1985-1999 is used to calibrate the ensemble-based model.

Results for our model are similar to the in-sample outcomes, with conditional model-

ing providing better results. Furthermore, both Conditional and Unconditional model

specifications have performances largely better than the GRJ model. The difference be-

tween the model-based strategies appear more clearly in Table 4.6 that contains annual

returns of the simulated portfolios. We note here that using the 25% quantiles together

with a conditioning on the first three returns of the day provides the best results in high

volatility market phases (larger than 20% annualized daily market volatility). On the

contrary, when the volatility is lower, there is not a clear preference across the models

(GJR included). The yearly volatility of the GJR is lower compared to our models as

well as to the market, but the yearly profits are clearly unsatisfactory. In addition, the

last row reports the correlations between the strategies return and standard deviations

with the corresponding market quantities: the results confirm the previous findings for

our strategy, while for the GJR we have lower correlation in the standard deviations.
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Table 4.6: Out of sample yearly return and standard deviation compared with the S&P500 Index

25% - C. 3 p. 5% - C. 3 p. 25% - Unc. 5% - Unc. 25% - GJR 5% - GJR S&P500

Return Dev.st Return Dev.st Return Dev.st Return Dev.st Return Dev.st Return Dev.st Return Dev.st

2000 12.96 8.36 -1.29 5.31 -2.15 10.09 -3.46 6.56 -10.88 4.88 -1.95 2.46 -10.14 22.13

2001 12.61 7.19 5.28 4.35 2.15 9.49 0.49 6.28 1.75 5.62 0.52 3.00 -13.04 21.47

2002 16.21 8.49 -0.93 5.53 11.03 10.76 0.69 7.68 -7.83 5.54 2.29 3.39 -23.37 25.93

2003 2.93 5.35 -0.61 2.95 8.43 7.63 4.13 4.69 9.39 4.94 -1.27 2.17 26.38 17.00

2004 -1.08 3.52 -0.69 1.60 -6.60 3.66 -0.66 0.99 0.70 1.69 -0.44 0.44 8.99 11.05

2005 -5.68 3.00 0.88 1.13 -6.80 3.27 0.06 0.52 -1.86 1.38 0.14 0.25 3.00 10.24

2006 -3.08 2.61 -0.99 1.04 0.79 3.56 -0.84 0.85 3.11 1.90 0.09 0.61 13.62 9.99

2007 -9.25 3.91 -4.96 1.49 -10.39 4.79 -8.71 2.22 -4.27 1.61 -0.98 0.45 3.53 15.93

2008 22.73 10.66 -1.90 7.70 18.30 15.46 -8.43 12.70 -7.02 4.22 -1.49 1.38 -38.49 40.81

2009 18.36 8.17 1.74 5.41 12.31 10.15 8.05 7.50 3.99 4.91 -0.78 1.33 24.71 27.18

Corr. -0.52 0.95 0.06 0.96 -0.30 0.97 0.62 0.98 0.78 0.64 -0.19 0.45
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Summarizing our findings, we can state that the proposed model has some potential

for the development of trading strategies aimed at hedging the volatility risk, since their

performances are positive during high market volatility, and characterized by a lower

risk compared to the market index. Signals extracted from the model can be directly

used, or could be considered as confirmatory signals for other strategies working with

high frequency data, or could be used to detect relevant market movements.

In this empirical example we do not consider several elements that could have an

impact on the trading strategy profits. We motivate this by the need of evaluating the

model in comparison to a simple benchmark. Across the elements we did not include, we

have the trading costs. Once those are introduced, the profits reported in the previous

tables would be sensibly reduced. However, the trading strategy we implement was

based on a fixed frequency database, using a 10-minute interval. This has a relevant

impact on the trading outcomes. In fact, if a quantile violation is observed at time tk,

we execute the trade at time tk with the price observe at that point in time. However,

the violation could have taken place in each instant between time tk−1 and tk. A

trader using our approach would produce quantiles to be used for each period of 10

minutes, but will immediately detect the violation, and operate in the market soon

after the violation (assuming she fully trusts the signal). On the contrary, working

with a fixed time span of 10 minutes, we lose part of the potentially relevant content of

the signal, since the price at time tk might be significantly different from the unknown

price observed at the trade execution just after the violation occurred between time

tk−1 and tk. A further element not included in our trading example is the remuneration

of the bank account. In addition, overnight liquidity operations could be introduced

given that the portfolio is entirely into cash from 1 p.m. of day t up to 9:39 a.m. of day

t+ 1. Finally, we note that even the trading strategy could be improved, for instance

introducing stop-loss and take-profit bounds on the implemented orders.

4.3 Testing the intraday model with stock quotes returns

In this section we employ the intraday model to analyze the behaviour of two stock

quotes: International Business Machines (NYSE: IBM) and Caterpillar, Inc. Common

Stock (NYSE: CAT). We will note that the model reproduces, within certain limits,

both return statistics and we will particularly highlight some differences between the

two quotes, that are interesting for matters of scaling and multiscaling.
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Figure 4.23: Linear correlator celin(1, t) for the IBM dataset. Dashed line is the model

prediction. Note that the quick decay to zero permits to employ the model in a 5-minutes

time scale.

4.3.1 The IBM stock quote

Looking at the rapid vanishing of the linear correlator celin(1, t) (Eq. 4.5) of the returns

of the IBM stock quote in Fig. 4.23, we immediately understand that the rapid decay

to zero permits to assert that, for the period in analysis, in a 5-minutes time scale, the

correlations are absent, and then the model can be applied to such a time based return

scale. The dataset of returns for the IBM quote consists of 1809 days, with 40 returns

per day from 9:40 a.m. to 00:55 p.m. NY time.

The decay of the second moment in the considered time window [see Fig. 4.24(b)]

follows the same decaying trend as in the S&P500 dataset, with an estimated scaling

exponent D around 0.32. On the other hand, the analysis of the trend of the moments

[Fig. 4.24(a)], for low values of the moment q, shows that the scaling ansatz of Eq. 4.1 is

valid for the IBM datset, with a best fitted D = 0.31. The two values are in quite good

agreement, and this permit us to deepen the analysis following the above mentioned

procedure.

First of all we build the scaling function, by collapsing the aggregated returns via

Eq. 4.1. The presence of a certain skewness suggests to use the asymmetric model

presented in Sec. 2.4 with a ψ function chosen e.g. as follows:

ψ(σ, µ) =
1

2
ρ1(σ)δ(µ − µ) +

1

2
ρ2(σ)δ(µ + µ), (4.36)

with

ρi(σ) = Ai
b3iσ

4

b7i + σ7
(4.37)

and µ = 6 · 10−4, b1 = 0.0012, b2 = 0.00125. Ai’s are two proper normalization factors.

The resulting scaling function, together with the collapsed distributions for different
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Figure 4.24: Empirical ensemble analysis of the returns for the IBM dataset. There is a

certain agreement between the analysis in (a) performed according to the ansatz in Eq. 4.1,

where the straight line characterizes a simple-scaling behavior with a best fitted D = 0.31

and the trend of the second moment in (b) where the line is given by ∼
[
t2D − (t− 1)2D

]
,

with D = 0.32.

time lags, are displayed in Fig. 4.25. The fitting of the function g to the real data is

remarkable, both in the center and in the tails of the distributions. The verification

of the scaling hypothesis can lead us to study the behaviour of some of the correlators

introduced in Sec. 4.1.1. For example, the volatility autocorrelation (Eqs. 4.14 and 4.15)

displays a very good agreement between empirical and theoretical trends (Fig. 4.26).

Other agreements concern the κe
α,β correlators (Fig. 4.27), their α−β symmetry and the

Ke
α,β process correlators (these two last are not displayed for conciseness). Referring

for example to Fig. 4.27 we must still remember that the results are significative only up

to an overall moment of about 2. A clear multiscaling deviation for q ≥ 2 is detected,

and so the model validity is restricted to this value of the moments. This may explain

the large oscillations in the upper graph of Fig. 4.27.

However, in the range of validity of the model, the empirical results for all the

considered indicators on the IBM dataset are well predicted and reproduced. The

leverage effect has been tested, too, but with non-significative results, in that the

statistical error related to the finite size of the dataset does not permit an evaluation of

the model estimations (the error bars are about twice as large as those of the S&P500

dataset).
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Figure 4.25: The scaling function for the IBM, after aggregation. The g function is

constructed via Eq. 2.62 with a ψ function chosen in the form of Eq. 4.36.
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Figure 4.26: The volatility autocorrelation for the IBM. The dashed line is the model

prediction.
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Figure 4.27: Constancy of κe
α,β (Eq. 4.12) for the IBM dataset. Dashed lines are model

predictions (Eq. 4.11).

4.3.2 The CAT stock quote

The analysis of the CAT quote presents some relevant peculiarities, that specify the

level of applicability of the intraday model. It is therefore of some interest to go into the

details of the analysis for this asset, too: even if the results will be somehow poor, they

all the same give a good insight into the limits of the described procedure. In Fig. 4.28

the trend of the CAT stock price for the period is shown, together with the log-returns.

The graph of the trend presents two distinct regimes: approximately in the first two

thirds of the graph the price is uniformly increasing and, beside some isolated spikes in

the volatility, the returns are quite uniformly distributed. In the remaining part of the

graph (approximately the last two years) the trend is no more clear: the price oscillates

with a period of some months and, toward the end of 2008, there is a large downfall in

the quotation. Correspondingly, the volatility is more clustered and, around the end

of the period, significantly increased. As a consequence, we are led to ask ourselves if

this pattern may influence the analysis. The first two steps of our work are, as before,

the calculation of the empirical second moment 〈x1(t)
2〉e and the analysis of the scaling

of the moments. We work in a 10-minutes’ time scale, and we have at our disposal

M = 1497 complete days. After obtaining some preliminary, non satisfying results, we
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Figure 4.28: Overview of the quotations of the CAT stock, from 2003 and 2008. See the

increased volatility in the more recent years (2008 crisis).

decided to split our database into three parts relative to the years 2003-4, 2005-6 and

2007-8, respectively. The trend of the empirical second moment for the three subsets

is displayed, for the whole time window from 9:30 a.m. to 4 p.m., in Fig. 4.29. While

the first two subsets present an analogous behaviour, the last one is completely out of

that range. Even if a similar decaying trend can be identified in the first three hours

from opening, the scale of the moment is different. This difference persists all day long

and, around the end of the trading time, the last dataset shows a clear increase of the

volatility that is not so evident for the first two. Considering instead the first three

hours from opening, the scaling of the moments presents a peculiar theme (Fig. 4.30):

the subsets for the first four years generate a quasi-linear, although slightly divergent,

trend; on the contrary, the last subset displays a definite multiscaling effect above q ∼ 2.

Moreover, the multiscaling effect in the last two years, due to the larger values for the

returns in that period, dominates the analysis jointly performed on all the available

years. In fact the trend of the last subset is almost superposed to that of the complete

dataset. Analogous different results are spotted considering the distribution of the

returns (Fig. 4.31): again the PDF’s for the first four years are similar, while they

differ from that of 2007-8.
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Figure 4.29: The average empirical second moment of the CAT dataset during the full

time of trading. The difference between the two earlier subsets and the latest is remarkable.
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Figure 4.30: The scaling analysis of the moments according to Eq. 4.1 (CAT dataset).

The black full line is relative to the whole period 2003-2008. Notice the more definite

multiscaling effect in the last subset, that drives the trend for the complete dataset.
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Figure 4.31: The distribution of the returns for the three CAT subsets.
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Figure 4.32: Empirical ensemble analysis of the returns for the CAT dataset (years

2003-2006). The analysis of the scaling of the non-linear moments (a) gives a best fit-

ted D = 0.307. The trend of the second moment in (b), where the line is given by

∼
[
t2D − (t− 1)2D

]
, gives a best fitted scaling exponent D = 0.323.
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Figure 4.33: The scaling function for the CAT dataset (2003-2006) The collapse is

obtained with a scaling exponent D = 0.315.
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Figure 4.34: Constancy of κe
α,β (Eq. 4.12) for the CAT dataset. Dashed lines are model

predictions (Eq. 4.11). The error bars are the standard deviation of the empirical κ’s.
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Figure 4.35: The volatility autocorrelation for the CAT. The dashed line is the model

prediction. A large, not shown uncertainty comes from the possible forms of the ρ function.

Given the empirical evidence that the years 2003-2006 are to be treated under a

different framework respect to the years 2007-2008, we decided to limit our analysis

to the first four years, thus working with a more limited (M = 999 days) but more

homogeneous dataset. In these years of quasi-linear increasing trend of the asset value

the multiscaling effect is almost negligible [Fig. 4.32(a)]. For this reduced 4-years

dataset we developed the same analysis as in Sec. 4.1.1, starting from the estimation

of the scaling exponent: the two estimates derived from the graphs of Fig. 4.32 are

not so distant and give, altogether, D = 0.315 ± 0.008. This parameter is used to

collapse the different returns histograms via Eq. 4.1: the result is presented in Fig. 4.33.

Unfortunately the very reduced size of the dataset (below 1000 histories) generates

a very poor scaling collapse, and consequently the scaling function g(x) is not well

determined. The ρ function used to build the g in this symmetric version of the model

is the following

ρ(σ) = A
σ4

0.00257 + σ7
, (4.38)

where the constant A is a suitable normalization factor.

As a natural consequence of the smallness of the dataset and of the uncertainty

in the definition of the scaling function, the predictions about the correlators are less
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significative, too. For what concerns the constancy of the κe
α,β correlators (Eqs. 4.11

and 4.12) the result is shown in Fig. 4.34. With respect to, e.g., Fig. 4.27 the correlators

are reduced and definitely more unstable.

Regarding the volatility autocorrelation (Fig. 4.35) the result is even more unsat-

isfactory. The model prediction is almost everywhere far from the empirical evidence,

even if the error bars are larger than in the previous tests (compare, e.g., with Fig. 4.26).

Here it is important to stress that the error coming from the uncertainty about the form

of the scaling function is large and that, if included, the overlap between the empirical

and the theoretical curves would be achieved.

We limit our analysis to these correlators only; the results are already clear in that

they suggest that the CAT database is too small to give good agreements. Even if also

in this dataset some of the patterns already highlighted for the EUR/$ or the S&P500

or the IBM datasets are emerging, these patterns are not significative for the validation

of the theory. As an important result, however, there is the confirmation that large,

and possibly uniform, datasets are essentials to verify the model predictions with a

good statistical significance.
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5

Conclusions

Here we summarize the main achievements of our work.

The fundamental aspect is the employment of a non-Markovian model for the de-

scription of the evolution of market indexes and asset prices, both in an intra- and in

an inter-day setting.

Two different formulations for the model have been described, for these two different

settings. The first refers to long series of interday returns; the second is related to

high frequency intraday datasets. The former, although containing elements of time-

inhomogeneity that account for exogenous inputs on the market, is also a stationary

model. The latter is built within the assumption of considering ensembles of histories

extracted from high frequency daily data: this model is time-inhomogeneous in its

range of application and this inhomogeneity is the result of the systematic exogenous

effect of the market opening.

Both formulations are based on the anomalous scaling, that is thoroughly verified

across different time scales for all the analyzed datasets. In the former case, the scaling

property refers to the empirical PDF of the inter-day returns; in the latter, to the PDF

of the returns, evaluated from the ensemble of daily histories. The model, is ultimately

capable of grasping many of the most common financial stylized facts, but has also a

strong predictive power.

Relevant memory effects and correlations are present in both schemes; they have

been described and empirically verified.

In practice, by analyzing the interday returns we could detect, both for S&P500 and

DJI, an Omori-like behaviour of the aftershocks’ statistics. Nevertheless, even if the

small total number of shock events in the historical series forbids stable statistics, as

verified via computer simulation, the general trend of the financial counterpart of the

Omori law for seismic aftershocks is well reproduced within the context of this model.
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In the intraday scheme, instead, taking advantage of the predictive properties of the

model, we could build a buy/sell strategy that has finally revealed some small arbitrage

opportunities. The comparison with another, GARCH-based, strategy has shown the

validity of he employed scheme, given that the obtained profit was overall larger. The

result shows how an accurate study of the strong correlations in the process permits

the foundation of a successful trading strategy, as an alternative to ill-defined chartist

approaches.

The problem of the calibration is discussed, too. For the interday model a satis-

factory procedure is now under development and the analysis of the Omori regimes

has revealed itself a good calibration test, if not a good calibration tool. The intraday

model, instead, already finds a good support for the calibration from the correlators’

analysis, as described in detail in the text.

Further developments will necessarily regard the extension of the intraday time

window where the model can be applied and, as soon as a satisfactory calibration

scheme will be available also for the interday model, the tasks of defining interday

strategies and derivative pricing methods.
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law-truncated Lévy process. Physica A, 2004, 336, 245–251. 22

117



REFERENCES

[47] Sornette, D., Malevergne, Y., and Muzy, J.-F., Volatility fingerprints of large shocks:

endogeneous versus exogeneous. In: Application of Econophysics, Proceedings of the second

Nikkei symposium on econophysics, H. Takayasu, Springer Verlag, 2004. 40

[48] Stella, A.L. and Baldovin, F., Role of scaling in the statistical modelling of finance. PRA-

MANA - Journal of Physics, Indian academy of Sciences, 2008, 71, (2), 341–352. 14, 33,

41, 43

[49] Stella, A.L. and Baldovin, F., Anomalous scaling due to correlations: limit theorems and

self-similar processes. J. Stat. Mech., 2010, (2), P02018. 17, 20, 23, 24, 30, 70, 74, 83

[50] Von Neumann, J., Various techniques used in connection with random digits. Monte Carlo

methods. Nat. Bureau Standards, 1951, 12, 36–38. 39

[51] Wang, F., Yamasaki, K., Havlin, S. and Stanley, H.E., Indication of multiscaling in the

volatility return intervals of stock markets. Phys. Rev. E, 2007, 77, (1), 016109. 76

[52] Xu, D. and Wirjanto, T.S., An Empirical Characteristic Function Approach to VaR Under

a Mixture-of-Normal Distribution with Time-Varying Volatility. The Journal of Derivatives,

2010, 18, (1), 39–58. 23

118



Acknowledgements

At the end of these three years of work I would like to acknowledge Prof.

Attilio Stella for trusting me and for putting at my disposal his deep knowl-

edge and his trained competence.

I also acknowledge Dr. Fulvio Baldovin for easing the task of my research

with his numerous explanations and his precise hints and especially for that

touch of sincere spirit of comradeship through which he helped me in most

of my difficult days; all this was received by me as a friendly gift, and will

remain as one of my dearest memories.

I thank my wife Marika, on whose love rests my true happiness. I thank

her for helping me to find my way, and for being always a wise and com-

prehensive partner.

Finally, I thank the little Martino who, with his pure tenderness, shows me

the light of the real Love.


