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Sommario 

 
Alterazioni genetiche sono state identificate per molte malattie di natura genetica, ma in 

molti casi i meccanismi molecolari che contribuiscono all’insorgere della malattia non 

sono ancora chiari. Lo studio degli effetti delle mutazioni a livello della proteina 

permette di chiarire i processi biologici coinvolti nella malattia e il ruolo della proteina 

in essa. La bioinformatica può aiutare a affrontare questo problema rappresentando il 

punto di connessione tra diverse discipline quali la clinica, la genetica, la biologia 

strutturale e la biochimica.  

In questa tesi ho impiegato un approccio computazionale per affrontare l’analisi di 

alcuni esempi di proteine di interesse biomedico, integrando diverse risorse di dati e 

indirizzando la ricerca sperimentale e clinica. Strutture proteiche determinate 

sperimentalmente o mediante il modelling molecolare sono state utilizzate come base 

per determinare la relazione tra struttura e funzione, essenziale per ottenere 

informazioni sulla correlazione genotipo-fenotipo. Le proteine prese in esame sono state 

inoltre analizzate nel loro contesto, considerando le interazioni che avvengono con altre 

proteine o ligandi nei diversi compartimenti cellulari. I risultati dell’analisi 

bioinformatica sono stati poi utilizzati per formulare ipotesi funzionali che in alcuni casi 

sono state verificate e confermate sperimentalmente da altri gruppi di ricerca. Le 

mutazioni identificate nei geni codificanti per le proteine in esame sono state valutate 

per il loro impatto sulla struttura e funzione della proteina utilizzando numerosi metodi 

di predizione disponibili online. Le diverse applicazioni descritte in questa tesi hanno 

fornito l’idea per lo sviluppo di nuovi approcci computazionali per lo caratterizzazione 

strutturale e funzionale di proteine e dei loro mutanti. Si è visto che la predizione 

migliora utilizzando un ensemble dei diversi metodi di predizione disponibili. Inoltre, 

per la predizione degli effetti di mutazioni è stato ideato un nuovo approccio 

computazionale che utilizza le reti di interazione tra residui per rappresentare la struttura 

proteica. Questi metodi sono stati utilizzati anche nell’analisi di dati genomici originati 

da nuove tecnologie di sequenziamento. Questo ambito necessita di nuove strategie di 

indagine per l’individuazione di poche varianti causative in un’enorme quantità di 
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varianti identificate di dubbio significato. A questo scopo viene proposta una strategia 

di analisi che utilizza informazioni derivanti dalle reti di interazioni proteiche. 

I nuovi approcci formulati in questa tesi sono stati applicati e valutati ad un nuovo 

esperimento internazionale, chiamato Critical Assessment of Genome Interpretation 

(CAGI), fornendo in alcuni casi ottimi risultati. 
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Abstract 

 
Many gene defects have been associated to genetic disorders, but the details of 

molecular mechanisms by which they contribute to the disease are often unclear. The 

study of mutation effects at the protein level can help elucidate the biological processes 

involved in the disease and the role of the protein in it. Bioinformatics can help to 

address this problem, being the connection between different disciplines including 

clinical, genetics, structural biology, and biochemistry.  

By using a computational approach I tackled the analysis of some examples of 

biomedical interesting proteins integrating various sources of data and addressing 

experimental and clinical investigations. Experimentally defined structures and 

molecular modelling were used as a basis to determine the protein structure-function 

relationship, which is essential to gain insights into disease genotype-phenotype 

correlation. Proteins have been further analyzed in their context, considering 

interactions that they take in specific cellular compartments. The results have been used 

to formulate functional hypotheses, which in some cases have been tested and 

confirmed by further investigations performed by cooperation groups. Mutations found 

in genes encoding these proteins have been evaluated for their impact on the protein 

structure and function by using several available prediction methods. These studies 

provided the idea for developing novel approaches, using residue interaction networks 

and an ensemble of methods. A novel strategy has been also designed to evaluate 

genomic data obtained by next generation sequencing technology. This consists in using 

available resources and software to prioritize rare functional variants and estimate their 

contribution to the disease. The novel approaches developed in this thesis have been 

applied and assessed at the Critical Assessment of Genome Interpretation (CAGI) 

experiment in 2011, providing in some cases very successful results. 
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1. Introduction 

 
The identification of genetic variations determining human phenotypic variations, 

especially  causing diseases, is a fundamental goal in human genetics. Genetic disorders 

associated with the functional disruption of single genes by a variety of genomic 

alterations have been recognized for some time. Currently, the connection between 

genotype and phenotype have been reported for approximately 3,000 Mendelian 

disorders (Online Mendelian Inheritance in Man). On the other hand, Genome-Wide 

Association Studies (GWAS) have been extensively applied to discover the genetic 

basis of common multigenic, complex diseases identifying associations between ~1,300 

loci and ~200 diseases or traits (Catalog of Published Genome-Wide Association 

Studies at US National Human Genome Research Institute). However, causal variants, 

which account for the associations with the trait under study, have been identified only 

for a small fraction of these loci. Even for many of rare Mendelian diseases, the causal 

variants remain to be discovered.  

The recent advent of next generation sequencing and high-throughput technologies has 

added a new dimension to genome research by generating a massive amount of data. 

Research is revealing the spectrum of extensive genotypic variation among human 

genomes and its association with a broad range of human phenotypes. The study of 

human genetic disorders is changing and in the near future exome and genome 

sequencing will probably replace the traditional approaches for gene discovery and 

clinical testing [1-3]. Exome sequencing has been proven a promising approach to 

discover rare causal variants and candidate genes for many undiagnosed rare Mendelian 

diseases [4-8]. Additionally, it is being tailored to investigate the contribution of rare 

alleles on the hereditability of complex diseases and health-related traits [6, 9].  

These advances can be translated into improved clinical management. Characterization 

of novel rare variants may assist in the discovery of novel disease genes. Studying 

pathways in which these are involved may explain the pathogenic mechanisms 

underlying the disease. This provides new opportunities to identify novel therapeutic 

targets leading to therapeutic drugs and eventually novel biomarkers to improve disease 
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predictions. Furthermore, the knowledge of individual predisposition to diseases (e.g., 

through genetic profiling) allows the development of personalized approaches for 

diagnostics and therapeutic optimization (Fig. 1). However, to gain benefit from the 

interpretation of genomic data for health care, we need to know how these variants 

contribute to the phenotype of the individual [10].  

Medicine

Personal 
Genomics

Pharmaco-
Genomics

 
Figure 0.1. Personalized medicine.  
 

Structural genomic alterations such as large deletions/insertions or frame shift, non 

sense, and splicing mutations are thought to result in non-functional proteins. More 

difficult to explain is the effect of single nucleotide polymorphisms (SNPs). The effect 
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of most of these genetic variations is still unknown, but SNPs occurring in or close to a 

gene can affect its expression or the function of its protein product. In particular, non-

synonymous or missense variants (nsSNP) alter the coding sequence causing a change 

in the corresponding protein that may have drastic phenotypic effects if the structure or 

the function of the protein is affected [11-12]. The importance of nsSNPs in human is 

described by the fact that half of these genetic changes are known to cause human 

monogenic Mendelian diseases [13-14], representing a great resource for understanding 

disease mechanisms. To characterize the phenotypic effect of genetic variants, a 

detailed analysis of the structure and function of the protein is essential. Indeed, one of 

the major molecular pathogenic effect of nsSNP is the alteration of the protein structure 

which affects protein stability [15-18]. The mutant protein can lose the ability to fold 

and, recognized as non-native in the endoplasmic reticulum, will be removed and 

degraded by the quality control machinery. Alternatively, the variant may cause only 

local fold instability. This may have a direct impact on the functional elements of the 

protein such as the active site, modification sites, nucleic acid, protein or ligand binding 

sites. These mutations can also affect other functional elements located in unstructured 

regions of the protein including cellular localization signals, linear motifs for globular 

domain binding, or post-translational modification sites. It is expected that many 

different effects on protein structure and function can result from an amino acid 

substitution [19]. Experimental characterization of the impact of each nsSNP could 

therefore be laborious and becoming unfeasible, as rapidly improving sequencing and 

genotyping technologies continue to generate increasingly large number of genetic 

variations. The major repository of human SNPs, dbSNP build 132 from October 2010 

contained 143 million human SNPs, 30 times higher than present in dbSNP build 106 

from 2002 [20]. The 1000 Genomes Project intends to sequence 1000 genomes, hence 

the volume of genetic data is rapidly growing [21]. However, many computational 

approaches have been developed to support the study of proteins and to understand 

molecular effects of genetic variations. Bioinformatics is now needed in most 

biomedical research fields. Its support is essential to address hypothesis-driven 

experiments or on the prioritization of multiple hypothesis testing.  

The discovery of a novel disease-related gene is accompanied by the characterization of 

the protein structure-function relationship, which is essential to understand its 
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contribution to the illness. In silico analysis of proteins of biomedical interest can be 

used to define protein structure and to detect residues or regions crucial for protein 

function. Knowledge of the protein structure, either experimental or through modelling, 

can be used to pinpoint finer details, such as the protein domain or segment that 

mediates interactions. These insights may also be helpful in guiding the design of 

further experiments to investigate protein function [22-23]. Detailed analysis of known 

proteins will also serve to elucidate the single pieces involved in regulatory networks at 

the molecular level, to formulate hypotheses that may explain genotype to phenotype 

correlation of involved genes. In particular, as mentioned above, the effects of single 

missense mutations can be predicted in terms of protein stability changes and their 

impact on interaction partners [24]. In this context, a single protein can be considered as 

a component in a network. Specific alterations of a protein will then be associated to 

effects of particular network modules. By studying protein-protein interactions, it will 

be possible to highlight similarities and differences between apparently unrelated 

mutations which can be correlated to specific clinical features on a higher level [25-27]. 

One useful application of bioinformatics research to genetics is the development of 

computational methods to predict the functional effects of genetic variants. There is a 

growing body of literature focused on the identification of potentially deleterious 

mutations and how to distinguish them from neutral substitutions [28-31]. Current 

prediction methods are based on evolutionary information or combine phylogenetic 

information with sequence properties and annotations from biological databases. Some 

methods use structural data which can improve the accuracy of the prediction but their 

application is limited due to the small number of available structures [32]. In the 

medical field, these methods can assist in the interpretation of uncharacterized 

mutations in genes involved in both monogenic and multigenic disorders [4, 33]. 

Further, exome and genome sequencing of human individuals will lead to the discovery 

of many previously unknown sequence variants. The main challenge of computational 

approaches is to predict few deleterious variants among the extensive background of 

non-pathogenic polymorphisms and help researchers to prioritize SNPs for additional 

investigations [34]. In this context, there is a strong demand for efficient and accurate 

bioinformatics tools to classify disease mutations. For available variant prediction 

methods, the community needs to understand the appropriate confidence level they 
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should have, and which approaches are most suitable to a particular application. To 

assess computational methods predicting the functional impact of genome variations, 

the international community in 2011 organized the experiment called Critical 

Assessment of Genome Interpretation (CAGI, http://www.genomeinterpretation.org/). 

This is a blind test similar to another competition started in 1994 named the Critical 

Assessment of protein Structure Prediction (CASP), which had the aim to improve 

ability to predict protein structures from their amino acid sequences. The goal of CAGI 

is to accelerate the progress on computational methods for the interpretation of genetic 

variations. It also wants to test the usefulness of current mutation prediction methods for 

diverse applications such as predicting the level of enzyme activity from genetic data or 

the probability of a variant in an intermediate-risk cancer gene to belong to a patient or 

a control [35]. Other challenges required a major effort and aimed to explore new 

computational approaches to manage and interpret the large amount of genomic data 

accumulating with the advent of next generation sequencing technology. In particular, 

the ability to sequence entire genomes introduces new challenges that the community 

needs to address. These include the prediction of some traits such as the blood cell types, 

the predisposition to common diseases such as cancer and diabetes, or knowing the 

individual response to drugs. Although genome or exome sequences are not yet used in 

medical practice, we are working to make personalized medicine a reality. 

 

1.1. Objectives 
The research conducted in this thesis has involved the application of computational 

approaches targeted mainly to the study of proteins of biomedical interest. The choice 

of proteins to study was made on the basis of the presence of an experimental group 

working or interested in investigating the biological or medical problems. This allowed 

to test hypothesis that emerged from the in silico analysis of the proteins by experiment 

or clinical investigation. In some cases, the bioinformatics findings were used to 

formulate hypotheses to interpret data produced by biologists and medical researchers. 

The various subjects I studied gave me the opportunity to apply diverse computational 

approaches for various types of proteins with different structural (globular,  
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transmembrane, and repeat proteins) and functional characteristics (ubiquitin ligase, 

transcription factors, enzymes, channels). In particular, the approach I adopted in the 

analysis of each protein followed a workflow that explores the sequence-structure-

function relationship up the level of the protein interaction networks.  

A set of methods or workflow was designed with the intent to incorporate the use of 

computational methods in the regular practice of a laboratory studying the molecular 

basis of genetic diseases. Thus, analysis of the proteins was addressed from the 

characterization of variants identified by genetic testing whose clinical significant had 

to be established. For some variants, case-control, segregation, and family history can 

provide strong evidence of direct association with the disease. However, when genetic 

data is incomplete, in silico analysis of the protein or gene sequence can provide further 

evidence. In order to classify these variants, a large number of different computational 

methods have be employed.  

The aim was also to evaluate the power of available software on protein structure 

function prediction and on the interpretation of human genetic variations. Often authors 

present their software as the best solution demonstrating good accuracy in the prediction 

of a limited set of experimentally provided data. However, the performance on a 

specific protein can reveal some weakness of the method. To this end, I participated in 

the international CAGI experiment which aims to assess computational methods for 

genome interpretation. This allowed evaluating the different approaches I explored for 

mutation prediction in diverse applications. Furthermore, I contributed to the 

development of an approach to predict phenotypes from exome sequencing data.  

 

1.2. Outline 
This thesis is organized in 10 chapters followed by a summary. Chapter 2 describes 

computational methods that can be applied to study the protein structure-function 

relationship and for the interpretation of genetic variations. The following chapters are 

divided in two main sections. The first section is composed of chapters 3 to 8, 

presenting applications of bioinformatics on different proteins of biomedical interest. 

The second section, corresponding to chapter 9, describes the CAGI experiment and the 
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results from the participation in different challenges proposed by CAGI in 2011. The 

last chapter summarizes the work accomplished, discussing the contribution of each 

chapter.  

It should be noted that the chapters of the first section are based on published work that 

required experimental and clinical data from other research groups. For some part of the 

work conducted during the CAGI experiment, I required the expertise of my colleagues 

in the BioComputing group. Thus, for part of the thesis I have used both “I” and “we” to 

distinguished between my own and shared work. The contributions of each chapter are 

briefly summarized in the following: 

Chapter 3 is based on Benetti E, Caridi G, Malaventura C, Dagnino M, Leonardi E, 

Artifoni L, Ghiggeri GM, Tosatto SCE, Murer L. A novel WT1 gene mutation in a three-

generation family with progressive isolated focal segmental glomerulosclerosis. Clin J 

Am Soc Nephrol. 2010 Apr;5(4):698-702. In this work I analyzed by bioinformatics 

tools the effect of a novel amino acid substitution on the WT1 protein structure. The 

effect of the mutation was evaluated through the ability of WT1 to regulate gene 

expression. The work also allowed to formulate a hypothesis about WT1 function in 

maintenance of the correct cytoskeletal architecture, which is important for integrity of 

the filtration barrier in kidneys. 

Chapter 4 is based on Leonardi E, Murgia A, Tosatto SCE. Adding structural 

information to the von Hippel-Lindau (VHL) tumor suppressor interaction network. 

FEBS Lett. 2009 Nov 19;583(22):3704-10. In this work I presented the structural 

characterization of known interactions of the VHL protein. This allowed better 

understanding of VHL function in several pathways involved in tumor formation. 

Chapter 5 is based on Leonardi E, Martella M, Tosatto SCE, Murgia A. Identification 

and in silico analysis of novel von Hippel-Lindau (VHL) gene variants from a large 

population. Ann Hum Genet. 2011 Jul;75(4):483-96. In this work I analyzed the effect 

of novel VHL variants identified in individuals with a clinical diagnosis ranging from 

von Hippel-Lindau syndrome to sporadic potentially VHL-related tumors. The impact 

of VHL mutations on the ubiquitin-mediated degradation process is also discussed. 

Chapter 6 is based on two works: Leonardi E, Andreazza N, Vanin S, Busolin G, Nobile 

C and Tosatto SCE. A computational model of the LGI1 protein suggests a common 

binding site for ADAM proteins. PLos ONE 6(3): 2011 March 29,;6(3):e18142, and 
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Striano P, Busolin G, Santulli L, Leonardi E, Coppola A, Vitiello L, Rigon L, 

Michelucci R, Tosatto SCE, Striano S, Nobile C. Familial temporal lobe epilepsy with 

psychic auras associated with a novel LGI1 mutation. Neurology. 2011 Mar 

29;76(13):1173-6. This work had two goals: studying the structure-function relationship 

in the LGI1 protein and studying known LGI1 mutations on protein structure and 

function. I used the predictions to formulate a hypothesis about the protein function in 

the synaptic transmission of neural signals. Furthermore, I found a genotype-phenotype 

correlation for some mutations which is being confirmed by experimental and clinical 

findings. 

Chapter 7 is based on Bello L, Melacini P, Pezzani R, D'Amico A, Piva L, Leonardi E, 

Soraru' G, Palmieri A, Smaniotto G, Gavassini B, Vianello A, Bertini E, Angelini C, 

Tosatto SCE, Torella A, Nigro V, Pegoraro E. Cardiomyopathy in patients with 

POMT1-related congenital and limb-girdle muscular dystrophy which has been 

submitted for publication to the European Journal of Human Genetics and is still under 

review at the time of writing. In this work I analyzed the effect of POMT1 mutations on 

the enzymatic activity of the protein. 

Chapter 8 is based on Brini M, Di Leva F, Ortega CK, Domi T, Ottolini D, Leonardi E, 

Tosatto SCE, Carafoli E. Deletions and mutations in the acidic lipid-binding region of 

the plasma membrane Ca2+ pump: a study on different splicing variants of isoform 2. J 

Biol Chem. 2010 Oct 1;285(40):30779-91. In this work I analyzed the structure-

function relationship of the plasma membrane calcium ATPase (PMCA) protein. In 

particular, I studied the role of structural regions in the regulation of pump activity 

mediated by acidic membrane phospholipids (PL) and Calmodulin. 

Chapter 9 describes the participation in the CAGI experiment in 2011. This chapter 

explains the use of novel computational approaches for mutation effect prediction in 

different biological applications. In particular, I present the applications of a method 

using residue interaction networks and an ensemble method. The main idea of the novel 

approaches arises from the studies presented in the previous chapters. In the first step of 

the work, I contributed the integration of biological information in the development of 

new prediction methods. This chapter also describes a new approach to predict 

phenotypes from genomic data. In particular, I designed a model which can be used in 

the identification of candidate genes causing Mendelian and complex diseases. Chapter 
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10 delineates the main findings obtained from the previous chapters, describing their 

relevance in the biological and medical field. 
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2. Predicting Protein Function from 
Sequence and Structure 

 
Protein function can be defined at different interdependent levels and may be classified 

in three main categories: molecular function, biological process and cellular component. 

Molecular function indicates the activity of the protein at a molecular level, such as 

enzymatic activity. Biological process describes a set of molecular functions which 

jointly operate in a living units (cells, tissues, organs, and organisms) such as apoptosis. 

Cellular component is the compartment of the cell where the protein exerts its function, 

which may be an anatomical structure such as the nucleus or endoplasmic reticulum or a 

protein complex such as the proteasome. To perform these functions, the protein uses 

functionally distinct regions that can be recognized at the sequence or structural level. 

Several computational methods have been developed to characterize the structure or 

function of these regions.  

In this chapter I present a workflow that shows how to apply computational tools to 

retrieve functional information from protein sequence and structure (Fig. 2.1). Since 

structure determines function and we can use it to predict function, part of this chapter 

covers generation and inference of protein structure. A separate section is also dedicated 

to the functional characterization of an intriguing class of proteins presenting intrinsic 

structural disorder. All information derived from this approach can be used for the 

interpretation of genetic variants. Beyond the description of how non-synonymous 

SNPs affect protein function, I provide an overview of computational methods to 

predict the effect of SNPs on protein stability and distinguish pathogenic from neutral 

nsSNPs. The characterization of protein functional regions provided a rationale for 

designing experiments  aimed to understand the molecular basis of protein function. 

Furthermore, for mutations mapping to these regions, interpretation of their impact on 

protein function allowed to formulate hypotheses, which can be verified by 

experimental studies. 
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Figure 0.1. Schematic workflow for the analysis of protein functions.  
Information can be predicted from sequence or structure.  
 

2.1. Sequence analysis 
 

Sequence database searches 

Analysis of a protein starts by obtaining its reference amino acid sequence. Protein 

sequences can be retrieved from GenBank at the NCBI, Ensembl, or UniProt [36]. 

The UniprotKB database (protein knowledgebase) collects protein sequences in two 

sections: SwissProt and TrEMBL. The latter provides automatic annotation for protein 

sequences derived from the translation of the corresponding nucleic acid sequences 

deposited in GenBank. The SwissProt section is instead continuously updated with 

manually curated sequences. Proteins are carefully annotated with functional 

information including biological processes in which they are involved, cellular 

localization, protein family and evolutionary information. UniProt provides access to 

many links to other sources and facilitates the collection of knowledge and 

classification of an interesting protein.  



2. Predicting Protein Function from Sequence and Structure 

25 

The simplest way to obtain the identity of a protein and its functional annotation is to 

use homology information. The general assumption is that sequences with high 

similarity evolved from a common ancestor and thus share the same function. BLAST 

or PSI-BLAST [37] are widely used to search sequence databases. The best hits (lowest 

E-value) give us the most similar proteins, but the similarity may sometimes refer only 

to a part of the sequence, usually corresponding to a specific protein domain.  

 

Multiple sequence alignments 

To identify relevant functional regions, alignment of the target protein with homologous 

sequences is very informative. Furthermore, distinguishing between orthologous and 

paralogous sequences allows the identification of function-discriminating residues. 

However, the recent explosion of large scale sequencing projects results in an increasing 

numbers of automatically annotated sequences, with the corresponding possibility of 

errors [38]. Hence, selection of homologous sequences can be facilitated using curated 

databases. The Orthologous MAtrix (OMA) browser is a web interface offering the 

search of protein sequences from 1,000 species. Orthologs of a given protein can be 

download as a group of related sequences or as multiple sequence alignments [39]. 

Other databases are family specific such as the KinBase database, where kinase 

sequences can be retrieved for different species [40]. Once a set of sequences is 

obtained, the alignment is built using CLUSTALW [41] or MAFFT [42] and manually 

curated using a sequence editor like Jalview [43]. The alignment can be modified on the 

basis of structural information or experimental findings, avoiding gaps in conserved 

secondary structure elements.  

 

Phylogenetic analysis 

The evolutionary relationship between different proteins is further investigated by 

phylogenetic analysis. Neighbor joining is a fast method based on clustering of 

distances, while a maximum likelihood approach can be used when we need to consider 

information from each position. To build phylogenetic trees, a widely used software 

based on the maximum likelihood approach is PHYLM [44]. The most widely used 

substitution matrix is the JTT matrix and robustness of the tree topology is usually 

estimated by nonparametric bootstrap resampling (BT).  
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Functionally relevant residues 

In order to visualize evolutionary conservation for each amino acid position in the 

sequence or structure, we can use the ConSeq or Consurf web servers respectively [45].  

The graphical view helps to explore functionally or structurally important regions in the 

protein, using as input a curated alignment and a phylogenetic tree. 

 

Functional classification systems 

Functional classification of proteins have been mainly derived with the Gene Ontology 

(GO) [46]. This describes molecular function, biological process, and cellular 

component of a protein using standard terms, coded by numbers. Alternatively, the 

Enzyme Commission (EC) classification system assigns a number defining classes and 

subclasses of enzymes. These systems provide a general classification which can be 

very useful in processing large numbers of proteins, but requiring careful interpretation 

in specific cases. Some enzymes belonging to the same class have significant 

differences in reaction mechanisms. This is emerging in a new classification of enzymes 

based on ligand and mechanistic similarities [47]. 

 

Domain architecture 

The web interface of BLAST provides a graphical alignment view with homologous 

sequences integrated from the Conserved Domain Database (CDD). These annotate the 

protein sequence with the location of conserved domains and functional sites [48]. CDD 

reproduces a pre-computed conserved domain annotation calculated by the Reverse 

Position Specific BLAST (RPS-BLAST) algorithm importing domain and protein 

family alignments from Pfam [49], SMART [50], COG [51], TIGRFAM and the 

NCBI protein clusters database. While COG collect orthologous family, the other 

databases are example of Family-based resources. These database classify proteins with 

multidomains or individual protein domains in evolutionary families. Pfam is 

particularly useful to retrieve domain boundaries in a protein and the assignment of the 

function to the homologous of the same family is manually curated. InterProScan 

interface provides a easy way to obtain signatures, domain family, and functional sites 

from eleven different databases [52]. 
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Sequence motifs search 

Rather than using the whole sequence, protein function can be predicted by similarity 

with short stretches of conserved protein sequences, of 10-20 residues, referred to as 

sequence motif or signature. These sequences are important for the biological function 

of a group of proteins and contain enzyme catalytic sites, prosthetic group attachment 

sites, residues coordinating metal ions, or cysteines involved in disulfide bonds. In the 

PROSITE database, these signatures are defined as regular expressions or pattern, rules, 

or profiles on the basis of the prediction methods used. They are manually curated, 

selecting from relevant biological examples [53]. Other databases dedicated to motif 

searching are BLOCKS [54] and PRINTS[55]. Sites of posttranslational modification 

like phosphorylation, acetylation, and glycosylation sites identified by high-resolution 

mass spectrometry are collected in the PHOSIDA database [56]. The web interface also 

offers a wide range of analysis tools to predict modification sites. The ELM database, 

in addition to modification sites and sequence motifs from PROSITE, contains linear 

motifs for protein binding sites [57]. Other resources can be protein specific, such as the 

Calmodulin target database (http://calcium.uhnres.utoronto.ca/ctdb/) collecting four 

classes of calmodulin binding motifs (IQ, 1-10, 1-14, and 1-16) and other motifs 

identified from available complex structures involving calmodulin. Several motifs are 

also defined by various investigators through sequence homology with existing 

calmodulin binding motifs. Cellular localization of a protein can be predicted with 

PSORT II [58], which searches for potential ER retention or nuclear localization 

signals. SignalP [59] predicts potential peptide cleavage sites in the N-terminal 

sequence, which are secretory pathway signals.  

 

Secondary structure 

When an experimental protein structure is not available, predicting the secondary 

structure can be the first step to classify its structural components or to model the 

globular domains. PSIPRED [60] (http://bioinf.cs.ucl.ac.uk/psipred/) uses profiles 

calculated by PSI-BLAST. It is implemented with neural networks to calculate the 

propensity for secondary structure of each residue in a window of 15 amino acids. 

Porter is another server for secondary structure prediction using bidirectional recurrent 

neural networks [61]. This approach allows for dynamic window extension during the 
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assessment process, which is particularly important for prediction of distant beta-strand 

forming residues. Each predictor divides secondary structure in three classes: alpha-

helix (H), extended (E) or beta-strand, and coil (C). The average prediction accuracy of 

these methods is around 80%, and using a consensus of prediction methods can improve 

the detection of conserved secondary structure elements. 

 

Transmembrane prediction 

Membrane proteins are involved in several vital biological processes, with the main 

categories being cell adhesion proteins, membrane receptors, transport proteins and 

enzymes. The presence of a transmembrane segment can be predicted and is indicative 

of integral membrane proteins. These present two main folds as either alpha-helical 

bundles or β-barrels with similar amino acid composition. Traditional methods used 

information about amino acid composition and hydrophobic patterns to predict 

transmembrane segments. More recent methods, such as TMHMM [62] and 

HMMTOP [63], apply Hidden Markov Models as machine learning methods to deduce 

rules on transmembrane structure. The advantage of these is the possibility to restrict 

the length of the putative transmembrane segments. Another method based on HMMs is 

Phobius [64], which distinguishes between N-terminal signal peptides and 

transmembrane segments. These methods have been extended with evolutionary 

information in the recently developed versions Prodiv-TMHMM and Poli-Phobius 

[65]. Consensus prediction of membrane topology is further a useful strategy to improve 

the reliability of the prediction. Several web servers have been developed to this aim. 

TOPCONS [66] combines the prediction of five methods: OCTOPUS [67], pro-

TMHMM and Prodiv-TMHMM [68], SCAMPI-single and SCAMPI-multi [69]. 

SCAMPI predicts topologies for single and multiple-sequences using a position-

specific membrane insertion propensity scale [70]. OCTOPUS uses a combination of 

HMMs and neural networks and is able to predict re-entrant regions and transmembrane 

hairpins.  
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2.2. Generating and inferring structure 
 

Protein structure databank (PDB) 

The major database of experimentally determined protein structure is the RCSB Protein 

Data Bank (PDB) [71], which is a member of WorldWide PDB. It consists of three 

main organizations, PDBe (UK), PDBj (Japan), and RCSB (USA). It aims to maintain a 

global and uniform repository of large biological molecules, including  protein and 

nucleic acid structures. These are deposited as files containing the atomic coordinates 

determined by X-ray crystallography or nuclear magnetic resonance (NMR). The file 

can contain more than one chain if the structure represents a protein complex or 

homopolymer. Each record is integrated with links to other databases such as Pfam [49], 

SCOP [72], and CATH [73-74] (for SCOP and CATH description see paragraph 2.4). 

These are useful to retrieve structures similar to the target PDB structure on the basis of 

structural or evolutionary relationships with the PDB fold. Another integrated resource 

is the DSSP database, containing secondary structure assignments for all PDB protein 

entries [75]. 

 

Visualization tools for 3D structure 

Rasmol [76], Jmol [77], and Pymol (Schrödinger LLC) are the most widely used open 

source programs for interactive molecular visualization of protein structures. The PDB 

database allows visualization of the structure using Jmol. Both Jmol and Rasmol are 

integrated in many web services dedicated to protein structure analysis through an 

applet. Pymol is a widely used molecular visualization system written in Python that 

can run on different operating systems. It can be used to explore structures in details and 

produces high quality images for publication. Furthermore, it can be used to visualize 

electrostatic potential surfaces calculated by the Adaptive Poisson-Boltzmann Solver 

(APBS) program [78]. Another interesting visualization system is UCSF Chimera [79]. 

One of most important advantage of this tool is the use of structureViz, a Cytoscape 

(see paragraph 2.4) plug-in linking the visualization of molecular structures with 

biological networks such as residue interaction networks [80] (see paragraph 2.6). 
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3D structure superposition 

The superposition of protein structures with similar folds can be performed in order to 

explore conserved and variable regions between them. There are several tools for this 

aim. CE (Combinatorial Extension) [81] calculates the best possible alignment between 

two structures using sequence fragments in a way similar to contact maps to establish 

structure similarity. Recently, a new version of the software has been published, 

referred to as CE-MC, which aligns multiple structures based on Cα-coordinate 

distances. The alignment performed by CE algorithm is further optimized by Monte 

Carlo optimization [82]. Another used approach, called Multiple Structural AligNment 

AlGorithm (MUSTANG), is based on a progressive pairwise alignment heuristic [83]. 

This software has been demonstrated to perform better with distantly related proteins or 

with proteins that undergo conformational changes. 

 

Structure annotation tools 

To integrate and publish information deriving from different analyses we can use 

ESPript [84-85]. This tool allows to represent aligned sequences with annotation for 

secondary structure, solvent accessibility, intermolecular contacts, modification sites 

and other user-supplied markers. The overall representation of annotated sequences is 

especially appreciated for publication.  

 

Homology modeling 

Homology or comparative modeling is used for the construction of three-dimensional 

models of a target protein starting from its amino acid sequence and a structure of a 

protein, called template, with at least 30% sequence identity. Building a homology 

model comprises three main steps: identification of structural template(s), alignment of 

target and template sequence(s), and model building. The template search can be 

performed using the PDB-BLAST protocol  (http://protein.bio.unipd.it/pdbblast/). Here, 

a profile built from the sequence of the target is used to search possible templates in the 

PDB database, allowing identification of even distantly related protein structures. The 

protocol is integrated in the HOMER model building server 

(http://protein.bio.unipd.it/homer/). If more than one template is proposed, it is possible 

to choose the structure with the best resolution or, after superposition of the structures, 
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the one better representing the domain we want to predict. The structural alignment 

between different templates can also be useful to highlight conserved and variable 

regions and improve the target-template alignment. The critical modeling step consists 

in the construction of an accurate alignment between the target and template proteins. In 

this phase it is possible to use several previously described alignment tools. The manual 

refinement of the alignment is recommended especially if further information is 

available from structural analysis and experiments.  

Finally, alignment and structure template are used as input for specific homology 

modeling software. Modeller is widely used to this aim [86] and uses comparative 

modeling by satisfaction of spatial restrains. Many other tools exist as free web servers 

such as SWISS-MODEL, accessible from the Expasy web server [87]. HOMER is an 

in house produced software used for most of the studies presented here. A manual and 

an automatic protocol for template selection are available, with automatic selection 

using PDB-BLAST protocol. HOMER can perform additional tasks such as de novo 

loop modeling and side chain optimization. The loops are modeled using an algorithm 

based on a divide and conquer approach, named LOBO. The method generates a ranked 

set of possible conformations of the loop with predicted quality measured in terms of 

RMSD [88]. Next, the side chain placement use a rotamer-based method SCWRL, 

which chooses the energetically favored amino acid conformation. The model obtained 

from HOMER is accompanied by a per-residue energy profile calculated with FRST 

[89]. This gives a first indication of the model quality since regions with high energy 

may contain errors. The model can be energetically minimized using GROMACS, a 

molecular dynamics simulation software [90].  

 

Fold recognition 

Fold recognition methods identify similar structures with low sequence similarity using 

secondary structure or accessibility predictions. The BioInfoBank Meta Server 

(http://meta.bioinfo.pl/)  allows identification of templates belonging to the same fold 

class of the target protein. The server uses the prediction of different fold recognition 

servers. The predicted models are evaluated by 3D-Jury, scoring them on the basis of 

their similarity to other models [91]. Output includes the PDB code of each hit, the 

alignment and the similarity score calculated from every server. The template sequences 
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are annotated with their SCOP [72] and FSSP [92] classification (see paragraph 2.4) and 

compared with the target sequence predictions. A better prediction is obtained by using 

only the sequence of the domain to be modeled. The target-template alignment can be 

further used to build the model with other software, possibly after manual modifications 

derived by further analysis. Meta Server is directly linked to Modeller [86] for model 

construction. 

 

Membrane protein structure prediction 

Determining the structure of transmembrane proteins has long represented a difficult 

problem since it requires very special experimental conditions for the crystallizing 

process to succeed. Over the last few years, the number of resolved structures increased 

considerably, with currently 1550 deposited in PDBTM, a database for transmembrane 

protein structures [93]. However, since the sequence-structure gap for transmembrane 

proteins is still large, modeling remains a important task. Many protein structure 

prediction algorithms have been developed for soluble proteins, but they are not 

designed specifically for membrane proteins. The physical differences between soluble 

and membrane proteins concern the environment in which the proteins are embedded, 

implying a different strategy should be adopted for modeling. However, it has been 

demonstrated that template-based approaches can be successfully applied to membrane 

proteins. New strategies are based on approaching diverse parts of the protein in 

different ways, especially to identify the core shared by target and template [94]. Given 

a template with 30% identity, the target-template alignment should consider both 

sequence conservation and topology of the transmembrane regions. A consensus 

approach for topology prediction is recommended since this improves the accuracy for 

boundary prediction of transmembrane segments. The other steps follow the usual 

homology modeling approach. 

 

Modeling of repeat proteins 

Repeat proteins, such as solenoid-like proteins, are composed of several repeated 

structural units. Although the single repeats can be highly degenerated in sequence, it is 

possible to recognize a conserved pattern of residues with specific biochemical 

characteristics which is responsible for the repeated fold. Proteins containing repeat 
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domains, such as leucine-rich repeats (LRRs) or β-propeller domains, have very low 

internal sequence similarity. However, repeat protein modeling has been successfully 

performed for LRR domains using an approach combining homology modeling and 

structure-based sequence alignments [95-96]. First, the repeat units can be predicted 

using REPETITA [97]. This program uses the discrete Fourrier transform (DFT) to 

identify the sequence periodicity of a repeat domain using a sequence profile defined by 

five numeric scales [98]. The Atchley scales reflect polarity, secondary structure, 

molecular volume, codon diversity, and electrostatic charge. Usually, since sequence 

similarity is very low, template selection is performed with a fold recognition approach, 

making secondary structure prediction very important. A consensus approach is 

recommended since it improves the accuracy of the prediction [99]. The best template 

will be selected considering also the corresponding number of repeats. In the case of 

LRR domains this can affect the curvature of the arch. The conserved pattern defined by 

each repeat in the template structure is compared with those of the target protein and 

manually adjusted. Finally, the target-template alignment is used as input for HOMER 

or other homology modeling software. The following steps are the same for homology 

modeling including loop modeling, side chain placement, and energetic minimization. 

 

Model Quality  

The reliability of the structure models has to be evaluated by model quality assessment 

tools. The Qmean server can be used both for the selection of the best models or to 

evaluate the absolute quality of a protein model in order to know the reliability of each 

part of the protein [100-101]. The high quality regions may be further investigated to 

formulate new biological hypotheses (e.g. prediction of binding sites). Qmean scores 

range from 0 to 1, with higher values representing more reliable models. Qmean uses 

the combination of six scoring function terms, with the composite score being based on 

normalized statistical potential terms describing the major geometrical aspects of 

protein structures. The output presents the Qmean score, estimated absolute model 

quality, and the z-score of each terms. Good structure are expected to have z-score 

around zero (light red to blue regions in the plot). Furthermore, the estimate of residue 

error is mapped on the structure using a color gradient from blue (more reliable regions) 

to red (poor quality regions).  
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2.3. Intrinsically disorder proteins (IDPs) 
 

A large fraction of proteins in both prokaryotes and eukaryotes contain disordered 

regions. A disordered region can be defined as a highly flexible part found partially or 

completely extended in solution. Globular structures may present some disordered 

regions, such as extended random coils or secondary structure elements that are not 

condensed into a stable globular fold [102]. Recently, a more complete definition has 

been formulated where intrinsically disordered, or unstructured, proteins (IDP/IUPs) or 

regions of proteins (IDRs) occupy different conformational states from fully disordered 

(random coil) and compact states [103-105].  

The prevalence of disorder in protein function has been studied by different groups 

based on the GO annotation, addressing the correlation between disorder and the three 

classes molecular function, biological process and cellular localization. The studies 

agree on the identification of high prevalence of disorder in transcription regulation, 

protein kinases, transcription factor, and DNA binding proteins. Proteins with high 

levels of disorder are also involved in development, protein phosphorylation, regulation 

of transcription, signal transduction. The majority localize in the nucleus, with most of 

these being ribonucleoproteins or forming part of the cytoskeleton [106-109]. 

 

Disorder prediction 

Disordered regions can be distinguished from ordered ones on the basis of their amino 

acid composition, as IDPs show low hydrophobicity and high net charge. Several 

methods have been developed for disorder prediction using both neural networks or 

support vector machines (SVMs). DISOPRED2 [108] is trained to identify disordered 

residues that fail to be crystallized. The SVM uses a sequence profile generated by PSI-

BLAST and evaluates the disorder propensity of each residue in a symmetric window of 

15 positions. PONDR [110] (predictor of naturally disordered regions) is a neural 

network based on amino acid composition, flexibility and other features derived from 

the sequence. SPRITZ [111] is a web server for the prediction of disordered regions 

also providing the prediction of secondary structure elements performed by Porter [61]. 

It uses two specialized binary classifiers for long and short disorder which use both 
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support vector machines. A recent new version of this software is CSPRITZ [112], 

combining the prediction of  three different disorder predictors. These use homology, 

sequence-only, or structure information. An interesting implementation is that the 

output of CSPRITZ also indicates ELM motifs mapping to the predicted disordered 

regions. A different approach is used by IUPred [113], which estimates the total 

pairwise interaction energy created by a polypeptide chain. The idea is that proteins 

cannot fold because their amino acids are not able to form stabilizing inter-residue 

interactions. Thus this method takes into account amino acid composition and local 

neighbors. 

 

Functional Classification of IDPs  

On the basis of the molecular mechanisms involved in IDPs, disordered proteins can be 

divided into six categories. The first unique category for disordered proteins is the 

entopic chain. These act by either influencing the localization of attached domains, or 

generating force against conformational changes [114], as has been demonstrated for 

the entropic gating in nuclear pore complex [115]. The other categories involve 

molecular recognition, with disordered regions binding transiently or permanently other 

proteins or ligands. Transient binding of disordered regions is well demonstrated for 

linear motifs mediating phosphorylation [116], ubiquitination [117], and acetylation 

[118]. Chaperones showing a very high proportion of disorder also use transient binding 

of disordered regions to perform their functions [119]. Three other categories identify 

disordered proteins as effectors, assemblers, or scavengers. Permanent binding modifies 

the activity of the partner, or assists in protein complex formation, or stores and/or 

neutralizes small ligands. The last category includes prions, proteins in which disorder 

is responsible for their autocatalytic conformational transition [104]. 

 

Prediction of function-related structural elements in IDPs 

IDPs seem to use transient structural elements to interact with their partners. Preformed 

structural elements can be predicted by usual secondary structure prediction algorithms 

[102] with higher accuracy than for ordered proteins and directly correlated with 

molecular recognition elements (MOREs) or molecular recognition features (MORFs). 

These elements have been identified by studying complex structures containing one 
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partner which is shorter than the other. MORFs show local structural preferences and 

correlate with disorder in the unbound state [120-122]. Iakoucheva and colleagues [107] 

showed that a decreasing PONDR VL-XT [123] disorder prediction score may indicate 

a functionally important recognition elements. ANCHOR [124] 

(http://anchor.enzim.hu/ ) is a software dedicated to the prediction of protein binding 

regions in IDPs. It uses IUPred [113] as disorder predictor and the same pairwise energy 

estimation approach to predict binding regions. The assumption is that parts of the 

disordered regions might form stabilizing contacts by interacting with globular protein 

partners. Since the recognition element could be simply represented by a linear motif, 

the web server also offers the possibility to complement the search of disordered regions 

with ELM [57] motif searches. Alternatively, these can be provided by the user or from 

the Calmodulin Target Database [125] (http://calcium.uhnres.utoronto.ca/ctdb/).  

 

Prediction of short recognition motifs in IDRs 

A widely used approach to infer function from IDP regions consists in predicting short 

linear motifs which are directly related to specific function, such as post-translational 

modification or binding specific protein domain (e.g. SH3 domain). As mentioned 

before, CSPRITZ [112] and ANCHOR [124] allow the prediction of disorder in concert 

with known linear motifs deposited in the ELM database [57]. The presence of 

unidentified short linear motifs (LMs, ELMs, Slims) possibly involved in protein-

protein interactions can be inferred. DILIMOT [126] is based on the expectation that a 

set of proteins with common functional feature (e.g. localization or binding of the same 

protein) may contain a linear motif in their sequences. The identified motifs are ranked 

on the basis of over-representation among proteins and conservation across homologous. 

SLiMFinder is another approach predicting shared motifs in a set of protein with 

common attributes. For best performance, the proteins should have little or no similarity 

[127-128]. 

 

PepSite 

When a protein is predicted to bind to a candidate peptide, the potential binding site on 

its surface can be predicted using PepSite [129]. This method uses a position specific 

scoring matrix (PSSM) derived from known peptide-protein complexes describing the 
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binding site preferences for each amino acid of the interacting peptide. The surface of a 

protein is scanned to find candidate binding sites for each residue of the target peptide. 

The resulting prediction may be useful in the functional characterization of many 

protein interactions. The discover of protein-peptide binding details provides a guide to 

better understand cellular mechanisms. Furthermore, since transient interactions are 

easier to modify chemically, protein-peptide interactions are a promising target for new 

class of drugs. 

 

2.4. Function prediction for globular proteins 
 

Structural classification 

Three main resources are available for the classification of protein structures derived 

from PDB [71] database: SCOP [72], CATH [73], and FSSP [92]. These classification 

systems are based on structural, functional, or evolutionary features of the proteins. 

SCOP [72] (Structural classification of proteins) manually annotates proteins in four 

different levels: Class, Fold, Superfamily, and Family. While the Class describes the 

secondary structure composition of the protein, the Fold clusters proteins on the basis of 

the arrangement and topology of their secondary structure elements. The Superfamily 

level contains proteins with low identity but strong functional relationships, while 

proteins with very similar function or structure and at least 30% sequence identity have 

been clustered together at the family level.  

CATH [73] (Class, Architecture, Topology, and Homology) classifies proteins with a 

semi-automated method, called SSAP (sequential structure alignment program) which 

searches for structural similarity comparing vectors of Cβ atoms between two proteins. 

Among the four classification levels, class and topology are similar to those in SCOP, 

while topology identifies structural clusters on the number and spatial connections 

between secondary structure elements. The homology level contains homologous 

proteins with similar structure and function. 

FSSP [92] is a database for fold classification based on a continuously updated 

exhaustive pairwise structural alignments of PDB proteins. The resulting classification 
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is reported in a fold tree generated by hierarchical clustering. Each level represents a 

unique protein family. FSSP is used by the Meta Server to annotate the template with 

structural classifications. 

 

Flexibility   

Proteins are not static and may undergo conformational changes upon binding to other 

molecules. Furthermore, a certain flexibility in the structure allows allosteric 

communication and the correct positioning of domains for substrate binding. Thus, 

analysis of protein flexibility should be important for function prediction. It can be used 

to identify conserved deformation patterns in functional mechanisms involved in 

catalysis, binding, and allostery. The most powerful method to study protein flexibility 

is molecular dynamics. Since this approach is complex and computationally expensive, 

coarse-grained methods coupled with simple potentials have been developed [130]. To 

represent protein flexibility, FlexServ (http://mmb.pcb.ub.es/FlexServ/) incorporates 

three coarse-grained algorithms and is integrated with structural databases. The results 

can be visualized in 3D models using a JMol applet or 2D plots [131]. 

 

Protein surface representation 

The surface of a protein can be described as either van-der-Waals surface or as solvent 

accessible surface. In the van-der-Waals representation, protein atoms are represented as 

spheres with radius equal to their representative van-der-Waals radius. This definition is 

used in the space-filling model. However, the most commonly used definition is the 

solvent accessible surface representing a continuous functional surface of the molecule. 

It is obtained by rolling a water molecule over the van-der-Waals surface, using the 

centre of the solvent probe as reference. This representation implies that several 

residues contribute to the properties of the molecular surface. It is widely adopted to 

infer biological characteristics of the protein surface. The solvent accessible surface is 

extracted from the PDB file of experimental structures using DSSP.  

 

Surface conservation 

The ConSurf server combines two methods, ConSeq and ConSurf, to calculate 

evolutionary conservation starting from protein sequence or structure respectively [45]. 
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Using only primary sequence as input, the tool discriminates between exposed (e) and 

buried (b) residues in globular proteins based on evolutionary information. The 

assumption is that slowly evolving residues should have relevant structural or functional 

roles depending on their localization with respect to the protein surface. Slowly 

evolving residues buried in the protein core have a structural role (s), while those 

solvent exposed have a functional role (f), e.g. protein binding [132]. The ConSurf 

protocol can instead be used when a protein structure or model is available. In this case, 

the functionally conserved regions on the protein surface are automatically represented 

with magenta color and may indicate the presence of a binding or active site. However, 

the interpretation of conservation is often difficult and extensive similarity does not 

imply similar function, e.g. in the TIM barrel family. The selection of sequences used to 

generate the multiple sequence alignment is crucial, and the exclusion of paralogs can 

be useful to correctly predict specific functional regions [133]. 

 

Hydrophobic surface 

Non-polar atoms tend to minimize the contacts with surrounding aqueous solvent, 

representing the so-called hydrophobic effect. Globular proteins present a hydrophobic 

core and polar surface, and the hydrophobic effect is the driving force determining their 

structure. This is also the driving force in the stable association of molecules. Therefore, 

the characterization of hydrophobic patches on the protein surface is indicative of 

obligate interfaces, such as oligomeric interactions [134]. The identification of surface 

hydrophobic content has been also used to predict the structure of protein-protein 

complexes [135]. 

 

Electrostatic surface 

Regions with high electrostatic potential can be used to predict the location of 

DNA/RNA binding sites in proteins. Enzyme active sites are also characterized by 

electrostatic strain which seems to facilitate enzyme catalysis. Therefore, electrostatic 

surface analysis can be used to predict functional sites. A way to calculate and visualize 

electrostatic surfaces is provided by Pymol (Schrödinger LLC) and the plugin APBS 

[78]. First, the protein structure has to be prepared for the electrostatic calculation 

adding atomic charge and radius information. The PDB2PQR web server 
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(http://www.poissonboltzmann.org/pdb2pqr/) can be used to convert PDB files into the 

PQR format. Different force fields can be selected for calculation. The file PQR is used 

as input for the Pymol plugin and the electrostatic potential will be plotted on the 

solvent accessibility surface. The visualization system provided by Pymol is color 

coded, blue indicating positive and red negative electrostatic potential.  

 

Ligand binding site databases 

Protein-ligand binding sites are characterized by the presence of a pocket on the protein 

surface. Its properties depend on the small molecules that are bound by different family 

members. The Catalytic Site Atlas (CSA) database [136] 

(http://www.ebi.ac.uk/thornton-srv/databases/CSA/) reports residues that are directly 

involved in the reaction catalyzed by enzymes. In this database we can find manually 

annotated catalytic sites derived from the literature and catalytic residues found by 

homology with annotated sequences. CSA is also used in FireDB, a database containing 

PDB structures and their associated ligands, where residues involved in ligand binding 

are annotated [137].  

 

Ligand binding site prediction 

A different type of methods uses only geometric characteristics to identify cavities on 

protein surface de novo, such as LIGSITE [138], PASS [139], SURFNET [140]. Q-

SiteFinder uses an energetic approach calculating the higher van-der-Waals interaction 

potential energy of an interacting probe [141]. The consensus method metaPocket 

combines these methods to improve prediction quality [142]. Ligand binding sites can 

be predicted with firestar [143], which uses PSI_BLAST and homology detection by 

iterative HMM-HMM comparison to retrieve homologous sequences from the FireDB 

database [137] and MUSCLE [144] to build multiple sequence alignments. The 

program transfers functional information of ligand binding residues in FireDB to the 

query sequence on the basis of the conservation between the two sequences [143]. 

Another predictor using homology information is FINDSITE [145]. In this case the 

software extracts structural information about conserved anchor functional groups rather 

than for residues accounting for binding specificity. Indeed, among evolutionarily 
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related but distant protein families, sequence and structure conservation is higher for 

residues contacting anchor functional groups [145]. 

 

Integrated server for structure-informed function prediction (PDBsum)  

PDBsum is a web server (http://www.ebi.ac.uk/pdbsum/) providing several structural 

analyses of PDB entries presented with graphical schemes. It was recently updated 

allowing users to generate structural analysis for own structure. The sequence of the 

target protein can be compared with a domain diagram reporting information derived 

from the available structure and various databases, such as CATH [73]. Catalytic 

residues, ligand binding residues, PROSITE patterns and disulfide bonds are all 

indicated in the diagram. In addition to a topology diagram showing the connections 

between different secondary structure elements, the web page provides a schematic 

diagram of the protein interface for structures containing more than one chain. The 

details of interactions between residues across the interface are also represented [146].  

 

Protein-protein interfaces  

The analysis and prediction of protein interfaces focuses on non-obligate protein-protein 

interactions. These involve proteins that can be found in a stable conformation 

independently in solution. Obligate interactions are those found in oligomeric 

complexes forming stable interactions through interfaces showing different surface 

properties. Structural analysis of experimentally determined protein complexes allows 

to characterize interface properties. These consist of buried cores surrounded by 

partially accessible specific residues. Few of these residues significantly contribute to 

the binding affinity and are called “hot spots”. These residues seems to be more 

frequently represented by aromatic or charged, rather than amphiphylic or hydrophobic, 

residues [147]. Interaction specificity is determined by the physico-chemical properties 

of the interacting surfaces which have to be complementary in terms of hydrophobic, 

charged or polar residues in the surface and between hydrogen bond groups. A protein 

interface is characterized by several properties and their combination has been used to 

developed various interface prediction methods. PPI-pred applies machine learning to 

six properties: hydrophobicity, salvation, geometry of interface residues, patch planarity, 

patch roughness, and solvent accessible surface area of the patch [148]. Promate [149] 
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(http://bioportal.weizmann.ac.il/promate/) in addition to hydrophobicity uses other 

properties such as atomic distribution,  residue conservation, and secondary structure. 

The Cons-PPISP (http://pipe.scs.fsu.edu/ppisp.html) consensus protein-protein 

interaction surface predictor was trained on native interfaces collected from PDB 

structure complexes [150]. Sequence profiles and solvent accessibility of each residue 

and their neighbors in space are used as input for a consensus neural network. The same 

properties are also used for an empirical scoring function by PINUP 

(http://sparks.informatics.iupui.edu/PINUP/) [151]. The predictions of some of the 

methods mentioned above are combined in meta-PPISP (http://pipe.scs.fsu.edu/meta-

ppisp.html) [152]. Crescendo (http://www.bioinf.manchester.ac.uk/crescendo/) [153] 

predicts functional sites on protein surfaces based on a conservation score calculated 

using amino acid substitution tables derived from particular local environments. This 

method identifies functional restrains from evolutionary information indicating 

interaction sites involved in various functions.  

 

Protein-protein interaction databases 

Recent advances in high-throughput experimental methods for protein interactions 

produced an increasing amounts of data and various databases have been developed for 

their classification. In addition to physical interactions, some databases also provide 

functional associations or interactions at the domain level. The database of interacting 

proteins (DIP) contains experimentally determined protein interactions obtained from 

the literature, PDB, TAP-mass spectrometry analysis and other high-throughput 

methods. The biomolecular interaction network database (BIND) includes high-

throughput data and protein complex from PDB [154] and can also distinguish different 

types of interactions. The molecular interactions database (MINT) focuses on 

experimentally verified protein interactions from mammalian organisms [155]. IntAct 

contains data retrieved from the literature manually annotated by experts. The 

annotations also include experimental methods, conditions and interacting domains 

[156]. HPRD is another database containing data extracted from the literature [157]. 

The most interesting database is STRING [158] which incorporates protein interaction 

associations for all databases mentioned above and from various other resources 

including KEGG [159], GO [160] and OMIM [13] (see paragraph 2.5). Predicted 
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functional interactions are also included and each interaction is accompanied by 

confidence scores on the basis of the methods used to find the association. Higher 

combined scores indicate that more than one method supports the association [161]. 

However, the database contains many errors because associations are derived by text-

mining and need to be verified.  

 

Protein-protein interaction network analysis 

The protein interaction databases contain a list of many binary interactions. Graph 

theory is extensively used to represent these interactions in the context of a particular 

pathway, tissue, cell, or organism. Some databases such as IntAct [156] and STRING 

[161] have incorporated graphs for visualizing dynamically generated network maps. 

Cytoscape [162] is a powerful platform developed to visualize and handle biological 

networks. Here, protein interactions are represented with nodes and edges as a two 

dimensional network.  

 

Protein-protein interaction prediction 

Experimental approaches studying protein interactions can be complemented by 

computational methods for their prediction. These methods can be used to choose 

potential targets for experimental screening or to validate experimental data. They can 

provide information regarding interaction details which might not be apparent from the 

experimental techniques. Several prediction methods have been developed using 

different approaches. Gene neighbor and gene cluster methods predict protein 

interactions comparing gene order between different genomes. Other methods are based 

on the hypothesis that interacting proteins have a similar co-evolution pattern or co-

expression of genes. Several approaches have also been developed to predict which 

protein domains are involved in an experimentally determined interaction. Co-evolution 

and phylogenetic profiles are strategies that could be also applied in these methods 

[163]. The enrichment of networks with structural information can be used to validate 

experimentally determined interactions and to predict new protein interactions [24, 164-

167]. Proteins can use different surface regions to interact with various domain types. 

However, proteins belonging to the same family, if they interact, normally do it using 

similar positions [168]. Furthemore, structural knowledge of network components has 
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been used to define the interface between two interacting proteins in order to determine 

compatible and exclusive interactions [169]. Structural analysis of the network can be 

performed directly using the STRING database. This  provides information such as 

protein domains and, where available, 3D structures.  

 

2.5. Mutation analysis 
 

Protein sequence and structure analysis allows to obtain information that can be useful 

to derive functional effects of genetic variants. In the near future, thousands of genomes 

or exomes (protein-coding regions of genomes) will be sequenced by ongoing projects 

thanks to the rapidly evolving of sequencing technologies. These projects consist of 

collaborative efforts to generate a catalog of single nucleotide polymorphisms (SNPs) 

occurring in human, annotating them for their genomic position and their distribution 

within population from different nationalities [21]. These SNPs frequently vary from 

one person to another and the study of their location has been used to asses disease risk 

and to identify disease associated mutations. If a SNP appears to be segregating with a 

disease, or if it is more prevalent in affected versus unaffected subjects, this may 

indicate that the SNP is physically close to the disease-causing mutation [170]. The 

identification of rare variants occurring in a coding gene sequence conferring disease 

susceptibility requires a strategy to interpret their functional role and calculate the 

probability of these variants to have a phenotypic effect (Fig. 2.2). In particular, a major 

effort is to distinguish between functionally significant variations and likely neutral 

variants. A growing amount of methods have been developed to analyze non-

synonymous SNPs using protein function, structure, and evolutionary information [29]. 

Current prediction methods still show relatively low accuracy, but are successfully 

employed for various biological and medical applications. The prediction of functional 

effects can be based on evolutionary information or combining phylogenetic 

information with structural analysis and sequence properties, while some methods use 

annotation derived from protein databases.  
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Databases 

Single nucleotide polymorphism are collected in the dbSNP [171] database at the NCBI. 

Here we can find all SNPs identified in genome sequencing projects together with their 

location in the genome and even the frequency at which they are found in control 

populations. Some variants are annotated with the minor allele frequency (MAF) value 

representing the frequency at which a variant has been observed in the 1000 Genome 

Project [21]. A MAF higher than 0.5 indicates possible common variants in the 

population. Although this database contains variants frequently found in various 

populations, other variants have been associated to some phenotypes.  

Mutation databases are used as starting point to verify the novelty of the detected 

variants. These databases contain information about genes and proteins and their 

associated phenotype. One of the most widely used databases is the Human Gene 

Mutation Database (HGMD) [13] mainly collecting data from the literature. Online 

Mendelian Inheritance in Man (OMIM) [172] is a catalogue of traits and disorders 

focusing on genotype-phenotype relationships containing variants reported in the 

literature. A partial list of known mutations reported in the literature or in dbSNP can 

also be found also in UniprotKB/Swissprot [173]. The Leiden Open Variation Database 

(LOVD) [174] is a gene-centered database collecting DNA variations. Information 

about variants are submitted manually and their reliability evaluated by volunteer 

curators. The complete list of Locus Specific Databases (LSDBs) and central mutation 

databases can be found at the human genome variation society website.  

 

Predicting functional effects from sequence 

Amino acid positions important for protein structure or function usually involve 

evolutionarily conserved residues and disease-causing mutations frequently occur at 

these positions. The pathogenicity of a single nucleotide polymorphism can be derived 

from the multiple sequence alignment (MSA). Conservation of mutated residues can be 

visualized and mapped on structure with Consurf using a color-coding [45]. MSA 

analysis can be used to evaluate the type of allowed residues on the mutated position, 

across different species, in terms of physico-chemical properties (e.g. size, charge, 

hydrophobicity, polarity). Jalview provides different color schemes for MSA 
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visualization assigning different colors to residues belonging to different physico-

chemical classes.  

The conservation of the type and properties of each position is an index of the role of 

the residue in protein structure or function. Some of these characteristic roles can be 

investigated directly from previously performed sequence and functional analysis. 

Amino acid substitutions can alter protein function introducing disorder into structured 

parts of the protein. The mutated sequence can be analyzed using SPRITZ [111] or 

CSPRIZ [112] and compared to the wild-type protein prediction. This analysis can also 

highlight functional alterations due to the introduction of the mutated residue in 

conserved sequence patterns recognized by ELM [57]. These alterations can involve 

both post-translational protein modifications and interactions mediated by linear motifs. 

Mutations can also alter localization signals preventing the correct sub-cellular location 

of the protein important for its function. Proteins can have specific functions for 

different sub-cellular compartments based on the different combination of protein 

partners or substrates.  

 

Deriving mutation impact from the structure 

When available, experimentally determined structures can be used as templates to infer 

information about possible structural alterations induced by mutations. The new side 

chain can be modeled using homology modeling followed by side chain replacement, 

rotating each side chain to find the new optimal conformation. When the amino acid 

substitution occurs at residues mapping on a structured domain, the structure of the 

mutant protein can be modeled on a 3D predicted model. Even in this case interpretation 

can be quite accurate [175]. Mapping mutated positions on the structure allows 

distinguishing two classes, core or surface mutations. Solvent accessibility can also be 

used to distinguish the two classes. In the two situations the different residue properties 

may cause different structural impacts, e.g. a large side chain in the core causes large 

structural re-arrangements. Thus mutations destabilizing the protein core have a higher 

probability to cause protein unfolding, while alterations at the protein surface can alter 

crucial ligand or protein binding residues. Mutations may also alter specific structural 

motifs involved in the molecular mechanisms underlying correct protein function. Such 

motifs are composed by a conserved arrangement of secondary structural elements and 
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their correct positioning is dictated by few inter-residue interactions. Residues forming 

α-helices or β-strands have more constrains that those mapping to loops. Residues have 

specific propensities for different secondary structural elements, e.g. proline is a known 

secondary structure breaker [176]. Furthermore, the 2D and 3D protein conformations 

are the result of chemical bonds and interactions between amino acid side chains in the 

space.  

 

Pathogenicity prediction 

A nsSNP can be classified as pathogenic when the amino acid substitution alters 

functional protein residues (e.g. active site, protein-protein interaction site) affecting the 

protein’s ability to exert its function and disturbing the molecular pathway in which it 

works. Several methods have been developed in order to classify mutations on the basis 

of their pathogenicity [19]. These methods use evolutionary, structural, or biochemical 

information, or a combination of these features to calculate the functional importance of 

a specific residue position and can use machine learning approach for the classification 

process [30]. Prediction methods based on phylogenetic information can incorporate a 

amino acid substitution matrix, but usually consist of two prediction steps. The first step 

is to build an accurate multiple sequence alignment and the second is to evaluate how 

well a genetic variant fits the pattern observed in the phylogeny. The choice of the 

sequences  is crucial, with the best choice being to select only orthologs as inclusion of 

distant sequences may lead to a uninformative MSA. To calculate the probability of the 

variant to be damaging, prediction methods can use positional conservation measures or 

probabilistic scoring functions. Align-GVGD [177] and SNAP [178] are instead based 

on amino acid physico-chemical properties. SNAP combines many sequence analysis 

tools using neural networks. It takes into account information derived from solvent 

accessibility and secondary structure, flexibility, conservation, and PFAM annotations. 

It also uses the functional effect assigned by SIFT [179], a mutation prediction method 

based only on evolutionary information. SIFT and also PMut [180] 

(http://mmb2.pcb.ub.es:8080/PMut/) assign a weight to the sequences on the basis of 

their phylogenetic relationship, assuming that the majority of variations observed in 

human and their orthologs are functionally neutral [180]. Pmut is based on the use of 

neural networks to process different kinds of sequence information. It also provides a 
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pre-calculated PMut database containing the results of a mutagenesis using the PMut 

method, for all positions in all PDB database proteins.  

 
 
 
Figure 0.2. Different aspects to consider in the analysis of non-synonymous SNPs. 
 

The PHD-SNP [181] method (http://gpcr2.biocomp.unibo.it/~emidio/PhD-SNP/) 

combines conservation with sequence environment using SVM classifiers. Sequence 

conservation is also used by Polyphen [182] (http://genetics.bwh.harvard.edu/pph/) and 

SNPs3D [183] (http://www.snps3d.org/). These methods can use available structural 

information in addition to reach more accurate results. In Polyphen a profile-matrix is 

calculated using the PSIC score (position-specific independent counts). Elements of the 
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matrix are logarithmic ratios of the likelihood of a given amino acid occurring at a 

particular position to the likelihood of this amino acid occurring at any position 

(background frequency). It also uses sequence annotation from SWISS-PROT in order 

to check if the substitution occurs at a specific site (e.g. active or binding site) or in non-

globular regions (e.g. transmembrane). Polyphen models the mutant protein to predict 

the impact of the variant in the hydrophobic core, electrostatic or ligand interactions. 

SNPs3D, also combining conservation and structure information, uses SVMs to 

distinguish between disease and non-deleterious SNPs based on features that may affect 

protein stability. It operates on the hypothesis that disease causing mutations affect 

protein function, thereby decreasing protein stability. 

 

Stability change prediction 

A SNP may affect protein function by altering its stability, either destabilizing or 

stabilizing it excessively. Protein conformations are in a balance between the folded and 

unfolded states, and the introduction of an amino acid substitution can shift the balance 

in either direction. Protein stability differences between wild type and mutant proteins 

can be calculated using the thermodynamic cycle. The difference in free energy (ΔΔG) 

between wild type and mutant states can be calculated as: 

    ΔΔG = ΔG U-F wt – ΔG U-F 
mut 

Where ΔG U-F wt and ΔG U-F 
mut represent the free energy change from the unfolded (U) 

to the folded (F) state for wild type and mutant proteins respectively. Various methods 

have been developed to predict stability changes due to protein mutations [30]. We can 

distinguish two main categories on the basis of the approach used in the calculation: 

methods calculating stability change by energy functions and machine learning methods. 

Physical effective energy functions simulate the atomic force field of a structure and can 

be used to test only small sets of mutants because they are computationally intensive 

[184-185]. Some methods use empirical potential energy functions combining 

experimental data, weighted physical and statistical terms, and structural knowledge 

[186-187]. FoldX [186] (http://foldx.crg.es/) is an example of a method using empirical 

potentials. This program calculates free energy changes based on a 3D protein structure, 

returning negative ΔΔG values for stabilizing and positive values for destabilizing 

mutations. Other methods such as Eris [188] and PopMuSic [189] use 3D structure 
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information. Eris [188] (http://eris.dokhlab.org/) uses physical force fields in 

combination with atomic modeling and fast side chain packing. PopMuSic [189] 

(http://babylone.ulb.ac.be/popmusic/) is based on potential functions derived from 

statistical analysis on data collected from protein databases such as substitution 

frequencies, distance potentials and amino acid environmental properties. Stability 

change prediction methods can also use machine learning approaches trained in protein 

mutants for which the ΔΔGs have been experimentally determined.  I-Mutant2.0 [190] 

and I-Mutant3.0 [191] are based on support vector machines (SVMs) using either 

protein sequence or structure as input. I-Mutant3.0 classifies mutations in three classes: 

stabilizing (ΔΔG>0.5), destabilizing (ΔΔG<-0.5), and neutral (-0.5<ΔΔG<0.5). MUpro 

[187] (http://www.igb.uci.edu/server/servers.html) uses the two machine learning 

approaches SVMs and neural networks and does not require tertiary structure. Auto-

Mute [192] (http://proteins.gmu.edu/automute/) combines machine learning methods 

with knowledge-based statistical potentials. Here, the protein residues are represented as 

points in 3D space and the effect of mutation is estimated as the spatial perturbation to 

its neighbor residues. Finally, the meta server PON-P [19] (http://bioinf.uta.fi/PON-P/) 

contains several predictors for disorder, aggregation, stability, and tolerance.  

 

2.6. Residue interaction network analysis  
 

Over the last few decades, network representations has been used to analyze many 

complex biological problems. Protein interaction networks are the best known example, 

where nodes represent proteins and connections between nodes their functional or 

physical interactions. The same approach has been adopted to represent protein 

structures, where interconnections between nodes (amino acid residues) represent 

physico-chemical interactions. Thus, the protein structure can be visualized in two 

dimensions as a residue interaction network (RIN), reducing the visual complexity of a 

three dimensional model. In addition, the advantage of using a network representation is 

that there are several efficient and robust algorithms that may be used to manipulate it, 

since theoretical computer science has studied such structures in detail. The exploration 
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and analysis of RINs have been applied to study the structural and functional role of 

residues in protein structures [193]. In particular the RINs have been used to identify 

key residues determining protein stability, allosteric communication, enzyme catalysis 

or structural impact of amino acid substitutions [194-199]. 

 

Generating residue interaction network  

Recently, our laboratory has developed a novel tool named RING [200], to generate 

RINs for use in Cytoscape [162]. The tool builds a structure network starting from the 

PDB file and uses different rules to define residue interactions, with closest atom as 

default. A more realistic connectivity between residues can be obtained by using van-

der-Waals surface to sample contacts. The interactions have been defined considering 

the physico-chemical properties of the interacting residues. For example, RING 

determines the presence of a salt bridge at physiological pH when a negatively charged 

residue (Asp or Glu) is in contact with a positively charged residue (Arg, Lys or His). 

These amino acid types are considered involved in a salt bridge if the distance between 

the mass centers of the charged groups in their side chains is less that an empirical 

distance threshold (4 Å default), empirically derived from a large set of protein 

structures. The RING tool further annotates nodes with structural features, such as 

secondary structure, solvent accessibility, and data derived from the PDB files (e.g. B 

factor, occupancy). Evolutionary information is additionally retrieved from the multiple 

sequence alignment automatically built with PSI-BLAST. The user can alternatively 

provide his own curated alignment. Conservation scores determined by Consurf is 

added to each node. Recently, the tool has been improved adding information retrieved 

from the CSA ligand binding site database in order to annotate known functional 

relevant residues.  

 

Visual analysis of RINs 

Once generated, the RIN can be visualized using Cytoscape [162]. The RING server 

also produces a VIZ-Mapper property file for Cytoscape including different visual 

styles (e.g. Consurf, structure conservation, and strong interaction) to color and shape 

nodes and edges corresponding to different structural features. Nodes or edges can be 

selected with a target feature to create relevant sub-networks. A useful approach to 
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analyze the protein is to combine the interactive 2D RIN visualization with the 

corresponding 3D protein structure using the Rinalyzer [201] plugin for Cytoscape. This 

software, also providing a database of pre-computed RINs, enables active selection of  

residues in the RIN while automatically highlighting them on the protein structure. The 

molecular modeling system UCSF Chimera (http://www.cgl.ucsf.edu/chimera/) is 

linked to Cytoscape by Rinalyzer, allowing the graphical visualization of the 3D protein 

structure. Rinalyzer can also be used to compute a set of topological centrality measures 

characteristic of the networks. In particular, the tool can be used to calculate the simple 

measure of the node degree, representing the number of connections with neighbor 

nodes. 

 

Mutation analysis using RINs 

The substitution of a residue in a protein structure perturbs the interactions between 

neighbor residues. Thus, the structural impact of a mutation can be predicted on the 

basis of the structural role of the substituted residue. A mutant model can be built using 

an homology modeling approach and the corresponding RINs can be compared to 

search differences in the presence and type of interactions. The final considerations are 

only simplistic, since we are analyzing a static representation of the protein in this way. 

However, knowledge about interactions lost can be used to predict the possible local or 

global impact caused by the mutation on the protein structure. 



3. A novel WT1 mutation 
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3. A novel WT1 gene mutation in three 
generations of an Italian family  

 
This chapter has been published in “Benetti E, Caridi G, Malaventura C, Dagnino M, 

Leonardi E, Artifoni L, Ghiggeri GM, Tosatto SC, Murer L. A novel WT1 gene 

mutation in a three-generation family with progressive isolated focal segmental 

glomerulosclerosis. Clin J Am Soc Nephrol. 2010 Apr;5(4):698-702.” 

 

3.1. Summary 
Wilms tumor-suppressor gene-1 (WT1) plays a key role in kidney development and 

function. WT1 mutations usually occur in exons 8 and 9 and are associated with Denys-

Drash, or in intron 9 and are associated with Frasier syndrome. However, overlapping 

clinical and molecular features have been reported. Few familial cases have been 

described, with intrafamilial variability. Sporadic cases of WT1 mutations in isolated 

diffuse mesangial sclerosis or focal segmental glomerulosclerosis have also been 

reported. 

Molecular analysis of WT1 exons 8 and 9 was carried out in five members on three 

generations of a family with late-onset isolated proteinuria. The effect of the detected 

amino acid substitution on WT1 protein’s structure was studied by bioinformatics tools. 

Three family members reached end-stage renal disease in full adulthood. None had 

genital abnormalities or Wilms tumor. Histologic analysis in two subjects revealed focal 

segmental glomerulosclerosis. The novel sequence variant c.1208G>A in WT1 exon 9 

was identified in all of the affected members of the family.  

The lack of Wilms tumor or other related phenotypes suggests the expansion of WT1 

gene analysis in patients with focal segmental glomerulosclerosis, regardless of age or 

presence of typical Denys-Drash or Frasier syndrome clinical features. Structural 

analysis of the mutated protein revealed that the mutation hampers zinc finger-DNA 
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interactions, impairing target gene transcription. This finding opens up new issues about 

WT1 function in the maintenance of the complex gene network that regulates normal 

podocyte function. 

3.2. Introduction 
Wilms tumor-suppressor gene-1 (WT1) encodes a transcription factor that plays a 

crucial role in kidney  and genital tract  development. In the developing kidney, WT1 is 

predominantly expressed in maturing podocytes, but its expression persists after birth in 

glomerular  visceral epithelial cells, suggesting a role for WT1 in the function of the 

differentiated podocyte [202]. WT1 gene maps on chromosome 11p13, is composed of 

10 exons, and encodes a 449-amino acid zinc finger protein. Each zinc finger (Zf) 

consists of cysteine and histidine residues linked to a zinc atom. A basic amino acid, 

often an arginine, is located at the top of the finger. Alternative splicing occurs at exon 

5 (±17 amino acids) and exon 9 (+3 amino acids; KTS, i.e., Lys-Thr-Ser). The correct 

ratio of the resulting four isoforms is required for normal gene function during both 

nephrogenesis and adult life. Depending on splice isoform and the cellular context, WT1 

may indeed act as a transcriptional factor, transcriptional cofactor, or posttranscriptional 

regulator [203]. 

Constitutional missense and splice-site mutations of WT1 gene are the cause of Denys-

Drash syndrome (DDS) and Frasier syndrome (FS). DDS (MIM 194080) is 

characterized by diffuse mesangial sclerosis (DMS) and renal failure with early onset, 

XY pseudohermaphroditism, and a high risk of developing Wilms tumor [204]. DDS is 

caused by heterozygous missense mutations in the Zf-encoding exons of the WT1 gene. 

These mutations seem to act in a dominant-negative manner, hampering WT1 activity in 

cells [205]. FS (MIM 136680) is characterized by focal segmental glomerulosclerosis 

(FSGS), XY pseudohermaphroditism, and gonadoblastoma. Donor splice site mutations 

in WT1 intron 9 have been described as the molecular defect of FS. These mutations 

result in a deficiency of the usually more abundant KTS-positive isoforms and a 

reversal of the normal KTS positive-tonegative ratio [206]. Nevertheless, increasing 

evidence seems to suggest that DDS and FS may represent two facets of the same 

disease, with overlapping clinical and molecular features [207-211]. In the literature, 
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sporadic cases of WT1 mutations in isolated DMS or FSGS have also been reported 

[207, 212]. We report a novel sequence variant of WT1 gene, identified in five members 

on three generations of an Italian family with isolated non-nephrotic proteinuria. The 

reported clinical and molecular picture raises the hypothesis that WT1 is associated with 

a wider spectrum of phenotypes, and WT1 gene may play a more complex role in 

podocyte function than previously reported. 

 

3.3 Materials and Methods 
Patients 

Five members of three generations of an Italian family were ascertained. The proband 

was a 16-year-old boy who underwent clinical assessment and renal biopsy for 

persistent, isolated non-nephrotic proteinuria, occasionally discovered at the age of 15 

years. The other four investigated family members had non-nephrotic proteinuria, with 

progression to chronic kidney disease in three. None had genital abnormalities or Wilms 

tumor. All participants provided informed consent to molecular analysis. The study was 

also approved by our Institutional Review Board.  

Molecular Analysis of WT1 Gene 

Blood samples from the proband and his relatives were collected. Genomic DNA from 

fresh whole blood was extracted, and PCR amplification and direct sequencing reaction 

of coding exons 8 and 9 of the WT1 gene and their intron-exon junctions was carried 

out. Sequencing data were analyzed using the Sequencher software v.4.9 (Genecodes 

Corp., Ann Arbor, MI). 

 Structural Analysis for R403K Mutation 

The crystal structure of WT1 was downloaded from the Protein Data Bank with code 

2PRT and was visualized with PyMol. 
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3.4. Results 
Clinical Data 

The proband is an Italian 16-year-old boy (III.2 in Fig. 3.1) who was referred to our unit 

for persistent non-nephrotic proteinuria. His personal and past medical histories were 

negative: he was born at term after an uncomplicated pregnancy to unrelated parents 

and had always been healthy. At the age of 15 years, the boy was discovered with 

isolated proteinuria (75 mg/dl) during regular annual physical examination. Further 

standard urinalysis confirmed a proteinuria of approximately 50 mg/dl. He was thus 

referred to our unit for a full nephrologic evaluation. On admission, physical 

examination was completely normal: weight and stature were at the 50th and 90th 

percentiles for age, respectively, BP was in the normal range for sex and age (126/69 

mmHg), the cardiothoracic and abdominal examination was normal, and there were no 

abnormalities of genital apparatus. Blood laboratory investigations showed normal 

hemoglobin (14.9 g/dl), blood urea nitrogen of 45.6 mg/dl, and serum creatinine level of 

1.1 mg/dl (clearance according to Schwartz formula 85 ml/min per 1.73 m2). Serum 

electrolytes were within the normal range, serum albumin was normal (44 g/L), and 

there were no abnormalities in cholesterol and triglyceride levels (184 mg/dl and 94 

mg/dl, respectively). Immunoglobulins and the complement components were normal, 

and autoantibodies (anti-neutrophil cytoplasmic antibody, antinuclear antibody, anti-

dsDNA antibody, anti-myeloperoxidase antibody) were negative. Diuresis was 1800 

ml/24 h, with urinary-specific gravity of 1017, urinary pH of 7, and proteinuria of 1.46 

g/24 h (corresponding to 33 mg/kg per day). Proteinuria was present and approximately 

the same in both orthostatic and clinostatic urinary collection, excluding orthostatic 

proteinuria. Renal ultrasound showed normal-sized kidneys (11.3 cm left and 10.4 cm 

right), with normal corticomedullary differentiation and no anomalies of the urinary 

tract.  

A renal biopsy was performed (Fig. 3.2). On light microscopy, 30% of sampled 

glomeruli showed adhesion of glomerular tuft to Bowman’s capsule and 10% presented 

sclerotic lesions, whereas tubuli and interstitium were normal. Immunofluorescence 

stain testing for IgG, IgA, C3, C4, C1q, fibrinogen, and HBsAg was negative. Electron 

microscopy showed extensive foot process effacement and mesangial matrix expansion 
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in the involved glomeruli, consistent with the diagnosis of FSGS. Considering that the 

markers of autoimmunity were negative, that renal biopsy showed an FSGS with 

negative immunostaining, and the boy’s family history was positive for a still undefined 

progressive renal disease in several members (see below), we accounted this pattern as 

more compatible with a genetic form of proteinuria than with an immune-mediated one. 

Therefore, we found no indications for immunosuppressive therapy in this patient, and 

angiotensin-converting enzyme inhibitor therapy (Ramipril, 5 mg/d) was undertaken to 

reduce proteinuria and preserve renal function. At last followup, conducted at the age of 

17 years, proteinuria was approximately 1 g/24 h, and renal function was still preserved. 

The boy’s family history was indeed very considerable because his father (II.2), born in 

1961, was diagnosed with  proteinuria, hypertension, and chronic renal failure at the age 

of 43 years. Renal ultrasound showed small hyperechoic kidneys, with loss of 

corticomedullary differentiation compatible with chronic kidney disease stage, but no 

other peculiar anomalies. Renal biopsy was not performed. After angiotensin-converting 

enzyme inhibitor therapy, he reached ESRD and underwent hemodialysis at the age of 

46 years. The proband’s aunt (II.1), born in 1963, developed hypertension at the age of 

40 years. Laboratory investigations showed proteinuria and chronic renal failure, but 

renal biopsy was not performed. By age 44 years, ESRD was reached and  emodialysis 

was undertaken. The proband’s grandfather (I.1), born in 1934, developed proteinuria 

when he was 59 years old. At the age of 64 years, he underwent a renal biopsy, which 

showed focal glomerular sclerosis, obliteration of capillary lumina with  yalinosis, 

increased matrix, and areas of tubular atrophy. By age 69 years, the developed ESRD, 

and he started peritoneal dialysis and received a renal transplant 1 year after this. 

Considering the complex family history, we suggested the uninvestigated family 

members undergo laboratory tests and ultrasound examination, which revealed isolated 

non-nephrotic proteinuria in the 18-year-old cousin (III.1) of the index patient.  
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Figure 0.1.  Pedigree of the family. 
 

 
Figure 0.2. Light microscopy of the proband. 
The image  shows  focal segmental glomerulosclerosis (periodic acid-Schiff; magnification, X40). 
 

Molecular Analysis of WT1 Gene 

We carried out WT1 gene exon 8 and 9 analysis by direct sequencing of blood DNA of 

the proband. WT1 sequencing revealed nucleotide substitution in position c.1208G>A in 

exon 9 (GenBank no. M74917), resulting in the substitution of a highly conserved 

arginine residue with a lysine in the 403 position (p.R403K) of the third Zf domain of 

the protein. This sequence variant was not observed in 336 control chromosomes. 
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Molecular analysis was then extended to the other family members, and c.1208G_A 

variant was detected in the father, aunt, grandfather, and cousin (Fig. 3.1).  

 

Structural Analysis for R403K Mutation 

From a structural point of view, replacing Arg with Lys has two effects: the position of 

the charged residue is shifted, and the charge is somewhat more concentrated (it is 

spread over three nitrogen atoms in Arg and concentrated at the “tip” on Lys) (Fig. 3.3). 

 

 

 

 

 

Figure 0.3. Crystal structure of Zf3 of WT1. 
 

3.5. Discussion 
We describe an Italian family with isolated FSGS associated with a novel sequence 

variant in WT1 gene exon 9. In our study, we tested the detected sequence variant in 336 

GLU408 

ARG403

KTS  
insertion site 

Zf3

Zf4 

DNA



3. A novel WT1mutation 

60 

chromosomes and did not detect it (0 of 168 subjects). According to the literature, a 

sequence variant is regarded as a polymorphism if minor allele frequency is >1% in 

normal population. It is universally accepted that a control population of at least 100 

subjects is enough to define whether a variant is or is not a polymorphism. In addition, 

the detected variant has never been observed in the cases of FSGS/DMS or in the 

somatic mutations associated with Wilms tumor reported in the literature. However, 

segregation in all the affected members of the family and its absence in a control 

population suggest that it may be a disease-causing mutation. We applied 

bioinformatics tools to predict the effect of the amino acid substitution on WT1 protein 

structure. c.1208G_A substitution changes an arginine residue located in a strategic 

position of Zf3 to lysine (p.R403W). Although conservative, this kind of amino acid 

substitution in critical residues is hypothesized to be of functional significance [212-

213]. Zf4 is important for binding, and the presence/absence of the “KTS” insertion 

seems to switch between DNA binding (-KTS) and RNA binding (+KTS) [214-215]. 

The residue Arg403 is located in the α-helix of Zf3. It points toward the DNA but is not 

in direct contact with it (Fig. 3.2). Analysis of the residue’s surroundings reveals that it 

is sterically largely unhindered but forms a salt bridge interaction with Glu408, which is 

in the linker region between Zf3 and Zf4. Arg403 appears to be anchoring the linker 

between Zf3 and Zf4 to position Zf4, close to the DNA molecule. Small movements in 

this conformation would probably make Zf4 swivel out of position. Interestingly, the 

position of the KTS insertion is exactly between Gly407 and Glu408. Because this 

insertion is known to affect the position of Zf4 and significantly modify the interactions 

of WT-1 (DNA versus RNA preference), it can be speculated that even small variations 

of the salt bridge geometry may affect the DNA-binding affinity. Therefore, the 

sequence alteration would be expected to hamper Zf-DNA interactions, resulting in 

target gene transcription impairment. Further studies will be requested to confirm the 

functional effect of the detected variant. 

In the literature, WT1 alterations associated with nephropathy are generally of two 

types: mutations occurring in exon 8 or 9 (often missense), with patients showing DMS 

in the context of DDS, and mutations at the intron 9 splice donor site, associated with 

FSGS in the context of FS phenotype. However, intron 9 splice donor site mutations 

have also been reported in patients with DMS, pseudohermaphroditism, or gonadic 
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dysgenesia, with or without gonadoblastoma, and exon 8 or 9 mutations have been 

described in association with FSGS and gonadal dysgenesis [207, 209-211]. Our 

patients carried an exon 9 variant and presented FSGS, but they lacked Wilms tumor or 

genitourinary anomalies. This phenotype is very unusual, especially in male patients 

who usually show genital abnormalities, but it does actually agree with previously 

reported cases of isolated FSGS or DMS associated with WT1 intron 9 mutations, as 

well as isolated DMS or FSGS associated with exon 8 or 9 mutations [207-208, 215-

220]. Although few, taken together these cases highlight that phenotypic variability in 

WT1 alterations is probably higher than previously described, suggesting the need for 

reconsidering and expanding genotype-phenotype correlation in WT1 alterations. 

Another peculiar aspect is that the sequence variant was transmitted among three 

generations of a family in which all members had proteinuria (with eventual progression 

to chronic kidney disease) and no associated genital anomalies or tumor. In the 

literature, four cases of familial transmission of WT1 mutation are reported. Denamur et 

al. [208] described a splice site mutation in WT1 exon 9 in a 9-year-old girl (karyotype 

46, XY) with nephrotic syndrome and DMS, and in her mother, who had proteinuria 

since the age of 6 years and FSGS. A novel familial read-through mutation in WT1 exon 

10 was detected by Zirn et al.[221] in a 22-year-old woman with Wilms tumor and 

ureter duplex in infancy, as well as slow progressive nephropathy; in her younger 

brother, who had hypertension but normal renal function; and in their mother, with late-

onset nephropathy and ESRD. Regev et al. [222] recently reported the transmission of a 

mutation in exon 1 from a mother with Wilms tumor in infancy to her son with 

genitourinary anomalies and gonadal dysgenesis with gonadoblastoma foci. 

Transmission of a substitution in exon 9 from a mother with ESRD to her two daughters 

(one with nephrotic syndrome and the other healthy) was also reported by Mucha et al. 

[220]. These observations suggested that WT1 alterations may be associated not only 

with interindividual but also with intrafamilial variability. Differently from these 

reports, all members of our family displayed the same phenotype of isolated proteinuria 

due to FSGS. Furthermore, in our patients the onset of proteinuria was not in early life, 

and ESRD developed in full adulthood, differently from most cases of the literature, in 

which clinical manifestations commonly occur in  infancy. These peculiarities suggest 

that WT1 gene analysis is to be taken into consideration in the assessment of patients 
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with FSGS-associated proteinuria, regardless of age or presence of typical DDS or FS 

clinical features. Several studies have shown that the target genes potentially regulated 

by WT1 include genes that code for transcription factors (such as PAX2), growth factors 

or their receptors (EGR1, EGFR, IGFR1R, TGF-_1, IGF2, IGFR, PDGF-A, VEGF), as 

well as podocyte proteins, such as nephrin and podocalyxin [203]. Because the filtration 

barrier’s function requires the integration of multiple signaling pathways between 

endothelial, mesangial, and podocyte cells, correct WT1 interaction with target genes 

seems to be crucial to the maintenance of such a complex and dynamic structure. 

Furthermore, a proteomic study of DDS podocytes showed that they misexpress 

proteins associated with cytoskeletal architecture (including cofilin, calponin, elfin, 

hsp27, and vinculin), and total levels of filamentous actin were also reduced [223]. WT1 

has also been demonstrated to regulate the intermediate filament protein nestin, whose 

reduced expression was associated with podocyte dysfunction [224-225]. These 

findings suggested that in addition to its traditional role in regulation of proliferation, 

WT1 can also influence cytoskeletal architecture, accounting for the development of 

proteinuria and the lack of genitourinary abnormalities or Wilms tumor in some 

patients. The maintenance of regularly spaced and interdigitated podocyte foot 

processes with their associated slit diaphragms is indeed essential to filtration barrier 

integrity, and the loss of podocyte cytoskeletal architecture and slit diaphragms results 

in its dysfunction. In summary, normal podocyte function is maintained by a complex 

and dynamic gene network in which WT1 seems to exert a crucial role, so that its 

mutations may result in a broad range of phenotypic alterations. Furthermore, our 

finding of a novel WT1 mutation in a family with isolated proteinuria suggests 

extending WT1 gene mutational screening to patients with FSGS, which will contribute 

to a better understanding of WT1 functions in podocytes. 



4. Adding structural information to VHL network 

63 

4. Adding structural information to the 
von Hippel-Lindau (VHL) tumor 
suppressor interaction network 

 
This chapter has been published in “Leonardi E, Murgia A, Tosatto SC. Adding 

structural information to the von Hippel-Lindau (VHL) tumor suppressor interaction 

network. FEBS Lett. 2009 Nov 19;583(22):3704-10”. 

 

4.1. Abstract 
In this chapter I present a work explaining the function of the crucial tumour suppressor 

gene von Hippel-Lindau (VHL) on a large scale using advanced bioinformatics methods. 

The von Hippel-Lindau (VHL) tumor suppressor gene is a protein interaction hub, 

controlling numerous genes implicated in tumor progression. Here, I show how to 

systematically apply structural information to enhance our understanding of complex 

proteins with many interactions.  

This work focus on structural aspects of protein interactions for a list of 35 

experimentally verified protein VHL (pVHL) interactors. Using structural information 

and computational analysis I have located three distinct interaction interfaces. lnterface 

B is the most versatile, recognizing a refined linear motif presents in a number of 

otherwise non-related proteins. It has been possible to distinguish compatible and 

exclusive interactions by relating pVHL function to interaction interfaces and 

subcellular localization. A novel hypothesis is presented regarding the possible function 

of the N-terminus as an inhibitor of pVHL function.  
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4.2. Introduction 
Von Hippel-Lindau (VHL) syndrome is a dominantly inherited familial cancer 

syndrome with variable expression and age-dependent penetrance, characterized by a 

predisposition to develop various tumors, including among others hemangioblastomas, 

clear cell renal carcinomas and pheochromocytomas. Predisposition to develop this 

variety of tumors is linked to germ line inactivation of the VHL tumor suppressor gene, 

coding for VHL protein (pVHL). Pathology development in VHL disease occurs after 

somatic inactivation of the remaining wild-type allele in a susceptible cell [226]. Certain 

classes of pVHL mutations confer different site-specific risks of cancer, suggesting 

pVHL to have multiple tissue-specific tumor suppressor functions [227]. How pVHL 

mutations cause different disease phenotypes remains incompletely understood.  

It is widely accepted that pVHL functions as target recognition component of the E3 

ubiquitin ligase complex targeting the α-subunits of hypoxia-inducible factors (HIF) for 

oxygen-dependent proteolytic degradation [228-230]. pVHL inactivation leads to 

stabilization of HIF1α and HIF2α and activation of their downstream target genes 

implicated in angiogenesis, cell growth, and metabolism, e.g. vascular endothelial 

growth factor (VEGF), platelet derived growth factor (PDGFB), transforming growth 

factor (TGF) and erythropoietin [231]. However, distinct pVHL-containing complexes 

identified indicate pVHL involvement in different signaling pathways, including 

microtubule dynamics, primary cilium maintenance, cell proliferation, neuronal 

apoptosis and extracellular matrix deposition. Several studies have recently investigated 

the numerous pVHL functions, providing insight into pVHL mediated signaling 

networks involved in tumor formation (for recent reviews see [226, 232-233]). 

Experimental determination of protein interactions provides growing data about new 

pVHL partners and, partially, the protein regions involved. However, a large amount of 

data remains to be confirmed.  

I address the problem by combining information from experimental data with structural 

analysis [24, 167-168]. Defining the pVHL interaction interfaces was the primary. As 

pVHL has more interaction partners than available surface, some interactions must be 

mutually exclusive, while others interact simultaneously [169, 234]. Structural 
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information also offers the possibility to distinguish domain-domain from peptide-

domain interactions [164]. Hypotheses are drawn regarding the expected interaction 

type in each interface and interaction partners are classified. Augmented with functional 

information I contribute to define functional sub-networks existing in different time and 

space conditions, adding a dynamic component to pVHL function.  

 

4.3. Materials and Methods 
Protein interaction data were extracted from the literature, sequences from UniProt 

[235], protein domain architectures from Pfam [236] and structures from PDB [237]. 

SPRITZ [111] was used to predict disorder, the consensus method for secondary 

structure prediction [99], REPETITA [97] to validate the N-terminal repeat and 

FlexServ [238] to estimate flexibility. Fold recognition was performed using 

MANIFOLD [239] to identify a structural template with sufficient sequence identity in 

cases with no experimental structure. Structural and functional classification is based on 

CATH [240] and GO [241] respectively.  

To map pVHL evolutionary sequence conservation, 35 closely related sequences 

identified with PSI-BLAST [37] (default parameters) were realigned with ClustalW 

[41]. The multiple sequence alignment was drawn using ESPript [84]. Consurf [242] 

was used for the analysis of conserved residues and Crescendo [153] to identify 

functionally conserved residues. Structures were visualized in PyMol (URL: 

http://www.pymol.org/). Protein sequences were analyzed for linear motifs with Jalview 

[243] and PepSite [129] was used to score the pVHL surface for candidate interaction 

motifs.  

 

4.4. Results and discussion 
Data retrieval 

Figure 4.1 shows an overview of the sequence features of pVHL. Information about 

sequence, domain architecture, structure and function of interactors was collected in a 

list containing 35 experimentally determined proteins (Supplementary Material S1). 
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Structural details are known for Elongin C (EloC), Elongin B (EloB) and HIF1α which 

are co-crystallized with pVHL [228-230]. For other interacting proteins the pVHL 

binding regions is a particular domain, e.g. the p53 DNA binding domain [244]. Some 

pVHL interacting regions are located on linkers between two domains or in regions of 

unknown structure. The full list is reported in Supplementary Table S.4.1 (see 

Appendix). 

 

Figure 0.1. pVHL Sequence Features.  
Domain architecture and protein sequence alignment of pVHL. The pVHL domains are shown on the top 
part. Secondary structure and homologous sequences of pVHL are shown in the center. acc: accessibility 
level from DSSP (black=high and white=low). The protein-interaction regions are represented as lines at 
the bottom of the sequence alignment.  
 
 

Interface definition 

Figure 4.2 summarizes the pVHL structural features with its α- and β-domains. 

Comparing the results obtained by Consurf (Fig. 4.2A) and Crescendo (Fig. 4.2B) it is 

noted that surface regions containing relevant functional residues are located in two 

interfaces known to interact with HIF1α, EloC and EloB. In addition a third interface 

appears on the back of pVHL. Protein structures frequently interact with various 

domains using different surface areas [169]. Mapping the putative protein interacting 

regions on the pVHL structure for interactors listed in Supplementary Table S4.1, the 

majority of interactions occur in three specific areas of pVHL that we define interfaces 

A, B and C (see Fig. 4.2C). No structure is available for the pVHL N-terminus 
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containing putative phosphorylation sites. In the following, we describe the 

characteristics of each interface separately, which are also summarized in Figure 4.3. 
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Figure 0.2. pVHL Structure Overview.  
A. Cartoon representations of the pVHL structure (pdb code 1LM8 chain V) colored blue (N-terminal) to 
red (C-terminal). The structure, shown in standard view (front) and after a 180° rotation around the z-axis 
(back), is maintained throughout the following panels. B. Surface of pVHL projecting phylogenetic 
conservation by Consurf. The Consurf prediction is presented with magenta shading for highly conserved 
residues and cyan shading showing for variable residues. C. Surface of pVHL where Crescendo residues 
clusters are coloured: lime green, cluster A; orange, cluster B; yellow, cluster C; red, cluster D; blue, 
cluster E; violet, cluster F. D. Three pVHL interfaces mapped on structure surface of pVHL: green, 
interface A; violet, interface B; yellow, interface C. E. Analysis of pVHL flexibility of each residue (x 
axis) in terms of relative displacement (y axis, in Angstroms). 
 

Interface A – Processing 

It has been demonstrated that interaction of EloB and EloC with pVHL depends on the 

binding of EloC to a 10-amino acid α-helical sequence motif xLxxxCxxx[AILV], 

referred to as the BC box [245]. pVHL also interacts with Cullin-2 at the specific Cul2 

box, located C-terminal to the BC box, forming the E3 ubiquitin ligase complex 

responsible for recognition and recruitment of target proteins to be degraded by the 26S 

proteasome [246]. Four proteins, other than EloB/C and Cul2, have been experimentally 

determined to interact with the pVHL α-domain through a specific domain. The p53, 

Nur77, HuR and VBP1 interacting regions overlap with the EloC interaction. This 

supports the idea that the pVHL α-domain mediates domain-domain interactions. The 

EloC, p53, HuR and Nur77 domains interacting with VHL have a similar 2-layer 

sandwich architecture, with different CATH classifications. Their structures are mainly 

composed of β-sheets with an α-helix that might mediate the interaction in analogy to 

EloC. The interaction interface between pVHL and EloC is composed of three pVHL α-

helices (H1, H2 and H3) and the H4 helix of EloC, forming hydrophobic contacts. 

Flexibility analysis of the VHL structure indicates the α-domain is flexible (Fig. 4.2C) 

and suggests a conformational change upon interactor binding. Comparing helices 

found in other pVHL interactors leads to the hypothesis that interactions with different 

domains occur in different ways.  

EloC, p53, HuR, Nur77 and VBP1 are mutually exclusive and compete for binding to 

the α-domain (Fig. 4.3). p53, HuR and Nur77 are prevalently expressed in the nucleus, 

and EloC in the cytoplasm. The α-domain also contains the neddylation site, K159, 

which appears to be necessary for fibronectin binding. When neddylated, pVHL cannot 

interact with Cul2 and stabilizes fibronectin, showing processing functions depending 

on localization and physiological cell status [247]. 
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Figure 0.3. Overview of pVHL Interactors.  
Pictures represent pVHL interacting partner in four different cellular compartments: Nucleus, cytoplasm, 
endoplasmic reticulum and membrane periphery. At the center of each picture there is a cartoon 
representation of the crystal structure of pVHL (PDB code 1LM8, chain V) highlighting the protein 
interface as circles: interface A in cyan, interface B in blue, interface C in green. When the structure of a 
pVHL interaction partner is known, it is represented as cartoon, with their acronym and PDB code. A 
percentage sequence identity is shown if the structure refers to a homologous protein. Light blue circles 
are used if the interaction region is unknown. A red border indicates proteins for which information about 
pVHL interaction regions exists but it is located in an unstructured region or in domains for which no 
structure is available. A grey circle indicates proteins interacting with an unknown pVHL region. KIFAP3 
and CK2 interact with the VHL N-terminal sequence which is not included in the crystal structure. 
Phosphorylation (red balls) and neddylation sites (yellow ball) are also shown. 
 

Interface B – Substrate recognition 

The pVHL β-domain, interface B, containing the well studied HIF1α binding site, was 

found to be essential for binding many different proteins, with variations termed B1 and 

B2. Some interaction sites were shown to correspond to the HIF1α binding site. The 

region essential for VDU1 binding overlaps only partially and e.g. for Jade-1 and 

HIF1AN, the specific pVHL β-domain interaction site is unknown. Only five proteins 

have experimentally determined VHL interacting regions, with a prevalence of 
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unstructured linkers. For Sp1 the interaction is known to occur through one of three Zn 

Finger domains and pVHL interactions with other metalloproteins have been 

hypothesized [248]. Other Zn finger domain containing proteins are in the list, although 

in VDU1 and RPB1 the experimentally determined interacting region does not contain 

the Zn finger domain. In protein Kinase C zeta (PRKCZ) and Jade-1 the binding region 

is unknown.  

Proteins of unknown pVHL interacting region are likely to use disordered sequence 

stretches. The HIF1α binding sites, named ODD domains, are disordered and contain a 

hydroxylated proline. It has been demonstrated that RPB1 interacts with pVHL through 

a proline. Sharing a conserved motif containing this proline, it seems interface B 

mediates interactions occurring between the pVHL β-domain and different peptides.  

The known interface B interactors were systematically searched for linear motifs 

resembling the HIF1α ODD sequence and structurally validated with PepSite. The 

results (shown in Figure 4.4) point to the presence of a proline box followed by a 

hydrophobic box with the consensus pattern [LIV]xPx(6,9)δxδ, where δ is prevalently a 

hydrophobic residue, in a likely disordered region. This pattern agrees with the location 

of known pVHL interactions for HIF1α[229] and RPB1 [249]. With few exceptions 

(PRKCZ and perhaps VDU1, VDU2) the predicted motifs fit well into the respective 

structures. Although experimental binding assays will be necessary to verify the 

prediction, these results summarize well the plasticity of the pVHL B interface. 

As many interface B interactors result to be mutually exclusive, the selection of 

interaction occurs in different ways. Domain-domain interactions are more specific or 

have higher binding affinities than domain-peptide interactions. The different 

interactors have specific localization, e.g. RPB1 is nuclear while HIF1α is nuclear and 

cytoplasmatic. Another selection criterion may be the time at which some proteins are 

expressed with higher concentration. It appears that VHL through interface B can bind 

proteins which will be ubiquitinylated and then degraded, yet it can also bind other 

proteins which will be stabilized, e.g. BCL2L11 and microtubules (MT). Interactions 

with other proteins play a role in transcriptional regulation, e.g. Sp1, HIF1AN and 

perhaps VHLaK for which an interaction pVHL interface remains unassigned. 
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Figure 0.4. pVHL Interface B Linear Motifs.  
The putative linear motifs defining pVHL interactions at interface B are shown. (A) Multiple sequence 
alignment of identified linear motifs with the sequence identifier and positions on the left side. The right 
side contains information on the disorder (Y = yes, N = no, P = partial) and secondary structure (H = 
helix, E = extended/beta, C = coil/loop) and two Pepsite predictions. Pepsite P-values, estimating the 
probability of achieving a similar result by chance, are complemented with the presence of the central 
proline in the predicted motif. Extremely low (bold) and high (italics, underlined) P-values are 
highlighted. The two regions corresponding to the Pepsite predictions are drawn above and two motif-
determinant boxes are drawn below the sequence alignment. In (B) the pVHL structure (PDB code 1LM8, 
chain V) is shown oriented as in Figure 4.1 with the bound HIF1α peptide in grey spheres. The 
hydroxylated Proline residue is shown in red and the two motif-determinant boxes are shown in darker 
grey. A typical Pepsite prediction (BCL2L11, Pepsite P-value 0.0001) is shown in (C). Note the similar 
binding site with proximity to the hydroxylated Proline location. 
 

Interface C – Localization 

The back view of pVHL β-domain (Fig. 4.1) presents two regions for known interactors. 

TBP1 interacts with pVHL residues 136-154 containing a β-sheet and a linker between 
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the VHL α and β domains [250]. It is difficult to predict how TBP1 can interact with 

this extended region. Residues 114-138 of pVHL interact with eEF1A [251] and contain 

the nuclear export signal (NES), DxGxxDxxL [252], in a loop between two β-strands 

forming a polar interface between pVHL α and β domains. Surprisingly, the NES motif 

is part of the polar interface partially located in front of the α-domain. This may be 

explained by the flexibility of α-domain which likely changes conformation and 

increases accessibility for other proteins. During transport from nucleus to cytoplasm, 

pVHL is captured by a nuclear export receptor component. In the cytoplasm, TBP1 

(component of the 26S proteasome) interacts with pVHL in complex with EloC, 

anchoring it to the proteasome where the ubiquitinylated substrates are degraded. This 

interface appears to determine pVHL localization. Interestingly, the areas interacting 

with TBP1 and eEF1A forming interface C are coded by exon 2 of the VHL gene. 

However, amino acids 114-177 appear to be required for perinuclear (ER) pVHL 

localization [253]. 

 

pVHL dynamics 

pVHL contains several posttranslational modification sites, determining its dynamic 

properties. Reversible pVHL neddylation distinguishes between HIF-related functions 

and stabilization of the extracellular matrix [247]. Together with the localization signals 

in interface C this determines to a great extent the precise function pVHL may be 

carrying out at any given point in time.  

A more elusive pVHL regulatory mechanism is phosphorylation. Several 

phosphorylation sites present in or near the pVHL N-terminus are responsible for proper 

fibronectin deposition [254] and microtubule dynamics [255]. In addition, the N-

terminus is entirely missing in other mammalian orthologs, suggesting a human specific 

mechanism. Eight tandem repeats with a GxEEx pattern are contained in the N-terminus 

(see Fig. 4.1). REPETITA periodicity analysis strongly suggests that the repeat is a 

solenoid and covers the entire pVHL N-terminus, with two degenerate units at the N- 

and one at the C-terminal flanks of the GxEEx pattern. All known six-residue solenoid 

repeats form α-helix structures [256], where each repeat corresponds to a short β-strand 

and a turn typically centered on a glycine. Whether the pVHL N-terminus can form the 
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same β-solenoid remains however unclear due to the occurrence of adjacent charged 

residues which may cause electrostatic repulsion.  

In any case, the putative phosphorylation sites located in the repeat region are likely to 

cause a conformational switch, creating a pattern of three charged residues known to be 

highly correlated with intrinsic disorder [257]. The serines located close to two prolines 

(see Fig. 4.2) have prompted us to use Pepsite to determine hypothetical pVHL-peptide 

interactions (Fig. 4.4). Intriguingly, the results place the interaction site on interface B 

in correspondence with the HIF-1α peptide (P-value = 0.024). This opens the possibility 

that human pVHL may have evolved a signaling mechanism to deactivate binding of 

specific interactors through phosphorylation and conformational rearrangement. 

Experiments will be necessary to verify this hypothesis. 

 

4.5. Conclusions 
I have presented a characterization of pVHL which attempts to summarize the known 

interactions and address them from a structural point of view (see Figure 4.3). The 

modular nature of pVHL becomes apparent from the subdivision in three interaction 

interfaces corresponding to processing, substrate recognition and localization. These 

highlight various protein interaction types, namely domain-domain (interface A) and 

domain-peptide (interface B), with interface C being less clear. Structural 

characterization of the putative interaction peptides yielded both a complete list of 

hypothetical interaction motifs and the intriguing possibility for the pVHL N-terminus 

to auto-inhibit substrate recognition after phosphorylation. 
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5. Identification and in silico analysis of 
novel von Hippel-Lindau (VHL) gene 
variants from a large population 

 
This chapter has been published in Leonardi E, Martella M, Tosatto SC, Murgia A. 

Identification and in silico analysis of novel von Hippel-Lindau (VHL) gene variants 

from a large population. Ann Hum Genet. 2011 Jul;75(4):483-96. 

 

5.1. Summary 
In this chapter I present the computational approach adopted to analyse novel variants 

identified in the VHL gene. Mutational inactivation of the VHL gene is the cause of von 

Hippel-Lindau disease, autosomal dominant hereditary cancer syndrome predisposing to 

hemangioblastomas, pheochromocytomas and clear-cell renal carcinomas. The gene 

product (pVHL) functions as an adapter in cellular processes including cell growth and 

apoptosis. 

The mutation data presented in this work was obtained by the Rare Disease Laboratory 

at the Department of Pediatric, University of Padova, which is the national reference 

group for the analysis of VHL gene. VHL mutation analysis was carried in 426 

unrelated subjects with phenotypes ranging from VHL syndrome, to isolated VHL-

related  tumors that could represent the first manifestation of the disease. 111 

individuals were found to carry alterations, with large deletions representing 40% of the 

variants. 18 of the 95 detected variants were novel, seemingly disease-causing 

mutations; their pathogenic role has been evaluated in silico for effects on protein 

folding and interactions. Putative regions of interaction between pVHL and proteins 

involved in common pathways have been identified previously and described in the 

chapter 2, assessing possible implications for the presence of mutations in these regions. 

All new variants predicted to truncate or cause complete pVHL loss of structure were 

associated with phenotypes consistent with VHL type 1. Seven of the new amino acid 
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substitutions are disease-causing mutations, one is a neutral variant, whereas the results 

for two remain ambiguous. The computational approach I adopted contributes to the 

interpretation of the potential pathogenicity of these novel variants. 

 

5.2. Introduction 
von Hippel-Lindau disease (VHL; MIM #193300) is a familial cancer syndrome due to 

mutations of the VHL gene [258]. It is characterized by predisposition to the 

development of highly vascularized tumors such as retinal and central nervous system, 

hemangiobalstomas (RHB, CHB), pheochromocytomas (PH), and clear-cell renal 

carcinoma (RCC) [259]. VHL is clinically classified in type 1 and type 2 based on the 

absence or presence of PH, one of the early onset features of the disease. Type 2 VHL is 

sub-classified based on lower (type 2A) or higher (type 2B) susceptibility to RCC. 

Despite extreme phenotypic variability between and within families, important 

genotype-phenotype correlations have emerged for different classes of pathogenic 

mutations [227, 260-263]. Mutant copies of the VHL gene that completely abolish its 

normal function are found virtually only in VHL type 1 disease, with low risk of PH. 

VHL type 2 is almost invariably associated with missense mutations, and a limited 

number of these mutations have been specifically associated with a PH-only subtype, 

VHL type 2C [264-265]. 

pVHL is a substrate recognition component of an E3 ubiquitin ligase complex (VCB), 

including Elongin C, Elongin B, Cullin2 and Rbx1/Roc1, targeting proteins for 

ubiquitin-mediated degradation [266]. It contains two functional domains: the 

prevalently C-terminal α-domain allows the protein to adopt its native 3D conformation 

after binding to Elongin C. The β-domain forms a substrate docking interface for target 

proteins. The best known target of this complex is HIF1α (hypoxia-inducible factor-1α) 

[230], but several other substrates have also been identified[226]. Multiple HIF-

dependent and HIF-independent functions are known, all contributing to the VHL-

defective oxygen sensing response and tumorigenesis [231]. The growing body of data 

about pVHL interactions attributes different functions to specific discrete regions of the 

molecule [267]. Furthermore, in some cases, specific functions have been directly 



5. Identification of novel VHL variants 

77 

related to a particular clinical manifestation of VHL syndrome. E.g. HIF deregulation 

plays an important role in the HB development and cytoskeletal architecture is defective 

in RCC, while regulation of apoptosis seems to be crucial in prevention of PH during 

embryological development [226]. 

Distinguishing between pathogenic and non-pathogenic mutations in carriers of VHL 

variants is crucial for early diagnosis of a disease with age-related and variable clinical 

profile. In vitro characterization of the pathogenicity of sequence variants can be 

difficult, especially when a large number of different and often private mutations are 

detected. In light of this, structural data may be very important. The disease phenotype 

may in fact be caused by amino acid substitutions affecting residues involved in crucial 

interactions, or crucial for maintaining protein folding and structural stability. Several 

computational methods that predict potentially deleterious effects of missense mutations 

can be used to prioritize the most likely disease causing variants and gain insight into 

molecular disease mechanisms [19].  

In this work I presented the analysis of potential structural and functional effects of 

mutations found in individuals with different VHL-related phenotypes, with phenotypes 

ranging from full clinical von Hippel-Lindau disease to isolated VHL-related  tumors 

that could represent the first manifestation of the disease. Indeed, VHL mutation 

analysis is recommended for cases initially presenting with isolated retinal HB, sporadic 

CNS hemangioblastomas or seemingly sporadic pheochromocytomas [268]. Novel 

variants are established and distinguished by type. The role of novel variants has been 

predicted in silico for effects on protein folding and interactions. Known regions of 

interaction between pVHL and proteins involved in common regulatory pathways have 

been assessed for possible changes due to the presence of mutations. 

 

5.3. Materials and Methods 
Study population  

The studied population comprises 426 unrelated individuals presenting phenotypes 

ranging from von Hippel-Lindau disease to single, apparently sporadic VHL-related  

tumors, sent in the last 14 years for VHL genetic testing to the referral laboratory of the 



5. Identification of novel VHL variants 

78 

Department of Pediatrics, University of Padua. The age of tested subjects ranged from 8 

to 62 years (mean age 32). Regular signed informed consent for molecular analysis was 

obtained for each tested individual. The phenotypes of patients described in the text 

refer to the clinical conditions ascertained at the time of molecular diagnosis. While the 

presence of PH allowed to define VHL type 2 phenotypes, the likely attribution to the 

VHL type 1 category in its absence has to be taken with caution given the possibility of 

a later occurrence of the tumor. 

 

Molecular analysis 

High molecular weight genomic DNA was extracted from peripheral blood leukocytes by 

standard protocols. Mutation scanning of the VHL gene for identification of point or small 

size mutations was conducted on the entire coding sequence and intron-exon boundaries 

by PCR amplification, DHPLC and direct sequence analysis, as follows. 

PCR amplification was performed with the use of previously reported primers and 

optimized reaction conditions [269]. All the amplicons were subjected to DHPLC 

analysis. The temperature for heteroduplex detection was determined using the 

NavigatorTM Software v.1.7.0 (TransgenomicTM), and at least 2-3 different temperatures 

were chosen for distinct melting domains in each fragment to be analyzed (optimized 

elution profiles and melting temperatures of the entire coding sequence of VHL gene are 

available upon request). All fragments showing altered melting curves were sequenced 

after purification (Microcon Y100), with the use of the same primers and fluorescently 

labeled dideoxy chain terminators from ABI Prism kit (Big Dye Terminators 3.1), on an 

ABI 3100 automated sequencer. Quantitative Real Time PCR for the identification of 

deletions of part or the entire gene, was performed on genomic DNA fragments 

representing each VHL exon. Primer pairs and reaction conditions as in [270]. 

Segregation analysis in families of individuals carrying VHL variants was performed 

whenever possible and, after extensive information and proper counseling, by targeted 

sequencing in parents and/or siblings of the probands and in other relatives at risk. 

Mutation nomenclature follows codon numbering as by [271]. RefSeq: NM_000551, 

protein ID: NP_000542. 
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In silico analysis 

Protein sequences were retrieved from UniProt [235] and the VHL protein structure was 

obtained from the PDB database [237] (PDB code: 1LM8). A PSI-BLAST [37] search 

with the pVHL1-213 sequence as query on a non redundant protein database was 

performed to collect homologous sequences. The multiple sequence alignment (MSA) 

was built with CLUSTALW [41], annotated with secondary structure and accessibility 

values assigned with DSSP [75], and drawn using ESPript [84]. The MSA was used as 

input for Consurf 3.0 [242], which calculates the conservation score and visualized in 

PyMol (De Lano Scientific; URL: http://www.pymol.org/). The Universal Mutation 

Database [272] (UMD; http:/www.umd.be/VHL/) and Human Gene Mutation Database 

[14] (HGMD; http://www.hgmd.cf.ac.uk/ac/search.html)  were used to obtain 

information about identified variants. Two different splice-site algorithms were used to 

predict a potential splicing effect: NNSplice [273] and NetGene2 [274].  

Amino acid substitutions were mapped onto the pVHL structure and visually evaluated 

for their structural effects. Stability changes upon single site variants were estimated 

using I-Mutant 3.0 [191], Eris [188] and Auto-Mute[275]. Polyphen [182], 

SNPs3D[183], PMut [180] and SNAP [276] were applied to predict potentially 

deleterious effects of the new variants. The mutant models for 8 new variants were built 

with ClustAlign [277] and HOMER (http://protein.bio.unipd.it/homer/). GROMACS 

[90] was used for 1000 steps of steepest descent minimization to relax the mutant 

structures. The RING server (Martin A.J.M. et al., submitted; 

http://protein.bio.unipd.it/ring/) was used to generate the residue interaction network 

useful for evaluation of structural changes induced by amino acid substitutions. Nodes 

represent single amino acids of the protein structure, while links represent the non-

covalent interactions between them. Default minimum distances were used to define 

interaction types: 3.0 Å for disulfide bridges; 4.0 Å for salt bridges; 6.0 Å for п-п 

interaction; 7.0 Å for п-cation interaction. Connectivity, i.e. number of contacts to other 

residues, and interaction types for each amino acid position found altered were recorded.  
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5.4. Results 
Mutation analysis of the VHL gene has been carried out by the VHL referral laboratory, 

Department of Pediatrics at the University of Padua, in 426 unrelated subjects with a 

clinical diagnosis ranging from von Hippel-Lindau syndrome to sporadic potentially 

VHL-related tumors. A VHL alteration was found in 111 unrelated probands (26% of 

total unrelated individuals tested): 89 presenting a classic VHL syndrome or a VHL-

related tumor and/or a family history of VHL disease, and 22 apparently sporadic cases 

with isolated lesions: 4 with retinal hemangioblastomas; 12 with CNS 

hemangioblastomas; 6 with pheochromocytomas. 95 different germline VHL alterations 

were identified: 4 known polymorphic variants (one small duplication and three SNPs), 

38 large rearrangements, 15 frameshift or non sense mutations, 1 in frame deletion, 4 

splicing alterations, and 33 missense mutations. Among the 53 small/point mutations, 

35 were reported as pathogenic and already listed in the UMD-VHL or HGMD 

databases (Supplementary Table S.5.1), while the other 18 variants were not found in 

subjects with VHL Syndrome (Table 5.1). One of the novel variants, p.Arg167Leu, was 

found in two distinct subjects with VHL syndrome. None of the novel mutations were 

present in 200 normal control individuals. An apparently novel frame shift mutation 

consisting in deletion of one of the two cytosines in positions 175 and 176 of the VHL 

cDNA was also detected. This mutation, c.176delC according to current nomenclature 

recommendations, is listed in the VHL UMD database as c.175delC (p.Pro59ArgfsX8) 

[260]. Familial segregation analysis was possible for 10 of the 19 families of individuals 

carrying novel VHL variants. In five cases the variants were inherited, in the other five 

cases they were not detected in the parents and therefore considered de novo. The VHL 

disease was also considered likely due to de novo germline mutations in other five cases 

with negative family history, even though not available for segregation studies. In two 

cases of this latter group (index cases 109 and 196) the variants were transmitted to 

individuals who eventually developed VHL disease. In the other cases neither parents 

nor other at risk relatives were available for testing. The novel sequence variants were 

categorized as inactivating (i.e. stop mutations, frame shifts, or splice site alterations) 

and non-inactivating (i.e. missense mutations, in frame deletions) (Table 5.1). 
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Table 0.1. Clinical impact and segregation of novel VHL mutations. 
DNA mutation numbering is based on cDNA reference sequence (GeneBank Accession number 
NM_000551) considering nucleotide +1 as the A of the first ATG translation initiation codon. CNS HB, 
haemangioblastoma of the central nervous system and spinal cord; RHB, retinal haemangioblastoma; PL, 
pancreatic cyst or tumour; PH, pheocromocytoma; RCC, clear-cell renal carcinoma; RL, renal cystic 
lesion. De novo indicates that the variant has not been found in parents. Likely de novo means that the 
parents were unaffected even if one or both parents were not available (n/a) for genetic testing. Familial 
indicates transmission of the variant from a parent. In case index 55, the variant was transmitted from the 
unaffected father. In some cases, transmission of the variant could not be  determined (n/d) since both 
parents and family history were not available. #The novel G>C transition at nucleotide 250 leads to the 
previously known amino acid substitution p.Val84Leu.  
 
 

DNA mutation numbering is based on cDNA reference sequence (GeneBank Accession 

number NM_000551) considering nucleotide +1 as the A of the first ATG translation 

initiation codon. Abbreviations: CNS HB: hemangioblastoma of the central nervous 

system and spinal cord; RHB: retinal haemangioblastoma; PL: pancreatic cyst or tumor; 

PH: Pheocromocytoma; RCC: clear cell renal carcinoma; RL: renal cystic lesion. De 

novo indicates that the variant has not been found in parents. Likely de novo means that 

the parents were unaffected even if one or both parents were not available (n/a) for 

genetic testing. Familial indicates transmission of the variant from a parent. In case 

index 55, the variant was transmitted from the unaffected father. In some cases 

transmission of the variant could not be determined (n/d) since both parents and family 

history were not available. # - The novel G>C transition at nucleotide 250 leads to the 

previously known amino acid substitution p.Val84Leu. 

 

Inactivating mutations 

Seven new inactivating mutations were identified: a splice-site variant, two nonsense 

and four frame shift mutations (Table 5.1). All these (inactivating) mutations were 

found in individuals with a likely VHL type 1 phenotype (Table 5.1).  

The c.463+1T>G variant abolishes the normal donor splice site of intron 2, as predicted 

by computational analysis (Table 5.2), leading either to alternative splicing or complete 

exon skipping. The same variant was present in the patient’s daughter, who also 

presented isolated HB. Other nucleotide variants at this position have been previously 

reported in subjects with VHL Syndrome (Supplementary Table S.5.1). 
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The nonsense mutations generating premature stop codons at positions 52 and 175 and 

the three frame shift mutations introducing premature termination codon (PTC) at 

positions 131 and 152 are all expected to produce VHL proteins largely lacking the C-

terminal region (Fig. 5.1). Mutations that interrupt pVHL are predicted to exert a severe 

pathogenic role due to loss of the α-domain which, by interacting with Elongin C and B, 

stabilizes the 3D conformation of the protein [278]. 

 

In frame deletion 

Among the non-inactivating mutations we found the novel in-frame deletion 

c.465_470del6 (p.156-157delYT), determining loss of the Tyr156 and Thr157 linker 

loop residues connecting the α and β-domains. This deletion in the pVHL linker region 

can influence correct orientation of the β-domain and therefore alters substrate 

positioning for ubiquitin transfer [279]. An alteration of the ubiquitin mediated 

degradation pathway involves many processes and this could explain the pathogenicity 

of such a mutation, detected in a patient with a likely VHL type 1 phenotype. 

 

Sequence analysis of missense variants 

Ten novel putative missense mutations were identified. Five of these lead to new amino 

acid substitutions at residues previously found mutated: Gly93, Pro138, Val155, Arg167, 

Leu188 (Fig. 5.1). The new G>C transition at nucleotide 250 results in the typical VHL 

type 2C substitution p.Val84Leu [280], which, also in this study, was found in a subject 

with bilateral PH and no other clinical features of the disease. Three other subjects with 

isolated clinical manifestations carried variants involving residues previously never 

found mutated: Glu12, Pro59 and Pro103. The clinical profile of individuals carrying 

novel missense variants is reported in Table 5.1.  

We used two computational methods for splicing prediction in order to exclude that the 

novel variants disrupt the normal splicing pattern, especially those altering exonic 

regions close to consensus acceptor and donor splice sites. We applied the methods for a 

list of 23 known mutations found in this study and three other known mutations 

(p.Pro154Pro, p.Val155Met, p.Val155Leu) which map on exonic regions close to the 

donor site of intron 2 (Supplementary Table S.5.2). The latter three variants are all 

predicted by computational methods to disrupt the donor site of intron 2. For 
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p.Pro154Pro there is experimental evidence showing the variant to result in a splicing 

aberration [269] (Supplementary Table S.5.2). However, all novel missense variants are 

predicted to either maintain the normal splicing pattern (Table 5.2) or, in some cases, 

the novel sequence was recognized as splice site with a slightly increased score 

(Supplementary Table S.5.3) . 

The combined application of 7 different bioinformatic programs was chosen as a 

strategy to obtain the most reliable prediction of the functional impact of these 

mutations. I chosed methods that predict effects on protein stability and those sorting 

mutations according to their overall pathogenicity. Since computational methods 

perform with moderate accuracy [281], I calculated a prediction score based on a 

number of methods that define a variant as deleterious testing 23 pathogenic missense 

mutations found in this study and previously associated to the VHL disease 

(Supplementary Table S.5.2). The tested known missense mutations have been 

predicted to be deleterious by at least 50% of the methods. As negative control we used 

three known polymorphic VHL gene variants (p.Pro25Leu, p.Ala50Ala, p.Pro61Pro) 

and the p.His110Tyr variant (rs17855706) found by the NIH Mammalian Gene 

Collection (MGC) project, which has not been associated to VHL disease. 

Unfortunately polymorphic variants, such as p.Ala50Ala or p.Pro61Pro, resulting in 

same sense substitutions could not be used as input for most computational methods. 

Indeed, in order to calculate an energy difference these methods require a modified 

residue with respect to the wild type protein. A prediction score of 4/7 was chosen as 

threshold for novel variants to be potentially deleterious (Supplementary Table S.5.2). 

For 7 out of 10 missense variants the in silico analysis unambiguously predicted 

deleterious effects (Table 5.2 and Supplementary Table S.5.3). The variant p.Pro103Ala 

scored below threshold (score: 2/7) and was classified as non deleterious. Transmission 

from an unaffected father further supported the non pathogenic significance of this 

variant. The variants pGlu12Asp and p.Pro59Ser, located at the pVHL N-terminus, 

could not be evaluated with the whole array of methods, as this region is outside the 

protein crystal structure and is poorly conserved. This is also the case for the N-terminal 

p.Pro25Leu variant used as negative control (Supplementary Table S.5.2). 
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Figure 0.1. Overview of VHL sequence architecture.  
The domain organization and secondary structure are shown on the top part.  The  DSSP accessibility 
level (acc, black = high and white = low),  phosphorylation (triangle) and neddylation (star) sites are 
indicated. Putative protein interaction interfaces are represented as lines at the bottom of the protein 
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sequence. Novel variants are reported above the sequence. Novel missense variants are indicated with 
colored boxes with the pink box indicating the only variant predicted to have a neutral effect. 
 
Predicted structural effects of missense variants 

To predict the molecular mechanisms of pathogenicity in VHL disease, we evaluated 

the impact of each new missense variant and studied the role of mutated amino acids on 

protein stability. We used residue interaction network analysis (Martin A.J.M. et al., 

submitted) to assess whether the structural effects would cause unfolding and 

subsequent degradation or local instability which might interfere with protein-protein 

interactions.  

The crystal structure of human pVHL complexed with Elongin C and B (PDB code 

1LM8) was chosen for in silico evaluation of the structural and functional effects of the 

8 novel amino acid substitutions altering residues between the positions 60 and 209  

(Fig. 5.2). All detected variants alter the β-domain of the protein, except p.Arg167Leu 

and p.Leu188Arg (located in the pVHL α-domain).  

Two novel missense variants (p.Pro138Thr and p.Leu188Arg) alter residues of the 

protein core (Fig. 5.2 and Fig. 5.3), suggesting a pathogenic role. These variants are 

predicted to introduce polar/charged residues in the hydrophobic core, thereby 

destabilizing protein folding. Residue interaction network analysis with RING revealed 

these amino acids to have high connectivity, i.e. number of contacts with nearby 

residues. This is indicative of their centrality in the protein fold and suggests an 

important structural/functional role (Supplementary Table S.5.3). It is interesting to note 

that the p.Pro138Thr substitution should have less impact on protein stability because it 

maintains the only hydrogen bond with Trp117. 

The role of Arg167, located in the α-domain, is crucial in forming the charged interface 

between two domains. Substitution with leucine alters the electrostatic surface and 

could influence correct folding of the α-domain. Furthermore, given the central position 

between the two domains, a substitution at that position could cause a conformational 

change transmitted to other parts of the protein (Fig. 5.2).  
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Mutation Location Conservation Splicing 
prediction 

Pathogenicity 
prediction 

Predicted effect 

c.156G>T; p.Glu52X N-terminus Non  
conserved 

unchanged pathogenic Reduces protein 
stability 

c.253_254ins38; 
p.Leu85fs 

β-domain Conserved nd pathogenic Reduces protein 
stability 

c.314_315insC; 
p.Arg107ProfsX25 

β-domain Conserved unchanged pathogenic Reduces protein 
stability 

c.375_376insC; 
p.Asp126ArgfsX6 

β-domain Conserved unchanged pathogenic Reduces protein 
stability 

c.422_440del19; 
p.Asn141IlefsX12 

β-domain Conserved unchanged pathogenic Reduces protein 
stability 

c.463+1G>T β-domain Conserved Disrupts donor 
splice site 
intron 2 

pathogenic Abnormal protein 
folding 

c.525C>A; 
p.Tyr175X 

α-domain Conserved unchanged pathogenic Reduces protein 
stability 

c.465_470del6; 
p.156_157delYT 

linker region 
between α- and 
β-domains 

Conserved Increased 
score acceptor 
splice site 
intron 2 
(0.84>0.93) 

pathogenic Interface B 

c.36G>C; 
p.Glu12Asp 

N-terminus Non conserved unchanged ambiguous Inconclusive 

c.175C>T; 
p.Pro59Ser 

N-terminus Non conserved unchanged ambiguous Likely affects N-
terminal VHL 
functions 

c.197T>G; 
pVal66Gly 

β-domain surface Non conserved unchanged pathogenic Compromises 
GSK3 mediated 
phosphorylation 

c.250G>C; 
p.Val84Leu 

β-domain core Conserved unchanged pathogenic Interface B 

c.277G>T; 
p.Gly93Phe 

β-domain surface Conserved unchanged pathogenic Interface B 

c.307C>G; 
p.Pro103Ala 

β-domain surface Conserved unchanged neutral None 

c.412C>A; 
p.Pro138Thr 

β-domain core Conserved unchanged pathogenic Reduces protein 
stability 

c.464T>G; 
p.Val155Gly 

linker region 
between α and 
β-domains 
surface 

Conserved Increased 
score acceptor 
splice site 
intron 2 
(0.84>0.95) 

pathogenic Interface A 

c.500G>T; 
p.Arg167Leu 

linker region 
between α and 
β-domains 

Conserved unchanged pathogenic Interfaces A and 
B 

c.536T>G; 
p.Leu188Arg 

α-domain core Conserved unchanged pathogenic Reduces protein 
stability 

 
Table 0.2. Molecular effect prediction of novel VHL mutations.  
The table summarizes results obtained by different computational methods used to predict possible 
splicing aberrations, stability changes on protein and pathogenic structural/functional effects. 
Conservation is derived from ConSurf which classifies each residue as variable (value 1-3), average 
(value 4-6), or conserved (value 7-9). For missense variants the values are reported on Supplementary 
Table S.5.3. Possible splicing aberrations were predicted using the splice site prediction methods 
NNSplice and NetGene2. We classified a variant as pathogenic when it impairs protein function by 
creating a premature truncation codon (PTC) or by altering the transcript. Pathogenicity prediction for 
missense variants was obtained comparing the results from 7 different methods: I-Mutant 3.0, AutoMute, 
Polyphen, SNPs3D, Pmut and SNAP (Supplementary Table S.5.2). A missense variant was classified as 
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deleterious when more than 4 methods over 7 predict it as deleterious. Two variants remain ambiguous 
since most of the methods fail to get a result for them. Surface variants are predicted to alter the three 
interfaces (A, B, C) of VHL protein which have roles, respectively, in VCB complex formation, substrate 
recognition, and localization. Abbreviation: n/d not determined. 
 

 
Figure 0.2. Mapping of missense mutations on the VHL structure.  
The VHL structure (PDB code: 1lm8) is shown as cartoons, with semi-transparent surface, together with 
Elongin B (ELOB) and C (ELOC) and the HIF peptide. Mutated pVHL residues are shown as spheres and 
the degree of conservation is mapped on the structure from magenta (highly conserved) to cyan 
(unconserved). 
 
Surface variants (pVal66Gly, p.Gly93Phe and p.Val155Gly) were all predicted to be 

pathogenic (Supplementary Table S.5.3) and to have the potential to disrupt protein 

binding (Fig. 5.4). Comparing interaction networks of wild-type versus mutant pVHL, 

we observed how p.Val155Gly lost only one interatomic contact with Arg161 while 

p.Gly93Phe variant forms a new contact and a new π-cation interaction with Arg64. 

This induces a new local conformation with the phenylalanine side chain protruding 

into a hydrophobic pocket and no structure destabilization (Fig. 5.3).  

Finally, p.Val66Gly forms a new hydrogen bond with Ser68 (Supplementary Table 

S.5.3). All these modifications lead to local changes in protein structure. Among 

missense mutations, only p.Pro103Ala was predicted to have a neutral effect on protein 

structure. Despite the high conservation of Pro103 it was not possible to identify any 
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structural or functional role of this residue, neither by visual inspection nor by residue 

interaction network analysis (Fig 5.3).  
 

 
Figure 0.3. Structural effect of novel missense variants.  
The impact on VHL structure of each missense variant is shown with respect of the wild type (WT) 
protein. The mutated residue is highlighted in red and contacting residues in blue as sticks. 
 

Predicted functional effects of missense variants 

To predict the functional effects of new missense variants, we have considered the 

interactions of altered residues with known pVHL interactors (Fig. 5.4). For many of  

these proteins the pVHL interacting region has been experimentally determined and I 

previously proposed a structural hypothesis distinguishing at least three different 

interfaces (termed A, B and C) corresponding to different functions [267]. The basic 

hypothesis for this functional evaluation is that substitutions occurring at regions 

essential for protein binding may affect this interaction. Our findings have been 
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compared with experimentally verified functional alterations of variants occurring at the 

same position or at neighboring residues (Fig. 5.4) and the results are summarized in 

Table 5.2. 

 
Figure 0.4. pVHL interactions of known and new variants at similar positions.   
The list of proteins interacting with pVHL was taken from [267]. A yellow box (p) indicates the possible 
involvement in pVHL interactions for positions found newly altered. Colored boxes indicate results from 
experimental studies of variants occurring at the same or neighboring residues, as follows: interaction 
retained (I, in green), residual interaction retained (R, in orange), interaction lost (L, in red). Different 
experimental results are reported for the same variant in two cases: p.Val84Leu, p.Leu188Val. 
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5.5. Discussion 
This study reports the results of bioinformatic analysis of VHL mutations found in 

individuals with phenotypes ranging from full clinical von Hippel-Lindau disease to 

isolated tumors that could represent the first manifestation of this condition or just 

isolated lesions. The availability of a highly dependable genetic test, characterized by a 

mutation detection rate close to 100%, allows to reliably identify VHL affected 

individuals or virtually exclude this diagnosis. A known or putative VHL disease-

causing alteration was found in 89/89 of the cases referred with a clinical diagnosis of 

von-Hippel-Lindau disease and in 22 subjects presenting with apparently sporadic 

VHL-related tumors at the time of molecular diagnosis (Supplementary Table S.5.1). 

Once a VHL sequence variant is detected for the first time in an individual with 

negative family history, the interpretation of its pathogenic significance is an important 

step on which a final diagnosis and subsequent clinical follow-up depend. This 

interpretation, often not easy, is particularly critical if the variant does not obviously 

impair the protein function by creating a premature truncation codon (PTC) or by 

altering the transcript. This work was specifically intended to deal with this 

interpretative issue in characterizing the 18 newly detected VHL variants (Table 5.2). 

Besides explaining the pathogenic role of inactivating mutations, I focused on the 

characterization of the in frame deletion of two amino acids and on the 10 single 

nucleotide substitutions believed to be putative missense mutations. 

I evaluated the impact of each new sequence variant and studied the role of mutated 

amino acid residues on overall protein stability with the aim of predicting molecular 

mechanisms of pathogenicity in VHL disease. By residue interaction network analysis I 

predicted whether the structural effects determine unfolding and subsequent degradation, 

or local instability which might interfere with protein-protein interactions (Table 5.2). 

 

Inactivating mutations 

Mutations that interrupt pVHL, even though not early truncations, are all predicted to 

exert a very severe pathogenic role due to the loss of the structurally crucial α-domain, 

which interacting with Elongin C and B allows the 3D conformation of the protein 

[278]. Furthermore, mutations resulting in a PTC should anyway impact on the mRNA 
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stability since normally subjected to mRNA surveillance and nonsense-mediated mRNA 

decay (NMD) [282].  

Seven new inactivating mutations have been identified in subjects with a suspected 

clinical diagnosis of VHL Syndrome (Table 5.1). One of the inactivating mutations 

(p.Tyr175X) was previously described as a somatic alteration in sporadic RCC [283]. It 

might escape the NMD machinery since the resulting PTC is located in the last VHL 

exon and NMD typically degrades transcripts containing nonsense codons followed by 

at least one intron [284-285]. Even if processed, this transcript would still result in a 

pVHL molecule lacking an essential part of the α-domain (Fig. 5.1), the Cullin2 

interaction region [246], explaining the pathogenic relevance of such a mutation. 

The subject carrying the p.Tyr175X variant presented multiple central nervous system  

HB without PH, which would be consistent with a mutation abolishing VHL gene 

function [226]. It is worth mentioning that an individual from a VHL type 1 family with 

the same pVHL truncation, although from a different genomic variant, was reported to 

be affected by bilateral PH [286]. No follow up clinical information was available on 

our p.Tyr175X patient who unfortunately died at age 17 due to complications of a 

brainstem HB. A unique case is represented by the p.Pro59ArgfsX8 mutation that we 

found associated with PH (Supplementary Table S.5.1), a tumor that should not be 

associated with alterations predicted to completely abolish pVHL function. Genetic or 

epigenetic modifiers would reconcile the apparent genotype-phenotype correlation 

discrepancy in these two mutations, as recently suggested for the risk of RCC and HB 

[287]. 

 

Predicted effects of novel missense variants 

Ten novel missense variants have been detected in eleven unrelated individuals (Table 

5.1). Of these, seven subjects were referred for VHL disease (two of them carrying the 

same variant), one presented with an apparently sporadic CNS hemangioblastoma, and 

three with seemingly sporadic PH. The segregation of the four variants p.Gly93Phe, 

p.Pro138Thr, p.Arg167Leu, and p.Leu188Arg with the phenotype in other family 

members further supported their pathogenicity, while for index case 55 the segregation 

analysis tended to exclude a correlation between p.Pro103Ala and the patient phenotype. 

Of great relevance was to establish the pathogenicity of the other newly identified 
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variants, particularly if represented by amino acid substitutions detected in subjects with 

isolated tumors and unreported family history. One of these, the de novo c.250G>C 

transition found in a case of sporadic  pheochromocytoma, results in the known variant 

p.Val84Leu previously reported to be associated to type 2C VHL. The interpretative 

problem remained for four variants: p.Glu12Asp, p.Pro59Ser, p.Val66Gly, and 

p.Val155Gly. 

Prediction of pathogenicity for each of the novel missense variants was based on 

conservation of the mutated residue across orthologous proteins, and in silico prediction 

of its putative pathogenic effect. Except for variants mapping on the VHL N-terminal 

region (p.Glu12Asp, p.Pro59Ser, p.Val66Gly), all novel amino acid substitutions occur 

at conserved positions. It is generally accepted that the canonical splice donor and splice 

acceptor sites are well recognized although, alterations occurring at positions close to 

these highly conserved sites are more difficult to predict a priori [288]. However, I 

excluded that the novel variants could exert their pathogenic role disrupting the normal 

splicing pattern (Table 5.2 and Supplementary Table S.5.3). 

The employed computational methods for prediction of mutation effects performed 

reasonably well for our test data on VHL, with Eris showing the greatest overall 

accuracy (Supplementary Table S.5.2). This is not unexpected, given the complexity of 

the Eris method, which is associated with a larger computational cost due to the 

thermodynamic calculations. As a faster alternative, Pmut also performed consistently 

well, correctly predicting the known benign variation and having the advantage that no 

protein structure is required (Supplementary Table S.5.2). It should be emphasized that 

all in silico predictions can only give an approximation for pathogenicity and can of 

course not replace experimental validation. In particular, prediction of the effects related 

to splice site variants and protein interactions require specialized knowledge for the 

protein under consideration and cannot be easily automated. With this important caveat, 

the computational predictors can nevertheless provide a fast screening tool to focus 

further experimental efforts. 

The application of seven different computational methods to predict overall 

pathogenicity of the 10 novel missense variants allowed us to affirm that 7 of these are 

potentially true pathogenic mutations (Table 5.2 and Supplementary Table S.5.3). 

Variant p.Pro103Ala could be considered a new benign variant. The major difficulty 
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using this strategy was to analyze variants occurring at the N-terminus (p.Glu12Asp, 

p.Pro59Ser). Prediction methods using structural information were indeed not 

applicable (Supplementary Table S.5.3) and given the low sequence conservation of the 

N-terminal region, methods based on evolutionary conservation failed to classify these 

variants. This was also observed for the known benign variant, p.Pro25Leu, reported in 

the UMD-VHL database as a probably polymorphic variant, that we found in a healthy 

control patient (Supplementary Table S.5.2). The p.Glu12Asp substitution nonetheless 

maintains the negative charge of the N-terminal sequence, which seems to be its most 

important characteristic. This variant is therefore likely not associated with the clinical 

phenotype of the carrier, referred as the only affected individual of his family, even if 

no other family members were available for genetic testing. As for p.Pro59Ser, it was 

predicted to be neutral by three out of four applicable computational methods 

(Supplementary Table S.5.3). The subject carrying the variant only presented a 

monolateral PH and a totally silent family history, rendering the pathogenicity of this 

variant ambiguous (Table 5.2). 

To determine effects on protein stability and function, we mapped the novel missense 

variants on the VHL crystal structure. Our studies show that while two variants are 

located on the unstructured N-terminus, three mutations affect residues buried in the 

protein core, one position at the linker region between α and β-domain and four variants 

affect surface residues. To predict the functional effects of new missense variants, I 

have considered the positions of altered residues with respect to the three interfaces 

used by pVHL to interact with partner proteins (Fig. 5.1, Table 5.2, Fig. 5.4). I recently 

reported an hypothesis by which the three interfaces have different molecular functions. 

Interface A has a role in protein processing, which comprises ubiquitin ligase complex 

formation and proteins stabilization, interface B in substrate recognition and interface C 

in pVHL subcellular localization [267]. The basic hypothesis for this functional 

evaluation is that substitutions occurring at regions essential for protein binding may 

affect this interaction.  

From a structural point of view, p.Pro138Thr and p.Leu188Arg mutations were 

predicted to cause complete unfolding and consequent loss of all pVHL functions. This 

prediction is supported by loss of interactions in both α and β domains and unfolding, as 

demonstrated for the p.Leu188Gln substitution [289].  
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Substitutions at Arg167 could have a dominant-negative effect due to partial unfolding 

and inability to interact with the VCB complex [289-290]. The functional effect of these 

mutants was reported to be milder, since they likely retain interactions with proteins that 

do not undergo ubiquitin mediated degradation [291-293].  

Our prediction methods indicated that surface mutations do not cause protein unfolding 

and allow the formation of a stable VCB complex. These mutations nevertheless have 

the potential to alter functional interfaces of pVHL, as experimentally proven for 

numerous substitutions at Tyr98 [249-250, 289, 291, 293-295], the residue forming the 

main interaction with HIF1α. This is also expected for the p.Gly93Phe mutation which 

alters the same interface, while p.Val155Gly was previously predicted to be involved in 

interactions with Elongin C [296].  

With the exception of a stop codon, no other variants of the β-domain surface residue 66 

have been reported. The structural analysis reported here shows that p.Val66Gly causes 

a local change involving Ser68 which is the phosphorylation site for Glycogen synthase 

kinase 3 (Supplementary Table S.5.3) [255]. It is tempting to hypothesize that the 

functional relevance of a substitution at position 66 might therefore be due to alteration 

of the kinase binding motif.  

I have re-evaluated the possible functional implications of the N-terminal substitution of 

Pro59 by a polar serine residue, which could not be analyzed with the whole array of 

prediction methods and was left with an unclear interpretation (Table 5.2 and 

Supplementary Table S.5.3). This variant alters a residue with low conservation but the 

substitution introduces different biochemical properties that could interfere with 

functions hypothesized for the pVHL N-terminus, such as microtubule stabilization 

[255, 297], proper fibronectin matrix deposition [291, 298-299] and ciliary-maintenance 

mechanisms [255, 300].   

 

Considerations about genotype-phenotype correlations 

Consistent with the severe functional impact attributed to variants with a core location, 

p.Leu188Arg mutation was associated with a phenotype that did not include PH, 

making it a likely VHL type 1. The fact that p.Pro138Thr was detected in a subject with 

PH suggests that this core mutation does not cause complete protein unfolding and may 

be able to maintain interactions with pVHL partners. The latter has been demonstrated 
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for other core mutations, reported as typically associated with VHL type 2C, e.g. 

p.Leu188Val and p.Val84Leu  [293-294, 299, 301]. Furthermore, other previously 

described mutations altering the pVHL interface C between residues 114 and 154, such 

as p.Phe136Cys and p.Pro154Leu, have reduced ability to bind TBP1, necessary for 

proteasome binding (Fig. 5.4), and have been found in VHL type 2 [250].  

All of the new surface variants are associated with PH, confirming that the risk of PH is 

indeed higher with missense than with loss of function mutations [227]. 

Finally, it is interesting to note how all surface variants in this study alter pVHL 

interactions with proteins promoting apoptosis, e.g. p53 [244] , JADE-1 [302], 

BCL2L11 [303]. This observation seems particularly relevant in view of recent data 

showing how VHL type 2C mutant proteins are implicated in decreased apoptosis and 

indicating this mechanism as possibly responsible for PH [304].  

 

5.6. Conclusions 
This molecular study increase the list of known VHL mutations and contributes to a 

better understanding of the molecular pathology of this tumor suppressor gene. I 

proposed a in silico strategy for the evaluation and interpretation of the pathogenicity of 

novel sequence variants. The adopted computational approach allowed to predict the 

impact of aminoacid substitutions on the overall stability of pVHL, interference with 

specific interfaces and possible allosteric effects which could disturb the demonstrated 

allosteric correlation between the α- and β-domain binding sites [305]. Although not 

specifically aimed at evaluating genotype–phenotype correlation, this study allowed to 

observe how classifying missense substitutions according to their predicted effects on 

pVHL structure enhances the ability to predict the risk of PH occurrence. By integrating 

genetic information and predicted impact on the protein structure it has been possible to 

reliably classify as disease-causing 15 of the 18 newly detected VHL variants. An 

unambiguous interpretation of mutations has an important clinical impact, both in terms 

of genetic counseling and clinical surveillance and follow up. 
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6. A computational model of the LGI1 
protein suggests a common binding site 
for ADAM proteins 

 
This chapter has been published in Leonardi E, Andreazza N, Vanin S., Busolin G., 

Nobile C. and Tosatto S.C.E. A computational model of the LGI1 protein suggests a 

common binding site for ADAM proteins. PLos ONE 6(3): 2011 March 

29,;6(3):e18142  

and  

Striano P, Busolin G, Santulli L, Leonardi E, Coppola A, Vitiello L, Rigon L, 

Michelucci R, Tosatto SC, Striano S, Nobile C. Familial temporal lobe epilepsy with 

psychic auras associated with a novel LGI1 mutation. Neurology. 2011 Mar 

29;76(13):1173-6. 

 

6.1. Summary 
Mutations of human leucine-rich glioma inactivated (LGI1) gene encoding the 

epitempin protein cause autosomal dominant temporal lateral epilepsy (ADTLE), a rare 

familial partial epileptic syndrome. The LGI1 gene seems to have a role on the 

transmission of neuronal messages but the exact molecular mechanism remains unclear. 

In contrast to other genes involved in epileptic disorders, epitempin shows no homology 

with known ion channel genes but contains two domains, composed of repeated 

structural units, known to mediate protein-protein interactions. 

A three dimensional in silico model of the two epitempin domains was built to predict 

the structure-function relationship and propose a functional model integrating previous 

experimental findings. Conserved and electrostatic charged regions of the model surface 

suggest a possible arrangement between the two domains and identifies a possible 

ADAM protein binding site in the β-propeller domain and another protein binding site 

in the leucine-rich repeat domain. The functional model indicates that epitempin could 
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mediate the interaction between proteins localized to different synaptic sides in a static 

way, by forming a dimer, or in a dynamic way, by binding proteins at different times. 

The model was also used to predict effects of known disease-causing missense 

mutations. Most of the variants are predicted to alter protein folding while several 

others map to functional surface regions. In agreement with experimental evidence, this 

suggests that non-secreted LGI1 mutants could be retained within the cell by quality 

control mechanisms or by altering interactions required for the secretion process. 

The Arg407Cys is the first mutation with no effect on LGI1 protein secretion. 

Substitution of Arg407 with a cysteine is predicted to have no effect on propeller domain 

folding but, under the strongly oxidative conditions present in the extracellular 

environment, likely forms  abnormal disulfide bridges with other molecules, ultimately 

hampering interaction of LGI1 with its partner protein(s). The uncommon isolated 

psychic symptoms associated with this mutation suggests that ADLTE encompasses a 

wider range of auras of temporal origin than hitherto reported. 

 

6.2. Introduction 
The human leucine rich, glioma inactivated 1 (LGI1; GeneID 9211; MIM# 604619) 

gene has been linked to two different clinical phenotypes: malignant progression of 

glioma and autosomal dominant lateral temporal epilepsy (ADLTE; MIM# 600512), a 

rare familial partial epilepsy syndrome. This gene has been shown to be frequently 

downregulated in malignant gliomas and to regulate invasiveness of some glioma cell 

lines [306] by driving the expression of matrix metalloproteinases through the ERK 1/2 

pathway. These findings suggest that LGI1 may serve as a tumor metastasis suppressor 

gene [307].  

ADTLE is an inherited epileptic syndrome characterized  by focal seizures with 

predominant auditory symptoms likely originating from the lateral  temporal lobe cortex 

[308-309]. Mutations causing ADLTE were identified in the LGI1 gene by positional 

cloning [310-311]. To date, over 25  mutations have been reported, resulting in either 

protein truncation or single amino acid substitutions [312], but about half of the ADLTE 

families have no LGI1 mutations [308].  LGI1 is mainly expressed in neurons [311, 
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313] and shows no similarity to known ion channels. The predicted structure of the 

LGI1 protein comprises, starting from the N-terminal end, a signal peptide, four 

leucine-rich repeats (LRR) flanked on both sides by conserved cysteine clusters [96], 

and seven copies of a repeat of about 45 residues, named EPTP [314] or EAR [315], 

probably forming a beta-propeller structural domain [316]. Both LRR and beta-

propeller domains mediate protein-protein interactions, each motif defining a distinct 

family of proteins [316-317].  

Several different functions and molecular partners have been attributed to LGI1. A 

recent study provided evidence that LGI1 is associated with a post-synaptic complex 

containing PSD95 and ADAM22, a receptor associated with the post-synaptic 

membrane [318]. Through specific binding to ADAM22, LGI1 was shown to participate 

in the control of synaptic strength at excitatory synapses, whose malfunction may result 

in epilepsy [318]. Mouse models developed more recently have implicated LGI1 in 

neuronal maturation processes. In one study, it was shown that LGI1 affects postnatal 

maturation of glutamatergic synapses, a process involving ADAM22, and mediates 

dendrite pruning so that LGI1 mutations would result in persistence of immature, 

untrimmed, dendritic arbor [319]. On the other hand, another study showed that LGI1 

preferentially interacts with ADAM23 and through this receptor, which is not located at 

postsynaptic density, stimulates neurite outgrowth in vitro and dendritic arborisation in 

vivo [320]. Finally, analysis of LGI1 knock-out and transgenic mice suggested that 

LGI1 may act as a trans-synaptic protein connecting the pre-synaptic ADAM23 with the 

post-synaptic ADAM22 receptors [321]. 

To help understand the three dimensional (3D) conformation of LGI1, its binding 

properties, and ultimately its function(s), we developed an in silico model of the protein 

structure and analysed the amino acid sequence of the LRR and beta-propeller LGI1 

domains as well as their phylogenetic relationship. The models were used to assess the 

significance of known missense mutations. Analysis of possible interaction mechanisms 

with other proteins suggests a conserved common binding site for members of the 

ADAM protein family. 
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6.3. Materials and Methods 
 
Sequence feature analysis 

We employed an integrative bioinformatics approach combining sequence and domain 

database searches with the consensus from predictions of protein structural features. 

The LGI1 sequence (accession code: O95970) was downloaded from the 

SwissProt/TrEMBL database [322]. Homologous sequences were retrieved and selected 

with BLAST [37] from the SwissProt database using standard parameters and visualized 

using Jalview [43] and ESPript [84]. The secondary structure of LGI1 was predicted 

using the consensus method [99]. Prediction of intrinsic disorder was performed using 

Spritz [111] and the presence of signal peptides assessed with SignalP [323]. Repetita 

[97] was used to predict repeat periodicities. 

 

Phylogenetic analysis 

In order to reconstruct the phylogeny of the LGIs, 105 vertebrate and one 

branchiostomid  epitempin sequences have been automatically extracted from the 

available databases using BLAST [37] searches. Full-length amino acid sequences have 

been recovered from the corresponding nucleotide mRNA or genomic sequences. 

Multiple alignment was constructed with CLUSTALW [41]. The final alignment has 

been manually refined at the variable N-terminus and used in the subsequent analysis.  

A preliminary quartet puzzling analysis has been performed with the Treepuzzle 

program [324-325] to test whether a phylogenic approach could be applied to the 

original data set. Phylogenic studies have been performed according to the maximum 

likelihood (ML) with the PHYML 2.4 program [44]. The JTT substitution matrix [326] 

was used during reconstruction, whereas site heterogeneity was modeled with a four-

category Γ distribution. Nonparametric bootstrap resampling (BT) [327] was performed 

with 1,000 replicas to test the robustness of the tree topology. The phylogenetic tree was 

visualized with the Fig Tree 1.1.1 program (http://tree.bio.ed.ac.uk/software/figtree/). 

 

Alignment construction 

Structural templates for the two LGI1 domains were found using MANIFOLD [239] 
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and MetaServer [328]. Initial alignments were generated through systematic parameter 

variation from an ensemble of similar alternatives [329]. Given the problematic nature 

of repeated sequences, the best initial alignment was used as a starting point only. 

Manual refinement consisted in a method similar to ABRA [330] and Kajava’s method 

[95], with knowledge about the approximate location and number of repeats serving to 

identify the true repeat boundaries. Knowledge of key residues and secondary structure 

was used to anchor the aligned repeats. 

 

Molecular modeling 

Models for the two LGI1 domains were constructed using the HOMER server (URL: 

http://protein.bio.unipd.it/homer/).  The server uses the conserved parts of the structure 

to generate a raw model, which is then completed by modeling the divergent regions 

with LOBO, a fast divide and conquer method [88]. Side chains are placed with 

SCWRL3 [331] and the energy evaluated with FRST [89]. The final models were 

subjected to a short steepest descent energy minimization with GROMACS [90] to 

remove energy hotspots before calculating the electrostatic surface with APBS [78]. 

Evaluation of model quality was performed with QMEAN [100-101]. The structure is 

visualized using PyMOL (DeLano Scientific, URL: http://pymol.sourceforge.net/). 

Position-specific conservation scores for each amino acid were calculated with ConSurf 

[242]. 

 

Mutation analysis 

Amino acid substitutions have been mapped on the LRR and EPTP domain models and 

their position evaluated by manual inspection. Four computational methods were used 

to predict the stability change of the structure caused by these mutations. While I-

Mutant 2.0 [190] and MuPro [187] both utilize support vector machines or neural 

networks to predict the effect of the substitution on protein stability, Eris [188] and 

PoPMuSiC v2.0 [189] calculate mutational free energy changes of the protein based on 

its 3D structure.   

 

Cell transfection assay  

To ascertain the functional consequences of the Arg407Cys mutation, we transfected 
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the wild type and 1219C>T LGI1-Flag cDNAs into HEK293 cells, which do not 

express endogenous Lgi1, and analysed the proteins produced by these cells by 

immunoblot. Both cell lysates and concentrated (about 20x) serum-free media were 

analysed using anti-Lgi1 and anti-Flag antibodies. Although some signal was retained in 

the cell lysate, the Arg407Cys mutated protein was mostly secreted into the medium as 

was the wild type protein, whereas a mutant protein carrying the ADLTE-causing 

mutation p.Ala110Asp (c.329C>A), assayed as control, was detected only in the cell 

lysate (Fig 6.1C). Thus, the Arg407Cys is the first mutation identified in LGI1 that does 

not affect the secretion process of the protein in culture cells. 

 

6.4. Results and Discussion 
 

Given the fragmented knowledge present in the literature, we performed a full analysis 

of the LGI protein family starting from the protein sequence. In the following, we will 

address each step from phylogeny to sequence and structural analysis all the way to new 

functional hypotheses. 

 

Phylogenetic analysis 

The phylogenetic reconstruction was performed using 105 Vertebrate (Chordata; 

Chraniata) sequences. An additional sequence of Branchiostoma floridae (Chordata; 

Cephalochordata) has been included in the analysis. The obtained reconstruction 

reported in Figure 6.1 highlights the presence of 4 groups, named 1, 2, 3 and 4. The 

distribution pattern of LGI family transcripts in the adult mouse brain [332] highlights 

the tissue specificity of group 1 (see Figure 6.1). Group 1, 2 and 3 present the fish 

sequences (blue squares) in a basal position, followed in group 1 and 3 by amphibian 

and bird sequences (red and green arrows). The mammalian sequences present an apical 

position in all the groups. The Ornithorhynchus anatinus protein shares a common node 

with chicken in group 1 and both are basal to the other mammalians. The phylogeny of 

LGI1 reveals an early duplication of the gene followed by two other independent 

duplications as already reported by Gu et al [333], but, in contrast to these authors, the 
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phylogeny obtained with a larger dataset indicates a closer relationship between the 

LGI3 and LGI4 sequences as opposed to LGI1 and LGI4.  

  
Figure 0.1. Evolutionary relationship among the LGI vertebrate sequences.  
The figure shows the best likelihood tree (-lnL= -21148.01332) obtained using the PHYML program. The 
length of the branches represents the number of reconstructed change of state over all sites (bar represents 
0.2 substitutions per site), bootstrap values are reported at the nodes. Blue squares indicate the fish 
sequences whereas the green and red arrows respectively the amphibian and bird sequences. An asterisk 
indicates the Ornithorhynchus anatinus protein. 
 
Sequence domain organization 

We define boundaries of each domain in the LGI1 sequence (Fig. 6.2). The first 35 N-

terminal residues contain the signal peptide responsible for its secretion. A cleavage site 

is also predicted by SignalP in this region. The N-terminal part of the protein from 

residues 41 to 243 has about 30% sequence identity with LRR domain family proteins, 

while the C-terminal region between residues 245-552 contains the EPTP repeats. The 

two domains are also present in all human LGI proteins (LGI1, LGI2, LGI3, LGI4) and 

conserved across orthologs (Fig. 6.2). Since a structure of LGI1 is not available, a 

structural analysis was conducted separately for the two domains as they have different 

characteristics.  
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Figure 0.2. Alignment of LGI family members and domain organization.  
Multiple alignment of representative homologs in the LGI family. Species are abbreviated as follows: Hs 
= Homo sapiens; Mm = Mus musculus; Rn = Rattus norvegicus; Dr = Danio rerio; Xt = Xenopus 
tropicalis; Cf = Canis familiaris. The LGI1 domains and secondary structure are shown on the top part. 
Missense mutations analyzed in this paper (triangles) and putative glycosylation sites (stars) are indicated 
on the bottom of the alignment. Red lines are used to connect cysteine residues that form disulphide 
bridges in the structural model. acc: accessibility level from DSSP (black=high and white=low). 
 

Homology modeling of LRR domain and  sequence to structure mapping 

The LRR domain was predicted using MANIFOLD. It presents two terminal variable 

regions, LRR-NT and LRR-CT, reported to have high similarity to those in Nogo-66 

receptor (NgR) [334] and four repeats between them. Recently, we presented a 

preliminary model of the LRR domain based on the NgR structure [7]. Modeling was 

conducted in two separated steps on the N- and C-termini, which were combined 

successively. Since the NgR protein has a longer LRR-CT and 8 repeats, the analysis of 

repeat periodicities with Repetita was performed to identify the correct number of LRR 

repeats in LGI1. The program predicts 4 motifs of 24 amino acids length and the 

template search selected the structure of the third LRR domain of Drosophila 

melanogaster SLIT (PDB code:1W8AA) [335] as the best template with a 32% 

sequence identity and the same number of repeats. In this way, the curvature of the LRR 

domain is more accurately modeled and the residues did not change in relative position 

as the new model is still based on the alignment from our previous work (Fig. 6.3) [312]. 

Comparison of conserved residues and secondary structures of hLGI1 and dSLIT 

revealed many correspondences in the alignment. The alignment was used to build the 

model, with only two gaps located in the LRR-NT and in the first LRR repeat which 

were modeled with LOBO. LGI family members and their orthologs differ exactly at 

these positions. This variability may indicate the presence of a specialized region for the 

specific LRR domain. Evaluation of model quality by QMEAN indicates that the 

regions of poor quality are located at the N- and C-terminal portion of the structure (Fig. 

6.7). However, the N- and C-terminal caps of the LRR domain present two disulfide 

bonds (C42-C48 and C46-C55) at LRR-NT and two disulfide bonds (C177-C200 and 

C179-C221) at LRR-CT which confer stability to the structure. Furthermore, the whole 

model has good quality as indicated by a QMEAN score reflecting predicted model 

reliability of 0.6 (range 0,…,1; where 0 is worst and 1 best). As expected, the repeated 
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model core presents all hydrophobic residues forming the consensus sequence in the 

LRR domain internally buried and polar residues exposed to the solvent (Fig. 6.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 0.3. LRR repeat overview.  
A. Consensus sequence repeat pattern of the LRR domain. Secondary structure is drawn on the top part of 
the alignment: an arrow represents the β-strand and a ribbon the α-helix connected by curved lines (loops). 
B. Schematic diagram of repetitive structural units in LGI1 protein. Conserved positions of the consensus 
pattern are reported on the diagram. Coloured pink spheres for buried residues and blue spheres for 
exposed residues. 
 

The repeats stack in a parallel arc, allowing to partition the surface into four parts. The 

concave face, consisting of parallel β-strands, comprises a strong conserved region, 

while the convex face formed by a tandem arrangement of polyproline II plus β-turns 
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has only localized regions of conservation. We can also distinguish two other surfaces 

formed by two arrays of loops: the C-terminal side, which contains the loops linking the 

C-terminal end of the β-strands to the N-termini of the helices, and the C-terminal side, 

which forms a negative electrostatic surface (Fig. 6.3 and Fig. 6.4). Conserved 

negatively charged residues in LRR domains have been found involved in specific 

hydrogen bonds with NH groups of the backbone and considered important for 

structural integrity [95]. Other solvent exposed aspartic acid residues have been found 

to contribute to the twist of the overall LRR structure [336] as in the Yersinia pestis 

cytotoxin YopM [337]. In the LRR domain of LGI1 the negatively charged residues 

contributing to the negative electrostatic surface are all solvent exposed suggesting that 

they may be important for protein function. 

 

 
Figure 0.4. LRR model, structural analysis.  
A. Cartoon of the LRR model coloured from N-terminal (blue) to C-terminal (red); B. Electrostatic 
surface (negative charge in red and positive charge in blue); C. Position of missense mutations, mutated 
residues are shown as spheres with structural mutations indicated in red; D. Conserved surface with 
ConSurf colour code from unconserved (cyan) to strictly conserved (magenta). 
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Homology modeling of EPTP domain and  sequence to structure mapping 

Staub and co-workers [314] proposed that the EPTP repeats could constitute a new class 

of β-sheet repeats, which fold into a β-propeller structure. The LGI1 β-propeller domain 

consists of 7 repeats, named EPTP1-7, each comprising a small four-stranded 

antiparallel β-sheet, whose strands are labeled A to D from N- to C-terminus. Repetita 

[97] was used to define the boundaries of repeats in the EPTP domain. We built a 

multiple alignment at the level of single repeats to define the EPTP repeat consensus 

sequence (Fig. 6.5). In order to classify LGI1 into a specific protein domain family, we 

searched for the presence of sequence motifs characteristic for different families of β-

propellers [338]. The WD motif located at the end of β-strand C is conserved in repeats 

1 and 6. In particular, the WD motif at the first repeat is conserved among all LGI 

proteins. In other blades, tryptophan and aspartatic acid are replaced by amino acids 

with similar biochemical properties (Fig. 6.2). We applied the Metaserver fold 

recognition method and selected the structure of human WD repeat protein 5 (WDR5) 

WD domain (PDB code: 2GNQA) as template, which presents a “velcro” closure and ca. 

11% sequence identity. In many β-propellers each sequence repeat contains the first 

three strands of one blade and the last strand of the next. This is apparently also the case 

for LGI1. We manually curated the alignment between template and LGI1, keeping in 

consideration the secondary structure prediction. The gaps were closed with LOBO and 

fell almost all in loops that are longer in LGI1 than WDR5. Evaluation of the model 

quality, yielding a QMEAN score of 0.4, reveals that the most high quality regions 

comprise the core of the propeller formed by circular β-sheets, while the loops forming 

the bottom and top surface show poorer quality (Fig. 6.7). These regions differ more 

from the template due to the presence of several insertions/deletions. However, we can 

suppose that the overall model corresponds to the real structure of LGI1, since the 

protein core is stabilized by hydrophobic interactions. The modeled structure also 

presents a likely disulfide bridge between Cys260, in the first blade, and Cys286, in the 

second blade, which would confer further stability to the overall fold.  

The LGI1 structural model has been evaluated for both conserved regions and 

electrostatic surface (Fig. 6.6). Using the alignment of different sequence families 

retrieved by BLAST, ConSurf does not reveal any particular conserved region. A 

conserved feature in all modular sheets from different propeller domains is a set of 



6. Computational LGI1 protein model 

109 

positions with non-polar side chains, generally non solvent accessible, located in the 

central part of the strands. Since the major determinant for propeller assembly is the 

packing of these residues, amino acids in these positions are free to be replaced by other 

amino acids with similar biochemical properties [316]. Interestingly, using only 

sequences of different LGI family members to build the alignment, ConSurf identifies a 

highly conserved circular region in the top face of the β-propeller. On the bottom face 

of the protein there are also some conserved sites that correspond to the WD motif and 

electrostatic surface analysis identifies an extended positively charged region (Fig. 6.6). 

The top surface is formed by loops connecting strand D of one blade and strand A of the 

next (DA loops) and loops connecting strand B with strand C in the same blade (BC 

loops). The bottom surface is formed by loops connecting strand C and D of a blade 

(CD loops) and loops connecting strand A and B (AB loops) (Fig. 6.5). The alignment 

of WD repeat sequences allowed the identification of regions of variable length. In 

some proteins, one or more of these variable regions can be long enough to form an 

independently folded domain while other insertions form a reverse turn or loop that 

protrudes from the bottom of the propeller [339]. The LGI1 propeller has an insertion in 

the AB loop of the fourth repeat, not presents in paralogous LGI members, that 

protrudes from the bottom surface (Fig. 6.2 and 6.8). This loop may contain a functional 

motif that contributes to the functional specificity of LGI1.  
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Figure 0.5. EPTP repeat overview.  
A. Consensus sequence repeat pattern of EPTP domain. h = hydrophobic residue; p = polar; a = aromatic 
residue; t = tiny residue. Secondary structure is drawn on the top part of the alignment. Arrows represent 
β-strands connected by curved lines (loops). Loops forming the top surface are coloured in green, while 
those forming the bottom surface are coloured in blue. B. Schematic diagram of repetitive structural units 
in the LGI1 protein. Conserved positions of the consensus pattern are reported on the diagram. Pink and 
blue spheres indicate buried and exposed residues respectively.  
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Figure 0.6. EPTP model, structural analysis.  
A. Top (up) and bottom (down) view of electrostatic surface of EPTP model (negative charge in red and 
positive charge in blue); B. Top (up) and bottom (down) view of the conserved surface of EPTP model 
with ConSurf colouring from unconserved (cyan) to strictly conserved (magenta). C. Cartoon of the 
EPTP model in top and lateral view with ConSurf colouring. Spheres indicate residues found mutated in 
ADTLE patients with structural mutations indicated in red. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 0.7. QMEAN model quality evaluation.  
The estimated residue error is visualised using a colour gradient from blue (most reliable regions) to red 
(potentially unreliable regions, estimated error above 3.5 Å). 
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Interactions 

LGI1 presents two domains that are known to form multi-protein complexes [316, 340]. 

It is reasonable to suppose that LGI1 mediates interactions between different proteins 

using different surfaces in the two domains. The first step is to understand how the two 

domains are arranged together. As they present two surfaces of opposite charge, it can 

be expected that an attraction between them exists. However, they are not positioned 

face to face due to the constraint imposed by the short loop connecting them. Instead, if 

we position the EPTP domain with the top face resting on a plane, the LRR moves 

laterally above the plane of the bottom surface exposing the conserved β-sheet (concave 

surface) (Figure 10A). Even if some LRR proteins use alternative surfaces for ligand 

binding, it is generally thought that the concave surface of the LRR structure contains 

the ligand-binding site [341]. LGI1 could interact with one protein through the concave 

LRR interface and with another protein through the top surface of the EPTP domain. It 

has been previously observed, that the β-propeller structure creates a stable platform 

that can form complexes reversibly with several proteins, using three potential 

interaction interfaces: top, bottom and circumference [339, 342].  

The top surface appears to be a specialized region for LGI members because it is 

particularly conserved across them. The superimposition of LGI1 and the complex of 

WDR5 with its ligand (PDB code: 3EMH) allowed us to map the putative binding site 

of a ligand on the top surface of the EPTP domain (Fig. 6.8). LGI1 has been shown to 

bind through the β-propeller domain to both ADAM22, ADAM23 and ADAM11, 

although with different affinities [343]. On the other hand, LGI4 is known to interact 

with ADAM22 [344]. Since the four members of the LGI family have a common 

phylogenetic origin (Fig. 6.1), it is reasonable to expect that interactions between 

various components of the LGI and ADAM protein families likely occur through the 

same, structurally conserved LGI binding site on the top EPTP surface (Fig. 10A). 
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Figure 0.8. EPTP ligand bindind sites.  
Top (A) and lateral (B) view of the hypothetical peptide binding site on the EPTP model. The position of 
a hypothetical peptide (green spheres) was obtained by superimposition of the EPTP model with the 
WDR5 structure (PDB code 3EMH). Note that the insertion specific for LGI1 ( in yellow) maps on the 
bottom face of the domain.  
 

Role of LGI1 N-Glycosylation 

It is well known that the LRR and EPTP domains in LGI1 are N-glycosylated due to 

their extracellular localization and Sirerol-Piquer et al. [345] demonstrated that N192Q 

(LRR-CT, conserved across all LGI members), N277Q (conserved across some LGI1 

and LGI2 orthologs) and N422Q (only conserved across mammalians) are sites of N-

linked glycosylation in LGI1 (Fig. 6.2). Glycosylation could be essential for proper 

function of the protein since it can dramatically alter surface properties and thereby 

affect ligand binding. The effect of the potential N-glycosylation sites have been 

evaluated on the secretion of LGI1 [345]. Compared to a normal protein, the triple 

mutant was not secreted and secretion of the N192Q mutant was severely attenuated.  

To understand the potential role of LGI1 glycosylation we analyzed their distribution 

over the domain surfaces. In our model, N192 on the LRR domain and N277 and N422 

on the EPTP domain are all solvent exposed, confirming the overall correctness of the 

model. In the LRR domain, the glycosylation site maps to the N terminal side of the 

LRR-CT portion, while in the EPTP domain, the glycosylation sites map to the β-strand 

D of the first and fourth blades on the circumference surface. These findings indicate 

that, while glycosylation modulates the surface properties of LGI1, the putative ligand 

binding sites are located in non-glycosylated regions. 
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However, the glycosylation of N192 is supposed to have a mechanistic role. The 

presence of an oligosaccharide in this position indeed likely interferes with attraction of 

the charged surfaces present in the two domains, possibly preventing a too close 

interaction between them. From this point of view, N-linked glycosylation also appears 

important for correct protein folding.  

 

In silico analysis of missense mutations 

Recently, we have reviewed a total of 25 LGI1 mutations reported in the literature and 

analyzed their effects on secretion and on the structure using a preliminary model of the 

LRR domain [312]. Here we present the analysis of all 21 missense mutations found as 

to date in the LGI1 gene from subjects with familial or sporadic ADLTE, including the 

recently published p.R407C mutation [346], the two p.I122T and p.C179R mutations 

(submitted) and the unpublished p.T380A mutation. Twelve variants affect amino acid 

residues located in the LRR domain while nine are in the EPTP domain (Fig. 6.4 and 

6.6). The analysis of structural and/or functional effects of these two variant groups has 

been conducted separately using our models of the LRR and EPTP domains (Table 6.1). 

Note that truncating mutations were excluded from our analysis, as no prediction is 

possible from the structure beyond noting probable protein misfolding. 

 

LRR mutations 

Among the twelve variants occurring in the LRR domain, one involves residues on the 

second LRR repeat, four on the third LRR repeat, two on the fourth LRR repeat and five 

involve residues at the N- and C-terminus. Some of the considered substitutions mapped 

at the terminal parts of the LRR domain are of particular interest since they modify 

conserved cysteine residues flanking the LRR repeats forming disulfide bonds (Fig. 6.2). 

Substitution of these residues inevitably causes a structural destabilization of the LRR 

domain. Even if using only protein sequence information, I-Mutant predicts Cys42 and 

Cys46 as stabilizing, but computational methods are not efficient in predicting protein 

stability changes due to loss of a disulfide bridge. All LRR variants are predicted to be 

destabilizing by at least three methods,  meaning that all variants could have a negative 

structural change (Supplementary Table S.6.1). During initial analysis of LRR variants, 

we observed that it was possible to distinguish two groups of variants on the basis of 
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their effect on structure or function. The group of structural mutations includes critical 

mutations of the conserved cysteine residues (p.C42R, p.C42G, p.C46R, C179R and 

p.C200R), and four mutations of hydrophobic core residues to polar/charged residues 

(p.A110D, p.I122K, p.I122T, p.L154P). These mutations occur at conserved positions 

in the LRR repeat alignment having a structural role in folding the LRR domain (Fig. 

6.3 and 6.4). The second group (p.E123K, p.R136W, p.S145R) alter residues located at 

the protein surface which have a potential to maintain the local structure, the details of 

which may be crucial for interactions with protein partners. Since all of these mutants 

lost the ability to be secreted, we hypothesize that a change on the surface, if not 

causing misfolding, should interfere with the secretion process, e.g. hampering 

attachment of the protein to the membrane. Evaluation of the electrostatic surface of 

these three mutants revealed that p.E123K and p.S145R affect the conserved concave 

surface formed by parallel β-strands of the LRR domain (Fig. 6.9). Variant p.R136W 

has subtle effects on the electrostatic potential of the convex surface, suggesting this 

could be another protein binding site.  

 
Figure 0.9. Electrostatic potential changes on the LRR surface. 
 A. Electrostatic potential changes induced by the E123K, S145R; B. Electrostatic potential changes 
induced by and R136W mutations. Note the different orientation of LRR domain. 
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Mutations dbSNP Position Structural/functional effects Secretion

p.C42R        (8)  LRR-NT Precludes disulfide bridge formation with C48. NT 

p.C42G        (8)  LRR-NT Precludes disulfide bridge formation with C48. NT 

p.C46R        (8) rs104894166 LRR-NT Precludes disulfide bridge formation with C55. Negative 

p.A110D      (8)  LRR2 
Core 

The mutation leads to three neighboring Asp with 
possible electrostatic repulsion. Negative 

p.I122K        (8) rs119488100 
LRR3 
Core 

 

Insertion of an charged aminoacid (Lys) alters the 
protein fold. Negative 

p.I122T        (8)  LRR3 
Core 

Polar residue inside the hydrophobic core. Possible 
alteration of the LRR domain fold. NT 

p.E123K      (8)  LRR3 
Concave surface 

The mutation alters the electrostatic surface of a 
potential peptide binding site on LRR domain. NT 

p.R136W     (5) rs119488099 LRR4 
Convex surface 

Arg136 forms a salt bridge with Asp109. The 
substitution cause the loss of important interactions 
with neighboring amino acids, leaving tryptophan to 
protrude from the molecule.  

Negative 

p.S145R      (9)  LRR4 
Concave surface 

The mutation alters the electrostatic surface of a 
potential peptide binding site on LRR domain. Negative 

p.L154P      (6)  LRR4 
Core 

Having two neighboring proline poses a highly 
destructive condition. NT 

p.C179R      (9)  LRR-CT Prevent the disulfide bridge with C241 causing a 
misfolding of LRR-CT domain NT 

p.C200R      (9)  LRR-CT Prevent the disulfide bridge with C177 causing a 
misfolding of LRR-CT domain. Negative 

p.L232P       (2) rs104894167 
EPTP7 

Loop D7-A1 
(“Velcro”) 

Failure of “velcro” closure. Possible alteration of the 
protein fold. Negative 

p.I298T        (5)  EPTP2 
βB2 

Polar residue inside the hydrophobic core. Possible 
alteration of the propeller fold. NT 

p.F318C      (7) rs28939075 

EPTP2 
βD2 

Circumference 
surface 

Position conserved across repeats. Possible alteration 
of the propeller fold. Negative 

p.T380A      (9)  
EPTP4 

Loop D3-A4 
Top surface 

Possible alteration of the functional interactions on the 
top surface of the propeller. NT 

p.E383A      (8) rs28937874 EPTP4 
βA4 

Loss of contacts with neighboring sheets alter the 
correct fold of the domain. Negative 

p.R407C      (5)  
EPTP4 

Loop B4-C4 
Top surface 

Possible alteration of the functional interactions on the 
top surface of the propeller. Secreted 

p.V432E      (8)  
EPTP5 

Loop D4-A5 
Top surface 

The substitution lead to three negatively charged 
aminoacids. Possible alteration of the local structural 
integrity. 

NT 

p.S473L       (9)  
EPTP5 

Loop D5-A6 
Top surface 

Possible alteration of the functional interactions on the 
top surface of the propeller. NT 

p.R474Q      (9)  
EPTP5 

Loop D5-A6 
Top surface 

Possible alteration of the functional interactions on the 
top surface of the propeller. NT 

Table 0.1. Missense mutations overview for the LGI1 protein.  
The table summarizes conservation degrees from ConSurf (in parenthesis, range 1-9), positions on the 
protein and predicted structural and functional effects of mutations found in ADTLE patients. For some 
of these mutants, the effect on protein secretion was previously investigated. For a recent review see 
[312]. 
EPTP mutations 
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Nine variants affect the EPTP domain and appear distributed through all repeats without 

any prevalence for a particular one. All mutations except one (p.S473L) were predicted 

to be destabilizing by at least two of the computational methods used (Supplementary 

Table S.6.1). We also distinguish between structural and functional mutations for the 

EPTP domain. Three mutations are classified as structural variants (p.I298T, p.F318C, 

p.E383A), as they affect conserved positions in the repeat alignment and map into the 

space between the two β-sheets of repeats 2 and 3 (Fig. 6.4 and 6.5). Indeed, residues 

forming the consensus sequence of propeller repeats are responsible for the hydrophobic 

contacts at the inter-sheet cores. It is the packing of these residues that is a major 

determinant for the assembly of the propeller fold [316]. The variant p.L232P located in 

the loop between repeats 1 and 7 also has a structural role as it forms part of the Velcro 

closure conferring stability to the propeller (Fig. 6.5).  

Interestingly, other variants (p.T380A, p.R407C, p.V432E, p.S473L, p.R474Q) occur at 

residues located in the DA and BC loops that form the top surface of the β-propeller 

(Fig. 6.5 and 6.6). Mutations at the top surface have a potential to interfere with 

interactions occurring between the β-propeller and molecules such as the known LGI 

interacting ADAM proteins.  

The mutation p.R407C has been found in three affected family members, two of whom 

had temporal epilepsy with psychic symptoms (déjà-vu, fear) but no auditory or aphasic 

phenomena, and the third had complex partial seizures without any aura [346] (Fig. 

6.10). The pathogenicity of the mutation is supported by a) its cosegregation with 

epilepsy in the family, b) the evolutionary conservation of the Arg407 residue, c) a high 

Polyphen score (2.031), and d) its absence in healthy controls. Three of the stability 

prediction methods classify the mutants as destabilizing, while the Eris method was not 

able to calculate the energy change for this mutation.  

In vitro studies have shown that the Lgi1 protein is secreted [313] and that all LGI1 

mutations tested so far inhibit protein secretion, [312] supporting a loss-of-function 

effect of mutations. The pR407C is the first mutation that does not prevent secretion of 

the mutant LGI1 protein (Fig. 6.10). 

The structural impact of this mutation has been evaluated on the three dimensional 

model and indicated that substitution of Arg 407 with a cysteine could have no effect on 

EPTP domain folding (Fig. 6.11). Because the correct protein folding which is probably 
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necessary for secretion is preserved, the mutant protein can be secreted. On the other 

hand, the Cys407 residue is exposed on the top surface of the EPTP domain and, under 

the strongly oxidative conditions present in the extracellular environment, likely forms 

abnormal disulfide bridges with other molecules, ultimately hampering interaction of 

Lgi1 with its partner protein(s). The lack of effect of this mutation on protein secretion 

has been hypothesized to account for the atypical clinical features observed in this 

family but further confirmation are required. 

 

 
 
Figure 0.10. Family pedigree and mutation.  
A. Pedigree of the family. Circles denote females; squares denote males; blackened symbols denote 
affected subjects. Individuals carrying one mutant and one normal allele are denoted by M/-, whereas 
those with no mutations by -/-. B. Original sequence tracings used to detect the disease allele (variant 
allele denoted by an arrow). C. Immunoblot analysis of transfected HEK293 cells. Cell lysates (L) and 
concentrated media (M) of HEK293 cells transfected with wild type or mutant [c.1219C>T (Arg407Cys) 
or c.329C>A (Ala110Asp)] LGI1 expression constructs containing a 3’ Flag peptide sequence, or with 
empty expression vector (vector), were analyzed by western blot using either an anti-Lgi1 or an anti-Flag 
antibody. W, molecular mass marker. 
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Figure 0.11. Three-dimensional model of the Lgi1 EPTP domain.  
Top (A) and lateral (B) view of beta-propeller domain of the Lgi1 protein. The beta-strands and loop 
carrying Arg407 are coloured in yellow and red respectively. The Arginine maps on the top surface of the 
beta-propeller. (C) Multiple sequence alignment of the LGI1 orthologous sequences. The organisms are 
indicated using the OMA nomenclature. Different classes of organisms are grouped together. (D) Top 
view of the electrostatic surface of the Lgi1 beta-propeller domain. Arg407 is in a local negatively 
charged region. 
 

Functional model 

Although a single transmembrane domain was initially predicted in its central part [347], 

the LGI1 protein does not contain any transmembrane domains and is presumably 

secreted into the synaptic space [313]. Fukata et al. [321] have recently proposed a 

model that assigns LGI1 a role of trans-synaptic adaptor connecting the post-synaptic 

ADAM22 and the pre-synaptic membrane receptor ADAM23. However, since binding 

of LGI1 with the ADAM proteins is mediated by the EPTP domain and this interaction 

likely occurs only through the conserved EPTP bottom surface [167] (and see above), it 

is unlikely that LGI1 is capable of interactions with two ADAM proteins 

simultaneously. Thus, rather than forming a stable link between two ADAM receptors 
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across the synaptic cleft, LGI1 may represent a dynamic link which transports a signal 

from the pre- to the post-synaptic membrane. In this scenario, binding of a partner 

protein with the LRR domain removes the EPTP domain from its stable interaction with 

one ADAM protein and allows the movement of LGI1 to the opposite side of the 

synapse (Fig. 6.12).  

However, it has also been suggested that LGI1 is secreted as an oligomer [318]. 

Therefore another possible scenario is that LGI1 could form a dimer, in which the LRR 

domains of two subunits interact by their concave surfaces connecting two ADAM 

proteins at opposite sides of the synapse (Fig. 6.12). This supports the experimental 

findings that demonstrated LGI1 connecting the pre- and postsynaptic machinery 

through ADAM22 and ADAM23 [321]. 

The hypothesis concerning LGI1 can also be reasonably extended to other LGI family 

members. As supported by our phylogenetic analysis and conserved surface residues, 

binding of ADAM family proteins by LGI is probably a conserved feature. The main 

difference between LGI1 and other family members appears to be the precise 

arrangement between the LRR and EPTP domains, as suggested by the presence of a 

unique insertion on the bottom surface of EPTP in the LGI1 sequences. The effect of 

this insertion may be a reduced binding affinity for the LRR domain and thus an 

increased propensity for interaction with other proteins and/or LGI homodimerization in 

LGI1. This adaptation could contribute  to explain the unique tissue distribution of 

LGI1 compared to other family members [332]. 
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Figure 0.12. Hypothetical structural assembly and interactions.  
A. LGI1 is represented as the association of LRR (green arc) and EPTP (violet trapezoid) domains. LGI1 
interactions with ADAM proteins likely occur on the top surface of the EPTP domain. B. The two 
hypothetical ways by which LGI1 could mediate the trans-synaptic interaction between presynaptic 
ADAM23 and postsynaptic ADAM22.  
 

6.5. Conclusions 
An important task of this study was to uncover the relationship between amino acid 

sequence, 3D structure and putative functions of the LGI1 protein. Evolutionary 

sequence analysis revealed the presence of peculiar sequence stretches for each LGI 

protein, e.g. LGI1 contains a unique insertion on the fourth blade facing the bottom 

surface of the propeller. Using a structure-based sequence profile we identified a pattern 

among the structural units and  obtained the models which validated several underlying 

assumptions, including the inward orientation of conserved non-polar residues and 

solvent exposure of N-glycosylated residues.  

The three-dimensional model of LGI1 domains showed how the N- and C-terminal 

regions are intimately related, revealing a possible mechanism by which LGI1 mediates 

the trans-synaptic interactions between ADAM proteins. The LGI1 protein contains two 

conserved binding sites at the concave face of the LRR domain and a circular region on 

the top surface of the propeller domain.  
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We also evaluated the effect of missense mutations found in ADTLE patients on LGI1 

protein and we are able to distinguish between structural and functional mutations, the 

former potentially causing protein unfolding, while the latter interfere with partner 

protein interactions. Previously published experiments demonstrated that all but one 

(p.R407C) tested mutants have a defect on secretion [7] (Striano et al., in press). Thus, 

we could hypothesize that the secretion-defective mutant proteins are either incorrectly 

folded or have altered electrostatic surfaces, which could affects LGI1 export. This 

explains why many LGI1 variants could not be secreted and opens a question about the 

mechanisms involved in the molecular pathogenesis of the disease. On the other hand, 

the p.R407C mutation is compatible with secretion, but rather may exert its pathogenic 

effect by disrupting interactions with ADAM proteins. Other functional mutations may 

have the same extracellular effect. 

Experimental knowledge suggests interactions between LGI1 and ADAM proteins to be 

mediated by the EPTP domain. We showed that these interactions likely occur through 

the EPTP top surface. Furthermore, based on the assumption that two protein families 

usually interact in a similar way, with the same binding site, we predict all four LGI 

family members to use this interface to interact with different ADAM proteins, albeit 

with different affinity, in a time and space dependent manner. Finally, we suggest two 

alternative molecular mechanisms by which LGI1 connects ADAM receptors across the 

synaptic cleft.  

 

6.6. Outlook 
Among mutations of the EPTP domain, four (p.T380A, p.V432E, p.S473L, p.R474Q) 

mapped on the top surface of the β-propeller, as seen for the p.R407C mutation. Only 

two of these are predicted to be stabilizing by at least one stability prediction method. 

However, I hypothesized that all of these could have structural effects similar to the 

p.R407C mutation. Interestingly, the in vitro studies of their impact on protein secretion 

carried out by our cooperation partner confirm that all these mutant proteins are secreted 

(unpublished data). Furthermore, all individuals carrying these secreted mutants 

presented a clinical phenotype overlapping with those carrying the p.R407C mutation, 
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characterized by temporal epilepsy with psychic symptoms. These observations expand 

the phenotype of LGI1-related epilepsy and suggest that LGI1 mutations should be also 

searched for in familial temporal epilepsies without auditory symptoms. In order to 

better understand the molecular mechanism underlying this pathological condition these 

mutants are being investigated for their ability to reach the cellular membrane and bind 

ADAM proteins at the extracellular site.  
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7. Dilated cardiomyopathy in patients 
with POMT1-related congenital and 
limb-girdle muscular dystrophy 

 
This chapter has been submitted for publication at the European Journal of Human 

Genetics and it is currently under review: Bello L., Melacini P., Pezzani R., D'Amico 

A., Piva L., Leonardi E., Soraru' G., Palmieri A., Smaniotto G., Gavassini B., Vianello 

A., Bertini E., Angelini C., Tosatto S., Torella A., Nigro V. Cardiomyopathy in patients 

with POMT1-related congenital and limb-girdle muscular dystrophy. European Journal 

of Human Genetics submitted. 

 

7.1. Summary 
Protein-O-mannosyl transferase 1 (POMT1) is a glycosyltransferase involved in α-

dystroglycan (α-DG) glycosylation.  Clinical phenotype in patients harbouring POMT1 

gene mutations ranges from congenital muscular dystrophy (CMD) with structural brain 

abnormalities, to limb girdle muscular dystrophy (LGMD) with microcephaly and 

mental retardation and to mild LGMD. 

We report three patients who harboured compound heterozygous POMT1 mutations and 

developed dilated cardiomyopathy. Two patients had an LGMD phenotype with a 

normal or close-to-normal cognitive profile, while one had CMD with mental 

retardation; all patients had normal brain MRI. 

Bioinformatics methods were used to study the potential effect of detected aminoacidic 

substitutions, 2 of which are caused by novel missense mutations. All of the detected 

mutations are predicted in silico to interfere with protein folding and/or catalytic 

function. 

These patients widen the clinical spectrum associated with POMT1 gene mutations, 

emphasizing the relevance of a careful follow-up of cardiac function in patients with α-

DG glycosylation defects, regardless of the severity of neuromuscular involvement.  
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7.2. Introduction 
POMT1 (protein-O-mannosyl-transferase 1), together with its homologue POMT2, is 

part of a heteromeric complex involved in the initiation of O-mannosyl glycan synthesis 

in the endoplasmic reticulum [348-349].  The complex catalyses the first step in the 

attachment of O-mannose-linked glycan moieties to α-dystroglycan (α-DG) [350]. α-

dystroglycan has a relevant, structural role in muscle fiber integrity, connecting the 

dystrophin-glycoprotein complex to the extracellular matrix [351].  Mutations in 

POMT1 result in a reduction of α-dystroglycan glycosylation in skeletal muscle of 

affected patients [352-354].  The clinical phenotype of POMT1 (Protein-O-mannosyl 

transferase 1) mutations ranges from severe Walker-Warburg Syndrome (WWS) 

[352](5), to milder forms of congenital muscular dystrophy (CMD) with microcephaly 

and mental retardation without eye abnormalities (CMD-MR) [353], and to limb-girdle 

muscular dystrophy with normal brain structure and different degrees of mental 

retardation (LGMD2K)[354-355].  

Five other genes involved in α-DG glycosylation are known. Mutations in these genes: 

protein O-mannosyl transferase 2 (POMT2), protein O-mannose β-1, 2-N-

acetylglucosaminyltransferase (POMGnT1), fukutin (FKTN), fukutin-related protein 

(FKRP), and like-glycosyltransferase (LARGE)  lead to heterogeneous phenotypes 

resulting from the combination of muscular dystrophy, brain and eye involvement 

[356].  Notably, cardiac involvement has so far been reported only in patients with 

FKRP [357-359] and FKTN [360] gene mutations. 

We report three patients from three unrelated families, with different neuromuscular 

phenotypes, who presented dilated cardiomyopathy in association with compound 

heterozygous POMT1 mutations. 

 

7.3. Materials and Methods 
Patients 

We screened muscle biopsies of 247 patients affected by LGMD, CMD, muscle 

weakness or CK elevation of unknown cause for α-DG glycosylation defect by 

immunohistochemistry. Dystrophin, α-sarcoglycan, calpain and dysferlin were normal 
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by immunohistochemistry and/or immunoblotting in patients’ biopsy. A mild to 

complete reduction of immunolabelling was found in 107 patients, who were 

subsequently screened for mutations in glycosyltransferase genes. POMT1 mutations 

were found in 9 patients, distributed by phenotype as follows: 3 LGMD, 4 CMD with 

mental retardation and normal brain MRI, 2 WWS (Table 7.1). All these patients 

routinely undergo a periodic screening for cardiological abnormalities by EKG end 

echocardiography; three patients showing signs of cardiomyopathy were selected for the 

present study. 

 
POMT1 mutations 

Patient Disease 
onset 

Current 
Age Phenotype Mentation/Brain 

MRI 

Cardio-
myopathy 

onset 
Nucleotide 

change Amino acid change

#1 Birth 14 CMD-MR MR/normal, 
microcephaly  14 yrs c.2005G>a 

c.1241+1G>A 
Ala699Thr 

p.His384_Thr414del 

#2 3 yrs 20 LGMD- 
MR Slight MR/, normal 12 yrs c.430A>G 

c.1241C>T 
Asn144Asp 
Thr414Met 

#3 33 yrs 34 LGMD- 
NOMR Normal/normal 34 yrs c.1864C>T 

? 
Arg622Stop 

? 

 
Table 7.1. Clinical and molecular features of patients.  
POMT1: protein-O-mannosyltransferase 1; LGMD-MR: limb-girdle muscular dystrophy with mental 
retardation; LGMD-NOMR: limb-girdle muscular dystrophy with no mental retardation; CMD-MR: 
congenital muscular dystrophy with mental retardation; MR: mental retardation; MRI: magnetic 
resonance imaging 
 
 

Patient # 1 is a 17-year-old boy described in a previous report [361]. Hypotonic at birth, 

the patient acquired stable head control at 8 months and the ability to sit unsupported at 

15 months, but never learned to walk. He had severe mental retardation and autistic 

features. A brain MRI carried out at 6 years of age was normal. On neurological 

examination, diffuse muscle wasting, muscle weakness, mild calf hypertrophy, severe 

scoliosis with rigid spine and microcephaly were present. Tendon reflexes were normal. 

Serum creatine kinase (CK) was 6000 U/L. A muscle biopsy, taken when the patient 

was 12 years old, revealed dystrophic features and reduced immunolabelling of α-DG 

and dystrophin. Dystrophin gene analysis did not identify any mutations and the 

observed slight decreased of dystrophin immunostaining was probably secondary to 

nonspecific proteolysis.  
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At the age of 16, the patient was admitted to the hospital for respiratory distress. 

Nocturnal non-invasive ventilation was begun and a gastrostomy was carried out 

because of  severe swallowing disturbances. An electrocardiogram (EKG) and an 

echocardiography carried out at that time were normal. One year later the patient 

developed acute respiratory distress, prompting a complete cardiac evaluation. An 

echocardiography showed a moderate left ventricular dysfunction (left ventricular end 

diastolic volume index [LVEDVi] 50 ml/m2: n.v. < 70ml/m2 ; left ventricular ejection 

fraction [LVEF] 40%: n.v. ≥ 50%) but a poor acoustic window due to scoliosis did not 

permit assessment of right ventricular (RV) function. Diuretic therapy was begun and 

cardiac ultrasound performed six months later demonstrated stable parameters (LVEDV 

index 56 ml/ m2, LVEF 44%).  

Patient #2 is a 20 year-old man who showed normal psychomotor development, who 

had come to medical attention at the age of 3 because of the occasional finding of 

elevated CK levels (<10,000 U/L). At the age of 5 years a muscle biopsy showed mild 

myopathic alterations and perimysial fibrosis. Immunohistochemical analysis of 

dystrophin, α-, β-, and γ-sarcoglycan and β-dystroglycan was normal. Dystrophin gene 

analysis did not identify any mutations. At the age of 12 years the patient, until then 

asymptomatic, underwent a routine echocardiography which documented a diffuse left 

ventricular (LV) wall hypokinesia with normal LVEDVi (69 ml/m2) and LVEF (50%). 

He presented at the age of 17 years with shortness of breath, cough, easy fatigability and 

abdominal pain. An electrocardiogram (ECG) showed LV hypertrophy (voltage criteria 

Sokolow-Lyon index = 38mm, n.v. ≤ 35mm) and an echocardiography showed a 

moderate LV dilation (LVEDVi 81 ml/m2) with oderate-severe systolic dysfunction 

(LVEF 36%) as well as moderate RV dilation (RVEDVi 88 ml/m2, n.v. ≤ 60 ml/m2). 

The patient responded to β-blockers and angiotensin receptor 1 blocker (sartanics) 

therapy. A cardiac echo carried out when the patient was 20 years of age showed a 

LVEDVi of 92 ml/m2 with an EF of 47% and mild hypokinesia of LV walls. The RV 

was moderately dilated (RVEDi 98 ml/m2) and kinesis was normal (RVEF 70%). 

Conventional spirometry showed mild obstruction and a normal forced vital capacity 

(FVC). 

Currently, the patient has no difficult rising from the floor or climbing stairs. A 

neurological examination showed calf and thigh hypertrophy, relative wasting of the 
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scapulohumeral girdle, and a mild symmetrical weakness of proximal muscles. A brain 

MRI was normal, but neuropsychological evaluation showed executive dysfunctions 

(categorization ability, set-shifting, and planning) and significant visuo-spatial learning 

impairment. The patient’s IQ was in the normal range (82). 

Patient # 3 is a 34 year-old man who was well until the age of 33 years, when he began 

to complain muscle weakness in the lower limbs and myalgias in the shoulder girdle. 

Serum CK was 981 U/L and a muscle biopsy was consistent with a severe myopathy 

with type I fiber predominance (90%) and central nuclei and cores in the majority of 

fibers. A neurological examination revealed calf hypertrophy and moderate weakness of 

bilateral triceps brachii. He had no difficulty rising from the floor, walking long 

distances or climbing stairs. 

A diagnosis of an initial biventricular dilatation was made when the patient was 34 old 

on the basis of a cardiac echo which showed a LVEDVi of 78 ml/m2, and a LVEF of 

67%; the RV was moderately dilated , the ejection fraction was normal (RVEDi 74 

ml/m2, RVEF 59%) as were the kinesis indexes. A conventional spirometry was 

normal.  

  

α-dystroglycan glycosylation and laminin α2 studies 

α-dystroglycan glycosylation was studied on 8 μm thick cryosections of frozen muscle 

tissue, using an antibody directed against an O-glycosylated epitope of α-dystroglycan 

(IIH-6; Upstate Biotechnology, Lake Placid, NY); laminin α2 was studied using an 

antibody directed against the carboxyl-terminus of the protein (mAb 1922, 80 kDa, 

Chemicon, Temecula, CA) (1:1,000). 

 

Gene mutation studies 

DNA was extracted from peripheral blood. The complete coding regions, including 

intron/exon boundaries of FKRP, POMT1, POMT2, POMGnT1, FKTN, and LARGE 

were screened for mutations either by PCR/SSCP (Single Stranded Conformation 

Polymorphism)/sequencing or direct sequencing (primers available upon request). 

Restriction fragment length polymorphism analysis was used to confirm gene variants, 

to verify segregation in the family and to assess frequency on 110 control 

chromosomes. 
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Bioinformatics 

An integrative bioinformatics approach was used with the aim of elucidating the 

sequence-structure-function relationship of POMT1. The human POMT1 sequence was 

downloaded from UniProt [173] with accession number Q9Y6A1. PSI-BLAST [37] was 

used with standard parameters for a single iteration on the UniProt sequence database to 

search for homologous sequences. InterPro [362] and ELM [52] were used to search for 

known domains and interacting motifs respectively. The secondary structure was 

analyzed with the consensus method [99], while disordered regions were searched with 

SPRITZ [111] and transmembrane helices predicted with TOPCONS [69]. The structure 

of the MIR domains (found in Mannosyltransferases, Inositol triphosphate receptors and 

Ryanodin receptors) was modeled with HOMER (URL: 

http://protein.bio.unipd.it/homer/) from the template structure with PDB code 1T9F 

previously identified with PSI-BLAST, with loops positioned using a fast divide and 

conquer approach [88] and the final model being evaluated with FRST [89]. The 

structure was visualized using PyMol (DeLano Scientific, 

URL:http://www.pymol.org/). The I-Mutant [190], Mupro [187] and SNPs3D [183] 

servers were used to estimate effects of the mutations in terms of protein stability. Other 

two predictor, SNAP [276] and PhD-SNP [181], were used to classify variants as 

disease-related or as neutral polymorphisms. 

 

7.4. Results 
α-dystroglycan glycosylation and laminin α2 studies 

Immunofluorescence analysis of muscle biopsies revealed severe reduction of α-DG 

glycosylation in patient #1 and 2, and a moderate reduction in patient #3 with respect to 

control (Fig. 7.1). Few α-dystroglycan negative fibers were observed in patients’ #1 and 

#3. Laminin α2 expression was slightly reduced in the patient muscle biopsies 

compared to control. 
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Figure 7.1. Reduced α-dystroglycan glycosylation in POMT1 mutated patients.  
α-dystroglycan immunostaining using an antibody directed against a glycosylated epitope shows a normal 
labeling at the periphery of each fiber in the control’s muscle, in comparison with patient #1 and #3 where 
the majority of myofibers show a faint immunoreaction and variability of the intensity of the labeling. 
Laminin α2 immunostaining using an antibody directed against the 80 kDa carboxyl-terminus shows a 
subtle reduction of the labeling in the patients. 
 

Gene mutation studies 

Patient #1 was compound heterozygous for two POMT1 mutations: a missense 

mutation, c.2005G>A, p.Ala669Thr and a donor splice site mutation in intron 12, 

POMT1 c.1241+1G>A [361]. cDNA analysis showed that the c.1241+1G>A14 results 

in the in-frame skipping of exon 12 (p.His384_Thr414del) (data not shown). Two novel 

POMT1 missense mutations were identified in patient #2: c.430A>G, p.Asn144Asp and 

c.1241C>T, p.Thr414Met.  

Patient #3 was found to be heterozygous for the nonsense mutation c.1864C>T, 

predicting a premature stop codon (p.Arg622X). In addition, sequencing of patient’s 

cDNA identified a splice defect that incorporates 5 bases at the junction exon10-exon 

11 r.1052_1053insGTAAG. Full sequencing of genomic DNA identified a number of 

variations in intron 10-exon 11 c.1052+49 g>a (Hom), c.1052+184 g>a (Hom), 

c.1052+246 g>a (Hom), c.1052+276 t>c (Hom), c.1053-172 c>t (Hom), c.1053-113 c>g 

(Hom), c.1053-102 g>a (Het), and c.1113 T>C D371D (Hom). All these have unknown 

significance and none predicted a cryptic splice site compatible with the aberrant 



7. POMT1 mutations in muscular dystrophy 

132 

transcript observed. The likely scenario is a leaking splicing defect leading to two 

different transcripts: one alternative transcript resulting in an out-of-frame insertion of 5 

base pairs and a normally spliced transcript consistent with the production of a normal, 

but reduced protein product, and thereby consistent with partial α-dystroglycan 

glycosylation defect.  

No FKRP, POMT2, POMGnT1, FKTN, and LARGE mutations were detected in any of 

the patients. Identified mutations were not detected in 110 control chromosomes. 

 

In silico prediction of mutation effects 

The sequence of human POMT1 (NG_008896) was analyzed with a number of 

bioinformatics methods in order to characterize the mutation sites. As expected, several 

transmembrane helices were predicted and the known MIR domains detected. A 

consensus approach was used to delimit the single transmembrane helices, as different 

methods provided slightly different predictions, especially for the second and last 

helices. The structure of the MIR domain was predicted by homology modeling from a 

template structure with 31.4% sequence identity. Secondary structure and disorder 

predictions were used in combination with ELM to identify locations of possible 

functional motifs. Figure 7.2 summarizes the analysis of the POMT1 sequence and the 

positions of disease-associated mutations.  

The mutations were analyzed with several prediction methods to determine possible 

pathogenicity and compared to known mutations with experimentally measured enzyme 

activity [349, 363-364]. All substitutions occur at conserved positions (ConSeq score of 

7-9), except for G76R which presents a medium score of 5. However, at this position 

charged residues like Arginine are never present in homologous sequences. 

Furthermore, all amino acid substitutions are predicted to be destabilizing or pathogenic 

by most of the used prediction methods (Table 7.2). Two of the identified missense 

mutations (N144D and A669T) are located in transmembrane helices and have similar 

predicted effects as previously identified mutations. The two substitutions introduce 

respectively a negative charged and a polar residue that seem to have a destabilizing 

effect on protein folding (Table 7.2). The T414M mutation is part of the modeled MIR 

domain (Fig. 7.2). As can be seen, it is in close proximity to the V428D mutation 

causing WWS [351], and is likely to destabilize the protein with a similar mechanism.  
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Figure 7.2. Schematic overview of POMT1.  
The sequence of human POMT1 is shown as a horizontal line, with transmembrane helices (green), 
disordered regions (yellow) and MIR domains (red) shown as boxes. The modeled structure of the three 
MIR domains is shown above the sequence, coloured from N- to C-terminus in blue to red. C-
Mannosylation and Glycosaminoglycan attachment sites predicted by ELM are shown as purple and blue 
bars respectively. Disease-associated mutations are shown with arrows pointing to the relevant position in 
the sequence together with the local sequence context from a multiple sequence alignment. Previously 
known mutations are shown with dotted lines. Both mutations falling into the MIR domain are shown 
with their residues as spheres in the structure.  
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Mutation Phenotype Enzymatic 
activity 

I-
Mutant 
(ΔΔG)

SNPs3D 
(SVM 
score) 

MUpro 
(C 

score) 

SNAP 
(RI, EA)

PhD-
SNP
(RI) 

ConSeq 
(Conservation 

level) 
AAs 

N144D* LGMD-MR ? D 
(-0.41) 

D 
(-1.73) 

N 
(0.3) 

D 
(3, 78%)

D 
(5) 9 N 

T414M* LGMD-MR ? D 
(-0.33) 

D 
(-2.17) 

D 
(-0.66) 

D 
(4, 82%)

N 
(1) 8 A, S, T

A669T CMD-MR 
0.004 

pmol/h/mg 
proteins 28 

D 
(-1.37) 

D 
(-2.39) 

D 
(-0.92) 

D 
(1, 63%)

D 
(5) 9 A, S 

G65R LGMD-MR 
0.002 

pmol/h/mg 
protein28 # 

D 
(-1.31) 

D 
(-2.66) 

D 
(-0.69) 

D 
(1, 63%)

D 
(7) 9 H, G 

G76R WWS None2 
10%29 

D 
(-0.57) 

D 
(-0.90) 

N 
(+0.69) 

D 
(1, 63%)

D 
(5) 5 

A, T, 
M, I, 
G, V 

L171A LGMD-MR 40%29 D 
(-2.22) 

N 
(+0.51) 

D 
(-1) 

N 
(0, 53%)

D 
(8) 8 I,L,V 

A200P LGMD-MR None28 D 
(-1.05) 

D 
(-0.89) 

D 
(-0.1) 

D 
(3, 78%)

D 
(7) 7 

A, T, 
D, G, 

V 

V428D WWS None 2 D 
(-1.11) 

D 
(-3.26) 

D 
(-0.87) 

D 
(6, 93%)

D 
(9) 8 F, I, V

W582C LGMD-MR 
0.002 

pmol/h/mg 
protein28 # 

D 
(-1.53) 

N 
(+0.94) 

D 
(-1) 

D 
(3, 78%)

D 
(6) 7 F, W 

 
Table 7.2. Summary of missense POMT1 mutation effects. 
The mutations are listed with their associated phenotype, enzymatic activity and several in silico 
predictions. I-Mutant, MUpro, and SNPs3D predict changes in protein stability in terms of ΔΔG, whereas 
SNAP and PhD-SNP predict a variant as disease-related or as neutral polymorphism. In the table we 
report reliability parameters for each prediction in parentheses. I-Mutant calculates the free energy 
change value (ΔΔG), where a ΔΔG < 0 indicates decrease of stability. SNPs3D uses a support vector 
machine (SVM) to find the separation pattern between a set of disease and non-deleterious SNPs. A 
positive score indicates variants classified as non-deleterious. MUpro predictions were reported with the 
confidence score (C score). A negative score indicates the mutation decreases protein stability, where 
lower scores imply higher confidence. In SNAP, variations are listed as “neutral” or “non-neutral” with 
reliability indices (RI; range 0–9) and Expected Accuracy (EA; range 1-100%) indicative of confidence in 
prediction. Higher RI correlates strongly with higher prediction accuracy. Expected accuracy is a number 
of correctly predicted neutral or non-neutral samples (at a given reliability index) in the SNAP testing set. 
SNAP only reports predictions that are made with at least 50% accuracy. PhD-SNP classifies a mutation 
as disease-related or as neutral polymorphism. As with SNAP, the reliability index (RI) indicates the 
confidence of predictions. ConSeq scores the sequence conservation from 0 to 9, with 9 being highly 
conserved and 0 being highly unconserved (i.e. variable). The last column shows the residue types present 
in that position of the multiple sequence alignment. Abbreviations: C score : Confidence score; RI : 
reliability Index; EA : Expected Accuracy; AAs : amino acids; LGMD-MR : limb-girdle muscular 
dystrophy with mental retardation; CMD-MR : congenital muscular dystrophy with mental retardation; 
WWS : Walker-Warburg Syndrome. “*” : novel mutation; “#” : measured in lymphoblasts from a 
compound heterozygous carrier of p.G65R and p.W582C. 
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7.5. Discussion 
While the clinical spectrum of dystroglycanopathies is broad, cardiac involvement has 

been reported only in patients with FKRP [357-360] and FKTN [365] mutations. 

Similar to other known glycosyltransferases, POMT1 is expressed ubiquitously in all 

human tissues. Skeletal and cardiac muscles, in particular, show above-average levels of 

expression3. It is thus quite surprising that no signs of cardiomyopathy have been 

described in the approximately 40 previously reported patients carrying POMT1 

mutations (Leiden muscular dystrophies pages at http://www.dmd.nl/). 

The patients in our series all presented with dilation and/or decreased left ventricular 

contractility, variable right ventricle involvement, and all had a good response to 

pharmacological therapy. 

Muscle and CNS involvement in the patients was variable ranging from the mild to the 

severe ends of the POMT1 clinical spectrum. Patient #1, whose clinical 

immunohistochemical and genetic features were documented prior to the development 

of cardiomyopathy [361], had CMD with severe mental retardation and a normal brain 

MRI, a phenotype known to be associated with POMT1 mutations [363]. Patients #2 

and 3, conversely, differ from the classical LGMD2K, which usually includes overt 

mental retardation [354-355].  

It has been hypothesized that mutations which completely disrupt mannosyltransferase 

activity are associated with more severe phenotypes (WWS), while those allowing 

residual enzyme activity are linked to milder ones (CMD-MR/LGMD2K)[351, 354]. 

Recent findings suggest that this correlation is weaker with regards to putative 

glycosyltransferase genes, such as FKTN or FKRP, but stronger for genes with a known 

enzyme product, such as POMT1 [366]. In fact, studies that measure POMT1 activity in 

Sf9 cell lines co-expressing mutated POMT1 with wild type POMT22 or in 

immortalized lymphoblasts from patients carrying POMT1 mutations [364] has 

demonstrated a marked reduction in POMT activity in the mutations/patients studied, 

but were unable to precisely predict phenotype severity. On the other hand, 

measurement of POMT activity using dermal fibroblasts from POMT1 mutated patients 

showed that clinical phenotype severity is inversely correlated with POMT1 activity 

[367]. 



7. POMT1 mutations in muscular dystrophy 

136 

A direct correlation between mannosyltransferase activity and clinical severity, 

however, does not seem to apply to heart involvement which in our patients appears 

possible with very different degrees of neuromuscular severity, and with both complete 

and partial glycosylation defects (detected in the skeletal muscle). It remains to be 

established if the development of cardiomyopathy in our patients can be mutation-

dependent and if specific POMT1 mutations can predispose to cardiac deterioration. 

Indeed, all the identified mutations in our patients seem to indicate some degree of 

functional relevance. Some of the identified mutations, such as stop-codon mutations or 

the in-frame skipping of exon 12, which codes for a portion of the catalytic MIR 

domain, have an easily predictable deleterious effect on enzyme activity. Novel 

missense mutations, on the other hand, need further studies in order to better assess 

pathogenicity. In silico predictions of protein structure, summarized in Table 7.2, have 

localized these mutations into transmembrane helices, probably interfering with protein 

folding and stability, or into the MIR domain, in close proximity with previously 

described WWS-associated mutations which completely impair catalytic function, and 

thus probably alter the protein by means of similar mechanisms. We did not however 

expect our patients to have a complete defect of POMT1 enzymatic function, especially 

in those cases in which the phenotype was relatively mild and/or there was residual α-

DG immunolabeling with antibodies against glycosylated epitopes. This may explain 

why some identified mutations have a predicted benign or slightly damaging effect on 

enzyme structure with some of the bioinformatic models that have been employed, 

suggesting that they allow for the expression of a partially viable and functioning 

enzyme.  

The mechanism of both cardiomyocyte and muscle fiber damage in 

dystroglycanopathies is probably loss of dystroglycan function due to insufficient 

glycosylation and subsequent accumulation of membrane damage in response to 

exercise-induced stress, as suggested by animal models [368]. In our patients, the 

myocardium may have been particularly stressed by specific conditions, such as 

respiratory failure (patient #1) or several years of relatively strenuous exercise in adults 

with a globally preserved motor function (patients #2 and 3). 

We speculate that all or most of patients with severe WWS phenotypes would probably 

develop cardiomyopathy if their lifespan were longer, while in patients with more 
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residual enzymatic activity and milder phenotypes, different mutations may determine a 

different pattern and timing of multisystemic involvement, explaining the absence of 

cardiomyopathy in most CMD and LGMD patients. 

Bioinformatic prediction of the effect of missense mutations upon protein folding and 

function appears to yield results which are consistent with in vitro enzymatic assay 

findings, and may prove useful especially in those laboratories in which these assays are 

unavailable. Further studies on α-DG glycosylation in myocardial tissue will help in 

clarifying genotype-phenotype correlations and the mechanisms by which POMT1 

mutations and dystroglycanopathies in general selectively involve the myocardium.  

Our report expands the phenotypical spectrum of POMT1 mutations, adding 

cardiomyopathy to LGMD forms with slight cognitive impairment and to CMD-MR. In 

the light of these findings, we would recommend that clinicians monitor patients with 

POMT1mutations closely, regardless of their neuromuscular phenotype, to detect 

precocious signs of cardiac dysfunction. Gadolinium-enhanced cardiac MRI studies in 

these patients may help to detect subclinical heart involvement, making timely 

therapeutic interventions possible.  
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8. Deletions and Mutations in the Acidic 
Lipid-binding Region of the Plasma 
Membrane Ca2+ Pump 

 
This chapter has been published in Brini M, Di Leva F, Ortega CK, Domi T, Ottolini D, 

Leonardi E, Tosatto SCE, Carafoli E. Deletions and mutations in the acidic lipid-

binding region of the plasma membrane Ca2+ pump: a study on different splicing 

variants of isoform 2. J Biol Chem. 2010 Oct 1;285(40):30779-91. 

 

8.1. Summary 
Mutations of PMCA2 have been causally linked to human deafness and ataxia. The 

plasma membrane calcium ATPase (PMCA) uses energy to pump calcium (Ca2+) ions 

out of the cytosol into the extracellular milieu, to maintain a relatively low intracellular 

net Ca2+ load. The transcript of this gene is alternatively spliced at sites A and C to 

generate several variant proteins. The physiological meaning of the existence of so 

many isoforms is not clear, but evidently it must be related to the cell-specific demands 

of Ca(2+) homoeostasis. Tissue-restricted isoforms are indeed more active in exporting 

Ca2+ than the ubiquitous isoforms, probably due to their higher affinity for the activator 

calmodulin. The affinity of PMCA2 for Ca2+ is also modulated by the interaction of 

acidic phospholipids (PL) with two phospholipid-binding sites: the C-terminal PL 

binding domain and the AL region next to site A of alternative splicing. The calmodulin 

regulation of the pump has been extensively investigated and is now well understood 

but that mediated by PL is still unclear. 

I built the homology-derived three-dimensional (3D) model of PMCA2 based on the 

PDB structure of the sarco/endoplasmic Ca2+ - ATPase (SERCA1a). To improve the 

correctness of target-template alignment, I considered also the results derived from 

several transmembrane region prediction methods. The electrostatic surface analysis of 
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the PMCA2 model indicated that the four conserved lysines in the AL PL-binding 

region, and stretching toward insertion sites A, form a positive charged bend that could 

easily accommodate a negative charged PL head of the membrane. The activity and the 

PL sensitivity of different PMCA2 splicing variants have been experimentally 

investigated by the group of E. Carafoli (Department of Biological Chemistry, Padua). 

They tested PMCa2 mutants confirming the importance of these lysines. 

In order to explain the different sensitivity to CaM of the two variants differing in the 

insertion site C, I built a model of the PMCA2 CaM-binding region in complex with 

CaM protein. In the CaM sensitive isoform, this region forms a distinctive pattern of 

charged and hydrophobic residues crucial for CaM-PMCA2 interaction. This pattern is 

partially altered in the truncated isoform w/a which share a poor sensitivity to CaM. 

On the basis of modelling studies, I proposed a structural interpretation of the interplay 

of the pump with PL, and the mechanism of their activation.  

 

8.2. Abstract 
Acidic phospholipids increase the affinity of the plasma membrane Ca2+-ATPase pump 

for Ca2+. They interact with the C-terminal region of the pump and with a domain in the 

loop connecting transmembrane domains 2 and 3 (AL region) next to site A of 

alternative splicing. The contribution of the two phospholipid-binding sites and the 

possible interference of splicing inserts at site A with the regulation of the ATPase 

activity of isoform 2 of the pump by phospholipids have been analyzed. The activity of 

the full-length z/b variant (no insert at site A), the w/b (with insert at site A), and the w/a 

variant, containing both the 45-amino acid A-site insert and a C-site insert that truncates 

the pump in the calmodulin binding domain, has been analyzed in microsomal 

membranes of overexpressing CHO cells. The A-site insertion did not modify the 

phospholipid sensitivity of the pump, but the doubly inserted w/a variant became 

insensitive to acidic phospholipids, even if containing the intact AL phospholipid 

binding domain. Pump mutants in which 12 amino acids had been deleted, or single 

lysine mutations introduced, in the AL region were studied by monitoring agonist-

induced Ca2+ transients in overexpressing CHO cells. The 12-residue deletion 
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completely abolished the ATPase activity of the w/a variant but only reduced that of the 

z/b variant, which was also affected by the single lysine substitutions in the same 

domain. A structural interpretation of the interplay of the pump with phospholipids, and 

of the mechanism of their activation, is proposed on the basis of molecular modeling 

studies. 

 

8.3. Introduction 
 

The plasma membrane Ca2+-ATPases (PMCAs) extrude Ca2+ from cells, maintaining 

the resting level of intracellular Ca2+ and controlling the Ca2+ transients induced by 

agonists. Four basic PMCA isoforms are encoded by four independent genes. PMCA1 

and -4 are ubiquitously expressed, whereas PMCA2 and -3 are restricted to brain, 

muscles, and few other tissues; the tissue-restricted isoforms are more active in 

exporting Ca2+ than the ubiquitous isoforms [369], probably due to their higher affinity 

for the activator calmodulin. The transcript of each gene is subjected to alternative 

splicing at sites A and C. About 30 splice variants have so far been detected at the RNA 

or protein levels [370]. 

The architecture of the PMCAs predicts 10 transmembrane domains, two large 

intracellular loops, and N- and C-terminal cytoplasmic tails. The 90-residue N-terminal 

portion appears not to have specific functions even if it contains a consensus binding 

site for the 14-3-3 protein, which inhibits three of the four pump isoforms [371-372]. 

The cytosolic loop between transmembrane domains 2 and 3 contains a site that binds 

activatory acidic phospholipids and site A of alternative splicing upstream of it. Pump 

variants containing the A-splice site insert are targeted to the apical plasma membrane 

[373], and the insert has recently been suggested to have a role in the interactions of the 

pump with lipids in the plasma membrane [374]. The C-terminal tail contains other 

regulatory sites of the pump, among them the positively charged calmodulin binding 

domain, which also binds acidic phospholipids [375], the consensus sites for protein 

kinases A (PKA, isoform-specific) and C (PKC), and high affinity allosteric Ca2+-

binding sites. 
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Under nonactivated conditions, the C-terminal tail of the pump is proposed to fold over 

to interact with two sites in the first and second cytosolic loops of the enzyme, 

compromising the access to the active center. Calmodulin then interacts with its binding 

domain, removing it from its docking sites next to the active center and freeing the 

pump from autoinhibition. 

The calmodulin regulation of the pump has been extensively investigated and is now 

well understood but that mediated by acidic phospholipids is still unclear. Acidic 

phospholipids enhance the Ca2+ sensitivity of the PMCA to a greater extent than 

calmodulin [376-379]. The order of stimulatory potency (phosphatidylinositol 4,5-

biphosphate > phosphatidylinositol 4-phosphate > phosphatidylinositol ~ 

phosphatidylserine (PS) ~ phosphatidic acid) is proportional to the number of negative 

charges on the lipids [380]. The stimulation is appreciably reduced by complexing the 

negative charges with polyamines or neomycin [381]. Recently, diacylglycerol has also 

been shown to be a stimulator of the PMCA. Interestingly, the activation induced by 

diacylglycerol is additional to that produced by calmodulin and PKC, suggesting that 

diacylglycerol interacts with the PMCA through a specific mechanism [382]. 

The acidic phospholipid-binding region next to splice A was recently deleted in a 

variant of PMCA4 containing an inserted exon at splicing site A (variant xb) [383-384]. 

Partial deletions did not alter Ca2+ transport activity but made the pump insensitive to 

acidic phospholipids. However, complete removal of the domain made the pump 

inactive [383]. 

The contributions of the two phospholipid-binding sites, and of the alternative splicing 

at site A next to one of them, to the regulation of the pump have not been analyzed. It 

was interesting to study these aspects on isoform 2 of the pump, as this isoform has very 

high activity even in the absence of calmodulin [385-386], but it responds to acidic 

phospholipids in the same way as PMCA4 [385]. In addition, the splicing mechanisms 

of PMCA2 generate a larger number of variants than in other isoforms; up to three 

exons are inserted at site A, generating variant z (no exons included), variant y (two 

exons included), variant x (one exon included), and variant w (all three exons included). 

Splicing at site C excludes two novel exons (variant b, full length) or includes them 

(variant a). The a insertion leads to a truncated version of the pump that only contains 

about half of the original calmodulin binding domain [385-386]. 
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Figure 0.1. Alternative splicing of the PMCA2 transcripts. 
A. linear representation of the alternative splicing options at site A and site C of the PMCA2 transcript.  
Exons are indicated by shadow boxes and introns by the black line. The numbers in the boxes represent 
the nucleotide number of each exon. B. topography model of the plasma membrane Ca2+-ATPase and 
sequences of alternative splicing products of isoform 2. The 10 putative transmembrane domains are 
numbered and indicated by shadow boxes. PL indicates the phospholipid binding domain downstream of 
site A of alternative splicing; D indicates the catalytic aspartate; ATP and CaMBD indicate the ATP-
binding site and the calmodulin binding domain, which contains site C of alternative splicing. C. 
sequences of the PMCA2 region that have been mutated or deleted in the constructs used in this study. 
The alanine that replaces the mutated residue in the different constructs is indicated in bold. The dashed 
line represents the 12 amino acids deletion.  
 
We had previously reported that the z/a and w/b PMCA2 variants behaved essentially as 

the full-length, noninserted, (z/b) pump (perhaps, they were slightly less efficient) [369, 
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387-388]. The doubly inserted w/a PMCA2 variant had only limited ability to rapidly 

increase activity when challenged with a Ca2+ pulse but had about the same highly 

nonstimulated (basal) activity of the full-length z/b variant [387]. 

This contribution explores the activation of splicing variants of isoform 2 of the PMCA 

pump by acidic phospholipids. Because the negative charges on the lipids are likely to 

be important in the stimulatory effect, the study was performed using a pump variant in 

which a 12-residue stretch in the AL acidic phospholipid binding domain, which 

contains four positively charged residues, was removed. Point mutations that selectively 

substituted positive residues (Lys), or two other conserved polar residues (Ser and Glu), 

were also introduced in the stretch. The scheme of Figure 8.1 summarizes graphically 

the details of the PMCA2 variants and mutants used in this study. 

 

8.4. Experimental Procedures 
 
Cell Cultures and Transfection  

CHO cells were cultured in Ham's F-12 nutrient mixture (Invitrogen), supplemented 

with 10% fetal bovine serum (FBS), 2 mM glutamine, penicillin (60 μg/μl), and 

streptomycin (120 μg/μl) in 75-cm2 Falcon flasks at 37 °C. For the microsomes 

preparation, CHO cells were plated on 150 × 25-mm Petri dishes, allowed to grow to 

50% confluence, and transfected according to a calcium-phosphate procedure with 30 

μg of total plasmid DNA. For the aequorin and immunocytochemistry experiments, 

CHO cells were plated onto 13-mm glass coverslips, allowed to grow to 50% 

confluence, and transfected according to a calcium-phosphate procedure with 3 μg of 

total plasmid DNA or with 1.5 μg of each plasmid DNA in the case of co-transfection. 

GFP-tagged PMCA2 z/b and w/b are of human origin, and GFP-tagged PMCA2 w/a 

variants (WT and del12 mutant) are from rat. Untagged PMCA2 pump variants (w/a 

and z/b) of human origin were also used in the Ca2+ measurements of experiments in 

living cells. No differences were observed between the GFP-tagged and -untagged 

PMCA2 activity. 

The average transfection efficiency approached 25%, and the increase of PMCA protein 

in overexpressing cells, calculated by densitometric analysis of Western blotting 



8. Deletions and Mutations in the Plasma Membrane Ca2+ Pump 

145 

showing the endogenous PMCA (i.e. blots developed with the monoclonal antibody 

5F10 that recognized all PMCA isoforms) and corrected for the whole cell population, 

would correspond to about 3-fold the endogenous level (data not shown). 

 

Microsomal Membrane Preparations from CHO Cells  

Cells from five 150 × 25-mm dishes were washed once with phosphate buffered saline 

(PBS) containing 1 mM EDTA and harvested in 10 ml of PBS containing 0.1 mM 

phenylmethylsulfonyl fluoride (PMSF) and a mixture of EDTA-free protease inhibitors 

(Roche Applied Science). Cells were collected by centrifugation (2000 × g, 10 min) at 

4 °C and resuspended in 6 ml of a hypotonic solution of 10 mM Tris-HCl, pH 7.5, 1 mM 

MgCl2, 0.1 mM PMSF, a mixture of EDTA-free protease inhibitors, and 2 mM 

dithiothreitol (DTT). The cells were swollen for 15 min on ice and then subjected to 

three cycles of freeze and thaw. The homogenate was diluted with an equal volume of 

0.5 M sucrose, 0.3 M KCl, 2 mM dithiothreitol, 10 mM Tris-HCl, pH 7.5, homogenized 

again with three cycles of freeze and thaw, and centrifuged at 5000 × g for 15 min. KCl 

was added up to 0.6 M in the supernatant, and to remove calmodulin, an excess of EDTA 

(1.5 mM) was also added. The suspension was centrifuged at 100,000 × g for 40 min to 

pellet the microsomal fraction. The final pellet was resuspended in a solution containing 

0.25 M sucrose, 0.15 M KCl, 10 mM Tris-HCl, pH 7.5, 2 mM DTT, and 20 μM CaCl2, at a 

protein concentration of 1–3 mg/ml, and stored in liquid N2. 

 

ATPase Activity Assay  

The ATPase activity was measured by the coupled enzyme assay  (modified from Ref. 

[387]) monitoring the absorbance of NADH at 340 nm. The decrease in A340 can be 

converted into ATPase activity where one molecule of NADH oxidized to NAD+ 

corresponds to the production of one molecule of ADP by the ATPase. The assay was 

carried out at 37 °C in a final volume of 1 ml of a mixture containing 20 mM Tris-HCl, 

pH 7.2, 5 mM MgCl2, 0.5 mM EGTA, 0.1 M KCl, 0.5 mM phosphoenolpyruvate, 0.15 mM 

NADH, 1.4 units of pyruvate kinase/lactic dehydrogenase (Roche Applied Science), 4 

mM ATP, 25 μg of PMCA membranes, and 50 μM CaCl2. The ATPase activity, detected 

at 340 nm (DU640 Spectrophotometer, Beckman Coulter), was expressed in 

micromoles of Pi/min/mg of protein (moles of phosphate originated from the ATP 
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hydrolysis); the maximal activity and the basal activity were calculated by 

multiplication of the activity curve slope value by a factor considering the NADH molar 

extinction coefficient (ϵNADH) and the amount of protein (in micrograms). The real 

activity was obtained subtracting the basal activity from the maximal activity. The assay 

was performed in the presence of 5 μg/ml oligomycin and 0.1 μM thapsigargin. To test 

calmodulin (CaM) or phosphatidylserine (PS) activation of the pump, 200 nM CaM or 

25 μM PS was preincubated with the membranes for 5 min at 37 °C before starting the 

assay. 

 

Generation of PMCA2z/b_del12 and PMCA2z/b Mutant Expression Plasmids  

To generate PMCA2z/b with the deletion of 12 amino acids in the domain that binds 

acidic phospholipids, two PCR amplification products that did not contain the portion of 

12 amino acids were generated using four different primers bearing restriction sites for 

EcoRI/HindIII and HindIII/BamHI as follows: 5′-cggGAATTCatgggtgacatgaccaac-3′; 

5′-cggTTCGAAgtgcatgctggccttcct-3′; 5′-cggTTCGAAgctgtgcagatcgggaag-3′; 

cggGGATCCctaaagcgacgtctccag. The PCR products were digested with the respective 

restriction enzymes and were inserted in a three-part ligation reaction in pcDNA3 vector 

(Invitrogen) digested with EcoRI and BamHI. The construct was controlled by 

sequencing. 

In vitro site mutagenesis in the PMCA2z/b was carried out with QuikChange II site-

directed mutagenesis kit (Stratagene) according to the manufacturer's instructions using 

the following primers:  

Lys-336 sense 5′-ccagcatgcacaagGCggagaagtccgtgc-3′ and antisense 5′-

gcacggacttctccGCcttgtgcatgctgg-3′;  

Lys-338 sense 5′-tgcacaagaaggagGCgtccgtgctgcagg-3′ and antisense 5′-

cctgcagcacggacGCctccttcttgtgca-3′;  

Lys-344 sense 5′-cgtgctgcagggcGCgctcaccaagctg-3′ and antisense 5′- 

cagcttggtgagcGCgccctgcagcacg-3′;  

Lys-347 sense 5′-gggcaagctcaccGCgctggctgtgcagat-3′ and antisense 5′-

atctgcacagccagcGCggtgagcttgccc-3′;  

Glu-337 sense 5′-gcatgcacaagaaggCgaagtccgtgctgcagggc-3′ and antisense 5′-

gccctgcagcacggacttcGccttcttgtgcatgc-3′;  
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Ser-339 sense 5′-gcatgcacaagaaggagaagGccgtgctgcagggc-3′ and antisense 5′-

gccctgcagcacggCcttctccttcttgtgcatgc-3′. 

The PMCA2_4 M mutant, in which all the four lysines were mutated, was generated by 

subsequent cycles of PCR amplification using the following primers:  

Lys-336_338 sense 5′-ccagcatgcacaagGCggagGCgtccgtgctgcagg-3′ and antisense 5′-

cctgcagcacggccGCctccGCcttgtgctgctgg-3′;  

Lys-344_347 sense 5′-cgtgctgcagggcGCgctcaccGCgctggctgtgcaga-3′ and antisense 5′-

tctgcacagccagcGCggtgagcGCgccctgcagcacg-3′.  

Mutated bases are indicated by boldface capital letters. 

 

Immunocytochemistry Analysis  

CHO cells were transfected with the different PMCA2 variants and mutants. 36 h after 

transfection, the cells were washed twice with PBS and fixed with 3.7% formaldehyde 

for 20 min. The membranes were permeabilized in 0.1% Triton X-100 for 5 min and 

washed with 1% gelatin (type B, from bovine skin, Sigma) in PBS. The cells were 

immunostained with primary antibodies against PMCA2 (2N, Sigma) at a 1:100 dilution 

in PBS and with secondary antibodies Alexa Fluor 594 (Molecular Probes). The images 

were acquired using a Zeiss Axiovert microscope equipped with a 12-bit digital cooled 

camera (Micromax-1300Y, Princeton Instruments Inc., Trenton, NJ) using Metamorph 

software (Universal Imaging Corporation, West Chester, PA). 

 

Preparation of Membranes from CHO Cells, SDS-PAGE, and Western Blotting 

Analysis  

Thirty six hours after transfection, CHO cells were harvested in 10 mM Tris-HCl, pH 8.0, 

2 mM EDTA, 2 mM PMSF, 1 mM DTT. They were disrupted by three cycles of freeze 

and thaw at −80/37 °C, and the insoluble proteins were sedimented at 11,000 × g for 30 

min (4 °C). The supernatant was discarded, and the pellet was resuspended in 5 mM 

Tris-HCl, pH 8.0, and 10% sucrose. Proteins were separated by 7.5% SDS-PAGE and 

transferred to nitrocellulose membranes. 20 μg of membrane proteins were loaded onto 

each lane. The sheets were probed with a rabbit polyclonal antibody 2N against PMCA2 

(Sigma, diluted 1:1000). After incubation with anti-rabbit horseradish peroxidase-

conjugated secondary antibodies (Santa Cruz Biotechnology, Santa Cruz, CA), the blots 
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were developed with ECL reagents (Amersham Biosciences). The quantitative analysis 

was carried out by densitometric analysis using the Kodak 1D Image Analysis program 

(Kodak Scientific Imaging System, New Haven, CT). Antibodies against β-tubulin or β-

actin were also used to normalize the data obtained from the densitometric analyses. 

 

Cytosolic Ca2+ Monitoring with Recombinant Aequorin  

CHO cells were plated on 13-mm glass coverslips and transfected according to the 

calcium-phosphate procedure. 36 h after transfection, the cells were incubated for 3 h 

with 5 μM of the aequorin prosthetic group coelenterazine WT in Dulbecco's modified 

Eagle's medium supplemented with 1% FBS at 37 °C in a 5% CO2 atmosphere. 

After incubation with coelenterazine, the coverslips were placed in a perfused 

thermostated (37 °C) chamber of a luminometer positioned in close proximity to a low 

noise photomultiplier, with a built-in amplifier discriminator. The experiments were 

performed in a Krebs-Ringer medium (135 mM NaCl, 5 mM KCl, 0.4 mM KH2PO4, 1 mM 

MgSO4, 20 mM Hepes, pH 7.4, at 37 °C) (KRB) supplemented with 0.1% glucose and 1 

mM CaCl2. The cytoplasmic Ca2+ concentrations were measured after addition of 100 μM 

inositol 1,4,5-trisphosphate-generating agonist ATP. The experiments were terminated 

by lysing the cells with 100 μM digitonin in a hypotonic Ca2+-rich solution (10 mM 

CaCl2 in H2O) to discharge the remaining aequorin pool. The light signal from the 

discriminator was collected by a Thorn-EMI photon counting board and stored in an 

IBM-compatible computer for further analysis. The aequorin luminescence data were 

calibrated off line into [Ca2+] values, using a computer algorithm based on the Ca2+-

response curve of wild type aequorin [388]. 

 

In Silico Analysis  

The protein sequence of human PMCA2 was retrieved from the NCBI data base 

(accession number NP 001674) [235], and amino acid conservation was evaluated with 

Conseq [132]. Secondary structure and disorder were predicted by a consensus 

approach [99] and SPRITZ [111], respectively. A consensus of three methods (Prodiv-

TMHMM, HMMTOP, and PHOBIUS) was adopted to predict the transmembrane 

regions. A homology-derived three-dimensional structure model of human PMCA2 was 

constructed using the Homer-A modeling server based on the PDB structure 2agv 
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(chain A) of sarco/endoplasmic Ca2+-ATPase (SERCA1a). The loop insertions in 

human PMCA2 were modeled using a divide and conquer method [88]. The C-terminal 

PMCA2 CaM-binding region in complex with calmodulin was modeled using the PDB 

structure 2KNE as template. We used the PyMOL Molecular Graphics System (DeLano 

Scientific, San Carlo, CA) to map the residue positions in the protein structure and 

visualize the electrostatic surface calculated by the Adaptive Poisson-Boltzmann Solver 

tool [78]. 

 

Statistical Analysis  

Data are reported as means ± S.D. Statistical differences were evaluated by Student's 

two-tailed t test for unpaired samples, with p value 0.01 being considered statistically 

significant. 

 

8.5. Results 
Expression of PMCA2 Isoforms in CHO Cells  

GFP-tagged PMCA2 splice variants z/b, w/b, and w/a were overexpressed in CHO cells. 

Crude membranes were prepared, and 20 μg of total proteins were separated by SDS-

PAGE and blotted onto nitrocellulose filters. The filter was incubated with polyclonal 

antibody 2N that recognizes the PMCA2 isoform and with an anti-tubulin antibody. 

Figure 8.2 shows that all three splice isoforms of the pump were expressed at 

approximately equivalent levels. 
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Figure 0.2. Expression of PMCA2 isoforms. 
20 μg of crude membrane proteins from transfected CHO cells, prepared by a freeze and thaw method, 
were separated by SDS-PAGE as described under “Experimental Procedures” and stained with polyclonal 
antibody 2N, which recognizes isoform 2 of the pump or against tubulin. The lanes correspond to cells 
transfected with the indicated variants of PMCAs fused to GFP. The data are representative of at least 
three independent experiments. 
 

Ca2+ ATPase Activity in Microsomal Membranes  

Microsomal membranes (containing plasma membrane fragments/vesicles) isolated 

from transfected cells were assayed in the presence of thapsigargin and oligomycin to 

inhibit the activity of the endogenous sarco/endoplasmic reticulum Ca2+-ATPase pump 

and the ATP-linked Ca2+ uptake by mitochondrial vesicles that could possibly 

contaminate the microsomal preparation. Figure 8.3, A and D, shows the PMCA activity 

in the absence of calmodulin. Both the noninserted full-length PMCA2 z/b variant and 

the w/b variant had higher basal activity than the inserted and truncated isoform w/a. 

The calmodulin sensitivity of each isoform was investigated at a fixed Ca2+ 

concentration in the presence of excess (200 nM) calmodulin (Fig. 8.3, B and D). As 
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already shown by previous work, the w/a variant had reduced stimulation by calmodulin 

in respect to the full-length z/b and w/b variants. 

 

 
 
Figure 0.3. Ca2+ transport activity of PMCA2. 
A, comparison of Ca2+ transport activity measured on microsomal membranes isolated from CHO cells 
overexpressing PMCA2 z/b, w/b, and w/a variants. Membranes vesicles were preincubated at 37 °C, and 
Ca2+ uptake was initiated by the addition of 4 mM ATP (where indicated). 50 μM CaCl2 was added where 
indicated. B, CaM dependence of Ca2+ uptake by microsomal membranes preincubated at 37 °C with 200 
nM CaM. C, acidic phospholipid (PS) dependence of Ca2+ uptake by microsomal membranes 
preincubated at 37 °C with 25 μM PS. A–C, ATPase activity was indicated as the decrease of the 
absorbance at 340 nm. D, histograms show the means ± S.D. of the activity of the pumps. The activity 
was expressed as micromoles of Pi/min/μg of protein and calculated as indicated under “Experimental 
Procedures.” The data are representative of at least three experiments with different membranes 
preparations. *, p < 0.05, in respect to the respective controls in the absence of CaM and PS. 
 

The splicing event at site A occurs just upstream of one of the two regions responsible 

for the binding of acidic phospholipids. The first two spliced exons of PMCA2 encode a 

relatively hydrophobic stretch of amino acids positioned amid a highly charged region, 

suggesting possible effects on the overall interaction of the first cytosolic loop of the 

pump with acidic phospholipids. The response of the three pump variants z/b, w/b, and 

w/a to phosphatidylserine was thus compared. Figure 8.3, C and D, shows that isoforms 

z/b and w/b had the same response, implying that the AL acidic phospholipid binding 
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domain was not affected by the site A insert. Surprisingly, however, the w/a variant, 

which has the phospholipid binding domain contiguous to the site A insert but lacks 

about half of the C-terminal phospholipid binding domain, was completely insensitive 

to phosphatidylserine; the response of the full-length variants of the pump (variants b) 

was over 5-fold higher than that of the truncated w/a variant. The finding thus suggests 

a predominant role of the C-terminal phospholipid binding domain in the response to 

acidic phospholipids. 

 

Mutations in the N-terminal (AL) Phospholipid Binding Domain  

Mutational experiments on the phospholipid binding domains were performed to further 

explore the molecular mechanism of the activation of the pump by acidic phospholipids. 

As for the possible mechanism of acidic phospholipid stimulations, in the case of the 

binding sequence in the C-terminal calmodulin binding domain, it was reasoned that the 

headgroups of positively charged residues could be neutralized by acidic phospholipids, 

weakening the autoinhibitory intramolecular interaction of the C-terminal tail of the 

pump with its receptor sites in the main body of the molecule. The study of the 

phospholipid binding domain in the C-terminal region was limited to comparison of the 

a variant (in which the splicing truncation removes about half of the CaM binding 

domain and, presumably, affects the binding of acidic phospholipid binding domain) 

with the full-length b variant. No mutations were introduced in the full-length C-

terminal region of the b variants. 

In the AL region, structural rearrangements of the transduction (activator) and catalytic 

domains of the pump could occur following the binding of phospholipids that would 

facilitate the access of Ca2+ to its single high affinity site in the transmembrane sector. 

The four lysines in the AL phospholipid-binding region, which are very conserved 

among the PMCAs isoforms (Fig. 8.4A) and in the PMCA across species (Fig. 8.4B), 

could form a charged bend that could easily accommodate a charged phospholipid head. 

It was thus decided to mutate them. It was also felt that two other well conserved 

residues in the AL binding domain (Glu-337 and Ser-339, Fig. 8.4) could also have a 

role in the interaction (see below). It was thus decided to mutate them as well. It was 

also decided to study the effect of the deletion of the 12-residue lysine-rich stretch in the 

AL domain that had been previously performed by others [389]. 
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Figure 0.4. Conservation of the AL domain.  
The similarity analysis was performed using the ClustalW program. Human PMCA2 sequence 
(GenBankTM accession number NP_001674) is listed with other human PMCAs isoforms sequences (A) 
and with those of other species (B). GenBankTM accession numbers are as follows: NP_001001323 
(Homo sapiens PMCA1), NP_068768 (H. sapiens PMCA3), NP_001675 (H. sapiens PMCA4), 
XP_509257 (Pan troglodytes PMCA1), AY928176 (Rhesus macaque PMCA4), NP_036640 (Rattus 
norvegicus PMCA2), AAH75643 (Mus musculus PMCA2), BC109173 (M. musculus PMCA4), Q00804 
(Oryctolagus cuniculus PMCA1), NP_777121 (Bos taurus PMCA1), NP_999517 (Sus scrofa PMCA1), 
AAK11272 (Rana catesbeiana PMCA2), BC077905 (Xenopus laevis PMCA3), P58165 (Oreochromis 
mossambicus PMCA2), NP_001116710 (Danio rerio PMCA2), EU559285 (D. rerio PMCA4), 
AAR28532 (Procambarus clarkia PMCA3), AAK68551 (Caenorhabditis elegans PMCA3) and 
AAR13013 (Stylophora pistillata). 
 

Generation, Expression, and Activity of PMCA2zb_del12 and PMCA2wa_del12 

Mutants  

The 12-residue lysine-rich stretch located in the N-terminal portion of the domain was 

analyzed first, as it had already been shown that the deletion of this stretch failed to 

affect the plasma membrane targeting of the pump [389]. The effect of the deletion of 

region 380–391 in the w/a variant, which has lost at least half of the C-terminal acidic 

phospholipid binding domain, and of region 336–347 in the full-length z/b variant, 

which contains it, was studied in over-expressing CHO cells. The activity of the deleted 

variants of the expressed pump was compared with that of their respective wild type 

variants. Appropriate controls (Western blotting and immunocytochemistry analysis) 
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established that the mutant pump variants were expressed at about the same levels with 

respect to their WT versions and were correctly delivered to the plasma membrane (Fig. 

8.5A). The PMCA2wa_del12 was expressed as a GFP fusion chimera; the fusion with 

GFP did not alter the targeting nor the activity of the pump [389]. As reported 

previously [390], the w/a variant was much less efficient than the z/b variant in re-

establishing resting cytosolic Ca2+ concentrations following the increase induced by the 

stimulation of the cells with the purinergic agonist ATP (traces in Fig. 8.5, B and C). 

The Ca2+ transient generated by the stimulation reflects the inositol 1,4,5-trisphosphate-

mediated Ca2+ release from the intracellular stores but also the Ca2+ influx from the 

extracellular medium through channels activated by the depletion of the endoplasmic 

reticulum stores. The lowering of the Ca2+ peak with respect to untransfected cells 

reflects the ability of the overexpressed pumps to respond with a burst of activation, i.e. 

of Ca2+ extrusion, to the arrival of the inositol 1,4,5-trisphosphate-generated Ca2+ pulse. 

The faster clearance of the Ca2+ signal is thus due to increased overall pump activity. 

Fig. 8.5B shows the Ca2+ response in cells transiently transfected with the wa_wt and 

wa_del12 variants of PMCA2. Surprisingly, the deletion of the 12 amino acids in the 

phospholipid binding domain completely abolished the activity of the pump (the heights 

of the transients were wa_wt, 2.77 ± 0.35 μM, n = 27; wa_del12, 3.58 ± 031 μM, n = 26; 

control (only aequorin), 3.53 ± 0.48 μM, n = 34). The half-time of the declining phase 

was 7.69 ± 1.23 s, n = 29, in wa_wt, 44.52 ± 4.99 s in wa_del12, n = 27, and 46.67 ± 

7.35 s, n = 12 in the control (see Fig. 8.5B, inset). Fig. 8.5C shows pump activity in 

cells transiently transfected with the wt_zb and zb_del12 PMCA2 variants. The 12-

amino acid deletion impaired the activity of the zb variant as well (zb_wt, 1.31 ± 0.17 

μM, n = 31; zb_del12, 2.72 ± 0.28 μM, n = 10), suggesting that the deleted residues are 

important to pump activity independently of splicing processes. However, at variance 

with the wa_del12 variant, the zb_del12 variant was still partially active; the height of 

Ca2+ transient was reduced with respect to control cells. This finding is also supported 

by the analysis of the declining phase of the Ca2+ traces, in which the half-time of the 

peak decay was 6.31 ± 0.85 s, n = 13, in zb_wt, 38.64 ± 5.93 s in zb_del12, n = 14, 

versus 46.67 ± 7.35 s, n = 12, in the control, p < 0.01 (see Fig. 8.5C, inset). 
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Figure 0.5. Expression and activity of PMCA2 variants. 
A, Western blotting and densitometric analysis of the variants of the PMCA2 isoform overexpressed in 
CHO cells. 20 μg of crude membrane proteins from transfected CHO cells, prepared by a freeze and thaw 
method, were separated by SDS-PAGE as described under “Experimental Procedures” and stained with 
polyclonal antibody 2N. The control lane corresponds to nontransfected cells (CHO). The other lanes 
correspond to cells transfected with the WT or mutant variants of the PMCA2 pump. The panel also 
shows the immunocytochemistry analysis of the transfected CHO cells. The immunostaining was carried 
out with the 2N antibody and revealed with the secondary antibody Alexa Fluor 594. B, monitoring of 
cytosolic [Ca2+] in CHO cells transfected with cytAEQ and co-transfected with cytAEQ and the WT w/a 
variant of PMCA2 isoform or deleted PMCA2wa_del12 mutant. C, monitoring of cytosolic [Ca2+] in 
CHO cells transfected with cytAEQ and co-transfected with cytAEQ and the wt z/b variant of PMCA2 
isoform or deleted PMCA2zb_del12 mutant. The histograms in B and C show the means ± S.D. of [Ca2+]c 
peaks and of the half-time decays from the peaks. The traces are representative of at least 12 independent 
experiments. *, p < 0.01 calculated with respect to control (CHO cells transfected only with cytAEQ).  
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Generation, Expression, and Activity of PMCA2 z/b Variants Harboring Single Lys 

Mutations in the 336–347 Domain  

Single amino acids mutants of the PMCA2 z/b pump were generated by replacing 

individual lysines in the 12-residue sequence (336–347 domain). Five mutants were 

generated as follows: PMCA2zb_K336A, PMCA2zb_K338A, PMCA2zb_K344A, 

PMCA2zb_K347A, and one in which all four lysines were replaced with alanines, 

PMCA2zb_4M. The positions of the mutated lysines in the sequence are shown in Fig. 

8.4. The level of expression of all mutants and their correct delivery to the plasma 

membrane were checked and found to be equivalent (Fig. 8.6A). The single mutation of 

three of the four lysines impaired the activity of the pump (the heights of the peak 

transients induced by the stimulation were as follows: 1.50 ± 0.15 μM, n = 12 for 

PMCA2 zb_K338A; 1.96 ± 0.09 μM, n = 15 for PMCA2 zb_K344A; and 1.56 ± 0.22 μM, 

n = 15 for PMCA2 zb_K347 versus 1.31 ± 0.17 μM, n = 31 for the zb_wt, p < 0.01) (Fig. 

8.6B, in which the Ca2+ transients were superimposed to that generated in cells 

overexpressing equivalent levels of PMCA2zb_wt). Fig. 8.6B shows that instead the 

mutation of lysine 336 (K336A) had no effect on the Ca2+ extruding ability of the pump; 

the height of the transient was 1.36 ± 0.15 μM, n = 12, as compared with 1.31 ± 0.17 μM, 

n = 31, in zb_wt-expressing cells. 

The mutation of all four lysines impaired the Ca2+ extrusion activity of the pump. The 

peak height was 1.78 ± 0.16 μM, n = 15, for PMCA2 zb_4M versus 1.31 ± 0.17 μM, n = 

31, for zb_wt, p < 0.01. It also affected the ability of the pump to accelerate the 

declining phase of the Ca2+ transient trace. It did so more significantly than in the case 

of single lysine mutants, as shown by the traces and the histograms of Figure 8.6B. The 

half-time of the declining phase was 7.25 ± 1.16 s, n = 8, for PMCA2zb_K336A; 7.5 ± 

0.83 s, n = 6, for PMCA2zb_K338A; 9.37 ± 2.02 s, n = 16, for PMCA2zb_K344A; 6.89 

± 0.93 s, n = 13, for PMCA2zb_K347A; 13 ± 2 s, n = 16, for PMCA2zb_4M, and 6.31 ± 

0.85 s, n = 13, for zb_wt, p < 0.01. 
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Figure 0.6. Expression and activity of PMCA2zb_del12 and PMCA2wa_del12. 
A, Western blotting and densitometric analysis of the Lys mutants of the PMCA2 z/b isoform 
overexpressed in CHO cells. 20 μg of crude membrane proteins from transfected CHO cells, prepared by 
a freeze and thaw method, were separated by SDS-PAGE as described under “Experimental Procedures” 
and stained with polyclonal antibody 2N. The control lane corresponds to nontransfected cells (CHO). 
The other lanes correspond to cells transfected with the WT or mutant variants of the PMCA2 pump. The 
panel also shows the immunocytochemistry analysis of the transfected CHO cells. The immunostaining 
was carried out with the 2N antibody and revealed with the secondary antibody Alexa Fluor 594. B, 
monitoring of cytosolic [Ca2+] in CHO cells transfected with cytAEQ and co-transfected with cytAEQ 
and the PMCA2zb_K336A, PMCA2zb_K338A, PMCA2zb_K344A, PMCA2zb_K347A, or PMCA2zb_4M, 
alternatively. The histograms show the means ± S.D. of [Ca2+]c peaks and of the half-time decays from 
the peaks. The traces are representative of at least 12 independent experiments. *, p < 0.01 calculated 
with respect to PMCA2zb_wt (CHO cells transfected with wt PMCA2 z/b pump). 
 



8. Deletions and Mutations in the Plasma Membrane Ca2+ Pump 

158 

Generation, Expression, and Activity of E337A or S339A PMCA2 z/b Mutants  

The decision to mutate basic residues (lysines) in the 336–347 domain was dictated by 

the ability of the domain to bind acidic phospholipids. However, the domain also 

contains a conserved glutamic acid in position 337 (Glu-337) and a serine in position 

339 (Ser-339) (see Fig. 8.4). The in silico analysis (see below) suggests that these 

residues could be involved in polar interactions with other portions of the protein. Thus, 

they were also mutated. Fig. 8.7A shows that PMCA2zb_E337A and PMCA2 zb_S339A 

were expressed at levels comparable with those of the transfected PMCA2zb_wt variant 

and were correctly delivered to the plasma membrane of the transfected cells. 

 
Figure 0.7. Expression, and Activity of E337A or S339A PMCA2 z/b Mutants. 
A, Western blotting and densitometric analysis of the Glu and Ser mutants of the PMCA2 z/b isoform 
overexpressed in CHO cells. 20 μg of crude membrane proteins from transfected CHO cells, prepared by 
a freeze and thaw method, were separated by SDS-PAGE as described under “Experimental Procedures” 
and stained with polyclonal antibody 2N. The control lane corresponds to nontransfected cells (CHO). 
The other lanes correspond to cells transfected with the WT or mutants variants of the PMCA2 pump. 
The panel also shows the immunocytochemistry analysis of the transfected CHO cells. The 
immunostaining was carried out with the 2N antibody and revealed with the secondary antibody Alexa 
Fluor 594. B, monitoring of cytosolic [Ca2+] in CHO cells transfected with cytAEQ and co-transfected 
with cytAEQ and the PMCA2zb_E337A or the PMCA2zb_S339A. The histograms show the means ± S.D. 



8. Deletions and Mutations in the Plasma Membrane Ca2+ Pump 

159 

of [Ca2+]c peaks and of the half-time decays from the peaks. The traces are representative of at least 12 
independent experiments. *, p < 0.01 calculated with respect to PMCA2zb_wt (CHO cells transfected 
with WT PMCA2 z/b pump). 
 

The Ca2+ measurements showed that the PMCA2zb_E337A and the PMCAzb_S339A 

mutants were less efficient than the PMCA2zb_wt variant in controlling the peak of the 

Ca2+ transient (1.88 ± 0.19 μM, n = 15, for PMCA2zb_E337A, 1.79 ± 0.25 μM, n = 16, 

for PMCA2zb_S339A versus 1.31 ± 0.17 μM, n = 31, for zb_wt, p < 0.01) (Fig. 8.7B). 

The mutations also severely affected the ability of the pump to restore basal Ca2+ levels 

after cell stimulation, the half-time of the peak decay being 11.52 ± 2.27 s, n = 13, in 

PMCA2zb_E337A and 11.26 ± 1.73 s, n = 19, in PMCAzb_S339A, as compared with 

6.31 ± 0.85 s, n = 13, in zb_wt, p < 0.01 (Fig. 8.7B). 

 

In Silico Analysis of the Two Phospholipid Binding Domains  

Figure 8.8A shows a schematic of the PMCA2 in which three of four lysines (Lys-338, 

Lys-344, and Lys-347) contained in the AL domain are predicted to be located 

approximately at the membrane surface, forming a charged bend which, as already 

mentioned, could easily accommodate a charged phospholipid head. The electrostatic 

surface potential of PMCA2 (Fig. 8.8B) shows that the region surrounding the lysines, 

and stretching toward insertion site A, is the only positively charged region in contact 

with the cytoplasmic side of the membrane. Over 30 residues close to insertion site A 

could not be modeled; thus, the model is only approximate. However, the missing 

residues are likely to form a mobile flap extruding from the protein structure. Because 

conformational switches are required for Ca2+ transport, it could be reasonably 

suggested that the three lysines would form a binding pocket for initial phospholipid 

docking. The model agrees well with the experimental findings on the importance of 

three of the four lysines, as well as with the effect of the 12-residue deletion. Mutation 

of all four lysines is likely to slow down phospholipid docking, but the positively 

charged area surrounding insertion site A could partially compensate for this effect. 

The two other mutated residues (Glu-337 and Ser-339), are well conserved in PMCA 

isoforms and in the PMCA across species (see Fig. 8.4). The model positions glutamic 

acid between two lysines and exposes it to the protein surface, where it could affect 

other interactions of the pump. As for the serine, its polar group forms a hydrogen bond 
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with a glutamine in the α-helix (M3) and with a glutamic acid in the α-helix of domain 

P (Fig. 8.9). Mutational disruption of hydrogen bonds may have significant structural 

consequences. 

 
Figure 0.8. PMCA2 model and electrostatic surface.  
A, overview of the PMCA2 model, shown in schematics and color-coded for the different canonical 
domains, with the four mutated lysines highlighted as red spheres. The approximate location of the 
membrane limits are shown with lines, and the third transmembrane helix is labeled as M3. Note that the 
C-terminal part of PMCA2 from residue 1088 onward could not be modeled. Insertion site A is 
highlighted. B, electrostatic potential of the PMCA2 accessible surface. The structure is shown in the 
same orientation as in A and rotated around the central axis (right). The location of the mutated lysine 
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residues is circled. Note how the area around and between the four lysines and insertion site A is the only 
PMCA2 region with positive potential in contact with the membrane. 
 

 

 
Figure 0.9. Representation of the two residues, Ser-337 and Glu-339. 
These are shown as sticks, and dashed lines indicate interatomic contacts or hydrogen bonds with 
neighboring residues. 
 

The C-terminal splice variant w/a differs from the w/b variant by a frameshift mutation 

affecting the second half of the CaM-binding region. The model generated by the 

structural analysis (Fig. 8.10A) shows that the PMCA2 CaM-binding region (obtained 

from the recently deposited NMR structure of the PMCA4 CaM-binding region (PDB 

code 2KNE) could form an amphiphilic α-helix with a distinctive pattern of charged and 

hydrophobic residues [391]. In the presence of Ca2+ ions, CaM folds into a series of α-

helices winding around the PMCA2 peptide in a head-to-tail conformation, i.e. the N 

terminus of CaM binds the C terminus of PMCA2. Ca2+ could induce a conformational 

switch through the stabilization of a stretch of negatively charged residues in a turn 

conformation, yielding the characteristic collapsed structure of CaM. Interestingly, the 

final conformation has a strongly negative charge and is stabilized through hydrophobic 

cages between a benzyl ring and a hydrophobic groove at the center of three CaM α-

helices (Fig. 8.10B). In the model, electrostatic attraction is present, but is not crucial to 

stabilize the final bound conformation. Given the number of charged residues in CaM, 
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electrostatic attraction is likely to initiate the folding process of CaM around the 

PMCA2-binding region. The substitution of two lysine residues in the CaM binding 

domain of the w/a variant (see sequence alignment in Fig. 8.10A) could destabilize the 

CaM interactions necessary to form the hydrophobic cage for proper binding, 

explaining the poor sensitivity to CaM of the variant. 

 
Figure 0.10. Model of CaM-binding region of PMCA2. 
A, structural model of the calmodulin-binding region of PMCA2 (top) and relative sequence alignment 
(bottom). The amphipathic PMCA2 helix is shown in gray at the center of the structure, with residues in 
purple and pink defining the N- and C-terminal motifs. The calmodulin structure is shown with 
progressively varying color, from blue (N terminus) to red (C terminus). Ca2+ ions are shown as green 
spheres. The sequence alignment shows the structural template (PMCA4, PDB code 2KNE) together with 
two PMCA2 variants. The last line defines the sequence motif for calmodulin binding. Note how PMCA2 
w/a lacks two crucial lysine residues for the second motif. B, electrostatic surface of the calmodulin-
binding region of PMCA2 with bound CaM in the same orientation as in A. 
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8.6. Discussion 
It would be reasonable to expect that the proximity of site A of alternative splicing to 

the site that binds acidic phospholipids in the AL domain could influence the sensitivity 

of PMCAs to acidic phospholipids. The A-site insertion could alter the overall 

conformation of the second cytosolic loop of the pump. It could thus change the spatial 

connectivity between the phospholipid binding domain and the sequence further 

upstream, which is involved in the intramolecular inhibitory interaction with the C-

terminal calmodulin binding domain. The finding that the A-site insert is important for 

the targeting of PMCA pump to the apical membrane [373] underlines its importance in 

the general properties of the pump. The role of the AL phospholipid binding domain has 

always been obscure, particularly in view of the existence of a second phospholipid 

binding domain in the C-terminal calmodulin binding sequence [375]. One still open 

question is thus the comparative importance of the two phospholipid binding domains in 

the regulation of pump activity. Our previous studies on isoform 2 of the PMCA pump 

had shown differences in the activity of the various A-site splicing variants  [390, 392], 

showing that the w/a variant had high basal Ca2+ ejection activity but failed to respond 

rapidly to the sudden arrival of a Ca2+ pulse. It had already been reported that both 

isoforms PMCA2b and -2a have much higher affinity for CaM than the corresponding 

isoforms of PMCA4, with PMCA2b having the highest affinity. They were both 

activated at low Ca2+-calmodulin levels and had peculiarly high activity in the absence 

of activators [386]. 

The measurements of ATPase activity in microsomal membranes of transfected CHO 

cells have indicated that the w/a variant, as expected, was much less sensitive to CaM 

than the z/b and w/b isoforms. However, it was also less sensitive to phosphatidylserine, 

thus underlining the role of the CaM binding domain in the regulation of pump activity 

by acidic phospholipids. The finding that the z/b and w/b isoforms had the same 

response to phosphatidylserine stimulation had indicated that the splicing insertion 

upstream of the AL phospholipid binding domain failed to modify the phospholipid 

sensitivity of the pump. 

The analysis of the AL 12-amino acid lysine-rich stretch, and the model derived from it, 

had indicated the importance of the conserved lysines in the stretch in the interaction of 
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the phospholipid binding domain with the pump microenvironment. The deletion of the 

12 amino acids could, for instance, directly affect the structure of M3, which is critical 

to the sarco/endoplasmic reticulum Ca2+-ATPase pump binding of thapsigargin and 

could by analogy have special importance to PMCA as well. In the sarco/endoplasmic 

reticulum Ca2+-ATPase pump, the segment linking M3 to the A domain is essential for 

the rotation of the latter and for its correct positioning in the active configuration of the 

catalytic site [393]. 

By combining the structural information on the four AL lysines and on the C-terminal 

CaM-binding region, it could be proposed that the C-terminal domain of the pump that 

contains the CaM-binding region could anchor Ca2+ ions to PMCA; it has indeed been 

shown that Ca2+-binding sites are present upstream and downstream of the CaM binding 

domain [394]. Once CaM is bound, the PMCA movements could bring the Ca2+ ions 

closer to the lysine-containing region near insertion site A through electrostatic 

attraction. 

The finding that the deletion of the 12-residue AL domain completely abolished the 

activity of the pump in the w/a variant, but not in the z/b variant in which it only 

reduced it, indicated that the activity of the PMCA2 w/a variant strongly depended on 

the presence of the AL(380–391) region and possibly on the acidic phospholipid binding 

to it. The finding that the w/a variant was insensitive to PS in the microsomal 

membranes assay could mean that its stimulation was already maximal under these 

conditions, as endogenous acidic phospholipids are present in the membranes and could 

have saturated the PL binding domain. Further addition of PS could not further 

stimulate the activity of the w/a variant. Evidently, CaM activation is not sufficient to 

make the w/a variant as active as the z/b and the w/b variant. Thus, the difference 

between the activities of the w/a and z/b variants observed in the measurements 

performed in intact cells could be related to their interaction with acidic phospholipids, 

as also suggested by the ATPase activity measurements on microsomal membranes. In 

other words, the z/b variant would be more active than the w/a variant because of the 

integrity of its two acidic phospholipid-binding sites. The truncation of the protein 

induced by the site C splicing drastically affected the ability of the pump to bind 

activator phospholipids, and the deletion of the 12-residue AL domain further 

compromised its activity. 
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Interestingly, the substitution of all four positively charged residues (lysines) reduced 

the Ca2+ extrusion ability of the pump by about the same extent as the replacement of 

only Lys-344, suggesting a critical role for Lys-344 in pump activity. However, the 

mutation of two polar residues (Glu and Ser) in the same region affected the pump 

activity to about the same extent, suggesting that the disruption of the possible 

interaction of this region of the pump with the other pump region (or with other 

proteins) may be as important to pump activity as the impairment of its ability to bind 

acidic phospholipids. 
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9. Critical Assessment of Genome 
Interpretation  

 
The several cases I studied had as major aim to determine the protein structure-function 

relationship in order to gain insights into genotype-phenotype correlations and to better 

understand the molecular mechanisms of the related diseases. Recently, science is 

witnessing a revolution in molecular biology owing to the advances in high-throughput 

technology. Genome and exome sequencing generate huge amounts of data yielding 

extensive catalogues of human genetic variations. However, the identification of few 

causal variants among the extensive background of non-pathogenic polymorphisms 

remains a major challenge, particularly for rare and common complex diseases [34]. In 

this context, there is a strong demand to develop efficient and accurate bioinformatics 

tools for the classification of disease mutations. Currently, several different methods are 

available for this purpose but the community needs to understand the appropriate level 

of confidence they should have in variant prediction methods, and which classes of 

approaches are most suitable to a particular application.  

The Critical Assessment of Genome Interpretation (CAGI, 

http://www.genomeinterpretation.org/) is a community experiment started in 2011 to 

assess computational methods predicting the functional impact of genome variations. 

The organizers provide unpublished genomic data for which they know the associated 

phenotypes and participating groups have a few months to make predictions. The 

evaluations, performed by independent assessors, have been made public and discussed 

at the CAGI meeting in San Francisco on December 2011. In addition to being an 

opportunity to connect researchers from diverse disciplines, the CAGI experiment aims 

to identify the critical points in genome interpretation and promising areas of future 

research. 

In this chapter I will describe different applications where computational tools are 

useful to interpret experimental work or to predict genotype-phenotype correlations. 

Moreover, I will report the state of the art strategy applied so far for disease-gene 
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prediction from next-generation sequencing data. These computational approaches have 

made rapid progress in the last few years as testified by challenges presented in the 

CAGI competition. I will describe how we addressed them and the results of our 

predictions are discussed with respect to the experimental evidence and results 

presented at the CAGI-2011 meeting. 

 

Critical Assessment of Genome Interpretation (CAGI) competitions 

The first prototype CAGI experiment was designed in 2010 by Steven Brenner, a 

computational genomicist at the University of California Berkeley, and John Moult, a 

computational biologist at the University of Maryland. In 1994 they conceived a similar 

competition named CASP (Critical assessment of techniques for protein Structure 

Prediction), which was aimed to improve the ability of researchers to predict the shape 

of a protein starting from the amino acid sequence. This experiment gave a boost to the 

development of new approaches for structure prediction, determining tools which are 

still the best choice in this regard. The goal of the CAGI contest instead is to accelerate 

the development of software able to predict molecular, cellular, or organismal 

phenotypic impacts of variations and to process quickly a large amount of genetic data 

arising from the increased ability of genome sequencing seen in the last decade.  

In 2011 the CAGI contest proposed several different challenges which were divided 

into two main groups, depending on the overall approaches applied, which we will call 

gene-oriented and phenotype-oriented predictions. Gene-oriented predictions aim to 

identify the connections between mutations occurring in a specific protein and an 

observed phenotype. The second group of predictions aimed to identify variants that 

could be related to a particular human phenotype. In this case we have a large number 

of single nucleotide variants (SNVs) sparsely located in the genome. The candidate 

variants to assess are those mapping to genes having a high likelihood of being the 

cause for the specific phenotype.  

Our group, named UniPadova, participated in five competitions aimed at identifying the 

connections between specific genes and phenotypes. Three of these include the study of 

mutations on three different proteins: the p53 transcription factor, RAD50 protein, and 

Nav1.5 channel. In the cases of p53 and Nav1.5 the associated phenotype to predict 

corresponded with a protein-specific biochemical feature (e.g. tumor suppressor 
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reactivation, current flow density), while for RAD50 the probability of the variant to 

occur in individuals with breast cancer had to be predicted. 

Two other challenges required a totally different approach. We refer to this predictions 

as phenotype-oriented because they point to the responsible genes from those indicated 

by clinical findings or genetic analysis such as genome wide association study (GWAS). 

In one case, predictors had to distinguish between exomes of Crohn’s disease patients 

and healthy individuals. The Personal Genome Project (PGP) challenge was instead 

directed at predicting the probability of an individual having a specific human 

phenotype or trait from a list of forty binary and numerical traits starting from exome 

sequence data. In the next paragraphs I will describe each CAGI challenge separately, 

giving a view of how each problem has been addressed and the relative state of the art. 

 

9.1.  Single amino-acid changes in the human p53 core 
domain that can restore activity of inactive p53 found 
in human cancers 
 

Inactivation of the p53 gene is the most common genetic cause of human cancers [395-

396]. In most cases, this inactivation is the direct result of mutations mapping in the 

DNA core domain of the protein. Restoring p53 activity is possible, as demonstrated in 

vivo, through intragenic second-site suppressor mutations. The group of Rick Lathrop at 

University of California Irvine conducted a functional experiment to discover “cancer 

rescue” mutants. Structural analysis of known rescue mutants identified regions in p53 

where perturbations may cause p53 reactivation and highlighted that cancer rescue 

mutations may also influence protein-DNA interactions or protein stability without 

necessarily inducing major structural disruptions [397].  

For the p53 protein, CAGI participants were called to predict “cancer rescue mutants” 

on four p53 cancer mutations mapping on the DNA binding domain. The dataset for p53 

provided by the CAGI organizers contains 14,668 putative rescue mutants. The 

experimental assay used to test the p53 function was applied for all possible rescue 
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mutants of the core domain in the presence of the four cancer mutations: R248Q, 

R282W, Y220C, and M237I. 

 

The DNA binding domain of p53 

The DNA binding domain adopts a defined conformation for which several crystal 

structures have been reported both in complex with DNA and regulatory proteins, or in 

a free state. The most recent structures show how p53 tetramers recognize DNA [398-

400]. The immunoglobulin-like fold serves as a scaffold for the DNA-binding surface 

which is formed by two major loops, L2 and L3, and a loop-sheet-helix motif (loop L1, 

β-strands S2 and S2’, C terminal helix H2). A zinc ion stabilizes the position of the two 

large loops. The DNA molecule makes contact through its major groove at the loop-

sheet-helix motif, while the DNA minor groove interacts with residues located at loop 

L3. This loop, together with the helix H1 in the L2 loop, is also involved in core-domain 

dimerization. In contrast to previously studied p53-DNA complexes, Petty et colleagues 

[401] demonstrated that p53 binding to specific DNA sequence causes a conformational 

switch in loop L1, which alters the kinetic properties of p53 DNA binding. Mutations 

that facilitate the conformational switch of loop L1 thus have reduced levels of 

transcriptional activity compared to wild type [401]. To demonstrate this, the authors 

expressed p53 polypeptides containing both the DNA binding and oligomerization 

domains, forming stable p53-DNA complexes in solution. The resulting structure seems 

to be less affected by crystal packing interactions.  

Solution structure of the p53 core domain by NMR revealed how loop L1, together with 

the S7-S8 loop, are the protein regions with high structural flexibility. This provided an 

hypothesis for the structural basis of the relative instability of p53 [402]. The intrinsic 

instability of p53 seems to be an evolutionary advantage, since it confers structural 

plasticity that facilitates the exploitation of several functions involving p53. Biophysical 

characterization of p53 was quite difficult due to its tendency to melt at temperatures of 

less than 37°C. Thus the request of more stable p53 proteins guided the development of 

the stable p53 mutant (T-p53C) containing the point mutations M133L, V203A, N239Y, 

and N268D. These mutations stabilize the protein core by 2.6 Kcal/mol and provide a 

more rigid structural framework on which structural effect of cancer mutations can be 

studied [403]. 
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Effects of common p53 cancer mutants 

Bullock and colleagues [404] demonstrated that p53 cancer mutants can be divided in 

different classes on the basis of their location in the core domain. Mutations affect either 

stability or DNA binding properties of p53. Effects on stability were found for all tested 

mutations mapping on the β-sandwich domain (e.g. V143A, F270L, Y220C). 

Destabilizing effects were observed also for structural mutations altering the DNA 

binding surface or the zinc binding site. These variants showed a reduced or absent 

ability to bind DNA. Examples of these mutations are those altering the L3 loop (e.g. 

R249S, G245S), mutations disrupting the zinc binding region (e.g. R175H), mutations 

located in the loop-sheet-helix motif (e.g. R282W, H168R), and mutations in loop L1 

(e.g. T123A). Other mutants have been classified as DNA-contact mutations since they 

inactivate p53 replacing residues that form direct contact with DNA. The structures of 

R273H and R273C mutants maintain the overall topology of the DNA-binding surface, 

even if they cause loss of DNA contacts [405-406]. Other amino acid substitutions 

introduce a large hydrophobic side chain that prevent DNA binding by steric clashes 

(e.g. S241F, R248W, and C277F) [397].  

 

Cancer rescue mutants 

 The deleterious effect of some cancer mutations can be restored by intragenic second 

site suppressor mutations. This is of particular interest for p53, because the 

understanding of molecular mechanisms by which the activity can be restored provides 

insights for the development of therapeutic anticancer strategies. Recently, Baronio and 

colleagues [407] used an all codon-scanning strategy to systematically produce all 

possible single-codon mutations within a defined region of p53, and by using a genetic 

approach in yeast and mammalian cells, identified diverse second site suppressor 

mutations. The p53 activity was analyzed using a yeast-based p53 activity assay, where 

the yeast cells were engineered in a way that they require active p53 for URA3A gene 

expression. This gene is involved in uracil synthesis, thus cell growth in medium 

lacking uracil is proportional to p53 activity [408]. This study confirmed that different 

second site suppressor mutations restore the activity of the protein using different 

mechanisms, suggesting that different regions in the protein correspond to distinct 

mechanisms of reactivation [407]. The available structures of p53 mutants provide a 
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detailed understanding of the structural basis for the role of several mutations in 

rescuing cancer mutants. It is possible to distinguish between specific and global rescue 

mutants. A prime example of global rescue mutants are the N239Y and N268D 

mutations which cause increased stability of the protein without altering its function. 

Usually, these mutations can reactivate a whole subset of destabilizing mutants [405]. 

The systematic search of rescue mutants by Danziger and colleagues [408] resulted in 

the identification of a global suppressor motif involving core domain residues 235, 239 

and 240. Other oncogenic mutations are reactivated by specific rescues, as these 

mutants usually cause a distinct structural change in functional regions of the protein. 

There are few examples for specific molecular mechanisms restoring the protein activity. 

One of these is S240R, a specific rescue for the DNA contact mutation R273H. Arg240 

indeed compensates the loss of Arg273 creating a novel DNA contact. The other well 

known example is represented by the H168R/R249S rescue pair, mapping at the DNA 

binding surface. In this case replacement of Arg249 with Arg168 stabilizes the 

conformation of loop L3 which is essential for positioning Arg248 in direct contact with 

DNA [406]. 

 

Computational approaches to predict p53 rescue mutants 

The in vitro testing for p53 functionality of all possible rescue mutants is difficult to do 

due to time and expense. For each mutant of the DNA binding domain, we should test 

more than 4,000 putative rescue mutations. Furthermore, predicting the effects of amino 

acid changes is a difficult problem due to the marginal instability of p53. For many p53 

cancer mutants the identification of underlying structural changes affecting folding or 

protein-DNA contacts remains to be discovered [409]. Recently, Danziger and 

colleagues [410] applied a method, named Most Informative Positive (MIP) active 

learning, to discover mutations that reactivate p53 cancer mutants. Active learning using 

modeled structural features was developed in concert with experiments in order to 

reduce the number of tests that need to be performed to built an accurate classifier. This 

method was also used to select gene regions suitable for systematic combinatorial 

mutagenesis. The computational classifier is trained with a subgroup of examples for 

which the activity was experimentally determined. The classifier then predicts the set of 

mutants that should be labeled in order to improve classifier accuracy. These mutants 
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are then tested by activity assay and added to the set of p53 mutants with known 

function, and the cycle repeats [410].  

 

9.1.1. Method 

In this challenge we used residue interaction networks to infer predictions. This 

approach has been developed in our laboratory especially for the prediction of cancer 

rescue mutations. This was not the widely studied situation where we want to predict 

the pathogenicity of a mutation. Rather, we have to predict the ability of a mutation to 

restore the alteration caused by another variant. This task is very difficult and at the 

moment no computational method has been developed for this purpose. We therefore 

tried to rank the mutations with the aim of reducing the number of putative rescue 

mutations by an order of magnitude. First of all I performed a structural analysis of the 

p53 core domain in order to identify relevant residues for p53 function and to predict 

structural effects of the four cancer mutations in the data. This allows to hypothesize the 

molecular mechanism which could reactivate the protein function. Information arising 

from this study was integrated in the prediction process.  

 

Rescue mutants prediction using residue interaction network 

To analyze structural effects of amino acid substitutions, our laboratory developed an 

approach that uses graph theory to represent proteins. The residue interaction network is 

an interaction graph, where nodes are residues with given properties and edges are the 

weighted relationships among these nodes. We used RING (see first chapter) [200] to 

build RINs for wild type p53 and putative rescue mutants of the four p53 cancer rescue 

mutations (R248Q, R282W, Y220C, and M237I). The mutant models were built using 

FOLDX [411].  

The method considers both local and long range interactions, defining different level of 

interactions. Nodes and interactions in the networks were annotated with a weight 

derived from data provided by RING. In this case we only used residue conservation 

and the type of chemical bond between amino acids (e.g. hydrogen bond, van-der-Waals 

interaction, ionic bond). It is interesting to note that a priori information can be 

introduced in the network simply by adding or removing node or edge weights (Fig. 
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9.1). We exploited this feature by adding scores for certain nodes known to represent 

crucial structural or functional residues. Finally, the measure of relevant nodes was 

calculated by the page rank algorithm, which relies on a hidden Markov model. 

 
Figure 0.1. Schematic representation of a residue interaction network.  
Nodes and edges have a weight. 
 

From page rank we obtain a value for each amino acid, which is used to build a vector 

describing the impact of each node on the overall graph. Comparison of the wild-type 

network vector to that of the mutant network is performed by Euclidean distance, 

providing an index of divergence for the two networks. Clearly, the more similar the 

networks, the smaller the final difference will be. The submission resulting from this 

approach was called metric. Another approach was adopted to classify the mutant 

proteins against a set of known rescue mutants using a k-nearest neighbour algorithm 

(K-NN) (Fig. 9.2).  

 
Figure 0.2. Scheme of the two methods used to identify p53 rescue mutants. 



9. Critical Assessment of Genome Interpretation 

175 

Training set 

Overall, the training dataset contains 16,772 mutants. For each of these the activity of 

the p53 protein is known. The experimental assay used a previously described yeast 

system where cell growth is proportional to p53 activity [408]. The training dataset 

represents an exhaustive single-point mutagenesis experiment of the entire core domain 

of p53 for the following p53 cancer mutations: R175H, R273H, and G245S. 

Additionally, regional saturation mutagenesis of the following p53 cancer mutations are 

included: H179R, P151S, R280T, P278L, R248L, R273L, R249S, P152L, and R158L. 

While these mutations comprise most of the dataset, several hundred examples for other 

p53 cancer mutants are included. 

 

9.1.2. Results and discussion 

Structural effects of four tested cancer mutations 

The analysis of four cancer mutants was made by visual inspection of the mutant model 

and by residue interaction network. The aim of this analysis was to identify the possible 

mechanisms which could restore activity of these mutations. Modeled mutant proteins 

were built from the wild-type p53 core domain structure (PDB:1TSR). Each mutant 

model was used as input to build the corresponding residue interaction network. In 

order to identify changes on residue interactions, the mutant and wild-type RINs were 

compared. This helped in defining the molecular mechanisms altering p53 function for 

each mutant (Fig. 9.3). For two of these mutants, R282W and Y220C, a crystal structure 

has been determined. Here, we could test the accuracy of RIN analysis on the 

identification of structural changes.  

The crystal structure of the R282W mutation has been obtained by Joerger and 

colleagues [405], introducing the mutation into a stabilized variant of p53 core domain 

(T-p53C). The structure revealed the role of Arg282 in maintaining the conformation of 

the loop-sheet-helix motif which makes contact with DNA. Comparing the RIN of 

R282W with that of the wild-type we identified the loss of several strong interactions 

with residues Thr125, Tyr126, and Ser127 in strand S2, Phe134 in strand S2’, and 

Glu286 in helix H2. All of these interactions are important for the correct packing of the 

loop-sheet-helix motif. 
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The same authors determined the crystal structure of Y220C, the most common 

mutation mapping far from the DNA binding surface creating a solvent accessibility 

cleft in the β-sandwich [405]. Tyr220 maps at the beginning of the loop connecting β-

strands S7 and S8 and. Even if it maintains the H-bond with Thr155, its substitution 

causes the loss of several favorable van-der-Waals interactions with residues Val147 

and Thr150 in the loop connecting β-strands S3 and S4, and Thr230 Pro223 in the loop 

S7-S8. These findings suggest that while the overall topology of the core domain is 

maintained, this mutation has a destabilizing effect resulting from the loss of 

hydrophobic interactions. The change in the surface was also visible with the visual 

inspection of the mutant model surface. 

The R248Q mutation we had to predict rescue mutations for is classified as a DNA-

contact mutant. This class of mutations inactivate p53 replacing residues that form 

direct contact with DNA without affecting positioning of the neighboring residues. Here, 

the RIN analysis indeed fails to identify any changes in interactions.  

Finally, the other mutant M237I maps at the beginning of loop L3 near the DNA 

binding surface. Even if the RIN analysis did not identify any changes in the residue 

interaction network, it helped to define the possible effects of this mutations for which a 

crystal structure is not available. In this case, we observed that the residue Met237, 

close to Cys238 in L3, forms an interaction with Asn239. It is then possible to 

hypothesize its role on the correct positioning of loops L3 and L2 maintained by zinc 

ion coordination. The introduction of Isoleucine at that position, rather than loss of 

interactions should cause a structural distortion that may directly interfere with zinc 

binding. The other variant known to have similar effects is R175H. Arg175 protrudes 

between loops L2 and L3 forming hydrogen bonds with Pro191 and Met237 and a salt 

bridge with Asp184. Several mutants of this residue position have been experimentally 

investigated and show different functional effects. It seems that the introduction of 

bulky residues has a strong impact on p53 function, while R175A, R175C, and R175L 

mutants have reduced or similar activity to that of the wild-type [397]. 



9. Critical Assessment of Genome Interpretation 

177 

 
Figure 0.3. The four p53 cancer mutations.  
The mutations for which we have to predict rescue mutants are mapped on the crystal structure of the 
DNA binding domain of p53 protein (PDB code: 1TSR). 
 

Prediction results 

For this challenge we submitted two different predictions using different scoring 

functions, metric and K-NN, to calculate rescue mutant probability. Furthermore, we 

submitted a random prediction with the 100 side die. For the two predictions, a 

threshold was chosen in order to obtain 560 and 1287 rescue mutants, which represent 

~4% and ~8% of the total putative rescue mutants, respectively. The results for each 

cancer mutant are summarized in Figure 9.4, which represents only an extrapolation of 

the data. In these graphs I want to indicate the sum of the probabilities assigned for each 

mutant at a specific position. It is possible to note that probabilities are not sparsely 

distributed, instead there is a common tendency of some sequence regions to have high 

or low probability to contain rescue mutants. This result was also obtained by the MIP 

active learning approach adopted by Danziger and colleagues, which identified regions 

of p53 sequence containing the best number of known rescue mutants [410]. 
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Experimental results 

After the prediction season was over, the organizers released experimentally determined 

rescue mutants for the four cancer mutants: M237I is rescued by L137R, R175A, 

R175P, R175S, R175V, and R175T; R282W is rescued by F212G; Y220C is rescued by 

L137R. R248Q does not have any rescue mutants. For these positions, our prediction 

method gave low probabilities to be rescue mutants, with values ranging  from 0,3 to 

0,39.  

Observing the graphs in Figure 9.4, it is possible to note that for the R248Q cancer 

mutation we obtained generally low probability values to have rescue mutations. In the 

other cases, the real rescue mutants mapped in regions that seem to have a higher 

probability to contain rescue mutants for one of the two methods used. For M237I the 

rescue mutants located in two regions of high restoring probability calculated by the K-

NN approach, while for the metric calculation they are positioned in regions with lower 

values. The same has been also observed for the Y220C mutation. This can be 

interpreted on the basis of the difference in the two approaches we adopted. The metric 

calculation finds similarity with wild-type proteins, while K-NN calculates the 

similarity of the rescue mutants to another which was experimentally determined. These 

observations suggest that to improve the performance of the method, it is important to 

evaluate each class of cancer mutants separately with a specific class of known rescue 

mutations. As I described before, the four cancer mutants for which we have to predict 

rescue mutants indeed determine different structural impacts on the p53 core domain. 
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Figure 0.4. Probability to contain rescue mutants for p53 sequence.  
The value reported in the y-axis is the sum of probabilities and those in the x-axis the position in the p53 
amino acid sequence. For each position of the sequence, several rescue mutants corresponding to all 
possible amino acid substitution have been obtained and tested. The orange bar indicates the position of 
experimentally determine rescue mutants.  
 

Comparison with other participating groups 

Five groups participated in this competition. Some groups used methods previously 

developed to evaluate the pathogenicity of missense mutations. Others used information 

derived from multiple sequence alignment, and the method which had the best 

prediction used structure features to calculate free energy changes caused by mutations. 

However, also for this group the identified rescue mutants were distant from the mutant 

with higher restoring probability, being near the 1,000th position in the list. However, 

these results confirm that stability is an important feature in the molecular mechanisms 

involved in p53 mutant reactivation, but also that this challenge is very hard to solve. It 

is interesting to note that the best group reported to avoid conserved positions from the 

evaluation, considering the great impact on structure and function due to mutations at 
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these positions. This was also considered in our method where Arg175 was weighed to 

have a low probability to restore p53 activity given its role in DNA contacts and 

stability of the protein. 

 

9.2. RAD50 variants in breast cancer patients and 
controls 
 

Mutations in the RAD50 gene confer increased risk of breast cancer [412-413]. RAD50 

is a DNA repair protein of 1,312 amino acids, which in complex with Mre11 protein 

forms an ATP dependent molecular clamp in DNA double-strand break repair. This 

evolutionary conserved complex has a relevant role in several processes emerging from 

DNA breaks including meiotic recombination, non-homologous end joining, telomere 

maintenance, and DNA damage checkpoint activation. Defects on these processes may 

lead to an accumulation of mutations and increased instability of the genome which are 

conditions predisposing to cancer development [414].  

This CAGI challenge was to predict the probability of RAD50 variants to occur in a 

individual with breast cancer. RAD50 was sequenced in about 1,400 breast cancer cases 

and 1,200 healthy controls, allowing the identification of 69 variants including 5 

truncating mutations, 33 variants leading to amino acid changes, 15 silent mutations, 

and 14 variants mapping to intronic regions of the gene. While some of these are novel 

variants, many other variants have been previously identified and are present in the 

specific database for single nucleotide polymorphisms.  

RAD50 proteins 

The protein contains two ABC ATPase or P-loop hydrolase domains at the N and C 

terminal ends, which have 50% sequence identity with yeast Rad50. Structural 

information for proteins of this family can be derived from partial RAD50 structures in 

several organisms. The most divergent central domain forms an extended coiled coil 

structure containing a Zinc-hook motif. RAD50 forms a dimer, where the N- and C-

termini assemble into a single ABC domain linked to an antiparallel coiled coil. The 

coiled coil kinks back in the middle exposing the Zinc-hook motif (Fig. 9.5). In all 
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organisms studied, RAD50 forms a heterotetramer with Mre11. The architecture of this 

complex looks like a clamp with bipolar structure with two long tails and a globular 

head formed by the RAD50 ABC ATPase domains interacting with the Mre11 dimer. 

The two tails are locked together by the Zinc-hook domains [415]. Crystal structures of 

the globular head have been determined in several organisms, but the coiled coil 

structure was revealed only by atomic force microscopy [416]. The relevance of this 

long coiled coil structure was demonstrated both for the formation of the Mre11 

complex and the sister chromatid interactions ([415, 417]. In contrast to its hydrophilic 

nature, the coiled coil segment contains a conserved hydrophobic surface path 

corresponding to the binding site of the Mre11 protein [415]. 

 

 
 
Figure 0.5. Rad50 antiparallel homodimer.  
The N- and C-termini assemble into a single ABC domain linked to an antiparallel coiled coil. 
 

Case-control mutation screening 

Recently, two studies reported the assessment of variants identified in candidate genes 

conferring an intermediate-risk of breast cancer, CHEK2 and ATM [35, 418]. The 

developed methods consist in ranking of the variants, usually missense substitutions, in 

a scale from least to most likely to be evolutionarily deleterious. The variants were 

scored using common mutation prediction methods such as SIFT, Polyphen and 

AlignGVGD. Finally, the frequency distribution of different classes of missense 

substitutions were compared in the cases versus controls in order to identify specific 
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trends. They found that truncating variants in ATM and CHECK2 have respectively a 

modest or moderate probability to confer a risk of cancer. Furthermore, the risk was 

also associated to rare, evolutionarily unlikely CHEK2 missense substitutions [35]. 

Strong or moderate statistical evidence was indeed found for rare missense substitutions 

in the ATM and CHEK2 genes, respectively. In particular, a stronge evidence was 

observed when the analysis of missense substitutions was focused on ATM key 

functional domains [418]. 

9.2.1. Method 

We assumed that the probability of variants occurring in a case individual is 

proportional to its degree of deleteriousness. Thus, we classified the variants on the 

basis of their functional effects using different approaches on the basis of the mutation 

type: truncating, missense substitution, silent variant, and intronic variant.  

Many computational methods are available that predict the pathogenicity of missense 

variants, but the performance of these is variable. Thus, we decide to use a combination 

of these methods to see the agreement between them and exclude ambiguous 

predictions. Since we had to make several predictions, we chose methods for which the 

program was available for local installation. This makes the job submissions fast and 

automatable. We predicted the functional impact of the 35 missense substitutions by a 

combination of five computational methods using only sequence information: PHDSNP 

(using only sequence information), PHD-SNP (using MSA information) [181], I-Mutant 

[190], Mupro [187], and ParePro [419]. After getting predictions from the different 

methods, we classified variants in two main classes: deleterious and neutral. The 

probability of a mutation to be associated with breast cancer was calculated using 

different scoring functions, majority vote or weighed sum. Each method gives a specific 

value for prediction, which were translated to -1 and +1 if the final prediction was 

deleterious or neutral, respectively. A simple sum of these indices indicates the overall 

tendency of a variant to be predicted as deleterious or not by different methods. This 

scoring function was named majority vote. The negative majority vote indicates that a 

variant is predicted as deleterious. In some cases we weighed the index by a factor 

depending on the performance of the methods in the data training set. This method was 

called weighed sum. Another prediction was made arbitrarily considering information 
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derived from structural/functional analysis of the RAD50 protein: the position of the 

variants in a specific domain, degree of conservation, solvent accessibility value, 

presence in the dbSNP database, and frequency in the general population. 

Silent substitutions and intronic variants were analyzed by two computational methods 

for the prediction of splice sites: BDGP (http://www.fruitfly.org/seq_tools/splice.html) 

and NetGene2 [420] (http://www.cbs.dtu.dk/services/NetGene2/). The 15 silent 

substitutions were also investigated by ESEFinder [421] (http://rulai.cshl.edu/cgi-

bin/tools/ESE3/) in order to predict the possible alteration of splicing due to alteration 

of exonic splicing enhancers (ESEs). 

 

9.2.2. Results and Discussion 

Structural analysis of human RAD50 

The domain organization of human RAD50 protein was defined using PFAM. An 

alignment between the sequence of human RAD50 and its orthologs allowed 

identification of the domain boundaries. The sequence conservation for the two P-loop 

domains indicates two residues ranges: residues 1-220 and 1109-1300 (Fig. 9.6). From 

PFAM the Zinc-hook domain mapped to residue 635-734 with the conserved CxxC 

motif from residue 681 to 684. In order to understand the structural relevance of some 

sequence regions, the human RAD50 sequence was also aligned with the sequence of 

Escherichia coli Rad50 for which a crystal structure has been determined (PDBcode 

3QG5). They share 24% sequence identity with conservation only in the two P-loop 

domains from residue 1 to 178 and 1065 to 1292.  

 

Prediction results 

The sequence alignment of RAD50 and their orthologs was used as input for Consurf 

analysis, which allowed to classify variants based on their conservation score. Based on 

the MSA, the server also uses a neural network prediction scheme [422] to annotates 

residues as exposed (e) or buried (b) (Fig. 9.6). In order to collect frequency data for 

each variants, the dbSNP database was interrogated. Among the 69 variants, 24 were 

present in this database and, for 15 of these, a frequency in the general population was 

available. Among the 35 missense mutations, five occur at the N-terminal P-loop 
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hydrolase domain, three at the C- terminal P-loop hydrolase domain, three at the Zinc-

hook domain, and only one at the C-terminal tail. The other 23 variants map on the 

coiled coil region. Missense variants mapping on the structured functional domains 

have been considered to yield a major impact on the protein function and are thus 

thought likely to be more frequent in case individuals. Seven missense substitutions 

mapping to the coiled coil region have been predicted as pathogenic for their 

unexpected high degree of conservation and for the biochemical properties of the 

substituted residue. The amphiphilic nature of the coiled coil structure allowed to 

observe a conserved pattern of hydrophobic and hydrophilic residues. If the substitution 

changes this pattern, the mutation was therefore considered to alter the proper coiled 

coil structure important for correct complex formation and chromatid interaction.  

 
Figure 0.6. Consurf results for the RAD50 sequence. 
 

Among silent variants, three were predicted to alter the pattern of splicing factors 

binding sites in the coding sequence. One of the three potentially pathogenic variants 
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was a novel alteration. Only one of the intronic variants was reported in dbSNP, but the 

frequency in the normal population was not calculated. At least one of the two methods 

predicted an alteration on splice site recognition for 9 of the 14 intronic variants. Most 

of the potentially deleterious nucleotide substitutions occur at the conserved positions of 

the splice site consensus sequence. For three of these the probability of occurrence in 

case individuals reaches the value of nonsense or frame shift mutations, since splicing 

alteration may lead the production of truncating proteins. We were not able to predict 

any protective variant since known protective RAD50 variants were not available for 

evaluation. For this purpose we used the 100 sided die as the only prediction method.   

 

Comparison with other participant groups 

The CAGI organizers provided results for each RAD50 gene variant on the basis of 

their frequency calculated in a population of 1,400 breast cancer cases and 1,200 

healthy controls. However, the frequencies for many variants were very low, often with 

only one individual carrying the mutation. Figure 9.7 reports the assessment of the 

participating groups considering three different groups of variants: all rare variants, only 

missense variants, and only missense substitutions mapping on the protein functional 

domains. The best prediction has been obtained by  the group using a consensus of 

prediction methods (PON-P). The best prediction from our group (Expert+4 predictors 

in Fig. 9.7) combines the four prediction methods with the manual prediction based on 

the structural functional analysis of the RAD50 protein. However, for truncating 

variants pathogenicity prediction remains difficult. These results highlighted that the 

most damaging mutations map on the P-loop hydrolase and Zinc-hook domains. About 

half of the groups predicted well the effect of these mutations.  
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Figure 0.7. Assessement of predictions submitted for the RAD50 challenge.  
Prediction from uniPadova are labeled in blue. The three tables refer to three different groups of variants: 
all rare variants, only missense variants, and only missense substitutions mapping on the protein 
functional domains. (Figures provided by CAGI assessor ean V. Tavtigian) 



9. Critical Assessment of Genome Interpretation 

187 

9.3. Novel Nav1.5 channel mutations associated with 
Brugada Syndrome  
 

Mutations in SCN5A gene coding for Nav1.5 channel appear to be the genetic cause for 

an estimated 15% to 30% of Brugada Syndrome (BrS) (MIM: 601144) [423]. Mutations 

in this gene have further been linked with various other pathological conditions 

including long QT syndrome subtype 3 (LQT3) (MIM: 603830), and cardiac conduction 

disease (CCD) (MIM: 113900). To date, several other genes encoding channels have 

been associated to BrS or proposed as risk factors, but the mutations on SCN5A 

represent the major contribution. The Nav1.5 isoform is the predominant subunit in the 

heart and is involved in excitability of arterial and ventricular cardiomyocytes and 

propagation of impulses through a specific conduction system [424]. The syndrome is 

characterized by syncope and sudden cardiac death resulting from ventricular tachy-

arrhythmias and a right pre-cordial ST segment elevation in the ECG. Many patients 

remain asymptomatic but the disease manifests at young age, with higher prevalence in 

men. The characteristic physiological alterations originate from an impaired function of 

the Nav1.5 channel. The functional characterization of mutant channels using the patch-

clamp technique revealed how mutations associated to BrS lead to loss of Na+ current 

through several mechanisms. In contrast, mutations in SCN5A associated to LQT3 

syndrome cause an increased persistent sodium current. However, defining a genotype-

phenotype relationship is still difficult, since some identical mutations result in non-

functional or hyperactive channels, depending on the genetic background of the 

individual host. Furthermore, after the spread of available genetic tests for BrS, a 

significant percentage of rare SCN5A variants have been also identified in a control 

population (2% in healthy Caucasian, 5% in healthy non white subjects) [423]. Melvin 

Scheinman’s group at Department of Medicine, University of California San Francisco, 

identified three novel mutations in the SCN5A gene in two independent families with 

BrS and investigated the function of these Nav1.5 mutant channels. The CAGI 

challenge was to predict the effect of the mutations on Nav1.5 function, in particular in 

terms of current density. 
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The Nav1.5 protein channel 

The Nav1.5 α-subunit is part of the voltage-gated cardiac sodium channel involved in 

the initiation and conduction of the action potential (AP). The structure of the Na+ 

voltage dependent channel is unknown but recently the three-dimensional structure of 

NavAb from Arcobacter butzleri, a probable ancestor of the vertebrate Nav channels, 

has been determined [425]. The human family of voltage-gated channels includes nine 

genes, SCN1A-SCN11A, with about 50% of sequence identity which share a common 

architecture composed of four homologous transmembrane domains DI-DIV linked by 

intracellular loops (IDLs). Among the six transmembrane segments (S1-S6) composing 

each domain, the S4 segment has a relevant role in the activation of the channel, while 

segments S6 and S5 together with their connecting loops (P loops) form the pore 

channel. The activation state is coupled with a mechanism of inactivation which 

involves the inactivation gate formed by the DIII-DIV linker (Fig. 9.8) [426]. 

 

 
Figure 0.8. Domain organization of SCN5A.  
P loops are indicated in green; S4 segments (in pink) are crucial for channel activation; tested mutations 
are represented as red balls. 
 

Mechanisms of altered Nav1.5 function in BrS 

Many mutants channels have been experimentally investigated for their ability to 

conduct Na+ flux compared to wild type channels. Four distinct loss of function 

mechanisms have been proposed: i) production of a non-functional channel, creating 

haploinsufficiency, ii) negative or positive steady state inactivation of the channel, iii) 

accelerated inactivation, iiii) enhanced intermediate or slow inactivation. Mutations in 

SCN5A result in channel proteins with reduced or no Na+ current for two possible 

causes. Either through impaired intracellular trafficking of the ion channel to the plasma 
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membrane, thereby reducing membrane surface channel expression, or through altered 

gating properties of the channel. All non-frame or frame-shift mutations are predicted to 

produce a truncated non-functional channel. Among missense mutations we can 

distinguish between mutant channels causing protein unfolding, retained in the 

endoplasmic reticulum for degradation, and others reaching the membrane but 

exhibiting reduced activity.  

Although BS mutations seem to be sparsely distributed across the entire Nav1.5 

sequence, their incidence is higher in transmembrane and in pore-forming parts, such as 

segments S5 and S6 and the interconnecting P-loops. This suggests that non-functional 

channels could be caused by pore-localizing missense variants [423-424]. Kapplinger 

and colleagues performed a retrospective analysis of the BrS mutations databases from 

nine different centers and compared mutation frequency, type, and localization among 

cases and 1,300 healthy controls from diverse ethnic origins. They found that 50% of 

the rare unique variants identified in healthy controls localized in two linker domains 

DI-DII and DII-DIII, suggesting that some of the possible pathogenic rare mutations 

identified in BrS patients could be false positives.  

 

Mechanisms of altered Nav1.5 function in LQT3 

Mutations of the SCN5A gene are also associated to another inherited cardiac disorder 

named long QT syndrome (LQT3). The disease is characterized by prolonged 

ventricular repolarization predisposing to ventricular arrhythmias, and sudden cardiac 

death. Most of the mutations linked to LQT3 syndrome resulted in defects of the 

inactivation gating of the channels, which show an increased persistent Na+ current 

during the AP plateau. The conduction of Na+ ions at depolarized membrane potential 

prolongs the AP duration see as an increased QT-interval on the ECG [427].  In contrast 

to BrS, LQT3 mutations have not been found in the P loops (S5/S6 linker), while the 

incidence is higher in S1/S2, S3/S4 and intracellular linkers. Mutations in 

transmembrane regions are also reported except for segment S1 of each domain and all 

segments of the domain DII [424].  
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9.3.1. Method 

For this challenge we had to predict the impact of the three mutations, R620H, R811H, 

and S1218I, on the current density conducted by the resulting channel proteins. First of 

all, we classified the variants on the basis of their deleteriousness. We predicted the 

functional impact of the three mutations by a combination of five computational 

methods using only sequence information: PHD-SNP (version using sequence 

information), PHD-SNP (version using MSA information), I-Mutant, Mupro, and 

ParePro. Two different approaches were used to estimate the percentage of current 

density reduction for each mutant compared to the wild type channel. The first 

prediction was made using the mutation impact index obtained by the majority voting of 

the used methods. Another approach attempted to predict the functionality of the 

channel on the basis of the mutation position on the diverse channel domains. We 

distinguished between variants associated to BrS which cause reduced or no Na+ 

current and LQT3 mutations that instead showed unchanged current density. The third 

prediction was made by the 100 sided die. 

 

9.3.2. Results and Discussion 

The domain organization of the Nav1.5 protein channel was defined according to the 

Pfam classification. A topology diagram of the protein is reported in Figure 9.8. This 

allowed the mapping of the three tested mutations. It seems that the R620H mutation 

localizes in the intracellular DI-DII linker, while R811H and S1218I map on 

transmembrane regions of the protein. The estimate of the current density was 

calculated considering the position of the variants. In particular, R811H is one of the 

positively charged residues that move following the depolarization and initiate opening 

of the pore channel [425]. This mutation is thought to be likely deleterious for the 

activation of the channel and thus probably impact the current flux. All the three 

residues are conserved. R620H in the DI-DII linker should have an higher probability to 

cause no changes in their current flux since many rare variants have been found in this 

domain in healthy controls. Furthermore, LQT3 mutations showing no changes in 

current density have high incidence in intracellular linkers. The third mutation S1218I is 
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located in the segment S1 of the domain DIII (Fig. 9.8). Interesting to note, in segments 

S1 of each domain no mutations associated to LQT3 have been found. Thus, it has a 

positive probability to have a reduction in current density such as other BrS mutations. 

As the range of reduction in current density was from 0 to 100%, we used only three 

changes: 0%, 50%, and 100%. The established values are reported in Table 9.1 

including results from computational methods and from the 100 side die random 

prediction. The consensus of computational methods predicted as deleterious R811H 

and S1218I mutations, while R620H has been predicted for the most of the methods 

having no functional effect on the protein. These predictions agree with those derived 

from the structural/functional analysis of the protein. 

 

Mutation Experimental Consensus Manual Random 

c.1859G>A  

R620H 
100 10 0 48.98 

c.2432G>A  

R811H 
0 100 50 57.69 

c.3653G>T  

S1218I 
50 50 50 5 

 
Table 0.1. Experimental and prediction results for SCN5A mutations. 
 

Experimental results 

Experimental results of the current density change for each of the three variants 

revealed that R620H has the largest impact on protein function, completely blocking the 

ion current through the channel. The S1218 mutant showed a reduced activity. 

Surprisingly, the R811H mutation, which alters one of the charged residues initiating 

pore channel opening, seems to maintain the total current density. The predictions for 

this competition have not been assessed at the CAGI meeting and we thus do not know 

the explanation for these results. 
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9.4. Distinguishing exomes of Crohn’s disease patients 
from healthy individuals 
 

Crohn’s disease, like ulcerative colitis, is a form of inflammatory bowel disease (IBD, 

MIM 266600) characterized by a chronic inflammation of the gastrointestinal tract. The 

disease affects people with an incidence of 1 in 250, but the etiology is still unknown. 

IBDs are multifactorial diseases where genetic, environmental, and immunological 

factors all contribute to the establishment of the pathological condition. The hypothesis 

is that a pathological inflammatory response arouses from an unknown pathogen or 

from the normal bowel flora within a genetically susceptible individual. The present 

challenge aimed to predict the probability of an individual to have Crohn’s disease or to 

be healthy starting from the exome sequences.  

 

Molecular mechanisms involved in Crohn’s disease 

Genome-wide genotyping with high-throughput approaches allowed the identification 

of associations between about 1,300 loci and 200 diseases or traits [3]. The genotyping 

is performed by measuring the differences of allele frequencies in case and control 

individuals throughout the genome. Since the associated alleles contain information 

about the molecular processes modulating risk to disease, the challenge is therefore to 

identify the disease-causing pathways that may be targeted for diagnostics and 

therapeutic drug discovery. Recent genome-wide and candidate gene association studies 

have identified 71 susceptibility loci for Crohn’s disease [428]. It is interesting to note 

that many of the loci identified were also associated to other complex diseases. Thus, it 

is emerging that chronic inflammatory disorders and autoimmune diseases (ankylosis 

spondylitis, rheumatoid arthritis, systemic lupus erythematosus), probably share genetic 

risk factors which influence common pathways. Usually, the connection between a 

specific gene and the pathogenic mechanism is implicated by its proximity to a disease-

associated locus, or by its appropriate biological function. The functional annotation of 

genes mapping to Crohn’s disease-associated loci suggests that pathogenic mechanisms 

involve diverse pathways that are in a delicate balance including modulation of T cell 

and other immune pathways, regulatory functions in self tolerance, and infection 
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defense functions. Several candidate genes mapping in loci associated both to Crohn’s 

disease and ulcerative colitis are involved in the IL23 pathway (JAK2, STAT3, IL12B, 

and PTPN2) [429]. The role of Interleukin-23, which is the central protein in this 

pathway, has been well established in expanding and maintaining T-cells (Th17 cell) 

involved in antimicrobial immune response which contribute to autoimmunity and 

tissue inflammation [430]. Another pathway operating in IBD inflammatory response 

involves TNF signaling which includes NF-kB activation. RANKL is a TNF-related 

cytokine which activates osteoclast differentiation. Its association discovery was 

relevant to explain the osteoporosis clinically associated with Crohn’s disease [431]. 

Studying the relationship between genome and transcriptome (eQTL analysis), it seems 

that regulatory effects are common mechanisms of disease susceptibility. Alterations in 

DNMT3A activity, a key mediator of epigenetic regulation and regulator of TNF-α, 

have been associated to Crohn’s disease [428]. The connections between genes mapping 

to the 71 Crohn’s disease associated loci have been investigated by the Gene 

Relationships Across Implicated Loci (GRAIL) approach [432], which identifies 

correlations between genes based on descriptive features that delineate the underlying 

pathogenic mechanisms. The candidate genes among the associated loci seem to be non-

randomly correlated, but instead an evidence-based connectivity has been predicted 

[428]. 

Like Mendelian diseases, there is a growing realization that pathogenic processes could 

be identified investigating the protein-protein interaction network of the causal genes. 

Especially for rheumatoid arthritis and Crohn’s disease,  it has been demonstrated that 

proteins encoded by disease associated loci are interacting, suggesting that common risk 

variants may act in a set of proteins involved in the same biological processes [433]. 

The authors also found proteins known to interact directly linked by common 

interactors expressed in the same tissue as associated proteins and mapping in genomic 

regions with significant association. This further suggested that common interactors 

may carry risk variants [433]. 

 
Computational Approaches for rare variant identification in complex disease 

Identifying the associated SNPs is relatively easy, but mapping them to the underlying 

rare causal variants (that is, with a minor allele frequency (MAF) <1%) that functionally 
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influence the disease risk is the next challenge. Recently, several examples where high-

throughput sequencing of genomes allowed identification of rare mutations in genes 

located near common alleles associated to complex diseases were reported in the 

literature [9]. In particular, Momozawa and colleagues identified rare variants in the 

IL23 gene which have a protective role for Crohn’s disease [434]. First, it is assumed 

that the causal variant must be closely correlated and in linkage-disequilibrium with 

associated variants. It is the rare variant that further explains most of the association 

evidence. Rare causal variants may include those more likely to be deleterious and, 

therefore, causing large functional effects that could be easily observed to gain insight 

on the pathogenic disease mechanism [9]. In addition, the existence of multiple causal 

variants have to be considered.  

So far, studies aimed to discover rare variants associated to complex diseases have been 

limited to re-sequencing of candidate genes or genomic regions identified by linkage 

analysis of genome wide association studies. Exome sequencing has been used in 

conjunction with sampling strategies based on comparing variants found in distantly 

related individuals from a family or searching for de novo variant in families where 

only the offspring is affected [435]. Another strategy to identify novel candidate alleles 

used the sequence of individuals with extreme phenotypes in which the frequency of 

associated SNPs are more frequent. Furthermore, with reducing costs of exome 

sequencing and available control exomes, the identification of rare variants by 

comparing case-control populations is a promising approach. The difficult task however 

is to detect the association between rare variants and a specific trait. For this end, some 

methods assessing the role of each variant alone or in concert with others located in a 

gene or in multiple genes have been developed. A simple test named “burden test” 

evaluates the distribution of rare variants in a gene of case individuals compared to 

control individuals (Fig. 9.9) [436]. If a rare variant is enriched in a candidate gene it 

might play a role in disease pathogenesis. Some methods use multivariate analysis of 

variants, incorporating a priori information of the functional impact of the variants, gene 

function, and involved pathway [437]. To enhance the power of association tests, a 

good approach is to consider only variants more likely to be deleterious, those occurring 

in conserved positions or predicted to have large functional effects. 
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Figure 0.9. Rare missense variants enriched in candidate genes.  
 

9.4.1. Method 

Our approach consists of three main steps: (1) filtering the genome data, (2) compiling 

extended lists of putative disease-related genes and (3) deriving probabilities for disease 

phenotypes (Fig. 9.10). The first step is to apply discrete filtering to reduce the number 

of candidate genes to a set of high-priority candidates. For this goal we used a recently 

developed software, ANNOVAR, resulting in a list of about 20 genes per patient 

containing novel putative causal variants occurring in indispensable genes at conserved 

positions. ANNOVAR removes polymorphisms found in a reference database (e.g. 

1000 genomes project) and performs a first stratification of candidate alleles on the 

basis of their predicted impact or deleteriousness using SIFT [438].  

For each trait we had to predict, we compiled a list of genes known to be associated to 

the same or similar phenotypes from OMIM. In particular, for complex traits we 

included PheGenI (http://www.ncbi.nlm.nih.gov/gap/PheGenI), a phenotype-oriented 

 

Candidate gene

Cases chromosomes

Controls chromosomes 
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resource, to collect data from genome-wide association study (GWAS). By comparing 

the list of candidate genes from ANNOVAR with the list of associated genes, we 

assessed only rare variants that have been found on candidate genes or in genomic 

regions identified by GWAS. Candidate alleles were additionally prioritized by existing 

biological or functional information about a gene. For complex diseases such as 

rheumatoid arthritis and Crohn’s disease, there is evidence that common genetic 

associations implicate regions encoding physically interacting proteins [433]. The 

candidate gene list from ANNOVAR was therefore virtually expanded using STRING 

[161], a protein-protein interaction database, to obtain a list of candidate gene 

interactors. This second list was compared with the list of disease-associated genes to 

find a functional or physical relationship of candidate genes to the latter (Fig. 9.10). 

Finally, the assessment of associations between an individual and a phenotype was 

performed analyzing the collective effects of rare variants across one or multiple genes. 

Prior evidence about variants (e.g. known pathogenic mutations) and their severity 

(missense, frameshift or stop-gain) were incorporated into a probabilistic score taking 

into account the known genes and their interactors (Fig. 9.10).  

 
ANNOVAR 

ANNOVAR is a tool to annotate variants identified by high-throughput sequencing 

technology [438]. Single nucleotide polymorphisms (SNPs) are identified as silent 

substitution, missense, stop-gain, stop-loss, or frameshift variant with further annotation 

based on several databases. ANNOVAR identifies variants in specific genomic regions, 

such as those recovered from GWAS for complex diseases or loci specific for 

Mendelian disease. A useful ANNOVAR option is the filter based annotation protocol 

removing variants less likely to be pathogenic, such as synonymous substitutions or 

variants with a low conservation score. This protocol also helps the reduction of 

variants to analyze filtering those present in dbSNP or observed in the 1000 Genome 

Project, which are less likely to be rare disease variants. The output consist of a list of 

candidate genes carrying the most likely causal variants. The software can run in a 

modern PC (3GHz Intel Xeon CPU, 8Gb memory) and it takes only 15 minutes to 

perform the full variant reduction protocol for an exome. 
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PheGenI 

The Phenotype-Genotype Integrator (PheGenI,  

http://www.ncbi.nlm.nih.gov/gap/PheGenI) is a web interface provided by NCBI to 

search results from genome-wide association study (GWAS) results associated to a 

target phenotype. The tool integrates data from the NHGRI GWAS catalogue with 

several databases hosting at the NCBI. In addition to phenotype-genotype associations 

extracted from NHGRI, it contains data submitted to the database of Genotype and 

Phenotype (dbGaP) at NCBI. PheGenI provides a list of phenotypes or traits reported in 

the MeSH nomenclature, but the list is incomplete at the moment. The output gives a 

list of genes identified by GWAS studies with a graphical view of their genomic 

position and their associated OMIM entries. The results could be download also as list 

of SNPs complete with genomic location, functional class, and validation status, e.g. 

those reported by the 1000 Genomes Project or HapMap. 

 
Figure 0.10. Schematic representation of the variant annotation protocol. 
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9.4.2. Results and Discussion 

The data provided by CAGI consisted in exome sequences from 56 individuals with the 

challenge being to predict the probability of each individual to have Crohn’s disease. 

Variants detected by exome sequencing were annotated using ANNOVAR and each 

individual presented about 3.5-4.1 million SNVs. The variant reduction protocol of 

ANNOVAR allowed us to obtain a subset of candidate genes containing potential 

causal variants for each individual. Comparing the lists of candidate genes obtained 

from ANNOVAR with the list of candidate genes associated to Crohn’s disease from 

GWAS or OMIM, we observed only 3 individuals (PGP2, PGP23 and PGP53) with 

potential causal variants (SLC37A4, NOD2, and CNTNAP2) (Table 9.2). These 

variants were p.A1006P and p.L1007P in NOD2, p.R377X and p.R126Q in SLC37A4, 

p.T589P and p.H764P in CNTNAP2. We validated the possible involvement of these 

variants by checking the literature for information on their association with Crohn’s 

disease. Mutations in the LRR domain of the NOD2 gene are implicated in Crohn’s 

disease [439], while mutations in the neuronal apoptosis inhibitor (NACHT) nucleotide 

binding domain are involved in Blau syndrome [440]. Mutations in SLC37A4, which 

are not in the GWAS list, are reported in glycogen storage disease 1B (GSD1B). This is 

a disorder characterized by recurrent infections and neutropenia. In patients with 

GSD1B, chronic inflammatory bowel disease (IBD, MIM 266600) appears to be a 

consequence of leucocyte abnormality [441]. The CNTNAP2 gene encodes for 

Contactin-associated protein-like 2 and was associated to Crohn’s disease by GWAS 

studies. Genetic variation in this gene is the cause of cortical dysplasia-focal epilepsy 

syndrome (MIM: 610042) and influences susceptibility to autism type 15 (MIM 

612100). The others 53 individuals carry variants in genes that are not found to be 

related with Crohn’s disease.  

Since we suppose that other genes may be involved in the pathogenesis of the disease, 

candidate genes identified by ANNOVAR could have some relationship with genes 

identified by GWAS. Thus, we selected genes from the ANNOVAR list interacting with 

genes known to be related with Crohn’s disease. We found causal variants in about 300 

genes interacting with Crohn-related proteins, but only 40 genes were mutated in at 

least three individuals. Our hypothesis was that patients with Crohn’s disease should 
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display variants in the same gene. The objective thus was to cluster individuals in 

groups of patients having disease causal variants in the same gene or in a combination 

of genes. The list of interactors was retrieved from STRING, which scores the relevance 

of interactions with information deriving from different databases or from the literature. 

Using as threshold only interactors for which the interaction was experimentally 

determined with a score of at least 0.5, we found three genes that are physically 

associated to genes related to Crohn’s disease: 42 individuals have mutations in 

PTPN11, 8 in RUNX2, and 19 in NCOA3 (Table 9.2). Individuals with NCOA3 

variants and those with altered RUNX2 have also alterations in PTPN11. The three 

genes carry a truncating mutation. The PTPN11 variant p.Y197X (dbSNP code: 

rs76982592) was reported in dbSNP with a frequency in the general population of 0.104, 

while Q1269X in NCOA3 (dbSNP code: rs75561226) was reported without a frequency. 

The other NCOA3 missense variant, Q1261H, and Q54X in RUNX2 were never 

reported before. With this criteria we can make a first stratification of the individuals, 

retrieving 22 of 56 putative Crohn’s disease patients.  

Since not much information is not reported in databases for interactions and only a 

functional relationship could be known, we decided to use a more relaxed selection for 

interactors, using as threshold the combined STRING score with values of at least 0.5. 

Doing so we can consider associations found by text mining and have further verify the 

quality of the interactions. Many individuals were found to carry mutations in other 

genes likely to be interactors of genes associated to Crohn’s disease in this way. These 

are RBMX (25 individuals), TDG (14 individuals), PRKRA (18 individuals), XFHX3 

(9 individuals), CELA1 (5 individuals), and DSPP (3 individuals) (Table 9.2). Even if 

PTPN11 was found directly to interact with genes associated to Crohn’s disease, the 

variant identified in this gene was frequent in the population. For this reason, we 

thought the gene to be in some way associated but not sufficient to determine the 

disease. The TDG gene carries a splicing site variants (c.793-1G>T) and PRKRA 

presents a splicing variant in addition to several missense substitutions. Another gene 

presenting several missense variants was RBMX, whose association with Crohn’s 

disease is unclear and different variants were distributed among the individuals. DSSP 

carries the S960G in all three individuals and its expression seems to be regulated by 

TGFB1 (associated to Crohn’s disease) as well as directly interacting with RUNX2. 
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Proteins homologous or belonging to the family of ZFHX3 and CELA1 regulate 

MUC5B expression. A down regulated expression of mucins, including MUC5B, has 

been found in the ileum and colon of Crohn’s disease and ulcerative colitis patients 

versus controls individuals. In our dataset these genes present a stop gain variant, 

Q819X, and two missense variants, L210P and G208A. Using information about gene 

association strength with Crohn’s disease, type of variants and frequency in the 

population, it was possible to draw a ranking of the genes in the following order: 

RUNX2, NCOA3, TDG, ZFNX3, DSPP, PRKRA, CELA1, RBMX, and PTPN11 

(Table 9.2).  

 

Mutant 
protein 

Subjects GWAS, 
OMIM 

Interaction 
type 

Function Mutation 
class 

NOD2 
(CARD15 or 

IBD1) 

1 GWAS - Nucleotide-binding oligomerization 
domain-containing protein 2, 
Caspase recruitment domain-

containing protein 15, Inflammatory 
bowel disease protein 1 

Missense 

SLC37A4 1 OMIM - Glucose-6-phosphate translocase, 
associated to glycogen storage 

disease type 1B, 1C, 1D 

Stop gain 

CNTNAP2 1 GWAS - Contactin-associated protein-like 2 Missense 
RUNX2 8  Physical Runt-related transcription factor 2, 

Osteoblast-specific transcription 
factor 2 

Truncating 

NCOA3 19  Physical Nuclear receptor coactivator 3 
Lipid metab 
olic process 

Missense 

TDG 14  Physical with 
DNMT3A 

G/T mismatch-specific thymine DNA 
glycosylase 

splicing 

ZFNX3 9  Functional Zn finger homeobox protein 3, 
myogenesis 

Stop gain 

DSSP 3  Functional  Missense 
PRKRA 18  Functional INF inducible dsRNA dipendent 

activator 
Splicing 

CELA1 5  Functional  Missense 
RBMX 25  Functional nuclear ribonucleoprotein G, cellular 

response to IL1 
Missense 

PTPN11 43  Physical Tyrosine-protein phosphatase non-
receptor type 11 

Truncating 

 
Table 0.2. Priority list of candidate genes used for population clustering. 
 

The priority list was used to score the probability of an individual to have Crohn’s 

disease. One prediction was made manually combining diverse information on protein 



9. Critical Assessment of Genome Interpretation 

201 

function, other four predictions were calculated using four different scoring functions: 

majority voting, weighted sum, association rules, clustering (Table 9.3). A arbitrary 

threshold was chose expecting that about 50% of the individuals could had Crohn’s 

disease. A final prediction was performed by the 100 side die to assess the random 

prediction results. 

 

Phenotypic results 

The CAGI organizers eventually released the results revealing that, in contrast with our 

expectation, 42 of the 56 individuals have Crohn’s disease. The manual prediction 

worked better identifying 31 of the 42 Crohn’s disease patients (Table 9.3). However, 

changing the threshold to discriminate Crohn patients and healthy individuals, we also 

reached a very good prediction using different scoring functions. In particular, the 

clustering method identified 40 of the 42 Crohn’s individuals with an accuracy of 0.91 

(Table 9.4).  

 Majority Weighted 
sum 

Association 
rules 

Clustering Manual Random 

TP 17 18 22 14 31 24 

FP 4 4 4 4 4 8 

TN 10 10 10 10 10 6 

FN 25 24 20 25 11 18 

Sensibility 0.4 0.43 0.52 0.4 0.74 0.57 

Specificity 0.71 0.71 0.71 0.71 0.71 0.43 

Selectivity 0.81 0.82 0.85 0.81 0.89 0.75 

Accuracy 0.48 0.5 0.57 0.48 0.73 0.54 
 
Table 0.3. Predictions of Crohn’s disease individuals.  
The results obtained with different scoring methods are reported. TP: true positive; FP: false positive; TN: 
true negatives; FN: false negative; Sens: sensibility; Spec: specificity; Sele: selectivity; Ac: accuracy. 

 Majority Weighted 
sum 

Association 
rules 

Clustering Manual 

TP 26 40 37 40 33 

FP 4 4 3 3 3 

TN 10 10 11 11 11 

FN 16 2 5 2 9 

Sensitivity 0.62 0.95 0.88 0.95 0.79 

Specificity 0.71 0.71 0.79 0.79 0.79 

Selectivity 0.87 0.91 0.93 0.93 0.92 

Accuracy 0.64 0.89 0.86 0.91 0.79 
 
Table 0.4. Prediction of Crohn’s disease individuals with a modified threshold. 
Lowering the threshold used to cluster Crohn-related individuals we had a better performance of the 
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prediction methods. 
 

During the evaluation of predictions, the organizers decided to take with caution the 

prediction for height of the control individuals which were sequenced with a different 

method and present an higher number of variants. The risk is that many of these variants 

are errors due to sequencing or mutation calling process (Fig. 9.11).  

 
Figure 0.11. Clustering Patient Samples Based on Variants.  
A Euclidean distance based hierarchical clustering of the samples based on the reported variants. The 
samples came from four sources. The 42 samples from German patients with CD are labeled in red in the 
colored strip under the dendrogram. Eight controls from a population genetics study are indicated in black. 
Two centenarians are indicated in gray, and a HapMap trio and one German male are indicated by dark 
gray.  Please note that the 8 samples from the population genetics study are separated from the other case 
and control samples, and they were excluded from some of the further analyses for this reason. (Figure 
provided by CAGI assessor A. Morgan) 
 

Comparison with other participating groups 

The assessor Alexander Morgan noticed that the submissions of most groups cluster 

very closely to one another, with the interesting exception of one of our submission 

(sub.95) which clusters separately from the other submissions from our group. This 

represents the random predictions obtained by the 100 side die (Fig. 9.12 and Fig. 9.13). 
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Figure 0.12. Clustering of Samples Based on Predictions.  
A heat map of the scaled predictions is indicated by each grayscale cell. A darker cell indicates a higher 
reported prediction of CD likelihood by each submission. Submissions are organized into columns. The 
color strip above the heat map labels the group making the submission, as indicated by the legend in the 
upper right corner. The patient samples are in the rows, with the color strip on the left indicating whether 
the samples were from CD patients (red) or controls (different shades of black or gray as described in 
Figure 9.11). (Figure provided by CAGI assessor A. Morgan) 
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Figure 0.13. Multidimensional Scaling of Submissions.  
Similar to the clustering in Figure 9.12, the distances between submissions were mapped onto a two 
dimensional space. Many of the submissions by the same groups were closely associated to one another 
through multidimensional scaling. (Figure provided by CAGI assessor A. Morgan) 
 
 
For each submission, the assessor calculated the ROC curve were the true positive rate 

(sensitivity) is plotted in function of the false positive rate (specificity) (Fig. 9.14). The 

area under the ROC curve (AUC) is a measure of how well a participant group can 

distinguish between Crohn-related and healthy individuals. A perfect prediction has a 

ROC curve that passes through the upper left corner (100% sensitivity, 100% 

specificity). Therefore, the closer the ROC curve is to the upper left corner, the higher 

the overall accuracy of the test [442]. One of the participant group reached the best 

performance identifying 40 of the Crohn-related individuals. However, our predictions 

worked better than many other groups (Fig. 9.14 and Fig. 9.15). It is interesting to note 
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that while the best group submitted probabilities in a narrow range around 0.5, our 

group tried to classify the two populations with a stronger decision (Fig. 19). This leads 

to a worse assessment of our prediction.  

 

 
 
Figure 0.14. ROC Curve for Predictions.  
The Receiver Operating Characteristic (ROC) Curves for each prediction submission are shown. Also 
shown are the result of 1,000 random predictions in gray, along with the confidence intervals for 1 and 2 
standard deviations from the average of these 1,000 predictions. The curves of the actual 1,000 
randomizations are shown with lightly dotted lines. (Figure provided by CAGI assessor A. Morgan) 
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Figure 0.15. ROC Curves for Each Submission.  
Similar to Figure 9.14, but instead of overlaying each submission together, all submissions from our 
group (sub.90-95) and some others are shown separately on an individual ROC curve. The area under the 
curve (AUC) is indicated at the top. AUC is equal to the probability that a classifier will rank a randomly 
chosen positive instance higher than a randomly chosen negative one. (Figure provided by CAGI assessor 
A. Morgan) 
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Figure 0.16. Prediction results evaluation.  
A series of smaller panels for each submission organized by row is shown. Submissions from our group 
are indicated by numbers 90-95, the last in the bottom Sub:119 is the submission which obtained the best 
performance. The first column shows a histogram of submitted values. The second column shows a 
scatter plot of submitted predictions, with all controls indicated by black circles (all control types are 
colored black) and diseased (CD) samples with red exes.  If a standard deviation was reported in the 
submission, it is indicated by confidence interval bars. Each patient sample is sorted in order along the 
horizontal axis. In the third column, the CAGI samples are reordered in decreasing order based on 
prediction value, otherwise it is the same as the second column. The fourth column is the ROC curve for 
the predictions, with the area under the curve indicated at the top.  (Figure provided by CAGI assessor A. 
Morgan) 
 

The strategy adopted by different groups was to consider the impact of non-

synonymous variants found in regions associated to Crohn’s disease by GWAS. Some 

groups evaluated only common variants used in the genotyping process of GWAS, 

while only our group calculated the probability to have the disease taking into account 

the unique contribution of rare missense variants found in these individuals. Common 

diseases are due to multiple deleterious alleles in a mutation-selection balance, sharing a 

high mutation rate and weak selection. An interesting debate arose from this experiment 

about the contribution of common and rare variants in complex diseases. Several 

hypotheses have been formulated. One hypothesis is that common diseases are caused 

by a multitude of SNPs with small effects and a multitude of rare variants. Another 

hypothesis is that functional genetic variations have the major contribution and 

functional information could guide the classification methods. It seems that both 

common and rare variants have to be considered in the prediction of common disease 

risk, but the size of their impact has to be re-estimated. All the groups looked for 

variants that cause functional protein changes using different approaches (e.g. SIFT, 

PolyPhen, SNAP). The best group, together with our group, used ANNOVAR to select 

functionally relevant mutations. We used the variant reduction protocol to filter rare 

variants while the other group used the protocol to find common non-synonymous SNPs. 

The groups with the best prediction results, including our group, also used non 
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synonymous variants found in a wider list of genes than those collected by GWAS. In 

these cases, the interesting genes have been selected using additional information such 

as expression quantitative trait loci (eQTL) or, in our case, the network of functionally 

associated proteins provided by the STRING database. A successful prediction strategy 

should consider common and rare variants prioritized by likely functional effects found 

in a set of genes including genes functionally related to GWAS loci. Finally, there is a 

need to create a robust scaling metric weighting severity of modifications, the 

prevalence of variants, and their impact on protein function. 

 

9.5. Personal Genome Project (PGP) – Predict traits 
and phenotypes 
 

The ability to sequence the genome in little time and with low costs has increased the 

possibility to obtain a personal genomic profile. A person may like to know his 

predisposition to disease or explain an existing trait, or maybe its genetic history. 

Several companies offer to individual customers the sequence of their entire genome for 

$400-$2500 in the form of variants identified at specific loci [443]. The declared 

purpose is to develop a system where genetic information can be used by physicians in 

diagnosing or application of the appropriate therapeutic strategy. Approaches detecting 

disease-causing variants are very promising in providing disease diagnosis, including 

adult onset diseases, detection of carriers, and even prenatal diagnosis. Even if the 

associations of SNPs with a disease risk give an uncertain prediction of the disease, one 

of the most desirable outcomes of personal genome profiling is to known the risk to 

develop common complex diseases. Much progress in this field comes from new 

sequencing technology which identifies causal variants to discover novel pathogenic 

mechanisms underlying the disease offering new opportunities for drug development. 

Pharmacogenetics is another promising field of genomic and personalized medicine. 

The variability of drug responses among individuals arise from the presence of specific 

genetic variants. Pharmacogenetics aims to identify genes influencing drug metabolism.  
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The PGP challenge 

The CAGI challenge was to predict the phenotype of ten individuals for whom the 

exome sequences were available. The clinical profile of each individual including 

information about age, vital signs (e.g. weight, blood pressure), ethnicity, allergies, 

medications, medical history, and even facial photographs were also provided. 

Participants were asked to make prediction for 32 phenotypes (e.g. asthma) and eight 

numerical traits (e.g. HDL level). An additional challenge was released near the 

prediction deadline aiming to predict an individual with irritable bowel syndrome (IBS), 

a color blind man, and a female carrier of familial color blindness. The CAGI challenge 

focused on the prediction of many common diseases and the task was to give a 

probability to develop the disease. The sample population provided for CAGI 

predictions consisted of ten unrelated individuals with probably independent phenotypes. 

This makes it very difficult to identify the unique causal variants responsible for a 

specific phenotype. Since, given our experience with Crohn’s disease, we assumed that 

rare variants are more likely to contribute to disease susceptibility, we searched for 

putative causal variants in disease-related genes and calculated the probability by 

weighting the contribution of each variant we found. 

 

PGP and Mendelian disease diagnosis 

Rare variants have been identified in about 3,000 human genes responsible for 

Mendelian diseases, and some of these have been implicated in common disease risk. In 

particular, common alleles associated to blood lipid levels have been found near genes 

that have been previously known to be involved in lipid metabolism [444].  Some 

autosomal recessive disorders, such as Cystic Fibrosis, have been extensively studied 

and a list of mutations is reported in the specific database. There are also disease-

causing mutations presenting comparatively high frequency in the population due to 

founder effects or selection. Examples are the c.35delG mutation in the GJB2 gene and 

mutations in the HFE gene causing two autosomal recessive disorders, neurosensorial 

hearing loss and hemochromatosis . However, we can count only a thousand affected 

individuals for each Mendelian disease and sometimes few mutations have been 

identified. Even if the majority of individuals affected by a Mendelian disorder carry an 

already known mutation, a large number of private mutations can be found and the 
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number of these increase dramatically with the advent of next generation sequencing 

technology.  

Approaches to disease gene discovery adopt different strategies depending on the mode 

of disease inheritance, the extent of locus heterogeneity, pedigree information, or size 

and structure of the sample. Recently, exome sequencing has been used as a powerful 

tool to discover causal variants in genes involved in rare Mendelian diseases, such as 

Kabubi syndrome, Miller syndrome, and Fowler syndrome (reviewed in [4]). This 

approach used discrete filtering of all variants observed in the 1000 Genome Project or 

reported in the publicly available dbSNP database, or even found in a control population. 

This allowed to reduce the huge number of variants originating from exome sequencing 

and to focus the investigation on a limited set of candidate genes. Discrete filtering has 

been more useful for recessive than for dominant diseases, but lowering the MAF cutoff 

to 0.1% can be helpful in solving dominant disorders [6].  Further stratification of 

candidate alleles can be obtained by ranking variants on the basis of their predicted 

functional impact. Nonsense or frameshift mutations resulting in truncating proteins are 

predicted to be the most important candidates, even if in some cases they can result in a 

harmless protein loss. For the classification of non-synonymous variants, many of the 

common computational methods, such as SIFT and Polyphen, use evolutionary 

annotation [34]. An additional prioritization could be performed by annotating variants 

for their role in pathways or interactions that could explain the pathogenic mechanism 

involved in the disease or in similar phenotypes.  

Recent studies that successfully identified candidate genes for rare Mendelian diseases 

focused on the identification of rare or novel variants in the same gene found in 

unrelated or closely related affected individuals. In unrelated individuals with similar 

phenotype, we expect to have causal variants in the same candidate gene and for 

disorders with genetic heterogeneity in a subset of different genes. In case of Kabubi 

syndrome, investigators applied further genotypic and phenotypic stratification to 

successful identify variants in the MLL2 gene in a subset of the affected individuals (Ng 

et al. 2010). Furthermore, with familial information one can further filter variants that 

do not follow the mode of inheritance expected for the target disease or remove 

potential causal variants that do not segregate with the disease [432-433].  
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PGP and common disease risk 

Over the last 20 years, genome wide association studies allowed the identification of a 

large amount of common variants in 800 disease-associated loci for ~150 human 

disease/traits [445]. However, the identification of these common variants in an 

individual does not explain his predisposition to develop the disease or the missing 

heritability of the variant in the family. Complex diseases have a large genetic 

component and show genetic heterogeneity, but different high-risk variants result in the 

same phenotype. Sometimes the effect of several moderate-risk variants is aggregative, 

and the disease seems to have a dominant mode of inheritance. In other families the 

high-risk variants do not segregate with the disease. Several statistical strategies for 

association studies involving rare variants have been developed [436]. As described in 

the previous paragraph, identification of rare high-risk variants in genomic regions 

through GWAS or in several disease susceptibility genes can be adopted as a successful 

approach. 

 

Pharmacogenetics 

Many people have severe consequences due to adverse drug reactions. Pharmacogenetic 

is the discipline that study the interaction between drugs and a specific or multiple 

genes. Since drug responses may be genotype-driven, the discovery of biomarkers that 

can predict the responsiveness to the drug may have a very real diagnostic value. This 

approach lead to the field of “personalized medicine” and can be very promise for 

improve health outcomes, including those related to complex disease 

One of the best example of pharmacogenetic association is computing the warfarin dose 

in treatment and prevention of thromboembolitis. As higher doses of this drug cause 

bleeding, the therapy is made using the appropriate dose according to several factors 

including age, gender, weight, diet. Furthermore, two genes have been implicated in the 

determination of the warfarin dose, CYP2C9 and VKORC1. They are used as predictors 

of dosing since mutant alleles of these genes are associated with increased bleeding 

[446]. 
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9.5.1.  Method 

For this challenge we had to predict the phenotypes of ten individuals submitting the 

probability of a person having a phenotype among 32 proposed. There were also 

numerical traits (e.g. HDL and LDL level in mg/dL) for which we had to predict the 

mean value found in each individual. The list of phenotypes consists of several 

pathophysiological conditions including Mendelian disorders or traits and complex 

diseases (Fig. 9.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 0.17. Phenotype list for the PGP challenge.  
The phenotypes to predict include both Mendelian and complex disorders, and numerical traits. 
 

The approach we adopted for the PGP challenge was the same used to predict 

individuals with Crohn’s disease (one of the phenotypes to predict was again Crohn’s 

disease) (Fig. 9.10). In this case, we downloaded a list of candidate genes from GWAS 

and OMIM for each trait or phenotype and searched for those that presented potentially 

causal mutations identified by ANNOVAR in each individual (list L0). The variant 

reduction protocol was again used, putting a threshold of MAF>0.01 for variants 
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observed in the 1000 Genome Project and reported in dbSNP (build 130). This allowed 

us to include variants that could be known pathogenic mutations reported in these 

databases (list L3). We expanded both lists L0 and L3 including genes identified by 

ANNOVAR which interact with disease associated genes (list L1 and L4 respectively). 

In cases where a specific gene is known to determine the particular phenotype, we used 

information retrieved from the literature. For example, blood type (antigen A and B, Rh 

antigen) was predicted searching for mutations in the ABO and RHD genes respectively, 

as these are specific for each group [447]. Finally, the assessment of association 

between an individual and a phenotype was performed analyzing the collective effects 

of rare variants across one or multiple genes. Prior evidence about variants (e.g. known 

pathogenic mutations) and their severity (missense, frameshift or stop-gain) were 

incorporated into a probabilistic score taking into account the known genes and their 

interactors (Fig. 9.17).  

 
Figure 0.18. Strategy adopted for PGP challenge. 
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Numerical traits were estimated using both probabilistic scores from causal variants 

identified in genes known to regulate each trait and the normal range we expected to 

find in a human individual. We did not find mutations in genes known to regulate Birth 

weight, Fasting blood glucose level, and Age at Menarche. These values were predicted 

using a probabilistic score derived from Type II Diabetes. Low birth weight is tightly 

associated with high risk of Type II Diabetes and also with earlier Menarche [448-449]. 

Age at Menarche was calculated as the mean age at menarche (12.7 years) minus the 

genetic index from Diabetes. The birth weight was calculated as the mean weight at 

birth (3,500 g) minus the product of genetic index and the range of normal weight 

variance. The normal fasting blood glucose level is 83mg/dL with a normal range of 60-

100 mg/dL. The values for each individual were calculated adding to the normal level 

the product of a genetic index and the glucose level variance. HDL, LDL and 

triglyceride levels were predicted combining genetic indexes for genes associated to 

dyslipidemia, for age, and the mean normal level for each numerical trait. Warfarin dose 

was calculated using the optimal pharmacogenetics algorithm that estimated the daily 

warfarin dose (mg/day), which was: exp[0.9751 − 0.3238 × VKOR3673G>A + 0.4317 

× BSA − 0.4008 × CYP2C9*3− 0.00745 × age − 0.2066 × CYP2C9*2+ 0.2029 × target 

INR − 0.2538 x amiodarone + 0.0922 × smokes − 0.0901 × African-American race + 

0.0664 × DVT/PE], where the SNPs are coded 0 if absent, 1 if heterozygous, and 2 if 

homozygous, and race is coded as 1 if African American and 0 otherwise [446]. Finally, 

the annual income was predicted combining a minimum wage with an index for weak 

(e.g. missense) and strong (e.g. frameshift) variants and an age index. 

 

9.5.2. Results and Discussion 

Our group submitted predictions for 38 of the phenotypes/traits present in the list. For 

tongue rolling and phenylthiocarbamide tasting we did not find information about 

related genes. We predicted a high probability of having the disease in at least one 

individual for 19 phenotypes/traits. These results indicated that our prediction may have 

a high rate of false positives, but we decided to maintain a low threshold in order to 

avoid loss of information. The organizers provided the phenotypes of each PGP 

individuals on the basis of their answers for each phenotype or trait (Table 9.5). None of 
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them answered about the annual income. We were able to predict correctly the 

individual with IBS, a female with osteoporosis, and the men with colour blindness. For 

the numerical trait, the challenge was more difficult but we identified the value within a 

standard deviation for some of the individuals (Table 9.6). 

Individual 
 
Binary traits/phenotype 
 

PGP9, PGP10 Asthma 
PGP10 Glaucoma 
PGP7 Irritable Bowel Syndrome (IBS) 
PGP3 Osteoporosis 
PGP6 Lactose intolerance 
PGP10 Colour blindness 
PGP1 Dyslexia 
PGP1 Sleep apnea 
 
Table 0.5. Phenotype for the PGP individuals.  
Only some disease or trait was observed in the ten individuals. In red are highlighted those that we 
predicted correctly. 
 
Numerical traits 
 

Correct prediction 

Birthday Weight PGP2, PGP4, PGP5, PGP7 
HDL PGP2 
LDL PGP1, PGP9 
TG PGP2, PGP9 
Blood Glucose PGP2, PGP3, PGP5 
Warfarin dose No one uses the drug 
Age at menarche PGP9 (only 2 females) 
Annual income ? 
 
Table 0.6. Correct predictions for numerical traits. 
 

Comparison with other participating groups 

Only other two groups participated to this challenge (Fig. 9.18). One of these submitted 

statistically significant predictions, with a precision of 0.652 and P-value equal to 0. 

This group (R. Karchin of Johns Hopkins University) was the only group participating 

in the PGP competition in the pre-pro-CAGI-2010 meeting. They improved their 



9. Critical Assessment of Genome Interpretation 

217 

predictions using a more stringent threshold to assign each phenotype/trait to an 

individual. Besides using a computational model based on a Bayesian network and 

GWAS databases, they calculated the probability of having a specific phenotype, using 

information derived from manual online literature search (e.g. for birth weight [448]). 

Our group adopted a different computational approach as described above, but for many 

of the phenotypes/traits to predict, also in our case, the manual online literature search 

was the only source on which to make predictions. It is interesting to note that the best 

predictions of true positives were all obtained by the manual method, while the 

computational model worked well in identifying the true negatives which were very 

frequent in this set of individuals. This observation suggests that computational 

approaches are still far from the solution of the personal genome project and that there 

is a lack of annotations linking specific variants, genes, and pathways to phenotypes. In 

the words of the assessor, we are still in the “game phase”. Some simpler phenotypes 

are nevertheless already predictable from haplotypes or SNPs. 

 
Figure 0.19. ROC curve for binary traits.  
The submissions s122 and s123 refer to our group, with s123 obtained with 100 side die. (Figure provided 
by CAGI assessor S. Mooney) 
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For numerical traits, the assessment was based on the average distance to the correct 

answer for each trait and the number of times a group predicted within one standard 

deviation and z-score results. This task was very hard and we performed unexpectedly 

well for three of the numerical traits considering that the other groups did not obtain 

good predictions (Table 9.7).  

The birth weight was correctly predicted for 3 individuals, the triglyceride level for one, 

and the age at menarche for the two women in the group. The question emerging from 

this challenge is how to use information about other sources of influencing factors, such 

as those deriving from environment, habits of the individuals, diet, and current 

treatments. This needs further studies in case-control populations. 

 

 
 
Table 0.7. Number of correct predictions. 
In this table the  prediction was considered correct when was in the range of the reported Standard 
Deviation. (Table provided by CAGI assessor S. Mooney) 
 

9.6. Conclusions 
 

Participation in the CAGI experiment allowed us to focus on possible new approaches 

for mutation effect prediction and to test their performance in a set of variants for which 

protein function was experimentally tested. Our group developed a new method based 

on residue interaction methods to predict the impact of missense mutations on protein 
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structure. This approach is innovative and worked similarly well to the common 

methods for mutation analysis. In this experiment, it has been possible to highlight the 

strengths and weakness of the method. From the CAGI experiment one important thing 

which emerges is that a consensus of prediction methods results in a better prediction of 

mutations. We used a consensus method for the prediction of intermediate-risk variants 

of RAD50 and SCN5A mutations, but the results are weaker than PON-P which also 

uses the consensus of several methods. The difference may be due to the combination of 

used methods. However, even in the case of PON-P the bottleneck in the prediction is 

the output format of the different methods and the time of calculation. One of the major 

remaining challenges is to developed a fast prediction method for the interpretation of 

huge amounts of genetic variations.  

This experiment further highlighted the relevance of a priori knowledge about structure 

and function of the target protein. In our method, we were able to fix different 

parameters on the basis of information collected from the literature and structural 

analysis. My experience on the in silico analysis of proteins of different structural and 

functional classes (e.g. transmembrane proteins, repeat proteins, proteins containing 

modular domains, kinases, DNA binding proteins) was particularly useful for the 

participation in the p53, RAD50 and SCN5A challenges. 

We also tried to work with data generated from next generation sequencing 

technologies, which is the current effort in mutation research. Since this is a new field, 

few research groups have experience in this, especially for complex disease prediction. 

Here, we introduced new strategies to prioritize candidate genes for several phenotypes. 

The vision of each biological process as a complex system in which a protein works and 

exerts its numerous functions together with other protein partners allowed us to 

introduce a novel approach using functional protein networks for the analysis of genetic 

variations. Also, in this case the experience in interpretation of genetic rare disease 

variants has been useful to tackle the prediction of complex disease risk. This highlights 

how a group with differentiated expertise is especially important for the development of 

methods for genome interpretation. 
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10. Conclusions 

 
During my project work I analyzed several proteins of biological and biomedical 

interest using computational tools. The structural and functional insights obtained 

through these analyses were used to better understand the molecular mechanisms 

underlying protein function and to identify a possible genotype-phenotype correlation. 

Knowledge of the protein structure, either experimental or through modelling, provides 

insights which can be used to pinpoint finer details, such as the domains or segments of 

the proteins essential for its biological activity.  

The experimental structure of the DNA binding domain of the WT1 transcription factor 

was analyzed to identify residues involved in binding DNA and to evaluate the effect of 

different isoforms on the transcription process. The protein structure can also contain 

more binding sites which mediate interactions with different proteins in order to form 

the correct protein complex in a specific cellular compartment. In particular, study of 

the VHL protein aimed to investigate its role in different signaling pathways involved in 

tumor formation. Since more than 200 interactors have been experimentally identified, I 

hypothesised that while some proteins interact simultaneously, some other must be 

mutually exclusive. The structural and functional analysis of 35 VHL interactors with 

experimentally determined pVHL interaction regions allowed the characterization of 

three interaction interfaces corresponding to processing, substrate recognition and 

localization. These interfaces highlight diverse protein interaction types, namely 

domain-domain (interface A) and domain-peptide (interface B), with interface C being 

less clear. In particular for interface B it has been possible to better define a 

hypothetical interaction motifs that can be used to validate the growing number of 

proteins found to interact with pVHL by high-throughput methods.  

When the experimental structure is not available, the model of the protein can be useful 

to explore the spatial arrangement of known functional residues or to identify possible 

binding sites with other proteins. For the LGI1 protein I adopted a remote homology 

modelling approach to model the two repeated LRR and beta-propeller domains. Repeat 

proteins are difficult to model using a homology modelling approach since they show 
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poor sequence conservation. In this case, manual refinement of the target-template 

alignment was crucial. This approach used the ABRA protocol [330] and Kajava’s 

method [95], which suggested to use knowledge of key residues and secondary structure 

to anchor the aligned repeats. Analysis of the model surface properties suggested a 

possible arrangement between the two domains and identifies possible protein binding 

sites in both the β-propeller and leucine-rich repeat domains. The three dimensional in 

silico model of LGI1 allowed the creation of a functional model integrating previous 

experimental findings and suggesting a possible molecular mechanism involved in the 

synaptic transmission of neural signals.  

Transmembrane proteins are another class of proteins for which structure prediction 

requires a more complex approach than for soluble proteins. Although progress is 

hampered by a limited amount of high-resolution experimental 3D structures, the 

overall prediction of functional and structural features of transmembrane proteins is 

improving. When few or no experimental data is available, no present method can 

accurately predict the 3D-structure of any transmembrane protein from sequence alone 

[450]. However, we can apply computational methods which predict transmembrane 

segments and their topology through knowledge-based approaches. In the case of the 

POMT1 protein, modelling of the protein is very difficult as homologous structures are 

available only for the MIR domain, the catalytic domain protruding from the 

transmembrane domain on the cytoplasmic side. The transmembrane region of POMT1 

was therefore analysed using a consensus of different topology prediction methods. 

Such an ensemble method consists of taking the output of individual predictors and 

combining them by majority vote. The ensemble yields a better prediction than each 

individual method and tends to cancel out the errors, combining the advantages of the 

different methods. When a high resolution structure of a homologue to the 

transmembrane protein is available, we can use homology modelling to obtain a 

prediction of the protein structure. The prediction of transmembrane topology for 

Plasma Membrane Ca2+ Pump isoform 2 (PMCA2) has been performed taking into 

account a manually curated alignment with the sarco/endoplasmic Ca2+ - ATPase 

(SERCA1a). The alignment was subsequently used as template to build a model with 

standard homology modelling. An analysis of the model surface properties allowed the 

characterization of a positively charged region which plays a crucial role in the pump 
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activation mechanism through interaction with phospholipids (PL) on the cellular 

membrane. This hypothesis has been confirmed experimentally by measuring the PL 

sensitivity of mutant proteins derived by introducing mutations at four positions 

normally occupied by conserved lysines responsible for the positive charge observed in 

this PL binding region.  

An in depth analysis of the proteins known to be associated to diseases is useful in 

particular for the evaluation of the pathogenicity of novel variants. This is essential for 

guiding medical decisions on treatment and follow up. The use of structural information 

should improve the prediction since most of the known disease causing variants have 

been found to destabilize protein structure [16-18]. However, detailed analysis of the 

known proteins will serve to elucidate the single pieces involved in the regulatory 

network at the molecular level, in order to formulate hypotheses that may explain the 

genotype to phenotype correlation of the involved genes. In particular, the effects of 

single missense mutations will be evaluated, as well as for protein stability changes, on 

their impact with the interaction partners. In my thesis, I analysed the effects of 

mutations in different disease associated proteins. Structural analysis was used in 

combination with genetic information to established the role of previously 

uncharacterized variants. In particular I analyzed the impact of novel WT1 and POMT1 

variants associated to atypical clinical findings. The first study focused on the 

evaluation of a new WT1 mutation found in three family members with focal segmental 

glomerolusclerosis but without genital abnormalities or Wilms tumor. In silico analysis 

of the mutant model for the DNA binding domain of WT1 indicated that the functional 

impact caused by the mutation results in a reduced ability of the KTS-positive isoforms 

to bind DNA. Novel mutations of the glycosyltransferases POMT1 were found in 

patients with muscular dystrophy which developed dilated cardiomyopathy. 

Computational analysis, consistent with in vitro enzymatic assays, predicted these novel 

variants as disease causing mutations and demonstrated how this approach can be 

especially useful in laboratories where experimental assays are unavailable. Since no 

particular characteristic has been found to distinguish the novel mutations from other 

known mutations, cardiac involvement should be considered in the phenotypical 

spectrum associated to POMT1 mutations. The hypothesis is that patients carrying a 

mutant protein with residual enzymatic activity may present a different pattern and 
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timing of multisystemic involvement. Similar conclusions were derived from the in 

silico analysis of 18 variants found for the first time in subjects with VHL syndrome. 

These variants were classified as structural or functional mutations on the basis of their 

impact on the protein fold or in interfering with interaction interfaces, respectively. Our 

approach allowed to improve the ability to predict the risk of pheochromocytoma, 

which seems to be caused by mutant proteins with residual functions.  

In order to analyse the finer details of the perturbation on the protein fold caused by 

amino acid substitutions, I applied for the first time the residue interaction network 

(RIN) analysis. Some interactions such as salt bridges or disulfide bonds need a pair of 

residues with specific physico-chemical characteristics. Thus, if one of these changes, 

we can predict that this interaction will be lost. These considerations are usually derived 

by visual inspection of the structure with a molecular visualization tool. The RIN 

approach simplifies identification of the diverse intra-residue interactions that each 

residue undergoes in 3D space and in prediction of the local or global structural effects 

caused by an amino acid substitution.  

Missense mutations of the VHL gene were also analysed using a set of seven well 

known prediction methods, with the final decision about the pathogenicity of the variant 

taken combining the output of individual predictors. The ensemble method predicted 

one of the novel variants as neutral. This finding was supported by available genetic 

information of the family which reported the same variant in the unaffected father. The 

strategy to use a combination of several prediction methods was not used in previous 

works, but in the last year appears to have become the best approach to obtain an 

accurate prediction of mutation pathogenicity. 

Finally, the same overall approach was applied for the analysis of LGI1 novel mutations. 

In this case, the analysis was performed using the structural models of the two repeat 

domains which allowed classification of the variants in two classes. The structural 

variants have the potential to destabilize the protein fold, losing its ability to be secreted. 

This hypothesis is supported by in vitro studies of protein secretion of several mutant 

proteins. Functional variants, while maintaining the overall protein fold, alter residues 

located at the protein surface, the details of which may be crucial for interactions with 

protein partners. I predicted as five variants of the β-propeller domain functional and 

hypothesised that these variants maintain the ability to be secreted even if function 
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results affected. One of these has been found to segregate in a family with epilepsy and 

psychic symptoms in absence of the characteristic auditory phenomena associated with 

LGI1 mutations [346]. In vitro studies further revealed that this mutation does not 

prevent secretion of the mutant LGI1 protein. Recently, the study of protein secretion 

has been extended to other functional variants I predicted, confirming the hypothesis 

that these variants act by using a molecular mechanism which differs from loss-of-

function mutations. Furthermore, this may explain the atypical clinical features 

associated to this class of variants (unpublished data).  

All these works demonstrate how using a combination of computational tools and 

resources available on the web it is possible to conduct an in depth analysis of the 

structure and function of different proteins and to predict the effects of novel variants 

involved in the pathogenesis of associated diseases. However, a large part of the 

analysis requires intervention of a bioinformatician in order to decide which prediction 

method to use and to evaluate the overall results. In particular, while analyzing mutation 

effects, genetics and clinical information have to be considered. The Critical 

Assessment of Genome Interpretation (CAGI) experiment aims to assess computational 

methods for the prediction of phenotypic impacts caused by genomic variations. The 

interesting point is that participants have to make blind predictions of genetic variants 

for which the molecular, cellular, or organismal phenotype is already known but 

unpublished. The predictions were evaluated subsequently by independent assessors in 

order to understand which method performed better compared to the others. The goals 

of this experiment are to evaluate the performance of state-of-the art methods and to 

foster the creation of innovative software in the prediction of mutation effect.  

Our participation in the CAGI experiment allowed the development of two new 

mutation prediction approaches for different applications, a method using residue 

interaction network and an ensemble prediction approach. The CAGI challenges were 

particularly difficult, since they represent specific applications differing from the simple 

prediction of variant pathogenicity. One aimed to identify mutations that can reactivate 

p53 function in cancer mutants, while another deals with determining the probability of 

a variant to predispose to cancer in a intermediate-risk breast cancer gene. However, 

these experiments highlighted that each application could be addressed by a proper 

software which fits better to the evaluation of the molecular mechanisms involved in the 
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alterations. For example, in the p53 challenge the stability change of the protein is the 

feature which improves the prediction of rescue mutants. Our approach evaluated this 

change by using residue interaction network data based on the idea that the stability of 

the protein is coupled to its correct folding. The three dimensional fold of the protein is 

determined by chemical bonds and interactions between amino acid side chains. Thus, 

alterations causing changes in interaction energy between amino acids may affect the 

free energy difference of the folded and unfolded states of the protein. The application 

of this method to the identification of p53 rescue mutants highlighted that the protein 

may have different stable conformations which can be predicted using different classes 

of known rescue mutants. We can take advantage from the fact that rescue mutants use 

specific molecular mechanisms for cancer mutations causing similar structural effects. 

However, the method works as well or even better than commonly used prediction 

methods for the identification of pathogenic mutations. Future work will be to improve 

its accuracy in this field.  

Another approach we applied to the CAGI experiment is to use an ensemble prediction 

method based on the previously described approach I adopted for the analysis of 

mutations in proteins associated to disease. The limitations of this approach depend on 

the available structural information of the target protein and, especially in the 

automation step, on the availability of  the different methods. For the RAD50 challenge 

it was possible to use only methods using sequence information since it was difficult to 

obtain a model of the entire protein sequence. The first obstacle is to combine different 

computation times and output formats from the different methods which also  require 

different input data. Furthermore, the final decision process should be benchmarked and 

improved. For RAD50 the best results were obtained combining the prediction of the 

ensemble method with those obtained by structural functional analysis of the protein. In 

this case, adding a priori information derived from experimental data reported in 

literature or from the functional analysis of the protein also improves accuracy of the 

prediction.  

These approaches can be very difficult to use when we have to predict the phenotype 

starting from the exome sequences which can contain millions of variants. Recent 

improvements in large-scale genotyping arrays and of sequence technologies promise to 

provide DNA tests of genetic markers for a myriad of different diseases/traits and to 
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gain a large number of personal genomes within the next years. The management of 

personal genomes has diverse medical, ethical, legal and also technical limitations. 

Nevertheless, analysis of exome or whole genome data have been successfully used to 

discover the genetic basis of several diseases that were not identified by traditional 

genetics for decades (for a review see [4]). The “omics” fields have introduced new 

approaches of investigation, moving from hypothesis-testing to discovery-based 

approaches. The discovery-based approach allows the generation and prioritization of 

high-throughput hypotheses. The CAGI experiment proposed two challenges aimed to 

predict phenotypes starting from exome sequences. One of these required to distinguish 

between exomes of healthy individuals from those with Crohn’s disease, while the other 

challenge was to predict the possible phenotypes of ten individual from a list of 40 

diseases or traits including rare and common diseases, and several numerical traits such 

as blood lipid levels. In order to deal with these situations I designed a computational 

model which can be used in the prediction of diverse diseases of different nature such as 

Mendelian and complex diseases. The aim was also to use methods and resources 

available on the web.  

The first step of the model was to identify a set of variants predicted to cause a strong 

functional impact on protein products. For this, I chose the “variant reduction” protocol 

of ANNOVAR, a tool for functional annotation and filtering of variants detected from 

genomic sequences. This tool filters millions of variants, removing variations that are 

either not conserved or previously reported in public SNP databases, such as dbSNP and 

the 1000 Genome Project. In this way, we obtain a list of about twenty genes containing 

rare variants likely to have a phenotypic impact. This approach has been previously 

adopted to analyse genomes of individuals with rare diseases for which a genetic cause 

had not yet been identified [4, 6-7]. The choice to consider only rare variants for the 

analysis of complex diseases was based on the assumption that rare causal variants 

should have a stronger impact on the development of the disease compared to common 

variants. The good results on the prediction of Crohn’s disease patients obtained by this 

model compared to others that considered only common variants associated to disease 

confirmed that the hypothesis was successful.  

In both Mendelian and complex diseases some genes or genomic regions are known to 

be associated with the disease, thus the analysis of the exome was focused on these 
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regions. However, since for complex diseases the association of variants mapping to 

these regions explains only in part the pathogenesis of the disease, the list of candidate 

genes was expanded using protein interaction network information. The main idea is 

that causal variants may act in a set of proteins involved in the same biological process. 

This approach allowed us to obtain good predictions on the identification of Crohn’s 

disease patients. The accuracy of the predictions was also improved for other 

approaches that used, besides the GWAS loci, additional information of related genes. 

With this approach we also expanded the possibility to discover novel molecular 

mechanisms involved in the pathogenesis of the disease. In particular, for Crohn’s 

disease we identified a gene, Tyrosine-protein phosphatase non-receptor type 11 

(PTPN11), which was mutated in 40 of the 42 patients presenting Crohn’s disease. Due 

to the erroneous expectation that a lower number of individuals in our data set should 

present the illness, we did not consider this data for CAGI. An a posteriori evaluation 

suggests that this gene may be involved in the disease pathogenesis. Mutations in 

PTPN11 are associated with several disorders: Leopard syndrome type 1 (MIM: 

151100), Noonan syndrome type 1 (MIM: 163950), juvenile myelomonocytic leukemia 

(JMML) (MIM: 607785), metachondromatosis (MC) (MIM: 156250). However, further 

experimental and clinical evidence is necessary to confirm this hypothesis.  

Knowledge derived from function and structural analysis of the proteins encoded by the 

candidate genes has also been useful in the interpretation of exome sequences, 

especially to calculate the contribution of each causal variant identified in the set of 

candidate genes. This emerges from the results obtained from what we called the 

manual method. This represents the arbitrary decision on the existing disease 

association considering all available information such as the type of identified variants, 

their prevalence in the analyzed set and in the normal population, the protein function 

and biological processes involved. This suggests that we need to improve the weighting 

method to get the correct probability of disease association integrating different kinds of 

parameters. Furthermore, especially in the Personal Genome Project challenge, many of 

the correctly predicted phenotypes or traits were predicted manually by searching 

information from the literature and analyzing the known associated genes or SNPs. For 

example, the individual with colour blindness was identified by looking for variants in 

CNGB3, one of the six genes that are reported to cause this phenotype. [451]. This 
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highlights how there is a lack of annotations linking specific mutations, genes and 

pathways to the associated phenotypes.  

At the CAGI meeting some solutions were discussed to improve the ability to predict 

phenotypes from genome data. It has been highlighted that CAGI is an experiment and 

not a competition which has a scientifically benefit to predictors. This year about 50 

groups from seven different countries participated in diverse competitions. This will be 

the main challenge for future research on human genome interpretation and scientists 

are working together towards this aim. Some companies provide services already 

available on the web (e.g. http://www.decodeme.com/) which offer the complete scan of 

the genome for a few thousand dollars. They allow to get to know our own genome and 

learn how we can use it to improve our health. Progress in this field is improving fast, 

but we still need to understand which is the most appropriate approach to address this 

problem and how to use and present these results to the interested individuals.  
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Appendix – Supplementary Tables 

 
In the following, the supplementary tables from published articles used throughout the 
thesis are listed together with the URL where these have been deposited. 
 
 
Supplementary Table S.4.1. Information about the 35 pVHL interacting proteins. 
URL: doi:10.1016/j.febslet.2009.10.070 
http://www.sciencedirect.com/science/article/pii/S001457930900862X# 
 
Supplementary Table S.5.1. Summary of VHL variants and related clinical 
information. 
URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.2011.00647.x/suppinfo 
 
Supplementary Table S.5.2. Results of prediction methods for known VHL variants. 
URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.2011.00647.x/suppinfo 
 
Supplementary Table S.5.3. Results of prediction methods for novel VHL variants. 
URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.2011.00647.x/suppinfo 
 
Supplementary Table S.6.1. Analysis of LGI mutations with stability change 
prediction methods.  
URL:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066209/?tool=pubmed#pone.001
8142.s003 
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