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Chapter 1

Introduction

The work presented in this thesis is related to some topics in theoretical quantum

physics which are quantum thermodynamics and topological order. The first is a

new research field where physicists are devoting a lot of efforts to build up a theory

able to describe quite in general phenomena involving heat and energy exchanges

in quantum systems. The second topic, instead, is related to unconventional phe-

nomena like the quantum Hall effect or to new kinds of materials such as topolog-

ical insulators or topological superconductors. The novelty of this topic lies on the

fact that we need new paradigms with respect to the standard Landau description,

resorting to concepts from topology in order to characterize such systems [1].

The importance of the quantum thermodynamics can be understood consid-

ering its classical counterpart and the concept of irreversibility. A definition of an

irreversible quantum process, in fact, is a great task in modern physics. Moreover it

could be of great impact for technological applications the possibility of producing

work with heat engines using quantum processes in order to get high performances

and efficiency. In classical mechanics the uniqueness of the solutions of the Hamil-

ton equations of motion gives a deterministic character to the time evolution of the

system, allowing for inverting the motion along the trajectory in phase space and

recovering all the states occupied by the system in previous times. However from

a practical point of view we cannot invert the arrow of time in the experiments

since we cannot take trace of the motion of N ∼ 1023 particles, therefore we ac-

cept loosing information about all the details of the system, resorting to a statistical

description for the time evolution of the whole system. Because of the great com-

plexity it becomes very unlikely for a many body system to occupy the same state

at a later time. From the point of view of classical statistics this fact is the origin

of the irreversibility of time evolution.

In quantum mechanics also the dynamics of the wave function ψt (or in general

1



2 CHAPTER 1. INTRODUCTION

of the density operator ρt) can be generally reversed in time. A fundamental issue

is therefore that of characterizing, from a theoretical point of view, irreversible

quantum processes [2][3]. An example in quantum mechanics is provided by the

thermalization of an open system which reaches the temperature of an external

bath. In this evolution, dissipative processes spoil the quantum nature of the system

letting the coherence of the quantum states to vanish (here the coherence is related

to the phase between quantum states in superposition).

About this dissipative evolution, we present a series of our results. The first

characterize the irreversibility of the dynamics of a quantum system under adiabatic

conditions. We quantify such irreversibility by means of an entropy change. Such

entropy remains unchanged if the process is ”quantum reversible” and its growth

is non zero (and always positive) otherwise. The second result, that we obtained,

deals with the characterization of a quantum heat engine performing an Otto cycle.

We depict the working of such cycle under dissipative branches. Then we give a

proposal for an experimental optical implementations of it.

On the other hand, the possibility of getting quantum states which survive un-

der dissipative phenomena, such as disorder or other perturbations, is of crucial im-

portance for designing new technologies paving the way for quantum computation.

Topological states actually exhibit such characteristic of being robust against some

perturbations and their possible application is the basis for the so-called topologi-

cal quantum computation [4]. This topological protection, that is the robustness of

such states against dissipative sources, is the main reason why we moved on con-

sidering the simplest model exhibiting a topological phase, the Kitaev model [5].

It provides the link between two of the main research fields in quantum physics.

Although physicists describe thermodynamics for systems in quantum regime, we

have not a good understanding of what can happen when temperature influences

topological states and, the implications of this aspect could be very important. We

need to understand very well how thermodynamics works in quantum regime and

what are the characteristics of topological orders in order to link these fields and to

get a good new research in quantum physics.

The original model describes a topological 1D superconductor which has a

Majorana zero mode (MZM) at each edge of the wire. We will consider general-

izations of the Kitaev model with long range interactions, in the presence and in

the absence of time reversal symmetry, obtaining several and very rich phase dia-

grams. In the presence of longer range interactions, instead, many Majorana modes

can appear at the edges. In our investigation we recover preceding results but we

also go deeper in depicting the topological phase under the standing or not of time

reversal symmetry. We consider various ways to break such symmetry, that lead

to different phase diagrams. Then we also give the set of Bogoliubov equations

for the case of BTR regime, counting the general form for TR breaking parame-
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ters. Finally we give the modes, including zero modes, when the lattice has a finite

length. This last result generalizes a very particular case introduced in [5].

However, the problem of topological protection against dissipation has not

been approached here, even if it remains the main motivation for the study of the

two topics presented in this thesis, namely the quantum thermodynamics by dissi-

pative processes and the topological order.

A possibility of characterizing the robustness of MZMs in dissipating environ-

ments, could be that of using devices like single particle transistors. What can be

done is to substitute some components of the standard electron transistor with Ki-

taev chains in the topological phase. Then by studying the transport, we could get

informations about the robustness of topological states as well as the thermody-

namics.

For all these reasons, as building blocks, in this thesis we develop first the

theory of quantum thermodynamic, addressing both fluctuation relations, for out

of equilibrium quantum transformations, and quantum heat engines, then we will

give a general overview of the Kitaev chain in the general case of long ranged inter-

actions, and finally we will approach the phenomenon of single electron tunneling

in electronic transistors (single electron transistors) as basis for future research. For

that purpose, at the end of the thesis we give some notes about this last topic and its

application as ”heat-to-current” harvesting engines using quantum or metallic dots.

This is important to understand possible different dynamics, with respect the usual

configuration ”metallic lead-dot island-metallic lead”, when using Kitaev chains as

leads or islands [6].

This theses is structured in order to discuss few aspects of the recent topics

described above. In Chapter 2 we introduce the theoretical background for treat-

ing the evolution of close and open quantum systems. Then, in section 3.1, we

will treat the equilibrium quantum thermodynamics, first looking at the single ther-

modynamic transformations and then considering quantum heat engines (QHE).

In this chapter a general view of first and second principle of thermodynamics in

quantum regime will be given. In section 3.3 we will approach the non-equilibrium

quantum thermodynamics, providing the fluctuation relations and addressing the

specific case of a quantum Otto cycle (QOC). In Chapter 4 we introduce the topo-

logical quantum order, explaining the main concepts in this field and afterwards, in

Chapter 5, we will present the model of the Kitaev chain which shows Majorana

zero modes. Chapter 6 is dedicated to the topological invariants, used to address

the topological order for the systems we will consider. In Chapter 7 we study the

Kitaev chain in the presence of long ranged interactions. We present several topo-

logical phase diagrams for generalizations of the Kitaev chain, getting many MZM

per edge or massive edge modes (MEMs). Finally, in Chapter 8, we consider sin-

gle electron tunneling devices, showing their main characteristics and their limits
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in harvesting charge current from heat flow inside the circuit (Seebeck effect). In

particular we show that Seebeck effect is absent for metallic dots. As already said,

this last chapter is included in this thesis as a tool for future generalizations of such

circuits with the insertion of topological components.



Chapter 2

Dynamics of Quantum Systems

In this chapter we describe the evolution of quantum systems according to their

link with the surrounding physical world, the environment. At first we will con-

sider closed systems where the dynamics of the states will be done in terms of

unitary evolution operators, then we will deal with open systems although isolated,

obtaining the evolution of a quantum state by means of the Markovian master equa-

tion with Limbland form. This latter gives an intuitive dynamics where we separate

the contribution of the system Hamiltonian from the contribution of a dissipation

term due to the interaction with a reservoir. The whole system, open system plus

environment (see Figure 2.2), is closed but looking only to a part of it our quantum

dynamics will be not merely unitary. We focus on these different treatments, closed

and open system dynamics, in order to define quantum thermodynamic transforma-

tions, in analogy to the classical thermodynamic ones.

2.1 Closed Quantum System Dynamics

A closed system can be, in general, not isolated from an external control. Such

situation is reflected in an explicit time dependence of the Hamiltonian by means

of some parameters and it will lead to a formulation of the quantum system’s dy-

namics in terms of Liouville-Von Neumann equation. This equation describes the

evolution of a density state, in analogy to the classical statistical mechanics.

We begin considering a pure state. In quantum mechanics a pure state is described

by a vector, ket |ψ〉, defined on a Hilbert space H , which evolves according to

Schrödinger equation (we use the convention ~ = 1):

i
d|ψ(t)〉
dt

= H(t)|ψ(t)〉 (2.1)

5
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where H(t) is the Hamiltonian operator of the system. The ket |ψ(t)〉 in equation

(2.1) can be represented also by an unitary evolution operator U(t, t0):

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (2.2)

where |ψ(t0)〉 is the system’s state at time t0 and the condition U(t0, t0) = I is

assumed. From eqn (2.1) and (2.2) we get:

i
dU(t, t0)

dt
= H(t)U(t, t0) (2.3)

which defines the operator of time evolution for a pure quantum state. The solution

of Eq. (2.3) depends on the form ofH(t). In the simplest cases, if [H(t1), H(t2)] =
0 ∀t1, t2 we get:

U(t, t0) = exp

{

−i
∫ t

t0

dt′H(t′)

}

On the other hand, if the addressed Hamiltonian does not commute with itself at

different times, we obtain:

U(t, t0) = T exp
{

−i
∫ t

t0

dt′H(t′)

}

(2.4)

where T stands for time ordering operator.

Generalizing to quantum mixtures, we describe our system by a density operator ρ
defined as:

ρ =
∑

i

wi|ψi〉〈ψi| (2.5)

where |ψi〉 is a pure quantum state evolving as in (2.1) and wi are classical weights

with
∑

iwi = 1. By the evolution law of |ψi〉 we can deduce:

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0)

from which we write the Liouville-Von Neumann equation in Schrdinger picture:

i
ρ(t)

dt
= [H(t), ρ(t)] (2.6)

It is possible to rewrite expression (2.6) as the analogue equation of motion for

density states in classical statistical mechanics (the Liouville equation):

i
ρ(t)

dt
= L(t)ρ(t) (2.7)
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In the above equation L is the Liouville super-operator acting on the space of den-

sity operators ρ (the term “super” comes from the fact that it acts on a space of

operators giving another operator). Also here we can give a compact form for the

solution of the Liouville equation in terms of time ordered product:

ρ(t) = T exp
{

−i
∫ t

t0

dt′L(t′)
}

ρ(t0) (2.8)

The equations above give a complete characterization of the quantum dynamics in

Schrödinger picture. Now what we will present is a formalism, the interaction pic-

ture dynamics, useful to deal with systems which have an explicit time dependence

of the form:

H(t) = H0 +HI(t) . (2.9)

We now introduce two operators,

U0(t, t0) = exp{−iH0(t− t0)} (2.10a)

UI(t, t0) = U †
0(t, t0)U(t, t0) (2.10b)

and call A an operator representing an observable at time t0. The time dependent

expectation value of such an observable can be written as it follows

〈A(t)〉 = Tr{A(t)U(t, t0)ρ(t0)U
†(t, t0)}

= Tr{U †
0(t, t0)AU0(t, t0)UI(t, t0)ρ(t0)U

†
I (t, t0)}

= Tr{AI(t)ρI(t)}
(2.11)

where we have introduced the interaction pictures operators

AI(t) = U †
0(t, t0)A(t)U0(t, t0) (2.12)

and

ρI(t) = UI(t, t0)ρ(t0)U
†
I (t, t0) (2.13)

By Eqs. (2.12) and (2.13) we write the Von Neumann equation in the interaction

picture
dρI(t)

dt
= −i[HI(t), ρI(t)] (2.14)

whose integral form is

ρI(t) = ρ(t0)− i
∫ t

t0

ds [HI(s), ρI(s)]

which is the starting point for developing approximate solutions within perturbative

approach.
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thermal equilibrium state. The starting point in order to obtain the dynamics of an

open system, is that of considering the density operator of the whole system ρ(t)
in the interaction picture, written in its integral form

ρ(t) = ρ(0)− i
∫ t

0
ds [HI(s), ρ(s)] . (2.15)

Using the von Neumann equation and tracing out the degrees of freedom of B we

get

dρS(t)

dt
=

∫ t

0
dsTrB {[HI(t), [HI(s), ρ(s)]]} (2.16)

where we have assumed that TrB {[HI(t), ρ(0)]} = 0.

Now a series of approximations will follow. The first important assumption that

we will do is the so called Born approximation. We assume a weak coupling term

HI(t) so that the influence of the system on the reservoir is negligible and we can

write:

ρ(t) ≈ ρS(t)⊗ ρB ∀ t (2.17)

Generally the evolution of the whole system, counting an interacting term, would

reflect on the two subsystems, changing their reduced states and the whole state

would be generally entangled for t > 0. Here we assume that the reservoir is so

big that it has a very large number of degrees of freedom, and that its state remains

unchanged in time, given the weak interacting term with the system. The reservoir

will always take the same state ρB and the state of the whole system is assumed to

be separable as in Eq. (2.17). Thus Eq. (2.16) becomes

dρS(t)

dt
=

∫ t

0
dsTrB {[HI(t), [HI(s), ρS(s)⊗ ρB]]} (2.18)

Then we perform the Markov approximation, i.e. we assume that the evolution of

ρS(t) at time t does not depend on its state at time s < t, thus we obtain:

dρS(t)

dt
=

∫ t

0
dsTrB {[HI(t), [HI(s), ρS(t)⊗ ρB]]} (2.19)

The only change in Eq. (2.19) with respect to Eq. (2.18) is ρS(s) → ρS(t) in the

integral. Although the latter equation is local in time it is not yet Markovian since

its evolution depends on the way we prepare the state at time t = 0. To achieve

such Markovianity we proceed as follows. At first we note that the commutator

in the above equation involves time correlation functions for the reservoir. We

consider the case that such functions decay very rapidly in a time τB , compared to

the characteristic time in which the system appreciably varies, which we label τR.
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It follows that the time t, at which we consider the state ρS(t), is greater that the

characteristic time τB in which the integrand in Eq. (2.19) goes to zero and this

implies that we can let the upper limit of the integral go to infinity. Then changing

the integration variable s by s→ t− s we can rewrite the last expression as:

dρS(t)

dt
=

∫ ∞

0
dsTrB {[HI(t), [HI(t− s), ρS(t)⊗ ρB]]} (2.20)

To gain a Markovian master equation we have to perform the last approximation,

i.e. the rotating wave approximation. Before developing it we need to rewrite eq.

(2.20) in a different form. We focus on the interacting termHI(t). Its most generic

form in Schrdinger picture is:

HI =
∑

α

Aα ⊗Bα (2.21)

Where Aα and Bα are hermitian operators respectively acting on HS and HB .

Assuming that the spectrum of HS is discrete, we have a complete set of projector

operators {∏(ǫ)} where each one of them projects into the eigenspace associated

to the eigenvalue ǫ of HS . We define:

Aα(ω) =
∑

ǫ′−ǫ=ω

∏

(ǫ)Aα

∏

(ǫ′) (2.22)

Using eqn. (2.22) together with the completeness relation of the projectors set, we

get:
∑

ω

Aα(ω) =
∑

ω

A†
α(ω) = Aα (2.23)

Another consequence of equation (2.22) is that:

[HS , Aα(ω)] = −ωAα(ω) (2.24a)

[HS , A
†
α(ω)] = ωA†

α(ω) (2.24b)

From eqns. (2.24) we have that the interaction picture representation of the opera-

tors Aα(ω) and A†
α(ω) is given by:

eiHStAα(ω)e
−iHSt = e−iωtAα(ω) (2.25a)

eiHStA†
α(ω)e

−iHSt = eiωtA†
α(ω) (2.25b)

It follows that about HI we have:

∑

α,ω

Aα(ω)⊗Bα =
∑

α,ω

A†
α(ω)⊗B†

α (2.26)
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Thus, considering the interaction picture operator of the interacting Hamiltonian

term, we get:

HI(t) =
∑

α,ω

e−iωtAα(ω)⊗Bα(t) (2.27)

=
∑

α,ω

eiωtA†
α(ω)⊗B†

α(t) (2.28)

with Bα(t) = eiHBtBαe
−iHBt.

It is important to note that the statement TrB {[HI(t), ρ(0)]} = 0, that has been

assumed before, becomes 〈Bα(t)〉 = TrB {Bα(t)ρB} = 0 which tells that the the

reservoir average of Bα(t) vanishes. Combining eqn (2.26) and (2.20) we obtain:

dρS(t)

dt
=

∫ ∞

0
ds TrB

{

HI(t− s)ρS(t)ρBHI(t)

−HI(t)HI(t− s)ρS(t)ρB
}

+ h.c.

=
∑

ω,ω′

∑

α,β

ei(ω
′−ω)tΓα,β(ω)

(

Aβ(ω)ρS(t)A
†
α(ω

′)−

A†
α(ω

′)Aβ(ω)ρS(t) + h.c.
)

(2.29)

where

Γα,β(ω) =

∫ ∞

0
ds eiωt

〈

B†
α(t)Bβ(t− s)ρB

〉

(2.30)

The writing eqn. (2.29) is the form, for the evolution of ρS(t), that we were looking

for. Eqn. (2.30) is the Fourier transform of reservoir correlation functions. The last

consideration about this result is that for stationary reservoir states, [HB, ρB] = 0,

the reserve correlation functions ore homogeneous in time so:
〈

B†
α(t)Bβ(t− s)ρB

〉

=
〈

B†
α(s)Bβ(0)ρB

〉

which implies that Γα,β(ω) does not depend on time. We now return on the rotating

wave approximation. The time scale for the evolution of the system is proportional

to the difference of the frequencies involved into the dynamics of the system τS ∝
|ω− ω′| with ω 6= ω′. Because of τS > τR, we may neglect the terms with ω′ 6= ω
in eqn (2.29) since they oscillate very fastly in the time τR for whose the system

appreciably varies. Thus we get:

dρS(t)

dt
=
∑

ω

∑

α,β

Γα,β(ω)
(

Aβ(ω)ρS(t)A
†
α(ω

′)

−A†
α(ω

′)Aβ(ω)ρS(t) + h.c.
)

(2.31)
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Now we rewrite Γα,β(ω) as follow:

Γα,β(ω) =
1

2
(γα,β(ω) + iSα,β(ω))

with γα,β(ω) and Sα,β(ω)) being respectively positive and hermitian:

Sα,β(ω) =
1

2i

(
Γα,β(ω)− Γ∗

α,β(ω)
)

(2.32a)

γα,β(ω) =
(
Γα,β(ω) + Γ∗

α,β(ω)
)
=

∫ ∞

−∞
ds eiωs

〈

B†
α(s)Bβ(0)

〉

(2.32b)

By means of equations (2.32) we define the dissipator of the master equation as:

D (ρS) =
∑

ω

∑

α,β

γα,β

(

AβρSAα
†(ω)− 1

2

{

Aα(ω)
†Aβ(ω), ρS

})

(2.33)

and the hermitian operator:

HLS =
∑

ω

∑

α,β

Sα,βAα(ω)
†Aβ(ω) (2.34)

which commutes with the system’s Hamiltonian, [HS , HLS ] = 0. By means of eqn

(2.33) and (2.34) we can write the interaction picture master equation:

dρS(t)

dt
= −i [HLS , ρS(t)] +D (ρS(t)) (2.35)

Such form can be brought into the one of the well note Limbland equation by di-

agonalizing the matrices γα,β with the help of appropriate unitary transformations.

Limbland equation is fundamental in the field of open system physics since it gives

the dynamics of a generic open system in terms of generator of dynamical group.

Now we briefly formulate the main concepts of this evolution formalism about an

open system in order to better understand the main meaning of what we done via

Markovian master equation. In the scenario we considered, the system at time

t = t0(we suppose t0 = 0) is of the form ρ(t) = ρS(t)⊗ρB and now we assert the

that the state ρS(t) at some time t > 0 can be written in the form:

ρS(t) = V (t)ρS(0) ≡ TrB
{

U(t, 0) (ρS(0)⊗ ρB)U †(t, 0)
}

(2.36)

If we look at ρB and t as fixed, the above relation defines a map from S(HS), the

space of density operators of the reduced system, into itself:

V (t) : S(HS)→ S(HS)
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This is called dynamical map. By means of dynamical map, in fact, we avoid

to consider the whole Hilbert space H and we act only on HS , as shown in the

following diagram:

ρ(0) = ρS(0)⊗ ρB
Whole System’s Evolution−−−−−−−−−−−−−−→ ρ(t) = U(t, 0)ρ(0)U †(t, 0)

TrB



y



yTrB

ρS(0) −−−−−−−−→
Dynamical Map

ρS(t) = V (t)ρS(0)

It is possible to show that V (t) is a convex-linear, completely positive and trace-

preserving operator.

What we now do is to allow t to vary and thus we get a family of one parameter

{V (t)|t ≥ 0} dynamical maps where we assume V (0) to be the identity map.

Now because of the assumption of Markovian evolution of S we can get the semi-

group property for V (t):

V (t1)V (t2) = V (t1 + t2) ∀ t1, t2 ≥ 0 (2.37)

The set of V (t) is therefore a quantum dynamical semigroup, i.e. a one-parameter

family of dynamical maps underlying property (2.37). We can give the expression

of V (t) in terms of generator L of the quantum dynamical semigroup:

V (t) = exp{Lt} (2.38)

which yields to the first order differential equation:

dρS(t)

dt
= LρS(t) (2.39)

which is the generic Markovian master equation. It can be shown that the action

of L on ρS can be expressed as the contribution of two terms; a standard unitary

evolution term and a dissipator which provides the irreversibility for the whole

process [7]:

LρS = −i[H, ρS ] +
N2−1∑

k=1

γk

(

AkρSA
†
k −

1

2

{
ρS , A

†
kAk

}
)

(2.40)

Eqn(2.40) is the most general form that the generator L, acting on a state ρs, can

have. The commutator represents the unitary part of the evolution. The hermitian

operator H is generally different from the system Hamiltonian as in the case of

eqn. (2.35). Parameters {γk} count the correlation functions of the environment
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and they play the role of the relaxation rates for the modes of the open system. Fi-

nally the operators {Ak}, called Limbland operators, are linear combinations of the

generators of the Liouville space of ρ (of dimensions N2), excluding the identity

operator that is counted in the choice of such basis of generators (AN2−1 = I). As

consequence of this, the expression (2.39) is called Limbland equation. What we

obtained in (2.20) is therefore the action of quantum dynamical semigroup gen-

erator L on the system’s density operator. It is important to stress the aspect of

irreversible dynamics generated by the quantum dynamical semigroup generator.

In contrast to the closed system, that counts a unitary dynamics alone, here, for an

open system, the dissipator D(ρS) gives rise to a non null entropy production rate,

σ, for the whole system S +B.

Let us consider two states ρ and ρ0 of S(HS) and the change in the quantum rel-

ative entropy induced by the same dynamical map V (t) acting on both of them.

We remember that the relative entropy between two density operators ρ and σ is

defined as:

S(ρ1||ρ2) = Tr(ρ ln(ρ))− Tr(ρ ln(σ)) (2.41)

Since the properties of relative entropy we can get:

S(V (t)ρ||V (t)ρ0) = S(Tr{U(t, 0)ρ⊗ ρBU(t, 0)†}||Tr{U(t, 0)ρ0 ⊗ ρBU(t, 0)†})
≤ S(U(t, 0)ρ⊗ ρBU(t, 0)†||U(t, 0)ρ0 ⊗ ρBU(t, 0)†)

= S(ρ⊗ ρB||ρ0 ⊗ ρB)
= S(ρ||ρ0)

(2.42)

If ρ0 is a stationary state (not necessary an equilibrium state) then Lρ0 = ρ0 thus:

S(V (t)ρ||V (t)ρ0) = S(V (t)ρ||ρ0) ≤ S(ρ||ρ0) (2.43)

That is the dynamical map reduces the relative entropy of the generic system state

ρ with respect to a stationary state ρ0. Assuming the expressions (2.38) and (2.43)

we can define, as entropy production rate, the negative derivate of the above relative

entropy that will be positively defined:

σ(ρ(t)) = − d

dt
S(ρ(t)||ρ0) ≥ 0 (2.44)

where ρ(t) = V (t)ρ(0). In this expression we can explicit the contribution of the

generator L as:

σ(ρ) = −kTr{(Lρ) ln(ρ)}+ kTr{(Lρ) ln(ρ0)} ≥ 0 (2.45)
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where k represents the Boltzmann constant. It can be proved that the entropy pro-

duction rate σ(ρ) is a linear, convex and non-negative functional defined on the

state space of the open system. It is significant to underline that the entropy pro-

duction rate for the whole system (that now is a closed system) is given by means

of the relative entropy. Eqn. (2.45) can be also achieved by nonequilibrium argu-

ments but here we will not report such discussion because it is not a central topic

for our work.



Chapter 3

Quantum Thermodynamics

The development of classical thermodynamic theory and thus the building of big

heat engines, adopted in the industrial production precesses, led a great transfor-

mation of society known as second industrial revolution. This was one of the most

important changing in the history of the world in making modern society. Heat

was used to produce work! It means that we can take a disordered form of energy,

the heat, and convert a part of it into ordered energy, mechanical work. In the last

years physicists tried to build a thermodynamic theory in the quantum regime so to

take advance from the richness of processes of quantum mechanics. A new branch

of physics, known as Quantum Thermodynamics, is developing. In this chapter we

will give the idea of “thermodynamics” behind the quantum mechanical processes.

Then we will use the new thermodynamic language”, just introduced, in order to

describe phenomena as irreversibility, linked to the finiteness in time of quantum

evolutions, and to propose a finite power quantum heat engine. In the follow-

ing we will describe the main thermodynamic transformations, characterizing the

quantum regime, following their equivalent processes in classical thermodynamics.

At first we will introduce the first and the second principle of the thermodynamics

and then we will define the particular thermodynamic transformations as adiabatic,

isochoric and isothermal ones. As we are interested in the quantum regime, then

the physical variables will be given as functionals of the density operator ρ and by

the spectrum of the system Hamiltonian H(t). As in the classical case, the concept

of adiabatic, isochoric and isothermal will be respectively linked to closed systems,

“null work” transformations and open system evolutions where the working sub-

stance has the same temperature during the whole branch. The physics involved

in such steps can be very different according to the way in which such evolutions

are driven. For instance a quasistatic transformation gives rise to thermodynamic

outputs (in terms of performed work for instance) that are quite different from the

16



3.1. THE LAWS OF THERMODYNAMICS IN QUANTUM REGIME 17

ones of a finite time branch. In the following we will distinguish between these

two regimes that have been very well studied for the case of an adiabatic quantum

transformation.

3.1 The Laws of Thermodynamics in Quantum Regime

For defining our transformations we start from the first principle of thermodynam-

ics. Here we make two assumptions: first we assume that the initial and final states

of the process are equilibrium states (generally answering to the Gibbs-Boltzmann

distribution), second, in the case of an external driving, the system underlies to

quasistatic evolutions. Otherwise, when no driving is acted, the dynamics can be

thought as a generic process pushing the initial state into an equilibrium one as in

the case of a thermalization.

In the case of an external driving this latter is assumed to be quasistatic and thus

the quantum adiabatic theorem stands [9]. According to such theorem the popula-

tion of each level (where these latter modify in time) do not change. Thus, given a

state ρt, we can write its average energy as Ut = Tr{ρtHt} =
∑

n PnEn where

both ρt and Ht are written in Schrödinger picture, and En and Pn are respectively

the n-th level’s energy and population. In case of equilibrium state such average

energy coincides with the internal energy that is just an equilibrium variable. The

infinitesimal change of U , which now coincides with the internal energy of the

system, has therefore the form:

dU =
∑

n

(PndEn + EndPn) (3.1)

The first principle of thermodynamics reads dU = dW + dQ, where dU is the

infinitesimal change in average energy of the state, dW is the work made on the

system and dQ is the heat exchanged by the latter with some environment.

Under the assumptions we made (equilibrium initial and final states and quasistatic

transformation for non isolated systems), it is natural to identify the two terms in

(3.1) with dW and dQ, thus we get [10]:

{

dW =
∑

n PndEn

dQ =
∑

nEndPn

(3.2)

Set of equations (3.2) allows for defining thermodynamic transformations such as

isochoric, adiabatic and isothermal branches. Generally, for non quasistatic pro-

cesses, dU will not coincide with the internal energy. In this scenario, a although

the form of dQ is always as in eqn. (3.2), dQ =
∑

nEndPn, it is not the case for
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dW . We will deeply approach this problem in section 3.3.1. Further characteriza-

tions will be given by the second law of thermodynamics. For this aim we need to

distinguish between the case of open and closed system. At first we approach the

case of an open system. We look for a good definition of entropy for both the sys-

tem and the environment that is assumed to be a thermal bath. It can be shown [11],

that, for a process involving open systems, the thermodynamic entropy change of

the latter, obtained via Clausius relation
∫
δQres→syst/T , equals the Shannon en-

tropy S = −
∫
ρln (ρ) (the integration is performed over all the phase space) only

if canonical equilibrium is achieved between the system and its reservoir. Here

ρ is a classical density function but in the quantum regime such ρ is an operator,

as defined in eqn. (2.5). In such case we would deal with von Neumann entropy

Sinf = −Tr(ρ ln(ρ)). However a link between heat and entropy (Shannon or von

Neumann entropy according to the classical or quantum nature of the system) holds

also for nonequilibrium transformations. In fact if we consider to go from ρi to ρf
(neither is assumed to be an equilibrium state) then the following disequality holds

[12]:

∫

δQres→syst/T ≤ −Tr {ρln (ρf )}+ Tr {ρln (ρi)} = ∆Sinf (3.3)

You can recognize in (3.3) the Clausius disequality, showing that the von Neu-

mann entropy ( or the Shannon entropy for a classical system) plays the role of

the system’s entropy for general transformations, equilibrium and non equilibrium

ones. Now we focus on the reservoir. Its state is always assumed to answer the

canonical distribution with the same initial temperature during the whole process

(isochoric or isothermal transformation), i.e. reservoir does not evolve. So every

kind of thermodynamic branch will be reversible since ρB (the density operator of

the reservoir) goes through equilibrium states, that, in this case, always equal the

initial one. It follows that the entropy change for the reservoir is given by:

Sres =

∫
δQS→R

T
= −

∫
δQR→S

T
(3.4)

Counting the contribution of both the open system and the reservoir, we can define

the growing of entropy of the whole system S+B that here we address as universe:

∆Suni = Sres +∆Sinf ≥ 0 (3.5)

Eqn. (3.5) is the second law of thermodynamics for open systems. The positivity

of the total entropy ∆Suni follows from (3.3). ∆Suni is null for reversible trans-

formations otherwise the entropy of the universe (S + B) will always increases.

We underline that here we tell about thermodynamics reversibility which is quite
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different from the quantum mechanical reversibility. This latter always holds since

for each unitary evolution U , acting on the whole system, there exists the inverse

transformation U−1 = U † that in principle can drive back the system to the initial

state. The concept of irreversibility appears when, dealing with the open system

dynamics, we trace over the degrees of freedom of the reservoir and, by various

approximations, we treat the environment as constant in time.

The case of non isolated closed quantum systems will be treated in section 3.3.1.

Indeed situation drastically changes for such systems. Von Neumann entropy is

conserved for unitary transformations and, since for a closed system the dynamics

is driven by some unitary operator U , then Sinf is not a good choice for the entropy

function. Situation is analogue in the case of classical mechanics since the Shan-

non entropy of the density function ρ remains constant in time by the Liouville’s

theorem.

3.2 Quantum thermodynamic Transformations: An In-

troduction

In the following we will introduce the main thermodynamic transformations as

isochoric, adiabatic and isothermal branches. The adiabatic and the isothermal

transformations will be assumed to be reversible, that is the working substance

density operator goes through equilibrium states during the branch. In this case we

tell about equilibrium thermodynamics. Then in section 3.3.1 we will generalize

the case of the adiabatic driving. For the aims of this thesis the generalization to

nonequilibrium of the reversible isothermal branch is not approached.

3.2.1 Quantum isochoric Transformation

For quantum isochoric transformation we mean a quantum process in which no

work is done on the system: dW = 0. It follows that the only form of energy

present in this transformation is heat:

dQ =
∑

n

EndPn (3.6)

If we think about a thermal reservoir as environment, a standard isochoric trans-

formation can be a thermalization process in which the energy levels of the system

remain unchanged but, at the same time, heat transferring between system and bath

allows for populations change, dPn 6= 0. Under general assumptions, following

the quantum formalism introduced in the preceding chapter, the isochoric transfor-

mation is described by the master equation formalism. According to the system
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Figure 3.1: ∆−P plane for thermodynamic transformations with a qubit as work-

ing substance. In green the isochoric branch, in red the isothermal one and in blue

a quantum adiabatic transformation.

and the environment we deal with, we apply the Limbland equation formalism so

to achieve an open system dynamic that drives the working substance state. The

final state can be hopefully an equilibrium state as it is the case under the physical

assumptions we make hereafter.

Let us assume to have an initial state prepared in thermal equilibrium with a

reservoir, such a bosonic thermal bath,, at temperature T1 and then to uncouple it

and to let it interact with another resevoir at temperature T2 6= T1. Addressing the

case of a qubit, we can write the state of the system, diagonal in the eigenbasis

B = {|e〉, |g〉} of HS , as ρ = Pe(∆)|e〉〈e| + Pg(∆)|g〉〈g|. ∆ is just the energy

spacing between the excited and the ground state so that Hs = ∆|e〉〈e| (Eg = 0).

Indeed, according to the optical master equation formalism, for our case, the final

system state of the evolution will be a thermal state at the same temperature of the

reservoir. This happen whatever is the initial state ρ of the system. In the ∆ − P
plane (see Figure 3.1) the isochoric branch is depicted by a straight -line at fixed ∆

form some P
(i)
e (∆) to another P

(f)
e (∆). The intermadiate states of the branch are

not equilibrium states. Indeed the Pn’s change thus we have not the steady state

condition (more in particular the equilibrium condition) or, form another point of

view, there are non null currents (looking at the master equation) between the states

thus, there is not equilibrium. This latter assertion is equivalent to say that there is
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some heat flow between system and bath. The heat absorbed by the system from

the reservoir will beQ =
∑

n

∫
EndPn = ∆(P

(tf )
e (∆)−P (ti)

e (∆)). Since, during

the evolution, the thermal reservoir and the working substance are not in thermal

equilibrium then this process is not reversible. This irreversible behaviour can be

directly noted by the positivity of ∆Suni for this case.

We assumed initial equilibrium state and perfect thermalization at the end of the

process but, the above discussion can be applied to whatever initial and final states

as well as to generic evolution at constant HS .

3.2.2 Quantum adiabatic transformation

A second important thermodynamic process is the adiabatic transformation. In

contrast with the isochoric branch (and following the classical thermodynamics)

we define a quantum adiabatic transformation as a branch in which no heat is ex-

changed with any environment. Considering only quasistatic driving (although the

system is closed it is not isolated) and starting the evolution with an equilibrium

state we can invoke the adiabatic theorem to underline that the populations of the

system will not change during the branch. According to (3.1) we now have:

dW =
∑

n

PndEn (3.7)

Population are left unchanged and only the energies En will change according to

the external driving, dPn = 0→ dQ = 0. This is a quantum adiabatic transforma-

tion. On the other hand a classical adiabatic transformation does not necessarily

require that the occupation probabilities are invariant. It follows that classical adi-

abatic processes form a set that includes the quantum adiabatic ones.

An important variable characterizing quantum adiabatic process is the effective

temperature. To introduce it let us consider any two level system (TLS) whose

Hamiltonian eigenstates (|e〉t and |g〉t) have energies Ee(t) and Eg(t) (energy

spacing ∆(t)). For whatever steady state, not necessary an equilibrium state, we

can imagine that it is in a “virtual” thermal equilibrium with some effective reser-

voir and its state is characterized by the following parameter (the effective temper-

ature):

Teff =
∆(t)

kB

[

ln

(
Pg

Pe

)]−1

(3.8)

where Pe and Pg are left unchanged (dPn = 0) and we externally change ∆(t)
which has, therefore, a given value which we assume to know. By this way we

can always consider the system in equilibrium with some reservoir at different

effective temperature and thus the branch is thermodynamically reversible. A good
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entropy state function has to be null for such transformation and non null otherwise.

Although such temperature can be always defined for a qubit, this is not the case

for a quantum system with at least three levels. In such cases we require that for

each energy spacing of the system we can define, via (3.8) an unique effective

temperature. As an example if we considering three states |1〉, |2〉 and |3〉 we

require that:

∆(t)

kB

[

ln

(
P1

P2

)]−1

=
∆(t)

kB

[

ln

(
P2

P3

)]−1

If at the end of such transformation we want to link the system to a thermal bath

(as for instance in the case of a Carnot cycle) then the reversibility requirement

for the whole cycle (isothermal transformation are thermodynamically reversible,

∆Sisoth
uni = 0) counts also that the final effective temperature is the same as the

temperature of the bath [13]. Then it can be shown that the two requirements, done

for having a reversible adiabatic process (unique Teff for each energy spacing and

Teff = Tbath), are equivalent to

• All the energy gaps are changed by the same ratio during the quantum adia-

batic process: En(t)− Em(t) = λ (En(0)− Em(0))

• The coefficient λ in the above equation is equal to the rapport between

the initial end final (effective) temperature that the equilibrium state sees:

λ = Tf/Ti

Now we name expansion a quantum adiabatic process in which the working sub-

stance (the system) does work (dW > 0) and compression the opposite process,

dW < 0 (see Figure 3.1).

3.2.3 Quantum isothermal transformation

In quantum isothermal processes the working substance is kept in contact with a

heat bath, the open system is always in equilibrium with it at fixed temperature T
and, simultaneously, we drive the system’s Hamiltonian by a protocol that depends

on time. To get equilibrium conditions, during this transformation, both the energy

gaps and the occupation probabilities change simultaneously. Thus now the first

law of thermodynamics counts both terms, work and heat. This scenario can be

achieved by assuming that the driving is quasistatic. Let us consider the example

of a two-level system.
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The time depending system Hamiltonian has two eigenstates |e〉t and |g〉t and

an energy spacing ∆(t) = Ee(t) − Eg(t) that are time depending. Also the lev-

els population change in time but in such quasistatic limit, the two occupation

probabilities, Pe and Pg, must satisfy both the Boltzmann distribution and the nor-

malization condition:

r(t) = Pe(t)
Pg(t)

= e−β∆(t) and Pg(t) + Pe(t) = 1 (3.9)

where again β = 1/kBT .

Since in a sufficiently slow process, at every instant the system is in thermodynamic

equilibrium with the heat bath, such transformation is reversible, ∆Suni = 0. This

implies that the heat exchanged with the reservoir can be written as:

dQ =
∑

n

EndPn = TdS (3.10)

where with dS we address the differential of von Neumann entropy of the state.

Also here we end the treatment of the thermodynamic transformation by defining

as expansion a branch in which the system performs work on the environment,

dW > 0, and compression the opposite process for whose dW < 0 (see again

Figure 3.1 for a graphic representation of the isothermal transformation).

3.2.4 Quantum Otto Cycle, Harvesting Work from Quantum Systems

The building up of a quantum heat engines represents one of the most interesting

challenge in the field of quantum thermodynamics. Because of this aim, a great in-

terest has been given to theoretical characterization of quantum cycles as Otto [14],

Carnot [15], Stirling [16] and Szilard cycle [17] as well as theoretical proposals of

heat engines [18] and recently some experimental result has been obtained [19].

Here we briefly introduce an example of thermodynamic cycle in quantum regime:

the quantum Otto cycle. Such cycle is made up by four steps and we assume again

that the initial state of the cycle is a canonical equilibrium state at temperature Tc.
Such cycle is made in series by (look at Figure 3.2):

• One adiabatic compression where the system Hamiltonian changes as H1 =
H(λ(0))→ H2 = H(λ(τ)) according to the driving protocol λ(t)

• One isochoric transformation, in our case a thermalization process with a

bath at temperature Th

• One adiabatic expansion where the Hamiltonian goes from H3 = H2 =
H(τ) to H4 = H1 = H(λ(0)) following the path λ(τ − t) (the backward

protocol)
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Figure 3.2: Quantum Otto cycle with blue lines and quantum Carnot cycle with red

dashed lines. For both the cycles the reservoirs temperatures are Tc = 1 and Th = 4
(β = ~ = 1), then both of them start in the point ”1” in the plane, corresponding

to an equilibrium state. The Otto cycle is depicted by the branches 1→ 2→ 3→
4 → 1 and the working of Carnot engine by the steps 1 → B → 3 → D → 1.

The quantum adiabatic branches are larger in the Carnot cycle and, for this latter,

the two isochoric transformations of the Otto cycle are replaced by two isothermal

branches.

• Final thermalization process which gets the final state of the working sub-

stance equal to the initial one; an equilibrium state at temperature Tc

The example, by which we introduce this cycle, takes in consideration a TLS. Both

the adiabatic compression and expansion are assumed to be performed quasistat-

ically, thus they are quantum adiabatic processes and this, for a qubit, coincides

with the reversibility of these branches. In the first step we start with a thermal

equilibrium state at temperature Tc, ρ1 = exp(−βcH1)/Z(βc) where Z(βc) is

the partition function. Then the system is not anymore in contact with the bath,

we deal with a closed system although it is not isolated. Thus we quasistatically

change the energy spacing until we reach the final value ∆2 = E
(2)
e − E(2)

g with

∆2 > ∆1 = E
(1)
e − E(1)

g . Since the transformation is quantum adiabatic we get

dPn = 0. The final state of the qubit can be written by using an effective tempera-
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ture:

β2 =
∆2

kB

[

ln

(

P
(1)
g

P
(1)
e

)]−1

thus the state of the system at position 2 in the ∆− Pe plane is:

ρ2 =
e−β2H2

Z(β2)

Here the work done on the system, obtained by the fist principle, is:

W1 = (E(2)
e − E(1)

e )P 1
e − (E(2)

g − E(1)
g )P 1

g

After this branch we put the qubit in contact with a bath at temperature Th higher

than Tc, Th > Tc. This assumption is crucial for the right working of the heat

engine. It ensures that the system can produce positive net work at the end of

the cycle. At the end of the branch we will have an equilibrium state at inverse

temperature βh since complete thermalizations are assumed. In this branch we

only have heat exchange and it is quantified by:

Qin = E(2)
e (P (3)

e − P (2)
e ) + E(2)

g (P (3)
g − P (2)

g ) (3.11)

For the next step we split system and reservoir and perform a quantum adiabatic

expansion such that the system’s Hamiltonian is driven back to the initial one,

i.e. ∆4 = ∆1. Here the effective temperature and the system state are β4 =

(∆2/kB)(ln(P
(3)
g P

(3)
e ))−1 and ρ4 = exp(−β4H1)/Z(β4). The work done on the

system is

W3 = (E(1)
e − E(3)

e )Pe(3)− (E(1)
g − E(3)

g )Pg(3)

To conclude the cycle we perform another thermalization process with a bath at

temperature Tc that is the initial temperature characterizing the thermal state ρ1.

Thus we will get ρ4 → ρ1. In this last step the heat exchanged is

Qout = E(1)
e (P (1)

e − P (4)
e ) + E(1)

g (P (1)
g − P (4)

g ) (3.12)

Qin and Qout are respectively the heat absorbed from the hot reservoir and ab-

sorbed from the cold reservoir. Using the first principle we have for the whole

cycle:

∆U = ∆U1 +∆U2 +∆U3 +∆U4

=W1→2 +Qin +W3→4 +Qout

= 0→Wtot = −(W1→2 +W3→4) = Qin +Qout

(3.13)
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Where Wtot is the net work produced in the whole cycle. Since this expression we

can obtain, as in classical Otto cycle, the following form for the efficiency η of the

cycle:

η =
Wtot

Qin
= 1− |Qout|

Qin
(3.14)

The expression for the efficiency of Otto cycle is the same as in classical thermody-

namics. It is very important to report that, as for the Otto cycle, we can build up a

quantum Carnot cycle. In this case assuming that the cycle is reversible (isothermal

and quantum adiabatic processes can be reversible but thermalization cannot) the

efficiency for such cycle is ηC = 1−Tc/Th. We can see that the efficiency of Otto

cycle is smaller than the one of Carnot cycle. the irreversibility of the isochoric

transformation is linked to dissipation processes which reduce the efficiency of the

cycle respect to the maximum available value that is the Carnot efficiency.

3.3 Nonequilibrium Thermodynamics

What we approach in this section is the generalization of quantum thermodynamic

transformations for closed systems when a finite time protocols is assumed to drive

the dynamics. Indeed, when going to quasistatic transformations to finite time

ones, the definition of ”work” is a central problem. Thus, for simplifying the prob-

lem, we consider isolated systems so to avoid unwanted phenomena as dissipation

due to the interaction with reservoirs. The assumption of initial equilibrium states

always will hold. For focusing on the most general case where each kind of ini-

tial state is considered then look at [20]. We will continuously look at classical

statistical mechanics approach to the problem (or sometime at stochastic thermo-

dynamics), to see how applying these arguments to the case of quantum thermody-

namics. We will obtain the main work definitions in classical as well as in quantum

regime and we will characterize them by fluctuation relations. In this way we aim

to underline and clarify fundamental concepts about irreversibility and dissipation

for nonequilibrium transformations. As last step we will use one of the obtained

relations, the inner friction work, to describe the working of a quantum Otto cycle

undergoing to finite time dynamics in its adiabatic branches.

3.3.1 Fluctuation Relations

Here we first introduce the various definitions of work in classical nonequilibrium

statistical mechanics, such as inclusive and exclusive work and underline their

physical meanings. Then we will obtain the Crooks fluctuation theorem and the

Jarzynski equality. This will be recovered also for the quantum regime. Then, for
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this latter case, we will characterize the entropy production in a nonequilibrium

(irreversible) transformation in terms of quantum relative entropy. Two different

characterizations will be given, respectively corresponding to two different defini-

tions of nonequilibrium work: the irreversible work and the inner friction work.

Classical Fluctuation Relations

As first step we recover the classical nonequilibrium fluctuation relations so to have

a guideline for better explaining the meaning of the quantum fluctuation relations

we will obtain. The main fact is that matter, at microscopic level, is in a continu-

ous state of agitation so many physical variables randomly fluctuate. Among these

variable we are interested in describing heat and work. What we will do is to track

fluctuation relations that characterize these variables. We will always assume ther-

modynamic equilibrium initial states (according to canonical ansamble) but then,

we need another property of the systems: microreversibility. We will introduce it

soon. In general our system (here at the level of classical theory) is described by

an Hamiltonian such:

H(z, λt) = H0(z)− λtQ(z) (3.15)

In the above equation λt is our protocol that contributes at driving the perturbation

of the system, Q(z) is an observable depending on z = (q, p), the state vector in

the phase space, and H0 is the unperturbed Hamiltonian. We refer to λt and to

Q(z) as force and conjugate coordinate. Then we will assume that the perturbation

driven by λt starts at t = 0 and finishes at t = τ . According to the Hamilton

equations of motion and given an initial point in the phase space z0 = (q0, p0), the

generic point zt for t ∈ [o, τ ] will be given by:

zt = ϕt,0(z0, λ) (3.16)

The function on the right side of (3.16) is called flow. In enunciating the microre-

versibility principle we restrict to time reversal Hamiltonians (but the discussion

can be also generalized to non time reversal ones) and to conjugate coordinates

with parity ǫQ = ±1 under the same time reversal transformation. It can be showed

[22] that, defined the reverse protocol λ̃t = λτ−t, the following equality, the mi-

croreversibility principle, holds:

ϕt,0(z0, λ) = ǫϕτ−t,0(ǫzτ , ǫQλ̃) (3.17)

It states that in order to recover backward the trajectory zt one has to invert the sign

of momenta (ǫz = (q,−p)) and perform the protocol ǫQλ̃ (see Figure 3.3(a)). It is

important to underline that (3.17) stands for nonautonomous systems.
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Thus we have well defined both the initial states of the driving and the guide

principle for the trajectories zt. Now we introduce two different definitions for

the work done on the system during such evolution: inclusive and exclusive work.

Remember that the initial state of the system is given by the (canonical) equilibrium

distribution ρth = exp{−βH}/Z(β) at inverse temperature β. Thus the initial

state in the phase space z0 is a random value sampled from this distribution; it is a

random variable. We now define a new variable, the exclusive work, as function of

this initial random variable:

W0(z0;λ) =

∫ τ

0
d tλtQ̇t(ϕt,0(z0;λ)) (3.18)

Because this definition, the same exclusive work is a random quantity. Jarzynski

showed in [23] that through the Hamilton equations of motion one can obtain:

W (z0;λ) = H0(ϕτ,0(z0;λ))−H0(z0) (3.19)

This equality allows to interpret the exclusive work as the energy injected into the

system during the action of the force protocol λt from t = 0 to t = τ . From

eqn. (3.18) and using microreversibility (3.17) we can get the so called Bochkov-

Kuzovlev equality:
〈

eβW0

〉

λ
= 1 (3.20)

The subscript λ means that the process, leading to the work W0 made on the sys-

tem, is the forward process driven by λt which transforms the unperturbed Hamil-

tonian from H0(z0) to H0(ϕτ,0(z0;λ)) and, the average 〈·〉 is performed on the

initial equilibrium state. By (3.20) we know that the average on the equilibrium

initial state of the exponential of the random variable ”exclusive work” is inde-

pendent of the details of the system as well as the particular protocol (path) λt.
Applying the Jensen disequality to eqn. (3.20) we finally get:

〈W0〉 ≥ 0 (3.21)

Which means that if the system is driven out of equilibrium by the force λ than,

in average, it can only absorb energy. We now explicitly write down the work

distribution p(W ′
0;λ) whose integration, on the domain of all possible W ′

0, gives

the exclusive work (3.18). That is:

〈W0〉 =
∫

dW ′
0 P0(W

′
0;λ)W

′
0

Such pdf P (W ′
0;λ) reads:

P0(W
′
0;λ) =

∫

d z0ρ0(z0)δ [W0 −H0(zτ ) +H0(z0)] (3.22)
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Applying microreversibility arguments to the above equation we get the fluctuation

relation:
P0(W0;λ)

P0(−W0; ǫQλ̃)
= eβW0 (3.23)

that is the Bochkov-Kuzovlev fluctuation relation.

It expresses the second law of thermodynamics. Indeed if we assume W0 > 0 then

eqn. (3.23) asserts that the probability that the work in injected into the system is

eβW0 times greater than the probability that the same amount of work is released by

the system in the reversed protocol. By eqn. (3.23)we can assert that processes in

which energy is consumed are exponentially more probable than the ones in which

the same amount of energy is released.

Another approach to define of ”work” is to consider the whole Hamiltonian

eqn. (3.15), so that:

W (z0;λ) = H(zτ , λτ )−H(z0, λ0) (3.24)

Such variable is called inclusive work since it counts also the perturbation part of

the system’s Hamiltonian. The inclusive work can be expressed as:

W (z0, λ) =

∫ τ

0
λ̇t
∂H(zt, λt)

∂λt
(3.25)

Now we address, by the same guideline of the exclusive work, a forward and a

backward protocol and we will look at the average of the exponential of the work

W (z0;λ), in order to relate it to equilibrium variables. Jarzynski equation will

be obtained. As we have assumed until now, our protocol starts with an initial

equilibrium state at inverse temperature β. Then we will perform the protocol λt,
driving the system out of equilibrium and, we will stop at time τ . The backward

protocol is performed considering as initial state the thermal state of the system as it

saw the same initial temperature but now with the system’s HamiltonianH(zτ , λτ ).
such state is:

ρth,B =
e−βH(zτ ,λτ )

Z(β, λτ )

By applying microreversibility, it can be derived the Jarzynski equation [24]:

〈

e−βW
〉

λ
= e−β∆F (3.26)

Where the right side of the above equation counts the difference between the free

energies of the state at the beginning of forward and backward protocol:

∆F = −β ln
[
Z(β, λτ )

Z(β, λ0)

]
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Now applying the Jensen disequality to eqn. (3.26) we get:

〈W 〉λ ≥ ∆F (3.27)

Also in this case, as for the exclusive work, we consider the expression for the

inclusive work pdf:

P (W ;λ) =

∫

d z0ρ0(z0)δ [W −H(zτ ) +H(z0)] (3.28)

and by the microreversibility principle we obtain a fluctuation relation for such

inclusive work.
P (W ;λ)

P (−W ; λ̃)
= eβ(W−∆F ) (3.29)

Eqn. (3.29) is known as Crooks fluctuation theorem. Such theorem stands also if

we considered Q to be odd under time reversal, but in this case λ̃ would have been

replaced by −λ̃.

Quantum Fluctuation Relations

What we will do know is to obtain the quantum analogue of the preceding fluctua-

tion theorems valid in the regime of classical statistical mechanics. The first point

to exploit out is about the physical interpretation of work in quantum mechanics.

We remark that here we assume closed quantum systems. The measure postulate

of the theory plays a central role in the quantum formulation of the fluctuation re-

lations since it counts the collapse of the quantum state on a specific eigenstate

of the measured observable. The problem was explicitly approached in [21]. At

first we have to replace the classical Hamiltonian and density state by their relative

quantum operators that is H(z, λt) is replaced by the Hamiltonian operator Ĥ(λt),
acting on the system Hilbert space H and, the probability density in the phase

space ρ(z, λ(t)) will be replaced by the density operator ρ̂(λt), evolving under the

assumption of closed quantum system. Hereafter we will omit the hat in writing

the preceding operators. The state system is initialized, according to the quantum

statistical canonical ansamble, to a thermal state at inverse temperature β. This

reads:

ρ(λ0) =
e−βH(λ0)

Z(λ0)

where Z(λ0) = Tr
(
e−βH(λ0)

)
.

Now we define the constrain of microreversibility for nonautonomous quantum

systems. The concept is very closed to the classical one and can be expressed by:

Ut,τ (λ) = Θ†Uτ−t,0(λ̃)Θ (3.30)
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we will have two values of the energy, Eλ0
n and Eλτ

m . The measured quantum

inclusive work is then:

w = Eλτ
m − Eλ0

n (3.32)

Due to the randomness of the measured energy, (3.32) is a random variable fol-

lowing an appropriate pdf. Indeed according to the definition of work W =
Tr(ρτH((λτ )))− Tr(ρ(λ0)H(λ0)) we could define an observable ”work” Ŵt =
HH(λt) −H(λ0), where HH(λt) = U †H(λt)U is the Heisenberg representation

of the system Hamiltonian H(λt) (here in Schrdinger pictrue) and thus we could

get W = Tr(ρ(λ0)Ŵt). Such operator is not a good physical observable. In fact

we cannot measure Ŵt. Then if we focus of the other momenta of Ŵt above,

we see that the they are not finite. Ŵt is not an observable. What we want to

underline is that we cannot get the result for the work measurement by sampling

only one time any operator but in two different instants. What we can do is to

measure energy values by some experimental apparatus. Another important aspect

about work in quantum mechanics is that we cannot express the inclusive quan-

tum work in the form of a integral of power (see [31] for a detailed analysis of

the difference between a work obtained according to TEMA protocol and the one

obtained by the power approach). W in eqn. (3.32) will be distributed according

to some pdf. We can write down such work pdf by some considerations about the

whole TEMA protocol. As we already said, the initial state is given by the thermal

equilibrium canonical distribution at inverse temperature β according to the Hamil-

tonian H(λ0). The instantaneous eigenvalues (and eigenstates of the Hamiltonian)

are given by:

H(λt)|ψλt
n,γ〉 = Eλt

n |ψλt
n,γ〉 (3.33)

In the above equation n specifies the energy eigenvalues and γ considers eventual

degeneration for gn-fold degeneracy. Thus at time t = 0 we measure the energy of

the state and we get some output Eλ0
n with probability:

p0n = gn
e−βE

λ0
n

Z(λ0)
(3.34)

projecting the whole state into:

ρn =
Πλ0

n ρ(λ0)Π
λ0
n

p0n
(3.35)

where Πλ0
n =

∑

γ |ψλ0
n,γ〉〈ψλ0

n,γ | is the projector in the gn-fold degenerate H(λ0)’s
eigenspace. We again remark that our system is thermally isolated from any kind of

environment. This is a very strong requirement, it is difficult to achieve in quantum

regime. After such assumption the evolution is given by:

ρn(t) = Ut,0(λ)ρnU
†
t,0(λ) (3.36)
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Such evolution will stand until t = τ when we will operate the second measure-

ment of H(λt) giving a generic output Eλτ
m with probability:

pm|n(λ) = Tr
(

Πλτ
m ρn(τ)

)

(3.37)

Finally we write the work pdf as:

P (w;λ) =
∑

m,n

δ
(

w −
(

Eλτ
m − Eλ0

n

))

pm|n(λ)p
0
n (3.38)

Integrating the quantum inclusive work (3.32) over (3.38) we will obtain the aver-

age work we was looking for.

It is important to note the the average work 〈W 〉, obtained via work pdf, co-

incides with the difference of average energies Tr(ρ(λ0)Ŵt) (see appendix A.2).

The important difference between them is that the momenta:

Pn =

∫

dwwnP (W ) (3.39a)

P̃n = Tr(Ŵn
τ ρ(λ0)) (3.39b)

are finite in the case of expression (3.39a) and not for (3.39b). This point again

underlines the physical meaningfulness of the definition of work as average of a

stochastic variable on a pdf.

We now consider the Fourier transform of the work pdf, the characteristic function,

which is shown to be given by a time-ordered correlation function of the exponen-

tiated Hamiltonian [21, 30] for both nondegenerate end degenerate Hamiltonian

cases:

G(u;λ) =
〈
eiuw

〉
=

∫

dw P (w)eiuw

=
〈

eiuH
H
τ (λτ )e−iuH(λ0)

〉

= Tr

(

eiuH
H
τ (λτ )e−(iu+β)H(λ0)

Z(λ0)

)
(3.40)

In the above equation we used the superscript H to denote the Heisenberg picture

of the operators and the average is performed on the canonical initial distribution.

For a sudden quench (3.40) becomes:

Tr

(

eiuHτ (λτ )e−iuH(λ0) e
−βH(λ0)

Z(λ0)

)

(3.41)
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What we do now is to rewrite the eqn. (3.40) in order to have a formula closed to

(3.25). Making use of the time ordering operator, from (3.40) we can get:

G(u;λ) = Tr

(

T eiu(HH
τ (λτ )−H(λ0)) e

−βH(λ0)

Z(λ0)

)

= Tr

(

T exp

{

iu

∫ τ

0
dt λ̇t

HH
t (λt)

λt

}) (3.42)

Using the quantum microreversibility we have [3]:

Z(λ0)G(u;λ) = Z(λτ )G(−u+ iβ; λ̃) (3.43)

Using the definition of free energy F = −(1/β) ln
(
e−βH

)
we obtain the quantum

Crooks-Tasaky fluctuation relation (3.45):

P (w, λ) =
1

2π

∫

du e−iwuG(u;λ)

=
1

2π

∫

du e−iwuZ(λτ )

Z(λ0)
G(−u+ iβ; λ̃)

= e−β∆F 1

2π

∫

du e−iwuG(−u+ iβ; λ̃)

= e−β∆F e
βw

2π

∫

dν eiwνG(ν; λ̃)

= eβ(w−∆F )P (−w, λ̃)

(3.44)

that is:
P (w, λ)

P (−w, λ̃)
= eβ(w−∆F ) (3.45)

From the quantum Crooks-Tasaky fluctuation relation we can arrive to the quantum

version of the Jarzynski equality:

〈

e−βw
〉

λ
= G(u, λ)

∣
∣
∣
∣
∣
u=−iβ

= G(−u+ iβ)

∣
∣
∣
∣
∣
u=iβ

e−β∆F

= e−β∆F

(3.46)

In the above equation, in going to the second to the third step we made use of

(3.43). Thus the Jarzynski equality in quantum mechanics (as in classical mechan-

ics) reads: 〈

e−βw
〉

λ
= e−β∆F (3.47)
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From (3.47) and applying the Jensen disequality we can get:

〈w〉 ≥ ∆F (3.48)

As in the classical case we link the work done on the system, in a generic nonequi-

librium process on a closed system, to the one obtained considering a isothermal

branch from ρthi = ρ(λ0) = exp{−βH(λ0)}/Z(β,H(λ0)) to ρB = ρ(λ(τ))th =
exp{−βH(λτ )}/Z(β,H(λτ )). Free energy is an equilibrium variable and ∆F is

just the work done on the system in an isothermal transformation. It is highlighting

to link this work, obtained form out of equilibrium dynamics, with the second law

of thermodynamics, so to relate the irreversibility of the process, i.e. the increasing

of some kind of entropy for the system, to the amount of work done on the working

substance To this aim we define the irreversible work as:

〈w〉irr = 〈w〉 −∆F (3.49)

Following [32] and considering that we are dealing with a closed system, thus

δQ = 0 we can write down an expression for the irreversible entropy that is:

∆Sirr = β 〈w〉irr (3.50)

Again in [32] it is shown that the irreversible entropy (3.50), that can be obtained

by thermodynamic considerations, can be related to the quantum relative entropy

between ρτ = U(λτ )ρ
th
i U(λτ )

† and ρB:

∆Sirr = D(ρτ ||ρβ(λτ )) (3.51)

so that the Clausius disequality can be generalized counting the Bures length be-

tween the two states put in the relative entropy above:

∆Sirr ≥
8

π2
L(ρ(λτ )||ρβ(λτ )) (3.52)

for the upper equation we recall that:

L(ρ1, ρ2) = arccos
(√

F (ρ1, ρ2)
)

with

F (ρ1, ρ2) =

(

Tr

(√√
ρ1ρ2
√
ρ1

))2

(3.53)

Very intuitively (3.52) states that entropy production is larger when a system is

driven farther away from equilibrium. We underline that relative entropy is not

merely a metric so even if in some way its value is as great as the two operators ρτ
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andρβ(λτ ) are different one from each other, it does not formally give a distance

between them. Eqn. (3.52) has been used to study the amount of irreversibility in

various systems as simple harmonic oscillators [33] or spin chain [34] and ultra-

cold gases [35]. Finally we can again characterize the irreversible work by its

relation with the state ρB by [36]:

〈wirr〉 = TB(SB − Si)−
〈

Qth
τ→B

〉

(3.54)

As last argument of the field of fluctuation relations we want to introduce and an-

alyze the so called inner friction work [37]. As we already said in the last section,

the concept of inner friction was preceding introduced in [28]. It stands that if

the driving of the Hamiltonian, of a closed and non isolated quantum system, is

performed in a finite time than the upper levels population of its state will be gen-

erally increased; it seems like a certain amount of heat is absorbed by the system.

We repeat that we are dealing with closed quantum systems, thus for each evo-

lution operator U there exists U−1, the quantum mechanical reversibility always

stands. From this point of view the name ”inner friction” for a closed quantum sys-

tem could be misleading, but here, at thermodynamic level, adopting the concept

of thermodynamic reversibility as in [13], we describe the physics by thermody-

namics concepts that will help us in characterizing such dynamics; the concept of

friction in an adiabatic branch (a thermodynamic transformation) is one of them.

What we do is to compare the difference of average energy of a system in a finite

time evolution, 〈H〉i→τ = 〈w〉 = Tr (H(λτ )ρτ )−Tr
(
ρthi H(λ0)

)
, with the work

of the reversible quantum adiabatic processes defined in 3.2, that coincides with

the internal energies difference 〈wi→A〉 =
∑

n Pn∆En. These two variables are

generally different if the system’s Hamiltonian does not commute with itself at dif-

ferent times, [H(λt1), H(λt2)] 6= 0 for t1 6= t2 and, as we assumed, the evolution

is performed on a finite time, thus adiabatic theorem does not apply. The state

gained by the reversible protocol is ρA = exp [−βAH(λτ )] /Z(βA;H(λτ )) where

βA is the effective temperature defined as in (3.8) (hereafter we assume that it is

possible to define an effective temperature for the transformation). Thus we now

study the difference:

〈wfric〉 = Tr
(
H(λτ )ρτ

)
− Tr

(

ρthi H(λ0)
)

− 〈wi→A〉 (3.55)

As in the case of irreversible work (3.49), we will show that eqn. (3.55), the inner

friction work, can be expressed through the quantum relative entropy between the

state ρτ and ρA. In this sense we can link such inner friction work to the genera-

tion of entropy in the process. The passages of this demonstration are showed in
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appendix A.3 and the final result reads:

〈wfric〉 =
1

βA
D(ρτ ||ρA) (3.56)

Inner friction work is then always greater then zero since Klein’s inequality, that

is the relative entropy is positive defined. We can add new information to this new

kind of work getting a lower geometric bound expressed in terms of Bures length:

βA 〈wfric〉 ≥
8

π2
L2(ρτ , ρA) (3.57)

in the above equation, L is defined as in (3.53). The inner friction work is then

related to the heat absorbed in a thermalization from the state ρτ to ρA:

−〈wfric〉 =
〈

Qth
τ→A

〉

(3.58)

In writing the above equation we have brought the result of eqn. (3.54) to the case

where ρB → ρA so that SA − Si = 0. Note that if we address the Von Neumann

entropy change S(ρτ ) − S(ρi), instead of D(ρτ ||ρi) linked to 〈wfric〉, it would

be null. To clarify why this difference is null we can note that there exists a path

in the space of operator ρt that goes from ρτ to ρ0 by U †(λt) and from ρ0 to ρA
with the same protocol λt but now performing the transformation in an infinite

time. The time evolution operator driving this last dynamics is however unitary.

Then ρτ and ρA can be linked by a whole unitary transformation and consequently

they have the same Von Neumann entropy. We want to say that the results in

eqns. (3.54) and (3.58) can be obtained by standard thermodynamic considerations

for nonequilibrium transformations. Again eqn. (3.58) relates the increasing of

entropy due to the irreversibility of the adiabatic transformation in the quantum

system to the heat dissipated by a reservoir at inverse temperature βA which allows

the system to thermalize from ρτ to ρA. It is thus interesting to compare the two

definitions of irreversible and inner friction work. At first we compare the two

average heat that appears in eqns. (3.54) and (3.58):

〈

Qth
τ→A

〉

−
〈

Qth
τ→B

〉

= UA − UB (3.59)

We used the notation U to indicate the internal energy, U = Tr(ρeqH) where ρeq
is an equilibrium state. Internal energy is linked to the entropy (the von Neumann

entropy) and the free energy of a state by U = TS − F , thus we can get:

〈wfric〉 − 〈wirr〉 = (UA − UB)− Ti (SA − SB) (3.60)
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That can be read as:

〈wirr〉+ FB + TBSB = 〈wfric〉+ FA + TASA (3.61)

The link between irreversible and inner friction work can be also characterized by

expressing the equations (3.60) and (3.61) in terms of relative entropies:

TBD(ρτ ||ρB)− TAD(ρτ ||ρA) = TBD(ρA||ρB)
= −TAD(ρB||ρA) + (SA − SB)(TA − TB)

(3.62)

The first term above is directly equal to the difference of the irreversible and inner

friction work, the second and the third terms can be obtained by some algebraic

passage.

We can go deeper, in characterizing the entropy production, D(ρτ ||ρA), by giving

its pdf according to TEMA protocol. Given the two outcomes of energy measure-

ment Eλt
m and Eλ0

n , we can built the stochastic variable entropy by:

s = βAE
λt
m − βiEλ0

n (3.63)

Such variable will by distributed according to the pdf:

P (s, λt) =
∑

n,m

P 0
nPm|nδ

(

s− βAEλt
m − βiEλ0

n

)

(3.64)

The average value, 〈s〉, of s at time t is given by integrating the latter with the

entropy pdf eqn. (3.64) over all the possible outputs s (later eqn. (3.65a)) but the

same result can be obtained by the following eqn. (3.65b) (see appendix A.4):

〈s〉 =
∫

ds sP (s;λt) (3.65a)

〈s〉 = βATr(ρτH(λτ ))− βiUi (3.65b)

Now by following the same reasoning used for obtaining the Jarzynski equation in

quantum regime, we cen get a fluctuation theorem for the entropy variable s:

〈
e−s
〉
=
∑

s

∑

n,m

P 0
nPm|nδ

(

s− βAEλt
m − βiEλ0

n

)

e−s

=
∑

n,m

P 0
nPm|nδ

(

s− βAEλt
m − βiEλ0

n

)

e−(βAE
λt
m −βiE

λ0
n )

=
ZA

Zi

= e−(βAFA−βiFi)

(3.66)



3.3. NONEQUILIBRIUM THERMODYNAMICS 39

However a more general solution has been obtained in [38]. Using the Jansen

inequality we can obtain:

〈s〉 ≥ βAFA − βiFi (3.67)

It is natural to define the entropy production, according to the above equation, as:

〈Σ〉 = 〈s〉 − (βAFA − βiFi) (3.68)

It can be shown that the latter variable is equal to the quantum relative entropy

D(ρτ ||ρA) (see A.4). So we have:

〈Σ〉 = D(ρτ ||ρA) = βA 〈wfric〉 (3.69)

Thus also considering the statistic of the entropy production, in an irreversible

process, we obtain that inner friction apppears. The average excess of entropy

coincides with the inner friction work time the inverse effective temperature βA.

We end this part about inner friction work by showing that (in an analogous way

as done in [24]) the cumulants Cn of the distribution of the variable s are related

to the combination of free energies −(βAFA − βiFi) (see appendix A.5) as :

−(βAFA − βiFi) =
∑

n=1

(−1)n
n!

Cn (3.70)

where C2 =
〈
s2
〉
− 〈s〉2 is the variance, C3 =

〈
s3
〉
− 3

〈
s2
〉
〈s〉 + 2 〈s〉3 is the

skewness and so on for the other terms. This implies that the inner friction can be

expressed as combination of cumulants of order greater then two.

3.3.2 Finite Time Otto Cycle and Disorder Effects

To apply the thermodynamics described before to the field of heat engines is a

natural requirement. It helps to test the thermodynamic rules and, on the other

hand contributes to create possible applications. Thus in this section we will use

the nonequilibrium thermodynamics to study a particular QHE, a QOC working at

finite power. Since the power is non null it means that each branch of the cycle

is performed on a finite time, thus, we describe a system which works in a more

realistic way than the one in section 3.2.4. The choice of the Otto cycle is not

casual. In fact, if in studying Otto cycle we focus on its applications as heat en-

gine, getting advance from the quantumness of the system, on the other hand it is

a useful test ground for studying the concept of inner friction work, linked to the

irreversibility of the adiabatic branches. Indeed QOC, as its classical correspon-

dent, is made by two isochoric and two adiabatic transformations. Considering

the isochoric branches as thermalizations, we can perfectly reproduce the initial
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generated by an external field which we assume to be misaligned by an angle θ
respect to the static field ω0 ( we take in mind the case in Figure 3.4(a)). As we can

note eqn. (3.71) is such that [H(t1), H(t2)] 6= 0 for t1 6= t2 if θ 6= 0. Therefore

the angle θ is the parameter which will allow for the appearing of inner friction

in the branch. Then, in the case of many qubits (as in the system we want to de-

scribe) we will consider different values of θ for each of them. Such angle will be

the inhomogeneous parameter we addressed before and such inhomogeneity is a

kind of disorder of the system. By a quantum mechanical point of view it affects

the energy spacing of the single qubit as well as the eigenstates of H(λ(t)) and

their populations. The parameter α in eqn. (3.72) regulates the adiabaticity of the

transformation, in the limit α << ω0 we approximatively have quantum adiabatic

dynamics. We repeat that we assume that at the initial time, t = 0, the qubit is in

a thermal state at inverse temperature β. Thus the interesting case we will explore

will be characterized by θ 6= 0 and α ∼ ω0 (the cases α << ω0 and α >> ω0 are

trivial, since the first one corresponds to the reversible quantum adiabatic case and

in the second one the evolution operator is closed to the identity [9]). To see how

inner friction affects the efficiency and the power of the heat engine, we will oper-

ate in two steps. At first we will analyze these effects on a cycle for a single qubit

and then we will mediate over the disorder (we will assume a distribution G(θ) for

the misalignments) characterizing the disordered sample. Before approaching the

QOC we want to analyze the effects of a finite time adiabatic transformation on

a single qubit whose unitary dynamics is generated by Hamiltonian (3.71) under

the assumption that its initial state is given by canonical equilibrium distribution

ρ0 = exp[−βH(λ0)]/Z(β;H(λ0)). In particular we study the effects of a unitary

transformation counting two steps. At first λ
(F )
t changes from λ0 up to λtf in a

scaled time αF tF , that is λ
(F )
t = ω0

2 αF t. We call such λ
(F )
t forward protocol.

Then at time tF we will perform a second unitary transformation, the backward

process, in which the system Hamiltonian is obtained inserting in (3.71) the back-

ward protocol λ
(B)
t = λ

(F )
tF
− αBω0t/2. Finally the backward process will end at

the condition λ
(B)
tB

= λ
(F )
tF

so that H(λBtB ) = H(λFtF ). The time evolution opera-

tor for the forward process is UF (0, τF ) = T exp{−i
∫ tF
0 dt′H(λFt′ )} and for the

backward process we have UB(0, τB) = T exp{−i
∫ tB
0 dt′H(λBt′ )}. The whole

forward-backward protocol is schematize in the following diagram:

ρ0
UF (0,tF )−−−−−−→ ρ1

ρ2 ←−−−−−−
UB(0,tB)

ρ1
(3.73)
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where Qh,c represent the heat exchanged with the thermal bath at inverse tempera-

ture βh,c. Thus we give the following expression for the extractable work:

Wex(τad, θ, βh/βc) = Qh +Qc

=
(

ω2

(

p
(2)
0 − p

(3)
0

)

+ ω1

(

p
(4)
0 − p

(1)
0

)) (3.77)

For a QOC it can be shown [28] that according to the definition of heat engine, i.e.

an engine for which we have Wex > 0, it holds:

ω1(n1 − n4) < ω2(n2 − n3) (3.78)

Other figures of merit as power and efficiency are respectively defined, respect to

(3.77), as:

P (τad, θ, βh/βc) =
Wex

2τad+τiso
(3.79)

η(τad, θ, βh/βc) =
Wex

Qh
= 1 + Qc

Qh
(3.80)

It is important to note that for such cycle the assumption that its efficiency is not

greater than the Carnot efficiency, ηC = 1 − Tc/Th, reduces to βh/βc > ω1/ω2

and that for a quantum adiabatic branches this latter condition is equivalent to the

requirement of positive net work (extractable work) for the cycle. The above vari-

ables refer to a single qubit with generic misalignment θ, now we define the ana-

logue variables, but considering the whole sample, thus according to the generic

distribution of the misalignment angle G(θ). We have:

W ex(τad, βh/βc, σ) =
∫ π
0 Gσ(θ)Wex(τad, θ, βh/βc)dθ (3.81)

P(τad, βh/βc, σ) =
∫ π
0 Gσ(θ)P(τad, θ, βh/βc)dθ (3.82)

η(τad, βh/βc, σ) =
∫ π
0 Gσ(θ)η(τad, θ, βh/βc)dθ. (3.83)

As we said before we present the results dividing them in two groups. At first we

consider a generic angle θ, this refers to the case where the working substance is

a single qubit, then we will average over some G(θ) distribution (average on the

disorder) so to consider the whole simple. For the case of a single qubit working

substance in Figure 3.8 we report Wex, P and η as functions of the total time of

the cycle ttot ∼ 2τad, fixing the rapport between the temperatures of cold and hot

reservoir at βh/βc = 0.5. We can see in Figure 3.8(a) that the extractable work

becomes negative if the τtot exceeds a maximum value, τM (θ), which is a function

of the misalignment θ and the temperature rapport βh/βc. This means that if the

cycle lasts too long then we are actually doing work on the system, that is we have

not anymore a heat engine. Moreover there exists a critical value of θ such that
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the extractable work Wex is negative for any value of τtot. In the regime where the

extractable work is negative our one-qubit-engine works as a refrigerator, which

uses external work to cool the cold reservoir. For sudden quench we observe that,

although the transformation is reversible (U(0, 0) = I), the extractable work is

null. An analogous behaviour is shown by power and efficiency in Figure 3.8(c)

and 3.8(e).

We want to underline the aspect that finite time transformations are however funda-

mental in order to have non null power heat engines and thus inner friction effects

are expected for real quantum heat engine. However, different ways to minimize

such effect are proposed in [43] under the generic names ‘shortcuts to adiabaticity’

and in [44] with the name of ”quantum lubrification”. In the first case the con-

trol sequences λt is designed such that the irreversibility at the end of the adiabatic

branch is minimized and for the case of ”quantum lubrification” an additional noise

is considered so to minimize the coherences in the final state of the system at the

end of unitary evolution. Such tricks have not been tested for this Otto cycle, how-

ever better performance of the engine would be expected.

Returning to our QOC, it is natural to ask what is the working of the cycle as

function of the temperature thus in Figure 3.8(b) 3.8(d) and 3.8(f), we look at the

dependence ofWex, P , and η on the total time of the cycle for a fixed misalignment

angle θ = π/5 and for different values of the ratio βh/βc. We can see that as the

latter ratio increases then the extractable work increases too (Figure 3.8(b)). This is

something which is expected; nevertheless, we can clearly see that the finiteness in

the time of the cycle introduces again negative works for cycle time greater than a

certain value, ttot > τM (βh/βc). This behaviour is due to the inner friction effects.

The lost of performances for the cycle, due to the inner friction can be explicitly

found. Indeed Inner friction work is explicitly shown in Figure 3.9, where the sum

of the friction produced in the two adiabatic strokes is shown as a function of the

total cycle time for various misalignment angles θ and βh/βc = 0.5. As we can

see, the case θ = 0 is very special, as no friction is generated for whatever rate of

variation for the protocol λt. In this case indeed the system Hamiltonian commutes

with itself at different time and, since for a qubit we can always define an effective

temperature for quantum adiabatic processes, then the transformation is reversible.

On the other hand, 〈Wfric〉 increases with the angle θ and decreases with the de-

creasing of the driving rate α.

We now consider the whole sample, and the effects of disorder on it, assuming that

θ is a Gaussian random variable with mean value θ = 0 and variance σ2. Thus

it will be σ that will give rise to dissipative effects. In Figure 3.10(a) 3.10(c) and

3.10(e) we show the behaviour of extractable work, power, and efficiency for dif-

ferent values of the variance at given temperature ratio βh/βc = 0.5. We can see

that, the best performance is always obtained with sharper distributions. Thus, if
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Figure 3.9: Content taken by [41]. Inner friction accumulated in the cycle as a

function of the total time ttot for different misalignments θ, at βh/βc = 0.5.

the disorder of the system grows, σ grows up, then the capability of the working

substance of providing work as well as doing it in a more efficient way and the

power of the conversion of heat into work decrease. Again we mention the fact

that there exists a maximum total time τM for which the QOC is not a heat engine

anymore. We also notice that even a small disorder has the effect in reducing the

efficiency for long enough times, as already happened for the case of a single qubit

system. Figure 3.10(b) 3.10(d) and 3.10(f) we plotted the behaviour of the same

thermodynamic variables for different values of the ratio of temperatures between

hot and cold reservoirs, βh/βc, at a given variance σ2 = 0.1. Again, all of the

quantities increase as βh/βc goes to zero, that is as the hot reservoir temperature

is greater and greater than the cold reservoir temperature. However, it has to be

mentioned that some care should be paid when comparing the values of the ef-

ficiency at different operating times. Indeed the ideal cycle with infinitely slow

adiabatic branches, corresponding to the absence of misalignment, is characterized

by the efficiency ηideal = 1− ω1/ω2 and ω2 is a function of the time. The depen-

dence of ηideal on ω2 implies that the efficiency η of the finite time cycle should be

compared with a different ηideal at each ttot so to understand how the increasing

of dissipation will affect the efficiency of the cycle. We show this comparison in

Figure 3.11. As last figure of merit we introduce the efficiency at maximum power.

Since the efficiency takes its maximum value for reversible transformations, that

means infinitely long cycle, and this implies zero power for the heat engine work-

ing for such cycles, a useful figure of merit for characterizing the utility of the cycle

is just the efficiency at maximum power. We look for the ttot such that the power

has its maximum value and at this time we consider the efficiency of the engine.

This relation is considered in Figure 3.12. In studying this figure of merit we fo-

cused only on the efficiencies and powers for the whole sample, the averaged ones,

for both cases of dependence by the variance at fixed temperature rapport βh/βc
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Table 3.1: Content taken by [41]. Efficiency at maximum power at βh/βc = 0.5
and for different values of the Gaussian bell’s width, optimal total cycle time,

αtMAX
tot , which P attains its maximum.

σ2 αtMAX
tot PMAX/α

2 η(PMAX)

0.01 0.0882 0.0439 0.0775

0.05 0.0882 0.0429 0.0758

0.1 0.0882 0.0418 0.0737

0.5 0.0771 0.0334 0.0519

1 0.0340 0.0253 0.0340

10 0.0.220 0.0027 0.0220

Table 3.2: Content taken by [41]. Efficiency at maximum power for σ2 = 0.1 for

different temperature ratios βh/βc. The maximum power PMAX = P(tMAX
tot ) is

obtained for the times αtMAX
tot second column.

βh αtMAX
tot PMAX/α

2 η(PMAX)

2.1 0.175 0.0761 0.1420

3.1 0.125 0.0635 0.1056

4.1 0.1 0.0517 0.0862

5.1 0.075 0.0406 0.0660

7.1 0.05 0.0208 0.0447

9.1 0.025 0.0045 0.0224

and viceversa. Here from the maximum value of P we can extract the value of the

efficiency at maximum power η (P). Two sets of these data are reported in tables

3.3.2 and 3.2:

We approached the problem of the heat engine from a theoretial point of view,

now we propose one experimental implementation by means of which it would be

possible to realize the Otto cycle discussed so far and test our results. Such imple-

mentation is based on the apparatus proposed in [45]. The Otto cycle is made up

by two different types of transformations, thus the proposed set-up has to be able to

implement both of them. The physical system we propose is an optical one, and, in

particular, we propose to encode the qubit into the polarization degrees of freedom

of a single photon coupled to its frequency degrees of freedom representing the
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environment. In the following we address the implementation of the two types of

branches separately, stressing the key points for both of them.

Let us introduce the adiabatic evolution. In our cycle, the general form of the

unitary evolution operator is achieved by the time transformation:

U(t, 0) = T e−i
∫ t
0 dt′ B(t′)·σ (3.84)

We stress that for a fixed time t∗ = t the above operator can be expressed by the

Euler angles as:

U(t∗, 0) = e−iψ
∗

2
σze−i θ

∗

2
σxe−iφ

∗

2
σz (3.85)

Eqn. (3.85) is very useful for our purpose because the single rotation of angle ψ∗,

θ∗ and φ∗, appearing in it, can be implemented in the optical setup manipulating

the photon, as rotations of the polarization degrees of freedom of this latter. In this

case, by choosing the basis{|H〉, |V 〉 of horizontal and vertical polarization of the

photon, we can perform the wanted rotations by means of properly chosen phase

retarders.

The isochoric transformation requires more care. Ideally, at the end of the trans-

formation we could get the state:

ρ =
1

2 cosh(β(Ee − Eg)/2)

(

e−βEe |e〉〈e|+ e−βEg |g〉〈g|
)

(3.86)

where |e〉 and |g〉 are the eigenstates of the Hamiltonian, which does not change

during the transformation, and β is the inverse temperature of the thermal bath

which allows the qubit to thermalize. No coherences are present at the end of the

process as we can see from the above equation. The idea, as we said, is to exploit

the spatial degrees of freedom of the photon as an effective bath for its polarization.

We have not a thermal reservoir but here we try to emulate the dynamics of the

thermalization which will lead the a Gibbs like state. The coupling between the

polarization and the frequency degrees of freedom (the environment) is achieved

by exploiting the birefringent property of a quartz plate. The effect of the latter

on a photon, passing throughout it, is to phase-shift both the components of the

polarization by an amount proportional to the number of photons per mode. Now,

after such shifting, if we look only at the polarization degrees of freedom, that

formally means to trace out the spatial part of the photon, the dynamics of the

polarization turns out to be driven by the following dynamical map, obtained by

developing the Limbland master equation for the system, between an initial state

ρi to a final state ρf :

ρf =
1

2
((1 + z)ρi + (1− z)σzρiσz) (3.87)
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where the parameter z can be tuned from z = 1 (identity map) to z = 1(complete

decoherence). Indeed expression (3.87) describes the decoherence process of the

photon polarization state due to the interaction with the effective bath of the spa-

tial degrees of freedom (the frequencies of above). Because of our assumption of

complete thermalization we will always assume z = 1. We can thus exploit this

mechanism in order to engineer the thermalization in the following way. At first

let us assume that the inverse temperature of the bath we want to mimic is β. Such

inverse temperature will be given by:

β = − 1

Ee − Eg
log

(

1− p(f)g

p
(f)
g

)

with
1

2
≤ p(f)g < 1 (3.88)

where p
(f)
g is the population of the ground state at the end of the process, that is

when the state has null off diagonal elements. Through the latter equation we can

determine the population of the lowest energy level after the system is completely

thermalized. Let us write the initial state (which in turn corresponds to the final

state of the adiabatic transformation preceding the isochoric one) as:

ρi =
1

2
I+

(
1

2
− p(i)0

)

σz + bxσx + byσy (3.89)

At this level we rotate the initial state so to have the ”right” populations of excited

and ground levels according to the effective temperature eqn. (3.88) we want to

mimic. Thus we get:

ρ′f =
1

2
I

(
1

2
− p(f)2

)

σz + b′xσx + b′yσy (3.90)

Now tracing over the frequencies by the decoherence dynamics in eqn. (3.87) we

get b′x = b′y:

ρf =
1

2

(
1

2
− p(f)2

)

σz (3.91)

Eqn. (3.91) concludes the isochoric transformation.



Chapter 4

Introduction to Topological

Order

Hereafter we will approach the field of topological order. Born some decades ago,

it deals with new sates of matter and thus it opened the doors to new physics and

possible novel technological applications in various fields, in particular in quan-

tum computation. The aim of this chapter is to introduce the main concepts that

are behind this kind of order of matter also making some examples. In the next

chapter 5 we will focus on a specific model for topological superconductors, that is

the Kitaev model and at the end, in chapter 6, we will define the main topological

invariants that are tools useful to characterize topological phases.

The most common examples of classical state of matter are the ones of gas, liquid,

or solid. Now we can note that different states of matter are distinguished, one

respect to each other, by their own internal structures. These internal structures

are called orders. We can think to the correlation functions as elements to depict

the order of the state. For instance the atoms in a gas are very uncorrelated, but

in a solid they are frozen at almost fixed positions and their relative distance (in-

ternal structure) is successfully depicted by the positional correlation function. In

addition, many other states of matter have been discovered. We cite superfluids,

ferro and antiferromagnets, and liquid crystals. In all the above examples the vari-

ous orders are associated with the symmetries of the system, i.e. again its internal

structure. Symmetries are very useful for the description of the states of matter.

Since, at this level, we focus on positional order then the symmetry we address is

the translational symmetry. Indeed, with such symmetry, we immediately have a

difference between solid and (for instance) gas. A gas remains the same under a

translation, of the reference frame, of any distance inside the system, while a crys-

tal remains the same only under a translation of a integer number of lattice steps.

54
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factor ν (as in the standard quantum Hall effect). The filling factor is defined as

the ratio of the electron density n and the density of the flux quanta of the applied

magnetic field B:

ν =
electron density

density of magnetic flux quanta
=
nhc

eB
(4.1)

It has been found that ν can be given by rational numbers: ν = 1, 1/3, 2/3, . . . .
For integer filling factors we recover the the integral quantum Hall (IQH) states,

described by Landau theory and discovered by Klitzing [48], on the other hand

the ones with fractional filling factors are called FQH states. Hereafter we will

address only ν = 1/m filling factor FQH effects, indeed we are interested in its

topological nature and not in a complete description of the effect. To describe the

appearing of FQH states requires a new theory that goes beyond the Landau theory,

i.e. beyond the standard symmetries of the system. FQH states represent a new

states of matter and we need new concepts to describe them, these newness are the

topological orders. In [49] Laughlin approached the problem of FQH states giving

a first interpretation of FQH effects. The new internal structure, for characterizing

the FQH states, is the way in which the electrons are strongly correlated one with

each other and this way is described by the filling factor. This quantum correlations

substitutes the positional order used until now.

Let us try to visualize these correlations. A very easy and clear treatment is given

in [46]. A single electron in a magnetic field always moves on a circular path

(cyclotron motions). Since the electron, in quantum regime, is described by a wave

function then the cyclotron motion is quantized such that now the initial circular

path has to contain an integer number of wave length. Hereafter, since the treatment

is done at quantum level, the word ”path” will be used as substitution for main

value of positional observable, as done for the case of the electron orbital of the

preceding example. The number, n, of wave lengths for going around the path

coincides with the Landau level occupied by the electron. At low temperatures,

the electrons always stay in the first Landau level so that n = 1. If we have many

electrons, as in the case of a 2DEG, they also go around each other. Now Fermi-

Dirac statistics imposes that, in doing this second motion, an odd number of wave

lengths is taken to recover the whole path. This will reflect on the filling factor,

whose denominator is often odd. At last such motion follows another condition:

due to the Coulomb repulsion, each electron tries to stay as far as possible from

each other. Summarizing, all the electrons collectively move following these three

rules:

• All electrons move (cyclotron motion) in the first Landau level

• In moving one around each other, the electrons take an odd number of steps
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• Because of the Coulomb repulsions that stay away from each other as far as

it is possible

In this scenario the electrons are strongly correlated and, the nature of first and

second point (wave mechanics conditions about non destructive interference and

fermionic statistic) allow for the quantumness of the correlations. If we assume

that in the system this three rules are respected, then only one global moving pat-

tern is permitted. Such pattern corresponds to the topological order in a FQH state.

Different moving patterns corresponds to different topological orders of a FQH

state.

The important aspect we are interested about is the link between the quantum na-

ture of the correlations and the topology of some space, in particular the subspace

generated by the system ground states. The degeneracy of the FQH ground states

depends on the topology of the space that they generate [51, 52, 53]. It is this link

with the topological nature of the system ground state that gives the name ”topo-

logical” to this particular kind of quantum orders. The degeneracy we addressed

is not a consequence of the Hamiltonian symmetries. It is in fact resistant against

perturbations that destroy the symmetries of the system. To change the ground

state degeneracy is possible only by changing the topological order that in this

case means by changing the moving patterns of correlated electrons. It follows that

such degeneracy is a good quantum number to measure the topological order, i.e.

to know what kind of pattern the system has. Since we dealt only with an example

of quantum order (although it is very powerful to introduce the new order) we now

give a more general description of topological order.

At first we examine more carefully the orders in ordinary states of matter, i.e. at

finite temperatures, thus when the quantumness of the system is affected. We will

refer to these orders as classical orders. At finite temperatures, the full description

of a system is mathematically given in terms of a probability distribution. Indeed

to describe the positional order of the particles in a system, we can use the proba-

bility distribution P (r1, r2, . . . rN ) where ri indicates the spatial coordinate of the

i-th particle and N is the total number of the particles. P continuously changes as

we change some state parameter as temperature, pressure, and other some external

conditions. However, systems described by different probabilities P can have sim-

ilar properties and thus we say that they show the same phase. We group all those

similar probability distributions into a single class, which is called a universality

class (this concept will be formally approached in chapter 6). If we continue to

change the external conditions then it can happen a radical change in the properties

of the system. In this case we say that there is a phase transition. To pass from

a phase to another one means that the system is described by a different classi-

cal order. The probability distributions, describing the system before and after the
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transition, belong to different universality classes. As an example we can consider

the phase transition between a liquid and a crystal. By a formal point of view the

two states are respectively described by different distributions Pl and Pc. Now

from these probability we introduce the correlations functions [50]:

{

Gl(r1, r2) =
∫
ΠN

i=3dri Pl(r1, . . . rN )

Gc(r1, r2) =
∫
ΠN

i=3dri Pc(r1, . . . rN )
(4.2)

The positional correlation functions give the probability to find a particle in po-

sition r2 given that we assume a particle to be at position r1. Give a phase tran-

sition, the internal order that we address, is generally represented, according to

the system we deal with, by a physical extensive variable that we label order pa-

rameter. Such order parameter is proportional to some derivate of the free en-

ergy of the system, assumed to be at equilibrium before and after the transition,

G(T, P ) = U − TS + PV or G(T,H) = U − TS + µBH for magnetic sys-

tems. Giving some example of order parameters we have, for the phase transition

liquid-gas, the difference between the density of the two phases, Ψ = ρliq − ρgas
or, looking at the degree of disorder in the orientation of a spin lattice in the ground

state of the Ising model, the magnetization defined as M = −(∂G/∂H)N/V . In a

transition, order parameters can vary with discontinuity or continuity at the transi-

tion point p0. These two trends respectively define a first order and a second order

phase transition. Thus, for first order transitions, we have discontinuous first order

derivates of the state’s free energy at the transition point:

∂G1

∂T

∣
∣
∣
∣
∣
p0
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∣
p0

(4.3)

Pedices 1 and 2 refer to the state of the system before and after the transition. For

second order transitions we have continuous first order derivates but discontinuous

second order ones that eventually diverge.

About these latter it is possible to classify them by means of critical exponents. Let

us assume to have a thermodynamic variable described by a function F (t), that is

continuous and positive near the critical temperature TC , where the variable t is the

reduced temperature t = (T − TC)/TC . We define the critical exponent of such
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variable as:

λ = lim
t→0

ln(F (t))

ln(|t|) (4.4)

From the above relation we have that F (t) ∼ |t|λ, where ∼ stands for asymptotic

limit that is t → 0. At the critical point, that is the transition point for the second

order transitions, the thermodynamic variables generally diverge or are null. Usu-

ally divergent thermodynamic variables are the magnetic susceptibility χH or the

specific heat at fixed volume CV . Critical exponent do not dependent by the partic-

ular interactions of the system. They depend on few parameters as the dimensions

of the system or the symmetry of the order parameter. We get the same critical

exponents for every system that has such same properties. By this point of view

critical exponents show a universal character.

Finally we can define the universality classes. Each class includes all the systems

that shows the same critical exponents.

Summarizing, about the classical order, we can itemize the following points as

characterizing properties:

• Classical order is a property of the probability distribution P (r1, r2, . . . rN )
(directly linked to the symmetries of the system as we can see in eqns. (4.2)

) in the N →∞ limit. Thus classical order describes the structures in terms

of positive functions with infinite number of variables

• Distributions belonging to the same universality class have the same classical

order. We group systems with similar distributions P

• Different universality classes are determined by the symmetries of the distri-

butions. Symmetries are the central tool to characterize systems according

to classical order

The aspect that classical orders (and the universality classes) are characterized by

symmetries is fundamental for the Landau theory of classical orders and phase

transitions. It is important to underline that this theory deals with systems at finite

temperature. Although this latter is a strong theory, it does not describe all the

classical orders. Indeed for instance the Kosterliz-Thouless phase transition does

not change any symmetry.

Since strong quantum correlations appears at zero temperature we need a theory

able to describe this regime. We need to define a new concept of order charac-

terized by different properties respect to the classical one. We will call such new

orders of quantum states at zero temperature quantum orders. This quantum orders

are properties the ground state wave functions of the system since at T ∼ 0 the state

is collapsed on the ground state subspace. Furthermore classical and quantum order
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are linked together by relations introduced in the postulates of quantum mechanics

which link the system wave function to the probability distribution characterizing

the considered particles. Indeed a classical order is a property of the probability

distribution P , where this latter is a function of N coordinates of the particles. A

quantum order is a property of ground state wave function ψ which is a complex

function of N coordinates of the particles. P and ψ are then related by:

P (r1, . . . rN ) = |ψ(r1, . . . rN )|2 (4.5)

Thus, although the square modulus delete some information about the wave func-

tion ψ, we can use classical order to describe approximatively well a quantum

system. It is then also clear that the characterization, by classical order, misses the

phase of ψ which brings the quantumness of the state as in the case of Berry phase.

Then as for the classical orders, quantum orders are grouped in universality classes

of ground state wave functions. If we change the parameters of the system Hamil-

tonian then the ground state wave function changes continuously too. Thus if some

ground states have similar properties then we say that they describe the same phase

and belong to the same universality class. States in the same universality class have

the same quantum order. However, changing the interaction by a large amount can

lead to a quantum phase transition, which reflects the fact the the system changes

universality class.

Returning to the topological order introduced before for the FQH effect we realize

that, since it is a property of 2DEG at zero temperature, then such topological order

is particular kind of quantum order. A quantum phase transition stands when we

change quantum universality class. Between these classes there are some of them

that show another difference respect to the one of critical exponents; the Brillouin

zones of each system states, over which are defined the ground states of the sys-

tems, have different topology when changing from a class to another. We will later

explain better this aspect. Now noting that different FQH states have the same spa-

tial symmetries we can understand why we need topological order to characterize

this effect. By Landau theory we deleted some important information brought into

ψ. When we consider the ground state wave function ψ instead P = |ψ|2, we find

different quantum orders. Let us note that topological orders and quantum orders

are general properties of any states at zero temperature that is when quantum ef-

fects are important. We want to report that the concept of topological order was

first introduced for spin liquids [51]. Then the first experimental observation of

quantum order is reported in [54] with the discovery of superconducting state (in

1911), indeed a superconductor cannot be characterized by breaking symmetries.

For general systems we can characterize the orders by addressing the ground state

space. In chapter 6 we will give a series of measures of topological orders (as the
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one given for the case of FQH ground states), i.e. topological invariants, that claim

if the order is topological or not (topologically non trivial or trivial).



Chapter 5

The Kitaev Chain

Here we consider one of the most interesting model which shows a topological

order, the Kitaev chain [5]. This model describes a 1D p-wave superconductor.

Such system is though as a superconducting wire that, under certain conditions,

has a gapped bulk together with zero energy excitations (in the thermodynamic

limit) localized at the edges of the system. Such states are topological states whose

characteristics will be analyzed later. We can anticipate that they are robust against

disorder [55, 56], local perturbations [57] and the field operators corresponding to

them undergo nonabelian statistics that can be used to perform quantum computa-

tion [58]. This model made of a chain of spinless fermions can be mapped to the

Ising model by means of Jordan-Wigner transformations [59]. It has been intro-

duced in 2000, from the theoretical point of view, but feasible realizations of the

Kitaev chain or variations of it have been also recently proposed [60] [61] [62]. An

experimental signature of Majorana zero modes as been reported in [63]. Recently

the dynamics of such states has also been addressed [64].

5.1 Bogoliubov-de Gennes equations

Let us consider a generic 1D superconducting system whose Hamiltonian H has

the following form [65]

H =
N∑

i=1

[

−µi
(

a†iai −
1

2

)]

+




∑

j>i

(

−ti,ja†iaj +∆i,ja
†
ia

†
j

)

+ h.c.



 (5.1)

In the above Hamiltonian, parameters ti,j and ∆i,j are generally complex num-

bers. They respectively describe hopping and pairing of Dirac fermions on a one-

dimensional lattice. On the other hand µi are assumed to be real, they represent
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the site energies, i.e. the chemical potential of the fermions at the i-th site. Oper-

ators {aj} and
{
a†
}

are defined on the Fock space of the whole system and, they

respectively destroy and create a fermion at the i-th site. However we will formally

define the Fock state and the action of such operators. Since we describe fermions

then Fermi-Dirac statistics is assumed:

{a†i , aj} = δij (5.2a)

{a†i , a
†
j} = {ai, aj} = 0 (5.2b)

Then, indicating with |0〉 the state in a Fock space where no fermion is present, the

vacuum state, we define such state by the action of the ais on it:

ai|0〉 = 0 (5.3)

Then a†i acts on |0〉 as:

a†i |0〉 = |1〉i (5.4)

where ket |1〉i means the there is a fermion at site “i”. N =
∑

i ni =
∑

i a
†
iai is

the number operator, counting the fermions appear in a Fock state, and a generic

eigenstate of such operator has the form:

|{n}〉 =
∏

i∈{n}
a†i |0〉 (5.5)

Since Hamiltonian (5.1) in quadratic in a and a† then it can be diagonalized by

Bogoliubov transformations. This is what we will do but, at first, we need to rewrite

H in Nambu representation, that is we double the space including halls together

with particles:

H =
1

2
(a†1, a

†
2, ..., a

†
N , a1, ..., cN )

(

ĥi,j ∆̂i,j

∆̂†
i,j −ĥ∗i,j

)

︸ ︷︷ ︸

=H0










a1
a2
...

a†N−1

a†N










(5.6)

H0, in the above equation, has dimensions 2Nx2N instead of NxN (doubling of

the space). Moreover Matrix ∆̂ is antisymmetric, in fact:

∑

i,j

∆i,jajai =
∑

i,j

∆j,iajai =
∑

i,j

∆j,i(−aiaj) (5.7)
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and if it were symmetric we would have this latter term equal to zero implying

∆i,j = ∆j,i = 0∀ i, j because of the independence of the set {ai}. It follows that

∆̂T = −∆̂ is the only possibility to allow H to be hermitian.

The only symmetry we required in writing H is the particle-hole symmetry. We

will check it in few algebraic passages. We write the particle-hole operator for

lattice Hamiltonian in Nambu representation as:

C =

(
0 I

I 0

)

k (5.8)

C is antiunitary and k is the operator of complex conjugation, thus:

CH0C
−1 =

(
0 I

I 0

)

k

(
ĥ ∆̂

∆̂† −ĥ∗
)(

0 I

I 0

)

k

=

(
∆̂ −ĥ
ĥ∗ −∆̂∗

)(
0 I

I 0

)

=

(
−ĥ ∆̂T

∆̂∗ ĥ∗

)

= −H0

(5.9)

This symmetry is due to the Nambu representation we used. In doubling the space

we also doubled the degrees of freedom of the system. In the following we will

opportunely use such symmetry to eliminate this redundancy. Now we directly

give the general solutions for the diagonalization of the system Hamiltonian (5.1),

according to the Bogoliubov formalism and then, we will see the symmetry prop-

erties of the H0’s eigenstates due to eqn. (5.9).

We look for a canonical transformation that takes a set of 2N Dirac operators,
{

aj , a
†
j

}

(that appear in the form (5.1)), and sends it into a set of 2N Dirac opera-

tors,
{

ãn, ã
†
n

}

, for whose the system Hamiltonian assumes the canonical form:

Hcan =
∑

n

ǫnã
†
nãn + const. (5.10)

We write this new operators as linear combination of the old set of operators







ãn =
N∑

j=1

(un,jaj + vn,ja†j)

ã†n =
N∑

j=1

(
v∗n,jaj + u∗n,ja†j

)
(5.11)
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and look for the coefficients {un,j} and {vn,j} of the writing (5.11) satisfying

the canonical condition, i.e. operators {ãn} an
{

ã†n
}

have to satisfy the Fermi-

Dirac statistic. Vectors un = (un,1, . . . , un,N ) and vn = (vn,1, . . . , vn,N ) will be

the wave functions of the quasiparticle and anti quasiparticle corresponding to the

mode n-th. We define the unitary operator U as:

U =







{
uT
n

} {

v
†
n

}

{
vTn
} {

u
†
n

}







(5.12)

thus eqns. (5.11) can be rewritten as:










ã1
ã2
...

ã†N−1

ã†N










= U−1
︸︷︷︸

=U†










a1
a2
...

a†N−1

a†N










(5.13)

Defining a
d
= (a1, . . . , aN , a

†
1, . . . , a

†
N )T , we can write:

H =
1

2
ã†H0a

=
1

2
ãU †H0U ã

=
1

2
ã†






ǫ1 0 . . .

0
. . . 0

0 . . . ǫ2N




 ã

(5.14)

Now we see as the particle-hole symmetry characterize the eigenvector of H0 (that

form the unitary matrix U ). We define vn = (un, vn)
T

and looking at eigenvalues

equations for H0 we have:

H0vn = ǫnvn → CH0C
−1Cvn = Cvnǫn → H0Cvn = −ǫnCvn (5.15)

Thus if vn is an eigenvector ofH0 with eigenvalue ǫn thenCvn is again eigenvector

with opposite energy −ǫn. Our spectrum is symmetric respect to the zero of the
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Figure 5.1: For a Hamiltonian with 100 lattice sites then 200 energy values accour.

Due to the particle-hole symmetry the H spectrum is symmetric respect the the

zero of the energy. For each positive eigenvalues ǫ then it exists a correspondent

eigenvalues −ǫ.

energy. H , written in terms of quasiparticle operators, is:

Hcan =
1

2
ã†












ǫ1 0 . . . 0 0

0
. . . 0 . . . 0

0 . . . ǫN 0 . . .
... 0 . . . −ǫ1 . . .

0 0 . . . 0
. . .












a

=
1

2

N∑

n=1

ǫn

(

ã†nãn − ãnã†n
)

=

N∑

n=1

ǫn

(

ã†nãn −
1

2

)

(5.16)

The vacuum state of Hcan, |0̃〉, the state where no quasiparticle is present, is now

defined as:

ãn|0̃〉 = 0∀n = 1, . . . , N (5.17)

The ground state, |gs〉, of the system is the Fock state with lowest energy. It corre-

sponds to the one counting all the holes. It answers to:

ãn|gs〉 = 0 for all ãn appearing in Hcan (5.18)
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We can see that, of course, the vacuum state is a ground state of the system ac-

cording to eqns. (5.17) and(5.18). Indeed the generic operator ãn destroys the

n-th mode particle but equivalently creates an hole (anti-particle) of mode n. Eqn.

(5.17) says that the state |0̃〉 counts all the holes since adding another hole, an,

gives as result 0 (a2n = 0 because of Fermi-Dirac statistics). The the ground state

energy is:

H|gs〉 = −1

2

N∑

n=1

ǫn|gs〉 → ǫgs = −
1

2

N∑

n=1

ǫn (5.19)

Remember that ǫn ≥ 0 in the above expression.

Now if we consider the case in which some of the ǫns are zero, then they come

in pairs because of the particle-hole symmetry. For simplicity let us consider the

case in which only two solutions are zero. Then the eigenvectors of H0 relative

to +ǫ = −ǫ = 0, respectively vǫ=0 and v−ǫ=0 = Cvǫ=0 are degenerate. In this

scenario we can rotate the basis of such zero energy subspace, always remaining in

it. Opportunely choosing this rotation as:

ṽ1 =
1

2
(vǫ=0 + Cvǫ=0) (5.20a)

ṽ2 =
1

2i
(vǫ=0 − Cvǫ=0) (5.20b)

the resulting transformed eigenstates are invariant under particle-hole symmetry:

C ṽ1 = ṽ1 (5.21a)

C ṽ2 = ṽ2 (5.21b)

The transformed field operators corresponding to the collective excitations at zero

energy are then:

γ1 =
N∑

j=1

(ṽ1)jaj + (ṽ1)j+Na
†
j (5.22a)

γ2 =

N∑

j=1

(ṽ2)jaj + (ṽ2)j+Na
†
j (5.22b)

They are hermitian, as in can be seen by analysing γ†1 (things are similar for γ†2):

γ†1 =

N∑

j=1

(ũ1)
∗
ja

†
j + (ṽ1)

∗
jaj

=
N∑

j=1

(ṽ1)ja
†
j + (ũ1)jaj

= γ1

(5.23)
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where in the last passage, in the above equation, we used the property of invariance

under particle-hole symmetry. Then we add that:

[γ1,2, H] = 0 (5.24)

At this level we can introduce the concept of Majorana Zero Mode operator γ
(MZM) [66]. It is a fermionic operator that squares to I, thus it is hermitian and

commutes with the Hamiltonian of the system:

γ is a fermionic operator (5.25a)

γ† = γ (5.25b)

[γ,H] = 0 (5.25c)

Conditions (5.25a) and (5.25b) alone define a Majorana fermion. It can be shown

that operators γ1,2 follow a fermionic statistic (since their anticommutator is pro-

portional to the identity), although different from the Fermi-Dirac one. Counting

also last point, eqn. (5.25c), we can claim that such γ1,2 are MZM. Unluckily con-

ditions (5.25) are too idealized to be achievable for real systems. Generally for

finite length systems the two MZM, that will be localized modes, overlap and this

interaction gives rise to non null energy excitation, then:

[γ,H] ∼ e−χ/ξ (5.26)

where χ is a length scale and ξ is a correlation length associated with the Hamilto-

nian. In the limit χ→∞ or ξ → 0 we get eqns. (5.25).

5.2 The Kitaev Model

Now we use the results obtained in the preceding section to approach the Kitaev

model introduced in [5]. Here we deal with a 1 D topological superconductor. We

will define the general form for the Majorana operators, as combinations of Dirac

fermion operators. Then we will diagonalize the system Hamiltonian in terms of

such Majorana operators. At the end we will see that the system allows for MZMs

localized at the edge of the 1 D wire.

The Hamiltonian introduced by Kitaev is:

HKit =
∑

j

[

− µ
(

a†jaj −
1

2

)

−w0(a
†
jaj+1 + a†j+1aj) +∆ajaj+1 +∆∗a†j+1a

†
j

]

(5.27)
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The above Hamiltonian considers only first neighbors interactions. Then the hop-

ping term, w0, is chosen to be real, in this case the whole Hamiltonian is invariant

under time reversal symmetry. Now we define a new set of operators, i.e. the

Majorana operators, by the following set of transformations:

{ c2j−1 = aj + a†j

c2j =
aj − a†j

i

with j = 1, . . . , N (5.28)

Majorana fermions satisfy the relations:

{ci, cj} = 2δi,j (5.29a)

c†j = cj (5.29b)

We got a chain of 2N sites and each site l is associated with the operator cl that is

a Majorana fermion. Indeed the conditions in the set of equations (5.29) era equal

to eqns. (5.25a) and (5.25b). An important relation between Dirac and Majorana

fermions, according to the definitions (5.28), is:

a†jaj =
1

2
(Ij + ic2j−1cj) (5.30)

Now let us return the system Hamiltonian. Since it is quadratic it can be written,

in terms of Majorana operators, in the form:

H = i
4

∑

l,mAl,mclcm Al,m = A∗
l,m = −Am,l (5.31)

In fact addressing HKit, we obtain:

HKit =
i

2

∑

j

[
− µc2j−1c2j + (w0 +∆)c2jc2j+1 + (−w0 +∆)c2j−1cj

]

(5.32)

and the form (5.31) is achieved by choosing an antisymmetric A matrix such that

A2j−1,2j = −µ, A2j,2j+1 = (w0+∆) and A2j−1,j = −w0+∆. We stress that the

pairing term is generally complex, ∆ = |∆|eiθ, but the physics of the system is not

affected by the phase θ. Indeed it can be eliminated from the Hamiltonian (5.32)

by putting such phase parameter into the definition of Majorana operators as:







c2j−1 = exp
(
i θ2
)
aj + exp

(
−i θ2

)
a†j

c2j = −i exp
(
i θ2
)
aj + i exp

(
−i θ2

)
a†j

(5.33)
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By this way we can substitute ∆ with |∆|. Now we proceed to find out a writing, in

terms of Majorana operators, for expressing the canonical form (5.10). We proceed

by defining a set of Majorana operators according to eqns. (5.28) but now we

choose as Dirac operators the set appearing in the canonical Hamiltonian (5.10):

{

ãn = 1
2

(
b′n + b′n

)

ã†n = 1
2

(
b′n − ib′′n

) (5.34)

By means of this definition we get:

Hcan =
i

2

N∑

n=1

ǫnb
′
nb

′′
n

= diagn

(
0 ǫn
−ǫn 0

)

.
=










0 ǫ1 0 . . . 0
−ǫ1 0 0 . . . 0

... 0
. . . 0 . . .

0 . . . 0 0 ǫN
0 . . . 0 −ǫN 0










(5.35)

We know that the block form (5.35) is ensured because of the properties of A
[67]. Indeed if A a real and skewsymmetric transformation then it exists a real and

orthogonal transformation, W (WW T =W TW = I), such that:

AJ =WAW T = diagn

(
0 ǫn
−ǫn 0

)

(5.36)

where {ǫn} are the coefficients of the spectrum of A, {±iǫn}. Thus at the end we

have:

Hcan =
∑

n

ǫn

(

ã†nãn −
1

2

)

=
i

2

∑

n

ǫnb
′
nb

′′
n (5.37)

Operators {b′n} and {b′n} will be linear combinations of {cj} (j = 1, . . . , 2N ):










b′1
b′′1
...

b′N
b′′N










=W










c1
c2
...

c2N−1

c2N
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The orthogonality of W preserves the algebra of the set and its reality ensure the

hermiticity of {b′,′′m }, it is a canonical transformation. To check it let γk and γk′

be two generic operators belonging to {b′k} and {b′′k}. Then the anticommutator

relations are preserved:

{γk, γk′} =







2N∑

j=1

Wk′,jγj ,
2N∑

j=1

Wk,iγi







=
2N∑

i,j=1

Wk,jWk′,i{γj , γi}

= 2

2N∑

i=1

Wk,iW
T
i,k′

= 2δk,k′

(5.38)

and also the hermiticity condition holds:

γ†k =

2N∑

i=1

W ∗
k,,iγ

†
i =

2N∑

i=1

Wk,,iγi = γk (5.39)

In chapter 7 we give the explicit form linking the elements of matrix W to U for

a generic system with long range interactions and generally broken time reversal

symmetry. The time reversal case can be obtained as specific case of the generally

broken time reversal one.

Returning to our case, what is very interesting, looking at Hamiltonian (5.32), is

that if we choose µ = 0 and w = ∆ = 1 for open boundary conditions, then such

Kitaev Hamiltonian (5.32) reads:

H = −iw0

N−1∑

j=1

c2jc2j+1 (5.40)

Now defining another set of Fermi operator as follows:

{

ãj = 1
2(c2j + ic2j+1)

ã†j = 1
2(c2j − ic2j+1)

(5.41)

it becomes:

H = 2w0

N−1∑

j=1

(

ã†j ãj −
1

2

)

(5.42)
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Figure 5.2: Trivial and non trivial topological phase. The high image show a nor-

mal link between two MFs of the same physical site. The other picture shows as

two MFs of different site link together according to the Hamiltonian (5.42).

A fermionic state does not enter in the Hamiltonian, in fact c1 and c2N remain

unpaired. Such fermion excitation will have zero energy since it does not appear

in eqn. (5.42). This missing fermion state is defined by such unpaired Majorana

operators [68]:
{

ãN = 1
2 (c1 + ic2N )

ã†N = 1
2 (c1 − ic2N )

(5.43)

Note that the whole set as soon defined {ãj}Nj=1 satisfies the Fermi-Dirac algebra.

For an usual s-wave superconductors we have a single ground state with even par-

ity, here the situation changes just because this missing fermion in Hamiltonian

(5.42). We have two degenerate ground states (since the state counting the missing

fermion, at zero energy, satisfies the ground state condition eqn. (5.18)) with dif-

ferent parity. Indeed the vacuum state, that is also our first ground state, has zero

quasi particles thus it has even parity P (|gs〉0 = |0̃〉) = (−1)#(qp) = 1. Other-

wise the state |gs〉1 = ã†N |0̃〉 has one quasiparticle excitation thus its parity is odd,

P (ãN |0̃〉) = (−1)1 = −1. Since by a unitary transformation we do not change

the number of fermions in the system then also the parity of the state remain un-

changed. It follows that |0̃〉 is made by a superposition of Fock states counting

an even number of fermions (the fermions addressed in Hamiltonian (5.27) ) and

|gs〉1 is made by states with an odd number of the same preceding fermions. It is

then useful to introduce the parity operator:

P =
∏

j

(−ic2j−1c2j) (5.44)

where the operators {ci} are again the ones appearing in Hamiltonian (5.27). Op-

erator (5.44) counts the parity of a general many body Fock state. Note that the

combination (−ic2j−1c2j)
.
=

(
1 0
0 −1

)

measures the parity of the j-th fermion

state, it is defined on a bidimensional space spanned by states |0〉j and |1〉j , the first
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ket has parity 1 and the latter −1. Because of the algebra defined in eqn. (5.29),

{ci, cj} = 2δi,j , it is possible to rewrite P as:

P = (−ic1c2) . . . (−ic2N−1c2N )

= (−i)Nc1c2 . . . c2N
= (−i)N (−1)2N−2c2c3 . . . c1c2N

= (−ic2c3) . . . (−ic1c2N )

(5.45)

The last term in the above equation, (−ic1c2N ), is just the parity operator of the

fermion that does not appear in Hamiltonian (5.42). We have:

(−ic1c2L)|gs〉0 = |gs〉0 and (−ic1c2L)|gs〉1 = −|gs〉1 (5.46)

This paremetrical regime for Hamiltonian (5.32), characterized by the presence

of unpaired Majorana fermions at the end of the wire, belongs to a topological

phase, topological invariants, that we will define in the next section, are non trivial.

For topologically trivial regime we have not zero energy modes and no localized

states is present (see for istance the case ∆ = w0 = 0 and µ < 0 in (5.32)).

Then we also claim that no topological phase can be gotten for closed boundary

conditions. Indeed in this latter case the interaction between the last Majorana

fermion of the wire and the first one allows for an extra term in the Hamiltonian

effectively depicted as Heff ∝ (i/2)uc2Nc1 thus, it provides a non null amount of

energy for the fermion excitation. We have not anymore unpaired Majorana zero

modes at the edge of the wire. The case just examined, w0 = |∆| = 1 and µ = 0 is

a very particular case. In general MZM appear in the topological phase as a generic

linear combination of the initial Majorana fermions {cj}. To look at their form we

proceed by diagonalizing Hamiltonian (5.32) and imposing the existence of zero

energy solutions, under the assumption of OBC (open boundary conditions). The

Bogoliubov transformations, in the Majorana picture, for the Kitaev Hamiltonian

give zero energy solutions as:







b′ =
∑

j

(

α′
+x

j
+ + α′

−x
j
−
)

c2j−1

b′′ =
∑

j

(

α′′
+x

−j
+ + α′′

−x
−j
−
)

c2j
(5.47)

with j going from one to N, α′,′′
± being parameters , successively linked together

because of the OBC and:

x± =
−µ±

√

µ2 − 4w2
0 + 4|∆|2

2(w0 +∆)
(5.48)
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Imposing OBC we get:







α′
+ x0+
︸︷︷︸

=1

+α′
− x0−
︸︷︷︸

=1

= 0

α′′
+x

−(N+1)
+ + α′′

−x
−(N+1)
− = 0

or







α′′
+ x0+
︸︷︷︸

=1

+α′′
− x0−
︸︷︷︸

=1

= 0

α′
+x

−(N+1)
+ + α′

−x
−(N+1)
− = 0

(5.49)

to be taken in the limit N → ∞. If 2|w0| < |µ| we have two possible conditions

for x±: or |x+| < 1 and |x−| > 1 or |x+| > 1 and |x−| < 1. Thus imposing the

normalization condition on the coefficients in (5.47) we find out that only one of

the coefficients α′
+ or α′′

+ in the expression of b′, or α′
− or α′′

− in b′′, is non zero but,

according to both the sets in (5.49), the other coefficient has to be zero. It follows

that there is no zero modes in the system. On the other hand if 2w0 > |µ| and

∆ 6= 0 then |x+|, |x+| < 1 and, repeating the same reasoning as in the preceding

case OBC are fulfilled as well as the normalization condition.The good OBC, in

this case, are the one in the left system in (5.49). We find that the system allows

for two Majorana zero modes localized at the edge of the wire, b′ at the left edge at

b′′ at the right one. They decrease in amplitude going toward the bulk and for finite

length wire this allows for some overlap between them providing some amount of

energy that destroy the zero mode regime. For finite length wire the system is in

fact described by the effective Hamiltonian:

Hfl
eff ∝

i

2
tb′b′′ t ∝ e−L/l0 (5.50)

where l−1
0 = is the smallest between | ln |x±||. In the last case, for −2w0 > |µ|

and ∆ 6= 0, we have |x+|, |x+| > 1 and zero modes are always allowed but now

the modes b′ and b′′ flip, the right side set in (5.49) is considered.



Chapter 6

Non Trivial Topology for the

Reciprocal Lattice Space

In this chapter we will see how the topology enters in the description of the ground

state wave functions and how MZM are directly linked to the appearing of non

trivial topology.

When we tell about a topological phase transition we address a particular kind of

quantum phase transition. Standard universality classes approach, defined via crit-

ical exponents for the quantum systems, always works when identifying a change

in quantum order. Now we want to go deeper in the characterization of quantum

order change by addressing the topological order. Thus we build up another kind

of classes, the (topological) equivalence classes. As result some of the quantum

orders also have nontrivial topological properties. These latter constitute a subset

of the universality classes defined in the last chapter. We introduce the basic con-

cepts of topology, used later, by considering to have many figures and we ask to

ourselves when we can consider two or more of them to be equivalent. Obviously

the answer depends on the definition we give about equivalence. For instance, in

elementary geometry the equivalence between two figures is given by congruence,

but this is a too stringent definition for our aims; so we introduce the topological

equivalence. We say that two figures are topologically equivalent if we can deform

one of them into the other by means of continuous deformation. In a formal way

the equivalence relation we adopt is the homeomorphism:

Definition 1 Let X1 and X2 be topological spaces. A map f : X1 → X2 is a

homeomorphism if it is continuous and it has an inverse f−1 : X2 → X1 which is

also continuous.

If there exists an homeomorphism betweenX1 andX2 thenX1 is said to be homeo-

morphic toX2 and viceversa. Now we can think to divide the whole set of topolog-

75
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ical spaces into equivalence classes according to whether it is possible to connect

the spaces between themselves by homeomorphisms. When it is possible we say

that they belong to the same equivalence class. In symbols, we say ∼ to be the

homeomorfism and we define a generic equivalent class [a] by:

[a] = {x ∈ X|x ∼ a} (6.1)

Although the division in classes is conceptually well defined it is operatively dif-

ficult to do, that is why we introduce the concept of topological invariants. Topo-

logical invariants are the quantities which are conserved under an homeomorphism

[69]. Also in this case, it is very hard to find all of them for each space, so what we

can say is that if two different topological spaces has different topological invari-

ants they are not homeomorphic to each other, so they do not belong to the same

equivalence class. Sometime we choose to lose in formality and leave the relation

of homeomorphism for the one of “homotopy type”; that is to say we do not require

the map linking the two space to be reversible. We can have a continuous map f
going from S1 (the first space) to S2 (the second space) which is not reversible and

another continuous map g going S2 to S1. What we are interested for is to iden-

tify the various topological phases of a physical system. So we try to characterize

a state by means of a topological invariant, defined in the following according to

the discrete symmetries of the system, and we check, for different values of state

parameters, such topological invariant’s values.

Generally, in differential topology, One concerns with topological invariants asso-

ciated with smooth manifolds. Now for a periodic system, thought to be in the

thermodynamic limit, the k space (the first Brillouin zone) is a smooth manifold.

Then the invariants of all TSM are defined on it ([70, 71]). Since the topological

phase is linked to the appearing of MZMs in the system and such modes are neces-

sarily obtained for OBC it is very strange that the bulk properties give information

about edge states (the k space is achieved imposing closed boundary conditions

that is equivalent to looking at the bulk). However this is the way by which the

scientific community has proceeded Thus we introduce the Hamiltonian H for the

closed system written in terms of Fourier transform of Dirac fermions {aj , a†j}Nj=1.

Here we assume periodic boundary conditions (PBC) when we close the system so

that:

aj+N ∼ aj ∀j = 1, . . . , N

Now we define a new set of 2N operators {aκ, a†κ} as:

{

ak = 1√
N

∑

j aje
−iκja

a†k = 1√
N

∑

j a
†
je

iκja
(6.2)
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where a in the exponentials is the lattice step length, j goes from 1 to N and,

according to PBC, κ = k 2π/awith k = 1, . . . , N are the reciprocal lattice vectors.

The system Hamiltonian can be then written as:

H =
1

2

∑

κ∈1B.Z.

(

aκ
†, a−κ

)

H(κ)

(
ak
a†−k

)

(6.3)

The ground state of the system can be expressed by the action of operators in

(6.2) and the Hamiltonian parameters. Thus addressing such state (expected to be

occupied at low temperatures) we aim to check some change of the topology of the

first Brillouin zone, that is our manifold.

Now that we have the manifold, the main point is what is the appropriate invariant

for the system. The classification of topological phases, thus the choice of a good

topological invariant, is done by considering the symmetries of the Hamiltonian as

time reversal T , particle-hole C and chiriality U = T ◦ C one [71][72]. Generally,

about these three symmetries, we have:

T 2 = ±I C2 = ±I (6.4)

but in our cases (spinless fermions) T 2 = C2 = I. Remembering that we deal with

a 1 D system, always undergoing to particle-hole symmetry, then the cataloguing

in topological classes takes the time reversal Hamiltonians into the BDI class and,

the one with no time reversal symmetry into the D class. They group 1 D system

with particle-hole symmetry and respectively time reversal symmetry and broken

time reversal. There are two principal topological invariants which correspond to

integer numbers, Z and Z2, respectively for classes BDI and D. Such invariants are

the winding number and the pfaffian invariant. In the following we will define such

topological invariants.

6.0.1 Z Invariant

Let us consider the case of a 1D p-wave topological superconductor whose Hamil-

tonian, assuming periodic boundary conditions, shows particle-hole and time re-

versal symmetry:

H(−κ)∗ = H(κ) (6.5)

then:

H(k) =

(
ǫ(k)− µ i∆(k)
−i∆(k) µ− ǫ(k)

)

(6.6)

whit real elements. A god topological invariant for the phase is the winding num-

ber, that can be defined using Anderson pseudospin vector [73]:

~d(k) = ∆(k)j + (ǫ(k)− µ)k (6.7)
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Figure 6.1: Two example of ~d(k) (unormalized) in the y − z plane for the Kitaev

model. At left a trivial topological phase with W = 0 instead, on the right side, a

topological phase with one MZM per edge (W = ±1)

so that H(k) = ~d(k) · ~σ with ~σ being the vector of Pauli matrices. Now we

normalize ~d(k):
d̂(k) = cos(θ(k))j + sin(θ(k))k (6.8)

With cos(θ(k)) = ∆(k)/|~d(k)| and sin(θ(k)) = (ǫ(k)−µ)/|~d(k)|. Now if we con-

sider the momentum vectors (reciprocal lattice vectors), assuming periodic bound-

ary conditions, they form a ring T 1. The unit vector d̂(k) lives on a unit circle

S1 and so the mapping θ(k) is a map θ(k) : T 1 → S1. About this mapping we

consider its fundamental group as topological invariant [74] (in two dimensions we

would have a classification of mapping from T 2 to S2 always by means of winding

number [75]):

W =

∮
dθ(k)

2π

=

∫ π

−π
dκ

∂d̂z(κ)

∂κ
∂d̂y(κ)

(6.9)

It says to us how many times d̂(k) turns around (0, 0) in the y − z plane, while

running over the whole first Brillouin zone. Moreover the change in MZM number

at each end of the wire is given also by W , In particular we have W = #(b′) −
#(b′′) at the left edge of the wire (1DTSC case) [56].

6.0.2 Z2 Invariant

If our system Hamiltonian is not time reversal invariant, then symmetry is reduced

to Z
2. We cannot use anymore the Winding number as topological invariant. A

good topological invariant, introduced in [5] is the Pfaffian invariant. The author
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Figure 6.2: Two different ways to close two different chain showing MZM at their

own edges. Or we close each on on it self or we link the right edge of the first chain

to the left edge of the other one and then we do the same changing the role of the

first and second chain.

introduces the the Majorana number M(H) = ±1 associated with the Hamilto-

nian H where this latter has a unique ground state. For Hamiltonians that exhibit

Majorana bound states, in the case of open boundary conditions, thenM(H) takes

the value 1, which corresponds to a nontrivial topology. Then, if we consider two

chains of lengths L1 and L2 (the number of sites per chain coincides with their

length), it can be shown that the Majorana number is related to the fermionic parity

P of the ground state of a closed chain of length L = L1 + L2 by the following

relation:

P (H(L1 + L2)) =M(H)P (H(L1))P (H(L2)) (6.10)

whatever option, for closing the two chains together, we choose (see Figure 6.2).

Now we give the definition of the Pfaffian of a skewmatrix A, in terms of the total

antisymmetric tensor ǫi1,...,i2n , as:

Pf(A) =
1

2nn!
ǫi1,...,i2nAi1,i2 . . . Ai2n−1,i2n (6.11)

In our case, if A is the matrix characterizing the Majorana representation of the

system Hamiltonian,t hen it is shown that

P (H) = sgn{Pf(A)} (6.12)

Combining together eqns. (6.10) and (6.12) we get:

M = sgn{Pf(A)} (6.13)
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Indicating with Ã(k) the Fourier transform of skewmatrix A expression the last

expression can be rewritten as:

M = sgn{Pf(Ã(0))Pf(Ã(π))} (6.14)

The reciprocal lattice point (we are in a 1 D space) κ = π exists only if the number

of lattice sites is even and this is just the case we consider. Points κ′ = 0 and

κ′′ = π are special since, because the PBC, we have 0 ∼ and π ∼ −π. Furthermore

looking at the diagonal form (5.36) it is immediate that:

Pf(AJ) =

N∏

n=1

ǫn > 0 (6.15)

Using the relation:

Pf(WAW T
︸ ︷︷ ︸

=AJ

) = Pf(A)det(W ) (6.16)

together wit eqn. (6.13) we get:

M = det(W ) = ±1 (6.17)

If now we take in consideration the Fourier transform W̃ (k) ofW , then such trans-

form is block diagonal and we have:

M = Πkdet(W̃ (k))

= Πk=−kdet(W̃ (k))

= det(W̃ (0))det(W̃ (π))

(6.18)

The reality of W implies W̃ (k)∗ = W̃ (k). Since W̃ (k) is unitary for all k then:

det(W̃ (k)) = eiϕk (6.19)

Always because of the reality constrain then ϕk = ϕk(mod2) holds, and this

latter implies that ϕk is quantized to integer multiples of π at the k points 0 and π.

Therefore the invariant is expressed as:

M = (−1)
ϕ0−ϕπ

π (6.20)

The determinant of W̃ (k) is a continuous function of k so the phase change ∆ϕ =
ϕ0ϕ can be written as in the following:

∆ϕ = i

∫ π

0

[

dκ(ln(det(W̃ (κ))))
]

dκ (6.21)
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At last Pfaffian invariant is related top the quantized Zak-Berry phase, ΦZB , by

[76]:

∆ϕ = ΦZB (6.22)

There exist another Z2 topological invariant. Indeed under the assumption that, in

the whole k space, the spectrum is fully gapped for all k points, we can define [?]:

ν = sgn{H(0)H(π)} (6.23)

Such invariant gives the the parity of the number of MZM at the end of the system.



Chapter 7

Long Range Kitaev Model

In this chapter we consider a generalized Kitaev chain model taking into account

long range interactions (in hopping and pairing), finding the conditions under which

Majorana zero modes (MZM) or massive edge modes (MEM) can appear, in the

presence or in the absence of time reversal symmetry (TRS). In particular we obtain

that for TRS Hamiltonians many MZM per edge appear when interactions counts a

finite number of neighbors. By breaking TRS such number of Majorana modes is

reduced to one, moreover, extended critical regions appear in the phase diagrams.

For the case of all-neighbor interactions (true long range interactions), together

with MZM, we get also MEM. Finally we discuss the cases in which MZM are

obtained for a finite length of the wire. Such cases are important for their possi-

ble experimental implementations via cold atoms or optical devices. Theoretical

extensions of Kitaev model was already proposed for counting more neighbors in-

teractions for hopping and superconducting pairing between Dirac fermions of the

wire [56][61][73][77][78][79][80][81].

For the case of a simply extended Kitaev model, counting a finite number of neigh-

bor interactions, the main result has been the possibility to find many MZM per

edge, in the presence of time reversal symmetry. Situation changes if TRS is bro-

ken, these breaking allows tunneling between edge modes removing MZM from

zero energy levels (symmetry protection is removed) and creating Dirac fermion

states with non-zero energies and leaving the system in a topologically trivial phase

[73]. In this situation it has been shown that we can have at maximum one MZM

per edge [56]. In this latter case a good topological invariant is the Z
2-valued in-

variant ν, defined in the next section, which is related to the parity of the number

of Majorana fermions per edge. Recent developments consider all neighbors in-

teractions and show the presence of massive edge modes [77][79][80]. It has been

shown that for such long range models one finds, for certain parametric regimes,

82
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area law violation and the breaking down of the conformal symmetry for closed

boundary conditions. Here, instead, we systematically study the role of hopping

and pairing ranges and TRS for the characterization of the topological phases by

means of topological invariants and exact diagonalization. We then present and

discuss several phase diagrams which can be drawn, corresponding to different sit-

uations. Finally we generalize the transfer matrix approach useful to derive the

ground state for a generic number of neighbors.

7.1 Long Range Hamiltonian with Algebraic Decay in Hop-

ping and Pairing

We propose a long ranged Kitaev chain model taking into account r neighbor inter-

actions in hopping and pairing separately as well as combined together We assume

both of these interactions to be algebraically decreasing with lattice distance be-

tween two different lattice sites. Algebraic decay of long ranged pairing alone has

been well studied in [77], in the limit of infinitely long interaction, it shows, for

certain physical regimes, Majorana zero modes and massive edge modes identi-

fied as topological massive Dirac fermions (TMDF) in [80].The Hamiltonian we

introduce, similar to the one of [79], is the following:

H =
N∑

j=1

(

− µ
(

a†jaj −
1

2

))

+
r∑

l=1

N−r∑

j=1

(

−wld
−α
l aja

†
j+l +∆d−β

l ajaj+l + h.c.
)

(7.1)

In eq.(7.1) N is the number of lattice sites of the wire whose length is L, µ is the

site chemical potential, wl and ∆l are the hopping and p-wave superconducting

pairing terms which let the j − th lattice site with the site (j + l) − th interact.

Phase factor in ∆ (such term is generally complex) can be gauged out as shown in

[5], on the other hand wl is assumed to have the form wl = w0e
iϕl with real ϕ and

w0. Index l runs over the neighbors sites and dl is defined as in [77]:

{

dl = l if l ≤ N/2
dl = N − l if l > N/2

(7.2)

for closed boundary conditions or we assume dl = l for OBC. Exponents α and β,

that characterize the decreasing of long range effects, are assumed to be positive

or null. At least set {aj} satisfy Fermi-Dirac statistic. Now we will focus on the
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discrete symmetries of the system’s Hamiltonian which will help us further.

Hamiltonian H in (7.1) is sent in −H under particle-hole transformation. Calling

C the operator flipping particles in holes and viceversa we have:

C−1HC = −H (7.3)

Eq. (7.3) stands for each choice we make for state parameters. The situation

changes if we look at time reversal symmetry; we use reciprocal lattice to test

this discrete symmetry. So at first we close the chain into a ring so that posi-

tion j + N ∼ j ∀j = 1, . . . , N and we choose periodic or antiperiodic bound-

ary conditions (we will explain later why this dilemma) for Dirac operators, i.e.

aj+N = ±aj ∀j. Then we define a new set of operators {aκ} by:

aj =
1√
N

∑

κ∈B.Z.

aκe
−iκj (7.4)

with

κ =

{
2πk
N for PBC
2πk+π

N for ABC
(7.5)

and we rewrite H in terms of new Dirac fermions operators:

HPBC−ABC =

=
∑

κ

(

a†κ a−κ

)
{
∑

l

[
l−αw0 sin(ϕl) sin(κl)

]
1

+

(

−µ
2
−
∑

l

[
l−αw0 cos(ϕl) cos(κl)

]

)

σz

+

(

∆
∑

l

l−β sin(κl)

)

σy

}(
aκ
a†−κ

)

=

=
∑

κ

(

a†κ a−κ

)

H0(κ)

(
aκ
a†−κ

)

(7.6)

In eq.(7.6), both for PBC or for ABC, time reversal condition H0(−κ)∗ = H0(κ)
is satisfied only if we consider real hopping terms wl, thus if ϕ = 0, π. In the

next sections we will analyze both situations, TR and broken TR Hamiltonian,

separately. Now let’s focus on what happen when we close the chain. PBC/ABC

dilemma materializes if there are finite size effects. In [77], ABC are assumed to

preserve pairing terms inH , otherwise this choice destroys hopping terms for finite
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N and r ≥ N/2. For r < N/2 no problem arises, as both choices preserve interac-

tion terms and invariance for discrete translations. Closed chains for ABC and PBC

are however always different. For finite r we can solve the dilemma by looking at

the expression of H0(κ) in reciprocal space, where terms like cos
(
l
(
2πk
N + π

N

))

and sin
(
l
(
2πk
N + π

N

))
go to cos

(
l
(
2πk
N

))
and sin

(
l
(
2πk
N

))
for N → ∞ if l re-

mains finite. Instead, if we consider an infinite number of interacting neighbors

(always in the thermodynamic limit), function dl will always be always l and the

above terms in (7.6) take into account polylogarithm functions Liα(e
±iκl) where

κ already belongs to a continuum so the dilemma doesn’t stands. In the thermody-

namic limit, PBC or ABC give the same H .

System’s topological phase is described by different topological invariants accord-

ing to time reversal symmetry standing. In the case in which such symmetry stands

we ill use the winding number in eqn. (6.9), otherwise we will address the topo-

logical invariant ν in (6.23).

7.2 Finite Neighbors Number Chain: Topological Phase

Diagrams

Here we focus on the case of finite neighboring interactions and will give topo-

logical phase diagrams (TPD) for each case we will address. At first we allow the

hopping term to be long ranged despite the pairing interaction is considered to be

at first neighbors, then the opposite case is assumed. At the end we allow both of

them to be long ranged and, for this case, we analyze the topological phase in TR

and broken TR regime.

7.2.1 long ranged hopping: Time Reversal Regime

We will now analyze eq.(7.1) in the limit of only long ranged hopping, i.e. β →∞,

for finite r. In Figure 7.1 we observe topological regime (Z = ±1) to enlarge as the

inverse of penetration length (α−1) of the hopping term grows up. The result we

found about this specific Hamiltonian is consistent with the one obtained in [80].

Only one MZM per edge can be found and this aspect can be understood since the

dependence of pairing term on κ goes as sin(κ) and not as sin(lκ) (l = 1, . . . , r).

Thus, after moving over all the first Brillouin zone in κ-space, the winding vector

can only makes at maximum one circle around (0, 0). To better show this aspect

we report in Figure 7.2(a) all the spanned points in y− z plane by the unormalized

winding vector d(κ) =
(
0,∆sin(κ), (−w0)

∑

l l
−β cos(lκ)

)
.
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Figure 7.1: Phase diagram, showing the values of W as in the legend, for r = 2
with growing α in the limit of β →∞, i.e. only long ranged hopping. Topological

regime enlarges for α→∞ where Kitaev model regime is obtained.
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Figure 7.2: Unormalized winding vector for β → ∞, α = 0.7 and r = 2 in

Figure 7.2(a) and α = β = 0.1 and r = 3 in Figure 7.2(b). In both figures

µ/∆ = 1 and w0/∆ = 2. In the first case the graphic can turns around (0, 0) at

maximum once but, on the other hand graphics in the second figure can makes 1 or

3 twists around the origin.
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Figure 7.3: TPD of H with only long-ranged pairing; values of W are reported. In

Figure 7.3(a) we note phase diagram has a strange alternating topological invariant

but the regime where 1 MFs per edge appears is the same as in the Kitaev chain

model limit (β →∞)

7.2.2 Long Ranged Pairing: Time Reversal Regime

Now we get α → ∞ so to analyze H in the regime of only long ranged pairing.

Again the winding number, as before, takes the values 0,±1. We note an alterna-

tion, inside the topological regime, of values±1 for Z. This behaviour, not present

in only long ranged hopping Hamiltonian, is more emphatic as r increases (we are

always assuming r to be finite) and it disappears as β →∞, in which case we will

obtain the well known topological phase diagram for Kitaev model in [5]. However

the topological region is the same as in the first neighbors Kitaev model. Indeed

since |W | = 0, 1 then such W is equivalent ν. Addressing the expression of this

latter, we have that H0(0, π) = dz(0, π) for our case are the same as in the case of

the standard Kitaev chain. As a consequence the presence of MZM, characterizing

the topological phase, is given by the same parametric regime for both cases.

7.2.3 Long Ranged Pairing and Hopping: TR and BTR Symmetry

We will now look at physical effects on topological phase considering long ranged

hopping and pairing at the same time. We assume β = α at first in the regime of

TR symmetry and then in the more realistic case of broken TR.
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Time Reversal Case

In Figure 7.4 we show how the increasing of α destroys MZM at the edge of the

wire. For α = 0 we can obtain |WMAX | = r which tells us that we have r MZM

per edge [75], for α → ∞ we recover the standard Kitaev chain model. However,

changing α, or other parameters such modes are created or destroyed in pair for

each edge, with the only exception of the appearing of W = 1 regime for each r
we choose (even or odd). We will explain this appearing-disappearing” behaviour

using the particle-hole symmetry. Indeed, for each eigenvalue ǫn we must have

another eigenvalue −ǫn, so MZM have to be created or destroyed in couples. Let’s

assume we destroy theme, then the thought can also be applied to the reverse pro-

cess. For each couple of states moved away from zero there will be a gap Σn in

the spectrum. This effect can be described, as done in [5], by an efficient Hamilto-

nian Veff ∝ −(teff/2)ã†nãn where teff describes the overlap between two MZM.

Such overlap is due to the finite characteristic penetration length, ξ, of MZM. If

such ξ = 0 this discussion about overlap is not valid. Now it is reasonable to

think this overlap effect is greater between two functions whose peaks are close to

each other, i.e. between two MZM lying in the same side of the wire. As a re-

sult in loosing MZM we delete two of them per time for each edge. Nevertheless,

topological phase with |W | = 1 is always present. As we will show in the next

section, the system admits W = ±1 ∀ r with Hamiltonian identically singular for

certain parameters choice. Such choice is µ = 0 and |wl| = |∆l| ∀ l = 1, . . . , r.

This Hamiltonian admits one MZM at each edge of the wire. It is just the topo-

logical nature of these modes (their robustness), which tells us that some regions

exist, around this point in the parameters space, in which such topological phase is

maintained. Therefore the |W | = 1 phase is somehow protected. To conclude the

description of topological phase transitions, in going from |W | = 1 to |W | = 0
standard overlap between MZM at opposite edges occurs. As result we itemize:

• If r is even we can have 0, 1 or an even number of MZM per edge until this

number can be just r

• If r is odd, we can have 0 or an odd number of MZM per edge until W can

get the same value of r

We observed that an increasing of potential’s penetration length ξ = α−1, for

α < 1, supports richer and richer topological phases, i.e. the appearing of many

MZM per edge.
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Figure 7.4: W values with both hopping and pairing are long ranged with α = β
and r = 2. Only for α < 1 we can have two MZM per edge. Regions where these

are obtained decrease as α grows up. Kitaev first neighbors model is obtained for

α→∞.
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Figure 7.5: TPD for two different r neighbors Kitaev chain; in Figure 7.5(a) r = 2
and in Figure 7.5(b) r = 3. State parameters are α = β = 0, so that hopping and

pairing are both long ranged with a flat potential and we choose µ/∆ = 0.1 cos(γ)
and w0/∆ = 0.1 sin(γ) with γ ∈ [0, π]. Such angle is reported on the x axis, on

the other side we report on y axis the relative winding number W . For γ ∈ [π, 2π)
the phase diagram is antisymmetric, to the above ones, respect to γ = π. For some

regimes we have W = r in both situations. The legend shows that ABC and PBC

give the same results, such graphics are obtained via numerical calculations of W
on reciprocal lattices of 100 κ sites.
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Broken Time Reversal Case

Including broken time reversal effects implies coupling between odd as well as

even index Majorana operators so that, as explained in [56], only topological phase

with an odd W , in TRS regime, will survive because of particle-hole symmetry

of the spectrum. BTR is induced by non null ϕl in eqn. (7.1). Here we check

the effects of two different forms of this parameter, ϕl = ϕ0 ∀ l = 1, . . . , r and

ϕl = ϕ0lwith l = 1, . . . , r. We find almost the same training of topological phase

with respect to the state parameters (see Figure 7.6). 2D regions, in which the gap

closes, are present for both cases. Then the parametric regime, including topo-

logical states, reduces as ϕ0 increases and completely disappears for ϕ0 = π/2.

7.3 Infinite Neighbors Number Long Ranged Chains: Topo-

logical Phase Diagrams

Here, as done in [80] and [79], we will approach the regime r = N → ∞ but

we will explore the case of long ranged hopping and pairing separated as well as

together in TRS and broken TRS. We will obtain massive edge mode states as

predicted in [79] and [80]. We want to underline that it is important to know the

trend of such phase to know the potency of an experimental implementation of

such Hamiltonian in order to use topological behaviour of MZM and MTDF.

7.3.1 Long Ranged Pairing: TR and BTR Symmetry

In this section we will divide the study of H into three parts: the case where the

inverse penetration length of the pairing potential (β) is smaller than one, the case

in which it lies between 1 and 2 and finally the case in which it is greater than 2.

As before we will approach time reversal and broken time reversal cases separately

Time Reversal Case

Under TR symmetry, the three regimes of β addressed before respectively corre-

spond to the regime where H and its derivates are not defined in κ = 0, only the

derivates of H are not defined in κ = 0 and both Hamiltonian and its derivates are

defined over all Brilloiun zone, κ ∈ [−π, π]. For α < 2 and time reversal Hamil-

tonian, the winding number W is defined as indefinite integral [80] but, due to the

point κ = 0, it takes semi integer values for α < 1. W = 1/2 topological phase

(red region in Figure 7.7) as well as the coexistence of MZM and MEM in the re-

gion 1 < α < 1.5 and −2 < µ < 2 has been already focused in [80]. Here, about
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(a) r = 2 α = 0 ϕl = lπ/10 (b) r = 2 α = 0 ϕl = π/10

(c) r = 2 α = 0 ϕl = lπ/5 (d) r = 2 α = 0 ϕl = π/5

(e) r = 2 α = 0 ϕl = l3π/10 (f) r = 2 α = 0 ϕl = 3π/10

Figure 7.6: Topological phases for α = 0 in a second neighbors interacting chain.

White regions host MZM, instead in the orange zones no edge mode is present, here

topological phase is trivial. µ and ∆ are normalized to w0. Introducing complex

hopping delete phases with an even number of MZM per edge and, critical lines

become two dimensional critical regions represented in blue. In Figure 7.6(b),

Figure 7.6(d) and Figure 7.6(f) we consider only a complex hopping term like

wl = w0e
iϕl = w0e

iϕ0 (constant ϕ per each l-th neighbors), on the other hand

in Figure 7.6(a), Figure 7.6(c) and Figure 7.6(e) long range effects act also on the
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this latter region, we give a more precise collocation of such massive and massless

edge modes according to the parametric regime. Then it is really interesting to

note that we have MEM also in the W = 0 and W = 1 regions for points closed

to (−2, 1) in Figure 7.7 in the region with the blue star. We justify this assertion

showing the mass and gap scaling for some of these points in Figure 7.8. Here the

value of winding number is difficult to achieve thus we do not report any value.

Returning on Figure 7.8 we note, see Figure 7.8(d) and 7.8(f), that gaps are present

not only between the lowest energy level and the excited ones. There are gaps be-

tween the second and the third level and so on up to level 3 and 4 in Figure 7.8(d)

and 4 and 5 in Figure 7.8(f). For the mass scaling, extrapolation has been done by

standard ”Mathematica” command. thus it just gives a qualitative idea about how

the trend is. In panels Figure7.8(e) and Figure7.8(f) the scaling stops at N = 4000
since we clearly see how the gap does not change anymore and how the mass tends

to zero. Indeed we get a mass Λ0 < 0.001 and the raport between the masses at

two consecutive lattice site numbers does not seem to converge to 1, indicating that

such mass tends to zero. On the other hand in panels Figure7.8(a) and 7.8(c) such

raport tends to 1 indicating that a finite mass for the ground state exists and that the

thermodynamic limit is almost achieved, but only at N ∼ 10000. No conclusion

about the form of such trends has been done.

About blue region we haveW = −1/2 thus it is topologically non equivalent to the

trivial phase withW = 0; winding number is different thus they are not equivalent.

The last note that we report is about Figure 7.8(e). Indeed here a linear dependence

of Λ0 in 1/N seem to stand. It is just the case since if the mass were zero then,

assuming Λ0(1/N) to be analytical, we would have

lim
1/N→0

Λ0(1/N)

Λ0(1/(2N))
= 2m (7.7)

where m is the leading order for the Taylor series of Λ0 closed to 1/N → 0. In our

case such ratio tends to 2 implying that the leading order is the first one. We see a

linear dependence.

Broken Time Reversal Case

In broken TR case, however, we cannot use TI ν in the regime α < 1 since

H(0) = dz(0) is not defined there. What we propose below is a TPD made by

considering the presence of gapped bulk and the values of the mass of lower pos-

itive H0’s eigenvalue (the mass Λ0 addressed before) for various points in the re-

gion α < 1, together with the values of ν for the region α > 1. The presence of

gapped bulk gives information on the presence of edge modes that can be massive

or massless. We then know this last information by performing the mass scaling
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Figure 7.7: TPD for only long ranged pairing in TR regime. Peculiar appearing of

massive edge modes (MEM) pictured by red triangles in the regions with W = 1,

where we aspected MZM, and W = 0. Winding number seems not to be able to

well describe the transitions toward MEM phase. At the proximity of critical point

(-2,1) we can find massive edge modes moving toward every direction we want.

Yellow squares represent edge modes whose masses are quite smaller than 10−3

by numerical diagonalization of H0 considering a lattice of N = 4000 sites; they

are good candidate to be MZM. At their right masses are smaller and smaller. The

red region shows the presence of massive edge modes and the blue one has not

peculiar characteristic about the spectrum, however it has non trivial topological

behaviour due to the non null value of TI W . In the region with the star symbol

gap scaling difficulty converges up to N ∼ 104, thus cannot give any information

about the presence of edge modes. ∆ = 2w0 has been assumed.
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(d) Gap scaling - µ = −1.8 and α = 1.1

0 0.001 0.002
0

0.001

0.002

1/N

Λ 0

(e) Mass scaling - µ = 0 and α = 1.25

●

● ● ● ● ● ● ●

■

■ ■ ■ ■ ■ ■ ■

◆

◆ ◆ ◆ ◆ ◆ ◆ ◆

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲
1 2 3 4 5 6 7 8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

n

ΔE n+
1,
n

N=4000N=2000N=1000N=500

(f) Gap scaling - µ = 0 and α = 1.25

Figure 7.8: Mass and gap size scaling for two points respectively at W = 1 and

W = 0 (TR regime for only long ranged pairing) showing finite masses and gapped

bulks. In Figure7.8(b) and Figure7.8(d) we find a gap not only between the first

level and the bulk but also the second, the third and the fourth level are separated

from the bulk. An analogue result is found for broken TR case. ∆ = 2w0 has been

assumed.
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Figure 7.9: TPD for the case long ranged pairing in BTR symmetry withϕ = π/10.

MEM, for α < 1, are almost destroyed by time reversal symmetry breaking but for

α > 1 they seems to be more robust. In the latter regime, we find MEM in the

same regions they were for the time reversal case. The critical lines µ = ±2 close

one toward the other. ν is not defined for α < 1 thus, in this case, the critical

line dividing MEM from No EM phase has to lie between the lines depicted by

red triangles (MEM) and white circles (No EM). Again, in ν = 1 region with the

star symbol, gap scaling does not converge up to N ∼ 104. Also for this case

∆ = 2w0.

for Λ0(N) = min{En(N) > 0} as said before. We give this TPD in Figure7.9

made by assuming ϕl = π/10 in the Hamiltonian (7.1) with r = N → ∞. The

region over α = 1, where MEM exist, seems to be greater than in the TRS case.

This is really strange since breaking TR destroys edge modes or at least leave them

as they were before the breaking. However critical lines µ = ±2 move toward

µ = 0 as ϕ→ π/2, as we found for the finite neighbors case. Finally MEM in the

region µ < −2 and α < 1 are drastically reduced. Then in Figure 7.10 we show

how the TR breaking destroys edge modes. We address α = 1.3 and observe a

gradual reduction of the edge modes regime while ϕl = ϕ0 grows up. Such edge

mode region will completely disappear for ϕ0 = π/2.

Again the lower energy levels discretize more and more while getting the thermo-
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(a) Long ranged pairing: α = 1.3 ϕ = π/10 (b) Long ranged pairing: α = 1.3 ϕ = π/5

Figure 7.10: TPD for α = 1.3 in the case of only long range in paring with BTR

symmetry, ϕ = π/10, π/5 . TI ν has been addressed. White region corresponds

to ν = −1 and the orange one to ν = 1. Although for ν = −1 we can say that

edge modes appear, this is not the case for the ν = 1. In the right side ν = 1 zones

there is no edge mode but, in the left zones mass scaling does not converge up to

N ∼ 104, thus no information can be gotten. As ϕ increases non trivial phase

reduces. Blue regions are critical regions where gap closes.

dynamic limit.

7.3.2 Long Ranged Hopping and Pairing Together: TR and BTR Sym-

metry

It is immediate to consider long ranged pairing and hopping together as done in

[79]. We propose TPD showing the trend of topological invariants and edge modes.

Also in this case TI are not always able to show the crossing from massless to

massive edge modes and viceversa.

Time Reversal Case

For TR symmetry, winding number in (6.9) is really difficult to numerically inte-

grate because of non analyticity in κ = 0 for α < 1 thus, also for TRS Hamiltonian,

we use ν as TI in Figure 7.11. Again we find massive and massless edge modes

for α < 1. Their presence has been proved by operating mass and gap scaling for
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each point reported in Figure 7.11. Then, for α > 1, ν can well characterize the

topological phase, showing the presence of MZM and trivial states.

Broken Time Reversal Case

Again we address two different kinds of time reversal symmetry breaking: at first

we assume non null phase for the hopping term as ϕl = ϕ0 and then we assume

ϕl = ϕ0l. About the first case, breaking TRS has the effect to gradually delete

the topological phase for α > 1 but MEM and MZM, for α < 1, show resistance

against the growing of ϕ0. This last behaviour is different from the one observed

in the case of only long range in pairing where for instance MEM are rapidly

destroyed in this region. Finally edge modes completely disappear for ϕ = π/2 as

we aspected.

It is also interesting to refer the case ϕl = ϕ0l. In this scenario, as showed in

Figure 7.12, MEM and MZM are found in the region α < 1. However that gap and

mass scaling are difficult to perform in this regime for small value of µ. Conver-

gence to fixed value for mass and gap are not gotten also by means of simulations

with ten thousand lattice points, thus it is good to explore this region in future

works. Finally we underline that MZM are rapidly destroyed for small values of µ,

µ ≤ −3 and α > 1.

For some example of mass and gap scaling about this latter case, see Figure 7.13.

Again the the interpolation for the mass scaling graphics has been done by running

a ”Mathematica” command thus, it gives only a qualitative trends. If the mass be-

comes smaller and smaller while N →∞ and the raport between two consecutive

values, at different N , does not converge to 1, we are quite sure that such value

goes to zero. When the raport converge to 1 than we are quite sure that a non null

value for the mass is obtained and the thermodynamic limit has been achieved.

As we can see that, according to the state parameters, the thermodynamic limit is

obtained at different high values of N .

7.4 MZMs Wave Functions

In this section we will investigate MZMs wave functions. We will obtain the modes

of zero energies in the thermodynamic limit (infinite lattice sites in a wire of length

L = Na where a is the lattice step set equal to one a = 1) or when such number

is finite. In this way we hope to generalize the discussion about the first neighbors

model done in [5]. Each result that we will give has been supported by numerical

calculations in diagonalizing H0.

At first we will point out the main features of the generic formalism. We can write
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Figure 7.12: Here long range in both hopping and pairing and BTR regime with

ϕl = lπ/4. The left and right side critical lines are respectively given by κ =
0 andπ. As µ decreases, thermodynamic limit is not gained numerically. Energy

gaps between levels do not converge to fixed values also forN = 9000 lattice sites.

Again ∆ = 2w0
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(f) Gap scaling - µ = 1.2, α = 1.05 and ϕ0 =

π/10

Figure 7.13: Mass and gap scaling to evidence the presence of MEM as well as

topologically trivial modes in the TPD for long range hopping and paring regime

in BRT symmetry with ϕl = lπ/10 for three points in Figure 7.12. Calculating

the reports between the masses at different lengths of the chain we have that in

Figure 7.13(a) and Figure 7.13(e) they tend to 1 as the modes were massive. For

sure we have edge mode as the gaps are well in evidence for them.
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our H in terms of Majorana operators, defined as:

{

c2j−1 = aj + a†j
c2j =

1
i

(

aj − a†j
) (7.8)

with {

{cl, cm} = 2δl,m ∀ l,m = 1, . . . , N

c†j = cj ∀ j = 1, . . . , 2N
(7.9)

Thus:

H =

=
(

a1 . . . aN a†1 . . . a†N

)

H0













a1
...

aN
a†1
...

a†N













=
i

2

{
∑

j

[

(−µ)c2j−1c2j +
r∑

l=1

(−w0)l
−α

(

sin(ϕ)
(
c2j−1c2(j+l)−1 + c2jc2(j+l)

)

+ cos(ϕ)
(
c2j−1c2(j+l) − c2jc2(j+l)−1

)

+ |∆|
(
c2j−1c2(j+l) + c2jc2(j+l)−1

))
]}

= i
∑

s,t

csAs,tct

(7.10)

The matrix H0 is hermitian (H†
0 = H0) and it can be diagonalized by means of

unitary transformations:

UH0U
† =










ǫ1 0 . . . 0

0
. . . 0 . . .

...
. . . −ǫ1

. . .

0 . . . 0
. . .










2N×2N

The right side of the above equation is due to the particle-hole symmetry of the

Hamiltonian, C−1H0C = −H0 where C = k(σx)2Nx2N and k is the complex
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conjugation operator. On the other hand the operator A, in the last passage of eqn.

7.10, is real and antisymmetric so that:

WAW T = diagλ

(
0 ǫλ
−ǫλ 0

)

where {±ǫλ} are eigenvalues of H0 (the set of A’s eigenvalues is {±iǫλ}) and W
is a real orthogonal matrix: WW T =W TW = I [67].

U and W are transformations which respectively transform the sets {aj , a†j}Nj=1

and {cj}2Nj=1:













ã1
...

ãN
ã†1
...

ã†N













= U †













a1
...

aN
a†1
...

a†N


















b1
...

b2N




 =W






c1
...

c2N




 (7.11)

Diagonal form of H , written by means of Dirac fermion or Majorana operators, is:

H =
∑

n

ǫn

(

ã†nãn −
1

2

)

=
i

2

∑

n

ǫnb2n−1b2n (7.12)

Assuming that U and W are canonical we have:

{

ã†n, ãm
}

= δn,m and {ãn, ãm} = 0∀n,m = 1, . . . , N
{

b†n, bm
}

= 2δn,m ∀n,m = 1, . . . , 2N

The two sets above are linked by:

{

b2n−1 = ãn + ã†n

b2n = 1
i

(

ãn − ã†n
)

Now, in our case, H is always quadratic and it can be diagonalized by means

of Bogoliubov transformations; the matrix U is the Bogoliubov transformations

matrix. We can think to write the new ãns as a combination of the first set of

operators aj by means of two sets of functions {un,j} and {vn,j}:

ãn =
N∑

j=1

(

u∗n,jaj + v∗n,ja
†
j

)

(7.13)
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with
∑N

j=1

(
|un,j |2 + |vn,j |2

)
= 1∀n = 1, . . . , N . Thus we write U † as:

U † =













u∗1,1 . . . u∗1,N v∗1,1 . . . v∗1,N
...

...
...

...

u∗N,1 . . . u∗N,N v∗N,1 . . . v∗N,N

v1,1 . . . v1,N u1,1 . . . u1,N
...

...
...

...

vN,1 . . . vN,N uN,1 . . . uN,N













(7.14)

and by means of eq. (7.11) and canonical transformations assumption we can link

W to U : 





W2n−1,2j−1 = 1
2

(

un,j + u∗n,j + vn,j + v∗n,j

)

W2n−1,2j = i
2

(

−un,j + u∗n,j + vn,j − v∗n,j
)

W2n,2j−1 = i
2

(

un,j − u∗n,j + vn,j − v∗n,j
)

W2n,2j = 1
2

(

un,j + u∗n,j − vn,j − v∗n,j
)

(7.15)

or viceversa:







u∗n,j =
1
2

(

W2n−1,2j−1 +W2n,2j + i
(
W2n,2j−1 −W2n−1,2j

))

v∗n,j =
1
2

(

W2n−1,2j−1 −W2n,2j + i
(
W2n,2j−1 +W2n−1,2j

)) (7.16)

In eqns. (7.15), if we assume TR symmetry, thenW2n,2j−1 = 0 andW2n−1,2j = 0;

in this case we will call φn,j = W2n−1,2j−1 and ψn,j = W2n,2j for next develop-

ments. Looking for MZMs, we are interested in spectrums with null energies, so

in systems with degenerate ground states. Such modes can be obtained in two dif-

ferent situations, in the first case they are modes appearing in the thermodynamic

limit, in the second case (for particular parametric regimes) they can be observed

with finite lattice number of fermions. In the following sections we will analyze

these two cases.

7.4.1 MZMs Wave Functions in the Thermodynamic Limit

We will now take a picture of MZMs wave functions via transfer matrix approach.

We will compare the results with the ones of numerical calculations for the eigen-

states of H0. We will write Bogoliubov equations for the system and check for

the existence of MZMs in the thermodynamic limit thus eliminating the system’s

finite size effects. When these effects are present we have non null energy states

and non degenerate even ground state for the system. The condition of zero energy



7.4. MZMS WAVE FUNCTIONS 105

will be obtained in the limit N → ∞ and a → 0 with L constant that is the ther-

modynamic limit. Developing Bogoliubov formalism in terms of W ’s elements,

we have:

ǫnW2n−1,2j−1 =

= (−µ)W2n,2j +
r∑

l=1

l−α

[

(−w0) cos(lϕ)

(
W2n,2(j+l) +W2n,2(j−l)

)

+ (−w0) sin(lϕ)
(
W2n,2(j+l)−1 +W2n,2(j−l)−1

)

+ |∆|
(
W2n,2(j+l) +W2n,2(j−l)

)

]

(7.17a)

ǫnW2n−1,2j =

= µW2n,2j−1 +
r∑

l=1

l−α

[

w0 cos(lϕ)

(
W2n,2(j−l)−1 +W2n,2(j+l−1)

)

+ w0 sin(lϕ)
(
W2n,2(j−l) +W2n,2(j+l)

)

− |∆|
(
W2n,2(j−l)−1 −W2n,2(j+l)−1

)

]

(7.17b)

ǫnW2n,2j−1 =

= µW2n,2j−1 +
r∑

l=1

l−α

[

w0 cos(lϕ)

(
W2n−1,2(j+l) +W2n−1,2(j−l)

)

+ sin(lϕ)w0

(
W2n,2(j+l)−1 −W2n−1,2(j−l)−1

)

+ |∆|
(
W2n,2(j+l) +W2n,2(j−l)

)

]

(7.17c)
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ǫnW2n,2j =

= (−µ)W2n−1,2j−1 +

r∑

l=1

l−α

[

(−w0) cos(lϕ)

(
W2n−1,2(j−l)−1 +W2n−1,2(j+l)−1

)

+ (−w0) sin(lϕ)
(
W2n−1,2(j−l) −W2n−1,2(j+l)

)

+ |∆|
(
W2n−1,2(j−l)−1 −W2n−1,2(j+l)−1

)

]

(7.17d)

Resolution Via Transfer Matrix for TR Symmetry

For ϕ = 0, thus if Hamiltonian is time reversal, terms W2m−1,2i = W2m,2i−1 = 0
and then, for ǫn = 0, W2m,2i and W2m−1,2i−1 decouple. Such is the case that

we will approach. Using φn,j to indicate W2n−1,2j−1 and ψn,j for W2n,2j and

considering that we can have several MZMs per edge (r at maximum), we can

write:

φ(0)(j) =

#(MZM per edge)
∑

l=1

Clφl,j (7.18a)

ψ(0)(j) =

#(MZM per edge)
∑

l=1

Dlψl,j (7.18b)

where φl,j and ψl,j are indipendent and φ(0)(j) and ψ(0)(j) are the general su-

perposition wave functions of such independent zero modes. These latter satisfy:






φ(0)(i+ r)
...

φ(0)(i− r + 1)




 = T






φ(0)(i+ r − 1)
...

φ(0)(i− r)




 (7.19a)






ψ(0)(i− r)
...

ψ(0)(i+ r − 1)




 = T






ψ(0)(i− r + 1)
...

ψ(0)(i+ r)




 (7.19b)

where

T =











−∆r−1+wr−1

∆r+wr
. . . − µ

∆r+wr
. . . ∆r−wr

∆r+wr
1 0 . . . . . . . . . . . . . 0

0 1 0 . . .
...

... . . .
. . .

. . . 0
0 . . . . . . . . . . . . . 1 0











(7.20)
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Generic solutions of (7.19) can be also written as:

φ(0)(j) =
2r∑

s=1

αsλ
j
s (7.21a)

ψ(0)(j) =

2r∑

s=1

βsλ
−j
s (7.21b)

where λs are eigenvalues of T (transfer matrix), coefficients αs and βs are inde-

pendent and j = 1, . . . , N .

It is important to note that such modes have to underline to OBC:

φ(0)(0) = · · · = φ(0)(1− r) = 0

φ(0)(N + 1) = · · · = φ(0)(N + r)
(7.22a)

ψ(0)(0) = · · · = ψ(0)(1− r) = 0

ψ(0)(N + 1) = · · · = ψ(0)(N + r)
(7.22b)

As we will see, all the OBC in (7.22) will be satisfied only in the thermodynamic

limit.

For find the zero mode wave function we will proceed as follows. Assuming that

the majority of the λl is such that |λl| < 1, we consider the modes φl localize at the

left edge of the wire, thus also the φl modes localized at the opposite edge. Among

eqns. (7.22) we take:

φ(0) = · · · = φ(1− r) = 0 (7.23a)

ψ(N + 1) = · · · = ψ(N + r) (7.23b)

and verify the existence of generic zero energy modes solving eqns. (7.19) for φ(0)

and ψ(0), written in the form (7.21), counting only λl smaller than one in modulus,

and underlying to eqns. (7.23). Following [56] we will call nf the number of T ’s

eigenvalues whose modules are smaller than one and r is the number of conditions

we impose ”per edge” on each one of φ(0) and ψ(0). Thus we will have N =
nf − r linear independent zero modes in each side of the wire; i.e. the generic

solutions in (7.21) will have N free parameters. The final writing will be of the

form reported in eqns. (7.18). The λl greater than one in modulus has been not

taken in consideration for the linear combinations eqns. (7.21) since it would be

impossible to satisfy the normalization conditions for the wave functions.

In the opposite case, when the majority of λl is s.t. |λl| > 1, we can repeat the

same procedure consideringN ′ = n′− r MZM per edge with n′ being the number

of T ’s eigenvalues whose modules is greater than one, but imposing φ(N + 1) =
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Figure 7.14: φ1−2,j obtained by numerical calculations following the protocol ex-

plained in 7.4.1. We used N = 150, α = β = 0, r = 2, and µ/|∆| = w/|∆| =
0.1. In this regime we have two MZM per edge. The above functions are in the

“left side” of the wire. Note φ1,j is peaked on j = 1 but, φ2,j is a bit shifted. We

will obtain a similar result in section 7.4.2, where two MZM per edge are found on

a finite sites lattice. The same situation is found considering generic r.

· · · = φ(N+r) = 0 and ψ(0) = · · · = ψ(1−r) instead of eq. (7.23). In both cases

N orN ′ have to be positive. Furthermore, we will focus on the form of these wave

functions. Because of the nature of T ’s eigenvalues, i.e. whether they are real or

complex, we can have a simple decaying trend of MZM or an oscillatory decaying

one. Indeed if at least one couple of λl is complex (complex roots have to come

in pair) they will give an oscillatory decreasing of φ(j) and ψ(j), which will take

into account terms like:

λj1 + λj2 = λj1 + (λ∗1)
j

= |λ1|j(eiθ1j + e−iθ1j)

= 2|λ1|j cos(θ1j) (7.24)

If each considered λl is real, then MZM wave functions will only show a decaying

trend - like λjl . This result is analogue to the one in [74]. The last step of this

protocol will be underlining that the φl and ψl that we get by the above proce-

dure are not orthogonal and normalized. Thus we can proceed via Gramm-Smidth

orthonormalization process.
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Figure 7.15: General second neighbors Hamiltonian (7.26). Gray and orange lines

represent the second neighbors potentials, respectively ∆2 − w2 and ∆2 + w2. If

both ∆2 and w2 are null the graph reduces to the Kitaev chain toy model.

7.4.2 Finite Length Lattice MZMs for r-Neighboring Interactions Hamil-

tonian

In [5] it is shown that we can have unpaired MZM also if lattice size is finite. We

will generalize this result to r neighbors Kitaev Hamiltonian. We will work in TR

regime. Hamiltonian of such system (OBC) written in terms of Majorana operators

is:

H =
i

2

[
N∑

j=1

(−µ)c2j−1c2j

+
r∑

l=1

N−r∑

j=1

(

(∆l − wl)c2j−1c2j+2l + (∆l + wl)c2jc2j+2l−1

)
]

(7.25)

Parameters wl and ∆l can take whatever value. First we will find such unpaired

Majorana modes for the case r = 2 and then we will generalize it to r neighbors

case. In this situation we have:

H =
i

2

[
N∑

j=1

(−µ)c2j−1c2j

+

N−1∑

j=1

(

(∆1 − w1)c2j−1c2j+2 + (∆1 + w1)c2lc2j+1

)

+
N−2∑

j=1

(

(∆2 − w2)c2j−1c2j+4 + (∆2 + w2)c2jc2j+3

)
]

(7.26)

We directly delete the contribute of some cj if

• ∆2 = ±w2 6= 0 and ∆1 = w1 = µ = 0

• µ = 0, ∆1 = ±w1 6= 0 and ∆2 = ±w2 6= 0
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Let us focus on these two cases separately and assume a positive hopping term w2.

In the first case Hamiltonian reduces to:

H =

N−2∑

j=1

iw2c2jc2j+3 (7.27)

now defining

{

ãj =
1
2 (c2j + ic2j+3)

ã†j =
1
2 (c2j − ic2j+3)

for j = 1, . . . , N − 2 (7.28)

and

{

ãN−1 =
1
2 (c3 + ic2L−2)

ã†N−1 =
1
2 (c3 − ic2L−2)

and

{

ãN = 1
2 (c1 + ic2L)

ã†N = 1
2 (c1 − ic2L)

(7.29)

we have a whole set {ãj}Nj=1 of Dirac fermions operators satisfying Fermi-Dirac

algebra:
{

ãi, ã
†
j

}

= δi,j and
{

ãi, ãj

}

=
{

ã†i , ã
†
j

}

= 0 (7.30)

For all i, j = 1, . . . , N that diagonalize H in (7.26).

Calling |0̃〉 the Fock state for where no quasi-particle is present, the vacuum state,

we have:

ãj |0̃〉 = 0∀ j = 1, . . . , N and ã†j |0j〉 = |1j〉 (7.31)

thus the Hamiltonian has the form:

H = 2w2

N−2∑

j=1

(

ã†j ãj −
1

2

)

(7.32)

It is important to note that eq. (7.32) and (7.27) do not contain respectively terms

proportional to ã†N−1,N ãN−1,N and (−i)b1,3bN,N−2. Terms missing in eq. (7.27),

(−i)b1,3b2N,2(N−1), are four Majorana zero modes which are unpaired (see Fig-

ure 7.4.2); the topological phase is non-trivial.

We will show that the ground state degeneracy goes as 22 = 4. At first we will

define |gs〉 to be ground state if and only if:

ãj |gs〉 = 0∀ j = 1, . . . , N − 2 (7.33)
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Figure 7.16: In this regime only terms proportional to ∆2+w2 = 2w2 survive. All

the links in the network disappear and the system is equivalent to N − 2 noninter-

acting Dirac fermions made by two MFs of opposite chains. Such fermion’s site

energy is just 2w2. The four unpaired MFs are zero energy modes and all the rest

of the states are degenerate with energies 2w or −2w.

Then we define P , the parity operator, as:

P =

N∏

i=1

(−ic2j−1c2j) = (−ic1c2) . . . (−ic2N−1c2N )

= (−ic2c5)(−ic4c7) . . . (−ic3c2L−2)(−ic1c2N )

=

N∏

i=1

Pj =

N⊗

j=1

σ(j)z

(7.34)

Pj in eq. (7.34) counts the number of fermions (quasi-particles) that are in the

j-th fermionic subspace. Note that in eq. (7.27) terms proportional to PN−1 and

PN miss and thus [PN−1PN , H] = [P,H] = 0; PN−1PN and H have the same

eigenstates.

There are fours states |ψ〉 diagonalizing PN−1PN : two states with one fermion

either in the (N-1)-th or in the N-th subspace, another one with one fermion in both

subspaces and the vacuum state. Indeed:

PN−1PN |0̃〉 =

= 2

(
1

2
− ã†N−1ãN−1

)

2

(
1

2
− ã†N ãN

)

|0̃〉

= |0̃〉

(7.35a)

PN−1PN |1N−1,N 〉 =

= 2

(
1

2
− ã†N−1ãN−1

)

2

(
1

2
− ã†N ãN

)

ã†N−1,N |0̃〉
= −|1N−1,N 〉

(7.35b)
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Figure 7.17: The above system is equivalent to a chain of 2N − 2 Majorana

fermions interacting whit their first neighbors by alternate potentials, ∆1 + w1 =
2w1 and ∆2 + w2 = 2w2 plus two unpaired MFs at the ends of the chain.

PN−1PN |1N−1, 1N 〉 =

= 2

(
1

2
− ã†N−1ãN−1

)

2

(
1

2
− ã†N ãN

)

ã†N−1ã
†
N |0̃〉

= |1N−1, 1N 〉

(7.35c)

|0̃〉 and |1N−11N 〉 have even parity, |1N−1〉 and |1N 〉 have odd parity. Such eigen-

states satisfy also:

ãj |0̃〉 = 0 (7.36a)

ãj |1N−1,N 〉 = −ã†N−1,N ãj |0̃〉 = 0 (7.36b)

ãj |1N−1, 1N 〉 = −ã†N−1ã
†
N ãj |0̃〉 = 0 (7.36c)

for each j = 1, 2, . . . , 2(N − 1).
They are all ground states of the Hamiltonian; the system has four degenerate

ground states. The subspace in which they live is made by a bidimensional even

parity and a bidimensional odd parity subspace. This configuration is equivalent to

a situation counting two second neighbors separated Kitaev chain each one show-

ing one unpaired Majorana modes per edge. Considering r neighbors Hamiltonian

we can say that having µ = ∆1 = w1 = · · · = ∆r−1 = wr−1 = 0 and ∆r = wr

is equivalent to counting r separated and non interacting first neighbors Kitaev

chains. Taking into account other non null wl and ∆l could mean letting these sep-

arated chains interact linking also some unpaired cj we had before and thus such

MZMs will disappear.

We will now look at the case µ = 0, ∆1 = w1 6= 0 and ∆2 = w2 6= 0.

In this regime only one unpaired Majorana fermion per edge is present (see Fig-

ure 7.17). It is important to also look at the system for an algebraic point of view.
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Hamiltonian, in this regime, becomes:

H = 2w1

N−1∑

j=1

c2jc2j+1 + 2w2

N−2∑

j=1

c2jc2j+3

= (−1)N−1(2w1)
N−1∑

j=1

c2j+1c2j

︸ ︷︷ ︸

H(1)

+ 2










w2

N−2∑

j=1

c2jc2j+3

︸ ︷︷ ︸

H(2)










= H(2) +H(2) +H(1)

(7.37)

H(1), the term counting first neighboring interactions between cj , plays the role of

an interacting potential between two split wires. The system becomes equivalent

to one chain of MFs where each MF interacts with its neighbors with alternating

potential 2w1 and 2w2. Otherwise it can be seen as two separated Dirac fermions

chains (2H(2)) interacting one with each other by the term H(1). Eqn. (7.37) is yet

singular and two unpaired MFs are present in this regime. Generalizing such result

and considering r neighbors interacting chains, we can have 1, 2, . . . , r unpaired

MFs per edge and to know in which state they are localized by the following logic:

• For µ = ∆1 = w1 = · · · = ∆r−1 = wr−1 = 0 and ∆r = wr 6= 0 we

have r MFs per edge and they are localized in j = 1, 3, . . . , 2r − 1 for the

left side and in j = 2N, 2N − 2, . . . , 2N − 2r for the right side; there are

2r unpaired MFs in the chain (j = 1, . . . , 2N ). If ∆r = −wr then left and

right side MZM flip.

• Choosing the same regime as in the preceding point but now choosing ∆r−1 =
wr−1 = 0 if ∆r = wr = 0, or in ∆r−1 = −wr−1 6= 0 if ∆r = −wr 6= 0, we

will lose the innermost unpaired Majorana fermions in the chain; there are

2(r − 1) unpaired MFs in the chain occupying the same position as before

and so on.

• For ∆l = ±wl 6= 0 with l = 1, . . . , r and µ = 0 we only have one MFs per

edge in the chain, localized at the edge of the wire; j = 1 and j = 2N if

∆l = wl or j = 2 and j = 2N − 1 if ∆l = −wl (j = 1, . . . , 2N )
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Other topological phases are found, in above configurations, if we change the sign

of somewl, respect to ∆l, in Hamiltonians. These phases show less MZM per edge

than the ones itemized. Engineering such Hamiltonians would mean having rich

topological phases with finite size lattices. We would also like to underline that for

r neighbors chains we can obtain #(MZM per edge) = 1, 2, . . . , r both if r is

even and if r is odd.

7.5 Outlooks and conclusions

The goals obtained range from the characterization of appearing and disappearing

of topological phase, for finite neighbors interaction chains, to the more general

characterization of edge modes for infinitely long ranged Kitaev chains. Both for

time reversal and broken time reversal symmetry has been approached.

At first we addressed the regime of finite neighbors and time reversal symmetry.

In the case of only long ranged hopping, we found an increase of topological phase

as the penetration length of the hopping term goes to infinity, ξ = α−1 →∞. This

trend is not intuitive. A similar result was obtained in [80] where an exponential

decaying hopping term is assumed and it counts all the neighbors in the chain.

We found that the same physics is achieved using an algebraic decaying hopping

term and counting a finite number of neighbors for the interaction. Then we have

reported that, if only long ranged pairing term, with a finite number of neighbors,

is assumed, then the topologically non trivial region is the same as for the standard

Kitaev chain. Although it does not change, we observe, inside such region, an

alternating of positive and negative values for the winding number, W = ±1. This

alternating trend increases with the number of neighbors taken in consideration

for the pairing interaction. At last, assuming broken time reversal symmetry, we

obtained the erasure of MZMs in the case we have an even number of such modes

per edge. On the other hand we showed that, for an odd number (in our case one

MZM per edge), the topological phase is reduced when the parameter ϕ0, which

induces such breaking, goes to π/2. These two trends was already predicted in

[56]. Here we checked that it happens for both cases ϕl = ϕ0 (assumed also in

[56]) and ϕl = lϕ0 that we checked here. To assume such parameter, ϕl = lϕ0,

allows for a more realistic treatment of the model and, it was not sure that now the

condition varphi0 = π/2 brought to the disappear of topological phase.

Then we gave the complete set of Bogoliubov equations for getting the general

solutions of the system energy spectrum in the case of general broken time reversal

symmetry. The simpler case of TR regime is obtained by choosing ϕl = 0 in such

set of equations. We also gave the transformation linking the Majorana and Dirac

quasiparticle operators for the canonical Hamiltonian.
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Finally we showed how to obtain many MZMs per edge, using finite length chains.

Although this is very difficult to improve experimentally, an implementation of

such parametric regime can bring to advantages, since we get many topological

(strong) states with a minimum overlap and using few lattice sites.

For the case of all neighbors interactions we give topological phase diagrams,

recovering preceding and important results but also adding new information about

the presence of massive and massless edge modes as well as not localized modes.

This has been done for both TR and BTR regimes. The TR case was already ad-

dressed in literature but, the characterization by TPD of BTR symmetry is a new

argument for such long range regime. In TR regime we have at maximum one

MZM per edge. But if we address massive modes, MEMs, after looking at the

gaps for the lower energy levels we note that for high penetration length for the

hopping term, β−1 → ∞, such levels are discrete. We have gaps between many

levels in the lower region and then, for high enough energy levels, we find the en-

ergy band (look at Figure 7.8). When TRS is broken such characteristic disappears.

Only one energy gap can be present. We have that the breaking of TR symmetry

brings to an erasure of edge modes.

As last result we recall that for infinite long ranged chain, the description of topo-

logical phase transition, given only in terms of TI W and ν, seems not to be com-

plete according to the mass and gap scaling we performed. Also if these latter does

not change, we have appearing or disappearing of MZMs. A more detailed analysis

of such regime is required to fully characterize phase diagrams showing massless

or massive edge modes.

To better itemize all these results we present the following two tables in which we

resume everything.
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Chapter 8

Single Electron Tunneling Devices

In this last chapter we give at first a general overview of the single electron tun-

neling process in electronic circuits. If the tunneling charge goes toward a very

small component then, the Coulomb blockade regime can be achieved. It happens

that the presence of the charge on a component, with very small sizes, allows the

charging energy of such component (generally named ”island”) to prevent the tun-

neling of another charge carrier. Then we show as it is possible to use one electron

tunneling circuits to harvest current from a gradient of temperature, standing be-

tween two components of the circuit, using quantum dot islands [82, 83]. Then we

will underline the main difference between this latter case and the one in which the

islands are made by metallic dots (usually copper). This represents our investiga-

tion to this field. Indeed quantum dots are generally made using semiconductors

that are difficult to produce. On the other hand copper is easier to find and thus,

it is interesting to investigate how one electron tunneling devices works using this

kind of islands. Such circuits also represent the basis for further characterization

of charge and heat transport including topological wires as components.

8.1 Coulomb Blockade

Single electron tunneling is a phenomenon appearing when, in a circuit, some in-

sulating barrier that block the normal flow of charge carriers. Here after in this

section, we assume a configuration such ”normal metal-insulator-normal metal”.

If the insulating barrier is small enough then electrons tunneling is possible. In

this case we indicate the component ”metal-insulator-metal” as a tunnel junction.

Furthermore if the size of the second normal metal (toward the electron tunnels)

are very small, then also its capacitance C is reduced ( generally to C ∼ 10−15F )

and this allows for high charging energy Ec for such island. It happens that the

118
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presence of an excess electron on the island generates a so high repulsive potential

(that is charging energy Ec ∝ e2/(2C) where C is the island selfcapacitance) that

it blocks the tunneling of the other electrons. Usually the magnitude of such charg-

ing energy is found to be Ec ∼ 10−4eV . You can note that here we deal with the

tunnel junctions as they were effective capacitors. This physical scenario is called

Coulomb blockade and it is formally defined by the three following conditions [84]:

• The bias voltage Vbias, that moves the electron toward the island, must be

small compared to the electron charge divided by the selfcapacitance C of

the island, i.e. Vbias < e/C.

• Ec >> kT that is, thermal fluctuations cannot allow the electron to flow into

the island if this latter is already occupied

• The tunnelling resistance, RT , that can be seen as a characteristic resistance

of the device seen as a (quantum) capacitor in charge, must be great com-

pared to the quantum resistance RQ = h/e2( 26KΩ).

The latter point comes from the requirement that after the tunneling, the electron

spends on the island a time t ∼ RTC greater compared to the time needed for

tunneling: τ ∼ ~/eVbias ∼ hC/e2. That is, the electron is localized on the island.

By this way we know that only an electron per time is on the island because the

other is blocked on the lead (the metallic terminal). Such scenario, induced by the

Coulomb blockade, is addressed as single electron tunneling [84, 85].

By means of tunnel junctions, in the regime of single electron tunneling, we

can build up two principal circuits: a single electron box and a single electron

transistor (SET). In the first case we have an island, that can be a metallic island, as

in the preceding case, or a quantum dot, linked to one metallic lead. In the case of a

SET the island is linked to two lead terminals. In the following we address a circuit

where a biased SET is capacitively coupled to a SEB where no bias is applied (see

Figure 8.2).

8.2 Transition Rates

Here we give the transition rates for an electron tunneling phenomenon in a device

such as a SEB or a SET. We address the case of an electron tunneling from the lead

of some circuit into an island. We can think about an electron the tunneling from

the upper left lead toward the upper island in Figure 8.2. The calculations will be

performed in the regime where charging energy effects are relevant. At first we

write down the whole Hamiltonian for the process, involving the tunneling event

from the left lead to the (metallic) island. Then, considering the tunneling part of
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metallic island, we can perform a unitary transformation:

H → H ′ = U †HU − i~U †∂U
∂t

(8.2)

where U is unitary and it is given by:

U =
∏

k,σ

exp
(

i
e

~
V tc†k,σck,σ

)

(8.3)

Thus recalling H ′ as H , we get:

H =
∑

k,σ

(ǫk + V ) c†k,σck,σ +
∑

q,σ

ǫqc
†
q,σcq,σ +

∑

σ,k,q

Tq,kc
†
q,σck,σ + h.c.+Hch(n)

(8.4)

The tunneling term would acquire a phase factor that we dropped because it does

not imply any important physics under our assumptions. In the more general case,

where some environment Hamiltonian is added to our system, we must be care

about such phase as stressed in [86]. Now, using Fermi golden rule, we directly get

the rate for such tunneling electron:

Γi,f =
2π

~
|〈f |

∑

σ,k,q

Tq,kc
†
q,σck,σ|i〉|2δ [Ef − Ei] (8.5)

where i and f are the unperturbed initial and final states of the system, respectively

before and after the tunneling event:

|i〉 = |nik1 , . . . , niq1 , . . . 〉 (8.6)

|f〉 = |nfk1 , . . . , n
f
q1 , . . . 〉 (8.7)

The energies, in the Dirac delta, Ei and Ef , are respectively the whole initial and

the final energies of the system. With such delta we require energy conservation in

the tunneling process. They can be written as:

Ei =
∑

σ,k

(ǫk + V ) +
∑

σ,q

ǫq +Hch(0) (8.8)

and

Ef = Ei − (ǫ̃k + V ) + ǫ̃q −Hch(0) +Hch(1) (8.9)

where, in Ef , we deleted the contribution of an electron in the left lead and added

the one of an electron in the island respect to Ei.
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Since we are interested in the whole transition rate from the left lead to the island

we have:

ΓL,I =
∑

i,f

P (|i〉)Γi,f (8.10)

To calculate the above expression, at first we address the energy conservation re-

quired in the Dirac delta. According to our Hamiltonian we have:

Ei − Ei = f = ǫk̃ − ǫq̃ + eV − (Hch(n+ 1)−Hch(n))
︸ ︷︷ ︸

δHch

(8.11)

Then, including also the temperature, as a parameter, in the characterization of

the probability distribution for the initial states (remember that it is linked to the

Fermi-Dirac distribution for the conducting electrons), we rewrite p(|i〉) as Pβ(|i〉).
Therefore the transition rate has the form:

ΓL,I =
∑

i,f

Pβ(|i〉)
2π

~
|〈f |

∑

σ,k,q

Tq,kc
†
k,σck,σ|i〉|2δ

[

ǫk̃ − ǫq̃ + eV − δHch

]

(8.12)

It is now important to underline that, given the form of the tunneling Hamiltonian,

the only states |i〉 and |f〉 that give non null contribution to ΓL,I , when they close

in braket the tunneling term, have the form:
{

|i〉 = | . . . , 1k,σ, . . . 〉| . . . , 0q,σ, . . . 〉
|f〉 = | . . . , 0k,σ, . . . 〉| . . . , 1q,σ, . . . 〉

(8.13)

An electron, in the left lead, is destroyed leaving a hole with its same quantum

numbers and another electron is then created in the island. Here, in the island, at

the same time we destroy an hole with the same quantum numbers of the created

electron.

With this in mind, the above expression for the rate assumes the form:

2π

~

∑

σ,k,q

Pβ(|k〉)(1− Pβ(q))|Tq,k|2δ [ǫk − ǫq + eV − δHch] (8.14)

where now the probability Pβ coincides with the Fermi-Dirac distribution. The

passage to the last expression can be easily checked assuming two states bands for

both the left lead and the island.

Now we perform the passage from the discrete case to the continuum:

ΓL,I ≃ |T |2
2π

~
2

∫

dǫk

∫

dǫq̺(ǫk)̺(ǫq)Pβ(|k〉)(1− Pβ(q))

δ [ǫk − ǫq + eV − δHch] (8.15)
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where we have assumed that |Tq,k| ∼ |T | ∀ k, q. Furthermore the product between

the two densities of electron states ̺ is almost constant at low temperature and

this is our case. Since we assume very low temperatures then transitions happen

between electrons that have almost the Fermi energy, thus we get:

ΓL,I ≃ |T |2
2π

~
2̺(ǫFL )̺(ǫ

F
I )

∫

dǫk

∫

dǫqPβ(|k〉)(1− Pβ(q))

δ [ǫk − ǫq + eV − δHch] (8.16)

The constant before the integral can be riexpressed as 1/(e2RT ) where RT is the

tunneling resistance:

RT =
~

4πe2̺(ǫFL )̺(ǫ
F
I )|T |2

(8.17)

Thus, eliminating the Dirac delta in the integral, we get the general form for ΓL,I :

ΓL,I =
1

e2RT

∫

dǫ fTL(ǫ) (1− fTI (ǫ−∆E)) (8.18)

In the simple case where lead and island have the same temperature T = TL = TI
we get:

ΓL,I =
1

e2RT

∆E

exp {−∆E/kT} − 1
(8.19)

8.3 Heath-to-Current Harvesting

Here we consider the three-terminal circuit in Figure 8.2, that has been addressed

in [82], where the two island are quantum dots. By opportunely choosing the tem-

peratures of the leads, as well as the other state parameters, we can allow for heat-

to-currert harvesting. Given a temperature gradient, between the system (SET) and

the gate (SEB), we can produce some charge current into the system at zero bias

voltage (Seebeck effect). We will proceed, to describe such effect, by writing the

equations for the circuit, treating the tunneling junctions 1, 2 and g as effective

capacitors. Then we will obtain the electrostatic energies and thus the charging

energies of the two quantum dot islands. These latter will be taken into account for

the form of the transition rates of such system. We will solve the master equation,

for the occupation probabilities of the islands, finding the stationary solutions and

finally, we will find a relation between the rate of heat exchanged, between system

and gate, and the charge current into the system. It is such relation that shows how

we can have current at zero bias voltage due to heat flow between the quantum

dots.
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Cg

Vg

C
C2C1

V1 V2

Figure 8.2: The whole circuit is made by two quantum dots (green disks), the

system dot above and the gate dot down The gate dot is connected by a tunnel

junction, of capacitance Cg to a gate voltage Vg. The system dot is connected in

the same way to two terminals at different voltage, V1 and V2. The two subsystem

are capacitively coupled together by a normal capacitor of capacitance C.

From the second Kirchoff law, the set of equations for the circuit is:







Qs = C1 (φs − V1)
︸ ︷︷ ︸

−Q1

+C2 (φs − V2)
︸ ︷︷ ︸

+Q2

+C (φs − φg)
︸ ︷︷ ︸

Q

Qg = Cg (φg − Vg)
︸ ︷︷ ︸

−Qg

+C (φg − φs)
︸ ︷︷ ︸

+Q

(8.20)

where φs and φg are the potentials on the system and gate islands and Qs and Qg

are the excesses of charge on them. They can be expressed as Qs = qns and

Qg = qng (q is the charge of the charge carriers). V1, V2 and Vg are respectively

the potentials at the left, right and gate terminals and C1, C2 and Cg are the ca-

pacitances of the respective tunnel junctions. At last, C is the capacitance of the

capacitor which couples system and gate. Solving the set of eqns. 8.20 respect to

φs and φg we get:







φs(Qs, Qg) =

(

1

C1+C2+C− C2

C+Cg

)
[

Qs + C1V1 + C2V2 +
(

C
C+Cg

)

(Qg + CgVg)
]

φg(Qs, Qg) =
(C+C1+C2)Qg+C(Qs+C1V1+C2V2)+CgVg(C+C1+C2)

CCg+C1(C+Cg)+C2(C+Cg)

(8.21)

Now defining CΣs = C1 +C2 +C, CΣg = C +Cg and C̃ =
(
CΣsCΣg − C2

)
/C
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the above set can be rewritten as:






φs(Qs, Qg) =
(

1
CC̃

)

(CΣs(Qs + C1V1 + C2V2) + C(Qg + CgVg))

φg(Qs, Qg) =
(

1
CC̃

) (
C(Qs + C1V1 + C2V2) + CΣg(Qg + CgVg)

) (8.22)

That gives a concise form for the potential of the two quantum dots, given the

excess charges Qs and Qg on the islands.

Then we have that the electrostatic energy for the quantum dot system is given

by:

U(Qs, Qg) =

∫ Qs

0
dQ′

s φs(Q
′
s, Qg) +

∫ Qg

0
dQ′

g φg(Qs, Q
′
g) (8.23)

while the charging energy, Us−g,Qg−s , that we are interested in, is the change of

electrostatic energy, in the system (s) or in the gate (g), when an electron tunnels

into this latter and when there is an excess of charge, Qg or Qs, in the other dot.

Thus, scaling Qs and Qg over q, we have:







U(0, 0) = 0

U(0, 1) =
(
CΣg (q + 2C1V1 + 2C2V2) + 2CCgVg

) (

q/(2CC̃)
)

U(0, 1) = (2C(C1V1 + C2V2) + CΣs(q + 2CgVq))
(

q/(2CC̃)
)

U(1, 1) =
(

CΣg(q + 2C1V1 + 2C2V2) + 2C(2q + C1V1 + C2V2 + CgVg)

= +CΣs(q + 2CgVg)
)(

q/(2CC̃)
)

(8.24)

for the electrostatic energies, the following set for the charging energies:







Us,0 = U(1, 0)− U(0, 0) = U(1, 0)

Us,1 = U(1, 1)− U(0, 1) = Us,0 + 2q/C̃

Ug,0 = U(0, 1)− U(0, 0) = U(0, 1)

Ug,1 = U(1, 1)− U(1, 0) = Ug,0 + 2q/C̃

(8.25)

The amount Ec = Uα,1 − Uα,0 = 2q/C̃ with α = s and g, is fundamental for

the working of the engine. It represents the exchanged energy between system and

gate when a charge carrier tunnels into one of the two dots and it will leave it only

after another charge carrier has occupied the other dot.

Furthermore such charging energies appear in the transition rates. They can be

calculated via Fermi golden rule as done in section 8.2 and they reads:

Γ−
l,n = Γl,nf [(Eα,n − qVl)/(kTl)] (8.26a)
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Γ+
l,n = Γl,n − Γ−

l,n (8.26b)

Here we used the notation Γ±
α,n to indicate that in the dot α there is an electron

tunneling outside (+) or inside (-) while, in the other dot there is one (n=1) or zero

(n=0) electrons. Furthermore, in eqns. (8.26), Γl,n is a function depending on the

properties of the tunneling junction l of a terminal and on the occupation number

of the other dot. Then El,n = ǫα + Uα,n, with ǫα, is the bare energy for the dot α
and, f indicates the Fermi-Dirac distribution function:

f(x) =
1

1 + ex

At last we have that the rate for the system tunneling events, Γ±
s,n, includes the ones

for the left and right terminals:

Γ±
s,n = Γ±

1,n + Γ±
2,n (8.27)

Now we get the stationary solutions, for the occupation probabilities of the allowed

states, via master equation. It is important to underline that now we look at the

system as it were classic. The master equation we are writing is classic, although

we use the transition rates that have a quantum nature. For writing such master

equation, we define:

ρ =
(

p(0, 0), p(1, 0), p(0, 1), p(1, 1)
)T

(8.28)

thus the master equation reads:

dtρ =Mρ (8.29)

where

M =










−
(

Γ−
s,0 + Γ−

g,0

)

Γ+
s,0 Γ+

g,0 0

Γ−
s,0 −(Γ+

s,0 + Γ−
g,1) 0 Γ+

g,1

Γ−
g,0 0 −

(

Γ−
s,1 + Γ+

g,0

)

Γ+
s,1

0 Γ−
g,1 Γ−

s,1 −
(

Γ+
s,1 − Γ+

g,1

)










(8.30)
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The eqn. (8.29) allows for steady state solutions:






p̄(0, 0) = γ−3
∑

α=s,g

∑

i=±1

∑

n=0,1

Γ+
α,0Γ

i
α,1Γ

+
l̄,n
δ|1−i|,2n

p̄(0, 1) = γ−3
∑

i=±1

∑

n=0,1

(

Γ−
s,0Γ

i
s,1Γ

+
g,n + Γi

g,0Γ
+
g,1Γ

−
s,nδ|1−i|,2n

)

p̄(1, 0) = γ−3
∑

i=±1

∑

n=0,1

(

Γi
s,0Γ

+
s,1Γ

−
g,n + Γ−

g,0Γ
i
g,1Γ

+
s,nδ|1−i|,2n

)

p̄(1, 1) = γ−3
∑

α=s,g

∑

i=±1

∑

n=0,1

Γi
α,0Γ

−
α,1Γ

−
ᾱ,nδ|1−i|,2n

(8.31)

where γ3 =
∑

α,i,n = Γα,n

(

Γī
α,n̄Γ

ī
ᾱ,n + Γi

ᾱ,n

∑

j Γ
j
ᾱ,nδ|1−j|,2n

)

(the sign ”bar”,

on the top of the indices in this latter writing, denotes the opposite value of the sub-

scripts) and the normalization condition
∑

ns,ng
p̄(ng, ns) = 1 stands. Although

eqn. 8.31 give the steady state solution we also give some information about the

characteristic time needed to get such final state. An analytical form of this time

scale is not reported here but a general discussion can be carried out. Since the mas-

ter equation in (8.29) represents a system of four first order differential equations,

its solution can be written as the following linear combination of four eigenvectors

ofM: {p1, p2, p3, p4}:
p =

∑

i

αip1e
rit (8.32)

. αi are free parameters to be chosen according to some condition and ri indicates

the eigenvalue relative to the eigenvector pi , then t is the time. For such master

equation we have one null eigenvalue allowing for a final steady state represented

by the relative eigenvector. This latter is given by the quadruple in (8.31). Then

three different non null eigenvalues remain. Such eigenvalues are negative and give

an exponential dumping for the relative eigenvector as e−|ri|t. The characteristic

times of these dumping are τi = 1/|ri| and they can be very different one respect

to each other. The steady state form for the charge current and heat currents in

the system and in the gate are written using the steady state probabilities in eqns.

(8.31) as given in [82].

For the charge current we have:

I = q
∑

n

(

Γ+
l,np̄(1, n)− Γ−

l,np̄(0, n)
)

(8.33)

On the other hand, for the heat currents into the first and second terminal of the

SET, we have:

Jl =
∑

n

(Esn − qVl)
(

Γ+
l,np̄(1, n)− Γ−

l,np̄(0, n)
)

with l = 1, 2 (8.34)
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and finally for the heat current into the gate terminal we have:

Jg =
∑

n

(Eg,n − qVg)
(
Γ+
g,np̄(n, 1)− Γ−0

g,np̄(n, 0)
)

(8.35)

Then we can define the energy currents as Wl = Jl + VlIl.
It is important to note that charge and energy currents are conserved:

∑

l

Wl =
∑

l

Il = 0 (8.36)

while for the heat currents the Joul law stands:

∑

l

Jl =
∑

l

(Vi − Vl)Il (8.37)

where Vi is a reference voltage of one of the circuit’s terminals.

Now we want to get an important result which links together the gate heat

current Jg and the charge current I . At first we need to note that the heat current Jg,

through the steady state condition, can be expressed (for calculations see appendix

B.1) as:

Jg = Ecγ
−3
(

Γ−
g,0Γ

−
s,1Γ

+
s,0Γ

+
g,1 − Γ−

s,0Γ
+
g,1Γ

+
s,1Γ

+
g,0

)

(8.38)

In eqn. (8.38) the two contributions included in the braket are proportional to the

probability that the system performs two different cycles over the four states of

the system. Furthermore Ec takes now the role of the quanta of energy transferred

during these cycles. The first cycle is:

(0, 0)
Γ−
g,0−−−−→ (0, 1)

Γ−
s,1−−−−→ (1, 1)

Γ+
g,1−−−−→ (1, 0)

Γ−
s,0−−−−→ (0, 0) (8.39)

Now this cycle the gate gives an amount of heat Ec to the system. Otherwise the

second cycle

(0, 0)
Γ−
s,0−−−−→ (1, 0)

Γ−
g,1−−−−→ (1, 1)

Γ+
s,1−−−−→ (0, 1)

Γ+
g,0−−−−→ (0, 0) (8.40)

is performed. Now the gate takes an amount of heat Ec from the system.

However from the expression (8.38) we can get the wanted link with the current

I (the calculations are reported in the appendix B.4):

I = q
Γ1,1Γ2,0 − Γ1,0Γ2,1

(Γ1,0 + Γ2,0) + (Γ1,1 + Γ2,1)

Jg
Ec

(8.41)

The charge current is proportional to the heat current through the gate. When bias

voltage is zero we can get some current I , given a certain temperature difference
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between gate and system as shown in Figure 8.3. It is important to note that it is

possible only if we have some asymmetry in the circuit in terms of parameters Γ
which count, for instance, the tunneling resistances of the tunnel junctions. In this

scenario also the heat currents in eqn. (B.4) are conserved. According to different

temperature gradients we can have positive or negative Jg. It means that heat flows

from the gate toward the SET or viceversa and thus also the sign of I into the

SET changes. We can define the efficiency of such heat engine ”heat-to-current”.
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Figure 8.3: Charge and heat currents for different values of temperatures difference

at zero bias voltage across the system and as function of various bias voltage at null

temperature difference. We can see that the temperature gradient allows for non

null charge current into the system also at zero bias as showed in Figure 8.3(a). At

equilibrium no current (charge or heat) is present into the circuit.

When we apply a voltage ∆V it acts as a load for the engine (hereafter we will
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ηCη
40 Jg/ECΓ
40 I/qΓ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.5

0.0

0.5

q(V2-V1)/ECηC
Figure 8.4: Given the temperature difference (Tg − Ts)Tg = 0.25 we vary the

scaled bias voltage and at the value ∆V = EcηC/q the equilibrium is reached (no

current is present in the circuit) while the efficiency of the heat-to-current engine

equals the Carnot engine.

assume Tg ≥ Ts). For instance when the circuit uses the heat from a hot reservoir

and transforms it into useful work at power P = I∆V . The efficiency of such

conversion is:

η =
I∆V

Jg
=
q∆V

Ec
(8.42)

Such efficiency cannot grow at infinity since the second principle of the thermo-

dynamics that limits it to the Carnot efficiency ηC = 1 − Tc/Th. When η reaches

such value then the contribution given in eqn. (8.38) about the two possible cycles

are equal. There is the same probability that the electron in the system island tun-

nels toward right or left implying a whole null charge current into the SET. In such

scenario the current are zero, as well as the entropy production and the power (the

engine does not produces work) and η = ηC . The voltage for such conditions is

∆V = EcηC/q.

8.3.1 Impossibility of Seebeck Effect Using Metallic Dots

Here we address the same circuit of the preceding section but we assume to use

metallic dots instead of quantum dots. Such a small change implies that we cannot

get any I into the SET for non null heat current Jg flowing between gate and

system. We give an analytical demonstration of such impossibility as well as a plot

of the current I vs. Jg that shows only fluctuation of I at magnitude which is not

appreciable for all Jg.

Assuming the same temperature Ts inside the system as well as in the gate, Tg,

the transition rates are given by eqn. (8.19). Also for this case we want to find a



8.3. HEATH-TO-CURRENT HARVESTING 131

relation between the charge current I and the heat current Jg.It is useful to reduce

the expression for the transition rate for a metallic dot, to the same form of the one

of a quantum dot.

As first step we give the charging Hamiltonian for the system that, as said in

[88], reads:

Hch = E(s)
c (ns − nG)2 + E(g)

c (Ng −NG)
(G) + j(ns − nG)(Ng −NG) (8.43)

Parameters nG and NG respectively characterize the system (s) and the gate (g)

islands, j gives the coupling between such two components. Then ns and Ng are

the number of excesses of charge (electrons) for the system and the gate dots.

When an electron tunnels into or out a metallic dot it experiences an energy cost:

∆Eα,n = Hch(n
′
s, N

′
g)−Hch(ns, Ng)± V/2 (8.44)

The last term, ±V/2, depends on the fact that the tunneling has been done against

or toward the bias. Such bias across the SET is V and it is 0 for the gate component.

The subscript n again expresses the fact that, during the tunneling event in the

island α, the other island hosts n = ns or n = Ng electrons.

Finally, as for the preceding case, where quantum dots have been considered,

we riexpress the expression for the transition rates for the metallic dots, eqn. (8.19),

in the form of eqn. (B.4): Γ±
α,n = Γα,nf

±
α,n. We note that tunneling outside or

inside the dot toward or from the same lead, Γ±
α,n, are processes where the energy

cost for the electron has the same modulus, |∆Eα,n|. Thus the rates are such that:

Γ±
α,n = Γ(±∆Eα,n) (8.45)

where, in this case, we have indicated with ∆Eα,n the energy cost for the tunneling

outside the dot. Thus, considering a generic energy cost ∆Eα,n for the tunneling

(inside or outside tunneling), the equation form (8.19), written in terms of energy

cost for the metallic dot case, can be rewritten as:

Γ(∆Eα,n) = Γ′(∆Eα,n)f(∆Eα,n) (8.46)

where Γ′(∆Eα,n) = Γ(∆Eα,n) + Γ(−∆Eα,n). Such form can be achieved, as

shown in appendix B.3, by defining:

Γ′(∆Eα,n) =

(
1

e2RT

)(
(−∆Eα,n) sinh(∆Eα,n/kT )

1− cosh(∆Eα,n/kT )

)

(8.47)

and

f(∆Eα,n) = e−∆Eα,n/(2kT ) sinh((∆Eα,n/2kT ))

(∆Eα,n/kT )
(8.48)
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Figure 8.5: Irrelevant charge current fluctuations in the regime ng = Ng = 0.5 for

V = 0 and Ts = 0.067 as function of Tg. The metallic nature of the islands does

not allow for heat-to-current harvesting.

Recovering the steps of appendix B.2, in which the functions f as well as Γα,n are

not explicated, we can get the same result linking I an Jg for this case, where now

the coupling constant j is present:

I = q
Γ1,1Γ2,0 − Γ1,0Γ2,1

(Γ1,0 + Γ2,0)(Γ1,1 + Γ2,1)

Jg
2j

(8.49)

The term Γ1,1Γ2,0 − Γ1,0Γ2,1 is exactly zero for V = 0. Such term does not

depends on the gate. There is not charge current in the SET for whatever value of

heat current across gate and system. This is the main difference about the metallic

dot circuit respect to the quantum dot one.
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Conclusions

In this thesis we addressed several topical items of great importance in the develop-

ment of recent quantum physics and in their prospective technological applications.

The first subject is related to designing heat engines. We considered a quantum

Otto cycle with irreversible isochoric and adiabatic processes. We first described

the production of entropy for a closed quantum system, where the irreversibility of

the branch is described in terms of the relative entropy between the state ρτ at the

end of the transformation, and the reference state ρA which one would obtain if the

transformation were reversible (for instance in the case of a quasi-static driving).

In the Otto cycle we considered, the working substance is characterized by some

disorder consisting of an ensemble of misaligned spins interacting with a magnetic

field. Net work, power, efficiency and efficiency at maximum power have been

calculated. We found that such quantities are affected by finite-time processes in

the cycle or by the degree of disorder. We finally propose an experimental optical

implementation of the Otto cycle.

The possibility of getting quantum states which, instead, survive under dissipa-

tive phenomena, such as disorder or other perturbations motivated us to study topo-

logical order. We briefly described the difference between standard quantum order

and topological order. The latter is characterized by topological invariants, useful

for building up topological classes defined by discrete symmetries such as time

reversal or particle-hole symmetries. In particular, we studied the Kitaev model,

generalizing it in the case of many-neighbors interactions. We considered longer

ranges in the hopping and pairing terms, in the presence or in the absence of time

reversal symmetry. Several phase diagrams have been derived, showing the pres-

ence of Majorana zero modes (MZM) as well as massive edge modes (MEM).

These modes were found by analysing the case of infinitely long superconduct-

ing coupling terms, but we showed that it is possible to get MZMs also for finite
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length wires Finally, we derive the entire set of Bogoliubov equations for a generic

case (with more than first neighbors interactions, with and without time reversal

symmetry) providing the solution for the time-reversal case.

The last issue we addressed is related to single electron tunneling devices. In

such systems it is possible to perform ”heat-to-current” harvesting using a quantum

dot circuit as in Figure 8.2, however we found that this is not the case if we sub-

stitute such dots with metallic islands. In contrast to the single energy level dot, in

the presence of a heat flow the energy band in a metallic dot prevents the formation

of a charge current. The final aim we postpone for future investigations is studying

those (thermo)dynamical properties when topological components, like the Kitaev

chains, are inserted in such circuits.
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Appendix A

Quantum Thermodynamics

A.1 Change of Energies in a Reversible Quantum Adia-

batic Transformation

A reversible quantum adiabatic transformation is characterized by the condition:

E
λf
n − Eλf

m = ξ
(

Eλ0
n − Eλ0

m

)

(A.1)

with:

βeff =
βi
ξ

(A.2)

This condition is generally different from the condition standing for the eigenvalues

of H(λt) in a isothermal transformation:

, E
λf
n = ξEλ0

n (A.3)

where ξ is the ratio of energy levels and 0 < ξ < 1 holds for expansions and ξ > 1
for compressions. Let us assume to have chosen the offset of the energy at t = 0
such that the lowest energy level has a non null value, Eλ0

1 6= 0. Let us define χ

the raport of E
λf
1 on Eλ0

1 :

χ =
E

λf
1

Eλ0
1

(A.4)

In the contest of a reversible quantum adiabatic transformation, by eqn. (A.4), we

can get:

E
λf
n − Eλf

1 = E
λf
n − χEλ0

1

= ξEλ0
n + (χ− ξ)Eλ0

1

(A.5)
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The above result will be very useful later. Another important result is got by con-

sidering the partition functions of the initial canonical equilibrium state and the

final state of the reversible quantum adiabatic branch at the effective temperature

Teff . We write the initial partition function as:

Zi =
∑

n

e−βiE
λ0
n

= e−βiE
λ0
1

∑

n

exp{Eλ0
n − Eλ0

1 }
(A.6)

On the other hand, about the final state we have:

Zf =
∑

n

e−βeffE
λf
n

= e−βeffE
λf
1

∑

n

exp{−βeff (Eλf
n − Eλf

1 )}

= e−βeffE
λf
1

∑

n

exp{−βi(Eλi
n − Eλi

1 )}

(A.7)

Where, in the last passage above, we have used eqns. (A.1) and (A.2). Thus we

focus on the raport:

Zf

Zi
= exp

{

−βeffEλf
1 + βiE

λ0
1

}

= exp

{

−β1
(
χ

ξ

)

Eλ0
1 + βiE

λ0
1

}

= exp

{

βiE
λ0
1

(

1− χ

ξ

)}

(A.8)

where we have used eqn. (A.2) togheter with eqn. (A.5).

A.2 Identity of first order momentum between average

Ŵt and the Average Work Via pdf

Here we show that the work obtained by averaging on the work pdf is equal to the

difference of average energies ∆U = Uτ − Ui. At first we develop 〈w〉 according

to the work pdf definition:

〈w〉 =
∫

dw
∑

n,m

wP (0)
n P

(τ)
m|nδ

[

w − (Eλτ
n − Eλ0

n )
]

=
∑

n,m

(Eλτ
n − Eλ0

n )P (0)
n P

(τ)
m|n

(A.9)
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now we approach the variable ∆U :

∆U = Uτ − Ui
= Tr (ρτH(λτ ))− Tr (ρiH(λ0))

=
∑

n

(

Eλτ
n P (λτ )

n − Eλ0
n P (λ0)

n

)

=
∑

m

E(λτ )
m

(
∑

n

P
(τ)
m|nP

(0)
n

)

−
∑

n

Eλ0
n P 0

n

=
∑

m

E(λτ )
m

(
∑

n

P
(τ)
m|nP

(0)
n

)

−
∑

n

Eλ0
n P 0

n

∑

m

P
(τ)
m|n

=
∑

n,m

P (0)
n P

(τ)
m|n

(

Eλτ
m − Eλ0

n

)

(A.10)

That is just the expression eqn. (A.9) for 〈w〉

A.3 Inner Friction Work and Quantum Relative Entropy

Here we approach separately both terms in eqn. (3.56) and show that they coincide.

The left side of that equation can be developed as:

〈wfric〉 = 〈w〉 − 〈wi→A〉
= Tr(ρfHf )− UA
=
∑

m

ǫ(f)m

[〈

ǫ(f)m

∣
∣
∣ρτ

∣
∣
∣ǫ(f)m

〉

− P (A)
m

] (A.11)

where P
(A)
m represents the population of the m-th level in the state ρA, gained at

the and of the reversible adiabatic transformation. On the other hand the relative

entropy can be expressed as:

D(ρτ ||ρA) = Tr (ρτ ln (ρτ ))− Tr (ρτ ln ρA)
=
∑

m

P (i)
m lnP (i)

m −
〈

ǫ(f)m

∣
∣
∣ρτ

∣
∣
∣ǫ(f)m

〉

lnP (A)
m

=
∑

m

lnP (A)
m

[

P (i)
m −

〈

ǫ(f)m

∣
∣
∣ρτ

∣
∣
∣ǫ(f)m

〉]

=
∑

m

βAǫ
(f)
m

[〈

ǫ(f)m

∣
∣
∣ρτ

∣
∣
∣ǫ(f)m

〉

− P (A)
m

]

(A.12)

For the above passages remember that P
(i)
m = P

(A)
m . The latter result is just the

first one, eqn. (A.11), time a factor 1/βA as written in eqn. (3.56).
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A.4 Entropy Production and Quantum Relative Entropy

Here we show that the average entropy 〈s〉, expressed in eqn. (3.65a), can be given

in terms of average energy functionals multiplied by appropriate inverse temper-

atures, as in eqn. (3.65b), and then we will show the equivalence between the

entropy production 〈Σ〉 and the quantum relative entropy D(ρτ ||ρA). Let us begin

by explicating the form of 〈s〉:

〈s〉 =
∑

s

∑

n,m

P (0)
n P

(τ)
m|nδ

[

s−
(

βAE
λτ
m − βiEλ0

n

)]

ss

= βA
∑

m

P (0)
n P

(τ)
m|n

︸ ︷︷ ︸

=P
(τ)
m

−βi
∑

Eλ0
n P (0)

n

∑

m

P
(τ)
m|n

︸ ︷︷ ︸

=1

= βA
∑

n

[(

ξEλ0
n + (χ− ξ)Eλ0

1

)

P (τ)
n − ξβAE(n)

n P (0)
n

]

= βA
∑

n

[

ξE(0)
n

(

P (τ)
n − P (0)

n

)]

+ βA(χ− ξ)E(0)
1

∑

n

P (τ)
n

︸ ︷︷ ︸

=1

(A.13)

Where, for going to the second to the third step, we used eqns. (A.2) and (A.5).

The same result is got by considering:

βATr (ρτH(λτ ))− βiTr (ρiH(λ0))

= βA
∑

n

[

P (τ)
n

(

ξEλ0
n + (χ− ξ)Eλ0

1

)

− ξP (0)
n Eλ0

n

]

= βA

[
∑

n

ξEλ0
n

(

P (τ)
n − P (0)

n

)
]

+ βA(χ− ξ)Eλ0
n

∑

n

P (τ)
n

︸ ︷︷ ︸

=1

(A.14)

that is equal to the preceding thus we got the preceding result.

Now we develop the entropies difference:

βAFA − βiFi = βA

(

− 1

βA

)

ln(ZA)− βA
(

− 1

βi

)

ln(Zi)

= ln

(
Zi

ZA

)

= βiE
(0)
1

(
χ

ξ
− 1

)

= βAE
(0)
1 (χ− ξ)

(A.15)
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Thus:

〈Σ〉 = 〈s〉 − βAFA + βiFi

= βA
∑

n

ξE(0)
n

(

P (τ)
n − P (0)

n

)
(A.16)

At last we can show that the form of D(ρτ ||ρA) can be brought into the one of the

preceding eqn. (A.16):

D(ρτ ||ρA) = βA
∑

n

E(τ)
n

(

P (tau)
n − P ()

n

)

= βA
∑

n

(

ξE(0)
n + (χ− ξ)E(0)

1

)(

P (τ)
n − P (0)

n

)

= 〈Σ〉+ βA(χ− ξ)E(0)
1








∑

n

P (τ)
n

︸ ︷︷ ︸

=1

−
∑

n

P (0)
n

︸ ︷︷ ︸

=1








= 〈Σ〉

(A.17)

A.5 Cumulants Series for Limit Entropy

Here we show haw the expression βAFA − βiFi can be expressed in series of

cumulants. At first let

g(x) = ln
(〈
e−xs

〉)
(A.18)

be the generating function for the cumulants with:

Cn = (−1)n d
ng

dxn

∣
∣
∣
∣
∣
x=0

(A.19)

It follow that:

g(x) =
∑

n=1

(−1)n
n!

Cnx
n (A.20)

By eqn. (A.20) and taking s = 1 we get:

g(1) = ln
(〈
e−s
〉)

=
∑

n=1

(−1)n
n!

Cn (A.21)

Which concludes our demonstration.
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Single Electron Devices

B.1 Dependence of Jg from the cycles of the engine

Here we show the expression (8.38).

We start considering that since we are in a steady state regime, dtρ = 0, the fol-

lowing relation about the currents holds:

Γ+
g,0p̄(0, 1)− Γg,0p̄(0, 0)
︸ ︷︷ ︸

J 0,0
1,0

= −
(

Γ+
g,1p̄(1, 1)− Γ−

g,1p̄(1, 0)
)

︸ ︷︷ ︸

J 1,1
1,0

(B.1)

We remember that J n′
s,ns

n′
g ,ng

is the probability current for the transition (ns, ng) →
(n′s, n

′
g). Then inserting eqn. (B.1) into the expression for Jg (eqn. (8.35)) we get:

Jg =
∑

n

(Eg,n − qVg)
(
Γ+
g,np̄(n, 1)− Γ−0

g,np̄(n, 0)
)

= −(Eg,0 − qVg)J 0,0
1,0 − (Eg,1 − qVg)J 1,1

1,0

= J 0,0
1,0 (Eg,1 − Eg,0)

= EcJ 0,0
1,0

(B.2)

Then by developing J 0,0
1,0 in the above expression according to eqns. (8.31) we

finally get eqn. (8.38).

B.2 Dependence of I form Jg

Here we show the expression eqn. (8.41). For this aim it is useful to define:

f−α,0 = f [(Eα,n − qVα)/(kTα)] (B.3a)
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f+α,0 = 1− f−α,0 (B.3b)

So that the expression for the rates can be written as:

Γ±
α,n = Γα,nf

±
α,n (B.4)

From eqn. (8.38), using eqns. (8.31), we can get:

Jg =
Ec

γ3

(

f−g,0f
−
s,1f

+
s,0f

+
g,1Γg,0Γs,1Γs,0Γg,1

− f−s,0f−g,1f+s,1f+g,0Γg,0Γs,1Γs,0Γg,1

)

=
Ec

γ3
Γg,0Γs,1Γs,0Γg,1

(

f−g,0f
−
s,1f

+
s,0f

+
g,1 − f−s,0f−g,1f+s,1f+g,0

)

(B.5)

On the other hand, about the charge current, we have:

I = q



Γ2,0Γs,1 − Γ2,1Γs,0
︸ ︷︷ ︸

∗



 (Γg,0Γg,1)
(

f−g,0f
−
s,1f

+
s,0f

+
g,1 − f−s,0f−g,1f+s,1f+g,0

)

(B.6)

The above term ∗ can be developed as:

Γ2,0Γs,1 − Γ2,1Γs,0 = Γ2,0Γ1,1 + Γ2,0Γ2,1 − Γ2,1Γ1,0 − Γ2,1Γ2,0

= Γ2,0Γ1,1 − Γ2,1Γ1,0
(B.7)

thus:
I

Jg
=

q

Ec

(
Γ2,0Γ1,1 − Γ2,1Γ1,0

Γs,0Γs,1

)

(B.8)

that immediately proves eqn. (8.37).

B.3 Rewriting metallic dot transition rates

The function Γ′(∆Eα,n) is directly obtained by its definition:

Γ′(∆Eα,n) = Γ′(∆Eα,n) + Γ(∆Eα,n) + Γ(−∆Eα,n)

=

(
1

e2RT

)(
∆Eα,n

exp{∆Eα,n/(kT )} − 1
+

−∆Eα,n

exp{−∆Eα,n/(kT )} − 1

)

=

(
1

e2RT

)(−∆Eα,n sinh(∆Eα,n/(kT ))

1− cosh(∆Eα,n/(kT )))

)

(B.9)
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Now we address the function f(∆Eα,n) that is not the Fermi-Dirac distribution,

although we have used the same symbol f to address both of them. Such function is

obtained putting the above result, eqn. (8.47), into the expression for the transition

rate:
(

∆Eα,n

exp{∆Eα,n/(kT )} − 1

)

=

(−∆Eα,n sinh(∆Eα,n/(kT ))

1− cosh(∆Eα,n/(kT )))

)

f(∆Eα,n)

1

2

− exp(−∆Eα,n/(kT )) + 1

cosh(∆Eα,n/(kT ))− 1
=

sinh(∆Eα,n/(kT ))

1− cosh(∆Eα,n/(kT ))

1

2

(
e∆Eα,n/(2kT ) − e−∆Eα,n/(2kT )

)

e−∆Eα,n/(2kT )
= sinh(∆Eα,n/(kT ))f(∆Eα,n)

and from the last passage we get:

f(∆Eα,n) = e−∆Eα,n/(2kT )

(
sinh(∆Eα,n/(2kT ))

sinh(∆Eα,n/(kT ))

)

(B.10)

that is what we wanted to show.

B.4 zero I at zero bias voltage

Here we give the explicit form of the coefficient Γs,1 and Γs,0 respect to the energy

cost of the processes that they describe. By this way we directly prove that the

amount Γ1,1Γ2,0 − Γ1,0Γ2,1 is exactly zero for V = 0.

The addressed transition rates are given by:

Γ1,1 =

(

∆E
(+)
1,1

exp{∆E(+)
1,1 /(kT )} − 1

+
−∆E(+)

1,1

exp{−∆E(+)
1,1 /(kT )} − 1

)

(B.11a)

Γ2,0 =

(

∆E
(+)
2,0

exp{∆E(+)
2,0 /(kT )} − 1

+
−∆E(+)

2,0

exp{−∆E(+)
2,0 /(kT )} − 1

)

(B.11b)

Γ1,0 =

(

∆E
(+)
1,0

exp{∆E(+)
1,0 /(kT )} − 1

+
−∆E(+)

1,0

exp{−∆E(+)
1,0 /(kT )} − 1

)

(B.11c)

Γ2,1 =

(

∆E
(+)
2,1

exp{∆E(+)
2,1 /(kT )} − 1

+
−∆E(+)

2,1

exp{−∆E(+)
2,1 /(kT )} − 1

)

(B.11d)

where the energy costs are given by:

∆E
(+)
1,1 = 2j(Ng − 1) + E(s)

c (2ng − 1) +
qV

2
(B.12a)
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∆E
(+)
2,1 = 2j(Ng − 1) + E(s)

c (2ng − 1)− qV

2
(B.12b)

∆E
(+)
2,0 = 2jNg + E(s)

c (2ng − 1)− qV

2
(B.12c)

∆E
(+)
1,0 = 2jNg + E(s)

c (2ng − 1) +
qV

2
(B.12d)

It can be seen that for V = 0 then ∆E
(+)
2,0 = ∆E

(+)
1,0 and ∆E

(+)
1,1 = ∆E

(+)
2,1 so that

we also have Γ
(+)
2,0 = Γ

(+)
1,0 and Γ

(+)
1,1 = Γ

(+)
2,1 . From this latter result it follows that

Γ
(+)
1,1 Γ

(+)
2,0 = Γ

(+)
2,1 Γ

(+)
1,0 so that the charge current is identically null for such zero

bias regime.
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1

Abstract

The work presented in this thesis meanly addresses two topics in theoretical
physics which are quantum thermodynamics and topological order. In the
first case, physicists are trying to build up a theory able to describe quite
in general phenomena involving heat and energy exchanges in quantum sys-
tems. The second topic, instead, is related to exotic phenomena and states
of matter like the quantum Hall effect (QHE) or topological insulators and
topological superconductors.

In the first part od the thesis we define the quantum dynamics for closed
and open systems. This is a key ingredient to address the field of quan-
tum thermodynamics. Then, after an introductory part about the quantum
thermodynamic transformations, we move toward the field of nonequilibrium
fluctuation relations. We address the problem of irreversibility in classical
as well as quantum mechanics. Here we present one of our main result. We
characterize the ”thermodynamic” irreversible adiabatic evolution of a quan-
tum system starting such branch in a thermal equilibrium state at inverse
temperature βi. We give the amount of thermodynamic entropy growth for
the process. As direct application of the preceding result we then address
a quantum Otto cycle (QOC) working at finite power. We saw that the
increasing of irreversible character of the evolution affects the main figures
of merit of the cycle.

The second part of the thesis addresses the field of topological order. At
first we introduce the concept of topological orders, classes and invariants.
Then we introduce the well known Kitaev model for 1 D superconductors.
This model predicts Majorana zero mode at the ends of the wire (the 1
D system). MZM are topological states showing great resistance against
disorder, local perturbations and any dissipative element. Then we consider
a generalized Kitaev model where long range interactions are accounted. We
get rich topological phase diagrams showing the presence of several MZM
per edge. We study the appearing/disappearing dynamics of the modes
according to the time reversal symmetry, that is fundamental in the study
of topological phase. The phase diagrams we obtained also show the presence
of massive edge modes. In this last case the topological invariants do not well
describe any transition. At last we focused on a very limit cases where MZM
are obtained at finite length of the wire. Such cases are really interesting
since the great advance we can get from the finiteness of the wire in an
experimental setup.

The last part is about single electron tunneling devices. Here we got a
different ability to work as ”heat-to-current harvester” for a device using
quantum dots respect to an analogue one using metallic dots.

These different arguments find their unity by considering recent scien-
tific works in which heat transport is addressed in single electron transistor
devices where some element of the circuit shows a topological behaviour.



✶

❘✐❛ss✉♥t♦

■❧ ❧❛✈♦r♦ ♣r❡s❡♥t❛t♦ ✐♥ q✉❡st❛ t❡s✐ tr❛tt❛ ♣r✐♥❝✐♣❛❧♠❡♥t❡ ❞✉❡ ❛r❣♦♠❡♥t✐ q✉❛❧✐

❧❡ t❡r♠♦❞✐♥❛♠✐❝❛ q✉❛♥t✐st✐❝❛ ❡ ❧✬♦r❞✐♥❡ t♦♣♦❧♦❣✐❝♦✳ ◆❡❧ ♣r✐♠♦ ❝❛s♦ ✜s✐❝✐

st❛♥♥♦ ♣r♦✈❛♥❞♦ ❛ ❝♦str✉✐r❡ ✉♥❛ t❡♦r✐❛ ❝❛♣❛❝❡ t♦ ❞❡s❝r✐✈❡r❡ ❛❜❜❛st❛♥③❛ ✐♥

❣❡♥❡r❛❧❡ ❣❧✐ s❝❛♠❜✐ ❞✐ ❝❛❧♦r❡ ❡❞ ❡♥❡r❣✐❛ ✐♥ s✐st❡♠✐ q✉❛♥t✐st✐❝✐✳ ■❧ s❡❝♦♥❞♦

❛r❣♦♠❡♥t♦✱ ✐♥✈❡❝❡✱ s✐ r❡❧❛③✐♦♥❛ ❛ ❢❡♥♦♠✐♥✐ ❡ st❛t✐ ❞❡❧❧❛ ♠❡t❡r✐❛ ❡s♦t✐❝✐ ❝♦♠❡

❧✬❡✛❡tt♦ ❢r❛❝t✐♦♥❛❧ q✉❛♥t✉♠ ❤❛❧❧ ♦ ❣❧✐ ✐s♦❧❛♥t✐ ❡ s✉♣❡r❝♦♥❞✉tt♦r✐ t♦♣♦❧♦❣✐❝✐✳

◆❡❧❧❛ ♣r✐♠❛ ♣❛rt❡ ❞❡❧❧❛ t❡s✐ ❞❡✜♥✐❛♠♦ ❧❛ ❞✐♥❛♠✐❝❛ q✉❛♥t✐st✐❝❛ ♣❡r ✉♥

s✐st❡♠❛ ❝❤✐✉s♦ ❡❞ ❛♣❡rt♦✳ ◗✉❡st♦ é ❢♦♥❞❛♠❡♥t❛❧❡ ♣❡r tr❛tt❛r❡ ✐❧ ❝❛♠♣♦ ❞❡❧✲

❧❛ t❡r♠♦❞✐♥❛♠✐❝❛ q✉❛♥t✐st✐❝❛✳ P♦✐✱ ❞♦♣♦ ✉♥❛ ♣❛rt❡ ✐♥tr♦❞✉tt✐✈❛ s✉❧❧❡ tr❛✲

s❢♦r♠❛③✐♦♥✐ t❡r♠♦❞✐♥❛♠✐❝❤❡ q✉❛♥t✐st✐❝❤❡✱ ❝✐ s✐ s♣♦st❛ ✈❡rs♦ ✐❧ ❝❛♠♣♦ ❞❡❧❧❡

r❡❧❛③✐♦♥✐ ❞✐ ✢✉tt✉❛③✐♦♥❡ ♥♦♥ ❛❧❧✬❡q✉✐❧✐❜r✐♦✳ ❱✐❡♥❡ tr❛tt❛t♦ ✐❧ ♣r♦❜❧❡♠❛ ❞❡❧✲

❧✬✐rr❡✈❡rs✐❜✐❧✐tà t❛♥t♦ ♥❡❧❧❛ ♠❡❝❝❛♥✐❝❛ ❝❧❛ss✐❝❛ q✉❛♥t♦ ✐♥ q✉❡❧❧❛ q✉❛♥t✐st✐❝❛✳

◗✉✐ ♣r❡s❡♥t✐❛♠♦ ✉♥♦ ❞❡✐ ♥♦str✐ ♠❛❣❣✐♦r✐ r✐s✉❧t❛t✐✳ ❈❛r❛tt❡r✐③③✐❛♠♦ ✉♥✬❡✈♦❧✉✲

③✐♦♥❡ ❛❞✐❛❜❛t✐❝❛ t❡r♠♦❞✐♥❛♠✐❝❛ ✐rr❡✈❡rs✐❜✐❧❡ ❞✐ ✉♥ s✐st❡♠❛ q✉❛♥t✐st✐❝♦ ✐❧ ❝✉✐

st❛t♦ ✐♥✐③✐❛❧❡ é ✉♥♦ ❞✐ ❡q✉✐❧✐❜r✐♦ ❛❧❧❛ t❡♠♣❡r❛t✉r❛ ✐♥✈❡rs❛ ✐♥✐③✐❛❧❡ βi✳ ❱✐❡♥❡

r✐❝❛✈❛t♦ ❧✬✐♥❝r❡♠❡♥t♦ ❞✐ ❡♥tr♦♣✐❛ t❡r♠♦❞✐♥❛♠✐❝❛ ❞❡❧ ♣r♦❝❡ss♦✳ ❈♦♠❡ ❛♣♣❧✐✲

❝❛③✐♦♥❡ ❞✐r❡tt❛ ❞❡❧ r✐s✉❧t❛t♦ ♣r❡❝❡❞❡♥t❡ s✐ é ❝♦♥s✐❞❡r❛t♦ ✉♥ ❝✐❝❧♦ ❖tt♦ q✉❛♥✲

t✐st✐❝♦ ✭◗❖❈✮✳ ❆❜❜✐❛♠♦ ♥♦t❛t♦ ❝❤❡ ❧✬❛✉♠❡♥t❛r❡ ❞❡❧ ❝❛r❛tt❡r❡ ✐rr❡✈❡rs✐❜✐❧❡

❞❡❧❧✬❡✈♦❧✉③✐♦♥❡ ✐♥✜❝✐❛ ❧❡ ♣r✐♥❝✐♣❛❧✐ ✜❣✉r❡ ❞✐ ♠❡r✐t♦ ❞❡❧ ❝✐❝❧♦✳

▲❛ s❡❝♦♥❞❛ ♣❛rt❡ ❞❡❧❧❛ t✐s✐✱ ✐♥✈❡❝❡✱ ❣✉❛r❞❛ ❛❧ ❝❛♠♣♦ ❞❡❧❧✬♦r❞✐♥❡ t♦♣♦❧♦✲

❣✐❝♦✳ ❆❧❧✬✐♥✐③✐♦ ✐♥tr♦❞✉❝✐❛♠♦ ✐ ❝♦♥❝❡tt✐ ❞✐ ♦r❞✐♥❡✱ ❝❧❛ss✐ ❡❞ ✐♥✈❛r✐❛♥t✐ t♦♣♦✲

❧♦❣✐❝✐✳ P♦✐ ✐♥tr♦❞✉❝✐❛♠♦ ✐❧ ❜❡♥ ♥♦t♦ ♠♦❞❡❧❧♦ ❞✐ ❑✐t❛❡✈ ♣❡r s✉♣❡r❝♦♥❞✉tt♦r✐

✶ ❉✳ ◗✉❡st♦ ♠♦❞❡❧❧♦ ♣r❡✈❡❞❡ ▼❛❥♦r❛♥❛ ③❡r♦ ♠♦❞❡ ✭▼❩▼✮ ❛✐ ❝❛♣✐ ❞❡❧ ✜❧♦

✭✐❧ s✐st❡♠❛ ✶ ❉✮✳ ■ ▼❛❥♦r❛♥❛ ③❡r♦ ♠♦❞❡s s♦♥♦ st❛t✐ t♦♣♦❧♦❣✐❝✐ ❝❤❡ ♠♦str❛♥♦

✉♥❛ ❣r❛♥❞❡ r❡s✐st❡♥③❛ ❝♦♥tr♦ ✐❧ ❞✐s♦r❞✐♥❡✱ ♣❡r✉r❜❛③✐♦♥✐ ❧♦❝❛❧✐ ❡ ♦❣♥✐ ❣❡♥❡r❡

❞✐ ❡❧❡♠❡♥t♦ ❞✐ss✐♣❛t✐✈♦✳ ■♥ ✈✐❡♥❡ ❝♦♥s✐❞❡r❛t❛ ✉♥❛ ❣❡♥❡r❛❧✐③③❛③✐♦♥❡ ❞❡❧ ♠♦✲

❞❡❧❧♦ ❞✐ ❑✐t❛❡✈ ❝♦♥ ✐♥t❡r❛③✐♦♥✐ ❛ ♠♦❧t✐ ✈✐❝✐♥✐✳ ❱❡♥❣♦♥♦ r✐❝❛✈❛t✐ ❞✐❛❣r❛♠♠✐

❞✐ ❢❛s❡ t♦♣♦❧♦❣✐❝❛ ♠♦❧t♦ r✐❝❝❤✐ ❝❤❡ ♠♦str❛♥♦ ❧❛ ♣r❡s❡♥③❛ ❞✐ ♠♦❧t✐ ▼❩▼ ♣❡r

❧❛t♦✳ ■♥♦❧tr❡ s✐ st✉❞✐❛ ❧✬❛♣♣❛r✐r❡ ❡ s❝♦♠♣❛r✐r❡ ❞✐ t❛❧✐ ♠♦❞✐ ❛ s❡❝♦♥❞❛ ❞❡❧❧❛

s✐♠♠❡tr✐❛ ❞✐ ✐♥✈❡rs✐♦♥❡ t❡♠♣♦r❛❧❡✱ ❝❤❡ é ❢♦♥❞❛♠❡♥t❛❧❡ ♣❡r ❧♦ st✉❞✐♦ ❞❡❧❧❛

❢❛s❡ t♦♣♦❧♦❣✐❝❛✳ ■ ❞✐❛❣r❛♠♠✐ ❞✐ ❢❛s❡ ♠♦str❛♥♦ ❛♥❝❤❡ ❧❛ ♣r❡s❡♥③❛ ❞✐ ♠❛ss✐✈❡

❡❞❣❡ ♠♦❞❡s✳ ■♥ q✉❡st♦ ✉❧t✐♠♦ ❝❛s♦ ❣❧✐ ✐♥✈❛r✐❛♥t✐ t♦♣♦❧♦❣✐❝✐ ♥♦♥ ❞❡s❝r✐✈♦♥♦

❜❡♥❡ t✉tt❡ ❧❡ tr❛♥s✐③✐♦♥✐✳ ■♥ ✜♥❡ ❝✐ s✐❛♠♦ ❢♦❝❛❧✐③③❛t✐ s✉❧ ❝❛s♦ ❧✐♠✐t❡ ❞♦✈❡

❣❧✐ ▼❩▼ s♦♥♦ ♦tt❡♥✉t✐ q✉❛♥❞♦ ✐❧ s✐st❡♠❛ ❤❛ ✉♥❛ ❧✉♥❣❤❡③③❛ ✜♥✐t❛✳ ❚❛❧✐ ❝❛s✐

s♦♥♦ ♠♦❧t♦ ✐♥t❡rr❡ss❛♥t✐ ✈✐st♦ ✐❧ ❣r❛♥❞❡ ✈❛♥t❛❣❣✐♦ ❝❤❡ ♣♦ss✐❛♠♦ r✐❝❛✈❛r♥❡ ✐♥

✉♥ s❡t✉♣ s♣❡r✐♠❡♥t❛❧❡ ❞❛t♦ ❝❤❡ ✐❧ s✐st❡♠❛ ♣✉ò ❣r❛♥❞❡③③❛ r✐❞♦tt❛✳

▲✬✉❧t✐♠❛ ♣❛rt❡ é s✉✐ ❞✐s♣♦s✐t✐✈✐ s✐♥❣❧❡ ❡❧❡❝tr♦♥ t✉♥♥❡❧✐♥❣✳ ◗✉✐ ❛❜❜✐❛♠♦

❞❡s❝r✐tt♦ ❧❛ ❞✐✛❡r❡♥t❡ ❝❛♣❛❝✐tà ❛ ❧❛✈♦r❛r❡ ❝♦♠❡ ❤❡❛t✲t♦✲❝✉rr❡♥t ❤❛r✈❡st❡r ♣❡r

✉♥ ❞✐s♣♦s✐t✐✈♦ ❝❤❡ ✉s❛ q✉❛♥t✉♠ ❞♦ts r✐s♣❡tt♦ ❛❞ ✉♥♦ ❛♥❛❧♦❣♦ ❝❤❡ ✉s❛ ♠❡t❛❧❧✐❝

❞♦ts✳

◗✉❡st✐ ❛r❣♦♠❡♥t✐ ❞✐✛❡r❡♥t✐ tr♦✈❛♥♦ ✉♥ ♣✉♥t♦ ❞✐ ✉♥✐♦♥❡ ❝♦♥s✐❞❡r❛♥❞♦ ❧❛✲

✈♦r✐ s❝✐❡♥t✐✜❝✐ r❡❝❡♥t✐ ✐♥ ❝✉✐ s✐ ❝♦♥s✐❞❡r❛ tr❛s♣♦rt♦ ❞✐ ❝❛❧♦r❡ s✉ ❞✐s♣♦s✐t✐✈✐



✷

s✐♥❣❧❡ ❡❧❡❝tr♦♥ t✉✉♥♥❡❧✐♥❣ ✐♥ ❝✉✐ ❛❧❝✉♥❡ ❞❡❧❧❡ ❝♦♠♣♦♥❡♥t✐ ❝✐r❝✉✐t❛❧✐ ❞❡✐ ❞✐✲

s♣♦s✐t✐✈✐ ♠♦str❛♥♦ ✉♥❛ ♥❛t✉r❛ t♦♣♦❧♦❣✐❝❛✳ ❙♦♥♦ s✐st❡♠✐ ♣❡r❢❡tt✐ ❞❛✐ q✉❛❧✐

♣♦ss✐❛♠♦ ♦tt❡♥❡r❡ ♥✉♦✈✐ ❢❡♥♦♠❡♥✐ ❞✐ tr❛s♣♦rt♦✳


