
1. Introduction
Earth's dynamics, up to the scale of plate tectonics and deep mantle convection, are associated with 
high-temperature, viscous rock flow by crystal-plastic processes. Viscous deformation of rocks with grain-
scale compositional (mineralogical) heterogeneities commonly results in the development of an anisotropic 
fabric (referred to as extrinsic anisotropy) that arises from the 3D shape preferred orientation (SPO) of 
mineralogically distinct domains. The presence of extrinsic anisotropy may significantly influence the ma-
terial properties (seismic anisotropy (Backus, 1962; Faccenda et al., 2019; Gee & Jordan, 1988), and rock 
strength (Dabrowski et al., 2012; Thielmann et al., 2020)) and a wide range of geological processes up to the 
scale of global tectonics (e.g., folding (Kocher et al., 2006; Mühlhaus et al., 2002), lithospheric instabilities 
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(Lev & Hager, 2008; Perry-Houts & Karlstrom, 2019), and mantle convection (Ballmer et al., 2017; Girard 
et al., 2016; Honda, 1986)).

While a good characterization of extrinsic anisotropy is necessary to quantify its impact on geodynamic pro-
cesses, a framework to predict the evolution of the grain-scale rock fabrics as a function of regional or global 
scale 3D convection patterns does not yet exist. Previous numerical studies considered compositionally lay-
ered media with simplified rheology, and the extrinsic anisotropy has been estimated for a strain-insensitive 
fabric by the Voigt and Reuss upper and lower bounds (Christensen, 1987; Lev & Hager, 2008; Mühlhaus 
et al., 2002; Perry-Houts & Karlstrom, 2019). Recent lab experiments at low finite strain have revealed that 
the effective strength of composites is strongly related to the initial geometry of the weak phase inclusion 
(Girard et al., 2016), which tends to form a network of layers of strain localization as strain increases. Dab-
rowski et al. (2012) and Thielmann et al. (2020) numerically studied the strength evolution of 2D, two-phase 
aggregates at larger deformation, reporting effective strength drops of about 80%. These 2D simulations 
likely overestimate the degree of weakening as they implicitly assume ideal lateral interconnection of the 
weak layers.

The goal of this paper is to combine numerical and semi-analytical methods to predict 3D strain-induced 
fabrics of two-phase (inclusion-matrix) aggregates (representative of a wide spectrum of geological mate-
rials) and associated extrinsic viscous anisotropy. First, numerical tools are employed to reproduce 3D fab-
rics under simple shear deformation to quantify the relationship between the extrinsic viscous anisotropy, 
amount of strain and volume ratio between inclusion and matrix. Then, we demonstrate that the anisotropy 
of a two-phase composite is well-predicted by semi-analytical solutions based on the Differential Effective 
Medium (DEM) theory. Finally, we parameterize the resulting 3D fabrics as a function of strain and strength 
contrast between the coexisting phases. For an arbitrary deformation state, the fabric can then be approxi-
mated, and the associated anisotropic viscous tensor can be calculated by the DEM.

2. Methods
We employ a Finite Differences solver for the 3D Stokes equations (T. Gerya, 2019) as the main tool to study 
the fabric development and associated evolution of the bulk viscosity in two-phase aggregates in simple 
shear. Numerical models are complemented with solutions derived from the DEM theory.

2.1. Numerical Methods

Deformation is described by the Stokes equations for incompressible viscous flow:

∇ ⋅ 𝝉𝝉 − ∇𝑝𝑝 = 0 (1)

∇ ⋅ 𝒗𝒗 = 0 (2)

where ∇ is the nabla operator, τ is the deviatoric stress tensor, p is pressure, and v is velocity. Equations 1 
and 2 are solved employing a finite differences scheme combined with a particle-in-cell method (T. V. Gerya 
& Yuen, 2003) in the 3D Cartesian space. Tri-linear interpolation resulting in a weighted arithmetic mean is 
employed to map the viscosity back and forth between Eulerian nodes and Lagrangian particles. Through-
out this paper, we use (a) bold upper case Latin and lower case Greek letters to denote fourth and second 
order tensors, respectively; (b) bold lower case Latin letters to denote vectors; and (c) regular symbols to 
denote scalar values.

For simplicity we adopt an isotropic Newtonian rheology for each material phase, so that the relationship 
between stress and strain is given by the linear constitutive equation 𝐴𝐴 𝝉𝝉 = 2𝜂𝜂�̇�𝜺 , where η is the shear viscosity 
and 𝐴𝐴 �̇�𝜺 is the deviatoric strain rate tensor. This simplified rheology does not account for the effects of dislo-
cation creep, brittle failure, pressure-solution, surface tension or other mechanisms that could affect the 
deformational behavior of a natural rock. Nonetheless, a Newtonian rheology is expected to be represent-
ative of the deformation behavior at mantle conditions where diffusion creep dominates (Ranalli, 1995).

Stokes equation are non-dimensionalized using the characteristic scales of viscosity ηc, length lc, and time tc:
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�� = min(��, ��) �� = � �� = 1
�̇�� (3)

where the superscripts i and m stand respectively for inclusion and matrix, L is the length of the cubic 
aggregate, and 𝐴𝐴 𝐴𝐴𝐴𝑏𝑏𝑏𝑏 is the background strain rate. The choice of ηc is purely out of convenience, so that both 
normalized viscosities are integers.

2.1.1. Model Setup

For a wide range of P-T conditions, rock-forming polymineral aggregates can be approximated by a popula-
tion of dispersed particles (inclusions) within a matrix of distinct rheology where, in the simplest case, the 
initial rock geometry is isotropic with no shape preferred orientation of inclusions. This geometry is a good 
proxy of the fabric of many magmatic rocks, including mantle and oceanic rocks. Assuming a pyrolitic or 
the more depleted harzburgitic composition, above 410 km depth mantle rocks are made mainly of olivine 
and pyroxene (respectively, 60:40 and 70:30, Stixrude & Lithgow-Bertelloni, 2012). In the mantle transition 
zone this proportion remains roughly constant as olivine crystals transform into the high pressure poly-
hmorphs wadsleytie and ringwoodite, and pyroxene transforms into majoritic garnet. The lower mantle 
is mainly composed by bridgmanite and ferropericlase (80:20; ignoring minor presence of Ca-perovskite). 
After eclogitization the oceanic crust is made by omphacitic pyroxene and pyrope garnet, plus minor quartz 
(10%). In the transition zone, basalts are made by garnet and 10% stishovite. In the lower mantle, the sub-
ducted crust is formed by a four-phase aggregate with about similar volume fractions and unknown relative 
strength, such that it is not yet possible to predict potential grain-scale fabrics.

A simplified, but representative dimensionless model for such a composite consists of spherical inclusions 
(here with equal radius r = 0.1) randomly distributed within a cubic matrix of unit volume. This geometry 
avoids the complex crystal-like shapes of natural aggregates that pose a computational challenge for numer-
ical codes, particularly at large inclusion-matrix viscosity contrast, as the stiness matrix resulting from the 
Stokes equations becomes more ill-posed. In 3D high-resolution models, this causes a signicant slow-down 
in the convergence rate of the iterative method (Geometric Multigrid Method, or GMG) used to solve the 
linear system of equations (see next section 2.1.2). In addition, spherical inclusions generally deform into 
pseudo-ellipsoids, so that tracking and quantifying the evolution of their shape is easier than for irregular 
shapes. Aggregates of (Mg,Fe)SiO3 perovskite and ferropericlase, synthesized at uppermost lower mantle 
equivalent conditions (Yamazaki et al., 2009) consist of clusters of ferropericlase equant grains of compara-
ble grain sizes and shapes resulting in near-isotropic samples prior to deformation. To a first approximation, 
the crystal shape ferropericlase grains is reasonably well approximated by spheres within a (Mg,Fe)SiO3 ma-
trix. In other geological scenarios, porphyroclasts-matrix aggregates in mylonites and bubble-bearing mag-
matic rocks are well approximated by composites containing pseudo-spherical inclusions in many cases.

The domain of the model is spatially discretized in an immutable and regular grid of cubic cells with 
245  ×  245  ×  277 nodes. To simulate simple shear a kinematic reference frame is set where: the X-axis 
is the shear direction; the Y-axis is the vorticity axis, and the X–Y plane is the shear plane orthogonal to 
Z. Two rigid plates with thickness 0.08 are added to the top and bottom of the aggregate domain where 
unitary velocities vtop = (1, 0, 0) and vbottom = (−1, 0, 0) are prescribed, so that the domain of the model is 

𝐴𝐴 Ω ∈ [0, 1] × [0, 1] × [0, 1.16] Periodic boundary conditions are prescribed at the vertical faces of the domain.

We explore the development of fabrics at different viscosity contrasts between the inclusion and matrix 
phases by fixing the viscosity of the weak phase to 1 and varying the viscosity of the strong phase, so 
that 𝐴𝐴 𝐴𝐴strong phase ∈

[

10, 102, 103
]

 . The viscosity contrast between both phases is then defined as Δη = ηi/
ηm. We further study the cases of composites with different volume fractions of the least abundant phase 

𝐴𝐴 𝐴𝐴 ∈ [10, 20, 30] % .

2.1.2. Model Convergence

3D Stokes problems with large discontinuous viscosity contrasts, such as those presented here, result in 
a linear system of equations with millions of degrees of freedom (∼66.5 millions in the models presented 
here) and highly spatially heterogeneous coefficients within the discretized elliptic operator. The linearized 
Stokes equations are solved iteratively via GMG, with Gauss-Seidel smoothing operating on every V-cycle 
level. This solution scheme works well for models with low and moderate inclusion-matrix viscosity con-
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trast, producing well resolved flow solutions. However, at high viscosity contrast the GMG does not con-
verge to a well-resolved flow solution after small finite strains when inclusion aspect ratio is different than 
one. May et al. (2015) employed matrix-free operators and a combination of GMG and Algebraic Multigrid 
Methods (AMG) to solve a sinker problem with viscosity contrasts of up to six orders of magnitude. How-
ever, the problem was solved only for instantaneous flow and with spherical sinkers. Although promising, 
such solution schemes are yet to be tested for model set-ups and complex geometries comparable to the ones 
in this paper. Here we employ the following strategy: (a) at the first time step we employ the PARDISO direct 
solver (De Coninck et al., 2016; Verbosio et al., 2017; Kourounis et al., 2018) at some intermediate multigrid 
level to obtain the exact solution; (b) the solution is prolonged to the finest multigrid level; (c) multigrid 
V-cycles are performed until the desired tolerance is reached; (d) when the solution starts to diverge, the 
solution from the previous time step (initial guess) is reloaded and the V-cycles restarted with the pressure 
and velocity relaxation parameters halved. The latter step ensures a safer updating of the unknowns and a 
more stable, although slower, convergence toward a well-resolved solution.

2.1.3. Deformation History of the Inclusions

An isolated, spherical, isotropic inclusion suspended in a viscous matrix transforms into an ellipsoid (the 
inclusion finite strain ellipsoid, FSE) by homogeneous deformation of the matrix. In aggregates of spatially 
dense inclusions, particle interactions result in more complex deformed inclusion shapes. For these com-
plex shapes the amount of accumulated strain is evaluated by computing the finite strain equivalent ellip-
soid (FSEE), that is, the average FSE of the inclusions. The FSEE is given by eigenvalues ai and eigenvectors 
λi, with i = 1, 2, 3, of the left stretch tensor (e.g., Becker et al., 2003), which define the length and orientation, 
respectively, of the FSEE semi-axes in the Cartesian space. The FSE is computed a posteriori in a set of se-
lected Lagrangian particles sampling homogeneously the inclusions. We use the routines included in the 
software D-Rex (Kaminski et al., 2004) to compute the velocity gradient tensor, and update the deformation 
gradient tensor and the FSE. Arithmetic averaging of the Lagrangian particle FSE sampling a given inclu-
sion is used to compute its FSEE. D-Rex does not inject particles when the cells of the discretized domain 
become empty, yielding artifacts on FSE(E) at large strain when weak inclusions are extremely stretched 
and/or heterogeneously deformed.

2.2. Analytical and Semi-Analytical Solutions for Viscous Tensors of Multi-Phase Aggregates

The Voigt and Reuss bounds define the upper and lower limits, respectively, for any bulk material property 
of composites with continuous fibers. For a given field or mechanical property Ψ, the Voigt and Reuss (e.g., 
Handy, 1990) bounds are given by:

Ψ� ���� =
�
∑

�

���� Ψ����� =

(

�
∑

�

��

��

)−1

 (4)

where i is a material phase and n the total number of material phases. In our case, Equation 4 predict the 
orthogonal and parallel viscosities with respect to the fabric of a laminar material, respectively. Natural mul-
ti-phase rocks rarely display a perfect laminar fabric and the Voigt and Reuss limits fail to provide accurate 
estimates of the mechanical properties. However, these limits still represent the upper and lower bounds of 
the mechanical properties of an aggregate. To overcome these limitations, alternatives methods in the field 
of micro-mechanics (Mura, 1987; Nemat-Nasser & Hori, 2013; J. Qu & Cherkaoui, 2006) based on Eshelby's 
work Eshelby  (1957,  1959) have been developed and applied to geology in recent years (e.g., Dabrowski 
et al., 2012; Jiang, 2014; Jiang & Bhandari, 2018; Yang et al., 2019). These methods however work under the 
assumption of ellipsoidal inclusions. Here we employ the DEM, which additionally assumes aligned inclu-
sions, to draw comparisons with the rheology of 3D models and explore its capability to quantify the viscous 
tensor in aggregates with realistic rock-like fabrics. The DEM was first introduced by Roscoe (1952) to calcu-
late the viscosity of suspensions of rigid particles and has been widely employed (e.g., Boucher, 1976; Dab-
rowski et al., 2012; Mainprice, 1997). The DEM tensorial formulation was developed by McLaughlin (1977):

𝑑𝑑𝜼𝜼𝐷𝐷

𝑑𝑑𝑑𝑑
= 1

1 − 𝑑𝑑
(

𝜼𝜼𝑖𝑖 − 𝜼𝜼𝐷𝐷
)

∶ 𝐀𝐀 (5)
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where ηD is the viscosity tensor of the aggregate and A is the inclusion shape-dependent interaction fourth 
order tensor (e.g., Jiang, 2014; Mainprice, 1997):

𝐀𝐀 =
[

𝐉𝐉𝑠𝑠 + 𝐒𝐒∶
(

(

𝜼𝜼𝐷𝐷
)−1 ∶ 𝜼𝜼𝑖𝑖 − 𝐉𝐉𝑠𝑠

)]−1
 (6)

where the symmetric fourth order identity tensor is defined as 𝐴𝐴 𝐴𝐴𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

1
2
(𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) , with Jijkl = δikδjl being 

the fourth order identity tensor and δij the Kroenecker's delta. For a general viscous material, the Eshelby 
tensor S is given by:

𝐒𝐒 = 𝐉𝐉𝑠𝑠 ∶ 𝐓𝐓∶ 𝜼𝜼𝐷𝐷 (7)

where T is the fourth order Green interaction tensor (Lebensohn et al., 1998):

𝐓𝐓 = 𝑎𝑎1𝑎𝑎2𝑎𝑎3
4𝜋𝜋 ∫

2𝜋𝜋

0 ∫

𝜋𝜋

0

𝝃𝝃𝝃𝝃𝑇𝑇 (𝔸𝔸𝑣𝑣)−1

⟨𝐚𝐚2, 𝝃𝝃2⟩3∕2
sin𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙 (8)

where ξ = [ sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)]T, 〈⋅, ⋅〉 indicates inner product, and

𝔸𝔸� =
⎡

⎢

⎢

⎣

𝔸𝔸 𝝃𝝃

𝝃𝝃� 0

⎤

⎥

⎥

⎦

 
(9)

with 𝐴𝐴 𝔸𝔸𝑖𝑖𝑖𝑖 = 𝜂𝜂𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖 . The ordinary differential Equation 5 is solved by iteratively increasing ϕ (taking ϕ0 = 0) 
until reaching the desired volume fraction, and integrated employing a fourth order Runge-Kutta scheme. 
In the first iteration, the viscous tensor of the aggregate is defined by the viscosity of the matrix, that is, 
ηD(ϕ = 0) = 2Jsηm. In Appendix B we discuss the numerical implementation of Equation 5 and the associ-
ated computational cost.

The main downside of the DEM is that all the inclusions are assumed of equal shape and orientation. How-
ever, stress and strain are not evenly distributed among all the inclusions during shear deformation due to 
inclusion interactions. This results in a heterogeneous distribution of inclusion shapes and orientations. 
Therefore, to compare the numerical results with the DEM, we average the FSE of all the inclusions to 
obtain the FSEE.

3. Evolution of Two-Phase Aggregates in Simple Shear Deformation
We first describe the evolution of a single spherical inclusion with Δη = 10±1 and dimensionless radius 0.2. 
Then, we describe the development of the fabric and anisotropic viscosity for multiple inclusions. The fabric 
is quantied by the aspect ratio of the FSEE principal axes and the inclination (α) of the FSEE a1-axis with 
respect to the horizontal shear plane.

3.1. Two-Phase Aggregate With a Single Inclusion

During simple shear, a spherical weak inclusion transforms into an FSE with the maximum a1-axis initially 
inclined at 45° with respect to the X-axis. With increasing strain (a) the FSE a1 : a3 ratio increases with the 
intermediate a2-axis (parallel to Y) rapidly growing initially of about 15% and then remaining constant in 
length for larger strain (Figure 1a); and (b) the maximum a1-axis of the FSE progressively rotates in the XZ 
plane toward the X-axis to achieve a nearly stable position at ca. α = 1.5° for γ > 15 (Figure 1b). As illustrat-
ed by 2D analytical solutions (Moulas et al., 2014), the pressure inside the inclusion depends on the viscosity 
contrast with the matrix and the maximum axis inclination α. In the case of a weak inclusion, the internal 
pressure increases to a maximum value at about α = 20°, and then decreases as the inclusion further rotates 
toward the Cartesian X-axis. The pressure eventually becomes negative at α < 7°, and then remains roughly 
constant at higher strain (Figure 1c). The presence of a single weak inclusion weakens the bulk strength of 
the composite, inducing a decrease of the effective viscosity of about 10% with respect to the matrix viscosity 
γ > 5 (Figure 1d).
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In simple shear, a single spherical inclusion stiffer than the matrix permanently rotates (Figure 1e and 1f). 
During a rotation cycle, the inclusion transforms into a 3-axes ellipsoid having the a1-and a3-axis at their 
maximum and minimum, respectively, when the a1-axis is aligned with the shear plane. As rotation contin-
ues, the inclusion recovers its spherical shape. As predicted by analytical expressions (Moulas et al., 2014), 
the pressure inside the inclusion oscillates depending on the inclusion orientation and is (a) negative when 
the long inclusion axis is oriented in the range of 0° < α < 45°; and (b) positive for 45° < α < 90°. The 
presence of the rigid inclusion results in a 𝐴𝐴 𝐴 10% increase in the composite strength, which remains rela-
tively constant during the whole deformation history (Figure 1h).

3.2. Two-Phase Aggregate With Multiple Inclusions

3.2.1. Weak Inclusions

Similar to the case of a composite with a single weak inclusion, both the a1-axis and a2-axis of the 
FSEE increase with increasing γ (with an almost linear trend for the former up to γ = 7 − 8), while the 
a3-axis shows an initial rapid decrease with γ (Figures 3a and 3c). Given the much larger increase rate 
of the a1-axis and a2-axis, deformation results in the development of a strip-like shape of the individ-
ual particles aligned to form an L-S type fabric (Figures 2 and S1, and Movies S1 and S2). The a2-axis 
of the FSEE increases up to ca. 20% depending on the viscosity contrast (Figure  3a–3c), reaching a 
near-steady state length after ca. 600% of shear strain. The growth of the a2-axis indicates inclusion 
flattening.

The shape of individual inclusions is a function of the viscosity contrast and volume fraction between the 
two phases. The former determines how much the weak phase can deform within the strong matrix; the lat-
ter determines the amount of inter-crystal deformation. At low viscosity contrasts and low volume fractions 
of the weak phase (Figure 2g), the matrix opposes little resistance to deformation, and the inclusions, quite 
spaced apart, are relatively free to grow laterally without getting in contact. In this case, the inclusions are 
well defined ellipsoids (see Flinn diagram in Figure S3) that match with the associated FSEE.

Figure 1. Evolution of the (a and e) principal semi-axes of the FSE, (b and f) inclusion inclination (absolute value), (c and g) pressure at the center of the 
inclusion, and (d and h) effective shear viscosity evolution. Pressure is tracked at a single point located at the center of the matrix; small perturbations in the 
pressure inside the weak inclusion are related to the loss of resolution caused by severe flattening and stretching. The initial radius of the inclusion is 0.2.
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At low viscosity contrast and high volume fractions (Figure 2i and Movie S1), the weak phase evolves 
into a dense network of thin, weak surfaces. The close spacing of inclusions promotes interactions, 
which results in gently convex/concave pseudo-ellipsoidal inclusion shapes at high γ. An increase in 
the matrix rigidity affects the deformation of the weak phase and results in an irregular pattern of in-
tra-crystal deformation. This effect intensifies with volume fraction and yields: (a) a less well-defined 
network of weak thin layers due to reduced flattening and lateral crystal growth; (b) increase of the 
inclusion curvature; and (c) local inclusion rotation around the a1-axis (Figures 2a–2c and Movie S2). To 
summarize, the models show that relatively low viscosity contrasts are needed to develop very well-de-
fined networks of weak thin layers, while the foliated (S-type) fabric is less well-defined at large viscos-
ity contrasts.

The evolution of the average inclusion inclination (α) is shown in Figure 4, top row. At the onset of deforma-
tion, the inclusions are inclined between 40° and 45°, subparallel to the third principal stress. With increas-
ing γ, the angle α decreases exponentially to reach a near steady state value of 5° at γ > 10. The observed 
alignment of the inclusions with the flow direction is consistent with natural observations, 2D numerical 

Figure 2. (a–i) Inclusion configuration at γ = 6 of shear deformation for aggregates with a weak inclusion phase. Red arrows in panel a indicate the sense of 
shear. See text for description of the model setup.
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models (e.g., Dabrowski et al., 2012; Thielmann et al., 2020), and micromechanic approaches with linear 
and non-linear rheology (e.g., Jiang, 2012, 2014; Yang et al., 2019). As previously stated, some inclusions 
experience rotation along the X-axis at large viscosity contrasts; however, rotations along Y-axis largely 
dominate. Our results further show that α is effectively independent of the viscosity contrast and matches 
the inclination of the FSEE a1-axis of the bulk composite.

Figure 3. Evolution of the first a1, second a2 and third a3 principal axes of the average inclusion finite strain ellipsoid (FSEE) for (a–c) weak and (d–f) strong 
inclusion phase. The apparent volume increase of the inclusion phase for for viscosity constrasts larger than 2 orders of magnitude (red and green lines) 
observed in panels (a–c) are caused by segmentation of some inclusions.
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Due to severe flattening and lateral growth in models with ϕ = 10% and Δη ∈ [10−2, 10−3], during the calcu-
lation of the FSE the distance between Lagrangian particles of the inclusions becomes large enough so that 
some matrix particles fill empty grid cells. This results in the artificial segmentation of the inclusion, and 
causes the oscillations present in some of the panels in Figures 3 and 4.

The resulting flattening, elongation, and alignment of the inclusions with the flow direction increases the 
amount of weak surface in the shear plane. This has positive feedback with the relative amount of strain 
accommodated by the weak phase and strain progressively localizes in the weak phase as the S-type fabric 
matures (Figure 5). The strain rate accommodated by the ”flat” S-type fabric is always larger than the bulk, 
and the fraction of strain accommodated by the inclusions rapidly increases before stabilizing after a few 
per cent deformation. For a given volume fraction, the final strain partitioning depends on the viscosity 
contrast, with larger viscosity contrasts yielding larger amounts of strain being accommodated by the weak 
inclusion phase.

For ϕ > 10% the amount of deformation accommodated by the inclusion phase is equal or larger than the 
strain absorbed by the matrix. This phenomenon is not observed for Δη = 10−1, although we cannot discard 
that it may occur at higher volume fractions than those considered here.

3.2.2. Strong Inclusions

Strain is mostly accommodated by the weak matrix and two types of fabrics are observed depending on the 
viscosity contrast. The first fabric type occurs at relatively low viscosity contrast (Δη < 102), where the inclu-
sions a1-axis grows in the direction of the flow, while the a3-axis shrinks considerably (Figures 3d–3f). The 
a2-axis decreases up to 10% at high packing numbers, indicating constructional deformation. The inclusions 
thus deform into a prolate (cigar-like) shape and gradually rotate toward the shear plane (Figures 4k and 4l 
and Movie S3). The reduced inter-crystal spacing at ϕ > 10% enhances the development of the L-type fabric 
(Figures 6h, 6i, S2h and S2i), because strain localizes at the contact between neighbor inclusions, enhancing 

Figure 4. Average inclination α of the inclusions (solid lines) and inclination of the bulk FSE a1-axis (dashed lines) with respect to the horizontal shear plane 
at different viscosity contrasts. The bulk FSE a1-axis is not visible in the top row panel as it overlaps with the solid blue line. The bulk FSE is computed by 
averaging the FSE of all the Lagrangian particles, excluding the rigid plates.
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the inclusions stretching. At lower ϕ, the L-type fabric is less pronounced and depends on the initial spatial 
distribution of the inclusions, since isolated inclusions barely deform in any direction and mainly rotate 
along the Y-axis.

The second fabric type is observed for Δη ≥ 102, where relative large viscosity of the inclusions inhibits large 
intra-crystal deformation and the inclusions constantly rotate around the Y-axis (Figure 4, bottom row), 
and small deviations from the initial shape are the result of interactions between inclusions. For ϕ < 30%, 
strain localizes just at the boundary with the rigid plates and the rigid inclusions concentrate toward the 
domain center. This phenomenon can be explained with the tendency of the system to maintain a balance 
in the grain dispersive pressure, which is caused by the interactions between rigid particles (Bagnold effect, 
Komar, 1972). The dispersive pressure increases with both the particle concentration and the velocity gra-
dients. Thus, near the rigid boundaries the high velocity gradients must be compensated by a low rigid par-
ticle concentration, and vice versa toward the center of the composite. Clustering of the inclusion phase in 
a tight band is not observed at ϕ = 30%, where high strain localizes at the contact of the clogged inclusions 
(Figures S2c and S2f). For all the different combinations of Δη and ϕ, strain is mainly accommodated by the 
weak matrix and remains more or less constant with increasing shear, absorbing more than 90% of the total 
deformation (Figures 5c and 5d).

3.3. Viscosity Evolution

Two-phase aggregates are mechanically heterogeneous materials where the stiffness tensor of the compos-
ite is no longer isotropic. It is not possible to infer all the components of the anisotropic viscous tensor of 
the composite directly from the 3D models, but only an effective viscosity (e.g., Jiang & Bhandari, 2018):

𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 =
⟨𝜏𝜏𝐼𝐼𝐼𝐼⟩
2⟨�̇�𝜀𝐼𝐼𝐼𝐼⟩

 (10)

Figure 5. Partitioning of the volume averaged (a and c) normalized strain and (b and d) strain rate between the co-existing material phases. The colored 
solid lines correspond to the matrix, colored dashed lines correspond to the inclusions, gray dashed lines in (b and d) denote the bulk strain rate that in all 
experiments is equal to 1.
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where 〈⋅〉 indicates the volume average of a given field, and the subscript II indicates the square root of the 
second invariant of an arbitrary second-order tensor C, defined as 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 =

√

1
2
𝐂𝐂∶ 𝐂𝐂 . In simple shear, the 

effective viscosity is equivalent to the shear viscosity component in the plane parallel to the shear direction, 
i.e., ηeff ≡ ηxzxz, or ηeff ≡ ηxz in the reduced Voigt notation. To retrieve the remaining shear viscosities ηxyxy 
and ηyzyz, the model is rotated along the X- and Z-axes, respectively, at different stages of deformation to 
solve the instantaneous flow and compute the effective viscosity. The same approach was used by Hansen 
et al. (2012) to measure the normal viscosity under uniaxial extension on olivine aggregates after a certain 
amount of simple shear deformation. The normal viscosity components ηxxxx, ηyyyy and ηzzzz are estimated 
here by imposing pure shear boundary conditions, with v = (1, 0, 0) and v = (0, 0, −1) prescribed at the 
boundary on the plane x = 1 and at the top of the domain, respectively, and free-slip boundary condition at 
the remaining boundaries of the domain. In this latter case, the rigid plates located at the top and bottom of 
the model are removed. The inclusions do not align perfectly with the horizontal plane and, therefore, the 
anisotropic viscous tensor contains non-zero values in the off-diagonal blocks, as well as in the off-diagonal 
indices of the lower diagonal block. However, direct retrieval of these components of the viscous tensor 
from the numerical models is not possible.

Figure 6. (a–i) Inclusion configuration at γ = 16.4 of shear deformation for composites with a rigid inclusion phase. Due to lack of convergence, the shear 
deformation on panel i is γ = 6. The red arrows in panel a indicate the sense of shear.
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The numerical convergence of the rotated models is difficult to achieve as the result of large viscosity dis-
continuities, pre-existing complex morphology, and lack of a good estimate of the flow solution. Further-
more, some inclusions may split in two across the bottom and top non-periodic boundaries after rotation. 
In particular, pure shear models fail to converge in models with viscosity jumps larger than one order of 
magnitude, and even in some cases with low viscosity contrast. Only converged models are shown in this 
section. In Appendix A we demonstrate that the normal and shear components of the anisotropic tensor 
can be recovered from 3D models with a simple morphology where a fully converged flow solution is 
achieved.

3.3.1. Weak Inclusions

The shear-parallel viscosity exhibits the same trend in all simulations (Figure 7), with a short initial stage of 
hardening followed by rapid weakening and finally a new stage of gentle hardening at large deformation. 
The first hardening occurs at 0.5 < γ < 1 and is related to the transition of the initial spherical shape of the 
weak inclusions to σ3-parallel ellipsoids. This produces a disturbance in the otherwise quasi shear-parallel 
flow and results in a 3%–5% increase of the bulk viscosity. This initial hardening has been documented in 2D 
forward models with inclusion with spherical (Dabrowski et al., 2012) and random (Thielmann et al., 2020) 
shapes, in self-consistent micro-mechanical models with varying-shape ellipsoids and power-law rheology 
and flow fields more complex than simple shear (Jiang, 2014).

After the viscosity peak is reached, the models experience a phase of intense weakening, where the weak-
ening rate is controlled principally by, and increases with, viscosity contrast. For example, models with 
Δη = 10−3 and 10−1 require about 500% and 1,600% of shear deformation, respectively, to reach the maximum 
weakening. After this point, the composite does not reach a steady-state of constant viscosity, but a stage of 
slight hardening. We infer that this last hardening stage is a combination of three mechanisms. First, even 
though our models do not exhibit a general loss of resolution, the edges of the inclusions may become thin-
ner than the vertical spacing of the grid at large strain and introduce some numerical artifacts (Thielmann 
et al., 2020). Second, given an ellipsoidal inclusion with angle β < 45° between their second principal semi-ax-
es and the horizontal plane, any rotation so that β ≤ βnew ≤ 45° yields a stronger aggregate. At large strain, 
the inclusions develop different degrees of non-homogeneous internal rotation with the vorticity axes given 
by the shear-parallel direction (X-axis) that creates planes within the inclusion at a higher inclination with 
respect to the horizontal plane (Figure 2), thus arguably hardening the aggregate. And third, segmentation 
of severely sheared inclusions at large strain. Quantifying the contribution of these mechanisms to the total 
hardening would require running the models with considerably denser particle density and finer grid. In the 
latter case, adaptive meshes should be used, as the problem soon becomes computationally prohibitive with 
regular grids. On the other hand, normal stress is mainly supported by the matrix and, therefore, the normal 
viscosity components harden as the inclusions flatten, tending toward the Voigt upper bound (Figure 7).

The dashed lines in Figure 7 represent the shear-parallel viscosity calculated from the DEM Equation 5 by 
employing the average inclusion shape (FSEE) and subsequent correction of the average inclination of the 
fabric. The DEM matches well both initial and peak shear viscosity components, as well as the weakening 
stage of ηxz and ηyz, but overestimates the maximum amount of weakening. The ηxy component is also well 
predicted by the DEM at low viscosity contrast (Δη = 10−1). At larger viscosity contrasts, the DEM fails 
to predict the observed softening behavior and predicts a phase of hardening for ηxy. We hypothesize that 
the observed weakening is caused by lateral distortions of the ellipsoidal shape (Figures 2b, 2c, 2e, and 2f) 
that are not captured by the DEM. As in Figures 3 and 4, the wiggles in the DEM curves in the middle and 
bottom panels of the left-hand-side column in Figure 7 are caused by poorly resolved FSE related to the 
segmentation of weak inclusions.

The maximum weakening of the composite relative to the matrix viscosity is defined as ω = 1 − min(ηxz)/
ηm (0 < ω < 1). Figure 8 shows in logarithmic scale 1 − ω = min(ηxz)/ηm at different combinations of Δη 
and ϕ. For any given ϕ, ω exponentially increases with increasing matrix viscosity until a maximum at 
Δη ≈ 10−2 where ω ≈ 60–80%. A small reduction of ω is observed for larger Δη. The irregular patterns of 
inclusion deformation (e.g., inclusion tilting and convex/concave inclusion shapes: Figures 2c, 2f, and 2i) 
are responsible for the reduced weakening. Models with 𝐴𝐴 Δ𝜂𝜂 ∈

[

1∕3, 1∕25, 1∕50, 1∕330
]

 were run to produce 
higher-resolution curves of the maximum weakening.
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Figure 7. Evolution of the anisotropic viscous tensor main components for two-phase aggregate with a weak inclusion phase. Solid lines correspond to 
the viscosity evolution from the 3D models; colored dashed lines correspond to the viscosity computed by the differential effective medium (DEM), using 
the average fabric shape and orientation of the 3D models. Gray dashed lines are the Reuss and Voigt lower and upper bounds, respectively. The normal 
components of the viscous tensor (top panels) are shown only for converged flow solutions.



Journal of Geophysical Research: Solid Earth

DE MONTSERRAT ET AL.

10.1029/2021JB022232

14 of 26

It is important to note that ω differs from the structural weakening ωstruct, 
where the latter refers to weakening of the bulk aggregate relative to the 
initial, undeformed state (i.e., 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1 − min(𝜂𝜂𝑥𝑥𝑥𝑥)∕𝜂𝜂0𝑥𝑥𝑥𝑥 ). Structural weak-
ening (ωstruct), always lower than the weakening normalized against the 
matrix viscosity (ω), oscillates between 30% (for Δη = 10) and up to 60% 
(for larger Δη).

The dashed blue line in Figure  8 represents the reduction in the bulk 
shear viscosity obtained by solving the DEM Equation 5. As previously 
discussed in Section 3.3, this semi-analytical equation predicts a stronger 
weakening of the composite in comparison to our 3D models. The mis-
fit between the weakening from the DEM and the numerical models in-
creases with Δη and ϕ, since the characterization of the average fabric 
becomes more difficult.

3.3.2. Strong Inclusions

The presence of rigid inclusions only moderately affects the effective 
strength of composites. A viscosity contrast of 3 orders of magnitude results 
in an increase of no more than 5–6 times the viscosity of the matrix, while 
the impact of the rigid inclusions is considerably less pronounced at lower 
Δη. Shear viscosity of composites with L-type fabrics (Figure 9, second row) 
exhibit slight strain softening, related to the rotation of the cigar-shaped in-
clusions from a σ3-parallel orientation to a stable position at few degrees off 
the flow direction. The resulting fabric is well characterized by the FSEE 
and, consequently, the DEM predicts well the shear-parallel viscosity with 
great accuracy. The L-type fabric no longer develops at Δη > 10, where parti-
cle rotations and small inclusion interactions are reflected in the oscillatory 
evolution of the effective viscosity (Figure 9, third and fourth rows). This is 
consistent with previous studies based on a multi-scale self-consistent mi-
cro-mechanical approach with power-law rheology (Yang et al., 2019), with 
the difference that the upper bound of viscosity contrast at which L-type 
fabrics develop was set at Δη = 5. These models show a clustering of the 
inclusions in a tight band at the center of the model domain that reduces the 
space between inclusions, resulting in a jammed aggregate where high stress 
localizes inside the inclusions and yields a viscosity that exceeds the Voigt 
upper bound. The DEM does not accurately predict the strength of jammed 
configurations and significantly underestimates the anisotropic viscosity.

4. Up-Scaling to Large Scales: Fabric 
Parameterization
The scale of the fabrics developing in multi-phase composites, aimed at 
simulating rock fabrics, is several orders of magnitude smaller than geo-
logical structures at the regional-to-plate tectonics scale. Therefore, it is 
computationally not feasible to include realistic multi-phase materials in 
numerical codes given the currently available computational power. As a 
consequence, mechanical anisotropy linked to the development of SPO 
cannot be incorporated in numerical models and materials are typically 
approximated as isotropic bodies.

Given the good match between the extrinsic viscous tensor obtained from 
forward numerical simulations and the DEM, the latter could be used 

to approximate the SPO-related viscous anisotropy of two-phase aggregates with a given fabric shape and  
orientation. In this section we propose a parameterization for the simulated 3D fabric as a function of  

Figure 8. The minimum composite viscosity normalized with respect 
to the matrix viscosity (equivalent to 1 − ω) as a function of the viscosity 
contrast. The black solid line correspond to the 3D models, the dashed 
black line is the Reuss bound, the dashed blue lines are the predictions 
from the differential effective medium (DEM), the dashed green line is the 
fit to the 3D models, and the solid red line with red circles is for 3D models 
with cylindrical inclusions.
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Figure 9. Evolution of the anisotropic viscosity tensor of a two-phase aggregate with a strong inclusion phase. Solid lines represent the viscosity retrieved 
from forward numerical simulations. Dashed lines are the ηxz obtained from the differential effective medium (DEM) using the average shape of the weak 
phase as input and corrected for the average inclusion inclination. Gray dashed lines are the Reuss and Voigt lower and upper bounds, respectively. The normal 
components of the viscous tensor (top panels) are shown only for converged models.
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parameters that might be either known or easily computed by geodynamic codes. Once the average compos-
ite morphology and orientation are estimated, the viscous tensor can be approximated by first solving the 
DEM Equation 5, and then rotating the anisotropic tensor with the angle α around the Y-axis.

4.1. Average Fabric Shape

4.1.1. Weak Inclusions

In the simplest case where the matrix and the inclusions have equal viscosity, the latter are perfectly 
aligned and their shape is given by the bulk FSE, which in simple shear and plane strain implies that 

𝐴𝐴 𝐴𝐴1∕𝐴𝐴2 = 𝐴𝐴2∕𝐴𝐴3 =
√

exp
(

2sinh−1 (𝛾𝛾∕2)
)

 . This expression is linear in the Flinn diagram and plots over the 
diagonal. For aggregates with weak inclusions we observe that the path of the FSEE is also quasi-linear in 
the Flinn space, and is approximately linearly proportional to the diagonal (i.e., bulk deformation), at least 
for the strain range in our models. Thus the fabric can be approximated as:

𝑟𝑟𝑖𝑖 = 𝜁𝜁𝑖𝑖𝐴𝐴 (11)

where ri = log 10(ai/ai+1) and 𝐴𝐴 𝐴𝐴 = log10
(

𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 ∕𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖+1

)

 , with i = 1, 2, are the respective ratios of the FSEE and 
bulk FSE semi-axis, and ζi is the proportionality constant. The evolution of the ratio between the intermedi-
ate and shortest semi-axis of both FSEE and bulk FSE is approximately the same (i.e., r2 ≈ A) and only the 
parameterization of r1 is necessary. The fitting coefficient ζi = ζ(ϕ, Δη) slightly depends on the morphology 
and rheology of the aggregate (Table 1) and decreases as the inclusion volume fraction and viscosity con-

ζ ξ χ θ ψ λ R2

r1(ϕ = 10%, Δη = 10−1) 0.843781 - - - - - 0.985

r1(ϕ = 20%, Δη = 10−1) 0.793576 - - - - - 0.996

r1(ϕ = 30%, Δη = 10−1) 0.752338 - - - - - 0.994

r1(ϕ = 10%, Δη = 10−2) 0.715399 - - - - - 0.994

r1(ϕ = 20%, Δη = 10−2) 0.774659 - - - - - 0.999

r1(ϕ = 30%, Δη = 10−2) 0.704054 - - - - - 0.992

r1(ϕ = 10%, Δη = 10−3) 0.687903 - - - - - 0.988

r1(ϕ = 20%, Δη = 10−3) 0.732392 - - - - - 0.998

r1(ϕ = 30%, Δη = 10−3) 0.709184 - - - - - 0.989

α(ϕ = 10%, Δη = 10−1) 0.921804 - - - - - 0.998

α(ϕ = 20%, Δη = 10−1) 1.007913 - - - - - 0.988

α(ϕ = 30%, Δη = 10−1) 0.983557 - - - - - 0.998

α(ϕ = 10%, Δη = 10−2) 1.002619 - - - - - 0.986

α(ϕ = 20%, Δη = 10−2) 0.945960 - - - - - 0.981

α(ϕ = 30%, Δη = 10−2) 1.079322 - - - - - 0.984

α(ϕ = 10%, Δη = 10−3) 1.000936 - - - - - 0.975

α(ϕ = 20%, Δη = 10−3) 0.933471 - - - - - 0.974

α(ϕ = 30%, Δη = 10−3) 1.095165 - - - - - 0.957

ω(ϕ = 10%) 0.903221 1.20365 −1.148182 0.3735 0.698558 0.6619 0.981

ω(ϕ = 20%) 43.646559 −42.907958 0 0.261095 0.984129 1 0.995

ω(ϕ = 30%) 40.628095 −39.823767 0 0.196188 0.985677 1 0.997

Note. The fitting parameters found in this table correspond to composites with weak inclusions.

Table 1 
Fitting Parameters ζ, ξ, χ, θ, ψ, λ, and Their Associated R2 Values for the Fits Corresponding to Average Shape (r1, 
Equation 11), Average Fabric Inclination (α, Equation 14), and Maximum Weakening of the Shear Viscosity Component 
(ω, Equation 12)
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trast increase, reflecting that inclusion flattening is enhanced by inclusion interactions in composites with 
strongly varying mechanical properties.

Combining Equation 11 with the DEM to estimate the anisotropic viscosity has to be done with caution, as 
the latter yields a considerably weaker aggregate at large strain compared to the forward models (Figures 7 
and 8). As a work-around, the maximum weakening observed in the 3D models can parameterized and 
used as a lower cut-off for the viscosity predicted by the DEM. The maximum weakening shows a non-lin-
ear relationship with the bulk deformation and physical parameters of the aggregate, which we find to be 
well-estimated (R2 > 0.98) as:

𝜔𝜔(𝜙𝜙) = 1 − 𝜁𝜁 (𝜙𝜙)Δ𝜂𝜂𝜓𝜓(𝜙𝜙) + 𝜉𝜉(𝜙𝜙)Δ𝜂𝜂𝜆𝜆(𝜙𝜙) + 𝜒𝜒(𝜙𝜙)Δ𝜂𝜂 + 𝜃𝜃(𝜙𝜙) (12)

where the fitting coefficients ζ, ξ, χ, θ, ψ, λ depend on the volume fraction of the weak phase and are shown 
in Table 1. Extrapolations to larger Δη must be taken with caution, as the hardening behavior of ω is not 
well-reproduced by Equation 12 and additional data is needed to further understand this effect.

4.1.2. Strong Inclusions

The deformation path of the FSEE of hard inclusions is complex and it is no longer proportional to bulk 
deformation (Flinn diagram diagonal). Additionally, r2 ≉ A and two parameterizations are needed to fully 
estimate the fabric. After testing several expressions, we find the following third order polynomial to repro-
duce well (R2 > 0.97; Figure 10) the fabric evolution:

𝑟𝑟𝑖𝑖(𝜙𝜙𝜙Δ𝜂𝜂) = 𝜁𝜁𝑖𝑖(𝜙𝜙𝜙Δ𝜂𝜂) + 𝜉𝜉𝑖𝑖(𝜙𝜙𝜙Δ𝜂𝜂)𝐴𝐴 + 𝜒𝜒𝑖𝑖(𝜙𝜙𝜙Δ𝜂𝜂)𝐴𝐴2 + 𝜃𝜃𝑖𝑖(𝜙𝜙𝜙Δ𝜂𝜂)𝐴𝐴3 (13)

where the fitting coefficients ζ, ξ, χ, θ (Table 2) are found via linear regression. We found difficult to pro-
duce an accurate parametrization of the fabric for Δη > 10, as small inter-crystal interactions yield a highly 
non-linear deformation path. Nonetheless, these inclusions barely deform and maintain a near-spherical 
shape at large strain (Figure 6). Therefore, they can be safely considered as such.

4.2. Average Fabric Orientation

The components of the viscosity tensor vary with the relative orientation of the fabric with respect to the 
coordinate system of choice. Thus a good prediction of the fabrics must be completed with the orientation 
of the fabric with respect to the reference coordinate system. Our models show that fabric rotations off the 
Y-axis are negligible, and therefore only the angle α between the longest axis of the FSEE and the horizontal 
(XY) plane is relevant.

4.2.1. Weak Inclusions

The orientation of the fabric is linearly proportional to the orientation of longest axis of the bulk FSE:

𝛼𝛼 = 𝜁𝜁 (𝜙𝜙𝜙Δ𝜂𝜂)𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (14)

yielding R2 > 0.95. The values of the proportionality constant (Table 1) are ζ ≈ 1, exemplifying that as already 
discussed in Section 3.2, the mismatch between the fabric orientation and the orientation of the longest axis 
of the bulk FSE is minimum (Figure 4), so that α ≈ αbulk is a good approximation of the inclusions orien-
tation. Alternatively, in plane strain deformation and again assuming the alignment of the fabric with the 
bulk FSE, the analytical solution from McKenzie (1979) can be used:

𝛼𝛼 = 1
2
tan−1

⎛

⎜

⎜

⎜

⎝

Γtanh
(
√

1 − Γ2�̇�𝜀𝜀𝜀
)

√

1 − Γ2

⎞

⎟

⎟

⎟

⎠

 (15)

where 𝐴𝐴 Γ = Ω∕�̇�𝜀 is the vorticity number, with Ω being the magnitude of the rotational component about the 
Y-axis.
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4.2.2. Strong Inclusions

Hard inclusions exhibit a constant rotational behavior where the small amount of inter-crystal deformation 
introduces negligible disturbances in the evolution of the viscosity tensor. Only at ϕ > 10% and low Δη 
(about one order of magnitude), rigid inclusions develop an L-type fabric whose orientation is predicted 

Figure 10. Flinn diagrams. Scattered symbols describe the average inclusion shape of the 3D models at different γ. The solid lines are the average inclusion 
shape predicted by Equations 11 and 13.
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by Equation 14 with the fitting coefficients in Table 2. Because of heterogeneous particle interactions at 
ϕ = 10% and Δη = 10, some elongate, while others adopt a rotational behavior (Figures 4 and 6g). To produce 
an accurate estimate of the orientation for this case, the forward model should run to larger deformation to 
study whether the aggregate fully develops an L-type fabric or reaches an stationary average rotational state.

5. Discussion
The kinematics of porphyroclasts are known to be sensitive to the rheology of the surrounding matrix (e.g., 
Passchier & Sokoutis, 1993). Additionally, rock-analogue experiments of isolated ellipsoidal and rhomboi-
dal rigid inclusions suggest that a slipping boundary between the inclusion and the matrix is essential 
to attain a stable configuration (Mancktelow et  al.,  2002), otherwise the inclusion continuously rotates. 
These observations are in agreement with our models, with perfect coherence between the inclusions and 
the matrix, for (a) an isolated rigid inclusion, and (b) rigid inclusions of at least two orders of magnitude 
stiffer than the matrix, where a stable configuration is not reached. At moderately low viscosity contrast 
(Δη < 102), instead, we observe the development of a strong SPO. The fabric development rate is strongly 
related to the volume fraction of the rigid phase: in densely populated aggregates, channels of high-strain-
rate, weak matrix form in between nearby inclusions, inhibiting the rotation and accelerating the inclusion 
elongation. Large finite strain (γ ≫ 20) is required to reach a stable configuration at low volume fractions. 
The inclination of the SPO increases with increasing Δη (e.g., about 8° at Δη = 10, and 25° at Δη = 50, both 
with ϕ = 30%). Therefore, the angle α may be used as a proxy for the aggregate rheology. We note that rhe-
ological non-linearities, such as dislocation creep or clast fracturing, and the degree of coherence between 
matrix and inclusions (Ceriani et al., 2003; Mancktelow et al., 2002) may significantly influence the kine-
matic behavior of the inclusions. These parameters should be included in future numerical simulations to 
better constrain the dynamics of matrix-inclusions systems.

When ϕ < 30%, rigid particles tend to concentrate away from the sliding rigid plates and toward the center 
of the model domain due to the Bagnold effect (Komar, 1972; Figures 6a, 6b, 6d, and 6e). This is consistent 
with the progressively larger concentration of phenocrystals and clasts observed toward the center of, re-
spectively, magmatic dikes (Komar, 1972) and pseudotachylite veins (Di Toro & Pennacchioni, 2004). How-
ever, the latter result is not applicable to deforming viscous rocks where rigid walls are absent and a more 
homogeneous distribution of the harder inclusions is expected (as in models with ϕ = 30%; Figures 6c, 
6f–6i). In contrast, weak inclusions are not affected substantially by the model boundary conditions and 
setup, and the modeled structures are likely representative of real composites. For instance, the L-S fabrics 
obtained in models with weak inclusions and low ϕ (Figures 2a, 2d, and 2g) are strikingly consistent with 
those of bubble-bearing magma sheared at large strains (Caricchi et al., 2011).

More generally, the modeled fabrics display several similarities with those observed in natural and exper-
imentally deformed samples, which suggests the 3D models are capable of capturing, at least to a first 
order, the mechanical behavior of these composites. For example, intensively sheared gneiss rocks of the 

ζ ξ χ θ R2

r1(ϕ = 10%, Δη = 10) −0.006131 0.458978 −0.125306 −0.083918 0.957

r2(ϕ = 10%, Δη = 10) 0.000512 −0.319324 0.185224 −0.306101 0.971

r1(ϕ = 20%, Δη = 10) −0.000913 0.389964 −0.056822 0.1010262 0.999

r2(ϕ = 20%, Δη = 10) 0.002493 0.296955 0.271349 −0.2545942 0.997

r1(ϕ = 30%, Δη = 10) 0.000295 0.372009 −0.070759 0.2408665 0.997

r2(ϕ = 30%, Δη = 10) 0.005547 0.266632 0.271325 −0.1762204 0.997

α(ϕ = 20%, Δη = 10) 1.020180 - - - 0.951

α(ϕ = 30%, Δη = 10) 1.043904 - - - 0.973

Table 2 
Fitting Parameters ζ, ξ, χ, θ and Their Associated R2 Values, for the Fits Corresponding to the Average Shape (ri, 
Equation 11) and Inclusion Orientation (α, Equation 14) of Aggregates With a Strong Inclusions
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continental crust are frequently characterized by elongated ribbons of harder feldspar grains surrounded 
by flattened and laterally irregular domains of weaker mica and quartz. This might indicate that in these 
cases the viscosity contrast between these minerals is 𝐴𝐴 𝐴 102 (Figures 6h and 6i) and the extrinsic viscous 
anisotropy is small (Figures 9a, and 9b). The numerical models reproduce the fabrics, strain weakening 
and strain partitioning in sheared synthetic samples representative of two-phase mantle aggregates (e.g., 
Girard et al., 2016), but a direct comparison to mantle rocks samples is difficult, as outcrops of the latter are 
generally part of the exhumed lithosphere, and hence they are not entirely representative of the deep and 
hot mantle where a more diffused and long-lasting deformation accommodated by high-T creep takes place.

Recent numerical studies demonstrated that anisotropy related to lattice preferred orientation (LPO) in 
olivine crystals can yield a weakening of about ω = 30% in the shear direction, and up to one order of 
magnitude viscosity variations depending on the dominant slip system (Király et al., 2020). The weakening 
is thus about a half of the predicted by SPO in our models, while the directional variations linked to LPO 
claimed by Király et al. (2020) can be up to two larger than what observed in our two-phase aggregates and 
DEM models (Figure 7). This implies that an aggregate with mechanically anisotropic crystals should be 
more susceptible to changes in flow directions than when only isotropic SPO-related fabrics are present.

2D numerical simulations (Dabrowski et al., 2012; Thielmann et al., 2020) show that strain progressively lo-
calizes in the weak inclusions as they elongate under simple shear deformation, considerably weakening the 
bulk composite before developing a network of fully interconnected weak planes. This implies a fabric ma-
turity-dependent transition from a load-bearing framework to a network of interconnected weak layers. The 
weakening resulting from the compositional layer has been invoked to inhibit the mixing of material in the 
lowermost mantle (Ballmer et al., 2017) and enhance the connection between the upper and lower mantle 
through narrow conduits of rapidly ascending hot material (Christensen, 1987). The layering and strain-sof-
tening behavior of composites is well-reproduced by 3D models. However, our results suggest that weakening 
related to compositional layering is considerably less than reported by 2D plane-strain simulations.

Plane strain implies that the model is infinitely continuous along the direction orthogonal to the 2D 
cross-section. In other words, the inclusions in 2D representations of two-phase aggregates are continu-
ous fibers of infinite length. The maximum reduction in normalized bulk viscosity, the evolution of the 
shear-parallel viscosity and the inclusion morphology are compared in Figures  8b and  11 for an aggre-
gate with initially spherical inclusions and an aggregate with full-width cylindrical inclusions (ϕ = 20% 
and different Δη). Both model set-ups yield comparable cross-section morphologies (Figures 11c and 11d), 
which are comparable to the 2D morphologies in Dabrowski et al. (2012) and Thielmann et al. (2020).

The weakening observed in the model with cylindrical inclusions (Figure 11a) is also within the range of 
weakening of 2D models, and amounts to max. 60–80%. However, perfect inter-connectivity in the Y-di-
rection has a strong influence on the effective viscosity of the composite and the strength of models with a 
more realistic 3D set-up quickly diverges from the plane-strain approximation at γ > 2. Plane strain models 
overestimate the amount of weakening by about 25% at Δη of one order of magnitude. The overestimation 
of weakening increases exponentially with increasing Δη between coexisting phases, predicting a three-
times weaker composite for Δη of three orders of magnitude. Structural weakening ωstruct (i.e., ratio between 
the bulk minimum and initial viscosities) is also significantly exaggerated by plane strain, which yields 
between 60% and 85% of ωstruct at Δη = 10−1 and Δη = 10−3, respectively. In contrast, only about 30% and 60% 
of ωstruct is predicted by models with spherical inclusions. This comparison shows that while 2D models are 
a valid tool to provide first-order insights on highly 3D problems, the quantitative results should be taken 
with caution and further 3D studies with increasing degrees of complexity are required to better constrain 
the dynamics of multi-phase aggregates.

In this work, we considered only two-phase aggregates with isolated spherical inclusions of equal dimen-
sionless radius 0.1. As discussed in Section 3.3, although this geometry is a good proxy for many relevant 
cases, two-phase aggregates may be comprised by overlapping inclusions forming heterogeneous clusters 
of random shape, such as the synthesized ferropericlase samples from Yamazaki et al.  (2009). To assess 
the effect of overlapping inclusions and inclusion size, we ran two additional sets of experiments with: (a) 
spherical inclusions of equal radius 0.05 and 0.025; and, (b) random heterogeneous random media with a 
morphology such that the aggregate is statistically isotropic (Figure S5). To generate the latter models, we 
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use the statistical approach developed by Thielmann et al. (2020), and the average inclusion radii is 0.05 and 
0.025. These models are run only with Δη = 10−1 and 10−2, and ϕ = 20%. The evolution of the normalized 
effective viscosity (Figure 12) shows that the size and shape distribution of the inclusion phase does not 
dominate the aggregate rheology, which is mainly determined by the volume fraction of the weak phase. 
The early onset of post-weakening hardening in aggregates with inclusions of r = 0.025 is triggered by in-
clusion segmentation and/or loss of vertical resolution (Figure S5d).

The extrinsic anisotropy of two-phase composites with weak inclusions, and strong inclusions with low 
viscosity variations between coexisting phases, is well-predicted by the DEM. The estimated viscous tensor 
given by the DEM is particularly accurate at low strain. The DEM overestimates the amount of weakening 
by a factor of 0.1–0.15 at large strain because deformation is not equally partitioned among individual 
inclusions and the average fabric defined by the FSEE does not perfectly represent the morphology of the 
composite. The fabrics developed in our models are well predicted as a function of bulk deformation. This, 
combined with the DEM, provides a simple framework to forecast the extrinsic anisotropy for a wide range 
of geological applications. The set of parameterizations proposed here are calibrated for a linear Newtonian 
rheology, simple shear deformation, and relatively low finite deformation. The validity of the proposed 
parameterization under different conditions (e.g., for composites deforming by power-law creep such as 
dislocation creep, or deforming during different bulk strain geometry) is to be explored. On top of this, the 
deformation fabric may be destroyed, causing an increase in the bulk viscosity, by different microstructural 
processes: (a) post kinematic annealing at low strain; (b) phase mixing related to dissolution/precipitation, 
nucleation and cavitation processes (e.g., Skemer et al., 2010; Kilian et al., 2011) at high strain; and, (c) as a 
result of partial melting of the aggregate.

Figure 11. (a) Evolution of the normalized effective viscosity for two-phase aggregates with spherical (solid lines) and cylindrical (dashed lines) inclusions. (b) 
Evolution of the ratio between the effective viscosity of two-phase aggregates with cylindrical and spherical inclusions. Cross section along the plane orthogonal 
to the Y-axis for (c) spherical and (d) cylindrical inclusions for Δη = 10−2 at γ = 4.2. The gray and black colors indicate the matrix and inclusion phases, 
respectively, and the black arrows indicate the sense of shear. The volume fraction of the weak phase is 0.2.
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6. Conclusions
We present a method to predict the viscous anisotropy of two-phase aggregates in simple shear deformation 
by combining numerical simulations and analytical solutions. Numerical models are used to simulate the 
development of 3D fabrics and quantify viscous anisotropy linked to SPO of two-phase (matrix and inclu-
sion) aggregates. A range of geologically relevant inclusion volume fractions and viscosity contrasts have 
been considered.

Weak inclusions quickly flatten with increasing bulk strain and grow laterally forming a complex network 
of weak thin layers where most strain localizes. The aggregate is progressively weakened in the flow direc-
tion, reducing the strength of the aggregates by up to 80% relative to that of the matrix at moderate-to-high 
volume fractions of the weak inclusions and large viscosity contrasts. The structural weakening of the ag-
gregate is lower, reaching a maximum value of about 60% with respect to the undeformed aggregate effec-
tive viscosity. The models suggest that this maximum weakening occurs at viscosity contrasts of two orders 
of magnitude. With the matrix-inclusion distributions considered here, the resulting system of equations 
becomes ill-posed at higher viscosity contrasts. Further improvement on the stability of linear solvers is 
necessary to confirm the latter observation from a numerical point of view.

In aggregates with strong inclusions, a linear fabric develops at low viscosity contrasts, and the inclusions 
remain largely undeformed at moderate-to-large viscosity contrasts. The strength of the aggregate remains 
roughly constant even at high strain.

The anisotropic viscosity of two-phase aggregates with weak inclusions, as well as aggregates with inclu-
sions slightly stiffer than the surrounding matrix, is in good agreement with the solution of the DEM using 
an average shape and orientation of the fabric. Quantification of the anisotropic viscous tensor is of para-
mount importance for large scale geodynamic simulations since numerical limitations do not allow for a 
direct representation of multi-phase aggregates.

The fabric shape and orientation of weak laminar fabrics is approximately proportional to bulk deformation 
in a linear manner, while high-order polynomials are needed to approximate the development of L-type 
fabrics. A combination of this parameterization with the DEM might be used to retrieve the anisotropic 
viscosity of the aggregate. Future work will implement this methodology to obtain the viscous tensor in 
modern geodynamic codes to explore the effects of viscous anisotropy on global mantle convection patterns 
and other large scale geodynamic processes.

Figure 12. Evolution of the normalized effective viscosity with increasing deformation for aggregates with spherical inclusions with equal radius 0.1, 0.05, and 
0.025, and heterogeneous random structures with average radius 0.05, and 0.025. The volume fraction of the inclusion phase is 20%.
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Appendix A: Ideally Layered Two-Phase Aggregate
The model set up consist of a weak horizontal layer of unit length in the x and y directions and thickness 
0.05, embedded in the center of a unit length cubic matrix. Two rigid plates of thickness 0.08 are added to 
the top and bottom faces of the matrix. The viscosity of the matrix and layer is ηm = 103 and ηi = 1, respec-
tively. The shear components of the anisotropic viscosity are retrieved by imposing simple shear deforma-
tion on the model and solving the instantaneous flow. Unitary velocity vtop = (1, 0, 0) and vbot = (−1, 0, 0) 
are imposed in the upper and lower rigid plates, respectively, while the vertical faces of the domain are 
periodic. The effective viscosity of the model corresponds to the shear anisotropic viscosity ηxz. The ηyz and 
ηxy viscosities are obtained by rotating the weak layer and strong matrix along the X and Y axis, respectively, 
before solving the Stokes equation. The normal anisotropic viscosity components are obtained by imposing 
pure shear deformation on the aggregate. In this case, unitary velocity vtop = (0, 0, −1) and vright = (1, 0, 0) 
are imposed in the upper and right faces of the domain, respectively, while free-slip boundary condition is 
imposed in the remaining faces. The effective viscosity of the model corresponds to the normal component 
of the anisotropic tensor ηxx. As in the simple shear experiments, the normal components ηyy and ηzz are 
obtained by rotating the weak layer and strong matrix along the x- and y-axis, respectively, and solving the 
instantaneous flow. For the pure shear experiments, the rigid plates are removed.

The left-hand-side panel of Figure A1 shows a comparison between the normalized anisotropic viscosity 
obtained from the 3D model and the Voigt and Reuss bounds. As expected for a composite with a pseu-
do-infinite weak layer, the normal viscosity components and ηxy closely follow the Voigt limit, while ηyz and 
ηxz match the Reuss bound (Figure A1a). In this particular case where the geometry of the weak layer is 
perfectly determined, the anisotropic viscosity of the 3D model is extremely well predicted by the DEM (Fig-
ure A1b), with relative errors below 1%. The mismatch between the 3D models and the DEM is because the 
DEM can not be solved for a perfectly layered composite. Here, we solved the DEM considering an inclusion 
with semi-axes a1 = a2 = 103 and a3 = 0.05.

Appendix B: Differential Effective Method and Numerical Implementation
We use a Julia package (de Montserrat, 2021) to calculate the anisotropic tensor by solving Equation 5. The 
computational cost of solving Equation 5 is heavily dominated by the integration of the Green interaction 
fourth order tensor, Equation 8. As a result, the calculation of the viscous tensor for a single aggregate is on 
the order of seconds for few computations (Figure B1) and increases linearly with the number of calcula-
tions. The calculation of the viscous tensor can be easily parallelized at the coarsest level over several CPU 
(Figure B1). However, solving the DEM on-the-fly remains not viable even after scaling to several hundreds 
of CPUs, given that the viscosity tensor is easily required to be computed at millions-to-billions points. The 
Green interaction tensor is integrated using a trapezoidal rule over two dimensions. Alternatively, M. Qu 
et al. (2016) employed different combinations of optimal integration quadratures. However, this approach 

Figure A1. (a) Normalized components of the anisotropic viscous tensor and the Voigt and Reuss bounds. b) absolute relative error between the anisotropic 
viscous tensor recovered from the 3D models and the solution of the DEM equation. The matrix is 103 more viscous than the weak layer.
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is considerably outperformed by our implementation since less integration points are required to obtain an 
accurate solution within the range of inclusion shapes found in our models. As a computationally viable 
alternative, one can build a database of viscous tensors solving Equation 5 for a given range of physical 
parameters.

Data Availability Statement
The model output data shown in Movies S1, S2 and S3 and post-processing script are publicly available 
(https://doi.org/10.6084/m9.figshare.14431460.v1).
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