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Abstract. In “Mathematics is megethology,” Lewis reconstructs set theory using mereology and
plural quantification (MPQ). In his recontruction he assumes from the beginning that there is an
infinite plurality of atoms, whose size is equivalent to that of the set theoretical universe. Since this
assumption is far beyond the basic axioms of mereology, it might seem that MPQ do not play any role
in order to guarantee the existence of a large infinity of objects. However, we intend to demonstrate
that mereology and plural quantification are, in some ways, particularly relevant to a certain con-
ception of the infinite. More precisely, though the principles of mereology and plural quantification
do not guarantee the existence of an infinite number of objects, nevertheless, once the existence of
any infinite object is admitted, they are able to assure the existence of an uncountable infinity of
objects. So, if—as Lewis maintains—MPQ were parts of logic, the implausible consequence would
follow that, given a countable infinity of individuals, logic would be able to guarantee an uncountable
infinity of objects.

§1. Introduction. In “Mathematics is megethology” Lewis (1993) reconstructs set
theory using mereology and plural quantification (hereafter: MPQ). Lewis assumes from
the beginning that there is an infinite plurality of atoms, whose size is equivalent to that
of the set theoretical universe. So, it might seem that MPQ, though they supply a suitable
language for reconstructing set theory, nevertheless they do not play any role in order to
guarantee the existence of a large infinity of objects.

On the contrary, we intend to demonstrate that MPQ are, in some ways, particularly
relevant to a certain conception of the infinite. More precisely, though the principles of
MPQ do not guarantee the existence of an infinite number of objects, nevertheless, once
the existence of any infinite object is admitted, they are able to assure the existence of an
uncountable infinity of objects.1

We divide our paper into the following sections. In Section 2, we will briefly review
the crucial assumptions underlying Lewis’ reconstruction of set theory. In Section 3 we
will construct a mereological model of the power set of any plurality of pairwise nonover-
lapping individuals and show that any infinite individual has uncountably many parts. In
Section 4, we will make some final remarks on the alleged innocence of MPQ, on its
significance for the conception of the infinite and on the problem of impredicativity of the
uncountably infinite.

§2. Lewis’ megethology. “Mereology,” literally the “science of parts,” analyzes the
relation “. . . is a part of . . . .” There are different formulations of mereology depending on
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1 For an analysis of the power of MPQ see also Geoffrey Hellman’s development of modal-

structuralism in Hellman (1996).
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ON THE INFINITE IN MEREOLOGY WITH PLURAL QUANTIFICATION 55

the language adopted (for a general introduction see Simons, 2000, and Burkhardt et al.,
2009). Since we intend to consider Lewis’ reconstruction of set theory with mereology,
we will utilize his formulation, which is suited to the relevant aspects of the problem we
are analyzing. Lewis treats mereology in a plural language, a language extending that of
first-order logic, including singular and plural reference and singular and plural quantifi-
cation (for a modified proposal of megethology see Martino, 1996). Plural quantification
is a reinterpretation of the second-order monadic logic proposed by Boolos (1984, 1985).
In Boolos’ perspective second-order monadic logic is ontologically innocent. Contrary to
the most accredited view, it does not entail any commitment to classes or to properties but
only to individuals, as first-order logic does. According to Boolos’ interpretation, second-
order quantification differs from first-order only in that it refers to individuals plurally,
while the latter refers to individuals singularly.

By combining mereology with plural quantification, Lewis introduces megethology, a
powerful framework in which one can formulate strong assumptions about the size of the
universe of individuals (corresponding to the existence of strongly inaccessible cardinals).
Within this framework, Lewis develops a structuralist class theory, in which the role of
classes is played by certain fusions of atoms and the membership relation is defined in
mereological terms.

Lewis’ megethology can be formalized into a first-order language with identity with two
sorts of variables:

Singular variables: x, y. . .
Plural variables: X, Y . . .

We introduce the primitive nonlogical constants:

≤: x ≤ y is to be read “x is part of y”;
η : xηX is to be read “x is one of Xs.”

We define:

x < y (x is a proper part of y) ifd f (x ≤ y ∧ x �= y);
x is an atom ifd f it has no proper parts;
X � Y (the Xs are among the Ys) ifd f ∀x(xηX → xηY );
X ¡ Y (the Xs are among, but not all, the Ys) ifd f (X � Y ∧ X �= Y );
X 	Y (the sum of the Xs and the Ys) is the plurality Z such that ∀x(xηZ↔xηX ∨ xηY );
x ◦ y (x overlaps y) ifd f ∃z(z ≤ x ∧ z ≤ y)
y is a sum of the Xs, in symbols σX, ifd f each of the Xs is a part of y and each part of y

overlaps one of the Xs. Formally:
∀x(xηX → x ≤ y) ∧ ∀x(x ≤ y → ∃z(zηX ∧ x ◦ z)
πX (the product of the Xs) is the fusion of all common parts of all the Xs, provided there

is at least one part common to all the Xs.

We will first introduce the axioms for mereology:

AXIOM 2.1. ≤ is a partial order (reflexive, antisymmetric, transitive).

AXIOM 2.2 (ATOMICITY). Every individual has an atomic part.

AXIOM 2.3. For every X there is a unique sum of the Xs.

From Axioms 2.2 and 2.3 it straightforwardly follows that every individual is the fusion
of its atoms.

Besides, the crucial comprehension for pluralities:
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56 MASSIMILIANO CARRARA AND ENRICO MARTINO

PCA 2.4. Given any formula φ of our language, satisfied by at least an individual, there
is the plurality of all individuals satisfying it:

∃xφ → ∃X∀x(xηX ↔ φ)

Finally, we list Lewis’ definitions and axioms concerning the size of the universe.

Definitions:

An individual is small ifd f there is no bijection between its atoms and all atoms of the
universe V;

A plurality X is small ifd f there is no bijection between the Xs and all atoms of the
universe V;

An individual x is infinite ifd f there is a bijection between its atoms and the atoms of a
proper part of x.

Axioms:

AXIOM 2.5. The fusion of few small things is small.

AXIOM 2.6. The parts of a small thing are few.

AXIOM 2.7. Something small is infinite.

§3. Uncountable infinity. Lewis’ axioms on the size of the universe are very strong.
They assure the existence of so large an infinity of atoms that it is adequate to represent all
sets of the usual set theory.2 In particular, from the assumptions:

AXIOM 2.2 (ATOMICITY). Every individual has an atomic part,

AXIOM 2.7. Some small individual is infinite

it follows immediately that the universe of atoms is uncountable.
Although the foregoing axioms are expressible in the language of mereology and plu-

ralities, they are not concerned with either in the sense that they are extraneous to the
characterization of both mereology and pluralities. Therefore, they fail to bring to light
how the combination of mereology and pluralities affects the concept of the infinite. Of
course, such a combination fails to guarantee the existence of infinitely many individuals.
However, we want to show that, under the assumption of an infinity of individuals, mere-
ology, with or without atoms, and plural quantification are able to guarantee the existence
of an uncountable infinity of individuals.

We begin by presenting an informal exposition of the argument based on the intuitive no-
tion of infinite, in particular of the countable infinite. Subsequently, we will bring forward
the axioms of mereology and plural quantification that are suitable for the formalization.

LEMMA 3.1. If there are infinitely many individuals, then there are infinitely many
pairwise nonoverlapping individuals.

Proof. Suppose there are infinitely many individuals. We distinguish two cases:

Case 1) Every individual has an atomic part.
Since every individual is the fusion of its atoms, there are are infinitely many atoms,

which are obviously pairwise nonoverlapping.

2 Lewis himself shows that from his axioms follows that “the small parts of reality are barily many”
(in Lewis, 1993, p. 19). This means that the small parts of reality (which play the role of sets) are
as many as the totality of atoms.
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Case 2) Some individuals have no atomic part.

Let x be such an individual. Then there is a countable infinity of individuals x0, x1 . . . ,
xn . . . where x0 = x and, for all n ∈ N, xn+1 is a proper part of xn. The relative comple-
ments, x0– x1,. . . xn– xn+1,. . . , are pairwise nonoverlapping. �

THEOREM 3.2. Let X be a countable plurality of pairwise nonoverlapping individuals
x0, x1 . . . , xn. . . The plurality Y of all fusions of some of the Xs is uncountable.

Proof. Suppose, by reduction, that there are only countably many Ys: y0, y1 . . . , yn. . . .
Let y be the fusion of x0 and all xn that are not part of yn-1 (for n > 1). Since, for all n, xn+1

is a part of y iff it is not part of yn, it follows that, for all n, y �= yn. �
It follows that, provided there are infinitely many individuals, there are uncountably

many individuals.
We want to show that our argument rests on very intuitive axioms of mereology and

plural quantification. To the purpose we will reformulate the axioms and definitions of
MPQ, as well as the definition of infinite, as follows.

AXIOM 3.3. ≤ is a weak partial order (reflexive, antisymmetric, transitive).

AXIOM 3.4. For any plurality X of individuals, there is a unique individual x such that
each individual overlaps x iff it overlaps at least one of the Xs. x is the sum (or fusion) of
the Xs, in symbols x = σX.

The sum of two individuals x, y will be indicated by x + y.

COROLLARY 3.5. If x is a proper part of y, then some part of y does not overlap x.

Proof. Suppose, by way of contradiction, that every part of y overlaps x. Then both x
and y are the sum of the plurality formed by x alone, against the uniqueness of the sum. �

AXIOM 3.6. If there is a part common to all Xs, then there is an x such that, for all y, y is
a part of x iff it is part of each one of the Xs. Such an x, necessarily unique, is the product of
the Xs, in symbols x = πX. The product of two individuals x and y will be indicated by x · y.

THEOREM 3.7. σX is the least upper bound of the Xs, that is, for all y, σX is part of y iff
each of the Xs is part of y.

Proof. Suppose that each of the Xs is part of y. Assume, by reduction, that σX is not
part of y. Since y overlaps all Xs, σX overlaps y. So y · σ X is a proper part of σX and,
by Corollary 3.5, there is a part z of σX that does not overlap y · σ X , whence it does not
overlap y. However, since z overlaps σX, it must overlap one of the Xs, which is absurd
because the Xs are parts of y. So σX is part of y.

Vice versa let σX be a part of y. Suppose, by reduction, that some x is such that xηX and
x � y . By Corollary 3.5 there is a z ≤ x nonoverlapping y; but this is absurd, because z
must overlap σX which is part of y. �

THEOREM 3.8. If y is not part of x, then there is a unique z such that x and z are
nonoverlapping and y = x · y + z (if x and y are nonoverlapping, y = z). z is the relative
complement of x in y and is indicated by y − x.

Proof. Suppose that x overlaps y. x · y is a proper part of y. So there is some part of
y which does not overlap x · y. Let z be the the sum of all the parts of y nonoverlapping
x · y. So z is a part of y which does not overlap x · y. Suppose, by reduction, that x · y + z
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58 MASSIMILIANO CARRARA AND ENRICO MARTINO

is a proper part of y. Then there is a part u of y which does not overlap x · y + z and
therefore does not overlap x · y. By construction of z, u overlaps z, so u overlaps x · y + z,
contradiction �

Besides, we will exploit the crucial axiom of pluralities, the comprehension principle:

AXIOM 3.9 (COMPREHENSION PRINCIPLE). The individuals satisfying any formula of
the formal language (satisfied by at least one individual) form a plurality.

We do not assume the notion of ordered pair as primitive in order to mereologically
reproduce the notion of function. Instead, we will define a restricted notion of ordered pair,
suitable for our purposes, in mereological terms, without introducing any axiom ad hoc.

DEFINITION 3.10. An individual a is infinite if there is a plurality X of parts of a such
that, for all xηX , there is a yηX such that y < x.

DEFINITION 3.11. Let X be a plurality and let xηX, yηX. y is a close X-part of x, in
symbols y �X x, if y < x and there is no zηX such that y < z < x.

AXIOM 3.12 (CHOICE). Let X be a plurality such that, for all xηX, there is a yηX such
that y < x. Then there is a plurality Y � X such that, for all yηY , there is a unique zηY
such that z �Y y.3

DEFINITION 3.13. Two pluralities X, Y are separate if no xηX, yηY are overlapping.
If X and Y are separate, an X-Y-pair is the sum x + y of an xηX and a yηY. x is the
X-component, y the Y-component of the pair.

THEOREM 3.14. Let X, Y be separate. Two X-Y-pairs x + y, x ′ + y′ are identical iff
x = x ′, y = y′.

Proof. Suppose x + y = x ′ + y′. We want to show that x ′ ≤ x . Assume, by reduction,
that x ′ � x . Let z = x ′ − x . So, x ′ = x · x ′ + z. Since z ≤ x ′ + y′ = x + y, z must
overlap x or y; but it cannot overlap x because z is the relative complement of x in x ′ and
it cannot overlap y because x ′ does not overlap y. This is absurd. So, x ′ ≤ x . Similarly
x ≤ x ′, whence x = x ′. Analogously y = y′. �

DEFINITION 3.15. A relation between two separate pluralities X, Y is any plurality R of
X-Y-pairs. A function from X to Y is a relation satisfying the usual conditions of uniqueness.
If f is a function from X to Y, we use the familiar notation f(x) to indicate the unique y such
that (x + y)η f . We define injections, surjections, and bijections with the usual restrictions.

DEFINITION 3.16. Let X, Y be separate pluralities. The size of X is identical to the size
of Y if there is a bijection of X to Y. The size of X is smaller than that of Y if there is an
injection but no bijection of X to Y.

OBSERVATION 3.17. The set N of natural numbers satisfies the following condition:
there are three subsets of N α, β, γ such that

3 Observe that, dealing with arbitrary pluralities of individuals, our axiom of choice is quite evident.
For, the Ys can be selected from the Xs by performing infinitely many acts of choice. And it
is implicit in the notion of plurality that, however certain individuals are chosen, they form a
plurality (not so in set theory, where the mere existence of certain individuals does not guarantee
that they form a set). For a discussion of different versions of the axiom of choice in the framework
of plural quantification see Pollard (1988).
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ON THE INFINITE IN MEREOLOGY WITH PLURAL QUANTIFICATION 59

(i) α and β are disjoint, γ ⊂ β;

(ii) there is a bijection f of α to β and a bijection g of α to γ . (Take, for instance, α =
the set of even numbers, β = the set of odd numbers, γ = the set of odd numbers
> 1, f(n) = n + 1, g(n) = n + 3).

The clauses (i) and (ii) of Observation 3.17, suitable for a characterization of the infinite,
suggest the following definition:

DEFINITION 3.18. A plurality X of pairwise nonoverlapping individuals is infinite if
there are pluralities Y, Z, U such that:

(i) Y, Z are separate, Y 	 Z = X, U ¡ Z;

(ii) There are bijections f: Y → Z , g: Y → U.

Let X be an infinite plurality of pairwise nonoverlapping individuals and let Y , Z ,
U , f , g be as above. Keeping the meaning of these symbols fixed, we will construct a
mereological model of the sets of Ys.

Let jη(Z − U ) be an arbitrary fixed individual. Take as a set j alone or the sum of j
with some of the Ys. If α is a set and yηY , y is a member of α, in symbols y ∈ α, ifd f.

y ≤ α. Thus, j is the empty set ∅ and j + y is the singleton {y} of y.

EXTENSIONALITY 3.19. If two sets α and β have the same members, they are identical.

Proof. Suppose that α and β have the same members. Since α is the sum of j and
(possibly) some of the Ys and these are parts of β, it follows that α ≤ β. Likewise β ≤ α,
whence α = β. �

COMPREHENSION 3.20. Any Ys form a set. More precisely, if H is any plurality of Ys,
there is a set α such that, for all yηY , yηH iff y ∈ α.

Proof. Let α be the sum of j and the Hs. Thus, anyone of the Hs is a member of α.
Vice versa, if y ∈ α, then y ≤ α . Hence y overlaps j or one of the Hs. As the Ys are

pairwise nonoverlapping and y �= j , y must be one of the Hs. �
From the comprehension principle for pluralities it follows immediately that:

COROLLARY 3.21. The Ys satisfying any formula of the language form a set.

UNION 3.22. For any plurality H of sets, there is a set α such that, for all yηY , y ∈ α
iff it belongs to some of the Hs. α is the union of the Hs, in symbols α = ∪H .

Proof. α is the sum of j and all members of the Hs. �
We will give a mereological reconstruction of Cantor’s theorem.
To the purpose, define the ordered pairs of Ys as follows: if y1, y2ηY , define the ordered

pair (y1, y2) as y1+ g(y2). We can assume, without loss of generality, that there is a
j
′
η(Z − U ), j

′ �= j , and extend g by putting g(j) = j
′
. We can now extend in an

obvious way the notion of ordered pair to the plurality Y* of all sums of individuals in
the plurality ( j 	 H ). So we can recover the notion of function (understood as a plurality of
ordered pairs) between any two subpluralities of Y* and we can compare the sizes of such
pluralities.

We can now reproduce the well-known proof of Cantor’s theorem:

THEOREM 3.23. The plurality S of all sets of Ys is larger than Y.

Proof. We will show that there is an injection but no bijection from Y to S.
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(i) The plurality of ordered pairs of form (y,{y}) is the required injection.

(ii) Suppose, by way of reduction, that h is a bijection from Y onto S. Let α = {y :
y /∈ h(y)} and let aηY be such that h(a) = α. It turns out that a ∈ α iff a /∈ α,
contradiction. Therefore there can be no such bijection. �

DEFINITION 3.24. An infinite subplurality K of Y* is countable ifd f it is bijective with
any of its infinite subpluralities.

COROLLARY 3.25. S is uncountable.

THEOREM 3.26. If a is infinite, there is an infinite plurality of pairwise nonoverlapping
parts of a.

Proof. By the axiom of choice, there is a plurality X of parts of a such that, for all xηX ,
there is a unique yηX such that y �X x . Let bηX and cηX be such that c � b and define
Y as the least plurality satisfying the following clauses:

(i) (b − c)ηY ;

(ii) if(x − y)ηY , where y �X x and z �X y, then (y − z)ηY .

It is easily seen that Y is an infinite plurality of pairwise nonoverlapping parts of a. For,
one can order Y as the natural numbers, taking (b − c) as 0 and (y − z) as the successor of
(x − y) and argue as we did for the natural numbers.4 �

From Theorems 3.23, 3.26 it follows that:

THEOREM 3.27. There are uncountably many parts of any infinite individual.

§4. Concluding remarks. Lewis maintains that mereology is ontologically innocent.
In particular, he argues that, unlike set theoretical membership, the existence of the mere-
ological sum of any plurality X of individuals does not commit to the existence of any
new individual beyond the Xs. On the other hand, he clearly treats the sum of the Xs as
an outright individual, different (in general) from all Xs. In contrast, he does not regard a
plurality X as a singular individual (any talk of X as a single entity is to be understood as
a mere linguistic device to talk of the Xs plurally). “Plural quantification is innocent: we
have many things, we do mention one thing that is the many taken together. Mereology
is innocent in a different way: we have many things, we do mention one thing that is the
many taken together, but this one thing is nothing different from the many” (Lewis, 1991,
p. 87).

How can it be that this single thing is nothing different from the many? Of course, Lewis’
claim, literally understood, would be contradictory. We think that it is to be understood in
the sense that whoever accepts the existence of the Xs, commits oneself automatically to
the existence of their sum (for a more detailed discussion of the innocence of mereology
see Carrara & Martino, 2009).

By virtue of Theorem 3.27, this entails that the acceptance of the countably infinite forces
one to accept the uncountably infinite as well.

4 Assuming the axiom of atomicity 2.2 one can avoid the axiom of choice. For, since atoms
are pairwise nonoverlapping, one can trivially obtain Theorem 3.26 by redefining the infinity
of an individual as follows: a is infinite ifd f it has infinitely many atoms (according to
Definition 3.18).
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However, the history of the philosophy of mathematics seems to show that the claim
that any infinite is countable can be held within a respectable conception of mathemat-
ics. Such famous advocates as Kronecker, Poincaré and Skolem, among others, have de-
fended this claim. Besides, having recovered the notion of ordered pair for the plurality
S of the sets of Ys, the continuum hypothesis CH is formulable in our language, so that
the standard interpretation of the primitives of MPQ determines whether there are in-
termediate infinities between the countable and the continuum. The truth or falsity of
CH is a typical set theoretical question that seems to transcend the frame of pure
logic.5

Thus, the alleged innocence of mereology, in particular Lewis’ thesis that mereology is
part of logic (see Lewis, 1991, pp. 81–82), seems highly implausible. As already observed
in Section 3, the fact that the universe cannot be countably infinite trivially follows from
Lewis’ axiom of infinity 2.7, according to which some infinite individual is small. But we
want to stress again that Axiom 2.7, though expressed in the language of mereology with
plural quantification, is an axiom neither of mereology nor of plural quantification. It is
an axiom about the size of the universe that assumes that the universe is uncountable. So,
even under Lewis’ assumption that mereology and plural quantification are part of pure
logic, using that axiom to show the existence of an uncountable infinity does not justify
the conclusion that the existence of the latter is a logical consequence of the existence
of a countable one. In contrast, the interest of our approach is that such conclusion can
be justified by a minimal stock of basic axioms concerning only mereology and plural
monadic quantification. The severe constraints of the axioms used in our deduction have
been essential in order to enlighten the commitment to the infinite implicit in Lewis’
alleged logic.

On the other hand, the notion of the infinite supported by MPQ is much weaker than
that supported by general set theory. Mereology, unlike set theory, does not guarantee that,
given any infinite, there is always a larger infinite. As we saw, mereology assures that,
given any infinite plurality, there is also a countable plurality of pairwise nonoverlapping
individuals, and that, given any plurality of pairwise nonoverlapping individuals, there
exists a larger plurality of individuals. However, there is no evidence that these latter might
be pairwise nonoverlapping, so that the reiteration of our procedure for finding a larger
plurality is prevented.

This fact supplies a very intuitive solution to Cantor’s paradox: the size of the universe
of all individuals is larger than that of every plurality of pairwise nonoverlapping individ-
uals. As far as we know, our axioms may be consistent with the conjecture that there are
only two sizes of infinite: the countable and the continuum.6 If so, MPQ might support
an interesting conception of the infinite, intermediate between the countable and the set
theoretical.

Finally, observe that the crucial axiom of sums (3.4), far from being ontologically
innocent, helps to explicate the very strong ontological assumption underlying the classical

5 We are grateful to an anonymous referee for suggesting this remark.
6 As observed by the referee, according to Field’s nominalistic perspective, one can maintain the

existence of an infinity of atoms of the cardinality of the continuum, the points of the geometrical
space. We think, however, that the geometrical intuition of point is far less clear than that of
the countable infinite, as shown, for instance, by Zeno’s paradoxes. In fact, the structure of the
geometrical space has been clarified through the set theoretical interpretation. We think, therefore,
that MPQ is compatible with a conception of infinite that accepts a countable plurality of atoms
but rejects geometrical points as primitive entities.
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set theoretical semantics of second-order logic: that any individuals, however chosen, form
a set. This assumption is the justification, within a realist conception of objects, of the
second-order logic comprehension principle, saving it from the charge of impredicativity.
According to that assumption, the existence of a set of individuals is quite independent
of any property used in order to isolate its members. Thus, no circularity is involved in
describing a set of individuals by quantifying over all sets of individuals.

§5. Acknowledgment. We would like to thank the referee for the helpful comments
and suggestions.

BIBLIOGRAPHY

Boolos, G. (1984). To be is to be a value of a variable. (Or to be some values of some
variables). Journal of Philosophy, 81, 430–449.

Boolos, G. (1985). Nominalist platonism. Philosophical Review, 94, 327–344.
Burkhardt, H., Seibt, J., & Imaguire, G., editors. (2009). Handbook of Mereology. Munich,

Germany: Philosophia Verlag.
Carrara, M., & Martino, E. (2009). On the ontological commitment of mereology. Review

of Symbolic Logic, 2, 164–174.
Hellman, G. (1996). Structuralism without structures. Philosophia Mathematica, 4,

100–123.
Lewis, D. K. (1991). Parts of Classes. Oxford, UK: Oxford University Press.
Lewis, D. K. (1993). Mathematics is megethology. Philosophia Mathematica, 1, 3–23.
Martino, E. (1996). La teoria degli insiemi in un platonismo nominalista. In Abrusci, V. M.,

Cellucci, C., Cordeschi, R., and Fano, V., editors. Prospettive della logica e della filosofia
della scienza. Pisa, Italy: ETS, pp. 445–451.

Pollard, S. (1988). Plural quantification and the axiom of choice. Philosophical Studies,
54, 393–397.

Simons, P. (2000). Parts: A Study in Ontology. Oxford, UK: Oxford University Press.

DEPARTMENT OF PHILOSOPHY
UNIVERSITY OF PADUA

PADOVA, ITALY
E-mail: massimiliano.carrara@unipd.it, enrico.martino@unipd.it

https://doi.org/10.1017/S1755020310000158
Downloaded from https://www.cambridge.org/core, on subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1755020310000158
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

