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1 Introduction

Given a metric space (K, ρ) we consider the Lipschitz space

Lip(K, ρ) = { f : K → R | ∃L > 0 : ∀x, y ∈ K | f (x) − f (y)| ≤ Lρ(x, y)}

(we omit ρ if K ⊂ Rn and ρ is the Euclidean distance). The quantity

[ f ]1 := sup
x,y∈K

| f (x) − f (y)|

ρ(x, y)
(1)

is a seminorm in Lip(K, ρ), and it can be made into a norm by either considering

functions modulo a constant or by adding a suitable quantity, such as the value of

the function in a point or the supremum norm. In the following, unless specified

otherwise, we will follow the latter convention:

‖ f ‖1 := max{[ f ]1, ‖ f ‖∞} (2)

where ‖ f ‖∞ := supx∈K | f (x)|.

The Lipschitz spaces can be generalized by considering the composition of the

distance with a subadditive function ω. In particular, we will consider the spaces

Lipα(K, ρ) :=

{

f : [ f ]Lipα := sup
x,y∈K

| f (x) − f (y)|

ρα(x, y)
< ∞

}

, (3)

with 0 < α ≤ 1, corresponding to the modulus of continuity ω(t) = tα. We

remark that since ρα is still a metric, Lipα(K, ρ) can in fact be seen as Lip(K, ρα);

conversely, the space Lip(K, ρ) can be seen as Lipα(K, ρ) with α = 1 (i.e. ω(t) = t).

An important subspace of Lip is the subspace

lip(K, ρ) :=

{

f ∈ Lip(K, ρ) : lim sup
ρ(x,y)→0

| f (x) − f (y)|

ρ(x, y)
= 0

}

. (4)

In many cases, such as in the case (Rn, d), where d is the Euclidean distance,

the space lip is trivial, but this is not the case for lipα(K, ρ) = lip(K, ρα), where

0 < α < 1, since an easy computation shows that it contains all Lipβ(K, ρ) with

α < β ≤ 1 [15]. The importance of this subspace is that in many cases we have

that

(lip(K, ρ))∗∗ = Lip(K, ρ) (5)

where equality is intended as spaces being canonically isometric. De Leeuw in

[9] first proved that, if 0 < α < 1, then (lipα([0, 1]))∗∗ is isometrically isomorphic

to Lipα([0, 1]). In (1974) Wulbert [26] extended de Leeuw’s theorem to finite

dimensional compact sets K

(lipα(K))∗∗ ≃ Lipα(K) (6)
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Let us notice that de Leeuw identified the dual of lipα([0, 1]) , by constructing an

isometric embedding of lipα([0, 1]) into a space C0(W) of continuous function on

W = U ∪ V

U = {ρ ∈ R : 0 ≤ ρ ≤ 1} (7)

V =

{

(σ, τ) ∈ R2 : 0 ≤ σ ≤ 1, 0 < τ − σ ≤
1

2

}

(8)

that are zero at infinity, equipped with the supremum norm, and then using Riesz

representation Theorem. The idea was to find a normed linear space H such that

H∗ = Lipα and (H)c
= (lipα)∗, where (·)c denotes the completion, a space of

finite Borel measures on W, namely H = M(W) with an appropriate norm. A

more general version of this duality, following a similar approach, is due to Hanin

[15] (see also [4]) for (K, ρ) a compact metric space. For this, he considered

the normed space H = M(K) of all finite Borel measures µ on K equipped with

the Kantorovich-Rubistein norm [20, 18, 19]. The reason why classical norm

of µ ∈ M(K) given by total variation, was excluded by Hanin are the unclear

description of the dual of M with respect to such a strong norm in BV and the

fact that such a norm is unrelated with distance ρ. For example choosing the delta

measures of Dirac supported at x, y ∈ K respectively

|δx − δy|(K) = 2

while the Kantorovich-Rubinstein norm (KR-norm in short) on M(K) = (M(K, ρ), ||·

||ρ) satisfies:

||δx − δy||ρ = ρ(x, y).

Thus for K infinite set, the space (K) is not complete. Let us first introduce this

new norm in the space M0(K) of signed measures ν vanishing on K: ν(K) = 0.

To any such a measure ν we associate the family Ψν of all nonnegative measures

ψ ∈ M(K × K) such that for any Borel F ⊂ K the balance condition

ψ(K, F) − ψ(F,K) = ν(F) (9)

holds, where ψ(F1, F2) can be interpreted as mass carried from F1 to F2 while

ψ ∈ Ψν is mass transferred on K with given ν− and required ν+. The norm of

ν ∈ M0(K) is defined by infconcolution:

||ν||0ρ = inf
ψ∈Ψν

∫ ∫

K×K

ρ(x, y)dν(x, y) (10)

and its value with the corresponding optimal transfer gives the solution to the

mass transfer problem from µ− to µ+ with cost ρ (see [1] and reference therein);

moreover for generic µ ∈ M(K) by

||µ||ρ = inf
ν∈M0(K)

{||ν||0ρ + |µ − ν|(K)} (11)
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It is worth noting that the infimum in (10) is the same if taken over a smaller set

Ψ̄ν of measures ψ ∈ M+(K × K) such that

ψ(·,K) = ν− ψ(K, ·) = ν+

where ν− and ν+ are the negative and the positive variation of ν and the set of

measures with finite support is dense in M(K) in the KR-norm. The main property

of the space M(K) endowed with the KR norm is the following duality relation

(see, for instance, [15, Theorem 0]):

(M(K))∗ = Lip(K, ρ) (12)

(alternatively, we also have (M0(K))∗ = Lip(K, ρ), where in this case the functions

in Lip are considered modulo a constant). What Hanin did in [15] is to find a

necessary and sufficient condition on ρ to have this other duality relation:

(lip(K, ρ))∗ = (M(K))c, (13)

where (·)c refers to the completion. This in particular implies the two star theorem

for the pair (lip, Lip).

A family of distances that satisfies the assumption given by Hanin is given by

{ρ̃α}0<α<1, where ρ̃ is a given distance, so in particular we obtain that (lipα(K, ρ̃))∗∗ =

Lipα(K, ρ̃), with the intermediate space being M(K) endowed with the KR norm

corresponding in this case to the mass transport with cost ρ̃α.

In [23] the pair (lipα(K), Lipα(K)) (considered modulo constants) is framed within

a general type of “o–O” structure (see section 2) in the case K ⊂ Rn. The o–O type

structure introduced in [23] is typical of several non-reflexive Banach spaces such

as BMO and V MO (as done in the aforementioned paper), the Brezis-Bourgain-

Mironescu space B (introduced in [6]) and its subspace B0 (as done in [10], see

also [11], [17]) and a particular class of Orlicz spaces (as done in [3]). This struc-

ture provides a general setting in which specific properties of Banach spaces can

be shown, such as M-ideality of some subspaces (see [25]) and a characterization

of weak compact operators (see [24]). Concerning lipα and Lipα 0 < α < 1, in

[23] it is show that on compact subsets of Rn they exhibit a o–O structure, also

obtaining as a consequence the M-ideality of lipα in Lipα, which is a generaliza-

tion of a result given in [5] for K = [0, 1]. The Author also set the problem to

generalize this result to a general compact metric space.

The aim of this paper is to address Perfekt’s question and show the o–O structure

and all of the subsequent properties for the pair (lip(K, ρ), Lip(K, ρ)) (with the

norm ‖ · ‖1) for a more general class of compact metric spaces. In particular we

show that the necessary and sufficient conditions for the duality relation given in

[15] are also necessary and sufficient for the o-O structure in the class of doubling
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compact metric spaces. Moreover, by using the o-O structure, we are able to show

the atomic decomposition for the space (lipα(K, ρ))∗ ≡ (M(K))c.

We remark that similar arguments work if we consider functions modulo con-

stants, and this will give, among other things, an atomic decomposition for (M0(K))c.

2 o–O structure for Banach spaces

2.1 The o–O structure

Let us recall the definition of o–O structure for pair of Banach spaces.

Definition 2.1. We say that a pair of Banach spaces (E0, E), where E0 is a sub-

space of E, form a o–O structure if there exist

• a reflexive separable Banach space X;

• a Banach space Y;

• a family L of bounded linear operators from X to Y;

• a topology τ on L that is σ-compact locally compact Hausdorff topology

and such that the maps Tx : L → Y given by TxL = Lx for any x ∈ X are

continuous;

such that E is given by

E =

{

x ∈ X : sup
L∈L

‖Lx‖Y < +∞

}

,

it holds ‖x‖E = supL∈L ‖Lx‖Y and E0 is given by

E0 =

{

x ∈ E : lim sup
L→∞

‖Lx‖Y = 0

}

where L→ ∞ is intended in the Alexandrov one point compactification of (L, τ).

Moreover, we say that the o–O pair (E0, E) satisfies assumption AP if and only

if for any x ∈ E there exists a sequence {xn}n∈N ⊆ E0 such that xn ⇀ x in X and

supn∈N ‖xn‖E ≤ ‖x‖E.

Definition 2.2 ([16]). Let X be a Banach space. A linear projection P is called an

L-projection if for any x ∈ X

‖x‖X = ‖Px‖X + ‖x − Px‖X .
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A closed subspace J ⊆ X is called an L-summand if it is the range of an L-

projection.

Given a subspace J ⊆ X, the subspace J⊥ = {x∗ ∈ X∗ : x∗(y) = 0 ∀y ∈ J} of X∗ is

called annihilator of J.

A closed subspace J ⊆ X is called M-ideal in X if its annihilator J⊥ is an L-

summand of X∗.

K. M. Perfekt proves the following properties of this structure.

Theorem 2.1. Under Assumption AP, E∗∗
0

is isometrically isomorphic to E.

It can also be proved E∗
0

is the strongly unique predual of E, that is any other

Banach space that has dual space isometric to E is itself isometric to E0.

Also, E0 is an M-ideal in E and the following distance formula holds:

dist(x, E0)E = lim sup
L→∞

‖Lx‖Y .

2.2 Abstract atomic decomposition

Let us show the following abstract result on o–O structures.

Theorem 2.2. Let (E0, E) be an o-O pair such that the space of the operators

(L, τ) is separable. Then there exists a constant C ∈ (0, 1) such that for any

Φ ∈ E∗ there exist two sequences (gn)n∈N ⊂ E∗ and (λn)n∈N ∈ ℓ
1(R+) such that

‖gn‖E∗ = 1,

Φ =

∑

n∈N

λngn

and

C

+∞
∑

n=1

λn ≤ ‖Φ‖E∗ ≤

+∞
∑

n=1

λn

.

Proof. Since we have that the map Tx : L ∈ L 7→ Lx ∈ Y is continuous, we can

also observe that

E =

{

x ∈ X : sup
L∈D

‖Lx‖Y < +∞

}

.

From [10, Theorem 3] we know that for Φ ∈ E∗ there exists a sequence (y∗n)n∈N ∈

ℓ1(Y∗) such that

Φ =

+∞
∑

n=1

L∗ny∗n

for some sequence {Ln}n≥0 ⊂ L independent from Φ, where L∗n ∈ L(Y∗, E∗) is

the adjoint operator of Ln. Now let us recall that ‖Ln‖L(E,Y) =

∥

∥

∥L∗n

∥

∥

∥

L(Y∗,E∗)
. By
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definition of E, we can use the Banach-Steinhaus theorem to assure that there

exists a constant K1 such that

∥

∥

∥L∗n

∥

∥

∥

L(Y∗,E∗)
= ‖Ln‖L(E,Y) ≤ K1.

Let us then define

gn =
L∗ny∗n

∥

∥

∥L∗ny∗n

∥

∥

∥

E∗

(gn = 0 if L∗ny∗n = 0) and λn =

∥

∥

∥L∗ny∗n

∥

∥

∥

E∗
to obtain

Φ =

+∞
∑

n=1

λngn.

Now let us observe that, since ‖gn‖E∗ = 1,

‖Φ‖E∗ ≤

+∞
∑

n=1

λn.

Let us also observe that

∥

∥

∥L∗ny∗n

∥

∥

∥

E∗
≤

∥

∥

∥L∗n

∥

∥

∥

L(Y∗,E∗)

∥

∥

∥y∗n

∥

∥

∥

Y∗
≤ K1

∥

∥

∥y∗n

∥

∥

∥

Y∗

so that
∥

∥

∥y∗n

∥

∥

∥

Y∗
≥

1

K1

λn.

Since the predual is strongly unique, by using the isometry in [10, Theorem 3] we

have that there exists a constant K2 (independent from Φ) such that

‖Φ‖E∗ ≥ K2

+∞
∑

n=1

∥

∥

∥y∗n

∥

∥

∥

Y∗
≥

K2

K1

+∞
∑

n=1

λn.

Pose C = K2

K1
to conclude the proof. �

3 Besov and fractional Hajłasz-Sobolev spaces on

compact metric measure spaces

3.1 Doubling metric spaces and doubling measures

In this subsection we recall the notions of doubling measure space and doubling

measure, see for example [2] and the references therein.
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Definition 3.1. We say that a metric space (K, ρ) has the doubling condition if

there exists a positive integer C such that any ball B can be covered by at most C

balls having half the radius.

A Borel measure µ on a metric space (K, ρ) is said to have the doubling condition

if

(i) there exist two balls B1, B2 such that µ(B1) > 0 and µ(B2) < +∞;

(ii) there exists a constant C > 0 such that

µ(B2r(x)) ≤ Cµ(Br(x)) (14)

for all x ∈ K and all r > 0. The space (K, ρ, µ) is said to be a doubling metric

measure space. A measure µ that satisfies (i) is said to be non-degenerate.

Condition (ii) is called doubling condition and the constant C is called dou-

bling constant.

First of all, let us observe that the choice of the constant 2 is arbitrary. Indeed,

if we fix a constant c > 1, one can show that a non-degenerate measure µ is a

doubling measure on (K, ρ) if and only if there exists a constant Cc > 0 such that

µ(Bcr(x)) ≤ Ccµ(Br(x)) (15)

for all x ∈ K and all r > 0.

This property implies that any doubling measure µ is fully supported. Indeed, let

us consider a generic x ∈ K and r > 0. Let us suppose by contradiction that

µ(Br(x)) = 0. Then B1 is not contained in Br(x). However, there exists a c > 1

such that B1 ⊆ Bcr(x), but by doubling condition (15) we have µ(Bcr(x)) = 0,

concluding the proof.

Moreover, if (K, ρ, µ) is a compact doubling metric measure space, then µ(K) <

+∞. Indeed, if we consider x ∈ K and r > 0 such that B2 = Br(x), since K

is compact, there exists a constant c ≥ 1 such that Bcr(x) = K, concluding that

µ(Bcr(x)) < +∞ by doubling condition (15).

It is easy to see that if a measure is doubling then the underlying metric space

must be doubling [8], while the converse is not true in general. However in [22]

it is shown that every complete (and in particular compact) doubling metric space

can be given a doubling measure.

We will also work with compact metric spaces of the form (K, ρα) for some metric

ρ. First of all, let us show the following easy Lemma.

Lemma 3.1. Fix α ∈ (0, 1). If (K, ρ) is a compact doubling metric space then

(K, ρα) is a doubling metric space. Moreover, any doubling measure µ on (K, ρ) is

also doubling on (K, ρα).

8



Proof. First of all, since (K, ρ) is a doubling metric space, then there exists a

doubling measure µ on (K, ρ). Using the doubling condition in the form (15) for

c = 2α and setting C2α = Cα we have

µ(B(2r)α(x)) ≤ Cαµ(Brα(x))

hence µ is a doubling measure on (K, ρα). Finally, since we have a doubling

measure on (K, ρα), (K, ρα) is a doubling metric space. �

Moreover, let us observe, as a consequence of [14, Lemma 4.7], the following

Lemma.

Lemma 3.2. Let (K, ρ) be a compact doubling metric space and µ a doubling

measure on it. Then there exist two constants C,Q > 0 such that

µ(Br(x)) ≥ CrQ.

3.2 Besov spaces on metric measure spaces

In the following we will need the notion of Besov spaces on metric measure

spaces. From now on, in this section, let us fix a doubling compact metric space

(K, ρ) and a doubling measure µ on K.

Definition 3.2 ([12]). The Besov space of parameters s ∈ (0, 1) and p, q ∈ [1,∞)

on (K, ρ, µ) is the space

Bs
p,q(K, ρ, µ) =

{

f : K → R : f ∈ Lp(K, µ) and

[ f ]Bs
p,q

:=





















+∞
∫

0

dr

r

[∫

K

?
Br(x)

| f (x) − f (y)|p

rsp
dµ(y) dµ(x)

]q/p




















1/q

< +∞
}

.

It is a Banach space when endowed with the norm

‖ f ‖Bs
p,q
= ‖ f ‖Lp + [ f ]Bs

p,q
.

The space Bs
p,q is obviously separable as it embeds continuously as a subspace

of Lp(K, ρ) which is separable because Lp spaces on separable metric measure

spaces are separable.

With the additional assumption that p = q > 2, a Clarkson type inequality (see

[13]) can be proved, in the sense that follows: as it is more convenient for technical

reasons, introduce the equivalent norm ‖ f ‖′
Bs

p,q
= (‖ f ‖

p

Lp + ([ f ]s
p,q)p)1/p and then, in

a way similar to how it is done in Lp spaces, prove:
∥

∥

∥

∥

∥

f + g

2

∥

∥

∥

∥

∥

p

Λ
s
p,p

+

∥

∥

∥

∥

∥

f − g

2

∥

∥

∥

∥

∥

p

Bs
p,p

≤
1

2

[

‖ f ‖
p

Bs
p,p
+ ‖g‖

p

Bs
p,p

]

9



This allows to prove that Bs
p,p is uniformly convex, that is for every ε > 0 there

exists δ > 0 such that:

‖ f ‖Bs
p,p
, ‖g‖Bs

p,p
= 1 and

∥

∥

∥

∥

∥

f + g

2

∥

∥

∥

∥

∥

Bs
p,p

> 1 − δ⇒ ‖ f − g‖Bs
p,p
< ε.

Recalling that a theorem by Milman and Pettis shows that every uniformly convex

Banach space is reflexive (see for instance [7]), we know that Bs
p,q is a reflexive

and separable Banach space.

In [12] it has been shown that the seminorm [ f ]Bs
p,p

is equivalent to the semi-norm

[ f ]Bs
p
=

∫

K

∫

K

| f (x) − f (y)|p

ρ(x, y)αpµ(Bρ(x,y)(x)
dµ(x)dµ(y).

In particular, if K = Rn, ρ is the Euclidean distance and µ is the Lebesgue measure,

then [·]Bs
p

is the semi-norm characterizing the fractional Sobolev space W s,p(Rn),

as used in [23].

3.3 Fractional Hajłasz-Sobolev spaces on metric measure spaces

Let us give a definition of another interesting functional space on metric measure

spaces.

Definition 3.3 ([21]). Let f ∈ Lp(K, µ). Then we say that g is a Hajłasz s-gradient

if

| f (x) − f (y)| ≤ ρs(x, y)|g(x) + g(y)|.

We denote with Ds( f ) the set of all Hajłasz gradents of f and with D
p
s ( f ) the

set of the Hajłasz gradients of f that are in Lp(K, µ). We say that f belongs to

the fractional Hajłasz-Sobolev space H
s,p

(K, ρ, µ) if D
p
s ( f ) , ∅. In particular

H
s,p

(K, ρ, µ) is a Banach space when endowed with the norm

‖ f ‖H s,p := ‖ f ‖Lp + [ f ]H s,p

where

[ f ]H s,p := inf
g∈D

p
s ( f )
‖g‖Lp

Let us first observe that the fractional Hajłasz-Sobolev spaceH
s,p

(K, ρ, µ) co-

incides with the Hajłasz-Sobolev space H
1,p

(K, ρs, µ). Hence, in particular, a

Morrey-type embedding theorem can be shown, as a direct consequence of [14,

Theorem 8.7].
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Theorem 3.3. Let (K, ρ, µ) be a compact metric measure space such that µ(Br(x)) ≥

CrQ for some constants C > 0,Q ≥ 0 and for all x ∈ K, r > 0, and suppose p >
Q

s
.

Then there exists a constant C such that for any function u ∈ H
s,p

(K, ρ, µ) and any

g ∈ D
p
s (u) it holds

|u(x) − u(y)| ≤ Cd(x, y)s−
Q
p ‖g‖Lp , ∀x, y ∈ K.

Other embedding theorems can be shown, also for more general spaces (see,

for instance, [21]).

From this punctual estimate we deduce that if u ∈ H
s,p

(K, ρ, µ) for p >
Q

s
then u is

(

s −
Q

p

)

-Hölder continuous. In Lemma 3.2 we have shown that doubling measures

satisfy the previous condition for some Q ≥ 0. From now on let Q be such a

constant. We have

Proposition 3.4. Let (K, ρ, µ) be a doubling compact metric measure space and

p >
Q

s
. ThenH

s,p
(K, ρ, µ) embeds with continuity in L∞.

Proof. Let us denote with D = diam(K). Fix u ∈ H
s,p

(K, ρ, µ), g ∈ D
p
s (u) and

x, y ∈ K. Observe that, by using the previous punctual estimate,

|u(x)| ≤ |u(y)| + |u(x) − u(y)|

≤ |u(y)| + Cd(x, y)s−
Q
p ‖g‖Lp

≤ |u(y)| + CDs−
Q
p ‖g‖Lp .

By using the p-homogeneity and convexity of the function t 7→ tp for t > 0 we

have

|u(x)|p ≤ C1(|u(y)|p +CpDps−Q ‖g‖
p

Lp)

and then integrating in dµ(y), setting M = µ(K), we have

|u(x)|p ≤
C1

M
(‖u‖

p

Lp + MCpDps−Q ‖g‖
p

Lp).

Now, by using the fact that there exists a constant Cp such that (ap
+ bp)

1
p ≤

Cp(a + b) for any a, b > 0, we have

|u(x)| ≤ C2(‖u‖Lp + ‖g‖Lp).

Now let us take the infimum overD
p
s (u) to achieve

|u(x)| ≤ C2 ‖u‖H s,p ,

and then, taking the maximum on K, we have

‖u‖L∞ ≤ C2 ‖u‖H s,p .

�
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Concerning the relation between Bs
p,p and H

s,p
, one can show the following

embedding theorem as a direct consequence of [12, Lemma 6.1].

Theorem 3.5. Let (K, ρ, µ) be a doubling compact metric measure space. Then

Bs
p,p(K, ρ, µ) embeds with continuity inH

s,p
(K, ρ, µ).

Actually, the statement of [12, Lemma 6.1] only refers to the inclusion of

Bs
p,p(K, ρ, µ) inH

s,p
(K, ρ, µ). However, in the proof, it is shown that there exists a

constant C > 0, depending only on the doubling constant of µ, such that for any

u ∈ Bs
p,p(K, ρ, µ) there exists a g ∈ D

p
s (u) such that [u]H s,p ≤ ‖g‖Lp ≤ C[u]Bs

p,p
.

Summing on both sides ‖u‖Lp one has the continuous embedding.

As a Corollary of the previous two embedding theorems we have the following

Corollary 3.6. Let (K, ρ, µ) be a doubling compact metric measure space and

p >
Q

s
. Then Bs

p,p(K, ρ, µ) embeds continuously in L∞.

4 Lipschitz spaces on compact metric measure spaces

4.1 Notations for Lipschitz spaces

Let us now introduce some notations and basic definitions on Lipschitz spaces

defined on compact metric spaces. Let (K, ρ) be a compact metric space. Without

loss of generality, we can suppose that µ is a probability measure. Moreover, let

us call D = diam(K).

We will denote:

• Lip(K, ρ) =

{

f : K → R : [ f ]1 := sup
x,y∈K

| f (x)− f (y)|

ρ(x,y)
< +∞

}

• lip(K, ρ) =

{

f ∈ Lip(K, ρ) : lim
ρ(x,y)→0

| f (x)− f (y)|

ρ(x,y)
= 0

}

.

The first of those two spaces is a Banach space with the norm given by

‖ f ‖1 := max{[ f ]1, ‖ f ‖∞} (16)

where ‖ f ‖∞ = maxx∈K | f (x)|.

Let us also introduce the Hölder spaces for α ∈ (0, 1):

• Lipα(K, ρ) =

{

f : K → R : [ f ]α := sup
x,y∈K

| f (x)− f (y)|

ρ(x,y)α
< +∞

}

• lipα(K, ρ) =

{

f ∈ Lipα(K, ρ) : lim
ρ(x,y)→0

| f (x)− f (y)|

ρ(x,y)α
= 0

}

.
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The first of those two spaces is a Banach space with the norm given by

‖ f ‖α := max{[ f ]α, ‖ f ‖∞}. (17)

While lip(K, ρ) could coincide with the space of the constant functions, it holds

Lip(K, ρ) ⊂ lipα(K, ρ), hence lipα(K, ρ) cannot be trivial.

Actually the spaces Lipα(K, ρ) are particular cases of Lipschitz spaces. Indeed

we have Lipα(K, ρ) = Lip(K, ρα). In the following we will set Lip1(K, ρ) :=

Lip(K, ρ).

4.2 Embedding of Lipα in Bs
p,p

Let us now focus on compact metric measure spaces (K, ρ, µ). The following

result exhibit the relation between Lip(K, ρ) and Bs
p,p(K, ρ, µ) ad actually holds

whenever µ is a fully supported finite measure on (K, ρ). However, to fix the

ideas, let us consider (K, ρ, µ) as a doubling compact metric measure space.

Proposition 4.1. Consider α ∈ (0, 1]. Then the space Lipα(K, ρ) continuously

embeds in Bs
p,p for s ∈ (0, α) and p ∈ [1,+∞).

Proof. To prove that Lipα(K, ρ) embeds continuously in X, it is necessary to as-

sume s < α.

Indeed, if so, assume that C = ‖ f ‖1. Then ‖ f ‖Lp ≤ ‖ f ‖L∞ ≤ C and

[∫

+∞

0

dr

r

∫

K

?
Br(x)

| f (x) − f (y)|p

rsp
dµ(y) dµ(x)

]1/p

≤

≤

[∫ D

0

1

r
Cpr(α−s)pdr +

∫

+∞

D

2Cp dr

r1+sp

]1/p

≤ kC

where in the first integral the idea was using the fact that C bounds the Lipschitz

constant, while in the second one the fact that C bounds the L∞ norm of f was

used.

�

4.3 Approximation property for Lipschitz spaces

Here we want to show an approximation property in Lip(K, ρ), i. e. for any

function f ∈ Lip(K, ρ) we want to find a sequence of functions in a suitable

subspace that pointwise converges towards f . To do this, we need to introduce

the following separation assumption, that is shown in [15] to be equivalent to the

isometry between (M(K))c and (lip(K, ρ))∗ see also [5].
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Assumption H. For any f ∈ Lip(K, ρ), A a finite subset of K and C > 1 real

constant, there exists a function g ∈ lip(K, ρ) such that g|A ≡ f |A and ‖g‖ ≤ C‖ f ‖.

Hence we have the following Theorem.

Theorem 4.2. Let us suppose Assumption H holds. Let f ∈ Lip(K, ρ). There is a

sequence { fn}n∈N ⊂ lip(K, ρ) pointwise converging to f and such that supn∈N ‖ fn‖1 ≤

‖ f ‖1.

Proof. Since K is totally bounded, it can be covered by a finite number of balls

of radius 1, so let’s call A0 the set of centers of these balls. Suppose now that we

have defined the set An and consider the set Kn+1 := K\
⋃

x∈An
B2−n−1(x). Since Kn+1

is a compact and thus totally bounded subset of K, it can be covered by balls of

radius 2−n−1, so if we denote by Bn+1 the corresponding set of centers, we can take

An+1 := An ∪ Bn+1. This ensures that every point of K has distance less that 2−n

from the points in An. We also take Cn := 1 + 1
n+1

.

Let gn be the function from Assumption H obtained by considering A = An and

C = Cn and define fn :=
gn

Cn
∈ lip(K, ρ). We have that ‖ fn‖α ≤ ‖ f ‖α, so the

only thing that’s left to show is the pointwise convergence, which implies weak

convergence in X. We notice that, by definition of fn, it is enough to show that

gn → f pointwise. If we define A∞ :=
⋃

n∈N An we see that A∞ is dense and for

all x ∈ A∞ the sequence gn(x) eventually becomes constantly equal to f (x). By

using the Lipschitz property we can easily extend the pointwise convergence to

the whole K.

�

Let us also observe that in the case of Lipα(K, ρ), AssumptionH can be actually

improved [15, Proposition 3].

Proposition 4.3. Let (K, ρ) be a compact metric space, α ∈ (0, 1), f ∈ Lipα(K),

A a finite subset of K and C > 1 a real constant. Then there exists a function

g ∈ Lip1(K) such that g|A ≡ f |A and ‖g‖α ≤ C‖ f ‖α.

5 The o–O structure of (lip(K, ρ), Lip(K, ρ))

Now we are ready to show the main result of the paper.

Theorem 5.1. Let (K, ρ, µ) be a doubling compact metric measure space. Then

the pair (lip(K, ρ), Lip(K, ρ)) exhibit a o–O structure if and only if Assumption

H holds. Supposing that Assumption H holds, as a consequence we have the

following properties:

14



• (lip(K, ρ))∗∗ ≃ Lip(K, ρ) isometrically;

• for f ∈ Lip(K, ρ) the following distance formula holds:

distLip(K,ρ)( f , lip(K, ρ)) = lim sup
ρ(x,y)→0

| f (x) − f (y)|

ρ(x, y)
; (18)

• lip(K, ρ) is an M-ideal in Lip(K, ρ), that is

(Lip(K, ρ))∗ ≃ (lip(K, ρ))∗ ⊕1 (lip(K, ρ))⊥, (19)

• (lip(K, ρ))∗ is the strongly unique predual of Lip(K, ρ).

Proof. First of all we need a reflexive and separable Banach space X in which we

can embed Lip(K, ρ). Thus fix s ∈ (0, 1) and p >
Q

s
and consider X = Lip(K, ρ)

Bs
p,p

,

since we have shown that Bs
p,p is reflexive, separable and Lip(K, ρ) continuously

embeds in it, so the closure of Lip in Bs
p,p also has these properties and will be our

X.

As Banach space Y let us chooseR×R, endowed with the L∞ norm, i.e. ‖(x, y)‖R×R =

max{|x|, |y|}.

Our family of operators will be the following:

L =

{

Lx,y,z : f ∈ X 7→

(

f (x) − f (y)

ρ(x, y)
,
ρ(x, y)

D
f (z)

)

∈ R×R, x, y, z ∈ K, x , y

}

.

It is clear that these operators are linear.

If we set V := K2\Diag(K2), we can give L the product topology of V ×K, where

on V we have the trace topology induced by the topology on K2. In the following

we will identify L with W := V × K.

Since K is a compact metric space, it is σ-compact, locally compact, Hausdorff

and separable and so is also V . These properties easily transfer to L, being it a

product space. In particular an exhaustive sequence Kn of compact subsets of L

is given by

Kn =

{

(x, y) ∈ K2 : ρ(x, y) ≥
1

n

}

hence taking the limit as L → ∞ is equivalent to taking the limit as ρ(x, y) → 0.

Now we need to show the continuity of the maps T f : L ∈ L 7→ L( f ) ∈ R×R

for f ∈ X. We notice that it is enough to prove this for f ∈ Lip(K, ρ), since we

can use a diagonal argument, combined with the boundedness of the operators

themselves, to extend this to the whole X.
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This is easy because (xn, yn, zn)→ (x, y, z) as n goes to infinity implies ρ(xn, yn)→

ρ(x, y) and ρ(zn, z)→ 0, so using the continuity of f and ρ we easily obtain

max

{
∣

∣

∣

∣

∣

f (xn) − f (yn)

ρ(xn, yn)
−

f (x) − f (y)

ρα(x, y)

∣

∣

∣

∣

∣

, |
ρ(xn, yn)

D
f (zn) −

ρ(x, y)

D
f (z)|

}

→ 0

proving that T f is continuous for any f ∈ Lip(K, ρ).

It is easy to observe that

sup
(x,y,z)∈W

∥

∥

∥Lx,y,z f
∥

∥

∥

R×R
= sup

(x,y,z)∈W

max

{
∣

∣

∣

∣

∣

f (x) − f (y)

ρ(x, y)

∣

∣

∣

∣

∣

,
ρ(x, y)

D
| f (z)|

}

= max{[ f ]1, ‖ f ‖∞} = ‖ f ‖1 ,

while the o-structure for lip(K, ρ) follows from the inequality

| f (x) − f (y)|

ρ(x, y)
≤

∥

∥

∥Lx,y,z f
∥

∥

∥

R×R
≤
| f (x) − f (y)|

ρ(x, y)
+
ρ(x, y)

D
‖ f ‖L∞ .

Concerning the continuity of Lx,y,z, let us recall, from Corollary 3.6, that there

exists a constant C such that ‖ f ‖Bs
p,p
≥ ‖ f ‖L∞ . Hence we have

| f (x) − f (y)|

ρ(x, y) ‖ f ‖Bs
p,p

≤
2

Cρ(x, y)

while
ρ(x, y)| f (z)|

D ‖ f ‖Bs
p,p

≤
ρ(x, y)

CD
,

thus Lx,y,z : X → R×R is a bounded linear operator.

Finally let us observe that we have shown that, supposed that AssumptionH holds,

for any f ∈ Lip(K, ρ) there exists a sequence { fn}n∈N ⊂ lip(K, ρ) such that fn → f

point-wise and supn∈N ‖ fn‖1 ≤ ‖ f ‖1, hence, by Banach-Alaoglu theorem, we can

extract a subsequence of fn that weakly converges to f in X, concluding the proof

of one implication.

Concerning the other implication, let us suppose that the o–O structure holds.

Then we know that (lip(K, ρ))∗∗ ≃ Lip(K, ρ) isometrically. However, in [15] it is

shown that such isometry is equivalent to AssumptionH, concluding the proof. �

Remark 5.2. Let us remark that, since we have shown that Assumption H always

holds for Lipα(K, ρ) whenever α ∈ (0, 1), we have that the pair (lipα(K, ρ), Lipα(K, ρ))

always exhibits the o–O structure.
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6 The atomic decomposition of M(K)

Now we are ready to give an atomic decomposition of the space M(K) endowed

with the Kantorovich-Rubinstein norm.

Theorem 6.1. Fix α ∈ (0, 1). Let µ ∈ M(K). Then there exist a sequence of atomic

measures (µn)n∈N ⊂ M(K) with card(supp(µn)) ≤ 3 and a sequence (γn)n∈N ∈

ℓ1(R) with γn ≥ 0 such that

µ =

+∞
∑

n=1

γnµn

where the convergence is intended in the Kantorovich-Rubinstein norm with re-

spect to ρα. Moreover there is C > 0 such that

C

+∞
∑

n=1

γn ≤ ‖µ‖M(K) ≤

+∞
∑

n=1

γn (20)

Proof. Since we have shown that the pair (lipα(K, ρ), Lipα(K, ρ)) admits a o–O

structure whenever α ∈ (0, 1), we know that (lipα(K, ρ))∗ is the strongly unique

predual of Lipα(K, ρ) and (lipα(K, ρ))∗ ≃ (M(K))c. Moreover, let us observe that

the topology on L is the one induced by the natural topology on V × K × (0, 1],

hence it is separable. Thus we know that there exist a sequence (γn)n∈N ∈ ℓ
1(R)

with γn ≥ 0 and a sequence (µn)n∈N ⊂ (M(K))c such that

µ =

+∞
∑

n=1

γnµn

with ‖µn‖M(K),ρα = 1, where with ‖·‖M(K),ρα we denote the Kantorovich-Rubinstein

norm.

Now recall that µn =
L∗ng∗n
γn

by definition for some operators Ln ∈ L and for some

g∗n ∈ Y∗ = R2. Let us observe that for any g ∈ R2 and f ∈ Lipα(K, ρ) we have

〈Ln f , g〉 =
f (xn) − f (yn)

ρ(xn, yn)α
g1 +

ρ(xn, yn)α

Dα
f (zn)g2

while

〈 f , L∗ng〉 =

∫

K

f dL∗ng.

From these two relations we have for any g ∈ R2

L∗ng =
δxn
− δyn

ρ(xn, yn)α
g1 +

ρ(xn, yn)α

Dα
g2δzn

where δx is the Dirac delta measure concentrated in x. Hence we can conclude

that µn is a purely atomic measure with card(supp(µn)) ≤ 3. �
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Let us remark that the set of finitely supported measure is dense in M(K) with

respect to the Kantorovich-Rubinstein norm, so the fact that µ could be a non-

atomic measure does not contradict our result.
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