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Abstract: Bovine coronavirus (BoCV) is an important pathogen of cattle, causing severe enteric
disease and playing a role in the bovine respiratory disease complex. Similar to other coronaviruses,
a remarkable variability characterizes both its genome and biology. Despite their potential relevance,
different aspects of the evolution of BoCV remain elusive. The present study reconstructs the
history and evolution of BoCV using a phylodynamic approach based on complete genome and
spike protein sequences. The results demonstrate high mutation and recombination rates affecting
different parts of the viral genome. In the spike gene, this variability undergoes significant selective
pressures—particularly episodic pressure—located mainly on the protein surface, suggesting an
immune-induced selective pressure. The occurrence of compensatory mutations was also identified.
On the contrary, no strong evidence in favor of host and/or tissue tropism affecting viral evolution
has been proven. The well-known plasticity is thus ascribable to the innate broad viral tropism
rather than mid- or long-term adaptation. The evaluation of the geographic spreading pattern clearly
evidenced two clusters: a European cluster and an American–Asian cluster. While a relatively dense
and quick migration network was identified in the former, the latter was dominated by the primary
role of the United States (US) as a viral exportation source. Since the viral spreading pattern strongly
mirrored the cattle trade, the need for more intense monitoring and preventive measures cannot be
underestimated as well as the need to enforce the vaccination of young animals before international
trade, to reduce not only the clinical impact but also the transferal and mixing of BoCV strains.
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1. Introduction

Bovine coronavirus (BoCV) belongs to the family Coronaviridae, genus Betacoronavirus (https://talk.
ictvonline.org/). The genome is a single-stranded positive-sense RNA of about 31 Kb, which includes
ten open reading frames (ORFs) flanked by 5′ and 3′ untranslated regions [1]. ORF1 codes for the
polyproteins pp1a and—through a ribosomal frameshift—for pp1ab, which are then proteolytically
cleaved into multiple non-structural proteins (NSP) [2]. ORF3, 4, 8, 9, and 10 code for the structural
proteins hemagglutinin–esterase protein (HE), spike glycoprotein (S), small membrane protein (SE),
membrane protein (M), and nucleocapsid protein (N). Other ORFs encode additional NSPs, such as
32 kDa and 12 kDa, whose functions have been less characterized [1]. As for other coronaviruses,
the S protein is the most studied, constituting the typical protrusions on the viral surface. It is cleaved

Viruses 2020, 12, 1285; doi:10.3390/v12111285 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0003-2991-217X
https://orcid.org/0000-0002-7267-9388
https://orcid.org/0000-0001-5435-2122
https://orcid.org/0000-0003-3780-8604
https://orcid.org/0000-0002-2269-7879
https://orcid.org/0000-0002-0340-8920
https://talk.ictvonline.org/
https://talk.ictvonline.org/
http://dx.doi.org/10.3390/v12111285
http://www.mdpi.com/journal/viruses
https://www.mdpi.com/1999-4915/12/11/1285?type=check_update&version=2


Viruses 2020, 12, 1285 2 of 17

into two subunits: S1 and S2. S1 is involved in viral attachment and is thus a major determinant of
host and tissue tropism. Additionally, it is considered the main target of the host immune response
and several epitopes, including neutralizing ones, have been identified. S2 is involved in membrane
fusion [3,4] and contains the transmembrane domains anchoring the glycoprotein to the viral envelope.

Although the genetic diversity of BoCV appears to be low compared to other members of this
family, coronaviruses belong to the group of rapidly evolving viruses, featured by the continuous
generation of new variants [5]. This plasticity can provide an evolutionary advantage in rapidly
changing environments, allowing adaptation to different tissues and hosts, the escape of the immune
response, and even allowing BoCV to cope with animal populations with different structures and rearing
conditions. BoCV was first recognized as an enteric pathogen that is involved in calf diarrhea (NCD)
and winter dysentery (WD) in adult cattle. It was then associated with respiratory signs in animals
of all ages, and, in the presence of other viruses and bacteria, it takes part in the bovine respiratory
disease complex (BRDC) [6,7]. Despite the different studies and epidemiological investigations that
have been performed over time, the issue of enteric/respiratory signs possibly being linked to specific
strains/mutations is still debated [4,8].

Currently, no clear phylogenetic clustering has been reported among strains causing different
symptomatology. On the contrary, even if the infection is distributed worldwide, a certain geographical
separation has been identified, distinguishing a European type from an American–Asian type [1,9].

Besides cattle, different local domestic and wild ruminants, including several species of deer,
waterbuck antelope, giraffe, alpaca, sable antelope, and others (see Amer et al. for review [10]),
were reported to be susceptible to BoCV infection, even in the presence of overt clinical signs. Overall,
BoCV causes relevant direct economic losses due to mortality, reduced growth, and milk production,
in addition to the indirect losses due to a more challenging animal management [4,11]. The increased use
of antimicrobials also presents a critical concern because of the limitations imposed by the legislation,
the consumers’ opinion and requests, especially in the European Union [12,13]. In spite of several
reports, no dedicated attempt has yet been made to globally evaluate the pattern of BoCV spread
among countries and hosts and how the viral population has changed and evolved over time.

The present study attempts to fill this gap by performing an extensive evolution analysis based on
all strains whose complete genome was available. Additionally, because of its biological relevance and
to maximize the sample size and available information, a dedicated and more extensive phylodynamic
analysis has been performed based on viral spike sequences.

2. Materials and Methods

2.1. Compete Genome Dataset and Recombination Analysis

All available BoCV complete genomes were downloaded from GenBank. The sequences were
preliminarily aligned using MAFFT [14], and the alignment was visually inspected to identify and
remove poorly aligned regions or low-quality sequences. Recombination analysis was performed using
RDP4 [15], selecting RDP, GENECONV, Chimaera, and 3Seq for the primary scan, while the whole set
of available methods was used for recombination confirmation. Each method’s settings were adjusted
based on the dataset features according to the RDP4 manual. Recombination events were accepted only
if detected by more than two methods with a significance level of p < 0.001 with Bonferroni correction.
Recombination breakpoint density plots were constructed using the same program. Similar to the
approach followed by Lefeuvre et al. [16], the differences in breakpoint densities were also tested
between:

1. Coding and non-coding regions;
2. Each ORF and the remainder of the genome;
3. Between the ends of the coding regions (external 25%) and the middle of these regions.

To further confirm the occurrence of recombination, a phylogenetic network was reconstructed
using the NeighborNet method based on the whole genome sequences using SplitsTree4 [17].
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2.2. Gene Evolution Rate

Complete genomes of viral strains provided with collection dates were divided into different ORFs.
The obtained sequences were aligned at the codon level using TranslatorX [18]. Gene-specific datasets
were scanned for recombinant identification as previously described, and recombinant sequences
were removed from the dataset. The absence of residual recombination events was assessed using
GARD [19]. A preliminary maximum likelihood (ML) phylogenetic tree was reconstructed using
Iq-Tree [20] and used to evaluate the presence of an adequate temporal signal using TempEst v1.5 [21]
to perform a regression of the root-to-tip distances of the ML tree and sampling dates. The evolutionary
rate, as well as other parameters of interest (i.e., the time to most recent common ancestor (tMRCA)
and population dynamics), were jointly estimated using the Bayesian serial coalescent approach
implemented in BEAST 1.10 [22]. The substitution model was selected based on the Bayesian
Information Criterion (BIC) calculated using Jmodeltest [23], while the relaxed lognormal molecular
clock was preferred over the strict one based on the Bayesian Factor (BF) (i.e., BF = 11.23) calculation
through marginal likelihood estimation performed using Stepping Stone (SS) and Path Sampling (PS)
approaches [24]. The non-parametric Skygrid model was selected to reconstruct and account for the
variation in the viral population size over time [25]. The parameters and tree were estimated using a
100 million-generation-long Markov Chain Monte Carlo (MCMC) run, sampling every one thousand
states. The results of the run were accepted only if the estimated sample size was bigger than 200 and
the mixing and convergence of the runs, visually evaluated using Tracer, were adequate. The posterior
distribution was summarized in terms of the mean, median, and 95% high posterior density (95HPD)
after the exclusion of a burn-in equal to 20% of the run length. Maximum clade credibility (MCC) trees
were constructed and annotated using Treeannotator (BEAST package).

2.3. Spike Dataset

A collection of all complete S sequences of strains for which the collection date, country, and host
were available were downloaded from GenBank. Sequences were aligned at the codon level, and the
quality of the dataset and absence of recombination were evaluated as previously described. However,
in this case, the spreading pattern of BoCV among countries was reconstructed over time using the
discrete phylogeographic approach described by Lemey et al. [26]. The Bayesian Stochastic Search
Variable Selection (BSSVS) was also implemented, allowing the identification of the most parsimonious
description of the spreading process and thus the well-supported migration rates among countries
through BF calculation. The same approach was selected to reconstruct and evaluate the transmission
process among host species. MCMC run results were evaluated, and population parameters and trees
were summarized as previously described. SpreaD3 [27] was used to calculate the BF, indicative of
statistically supported country/host transition events, and plot viral spreading over time and space.
Other figures were plotted using the ggplot2 library in R [28]. For all analyses, a BF >10 was considered
significant. The presence and strength of pervasive diversifying selective pressures acting on each
site of the S protein were investigated using the SLAC, FEL, and FUBAR methods [29,30], while the
presence of episodic diversifying selection was assessed using MEME [31]. The occurrence of viral
lineages under this type of selection was evaluated using aBSREL [32]. The Bayesian Graphical
Model (BGM) was used to identify co-evolving sites [33,34]. Finally, the presence of amino acids
under directional episodic selection in respiratory strains compared to enteric ones was tested using
MEDS [35], setting the tree branches leading to respiratory strains as the foreground. All mentioned
methods were implemented in HyPhy [36]. The significance level was set to p < 0.05 or a posterior
probability of >0.9.
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2.4. Homology Modelling

The S gene nucleotide sequence of the representative strain U00735.2 was translated at the
amino acid level, and the SWISS-MODEL web server [37] was used to identify the best template for
which a quaternary structure had been experimentally determined, and the protein structure was
estimated through a homology-modeling approach. The obtained model was visualized and edited
with Chimera [38].

3. Results

3.1. Complete Genomes

3.1.1. Recombination Rate Analysis

A total of 111 complete genomes were included in the analysis. The 5′ and 3′ untranslated regions
(UTRs) were excluded to deal with the variable completeness of the available genomes. According to
the defined parameters, most of the sequences (i.e., 57) had recombination evidence. No significant
differences were observed in recombination frequency occurrence among ORFs or different regions of
the ORFs and/or intergenic regions. However, the breakpoint distribution plot evidenced the presence
of some recombination hot-spots located around positions 4700 (pp1a), 21,600 (end of pp1ab/junction
with region 32 KDa protein), and 23,900 (beginning of S) (based on the Mebus strain coding region)
(Figure 1). The results were confirmed by NeighborNet reconstruction, demonstrating the presence of
several reticulations, and by the Phy test, which found significant evidence of recombination.
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Figure 1. Recombination distribution plot. The significance (p-value) of hot and cold-recombination
spots is reported along the genome.

3.1.2. Gene Evolutionary Rate

BEAST analysis performed on each ORF revealed largely overlapping evolutionary rates (Table 1
and Figure 2). Only the 32 KDa and SE protein showed higher values. Similarly, the tMRCA was fully
comparable among different genes (Table 1 and Figure 2).
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Table 1. Estimation of evolutionary rate and time to most recent common ancestor (tMRCA) for
different protein-coding genes. Mean, median, and 95% high posterior probability (95HPD) summary
statistics are reported.

Parameter Protein Mean Median Lower 95HDP Higher 95HDP

Evolutionary
rate

pp1ab 2.86 × 10−4 2.80 × 10−4 2.12 × 10−4 3.86 × 10−4

32 KDa 5.06 × 10−4 4.98 × 10−4 3.81 × 10−4 6.61 × 10−4

HE 3.00 × 10−4 2.98 × 10−4 2.49 × 10−4 3.64 × 10−4

S 2.97 × 10−4 2.96 × 10−4 2.38 × 10−4 3.62 × 10−4

12 KDa 3.01 × 10−4 2.90 × 10−4 2.4 × 10−4 4.42 × 10−4

SE 4.55 × 10−4 4.20 × 10−4 2.00 × 10−4 8.65 × 10−4

M 3.49 × 10−4 3.43 × 10−4 2.51 × 10−4 4.80 × 10−4

N 3.75 × 10−4 3.71 × 10−4 2.90 × 10−4 4.78 × 10

tMRCA

pp1ab 1947.98 1953.40 1906.23 1971.93
32 KDa 1957.34 1961.90 1921.92 1977.44

HE 1956.83 1960.32 1926.97 1974.58
S 1951.37 1953.57 1928.94 1966.89

12 KDa 1952.13 1956.46 1912.25 1977.13
SE 1974.07 1979.27 1947.92 1984.82
M 1957.99 1962.41 1924.42 1977.13
N 1969.51 1972.32 1947.62 1981.74

3 × 10−4

5 × 10−4

1 × 10−3
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Figure 2. Upper figure: Boxplot (a) and density plot (b) of the evolutionary rate posterior probability.
Lower figure: Boxplot (c) and density plot (d) of time to most recent common ancestor (tMRCA)
posterior probability. Results are reported for all considered genes. The 95% high posterior density
(95HPD) intervals are reported for both figures. The median values are displayed as a bold line in
the boxplots.
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3.2. Spike Protein

3.2.1. Phylodynamic Analysis

A total of 219 sequences with known collection dates were included in the analysis. Of those,
133 belonged to the American–Asian group and 86 to the European one. The majority were collected
from domestic bovine (i.e., 173), while the others were collected from wild or captive animals.
Two sequences originated from human beings. The collection sites and/or associated symptomatology
were known for 161 strains (115 enteric and 46 respiratory).

The evolutionary rate estimated using a broader S sequence dataset was slightly higher
(i.e., mean = 8.39 × 10−4, median = 8.33 × 10−4, and 95HPD = 6.86 × 10−4 to 1.01 × 10−3) than
that estimated on strains with a complete genome. Accordingly, the tMRCA was predicted in more
recent times; however, the 95HPD intervals largely overlapped with previous estimates (mean = 1971.10,
median = 1971.84, and 95HPD = 1959.89–1977.78). The reconstruction of BoCV population dynamics
over time revealed a pattern featured by a progressive increase in relative genetic diversity until the
most recent decades when a slight decrease was observed (Figure 3).
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Figure 3. Relative genetic diversity (Ne x t) of the bovine coronavirus (BoCV) population over time.
The mean value is reported in black, while the upper and lower 95HPD values are reported as a shaded
area. The mean and upper 95HPD values of the time to Most Recent Common Ancestor (tMRCA) are
reported as black dotted lines.

The phylogeographic analysis identified the US as the most likely origin of the virus, from where
it might have spread to Sweden in the late 1970s and South Korea in the mid-1980s. However,
the posterior probability associated with the origin (~0.6) and initial introduction site in Europe (~0.4)
was low, thus preventing a precise reconstruction of the initial steps of viral dispersal. Thereafter,
the two lineages followed independent pathways, with the strain initially introduced in Europe
continuing to circulate in this continent (Figure 4 and Figure S1).
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Figure 4. Time-scaled phylogenetic tree based on BoCV spike protein. The estimated ancestral
geographic location has been color-coded (different nuances of green, red, and blue have been selected
for American, Asian, and European countries), while the posterior probability is depicted as a circle on
the corresponding node, whose size is proportional to the estimated value. The statistically supported
migration routes have been represented in the upper left insert.

Particularly, between the 1980s and 1990s, the viral circulation first involved Germany (~1984),
France (~1996), and Denmark (~1997) and then reached Ireland approximately in 2004. From France,
it was introduced to Italy and Turkey (approximately in the late 1990s), likely through multiple
introduction events (Figure 4).

An intense connection was observed in the US, Asia, and Central–South America, with the US
being the source of independent introduction of viral strains in different countries (Figure 4 and
Figure S1), including South Korea (the 1980s), Brazil, China, Japan, Vietnam, and Bangladesh (1990s)
and thereafter Cuba (~2005). The BSSVS allowed the identification of the statistically supported
routes, confirming the above-mentioned scenario: The well-supported European and American–Asian
migration rates formed two independent networks. While in the first network, Sweden and France
seemed to share a significant role in the viral spreading, in the second network, the US was identified
as the only source of BoCV introduction to other countries (Figure 4). Within Europe, a relatively high
migration rate was observed, in contrast with the slow-spreading process from the US, with the viral
introductions to China and Vietnam being the most remarkable exceptions characterized by multiple
introduction events (Figures 4 and 5).

Moreover, multiple host jumps were demonstrated to occur over time. Cattle were identified as
the most relevant viral source for other domestic, captive, and wild species (Figure 6) and also the
most likely origin of the BoCV-like strains sampled from human beings. Two additional independent
contact networks were identified through BSSVS: the sambar deer as a viral source for the waterbuck,
and the Himalayan tahr as a potential source of strains collected in nyalas and sitatungas.
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Figure 6. Time-scaled phylogenetic tree based on BoCV spike protein. The estimated ancestral host
has been color-coded, while its posterior probability is depicted as a circle on the corresponding node,
whose size is proportional to the estimated value. The statistically supported migration routes have
been represented in the upper left insert.
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3.2.2. Selective Pressures

The analysis of the selective pressures acting on the S protein identified several sites under
significant pervasive diversifying (Figure 7, Table 2, and Figure S2) and purifying selection using
different methods (FEL, FUBAR, and SLAC). An even higher number of codons was detected under
episodic diversifying selection with MEME (i.e., 4, 113, 155, 179, 220, 253, 257, 412, 499, 501, 509, 510, 546,
579, 717, 894, 1027, 1189, 1211, and 1298). The homology modeling of the spike quaternary structure
allows us to display how the most intense diversifying pressures and most of those identified by
MEME acted on the S surface (Figure 7 and Animation S1). While the receptor-binding domain (RBD)
was largely under negative to neutral selection, nearby sites showed evidence of positive selection
(Figure 7 and Animation S2).Viruses 2020, 12, x FOR PEER REVIEW 10 of 18 
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Figure 7. Upper (left) and lateral (right) view of the quaternary structure of the BoCV spike protein
reconstructed using homology modeling. The appearance has been edited to highlight different
selective pressure features. In the color-coded monomer, the difference between non-synonymous and
synonymous substitution rates (dN–dS), calculated using FUBAR, is reported on the protein surface
ranging from purple (dN > dS) to light blue (dN < dS). In the gray-colored monomer, sites under
episodic diversifying selection are reported in red. In the remaining monomer, colored in orange,
the receptor-binding domain (RBD) is highlighted in green. In the transparency, the ribbon structure
is visualized. In the central insert, the RBD is magnified (upper image), and the strength of selective
pressures (lower image) acting in that region is represented using the previously described scale.
A more detailed representation of the overall protein structure is reported in the Animations (S1 and S2).

Table 2. Codons of the spike protein detected under statistically significant diversifying selection
using different methods. The difference between non-synonymous and synonymous substitution rates
(dN–dS) and respective significance level (p-value or posterior probability) are reported.

FEL FUBAR SLAC

Position dN-dS p-Value dN-dS Posterior Probability dN-dS p-Value

113 4.714 0.011 7.060 0.993 5.711 0.013
174 - - - - 4.000 0.039
179 9.127 0.030 17.724 0.994 10.129477 0.012
257 3.009 0.039 4.547 0.937 - -
400 - - 3.326 0.912 - -
499 5.817 0.013 12.690 0.997 5.816 0.021
501 7.518 0.001 14.566 1.000 12.412 0.000
509 9.840 0.001 17.373 1.000 9.071 0.002
510 3.790 0.024 6.358 0.984 4.722 0.030
525 - - 8.060 0.917 6.462 0.034
572 - - 4.962 0.938 - -
579 3.456 0.032 5.916 0.972 4.219 0.046
966 - - 7.742 0.972 - -
1298 1.307 0.026 1.403 0.918 - -

- Non-significant pressure with the specific method.
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Amino acid co-evolution analysis identified at least five pairs of amino acids whose mutations
were linked with a posterior probability of >0.95 (Table 3 and Figure S3). Four sites were exposed on the
S surface and in close proximity (Table 3), although amino acids 525–546 were on the opposite side of a
protein protrusion. One of the exposed pairs included distant amino acids (244–531). Two relatively
close amino acids (12 Å) embedded within the protein structure were also seen to co-evolve (Table 3
and Figure S3). aBSREL identified two branches only featured by a statistically significant episodic
diversifying selection. Remarkably, those branches led to species different from cattle (i.e., bubalus and
water deer).

Table 3. Pairs of spike amino acids proven to co-evolve. For each pair, the position of the involved
amino acids and their distances are reported.

Amino Acid 1 Amino Acid 2 Position Amino Acid 1 Position Amino Acid 2 Distance (Å)

121 260 Internal Internal 12
146 148 External External 5.4
147 151 External External 6.8
244 531 External External 29.1
525 546 External External 12.9

Finally, the comparison of selective forces between strains collected from respiratory or enteric
samples highlighted a significant episodic directional selective pressure pointing toward amino acids
R, L, I, and E at positions 24, 690, 851, and 966 of respiratory strains, respectively (Figure S4).

4. Discussion

The recent emergence and spreading of SARS-CoV-2 have, once again, drawn attention towards
coronaviruses and their evolution potential [39,40]. The present manuscript provides a 360◦ depiction
of the epidemiological and evolutionary forces acting on BoCV. High mutation and recombination rates
were demonstrated to cooperate in the genesis of the remarkable genotypic and phenotypic variability
of coronaviruses and other viruses as well [41–44].

The analysis performed on the available whole genome sequences confirmed this tendency also for
BoCV. Recombination appears as a frequent phenomenon, with 51% of sequences displaying evidence
of potential recombination events. In silico recombination, detection must be critically evaluated,
since several factors can affect its sensitivity and specificity [45,46]. Nevertheless, the combination
of several methods, such as RDP4, GARD, and phylogenetic network analyses, strongly support the
frequent occurrence of recombination. These pieces of evidence are in contrast with previous knowledge,
which stated a marginal role of recombination in BoCV evolution [47]. However, the remarkable
difference in the number of analyzed sequences and the use of complete genomes rather than individual
genes or regions can easily justify the different results.

While no ORF or ORF region was preferentially affected by recombination events, some statistically
significant recombination hot-spots were identified approximately in positions 4700 (pp1a), 21,600 (end
of pp1ab/junction with region 32 KDa protein) and 23,900 (beginning of S) (based on the Mebus strain
coding region). These results were also confirmed at the individual gene level and agree with the
results reported by Salem et al. (2020) [9], who identified a potential recombination event within the
S gene [9]. Interestingly, the presence of recombination hot-spots in the pp1ab and S gene has been
described also in distantly related coronaviruses [48]. Since these regions are involved in replication
efficiency and viral attachment, and thus in tropism and immunogenicity, the potential fitness gain
featuring the new recombinant strains could favor the fixation, persistence, and spread of these genetic
variants [49,50].

The other evolutive driving force of RNA viruses is their high mutation rate. Independently of the
considered gene, the evolution rate was estimated to be approximately 10−3–10−4 substitutions/site/year,
which is within the typical range of these viruses. Among the viral proteins, 32 KDa and SE were
featured at a slightly higher rate. Although surprising, since these proteins are not the expected target
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of major selective pressures—i.e., immunity-induced proteins—it must be remembered that negative
selection is the dominant force constraining and conditioning the viral phenotype and, indirectly,
the viral genome. The less intense selective constraints acting on these proteins compared to major
structural and non-structural proteins could allow greater flexibility and the accumulation of neutral
and slightly deleterious mutations.

Since our initial aim was to compare the mutation rate of different genes, the estimation was
performed on sequences obtained from complete genomes only to limit the potential biasing effect
of using different datasets. When the broader complete S sequence dataset was analyzed, a slightly
higher evolutionary rate was estimated. The inclusion of more sequences originating from a broader
geographic area and encompassing a longer period likely provided a more representative depiction of
the BoCV variability and evolution potential and thus more reliable estimations. Nevertheless, it must
be stressed that the substitution rate’s order of magnitude was fully comparable and in agreement
with previous studies [9,51], supporting the robustness of the overall obtained results.

As previously mentioned, selective pressure analysis performed on the broadest available
S protein dataset demonstrated the dominant effect of purifying selection. However, different sites
were detected under diversifying selection, particularly in the S1 region. Significantly, the even
higher number of amino acid positions proved episodic diversifying selection, which supports,
as demonstrated for other coronaviruses, the idea that evolution is not pervasive and largely acts
through selective bursts [42], such as those induced by environmental changes, the invasion of new
niches, etc. The homology modeling based on similar templates—and particularly on the closely related
human HCoV-OC43—allowed the reliable reconstruction of its quaternary structure as the S protein is
conserved [52]. The stronger selective diversifying pressures were clearly acting on the amino acids
exposed on the S surface, allowing us to speculate on a major role for the host immune pressure on spike
evolution. Interestingly, amino acids that form part of the receptor-binding domain were largely subject
to negative to neutral selection, suggesting that the need to preserve the interaction with sialic acid
prevented protein diversification, even in the presence of a likely immune pressure. This hypothesis is
supported by the evidence that ligand-interacting residues or residues that are indirectly involved
in the formation of the binding site are also strictly conserved in other species, such as HcoV-OC43,
HCoV-HKU1, and porcine hemagglutinating encephalomyelitis virus (PHEV) [3,52]. Other amino acids
near the receptor pockets were subject to diversifying selection. Therefore, the binding of antibodies to
these epitopes could prevent viral attachment through sterical inhibition and consequently promote
BoCV diversification in these less functionally constrained regions (Figure 7).

Protein function is the result of a long-lasting process of evolution involving the fine interaction of
different domains. Therefore, after a mutation occurs at one site, compensatory mutations are often
required for an actual fitness gain [53]. A compatible pattern was confirmed for BoCV. Despite a
conservative 0.95 posterior probability threshold being selected in the BGM analysis, five sites were
determined to co-evolve. Three of those were located on the viral surface in nearby positions,
suggesting the role of linked mutations in the interaction of the S protein with the host. However,
the identification of associated substitutions involving internal amino acids suggests the relevance of
preserving the overall protein stability.

Besides immunity, host tropism is among the factors that could favor spike variation.
The evaluation of host-jump patterns identified cattle as the principal source of BoCV introduction to
other domestic, captive, and wild species, even through multiple introduction events, confirming its
relevance as the main viral reservoir [10]. Interestingly, even the human cases of BoCV-like infection
were traced back to a bovine source, confirming the previous hypothesis [54]. The origin of other
human (HCoV-OC43) and animal coronaviruses was previously attributed to bovine species [55–58].
Therefore, the present results further show the zoonotic potential of these viruses and the need for
further investigations on this topic.

The analysis of branch-specific selective pressure identified only two non-bovine lineages
undergoing episodic selection during their history, which could suggest the actual occurrence of



Viruses 2020, 12, 1285 12 of 17

progressive host adaptation at the spike gene level. However, no clear association was identified
between the host and amino acid composition in sites detected under selection by other methods,
and none of the selected sites was directly involved in the receptor-binding domain (Figure 7) [52].
Unfortunately, only limited and extemporaneous transmission chains involving non-bovine species
were investigated, thus impairing our ability to detect the long-term adaptation to new species.

Similar limitations were evident when the role of non-cattle species in maintaining infection
and serving as an intermediate source for further host jumps was evaluated. Although statistically
significant links were demonstrated both between cattle and wild species and among wild species,
several of the latter strains were obtained from zoos or natural reserves, where species originating
from different geographic areas are artificially kept in close contact. Therefore, while the susceptibility
of these species and their ability to transmit infection was proven, their actual role in natural settings
remains largely unknown. Overall, no strict evidence of an actual host-specific adaptation could be
provided, and the detection of BoCV in such a plethora of different species [10] could be attributed to
its innate plasticity.

A relatively similar picture was drawn from the evaluation of tissue tropism. Some reports
suggested that all BCoV strains are similar at genomic and antigenic levels [4,59], while others proposed
that enteric and respiratory strains are genetically and antigenically different [8,60]. The present study
demonstrates that no long-term tissue adaptation has occurred, at least in the spike gene, without a
clear association being demonstrated between tree topology and tropism. While certain small clusters
were featured by a preferential tropism, they largely originated from the same study, introducing a
dominant confounding effect of the involved animals, study location, and purpose. Other options
remain available. First, mutations in other proteins or even non-coding regions, as proven for other
viruses [61,62], would be worthy of investigation when a broader and less biased dataset of complete
genomes becomes available. Another non-mutually-exclusive hypothesis is that specific mutations
that occur in a limited site number could favor a change in viral tropism. Episodic directional selection
analysis identified four sites pointing toward different preferential amino acids in respiratory strains.
However, in this case, a critical evaluation of the statistically obtained results also seems to lessen
their relevance. The number of strains affected by these mutations was limited, and although certain
mutations were peculiar for respiratory strains, other genetically related viruses with the same tropism
showed the amino acid featuring enteric strains (Figure S4). Consequently, even if an advantage in the
specific tissue replications conferred by these mutations cannot be excluded, none of them seems to be
necessary for effective tissue adaptation. Further experimental studies based on reverse genetics could
be of great help in the evaluation of this still unsolved issue.

Finally, the BoCV dispersal pattern was evaluated; the actual origin of BoCV remains controversial
since the ancient node ancestral states were featured by a low posterior probability. However,
as previously proposed [1,9,63], compartmentalization between European and American–Asian strains
was demonstrated and arose around the late 1970s to early 1980s. Europe is a market that is essentially
closed to external cattle importations but featured by a dense internal livestock trade [64]. Accordingly,
a high migration rate of viral strains could be estimated among European countries, similar to the
situation described for other coronaviruses (and other viruses as well) of veterinary interest [65,66].
France and Sweden were identified as the main spreading sources. France, in particular, is the most
important cattle exporter to several counties, including Italy, which is one of the major importers.
This viral migration pattern is thus fully compatible with the importation of feedlot calves for the
last growth and fattening phases when significant clinical problems and economic losses occur as a
consequence of viral infection and shipping/acclimatization related stresses. Sweden, on the other
hand, currently has a much lower impact on the bovine trade. Nevertheless, Swedish exportation
was more prominent in the late 1960s and 1970s (FAOSTAT; www.fao.org/faostat/), when the initial
BoCV spreading was estimated to occur. This evidence demonstrates that more intense monitoring
and preventive measures, such as vaccination administration in young animals before international

www.fao.org/faostat/
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trade, could not only reduce the clinical impact but also the transferal and mixing of BoCV strains
within Europe.

A comparable scenario, although at a much broader geographical level, was observed in the
American–Asian group, where viral strain migration mimicked the livestock importation from the US
to other countries. For example, in South Korea, where cattle trade from the US has been active since the
1960s, BoCV was imported approximately in the 1980s, while in Japan, where a huge increase in cattle
importation was delayed by a decade, BoCV introduction was estimated in the 1990s (U.S. Department
of Agriculture; https://www.usda.gov/). The Vietnamese and Cuban cases are even more illustrative.
Due to politically-imposed restrictions, an active trade began only in the 1990s [67] and the middle
2000s [68] and was promptly followed by viral introduction. Even if the viral migration rate was
overall less intense than within European borders, some exceptions were observed, particularly in
Asian countries, where several independent introduction events from the same source (i.e., the US)
were proven, testifying a largely unconstrained viral flux even over extremely long distances.

This spreading was paralleled by a progressive increase in viral population size that was ascribable
to the progressive invasion of new niches characterized by relatively immunologically naïve populations.
The slight decline observed in the last decades could be due to the increasing awareness of the clinical
and economic relevance of this infection and to the implementation of more effective control measures,
including planned vaccination protocols. However, an artifactual reduction cannot be excluded.
In fact, because the sequences are not obtained from systematic studies, it is unavoidable that the most
recent sequences originate from a limited number of countries. Therefore, the observed reduction
could actually be representative of the analysis of a “more restricted” geographic area (and thus viral
population) rather than of a worldwide decreasing pattern [69]. In the future, the accumulation of new
sequences from a more representative geographical dataset would allow this doubt to be excluded.
In fact, the most relevant room for improvement is represented by the relatively limited number of
available sequences and by their uneven distribution among countries and species. Although the
implemented methods are more resistant than traditional epidemiology to such a source of bias,
their potential effect on parameter estimations, such as tMRCA, migration, and host jump patterns,
cannot be excluded. Therefore, continuous efforts should be made in the acquisition and sharing of
more sequences from previously neglected areas and ecological niches.

5. Conclusions

Overall, the present study provides a comprehensive depiction of evolutive and epidemiological
BoCV pathways at a worldwide level. A remarkable role of recombination and high mutation
rate has been demonstrated to generate the genetic variability on which selective pressures can act.
Immune pressure is likely to play a major role, favoring the diversification of the spike protein in
regions exposed on the viral surface. The occurrence of co-evolution linking different sites is likely the
result of the compensatory mutation necessary to preserve protein stability and functionality. On the
contrary, while some weak evidence of host/tissue tropism-induced selection could be detected, overall,
BCoV tropism appears to be more closely linked to innate flexibility rather than to specific adaptations.
However, the amount and structure of available sequences prevented definitive conclusions and should
prompt more intensive sequencing and analysis activity.

Supplementary Materials: The following materials are available online at http://www.mdpi.com/1999-4915/12/
11/1285/s1, Figure S1: Migration of BoCV over time. Migration events are represented as arrows (chronologically
color-coded from black to red) connecting the involved countries. The size of the polygons around a sampling
location is proportional to the number of lineages maintaining the location. Figure S2: Depiction of selective
pressures acting on spike codon positions estimated using different methods. Statistical significance is depicted by
color-coded points. Figure S3: Depiction of the amino acid pairs detected to co-evolve. On the left, the amino
acid pair detected to co-evolve is plotted against the phylogenetic tree. The tips of the tree have been color-coded
according to the collection host. On the right, the involved amino acids are highlighted on the ribbon representation
of the spike protein quaternary structure. The first amino acid is represented in red; the second is presented
in blue. The spike surface is also displayed in the transparency and color-coded using the same scheme when
the involved amino acids are exposed to the external environment. Lateral or top views have been selected

https://www.usda.gov/
http://www.mdpi.com/1999-4915/12/11/1285/s1
http://www.mdpi.com/1999-4915/12/11/1285/s1
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depending on the particular pair to display the disposition of involved amino acids better. Figure S4: Depiction of
codons under directional selection in relation to tissue tropism. The amino acid pair detected under directional
selection is plotted against the phylogenetic tree. The tips of the tree have been color-coded according to viral
tropism. Animation S1: Selective pressures acting on the spike protein. The appearance has been edited to
highlight different selective pressure features. In the color-coded monomer, the dN–dS difference, calculated using
FUBAR, is reported on the protein surface ranging from purple (dN > dS) to light blue (dN < dS). In the
gray-colored monomer, sites under episodic diversifying selection are reported in red. In the last monomer,
colored in orange, the receptor-binding domain (RBD) is highlighted in green. The ribbon structure is visualized
in transparency. Animation S2. Focus of selective pressures acting on the receptor-binding domain (highlighted
in green). The dN–dS difference, calculated using FUBAR, is reported on the protein surface ranging from red
(dN > dS) to blue (dN < dS).
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