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Abstract
We refine the geometric Satake equivalence due to Ginzburg, Beilinson–Drinfeld, and
Mirković–Vilonen to an equivalence between mixed Tate motives on the double quo-
tient L+G\LG/L+G and representations of Deligne’s modification of the Langlands
dual group ̂G.
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1596 T. Richarz, J. Scholbach

1 Introduction

1.1 Motivation and goals

Split reductive groups are classified by their root data. These come in pairs, consisting
of a root datum and its associated dual root datum.Accordingly, to every split reductive
group G, there is associated its (Langlands) dual group ̂G.

The work of Kazhdan and Lusztig [41,42] shows that the representation theory of ̂G
is closely related to the singularities arising in certain orbit closures inside (affine) flag
varieties associated to G. Building upon [50], the work of Ginzburg [30], Belinson–
Drinfeld [8] and Mirković–Vilonen [52] revealed an equivalence of symmetric tensor
categories between the category of finite-dimensional ̂G-representations and the cat-
egory of certain sheaves on an infinite-dimensional variety GrG known as the affine
Grassmannian ofG. This categorical equivalence is called the geometric Satake equiv-
alence. It is an important tool in geometric representation theory which appears in
different contexts and has a wide range of applications. For further details on the sub-
ject, the reader may refer to the notes of Baumann and Riche [7] and of Zhu [66], to
[57,61] for the relation with the classical Satake isomorphism (for which see [33]),
and to [65] for a Satake equivalence in the case of mixed characteristic.

The goal of the present manuscript is to provide amotivic refinement of the geomet-
ric Satake equivalence. This has both philosophical and concrete consequences: the
above papers devoted to the Satake equivalence use different base schemes, and also
use different cohomology theories. It is therefore desirable to describe the common
content of such different approaches, which is a goal accomplished in this paper. As far
as concrete applications are concerned, let us point out that one of ourmainmotivations
is the work of Lafforgue [46] on the Langlands parametrization for global function
fields. V. Lafforgue in particular conjectures [46, Conj. 12.12] that this parametriza-
tion is of motivic origin independent of an auxiliary prime number � coming from
the use of �-adic étale cohomology. A first evidence for Lafforgue’s conjecture is the
construction of intersection cohomology motives on moduli stacks of G-shtukas alias
IC-Chow groups in [60]. The motivic Satake equivalence established in this paper is
a second step of an ongoing project whose goal is to provide a motivic approach to
V. Lafforgue’s Langlands parametrization.

1.2 Results

Let G be a Chevalley group over Z (=split reductive group scheme [18]), and fix
T ⊂ B ⊂ G, a split maximal torus contained in a Borel subgroup over Z. The
loop group of G is the group-valued functor on the category of rings R given by
LG(R) = G(R((�))). Its subgroup functor L+G(R) = G(R[[� ]]) is the positive
loop group. Here R[[� ]] ⊂ R((�)) denotes the ring of power series in a formal
variable � , contained in its Laurent series. For every finite field Fq , the classical
Satake isomorphism [33] is an isomorphism of Q(

√
q)-algebras

Cc
(

L+G(Fq)\LG(Fq)/L
+G(Fq);Q(

√
q)

) � R
̂G ⊗Q Q(

√
q), (1.1)
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The motivic Satake equivalence 1597

where
√
q is a fixed square root of q needed in the construction. The left hand side of

(1.1) are thusQ(
√
q)-valued functions supported on finitely many double cosets. The

convolution of such functions turns the left hand side into an algebra known as the
spherical Hecke algebra. On the right hand side of (1.1) the group ̂G is the Langlands
dual group of G formed over Q (with respect to a fixed pinning). Then R

̂G is the
GrothendieckQ-algebra of the category of representations of ̂G on finite-dimensional
Q-vector spaces. Its ring structure is given by the tensor product of representations.
Writing Vμ for the simple ̂G-representation of highest weight μ, where μ ∈ X∗(T )+
is a dominant cocharacter, their classes [Vμ] form aQ-basis of R

̂G . Under (1.1), these
correspond to functionswhich are related to the singularities of an infinite-dimensional
space as follows. The affine Grassmannian is the étale sheaf quotient

GrG
def= (

LG/L+G
)et

,

which is representable by an ind-projective ind-scheme (=infinite union of projective
Z-schemes) equipped with a left action of L+G. For each dominant cocharacter μ ∈
X∗(T )+, we denote by Gr≤μ

G the scheme-theoretic image of the orbit map L+G →
GrG, g 
→ g · �μ · e where e ∈ GrG(Z) is the base point. Then Gr≤μ

G → Spec(Z)

is a projective scheme, usually singular, which contains the open smooth L+G-orbit
GrμG ⊂ Gr≤μ

G as a fiberwise dense open subscheme. There is a presentation on the
underlying reduced locus

(

GrG
)

red = colimμ∈X∗(T )+ Gr≤μ
G .

For a finite fieldFq and each auxiliary prime � � q, let ICμ,q,� be the �-adic intersection
complex of Gr≤μ

G ⊗ZFq in the sense of Goresky–MacPherson–Deligne. A surprising
observation of [50] is that the class [Vμ] corresponds under (1.1) (up to a power of√q)
to the trace of Frobenius function of ICμ,q,� given by Grothendieck’s sheaf function
dictionary.

The geometric Satake equivalence is a categorification of (1.1). It is known in
several settings using different cohomology theories: in [7,30,52] the authors work
with GrG ⊗ZC using Betti cohomology (the latter two with more general coefficients
however), whereas [8] works with GrG ⊗ZC using D-modules, and [57,61] works
with GrG ⊗Zk for general fields k using �-adic étale cohomology. Here we provide a
motivic refinement.

In analogy with the left hand side of (1.1) we consider the double quotient
L+G\LG/L+G → Spec(Z) viewed as a groupoid-valued functor on the category of
rings. For each such functor we have constructed in [60] a category of motives (with
rational coefficients)

DM
(

L+G\LG/L+G
) = DM

(

L+G\LG/L+G;Q)

. (1.2)

The collection of all such categories is equipped with a Grothendieck six functor for-
malism (with certain restrictions on the ∗-pullback). The construction in op. cit. builds
upon the recent advances in the theory of motivic sheaves due to Ayoub [2,3,5] and
Cisinski–Déglise [14,15] as envisioned by Beilinson.
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1598 T. Richarz, J. Scholbach

In there we consider a much smaller full subcategory of stratified Tate motives

DTM
(

L+G\LG/L+G
) ⊂ DM

(

L+G\LG/L+G
)

.

This category is generated by all Tate twists 1GrμG (n), n ∈ Z of the characteristic

relative motives of the orbits GrμG , μ ∈ X∗(T )+, and is well suited for applications to
Hecke algebras. It is equipped with a convolution product: namely, for two motives
A, B on the double quotient their convolution is defined as the motive

A�B = m! p!(A � B) (1.3)

using the maps

L+G\LG/L+G × L+G\LG/L+G L+G\LG ×L+G LG/L+G
p m

L+G\LG/L+G,

where p is the canonical projection andm is induced by themultiplication LG×LG →
LG, (g1, g2) 
→ g1 · g2. The convolution of motives in (1.2) is modeled on the
convolution in the spherical Hecke algebra (1.1). (The use of the functor p! in (1.3), as
opposed to p∗, is related to the construction of (1.2). Elements of this category should
be more appropriately thought of as “measures” instead of “functions” which leads in
a categorical setting to the use of !-pullback instead of ∗-pullback.)

The fibers of convolution morphisms are paved by cells [34] which leads to the
following result.

Theorem A If A, B are stratified Tate motives (resp. and pure of some weight), then
A�B is again stratified Tate (resp. and pure) (3.17), (4.8).

In fact, we show a more general version of Theorem A where L+G is replaced by
an arbitrary parahoric subgroup of LG. As a consequence, the category of stratified
Tate motives is equipped with a monoidal structure with respect to the convolution.
We now cut out an abelian subcategory as follows.

By [60], which extends the work of Soergel andWendt [63], for eachμ ∈ X∗(T )+,
n ∈ Z there exists an intersection motive

ICμ,Z(n) ∈ DTM
(

L+G\LG/L+G
)

(1.4)

which is supported on Gr≤μ
G and such that ICμ,Z(n)|GrμG = 1GrμG (n). We emphasize

that the non-trivial construction of ICμ,Z(n) in [60] bypasses the use of standard
conjectures on t-structures of triangulated categories of motives. For any finite field
Fq and each prime � � q, its base change ICμ,Fq := ICμ,Z|Fq maps under the �-

adic realization to the intersection complex ICμ,q,� on Gr≤μ
G ⊗ZFq as above. For the

field of rational numbers Q, its base change ICμ,Q := ICμ,Z|Q maps under the Betti
realization to the intersection complex on the stratified topological space Gr≤μ

G (C).
Thus, the motives ICμ,Z interpolate between various intersection sheaves arising in
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The motivic Satake equivalence 1599

the literature on the Satake equivalence, both in the sense of letting the base scheme
vary, and also in the sense of varying the cohomology theory.

Again by [60], the category DTM(L+G\LG/L+G) is equipped with a non-
degenerate (perverse) motivic t-structure. Its heart, the abelian subcategory of mixed
(stratified) Tate motives

MTM
(

L+G\LG/L+G
) ⊂ DTM

(

L+G\LG/L+G
)

,

is generated by the intersection motives (1.4). Using motivic (global) cohomology
provides a Q-linear functor ω : MTM(L+G\LG/L+G) → VectQ, see Definition
5.11.

Theorem B (i) If A, B are mixed Tate motives, then their convolution A�B is mixed
Tate as well (5.8)

(ii) The motivic cohomology functor ω isQ-linear, exact, faithful and equipped with
functorial isomorphisms ω(A�B) � ω(A) ⊗Q ω(B) for all objects A, B. (5.13)

(iii) There exists a unique symmetric monoidal structure onMTM(L+G\LG/L+G)

with respect to the convolution product � characterized by the property that ω

is a tensor functor with respect to (ii) and the canonical symmetric monoidal
structure on (VectQ,⊗) (5.9, 5.14)

Already for G = GL2, the subcategory of non-twisted intersection motives ICμ,
μ ∈ X∗(T )+ is not stable under convolution. As observed in [37, Rmk. 2.10] and [61]
this phenomenon is linked to the presence of

√
q in (1.1) and leads to the appearance

of a Gm,Q-extension on the dual side.
We consider the central subgroup μ2 ⊂ ̂G × Gm,Q of order 2 generated by the

element (ε,−1) where ε := (2ρ)(−1) ∈ ̂G(Q) and 2ρ denotes the sum of positive
roots viewed as a cocharacter of ̂G. Deligne’s modified Langlands dual group (see
[20], [24, §2], [13, §5], and [66, 5.5.14]) is defined as the split reductive Q-group

̂G1
def= ̂G ×μ2 Gm,Q.

The extra Gm,Q factor corresponds to the occurrence of Tate twists when forming
the convolution of intersection motives. We denote by RepQ(̂G1) the category of
algebraic ̂G1-representations on Q-vector spaces. This category is semi-simple. Its
simple objects are labelled by Vμ(n) with μ ∈ X∗(T )+, n ∈ Z.

To make the connection with (1.1) we base change the groups LGFq := LG⊗Z Fq

and L+GFq := L+G ⊗Z Fq to a finite field. Then the analogue of Theorem B holds
with MTM(L+G\LG/L+G) replaced by MTM(L+GFq\LGFq /L

+GFq ).

Theorem C For each finite field Fq , there is an equivalence of symmetric monoidal
categories

MTM
(

L+GFq\LGFq /L
+GFq

) � RepQ(̂G1), ICμ,Fq (n) 
→ Vμ(n),

using the tensor structure from Theorem B. Under this equivalence, the motivic coho-
mology functor ω corresponds to the forgetful functor RepQ(̂G1) → VectQ. For each
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1600 T. Richarz, J. Scholbach

prime � � q, this equivalence gives under the �-adic étale realization the geometric
Satake equivalence as explained in [66, 5.5.14]. (6.8, 6.12)

Among other things, Theorem C asserts that the left hand category is semi-
simple. This semi-simplicity is inferred, via Lusztig’s parity vanishing, from the
semi-simplicity of the abelian category MTM(Fq). The latter semi-simplicity holds
since higher algebraic K -theory of Fq is torsion by Quillen’s computation, see Exam-
ple 6.12. This semi-simplicity is then lifted to the mixed Tate motives on the double
quotient over a finite field. Passing to the trace of the Frobenius function as in, say,
[16] one recovers the Satake isomorphism similar to (1.1) where one now considers
Q-valued functions and a quotient of the representation ring R

̂G1
, cf. Sect. 6.4.

In contrast to MTM(Fq), the categories MTM(Z) and, a fortiori,
MTM(L+G\LG/L+G) are no longer semi-simple. More generally, if S is a suffi-
ciently nice scheme which satisfies the Beilinson–Soulé vanishing (e.g. the spectrum
of finite fields as above; number fields or their rings of integers; function fields over a
finite field or their rings of integers; or filtered colimits of these rings) the category of
mixed Tate motives

MTM
(

L+GS\LGS/L
+GS

)

(1.5)

iswell-defined and satisfiesTheoremBwherewedenote L(+)GS := L(+)G×Spec(Z)S.
In the category (1.5) we also have the intersection motives ICμ,S(n) for μ ∈ X∗(T )+,
n ∈ Z. We denote by SatG,S the full semi-simple subcategory of (1.5) generated by
the intersection motives by means of direct sums. This subcategory SatG,S is stable
under convolution, and hence inherits a symmetric monoidal structure.

Theorem D Let p : S → Spec(Z) be a base scheme as above.

(i) The pullback of motives induces an equivalence of symmetric monoidal cate-
gories

SatG,Z → SatG,S, ICμ,Z(n) 
→ p∗ICμ,Z(n) = ICμ,S(n),

and hence SatG,S � RepQ(̂G1) by Theorem C independently of S (6.6)
(ii) Let US be the pro-unipotent algebraic Q-group arising from extensions in the

category MTM(S). Then there is an equivalence of symmetric monoidal cate-
gories

MTM
(

L+GS\LGS/L
+GS

) � RepQ(US � ̂G1)

where on the right-hand side is the category of representations of the pro-
algebraic group US � ̂G1 on Q-vector spaces (6.14, 6.15)

Part (i) of Theorem D precisely formulates the experimental fact that under the
geometric Satake isomorphism the dual side does not depend on the base scheme over
which the affine Grassmannian is defined. Part (ii) is, in part, an extension of Levine’s
work [47] which one recovers in the special case where G is the trivial group.
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The motivic Satake equivalence 1601

1.3 Related and future work

Zhu [67] has sketched the construction of a motivic Satake equivalence over Fq

using the category of numerical motives of Jannsen. Zhu’s approach is based on an
explicit enumeration of algebraic cycles on affine Grassmannians. By comparison, the
approach taken in this paper is more strongly relying on the general framework of
motives, which we expect to be fruitful also for our upcoming work.

One may imagine using the theory of Nori motives to produce an abelian cate-
gory of motives related to the Satake equivalence. Nori motives, however, depend
upon the cohomology theory chosen at the outset. In the case of motives over Fq ,
say, this would in practice mean choosing �-adic cohomology for some � prime to q.
Again, the choice of working with motives as developed by Ayoub and Cisinski–
Déglise is based on the desire to apply it to a Langlands parametrization over
function fields, where we precisely seek to avoid a reference to �-adic cohomol-
ogy.

Throughout this paper, motives have rational coefficients. Using upcoming work of
Spitzweck on t-structures on Tate motives with integral coefficients, it would be very
interesting to establish a Satake equivalence in this situation. The reader is referred to
[68] for a result on the level of functions.

There are versions of the geometric Satake equivalence using different affine Grass-
mannians such as the Witt vector (or p-adic) affine Grassmannian of Zhu [65], the
BdR-affine Grassmannian of Fargues–Scholze [23]. In subsequent work [59], we
extend the methods of this paper to cover a Satake equivalence for Witt vector Grass-
mannians.

As was stated above, we conceive the results in [60] and the Satake equivalence in
this paper to be two steps in a long-term program aiming to prove a motivic version
of V. Lafforgue’s Langlands parametrization over function fields. The immediate next
step, to be addressed in a subsequent paper, is to improve on Theorem C by proving a
motivic version ofGaitsgory’s factorization (or fusion) version of the geometric Satake
equivalence [27]. This will require suitable Whitney–Tate properties of Beilinson–
Drinfeld Grassmannians, as opposed to the affine Grassmannian GrG encountered
above. Here the six functor formalism for the categories of motives mentioned in
Theorem C will be crucial. Further steps in this program include a motivic Drinfeld
lemma, a motivic construction of excursion operators, and their identification with
Hecke operators. All these remain to be done as well.

2 Motives on affine flag varieties

In this section,we recollect and extend somematerial from [60] as is needed throughout
this manuscript. In Sect. 2.1, we state some facts on loop groups and their affine flag
varieties. The next Sect. 2.2 treats motives on prestacks which is applied in Sects. 2.3–
2.4 to affine flag varieties. Section 2.5 gathers some facts pertaining to Kazhdan–
Lusztig parity vanishing.
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1602 T. Richarz, J. Scholbach

Notation 2.1 Throughout this manuscript, S is an irreducible, regular scheme which
is separated of finite type over a Noetherian, excellent, separated and at most 2-
dimensional scheme. Further,we assume that S satisfies theBeilinson–Soulé vanishing
conjecture (cf. [60, (3.2.2)]), and admits an �-adic realization functor in the sense of
[60, §2.1.2, Rmk. 3.2.9].

Examples include finite fields, number fields and function fields of curves over
finite fields, their rings of algebraic integers and filtered colimits of these rings.

2.1 Loop Groups and their affine flag varieties

We refer the reader to [60, §4] for further details and references on the following
material.

We denote by AffSchS the category of affine schemes Spec(R) → S equipped with
a map to S. Let G be a split reductive group scheme over S, for example G = GLn,S .
The loop group LG is the presheaf

LG : AffSchopS → Groups, Spec(R) 
→ G(R((�))),

where R((�)) is the ring of Laurent series in the formal variable � . It is represented
by an ind-affine ind-scheme over S, and in particular LG is an fpqc sheaf on AffSchopS .

We fix T ⊂ B ⊂ G over S, a split maximal torus contained in a Borel subgroup. Let
A = A (G, B, T ) be the standard apartment with origin 0 defined by G and standard
alcove a defined by B. We only consider facets f ⊂ A which are contained in the
closure of a. Attached to f is the parahoric subgroup Pf ⊂ LG which is an S-affine,
S-flat closed subgroup scheme. For this paper, the most important case is f = 0, in
which case P0 =: L+G is the positive loop group given by the presheaf

L+G : AffSchopS → Groups, Spec(R) 
→ G(R[[� ]]).

If f = a, then Pa =: B is the standard Iwahori subgroup defined as the preimage of
B under the map L+G → G, � 
→ 0.

The étale sheafification of the quotient Flf := (LG/Pf )
et is called the partial affine

flag variety associated with f . It is represented by an ind-projective ind-scheme over
S. For f = 0, it is denoted by Gr = GrG , and called the affine Grassmannian.

Given two facets f ′, f ⊂ ā ⊂ A , the orbits of the Pf ′ -left-action on Flf are
enumerated by the double quotient Wf ′ \W/Wf of the Iwahori-Weyl (or extended
affine Weyl) group W = W (G, T ) by the subgroups Wf ′ ,Wf ⊂ W generated
by the reflections preserving f ′ resp. f . The choice of a defines a length function
l = l(f ′, f) : Wf ′ \W/Wf → Z≥0, and a Bruhat partial order≤ on the double coset. For
eachw ∈ Wf ′ \W/Wf , the locally closed immersion of thePf ′ -orbit ofw is denoted by

ιw : Flwf
jw
↪→ Fl≤w

f
iw
↪→ Flf . (2.2)

Then Fl≤w
f → S is a proper scheme called the (affine) Schubert scheme. It contains

Flwf as an open S-smooth subscheme which is fibrewise dense and which is called
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The motivic Satake equivalence 1603

the (affine) Schubert cell. For each map Spec(k) → S from a field, the base change
Flwf ×S Spec(k) ⊂ Fl≤w

f ×S Spec(k) identifies on the underlying reduced locus with
the Schubert cell, resp. Schubert variety over k attached to the class w and the k-
group scheme G ×S Spec(k). Further, each Flwf → S is pure of relative dimension
l(w) and Flvf ⊂ Fl≤w

f if and only if v ≤ w for v,w ∈ Wf ′ \W/Wf . If f ′ = f = 0,
thenW0\W/W0 = X∗(T )+ is the partially ordered set of dominant cocharacters with
length function l = l(0, 0) : X∗(T )+ → Z≥0, μ 
→ 〈2ρ,μ〉 where ρ denotes the half
sum of the B-positive roots and 〈-, -〉 : X∗(T ) × X∗(T ) → Z is the natural pairing.
In the case of the affine Grassmannian, we denote the orbits (resp. orbit closures) by
Grμ ⊂ Gr≤μ for μ ∈ X∗(T )+.

2.2 Motives on prestacks

We refer the reader to [60, §2] for further details and references on the following
material.

We consider the triangulated category of motives with rational coefficients

DM(X)
def= DM(X ,Q), X ∈ SchftS ,

where SchftS is the category of finite type schemes over S. This category is denoted
by DA(X ,Q) in [5] and by DA1,et(X ,Q) in [15]. Categories of motives with ratio-
nal coefficients admit a full six functor formalism: there are pairs of adjoint functors
( f ∗, f∗), ( f!, f !) for a map f ∈ SchftS and (-⊗ -,Hom(-, -)) satisfying the usual com-
patibilities such as smooth/proper base change, Poincaré duality, Künneth/projection
formula etc. Following Hoyois [38] and Khan [43], this can be upgraded to a presheaf
of ∞-categories

DM! : (SchftS )
op → DGCatcont, X 
→ DM(X), f 
→ f !, (2.3)

whereDGCatcont is the category of presentable, stable,Q-linear, dg-∞-categorieswith
colimit-preserving functors. The ∞-category DGCatcont is complete and cocomplete,
i.e., admits all (homotopy) limits and (homotopy) colimits, so that the following Kan
extensions are available.

Definition 2.4 (i) Let AffSchftS ⊂ AffSchS be the full subcategory of objects of
finite type over S. Throughout, we will replace this category by a small skeleton
containing the objects of interest to us.

(ii) Fix some regular cardinal κ , and let AffSchκ
S := Proκ-small(AffSchftS ) be the

category of κ-small pro-objects in AffSchftS .
(iii) The ∞-category of prestacks is PreStkκ

S := Fun((AffSchκ
S)

op,∞−Gpd) where
∞-Gpd is the ∞-category of ∞-groupoids (also called spaces). Hereafter, we
will usually drop the κ from the notation so that PreStk := PreStkκ

S , AffSchS :=
AffSchκ

S .
(iv) Define the functor

DM! : AffSchopS → DGCatcont
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1604 T. Richarz, J. Scholbach

to be the left Kan extension of the functor DM! in (2.3) along the inclusion
AffSchftS ⊂ AffSchS .

(v) Define the functor

DM! : PreStkopS → DGCatcont (2.5)

to be the right Kan extension of the preceding functor along the Yoneda embed-
ding AffSchS ⊂ PreStkS .

We emphasize that DM! in (2.5) encodes a category of motives DM(X) (with
rational coefficients) for each prestack X , and for each map f : X → Y in PreStkS
a colimit-preserving functor f ! : DM(Y ) → DM(X). This definition follows the
approach of Gaitsgory–Rozenblyum and Raskin. We refer to [60, §2.2] for references
and also for further discussion of the definition.

Theorem 2.6 (i) The presheaf DM! : PreStkopS → DGCatcont is a sheaf in the étale
topology. For each prestack X ∈ PreStkS the ∞-sheafification X → X et

induces an equivalence on categories of motives DM(X et)
�−→ DM(X), cf. [60,

Thm. 2.2.16].
(ii) The restriction of the presheaf DM! to the category of strict ind-schemes of ind-

finite type over S admits a full six functor formalism (with certain restrictions on
f ∗), cf. [60, Thm. 2.2.4].

2.3 Stratified Tatemotives on affine flag varieties

We recall some material pertaining to stratified Tate motives, referring to [60, §5] for
further details.

By virtue of Definition 2.4, there is the category of motives DM(Pf ′ \LG/Pf ) for
each pair of facets f ′, f ⊂ ā ⊂ A . Using Theorem 2.6 (i), we have a forgetful functor

DM(Pf ′ \LG/Pf ) � DM(Pf ′ \Flf ) → DM(Flf ),

which associates to each motive on the double quotient its underlying non-equivariant
motive.

Definition 2.7 (i) The category of (f ′, f)-stratified Tate motives DTM(Flf ) ⊂
DM(Flf ) is the full subcategory consisting of objects M ∈ DM(Flf ) such that
for all w ∈ Wf ′ \W/Wf

ι∗wM ∈ DTM(Flwf ),

where ιw is as in (2.2) and DTM(Flwf ) ⊂ DM(Flwf ) denotes the subcategory gener-
ated by1(n),n ∈ Zunder arbitrary shifts and colimits. (This condition is equivalent
to requiring ι!wM ∈ DTM(Flwf ) for all w, cf. [60, Def. 3.1.11, Cor. 4.3.12].)

(ii) The category of (f ′, f)-stratified equivariant Tate motives

DTM(Pf ′ \LG/Pf ) ⊂ DM(Pf ′ \LG/Pf )
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The motivic Satake equivalence 1605

is the full subcategory consisting of objects M whose underlying non-equivariant
motive lies in DTM(Flf ). There is a forgetful functor DTM(Pf ′ \LG/Pf ) →
DTM(Flf ).

The category DTM(Flf ) ⊂ DM(Flf ) agrees by [60, Thm. 5.1.1] with the full
subcategory generated by all ιw,!1(n) (resp. by all ιw,∗1(n)), and so is well-suited for
applications to Hecke algebras.

Theorem 2.8 ([60, Thm. 5.3.4]) Let S be a scheme as in Notation 2.1.

(i) The category DTM(Flf ) carries the so-called perverse motivic t-structure whose
heart is denoted byMTM(Flf ). The subcategoryMTM(Flf )c of compact objects is
Artinian and Noetherian. Its simple objects are precisely the intersection motives
on the orbit closures

ICw(n)
def= (ιw)!∗1(n)[dw] def= iw,! jw,!∗1(n)[dw], n ∈ Z, w ∈ Wf\W/Wf

where ιw = iw ◦ jw is as in (2.2) and dw is the relative dimension of Flwf over S.
(ii) If f ′ = f , then the forgetful functor

DTM(Pf\LG/Pf ) → DTM(Flf ),

and the t-structure in (i) create a t-structure on the left hand category. The induced
functor on the hearts MTM(Pf\LG/Pf ) → MTM(Flf ) is fully faithful and
induces a bijection on simple objects.

We point out the following results which are needed in Sect. 5 below.

Lemma 2.9 For w ∈ Wf ′ \W/Wf , there is an equivalence

MTM(S)
�−→ MTM(Flwf ).

Proof The structure map Flwf → S is smooth, and the Schubert cell admits a strat-
ification into affine spaces, by virtue of the stratification in Iwahori orbits, cf. [60,
Prop. 4.3.9]. Hence, this lemma follows from the general Lemma 2.10 below. ��
Lemma 2.10 Let π : X → S be a smooth surjective map of schemes of relative dimen-
sion d with connected fibers. We assume that X admits a stratification in the sense of
[60, Def. 3.1.1] by schemes of the form V(E) (where E is a vector bundle over S), e.g.,
by affine spaces over S. Then there is an equivalence of categories

π ![−d] = π∗[d](d) : MTM(S)
�−→ MTM(X),

where the Tateness of motives on X is with respect to the stratification by a single
stratum.
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1606 T. Richarz, J. Scholbach

Proof By the conventions in Notation 2.1, S is connected and hence so is X [64, Tag
0378]. The functor is fully faithful by [60, Lem. 3.2.12]. For essential surjectivity,
we first claim that HomS(M, N [1]) = HomX (π∗M, π∗N [1]) for M, N ∈ MTM(S).
We prove this by induction on the number of strata in X . If X = V(E) is a single
stratum, then this holds even for all N ∈ DTM(S). For the inductive step we use as in
loc. cit. the localization sequence for a minimal stratum

Z = V(E)
i→ X

j← U := X\Z .

Let πZ := π ◦ i , πU := π ◦ j . Since X is connected and is assumed to have at least
two strata, the codimension c := codimX Z is positive. By induction, the composite

HomS(M, N [1]) → HomX (π∗M, π∗N [1]) → HomU (π∗
UM, π∗

U N [1])

is an isomorphism. By the localization sequence, the kernel of the right hand map is
mapped onto by HomZ (π∗

Z M, π∗
Z N (−c)[1 − 2c]) which vanishes by the Beilinson–

Soulé condition for Z (equivalently, for S). Hence the left hand map above is an
isomorphism as well, showing our claim.

The generators 1(n)[d], n ∈ Z of MTM(X) trivially lie in the image of our functor,
so we are done by using that π∗ is an isomorphism on the level of extensions of mixed
Tate motives by the above claim. ��

2.4 Changing the base scheme

For facets f ′, f ⊂ ā ⊂ A , we show that the category DTM(Flf ) for the stratification
in left-Pf ′-orbits is, to a certain extent, insensitive to the choice of the base scheme
S, cf. Theorem 2.14 below. In Sect. 6.1, we will sharpen this idea by introducing
the (abelian) Satake category SatG ⊂ DTM(GrG) and showing that this category is
completely independent of the base scheme S.

Let f : T → S be a map of schemes, where T is Noetherian and of finite Krull
dimension, so that f ∗ : DM(S) → DM(T ) is well-defined. (An important example
to have in mind is T = SpecFp → S = SpecZ.) We indicate base changes to T by
a subscript, e.g., GT := G ×S T . We still write f for all maps obtained using such
base changes, e.g., f : Flf,T → Flf,S . The condition in [60, Thm. 2.4.2] is satisfied,
so that we obtain a functor

f ∗ : DM(Flf,S) → DM(Flf,T ).

As before, write ιw : Flwf → Flf for the inclusion of the Pf ′ -orbits, both over S and

over T . We clearly have an equivalence (ιw)∗ f ∗ �→ f ∗(ιw)∗ by functoriality, so that
f ∗ restricts to a functor

f ∗ : DTM(Flf,S) → DTM(Flf,T ). (2.11)

Here is the key lemma concerning the change of the base scheme.
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Lemma 2.12 Let w ∈ Wf ′ \W/Wf . The following natural transformations of functors,
when restricted to the indicated categories of Tate motives,

f ∗(ιw)∗ → (ιw)∗ f ∗ on DTM(Flwf,S)

(ιw)! f ∗ → f ∗(ιw)! on DTM(Flwf,S)

f ∗(ιw)! → (ιw)! f ∗ on DTM(Flf,S)

are equivalences.

Proof The claim for (ιw)! results from base change. The claim for (ιw)! will follow
from the others using an induction argument based on the localization fiber sequence

i ! → i∗ → i∗ j∗ j∗

for any complementary closed (resp. open) embedding i (resp. j).
In order to show that f ∗ commutes with (ιw)∗, we may assume that f ′ = a (the base

alcove), since the stratification by Pf ′ -orbits is coarser than the one by Iwahori orbits
so that the claim for the Iwahori stratification together with a localization argument
implies the one for the stratification by Pf ′ -orbits.

We first show the claim for f = a. By [60, Prop. 5.2.2], DTM(Fla) is the smallest
cocomplete full subcategory of DM(Fla)which contains the twists of the unit motives
supported at the base points {τ } for each τ ∈ Staba ⊂ W and which is stable under
the operation π !

sπs,! along the smooth proper projection maps πs : Fla → Fls := Flfs
for all simple reflections s ∈ S. We proceed by induction on the length of w, the case
l(w) = 0 being trivial since ιw is a closed embedding of a base point τ in this case.
For l(w) > 0, let w = v · s be a reduced expression with s ∈ S. We obtain a fibre
sequence

(ιv)∗1 → π !
sπs,!(ιv)∗1 → (ιw)∗1, (2.13)

which is the dual of the fibre sequence [60, (5.1.2)].
Using induction l(v) < l(w), the functor f ∗ commutes with (ιv)∗. Since πs is

smooth, f ∗ also commutes with π !
s , and hence with (ιw)∗ by (2.13). This finishes the

case f = a.
Now, for a general facet f ⊂ ā, we reduce the claim to the one previously considered

using the map π : Fla → Flf . This map is smooth, proper, surjective and a stratified
map with respect to the Iwahori stratification on both ind-schemes [60, Lem. 4.3.13].
Therefore, in the cartesian diagram

⊔

v∈wWf
Flva π−1(Flwf )

ι̃w

π̃

Fla

π

Flwf
ιw Flf
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1608 T. Richarz, J. Scholbach

the preimage π−1(Flwf ) is itself stratified by some Iwahori strata on Fla as indicated
above. Using that π is smooth, (ι̃w)∗π̃∗ = π∗(ιw)∗. Moreover, π∗ commutes with
f ∗. Finally, π∗ is conservative. Thus, to show that f ∗ commutes with (ιw)∗, we
may replace the inclusion ιw (both on T and on S) by ι̃w. Using again a localization
argument, we then reduce this statement to the one for the inclusions ιv : Flva → Fla
of the Iwahori strata in the flag variety refining the preimage stratification under π . ��

Recall from [60, Thm. 2.4.2] that both categories carry weight structures. The aim
of this section is to prove:

Theorem 2.14 Let f : T → S be a map of schemes both satisfying the conditions in
Notation 2.1. Then the functor (2.11) has the following properties:

(i) it is conservative.
(ii) it creates weights, i.e., M ∈ DTM(Flf,S) is of weights ≥ n (resp. ≤ n) iff f ∗M

has the corresponding property.
(iii) it creates the t-structure, i.e., M ∈ DTM(Flf,S) is of in the “≥ n” (resp. “≤ n”)

part of the t-structure iff f ∗M has the corresponding property.

We need some preparation for the proof.

Proposition 2.15 In the situation of Theorem 2.14, the functor (2.11) is t-exact with
respect to the perverse motivic t-structures (cf. Theorem 2.8), and commutes with the
intermediate extension functors ( jw)!∗ defined in (2.2). In particular,

f ∗(ICw,S(n)
) = ICw,T (n), n ∈ Z, w ∈ Wf ′ \W/Wf . (2.16)

Proof For both base schemes S and T , the subcategory DTM(Flf )≤0 consists by
definition precisely of those objects M such that ι∗M ∈ DTM(Fl+f )≤0 where
ι : Fl+f = �w Flwf → Flf denotes the disjoint union of the inclusions of all strata.
Likewise with “≥ 0” and ι! instead. To show the exactness of f ∗ we may by Lemma
2.12 replace f by the induced map f + : Fl+f,T → Fl+f,S . It then remains to observe
that the following diagram is cartesian and has smooth vertical maps

Flwf,T
f

Flwf,S

T
f

S.

Thus the t-exactness of f ∗ on the base implies the one for f ∗ : DTM(Flwf,S) →
DTM(Flwf,T ) since the hearts of these t-structures are generated by the objects 1(n)[dw]
where dw = l(w) is the dimension of Flwf relative to the base scheme (which is the same
for S, resp. T ). The remaining claim now follows from Lemma 2.12 which ensure that
f ∗ commuteswith all functors involved in the formation of jw,!∗ := im(pH0( jw,!) →p

H0( jw,∗)). ��
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The motivic Satake equivalence 1609

Proof of Theorem 2.14 For (i), let M ∈ DTM(Flf,S). For the conservativity, we have
to show f ∗M = 0 implies M = 0. Using the non-degeneracy of the perverse motivic
t-structure [60, Cor. 3.2.6] and the t-exactness of f ∗, it is enough to show the conser-
vativity of f ∗|MTM(Flf,S). Any M ∈ MTM(Flf,S) is the filtered colimit of its compact
subobjects, so wemay assumeM is also compact. Then,M has a Jordan–Hölder series
with simple constituents given by twisted intersection motives [60, 3.3.8]. We may
thus assume that M is an intersection motive, so we are done by (2.16). For (ii), we
need to show that f ∗ is weight-exact and detects weights. As in the proof of Propo-
sition 2.15, to show that f ∗ is weight-exact, we may replace Flf by Fl+f over both
base schemes S and T , which is again clear by definition of the weight structures. The
detection of weights then follows from Lemma 2.17 below using part (i). For (iii), we
use likewise the conservativity and t-exactness of f ∗. ��
Lemma 2.17 A conservative, weight-exact functor F : C → D between triangulated
categories with weight structures detects weights: if F(M) has weights < n (resp.
≥ n) for some M ∈ C, then the same is true for M.

Proof We use that M has weights≥ n (resp.< n) iff for any weight truncation triangle

E : M<n
s<n→ M

s≥n→ M≥n , themaps s≥n (resp. s<n) are isomorphisms. Indeed, the “⇐”
direction holds by definition, the converse also follows from elementary applications
of the axioms, see [25, Cor. 2.2.6, Cor. 2.2.7]. Given a weight truncation triangle E for
M , F(E) is a weight truncation triangle for F(M) by assumption. Hence our claim
follows since F is conservative. ��

2.4.1 Pullback functoriality for equivariant motives

Lemma 2.18 The functor f ∗ descends to a functor

f
∗ : DM(Pf ′,S\LGS/Pf,S) → DM(Pf ′,T \LGT /Pf,T ).

This functor f
∗
preserves the subcategories of equivariant Tate motives.

Proof By construction, f ∗ is the unique functor which is given by the usual f ∗ on the
level of finite type S-schemes and compatiblewith the insertion functorsDM(Fl≤w

f ) →
DM(Flf ) (both over S and T ). By [60, Cor. 2.3.4], it is therefore enough to construct
a functor

f
∗ : DM(Pf ′,S\Fl≤w

f,S ) → DM(Pf ′,T \Fl≤w
f,T ).

There is a split pro-unipotent subgroup U ⊂ Pf ′ such that the quotient K := Pf ′/U
is smooth and of finite type and the Pf ′ -action on Fl≤w

f factors over K . By [60,
Prop. 2.2.11], DM(Pf ′ \Fl≤w

f ) ∼= DM(K\Fl≤w
f ). Finally, in order to check the exis-

tence of f
∗
on this level, it is enough to observe that the maps in the bar construction

Bar(K ,Fl≤w) are all smooth, and hence !-pullback along them commutes with f ∗.
Hence the f ∗-functors in all levels of the diagram DM!(Bar(K ,Fl≤w

f )) glue to a
functor on the limit of this diagram, which is DM(K\Fl≤w

f ).
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1610 T. Richarz, J. Scholbach

Given that the underlying non-equivariant functor of f
∗
is just f ∗, the preservation

of equivariant Tate motives follows from (2.11). ��

2.5 Kazhdan–Lusztig parity vanishing

We now apply Proposition 2.15 to prove the Kazhdan–Lusztig parity vanishing [42,
Thm. 5.5] (see also [50, Thm. 11.c)]) for the intersection motives. Our main tool is the
�-adic realization functor which exists by assumption on S (Notation 2.1).We continue
with the notation and assumptions from Sect. 2.4. In particular, we fix two facets f, f ′
contained in the closure of the standard alcove a, and denote by DTM(Flf ) the cate-
gory of (f ′, f)-stratified Tate motives whose heart is the abelian category MTM(Flf )
(Theorem 2.8).

Theorem 2.19 ([60, Thm. 5.2.3]) The restriction of the �-adic realization functor

ρ� : DM(Flf ) → Det(Flf ,Q�),

to the subcategory DTM(Flf ) is conservative. Moreover, for M ∈ DTM(Flf ) the
following are equivalent: a) M lies inMTM(Flf ), and b) ρ�(M) is a perverse sheaf.

The following corollary is useful in lifting results from the �-adic to the motivic
setting.

Corollary 2.20 For each geometric point f : s̄ → S, the composition of functors

f ∗ ◦ ρ� : MTM(Flf )
c → Perv(Flf,s̄,Q�)

is well-defined, exact, conservative and faithful.

Proof Each object in MTM(Flf )c admits a Jordan–Hölder series (Theorem 2.8 (i))
whose simple constituents are the intersection motives ICw(n) for w ∈ Wf ′ \W/Wf
and n ∈ Z. Using the same method as in Proposition 2.15 we deduce that these are
mapped under ρ := f ∗ ◦ρ� to the corresponding �-adic intersection complex on Fl≤w

f,s̄ .
Since the subcategory Perv(Flf,s̄,Q�) ⊂ Det(Flf ,Q�) is closed under extensions, it
follows that f ∗ ◦ ρ� is well-defined.

Being the restriction of an exact functor between triangulated categories, ρ is exact
as well. For the conservativity of ρ it is therefore enough to show that the simple
objects, namely the ICw(n) are not mapped to 0, which holds true by the above.

Being an exact conservative functor between abelian categories, ρ is also faithful:
If a morphism p : A → B maps to 0 under ρ, then ker ρ(p) = ρ(ker p) = A by
exactness. Hence, the natural map ker p → A is mapped to an isomorphism, and
therefore is an isomorphism by conservativity. This shows p = 0. ��

We can now prove the Kazhdan–Lusztig parity vanishing for intersection motives.
Recall that for each class w ∈ Wf ′ \W/Wf the relative dimension of Flw → S is given
by l(w) ∈ Z≥0 where l = l(f ′, f) denotes the length function as in Sect. 2.1. Let
ew : S = {w} → Flf be the canonical inclusion.
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Theorem 2.21 For each v,w ∈ Wf ′ \W/Wf , n ∈ Z, one has

Hi (e∗
vICw(n)) = 0 whenever i �≡ l(w) mod 2, (2.22)

where Hi denotes the truncation with respect to the classical motivic t-structure
(cf. [60, Rem. 3.2.7]) which agrees on S also with the perverse motivic t-structure
(Theorem 2.8).

Proof Wemay assume n = 0. By Corollary 2.20, it is enough to show that, for S being
the spectrum of a separably closed field, the �-adic intersection complex ICw,� on Fl

≤w
f

satisfies the parity vanishing (2.22)whereHi denotes the classical cohomology functor.
This case is certainly well-known; we recall the part of the argument where we did
not find a reference for the reader’s convenience.

Reduction to the case f ′ = f = a. By refining the orbit stratification on Flf we may
assume that f ′ = a is the standard alcove. Now consider the projection π : Fla → Flf
which is a smooth surjective map of relative dimension d := dim(Pf/Pa) by [60,
Prop. 4.3.13]. The preimage π−1(Fl≤w

f ) is a Schubert scheme in Fla, and it follows
from e.g. [60, Lem. 4.3.7 (iii)] that

π−1(Fl≤w
f ) = Fl≤wmax

a ,

where wmax is the unique representative of right maximal length with respect to
la := l(a, a) in w · Wf . Its length is la(wmax) = dim(Fl≤wmax

a ) = l(w) + d by
loc. cit.. As taking intermediate extensions commutes with smooth pullback, we have
π∗[d]IC�,w = IC�,wmax . Taking the cohomological shift into account and using the
conservativity of pullback of surjective maps, we see that it is enough to prove (2.22)
in the case f ′ = f = a.
Proof for f ′ = f = a. Here we refer to the classical sources [26, A.7], [34] and [42]. ��

3 The convolution product

In this section, we will discuss the tensor structure on the category DM(Pf\LG/Pf )

given by convolution. We start with the definition and basic properties in Sect. 3.1. In
Sect. 3.2, we show that the convolution product preserves stratified Tate motives.

3.1 Definition and associativity

Definition 3.1 Let f ′, f, f ′′ be three facets in the closure of the standard alcove, see
Sect. 2.1. The convolution product is the functor

� : DM(Pf ′ \LG/Pf ) × DM(Pf\LG/Pf ′′) −→ DM(Pf ′ \LG/Pf ′′)

defined by (M1, M2) 
→ M1�M2 := m! p!(M1 � M2). Here the maps

Pf ′ \LG/Pf × Pf\LG/Pf ′′ Pf ′ \LG ×Pf LG/Pf ′′
p m Pf ′ \LG/Pf ′′
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1612 T. Richarz, J. Scholbach

are the natural maps of prestacks induced by the identity on LG × LG (for p) and the
multiplication LG × LG → LG (for m).

Remark 3.2 (i) The left adjointm! of the functorm! or, equivalently the left adjoint of
the !-pullback along the ind-proper map of ind-schemes (LG ×Pf LG/Pf ′′)et →
(LG/Pf ′′)et = Flf ′′ exists by [60, Lem. 2.2.9, Prop. 2.3.3].

(ii) The exterior product M1�M2 ∈ DM(Pf ′ \LG/Pf ×Pf\LG/Pf ′′) exists by virtue
of the construction in [60, Prop. 2.4.4], which gives a functor

� : DM(Pf ′ \Flf ) ⊗ DM(Pf\Flf ′′) → DM(Pf ′ \Flf ×Pf\Flf ′′), (3.3)

using the descent equivalence DM(Pf ′ \LG/Pf ) = DM(Pf ′ \Flf ).
For clarity, we will momentarily denote the functor in (3.3) by �R and the convo-

lution product stemming from this choice by �R. Alternatively, we may consider

�L : DM(Flopf ′ /Pf ) ⊗ DM(Flopf /Pf ′′) → DM(Flopf ′ /Pf × Flopf /Pf ′′)

where Flopf ′ = (Pf ′ \LG)et and likewise for Flopf . The resulting convolution product
functor is denoted by �L.

Proposition 3.4 On the level of the homotopy categories, the two functors �R and �L

are naturally isomorphic, i.e., one has �R ∼= �L as functors

Ho
(

DM(Pf ′ \LG/Pf )
) × Ho

(

DM(Pf\LG/Pf ′′)
) −→ Ho

(

DM(Pf ′ \LG/Pf ′′)
)

.

Proof Fix v ≤ w in Wf ′ \W/Wf and consider the diagram

Flop,≤v

f ′ /Pf Pf ′ \LG≤v/Pf
≈ ≈

iv,w

Pf ′ \Fl≤v
f

Flop,≤w

f ′ /Pf Pf ′ \LG≤w/Pf
≈ ≈ Pf ′ \Fl≤w

f

Flopf ′ /Pf Pf ′ \LG/Pf
≈ ≈ Pf ′ \Flf ,

where LG≤w = Pf ′wPf denotes the scheme-theoretic image of Pf ′ × Pf → LG,
(p, p′) 
→ p · ẇ · p′ where ẇ ∈ LG(S) is any representative of w, and likewise
for LG≤v . Note that this agrees with the preimage of Fl≤w

f under the quotient map
LG → Flf , resp. the preimage of Flop,≤w

f ′ under LG → Flopf ′ . The labels ≈ at the
horizontal arrows indicate maps of prestacks which become equivalences after étale
sheafification and therefore descent equivalences upon applying DM (Theorem 2.6).

By Corollary A.15, we have an exterior product, denoted by �, for motives on
placid prestacks such as the top middle term. Under the descent equivalence, it is
compatible with the exterior product �L for motives on prestacks of the form as in
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the top left term, and similarly with the top right term. Of course, the same applies
for the middle row as well. Moreover, these identifications are compatible with the
pushforwards along the maps (induced by the closed embeddings iv,w) between the
top and middle row, i.e., there is a natural equivalence

αv,w : �w ◦(iv,w)∗
∼=→ (iv,w)∗ ◦ �v,

where�w stands for an exterior product on terms as in the middle row of the diagram,
and likewise for �v .

For yet another u ≤ v in Wf ′ \W/Wf , this equivalence and the one for iu,v and iu,w

are compatible.
We obtain that the equivalence of ∞-categories

DM
(

Flopf ′ /Pf
) ∼= DM

(Pf ′ \Flf
)

(3.5)

is compatible with exterior products (�L and�R, respectively), provided that we pass
to the homotopy category and restrict to objects which are supported on some Fl≤w,op,
resp. Fl≤w. In particular, this is true for compact objects. We may drop this compact-
ness condition, since the homotopy category of a compactly generated category, such
as the categories DM on the above prestacks, is again compactly generated by [49,
Rem. 1.4.4.3], and since the exterior product preserves filtered (homotopy) colimits
separately in both variables. ��
Remark 3.6 The point of passing to the homotopy categories Ho(DM) is that these
are ordinary categories, as opposed to ∞-categories DM. For this reason, it is enough
to check the compatibility of αv,w for two composable maps, as opposed to verifying
higher coherences. We do not expect this loss of information to be necessary though: a
more full-fledged approachwould be to establish thatDM! is a symmetric laxmonoidal
functor on the ∞-category of ind-placid prestacks, such as P ′

f\LG/Pf .

Hereafter, we will write � for �R above. Since our main interest in this paper
lies in the convolution product on the abelian (in particular ordinary) category
MTM(L+G\LG/L+G), Proposition 3.4 shows that there is no ambiguity in the def-
inition of the convolution product on this category.

As is well-known, the associativity of the convolution product is a consequence of
the base-change formula:

Lemma 3.7 For A ∈ DM(Pf ′ \LG/Pf ), B ∈ DM(Pf\LG/Pf ) and C ∈
DM(Pf\LG/Pf ′′), there is a natural equivalence

(A�B)�C ∼= A�(B�C). (3.8)

123



1614 T. Richarz, J. Scholbach

Proof For brevity, write L := LG throughout the proof. By construction in [60,
Prop. 2.4.4] (and the associativity of the exterior product for motives on schemes
in SchftS ), the exterior product for three motives on the three prestacks in the lower
left entry of the diagram below admits an associativity isomorphism (A � B) � C ∼=
A�(B�C). Up to the exterior product in the definition of (A�B)�C , this convolution
is computed as m! p!(m × id)!(p × id)!:

Pf ′ \L ×Pf L ×Pf L/Pf ′′

id×p

n:=m×id Pf ′ \L ×Pf L/Pf ′′

p

m Pf ′ \L/Pf ′′

Pf ′ \L ×Pf L/Pf × Pf\L/Pf ′′

p×id

m×id Pf ′ \L/Pf × Pf\L/Pf ′′

Pf ′ \L/Pf × Pf\L/Pf × Pf\L/Pf ′′ .

The square in the above diagram is (homotopy) cartesian. Moreover, the map m is
ind-proper, so that proper base change [60, Prop. 2.3.3] yields an equivalence

p!(m × id)!
∼=−→ n!(id × p)!.

Thus, the convolution (A�B)�C can be computed by pullback and pushforward along
the pictured composite correspondence. Considering instead the composition of the
correspondences computing A�(B�C), we obtain the same composition, which yields
a zig-zag of equivalences. ��

3.1.1 Reformulation in terms of schemes

We now spell out the above definition in terms of ordinary schemes as opposed to
prestacks. This relates to the classical definition of the convolution product as in [57,
§2], and is used to show that the convolution product preserves Tate motives (Theorem
3.17 below).

Definition 3.9 Let f ′, f, f ′′ be facets as in Definition 3.1. We define

Flf ˜×Flf ′′
def= (LG ×Pf LG/Pf ′′)

et,

which is an ind-proper S-ind-scheme. Consider the following commutative diagram
of prestacks:
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The motivic Satake equivalence 1615

Pf ′ \LG/Pf ′′ LG/Pf ′′
≈

Flf ′′ Z

Pf ′ \LG ×Pf LG/Pf ′′

p

m

LG ×Pf LG/Pf ′′
u ≈

Flf ˜×Flf ′′

p̃

m̃

X˜×Y
ι̃

p̃

m̃

Pf ′ \LG/Pf × Pf \LG/Pf ′′ LG/Pf × Pf \LG/Pf ′′
≈

Flf ×Pf \Flf ′′ X × Pf \Y
ι

e ≈

X × Pf,i \Y

(3.10)

The left-hand horizontal maps such as u are the natural quotient maps. By [60,
Lem. 2.2.7], the !-pullback along such a map can be regarded as forgetting the Pf ′ -
action on some motive. According to [60, Thm. 2.2.16], the horizontal maps labelled
“≈” induce descent type equivalences after applying DM!. We will use similar equiv-
alences without further comment; for example we identify motives on the double
quotient Pf ′ \LG/Pf with those on Pf ′ \Flf . The terms in the right hand column will
be explained further below.

For A ∈ DM(Pf ′ \Flf ), B ∈ DM(Pf\Flf ′′), the twisted box product is defined as

A˜�B
def= u! p!(A � B) ∈ DM(Flf ˜×Flf ′′).

Let m̃ : Flf ˜×Flf ′′ → Flf ′′ be the map of ind-schemes induced by multiplication,
i.e., the map m above is the non-sheafified version obtained by passing to the left-Pf ′-
quotients. By virtue of the following lemma, we will denote m̃ simply by m (it will be
clear from the context which version we mean).

Lemma 3.11 For A ∈ DM(Pf ′ \Flf ), B ∈ DM(Pf\Flf ′′), the object m̃!(A˜�B) ∈
DM(Flf ′′) is the non-equivariant object underlying A�B = m!(p!(A � B)).

Proof We only need to show that the functor m! commutes with the forgetful map
to its non-equivariant version m̃!. This is precisely the characterization of m! in [60,
Lem. 2.2.9], see also Remark 3.2 (i) for its existence. ��

Both functors, - � - and -˜� - preserve colimits separately in each variable. They
therefore factor over the Lurie tensor product DM(Pf ′ \LG/Pf )⊗DM(Pf\LG/Pf ′′).
Since categories of motives are compactly generated [60, Lem. 2.3.6], the functors are
therefore determined by their values on compact objects. Suppose then that A and B
are compact objects, so they are supported on closed, finite type subschemes X ⊂ Flf ,
Y ⊂ Flf ′′ which are finite unions of Schubert schemes (these are the objects in the
right vertical column in (3.10)). The right-most vertical maps in the diagram, such as ι

are induced by the closed embeddings of these subschemes. In this case, A˜�B admits
the following description:

Let Pf = limi≥0 Pf,i as in [60, Lem. 4.2.7] and denote Uf,i := ker(Pf → Pf,i ).
We let Xi ⊂ Flf,i := (LG/Uf,i )

et (resp. X∞ ⊂ LG) be the finite type (resp. non-
finite type) S-scheme defined by the preimage of X under the canonical projection
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1616 T. Richarz, J. Scholbach

Flf,i → Flf (resp. LG → Flf ). The left-Pf -action on Y factors through some Pf,i
for i >> 0. We write X˜×Y := X∞ ×Pf Y , which is equivalent to Xi ×Pf,i Y since
(X∞/Pf )

et = X and (X∞/Uf,i )
et = Xi . The vertical map e labelled ≈ in the above

diagram yields an equivalence upon applying DM! (this stems from A1-invariance,
using that Uf,i is split pro-unipotent, see [60, Prop. 2.2.11]). In particular, we can
regard B ∈ DM(Pf\Y ) as an object in DM(Pf,i\Y ). By the support setup, we can
write A � B as ι!(A0 � B0) with A0 = ι∗A etc., so that

A˜�B = (e ◦ p̃)!(A � B) = ι̃!((e ◦ p̃)!A0 � B0).

Note that the schemes X , Y , Pf,i and Z intervening in the correspondence X ×
Pf,i\Y e◦p← X˜×Y

m̃→ Z , are of finite type over S (unlike the remaining terms in the
diagram). We also see that the above definition of ˜� agrees with the definition of ˜�
used for example in [57, Lem. 2.20, Rmk. 2.21].

Finally, writing Z := m̃(X˜×Y ) (scheme-theoretic image, again a finite type S-
scheme), A�B has as its underlying non-equiviarant object m̃!(A˜�B), which is, by
proper base change, the !-pushforward along Z ⊂ Flf , of m̃!(e ◦ p̃)!(A0 � B0).

Lemma 3.12 (i) Let X,Y be as above. Then 1X˜�1Y = 1X˜×Y ∈ DM(X˜×Y ).
(ii) If ξ : X → X ′ (resp. υ : Y → Y ′) is an inclusion of finite type P ′

f -equivariant
(resp. Pf -equivariant) subschemes of Flf (resp. of Fl′′f ) then

(ξ˜×υ)!(A˜�B) = ξ!A˜�υ!B.

Proof The maps Xi ×Pf,i Y → X × Pf,i\Y ← X × Y induce forgetful maps

DM(Xi ×Pf,i Y ) ← DM(X × Pf,i\Y ) → DM(X × Y ),

under which 1X � 1Y = 1X×Y corresponds to 1X˜×Y under !-pullback. For the second
statement note that the map r := e ◦ p̃ in (3.10) is a Pf,i -torsor, in particular a smooth
map (of finite type S-schemes). Therefore r ! commutes with the exterior product
and with the !-pushforward along the embeddings X × Pf,i Y → X ′ × Pf,i Y ′ and
ξ˜×υ : X˜×Y → X ′

˜×Y ′. ��

3.1.2 Compatibility with the �-adic realization

We denote by Db
ct,Pf

(Flf ′′ ,Q�) the category of Pf -equivariant �-adic sheaves on Flf ′′ .
In [52] (see also [54, §10.2] and [57, §2]), the convolution product for �-adic sheaves

�� : Db
ct(Flf ,Q�) × Db

ct,Pf
(Flf ′′ ,Q�) → Db

ct(Flf ′′ ,Q�)

is defined as follows: consider the diagram

Flf ×Flf ′′
p←− LG × Flf ′′

q−→ Flf ˜× Flf ′′ = (LG ×Pf LG/Pf ′′)
et m−→ Flf ′′ . (3.13)
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The motivic Satake equivalence 1617

Then A1��A2 := m∗(A1˜��A2), where A1˜��A2 is the unique object
in Db

ct(Flf ˜× Flf ′′ ,Q�) such that p∗(A1 �� A2) = q∗(A1˜��A2), using the Pf -
equivariance of A2.

Proposition 3.14 Under the �-adic realization functor ρ� (cf. [60, Thm. 2.3.7]) the
convolution product corresponds to the convolution product �� considered in the con-
text of the �-adic Satake equivalence, i.e., there is a natural isomorphism

ρ�(A�B) ∼= ρ�(A)��ρ�(B)

for A ∈ DM(LG/Pf )
c and B ∈ DM

(Pf\LG/Pf ′′
)c
.

Proof The twisted box product ˜� for motives (Definition 3.9) is formed using descent
along !-pullbacks. We need to compare its �-adic realization with ˜��, formed using
∗-pullbacks.

Since the objects A, B are compact, hence supported on S-finite type closed sub-
schemes X ⊂ Flf , Y ⊂ Flf ′′ , we can replace the maps p, q in (3.13) by the diagram
of Pf,i -torsors

X × Y
p←− Xi × Y

q−→ X˜×Y ,

for some i ≥ 0 as in Sect. 3.1.1 above. LetG := Pf,i which is a smooth affine S-group
scheme acting on Z := Xi ×Y either via the torsor p or q. By definition, the category
of G-equivariant �-adic sheaves on Z is defined as

Db
ct,G(Z ,Q�) := lim

(

(Db
ct)

∗(Bar(Z ,G),Q�)
)

:= lim

(

Db
ct(Z ,Q�)

a∗
⇒
p∗

Db
ct(G × Z ,Q�)

→→→ · · ·
)

,

where we emphasize that the functors in this limit are the ∗-pullbacks along the
maps in the bar complex. The motivic analogue of that category is DM∗(G\Z)c :=
lim DM∗(Bar(Z ,G))c, where again we use ∗-pullbacks to form the limit. (See also
[60, Rem. 2.2.2, (iv)] for further discussion of the presheaf DM∗.)

The vertices (G)×n × Z of the bar construction are separated S-schemes of finite
type, and the action and projection maps in this diagram are smooth and affine, noting
that G → S is so. We can therefore use the equivalence of DM∗ with DM! applied
to the smooth morphisms p, q, see Corollary A.8. Under this equivalence the functor
p! (resp. q !) corresponds to p∗ (resp. q∗). Since p, q have the same relative dimen-
sion dim(G/S), we can equivalently form A˜�B using descent along ∗-pullbacks.
Moreover, the map m is ind-proper, so that m∗ = m!. We conclude using that ρ� is
compatible with the six functors. ��
3.1.3 Convolution product and change of base scheme

Lemma 3.15 Let f : T → S be a map of schemes satisfying the assumptions in Nota-
tion 2.1. Then, for M1 ∈ DM(Pf ′ \LG/Pf ) and M2 ∈ DM(Pf ′ \LG/Pf ), there is a
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1618 T. Richarz, J. Scholbach

natural isomorphism

f ∗(M1�M2) ∼= ( f ∗M1)�( f
∗M2).

Proof All functors involved in the definition of � are compatible with f ∗. For p!, this
holds true since (the étale sheafification of) p is a Pf -torsor, in particular pro-smooth.

��

3.2 Preservation of Tatemotives

In this section, we show that the convolution product on partial affine flag varieties
respects stratified Tate motives. A key point in this proof is the well-knwon distin-
guished triangle (3.21) below (cf. [41, App.]), which is a geometric incarnation of the
following formula for the multiplication in the Iwahori-Hecke algebra over a finite
field Fq given in [11, IV, §2, Ex. 24]:

φs�φs = (q − 1) · φs + q · φe, (3.16)

where φs is the characteristic function of the Iwahori double coset B(Fq)sB(Fq) for
a simple reflection s, and φe is the characteristic function of the base point. Here
B := Pa denotes the standard Iwahori subgroup associated with the choice of the
alcove a.

Theorem 3.17 Let the base scheme S be as inNotation 2.1. For any three facets f ′, f, f ′′
contained in the closure of a, the convolution product restricts to a functor

� : DTM(Pf ′ \LG/Pf ) × DTM(Pf\LG/Pf ′′) → DTM(Pf ′ \LG/Pf ′′).

In particular, taking f ′ = f = f ′′ = 0, there is a convolution product on
DTM(L+G\LG/L+G).

Let A ∈ DTM(Pf ′ \LG/Pf ), B ∈ DTM(Pf\LG/Pf ′′) and denote Flf ′′ :=
(LG/Pf ′′)et. By [60, Def. 3.1.21], we have to show that the non-equivariant motive
underlying A�B in DM(Flf ′′) is Tate. Further, we may assume that both objects A, B
are compact. By [60, Thm. 5.3.4], the motives A and B are constructed in finitely
many steps from the generators

ιw,!1 ∈ DTM(Pf ′ \LG/Pf ),

where w ∈ Wf ′ \W/Wf and ιw : Pf ′ \LGw/Pf → Pf ′ \LG/Pf denotes the inclusion
of the stratum1 LGw := Pf ′ẇPf where ẇ ∈ LG(S) is any representative of w. We
have to show that the non-equivariant motive underlying ιw,!1�ιw′,!1 is Tate for any
w ∈ Wf ′ \W/Wf , w′ ∈ Wf\W/Wf ′′ , i.e., by Lemma 3.11, that

m̃!(ιw,!1˜�ιw′,!1) ∈ DTM(Flf ′′). (3.18)

1 Formally, LGw is the scheme-theoretic image of the map Pf ′ ×Pf → LG, (b, p) 
→ b · ẇ · p which is
well defined because the source is quasi-compact and the target is an ind-scheme.
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The motivic Satake equivalence 1619

We show (3.18) in several steps starting with the following key case.

Proposition 3.19 If Pf ′ = Pf = Pf ′′ =: B is the standard Iwahori subgroup, then
Theorem 3.17 holds.

Proof In this case, Wf ′ = Wf = Wf ′′ = 1, so that w,w′ ∈ W .
First case. Assume that w = w′ = s is a simple reflection. Then there is an

isomorphism

τ = (p, m̃) : Fl≤s
˜× Fl≤s �−→ Fl≤s ×Fl≤s, (3.20)

where p : (x, y) 
→ x is the projection on the first factor, and m̃ : (x, y) 
→ x · y
is the multiplication map, as above. Note that the image of m̃ lies inside Fl≤s by
standard properties of Tits systems [11, Ch. IV, §2.1, (2)] which are applicable in
view of [12, 5.2.12] (see also the discussion in [58, §1.1]). Further, τ being a closed
immersion (being a proper monomorphism) between integral schemes of the same
dimension, it must be an isomorphism. Under this isomorphism, we have for the strata
τ({e}˜×{e}) = {e} × {e}, τ({e}˜×Fls) = {e} × Fls and τ(Fls ˜×{e}) = �(Fls), where
� : Fl≤s → Fl≤s ×Fl≤s denotes the diagonal. We conclude that

τ(Fls ˜×Fls) = (Fls ×Fl≤s)\�(Fls).

Identifying Fl≤s � P1 such that {e} � {∞} and Fls � A1, we get a commutative
diagram of S-schemes

Fl≤s im(m̃)
∼= P1

Fl≤s
˜× Fl≤s

m̃

Fls ˜×Fls
ιs˜×s ∼=

m̃

(A1 × P1) \ �(A1)

q

where ιs˜×s and ιs are the inclusion of the open strata and q is the projection onto the
second factor. Writing a := m̃ ◦ ιs˜×s and using Lemma 3.12 for ιs˜×s = ιs˜×ιs , we
have to prove

m̃!(ιs,!1˜�ιs,!1) = m̃!(ιs˜×ιs)!1 = a!1 ∈ DTM(Fl≤s),

or equivalently that

M := q!1 ∈ DTM(P1),

where the Tateness of the motive is with respect to the stratification of P1 � Fl≤s by
{∞} � A1 � Fle �Fls . To check this, we use the localization sequence, noting that
q−1({∞}) � A1 and q−1(A1) � A1 × Gm which gives
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(ιA1)!ι∗A1M = ιA1,!(1(−1)[−2] ⊕ 1[−1]) −→ M −→ ι∞,!i∗∞M = ι∞!1(−1)[−2].
(3.21)

The outer terms are in DTM(P1), hence so is the middle. This finishes the first case.
Second case. Let w,w′ ∈ W , and assume l(ww′) = l(w) + l(w′) for the

Bruhat length. Then the composition of the open inclusion ιw˜×w′ : Flw ˜× Flw
′ →

Fl≤w
˜×Fl≤w′

with the multiplication map m is an isomorphism

m ◦ jw˜×w′ : Flw ˜×Flw
′ �−→ Flww′

. (3.22)

This implies that ιw,!1�ιw′,!1 � ιww′,!1 ∈ DTM(Fl) is Tate and finishes the second
case.

Third case. Let w,w′ ∈ W , and assume that w′ = s is a simple reflection. If
l(ws) = l(w) + 1, then we conclude ιw,!1�ιs,!1 ∈ DTM(Fl) by the second case.
If l(ws) = l(w) − 1, we write v := ws. Since s2 = 1, we have w = vs, and by
construction l(vs) = l(v) + 1. In particular, ιw,!1 � ιv,!1�ιs,!1 by the second step.
Applying ιv,!1�(-) to the localization sequence (3.21), we get a cofiber sequence

(ιw,!1(−1)[−2] ⊕ ιw,!1[−1]) −→ ιv,!1�(ιs,!1�ιs,!1) −→ ιv,!1(−1)[−2] −→
(3.23)

where ιv,!1�(ιs,!1�ιs,!1) � (ιv,!1�ιs,!1)�ιs,!1 � ιw,!1�ιs,!1 by Lemma 3.7. Hence,
ιw,!1�ιs,!1 is an extension of Tatemotives on Fl, and thus defines an object inDTM(Fl).
This finishes the third case.

General case.Letw,w′ ∈ W be arbitrary. Fix a reduced expressionw′ = s1 · . . . ·sn
where si are simple reflections and n = l(w′). By the second case, we have ιw′,!1 �
ιs1,!1� . . . �ιsn ,!1 where we omit the parenthesis in view of Lemma 3.7. By repeated
use of the third case, we conclude that ιw,!1�ιw′,!1 ∈ DTM(Fl) is Tate. This finishes
the general case, and the theorem follows. ��
Remark 3.24 If k = Fq , (3.21) gets mapped by the �-adic realization to

ιs,!Q�(−1)[−2] ⊕ ιs,!Q�[−1] → ιs,!Q��ιs,!Q� → ιe,!Q�(−1)[−2].

Taking the alternating trace of the geometric Frobenius, we obtain the identity (3.16)
using the relation trace(Frob |Q�(−1)) = q.

Remark 3.25 The method used in the proof of Theorem 3.17 works more generally
for not necessarily split reductive groups G defined over k((�)) which are residually
split, i.e., Fls � A1

k whenever s ∈ W is a simple reflection. However, we will not need
these non-split cases in this manuscript.

Proposition 3.26 Theorem 3.17 holds in the case that Pf ′ = Pf ′′ = B is the standard
Iwahori subgroup of LG, and any facet f in the closure of the standard alcove (so that
B is a subgroup of Pf ).
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Proof Let P := Pf . For any w ∈ W/Wf , w′ ∈ Wf\W , consider the diagram

Lw ×B Lw′
/B

pB

mB

b
Lw ×P Lw′

/B
p

m

s

L/B

Lw/B × B\Lw′
/B a

Lw/P × P\Lw′
/B,

where Lw := LGw = BwP ⊂ LG (resp. Lw′ := LGw′ = Pw′B ⊂ LG). To
construct the map s with b◦s = id, it suffices to construct a section to the composition
of quotient maps

Lw × Lw′ → Lw ×B Lw′ → Lw ×P Lw′
,

which is equivariant for right B-action on the second factor. It follows from [60,
Prop. 4.3.9] that there exists a closed subscheme U ⊂ B, a finite direct product of
some affine root groups (depending on w), such that the multiplication U ẇ × P →
Lw is an isomorphism. Here ẇ ∈ W is any representative of w ∈ W/Wf . Thus,
Lw ×P Lw′ � U ẇ × Lw′ ⊂ Lw × Lw′

is the desired section.
In particular, the adjunction map b!b! → id has the section id � b!s!s!b! → b!b!,

so that the motive M := p!(ιw,!1� ιw′,!1) ∈ DM(Lw ×P Lw′
/B) is a direct summand

of b!b!M . Thus, the motive m!M = ιw,!1�ιw′,!1 is a direct summand of the motive

m!b!b!M � (m ◦ b)!(p ◦ b)!(ιw,!1 � ιw′,!1) � mB,! p!
B
(

a!(ιw,!1 � ιw′,!1)
)

.

The map Flwa ×Flw
′

a → Flwf ×Flw
′

a is stratified with respect to the stratification by
B×P-orbits. Hence a!(ιw,!1� ιw′,!1) is stratified Tate. Therefore the motivem!b!b!M
is stratified Tate by Proposition 3.19, and so is ιw,!1�ιw′,!1 as a direct summand. This
proves (3.18). ��
We now prove Theorem 3.17 in the general case. By definition, the category DTM
(Pf ′ \LG/Pf ′′) consists of thosePf ′ -equivariant motives on Flf ′′ = (LG/Pf ′′)et whose
underlying non-equivariant motive is a Tate motive with respect to the stratification
by Pf ′ -orbits. Such an orbit is the form X = (Pf ′,i/H)et, where Pf ′ → Pf ′,i is a
smooth S-affine quotient (i.e., of finite type) and H ⊂ Pf ′,i is a smooth closed sub-
group scheme with connected fibers over S. Let e : S → X be the unit section. The
composition

DMPf ′ (X) � DMPf ′,i (X)
e!→ DMH (S),

which is an equivalence by [60, Lem. 2.2.21], restricts to an equivalence
e! : DTMPf ′ (X) � DTMH (S) on Tate motives by [60, Prop. 3.1.23]. Thus, for a
Pf ′ -equivariant motive M on Flf ′′ , the following are equivalent:
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• M is Tate with respect to the stratification by Pf ′ -orbits;
• M is Tate at the base point of each Pf ′ -orbit;
• M is Tate with respect to the (finer) stratification by B-orbits.

We may therefore assume that Pf ′ = B is the standard Iwahori. Using that
DTM(B\LG/Pf ′′) consists of Pf ′′ -equivariant motives whose underlying motive on
Flop = (B\LG)et is stratified Tate [60, 5.3.4], we similarly reduce to the case that
Pf ′′ = B and therefore deduce Theorem 3.17 in general from Proposition 3.26. ��

4 Purity of Tate motives

Throughout Sect. 4, the base scheme S is as in Notation 2.1.

4.1 Intersectionmotives are pure

In this section, we show that the intersection motives ICw for the stratification of Flf
given by the Pf ′ -orbits (for arbitrary facets f, f ′ contained in the closure of the base
alcove a0) are pure. This will be proven by lifting the corresponding fact for �-adic
intersection complexes to motives over Fp, which is then extended to more general
base schemes using the results of Sect. 2.4.

Theorem 4.1 The intersection motives ICw ∈ MTM(Flf ) of the Pf ′ -orbits are pure of
weight dim Flwf . (Here purity refers to the weight structure for motives on ind-schemes,
established in [60, Theorem 2.4.2].)

Proof Let S = SpecFp first. Pick some prime � invertible in Fp. The �-adic realiza-
tion ρ� : DM(Flf )c → Db

ct(Flf ,Q�) takes values in the subcategory Det,mix(Flf ,Q�)

of mixed complexes. With respect to the standard weight structure on that category
(and the motivic weight structure on DM), the functor is weight-exact. (This fol-
lows from the definition of the motivic weight structure and the fact that in the
realization these functors preserve weights, see [10, Prop. 3.6.1.2] for details.) Its
restriction to DTM(Flf ) is t-exact and conservative by [60, Lem. 3.2.8]. It therefore
creates the t-structure and the weight structure (Lemma 2.17). Now recall the nota-
tion (2.2). Since ρ� also commutes with (ιw)! and (ιw)∗, the motive ICw is mapped
under ρ� to the �-adic intersection complex on the Schubert variety Fl≤w

f , i.e., to
ρ�(ICw) = (iw)∗( jw)!∗(Q�[dim(Flwf )]). By [44, Ex. III.10.3], it is pure of weight
+ dim Flwf , hence so is ICw itself.

For general S, consider the zig-zag S → SpecZ ← SpecFp. By Theorem 2.14
and (2.16), the purity of ICw,S ∈ MTM(Flf,S) is equivalent to the one of ICw,Z ∈
MTM(Flf,SpecZ), which in turn is equivalent to the one of ICw,Fp ∈ MTM(Flf,SpecFp ).

��

Corollary 4.2 There is a functorial weight filtration for any object M ∈ MTM(Flf )

0 = M−∞ ⊂ · · · ⊂ M0 ⊂ M1 ⊂ . . . M∞ = M

123



The motivic Satake equivalence 1623

such that grWi (M) := Mi/Mi−1 ∈ MTM(Flf ) is pure of weight i (for−∞ < i < ∞).
If M is compact, this filtration is finite, and the grWi (M) are compact.

Proof Let MTMi := {ICw(n), dim Flwf = i + 2n}. The collection of these
subcategories forms a semi-orthogonal family in the sense of [9, Def. 1.1.4]:
HomDTM(Gr)(MTMi ,MTM j [s]) vanishes for s < 0 by the existence of the perverse
motivic t-structure. It vanishes for s > i − j for weight reasons, noting that MTM j [s]
consists of objects which are pure of weight j + s by Theorem 4.1. The claim for
compact objects then follows from [9, Thm. 1.2.1, (ii’), (iv’)]. In general, any object
M ∈ MTM is the filtered colimit of its compact subobjects M (n) ⊂ M , so that we
obtain a (possibly infinite) weight filtration of M by taking the colimit of the weight
filtrations of the M (n). ��

4.2 Convolution preserves weights

In this section, we show that the convolution product preseves the subcategories of
motives of weight ≤ n and ≥ n. To prove this, we need the following lemma:

Lemma 4.3 For separated schemes X1, X2 of finite type over a perfect field k, the
exterior product

� : DM(X1) × DM(X2) → DM(X1 ×k X2)

is weight-exact.

Proof By the description of the ≤ 0- and ≥ 0-part of the weight structure in
[36, Rem. 1.17], we have to show that exterior products of motives of the form
( fi )!1(n)[2n], where fi : Ti → Xi is a proper map and Ti is regular for i = 1, 2, is
again pure of weight 0.

Since k is perfect, a finite type k-scheme is regular iff it is smooth over k [64, Tag
0B8X]. Hence T1×k T2 is again regular.We conclude using the formula f1,!1� f2,!1 =
( f1 × f2)!1 whose proof is straightforward using the base change formula for f ∗ vs.
g! and the projection formula (see [60, Synopsis 2.1.1, (vii) and (x)]). ��
Remark 4.4 If k is an imperfect field, Lemma4.3 still holds by virtue of the equivalence

DM(Xi ) ∼= DM(Xi ×k k̂)

for some perfect closure k̂ of k. The stronger corresponding statement for SH[ 1
char k ]

instead of DM is shown in [22, Cor. 2.1.7]. The equivalence is also shown in [59,
§2.2]. This equivalence is compatible with � and !-pushforwards, so we obtain our
claim in this case.

In order to state that the convolution product preserves weights, we need to talk
about weights on equivariant motives. The idea is simple: a G-equivariant motive is
declared to be of weights ≥ 0 or ≤ 0 if its corresponding underlying non-equivariant
motive has the corresponding property. The following definition makes this precise.
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Note thatweonly define a pair of full subcategories ofDM(G\X).Wedonot claim they
constitute a weight structure, i.e., we do not assert the existence of weight truncation
triangles.

Definition 4.5 Suppose a smooth group scheme G acts on a scheme X (both supposed
to be separated and of finite type over S). We define

DM(G\X)w≤0 := lim DM!,w≤0(Bar(G, X))

DM(G\X)w≥0 := lim DM!,w≥0(Bar(G, X)),

i.e., we apply DM(−)w≤0 to each term in the bar construction (see around [60,
Def. 2.2.6]), with transition functors given by !-pullback.

Remark 4.6 The smooth transition maps preserve the subcategory of objects of weight
≥ 0 and also ≤ 0, so the limits make sense.

The definition is independent of the choice of the presentation of G\X : if G\X =
G ′\X ′, then M ∈ DM(G \ X) is of weights≤ 0, say, if it is so on X (under !-pullback)
and therefore on G ′ × X = G × X ′. Here and in the following we use the standard
weight preservation properties under smooth pullback and (in (4.7) below) also under
proper pushforward [36, Thm. 3.8]. The projection map G × X ′ → X ′ is smooth and
surjective, hence M |X ′ is of weights ≤ 0 by Lemma 2.17.

The following weight preservation property will be central to the stability of the
Satake category SatG under convolution (see Lemma 6.5). We only consider compact
objects since it is enough for our purposes, but the statement could be extended to
arbitrary ones, at the expense of a more lengthy discussion of weights in that case.
Recall from [60, Cor. 2.3.4 and Prop. 2.2.11] that

DM(Pf\Flf )c = colim(ti j )!DM(Pf\Flf,i )c = colim(ti j )!DM(Pf,i\Flf,i )c,

where Flf = colim Flf,i is a presentation as an ind-scheme (with transition maps
denoted by ti j ) and Pf,i is an appropriate finite-type quotient of Pf acting on Flf,i ,
and colim denotes the colimit in the∞-category of∞-categories, which (see loc. cit.)
can in this case just be thought of as the union of the above ∞-categories, as i grows.
Using that (ti j )! is weight-exact, we define

DM(Pf\Flf )c,w≤0 := colim(ti j )!DM(Pf,i\Flf,i )c,w≤0 (4.7)

and likewise for ≥ 0.

Proposition 4.8 The convolution product for Tate motives is weight-exact, i.e., for any
objects A, B ∈ DTM(Pf\Flf )c,w≤0, their convolution A�B is also of weights ≤ 0
and likewise with ≥ 0.

Proof We first assume S is (the spectrum of) a perfect field k or just S = SpecFp,
in which case we show the stronger statement that the convolution product on
DM(Pf\Flf )c (as opposed to DTM) preserves weights. We use the notation in the
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The motivic Satake equivalence 1625

diagram (3.10) and the discussion around it. The functor−�− : DM(X)×DM(Pf,i \
Y ) → DM(X ×Pf,i \ Y ) preserves weights by Definition 4.5 and Lemma 4.3. Simi-
larly, (e ◦ p̃)! preserves weights: e ◦ p̃ is a smooth map of prestacks, i.e., it admits a
smooth covering on which the map is a smooth map of finite type k-schemes. Hence
(e ◦ p̃)! preserves weights by the same argument as in Definition 4.5. Finally, m̃ is
proper so that m̃! preserves weights again. Hence the non-equivariant motive under-
lying A�B, namely m̃!(A˜�B) has the same weights as A � B, so that the same holds
for A�B itself.

For general S, we consider parallely the structural map f : T := S → SpecZ
and the closed immersion f : T := SpecFp → SpecZ. The functor f ∗ :
DTM(Pf,Z\LGZ/Pf,Z) → DTM(Pf,T \LGT /Pf,T ) creates the weight structure by
Theorem 2.14. We conclude by using Lemma 3.15. ��

5 Mixed Tatemotives on the affine Grassmannian

In this section, we endow the category MTM(L+G\LG/L+G) with a Tannakian
structure, cf. Theorem 5.14. A recurrent idea is that the conservativity of the �-adic
realization functor restricted to stratified Tatemotives allows us to lift many statements
from the �-adic to the motivic setting.

Synopsis 5.1 Throughout Sect. 5, the base scheme S is as in Notation 2.1. We fix a
split reductive group G → S and a Borel pair T ⊂ B ⊂ G over S where T is a
split maximal torus contained in the Borel subgroup B. We start by listing some basic
properties as needed in the following, see Sect. 2 for more details and the references
cited there.

(i) The affine Grassmannian Gr = GrG → S is the quotient of ordinary étale sheaves
(LG/L+G)et with base point denoted by e ∈ Gr(S). For each dominant cochar-
acter μ ∈ X∗(T )+, the locally closed immersion of the L+G-orbit of �μ · e is
denoted by

ιμ : Grμ
jμ

↪→ Gr≤μ
iμ
↪→ Gr .

Each Schubert scheme Gr≤μ → S is proper, and the open orbit Grμ ⊂ Gr≤μ is S-
smooth, fibrewise dense with geometrically connected fibers of relative dimension
〈2ρ,μ〉 ∈ Z≥0. For λ,μ ∈ X∗(T )+, we have Grλ ⊂ Gr≤μ if and only if λ ≤ μ

in the dominance partial order on X∗(T )+. For details see [60, Exam. 4.2.16 and
Lem. 4.3.7].

(ii) Throughout, we work with the prestack double quotient L+G\LG/L+G → S,
cf. [60, 5.3]. For each point s ∈ S, there is a homeomorphism of topological spaces

|L+Gs\LGs/L
+Gs | � X∗(Ts)+

S connected= X∗(T )+,

where X∗(T )+ is endowed with the topology given by the dominance partial order
“≤”, i.e., for each μ ∈ X∗(T )+ the subset {λ | λ ≤ μ} is closed.
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1626 T. Richarz, J. Scholbach

(iii) The étale descent equivalence DM(L+G\LG/L+G) = DM(L+G\Gr) (cf. The-
orem 2.6) will be used freely throughout. We have the full subcategory

DTM(L+G\LG/L+G) ⊂ DM(L+G\LG/L+G)

of stratified Tate motives. For each μ ∈ X∗(T )+, there is an equivalence
DTM(L+G\Grμ) = DTM(Hμ\S)where Hμ = L+G∩(�μL+G�−μ) denotes
the stabilizer, cf. [60, Prop. 3.1.23]. Here Hμ → S is a fibrewise connected, strictly
pro-algebraic closed subgroup of L+G by [60, Lem. 4.3.7 (ii)], that is, it can be
written as a sequential limit of fiberwise connected, S-smooth, S-affine group
schemes with surjective transition maps.

(iv) The category of stratified Tate motives admits a non-degenerate t-structure whose
heart is the full subcategory of mixed Tate motives

MTM(L+G\LG/L+G) ⊂ DTM(L+G\LG/L+G).

This category is abelian, Q-linear, and the forgetful functor

MTM(L+G\LG/L+G) −→ MTM(Gr)

is fully faithful and induces a bijection on simple objects by Theorem 2.8. (In fact,
it is an equivalence by Corollary5.7 below.) The simple objects are the inter-
section motives ICμ(n) for μ ∈ X∗(T )+, n ∈ Z. These are pure of weight
〈2ρ,μ〉 − 2n ∈ Z by Theorem 4.1. The closed set {λ | λ ≤ μ} ⊂ X∗(T )+
identifies with the closure of the support of ICμ(n) for any n ∈ Z, cf. [60,
Lem. 4.2.11, 4.3.7]. Furthermore, for each μ ∈ X∗(T )+, there are equivalences
MTM(Grμ) = MTM(L+G\Grμ) = MTM(Hμ\S) = MTM(S) by Lemma 2.9
and [60, Cor. 3.2.21].

(v) The convolution product defines a functor

- � - : DTM(L+G\LG/L+G) × DTM(L+G\LG/L+G) −→ DTM(L+G\LG/L+G)

on the category of stratified Tate motives, cf. Theorem 3.17. (We show in
Lemma 5.8 below that the convolution product preserves the subcategory
MTM(L+G\LG/L+G). Moreover, the two possible approaches in defining the
convolution product discussed in Proposition 3.4 are isomorphic on this category.)

(vi) For each geometric point f : s̄ → S, the fibre of the �-adic realization functor
(cf. Corollary 2.20)

ρ�,s̄ := f ∗ ◦ ρ� : MTM(Gr)c → Perv(Grs̄,Q�)

is exact, conservative and faithful. Under the realization, the motivic convolu-
tion product corresponds to the classical convolution product in the �-adic setting
(Proposition 3.14).
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5.1 Indecomposable objects

The affine Grassmannian admits a decomposition into open and closed sub-ind-
schemes Gr = �τ∈π1(G) Grτ where π1(G) is the algebraic fundamental group, i.e.,
the finitely generated abelian group given by the quotient of the cocharacter lattice
by the coroot lattice. Within each component Grτ , every Schubert cell Grμ → S has
either even- or odd-dimensional fibers: indeed if λ,μ ∈ X∗(T )+ with the same class
in π1(G), then 〈2ρ, λ〉 ≡ 〈2ρ,μ〉 in Z/2 because ρ takes integer values on the coroot
lattice. This defines the locally constant function

X∗(T )+ → Z/2, μ 
→ 〈2ρ,μ〉 mod 2, (5.2)

where the source is equipped with the topology given by the dominance order as in
Synopsis 5.1 (ii). An object A ∈ MTM(Gr) is said to have constant parity p(A) ∈ Z/2
if the restriction of (5.2) to the closure of its support is a constant function, i.e., the
object is supported either on a union of even components, or is supported on a union
of odd components. The following result is a direct consequence of our discussion and
the Kazhdan–Lusztig parity vanishing.

Corollary 5.3 Let A ∈ MTM(Gr).

(i) There exists a canonical decomposition A = Aeven ⊕ Aodd into objects of even
and odd constant parity.

(ii) If A ∈ MTM(Gr) is of constant parity p(A) ∈ Z/2, then

clH
i
(A) = 0, whenever i �≡ p(A) mod 2,

where clH
i
denotes the truncation with respect to the classical motivic t-structure

on Gr.
(iii) If ι : X ⊂ Gr is a finite union of Schubert schemes, then

mHi
(ι∗A) = 0, whenever i �≡ 0 mod 2,

where mHi denotes the truncation with respect to the perverse motivic t-structure
on X.

Proof Part (i) is immediate from the definitions using that each connected component
of Gr is either of constant even or constant odd parity. Part (ii) and (iii) for �-adic
sheaves are certainly well-known, and hence are immediate from the conservativity of
ρ�,s̄ (Synopsis 5.1 (vi)). Let us give an argument by reduction to Theorem 2.21. The
categoryMTM(Gr) is compactly generated, so A is the filtered colimit of its compactly
generated subobjects. Moreover, clH and mH commute with filtered colimits, so we
may assume A is compact. For (ii), we use that the length function on X∗(T )+ =
W0\W/W0 is computed as l(μ) = 〈2ρ,μ〉 which is also the relative dimension

of each Grμ → S. Hence, for each μ ∈ X∗(T )+, the vanishing of clH
i
(ι∗μA) ∈

DTML+G(Grμ) = DTMHμ(S) (Synopsis 5.1 (iii)) in degrees i as above follows
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1628 T. Richarz, J. Scholbach

from Theorem 2.21. Here we use that the forgetful functor DMHμ(S) → DM(S) is
conservative. By the compactness of A, its support is a finite-type subscheme of Gr.
We can therefore invoke the localization property of DM to see that the condition

clH
i
(ι∗μA) = ι∗μclH

i
(A) = 0

for all μ ∈ X∗(T )+ implies the vanishing clH
i
(A) = 0. For (iii), the argument is

similar now taking the dimension shifts in the construction of the perverse motivic
t-structure into account. ��

The next lemma addresses the interplay of Tate motives on the base scheme S and
intersection motives. For L ∈ MTM(S) and μ ∈ X∗(T )+, we write

ICL,μ
def= (iμ)∗( jμ)!∗L[dimGrμ] ∈ MTM(Gr)

for the intersection motive twisted by the motive L (more precisely by its ∗-pullback
along the projection Grμ → S). We have IC1S(n),μ = ICμ(n) for any n ∈ Z.

Lemma 5.4 For any L ∈ MTM(S), μ ∈ X∗(T )+, there is a canonical isomorphism

ICL,0�IC1S ,μ � ICL,μ.

Proof Let i : S = Gr≤0 → Gr denote the inclusion of the base point, so that ICL,0 =
i∗L . In the notation of (3.10), both themap m̃ and themap e◦ p̃ are isomorphismswhen
restricted to Gr≤0

˜×Gr≤μ = Gr≤μ. Thus ICL,0�IC1S ,μ = i∗L˜�ICμ = p∗
μL⊗ ICμ =

ICL,μ where pμ : Gr≤μ → S. The last equality is checked using the characterization
of IC-motives in [60, Lem. 3.3.3]. ��
Corollary 5.5 Let L, L ′ ∈ MTM(S) and λ,μ ∈ X∗(T )+. Then

Ext1MTM(Gr)(ICL,λ, ICL ′,μ) =
{

Ext1MTM(S)(L, L ′), i f λ = μ

0, else

In particular, if MTM(S) is semisimple (e.g. S = Spec(Fq)), then MTM(Gr) is
semisimple as well.

Proof This is immediate from Corollary 5.3 (iii), and we refer to [26, Prop. 1 ff.]
and [57, Prop. 3.1] for more details. Here is a sketch for the reader’s convenience:

First assume μ = λ, and denote IC := ICL,μ, IC′ := ICL ′,λ. Let Grμ
j→ Gr≤μ i←

Gr≤μ \Grμ. We have a long exact localization sequence

· · · → Hom(IC, i!i !IC′[1]) → Hom(IC, IC′[1])
→ Hom(IC, j∗ j∗IC′[1]) → Hom(IC, i!i !IC′[2]) → . . . .

We have the following isomorphisms:

Hom(IC′, j∗ j∗IC′[1]) = Hom( j∗IC, j∗IC′[1])
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= Ext1MTM(Grμ)(L, L ′) = Ext1MTM(S)(L, L ′),

where the last one is a consequence of the equivalence MTM(S) � MTM(Grμ) (Syn-
opsis 5.1 (iv)). It is therefore enough to show that the outer groups in the above exact
sequence vanish. The Kazhdan–Lusztig parity vanishing implies that i∗IC, resp. i∗IC′
lives in perverse degree ≤ −2. Indeed, by general properties it lives in degree ≤ 0,
degree 0 vanishes because it is an IC-sheaf, degree −1 vanishes by Corollary 5.3 (iii).
By duality i !IC′ lives in perverse degrees ≥ 2, and taking the shifts [1], resp. [2]
into account, we see that the outer groups vanish by the axioms of a t-structure. This
implies the corollary in the caseμ = λ. Now letμ < λ, and denote i : Gr≤μ → Gr≤λ

the closed embedding. Again the group

Hom(i∗ICL,μ, ICL ′,λ[1]) = Hom(ICL,μ, i !ICL ′,λ[1])

vanishes for t-structure reasons as above using the parity vanishing. The case λ < μ

is similar. Now if bothμ � λ and λ � μ, there are no extensions between IC-sheaves.
This is shown in loc. cit. without appealing to parity vanishing. ��

The category of compact objectsMTM(Gr)c is bothNoetherian andArtinian (Theo-
rem2.8), i.e., each object has finite length. Thus, it is aKrull–Remak–Schmidt category
by [45], so that each object A ∈ MTM(Gr)c admits a direct sum decomposition into
indecomposable objects A = A1 ⊕ . . .⊕ An which is unique up to permutation of the
factors.

Corollary 5.6 Let A ∈ MTM(Gr)c. Then there exist L1, . . . , Ln ∈ MTM(S)c inde-
composable, and μ1, . . . , μn ∈ X∗(T )+ such that A � ⊕i=1,...,nICLi ,μi . Further,
each ICLi ,μi is simple if and only if Li � 1S(ni ) for some ni ∈ Z.

Proof By the discussion above, we may assume that A is indecomposable in which
casewe have to show A � ICL,μ for some necessarily indecomposable L ∈ MTMc(S)

andμ ∈ X∗(T )+.We proceed by induction on the length l(A). The condition l(A) = 1
is equivalent to A being simple, and thus A � ICL,μ with L = 1(n) for some n ∈ Z
(Synopsis 5.1 (iv)). Let l(A) ≥ 2, and let 0 �= A′ ⊂ A be a subobject of length l(A′) =
1. In particular, A′ is indecomposable. The quotient A/A′ is also indecomposable. By
induction A′ � ICL ′,μ, A/A′ � ICL,λ, and thus [A] ∈ Ext1MTM(Gr)(ICL,λ, ICL ′,μ).
As A is indecomposable, the class [A] �= 0 which by Corollary 5.5 implies that λ = μ

and that A is of the desired form. ��
The following result is similar to [52, Prop. 2.1].

Corollary 5.7 The forgetful functor

MTM(L+G\LG/L+G)
�−→ MTM(Gr)

is an equivalence of Q-linear abelian categories.

Proof The functor is fully faithful by [60, 5.3.4 (iii)]. As every object in MTM(Gr) is
isomorphic to a direct sum of objects ICL,μ, it is essentially surjective as well. ��
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5.2 Tensor structure

In this section, we show that the convolution product on DM(L+G\LG/L+G) pre-
serves the subcategory MTM(L+G\LG/L+G).

Lemma 5.8 For A, B ∈ MTM(L+G\LG/L+G) one has A�B ∈ MTM(L+G\LG/

L+G), i.e., the categoryMTM(L+G\LG/L+G) is stable under the convolution prod-
uct.

Proof By Theorem 3.17, convolution preserves Tateness, i.e., A�B ∈ DTM(L+G\
LG/L+G). The remaining property A�B ∈ MTM(L+G\LG/L+G), equivalently
mHi (A�B) = 0 for all i �= 0 is shown using the isomorphism

ρ�

(mHi
(A�B)

) = pHi (
ρ�(A�B)

) = pHi (
ρ�(A)��ρ�(B)

)

.

For the classical �-adic convolution functor �� and the rightmost isomorphism see
around Proposition 3.14.We now use that at least over a separably closed base field the
convolution product of perverse equivariant sheaves is again perverse [57, Thm. 2.1].
We then conclude using the conservativity of the composite ρ�,s̄ , cf. Synopsis 5.1 (vi).

��
The following proposition is a subtle part of the geometric Satake equivalence in

the different settings [7,8,30,52,57,65]. Here we benefit from the existence of the sym-
metricmonoidal structure in these settings and the faithfulness of the �-adic realization
in Synopsis 5.1 (vi) to check the required compatibilities between the commutativity
and associativity constraints.

Proposition 5.9 Let A, B,C ∈ MTM(L+G\LG/L+G). There exist functorial equiv-
alences

cA,B : A�B � B�A, and aA,B,C : (A�B)�C � A�(B�C),

called commutativity and associativity constraints which are uniquely determined by
the following two properties:

(i) The isomorphisms are colimit-preserving in each argument.
(ii) For any geometric point s̄ → S, the constraints map under the composition of

functors (Corollary 5.7, Synopsis 5.1 (vi))

MTM(L+G\LG/L+G)c
�−→ MTM(Gr)c

ρ�,s̄−→ Perv(Grs̄,Q�)

to the usual constraints used in geometric Satake as, e.g., in [65, Prop. 2.21].

In particular, the category MTM(L+G\LG/L+G) � MTM(Gr) is a symmetric
monoidal tensor category with respect to these constraints.

Proof Uniqueness. By property (i) it is enough to characterize the constraints
on the subcategory of compact objects. For any s̄ → S as above, the functor
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ρ�,s̄ : MTM(L+G\LG/L+G)c → Perv(Grs̄,Q�) is faithful by Synopsis 5.1 (vi).
This implies uniqueness.

Existence. Note that once cA,B , aA,B,C with properties (i) and (ii) exist, these
constraints have to satisfy the axioms required for a symmetric monoidal category
(hexagon axiom etc.). This follows from the corresponding identities for the �-adic
Satake equivalence, and the faithfulness of the functor in (ii). It remains to construct
the constraints. The associativity constraint was constructed in Lemma 3.7. For the
commutativity constraint, we use the categorical analogue of Gelfand’s trick whose
construction is explained in [8, §5.3.8] and [65, §2.4.3]. The use of prestacks simplifies
the construction a little bit: Fix a pinning (G, B, T , X). Define the anti-involution
θ : G → G, g 
→ (g∗)−1 = (g−1)∗ where (-)∗ denotes the Cartan involution. The
latter is characterized by the fact that it maps a dominant cocharacter λ ∈ X∗(T )+
to −w0λ, where w0 is the longest element in the finite Weyl group. By functoriality,
we obtain an anti-involution on L := LG preserving L+ := L+G, and thus an
equivalence of prestacks, still denoted by

θ : L+\L/L+ �−→ L+\L/L+.

For all A, B ∈ MTM(L+G\LG/L+G) we construct a canonical isomorphism
θ !(A�B) � (θ !B)�(θ !A) as follows: there is a (homotopy) Cartesian diagram of
prestacks

L+\L ×L+
L/L+ m

sw ◦θ×̃θ

L+\L/L+

θ

L+\L ×L+
L/L+ m

L+\L/L+,

where sw is induced from the switch L × L → L × L , (g1, g1) 
→ (g2, g1). Hence,
we obtain

θ !(A�B) = θ !m! p!(A � B) = m!(sw ◦θ×̃θ)! p!(A � B)

= m!(θ×̃θ)! p!(B � A)
(∗)= m! p!(θ !B � θ !A) = (θ !B)�(θ !A).

The isomorphism labelled (∗) follows from (θ × θ)!(A� B) = (θ !A)� (θ !B), which
holds since θ is a placidmap andDM! is symmetric laxmonoidal as a functor on placid
prestacks with placid maps. Next we define an isomorphism of (plain) endofunctors
on MTM(L+G\LG/L+G) denoted by

e : θ ! �−→ id.

For this we fix a square root i ∈ C of −1, and work temporarily with coefficients in
Q(i). We define e on each indecomposable object ICL,μ (Corollary 5.6) to be the map
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corresponding to i (2ρ,μ) · id under

HomQ(i)(θ
!ICL,μ, ICL,μ) = HomQ(i)(L[dμ], L[dμ]),

obtained by restriction to the open orbit L+G\LGμ/L+G ⊂ L+G\LG≤μ/L+G (this
orbit is invariant under θ ). Since i (2ρ,μ) · id is a central endomorphism, one checks
that e is functorial. We leave the details to the reader.

Next define

c′
A�B : A�B

eA�B←− θ !(A�B) � (θ !B)�(θ !A)
eB�eA−→ B�A,

which is invariant under the Galois automorphism i 
→ −i , and thus defined over Q.
Finally, if both objects A, B have constant parity,wedefine cA�B := (−1)p(A)p(B)c′

A�B
where p denotes the parity function from (5.2). For general objects A, B, not neces-
sarily of constant parity, we use Corollary 5.3 (i) to extend cA�B linearly. See also [8,
5.3.21] and [52, Rmk. 6.2 ff.] for slicker formulations. It is a difficult theorem which
is proven in [65, Prop. 2.21], relying on [51], that the �-adic realization ρ�(cA�B) is
the (modified) commutativity constraint coming from the fusion interpretation of the
convolution product. This finishes the construction of the constraints. ��
Remark 5.10 If S is the spectrum of a field, then the above commutativity constraint
can also be constructed as e.g. in [8] and [52] (see also [26]) by using the fusion inter-
pretation of the convolution product and the motivic nearby cycles functor constructed
in [4], [5, §10].

5.3 Tannakian structure

In this section, we show that the category MTM(L+G\LG/L+G) � MTM(Gr),
which admits a symmetric monoidal structure with respect to the convolution product
� by Proposition 5.9, has in fact a Tannakian structure with fibre functor being the
global motivic cohomology functor.

5.3.1 The fiber functor

The fiber functor is a motivic analogue of the augmentation map for the spherical
Hecke algebra.

Definition 5.11 The fiber functor is the composition

ω : MTM(L+G\LG/L+G)
σ !−→ MTM(Gr)

ε!−→ DTM(S)

grcl−→ MTM(S)
grW−→ MTM(S)w=0 = VectQ

of the forgetful functor σ ! (which is an equivalence of categories by Corollary 5.7),
the pushforward along the structural map ε : Gr → S (which preserves Tate motives
by [60, Lem. 3.1.19], using that the stratification of Gr by L+G-orbits is cellular),
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followed by the grading functors for the classical motivic (which agrees in this case
with the perverse motivic) t-structure and the weight structure (Corollary 4.2):

grcl : M 
→
⊕

i

clHi (M),

grW : M 
→
⊕

i

(grW2i M)(i),

and finally the equivalence [47] of pure Tate motives of weight 0 with the category of
Q-vector spaces (here we use that S is connected).

As a consequence of the Kazhdan–Lusztig parity vanishing one obtains:

Corollary 5.12 Let A ∈ MTM(L+G\LG/L+G) be of constant parity p(A) ∈ Z/2
(Corollary 5.3). Then clHi (ε!σ !A) = 0 whenever i �≡ p(A) mod 2.

Proof This is immediate from the conservativity of the �-adic realization as in Synopsis
5.1 (vi) using the well-known statement for �-adic sheaves. Here is an argument
by reduction to Corollary 5.3 according to which A has only, say, even classical
cohomology, i.e., clHi (A) = 0 for i odd.

As in the proof of Corollary 5.3, we may assume that A is compact. The functors
(ιμ)! and (ιμ)∗ between DTM(GrG) and DTM(GrμG) are exact with respect to the clas-
sical motivic t-structure since the corresponding statement is true for �-adic sheaves.
Moreover, by localization, σ !A is an iterated extension of the Aμ := (ιμ)!(ιμ)∗σ !A
where μ runs over the finitely many dominant cocharacters in the support of A. Using
the long exact cohomology sequence for the clH-cohomologies of ε!σ !A, we may thus
replace A by Aμ. We now use that the Iwahori stratification of Grμ consists of affine
spaces. By the same localization argument, we may replace Grμ by such a stratumAn

S .

We are left to showing that for the structuralmapAn
S

p→ S, p! : DTM(An
S) → DTM(S)

preserves parity vanishing. In fact p! is an equivalence of categories, being the adjoint
of p! : DTM(S) → DTM(An

S) which is fully faithful by homotopy invariance of DM
and essentially surjective by definition of DTM. ��

It is a classical fact that the augmentation map from parahoric Hecke algebras to the
coefficient field respects the multiplicative structure. The corresponding fact is also
well-known in a categorified situation. The proof below is thus similar to, say, [65,
Prop. 2.20].

Proposition 5.13 Let f be a facet and P := Pf its associated parahoric subgroup of
LG. Then the pull-push along the correspondence

P\LG/P σ←− LG/P ε−→ S

yields a functor

ω : DM(P\LG/P)
σ !−→ DM(LG/P)

ε!−→ DM(S).
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1634 T. Richarz, J. Scholbach

At least on the level of homotopy categories, this functor has a natural monoidal
structure with respect to the convolution product on DM(P\LG/P) and the ordinary
tensor product on DM(S).

Proof The left adjoint ε! of ε! exists since the étale sheafification Fl := Flf =
(LG/P)et is an ind-scheme, so the pushforward along the structural map to S exists
by [60, Thm. 2.4.2]. The unitality of ω is clear, since the monoidal unit is the
skyscraper motive supported at the base point of Fl. To show the monoidality of
ω, we abbreviate X̃ := LG × LG/P (all products are products of prestacks over
S) and X := P\LG × LG/P = P\X̃ . The group Pop × P acts on X̃ (and X )
by acting on the right on the first, and on the left on the second factor. We write
� := {(p−1, p)|p ∈ P} ⊂ Pop × P for the “diagonal” subgroup. The structural
map X → S gives a map �\X → �\S. On the other hand, the composition of the
multiplication and structural map LG/P ε→ S yields another map

�\X m→ P\LG/P ε′→ P\S.

These two maps agree: this can be checked after precomposing with the epimorphism
X̃ → (P×�)\X̃ = �\X , where it boils down to using that the structural map X̃ → S

agrees with X̃
m→ LG/P ε→ S, since S is is the final object, and in particular is acted

upon trivially by all copies of P .
This shows that the following diagram of prestacks is cartesian, as soon as we omit

the dotted map. Note that the map ε′ × ε′ arises as (Pop ×P)\(X → S). Once we do
include the dotted map, the small bottom left square is still cartesian (but the top left
square does not commute):

X

pr

�\X
m

p P\LG/P × P\LG/P

ε′×ε′LG/P
ε

σ P\LG/P
ε′

S
σS

�\S P\S × P\S

We then have ω(A�B) = ε!σ !m! p!(A � B). As was already noted in the proof of
Lemma 3.11, ε! exchanges with the forgetful functor σ ! by ind-proper base change.
Similarly, σ !

S exchanges with (ε′ ◦ m)!, so the above is equivalent to (ε × ε)!(σ ×
σ)!(A � B). The !-pullback along the map X → (Pop × P)\X commutes with
� by construction of �, see Remark 3.2. Furthermore, � also commutes with the
!-pushforward along the structural map X → S. After reducing this claim to the
case of finite-type S-schemes (instead of the ind-finite type ind-scheme X ), this is
a consequence of the projection formula. Hence the above object is equivalent to
ω(A) ⊗ ω(B). ��
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Theorem 5.14 The categoryof compact objectsMTM(L+G\LG/L+G)c = MTM(Gr)c

(Corollary 5.7), endowed with the convolution product, the constraints from Proposi-
tion 5.9 and ω as fibre functor is a neutral Tannakian category over Q ([21, Ch. II,
Def. 2.19]).

Proof Wecheck the conditions in [21,Ch. II, Prop. 1.20] using the functorω (Definition
5.11).

(i) The functor ωhas a monoidal structure. By Proposition 5.13, it remains to observe
that grperv and grW have monoidal structures: both functors and the respective
tensor products preserve colimits, so we may consider the subcategories of com-
pact objects instead. Then we are in the situation of [47]: the characterization of
DTM(S)≤0,c (resp. DTM(S)≥1,c) as the subcategories generated under extensions
by the objects 1S(n)[m]with n ∈ Z andm ≥ 0 (resp.m ≤ −1) immediately shows
the monoidality of grcl restricted to the subcategory of complexes concentrated in
either even or odd degrees. Now we take the parity vanishing of Corollary 5.12
into account. The monoidality of grW holds by [47, Thm. 1.4.v].

(ii) The functor ω isQ-linear, exact and faithful. The functor ω is clearlyQ-linear. To
check the exactness, suppose

0 → M ′ → M → M ′′ → 0

is a short exact sequence in MTM(L+G\LG/L+G) = MTM(Gr). To show
it maps to an exact sequence under ω, we may assume M ′ and M ′′ are inde-
composable (since Ext1MTM(Gr)(-, -) commutes with finite direct sums in each
variable), i.e., by Corollary 5.6 of the form M ′ = ICL ′,μ′ , M ′′ = ICL ′′,μ′′ for
someμ′, μ′′ ∈ X∗(T )+ and some indecomposablemotives L ′, L ′′ ∈ MTM(S). By
Corollary 5.5, the extension splits unlessμ′ = μ′′ =: μ in which caseM � ICL,μ,
where L is an extension in MTM(S) of L ′ and L ′′. We conclude that ω is exact
since ω(ICL,μ) � ω(L�IC1,μ) � ω(L) ⊗ ω(IC1,μ) using (i) above. The faithful-
ness of ω follows from the conservativity of ω, which in its turn follows from the
conservativity of the �-adic realization at some geometric point s → S (Synopsis
5.1 (vi)) and the conservativity of the fiber functor in the �-adic situation.

(iii) The constraints constructed in Proposition 5.9 give the usual constraints in VectQ
after applying ω. This is immediate from the �-adic case, see [65, Prop. 2.21]
using that the realization is faithful. We stress that one needs to change the natural
commutativity constraints one has on complexes: this is possible by the parity
vanishing, see also the passage from c′

A�B to cA�B in the proof of Proposition 5.9.
(iv) Neutral object. The skyscraper at the base point IC0 ∈ MTM(L+G\LG/L+G)

satisfies End(IC0) = Q and ω(IC0) is 1-dimensional.
(v) Any M ∈ MTM(L+G\LG/L+G) with dimQ ω(M) = 1 admits a dual object

M−1 such that M�M−1 = IC0. If dimQ ω(M) = 1, then M is indecomposable by
the faithfulness of ω, i.e., M � ICL,μ with L indecomposable. Since ω(ICL,μ) =
ω(L) ⊗ ω(IC1,μ), the motive L ∈ MTM(S) is also pure, and hence ⊗-invertible.
Moreover, dimQ ω(ICμ) = dimQ�

ω�(ICμ,�), where the subscripts denote the
corresponding functors in the �-adic realization. By the �-adic Satake equivalence
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1636 T. Richarz, J. Scholbach

(see e.g. [7, §9]2, or [57, Cor. 3.5]), this implies dim(Gr≤μ /S) = 0, i.e., ICμ is
dualizable with respect to �. Namely its dual is ICμ�IC−μ � IC0.

6 The dual group

In this final section we determine the Tannaka dual of the categories
MTM(L+GS\LGS/L+GS) and the so-called Satake category

SatG,S ⊂ MTM(L+GS\LGS/L
+GS), (6.1)

which can be thought of as the semi-simplification of the latter category. We show in
Theorem 6.8 that the Tannaka dual of SatG,S is Deligne’s modified Langlands dual
group ̂G1/Q as constructed in [24, §2]. In particular, this group is independent of the
(connected) base scheme S.

For S = SpecFq , the inclusion (6.1) is an equivalence. For more general bases S,
we show in Theorem 6.14 that the Tannakian group of MTM(L+GS\LGS/L+GS) is
the semi-direct product of ̂G1 with a pro-unipotent affine group scheme coming from
extensions between Tate motives on S.

Throughout Sect. 6, the base scheme S is as in Notation 2.1. Also recall Synopsis
5.1.

6.1 The Satake category

Definition 6.2 The Satake category SatG = SatG,S is the full subcategory of
MTM(L+G\LG/L+G) generated by means of arbitrary direct sums (as opposed
to allowing extensions) by the intersection motives ICμ(n), μ ∈ X∗(T )+, n ∈ Z.

Lemma 6.3 For L, L ′ ∈ MTM(S) and λ,μ ∈ X∗(T )+, we have natural identifica-
tions

HomMTM(GrG )(ICL,λ, ICL ′,μ) =
{

HomMTM(S)(L, L ′) λ = μ,

0 λ �= μ.

Proof For λ = μ, this is a standard property of intermediate extensions, see [44,
Cor. III.5.11]. To show the vanishing in case λ �= μ, we may assume L is a simple
object ofMTM(S). In this case, ICL,μ is also simple, so any non-zeromorphismwould
need to be an isomorphism, which is impossible if λ �= μ. ��
Corollary 6.4 The category SatG is abelian. Its subcategory of compact objects SatcG
is semi-simple.

��
2 The reference uses constructible sheaves in the analytic topology over C, but the same argument works
by invoking [35, Cor. 6.9].

123



The motivic Satake equivalence 1637

Lemma 6.5 The full subcategory SatG ⊂ MTM(L+G\LG/L+G) is stable under the
convolution product.

Proof Wehave to show thatM := ICμ�ICλ is a direct sumof some intersectionmotives
of the form ICκ(n). (A prioriwe only know it is a successive extension of twists of some
ICκ .) By Corollary 5.6, M = ⊕(L,μ)ICL,μ with L indecomposable. The intersection
motives ICμ and ICλ are pure by Theorem 4.1, hence so is M by Proposition 4.8.
Therefore, each direct summand ICL,μ is also pure. Let j : Grμ → Gr≤μ be the open
stratum. Since j∗ = j !, the motive j∗ICL,μ = L[dμ] is also pure, which implies L is
pure. Since L is also indecomposable, it is of the form L = 1S(n) for some n ∈ Z,
hence ICL,μ = ICμ(n) ∈ SatG . ��
Corollary 6.6 The subcategory SatcG ⊂ SatG spanned by the compact objects in the
Satake category has the following properties:

(i) SatcG is a neutral Tannakian subcategory.
(ii) For any map f : T → S of connected schemes as in Notation 2.1, there is an

equivalence of neutral Tannakian categories

f ∗ : SatcG,S
�−→ SatcG,T ,

having the property f ∗ICμ,S(n) = ICμ,T (n) for all μ ∈ X∗(T )+, n ∈ Z.

Proof Part (i) is immediate from Lemma 6.5 and Proposition 5.14. For (ii), we use
Theorem 2.15 which gives f ∗ICμ,S(n) = ICμ,T (n), so that f ∗ is an equivalence of
Q-linear abelian categories. The compatibility of f ∗ with the convolution product
was checked in Lemma 3.15. Also ω(ICμ,S(n)) = ω(ICμ,T (n)) is immediate from
Definition 5.11. The rest is clear from the characterization of the constraints in (5.9).

��
Now fix a pinning (G, B, T , X), and denote by (̂G, ̂B, ̂T , ̂X) the dual group in the

sense of Langlands formed over Q. By definition ̂G is a split reductive Q-group with
split maximal torus ̂T , and Borel subgroup ̂B. Denote by ̂Tad the image of ̂T under the
map ̂G → ̂Gad to the adjoint group. Then we may view the half sum ρ of the roots in
B (=coroots in ̂B) as a cocharacter ρ : Gm,Q → ̂Tad ⊂ ̂Gad. We let Gm,Q act through
ρ by inner automorphisms on (̂G, ̂B, ̂T ) from the right. Colloquially speaking, this
action is given by the formula g · λ = ρ(λ)−1gρ(λ). We consider the semi-direct
product ̂G1 := ̂G � Gm,Q which is again a split reductive Q-group with Borel pair
̂T × Gm,Q =: ̂T1 ⊂ ̂B1 := ̂B � Gm,Q.

For eachμ ∈ X∗(T )+, and n ∈ Zwe get an irreducible algebraic ̂G1-representation
[39, Ch. II.5]

Vμ(n)
def= Ind

̂G1
̂Bop
1

(μn),

where ̂Bop
1 ⊂ ̂G1 denotes the Borel opposite to ̂B1, and μn : ̂Bop

1 → ̂T1 → Gm,Q
is the composition of the projection with the character (μ, n) ∈ X∗(T )+ × Z =
X∗(̂T1)+. Then Vμ(n) is the representation of ̂G1 of highest weight (μ, n). We denote
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by RepfdQ(̂G1) the category of algebraic ̂G1-representations on finite-dimensional Q-
vector spaces. This category is semi-simple with simple objects the highest weight
representations as above.

Remark 6.7 The split reductive group ̂G1 is Deligne’s modified Langlands dual group
constructed in [24], see also [20]. More precisely, one checks that the map (g, λ) 
→
(g · (2ρ)(λ), λ2) induces a short exact sequence of Q-group schemes

1 → μ2 → ̂G × Gm,Q → ̂G1 → 1,

where μ2 � Z/2 is the constant subgroup scheme generated by the element (ε,−1),
ε := (2ρ)(−1). It follows that the semi-direct product ̂G1 = ̂G�Gm,Q is (canonically)
a direct product if ε = 1. The latter condition is also equivalent to ρ being a cocharacter
of ̂T (as opposed to ̂Tad). For example, this is the case if G is simply connected, so
that ̂Gad = ̂G is adjoint. We note that the difference of ̂G versus ̂G1 relates to the
notions of L-algebraic versus C-algebraic as introduced by Buzzard and Gee in [13].
For further discussion and examples we refer to [13, Prop. 5.39 ff.].

Theorem 6.8 There is an equivalence of Tannakian categories

(

SatcG, �, ω
) � (

RepfdQ(̂G1),⊗, v
)

,

where v : RepfdQ(̂G1) → VecQ denotes the forgetful functor. The intersection

motives ICμ(n) correspond to the irreducible ̂G1-representations Vμ(n) for (μ, n) ∈
X∗(T )+ × Z = X∗(̂T1)+.

Proof Wedenote byAut�SatG (ω) the affineQ-group schemeof tensor automorphismsof
ω provided by the neutral Tannakian category (SatcG, �, ω), cf. [21, Ch. II, Thm. 2.11].
The Satake category SatG = SatG,S is independent from the (connected) base scheme
S by Corollary 6.6 (ii), i.e., for any map T → S of schemes as in Notation 2.1 we
have

Aut�SatcG,S
(ω) = Aut�SatcG,T

(ω).

As G is split, it is defined over Z, and in particular over any scheme as is the affine
Grassmannian. By Corollary 6.6, we may assume that S = Spec(Fp) is a finite field,
and we denote ˜G1 := Aut�SatcG

(ω). For any � �= p, consider the �-adic realization

ρ� : SatcG → PervL+G(Gr,Q�).

Let SatcG,� be the essential image of ρ�, i.e., the full subcategory of PervL+G(Gr,Q�)

consisting of the objects isomorphic to ρ�(
⊕

i ICμi (ni )) = ⊕

i IC�,μi (ni ). Under the
�-adic convolution product it is a Tannakian category; its fiber functor, denoted by ω�,
is defined the same way as ω. For any M, N ∈ SatcG,�, Lemma 6.3 and analogous
computations in the �-adic context give natural isomorphisms

HomSatcG
(M, N ) ⊗Q Q� = HomSatcG,�

(ρ�(M), ρ�(N )),
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so that

Aut�SatcG
(ω) ⊗Q Q� = Aut�SatcG,�

(ω�).

By the �-adic geometric Satake equivalence (in particular [37, Rmk. 2.10], [61,
Prop. A.6], [66, 5.5.14]), we deduce an isomorphism

˜G1 ⊗Q Q� � ̂G1 ⊗Q Q�. (6.9)

This holds for all prime numbers � �= p. Since we have a zig zag Fp ← Z → Fp′ for
any pair of primes p, p′, we see that (6.9) also holds for � = p. Using (6.9) for one
prime number �, it follows that ˜G1 is (geometrically) connected and reductive: we use
fpqc descent for the extension Q�/Q for the properties ‘(geometrically) connected’,
‘of finite type’ and ‘smooth’ [64, 04KV, 02KZ, 02VL], and further that the unipotent
radical commutes with arbitrary field extensions over perfect fields for the property
‘reductive’ [17, Prop. 1.1.9]. If ˜G1 is also split, then we have ˜G1 � ̂G1 over Q by the
isomorphism theorem ([18, Thm. 6.1.17]).

However, the condition (6.9) for all primes � is not enough to ensure that ˜G1 is
split ([32]), and we argue as follows. By construction, the functor ω : SatcG → VecQ is
equipped with a Z-grading coming from the grading on clH

∗
in Definition 5.11. This

defines a cocharacter 2ρ̃ : Gm,Q → ˜G1 via the Tannakian formalism, and we denote
by ˜T1 ⊂ ˜G1 its centralizer. Under the �-adic realization we have 2ρ̃ = 2ρ by [66,
5.3.20]. Then, for all primes �, we have

˜T1 ⊗Q Q� � ̂T1 ⊗Q Q�, (6.10)

compatible with the isomorphism (6.9). Using (6.10) for one prime, this implies as
above that ˜T1 is a commutative reductive group over Q, and thus must be a torus. As
̂T1 ⊂ ̂G1 is a maximal torus (6.10) implies that ˜T1 ⊂ ˜G1 is a maximal torus (as this
can be checked over the algebraically closed overfield Q̄�). However, the Gal(Q̄/Q)-
Galois representation X∗(˜T1,Q̄) is trivial at all primes �, and hence must be trivial by

Minkowski’s theorem. This shows that ˜T1 is a maximal split torus of ˜G1. ��

6.2 The full Tannakian group

Definition 6.11 Let ˜GS be the Tannaka dual group of the Tannakian category
MTM(L+GS\LGS/L+GS)

c (Theorem 5.14).

Example 6.12 For S = SpecFq , the inclusion SatcG → MTM(L+G\LG/L+G)c is an
equivalence. This follows from Corollary 5.5, and the semisimplicity of MTM(Fq)

c

(which follows from HomDTM(Fq )(1, 1(i)[n]) = 0 unless n = i = 0 because the
higher algebraic K -theory of finite fields is torsion by Quillen’s computation [55]).
Therefore

˜GFq = ̂G1.
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We now exhibit the relation of the category SatcG and MTM(L+G\LG/L+G)c =
MTM(GrG)c (Theorem 5.14) over other bases. In short, the category MTM(GrG)c

arises by amalgamating Tate motives on the base S together with the intersection
motives arising from the presence of the group G.

Recall from [47] that MTM(S)c is a neutral Tannakian category with fibre functor

MTM(S)c
grW→ MTM(S)c,W=0 = VectQ,

which is the special case of Theorem 5.14 for the trivial group. We denote its Tannaka
dual by GS . (It is the same as ˜GS for the trivial group G = 1). The semi-simplification
of MTM(S)c is just MTM(S)pure,c, which is equivalent to Z-graded Q-vector spaces.
Equivalently, its Tannaka dual is Gm,Q. Therefore GS sits in a split exact sequence

1 → US → GS → Gm → 1,

where US is the pro-unipotent radical of GS . We have the following commutative
diagram of neutral Tannakian categories

MTM(S)pure,c

e∗

MTM(S)c

e∗

SatcG MTM(GrG)c,

where e : S → GrG is the inclusion of the base point. It induces a commutative
diagram of the corresponding Tannaka dual groups

˜GS GS

̂G1 Gm,Q.

(6.13)

Theorem 6.14 The diagram (6.13) is Cartesian, i.e., it induces an isomorphism Q-
group schemes

α : ˜GS
�−→ ̂G1 ×Gm GS = US � ̂G1.

In other words, there is an equivalence of Tannakian categories

MTM(L+G\LG/L+G)c = MTM(GrG)c = RepfdQ(US � ̂G1)

between the category of compact mixed Tate motives on the double quotient
L+G\LG/L+G over S (or equivalently, compact mixed Tate motives onGrG, cf. The-
orem5.14)and the category of finite-dimensional representations ofUS�̂G1 (regarded
as a pro-algebraic group over Q).
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Proof To check α is an isomorphism, we consider a Q-algebra R and evaluate the
R-points of the two group schemes. Recall that by definition that ˜G(R) consists of the
tensor automorphisms of the fiber functor ω : MTM(GrG)c → VectQ, i.e., families of
additive R-linear automorphisms gX : ω(X)⊗R → ω(X)⊗R satisfying natural com-
patibility relations (see [21, Ch. II, §2]), namely (for all X , X1, X2 ∈ MTM(GrG)c,
τ : X1 → X2)

(i) g1 = idR ,
(ii) gX1�X2 = gX1 ⊗ gX2 , and
(iii) gX2 ◦ τ = (ω(τ) ⊗ 1) ◦ gX1 .

The map ˜G(R) → ̂G1(R) sends such a family g := (gX )X∈MTM(Gr) to the collec-
tion of automorphisms, where X only lies in the �-subcategory SatG ⊂ MTM(GrG).
Likewise for e∗MTM(S) ⊂ MTM(GrG). The injectivity of α therefore follows from
Corollary 5.6: any motive in MTM(GrG) is (isomorphic to one) of the form

X =
n

⊕

i=1

ICLi ,μi =
n

⊕

i=1

⎛

⎜

⎝ e∗Li
︸︷︷︸

∈e∗MTM(S)

� ICμi
︸︷︷︸

∈SatG

⎞

⎟

⎠ .

Thus, gX = ⊕

i ge∗Li ⊗ gICμi
is trivial if g|SatG = id and g|e∗MTM(S) = id.

Given families of automorphisms h := (hX )X∈SatG and h′ := (h′
Y )Y∈e∗MTM(S)

such that hX = h′
X for X ∈ i∗MTM(S)pure, the surjectivity of α(R) requires to glue

these families of automorphisms to one onMTM(GrG). To show this we use that there
is an isomorphism

ICμ(n)�e∗L � ICμ′(n′)�e∗L ′

(if and) only if μ = μ′ and L ′ � L(n − n′). Indeed the former follows from support
considerations, the latter follows by restricting the isomorphism of motives to GrμG ⊂
Gr≤μ

G . For a motive X as above, we can therefore define λX := hICμ(n) ⊗ h′
e∗L

independently of the presentation of X as a convolution product. We extend this
additively. For a morphism τ : X := ⊕

i ICμi ,Li → ⊕

i ′ ICμ′
i ′ ,L

′
i ′

=: X ′, we obtain
gX ′ ◦ τ = (ω(τ) ⊗ 1) ◦ gX by the description of the Hom group in Lemma 6.3 and
the corresponding functoriality property for h′. ��

6.3 Extension to Ind-Categories

The equivalences in Theorems 6.8 and 6.14 admit the following extensions to not
necessarily compact objects. Such a statement can be useful in contexts when one
wants to invoke adjoint functor theorems.

Corollary 6.15 There are equivalences of symmetric monoidal abelian Q-linear cate-
gories

SatG = RepQ(̂G1),

123



1642 T. Richarz, J. Scholbach

MTM(L+GS\LGS/L
+GS) = MTM(GrG,S) = RepQ(US � ̂G1),

whereRepQ denotes the category of not necessarily finite-dimensional representations.

Proof Any representation of a flat group scheme, in particular any representation
of a pro-algebraic group such as US � ̂G1 is locally finite [39, §I.2.13]. As finite-
dimensional representations are compact objects, the category RepQ(US � ̂G1) is
compactly generated by its subcategory RepQ(US � ̂G1)

fd. On the other hand,
MTM(GrG) is compactly generated by MTM(GrG)c by virtue of [60, Prop. 3.2.15].
Similarly, SatG is compactly generated by definition. We therefore obtain the claim
by applying the ind-completion to the equivalence in Theorem 6.14. ��

6.4 Frommotives to functions

Let S = Spec(Fq) be the spectrum of a finite field. We consider the (spherical) Hecke
ring

HG
def= Cc

(

L+G(Fq)\LG(Fq)/L
+G(Fq);Z

)

where the ring structure is given by the convolution of functions, cf. [33, §2]. This
ring has a Z-basis given by the characteristic functions cμ,μ ∈ X∗(T )+ on the double
cosets L+G(Fq)�

μL+G(Fq). Taking the trace of geometric Frobenius on motives
as in [16] induces a surjective ring morphism

K0Sat
c
G → HG ⊗Z Z[q−1], M 
→ fM , (6.16)

where K0SatcG denotes the Grothendieck ring.
Recall that the trace of the geometric Frobenius on Q�(1) is q−1, cf. [19, (1.2.5)

(iv)]. Thus, for the trivial group G = 1, the preceding map is the ring homomorphism
Z[t, t−1] → Z[q−1] sending the class t of Q(1) to q−1.

In general, ifM is any stratifiedTatemotive onGrG (with respect to the stratification
into L+G-orbits), then its restriction ι∗μM to someSchubert cellGrμG lies inDTM(GrμG)

by construction. Thus, if M is also compact, then ι∗μM is a finite successive extension
of Tate motives 1μ(n)[m], n,m ∈ Z. This immediately implies that the function fM
takes values in Z[q−1] as opposed to Q. Also since ι∗μICμ coincides with 1μ up to a
shift, the function cμ appears with multiplicity ±1 in fICμ which shows that (6.16) is
surjective.

Let R(̂G1) be the Grothendieck ring of the category RepfdQ(̂G1). By construction

there is a morphism d : ̂G1 → Gm,Q, [(g, λ)] 
→ λ2.When viewed as a representation
this is nothing but the highest weight representation V0(1) of ̂G1. We denote its class
in R(̂G1) by [V0(1)] = [d].
Corollary 6.17 The motivic Satake equivalence in Theorem 6.8 induces an isomor-
phism of rings

HG ⊗Z Z[q−1] �−→ R(̂G1)/([d−1] − q).
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Proof Themotivic Satake equivalence induces an isomorphismonGrothendieck rings

K0Sat
c
G � K0Rep

fd
Q(̂G1) = R(̂G1)

under which the class [IC0(−1)] corresponds to [V0(−1)] = [d−1]. Hence, it is
enough to show that the kernel of (6.16) is the principal ideal generated by a :=
[IC0(−1)] − q[IC0]. As the geometric Frobenius acts on Q(−1) by multiplication
with q, the class a lies in the kernel. Conversely, by induction one easily sees that
all classes [IC0(−n)] − qn[IC0], n ∈ Z lie in the principal ideal generated by a.
An elementary calculation using that the classes [ICμ], μ ∈ X∗(T )+ are linearly
independent implies the corollary. ��
Remark 6.18 We note that the isomorphism of Q-groups ̂G × Gm,Q → ̂G × Gm,Q,
(g, λ) 
→ (g, λ−1) induces an isomorphism ̂G1 � ̂G1, and hence an isomorphism of
rings

R(̂G1)/([d−1] − q) � R(̂G1)/([d] − q).

Under the Tannakian dictionary this normalization corresponds to a sign change in the
weight graduation in Definition 5.11. For a concrete example take G = PGL2 so that
̂G = SL2. Since (2ρ)(−1) is the diagonal matrix diag(−1,−1), we get ̂G1 = GL2
and d = det : GL2 → Gm . Thus, the Satake isomorphism with the new normalisation
reads in this case

HPGL2 ⊗Z Z[q−1] �−→ R(GL2)/([det] − q).

If μ ∈ X∗(T )+ = Z≥0, then this isomorphism explicitly is given by

fICμ 
→ [Symμ Q2],

where [Symμ Q2] denotes the class of the μ-th symmetric power of the standard
representation of GL2.
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Appendix A: Complements onmotives

In this appendix, we show how the well-known compatibilities (stated in this form in
[40])

( f1 × f2)
∗(M1 � M2) ∼= ( f ∗

1 M1) � ( f ∗
2 M2)

( f1 × f2)!(M1 � M2) ∼= ( f1!M1) � ( f2!M2) (A.1)

of the exterior product � of motives with f ∗ and f! can be coherently organized. This
will be used to establish the structure of a symmetric lax monoidal functor for the
presheaf DM! when we restrict to placid morphisms between placid schemes, such as
the L+G-torsors LG≤μ → Gr≤μ. This is used in the discussion of the convolution
product in Sect. 3.

Throughout §A, we assume the base scheme S to be a Noetherian separated scheme
of finite Krull dimension. We note that all separatedness assumptions (here, on S, and
below on certain maps of S-schemes) could eventually be dropped by proceeding as
in [60, Prop. 2.1.14].

A.1. The exterior product

We equip the categories SchftS , SchS and Cat, Cat∞, the (∞-)category of all small
(∞-)categories, with their cartesian symmetric monoidal structure [49, §2.4.1].

In particular, we consider the cocartesian fibration (SchftS )
× → Fin taking val-

ues in the category of finite pointed sets. Recall that the objects of (SchftS )
× are

sequences (X1, . . . , Xn) with Xi ∈ SchftS and, among others, the category has mor-
phisms of the form (X1, . . . , Xn) → X1 ×S · · · ×S Xn , corresponding to idX1×···×Xn .
Let (SchftS )

×,∨ → Finop be the associated cartesian fibration as constructed in [6].
The opposite of this, which is again a cocartesian fibration, encodes the usual sym-
metric monoidal structure on (SchftS )

op. We will abbreviate the source of this map as
(SchftS )

op,× or even just (SchftS )
op.

The subcategory AffSchftS ⊂ SchftS (consisting of affine finite type S-schemes,
Spec R → S) is closed under the product since S is by assumption separated. We
further endow DGCatcont and PrL (presentable ∞-categories with colimit-preserving
functors) with the Lurie tensor product, see e.g. [29, Ch. 1, §6].

Lemma A.2 The functor

DM∗ : (SchftS )
op → DGCatcont

admits a natural symmetric lax monoidal structure such that for finite type S-schemes
X1, X2, this structure is the exterior product

� : DM(X1) ⊗ DM(X2) → DM(X1 × X2).
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Proof The functor Schft,opS → Cat, X 
→ Sm/X is symmetric lax monoidal (with
respect to the cartesianmonoidal structures on both categories) bymeans of the exterior
product. The inclusion Cat → Cat∞ is symmetric monoidal. The presheaf functor (in
the∞-categorical sense)P : Cat∞ → PrL is symmetric monoidal [49, Rem. 4.8.1.8].
Thus, the composite X 
→ P(Sm/X) is symmetric laxmonoidal. In addition, the (non-
full) subcategory WX ⊂ P(Sm/X) consisting of the usual A1-projections and étale
hypercoverings aremonoidal subcategories, so that the functor X 
→ (P(Sm/X),WX )

is a symmetric monoidal functor taking values in the ∞-category WCat∞ of relative
∞-categories. The localization functor WCat∞ → Cat∞, (C,W ) 
→ C[W−1] is
symmetric lax monoidal [49, Prop. 4.1.7.2, Prop. 4.1.7.4].

The stabilization process, i.e., turning P1 into an invertible object, is also a symmet-
ric lax monoidal functor. This is readily apparent from the description of this process
in [62, §4.1]: abbreviating the notation of loc. cit. as P := P(free⊗(�[0]))⊗ and
Pinv := P(L⊗

free⊗(�[0]),∗)
(free⊗(�[0])))⊗, let CAlg(PrL,⊗)pt be the undercategory

CAlg(PrL,⊗)P/. Its objects are pairs (C, X) consisting of a presentable symmetric
monoidal ∞-category C and an object X ∈ C . Similarly, consider the undercategory
CAlg(PrL,⊗)pt,inv := CAlg(PrL,⊗)Pinv/ whose objects consist of similar pairs (C, X),
but where X is a ⊗-invertible object. The objects P and Pinv have natural comonoid
structures stemming from the comonoid structure present on any object in a cartesian
symmetric monoidal category such as Cat×∞. Thus, the undercategories under these
two objects have a natural symmetric monoidal structure in such a way that the func-
tor (C, X) 
→ X is symmetric monoidal. The natural functor, arising from the map
P → Pinv,

CAlg(PrL,⊗)Pinv/ → CAlg(PrL,⊗)P/

is symmetric monoidal. Hence its left adjoint, which by [62, Def. 4.1.8] is the func-
tor mapping a pointed category (C, X) to (C[X−1], X), is symmetric lax monoidal.
This abstract observation is applied to the functor Schft,opS → CAlg(PrL,⊗)P/,
X 
→ (P(Sm/X)[〈A1, et〉−1],P1

X ) which is symmetric lax monoidal by the above
(and P1

X × P1
Y = P1

X×Y ).

The composite, denoted by SH∗ : Schft,opS → PrL,⊗ takes values in PrL,⊗
stb , the

∞-category of stable presentable symmetric monoidal ∞-categories and colimit-
preserving functors and is by the above a symmetric laxmonoidal functor. Finally, DM

arises fromcomposingwith the symmetricmonoidal functor PrLstb = ModSp(PrL)
−⊗Q−→

ModQ(PrLstb) =: DGCatcont.
��

We now retrace the construction of DM∗
! as a functor out of the category of cor-

respondences, by keeping track of the symmetric lax monoidal structure and thus of
projection formulas, including all their higher coherences. We use, in the same vein
as Hoyois [38] and Khan [43], the universal property of the category of correspon-
dences. An alternative approach for coherently encoding projection formulas avoiding
the category of correspondences appears in [1, §4.5].
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Recall the (∞, 2)-category of correspondences Corr((SchftS )
×,∨)admhoriz,vert defined

in [29, §7]. Here horiz, vert and adm are certain subcategories of (SchftS )
×,∨, to be

specified below more concretely. The objects of this category are the objects X ∈
(SchftS )

×,∨ (which are, in their turn, finite collections of objects in SchftS ); 1-morphisms

from X to Y are spans of the form Y
g← Z

f→ X with g ∈ vert and f ∈ horiz, and
2-morphisms between such a morphism and another similar correspondence is a map
Z → Z ′ in adm that is compatible with the maps to X and Y . This describes the low-
dimensional data of this category, we refer to loc. cit. for the full definition including
the (∞, 2)-categorical structure.

Definition A.3 A map f in a symmetric monoidal ∞-category C⊗ → Fin is called
dormant if its image in Fin is an identity map.

We consider the category Corr((SchftS )
×,∨)isoopen,all, where “iso” indicates the col-

lection of dormant isomorphisms, “open” is the subcategory consisting of dormant
morphisms

( f1, . . . , fn) : (X1, . . . , Xn) → (Y1, . . . ,Yn)

where each fi is an open embedding. Finally, “all”means that no restriction is imposed
on the horizontal morphisms.

The extension of the functor (SchftS )
×,∨ → Finop to correspondences, and

restricting to the above subcategory gives a functor Corr((SchftS )
×,∨)isoopen,all →

Corr(Finop)isoid,all = Fin. Given a map α : 〈m〉 → 〈n〉 in Fin and a cocartesian lift

(X1, . . . , Xn) → (Y1, . . . ,Ym) in (SchftS )
op, on checks that (Xi )

id← (Xi ) → (Y j ) is a
cocartesian lift in Corr((SchftS )

×,∨). The Segal condition holds trivially by definition,
so that Corr((SchftS )

×,∨)isoopen,all is a symmetric monoidal ∞-category.

Lemma A.4 The functorDM∗ extends uniquely to a symmetric lax monoidal functor

DM∗
� : Corr((SchftS )×,∨)isoopen,all → DGCatcont. (A.5)

Proof We show the existence of the functor using [29, Chapter 7, Theorem 3.2.2(b)].
Among the general conditions in Chapter 7, 1.1.1 there, the only requirement to check
is the existence of pullbacks in (SchftS )

×,∨ along maps in the subcategory “open”. This
is clear: given open embeddings fi and a map as in the horizontal arrow, i.e., a map
α : 〈n〉 → 〈m〉, and gi : Zi → ∏

j∈α−1(i) Y j , the diagram

(Zi ×∏

j 
→i Y j

∏

j 
→i Xi ) (X1, . . . , Xn)

( f1,..., fn)

(Z1, . . . , Zm)
(g1,...,gm )

(Y1, . . . ,Yn).

is cartesian in (SchftS )
×,∨ and the left vertical map is again in “open”. In order to check

the Beck–Chevalley condition, it suffices to separately consider the case where (gi ) is
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inert, respectively active, since these form a factorization system. For inert morphisms,
this is clear. For active morphisms, we may assume that m = 1 and n = 2 above, in
which case we consider g : Z1 → Y1 × Y2. Then the Beck–Chevalley condition is the
assertion that the following diagram commutes, which follows from the construction
of �:

DM(Z1 ×Y1×Y2 X1 × X2) DM(X1 × X2)

( f1× f2)�

DM(X1) ⊗ DM(X2)

( f1)�×( f2)�

DM(Z1) DM(Y1 × Y2)
g∗ DM(Y1) ⊗ DM(Y2).�

(A.6)

The functor DM∗
� obtained in this way clearly preserves edges that are cocartesian

over Fin, thus giving a symmetric lax monoidal functor. ��
Lemma A.7 Let sep, resp. proper be the subcategory of (SchftS )

× spanned by mor-
phisms that are dormant (i.e., map to an identity in Fin), and are componentwise
separated (resp. proper). The functor DM∗

� in (A.5) extends uniquely to a symmetric
lax monoidal functor:

DM∗
! : Corr((SchftS )×,∨)

proper
sep,all → DGCatcont.

Proof We apply [29, Chapter 7, Thm. 5.2.7]. To check its assumptions note that a map
in proper ∩ open is dormant, and componentwise an open embedding. Such a map
is a monomorphism in (SchftS )

×,∨. The condition in Chapter 7, 5.2.2 there and also
the Beck–Chevalley condition is satisfied since, again, the corresponding properties
only need to be checked for maps in open, resp. proper, which are by definition
dormant. Thus the Beck–Chevalley condition reduces to an assertion similar to the
commutativity of (A.6), except that (−)� is replaced by (−)!, in other words, the
classical projection formula as recalled in (A.1).

Corollary A.8 Write Smft
S,sm∩sep for the category consisting of smooth separated finite-

type S-schemes and smooth separated morphisms. There is a natural isomorphism of
functors

Tw : DM∗|Smft
S,sm∩sep

⇒ DM!|Smft
S,sm∩sep

: (Smft
S,sm∩sep)op → DGCatcont,

whose evaluation at a map f : X → Y is the natural transformation

DM(Y )
−⊗ωY

f ∗

DM(Y )

f !

DM(X) −⊗ωX
DM(X)

stemming from the projection formula. Here, ωX := p!
X1 with pX : X → S the

structural map.
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Proof Any map X
f→ Y of schemes naturally gives rise to a pair (Y , X), where Y

is a comonoid and X is a Y -comodule (both with respect to the cartesian monoidal

structure) on Sch. The coaction is given by X
�X→ X × X

f ×id→ Y × X . Apply-
ing the symmetric lax monoidal functor DM∗

! to this object, we obtain an object in
LM(DGCatcont), namely the commutative algebra object DM(Y ), and the DM(Y )-
module DM(X), where the action arises as

DM(Y ) ⊗ DM(X)
�→ DM(Y × X)

( f ×id)∗→ DM(X × X)
�∗

X→ DM(X).

This can also be computed as the natural action of DM(Y ), via f ∗, on the symmetric
monoidal category DM(X) (equipped with its usual ⊗).

Themap f also gives rise to amap of comodule objects (Y , X) → (Y ,Y ). Applying
the functor DM∗

! to the map of induced left module objects, namely the pair

(id, f!) : (DM(Y ),DM(X)) → (DM(Y ),DM(Y )).

(Such an interpretation of the projection formula was observed by Khan [43]. Note,
however, that the approach to projection formulas laid out in op. cit. does not seem to
work as is, since the morphisms in Ch. 2, §4.1.6 there cannot be composed.) This map
admits a left adjoint separately for each object inLM, namely id and f !, respectively.
By [49, Cor. 7.3.2.7], the functor therefore admits a right adjoint relative to LM⊗,
still denoted f !.

This in particular expresses the existence of a naturalmap f ∗A⊗ f !B → f !(A⊗B)

that is functorial in A and B. It follows from the naturality of the construction that it
is also functorial in f . The sought-for transformation is defined as the restriction of
this map to B = ωY . By relative purity, this map is an isomorphism whenever f is
smooth. Moreover, for X and Y smooth, ωX and ωY are ⊗-invertible. ��
Lemma A.9 Consider the functor

DM! : (SchftS,sep)
×,∨ → DGCatcont

obtained from the composite (SchftS,sep)
×,∨ → Corr((SchftS )

×,∨)
proper
sep,all

DM∗!→ DGCatcont
by passing to right adjoints.

• This functor is symmetric lax monoidal if S = Spec k is a field.
• The restriction of this functor to (SchftS,sm∩sep)×,∨ is symmetric lax monoidal for
general S. Here the subscript sm∩sep refers to the (non-full, symmetric monoidal)
subcategory comprising all finite type S-schemes, but only smooth separatedmaps.

The fiber over 〈1〉 of (SchftS,sm∩sep)×,∨ identifies with (SchftS,sm∩sep)op, and we also

denote this symmetric lax monoidal functor by DM! : (SchftS,sm∩sep)op → DGCatcont.

Proof The functor DM! exists as stated, since the right adjoints happen to preserve
colimits aswell. (This is well-known and uses the assumptions that S is Noetherian and
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of finite Krull dimension.) To check it is a symmetric lax monoidal functor it remains
to check that for two maps f1, f2 in SchftS the natural map ( f1)!M1 � ( f2)!M2 →
( f1 × f2)!(M1 � M2) is an isomorphism. If S is a field, this holds by [40, Prop. 2.3.5]
(note this is nontrivial and uses alterations). For general S, but smooth maps fi , this
holds by relative purity and (A.1) for ∗-pullbacks. ��

A.2. Motives on placid prestacks

For a regular cardinal κ , recall from Definition 2.4 the category AffSchκ
S . It consists

of those affine schemes that can be presented as κ-small cofiltered limits

X = lim Xi , (A.10)

where the Xi are affine finite type S-schemes.

Definition A.11 ([28, App. C], [56, Def. 4.2.1]) An object in AffSchκ
S is called placid

if it admits a placid presentation, i.e., one such that the transition maps Xi → X j

in (A.10) are smooth (and necessarily affine). A map between two such placid affine
S-schemes is called placid if for any pair of placid presentations X = lim Xi , Y =
lim Y j , and any j , there is some i such that X → Y → Y j factors as X → Xi →
Y j , where the second map is smooth. (It follows from [56, Lemma 4.5.1] that this
condition only needs to be checked for any fixed presentations of X and Y .) The
non-full subcategory of AffSchκ

S consisting of placid affine schemes and placid maps

is denoted by AffSchκ,pl
S . (Equivalently, [56, Rem. 4.10.3], AffSchκ,pl

S can be defined
as the pro-category Proκ-small(AffSchftS,sm), the pro-completion of affine schemes of
finite type over S with smooth maps.)

We call the category PreStkplS := Fun(AffSchκ,pl
S ,∞−Gpd) the category of placid

prestacks. It is the free completion of AffSchκ,pl
S under arbitrary colimits.

The restriction of prestacks to AffSchκ,pl
S induces an adjunction PreStkplS �

PreStkS . A prestack is called placid if it lies in the essential image of the functor
PreStkplS → PreStkS .

Example A.12 The groups Pf (in particular the positive loop group L+G) are placid
affine S-schemes, provided that S itself is affine. So the preimage of any open affine
subscheme under the Pf -torsor LG≤w → Fl≤w (see Sect. 3.2) is placid affine.

Thus, for any pair of facets f, f ′, the double quotient of the Pf ′ × Pf -action (from
the right and the left) on LG≤w exists as a placid prestack Pf ′ \ LG≤w/Pf . More
generally, for any quasi-compact closed subscheme X ⊂ LG the prestack Pf ′ \ X/Pf
is placid.

Our goal is to have �-products for motives on placid prestacks. By means of the
following two results, this is a formal consequence of the symmetric lax monoidality
of DM! on AffSchftS,sm ⊂ SchftS,sm∩sep.

Lemma A.13 Let C be a small symmetric monoidal ∞-category and D be a cocom-
plete symmetric monoidal ∞-category whose tensor product preserves colimits
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separately in each variable. Fix a regular cardinal κ . Then the restriction functor
Fun(Indκ-small(C),D)⊗ → Fun(C,D)⊗ admits a symmetric monoidal left adjoint,
where the monoidal structure on the functor categories is given by Day convolution.

Thus, any symmetric lax monoidal functor F : C → D can be left Kan extended to
a symmetric lax monoidal functor on the ind-completion Indκ-small(C).

Proof This can be proven as in [53, Cor. 3.8]. The assumption in loc. cit. that D
is accessible is, for the particular situation considered here, not needed since the
invokation of the adjoint functor theorem in the proof of loc. cit. can be replaced by
the universal property of the ind-completion [48, Prop. 5.3.5.10]. The last statement
follows from the equivalence of symmetric lax monoidal functors and commutative
monoid objects in the functor category under the Day convolution [31, Prop. 2.12]. ��

In the next statement, PreStk(pl)
S is equipped with the cartesian symmetric monoidal

structure.

Corollary A.14 The functor DM∗ on (AffSchftS )
op admits a natural symmetric lax

monoidal extension to AffSchκ
S and to PreStkS. The same is true for DM! provided

that S = Spec k is a field. Finally, the functor DM! admits a symmetric lax monoidal
extension to AffSchκ,pl

S and to PreStkplS .

Proof First, apply Lemma A.13 to C = (AffSchftS )
op. Second, in order to extend DM∗

from AffSchS to a symmetric lax monoidal functor on PreStk×
S we use the argument

in [29, Chapter 9, Prop. 3.2.4], according to which it is enough to observe that for any
prestacks F1, . . . , Fn , the map

lim
X∈AffSchS ,X→∏

Fi
DM(X) → lim

Xi∈AffSchS ,Xi→Fi
DM

(
∏

Xi

)

is an equivalence for cofinality reasons. This shows the claim for DM∗.
The one for DM! (and placid prestacks, or arbitrary ones for S being a field) is done

the same way, using Lemma A.9 instead. ��
Corollary A.15 The restriction of DM! to (PreStkplS )op is symmetric lax monoidal. In
particular, for any two placid prestacks X1, X2, there is a natural functor

DM(X1) ⊗ DM(X2) → DM(X1 ×S X2).

Proof The restriction of DM! to PreStkplS is the unique colimit-preserving functor

extending the restriction ofDM! to (AffSchplS )op. This latter functor is the unique exten-
sion, preserving (κ-small) cofiltered limits, of the restriction ofDM! to (AffSchftS,sm)op.
We can conclude using Corollary A.14. ��
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