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The Omicron variant of SARS-CoV-2 (Spike mutant B.1.1.529) carrying more than 30-
point mutations in its structure, of which 15 are localized in the receptor-binding domain
(RBD), allows to hypothesize a relevant change in interactivity with ACE2. In previous
reports we hypothesized that the worse outcome of the COVID-19 disease in diabetes
mellitus condition could be related to the non-enzymatic glycation of ACE2 receptor and
an in silico evaluation led to the demonstration that the number of interactions is
decreased in comparison to the unmodified model, possibly shifting the virus attack
through different, multiple alternative entry routes. Given the evidenced features of this
variant, we aimed to investigate with a computational approach the characteristics of
Omicron SARS-CoV-2 with respect to its binding to human ACE-2 receptor, in a particular
population, namely people affected by diabetes mellitus, at risk for unfavorable outcomes
of the COVID-19. The computational analysis, considering the case in which all the lysine
residues in the system are subjected to non-enzymatic glycation, confirmed that lysine
glycation causes a general loss of interactivity between wild-type (WT)-Spike-RBD and
ACE2. In the Omicron variant, Lys417 mutates into an asparagine, preventing the possible
non-enzymatic glycation of this residue. Therefore, if non-enzymatic glycation seemed to
cause a shift in the way in which the virus enters the cell from the ACE2-mediated
mechanism to other pathways, in the case of the Omicron variant the ACE2-mediated
approach of the virus seems to remain an important event to take into account. Indeed,
interaction profile analysis, together with molecular mechanics–generalized Born surface
area (MM-GBSA) calculations, suggests that the Omicron-Spike-RBD maintains a higher
affinity for ACE2 subsequently to non-enzymatic glycation with respect to WT-Spike-RBD.
The finding of the present computational study may suggest a different clinical relevance of
the Omicron variant for the diabetes mellitus field, also in the possible direction of a lower
severity of the disease.
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INTRODUCTION

The unprecedented occurrence of a set of several genetic
mutations in the Omicron variant of the SARS-CoV-2 virus
has drawn particular attention within scientists and media.
Omicron-Spike mutant B.1.1.529 carries more than 30-point
mutations in its structure, of which 15 are localized in the
receptor-binding domain (RBD) (1). Significant changes have
occurred, also with respect to the Delta-Spike variant (Figure 1).
Moreover, 11 of these mutations are located at the contact
surface with ACE2, allowing us to hypothesize that Omicron-
Spike could have a relevant change in interactivity with ACE2.
Some of these mutations, such as Q498R and N501Y, have
already proven to lead to an increased affinity with ACE2 in
respect to WT-Spike (2).

The Technical Advisory Group on SARS-CoV-2 Virus
Evolution (TAG-VE) has advised WHO that the Omicron
variant should be designated as a variant of concern (VOC),
due to the epidemiological parameters initially reported in South
Africa, and now spreading around the world (3). This is the fifth
VOC to be reported since the beginning of the pandemic (4);
following the experience with the previously reported variants
associated with new worsening of the pandemic, a great concern
has arisen whether a relevant change in transmissibility and
binding affinity is to be expected with the new Omicron variant.
Moreover, most recent data suggest that mutations occurring at
RBD influence negatively the activities of neutralizing antibodies
induced by vaccines, or administered as monoclonal antibody
therapy (5). However, preliminary observations from South
Africa suggest that the SARS-CoV-2 Omicron variant is linked
to a reduced risk of severe disease when compared to the Delta
variant (6, 7).
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Since the first times of the pandemic, increased morbidity has
been evidenced in people affected by diabetes mellitus (8–11),
and the reason for this phenomenon is at present still debated. In
a previous report, we hypothesized that the worse outcome of the
COVID-19 disease in diabetes mellitus condition could be
related to the non-enzymatic glycation of ACE2 receptor, due
to hyperglycemic environment, triggering a higher interaction
with virus Spike protein (12). However, a specific in silico
evaluation of the interaction between ACE2 receptor and
SARS-CoV-2 Spike protein under different conditions of non-
enzymatic glycation has led to the demonstration that the
number of interactions is decreased in comparison to the
unmodified model (13), possibly shifting the virus attack
through different, multiple alternative entry routes. In
particular, the interaction of SARS-CoV-2 with human cells
has been suggested also be mediated by Transmembrane
Protease Serine-2 (TMPRSS2) activity (14, 15), as well as by
other receptor pathways, such as Neuropilin-1 (NRP1) (14, 16),
dipeptidyl peptidase 4 (DPP4) also known as cluster of
differentiation 26 (CD26) (14, 17), the transmembrane
glycoprotein CD147 (basigin 2) (14), and glucose-regulated
protein 78 (GRP78) (18). However, the role of these alternative
routes of virus entry in diabetes is still a matter of debate and
investigation (13).

In view of the evidenced features of this variant, we aimed to
investigate with a computational approach the characteristics of
Omicron SARS-CoV-2 with respect to its binding to human
ACE-2 receptor, in a particular population, namely people
affected by diabetes mellitus, at risk for unfavorable outcomes
of the COVID-19. The in silico analysis, after the recognition of
the main interactions occurring between virus and ACE2
receptor, was directed to the specific evaluation of the impact
FIGURE 1 | Schematic representation of the SARS-COV-2 Spike protein receptor-binding domain (RBD) surface for the wild type (WT), the Delta variant and the
Omicron variant. The residues involved in mutations are colored in red and are also labelled. The top panels represent a lateral view of the Spike-RBDs considered,
while the bottom panels highlight the protein surface facing the ACE2 interaction interface for each situation examined.
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to the affinity of the system, induced by a hyperglycemic
environment, conditioning non-enzymatic glycation at lysine
residues of both Omicron-Spike-RBD and ACE2 receptor.
MATERIALS AND METHODS

The computational analysis presented in this study was
conducted starting from two different experimental structures,
which were both downloaded from the Protein Data Bank (PDB)
(19). The first of these systems represents the wild-type (WT)
form of SARS-CoV-2 Spike RBD complexed with ACE2 receptor
(PDB code: 6M0J; method: X-ray diffraction; resolution: 2.45 Å)
(20), while the second involves the SARS-CoV-2 Spike-RDB
Omicron variant forming a complex with ACE2 (PDB code:
7T9L; method: cryo-electron microscopy (Cryo-EM); resolution:
2.66 Å) (21). The proteins were prepared for molecular modeling
with the “Structure Preparation” tool implemented in the
Molecular Operating Environment (MOE) suite (22). The
missing hydrogen atoms were added exploiting the MOE
“Protonate 3D” tool, which assigns to each residue the most
probable protonation state at the chosen pH, which in our case
was set at the value of 7.4. These hydrogen atoms were then
minimized using the AMBER10:EHT (23) force field
implemented in MOE. To create the glycated forms of both
WT-Spike-RBD/ACE2 and Omicron-Spike-RBD/ACE2 systems,
the lysine residues of the prepared complexes 6M0J and 7T9L
were manually changed. This operation involved the addition of
a cyclic amino sugar moiety, which results from the Maillard
reaction between the lysine amino acid and D-glucose, followed
by the Amadori rearrangement (24) (as depicted in
Supplementary Figure 1). This step allowed us to obtain the
four systems of interest for our study, considering various
conditions of non-enzymatic glycation (here labeled as
“glyco”). These complexes are WT-Spike-RBD with ACE2,
WT-Spike-RBD-glyco with ACE2-glyco, Omicron-Spike-RBD
with ACE2, and Omicron-Spike-RBD-glyco with ACE2-glyco.
Once the different systems were obtained, the glycated lysine
residues were energetically minimized under the AMBER10:EHT
(23) force field implemented in MOE. This passage was essential
in order to allow the newly introduced sugar groups to be
properly orientated in the environment.

After these preliminary steps, the interactions between Spike-
RBD and ACE2 were analyzed both visually and with the
“GetContacts” tool (25). This last program can extrapolate and
classify all the interactions between the biological entities of a
system. In our case, the specific contacts between Spike-RBD and
ACE2 were evaluated for all the cases.

To give a better view of the macroscopic changes brought by
the mutation and the glycation of the systems, the electrostatic
surface of both ACE2 and Spike-RBD were also calculated for all
the situations considered (as depicted in Figure 2).

To further inspect the effect of glycation on the interaction
between Spike-RBD and ACE2 receptor for both WT and
Omicron variants, molecular mechanics–generalized Born
surface area (MM-GBSA) calculations were executed in the
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complexes using the Schrödinger Prime application (26). This
method consists of the estimation of the binding free energy
between two entities in an environment, exploiting an implicit
solvation model. In our case, the Surface Generalized Born
Model and Variable Dielectric (VSGB) solvation model (27)
was used, and the force field in which the complexes were
evaluated was the OPLS4 force field (28) implemented in Prime.
RESULTS

A visual representation of the complexes created considering
various conditions of non-enzymatic glycation on the SARS-
CoV-2 Spike RBD/ACE2 receptor system is reported in
Supplementary Figures 2–5. A brief report of the number of
the interactions (expressed in terms of the number of pairs of
residues that are in contact between the two proteins) in each
system is reported in Table 1.

The interaction pattern occurring in the native WT-Spike-
RBD/ACE2 system (Supplementary Figure 2) is characterized
by polar bonds (comprising both salt bridges and hydrogen
bonds) as well as non-polar van der Waals interactions. TheWT-
Spike-RBD-glycated/ACE2-glycated system (Supplementary
Figure 3), mimicking the maximum level of glycation
attainable in a hyperglycemic condition in the case of native
SARS-CoV-2, is characterized by a reduction in the number of
interactions, mainly of a non-polar entity.

The effect of glycation on the new Omicron SARS-CoV-2
variant (compare Supplementary Figure 4 and Supplementary
Figure 5), produces a diminished number of bonds as well,
occurring in virus/receptor interaction. As depicted from the
results obtained, while for the WT-Spike-RBD/ACE2 situation
the reduction in the number of non-polar interactions due to
glycation is not linked to an overall change in the number of
polar contacts, for the Omicron variant, the small decrease in the
number of hydrogen bonds subsequent to the non-enzymatic
glycation of lysine amino acids seems to be compensated by an
increase in non-polar interactions.

Consequently, we can hypothesize that, if the decrement in
non-polar contacts between WT-Spike-RBD/ACE2 and WT-
Spike-RBD-glyco/ACE2-glyco systems is not balanced by a
significant strengthening of the polar component of the
interaction, for the Omicron variant, where the number of
polar bonds is higher with respect to the WT in both native
and glycated forms, the interaction between the two glycated
proteins could be more efficiently preserved. This is also
supported by the MM-GBSA calculation results, reported in
Table 2, which highlight the loss in interaction energy that
both the WT-Spike-RBD/ACE2 and the Omicron-Spike-RBD/
ACE2 complexes experienced after glycation. The data coming
from this analysis confirm that Omicron-Spike-RDB is able to
form with ACE2 a more stable complex in respect to the WT-
Spike-RBD (with a difference in the binding free energy of about
11 kcal/mol). Moreover, the binding free energies obtained
demonstrate that glycation causes a general loss in interactivity
towards ACE2 for both for WT-Spike-RBD and Omicron-
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TABLE 2 | Free energy of binding (expressed in kcal/mol) obtained with the MM-GBSA calculations executed on the different complexes considered in this study (WT-
Spike-RBD/ACE2, WT-Spike-RBD-glyco/ACE2-glyco, Omicron-Spike-RBD/ACE2, and Omicron-Spike-RBD-glyco/ACE2-glyco).

Interaction type WT-Spike-RBD
on ACE2

WT-Spike-RBD-glyco
on ACE2-glyco

Omicron-Spike-RBD
on ACE2

Omicron-Spike-RBD-glyco
on ACE2-glyco

MM-GBSA total free energy of binding (kcal/mol) -114.37 -89.29 -125.59 -111.83
Frontiers in Endocrinology | www.frontiersin.org
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MM-GBSA, molecular mechanics–generalized Born surface area; WT, wild type; RBD, receptor-binding domain.
FIGURE 2 | Comparison between the electrostatic contact surface between the WT-Spike-RBD-glyco/ACE2-glyco system (top and bottom left) and the Omicron-
Spike-RBD-glyco/ACE2-glyco complex (top and bottom right). The areas of highest variation in electrostatic distribution between glycated WT and Omicron Spike-
RBDs are circled in yellow and are then connected with the corresponding ACE2-glyco interacting surface portion. The Spike-RBD/ACE2 backbone conformation for
the WT variant comes from the crystal with PDB code 6M0J, while for the Omicron variant the data come from the Cryo-EM structure with PDB code 7T9L. WT,
wild type; RBD, receptor-binding domain; PDB, Protein Data Bank; Cryo-EM, cryo-electron microscopy.
TABLE 1 | Number of interactions (expressed in terms of the number of residues pairs that are in contact between the two proteins) extrapolated from the four systems
considered in the study presented (WT-Spike-RBD on ACE2, WT-Spike-RBD-glyco on ACE2-glyco, Omicron-Spike-RBD on ACE2, and Omicron-Spike-RBD-glyco on
ACE2-glyco).

Interaction type WT-Spike-RBD
on ACE2

WT-Spike-RBD-glyco
on ACE2-glyco

Omicron-Spike-RBD
on ACE2

Omicron-Spike-RBD-glyco
on ACE2-glyco

Salt bridge interactions 1 0 2 1
Hydrogen bonds 9 10 11 10
van der Waals interactions 30 21 32 37
WT, wild type; RBD, receptor-binding domain.
The“GetContacts” tool was exploited in order to calculate all the contacts between Spike and ACE2 in each of the scenarios considered.
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Spike-RBD, and that this drop is much more significant for the
WT variant.

To allow a more comprehensive view of the overall changes
caused by the Omicron mutation and the glycation of the
systems, the electrostatic surface of both ACE2 and Spike-RBD
were calculated for all the situations considered, and the
differences between the electrostatic distribution were
highlighted (Supplementary Figure 6 and Figure 2). As
illustrated by these pictures, it is interesting to notice the
linkage between the change in the surface features of the
proteins and the locations in which glycation takes place. To
represent this parallelism, the glycation sites were highlighted on
the Spike-RBD surface, and the results are reported in Figure 3.
As depicted, the only Spike-RBD lysine residue directly in
contact with ACE2 is Lys417 in the native form. Although in
the Omicron variant this lysine mutates into an arginine, Thr478
mutates into lysine (T478K), forming another glycation site on
the ACE2 interface.
DISCUSSION

The computational analysis allowed us to evaluate the changes in
the interaction pattern between Spike-RBD and ACE2 receptor
considering both mutation (focusing on the Omicron variant)
and the presence of a hyperglycemic environment. The modified
affinity between these two biological entities, which seems higher
Frontiers in Endocrinology | www.frontiersin.org 5
for Omicron-Spike-RBD to WT-Spike-RBD, has been reported
(21, 29, 30). In a hyperglycemic environment, typical of diabetes,
we considered the case in which all the lysine residues in the
system are subjected to non-enzymatic glycation. The behavior
of the proteins will so change with respect to the position of the
lysine amino acids. A recent work of our group highlighted the
possibility that diabetic patients in which this glycation process
takes place are less prone to be infected by SARS-CoV-2 in an
ACE2-dependent way (13). Indeed, our analysis here confirms
the result and suggests that lysine glycation causes a general loss
of interactivity between WT-Spike-RBD and ACE2.

One of the main WT-Spike-RBD residues involved in the
interaction with ACE2 is Lys417, which is the lysine amino acid
that is most exposed to the ACE2 interface when Spike-RBD
approaches the host cells. Indeed, glycation at this residue could
lead to a weakening of the contacts between the two entities,
mainly due to the loss of the strong salt bridge between the
positive-charged nitrogen of Spike-RBD Lys417 and the
negative-charged oxygen of ACE2 Asp30. Moreover, the
increased hindrance of the glycated moiety at the contact
interface can contribute to a general decrease of the interaction
strength between Spike-RBD and ACE2 residues at the interface.

In the Omicron variant, Lys417 mutates into an asparagine,
preventing the possible non-enzymatic glycation of this residue.
This variation, together with several mutations on Spike-RBD
that were linked to an increased affinity for ACE2 (such as
S477N, Q498R, and N501Y) (31), is predicted to contribute to an
FIGURE 3 | Schematic representation of the surfaces of the possible forms of Spike-RBD considered in this computational study. From the left, the systems
considered are: wild-type (WT) Spike-RBD, the lysine-glycated form of wild-type (WT) Spike-RBD, the Omicron variant Spike-RBD and the glycated form of Omicron
variant Spike-RBD. For the glycated systems, the surface of lysine amino acids has been colored in dark green and has also been labeled. The lysine which are
located on the contact interface with ACE2 (Lys417 for the WT-Spike-RBD-glyco and Lys478 for the Omicron-Spike-RBD-glyco) have their label underlined and
circled in red. The top figures represent a lateral view of the Spike-RBDs considered, while the bottom figures highlight the protein surface facing the ACE2
interaction interface for each situation examined. RBD, receptor-binding domain.
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increase in the interactivity between Omicron-Spike-RBD and
ACE2 in a hyperglycemic environment. This behavior is shown
by Supplementary Figures 2–5, in which the number of contacts
between Spike-RBD and ACE2 (derived from the calculation
executed with the “GetContacts” tool) is reported for the
different systems considered. Table 1 summarizes the overall
number of residues pairs in contact between each kind of Spike-
RBD/ACE2 molecular complex. First, as mentioned, both
interaction analysis and MM-GBSA calculations highlight the
higher affinity that Omicron exerts for ACE2 with respect to the
WT variant. The data coming from the MM-GBSA calculation
show that the reduction in the number of contacts between WT-
Spike-RBD and ACE2 subsequent to glycation causes an increase
in the binding free energy which is more significant than the one
experienced by Omicron-Spike-RBD. The glycation, as expected,
causes in both WT and Omicron variants a reduction in
interaction strength with ACE2 receptor, and this can be
attributed to different molecular reasons. For WT-Spike-RBD,
the glycation causes mainly a loss in non-polar interaction,
which could be also associated with a loss in the efficiency of
hydrogen-bonding, leading to an overall noticeable increase in
binding free energy. In the case of Omicron-Spike-RBD, where
the loss in the number of polar contacts is compensated by an
increase in non-polar interaction, and the number of non-polar
contacts not only does not decrease, but also increases, the loss in
binding free energy seems to be fully attributable to a drop in the
efficiency of hydrogen bonding. Indeed, the increased hindrance
created by the glycated residues present on the Omicron-Spike-
RBD-glyco/ACE2-glyco interface (e.g., ACE2 Lys353) could
destabilize the web of polar contacts that, even if the number is
retained, decrease in strength. In any case, the data coming both
from the analysis of the number of interactions and from MM-
GBSA calculations highlight higher stability of the Omicron-
Spike-RBD-glyco/ACE2-glyco complex over the WT-Spike-
RBD-glyco/ACE2-glyco system.

The results of our analysis allow us to hypothesize that the
affinity between the viral protein Spike and the human receptor
ACE2 is higher for the Omicron variant in respect to the WT
both in native conditions and also in the case of non-enzymatic
glycation, typical of the hyperglycemic environment.

The results of the computational analysis here conducted
allow us to hypothesize that, if non-enzymatic glycation seemed
to cause a shift in the way the virus enters the cell from the
ACE2-mediated mechanism to other pathways, in the case of the
Omicron variant the ACE2-mediated approach of the virus
seems to remain an important event to take into account.
Indeed, both our number and our MM-GBSA analysis suggest
that, even if a loss in interactivity is noticeable between the
Omicron-Spike-RBD/ACE2 and the Omicron-Spike-RBD-
glyco/ACE2-glyco, these systems are able to maintain a higher
affinity with each other in respect to, respectively, theWT-Spike-
RBD/ACE2 and WT-Spike-RBD-glyco/ACE2-glyco complexes.

The finding of the present computational study may suggest
several consequences of potential clinical relevance for the
diabetes mellitus field.
Frontiers in Endocrinology | www.frontiersin.org 6
Non-enzymatic glycation is a well-documented phenomenon
occurring in diabetes, and the fast kinetics of the event has been
proven. Atanasova et al. (32) demonstrated that non-enzymatic
glycation of protein amino groups (Maillard reaction) can occur at
high glucose concentrations very quickly, already after few minutes.
Therefore, a non-enzymatic glycation of ACE2 receptor in target
tissues exposed to virus entry is very likely a fast spreading-out
process, and the virus Spike protein can be glycated as well very
quickly when high glucose concentrations occur.

If on one side the glycation might prevent the ACE2-Spike
interaction in diabetes mellitus, as previously suggested (13), on
the other side the mutations of the Omicron-variant Spike
protein, leading to the loss of a lysine glycation site, may be
responsible for a relatively augmented binding affinity to ACE2
(compare with Figure 3). Therefore, the risk of a more
pronounced virus binding to ACE-2 receptor may occur in
patients with diabetes, possibly conditioning a higher
susceptibility to SARS-CoV-2 infection, as indicated in our first
hypothesis (12). Moreover, in patients with decompensated
diabetes, the greater affinity of Omicron Spike for ACE2 could
on the one hand enhance the contact with the virus and therefore
infection rate, but on the other hand, may reduce the possibility
of entry through alternative routes and thus modify the overall
course and severity of the disease. The new suggested roles of a
novel furin cleavage site, exploited by SARS-CoV-2 to become
fully active (33), could represent a possible escape mechanism
used by the virus to produce an infection that, in the case of
diabetes mellitus, may assume a pernicious evolution. The
possible occurrence of alternative ways of virus entry in people
affected by diabetes, as recently suggested (13), makes the new
Omicron virus mutation of peculiar interest, not only in the
general population, but also particularly in diabetes and pre-
diabetes areas. However, the present results seem to point
towards a lower severity of the disease with the Omicron
variant also for patients with diabetes mellitus, supporting very
recently published data (7), which show that diabetes did not
appear to be a co-morbidity factor influencing disease severity,
but only age. The severity of COVID-19 in diabetes remains a
clinical query, also because the overall course of the infectious
disease is influenced by a pre-existing reactivity, characterized by
an increased pro-inflammatory profile (34), also linked to an
excess of adipose tissue, which is associated with augmented
lymphocyte activation and cytokine production (35). Whether
this new variant may influence the real-world clinical evolution
of COVID-19 in people affected by diabetes mellitus is still a
matter of speculation. As suggested by the comment of Karim
and Karin (4), we await knowledge of how this new variant
will develop.
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