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Abstract 
In mountains, current land-use changes are altering plant communities of semi-natural grasslands with potential cascading 
effects on associated herbivores. Besides vegetation changes, temperature is also a key driver of insect diversity, and in the 
European Alps is predicted to increase by 0.25 °C per decade. Understanding herbivore responses to temperature and plant 
composition changes in mountain environments is of increasing importance. Our study aims at investigating the response 
to temperature and plant diversity and composition of two key herbivore groups (orthopterans and leafhoppers) belonging 
to contrasting feeding guilds (chewers vs. sap-feeders). We hypothesized that orthopteran diversity would be driven by tem-
perature while leafhoppers by plant community composition. We selected 15 dry calcareous grasslands ranging from 100 
to 1330 m a.s.l. along two independent gradients of plant diversity and temperature. We sampled orthopteran and leafhop-
per species richness and abundance by sweep-netting. Consistent with their low feeding specialisation, orthopteran species 
richness and community composition were only driven by temperature. By contrast, leafhopper species richness was not 
affected by temperature nor by plant diversity but leafhopper community composition was strongly influenced by plant species 
composition. This response can be explained by the higher host feeding specialisation of many leafhopper species. Species 
rarity and mobility did not change the response of the diversity of both groups, but orthopteran abundance increased with 
temperature only for highly mobile species. Altogether, our results suggest that future responses of grassland herbivores to 
vegetation changes and temperature warming are highly variable and depend on the feeding strategy and specialisation of 
the focal herbivore group.
Implications for insect conservation  Leafhoppers emerged to be particularly sensitive to potential management or climate-
induced change in vegetation composition, while orthopterans are expected to respond directly to temperature warming due 
to their relaxed association with plant community diversity and composition.
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Introduction

In the last decades, the loss and deterioration of species-
rich, semi-natural grasslands has been a major conservation 
problem throughout Europe (Hodgson et al. 2005; Poschlod 
and WallisDeVries 2002; van Dijk 1991). In the European 
Alps, traditionally managed grasslands host highly diverse 
communities of flora and fauna but are also increasingly 
under threat by global changes such as management inten-
sification, abandonment of low-intensity grazing, landscape 
simplification and climate change (Dirnböck et al. 2003; 
Hinojosa et al. 2016; Humbert et al. 2009; Monteiro et al. 
2011; Tasser and Tappeiner 2002; Tattoni et al. 2017). In 
mountains, many plant species respond to climate warming 
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by moving to higher elevations reshuffling local plant com-
munities (Lenoir et al. 2008). Both climate and local man-
agement changes often result in shifts in plant community 
composition and in the loss of plant diversity (Marini et al. 
2009a) with potential cascading effects on associated insect 
diversity (Van der Putten et al. 2010).

A large body of research reports a strong bottom-up effect 
of plant composition and diversity on herbivore communities 
(Deraison et al. 2015; Moreira et al. 2016). Highly diverse 
plant communities are often more productive than species-
poor communities and should provide a greater diversity 
of shelter and reproduction sites as well as food resources, 
thereby favouring a larger number of consumers (Moreira 
et al. 2016). Consequently, altering grassland vegetation and 
reducing plant richness can lead to the loss of arthropod 
consumers, such as grasshopper, butterfly and bee species 
(Kruess and Tscharntke 2002; Marini et al. 2007, 2009b). 
However, plant-herbivore diversity relationship does not 
follow a general pattern but also depends on herbivore spe-
cialisation and feeding guild (Joshi et al. 2008; LaRose et al. 
2020; Rodríguez-Castañeda et al. 2010). Low-mobile and 
specialised herbivores are more likely to be strongly affected 
by changes in plant composition, whereas the diversity of 
generalists should exhibit weaker responses because they 
are less limited to feed on specific host plants (Jactel and 
Brockerhoff 2007; Koricheva et al. 2000).

In montane ecosystems, besides vegetation diversity and 
composition, temperature is one of the main factors influ-
encing insect herbivore diversity (Bale et al. 2002; McCain 
and Grytnes 2010). Low temperatures may directly affect 
species distribution by limiting physiological processes or 
indirectly constrain population size via reduced plant pro-
ductivity (Bale et al. 2002). Hence, the rapid temperature 
changes over short geographical distances associated with 
elevational gradients are expected to influence arthropod 
species community and diversity (Körner 2007; Sundqvist 
et al. 2013). Herbivore species richness is generally expected 
to decline with elevation (Bale et al. 2002). However, due 
to the interdependence of moisture, temperature, exposition 
and altitude, the observed elevational patterns in species 
richness are complex and may vary among feeding guilds, 
taxonomic groups and regions (Bale et al. 2002; Hodkinson 
2005; Rodríguez-Castañeda et al. 2010). As in the European 
Alps, a 1.5 °C warming (0.25 °C per decade) is expected in 
the first half of the 21st century (Gobiet et al. 2014), under-
standing herbivore response to temperature is of increasing 
importance.

Besides the environmental pressures explained above, 
species traits are also expected to influence species’ sensi-
tivity to environmental changes such as climate and land-use 
change (Matenaar et al. 2015). First, mobility appears as a 
strong predictor of success or decline of insect populations 
(Kotiaho et al. 2005), as varying mobility might affect how 

the species respond to variations in habitat area and quality 
(Shen et al. 2009). In general, poor dispersers seem to be 
more prone to extinction and range contractions imposed by 
several human-induced pressures such as fragmentation or 
eutrophication (Marini et al. 2010; Reinhardt et al. 2005). 
Second, also rarity may influence species’ sensitivity as spe-
cies that have narrower range are expected to be lost more 
frequently as a result of land‐use change compared with spe-
cies with broader habitat affinities and range (Sykes et al. 
2020).

In this context, our study aims to investigate the response 
to temperature and plant diversity and composition of two 
key herbivore groups (Auchenorrhyncha, hereafter referred 
to as leafhoppers; and Orthoptera specialised in grassland 
environments, hereafter referred to as orthopterans) in dry 
calcareous grasslands. We selected them as model organ-
isms because they both play an important role in grassland 
ecosystems (Deraison et al. 2015) and due to their ecological 
differences. Leafhoppers are a very abundant and diversified 
group of sap-feeders showing different degrees of host plant 
specialisation from strictly monophagous to polyphagous 
species (Biedermann et al. 2005). In contrast, orthopteran 
species are generalist chewers able to feed on many plant 
species, and are a fundamental component of arthropod 
communities in grasslands (Alignan et al. 2018; Branson 
et al. 2006). In addition, in Europe, Orthoptera are often 
thermophilic and are expected to be particularly sensitive 
to temperature changes (Fontana 2002; Schmitz et al. 2016; 
Willott and Hassall 1998). Hence, they represent a good 
model group to study the effect of temperature. By selecting 
15 dry calcareous grasslands under the same extensive man-
agement, similar rainfall conditions and surrounding land-
use, but along two independent gradients of plant diversity 
and temperature we addressed the following questions: (1) 
Does herbivore diversity increase with temperature? (2) Do 
shifts in plant composition and diversity explain variation 
in herbivore communities? (3) Do the two taxa belonging 
to contrasting feeding guilds exhibit a common response 
to these drivers? (4) Do herbivore responses to the consid-
ered drivers change depending on their regional rarity and 
mobility?

Methods

Study area

The study was carried out during spring-summer 2019 in 
the Natisone Valleys (Julian Prealps), in the South-Eastern 
Alps in Friuli Venezia Giulia region (NE Italy). In this area, 
the landscape is dominated by mixed broadleaf forests and, 
in lower proportion, by semi-natural grasslands within tra-
ditional agricultural landscape. Semi-natural dry grasslands 
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in the study area are mowed once per year and host floris-
tic communities with a high richness of sub-endemic and 
alpine species at the limit of their distribution range (Poldini 
1995). Mean annual temperature at the lowest elevation in 
the study area is 12.46 °C (at 138 m a.s.l.) and 4.40 °C at 
the highest (1630 m a.s.l.), mean annual precipitation is ca. 
1500–2300 mm.

Sampling design

We selected 15 sites ranging between 100 and 1330 m a.s.l. 
(Table S1, Figure S1). As the upper altitudinal limit for 
semi-natural calcareous dry grasslands is set at approxi-
mately 1300 m a.s.l., the selected range corresponded to the 
elevational distribution of this habitat (Festuco-Brometalia, 
Natura 2000 priority habitat, code 6210). The 15 selected 
grasslands were cut once a year and received no fertilizer 
applications. The lack of a management gradient allowed 
us to isolate the effect of different plant diversity across 
sites that did not differ in their management. All selected 
sites were dominated by Brachypodium rupestre, Bromopsis 
erecta and Festuca spp and characterized by a wide diver-
sity of grasses and herbs. Along the elevational gradient, 
we placed data loggers at 1.5 m from the soil, to record air 
temperature every 30 min. Air temperature was recorded 
approximately over 12 weeks (from mid-June to August) 
along the altitudinal gradient. Mean temperatures over the 
whole duration of the experiment ranged from c. 25.2 °C 
at the lowest elevation (100 m a.s.l.) to 17.1 °C at the high-
est elevation (1330 m a.s.l.). The selection of the sites was 
performed to keep statistical independence between plant 
diversity and temperature. Temperature and elevation 
were strongly correlated (Pearson correlation r = − 0.95; 
p < 0.001), whereas temperature and plant species richness 
were not (Pearson correlation r = 0.27; p = 0.322) as well as 
elevation and plant species richness (Pearson correlation r 
= − 0.274; p = 0.323).

As both herbivore groups are expected to be affected by 
the composition of the surrounding landscape (forest cover, 
Marini et al. 2009a, b; Walcher et al. 2017; landscape con-
nectivity Rösch et al. 2013), we quantified the proportion 
of forest cover (dominant habitat in the study area) in a 
buffer of 500 m (diameter) around each sites. This variable 
was not related to both temperature (Pearson correlation 
r = 0.04; p = 0.889) and plant diversity (Pearson correlation 
r = − 0.40; p = 0.112). In preliminary analyses, we tested 
this variable and found no effect on both groups. Hence, we 
only present the effect of our local factors in the main text.

Plant surveys

In each site, we performed a floristic survey at the end of 
May, before the mowing. It consisted in the assessment of all 

vascular species and their cover present in a 12 m × 3 m plot. 
Plant species nomenclature followed Poldini et al. (2001). In 
the selected sites, overall 175 plant species occurred ranging 
from a minimum of 22 to a maximum of 53 species per site 
(Table S2).

Herbivore surveys

Around the plot used for the plant surveys, insects were 
sampled approximately every two weeks starting from 
mid-May until the end of August, for a total of six rounds 
of sampling, in order to collect species with different phe-
nology. We chose the sweep netting as sampling method, 
because it is widely adopted, quick and provides reliable 
estimates of relative abundance and species composition of 
both orthopteran and hemipteran communities in grasslands 
(Doxon et al. 2011; Gardiner et al. 2005). In each site, we 
sampled along two transects 25 m long, distant from each 
other about 6 m. We performed 25 sweeps per transect, for 
a total of 50 sweeps per site. Surveys took place during 
the warmer hours of the day (between 10:00 and 18:00) on 
sunny days that did not follow a day of rainfall, and were 
carried out always by the same person (GLB). We preserved 
collected specimens into 70 % ethanol and identified them at 
the species level in the laboratory. We followed Biedermann 
and Niedringhaus (2009); Della Giustina (2019); Vidano 
(1965); and Wagner (1951) for leafhoppers identification 
and nomenclature. Orthopterans were identified using Fon-
tana (2002), we identified and counted only adult specimens. 
Based on Fontana (2002), we included only orthopteran spe-
cies that are known to be specialized for grassland habitats. 
We excluded 10 Ensifera species for a total of 33 individu-
als. For each taxonomic group, the species richness referred 
to the pooled number of species. Following Matenaar et al. 
(2015), we assessed for each species two traits: mobility and 
regional rarity. These categories were chosen because likely 
associated with extinction risk for both herbivore groups 
(Marini et al. 2012; Öckinger et al. 2010; Rösch et al. 2013). 
Mobility was defined based on wing development, we classi-
fied both taxa in two categories: “macropterous” and “non-
macropterous”. For orthopterans, non-macropterous species 
consisted in apterous, squamipterous and brachypterous 
species, while for leafhoppers only in brachypterous ones. 
Rarity was calculated based on species occurrence in the 
study sites, following Matenaar et al. (2015), a species was 
considered “rare” when present in less than 3 sites, “inter-
mediate” in more than 2 and less than 5 sites, and “common” 
in more than 4 sites.
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Statistical analyses

Diversity patterns of orthopteran and leafhopper 
communities

All analyses were conducted with the Software R version 
3.6.1 (Core Team 2017). We used linear models to estimate 
the effects of temperature and plant species richness on 
orthopteran and leafhopper communities. For each taxon, 
models included as response variables the pooled number 
of species and abundance observed during the six sampling 
rounds. In addition, we used linear models to test if the two 
taxa responded differently to temperature and plant species 
richness depending on their mobility and rarity. First, for 
each taxon, we tested the effect of temperature and plant spe-
cies richness separately for rare, intermediate and common 
species, using the pooled number of species and then, their 
abundance as response variables. Second, for each taxon, for 
macropterous and non-macropterous species separately, we 
tested the effect of temperature and species richness on their 
pooled number of species and abundance. For all models, to 
improve the linearity and residuals distribution, all response 
variables were log-transformed. Normality of the residuals 
was visually evaluated with q-q plots using the “car” pack-
age (Fox et al. 2012). Although our response variables were 
counts, we did not present the results from generalized linear 
models (both Poisson and negative binomial distribution) 
due to the poor outcome of model diagnostics compared to 
linear models. For each model, we tested for spatial correla-
tion in the residuals using Moran’s I and we did not find any 
significant spatial autocorrelation.

Plant composition effects on orthopteran and leafhopper 
communities

To investigate the effects of temperature and plant commu-
nity composition on the composition of orthopteran and leaf-
hopper communities, we performed multiple regression on 
distance matrices (Lichstein 2007). First, based on presence/
absence matrices, we calculated for each taxon (i.e. plants, 
orthopterans, leafhoppers) a distance matrix using Jaccard 
dissimilarity index (Legendre 2014), with the “vegdist” 
function in the “vegan” package (Oksanen et al. 2019). Sec-
ond, we generated a temperature distance matrix using the 
“vegdist” function with Euclidean distance. Then, we per-
formed regressions on distance matrices using the “MRM” 
function in the “ecodist” package (Goslee and Urban 2007), 
and tested the effects of plant dissimilarity and tempera-
ture distance on leafhopper and orthopteran dissimilarity, 
separately. We also calculated Bray-Curtis dissimilarity 
matrices using the “vegdist” function based on leafhop-
per and orthopteran abundance and on plant cover but, as 

results were consistent with the one obtained using presence 
absence matrices, we do not present them in the text.

To visualize the relationship between temperature and 
single species of orthopterans and leafhoppers, we run a 
principal component analysis (PCA). We performed a PCA 
using the function “prcomp” on abundance matrices trans-
formed using logarithmic transformation as suggested by 
Anderson et al. (2006).

In preliminary analyses, using a Mantel test with the 
function “mantel” in the “vegan” package (Oksanen et al. 
2019), we tested whether dissimilarity in orthopteran or 
leafhopper composition varied with increasing geographi-
cal distance. For both groups, we found no effect of distance 
(for orthopterans r = − 0.253, p = 0.980, for leafhoppers 
r = 0.094, p = 0.226).

Results

Orthopteran communities

Overall, we found 31 species of orthopterans, ranging from 
4 to 12 species per site, and 940 individuals (918 individuals 
identified to the species level, Table S3). The most abun-
dant species was Micropodisma salamandra (43 % of total 
abundance) followed by Chorthippus parallelus (13 %). 
Results of the linear model revealed that temperature was the 
only driving factor of orthopteran species richness (Fig. 1; 
Table 1). We found a linear positive relationship between 
species richness and temperature. Orthopteran abundance 
did not respond to temperature nor to plant species richness 

Fig. 1   Effect of temperature on orthopteran species richness. Line 
indicates model predicted values, shading shows 95 % CI
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(Table 1). Responses of abundance and species richness to 
both considered drivers did not change based on orthop-
teran rarity (Table S5). Responses of species richness did not 
change based on orthopteran mobility but the abundance of 
macropterous species increased with temperature, while the 
abundance of non-macropterous species did not (Table S6). 
Multiple regression on distance matrices showed that tem-
perature distance affected orthopteran community dissimi-
larity, while plant community dissimilarity did not have any 
effect (Fig. 2a; Table 2). The PCA analysis extracted 33.23, 

19.27, and 11.22 % of the variance with the first three com-
ponents, respectively (Fig. 3a). Micropodisma salamadra 
most contributed to the first principal component, while 
Chorthippus parallelus to the second. Omocestus rufipes, 
Euchorthippus declivus and Glyptobothrus mollis were more 
closely associated with warmer temperatures. By contrast, 
Gomphocerippus rufus and Mecostethus parapleurus were 
related to colder temperatures.

Leafhopper communities

Overall, we found 82 species and 2468 individuals of leaf-
hoppers (2405 individuals identified at the species and at the 
genus level and the remaining at the family level, Table S4). 
Most common species were Jassargus obtusivalvis (19 %) 
and Philaenus spumarius (9 %). Neither leafhopper species 
richness nor abundance responded to temperature or plant 
species richness (Table 1). In addition, responses of species 
richness and abundance to both considered drivers did not 
change based on leafhopper mobility nor rarity (Tables S5 
and S6). Moreover, multiple regression on distance matri-
ces indicated strong differences in leafhopper community 
composition among sites with dissimilar composition of 
plant communities, while temperature distance had no effect 
(Fig. 2b; Table 2). Results from the PCA analysis show that 
22.85, 17.71, and 16.25 % of the variation is explained by 
the first three axes, respectively, for a cumulative total of 
56.81 % of variance explained (Fig. 3b). Jassargus flori most 
contributed to the first principal component while Adar-
rus multinotatus to the second. Dicranotropis hamata and 

Table 1   Results from linear models testing the effects of temperature 
and plant species richness on species richness and abundance of (a) 
orthopterans and (b) leafhoppers

Response variable Estimate SE t p

(a) Orthopterans
 Species richness
  Temperature 0.067 0.026 2.555 0.025
  Plant species richness 0.001 0.007 0.113 0.914

 Abundance
  Temperature 0.060 0.075 0.794 0.443
  Plant species richness 0.030 0.022 1.276 0.226

(b) Leafhoppers 
 Species richness
  Temperature 0.042 0.049 0.870 0.401
  Plant species richness − 0.009 0.015 − 0.638 0.536

 Abundance
  Temperature 0.139 0.084 1.644 0.126
  Plant species richness 0.008 0.025 0.302 0.768

Fig. 2   Effect of a temperature distance on orthopteran dissimilar-
ity and b plant community dissimilarity on leafhopper dissimilarity. 
Composition dissimilarity was calculated using Jaccard index (Leg-

endre 2014). Regression lines are estimated from multiple regression 
models on distance matrices, only significant results are shown
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Forcipata citrinella showed a closer association to warmer 
temperatures.

Discussion

In dry calcareous grasslands, we investigated the effects 
of temperature, plant species richness and composition 
on two key herbivore groups with different specialisation 
and belonging to contrasting feeding guilds. We found that 
orthopteran species richness as well as species composi-
tion were driven by temperature, while leafhopper richness 
was affected neither by temperature nor by plant diversity. 
However, leafhopper community composition was strongly 
influenced by plant composition. Species rarity and mobility 
did not change the response of the diversity of both groups, 
but orthopteran abundance increased with temperature only 

for highly mobile species. Altogether, our results show that 
herbivore responses to shift in plant composition and tem-
perature are highly variable and depend on the feeding spe-
cialisation of the focal herbivore group.

Orthopteran communities

Orthopteran species richness increased with increasing 
temperatures. Moreover, as sites became more dissimilar 
in terms of temperature (i.e. low vs. high elevation sites), 
orthopteran communities became also more dissimilar in 
terms of species composition. These results are consistent 
with other studies reporting detrimental effects of colder 
temperatures on orthopteran diversity along elevational 
gradients (Descombes et al. 2017; Kati et al. 2012). Most 
orthopteran species are thermophilic and low temperatures 
limit all their key physiological processes, thus determin-
ing a reduced performance and fitness (Schmitz et  al. 
2016; Willott and Hassall 1998). In particular, Omocestus 
rufipes, Euchorthippus declivus and Glyptobothrus mol-
lis were more closely associated with warmer tempera-
tures. The latter two species are xerophilous, typical of dry 
grasslands, while Omocestus rufipes is a more generalist 
termophilous species (Fontana 2002). By contrast, Gom-
phocerippus rufus and Mecostethus parapleurus that were 
related to colder temperatures, are usually found in colder 
and wetter environments. We cannot exclude that tem-
peratures were also associated with moisture, that plays 
a fundamental role in the embryonic development and 
hatching of orthopterans (Powell et al. 2007). Moreover, 
temperature affected orthopteran abundance differently 
depending on their mobility. We found that the abundance 
of mobile species increased with increasing temperature, 

Table 2   Results from multiple regression models on distance matri-
ces testing the effects of temperature distance and plant composition 
dissimilarity on composition dissimilarity of orthopterans and leaf-
hoppers

Distance matrices for plants, orthopterans and leafhoppers were cal-
culated using Jaccard dissimilarity index (Legendre 2014), while tem-
perature distance using Euclidean distance

Response variable Explanatory vari-
ables

R2 Estimate p

Orthopteran dis-
similarity

Temperature dis-
tance

0.159 0.025 0.006

Plant dissimilarity 0.080 0.721
Leafhopper dissimi-

larity
Temperature dis-

tance
0.261 0.008 0.112

Plant dissimilarity 0.462 0.001

Fig. 3   Results of the Principal Component Analysis (PCA) car-
ried out on the 15 sites a on orthopteran and b on leafhopper spe-
cies. Only the fifteen species with a large value of cos2 and therefore 
contributing the most to the construction of the axes are shown (Kas-

sambara and Mundt 2017). To enable a clearer visualization, species 
names are abbreviated showing only the first three letters of genus 
and species names. Full names are available in Tables S3 and S4
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while sedentary species’ abundance did not respond to 
temperature. Highly mobile species are expected to be 
less affected by barriers, because they are better at occu-
pying suitable habitats compared with sedentary species 
(Marini et al. 2012). This result supports other studies 
where mobility appears as a strong predictor of widespread 
success of insect populations (Kotiaho et al. 2005). Con-
trary to temperature, plant diversity and plant composition 
did not affect orthopteran species richness, abundance or 
community composition. Orthoptera are generally asso-
ciated with vegetation characteristics, such as vegetation 
structure and plant nutrient contents (Miao et al. 2018; 
Unsicker et al. 2010). In fact, vegetation structure deter-
mines the availability of microsites for oviposition, shelter 
to escape from natural enemies and food resources (Zhu 
et  al. 2017). However, as they are generalist chewers, 
orthopterans depend more on the amount of resources than 
on plant identity (Perner et al. 2005). Therefore, plant rich-
ness or composition seem to be weak predictors of orthop-
teran diversity, while other factors such as temperature but 
also vegetation structure, management intensity, vegetative 
litter amount and soil type might act as drivers of their 
distribution (Helbing et al. 2014; Kruess and Tscharntke 
2002; Löffler and Fartmann 2017; Marini et al. 2007; Miao 
et al. 2018; Nickel and Hildebrandt 2003a; Schirmel et al. 
2011; Torrusio et al. 2002; Walcher et al. 2017).

Leafhopper communities

We did not find any effect of temperature and plant spe-
cies richness on leafhopper communities. Leafhoppers 
responded only to plant community composition indicat-
ing a strong link between plant and leafhopper species 
identity. Most leafhoppers are specialist sap-feeders that 
show a strong dependency on their host plants (Nickel 
and Hildebrandt 2003b). Therefore, it is the plant spe-
cies identity that determines which leafhopper species 
can occur in a site (Perner et al. 2005; Taft and Dietrich 
2017). Leafhopper dependency on vegetation composi-
tion emerged also from other studies showing a positive 
relationship between host plant and leafhopper species 
richness (Koricheva et al. 2000; Rösch et al. 2013; Scher-
ber et al. 2010). Here, different plant communities also 
provided different microclimatic conditions and sites for 
shelter, oviposition or overwintering, hence favouring a 
more diverse number of consumers (Helbing et al. 2017). 
Altogether these results suggest that habitat quality and, 
in particular, plant species composition (i.e. the identity of 
plant species in a community) might play a more impor-
tant role than temperature in driving patterns of species 
composition of specialist herbivores such as leafhoppers 
(Chisté et al. 2018; Everwand et al. 2014; Helbing et al. 

2017; Koricheva et al. 2000; Poniatowski et al. 2018). 
In fact, except for some species as the thermophilous 
Dicranotropis hamata, leafhopper species showed a weak 
association with temperature. An alarming consequence 
of leafhopper reliance on vegetation composition is that 
any management practice such as fertilization, mowing 
or grazing, that modifies vegetation composition and, in 
particular, intensive practices, will have a strong negative 
effect on leafhopper communities (Biedermann et al. 2005; 
Helden et al. 2015; Kőrösi et al. 2012).

Conclusions

In dry calcareous grasslands, insect herbivores exhibiting 
different feeding specialisation showed contrasting responses 
to temperature and shifts in plant species composition. For 
the persistence of specialist sap-feeder insects, the relevance 
of habitat quality and, in particular, of plant community 
composition clearly emerged (Anthes et al. 2003; Bauerfeind 
et al. 2009; Biedermann et al. 2005; Löffler and Fartmann 
2017; Münsch et al. 2019; Samways and Lu 2007). Our 
results show that, even with no loss of plant diversity, shifts 
in plant composition strongly modified the assembly of leaf-
hopper species communities. This suggests the importance 
of studying variation in species composition besides the 
more common approach of only considering species rich-
ness. By contrast, orthopterans, that are generalist chewers, 
were not affected by plant composition but were limited by 
colder temperatures (Descombes et al. 2017; Schmitz et al. 
2016). Any management actions affecting plant composition 
should consider these differential responses driven by the 
feeding specialisation of the focal herbivore group (Veh-
viläinen et al. 2007). Moreover, in the context of climate 
change, we expect leafhoppers to be particularly sensitive 
to potential climate-induced shifts in vegetation composi-
tion, while orthopterans are expected to respond directly to 
temperature warming due to their relaxed association with 
plant community diversity and composition.
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