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Summary

This thesis exhibits a class of t-structures, the intermediate restrictable ones,
in the derived category of a commutative noetherian ring R, whose hearts are
derived and coderived equivalent to the category of R-modules. To this end,
tools to prove some equivalences on the derived level are developed and applied.
For the coderived side, results from the literature are extended to apply to these
hearts, and the derived equivalences are lifted.

Riassunto

La presente tesi esibisce una classe di t-strutture, ovvero le intermedie restringi-
bili, nella categoria derivata di un anello commutativo noetheriano, i cui cuori
sono derivato- e coderivato-equivalenti alla categoria degli R-moduli. A questo
scopo, vengono sviluppati e applicati degli strumenti per dimostrare alcune
equivalenze a livello derivato. Per il lato coderivato, vengono estesi dei risul-
tati presenti in letteratura per includere anche questi cuori, e si dimostra che le
equivalenze derivate trovate in precedenza inducono equivalenze coderivate.
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Introduction

The central topic of the present thesis are equivalences between some triangu-
lated categories. Given an abelian category A, such as the category Mod(R)

of (right) modules over a ring R, or the category Qcoh(X) of quasi-coherent
sheaves over a scheme X, one can often construct a handful of interesting tri-
angulated categories. There are the bounded and unbounded derived categories
Db(A) and D(A); there is also the bigger coderived category Dco(A). Inside the
derived categories of A, the category A itself can be recovered as the heart of the
standard t-structure. t-Structures are ways to decompose the objects of a trian-
gulated category into orthogonal parts, and each of them has a heart, which is
an abelian category. The standard t-structure has, by construction, the special
property that the derived category of its heart is the ambient category D(A).
The natural question arises, whether other t-structures in D(A) have this prop-
erty. Namely, given a t-structure T with heart H, we ask whether there is an
equivalence of triangulated categories D(H) ≃ D(A), which maps the standard
t-structure of D(H) onto T. Such a functor, if it exists, will be called a realisa-
tion functor for T (see §2.6); and we will say that T induces derived equivalence.
If this is the case, since, in the spirit of category theory, we may consider D(A)

up to equivalence, clearly T is as good a t-structure as the standard t-structure.
When finding that the t-structure T in D(A) induces derived equivalence,

new information can be obtained both on the heart H of T and on A. The
literature on derived invariants, i.e. properties shared by derived equivalent
categories H and A, is huge. In the thesis there are some instances of this
as well. For example, if A ≃ Mod(R), its special properties, such as having
a projective finitely presented generator, reflect onto D(A) (which in this case
is compactly generated), and therefore onto H. This direction is exploited in
Chapter 4. Conversely, the heart H may have some additional properties, which
shed new light on D(A). For an example of this, see Example 3.2.15.

The problem of determining whether a t-structure T induces derived equiva-
lence is far from trivial. The theory of classical tilting objects of D(A) deals with
the cases in which H is itself a category of modules; the more general theory
of (big) tilting objects, together with the dual cotilting objects, covers a more
general situation, in which H has enough projectives (respectively, injectives).

v
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The main approach we use to produce t-structures inducing derived equiva-
lences is to take a t-structure with this property and “deform” it into a new one.
The tool for this is the HRS-tilting procedure: given a t-structure T with heart
H, and a torsion pair t in H, one constructs a new t-structure T′, whose heart
H′ is a “deformation” of H along t (see §2.7). The main point is that to check
whether T′ still induces derived equivalence, a criterion on t exists: we further
investigate and specialise it, obtaining a straightforward result, of (relatively)
easy application:

Theorem (Theorem 2.9.7). Let A be an abelian category, and let T be a t-
structure in D(A) inducing derived equivalence. Assume that the heart H of T
is a Grothendieck category, with generator G. Let t be a hereditary torsion pair
in the heart H of T, and Tt the t-structure obtained by HRS-tilting with respect
to t. Then Tt induces a (bounded) derived equivalence if and only if the object
G/trfGG is torsion, where trfGG denotes the trace of the torsion-free part of G
in G.

Chapter 3 has the application of this criterion as its final goal. We restrict
our setting to A = Mod(R), for a commutative noetherian ring R. This choice
is motivated by the abundant literature describing many aspects of Mod(R) and
D(R) in this situation. Many classification results exist, for the objects of our
interest: namely, hereditary torsion pairs in Mod(R) and compactly generated
t-structures in D(R) (see §3.1). Our first step is to extend the classification of
the former from Mod(R) to the heart of a wide class of t-structures, in order to
gain some insight helping in the application of the criterion (§3.2). The result
is summarised by the following:

Proposition (Proposition 3.2.2). Let R be a commutative noetherian ring. Let
T be a non-degenerate smashing t-structure in D(R), with heart H. There is a
subset PH ⊆ 2Spec(R) for which there is a bijection

{Hereditary torsion pairs in H} ←→ PH

(T,F) ↦−→ supp(T)

(supp−1(V ),F)←− [ V.

This description gives a way to check whether a given object is torsion with
respect to a hereditary torsion pair in H: and therefore it is very useful for our
purposes. After some work, involving an iterated application of the criterion
above, we manage to prove the main result of Chapter 3:

Theorem (Theorem 3.3.15). Let R be a commutative noetherian ring, and T an
intermediate t-structure in D(R). If T restricts to a t-structure in Db(mod(R)),
then it induces a derived equivalence.
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This result adds new interest to the restrictability property of a t-structure,
and it is the starting point of Chapter 4.

The hearts of intermediate restrictable t-structures in D(R) are locally co-
herent Grothendieck categories, which is a first generalisation of the notion of
locally noetherian Grothendieck categories (such as Mod(R)). The fact that
they are derived equivalent to Mod(R) makes them even nicer: for example,
their derived category is in particular compactly generated. This allows us to
extend to this situation some results for locally noetherian categories, namely
the existence of a recollement with the coderived category Dco(H) := K(Inj(H))

in the middle (see §4.1). Another special property proved on the way is a char-
acterisation of the objects of Db(fp(H)) as the compact objects of Db(H), which
needs not to be true in general. At this point we have two recollements

Kac(Inj(R)) K(Inj(R)) D(R)

Kac(Inj(H)) K(Inj(H)) D(H).

Moreover, Chapter 3 gives us an equivalence between the rightmost categories.
It is therefore natural to ask whether this equivalence lifts to an equivalence
between the two recollements. The rest of Chapter 4 is devoted to the explicit
construction of a functor K(Inj(H))→ K(Inj(R)), and to the proof that it gives an
equivalence of recollements. As a side-effect, we obtain an equivalence between
the singularity categories S(H) := Kac(Inj(H)) of H and S(R) := Kac(Inj(R)) of
Mod(R).

Theorem (Theorem 4.3.10). Let R be a commutative noetherian ring and T an
intermediate restrictable t-structure in D(R), with heart H. Then there exists
an equivalence of recollements:

S(R) Dco(R) D(R)

S(H) Dco(H) D(H).

≃ ≃ ≃

All the background notions and results needed to formulate and prove these
theorems, together with related material, are collected in Chapter 1 (on abelian
categories) and Chapter 2 (on triangulated categories).
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Chapter 1

Abelian categories

1.1 Preliminaries on categories

Notation 1.1.1. In this Thesis, subcategories are always assumed to be full
and strict (i.e. closed under isomorphism).

Definition 1.1.2. A category C is small if its class of objects is a set, and
skeletally small if it is equivalent to a small category.

Definition 1.1.3. A non-empty small category I is filtered if

(f1) for every i, j ∈ I there are k ∈ I and morphisms i→ k, j → k;

(f2) for every i, j ∈ I and parallel morphisms i j there is k ∈ I and a

morphism j → k such that the two compositions i j k coincide.

Example 1.1.4. A partially ordered set, considered as a category, is filtered
when any pair of elements admits an upper bound.

Definition 1.1.5. Let C be a category. If I is a small category, one can form the
category CI of (small) diagrams of shape I in C, whose objects are functors
I → C and morphisms are natural transformations. A diagram of shape I is also
denoted by (Ci | i ∈ I), with Ci = F (i) and the morphisms being understood.

There is the constant diagram functor ∆I : C→ CI , which maps an object
C of C to the constant functor i ↦→ C, and sends a morphism f ∈ HomC(C,D)

to the natural transformation η : ∆I(C)⇒ ∆I(D) defined by ηi = f .
Given a diagram F ∈ CI , its colimit is a pair (C, η) of an object C of C

and a natural transformation η : F ⇒ ∆I(C), such that for every other such
pair (D, ζ) there is a unique morphism γ : C → D such that ζ = ∆I(γ) ◦ η. A
colimit (C, η) of F is denoted by colimF (more often, we will write colimF = C,
suppressing η).

1



2 CHAPTER 1. ABELIAN CATEGORIES

If I is filtered, a diagram F ∈ CI is called a direct system of objects of C,
and its colimit a filtered colimit ; we will instead use the term direct limit with
the same meaning, and denote it by the symbol lim−→F .

Definition 1.1.6. Dually, the limit in C of a diagram F ∈ CI is defined as the
colimit in Cop of the induced diagram F op : Iop → Cop of shape Iop, and it is
denoted by limF . If I is filtered, F is called an inverse system of objects of
C, and its limit is called a cofiltered limit ; we will instead use the term inverse
limit with the same meaning, and denote it by lim←−F .

Definition 1.1.7. Given an object C ∈ C, a direct system of subobjects of
C is a filtered diagram F ∈ CI which has a natural transformation ι : F → ∆I(C)

such that ηi : F (i) → C is a monomorphism for every i ∈ I. The direct limit
of F is also called the sum of the subobjects F (i) of C, and we will denote it
by

∑︁
F (i) := lim−→F . Even when it exists, is not a subobject of C, in general;

compare with Lemma 1.2.2.

Remark 1.1.8. From the definition, it is clear that the colimit and the limit of
a diagram, when they exist, are unique up to unique isomorphism. Therefore, if
all the diagrams of shape I in C admit colimit (respectively, limit), this gives a
functor colim: CI → C (respectively, lim: CI → C). It is easy to see that colim

(respectively, lim) is then the left (respectively, right) adjoint of the constant
diagram functor ∆I : C→ CI .

Example 1.1.9. (1) When I is a set viewed as discrete category (i.e., without
any non-identity morphism), a diagram of shape I in C is just a family of
objects of C indexed by I. Its colimit is their coproduct, its limit is their
product.

(2) Assume C is additive. Consider the graphs

⌜:=

⎧⎨⎩ • •

•

⎫⎬⎭ ⌟ :=

⎧⎨⎩ •

• •

⎫⎬⎭
viewed as categories. The colimit of a diagram of shape ⌜ is its pushout,
the limit of a diagram of shape ⌟ is its pullback. In particular, for a
morphism f : C → D in C, the kernel and cokernel of f are obtained as

ker f = lim

⎛⎝ 0

C D
f

⎞⎠ coker f = colim

⎛⎝ C D

0

f
⎞⎠

Definition 1.1.10. A category C such that all small diagrams, of any shape, ad-
mit colimit (respectively, limit) is called cocomplete (respectively, complete).
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1.2 Abelian categories

1.2.1 Notation

For the definition of abelian category, see for example Freyd’s book [19, § 2].
We denote by Gen S the full subcategory of epimorphic images of coproducts

of objects of S (when they exist). We say that the objects of S generate, or are
generators of, Gen S. Dually, Cogen S will be the full subcategory of subobjets
of existing products of objects of S.

Given subcategories B,C of A, we denote by B ∗ C the full subcategory of
objects X appearing in a short exact sequences

0→ B → X → C → 0

with B ∈ B and C ∈ C.

Yoneda extensions. [82, §3.4] Let A be an abelian category. For every ob-
jectsX,Y of A and integer n ≥ 1, consider the class EnA(X,Y ) of exact sequences
in A of the form

ε : 0→ Y → Z1 → · · · → Zn → X → 0

On EnA(X,Y ), consider the equivalence relation ∼ generated by pairs (ε, ε′)

connected by a morphism of sequences, i.e. for which there is a commutative
diagram

ε : 0 Y Z1 · · · Zn X 0

ε′ : 0 Y Z ′
1 · · · Z ′

n X 0

Namely, two sequences ε, ε′ are equivalent if and only if there is a zig-zag of
morphisms of sequences as above connecting them, ε→ ε1 ← · · · → εr ← ε′.

The class of Yoneda extensions from X to Y is defined as ExtnA(X,Y ) :=

EnA(X,Y )/ ∼. In general it is a proper class (see [19, Exercise A, p. 131]). It is
a set when A has enough injectives or enough projectives.

Notation 1.2.1. Given a family of objects S in A and a set I ⊆ N, we denote

S⊥I := {X ∈ A : ExtiA(S,X) = 0 for every i ∈ I}
⊥IS := {X ∈ A : ExtiA(X,S) = 0 for every i ∈ I},

where we adopt the convention that Ext0A := HomA. If S consists of a single
object S, we write S⊥I and ⊥IS. Instead of I we may write a list of natural
numbers or symbols like > 0, with the obvious meaning. If I = {0}, we simply
write S⊥,⊥S.
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1.2.2 ABn axioms

Let A be an abelian category. Grothendieck [24] introduced the following addi-
tional axioms:

(AB3) A has all coproducts (hence it is cocomplete by [46, dual of Theorem V.2.1]).

(AB4) A satisfies AB3 and coproducts are (left-)exact, i.e. the coproduct of a
family of monomorphisms is a monomorphism.

(AB5) A satisfies AB3 and given a filtered system of subobjects (Ai | i ∈ I) of
an object A, for every other subobject B of A we have(︂∑︂

Ai

)︂
∩B =

∑︂
(Ai ∩B).

This is equivalent to asking that A satisfies AB3 and (filtered) direct limits
are (left-)exact ([24, Proposition 1.8] and [75, Proposition V.1.1]).

There are also the dual axioms ABn∗. We will also encounter the following
relaxation of AB4 and AB4∗, for integers k ≥ 0, introduced by Roos [69]:

(AB4-k) (when A has enough projectives.) Let (Ai | i ∈ I) be a family of objects
of A, and for each consider a projective resolution

P •
i → Ai → 0: · · · → P−n

i → · · · → P−1
i → P 0

i → Ai → 0.

Then the sequence∐︂
P •
i : · · · →

∐︂
P−n
i → · · · →

∐︂
P−1
i →

∐︂
P 0
i → 0

is exact in degree −n for every n > k.

(AB4∗-k) (A has enough injectives.) Let (Ai | i ∈ I) be a family of objects of A,
and for each consider an injective resolution

0→ Ai → E•
i : 0→ Ai → E0

i → E1
0 → · · · → Eni → · · ·

Then the sequence∏︂
E•
i : 0→

∏︂
E0
i

∏︂
E1
i → · · · →

∏︂
Eni → · · ·

is exact in degree n for every n > k.

Lemma 1.2.2. Let A be an abelian category satisfying AB4.

(1) Let (Ai | i ∈ I) be a filtered system of subobjects of an object A. Then the
canonical morphism

∑︁
Ai → A is a monomorphism.

(2) Let Ai be family of objects. Then the canonical morphism
∐︁
Ai →

∏︁
Ai

is a monomorphism.
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Proof. (1) Denote ji : : Ai →
∑︁
Ai and φ :

∑︁
Ai → A the canonical morphisms.

Then kerφ = kerφ ∩
∑︁
Ai =

∑︁
(kerφ ∩Ai) =

∑︁
ker(φji) =

∑︁
0 = 0.

(2) For every finite subset J ⊆ I, consider the subcoproduct
∐︁
i∈J Ai ≃∏︁

i∈J Ai ⊆
∏︁
i∈I Ai. Then their sum is

∑︁
J⊆I

∐︁
i∈J Ai ≃

∐︁
i∈I Ai, and we can

apply (1).

Definition 1.2.3. An abelian category is Grothendieck if it satisfies AB5 and
it has a generator, i.e. an object G such that GenG = A.

Theorem 1.2.4. Let A be a Grothendieck category. Then in addition to the
axioms, it has the following properties:

(1) A is well-powered, i.e. the subobjects of a given object of A, up to iso-
morphism, form a set. Equivalently, the quotients of a given object of A,
up to isomorphism, form a set.

(2) A has enough injectives [24, Théorème 1.10.1]. In fact, it has injective
envelopes [75, Proposition V.2.5].

(3) A has an injective cogenerator.

(4) A is complete [75, Corollary X.4.4].

Proof. These are standard facts. (1) comes from the existence of a generator
[19, Proposition 3.35]1. (3) follows from (1) and (2) (taking the product of the
injective envelopes of the quotients of a generator).

Example 1.2.5. The standard example for us is the category Mod(R) of right
R-modules, for a ring R. Module categories are precisely the Grothendieck cat-
egories with a progenerator P , i.e. a small (in the sense that HomA(P,−) com-
mutes with coproducts) projective generator (see e.g. [19, Exercise F, p. 103]).

For an example of a Grothendieck category which is not a module category
(without going into algebraic geometry), consider the category T of torsion
abelian groups. It is a localising subcategory of Mod(Z) (see §1.3), and therefore
it is Grothendieck (Lemma 1.3.13). However, it does not have any projective
object. Indeed, by the Structure Theorem for abelian groups, its objects are
products of finite cyclic groups of the form Z/pnZ, for some prime p. If any
such product were projective in T, so would be its direct summands Z/pnZ; but
this is not the case, since there is an epimorphism Z/pn+1Z → Z/pnZ from an
indecomposable object.

For an example of an abelian category (with a small projective generator)
which is not Grothendieck (and therefore not a module category) consider the
category mod(R) of finitely presented R-modules, for a noetherian ring R (see
§1.2.3).

1Freyd notices on page 84 that the fact that a generator makes an abelian category well-
powered is “electrifying”.
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1.2.3 Local finiteness properties.

Definition 1.2.6. Let A be a Grothendieck category. An object X of A is
called finitely generated if for every direct system (Ai | i ∈ I) of subobjects
of an object A of A the canonical morphism∑︂

HomA(X,Ai)→ HomA

(︂
X,

∑︂
Ai

)︂
is an isomorphism. X is called finitely presented if for every direct system
(Ai | i ∈ I) of objects of A the canonical morphism

lim−→HomA(X,Ai)→ HomA(X, lim−→Ai)

is an isomorphism. Equivalently, if X if finitely generated and every epimor-
phism Y → X with Y finitely generated has finitely generated kernel [75, Propo-
sition V.3.4]. The full subcategory of finitely presented objects of A is denoted
by fp(A). An object X is called noetherian if every ascending chain of subob-
jects of X is stationary.

Lemma 1.2.7. For an object X of A,

noetherian ⇒ finitely presented ⇒ finitely generated.

Lemma 1.2.8. Let A be a Grothendieck category, and take a short exact se-
quence

0→ A→ B → C → 0.

(1) If B is finitely generated, C is finitely generated.

(2) If A is finitely generated and B is finitely presented, C is finitely presented.

(3) B is noetherian if and only if A and C are noetherian.

Definition 1.2.9. A Grothendieck category A is called locally finitely pre-
sented if fp(A) is skeletally small and lim−→ fp(A) = A, i.e. every object of A can
be written as the direct limit of a direct system of finitely presented objects.
A is called locally coherent if it is locally finitely presented and fp(A) is an
abelian subcategory of A. A is called locally noetherian if it is locally finitely
presented and it has a set of noetherian generators.

Lemma 1.2.10. A locally Grothendieck category A is finitely presented if and
only if it has a set of finitely presented generators.

Proof. (⇒) Let S be a set of representatives of the isomorphism classes of the
finitely presented objects of A. Then for every object X ∈ A, we write X =

lim−→Si for a direct system (Si | i ∈ I) with Si ∈ S; and we have the canonical
epimorphism

∐︁
Si → lim−→Si = X, which shows that S generates X.
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(⇐) This is classical for module categories. Let S be a set of finitely presented
generators; we first show that every object is the sum of its finitely generated
subobjects. For any X in A, and consider an epimorphism π :

∐︁
Si → X, with

Si ∈ S, i ∈ I. For every finite subset J ⊆ I, let XJ ⊆ X be the image of the
finitely presented subcoproduct

∐︁
i∈J Si. Then the XJ are finitely generated,

and
∑︁
XJ = X. Now we show that the finitely generated objects form a set,

up to isomorphism; and therefore in particular fp(A) is skeletally small. With
the notation above, if X is finitely generated, the identity 1X factors through
some XJ , i.e. X = XJ is a quotient of a finite coproduct

∐︁
i∈J Si. Since A is

well-powered, such quotients form a set, up to isomorphism. Lastly, to see that
lim−→ fp(A) = A, it is enough to show that every finitely generated object is the
direct limit of a direct system of finitely presented objects. Let X be finitely
generated, and consider an epimorphism π : S → X with S finitely presented.
Let K be the kernel of π, and write K =

∑︁
Ki, with Ki ⊆ K a direct system

of finitely generated subobjects. Then the objects S/Ki form a direct system
of finitely presented objects, whose direct limit is X.

Lemma 1.2.11. In a locally finitely presented Grothendieck category A, every
object is the sum of its finitely generated subobjects.

Proof. A direct limit lim−→Xi is the sum of the images of the morphisms Xi →
lim−→Xi. If the Xi are finitely presented, this images are finitely generated by
Lemma 1.2.8(1).

Example 1.2.12. When A = Mod(R) for a ring R, finitely generated and
finitely presented coincide with the usual notions. We denote mod(R) :=

fp(Mod(R)). Mod(R) is always locally finitely presented (by R). It is locally
coherent precisely when R is a coherent ring (i.e. finitely generated ideals are
finitely presented). It is locally noetherian precisely when R is noetherian.

Lemma 1.2.13. Let A be a locally finitely presented Grothendieck category.
Then

(1) A is locally coherent if and only if finitely generated subobjects of finitely
presented objects are finitely presented.

(2) if A is locally noetherian, every finitely generated object is noetherian.

(3) if A is locally noetherian then it is locally coherent.

Proof. (1) fp(A) is always closed under extensions and cokernels; this condition
is equivalent to closure under kernels, by the equivalent definition of finitely
presented objects. (2) Easy; see [75, §V.4]. (3) follows from (1) and (2).

Proposition 1.2.14 ([75, Proposition V.4.3]). Let A be a locally finitely pre-
sented Grothendieck category. Then A is locally noetherian if and only if any
coproduct of injective objects is again injective.
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1.3 Localisation of abelian categories

In this section we follow Popescu [63, §4]; see also Gabriel [20, §iii]. Let A be a
an abelian category.

Definition 1.3.1. A subcategory B of A is called Serre (dense in [63], épaisse
in [20]) if it is closed under extensions, subobjects and quotients .

Serre subcategories are the kernels of exact functors.

Proposition 1.3.2. Let B be a Serre subcategory of A. Then there exists an
abelian category A/B (called the Serre quotient) and an essentially surjective
exact functor T : A→ A/B (called the Serre localisation), such that:

(1) B = Ker(T );

(2) for every other abelian category C and functor F : A→ C, if B ⊆ Ker(F )

then F factors uniquely through T .

Proof. The construction of the Serre localisation functor T is explained in [63,
§4.3]. (1) is a consequence of [63, Lemma §4.3.4], applied to the identity
morphisms of objects. (2) is [63, Corollary §4.3.11], which builds on [63, §4.1].

Remark 1.3.3. The fact that the morphisms in A/B between two given objects
form a set is guaranteed by the proof only if A is well-powered. In this section
we will always implicitly assume this to happen, as it does in the cases we are
interested in (namely, when A is a Grothendieck category).

Remark 1.3.4. In particular, notice that, for a morphism f ∈ HomA(X,Y ),
Tf vanishes if and only if im f ∈ T ([63, Lemma §4.3.4]), and Tf is an monomor-
phism (respectively, epimorphism) if and only if ker f ∈ B (respectively, coker f ∈
B) ([63, Lemma §4.3.5]).

Definition 1.3.5. A subcategory B of A is called localising (respectively,
colocalising) if it is Serre and the Serre localisation functor A → A/B has a
right (respectively left) adjoint.

We will use the following Lemma about adjunction.

Lemma 1.3.6 ([46, Theorem §4.3.1]). Let (L,R) : A C be an adjunction
pair. Then R is fully faithful if and only if the counit LR ⇒ idC is a natural
isomorphism. Dually, L is fully faithful if and only if the unit 1A ⇒ RL is a
natural isomorphism.

Lemma 1.3.7 ([63, Proposition §4.4.3(1)]). Let B be a (co)localising subcat-
egory of A, and denote by T : A → A/B the Serre localisation functor and
by S : A/B → A its right (respectively, left) adjoint. Then idA/B ≃nat

TS. In
particular, T is essentially surjective and S is fully faithful.
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Lemma 1.3.8 ([63, Theorem §4.4.9]). Let F : A → A′ be an exact functor
between abelian categories, with a fully faithful adjoint (either left or right).
Then there is an equivalence A′ ≃ A/KerF , which identifies F with the Serre
quotient functor.

Definition 1.3.9. A subcategory B of A is called:

(1) reflective (respectively coreflective) if the inclusion B ⊆ A has a left
(respectively right) adjoint.

(2) bireflective if it is both reflective and coreflective.

If A is Grothendieck, B is called:

(3) Giraud if it is reflective and the left adjoint of the inclusion B ⊆ A

preserves kernels. In this case B is also a Grothendieck category [75,
Proposition X.1.3].

Remark 1.3.10. Some remarks are in order.

(1) In the notation of Lemma 1.3.7, if B is (co)localising, then the fully
faithful functor S identifies A/B with a (co)reflective subcategory C of
A (whose inclusion has ST as the adjoint). The inverse of the equivalence
S : A/B → C is the restriction of T to C. The objects of C are called
B-local (respectively, B-colocal).

(2) If A is Grothendieck and B is localising, C is a Giraud subcategory, because
T is exact, S : A/B → C is an equivalence and therefore the left adjoint
ST of the inclusion C ⊆ A is (left) exact.

(3) Assume B is localising, and let η : idA ⇒ ST be the unit of the adjunction
(T, S). Then Tη is the natural isomorphism T ⇒ TST given by the
natural isomorphism idA/B ≃ ST . In particular, ker ηA and coker ηA

belong to B for every A ∈ A.

Lemma 1.3.11. In the notation of Remark 1.3.10, we have C = B⊥0,1 .

Proof. (⊆) Let B ∈ B and C ∈ C, i.e. C = STX for some X ∈ A. We have
HomA(B,C) = HomA(B,STX) ≃ HomA/B(TB, TX) = 0, since TB = 0.

Now consider a short exact sequence

0→ C
f→ A→ B → 0

with A ∈ A. Since T is exact and TB = 0, then Tf is an isomorphism. Let
g ∈ HomA/B(TA, TC) be the inverse, and consider Sg ∈ HomC(STA, STC) ≃
HomC(STA,C). For the composition (Sg)f ∈ HomC(C,C), we have that
T ((Sg)f) = (TSg)Tf = gTf = idTC is an isomorphism, and therefore (Sg)f is
an isomorphism as well. This shows that f splits.



10 CHAPTER 1. ABELIAN CATEGORIES

(⊇) Let A ∈ B⊥0,1 : we shall show that ηA : A → STA is an isomorphism.
Since ker ηA ∈ B and A ∈ B⊥0 , we have that ker ηA = 0. Consider then the
short exact sequence

0→ A
ηA→ STA→ coker ηA → 0.

Since coker ηA ∈ B and A ∈ B⊥1 , this sequence splits, and therefore also
coker ηA = 0.

Lemma 1.3.12 ([63, Proposition §4.6.3]). Let A be an AB3 abelian category
with injective envelopes. A subcategory B ⊆ A is localising if and only if it is
Serre and closed under coproducts.

Lemma 1.3.13 ([63, Corollary §4.6.2]). Let A be a Grothendieck category, and
B a localising subcategory of A. Then B and A/B are Grothendieck.

Definition 1.3.14. A recollement of abelian categories is a diagram of func-
tors

B A Ci∗

i!

i∗

j∗

j∗

j!

where A,B,C are abelian categories and the six functors satisfy the following
conditions:

(aR1) there are adjoint triples (i∗, i∗, i
!) and (j!, j

∗, j∗);

(aR2) the functors i∗, j!, j∗ are fully faithful;

(aR3) Im(i∗) = Ker(j∗).

Remark 1.3.15. (1) By (aR2) we can (and will) identify B with the bire-
flective subcategory Im(i∗) of A.

(2) By Lemma 1.3.6, (aR2) is equivalent to asking that there are isomorphisms
j∗j! ≃

nat
idC ≃

nat
j∗j∗ and i!i∗ ≃

nat
idB ≃

nat
i∗i∗.

(3) By (2) and (aR1), j∗ is essentially surjective and exact; by (aR3) and
Lemma 1.3.8 it is (up to equivalence) the Serre localisation with respect
to B. Therefore, B is also localising and colocalising.

(4) It is clear then that to give a recollement is the same, up to equivalence,
as to give a bireflective, localising and colocalising subcategory B ⊆ A.

1.4 Torsion pairs

Let A be an abelian category. Dickson [16] introduced the following notion.
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Definition 1.4.1. A torsion pair in A is a pair of full subcategories t = (T,F)

such that

(t1) HomA(T,F) = 0.

(t2) T ∗ F = A.

T is called the torsion class, F the torsion-free class. Their objects are
called torsion and torsion-free, respectively. Given an object X of A, there
is a unique short exact sequence

0→ T → X → F → 0

with T ∈ T and F ∈ F, called the approximation sequence of X with
respect to t. T and F are called the torsion and the torsion-free parts of
X, respectively. The assignment X ↦→ T extends to a functor t : A→ T, which
is the right adjoint to the inclusion T ⊆ A. The composition t : A → T ⊆ A is
called the torsion radical associated to t. Similarly, the assignment X ↦→ F

extends to a functor f : A→ F, which is the left adjoint to the inclusion F ⊆ A.
The composition f : A→ T ⊆ A is called the torsion-free coradical associated
to t.

Lemma 1.4.2. Let (T,F) be a torsion pair in A. Then:

(1) T⊥ = F and T = ⊥F.

(2) T is closed under extensions, quotients, and existing coproducts. F is
closed under extensions, subobjects and existing products.

(3) T is closed under existing colimits, F is closed under existing limits.

(4) If A is complete, cocomplete and well-powered, torsion and torsion-free
classes are characterised by the closure properties of (2) [75, Propositions
VI.2.1, VI.2.2].

(5) If A satisfies AB4, F is closed under coproducts.

Proof. (1) is clear from the definition. (2) and (3) follow from (1). For (5), use
Lemma 1.2.2(2) and (2).

Remark 1.4.3. Let A be an AB4, well-powered abelian category with injective
envelopes (e.g. a Grothendieck category). Then hereditary torsion classes and
localising subcategories coincide in A, by Lemma 1.4.2(4) and Lemma 1.3.12.
In particular, if T is a hereditary torsion class, T⊥0,1 is a Giraud subcategory of
A, by Lemma 1.3.11.

Proposition 1.4.4 ([16, §3]). Let A be a complete, cocomplete and well-powered
abelian category, and let S be a class of objects in A. Then there are torsion
pairs
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(1) (⊥(S⊥), S⊥), called generated by S; its torsion class is the intersection of
all those containing S.

(2) (⊥S, (⊥S)⊥), called cogenerated by S; its torsion-free class is the intesec-
tion of all those containing S.

Proof. Use Lemma 1.4.2(4).

Remark 1.4.5. In the notation of the proposition above, let t = (T,F) be
the torsion pair generated by S. Then clearly Gen S ⊆ T; but this inclusion
is strict in general, as Gen S needs not to be closed under extensions. For ex-
ample, Gen(Z/2Z) inside Mod(Z/4Z) does not contain Z/4Z. Similarly for the
cogenerated case.

A torsion pair may satisfy some additional properties.

Definition 1.4.6. Let A be a Grothendieck category, and t = (T,F) a torsion
pair in A, with radical t. We call t:

(1) hereditary if T is closed under subobjects. Equivalently, if t is left exact,
or if F is closed under injective envelopes ([75, Propositions VI.3.1 and
VI.3.2]). Hereditary torsion classes coincide with the localising subcate-
gories of A by Lemma 1.3.12.

(2) of finite type if F is closed under direct limits. Since T is also closed
under direct limits, and these are exact, this is equivalent to t commuting
with direct limits.

If in addition A is locally coherent, we call t

(3) restrictable if t ∩ fp(A) := (T ∩ fp(A),F ∩ fp(A)) is a torsion pair in
fp(A). Equivalently, if the torsion part of a finitely presented object is
finitely presented.

Lemma 1.4.7. Let A be a Grothendieck category. A torsion pair t in A is
hereditary if and only if it is cogenerated by an injective object.

Proof. The proof is essentially the same as in [75, Proposition VI.3.7], (see also
[31, Theorem 1.1]), adapted from the case A = Mod(R). The implication (⇐)
is untouched. For (⇒), take, instead of the cyclic modules, the quotients of a
generatorG of A (which form a set, because A is well-powered). The cogenerator
is then the product of the injective envelopes of the torsion-free among those
quotients.

We notice the following facts about generating torsion pairs:

Lemma 1.4.8. Let A be a Grothendieck category, S ⊆ A a class of objects, and
t the torsion pair generated by S. Then:
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(1) If S ⊆ fp(A), t is of finite type.

(2) If S is closed under subobjects, then t is hereditary.

Proof. (1) Trivial. (2) Let S be closed under subobjects, and let S̄ be its closure
under quotients: we claim that S̄ is still closed under subobjects. Indeed, let
S ∈ S and π : S → X be an epimorphism, so that X ∈ S̄. Given a subobject
X ′ ⊆ X, we construct the pullback diagram

S′ X ′

S X.

π|S′

π

S′ is a subobject of S, and therefore S′ ∈ S. Since π is an epimorphism, this is
also a pushout diagram, and so π|S′ is also an epimorphism. Therefore X ′ ∈ S̄.

Now, it is easy to see that S and S̄ generate the same torsion pair. Indeed,
let T and T̄ be the smallest torsion classes containing S and S̄ respectively: since
S ⊆ S̄ then T ⊆ T̄; and since T is closed under quotients, S̄ ⊆ T, which shows
that T̄ ⊆ T. Now by [75, Proposition VI.3.3] the torsion pair generated by S̄ is
hereditary.

Lemma 1.4.9 ([36, Lemma 2.3]). Let A be a locally coherent Grothendieck
category, and let t = (T,F) be a hereditary torsion pair of finite type in A.
Then t is generated by T ∩ fp(A). Moreover, T = lim−→(T ∩ fp(A)).

Lemma 1.4.10 ([14, §4.4]). Let A be a locally coherent Grothendieck category,
and let t = (T,F) be a torsion pair in fp(A). Then the torsion pair in A

generated by T is lim−→ t := (lim−→T, lim−→F), and it is of finite type.

We collect the previous lemmas in the following result.

Proposition 1.4.11. Let A be a locally coherent Grothendieck category, and
t = (T,F) a torsion pair in A. Then:

(1) If t is generated by finitely presented objects, it is of finite type.

(2) If t is either hereditary or restrictable, the converse implication of (1)
holds.

Proof. (1) is Lemma 1.4.8(1). (2) for hereditary is Lemma 1.4.9; if t = (T,F) is
restrictable, apply Lemma 1.4.10 to t′ = (T′,F′) := (T ∩ fp(A),F ∩ fp(A)), and
notice that since t is of finite type, lim−→T′ ⊆ T and lim−→F′ ⊆ F. It is then easy
to see that t = lim−→ t′, which is generated by T′.

Proposition 1.4.12. Let A be a locally noetherian Grothendieck category.

(1) Every torsion pair in A is restrictable.
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(2) A torsion pair in A is of finite type if and only if it is generated by finitely
presented objects.

(3) Every hereditary torsion pair in A is of finite type.

Proof. Let t = (T,F) be a torsion pair in A.
(1) For every finitely presented (hence noetherian) object, its torsion and

torsion-free parts are again finitely presented. Therefore, t is restrictable. (2)
follows from (1) and Proposition 1.4.11. (3) Every object in A is the sum of
its finitely presented subobjects (Lemmas 1.2.11 and 1.2.13(3)). Therefore, if
t = (T,F) is hereditary, T is the smallest torsion class containing T ∩ fp(A), i.e.
this class of finitely presented objects generates t.

Corollary 1.4.13. Let A be a locally noetherian Grothendieck category. Then
there is a bijection between hereditary torsion pairs in A and in fp(A), given by
the assignments

t in A ↦→ t ∩ fp(A) in fp(A), t′ in fp(A) ↦→ lim−→ t′ in A

Proof. First, the assignments are well defined. Indeed, if t = (T,F) is a heredi-
tary torsion pair in A, it is restrictable by Proposition 1.4.12(1), and the torsion
class T ∩ fp(A) of the restriction is still closed under subobjects. For the con-
verse, if t′ = (T′,F′) is a hereditary torsion pair in fp(A), the torsion pair lim−→ t′

of A (see Lemma 1.4.10) is generated by T′, which is closed under subobjects,
and therefore it is hereditary by Lemma 1.4.8(2).

Now, if we start from t = (T,F) in A, by Proposition 1.4.12(2-3) it is gener-
ated by the class of its torsion finitely presented objects T∩ fp(A), and therefore
it coincides with lim−→(t ∩ fp(A)). Conversely, given t′ = (T′,F′) in fp(A), we
show that T′ = (lim−→T′)∩ fp(A). Indeed, X ∈ fp(A) belongs to lim−→T′ if and only
if 0 = HomA(X, lim−→F′) ≃ lim−→HomA(X,F

′), if and only if X ∈ T′.

Remark 1.4.14. We will show that Proposition 1.4.12(2) is also true when A is
the (locally finitely presented) heart of a compactly generated t-structure in the
derived category of a commutative noetherian ring; see Corollary 3.1.20. On the
other hand, those hearts will provide counterexamples to Proposition 1.4.12(3)
(see Remark 3.2.14).

Example 1.4.15. (1) In an abelian category A, there are always the trivial
torsion pairs (A, 0) and (0,A).

(2) In the locally noetherian Grothendieck category Mod(Z), there is the
canonical torsion pair (Tcan,Fcan) of torsion and torsion-free abelian groups
(a particular case of Proposition 3.1.9). It is restrictable (obviously),
hereditary, and therefore of finite type, generated by the finite cyclic
groups.
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(3) Again in Mod(Z), there is the divisible-reduced torsion pair (D,R), where
D consists of the groups G such that nG = G for every n ̸= 0, and R

consists of the groups G such that ∩n ̸=0nG = 0. It is not hereditary (as
R ∋ Z ⊆ Q ∈ D), and not of finite type (as D ∋ Q =

∑︁
n ̸=0

1
nZ ∈ lim−→R).

(4) In §3.2.2, we construct an example of a locally coherent Grothendieck
category Ht, in which there are

(a) a hereditary torsion pair which is not of finite type (Remark 3.2.14);

(b) a hereditary torsion pair of finite type which is not restrictable (in
Example 3.3.18, the torsion pair s is hereditary of finite type by
Corollary 3.2.7 but not restrictable by Corollary 3.3.3).

Lemma 1.4.16. Let A be a Grothendieck category, G a generator of A and
t = (T,F) a torsion pair, with torsion-free coradical f . Then F ⊆ Gen(fG).

Proof. Since coproducts in A are exact and both T and F are closed under
coproducts, it is easy to see that the coproduct of approximation sequences is
an approximation sequence. Therefore, f commutes with coproducts. Now, let
F ∈ F and I be a set, such that there is an epimorphism π : G(I) → F . Then π
factors through f(G(I)) = (fG)(I), showing that F ∈ Gen(fG).

We mention more in depth the relation with the last subsection.

Definition 1.4.17. Let A be Grothendieck category. A TTF-triple in A is a
triple of subcategories (C,T,F) such that (C,T) and (T,F) are torsion pairs.

Remark 1.4.18. If we have a recollement

B A Ci∗

i!

i∗

j∗

j∗

j!

then B is the middle class of a TTF-triple in A. For the converse implication,
under additional assumptions on A, see [66].

We conclude this section with the lattice of torsion pairs; see e.g [15, 79].
Let A be a Grothendieck category, and consider the class (which is not a

set in general, see [22, Theorem 4.1]) of torsion pairs, which we will denote by
torsA. It can be partially ordered by inclusion of the torsion classes, setting
(T,F) ≤ (T′,F′) if and only if T ⊆ T′. This partially ordered set is in fact a
complete lattice: every subset S ⊆ torsA has a greatest lower bound (its meet)
∧S and a smallest upper bound ∨S (its join). ∧S is defined as the torsion
pair having as torsion class the intersection ∩(T,F)∈ST, while ∨S is defined as
the torsion pair having as torsion-free class the intersection ∩(T,F)∈SF (in both
cases, using Lemma 1.4.2(4)).
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Lemma 1.4.19. There are two partially ordered subclasses:

(1) The partially ordered subclass torshA ⊆ torsA of hereditary torsion pairs
is a set, and it is a complete sublattice;

(2) The partially ordered subclass torsfA ⊆ torsA of torsion pairs of finite type
is closed under arbitrary meet.

Proof. (1) The fact that torshA is a set was notice already in [31, §1], when A =

Mod(R) for a ring R. In our situation, a hereditary torsion pair is determined
by the torsion-free objects among a set of injectives (see Lemma 1.4.7 and its
proof). For a torsion pair to be hereditary is a closure condition, either of
the torsion class (under subobjects) or of the torsion-free class (under injective
envelopes). It follows that the meet and the join of a set of hereditary torsion
pairs is again hereditary.

(2) Clear.

1.4.1 Torsion pairs in module categories

We now collect some facts about torsion pairs when A = Mod(R) is the category
of right R-modules, for a ring R. Fix a torsion pair t = (T,F) in Mod(R).

Definition 1.4.20. Consider the torsion approximation sequence for R,

0→ tR→ R→ fR→ 0.

The right ideal tR is called the torsion ideal of R. t is called faithful if tR = 0,
i.e. if R ∈ F.

We want to deduce some properties a right ideal of R must satisfy, in order
to be a torsion ideal. We start with a general and easy fact.

Lemma 1.4.21. Let A be an abelian category, X an object and

0→ tX → X → fX → 0

its approximation sequence with respect to a torsion pair in A. Then any endo-
morphism of X induces an endomorphism of tX by restriction.

Proof. Let g ∈ HomA(X,X), and consider the restriction g|tX : tX → X → X:

the composition tX
g|tX→ X → fX vanishes, being a morphism from a torsion to

a torsion-free; therefore g|tX must factor as tX ḡ→ tX → X.

This has a useful consequence, already noted by Jans [31], and a curious one.

Corollary 1.4.22. Let t be any torsion pair in Mod(R). Then

(1) The torsion ideal tR is two-sided.
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(2) If k is an R-algebra which is a division ring, it is either torsion or torsion-
free.

Proof. (1) tR is closed under endomorphisms of R, i.e. under left multiplication
by any element of R; therefore it is a left ideal as well. (2) Similarly, the torsion
part tk of k is closed under left multiplication by elements of k, and therefore it
is a left k-vector subspace of k. It follows that it is either 0 or the whole k.

By item (1), the reflection morphism R→ R/tR is a surjective ring epimor-
phism. The argument above can be modified slightly to prove:

Lemma 1.4.23. tR is the intersection of all the annihilators of the torsion-free
modules. In particular, F ⊆ Mod(R/tR) (compare Lemma 1.4.16).

Proof. For every torsion-free module F ∈ F and element f ∈ F , the morphism
f · − : tR → F vanishes, so tR is contained in the annihilator of every torsion-
free module. For the converse inclusion, notice that tR is the annihilator of
R/tR.

Torsion ideals are characterised by the following property:

Lemma 1.4.24. An ideal I is the torsion ideal with respect to a torsion pair if
and only if HomR(I,R/I) = 0, and with respect to a hereditary torsion pair if
and only if HomR(xR,R/I) = 0 for every x ∈ I.

Proof. If I is the torsion ideal with respect to some torsion pair, R/I is torsion-
free. Conversely, if HomR(I,R/I) = 0, I and R/I are respectively torsion
and torsion-free for the torsion pair generated by I. For the hereditary case,
one argues similarly, using the set {J ≤ I} and Lemma 1.4.8(2) to generate a
hereditary torsion pair.

We now focus on hereditary torsion pairs in Mod(R).

Notation 1.4.25. Given an ideal a ≤ R and an element a ∈ R, we denote

(a : a) := {r ∈ R : a · r ∈ a},

which is a right ideal. We will also consider various kinds of annihilators. For a
right R-module M and a subset S ⊆M , we write

annr(S) = {r ∈ R : mr = 0 for every m ∈ S}.

If S = {m} we write annr(m) := annr({m}). For every set S, annr(S) is a right
ideal of R. If moreover SR = S, for example if S is a submodule of M , then
annr(S) is also a two-sided ideal of R: in this case we write Annr(S) := annr(S).
Similary are defined the left ideal annl(T ) and the two-sided ideal Annl(T ) when
N is a left R-module and T ⊆ N .
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Notice also that when restricted to subsets of R, annl and annr give a Galois
connection: if S ⊆ T , we have ann∗(S) ⊇ ann∗(T ); and for every subset S we
have S ⊆ annr(annl(S)) and S ⊆ annl(annr(S)). In particular, for every S ⊆ R,
we have annr(S) = annr(annl(annr(S))).

Definition 1.4.26. A Gabriel filter on R is a collection F of right ideals such
that:

(GF1) If a ⊆ b and a ∈ F, then b ∈ F.

(GF2) If a, b ∈ F, then a ∩ b ∈ F.

(GF3) If a ∈ F and a ∈ R, then (a : a) ∈ F.

(GF4) If b ∈ F and (a : b) ∈ F for every b ∈ b, then a ∈ F.

Proposition 1.4.27 ([75, Theorem VI.5.1]). Let R be a ring. There is a bijec-
tion between hereditary torsion classes T in Mod(R) and Gabriel filters F on R,
given by the assignments:

T ↦→ F := {a ≤ R : R/a ∈ T}

F ↦→ T := {M ∈ Mod(R) : annr(m) ∈ F for every x ∈ X}

We can now give a further new characterisation of torsion ideals with respect
to a hereditary torsion pair, over noetherian rings.

Proposition 1.4.28. Let R be a (two-sided-)noetherian ring, and I ≤ R a right
ideal. Let t be a hereditary torsion pair, with Gabriel filter F. Then:

(1) If I is two-sided, then it is torsion if and only if Annr(I) ∈ F.

(2) I is the torsion ideal with respect to t if and only if I = Annl[Annr(I)]
2.

Proof. (1) (⇒) If I is torsion, by Proposition 1.4.27 annr(x) ∈ F for every
x ∈ I. Since R is left-noetherian, we can write I =

∑︁n
i=1Rxi for finitely many

generators xi ∈ I: it is then easy to see that Annr(I) = ∩ni=1annr(xi) ∈ F by
(GF2). (⇐) This is a more general fact: if Annr(I) ∈ F then for every x ∈ I
also Annr(I) ⊆ annr(x) ∈ F by (GF1), so I is torsion by Proposition 1.4.27.

(2) Now, assume that I is the torsion ideal for t (hence, two-sided by Corol-
lary 1.4.22(1)). Then Annr(I) ∈ F by (1), and therefore also [Annr(I)]

2 ∈ F

because F is closed under products of ideals [75, Lemma 5.3]. Therefore, we
also have [Annr(I)]

2 ⊆ AnnrAnnl[Annr(I)]
2 ∈ F by (GF1). We conclude that

Annl[Annr(I)]
2 is torsion, and therefore contained in I. The other inclusion is

trivial.
Conversely, assume that I = Annl[Annr(I)]

2, and consider and element x ∈ I
and a morphism f ∈ HomR(xR,R/I). Let r ∈ R be such that f(x) = r + I:
then 0 = f(x · annr(x)) = f(x) · annr(x) = r · annr(x) + I, i.e. r · annr(x) ⊆ I.
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In particular, since Annr(I) ⊆ annr(x), we have r · Annr(I) ⊆ I, and therefore
r · [Annr(I)]2 ⊆ I · Annr(I) = 0. This shows that r ∈ Annl[Annr(I)]

2 = I, and
therefore that f ≡ 0. Now use Lemma 1.4.24.

We recall the following definition.

Definition 1.4.29. Let R be a ring, and F a Gabriel filter on R. Denote by
t = (T,F) the corresponding hereditary torsion pair and by C := T⊥0,1 the
corresponding Giraud subcategory (see §1.3). F and t are called perfect if C is
coreflective (in addition to being reflective).

Remark 1.4.30. [75, Proposition XI.3.4] lists several conditions which are
equivalent to this definition (which appears as item (b)). To ease the parsing of
the notation, which is different from the one used here, we provide a dictionary.
The ring is A; denote by T : Mod(A)→ Mod(A)/T the Serre localisation functor,
and by S : T → Mod(A) its right adjoint, so that C = Im(S).

(1) AF is the target of the unit morphism A → AF of the adjunction (T, S);
it is shown that it is a ring. Moreover, C ≃ Mod(A)/T is naturally a full
subcategory of Mod(AF), via the functor j.

(2) Mod(A,F) := C.

(3) We have functors a := ST : Mod(A)→ Mod(A,F) and q = ja : Mod(A)→
Mod(AF).

Lemma 1.4.31 ([61, Lemma 4.10]). Let R be a ring and let t = (T,F) be a
perfect torsion pair in Mod(R). Then T⊥0,1 = T⊥≥0 .

Proof. Since t is hereditary, F = T⊥ is closed under injective envelopes, so
T⊥0,1 is as well. Recall that T⊥0,1 ≃ Mod(R)/T is abelian. Since t is perfect,
the inclusion functor T⊥0,1 ↪→ Mod(R) has a right adjoint: therefore, cokernels
taken in T⊥0,1 coincide with those in Mod(R). This shows that T⊥0,1 is closed
under cokernels in Mod(R). It follows that T⊥0,1 is closed under cosygyzies, and
one concludes by dimension shifting.
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Chapter 2

Triangulated categories

2.1 Triangulated categories

A modern introduction to triangulated categories can be found in Chapter 1 of
Neeman’s book [56].

Definition 2.1.1. Let D be an additive category, and Σ: D → D an autoe-
quivalence. A candidate triangle in D is a diagram

X Y Z ΣXu v w

such that the compositions vu,wv and (Σu)w vanish. A diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

a b c Σa

with candidate triangles as its rows is called a morphism of triangles between
its rows, and it is an isomorphism if a, b, c are.

Definition 2.1.2. A triangulated category is an additive category D to-
gether with an autoequivalence Σ: D → D (called the suspension functor,
with its inverse Σ−1 called the cosuspension functor) and a family of (distin-
guished) triangles, i.e. a family of candidate triangles satisfying the following
axioms:

(TR0) Candidate triangles isomorphic to distinguished triangles are distinguished.
The candidate triangles of the form

X X 0 ΣX
1X

are distinguished.

21
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(TR1) Every morphism X
u→ Y can be completed to a distinguished triangle

X Y Z ΣX.u v w

(TR2) A candidate triangle

X Y Z ΣXu v w

is distinguished if and only if the shifted candidate triangle

Y Z ΣX ΣY
−v −w −Σu

is distinguished.

(TR3) Every commutative diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

a b Σa

with distinguished triangles as rows can be completed to a morphism of
triangles

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′.

a b c Σa

(TR4) Given composable morphisms X u→ Y
v→ Z, there exists a commutative

diagram
X Y A ΣX

X Z B ΣX

0 C C 0

Σ ΣY ΣA Σ2X

u

v

vu

Σu

whose rows and columns are distinguished triangles.

A triangulated category D may satisfy the following additional axioms:

(TR5) the coproduct in D of every family of objects of D exists.

(TR5∗) the product in D of every family of objects of D exists.

Remark 2.1.3. In Axiom (TR1), the object Z will be called a cone of f .
Notice that it is not required to be unique. Similarly, in Axiom (TR3) the mor-
phism c is not required to be unique. Using the Four Lemma (see Lemma 2.1.5



2.1. TRIANGULATED CATEGORIES 23

below), it is an exercise to prove that cones of a morphism are indeed unique,
but only up to non unique isomorphism; in other words, the cone construction
is not functorial.

Axiom (TR4) is called the Octahedron Axiom, and the diagram it features,
an octahedron diagram, because of another way of writing it, which resembles
this solid. An equivalent axiom called (TR4’) was introduced by Neeman [52]
(see also [56, §1.3]).

Notation 2.1.4. Let D be a triangulated category. Given subcategories X,Z ⊆
D, we will denote by X ∗ Z the subcategory of objects Y for which there is a
triangle

X → Y → Z → ΣX

with X ∈ X and Z ∈ Z. Given a set of indices I ⊆ Z, we will write

X⊥I := {Y ∈ D : HomD(X,ΣiY ) = 0 for every i ∈ I}
⊥IX := {Y ∈ D : HomD(Y,ΣiX) = 0 for every i ∈ I}

with the same conventions as in Notation 1.4.25. This notation for the left
orthogonal is standard, chosen to be consistent with the one for Ext-orthogonals
(see §2.3).

Lemma 2.1.5 (Four Lemma [56, Proposition 1.1.20]). Consider a morphism
of distinguished triangles

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′.

α β γ Σα

If two of α, β and γ are isomorphisms, then so is the third.

Lemma 2.1.6 (Verdier’s 3 × 3 Lemma [8, Proposition 1.1.11]). For any com-
mutative diagram whose solid rows and columns are distinguished triangles

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

X ′′ Y ′′ □ ΣX ′′

ΣX ΣY ΣZ Σ2X

there is a choice of an object Z ′′ to fill in the blank entry and of dotted morphisms
so that the dotted row and column are distinguished triangles.
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Remark 2.1.7. If one starts with the commutative square in the top left corner,
while the cones X ′′, Y ′′, Z, Z ′ can be freely chosen, not every dotted morphism
given by (T3) can be used to fill the diagram (for a counterexample see [52,
Example 2.6]).

Lemma 2.1.8 ([56, dual of Proposition 1.2.1]). Let D be a triangulated category,
and (Xi → Yi → Zi → ΣXi | i ∈ I) be a family of distinguished triangles,
such that there exist the coproducts

∐︁
Xi,

∐︁
Yi,

∐︁
Zi in D. Then there is a

distinguished triangle∐︂
Xi →

∐︂
Yi →

∐︂
Zi → Σ

∐︂
Xi.

2.1.1 Compactly generated and well-generated triangu-
lated categories

Definition 2.1.9. Let D be a triangulated category. An object C in D is called
compact if for every family (Xi | i ∈ I) of objects whose coproduct in D exists,
the canonical homomorphism of abelian groups∐︂

HomD(C,Xi)→ HomD(C,
∐︂

Xi)

is an isomorphism. The subcategory of D consisting of compact objects is
denoted by Dc.

Lemma 2.1.10. Let D be a triangulated category. Then Dc is a thick subcat-
egory of D, i.e. a triangulated subcategory closed under direct summands.

Proof. Easy.

Definition 2.1.11. A TR5 triangulated category D is called compactly gen-
erated if Dc is skeletally small and the following equivalent conditions hold:

(1) D is its own smallest triangulated subcategory closed under coproducts
and containing Dc;

(2) (Dc)⊥ = 0.

Remark 2.1.12. It is rather easy to see that (1) ⇒ (2); for the converse
implication, see §2.5.1 (in particular Remark 2.5.20).

This classical notion is generalised by the following, introduced by Neeman
in [56] (see also [57]) and reworked by Krause in [38].

Definition 2.1.13. Let D be a triangulated category, and α a cardinal. An
object S of D is α-small if, for every family objects (Xi | i ∈ I) whose coproduct
in D exists, every morphism S →

∐︁
I Xi factors through a subcoproduct S →∐︁

J Xi ⊆
∐︁
I Xi, with J ⊆ I of cardinality < α.
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Remark 2.1.14. Compact objects are the ℵ0-small objects.

Definition 2.1.15 ([56, Definition 1.15] and [38, Theorem A]). A TR5 trian-
gulated category D is called well-generated if there exists a set S of objects
such that:

(1) there is a cardinal α for which the objects of S are α-small;

(2) S⊥ = 0;

(3) for every set of morphisms (fi : Xi → Yi | i ∈ I) and object S ∈ S, if the in-
duced morphisms HomD(S, fi) : HomD(S,Xi)→ HomD(S, Yi) are all sur-
jective, then the induced morphism HomD(S,

∐︁
fi) : HomD(S,

∐︁
Xi) →

HomD(S,
∐︁
Yi) is surjective.

Remark 2.1.16. In [56], the cardinal α is required to be regular. In [57,
Remark 5.4] it is noted that this can be assumed freely, up to substituting α

with its successor cardinal, which is automatically regular. This is also apparent
from the characterisation of [38], which we used as the definition above, since
α-small implies β-small for every β > α.

While many natural triangulated categories are at least well-generated, there
is the following source of counterexamples.

Proposition 2.1.17 ([56, Corollaries 1.18 and E.1.3]). Let D be a compactly
generated triangulated category. Then its opposite category Dop is TR5 but it
is not well-generated.

Remark 2.1.18. The proof of the referenced result [56, Corollary E.1.3] sim-
plifies when D is compactly generated (and not α-compactly generated, for
α > ℵ0). Indeed, in this case there is a theory of purity (see e.g. Krause’s [37]),
and there are pure-injective objects in D. Without going into definitions, which
we will not need, we record the following characterisation:

Proposition 2.1.19 ([37, Theorem 1.8]). An object X in D is pure-injective
if and only if for every set I the canonical morphism C(I) → C factors through
the canonical morphism C(I) → CI .

A consequence of this is that any pure-injective object in D is not α-small in
Dop, for any α: indeed, the morphism σα ∈ HomD(Cα, C) = HomDop(C,

∐︁
α C)

factoring C(α) → C does not factor through less than α components by construc-
tion. For an example of pure-injective objects, in the derived category of a ring
(§2.3) every bounded cosilting complex (see Definition 2.5.37) is pure-injective
([47, Proposition 3.10], which uses [76]).

Another counterexample is the following:

Proposition 2.1.20 ([56, Appendix E.3]). The homotopy category of abelian
groups K(Z) (see §2.3) is not well-generated, and neither is K(Z)op.
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2.1.2 Triangulated functors

Definition 2.1.21. Let (D,Σ), (D′,Σ′) be triangulated categories. A trian-
gulated functor is a pair (F, η) : D → D′ consisting of an additive functor F
and a natural transformation η : FΣ⇒ Σ′F , such that for every

X Y Z ΣXu v w

distinguished triangle of D there is a distinguished triangle of D′

FX FY FZ Σ′FX.Fu Fv ηX◦Fw

Lemma 2.1.22 ([56, Lemma 5.3.6]). Let (F, ω) : D → D′ be a triangulated
functor, and G : D′ → D a left (respectively, right) adjoint. Then (G, ζ) is
triangulated, with ζ given by the adjunction. In particular, the quasi-inverse of
a triangulated equivalence is triangulated.

We will often drop the natural transformation η from the notation, when it
is understood.

Lemma 2.1.23 (Double dévissage). Let F : D→ D′ be a triangulated functor,
and let S be a subcategory of D such that ΣS = S and F is fully faithful on S.
Then F is fully faithful on the smallest triangulated subcategory of D containing
S. If F preserves coproducts and both S and FS consist of compact objects, then
F is fully faithful on the smallest triangulated subcategory of D containing S and
closed under existing coproducts.

Proof. This is a standard argument. Let S̄ be the smallest triangulated sub-
category of D containing S. For every objects X,Y ∈ D, denote by FX,Y the
morphism HomD(X,Y ) → HomD′(FX,FY ) induced by F . Let Y be the sub-
category of D of objects Y such that FS,Y is an isomorphism for every S ∈ S.
Since ΣS = S, then ΣY = Y; and Y is closed under extensions by the Five
Lemma. Lastly, S ⊆ Y by hypothesis, and therefore S̄ ⊆ Y. Now, let X be the
subcategory of D of objects for which FX,Y is an isomorphism for every Y ∈ Y;
again, it is triangulated and S ⊆ X by construction. Therefore, S̄ ⊆ X ∩ Y,
i.e. F is fully faithful on S̄. Now assume moreover that F preserves coproducts
and S, FS consist of compact objects. In the notation above, Y is closed under
existing coproducts: if (Yi | i ∈ I) is a set of objects of Y whose coproduct exists
in D, for every S ∈ S we have

HomD(S,
∐︁
Yi) HomD′(FS,

∐︁
FYi)

∐︁
HomD(S, Yi)

∐︁
HomD′(FS, Yi).

FS,
∐︁

Yi

≃ ≃∐︁
FS,Yi

≃

On the other hand, X is automatically closed under existing coproducts, and we
conclude.
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Lemma 2.1.24. Let F : D → D′ be a triangulated functor. If F is full, then
its essential image is a triangulated subcategory of D′.

Proof. Let S denote the essential image of F , as a (full) subcategory of D′. Since
F commutes with the suspension functors, Σ′S = S, so we only need to show
closure under extensions. Take a distinguished triangle in D′

FX Y ′ FZ Σ′FXw′

with X,Z ∈ D. Since w′ ∈ HomD′(FZ,Σ′FX) ≃ HomD′(FZ,FΣX), by full-
ness of F we get w′ = Fw, for some w ∈ HomD(Z,ΣX). This in turns gives a
distinguished triangle in D

X Y Z ΣX.w

Applying F to it, we obtain a diagram with distinguished triangles of D′ as rows

FX FY FZ Σ′FX

FX Y ′ FZ Σ′FX

Fw

w′

and by (TR3) and the Four Lemma this shows that Y ′ ≃ FY ∈ S.

Example 2.1.25. Notice that in general the image of a triangulated functor is
not closed under extensions: for a counterexample, take any abelian category
A with a subcategory B which is an abelian category, such that the inclusion
B ⊆ A is exact but B is not an abelian subcategory of A (i.e. it is not closed
under extensions). A concrete choice is Mod(Z/2Z) ⊆ Mod(Z/4Z). Then this
inclusion extends to a triangulated inclusion D(B) ⊆ D(A), which is not full,
and whose image is not closed under extensions (otherwise B would be in A).

Also, not every triangulated functor whose image is a triangulated subcate-
gory is full: a counterexample is the localisation functor K(A) → D(A), which
is clearly essentially surjective but not full. This is expected: compare though
with Proposition 2.6.11(3).

2.2 Localisation of triangulated categories

We now present the triangulated version of §1.3. Our main reference is Neeman’s
[56, §2.1]; see also Krause’s [42]. Let D be a triangulated category.

Definition 2.2.1. A subcategory S of D is called thick (also saturé [80],
épaisse [54]) if it is triangulated and closed under direct summands.

Thick subcategories are the kernels of triangulated functors.
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Proposition 2.2.2. Let S be a thick subcategory of D. Then there exists a
triangulated category D/S (called the Verdier quotient) and an essentially
surjective triangulated functor Q : D→ D/S (called the Verdier localisation)
such that:

(1) S = Ker(Q);

(2) for every other triangulated category C and triangulated functor F : D →
C, if S ⊆ Ker(F ) then F factors uniquely through Q.

Proof. This result goes back to Verdier’s thesis [80, §II.2.2.10]; see [56, Theo-
rem 2.1.8].

Remark 2.2.3. The triangulated “category” D/S is not guaranteed to be locally
small, in general; i.e. the morphisms between two given objects may form a
proper class. For example, Freyd ([19, Exercise A, p. 131]) constructed an
abelian category whose derived category (see §2.3) exhibits this pathology. One
way to make sure this does not happen is by showing that the localisation
functor Q admits an adjoint, on either side (see Remark 2.2.9).

Definition 2.2.4. Let D be a TR5 (respectively, TR5∗) triangulated category.
A subcategory S of D is localising (respectively, colocalising), if it is closed
under coproducts (respectively, closed under products). A localising (respec-
tively, colocalising) subcategory S is smashing (respectively, cosmashing) if
also S⊥ (respectively, ⊥S) is localising (respectively, colocalising).

Definition 2.2.5. A subcategory S of D is called:

(1) reflective (respectively, coreflective) if the inclusion S ⊆ D has a left
(respectively, right) adjoint;

(2) bireflective if it is both reflective and coreflective.

Lemma 2.2.6. Let D be a TR5 (respectively TR5∗) triangulated category. A
coreflective (respectively, reflective) subcategory S of D is localising (respectively,
colocalising).

Proof. Easy: if S is coreflective, given a family of objects (Xi | i ∈ I) of S, the
coreflection of the coproduct

∐︁
Xi in D is the coproduct in S. But then the

inclusion S ⊆ D, being a left adjoint, preserves coproducts, and therefore
∐︁
Xi

is its own coreflection, i.e. it belongs to S. Similarly for the dual case.

Proposition 2.2.7 ([42, Proposition 4.9.1]). Let D be a triangulated category
and S thick subcategory of D. Then the following are equivalent:

(1) S is coreflective (respectively, reflective);
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(2) the Verdier localisation functor Q : D→ D/S admits a right (respectively,
left) adjoint, which is then fully faithful;

(3) S ∗ S⊥ (respectively ⊥S ∗ S) is the whole D.

Proof. We mention that the full faithfulness of the adjoint in (2) is proved in
[42, Proposition 3.2.3], which is used to construct the adjoint in the proof of the
referenced result.

Corollary 2.2.8. Let D be a triangulated category and S a thick subcategory
of D. If S is coreflective (respectively, reflective) then S⊥ (respectively, ⊥S) is
reflective (respectively coreflective).

Proof. Use item (3) of the proposition.

Remark 2.2.9. If Q : D → D/S admit a right (respectively, left) adjoint,
then D/S automatically has Hom-sets. Indeed, assume for example that Q
has a right adjoint F . Then for every Y = QX,Y ′ = QX ′ in D/S, we have
HomD/S(QX,QX

′) ≃ HomD(X,FQX ′), which is a set.

Remark 2.2.10. In the literature, coreflective thick (and therefore localising,
by Lemma 2.2.6) subcategories are sometimes called Bousfield localising ([42,
54]).

Remark 2.2.11. We spell out where the parallel with the abelian situation
breaks: the triangulated case is simpler. Let A be an abelian category with
B ⊆ A a Serre subcategory, and D a triangulated category with S a thick
subcategory. Implication (∗) holds if A is Grothendieck.

(B ⊆ A has a right adjoint)⇒ (B is
∐︂

-closed)
(∗)⇒ (A→ A/B has a right adjoint)

(D→ D/S has a right adjoint)⇔ (S ⊆ D has a right adjoint)⇒ (S is
∐︂

-closed).

As an analgous to implication (∗) in the triangulated setting, we have the
following result; compare with Proposition 2.5.22.

Proposition 2.2.12 ([42, Theorem 5.1.1(2)]). Let D be a TR5 triangulated cat-
egory, and S be a localising subcategory of D, which is compactly generated: i.e.
it is the smallest localising subcategory of D containing a given set of compact
objects. Then S is coreflective.

Proof. Apply the referenced result to the inclusion S ⊆ D, which is triangulated
because S is a triangulated subcategory, and preserves coproducts because S is
localising. If S is compactly generated, it is in particular perfectly generated.

Definition 2.2.13 ([39]). A (co)localising sequence is a diagram of functors

S D RF

Fρ

G

Gρ

(respectively S D RF

Fλ

G

Gλ

)
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such that

(1) there are adjunction pairs (F, Fρ), (G,Gρ) (respectively, (Fλ, F ), (Gλ, G));

(2) F and Gρ (respectively Gλ) are fully faithful;

(3) Im(F ) = Ker(G).

Remark 2.2.14. (1) Axiom (2) is equivalent to having natural isomorphisms
idS ≃

nat
FρF and GGρ ≃

nat
idR (respectively, FλF ≃

nat
idS and idR ≃

nat
GGλ).

Then G is triangulated, full and essentially surjective, and therefore it
is equivalent to the Verdier localisation of D with respect to Ker(G) =

Im(F ).

(2) In view of Proposition 2.2.7, to give a localising (respectively colocalising)
sequence is then the same as giving a coreflective (respectively, reflective)
thick subcategory S of D.

(3) Notice moreover that there is a duality between localising and colocalising
sequences:

S D RF

Fρ

G

Gρ

is localising⇔ R D SGρ

G

Fρ

F

is colocalising.

The notion of recollement for triangulated categories was introduced by
Bĕılinson, Bernstein and Deligne [8] (before the corresponding abelian notion).

Definition 2.2.15. A recollement of triangulated categories is a diagram of
functors

S D Ri∗

i!

i∗

j∗

j∗

j!

where S,D and R are triangulated categories and the six functors are triangu-
lated and satisfy the following conditions:

(tR1) there are adjoint triples (i∗, i∗, i
!) and (j!, j

∗, j∗);

(tR2) the functors i∗, j!, j∗ are fully faithful;

(tR3) Im(i∗) = Ker(j∗).

Remark 2.2.16. Notice that a recollement is just a localising and colocalising
sequence R→ D→ S.

Definition 2.2.17. Two recollements R D S and R′ D′ S′

are equivalent if there are triangulated equivalences F : D→ D′ and G : S→
S′ such that the diagram

D S

D′ S′

∼=F

j∗

∼=G

j∗
′
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is commutative (up to a natural equivalence). Clearly, if this is the case the
composition R ⊆ D

F→ D′ factors through a functor H : R → R′, which is a
triangulated equivalence; and all of the six possible squares corresponding to
the six different functors from the definition of recollement commute.

We will say more on recollements when we will have introduced t-structures:
see Definition 2.5.11.

2.3 Categories of complexes

We now recall some standard material on various categories of complexes; for
reference see e.g. Kashiwara and Schapira [33, §1.3-1.7] and Weibel [82, §1-2].

2.3.1 Category of cochain complexes

Let A be an abelian category. We will denote by C(A) the category of cochain
complexes over A and cochain maps

X• = (Xi, diX) = (· · · → Xi d
i
X→ Xi+1 → · · · ) f• = (f i : Xi → Y i) : X• → Y •

Xi ∈ A, fi ∈ HomA(Xi, Yi), which is abelian. As usual, C+(A) (respectively,
C−(A)) will denote the subcategory of complexes such that Xi = 0 for every i≪
0 (respectively, i≫ 0), which we will call (strictly) bounded below (respectively,
above); Cb(A) = C+(A)∩C−(A) is the category of (strictly) bounded complexes.
They are all abelian categories; if A is (co)complete, so is C(A), with (co)limits
computed componentwise. If E ⊆ A is an exact subcategory (i.e. closed under
extensions), we will denote by C∗(E), with ∗ ∈ {∅,+,−, b}, the subcategory of
C∗(A) of complexes with terms in E.

Example 2.3.1. (1) Let (Ai | i ∈ I) be a family of abelian categories, and
let A be their cartesian product, which is again an abelian category. Then
C(A) is the cartesian product of the C(Ai).

(2) Let A be an abelian category, and I a small category. Then AI , the
category of diagrams of shape I in A, is abelian, and C(AI) ≃ C(A)I .

Definition 2.3.2 ([82, 1.2.6]). Let A be a cocomplete abelian category. Con-
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sider the category C(C(A)) of bicomplexes and morphisms

X•
• =

...
...

· · · Xi
j Xi+1

j · · ·

· · · Xi
j−1 Xi+1

j−1 · · ·

...
...

δij

dij

δi+1
j

dij−1

f•• = (f ij : X
i
j → Y ij ) : X

•
• → Y •

•

Given a bicomplex X•
• , its (

∏︁
-)totalisation is the complex Tot(X•

• ) whose
terms are defined by Tot(X•

• )
n =

∏︁
i−j=nX

i
j and differentials are induced by the

morphisms dij + (−1)jδij . Similarly, its
∐︁

-totalisation is the complex Tot
∐︁
(X•

• )

defined using coproducts.

The shift functor−[1] is the autoequivalence of C(A) defined by (Xi, di)[1] =

(Xi+1,−di+1) on complexes and by (f i)[1] = (f i+1) on morphisms. We write
−[n] := −[1]n, for n ∈ Z. The cone of a morphism f : X → Y is the complex
cone(f) := Tot(f [1]). There are degree-wise split morphisms Y → cone(f) and
cone(f) → X[1]. For a complex X = (Xi, di), we denote its (complex) coho-
mologies as HiX = ker di/ im di−1. We will call X acyclic if HiX = 0 for every
i ∈ Z. A morphism f : X → Y induces morphisms Hif : HiX → HiY . We
will call f a quasi-isomorphism if Hif is an isomorphism for every i ∈ Z, or
equivalently if cone(f) is acyclic.

Lemma 2.3.3 ([33, Proposition 14.1.3]). If A is a Grothendieck category, then
C(A) is a Grothendieck category.

2.3.2 Homotopy categories

Given complexes X,Y and morphism f, g : X → Y , a homotopy s : f ⇒ g is a
(not necessarily commutative) diagram

· · · Xi−1 Xi Xi+1 · · ·

· · · Y i−1 Y i Y i+1 · · ·

si−1 si si+1 si+2

such that f − g = sdX +dY s. We write f ∼ g if there exists a homotopy f ⇒ g;
this defines an equivalence relation. A morphism f : X → Y is nullhomotopic
if f ∼ 0. A morphism f : X → Y is a homotopy equivalence if there exists
a morphism g : Y → X such that gf ∼ 1X and fg ∼ 1Y . A complex is con-
tractible if and only if its identity is nullhomotopic; more generally, a morphism
is nullhomotopic if and only if it factors through a contractible complex. A
morphism is a homotopy equivalence if and only if its cone is contractible.
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The homotopy category K(A) of A has the same objects as C(A), and
Hom-sets defined by HomK(A)(X,Y ) := HomC(A)(X,Y )/ ∼. Notice that given
an additive functor F : C(A) → C, for an additive category C, F induces a
functor F : K(A) → C as soon as F (f) = 0 for every nullhomotopic morphism
f , or equivalently, as soon as F (C) = 0 for every contractible complex C. In
particular, given an additive functor F : A → B between abelian categories, it
induces additive functors F : C(A)→ C(B) and F : K(A)→ K(B). Similarly, the
shift functor C(A) → C(A) induces a shift functor K(A) → K(A). K(A), with
this functor and the family of distinguished triangles isomorphic to triangles of
the form

X
f→ Y → cone(f)→ X[1]

is a triangulated category. Functors F : K(A)→ K(B) as above are triangulated.
If A is cocomplete and it has coproducts, since (co)products of contractible
complexes are again contractible, K(A) is TR5 (respectively, TR5∗). As usual,
K∗(A), with ∗ ∈ {b,+,−}, denotes the triangulated subcategory with the same
objects as C∗(A).

Definition 2.3.4. ForX,Y ∈ C(A), consider the double complex Hom•,•
A (X,Y )

...
...

· · · HomH(Xj , Y i) HomH(Xj , Y i+1) · · ·

· · · HomH(Xj−1, Y i) HomH(Xj−1, Y i+1) · · ·

...
...

Assume that A is complete; we write HomA(X,Y ) := Tot(Hom•,•
A (X,Y )) for

the totalisation of this bicomplex. It gives an additive bifunctor C(A)op ×
C(A)→ C(Z). Since it sends contractible complexes in contractible complexes,
it also induces a (triangulated) bifunctor K(A)op × K(A)→ K(Z).

Lemma 2.3.5 ([82, §2.7.5]). Let A be a complete abelian category. Then for
every complexes X,Y over A we have Hn(HomA(X,Y )) ≃ HomK(A)(X,Y [n]),
for every n ∈ Z.

2.3.3 Derived categories

The subcategory of K(A) consisting of acyclic complexes is denoted by Kac(A);
it is a thick subcategory. The derived category of A is the Verdier quotient
D(A) := K(A)/Kac(A). The Verdier localisation functor will be denoted by
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Q : K(A) → D(A). Recall that D(A) may not be a locally small category (see
Remark 2.2.3); recall also that to solve this problem it is enough to provide
an adjoint to the localisation functor (Remark 2.2.9). We give the following
definition, due to Spaltenstein [74].

Definition 2.3.6. Let A be an abelian category. A complex X over A is ho-
motopically injective (originally K-injective [74]) if for every acyclic complex
C the complex HomA(C,X) is acyclic; equivalently, if HomK(A)(C,X) = 0

for every acyclic complex C. Dually, X is homotopically projective (or K-
projective) if for every acyclic complex C the complex HomA(X,C) is acyclic;
equivalently, if HomK(A)(X,C) = 0 for every acyclic complex C.

Lemma 2.3.7. We list some properties of the subcategories Kac(A)⊥ of homo-
topically injectives and ⊥Kac(A) of homotopically projectives:

(1) K+(Inj(A)) ⊆ Kac(A)⊥ ⊆ K(Inj(A)); K−(Proj(A)) ⊆ ⊥Kac(A) ⊆ K(Proj(A));

(2) they are triangulated subcategory;

(3) Kac(A)⊥ it is closed under existing products, ⊥Kac(A) is closed under ex-
isting coproducts.

Given a complexX, a homotopically injective resolution ofX is a quasi-
isomorphism X → I, with I homotopically injective. If every complex admits a
homotopically injective resolution, we say that K(A) has enough homotopi-
cally injective objects. Dually, a homotopically projective resolution of
X is a quasi-isomorphism P → X, with P homotopically projective. If every
complex admits a homotopically projective resolution, we say that K(A) has
enough homotopically projective objects.

Proposition 2.3.8. Let A be an abelian category. Then K(A) has enough
homotopically injective objects as soon as one of the following holds:

(1) A is Grothendieck [33, Corollary 14.1.8].

(2) A is AB4∗ and it has enough injectives [9, Application 2.4’],[40, Lemma §5.1].

We are interested in homotopically injective and projective resolutions for
the following reason.

Lemma 2.3.9. Let A be an abelian category. Then the following are equivalent:

(1) K(A) has enough homotopically injective (respectively, projective) objects;

(2) the Verdier localisation functor Q : K(A) → D(A) admits a right (respec-
tively, left) adjoint.
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If this is the case, given a complex X, the right (respectively, left) adjoint of
Q applied to QX coincides with a (fixed) homotopically injective (respectively,
projective) resolution of X.

Proof. Since a morphism in C(A) is a quasi-isomorphism if and only if its
(co)cone is acyclic, the existence of homotopically injective (respectively, pro-
jective) resolutions of every object of K(A) can be restated by saying that
Kac(A) ∗ Kac(A)⊥ = K(A) (respectively, ⊥Kac(A) ∗ Kac(A) = K(A)). Now apply
Proposition 2.2.7 (respectively, its dual).

As we said, if A is (co)complete, then K(A) is TR5 (respectively TR5∗). This
is not necessarily the case for D(A). Nonetheless, as soon as Q : K(A) → D(A)

admits a (say, right) adjoint, then D(A) ≃ Kac(A)⊥; and this subcategory, being
reflective, is closed under products in K(A), and it has coproducts, computed
by reflecting those of K(A). This means that products and coproducts in D(A)

exist, and they are computed by taking the componentwise products and co-
products of homotopically injective resolutions. This computation simplifies
under additional hypotheses.

Lemma 2.3.10. Let A be a AB4 (respectively, AB4∗) abelian category. Then
D(A) is TR5 (respectively, TR5∗), and (co)products in D(A) are computed com-
ponentwise.

Proof. This is essentially [56, Corollary 3.2.11], once we notice that if (co)pro-
ducts in A are exact, then Kac(A) is closed under (co)products in K(A).

We denote by D∗(A), for ∗ ∈ {b,+,−}, the essential image under Q of the
subcategory K∗(A). They are triangulated subcategories of D(A).

There is the following relation between certain morphisms in D(A) and
Yoneda extensions in A.

Proposition 2.3.11. For every X,Y ∈ A and n ≥ 0, there is a binatural
isomorphism

θ : ExtnA(X,Y ) ≃
nat

HomD(A)(X,Y [n])

where X,Y are identified with complexes concentrated in degree 0.

2.3.4 Derived functors

Let F : A → B an additive functor between abelian categories. We have seen
that it induces an additive functor F : C(A)→ C(A) and a triangulated functor
F : K(A) → K(A), computed componentwise. If we assume F to be exact,
then it sends acyclic complexes to acyclic complexes, and therefore it induces a
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triangulated functor F : D(A) → D(B), again computed componentwise. This
functor fits in a commutative diagram

K(A) K(B)

D(A) D(B)

Q

F

Q

F

If F : A → B is not exact, then such a functor F : D(A) → D(B) cannot be
constructed. It is possible, though, to try to “approximate” it, from the left and
from the right.

Definition 2.3.12. Let F : A → B be an additive functor between abelian
categories.

(1) A left derived functor of F is a triangulated functor LF : D(A) →
D(B) with a natural transformation η : LFQ ⇒ QF , such that for every
other triangulated functor G : D(A) → D(B) and natural transformation
ψ : GQ ⇒ QF there exists a unique natural transformation γ : G ⇒ LF
such that ψ = ηγQ.

(2) A right derived functor of F is a triangulated functor RF : D(A) →
D(B) with a natural transformation ε : QF ⇒ RFQ, such that for every
other triangulated functor G : D(A) → D(B) and natural transformation
ψ : QF ⇒ GQ there exists a unique natural transformation γ : RF ⇒ G

such that ψ = γQε.

Remark 2.3.13. If F is exact, then the induced functor F : D(A) → D(B) is
both a left and a right derived functor of F .

Derived functors can be constructed using adjoints of Q : K(A) → D(A), if
they exist.

Proposition 2.3.14. Let F : A→ B be an additive functor.

(1) Assume that Q : K(A)→ D(A) has a left adjoint p : D(A)→ K(A). Then
the composition QFp : D(A) → K(A) → K(B) → D(B) is a left derived
functor of F . The natural transformation (QFp)Q⇒ QF is QFη, where
η : pQ⇒ idK(A) is the counit of the adjunction.

(2) Assume that Q : K(A)→ D(A) has a right adjoint i : D(A)→ K(A). Then
the composition QFi : D(A) → K(A) → K(B) → D(B) is a right derived
functor of F . The natural transformation QF ⇒ (QFi)Q is QFε, where
ε : idK(A) ⇒ iQ is the unit of the adjunction.

Proof. We prove (1); (2) is dual. Given G : D(A)→ D(B) with a natural trans-
formation ψ : GQ ⇒ QF , we need to construct uniquely the natural trans-
formation γ : G ⇒ QFp. Notice that Qp ≃

nat
idD(A): γ is then defined as

ψp : G ≃
nat

GQp⇒ QFp.
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Left derived functors are usually constructed for right (respectively, left)
exact functors F : A→ B. This is because of the following relation.

Proposition 2.3.15. Let F : A→ B be a left (respectively, right) exact functor
between abelian categories. Let RF : D(A) → D(B) (respectively, RF : D(A) →
D(B)) be a right (respectively, left) derived functor for F . Then the following
diagram commutes:

A B

D(A) D(B)

−[0]

F

RF

H0 (respectively,
A B

D(A) D(B)

−[0]

F

LF

H0 ).

2.3.5 Coderived categories

Let A be a Grothendieck category. Inside K(A) there is the subcategory K(Inj(A))

of complexes with injective terms. We give the following definition (see [78, Def-
inition 6.7], and [6, 64] for the original definitions).

Definition 2.3.16. A complexX over A is coacylic if the complex HomA(X, I)

is acyclic for every I ∈ C(Inj(A)). Equivalently, if Ext1C(A)(X, I) = 0 for every
I ∈ C(Inj(A)); equivalently, if HomK(A)(X, I) = 0 for every I ∈ K(Inj(A)). The
subcategory of K(A) consisting of coacyclic complexes is denoted by Kcoac(A).

Proposition 2.3.17 ([43, Corollary 7 and Example 5]). The colocalising sub-
category K(Inj(A)) ⊆ K(A) is reflective. The localising subcategory Kcoac(A) ⊆
K(A) is coreflective.

Proof. For the claim about Kcoac(A) apply Corollary 2.2.8.

We will denote by Iλ : K(Inj(A))→ K(A) the reflection.

Definition 2.3.18 (Becker [6]). Let A be a Grothendieck category. The coderived
category Dco(A) of A is defined as the Verdier quotient K(A)/Kcoac(A). It is
equivalent to K(Inj(A)), via the functor induced by Iλ.

Remark 2.3.19. There is a different definition of a coderived category in the
literature, which is due to Positselski [64]. The two definitions are known to co-
incide in many situations, for example if the underlying Grothendieck category
is locally noetherian [64, §3.7], but it seems to be an open question even for mod-
ule categories whether they coincide in general (see e.g. [65, Example 2.5(3)]).
However, as we will see in Corollary 4.2.7, for the locally Grothendieck categories
we are most interest in, that is the hearts of intermediate restrictable t-structure
over commutative noetherian rings, the two definitions of a coderived category
are indeed equivalent, and so there is no need to distinguish them.
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Coacyclic complexes are in particular acyclic (otherwise they would have a
non-zero morphism to the injective envelopes of their non-zero cohomologies),
so there is a localisation Dco(A) → D(A). The interplay between the functors
appearing in this subsection is illustrated by the following commutative diagram
of functors.

K(A) K(Inj(A)) D(A).

Dco(A)

Iλ

Q

≃

Q

2.4 Derivators and homotopy (co)limits

Let A be a complete and cocomplete abelian category, and D(A) its derived
category. While it is possible for D(A) to have categorical limits and colimits
(e.g., when A = Vectk, D(A) ≃ Vect

(N)
k ), what is more interesting are the

notions of homotopy (co)limits. If they exist, these are the right (respectively
left) derived functors of the functors (co)limI : A

I → A, for every small category
I (compare with Remark 1.1.8). In particular, notice that if A has exact direct
limits, then homotopy colimits in A are computed componentwise (see §2.3.4).

A more general way to define homotopy (co)limits is using the language of
derivators, which we now briefly present. For an in-depth treatment see Groth’s
paper [23].

Notation 2.4.1. As it is customary, we will denote by Cat the 2-category of
small categories, functors and natural transformations; I, J will denote small
categories. Similarly, CAT will be the 2-“category” of all categories, functors
and natural transformations (which is not a 2-category, since functors between
two arbitary categories to not usually form a set). The bold natural number n

will denote the partially ordered set {0 < 1 < · · · < n − 1}, viewed as a small
category. In particular, 1 is the category with one object and only the identity
morphism. Other small categories we will use are

⌜:=

⎧⎨⎩ • •

•

⎫⎬⎭ , ⌟ :=

⎧⎨⎩ •

• •

⎫⎬⎭ , □ :=

⎧⎨⎩ • •

• •

⎫⎬⎭
There are obvious functors i⌜ : ⌜→ □ and i⌟ : ⌟→ □.

Definition 2.4.2. A prederivator is a strict 2-functor D : Catop → CAT. The
category D(1) is called the base of D.

Example 2.4.3. We present two motivating examples of prederivators:

(1) I ↦→ AI , for a complete and cocomplete abelian category A;
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(2) DA := DC(A) : I ↦→ D(AI), for a Grothendieck category A.

The intuition we draw from these examples is that objects of D(I) should
be considered coherent diagrams of shape I with terms in the base D(1), as
opposed (in item (2)) to the incoherent diagrams in D(1)I . The functors
i : 1 → I corresponding to every object i ∈ I give functors D(I) → D(1),
and together they induce a functor diaI : D(I) → D(1)I , which assigns to each
coherent diagram its underlying incoherent diagram.

Given a functor u : I → J between small categories, a prederivator D gives a
functor u∗ := D(u) : D(J) → D(I). A derivator is a prederivator satisfying the
additional axioms (Der1–Der4) below, which guarantee that these u∗ have both
a left and a right adjoint (Der3), called Kan extensions, and give formulae
to compute them (Der4). Of particular interest is the case when u = ptI : I →
1, because then the adjoints of u∗ are functors hocolimI : D(I) → D(1) and
holimI : D(J)→ D(1).

Definition 2.4.4. A derivator is a prederivator D which satisfies the following
axioms:

(Der1) For any I, J ∈ Cat, the functor D(I ⊔ J) → D(I) × D(J) induced by the
inclusions is an equivalence; the base D(1) is not the empty category.

(Der2) A morphism f : X → Y in J is an isomorphism if and only if j∗(f) : j∗X →
j∗Y is an isomorphism in D(1) for every j ∈ J .

(Der3) For any u : I → J there are adjunction pairs (u!, u
∗) and (u∗, u∗).

(Der4) For every functor u : I → J and object j ∈ J , the morphisms

hocolimI/jpr
∗(X)

α!→ j∗u!(X) j∗u∗(X)
α∗→ holimIj/pr

∗(X)

are isomorphisms for every X ∈ D(I).

We will not fully explain the notation of axiom (Der4), as we will not need
the formulae, and refer to [23].

Example 2.4.5. The prederivators of Example 2.4.3 are all derivators.

The derivators DA are a special case of a more general kind of derivators,
which have a canonical triangulated structure.

Definition 2.4.6. Let D be a derivator. Then:

(1) D is strong if the partial diagram functors dia2,J : D(2× J)→ D(J)2 are
equivalences.

(2) D is pointed if D(1) has a zero object.
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(3) D is stable if it is pointed and the essential images of the functors (i⌜)! : D(⌜)→
D(□) and (i⌟)∗ : D(⌟)→ D(□) coincide. Notice that in [23, Definition 4.6]
the definition of “stable” requires also “strong”.

Theorem 2.4.7 ([23, Theorem 4.15 and Corollary 4.19]). Let D be a strong
and stable derivator. Then D(I) has a canonical triangulated structure, for
every small category I. Moreover, for every u : I → J , the functors u!, u∗ and
u∗ are triangulated with respect to this structure.

Proposition 2.4.8 ([23, Proposition 1.36 and Example 4.2(i)]). Let A be a
Grothendieck category. Then the derivator DA is strong and stable, and the
triangulated structure of D(AI) is the one of Theorem 2.4.7.

We conclude this brief overview with a simple construction of some homotopy
colimits.

Definition 2.4.9. Let D be a TR5 triangulated category, and (X0
f0→ X1

f1→
X2

f2→ · · · ) be an N-diagram. Let shift :
∐︁
Xi →

∐︁
Xi be the coproduct of

the morphisms fi : Xi → Xi+1. The Milnor colimit of (Xi) is defined by the
distinguished triangle∐︁

Xi

∐︁
Xi McolimXi Σ

∐︁
Xi.

1−shift

Notice that this is not a functorial construction, although it computes the
correct homotopy colimit, as shown by the following Proposition.

Proposition 2.4.10 ([34, Proposition 11.3]). Let D be a strong and stable
derivator, and (X0 → X1 → X2 → · · · ) be an N-diagram in D(1). Then there
exists a coherent diagram X ∈ D(N) with (Xi) as its underlying incoherent
diagram, and hocolimNX ≃ McolimXi.

There is also a notion of a morphism and equivalence between derivators, we
refer the reader to [77, §5] and [23]. For our purposes, it will be enough to say
that if A,B are two Grothendieck categories, then a morphism of derivators
η : DA → DB induces functors ηI : DA(I)→ DB(I) such that for each morphism
u : I → J the following square commutes (up to natural equivalence):

DA(J) DA(I)

DB(J) DB(I)

ηJ

DA(u)

ηI

DB(u)

(2.1)

The morphism of derivators η is an equivalence if all the functors ηI are
equivalences. If this is the case, then η is an honest equivalence in a suitable
category of derivators [23, Proposition 2.11], and all the equivalences ηI are
triangle equivalences [77, Proposition 5.12]. Furthermore, if η is an equivalence
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then one can check by passing to adjoint functors that η is also compatible with
left and right Kan extensions along any morphism u in Cat. In particular, we
get the commutative square for any I ∈ Cat:

DA(I) DA(⋆)

DB(I) DB(⋆)

∼=ηI

hocolimI

∼=η⋆

hocolimI

(2.2)

Note that since cohomology is computed coordinate-wise, an object X of the
bounded derived category Db(AI) is an I-shaped diagram in C(A) such that the
cohomologies of the coordinates Xi are uniformly bounded, that is, there are
integers l < m such that Hj(Xi) = 0 for all j < l or j > m and all i ∈ I. By the
exactness of direct limits in C(A), we see that for any small directed category I
the homotopy colimit functor restricts to a functor hocolimI : D

b(AI)→ Db(A).
We say that an equivalence of standard derivators η : DA → DB is bounded
if for any small category I the triangle equivalence ηI restricts to a triangle
equivalence ηI : Db(AI) → Db(BI). If I is directed, the above commutative
square restricts to another one:

Db(AI) Db(A)

Db(BI) Db(B)

∼=ηI

hocolimI

∼=η⋆

hocolimI

We remark that the bounded property can be naturally reformulated in
terms of restriction to bounded standard derivators DbA, as it is done in [81].
These derivators are defined similarly to the standard derivators DA, but one
needs to replace Cat by the full subcategory of all suitably finite categories to
reflect the fact that Db(A)) is not (co)complete.

2.5 t-structures

The notion of t-structures, modeled on that of torsion pairs, was introduced by
Bĕılinson, Bernstein and Deligne in their seminal paper [8].

Definition 2.5.1. Let D be a triangulated category. A t-structure in D is a
pair of strictly full subcategories T := (U,V) such that:

(tS1) ΣU ⊆ U;

(tS2) HomD(U,V) = 0;

(tS3) U ∗ V = D.
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U is called the aisle, V the coaisle of the t-structure. The triangles in by (tS3)
are called approximation triangles with respect to the t-structure.

Another notation we will use for the aisle and coaisle of T is (U,V) =

(T≤0,T≥1).

Remark 2.5.2. Let T := (U,V) be a t-structure in D. We point out some
immediate consequences of the definition.

(i) U = ⊥V and U⊥ = V. The inclusions in one direction are (tS2); for the
others, consider for example X ∈ U⊥ and its approximation triangle. It
must split, and therefore X ∈ V, and similarly to prove U ⊇ ⊥V.

(ii) V ⊆ ΣV. This comes from (tS1) and (i).

(iii) U = ⊥≤0V and U⊥≤0 = V, using (i), (tS1) and (ii).

(iv) U is closed under extensions, cones and existing coproducts; V is closed
under extensions, co-cones and existing products. Closure under exten-
sions and (co)products comes from (i); (co-)cones then follow from (tS1)
and (ii).

(v) If D is the base of a strong and stable derivator, U is closed under homo-
topy colimits; V is closed under homotopy limits ([73, Proposition 4.2]).

(vi) ΣnT := (ΣnU,ΣnV) is also a t-structure, for every n ∈ Z. We will write
ΣnT = (T≤−n,T≥−n+1).

The triangles in (tS3) are also functorial:

Remark 2.5.3 ([8, Proposition 1.3.3]). Let D be a triangulated category and
T := (U,V) a t-structure in D. There exist adjunction pairs

(⊆, τ≤0
T ) : U D and (τ≥1

T ,⊇) : D V

The counit and unit of these adjunction pairs produce the approximation trian-
gles: given X ∈ D, its approximation triangle is unique and it is

τ≤0
T X X τ≥1

T X Στ≤0
T X.

Definition 2.5.4. The functors τ≤0
T , τ≥1

T are called the left (resp. right)
truncation with respect to the t-structure. Using (vi) above, we denote by
τ≤−n
T , τ≥1−n

T the truncation functors with respect to ΣnT, for every n ∈ Z.
Spelling it out, we have τ≤−n

T = Σnτ≤0
T Σ−n and τ≥1−n

T = Σnτ≥1
T Σ−n.

Remark 2.5.5 ([8, Proposition 1.3.5]). τ≤mT and τ≥nT naturally commute with
each other for every m,n ∈ Z, i.e. there are natural isomorphisms τ≤mT τ≥nT ≃
τ≥nT τ≤mT .
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The main feature of a t-structure T := (U,V) is its heart, which is defined
as the subcategory HT := U∩ΣV. Since the truncation functors naturally com-
mute, there is also a functor H0

T := τ≤0
T τ≥0

T : D→ HT, called the cohomology
functor with respect to the t-structure. We write Hn

T := H0
TΣ

n for every n ∈ Z.

Proposition 2.5.6 ([8, Théorème 1.3.6]). Let D be a triangulated category, and
T := (U,V) be a t-structure in D. Then its heart HT is an abelian category,

whose short exact sequences are the sequences 0 A B C 0
f g such

that in D there is a triangle A B C ΣA
f g . The functor H0

T : D→ HT

is cohomological, i.e. it maps triangles to long exact sequences.

Example 2.5.7. Let D = D(A) be the derived category of an abelian category
A. There is the standard t-structure D := (D≤0,D≥1), defined by

D≤0 := {X ∈ D(A) : Hn(X) = 0 ∀n > 0}

D≥1 := {X ∈ D(A) : Hn(X) = 0 ∀n ≤ 0}.

By identifying the objects of A with the corresponding stalk complexes in degree
zero, A is equivalent to the heart of D. The truncation functors with respect to
D are induced by the smart truncations of complexes, namely

τ≤0(· · · → X−1 → X0
d→ X1 → · · · ) := (· · · → X−1 → X0 → im d→ 0→ · · · )

τ≥0(· · · → X−1 → X0
d→ X1 → · · · ) := (· · · → 0→ ker d→ X0 → X1 → · · · )

and defined on morphisms in the natural way. The cohomological functor H0
D :=

τ≤0τ≥0 is then the usual cohomology of complexes in degree zero (up to the
identification A ≃ A[0]).

Definition 2.5.8. A t-structure T = (U,V) is left (respectively right) non-
degenerate if ∩n∈NΣ

nU = 0 (respectively, ∩n∈NΣ
−nV = 0). It is non-

degenerate if it is both left and right non-degenerate.

Lemma 2.5.9. Let D be a triangulated category. The following are equivalent
for a t-structure T in D:

(1) T is non-degenerate.

(2) If HnX = 0 for every n ∈ Z, then X = 0.

(3) U = {X ∈ D : Hn
TX = 0 ∀n > 0} and V = {X ∈ D : Hn

TX = 0 ∀n ≤ 0}.

Proof. (1⇒ 2) Assume first that X ∈ U. Then we have a triangle

τ≤−1X → X → H0X → Στ≤−1X

and since H0X = 0 by hypothesis, we conclude that X ≃ τ≤−1X ∈ ΣU. By
iterating a similar argument, we obtain that X ∈ ΣnU for every n ≥ 0, and
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since T is non-degenerate, that X = 0. We can argue in the dual way if we start
with X ∈ V. Now for a general X with vanishing cohomologies, we consider
its truncations τ≤0X and τ≥1X: they have again vanishing cohomologies, and
therefore they are zero by the previous discussion. Then X = 0 as well.

(2 ⇒ 3) We prove the equality for the aisle. (⊆) clearly holds in general.
For (⊇), let X be such that HnX = 0 for every n ≥ 1, and consider its approx-
imation triangle

τ≤0X → X → τ≥1X → Στ≤0.

We have Hnτ≥1X = 0 for every n ∈ Z, and so τ≥1X = 0 by (2). We conclude
that X ≃ τ≤0 ∈ U.

(3 ⇒ 1) Let X ∈ ∩n≥0Σ
nU. By the description of the aisle, it follows that

HnX = 0 for every n ∈ Z. But then X ∈ V, and so X ∈ U ∩ V = 0. A similar
argument works if X ∈ ∩n≥0Σ

−nV.

Example 2.5.10. The standard t-structure of D(A) is non-degenerate. Exam-
ples of (even compactly generated, see Definition 2.5.37) t-structures which are
only left or only right degenerate can be constructed in the derived category
of a commutative noetherian ring using Lemma 3.1.18. An example of left and
right degenerate t-structures is given by the following Definition.

Definition 2.5.11. A t-structure T = (U,V) is called stable if Σ−1U ⊆ U (and
therefore ΣV ⊆ V). Together with (tS1) this means that ΣU = U, i.e. U and V

are triangulated subcategories.

Lemma 2.5.12. Let D be a triangulated category. The aisles of stable t-
structures of D are precisely the coreflective thick subcategories of D.

Proof. The aisle U of a stable t-structure is by construction a thick subcategory
(closure under direct summands comes from the fact that U = ⊥(U⊥)). It is
also coreflective, the right adjoint to U ⊆ D being the left truncation functor.

Conversely, let S be a coreflective thick subcategory of D. Clearly ΣS =

S; moreover, by Proposition 2.2.7(3), there exist approximation triangles with
respect to the pair (S, S⊥). The coaisle S⊥ is the essential image of the right
adjoint of D→ D/S.

It follows that a localising sequence as in Definition 2.2.13 gives rise to a
stable t-structure.

Lemma 2.5.13. Consider a localising sequence of triangulated categories

S D RF

Fρ

G

Gρ
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Then we have a stable t-structure (Im(F ), Im(Gρ)) in D. In particular, given a
recollement

S D R.i∗

i!

i∗

j∗

j∗

j!

We have stable t-structures (Im(i∗), Im(j∗)) and (Im(j!), Im(i∗)) in D.

Proof. S is a coreflective thick subcategory, so by applying Lemma 2.5.12 we
obtain the stable t-structure (Im(F ), Im(Gρ)). The recollement is a localising
and colocalising sequence, so it gives two localising sequences by Remark 2.2.14.
The claim follows from the first part.

2.5.1 t-Structures generated by objects

By analogy to torsion pairs generated by objects in an AB4 abelian category A,
one would like to use a set of objects of a triangulated category D to construct
a t-structure. Notice that by Proposition 1.4.4, given a set S of objects of A,
the torsion pair t = (T,F) generated by S can be described in two ways:

• T is the smallest subcategory containing S and closed under extensions,
quotients and coproducts;

• F = S⊥.

The first way is translated to the triangulated setting by the following notion.

Definition 2.5.14. Let D be a TR5 triangulated category. A subcategory
U ⊆ D is called a preaisle if it is closed under suspension, extensions and
direct summands. It is called a cocomplete pre-aisle if in addition it is closed
under coproducts.

Indeed, aisles are cocomplete preaisles, characterised as follows.

Proposition 2.5.15 ([35, §1]). Let D be a TR5 triangulated category and U ⊆
D a cocomplete pre-aisle. Then U is the aisle of a t-structure if and only the
inclusion U ↪→ D admits a right adjoint.

We then give the following definition.

Definition 2.5.16. Let D be a TR5 triangulated category, T = (U,V) be a
t-structure in D and S ⊆ U be a set of objects. We say that T is:

(1) (strongly) generated by S if U is the smallest cocomplete preaisle con-
taining S;

(2) weakly generated by S if V = S⊥≤0 .
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Lemma 2.5.17. In the notation of the Definition, if T is strongly generated by
S, then it is also weakly generated by S.

Proof. Since S ⊆ U, clearly V = U⊥≤0 ⊆ S⊥≤0 . To prove the converse inclusion
S⊥≤0 ⊆ V, we may equivalently prove that U = ⊥V ⊆ ⊥(S⊥≤0); and the latter
is easily seen to be a cocomplete preaisle which contains S, which concludes the
proof.

Remark 2.5.18. Notice that a set of objects needs not, in general, generate a
t-structure, either strongly or weakly. Therefore, the converse of Lemma 2.5.17
may fail, when a set S generates a t-structure weakly but not strongly.

We now collect some results on sets of objects which (strongly and there-
fore also weakly) generate a t-structure, in triangulated categories of varying
generality, together with explicit descriptions of the objects of the aisles.

Proposition 2.5.19 ([2, Theorem A.1],[34, Appendix 2]). Let D be a TR5
triangulated category, and S ⊆ Dc a set of compact objects. Then the smallest
cocomplete pre-aisle U containing S is an aisle (i.e., S generates a t-structure).
Let S̄ be the full subcategory of finite extensions of coproducts of shifts of objects
of S. The objects of U can be described as:

(1) cones of morphisms between coproducts of objects of S̄;

(2) Milnor colimits of objects of S̄, if HomD(S,ΣnS′) = 0 for every S, S′ ∈ S

and n > 0;

(3) homotopy colimits of N-sequences of objects of S̄, if D is the base of a
strong and stable derivator.

Remark 2.5.20. In view of this Proposition and Lemma 2.5.17, a t-structure
is compactly generated (i.e. generated by a set S of compact objects) if
and only if it is weakly generated by the same set S. This shows that the two
conditions of Definition 2.1.11 coincide, as they both amount to say that the
trivial t-structure (D, 0) is compactly generated.

Proposition 2.5.21. Let D be a TR5 triangulated category, admitting a suit-
able model structure, and let S ⊆ D be any set objects. Then the smallest
cocomplete pre-aisle containing S is an aisle.

Proposition 2.5.22 ([58, Theorem 2.3]). Let D be a well-generated triangulated
category, and S ⊆ D be any set of objects. Then the smallest cocomplete pre-
aisle containing S is an aisle. Its objects are obtained as homotopy colimits of
countable sequences, whose terms are α-extensions of coproducts of objects of
S, where α is the regular infinite cardinal appearing in the definition of well-
generation (see also Remark 2.1.16).
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We mention the fact that Proposition 2.5.22 replaces Proposition 2.5.21. To
conclude, we spend a few words about the natural dualisation of these results.

Definition 2.5.23. Let D be a triangulated category with products, T = (U,V)

a t-structure in D and S ⊆ V a set of objects. We say that T is:

(1) strongly cogenerated by S if V is the smallest complete precoaisle, i.e.
the smallest subcategory closed under cosuspension, extensions and prod-
ucts, containing S;

(2) weakly cogenerated by S if U = ⊥≤0S.

Notice that to say that S strongly (respectively, weakly) cogenerates T =

(U,V) in D is equivalent to saying that S strongly (respectively, weakly) gener-
ated Top = (Vop,Uop) in the opposite triangulated category Dop.

This allows to dualise Lemma 2.5.17, to see that that strong cogeneration is
stronger than weak cogeneration.

We conclude with an easy observation, which often allows to reduce the
number of objects used to weakly (co)generated to one.

Lemma 2.5.24. Let D be a triangulated category, and S a set of objects.

(1) If the coproduct
∐︁
Si of the objects in S exists, then (

∐︁
Si)

⊥≤0 = S⊥≤0 ;

(2) If the product
∏︁
Si of the objects in S exists, then ⊥≤0(

∏︁
Si) =

⊥≤0S;

Proof. Trivial.

2.5.2 Bounded subcategory with respect to a t-structure

Definition 2.5.25. Let D be a triangulated category, and T = (U,V) a t-
structure in D. The bounded subcategory of D with respect to T is the
full subcategory

Db
T :=

⋃︂
n∈N

(Σ−nU ∩ ΣnV).

We have the following easy lemma.

Lemma 2.5.26. Let D be a triangulated category and T be a t-structure in D,
with heart H. Then Db

T is the smallest triangulated subcategory of D containing
H.

Proof. Let S be the smallest triangulated subcategory of D containing H. Since
Σi(Σ−nU∩ΣnV) ⊆ Σ−n−|i|U∩Σn+|i|V, the union Db

T is closed under suspension
and cosuspension. Moreover, since both U and V are closed under extensions,
Db

T is a triangulated subcategory of D. Clearly it contains H, so S ⊆ Db
T.

For the converse inclusion, arguing by induction on n ≥ 0 and using approx-
imation triangles, one sees that objects of Σ−nU ∩ ΣnV are 2n-fold extensions
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of (co)suspensions of their cohomologies with respect to T; therefore, they lie in
S.

Corollary 2.5.27. Let D be a triangulated category, and T,T′ t-structures in
D, with hearts HT and HT′ respectively. Then Db

T = Db
T′ if and only if HT ⊆ Db

T′

and HT′ ⊆ Db
T.

Definition 2.5.28. Let D be a triangulated category. A t-structure T := (U,V)

in D is called bounded if Db
T = D.

Example 2.5.29. (1) For the standard t-structure D in D(A) we have D(A)bD =

Db(A).

(2) For a t-structure T in D, Db
T = 0 if and only if T is stable.

It is easy to see that T induces a bounded t-structure T∩Db
T := (U∩Db

T,V∩
Db

T) on Db
T. In fact, we have the following lemma.

Lemma 2.5.30. Let D be a triangulated category, S a triangulated subcategory
of D and T a t-structure in D. If T ∩ S is a bounded t-structure in S, then
S ⊆ Db

T.

Proof. It follows immediately from the fact that S = SbT∩S ⊆ Db
T.

We now recall the following definition by Fiorot, Mattiello and Tonolo [17].

Definition 2.5.31. Let D be a triangulated category, and T := (U,V),T′ :=

(U′,V′) t-structures in D. The gap of the pair (T,T′) is defined as

gap(T,T′) := min{m− n : m,n ∈ Z,ΣmU ⊆ U′ ⊆ ΣnU}

if this set is not empty, and gap(T,T′) :=∞ otherwise.
If D = D(A) is a derived category, a t-structure which has finite gap from

the standard t-structure is called intermediate.

Remark 2.5.32. Some remarks on this definition:

(1) If ΣmU ⊆ U′ ⊆ ΣnU, then we also have Σ−nU′ ⊆ U ⊆ Σ−mU′, so
gap(T,T′) = gap(T′,T).

(2) Since aisles and coaisles are the orthogonal of each other, the definition
implies that ΣmV ⊇ V′ ⊇ ΣnV. Moreover, any two of these four inclusions
between aisles and coaisles imply the other two.

(3) If T,S have finite gap, then Db
T = Db

S.

(4) The gap satisfies a triangular inequality: i.e. for any t-structures T,T′,T′′

we have
gap(T,T′′) ≤ gap(T,T′) + gap(T′,T′′).
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Example 2.5.33. In this example, we show that the converse of (3) is false,
i.e. two t-structures may have the same bounded subcategory without having
finite gap. On the way, we will also find an example of a strict inclusion between
the bounded subcategories induced by two (non-degenerate) t-structures. We
start by constructing the ambient triangulated category D, in two consecutive
steps. For every n ∈ Z, let An be an abelian category. One can form their
product A :=

∏︁
An, which is again an abelian category. Its objects are Z-

tuples (An | n ∈ Z) with An ∈ An, and morphisms are defined componentwise.
The short exact sequences are also componentwise. The derived category of A
is D(A) ≃

∏︁
D(An). We introduce the following notation for its objects: they

are complexes X• = (· · · → Xi → Xi+1 → · · · ) with Xi = (Ain | n ∈ Z) ∈ A,
Ain ∈ An. The equivalence D(A) ≃

∏︁
D(An) is given by fixing n, to obtain

complexes A•
n := (· · · → Ain → Ai+1

n → · · · ) ∈ D(An).
Let D be the standard t-structure of D(A), and for every n, denote by Dn

the standard t-structure of D(An). It is easy to see that D =
∏︁

Dn, in the sense
that

D≤0 = {X ∈ D(A) : A•
n ∈ D≤0

n } and D≥1 = {X ∈ D(A) : A•
n ∈ D≥1

n }

using the notation for complexes introduced above. It is clear that in the same
way we can define a non-degenerate t-structure T :=

∏︁
Σ−nDn in D(A). Its

heart is HT =
∏︁

An[−n] ≃
∏︁

An = A. For every object of A we have that
Hn

T (An | n ∈ Z) = An.
Now, inside A, consider the subcategory

B := {(An | n ∈ Z) ∈ A : An = 0 for almost all n ∈ Z}.

It is easily seen to be closed under extensions, subobjects and quotient, so it is an
abelian subcategory of A. Consider D(B) ⊆ D(A). The standard t-structure of
D(B) is the restriction of D. Similarly, T also restricts to a t-structure on D(B),
which we denote by T′. Notice that its heart is HT′ = HT ∩ D(B) = HT ≃ A.
Since every object (An | n ∈ Z) ∈ B ⊆ A has finitely many non-zero An, it
also has finitely many non-zero cohomologies with respect to T′, so it belongs
to D(B)bT′ . We then have a chain of strict inclusions

Db(B) = D(B)bD ⊊ D(B)bT′ ⊊ D(B).

The first inclusion is strict because clearly HT′ ⊈ Db(B), while the second is
strict because of complexes such that A•

n is unbounded for some n.
We let D := Db(B). Notice that T′ restricts to Db(B). Indeed, given (An |

n ∈ Z) ∈ B, its truncations with respect to T′ are its direct summands, in which
some of the components are zeroed out; in particular, they still lie in Db(B).
By induction, the same holds for objects of Db(B). By the above inclusions, the
t-structure T′′ induced by T′ on Db(B) is bounded, i.e. Db(B)bD = Db(B)bT′′ . It
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is easy, however, to see that T′ is not intermediate, as for every 0 ̸= An ∈ An,
its shift An[−n] belongs to HT′′ but not to D<n.

Despite this example, it is often the case that if TbT = TbS for two t-structure
T and S, then they have finite gap:

Lemma 2.5.34. Let D be a triangulated category, and T,S t-structures in D.
Assume that Db

T = Db
S. Then T and S have finite gap, as soon as one of the

following sufficient conditions is verified:

(1) T is weakly generated and weakly cogenerated by two objects of Db
T = Db

S.

(2) T,S are weakly generated by two objects of Db
T = Db

S.

(3) T,S are weakly cogenerated by two objects of Db
T = Db

S.

Proof. Let T := (U,V),S := (U′,V′).
(1) Let S,C be the objects of Db

T = Db
S which weakly generated and co-

generated T, respectively. In particular, there exist n,m such that S ∈ ΣnU′

and C ∈ ΣmV′. It follows that V = S⊥≤0 ⊇ (ΣnU′)⊥≤0 = ΣnV′ and sim-
ilarly U = ⊥≤0C ⊇ ⊥≤0(ΣmV′) = ΣmU′. Then T,S have finite gap by Re-
mark 2.5.32(2). (2) and its dual (3) are analogous.

We conclude with the interplay between triangulated functors and t-structures.

Definition 2.5.35. Let D,D′ be triangulated categories, and T := (U,V),T′ :=

(U′,V′) be t-structures in D and D′ respectively, with hearts H and H′. A
triangulated functor F : D → D′ is called t-exact with respect to T and T′ if
FU ⊆ U′ and FV ⊆ V′.

Lemma 2.5.36. In the same notation of the definition, assume F is t-exact
with respect to T and T′. Then:

(1) F restricts to an exact functor F|H : H→ H′.

(2) F commutes with truncations and cohomology, in the sense that there
are canonical natural isomorphisms Fτ≤0

T ≃ τ≤0
T′ F , τ≥1

T′ F ≃ Fτ≥1
T and

H0
T′F ≃ F|HH

0
T.

(3) Assume that T is non-degenerate. If F is an equivalence, then so is F|H.

Proof. (1) Since H = U ∩ ΣV, then FH ⊆ FU ∩ Σ′FV ⊆ U′ ∩ Σ′V = H′, so F
restricts to a functor F|H : H → H′. Short exact sequences in H are triangles
in D, and the triangulated functor F sends them to triangles in D′; since their
terms lie in H′, they are short exact sequences in H′, so F|H is exact.

(2) We first construct the canonical natural transformations η : Fτ≤0
T ⇒

τ≤0
T′ F and ε : τ≥1

T′ F → Fτ≥1
T . For X ∈ D, consider its T-approximation triangle

τ≤0
T X X τ≥1

T X Στ≤0
T Xu v
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By t-exactness of F , Fτ≤0
T X ∈ U′, and by the adjunction (U′ ⊆ D′, τ≤0

T′ ) the
morphism Fu factors through a morphism ηX : Fτ≤0

T X → τ≤0
T′ FX, which is

natural in X. ε is obtained similarly, using the adjunction (τ≥1
T′ ,V′ ⊆ D′)

to factor Fv. The fact that the morphisms ηX , εX are isomorphisms is the
uniqueness, up to unique isomorphism, of the T′-approximation triangle of FX
(see Remark 2.5.3).

The natural transformation γ : FH0
T ⇒ H0

T′F is obtained as the composition

FH0
T = F|Hτ

≤0
T τ≥0

T

η
τ
≥0
T=⇒ τ≤0

T′ Fτ
≥0
T = τ≤0

T′ FΣτ
≥1
T Σ−1 ≃

≃ τ≤0
T′ Σ′Fτ≥1

T Σ−1
τ
≤0

T′ Σ′ε−1

Σ−1

=⇒ τ≤0
T′ Σ′τ≥1

T′ FΣ
−1 ≃ τ≤0

T′ Σ′τ≥1
T′ Σ′−1F = H0

T′F

and it is therefore a natural isomorphism.
(3) By (1), we have a fully faithful functor FH : H→ H′, and we only have to

prove that it is essentially surjective. Let X ′ ∈ H′, and by essential surjectivity
of F let X ∈ D be such that FX ≃ X ′. By (2), for every integer n ̸= 0 we
have F|HH

n
TX ≃ Hn

T′FX ≃ Hn
T′X ′ = 0, and since F is faithful we deduce that

Hn
TX = 0 for every n ̸= 0. If we assume that T is non-degenerate, this implies

that X ∈ H, hence X ′ lies in the essential image of F|H.

2.5.3 Properties of t-structures

We now list some additional properties that a t-structure may enjoy.

Definition 2.5.37. Let D be a triangulated category, and T = (U,V) be a
t-structure.

(1) If D has coproducts, T is k-smashing, for k ≥ 0, if the coproduct of a
family of objects of V lies in ΣkV. In particular, for k = 0, V must be
closed under coproducts; in this case we say that T is smashing (compare
with Definition 2.2.4, and with Remark 2.5.2(ii)). If D has products, the
notion of (k-)cosmashing is define dually (asking Σ−kU to contain the
products of objects of U).

(2) If D is the base of a strong and stable derivator, T is homotopically
smashing if V is closed under homotopy colimits (compare with Re-
mark 2.5.2(v)).

(3) If D has coproducts, T is compactly generated if it is generated by a
set of compact objects (see Proposition 2.5.19).

(4) If D has coproducts, T is silting if it is of the form T = (T⊥>0 , T⊥≤0),
for an object T of D (which is then called silting). T and T are called
tilting if Add(T ) ⊆ T⊥>0 . If T is silting it is weakly generated by T .
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(5) If D has products, T is cosilting if it is of the form T = (⊥≤0C,⊥>0C),
for an object C of D (which is then called cosilting). T and C are called
cotilting if Prod(C) ⊆ ⊥≤0C.

(6) If D = D(A), for a locally coherent Grothendieck category A, T is re-
strictable if the pair T ∩ Db(fp(A)) := (U ∩ Db(fp(A)),V ∩ Db(fp(A))) is
a t-structure in Db(fp(A)) (equivalently, if Db(fp(A)) is closed under (one
of) the truncation functors of T).

Lemma 2.5.38 ([73, Proposition 5.6]). Let D be a triangulated category. As
soon as these notions are well-defined, there are strict implications for a t-
structure

compactly generated ⇒ homotopically smashing ⇒ smashing.

Proof. If D has coproducts, it is easy to see from the definition of compact
objects that “compactly generated” implies “smashing”. If D is the base of a
strong and stable derivator, the claim is the referenced result (which also points
to counterexamples for the converse implications).

These properties of a t-structure reflect on properties of its heart.

Lemma 2.5.39. Let D be a TR5 (respectively TR5∗) triangulated category,
and T a t-structure in D, with heart H. Then:

(1) H is always AB3 (respectively AB3∗); a coproduct (respectively, product)
in H is computed as the cohomology of the same coproduct (respectively,
product) computed in D [59, Proposition 3.2].

(2) If T is smashing (respectively cosmashing), then H is AB4 (respectively
AB4∗) [59, Proposition 3.3]. The truncation and cohomology functors with
respect to T commute with coproducts (respectively, products).

Proof. (2) We mention the argument for the last statement, in the smashing
case; the other one is dual. Denote by τ≤0, τ≥1, H0

T the truncation and coho-
mology functors with respect to T, and let (Xi | i ∈ I) be a family of objects of
D. Since both the aisle and the coaisle are closed under coproducts, the triangle∐︂

τ≤0Xi →
∐︂

Xi →
∐︂

τ≥1Xi → Σ
∐︂

τ≤0Xi

is an approximation triangle for
∐︁
Xi, which shows that the truncation func-

tors commute with coproducts. It follows that H0
T(
∐︁
Xi) is isomorphic to the

coproduct of the H0
T(Xi) in D, and therefore a fortiori in H.

Proposition 2.5.40 ([73, Theorem B, Corollary 5.8]). Let D be the base of
strong and stable derivator, and T a homotopically smashing t-structure, with
heart H. Then H is AB5, and direct limits in H are computed as homotopy
colimits in D.
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Proposition 2.5.41 ([44, Theorem 4.6]). Let D be the base of a strong and sta-
ble derivator, and assume it is compactly generated. Let T be a non-degenerate
t-structure in D, with heart H. Then the following are equivalent:

(1) T is homotopically smashing.

(2) T is smashing and H is Grothendieck.

(3) T is cosilting with respect to a pure injective cosilting object.

Proposition 2.5.42 ([72, Theorem 1.6]). Let D be a TR5 triangulated category,
and let T = (U,V) be a compactly generated t-structure in D, with heart H and
cohomological functor H0 : D → H. Write U0 := U ∩Dc. Then H is a locally
finitely presented Grothendieck category, and fp(H) = add(H0(U0)).

Proposition 2.5.43 ([48, Corollary 4.2]). Let R be a noetherian ring, and T
be a homotopically smashing intermediate t-structure, with heart HT (which is
a Grothendieck category). Then the following are equivalent:

(1) T is restrictable.

(2) HT is locally coherent with fp(HT) = HT ∩ Db(mod(R)).

Proof. We mention the fact that if in addition R is commutative, the implication
(1)⇒ (2) is [71, Theorem 6.3].

2.6 Realisation functors

In this section, we deal with the problem of recognising when a triangulated
category is a derived category. To this goal, we adopt the following point of
view: A derived category is just a triangulated category with a standard t-
structure. This leads us to the following definition.

Definition 2.6.1. Let D be a triangulated category D, and T a t-structure,
with heart H. We will say that T is

(1) an almost standard bounded t-structure if there is a triangle equiva-
lence Db(H) ≃ Db

T which is t-exact with respect to the standard t-structure
of Db(H) and T;

(2) an almost standard t-structure if there is a triangle equivalence D(H) ≃
D which is t-exact with respect to the standard t-structure of D(H) and
T.

If D = D(A), for an abelian category A, the usual terminology for T being almost
standard (bounded) is that it induces (bounded) derived equivalence, as
we get an equivalence D(H) ≃ D(A) (respectively, Db(H) ≃ Db(A)).
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From this viewpoint, it makes sense to consider all almost standard t-structu-
res in a triangulated category D more or less equivalent. In particular, when D =

D(A) already is a derived category, the standard t-structure is almost standard;
but we should try to reference it directly as less as possible. Therefore, we
make the following observations, to show that some notions can be reformulated
without referring to it.

Lemma 2.6.2. Let R be a ring, D(R) its derived category and D(R)c the thick
subcategory of compact objects of D(R).

(1) Db(R) consists of all the objects X ∈ D(R) such that for every compact
C ∈ D(R)c the set {n ∈ Z : HomD(R)(C,X[n]) ̸= 0} is finite.

(2) [70, Corollary 6.17] if R is noetherian, Db(fp(R)) = Db(R)c.

Proof. (1) follows from the fact that R ∈ D(R)c.

Lemma 2.6.3. Let R be a ring, D(R) its derived category and T a t-structure in
D(R). Then the following properties of T can be characterised without reference
to the standard t-structure.

(1) T is compactly generated.

(2) T is intermediate.

(3) (if R is commutative noetherian) T restricts to Db(fp(R)).

Proof. (1) is clear. (2) We claim that T is intermediate if and only if D(R)bT =

Db(R) (notice that this does not reference the standard t-structure by 2.6.2(1)).
Indeed, the only non trivial implication (⇐) follows from 2.5.34(1), since the
standard t-structure is both weakly generated by R and weakly cogenerated by
an injective cogenerated W of Mod(R) (in fact this characterisation of interme-
diate t-structures holds in the derived category of any Grothendieck category
A, using a generator of A in place of R; see [67, Lemma 4.14]). (3) follows from
Lemma 2.6.2(2).

2.6.1 Realisation functors

Remark 2.6.4. Let D be a triangulated category and T an almost stan-
dard (bounded) t-structure, with heart H. Notice that the t-exact equivalence
D(H) → D (respectively, Db(H) → Db

T) automatically restricts to an equiva-
lence between the hearts H of the standard t-structure of D(H) and H of T.

Definition 2.6.5. Let D be a triangulated category, and T a t-structure in
D, with heart H. A (respectively, bounded) realisation functor for T is
a functor realT : D(H) → D (respectively, realbT : D

b(H) → Db
T) such that it

restricts to an equivalence H→ H.
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Remark 2.6.6. We point out that this definition differs from the classical defi-
nition of realisation functor, in that it does not require realT to induce an isomor-
phism H = H. This is only a slight generalisation: indeed, let realT : D(H)→ D

induce an equivalence α : H → H. Since α is exact, we can extend it to an
equivalence ᾱ : D(H)→ D(H). If β is a quasi-inverse of ᾱ, the functor realT ◦ β
induces an isomorphism αβ : H = H, and therefore it is a realisation functor in
the classical sense.

Our reason for this modified definition is that we want the following facts to
be true:

(1) any triangle equivalence φ : D(A) → D restricts to an equivalence A ≃
φ(A), and therefore it is a realisation functor for the image in D of the
standard t-structure of D(A).

(2) More generally, applying an equivalence after a realisation functor always
yields another realisation functor (for the pushed-forward t-structure).

Remark 2.6.7. In the notation above, we also point out briefly that a bounded
realisation functor realbT : D

b(H) → Db
T is automatically t-exact with respect to

the standard t-structure D of Db(H) and T. Indeed, the aisle of D is the smallest
subcategory closed under suspension and extensions and containing H; so it gets
sent to the aisle of T, and similarly for the coaisle.

2.6.2 Existence of realisation functors

Given a triangulated category D and a t-structure T in D, we give an account
of results about the existence of bounded and unbounded realisation functors
for T.

The common feature of these results is that they rely on some additional
structure over D. A bounded realisation functor was already constructed by
Bĕılinson, Bernstein and Deligne [8], in the case when D is a full triangulated
subcategory of a bounded below derived category. They made use of the filtered
derived category ; their construction was then generalised by Psaroudakis and
Vitória [67], leading to the notion of f-enhancement of the triangulated cat-
egory D. When they exist, f-enhancements produce each a realisation functor
for a given t-structure in D.

Proposition 2.6.8 ([8, §3], [67, §3]). Let D be a triangulated category admitting
an f-enhancement, and let T be a t-structure in D, with heart H. Then there
exists a bounded realisation functor realbT : D

b(H)→ Db
T.

We mention that f-enhancements exist for example when D is the derived
category of an abelian category (see [67, Example 3.2]), so the work of [67] ex-
tends that of [8] in this regard. Before proceding further, we also point out that
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[67] defines bounded realisation functors as those produced by f-enhancements,
rather than by their properties, as we do.

When D is the base of a strong and stable derivator, the notion of f-
enhancement of D admits a description in the language of derivators. In Virili’s
paper [81], the bounded realisation functor of Proposition 2.6.8 was lifted to a
morphism of prederivators, and an unbounded version was achieved.

Proposition 2.6.9 ([81, Theorem 4.13]). Let D be a strong and stable derivator,
and T a t-structure in D(1), with heart H. Then there exists an exact morphism
of prederivators realbT : DbH → D extending the inclusion H ⊆ D(1).

Proposition 2.6.10 ([81, Theorem 6.7]). Let D be a strong and stable derivator,
and T a t-structure in D(1), with heart H. Assume that H has enough injectives
and it is AB4∗-k, or that it has enough projectives and it is AB4-k. Then there
exists an exact morphism of prederivators realT : DH → D.

2.6.3 When realisation functors are equivalences

Let D be a triangulated category and T be a t-structure in D, with heart H.
Assume we can construct a (bounded or not) realisation functor for T. We recall
some results studying when it is an equivalence.

Proposition 2.6.11 ([8, Proposition 3.1.16], [67, Theorem 3.11][12, Theo-
rem 2.9]). Let realbT : Db(H)→ Db

T be a bounded realisation functor for T. Then
the following are equivalent:

(1) realbT is an equivalence;

(2) realbT is fully faithful;

(3) realbT is essentially surjective;

(4) realbT induces isomorphisms HomDb(H)(X,Y [n]) ≃ HomD(X,ΣnY ) for ev-
ery X,Y ∈ H and n ∈ Z (or equivalently, for every n ≥ 2);

(5) ( effaçabilité) for every X,Y ∈ H, n ≥ 2 and morphism f ∈ HomD(X,ΣnY ),
there exists an epimorphism g : Z → X in H such that f ◦ g = 0.

(6) (co-effaçabilité) for every X,Y ∈ H, n ≥ 2 and morphism f ∈ HomD(X,ΣnY ),
there exists a monomorphism h : Y → Z in H such that Σnh ◦ f = 0.

Proof. (1)⇒ (2) is obvious. (2)⇒ (3) If realbT is full, its essential image is a tri-
angulated subcategory (Lemma 2.1.24), and by definition of realisation functor
it contains H, therefore it coincides with Db

T. (3) ⇒ (1) is [12, Theorem 2.9].
(2)⇒ (4) is obvious; (4)⇒ (2) follows by double dévissage (apply Lemma 2.1.23
with S =

⋃︁
n∈Z H[n]). For an explicit proof that (4) ⇔ (5) and (4) ⇔ (6) see

[67, Theorem 3.11].
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Remark 2.6.12. While the original results are formulated for a realisation
functor in the classical sense, they hold also for our definition, by Remark 2.6.6.

Notice also that conditions (3) and (4) do not depend on the chosen bounded
realisation functor: in this sense, for a t-structure T to be an almost standard
bounded t-structure of Db

T is an intrinsic property.

If T is a (co)silting t-structure, there is an additional equivalent condition.

Proposition 2.6.13 ([67, Proposition 5.1]). Assume that T is (co)silting, with
respect to a (co)silting object M , and let realbT : D

b(H) → Db
T be a bounded

realisation functor for T. Then the following are equivalent:

(1) realbT is an equivalence;

(2) M is (co)tilting.

Proof. Notice that in [67] the term “realisation functor” is used for those con-
structed from an f-enhancement. Nonetheless, the proof of the referenced result
shows that M is (co)tilting if and only if T is effaçable, and then uses Proposi-
tion 2.6.11. Therefore it also applies to our definition of realisation functors.

On the unbounded side, many known instances in which a realisation functor
is an equivalence are encompassed by the following result.

Proposition 2.6.14 ([81, Theorem 6.8]). Assume that D is the base of a strong
and stable derivator D, and that the heart H of T satisfies one of the two con-
ditions of Proposition 2.6.10, so that we can construct the realisation functor
realT : DH → D. Let realT := real1T. Then realT commutes with products and
coproducts and is fully faithful if and only if the following hold:

(1) T satisfies one of the equivalent conditions of Proposition 2.6.11;

(2) T is non-degenerate;

(3) (a) T is k-cosmashing for some k ∈ N;

(b) T is smashing;

(c) H has enough injectives.

or

(a’) T is cosmashing;

(b’) T is k-smashing for some k ∈ N;

(c’) H has enough projectives.

Proposition 2.6.15 ([81, Theorems 7.7, 7.9]). Assume D is the base of a
strong and stable derivator, and that there is a classical tilting t-structure in D

with finite gap from T. Then if T is either tilting or cotilting, the realisation
functor realT : DH → D exists and it is a bounded (see §2.4) equivalence of
(pre)derivators.
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2.7 HRS-tilting

In this section we recall the HRS-tilting construction, originally introduced by
Happel, Reiten and Smalø [25].

Definition 2.7.1. Let D be a triangulated category, T = (U,V) a t-structure
in D and H its heart. Denote by H0

T the cohomology functor with respect to T.
Let t = (T,F) be a torsion pair in H. Then the subcategories

Ut := U[1] ∗ T = {X ∈ U : H0
TX ∈ T}

Vt := F ∗ V = {X ∈ V[1] : H0
TX ∈ F}

form a t-structure Tt. Its heart is Ht := F[1] ∗ T. Tt and Ht are said to be
obtained by HRS-tilting T with respect to t, or more shortly, to be HRS-
tilted from T.

Proof. The following proof is a straightforward adaptation of [25] to our slightly
more general formulation.

Clearly Ut[1] ⊆ Ut and Vt ⊆ Vt[1]. Denote by τ≤0
T , τ≥1

T and H0
T the trunca-

tion and cohomology functors with respect to T. Since Ut ⊆ U and Vt ⊆ V[1],
we have

HomD(Ut,Vt) ≃ HomD(H0
T(Ut), H

0
T(Vt)) ≃ HomD(T,F) = HomH(T,F) = 0.

It is left to verify (t3), i.e. the existence of approximation triangles. Let X ∈ D,
and consider the octahedral diagram

tH0
TX H0X fH0

TX (tH0
T)[1]

tH0
TX (τ≤−1

T X)[1] U [1] (tH0
T)[1]

0 (τ≤0
T X)[1] (τ≤0

T X)[1] 0

(tH0
TX)[1] (H0X)[1] (fH0

TX)[1] (tH0
T)[2]

α[1]

The top row is the t-approximation sequence of H0
TX in H; the second column

is (a shift of) the T-approximation triangle of τ≤0
T X. The object U defined by

the above diagram belongs to Ut by the second row. We claim that it is the
left truncation of X with respect to Tt. Indeed, we have another octahedral
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diagram

U τ≤0
T X fH0

TX U [1]

U X V U [1]

0 τ≥1
T X τ≥1

T X 0

U [1] (τ≤0
T X)[1] (fH0

TX)[1] U [2]

α

where the first row is (a shift of) the third column of the previous diagram, while
the second column is the T-approximation triangle of X. The third columns
shows that V ∈ Vt, so the second row is a Tt-approximation triangle for X.

The claim that Ht = F[1] ∗ T is easy to prove.

Remark 2.7.2. In the literature, there are two slightly but crucially different
versions of this definition. The one above (e.g. [11, 17, 62]), works inside an
arbitrary triangulated category D, from a t-structure T with heart H. The orig-
inal one ([25], but also [12, 59]) only deals with D = D(H) a derived category
and T the standard t-structure. This leads to a possible ambiguity: given a
t-structure T in D, with heart H, and a torsion pair t in H, “HRS-tilting H

with respect to t” may mean “inside D” or “inside D(H)”. The outcome is always
a t-structure, but the ambient category differs; this has also consequences on
the reversibility of HRS-tilting (see Remark 2.7.7). We will always use Defi-
nition 2.7.1. Sometimes we will want to apply results which only hold for the
more restrictive definition: in those case, we will always be in the situation of
the following Lemma and Remark.

Lemma 2.7.3. Let D,D′ be triangulated categories, and T,T′ t-structures in
D and D′, respectively. Denote by H,H′ their hearts. Let F : D → D′ be a
triangulated equivalence, which is t-exact with respect to T and T′. For any
torsion pair t in H, the equivalence F|H : H → H′ gives a torsion pair t′ = F t

in H′. Let Tt,T′
t′ be the HRS-tilts of T,T′ with respect to t, t′ respectively; then

F is t-exact with respect to Tt and T′
t′ .

Proof. Obvious from the descriptions of the aisle and coaisle of the HRS-tilts.

Remark 2.7.4. In particular, we will use this Lemma with D a triangulated
category and T a t-structure, with heart H, which is an almost standard bounded
t-structure of Db

T. Recall that this means that there is a bounded realisation
functor realbT : Db(H)→ Db

T = D which is an equivalence; therefore we may take
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D′ = Db(H), T′ = D the standard t-structure and F = realbT
−1. The Lemma

then guarantees that realbT identifies the two possible meaning of HRS-tilting H

with respect to t.

Remark 2.7.5. We point out two easy first observations.

(1) One sees immediately that t′ := (F[1],T) is a torsion pair in Ht, with the
t′-approximation sequences being the T-approximation triangles.

(2) From the definition, it is clear that U[1] ⊆ Ut ⊆ U and V ⊆ Vt ⊆ V[1], i.e.
gap(T,Tt) ≤ 1.

(3) The HRS-tilt of T with respect to t in D induces by restriction the HRS-
tilt of T ∩Db

T with respect to t in Db
T.

In fact, the following result by Polishchuk gives a converse of (2).

Proposition 2.7.6 ([62, Lemma 1.1.2]). Let D be a triangulated category, and
T,T′ be t-structures with gap ≤ 1. Then they are obtained from each other by
HRS-tilting.

Proof. We recall the idea of the proof. If T = (U,V) and T′ = (U′,V′) have
hearts H,H′ respectively, then one constructs torsion pairs t = (H∩U′,H∩V′)

and t′ = (H′ ∩U,H′ ∩V) in H and H′ respectively. HRS-tilting T with respect
to t gives T′, and viceversa.

Remark 2.7.7. Notice that this result in particular says that the HRS-tilting
construction is reversible; in fact, from the proof we see that the torsion pair t′

in Ht needed to reconstruct H is precisely that of Remark 2.7.5(1). This is not
the case with the original definition of [25].

Remark 2.7.8. In Remark 2.7.5(1), if Ht happens to be a Grothendieck cat-
egory and T is a hereditary torsion class in H, it can moreover be shown that
T is in fact a TTF class in Ht. Since Ht is Grothendieck and T is a torsionfree
class, T is closed under coproducts and it only remains to see that it is closed
under quotients. If X ∈ T and f : X → Z is an epimorphism in Ht, H−1

T (Z)

lies in F (because Z lies Ht) and, simultaneously, H−1
T (Z) is a subobject (in

HT) of ker(f), which is an object of T. Thus, we have H−1
T (Z) = 0 and Z lies

in T.

As can be expected, properties of a torsion pair translate to properties of
the corresponding HRS-tilted t-structure.

Lemma 2.7.9. Let D be a TR5 triangulated category, T = (U,V) a smashing
t-structure in D, with heart H, and t = (T,F) a torsion pair in H. Then the
HRS-tilted t-structure Tt is smashing.



2.7. HRS-TILTING 61

Proof. By Lemma 2.5.39(2), H is AB4; in particular, F is closed under coprod-
ucts (Lemma 1.4.2(5)). Since by hypothesis also V is closed under coproducts,
so is the coaisle F ∗ V of Tt.

Proposition 2.7.10 ([73, Propositions 6.1 and 6.4]). Let D be the base of a
strong and stable derivator, and T a homotopically smashing t-structure in D,
with heart H. Let t be a torsion pair in H, and Tt the HRS-tilted t-structure,
with heart Ht. Then:

(1) Tt is homotopically smashing if and only if t is of finite type.

(2) if Tt is compactly generated, then t is generated by finitely presented ob-
jects.

Proposition 2.7.11 ([59, Theorem 4.9, Corollary 4.10]). Let D be a triangu-
lated category, and T an almost standard bounded t-structure in D, with heart
H. Let t = (T,F) be a torsion pair in H such that either

(1) t is hereditary, or

(2) T cogenerates H, or

(3) F generates H.

Then the HRS-tilt of T with respect to t has Grothendieck heart if and only if t
is of finite type.

Proof. We comment on the fact that the referenced results are formulated
with D = D(HT) and T the standard t-structure. We argue as anticipated
in Lemma 2.7.3 and Remark 2.7.4: by Remark 2.7.5(3) the heart of the HRS-
tilt of T with respect to t in D coincides with that of the HRS-tilt of T ∩ Db

T
in Db

T; this is equivalent via realbT to the heart of the HRS-tilt of the standard
t-structure of Db(H) with respect to realbT

−1t. This in turn is again the heart of
the HRS-tilt of the standard t-structure of D(H). Now we can apply the results
of [59], to say that this heart is Grothendieck if and only if realbT−1t is of finite
type, which is equivalent to t being of finite type.

Proposition 2.7.12 ([71, Theorem 5.2]). Let D be a triangulated category and
T an almost standard bounded t-structure of D with locally coherent Grothendieck
heart H. Let t be a torsion pair in H, and Tt be the HRS-tilt of T with respect
to t, with heart Ht. Denote by D′ the subcategory of Db

T consisting of the objects
with finitely presented T-cohomologies. Then the following are equivalent:

(1) Tt restricts to D′ and Ht is a locally coherent Grothendieck category with
fp(Ht) = Ht ∩D′.

(2) t is of finite type and restrictable.
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Proof. As for Proposition 2.7.11, the referenced result is stated for D = D(H),
T the standard t-structure and D′ = Db(fp(H)). A similar argument as used
before applies, in view of the fact that realbT identifies Db(fp(H)) with D′.

2.8 Iterated HRS-tilting

In this section, D is a fixed triangulated category.
The HRS-tilting procedure can obviously be iterated: starting from a t-

structure T0 of D, with heart H0, and a torsion pair t0 in H0, one can construct
the HRS-tilt T1, with heart H1. Given a torsion pair t1 in H1, another HRS-tilt
yields a t-structure T2 with heart H2, and so on. From a t-structure Tn with
heart Hn and a torsion pair tn in Hn, one construct the HRS-tilt Tn+1.

Definition 2.8.1. In the notation above, we will say that Tn is obtained by
n-iterated HRS-tilting from T0. The sequence (T0,T1, . . . ,Tn) will be called
a chain of HRS-tilts from T0 to Tn, of length n.

Remark 2.8.2. (1) By Remark 2.7.7, if (T0,T1, . . . ,Tn) is a chain of HRS-
tilts from T0 to Tn, then (Tn,Tn−1, . . . ,T0) is a chain of HRS-tilts from
Tn to T0.

(2) By Remarks 2.5.32(4) and 2.7.5(2), if S is obtained by n-iterated HRS-
tilting from T, then gap(T,S) ≤ n.

Given two t-structures T,S with gap(T,S) ≤ n, it is natural two ask whether
there is a chain of HRS-tilts of length n from one to the other. There are two
candidates, first considered by Fiorot, Mattiello and Tonolo [17].

Definition 2.8.3. Let T = (U,V),T′ = (U′,V′) be t-structures with gap(T,T′) ≤
n. The pair (T,T′) is called:

(1) right filterable if the complete precoaisles Vi := V′∩ΣiV are the coaisles
of some t-structures, for every i ∈ Z.

(2) left filterable if the cocomplete preaisles Ui := U′ ∩ΣiU are the aisles of
some t-structures, for every i ∈ Z.

Remark 2.8.4. In the notation of the Definition, notice that we have

Vi =

⎧⎨⎩ΣiV for i≪ 0

V′ for i≫ 0
and Ui =

⎧⎨⎩U′ for i≪ 0

ΣiU for i≫ 0

Proposition 2.8.5. Let D be a TR5 triangulated category, and let T,T′ be
t-structures weakly generated by sets S, S′ of objects, with gap(T,T′) <∞.

(1) If S, S′ ⊆ Dc, then the pair (T,T′) is right filterable.
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(2) If D is well-generated, then the pair (T,T′) is right filterable.

Proof. Let T = (U,V),T′ = (U′,V′). In both the cases of the Proposition, the
idea is the same. Since V = S⊥≤0 and V′ = S′

⊥≤0 , we have

Vi = V′ ∩ ΣiV = (S⊥≤0) ∩ Σi(S′
⊥≤0) = (S ∪ ΣiS′)⊥≤0 .

If S, S′ ⊆ Dc or D is well-generated, by Propositions 2.5.19 and 2.5.22, this set
S ∪ ΣiS′ generates a t-structure, and so Vi is a coaisle. We mention that (1)
appeared as [50, Lemma 4.9].

Proposition 2.8.6 ([17, Lemma 2.10]). Let D be a triangulated category, and
let T = (U,V),T′ = (U′,V′) be t-structures with gap(T,T′) < ∞. If D is TR5,
the pair (T,T′) is right filterable as soon as one of the following conditions holds:

(1) V,V′ are closed under Milnor colimits;

(2) ΣiV is closed under the right truncation functor with respect to T′, for
every i ∈ Z.

Dually, if D is TR5∗, the pair (T,T′) is left filterable as soon as one of the
following conditions holds:

(1) U,U′ are closed under Milnor limits (defined dually to Milnor colimits);

(2) ΣiU is closed under the left truncation functor with respect to T′, for every
i ∈ Z.

Proposition 2.8.7 ([17, Theorem 2.13]). Let T,T′ be t-structures such that
gap(T,T′) ≤ n and that the pair (T,T′) is either left or right filterable. Then
there is a chain of HRS-tilts from T to (a shift of) T′.

Proof. We show the right filterable case; the other one is similar. Let T =

(U,V),T′ = (U′,V′), and assume that V ⊆ V′ ⊆ ΣnV (up to shifting T′).
If the pair (T,T′) is right filterable, for every i ∈ Z we have a t-structure
Ti = (Ui,Vi = V′ ∩ ΣiV). By assumption, T0 = T and Tn = T′, as they have
the same coaisles. Now we show that Ti+1 is obtained by HRS-tilting Ti, for
every i ∈ Z. Indeed, we have

Vi Vi+1 ΣVi

V′ ∩ ΣiV V′ ∩ Σi+1V Σ(V′ ∩ ΣiV)

=

⊆

=

⊆

=

⊆ ⊆

i.e. gap(Ti,Ti+1) ≤ 1. Therefore we conclude by Proposition 2.7.6.
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2.9 HRS-tilting and derived equivalences

The material for this section is taken from joint work with J. Vitória [61], when
not specified otherwise. Already in [25], the authors dealt with the question of
derived equivalences arising via their HRS-tilting procedure. Given an abelian
category A with enough injectives and a torsion pair t = (T,F) in A, they
constructed a bounded realisation functor realbDt

: Db(Ht) → Db(A) for the t-
structure Dt, with heart Ht, obtained by HRS-tilting the standard t-structure
D with respect to t. The existence of this bounded realisation functor is for us
a particular case of Proposition 2.6.9. Then they proved the following result.

Proposition 2.9.1 ([25, Theorem I.3.3(b)]). In the situation above, if T cogen-
erates A, then realbDt

is an equivalence.

This particular case is vastly generalised by the following criterion, by Chen,
Han and Zhou.

Proposition 2.9.2 ([12, Theorem 3.4]). Let D be a triangulated category, and
T a almost standard bounded t-structure in D with heart H. Let t be a torsion
pair in H, and denote by Tt the HRS-tilted t-structure, with heart Ht. Assume
that a bounded realisation functor realbTt

: Db(Ht) → Db
Tt

= D exists. Then the
following are equivalent:

(1) realbTt
is an equivalence, i.e. Tt is an almost standard bounded t-structure

for D;

(2) (2-effaçabilité) For every X,Y ∈ H and morphism f ∈ HomD(X,Σ2Y ),
there exists an epimorphism g : Z → X in H such that f ◦ g = 0.

(3) (2-co-effaçabilité) For every X,Y ∈ H and morphism f ∈ HomD(X,Σ2Y ),
there exists a monomorphism h : Y → Z in H such that h[2] ◦ f = 0.

(4) Every object X ∈ H fits in an exact sequence in H

εX : 0→ F0 → F1 → X → T0 → T1 → 0

such that Ti ∈ T, Fi ∈ F and εX represents the zero element of Ext3H(T1, F0).

Proof. Again, the referenced result is stated for H = A an abelian category,
D = Db(A) its bounded derived category and T = D the standard t-structure,
and our formulation follows Lemma 2.7.3 and Remark 2.7.4. Assume that
realbH : Db(H) → D is an equivalence, and let t′ be the torsion pair in H such
that realbHt′ = t. Let Tt, with heart Ht, be the HRS-tilt of T with respect
to t in D, and let Dt′ , with heart Ht′ , be the HRS-tilt of the standard t-
structure D of Db(H) with respect to t′. By the Lemma and the Remark,
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realbT is t-exact with respect to Dt′ and Tt, and therefore it induces an equiv-
alence realbT|Ht′

: Ht′ → Ht. Now, assume that a bounded realisation functor
realbTt

: Db(Ht)→ D exists; then the diagram

Db(Ht′) Db(H)

Db(Ht) D

≃realbT|H

realbD
t′

realbT≃
realbTt

defines a functor realbDt′
: Db(Ht′) → Db(H), which is easily seen to be a reali-

sation functor for Dt′ . Now one can apply the original theorem [12, Theorem
3.4] to this functor realbDt′

. Clearly, it is an equivalence if and only if realbTt
is.

Via the equivalence realbT, conditions (2-3) are true for H in Db(H) if and only
if they are true for H in D. Again via the same equivalence, condition (4) is
true for t in H if and only if it is for t′ in H, and we conclude.

We comment on the fact that (2) and (3) above are an equivalent way to
express item (3) of the referenced result, which states that the canonical mor-
phisms Ext2HT

(X,Y )→ HomD(A)(X,Y [2]) are isomorphisms (see [8, 67]).

Remark 2.9.3. Item (4) takes place inside A, without references to D(A);
therefore the fact that realbTt

is an equivalence is intrinsic to the torsion pair t.
Given an object X of A, a sequence εX as above, if it exists, will be called a
CHZ-sequence for X.

This criterion can be further simplified when A has some additional proper-
ties. We present here a different proof with respect to that of [61].

Lemma 2.9.4. Consider morphisms B u← A
v→ C, and their pushout D

0 keru A B cokeru 0

0 ker ū C D coker ū 0

v|

i

v

u

v̄

w

≃

ī ū w̄

Then cokeru ≃ coker ū, and v| is an epimorphism.

Proof. The morphism cokeru→ coker ū factors w̄v̄ through cokeru. Its inverse
factors through coker ū the morphism D → cokeru, which in turns factors the
morphisms B w→ cokeru and C 0→ cokeru.

The pushout square gives an exact sequence

A B ⊕ C D 0
[−uv ] [ v̄ ū ]

Any y ∈ ker ū gives an element (0, y) ∈ ker [ v̄ ū ] = im [−uv ], so there exists x ∈ A
such that (0, y) = (−u(x), v(x)), i.e. x ∈ keru and y = v(x) = v|(x).
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Proposition 2.9.5 ([61, Proposition 5.4]). Let A be an AB4 abelian category
with a set of generators (Gi | i ∈ I). Then there exist CHZ-sequences for every
object of A if and only if there is a CHZ-sequence for Gi, for every i ∈ I.

Proof. We prove the only non-trivial implication (⇐). First of all, since A is
AB4, both T and F are closed under coproducts (Lemma 1.4.2), and coproducts
of exact sequences are exact. Lastly, for any family of exact sequences

εi : 0→ Ai → Bi → Ci → Di → Ei → 0

representing the zero elements of Ext3A(Ei, Ai), their coproduct
∐︁
εi also rep-

resents the zero element of Ext3A(
∐︁
Ei,

∐︁
Ai). This shows that there are CHZ-

sequences for every coproduct of the generators. Given X in A, let f : G → X

be an epimorphism from such a coproduct G of the generators. Consider then
the diagram

εG : 0 F0 F1 G T0 T1 0

ε : 0 ker fb F1 X P coker c̄ 0

φ h

a b

f

c

g

d

≃
fb c̄ d̄

where the top row is a CHZ-sequence for G and P is the pushout of f and c.
Since f is an epimorphism, g is as well, so P ∈ T. The isomorphism T1 ≃ coker c̄

follows from Lemma 2.9.4, and so does the exactness of the lower row ε in the
degree where X is, using the epimorphism f| : im b = ker c→ ker c̄.

We claim that ε is a CHZ-sequence for X; the only thing left to show is that
it represents the zero element of Ext3A(T1, ker fb). To this goal, consider the
composition f ◦ [εG] of Yoneda extensions, which is represented by the second
row of the following diagram:

εG :

f ◦ εG :

ε :

0 F0 F1 G T0 T1 0

0 ker fb Q1 Q2 Q3 Q4 0

0 ker fb F1 X P coker c̄ 0

h

a

h1

b

h2

c

h3

d

h4

c

fb c̄ d̄

where each Qi is the pushout of the square of which it is the south-east corner.
Again by Lemma 2.9.4, h4 is an isomorphism. The dotted morphisms to the
terms of ε are such that they make the diagram commute, and at the same time
they factor the morphisms φ : εG ⇒ ε. In particular, the morphismQ4 → coker c̄

is an isomorphism, and therefore [ε] = [f ◦εG] = f ◦ [εG] = f ◦0 = 0 as elements
of Ext3A(T1, ker fb).

Another simplification of the criterion happens when the torsion pair t is
hereditary.
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Lemma 2.9.6. Let A be an abelian category and t = (T,F) a hereditary torsion
pair in A. Given an object X in A, there exists a CHZ-sequence for X if and
only if there exists a sequence of the form

FX
b→ X → TX → 0 (2.3)

with F ∈ F and T ∈ T.

Proof. (⇐) By adding ker b ∈ F to the sequence (2.3) we obtain a sequence

0→ ker b→ F
b→ X → T → 0→ 0

which clearly represents the zero element of Ext3A(0, ker b), and therefore it is a
CHZ-sequence for X. (⇒) Conversely, let

0→ F0 → F1 → X
c→ T0 → T1 → 0

be a CHZ-sequence for X. Then im c ⊆ T0 belongs to T, since t is hereditary,
and we have a sequence as in (2.3)

F1 → X → im c→ 0.

Now we combine these two results. For objects X,Y in a cocomplete abelian
category A, define the trace of X in Y to be the image trX(Y ) of the canonical
morphism

X(HomA(X,Y )) → Y.

If A is AB4, trX(Y ) is equivalently defined as the sum of all the images of
morphisms X → Y .

Theorem 2.9.7 ([61, Theorem 5.6]). Let A be an AB4 abelian category with
a generator G, and let t be a hereditary torsion pair in A. Denote by fG the
torsion-free part of G with respect to t. Then there exists a CHZ-sequence for
every object of A if and only if G/trfG(G) belongs to T.

Proof. By Proposition 2.9.5 and Lemma 2.9.6, there are CHZ-sequences for
every object of A if and only if there is an exact sequence

F
b→ G→ T → 0 (∗)

with F ∈ F and T ∈ T. (⇐) If G/trfG(G) belongs to T, then since F is closed
under coproducts (Lemma 1.4.2) the sequence

(fG)(HomA(fG,G)) → G→ G/trfG(G)→ 0

has the shape (∗). (⇒) Conversely, assume that the sequence (∗) exists. Then,
by Lemma 1.4.16, there is an epimorphism (fG)(I) → F for some set I, and
we easily deduce that im b ⊆ trfG(G). We then obtain an epimorphism T ≃
coker b→ G/trfG(G), which shows that the latter belongs to T.
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We now specialise this result to the case D = D(R), for a ring R, T = D the
standard t-structure and A = Mod(R). Notice that for every torsion pair t in
A, if we denote by Dt the corresponding HRS-tilt of D and by Ht its heart, a
bounded realisation realbDt

: Db(Ht)→ Db(R) exists by Proposition 2.6.9. There-
fore we are in the situation to apply Proposition 2.9.2.

Lemma 2.9.8. Let R be a ring and t be a hereditary torsion pair in Mod(R).
Denote by tR the torsion ideal with respect to t. Then trR/tR(R) = Annl(tR).

Proof. Since tR annihilates (from the right) every torsion-free module (see
Lemma 1.4.23), it also annihilates the epimorphic image of a torsion-free module
trfG(G), and therefore trfG(G) ⊆ Annl(tR). Conversely, for every r ∈ Annl(tR),
the morphism r ·− : R→ R factors through R/tR, and therefore r = r · (1+ tR)
belongs to trR/tR(R).

Corollary 2.9.9. Let R be a ring and t be a hereditary torsion pair in Mod(R).
Denote by tR the torsion ideal with respect to t. Let Dt be the HRS-tilt of the
standard t-structure of D(R) with respect to t. Then Dt is an almost standard
bounded t-structure of Db(R) if and only if R/Annl(tR) ∈ T.

Proof. As said above, by Proposition 2.6.9 a bounded realisation for Dt exists,
so we can combine Proposition 2.9.2, Theorem 2.9.7 and Lemma 2.9.8.

Definition 2.9.10 ([45, Definitions 10.8 and 10.15]). A ring R is semiprime
if the only nilpotent two-sided ideal of R is 0: i.e. Ik = 0 =⇒ I = 0 for every
two-sided ideal I ≤ R.

Example 2.9.11 ([45, Examples 10.17]). Examples of semiprime rings are:

(1) the reduced rings, i.e. rings without nilpotent elements;

(2) the semisimple rings, i.e. products of rings of matrices over a division ring
(Artin-Wedderburn Theorem);

(3) more generally, the von Neumann regular rings, i.e. rings such that for
every element r ∈ R there exists s ∈ R such that r = rsr;

(4) any product of semiprime rings.

Lemma 2.9.12. Let R be a semiprime ring, and I be a two-sided ideal. Then
Annl(I) = Annr(I).

Proof. (⊆) I and Annl(I) are two-sided ideals, and therefore so is IAnnl(I). We
have (IAnnl(I))

2 = I(Annl(I)I)Annl(I) = 0, and therefore IAnnl(I) = 0. (⊇)
The converse inclusion is similar.
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Corollary 2.9.13 ([61, Corollary 5.11]). Let R be a left noetherian ring which is
either commutative or semiprime. In the notation of Corollary 2.9.9, for every
hereditary torsion pair t in Mod(R) the t-structure Dt is an almost standard
bounded t-structure.

Proof. Let t = (T,F) be a hereditary torsion pair in Mod(R), and denote by
tR the torsion ideal with respect to t. Be R commutative or semiprime, in
either case Annl(tR) = Annr(tR). If moreover R is left noetherian, tR is finitely
generated as a left ideal, i.e. there are elements x1, . . . , xn in R such that
tR =

∑︁
Rxi. Now, consider the finite product (tR)n, and the right R-linear

morphism R→ (tR)n given by 1 ↦→ (x1, . . . , xn). Its kernel is Annr(tR). Indeed,
if r ∈ Annr(tR), then r ↦→ (x1r, . . . , xnr) = 0; conversely, if (x1r, . . . , xnr) = 0,
then also tR · r = (

∑︁
Rxi) · r =

∑︁
Rxir = 0, so r ∈ Annr(tR). Therefore we

obtain a monomorphism

R/Annl(tR) = R/Annr ↪→ tRn.

The latter being a finite product, i.e. also a coproduct, it belongs to T, and
since t is hereditary we deduce that R/Annl(tR) ∈ T as well.

This corollary has a direct implication in silting theory for commutative
noetherian rings.

Corollary 2.9.14. Every two-term cosilting complex over a commutative noethe-
rian ring is cotilting.

Proof. If R is a commutative noetherian ring, then the HRS-tilting t-structure
at any hereditary torsion pair in Mod(R) is a cosilting t-structure associated
with a two-term cosilting complex ([3, Corollary 4.1, Lemma 4.2]). Since, by
Corollary 2.9.13, this t-structure induces a derived equivalence, the two-term
cosilting complex must be cotilting ([67, Corollary 5.2]).

Remark 2.9.15. When R is two-sided noetherian, and either commutative or
semiprime, we can recover the previous Corollary as a consequence of Propo-
sition 1.4.28. Indeed, let F be the Gabriel filter associated to the hereditary
torsion pair t = (T,F). Since tR is torsion, then Annr(tR) ∈ F by item (1) of
that result, and therefore by definition R/Annr(tR) belongs to T.

The corollary above can fail if R is not assumed to be commutative or
semiprime.

Example 2.9.16. Consider the quiver A3 = (1
α→ 2

β→ 3), and let R = kA3.
It is obviously not commutative, and also not semiprime, since the ideal I of
paths of positive length is such that I3 = 0.
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The Auslander-Reiten quiver of R is well known to be

1
2
3

2
3

1
2

3 2 1

=

•
• •

• • •

R = ⟨e1, e2, e3, α, β, αβ⟩, where we use the ⟨⟩ notation to denote generation
as a k-vector space. R is written as sum of indecomposable projectives as

R = 3 ⊕ 2
3 ⊕

1
2
3
= ⟨e3⟩ ⊕ ⟨e2, β⟩ ⊕ ⟨e1, α, αβ⟩

By Corollary 1.4.13, hereditary torsion pairs in Mod(R) are in bijection with
hereditary torsion pairs in mod(R): moreover, since every indecomposable has
finite length, a hereditary torsion pair is determined by the simple modules it
contains. We list them, with the convention that • represents torsion objects, ◦
torsion-free objects, and · the other objects.

(a)
◦

◦ ◦
◦ ◦ ◦

, (b)
·

· ◦
• ◦ ◦

, (c)
◦

◦ ·
◦ • ◦

,

(d)
◦

◦ ◦
◦ ◦ •

, (e)
·

• ·
• • ◦

, (f)
·

· ◦
• ◦ •

,

(g)
◦

◦ •
◦ • •

, (h)
•

• •
• • •

.

In particular, if we denote by tx the corresponding torsion radicals, we have

taR = tcR = tdR = tgR = 0,

tbR = tfR = 3 ⊕ 3 ⊕ 3 = ⟨e3, β, αβ⟩,

teR = 3 ⊕ 2
3 ⊕ 2

3 = ⟨e3, e2, β, α, αβ⟩,

thR = R

Annl(taR) = Annl(tcR) = Annl(tdR) = Annl(tgR) = R,

Annl(tbR) = Annl(tfR) = 0,

Annl(teR) = 0,

Annl(thR) = 0

It follows from Corollary 2.9.9 that the only hereditary torsion pairs whose
HRS-tilt is an almost standard bounded t-structure of Db(R) are the faithful
ones (a,c,d,g) and the trivial one (h).
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We give another application of the criterion of Lemma 2.9.6, which is ex-
tracted from the proof of [61, Theorem 6.3], and which will be used in proving
Theorem 3.3.2.

Proposition 2.9.17. Let A be a Grothendieck category, and t = (T,F) a hered-
itary torsion pair. Assume that there is a set of exact functors (Li : A → Ai |
i ∈ I), for abelian categories Ai, such that T =

⋂︁
kerLi. Let X be an object

of A, denote by fX its torsion-free part, and assume moreover that the group
homomorphisms LifX,X : HomA(fX,X) → HomAi

(LifX,LiX) are surjective,
for every i ∈ I. Then there is a CHZ-sequence for X.

Proof. Since t is hereditary, by Lemma 2.9.6 it is enough to show that there
is an exact sequence F

b→ X → T → 0 with F ∈ F and T ∈ T. We will
set F := fX(HomA(fX,X)), b to be the canonical morphism and therefore T :=

X/trfX(X), which we need to show to be torsion. Consider the t-approximation
sequence for X

0→ tX → X
v→ fX → 0.

For every i ∈ I, since Li is exact and tX ∈ kerLi, we have an isomorphism
Liv : LiX

≃→ LifX in Ai. By assumption, there must be a morphism ui in
HomA(fX,X) such that Liui = (Liv)

−1 ∈ HomAi(LifX,LiX). Clearly, since
Li is exact, we have Li(cokerui) = coker(Liui) = 0, because Liui is an isomor-
phism. Now consider the diagram

fX(HomA(fX,X)) X X/trfX(X) 0

fX X cokerui 0.

b c

j

ui

γ

where j is the inclusion in the component indexed by ui ∈ HomA(fX,X).
The dotted morphism γ is an epimorphism, because it factors the epimorphism
c; and again, since Li is exact, Liγ : 0 = Li(cokerui) → Li(X/trfX(X)) is an
epimorphism, which shows that the latter object is 0 as well. Since this happens
for every i ∈ I, we deduce that X/trfX(X) ∈ T, which concludes the proof.
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Chapter 3

Derived equivalences for
commutative noetherian rings

The material in this Chapter is taken from joint work with J. Vitória [61].

3.1 Preliminaries: commutative noetherian rings

In this section, R denotes a commutative noetherian ring. The set of prime
ideals of R, partially ordered by inclusion, will be denoted by Spec(R). For an
ideal I ≤ R, we write

∨(I) := {p ∈ Spec(R) : I ⊆ p} and ∧(I) := {p ∈ Spec(R) : p ⊆ I}

The set Spec(R) has a natural topology, whose closed subsets are the ∨(I)
for all ideals I ≤ R. This is called the Zariski topology on Spec(R). This
topological space turns out to encode significant information concerning the
representation theory of R.

Definition 3.1.1. A subset P of Spec(R) is said to be specialisation-closed
if for any p in P we have that ∨(p) is contained in P. Dually, the subset P is
called generalisation-closed if for any p in P we have that ∧(p) is contained
in P.

Note that the complement of a specialisation-closed subset is generalisation-
closed and vice-versa. We will denote the complement of a subset P ⊆ Spec(R)

by Pc. From their definition, specialisation-closed subsets are (possibly infinite)
unions of Zariski-closed subsets, and thus, generalisation-closed subsets are (pos-
sibly infinite) intersections of Zariski-open subsets. For a family P ⊆ Spec(R),
its specialisation closure is the smallest specialisation-closed set containing
P, namely ∨(P) := ⋃︁

p∈P∨(p).

73
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The spectrum of R is deeply related to the structure of Mod(R), as we now
review. We start with the following definition.

Definition 3.1.2 ([75, §VII.1]). Let R be a commutative noetherian ring, and
M an R-module. The set of associated primes of M is defined as

Ass(M) := {p ∈ Spec(R) : there is a monomorphism R/p ↪→M}

:= {p ∈ Spec(R) : p = Ann(m) for some m ∈M}.

Lemma 3.1.3 ([75, Proposition VII.1.1]). Let R be a commutative noetherian
ring, and M an R-module. If Ass(M) = ∅, then M = 0.

Proof. Let M ̸= 0, and consider the set {Ann(m) : 0 ̸= m ∈ M} ≠ ∅, which
consists of proper ideals. Since R is noetherian, by Zorn’s Lemma this set has
a maximal element p = Ann(m), and this must be prime. Indeed, let I, J ≤ R

such that IJ ⊆ p. Assume that I ⊈ p, and let r ∈ I \p. Then J ⊆ Ann(mr) = p

by maximality of p.

Example 3.1.4. For a prime p ∈ Spec(R) we have Ass(R/p) = {p}. More-
over, if we denote by E(M) the injective envelope of a module M , we have
Ass(E(M)) = Ass(M) ([75, Lemma 1.4]).

The spectrum of the R can be read from the category Mod(R), by the fol-
lowing theorem of Matlis.

Proposition 3.1.5 ([49, Proposition 3.1]). Let R be a commutative noetherian
ring. Then there is a bijection between Spec(R) and the set of isomorphism
classes of indecomposable injective modules, given by the assignement

p ↦→ E(R/p), pE ← [ E,

where pE is the only prime such that Ass(E) = {pE} (see Example 3.1.4).
Moreover, p ≤ q if and only if HomR(E(R/p), E(R/q)) ̸= 0.

Proof. We add the proof of the last claim. If p ≤ q, then we have a mor-
phism R/p→ R/q which gives a non-zero morphism E(R/p)→ E(R/q). Con-
versely, notice that for every non-zero element of R/p, its annihilator is pre-
cisely p. Now, given a non-zero morphism f : E(R/p) → E(R/q), its image
intersects the essential submodule R/q. The preimage of this intersection is
a non-zero submodule of E(R/p), and therefore it also intersects the essential
submodule R/p. Restricting the morphism to this intersection, we obtain a
non-zero morphism f| from a non-zero submodule of R/p to R/q. Let x be
an element in the domain of this morphism which is not in the kernel: then
p = Ann(x) ⊆ Ann(f|(x)) = q.

Proposition 3.1.6 ([49, Theorem 2.5]). Let R be a right-noetherian ring. Then
every injective right R-module is a coproduct of indecomposable injective right
R-modules.
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3.1.1 Supports

Given a prime ideal p of R, let Rp denote the localisation of R at the complement
of p (see e.g. [30, §7.2-7.4]) and k(p) = Rp/pRp the residue field of R at p.
Consider the two left derived functors (see §2.3.4)

−p := −⊗R Rp : D(R) −→ D(R) and −⊗Lk(p) : D(R) −→ D(R),

Since Rp is a flat R-module (e.g. [30, Proposition 7.7]), for a complex X,
Xp := X ⊗R Rp is the componentwise localisation of X as an object of D(R).
In particular, we have Hi(Xp) ≃ Hi(X)p for all i in Z.

Definition 3.1.7. Let R be a commutative noetherian ring. Given a complex
X in D(R), we define the following subsets of Spec(R):

• supp(X) := {p ∈ Spec(R) : X ⊗L
R k(p) ̸= 0}, the (small) support of X;

• Supp(X) := {p ∈ Spec(R) : Xp ̸= 0}, the big support of X.

The (big) support of a subcategory X of D(R) is the union of the (big) supports
of the objects in X. Since localisation at p commutes with standard cohomology,
as noticed above, Supp(X) = Supp(

∐︁
Hi(X)). This set is therefore also called

the homological support of X.

The following Lemma collects some facts about supports of objects of D(R).

Lemma 3.1.8. Let R be a commutative noetherian ring.

(1) For every prime p of R we have:

(a) supp(k(p)) = {p} = supp(E(R/p));

(b) supp(R/p) = ∨(p);
(c) supp(Rp) = ∧(p);

(2) For any X in D(R), Supp(X) is specialisation closed;

(3) For any X in D(R), supp(X) ⊆ Supp(X);

(4) For any bounded below complex X in D+(R), supp(X) coincides with the
set of prime ideals p for which the module E(R/p) is a summand of a
module appearing in the minimal homotopically injective resolution of X;

(5) For any bounded below X in D+(R), we have ∨(supp(X)) = Supp(X);

(6) For every R-module M , supp(M) = Ass(M) ∪ supp(E(M)/M); the mini-
mal elements of the sets Supp(M), supp(M) and Ass(M) coincide.
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Proof. (1) is a computation.
(2) is proved for modules in [7, Lemma 2.1], and then follows in general,

taking into account that the big support of a complex coincides with the union
of the big supports of its cohomologies.

(3) is proved on page 158 of Foxby’s [18].
(4) is proved when X is bounded in [18, Proposition 2.8 and Remark 2.9],

and in our more general situation in [13, Proposition 2.1 and Remark 2.2].
For (5), notice that by (2) and (3) we already have that ∨(supp(X)) ⊆

Supp(X). For the converse inclusion, let X → E(X) denote a minimal K-
injective resolution of X in D(R) and let q be a prime ideal of R. Then q is
not in ∨(supp(X)) if and only if q is not in ∨(p) for any p in supp(X), i.e. if
and only if, by [7, Lemma 2.2], q is not in ∨(p) = Supp(E(R/p)) for any p in
supp(X). Hence, by item (4), if q does not lie in ∨(suppX) then E(X)q = 0 (or,
equivalently, Xq = 0) in D(R).

(6) Consider a minimal injective resolution of M , E0 → E1 → · · · , and
denote by Zi ⊆ Ei the i-th cycles, so that Z0 = M and Z1 = E(M)/M . Then
Ei → Ei+1 → · · · is a minimal injective resolution of Zi. By (4), we obtain
that supp(Zi) = supp(Ei) ∪ supp(Zi+1) = Ass(Ei) ∪ supp(Zi+1), which gives
the first claim. Now, showing that two sets of primes have the same minimal
elements is the same as showing that they have the same specialisation closure.
The fact that Supp(M) and supp(M) have the same minimal elements then
follows from (5). For supp(M) and Ass(M), we already know that Ass(M) ⊆
suppM ⊆ ∨(supp(M)); for the other direction, by Proposition 3.1.5 we have
that HomR(E(R/p), E(R/q)) = 0 if q /∈ ∨(p), so supp(Zi+1) ⊆ ∨(supp(Ei)) =
∨(Ass(Ei)), and therefore supp(M) = Ass(E(M))∪ supp(Z1) ⊆ ∨(Ass(E(M))).

For a subset P ⊆ Spec(R), we write supp−1(P) (respectively, Supp−1(P)) for
the subcategory of D(R) whose objects have small (respectively, big) support
contained in P. By item (3) above, Supp−1(P) is contained in supp−1(P). If
P is specialisation-closed, then item (5) of the lemma above guarantees that
a bounded below complex belongs to supp−1(P) if and only if it belongs to
Supp−1(P), i.e.

P = ∨(P) =⇒ supp−1(P) ∩ D+(R) = Supp−1(P) ∩ D+(R) (3.1)

3.1.2 Classification of localising subcategories

Via the assignement of support, Spec(R) controls the localising subcategories of
both Mod(R) and D(R) (see §1.3 and §2.2), as we now explain.

Recall that since R is noetherian, by Proposition 1.4.27, localising subcate-
gories of Mod(R) are in bijection with Gabriel filters. When R is also commu-
tative, we have the following characterisation, originally from Gabriel [20].
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Proposition 3.1.9 ([75, Theorem 3.4 and following Example]). Let R be a
commutative noetherian ring. Then there are bijections between:

(1) Hereditary torsion classes T in Mod(R);

(2) Gabriel filters F on R;

(3) Specialisation closed subsets V of Spec(R);

given by the assignements

(1↔ 3) T ↦→ Supp(T), Supp−1(V )←[ V

(2↔ 3) F ↦→ {p ∈ Spec(R) : p ∈ F}, {I ≤ R : ∨(I) ⊆ V } ←[ V

Notice that since this classification involves specialisation closed subsets V ,
we will equivalently use Supp or supp, as allowed by Equation (3.1). The follow-
ing Lemma gives some more characterisations of hereditary torsion pairs and
the support of their torsion class.

Lemma 3.1.10. Let R be a commutative noetherian ring, and t = (T,F) a
hereditary torsion pair in Mod(R). Then we have:

(1) A prime p lies in supp(T) if and only if k(p) ∈ T;

(2) For any p ∈ Spec(R), either k(p) ∈ T or k(p) ∈ T⊥0,1 ⊆ F.

(3) F = {M ∈ Mod(R) : Ass(M) ∩ supp(T) = ∅}

= Cogen(supp−1(supp(T)c) ∩Mod(R))

Proof. These are well-known statements. (1) follows from Proposition 3.1.9.
For (2), one needs to check that if p does not lie in supp(T), then we have
HomR(T, k(p)) = 0 = Ext1R(T, k(p)) for all T in T. By Lemma 3.1.8(4), every
injective module in the minimal injective resolution of k(p) is a coproduct of
copies of E(R/p). The statement now follows from the fact that T has only
maps to injective modules of the form E(R/q), with q in supp(T) (see Proposi-
tion 3.1.5). (3) Since t is hereditary, F is closed under injective envelopes, i.e.
a module M belongs to F if and only if E(M) ∈ F. Now, the injectives of F
are precisely those whose associated primes lie in supp(T)c. This shows both
identities.

We record another fact about hereditary torsion pairs over R.

Lemma 3.1.11 ([3, Lemma 4.2]). Let R be a commutative noetherian ring. A
torsion pair in Mod(R) is hereditary if and only if it is of finite type.
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Remark 3.1.12. This Lemma provides the converse of Proposition 1.4.12(3).
Notice that without the commutativity assumption this is not true, as it is shown
by the following example. In the notation of Example 2.9.16, consider the torsion
pair of Mod(kA3) generated by the set { 23 ,

1
2
3
}, which is automatically of finite

type. Looking at the finitely presented objects it contains, we get a diagram

•
• •

◦ • •,

which shows that the torsion pair is not hereditary.

In the derived category, a parametrisation of localising subcategories in terms
of their supports is due to Neeman.

Theorem 3.1.13 ([53]). Let R be a commutative noetherian ring. Then, the
following statements hold.

(1) Localising subcategories L of D(R) are coreflective; therefore (L,L⊥) is a
stable t-structure (see Definition 2.5.11).

(2) There is a bijection between localising subcategories L of D(R) and subsets
P of Spec(R), given by

L ↦→ supp(L), supp−1(P)← [ P,

which restricts to a bijection between smashing subcategories of D(R) and
specialisation closed subsets of Spec(R).

(3) For a localising subcategory L of D(R) we have that:

(a) a prime p lies in supp(L) if and only if k(p) lies in L;

(b) for any p in Spec(R), then k(p) lies either in L or in L⊥;

(c) L is the smallest localising subcategory containing {k(p) : p ∈ supp(L)};

Proof. We spend a word on (1), which in [53, Theorem 2.6] is attributed to
Bousfield “possibly after increasing the universe”. In fact, the whole section [53,
§2] never uses this fact. Then item (3.c) shows that L is the smallest cocomplete
preaisle containing the set S of all shift of residue fields of primes in supp(L);
since D(R) is compactly generated, L is then the aisle of a (stable) t-structure,
by Proposition 2.5.22.

Notice the parallel, albeit with some subtle differences, between the abelian
and the derived classification results. The following result summarises the rela-
tion between the two theorems above.
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Proposition 3.1.14. Let R be a commutative noetherian ring, V a speciali-
sation closed subset of Spec(R) and L = supp−1(V ) the associated smashing
subcategory of D(R). Then the localising subcategory T of Mod(R) associated to
V is L ∩Mod(R) and, moreover, T⊥≥0 = L⊥ ∩Mod(R).

Remark 3.1.15. Note that for a hereditary torsion class in Mod(R), it can be
shown that T⊥≥0 coincides with the Giraud subcategory T⊥0,1 if and only if T
is a perfect torsion class, i.e. if and only if the associated Gabriel topology is
perfect (see Definition 1.4.29). In §3.2.2 we will prove this fact and make use of
it to obtain a complete classification of hereditary torsion pairs in the HRS-tilt
of Mod(R) with respect to a perfect torsion pair.

3.1.3 Classification of compactly generated t-structures

As it is the case with localising subcategories, the spectrum of R also classifies
the compactly generated t-structures of D(R).

Definition 3.1.16. Let R be a commutative noetherian ring. A function φ

from Z to the power set of Spec(R) is said to be an sp-filtration of Spec(R) if φ
is a decreasing function between posets (i.e. if for all integers n, φ(n) ⊇ φ(n+1))
and φ(n) is specialisation-closed, for all n.

Theorem 3.1.17 ([1, Theorem 4.10], [28, Theorem 1.1]). Let R be a commu-
tative noetherian ring. The following are equivalent for a t-structure T = (U,V)

in D(R).

(1) T is compactly generated;

(2) T is homotopically smashing;

(3) There is an sp-filtration of Spec(R) for which

U = {X ∈ D(R) : Supp(H0(X[n])) ⊆ φ(n),∀n ∈ Z}

V = {X ∈ D(R) : RΓφ(n)(X) ∈ D≥n+1,∀n ∈ Z},

where ΓV denotes the (left exact) torsion radical of the hereditary torsion
pair (Supp−1(V ),FV ) of Mod(R), for a specialisation-closed set V (see
Proposition 3.1.9).

We have the following easy lemma.

Lemma 3.1.18. Let R be a commutative noetherian ring, and let T be compactly
generated t-structure in D(R), with associated sp-filtration φ. Then

(1) T is left non-degenerate if and only if ∩n∈Zφ(n) = ∅;

(2) T is right non-degenerate if and only if φ(n) = Spec(R) for every n≪ 0.
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(3) T is intermediate if and only if there are integers a < b such that φ(n) =
Spec(R) for every n ≤ a and φ(n) = ∅ for every n ≥ b,

Proof. Write T = (U,V).
(1) Let p ∈ ∩n∈Zφ(n); then k(p) ∈ U[n] for every n ∈ Z, and therefore T

is left degenerate. Conversely, assume ∩n∈Zφ(n) = ∅, and let X ∈ ∩n∈ZU[n].
Then Supp(HiX) ⊆ ∩n∈Zφ(n), which implies HiX = 0. Therefore X = 0.

(2) First notice that φ(n) = Spec(R) for every n≪ 0 if and only if ∪n∈Zφ(n) =

Spec(R): indeed, Spec(R) has only finitely many minimal elements (see e.g. [32,
Theorem 88]). Now, if p ∈ Spec(R)\∪n∈Zφ(n), then k(p) /∈ U[n] for every n ∈ Z,
and therefore k(p) ∈ V[n] for every n ∈ Z by [28, Lemma 2.7]. Hence T is right
degenerate. Conversely, assume that φ(n) = Spec(R) for every n ≪ 0: then
U contains a shift of aisle of the standard t-structure. It follows that V is con-
tained in the corresponding shift of the coaisle of the standard t-structure, and
therefore ∩n∈ZV[n] ⊆ ∩n∈ZD≥n = 0. See also [27, Lemma 3.10].

(3) Trivial.

Definition 3.1.19. A sp-filtration φ will be called (left, right) non-degene-
rate, intermediate if the corresponding t-structure is.

Combining the results above, we observe the following useful statement.

Corollary 3.1.20. Let R be a commutative notherian ring, and H be the heart
of a non-degenerate compactly generated t-structure T in D(R). Then, a torsion
pair t = (T,F) in H is of finite type if and only if it is generated by a set of
finitely presented objects of H.

Proof. By Lemma 1.4.8(1), we only need to prove the implication (⇒). If t is of
finite type in H, Proposition 2.7.10 shows that the HRS-tilt of T with respect
to t is homotopically smashing; therefore by Theorem 3.1.17 it is compactly
generated. Finally, another application of Proposition 2.7.10 shows that t is
generated by finitely presented objects.

Remark 3.1.21. Note that in the above corollary, H is not necessarily locally
coherent — although, it is locally finitely presented by Proposition 2.5.42.

3.2 Hereditary torsion pairs in Grothendieck hearts

In this section we discuss hereditary torsion pairs in a given Grothendieck heart
in the derived category of a commutative noetherian ring. Throughout, once
again R will denote a commutative noetherian ring.
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3.2.1 A characterisation by support

We begin by showing that hereditary torsion classes in the heart of a smashing
non-degenerate t-structure of D(R) are completely determined by their support
in Spec(R), similarly to what happens in Mod(R).

Lemma 3.2.1. Let R be a commutative noetherian ring and let T = (U,V) be
a non-degenerate t-structure in D(R) with heart H and cohomological functor
H0

T : D(R)→ H. Then:

(1) for each p in Spec(R), there is an integer np for which k(p)[np] lies in H;

(2) supp(H) = Spec(R).

Proof. (1) It is shown in [28, Lemma 2.7] that the following two subsets form a
partition of Z:

A(p) := {a ∈ Z : k(p) ∈ U[a]} and B(p) := {b ∈ Z : k(p) ∈ V[b]}.

Since T is non-degenerate, this is a nontrivial partition. Moreover, since U

(respectively, V) is closed under positive (respectively, negative) shifts, if m ≤
n ∈ A(p) then m ∈ A(p) (respectively, if m ≥ n ∈ B(p) then m ∈ B(p)). Hence,
A(p) has a maximum, say α, and B(p) has a minimum, say β. Since these
sets form a partition of Z, we conclude that β = α + 1 and, thus, k(p) lies in
U[α] ∩ V[α + 1] = H[α]. In other words, we have that k(p)[−α] lies in H, so it
suffices to take np = −α.

(2) Since supp(k(p)[n]) = {p} for any integer n, it follows from (1) that
supp(H) = Spec(R).

Proposition 3.2.2. Let R be a commutative noetherian ring and let T = (U,V)

be a non-degenerate smashing t-structure in D(R) with heart H and cohomolog-
ical functor H0

T : D(R) → H. If t = (T,F) is a hereditary torsion pair in H,
then:

(1) Lt := {X ∈ D(R) : H0
T(X[i]) ∈ T for every i ∈ Z} is a localising subcate-

gory of D(R);

(2) supp(Lt) = supp(T) = {p ∈ Spec(R) : k(p)[np] ∈ T}

(3) Lt is the smallest localising subcategory containing T;

(4) L⊥
t ∩H ⊆ T⊥0,1 ;

(5) for each p in Spec(R), k(p)[np] lies in T or k(p)[np] lies in the Giraud
subcategory T⊥0,1 ;

(6) supp−1(supp(T)) ∩H = T, i.e. T is completely determined by its support.
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Proof. (1) Since T is closed under subobjects, extensions and quotient objects,
it is easy to see that Lt is a triangulated subcategory. Furthermore, since T is
smashing, H0

T commutes with coproducts (Lemma 2.5.39(2)); thus, since T is
closed under coproducts, we conclude that Lt is a localising subcategory.

(2) Let us denote by P the subset of Spec(R) consisting of the prime ideals
p for which k(p)[np] lies in T. We prove our statement by showing that

supp(Lt) ⊆ P ⊆ supp(T) ⊆ supp(Lt).

Let p be a prime ideal of R. If p lies in supp(Lt) then k(p) lies in Lt (see
Theorem 3.1.13) and, thus, k(p)[np] lies in T, i.e. p lies in P. If p lies in P, since
supp(k(p)[np]) = {p}, then p lies in supp(T). Finally, if p lies in supp(T), since
T is contained in Lt, it follows that p lies in supp(Lt).

(3) Since T is contained in Lt, the smallest localising subcategory containing
T must be contained in Lt. Conversely, if L is an arbitrary localising subcategory
containing T, then supp(L) must contain supp(T) = supp(Lt) and, thus, L must
contain Lt.

(4) Given X in L⊥
t ∩ H and T in T (and, thus, in Lt), we have that

HomD(R)(T,X) = 0 and Ext1H(T,X) ≃ HomD(R)(T [−1], X) = 0 since T [−1]
lies also in Lt. Thus, X lies in T⊥0,1 .

(5) Let p be an arbitrary prime ideal of R and consider the object k(p)[np] of
H. By Theorem 3.1.13, this object either lies in Lt∩H = T or in L⊥

t ∩H ⊆ T⊥0,1 .
(6) From (3) and Theorem 3.1.13, it follows that that supp−1(supp(T))) = Lt.

By definition of Lt, we have Lt ∩H = T, thus proving our claim.

Note that, in particular, it follows that the hereditary torsion classes of the
heart of a non-degenerate smashing t-structure form a set. Item (6) of the
previous proposition motivates the following definition.

Definition 3.2.3. Let R be a commutative noetherian ring and T a non-
degenerate smashing t-structure in D(R), with heart H. A set U ⊆ Spec(R)

is called a H-support if it is the support of a hereditary torsion class in H.
This torsion class will then be supp−1(U) ∩H.

As a side corollary of the proposition above, we deduce a relation between
the support of a complex and that of its cohomologies with respect to a smashing
t-structure.

Corollary 3.2.4. Let R be a commutative noetherian ring, and let T be a non-
degenerate smashing t-structure in D(R), with heart H and cohomology functor
H0

T. Let U ⊆ Spec(R) be a H-support: then, for every object X of D(R), we
have

supp(X) ⊆ U if and only if supp(H0
T(X[n])) ⊆ U ∀n ∈ Z

Proof. This is direct consequence of items (1) and (2) of Theorem 3.2.2.
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Remark 3.2.5. Note that this corollary recovers and extends the known rela-
tion (see [7, Corollary 5.3])

∨(supp(X)) = ∨(supp(
⨁︂

n∈Z
H0(X[n])))

by taking T = D the standard t-structure, and using that both sides of the
equation are Mod(R)-supports (i.e. specialisation-closed subsets).

The following theorem provides some examples of H-supports, for some par-
ticular kinds of hearts.

Theorem 3.2.6. Let R be a commutative noetherian ring and let T = (U,V)

be an intermediate compactly generated t-structure in D(R) with heart H. The
following statements hold.

(1) If V is specialisation closed, then

(a) TV := supp−1(V ) ∩H is a hereditary torsion class in H;

(b) if, additionally, T induces a derived equivalence, then tV = (TV ,T
⊥
V )

is a torsion pair of finite type and T⊥
V = Cogen(supp−1(V c) ∩H).

(2) If T is restrictable, then for any hereditary torsion pair of finite type t =

(T,F) in H we have that supp(T) is specialisation closed.

Proof. (1.a) We first show that TV := supp−1(V )∩H is a hereditary torsion class
in H, whenever V is a specialisation closed subset of Spec(R). First note that,
since T is intermediate, H is contained in Db(R), and since V is specialisation
closed, it follows from Lemma 3.1.8 that supp−1(V ) ∩ H = Supp−1(V ) ∩ H.
Since T is compactly generated, it is homotopically smashing, i.e. both U and V

are closed under directed homotopy colimits. From [28, Lemma 2.11] it follows
that both U and V are closed under −⊗R Rp and, therefore, −⊗R Rp is exact
in H, for any p in Spec(R). This shows that given a short exact sequence in H

of the form
0→ X → Y → Z → 0

we have that Y ⊗RRp = 0 if and only if X⊗RRp = 0 = Z⊗RRp. In other words,
we have that Supp(Y ) = Supp(X) ∪ Supp(Z) and, thus Supp(Y ) is contained in
V if and only if both Supp(X) and Supp(Z) are contained in V . This shows
that TV is closed under extensions, subobjects and quotient objects. Since it is
also clearly closed under coproducts, TV is a hereditary torsion class.

(1.b) Suppose now that T induces a derived equivalence. In this case we know
that there is an isomorphism ExtkH(X,Y ) ≃ HomD(R)(X,Y [k]) for any X and Y
in H and k ≥ 0. In particular, for a subcategory S of H, there is no ambiguity
when calculating the orthogonal S⊥J : this Ext-orthogonal subcategory in H

coincides with the intersection with H of the orthogonal computed in D(R).
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We first show that T⊥≥0

V = supp−1(V c)∩H. It follows from Theorem 3.1.13
that LV := supp−1(V ) is a smashing subcategory of D(R) and, thus, BV := L⊥

V

is also localising with supp(BV ) = V c. Since, from Proposition 3.2.2, LV is
the smallest localising subcategory containing TV and since T induces a derived
equivalence, it follows that BV ∩ H = T

⊥≥0

V . Finally, note that since TV is
hereditary, we have that (TV ,T

⊥
V ) = (⊥EV ,Cogen(EV )) for an injective object

EV in H, and EV lies in T⊥≥0 . It then follows that T⊥
V = Cogen(BV ∩H) =

Cogen(supp−1(V c) ∩H).
We now show that this torsion pair t = (TV ,T

⊥
V ) is of finite type. No-

tice that since V is specialisation-closed, LV admits a description as {X ∈
D(R) : Supp(HnX) ⊆ V } (see Definition 3.1.7 and Lemma 3.1.8). Therefore, it
is the aisle of a homotopically smashing t-structure, by Theorem 3.1.17; i.e. B

is closed under homotopy colimits. By Proposition 2.5.40, since T is homotopi-
cally smashing, every direct limit in H is a directed homotopy colimit in D(R).
Hence, BV ∩H = T⊥≥0 is closed under direct limits in H. Since direct limits
are exact in H and T⊥

V = Cogen(T⊥≥0 ∩ H), we get that T⊥
V is closed under

direct limits.
(2) By Proposition 2.5.43, since T is restrictable, H is locally coherent and

fp(H) = H ∩ Db(mod(R)). Since t is a hereditary torsion pair of finite type, it
follows from Lemma 1.4.9 that T = lim−→(T∩ fp(H)). Let L be the smallest local-
ising subcategory of D(R) containing T ∩ fp(H). Clearly, L is contained in the
smallest localising subcategory containing T, which we denote by Lt. Since L is
the aisle of a t-structure (namely (L,L⊥)), L is closed under directed homotopy
colimits. As above, since T is homotopically smashing, directed limits in H are
directed homotopy colimits in D(R) and, thus, T is contained in L, showing
that L = Lt. Therefore, we have that supp(T) = supp(Lt) = supp(L). Now, by
assumption, the t-structure (L,L⊥) is generated by all shifts of T∩ fp(H) which,
by assumption is made of complexes in Db(mod(R)). Now by [1, Theorem 3.10]
this means that L is compactly generated and, therefore, smashing. This shows,
by Theorem 3.1.13, that supp(T) = supp(L) is specialisation closed.

Notice that the theorem above provides an immediate generalisation of
Proposition 3.1.9, which we will further simplify in Corollary 3.3.17.

Corollary 3.2.7. Let R be a commutative noetherian ring and let T be a re-
strictable and intermediate compactly generated t-structure in D(R) inducing a
derived equivalence. Then there is a bijection between hereditary torsion pairs
of finite type in the heart of T and specialisation closed subsets of Spec(R).

In fact, we can be more precise about the support of a hereditary torsion
pair of finite type for non-degenerate compactly generated t-structures.
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Proposition 3.2.8. Let R be a commutative noetherian ring and let T = (U,V)

be a non-degenerate compactly generated t-structure in D(R) with heart H and
associated sp-filtration φ.

(1) For each p in Spec(R), let φmax(p) denote the largest integer n for which
p belongs to φ(n). Then, in the notation of Lemma 3.2.1, we have np =

−φmax(p) and, in particular, if p is contained in a prime q, then np ≥ nq.

(2) If t = (T,F) is a hereditary torsion pair of finite type in H, then there is
an sp-filtration ψ such that φ(j + 1) ⊆ ψ(j) ⊆ φ(j) for all j in Z and

supp(T) =
⋃︂
j∈Z

[ψ(j) \ φ(j + 1)] .

Proof. (1) Given the cohomological description of U (see Theorem 3.1.17), we
know that the stalk complex k(p)[−φmax(p)] lies in U but k(p)[−(φmax(p)+1)]

does not. By [28, Lemma 2.7], this means that k(p)[−φmax(p)−1] lies in V and,
therefore, k(p)[−φmax(p)] lies in V[1]∩U = H, as wanted. Since an sp-filtration
is a decreasing sequence of specialisation-closed subsets, we have that if p is
contained in a prime q, then φmax(p) ≤ φmax(q) and, thus, np ≥ nq.

(2) Let t = (T,F) be a hereditary torsion pair of finite type in H. The
t-structure obtained by HRS-tilting T with respect to t is compactly generated,
since t is of finite type (see Proposition 2.7.10(1) and Theorem 3.1.17). Thus,
it is determined by an sp-filtration ψ, satisfying φ(j + 1) ⊆ ψ(j) ⊆ φ(j). Let
Uψ be the aisle of the t-structure associated to ψ. Clearly, we have that T =

Uψ ∩H. We need to check which shifted residue fields belong to T (following
Proposition 3.2.2(2)). For any p in Spec(R), by (1) k(p)[−j] lies in H if and
only if p lies in φ(j) \ φ(j + 1). Now, k(p)[−j] lies in T if and only if k(p)[−j]
lies in H ∩ Uψ, i.e. p lies in ψ(j) \ φ(j + 1). Thus supp(T) coincides with the
union of all such sets ψ(j) \ φ(j + 1).

3.2.2 A complete classification of hereditary torsion pairs
in a special case

The previous section shows that when trying to classify the hereditary torsion
pairs in the heart H of a non-degenerate compactly generated t-structure, one
may equivalently describe the corresponding H-supports. For example, by The-
orem 3.2.6 we know that specialisation-closed sets are often H-supports. While
the problem of classifying all H-supports remains, in general, open, we are able
to provide a complete classification for some hearts. These occur as HRS-tilts
of Mod(R) at a perfect torsion pair (see Definition 1.4.29).

Remark 3.2.9. Notice that the HRS-tilt of Mod(R) at a hereditary torsion
pair, corresponding to a specialisation-closed subset V ⊆ Spec(R), is always



86 CHAPTER 3. DERIVED EQUIVALENCES

compactly generated (for example by Propositions 2.7.10(1) and 1.4.12(3)). In-
deed, its aisle corresponds to the sp-filtration · · · = Spec(R) ⊇ V ⊇ ∅ = · · · ,
with V in degree 0.

The following lemma gives examples of hearts H with H-supports that are
not specialisation-closed.

Lemma 3.2.10. Let R be a ring and let t = (T,F) be a perfect torsion pair in
Mod(R). Denote the corresponding Giraud subcategory by C := T⊥0,1 . Let Ht

be the heart of the HRS-tilt at t. The following statements hold:

(1) There is a TTF triple (F[1],T,C[1]) in Ht;

(2) C[1] itself is a hereditary torsion class in Ht;

(3) If R is commutative noetherian, then supp(C[1]) = V c. Hence, V c is a
(generalisation-closed) Ht-support.

Proof. (1) The fact that T is TTF class in Ht follows from Remark 2.7.8. We
only need to verify that the corresponding torsionfree class in Ht, denoted by F′,
coincides with C[1]. Since HomHt(T,C[1]) = HomD(R)(T,C[1]) ≃ Ext1R(T,C) =

0, for all T in T and C in C, we have C[1] ⊆ F′. For the converse, let X be an
object in F′, and consider the triangle

FX [1] X TX FX [2]w

which corresponds to the short exact sequence in Ht given by the torsion pair
(F[1],T). Since F′ is closed under subobjects in Ht, for every T in T we have
0 = HomHt(T, FX [1]) = HomD(R)(T, FX [1]) ≃ Ext1R(T, FX). This shows that in
fact FX lies in C. Since the torsion pair t is perfect, C = T⊥≥0 (Lemma 1.4.31)
and, therefore, 0 = Ext2R(TX , FX) ≃ HomD(R)(TX , FX [2]). Since w lies in the
latter Hom-space, we conclude that w = 0 and that the triangle above splits;
hence TX = 0 and X = FX [1] lies in C[1].

(2) Since C[1] is a torsionfree class in Ht, it suffices to show that C[1] is
closed under cokernels of monomorphisms in Ht. Consider then C and C ′ in C

and a triangle
C[1] −→ C ′[1] −→ X −→ C[2]

with X in Ht. Applying the functor HomD(R)(T,−) for every T in T, since
HomD(R)(T,C

′[1]) ≃ Ext1R(T,C
′) = 0 and HomD(R)(T,C[2]) ≃ Ext2R(T,C) = 0

(given that t is a perfect torsion pair), we have that HomD(R)(T,X) = 0. This
shows that X indeed lies in F′ = C[1].

(3) If R is commutative noetherian, since supp(C[1]) = supp(C), it suffices to
observe that supp(C) = V c (because E(R/p) lies in C for all p not in V ). The
last assertion then follows from part (2).



3.2. HEREDITARY TORSION PAIRS IN GROTHENDIECK HEARTS 87

Remark 3.2.11. The hereditary torsion pair t′ with torsion class C[1] is not
of finite type. Indeed, if this were the case, by Proposition 2.7.10(1) and The-
orem 3.1.17, the HRS-tilt of Tt at t′ would correspond to a sp-filtration. The
aisle of this HRS-tilt is easily seen to be

(D≤−1 ∗ T)[1] ∗ C[1] = D≤−2 ∗ (T ∗ C)[1] =: (∗).

But T ∗C is not a hereditary torsion class in Mod(R): otherwise, by support we
would have T ∗ C = Mod(R), and it would follow that C = F. This shows that
(∗) is not the aisle of a compactly generated t-structure.

In fact, using this generalisation-closed Ht-support one can construct many
more which are not specialisation-closed. Recall that hereditary torsion pairs in
a Grothendieck category H form a lattice torshH (§1.4).

Lemma 3.2.12. Let R be a commutative noetherian ring and let H be the heart
of a non-degenerate compactly generated t-structure in D(R). Let S ⊆ torshH

be a set of hereditary torsion pairs in H. Then:

(1) supp(∧S) = ∩t∈Ssupp(t);

(2) supp(∨S) = ∪t∈Ssupp(t).

In particular, arbitrary intersections and unions of H-supports are again H-
supports.

Proof. Both the claims follow from Proposition 3.2.2, items (2) and (5).

We are now able to classify supports in the heart Ht of an HRS-tilt at a
perfect torsion pair.

Proposition 3.2.13. Let R be a commutative noetherian ring, t = (T,F) a
perfect torsion pair in Mod(R) with supp(T) = V , and Ht the associated heart by
HRS-tilt. Then the Ht-supports are all the sets of the form (W ∩V )∪(W ′∩V c),
for W,W ′ ⊆ Spec(R) specialisation closed.

Proof. We have already noted that Ht is the heart of an intermediate compactly
generated t-structure, so it follows from Theorem 3.2.6(1.a) that specialisation-
closed subsets are Ht-supports. Since both V and V c are Ht-supports (see
Lemma 3.2.10), it follows from Lemma 3.2.12 that the subsets presented in the
statement are indeed Ht-supports. To prove the converse, let U be a Ht-support
and let t′ = (T′,F′) be the hereditary torsion pair in Ht with supp(T′) = U .
We first show that

(1) If U ⊆ V , then U is specialisation-closed;

(2) If U ⊆ V c, then U = ∨(U) ∩ V c.
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(1) If U ⊆ V , then we have that T′ ⊆ T ⊆ Mod(R). We show that T′ is
a hereditary torsion class in Mod(R) as well, and so U is specialisation-closed.
Clearly T′ is closed under extensions and coproducts in D(R), and thus it is so
in Mod(R) as well. Let now

(∗) : 0→ X → Y → Z → 0

be a short exact sequence in Mod(R), with Y in T′ ⊆ T. Since T is a hereditary
torsion class in Mod(R), both X and Z belong to T ⊆ Ht, so that (∗) is a short
exact sequence in Ht as well. Now since T′ is a hereditary torsion class in Ht

we conclude that X and Z belong to T′, as wanted.
(2) The non-trivial inclusion is U ⊇ ∨(U) ∩ V c. Let C denote the Giraud

subcategory associated to t, i.e. C = T⊥0,1 . Given p in U ⊆ V c and q in V c

such that p ⊆ q, we will show that q lies in U as well. Translating this in
terms of objects of Ht, consider the stalk complexes E(R/p)[1] and E(R/q)[1]

in C[1] ⊆ Ht. By assumption we have E(R/p)[1] lies in T′, and we want to
prove that E(R/q)[1] lies in T′ as well. Denote by (∗∗) the torsion sequence
of E(R/q)[1] with respect to t′. Since, by Lemma 3.2.10, C[1] is a hereditary
torsion class in Ht, we deduce that (∗∗) has all its terms in C[1]. Therefore,
applying a shift to it, we obtain the exact sequence of modules (in solid arrows)
with T in T′[−1] and F in F′[−1].

(∗∗)[−1] : 0 T E(R/q) F 0

E(T )

In Mod(R), consider then the injective envelope E(T ) of T : by injectivity,
we get the two dotted vertical arrows in the diagram above. Moreover, since
the morphism T → E(T ) is left minimal, we conclude that E(T ) is a direct
summand of the indecomposable module E(R/q). Now, we use our hypothesis
that p ⊆ q to notice that there is a nonzero morphism E(R/p)[1]→ E(R/q)[1].
Since the source of this morphism is in T′, the target cannot be in F′, and
therefore T ̸= 0. Then, we must have an isomorphism 0 ̸= E(T ) ≃ E(R/q),
which means that

{q} = supp(E(R/q)) = supp(E(T )) ⊆ supp(T ) = supp(T [1]) ⊆ U.

Returning to the general case of an arbitrary Ht-support U , note that by
Lemma 3.2.12 and Lemma 3.2.10, both U ∩V and U ∩V c are Ht-supports. Set
W := U ∩V and W ′ := ∨(U ∩V c): the first is specialisation-closed by item (1)
above, while the second is specialisation-closed by definition. Now by item (2)
above it follows that U = (U ∩ V ) ∪ (U ∩ V c) = (W ∩ V ) ∪ (W ′ ∩ V c).
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Remark 3.2.14. By Lemma 3.1.11, in Mod(R) hereditary torsion pairs coincide
with those of finite type. In the heart Ht constructed in this subsection this is
not the case. Indeed, by Corollary 2.9.13, Ht is derived equivalent to Mod(R).
On the other hand, since every torsion pair t in Mod(R) is restrictable, so
is the t-structure Tt, by Theorem 2.7.12. Therefore, by Corollary 3.2.7, we
conclude that in Ht hereditary torsion pairs of finite type correspond bijectively
to specialisation closed subsets of Spec(R). Proposition 3.2.13 then shows that
if t is perfect then, in general, not every hereditary torsion pair is of finite type
(since not all Ht-supports are specialisation-closed).

We conclude this subsection with an illustrating example.

Example 3.2.15. Let R be a commutative noetherian ring of Krull dimension
1. In this case, every hereditary torsion pair is perfect (see [41, Corollary 4.3] and
[4, Corollary 4.10]). Let V denote the set of maximal ideals of R. It is, of course,
a specialisation-closed subset of Spec(R); denote by t = (T,F) the associated
hereditary torsion pair in Mod(R). Let Ht := F[1] ∗ T be the heart of the HRS-
tilt of the standard t-structure with respect to t. Following Proposition 3.2.13,
the Ht-supports are the sets of primes of the form (W ∩ V ) ∪ (W ′ ∩ V c), for
specialisation-closed subsets W and W ′ of Spec(R). However, it is quite easy to
see that, since R has Krull dimension 1, any subset of Spec(R) is of this form.
Interestingly, this means that in this case hereditary torsion pairs in Ht are
in bijection with localising subcategories of D(R) (not only the smashing ones,
as it happens with hereditary torsion pairs in Mod(R)). Concretely, following
items (1) and (2) of Theorem 3.2.2, the bijection is

{hereditary torsion pairs in Ht}
1:1←→ {localising subcategories of D(R)}

(T,F) ↦−→ {X ∈ D(R) : H0
t (X[i]) ∈ T ∀i ∈ Z}

Ht ∩ L ←− [ L

where H0
t : D(R) → Ht is the cohomology functor. In particular, all localising

subcategories of D(R) admit a cohomological description with respect to Ht. We
will later prove that Ht is derived equivalent to Mod(R) (as a consequence of
Corollary 2.9.13). This means that we get different insights on the triangulated
structure of this derived category, depending on the abelian category that we
start with.

3.3 t-structures inducing derived equivalences

Now we will combine the insight given by the classification of hereditary torsion
pairs of the previous section, with the results of §2.9. In particular, we aim
to find sufficient conditions for a given intermediate compactly generated t-
structure to induce a derived equivalence.
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Remark 3.3.1. Recall that by Theorem 2.5.41, intermediate compactly gener-
ated t-structures in D(R) satisfy hypotheses (2) and (3) of Proposition 2.6.14.
Therefore, their heart is derived equivalent to Mod(R) if and only if it is bounded
derived equivalent. This includes the case of the HRS-tilt of an intermediate
compactly generated t-structure at a torsion pair of finite type (which is ho-
motopically smashing by item (1) of Proposition 2.7.10 and then compactly
generated by Theorem 3.1.17). In the following we will use this fact without an
explicit mention.

3.3.1 Sufficient conditions for derived equivalence

Let R be a commutative noetherian ring, and consider a hereditary torsion pair
t in Mod(R). If Tt denotes the t-structure obtained by HRS-tilting Mod(R) at
t, with heart Ht, we know that:

• Tt is an intermediate compactly generated t-structure (Remark 3.2.9);

• Ht is a locally coherent Grothendieck category (Proposition 2.7.12 and
Lemma 3.1.11);

• Ht is derived equivalent to Mod(R) (Corollary 2.9.13).

This subsection takles the question of whether we can proceed with a chain
of HRS-tilts (§2.8) at suitable torsion pairs, so that all the obtained t-structures
will retain these properties. For this purpose, we will use Proposition 2.9.2
together with Theorem 2.9.7.

Theorem 3.3.2. Let T = (U,V) be an intermediate compactly generated t-
structure in D(R) with heart H, and suppose that T induces a derived equiva-
lence. Let V ⊆ Spec(R) be a specialisation-closed set, let t = (TV ,FV ) be the
corresponding hereditary torsion pair of finite type in H (see Theorem 3.2.6(1)).

If there is a set of generators {Gλ : λ ∈ Λ} of H such that the torsion-free
parts fGλ are finitely presented, then the HRS-tilted t-structure associated to t

induces a derived equivalence.

Proof. In order to apply Proposition 2.9.2, we will construct CHZ-sequences for
the generators Gλ and then use Proposition 2.9.5. These CHZ-sequences will
be provided by Proposition 2.9.17.

First of all, recall that, as noted in the proof of Theorem 3.2.6, for every
prime p the functor − ⊗ Rp restricts to an exact functor Lp : H → H. Now,
since V is specialisation closed, by Lemma 3.1.8

TV = H ∩ supp−1(V ) = H ∩ Supp−1(V ) =
⋂︂
p/∈V

Ker(−⊗Rp).

Then we need to show that for every p /∈ V and λ ∈ Λ, the group homomorphism

LpfGλ,Gλ
: HomH(fGλ, Gλ)→ HomH(fGλ ⊗Rp, Gλ ⊗Rp)
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is an epimorphism, and we will be done.
Since Rp is flat, we can write it as a direct limit of free R-modules, i.e.

Rp = lim−→j∈J R
(nj). Since directed homotopy colimits in D(R) are computed as

componentwise direct limits, one sees that

Gλ ⊗Rp = Gλ ⊗ lim−→J
R(nj) = hocolimJG

(nj)
λ

(see the proof of [27, Lemma 4.1] for the details). Now, by Proposition 2.5.40,
this directed homotopy colimit of objects of H is a direct limit in H. We can
therefore use the hypothesis that fGλ is finitely presented in H to write

Im(LpfGλ,Gλ
) = HomH(fGλ, Gλ)⊗R Rp ≃

≃ lim−→J
HomH(fGλ, Gλ)

(nj) ≃ HomH(fGλ, Gλ ⊗R Rp) =: (∗).

Since D(Rp) is a bireflective subcategory of D(R) with reflection functor−⊗RRp,
it follows that

(∗) ≃ HomH(fGλ ⊗R Rp, Gλ ⊗R Rp).

This shows that LpfGλ,Gλ
is surjective, and by Proposition 2.9.17 we conclude.

Corollary 3.3.3. Let T = (U,V) be an intermediate compactly generated t-
structure in D(R) with a locally coherent heart H, and suppose that T induces
a derived equivalence. Let t = (TV ,FV ) be the hereditary torsion pair of finite
type in H associated to a specialisation-closed V and suppose that (TV ,FV ) is
restrictable. Then the HRS-tilted t-structure associated to t induces a derived
equivalence.

Proof. Under the assumption that t is restrictable, for any set {Gλ : λ ∈ Λ} of
finitely presented generators of H, the torsion-free parts fGλ will also be finitely
presented. Hence, the result follows from Theorem 3.3.2.

Remark 3.3.4. Since we know that for a commutative noetherian ring R, every
hereditary torsion pair in Mod(R) is restrictable, note that Corollary 2.9.13
follows immediately from the corollary above.

Remark 3.3.5. If T is as in Corollary 3.3.3, t is any torsion pair in H and we
happen to know that Ht is locally coherent, then the torsion pair t is restrictable
if and only if there is a set {Gλ : λ ∈ Λ} of finitely presented generators of H such
that the torsion-free parts fGλ are finitely presented (see [60, Remark 6.3(3)]).
Therefore, knowing this information about Ht, the hypothesis of Corollary 3.3.3
is minimal to apply Theorem 3.3.2.



92 CHAPTER 3. DERIVED EQUIVALENCES

3.3.2 Intermediate compactly generated t-structures via
iterated HRS-tilting

In this section we will use the notion of filterable pairs of t-structures, introduced
in §2.8. We make the following observation; compare it with Proposition 2.8.5.

Lemma 3.3.6. Let R be a commutative noetherian ring, and let T1,T2 be
compactly generated t-structures in D(R), having finite gap. Then the pair (T,D)
is left filterable.

Proof. This is a consequence of Theorem 3.1.17. Write T1 = (U1,V1),T2 =

(U2,V2), and let φ1, φ2 be the sp-filtrations corresponding to T1,T2 respectively.
We claim that for every i ∈ Z the subcategory U1 ∩ U2[i] is the aisle of a
compactly generated t-structure. Indeed,

U1 ∩ U2[i] =

= {X ∈ D(R) : Supp(HnX) ⊆ φ1(n)} ∩ {X ∈ D(R) : Supp(HnX) ⊆ φ2(n− i)} =

{X ∈ D(R) : Supp(HnX) ⊆ φ1(n) ∩ φ2(n− i)}

which is the aisle of the compactly generated t-structure associated to the sp-
filtration φ1∧φ2[i] : n ↦→ φ1(n) ∩ φ2(n− i).

Now we focus on the case where T1 = T is an intermediate compactly gener-
ated t-structure, with heart H, and T2 = D is the standard t-structure. In this
situation, we can be more precise on the the torsion pairs involved in the chain
of HRS-tilts, from Mod(R) to H, given by Lemma 3.3.6.

Proposition 3.3.7. Let φ be an intermediate sp-filtration, with φ(0) ̸= φ(1) =

∅, and denote by Hφ the heart of the associated compactly generated t-structure
Tφ = (Uφ,Vφ). Then T0 := Hφ ∩Mod(R) is a TTF class in Hφ. In particular,
we have that T0 = supp−1(φ(0)) ∩Hφ = Supp−1(φ(0)) ∩Hφ.

Proof. Denote by D the standard t-structure. We begin by noticing that

Hφ ∩ D≥0 (1)
= T0

(2)
= Uφ ∩Mod(R)

(3)
= Supp−1(φ(0)) ∩Mod(R).

Indeed, equality (1) follows from Hφ ⊆ Uφ ⊆ D≤0, (2) follows from Mod(R) ⊆
D≥0 ⊆ Vφ[1], and (3) follows by definition of Uφ. In particular, (3) shows that
supp(T0) = Supp(T0) = φ(0) by Proposition 3.1.9.

We now show that (Hφ ∩ D≤−1,T0) = (Hφ ∩ D≤−1,Hφ ∩ D≥0) is a torsion
pair in Hφ. First, HomHφ

(Hφ ∩ D≤−1,T0) = 0 is clear. Now, let X be an
object of Hφ and consider the truncation triangle with respect to the standard
t-structure

τ≤−1X −→ X −→ H0(X) −→ (τ≤−1X)[1].

By definition of Uφ, it is closed under standard truncations, so all the vertices
belong to Uφ. Moreover, it is also clear that H0(X) lies in D≥0 ⊆ Vφ[1], and
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therefore H0(X) lies in Hφ. Lastly, since Vφ[1] is closed under taking co-cones,
also τ≤−1X belongs to Vφ[1], and hence τ≤−1X lies also in Hφ. The triangle
above is then a short exact sequence in Hφ and it is the torsion decomposition
of X with respect to the torsion pair (Hφ ∩ D≤−1,T0).

It remains to show that T0 is also a torsion class in Hφ or, equivalently, that
T0 is closed under quotients in Hφ. Consider a short exact sequence in Hφ

0 −→ X −→ Y −→ Z −→ 0

where Y lies in T0. Since T0 is a torsionfree class in Hφ, it follows that X is also
in T0. Since supp(Z) ⊆ supp(X[1]) ∪ supp(Y ), it follows that supp(Z) ⊆ φ(0).
It remains to show that Z lies in Mod(R). Applying the standard cohomology
functor to the triangle induced by the short exact sequence above, we observe
that, since T0 is a hereditary torsion class in Mod(R), H−1(Z) lies in T0 ⊆ Hφ.
Moreover, the above paragraph has also shown that τ≤−1Z ≃ H−1(Z)[1] lies in
Hφ. But this means that H−1(Z) = 0 and Z must then lie in T0.

Finally, the last statement follows from the fact that φ(0) is specialisation
closed, Hφ is contained in Db(R) and hereditary torsion classes in Hφ are de-
termined by their support (see Proposition 3.2.2).

Lemma 3.3.8. Let φ and ψ be intermediate sp-filtrations such that φ(1) =

ψ(1) = ∅ and such that ψ(i) = φ(i+1) for every i < 0. Then the compactly gen-
erated t-structure Tψ associated to ψ is obtained by HRS-tilting Tφ = (Uφ,Vφ)

(with heart Hφ) with respect to a hereditary torsion pair of finite type whose
torsion class is Supp−1(ψ(0)) ∩Hφ.

Proof. Let Ti denote the hereditary torsion class in Mod(R) supported on φ(i),
for any integer i. Since ψ(0) ⊆ ψ(−1) = φ(0), we have that T′ := Hφ ∩
Supp−1(ψ(0)) ⊆ Hφ ∩ Supp−1(φ(0)) = T0, the last equality following from
Proposition 3.3.7. We know from Theorem 3.2.6 that T′ is a hereditary torsion
class in Hφ. If we tilt Hφ with respect to T′ we obtain a t-structure having aisle

U := Uφ[1] ∗ T′.

Now, since we have that Uφ[1] ⊆ D≤−1 and that T′ ⊆ T0 ⊆ D≥0, this aisle U

consists of the objects X such that the standard truncation τ≤−1X lies in Uφ[1]

and the standard truncation τ≥0X lies in T′, i.e.

U = {X ∈ D(R) : Supp(HiX) ⊆ φ(i+ 1) = ψ(i), ∀i < 0, Supp(H0X) ⊆ ψ(0)}

In other words, we have that U is the aisle of the t-structure determined by
ψ. Moreover, since this is also a compactly generated t-structure, it follows
that the hereditary torsion pair we have tilted at is of finite type (see Proposi-
tion 2.7.10(2)).
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Notation 3.3.9. Note that in the above lemma, the sp-filtration φ can be
recovered from ψ. We will denote this operation on sp-filtrations by writing
φ = ψ⟨1⟩. In the notation of [1, §5.3], we have that ψ⟨1⟩ is a shift of ψ′,
i.e. ψ⟨1⟩(i) = ψ′(i − 1). Moreover, starting with an sp-filtration ψ such that
ψ(1) = ∅, we will denote the iterations of this process by ψ⟨n⟩, for n ≥ 1:

ψ⟨n⟩(i) =

⎧⎨⎩∅ if i > 0

ψ(i− n) if i ≤ 0.

Proposition 3.3.10. Let φ be an intermediate sp-filtration such that φ(1) = ∅.
Then the compactly generated t-structure Tφ associated to φ can be built from
the standard t-structure by an iteration of HRS-tilts at hereditary torsion pairs
of finite type having specialisation-closed support.

Proof. Since φ is intermediate, we have Spec(R) = φ(−n) ⊋ φ(−n+1) for some
n ≥ 0. The statement then follows by induction on n, using Lemma 3.3.8.

3.3.3 Restrictable t-structures and derived equivalences

We now turn to restrictable, intermediate and compactly generated t-structures,
with the aim of establishing that they induce derived equivalences. We begin by
reviewing what is known about how to characterise the sp-filtrations associated
to the restrictable compactly generated t-structures (see [1]). The following
condition turns out to play a significant role in that characterisation for some
commutative rings.

Definition 3.3.11. An sp-filtration φ is said to satisfy the weak Cousin con-
dition if whenever p and q are prime ideals such that p ⊊ q and p is maximal
under q (i.e. there is no prime ideal t such that p ⊊ t ⊊ q), then we have

∀j ∈ Z, q ∈ φ(j)⇒ p ∈ φ(j − 1)

Theorem 3.3.12 ([1, Theorem 3.10 and 6.9, Corollary 4.5][71, Theorem 6.3]).
Let R be a commutative noetherian ring, B the set of t-structures in Db(mod(R))

and T the set of compactly generated t-structures in D(R). There is an assign-
ment Θ: B −→ T , sending a t-structure B := (X,Y) in Db(mod(R)) to the
t-structure generated by X, namely Θ(B) := (⊥(X⊥),X⊥). Moreover, for every
B in B, we have

(1) Θ(B) ∩ Db(mod(R)) = B (and, in particular, Θ is injective);

(2) The sp-filtration associated to Θ(B) satisfies the weak Cousin condition;

(3) The heart of Θ(B) is locally coherent and its subcategory of finitely pre-
sented objects coincides with the heart of B.
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The image of Θ is, then, the set of restrictable compactly generated t-structures.
Moreover, if R admits a dualising complex, then the t-structures in the image
of Θ are those whose associated sp-filtrations satisfy the weak Cousin condition.

Definition 3.3.13. Let R be a commutative noetherian ring. We say that an
sp-filtration φ in Spec(R) is restrictable if the associated compactly generated
t-structure is restrictable (in other words, the associated t-structure is in the
image of the assignment Θ).

Note that it follows easily from the definition that if φ is an sp-filtration
with φ(1) = ∅ satisfying the weak Cousin condition, then φ⟨n⟩ also satisfies the
weak Cousin condition, for every n ≥ 1. In fact, the following related statement
holds.

Proposition 3.3.14 ([1, Lemma 5.7]). If an intermediate sp-filtration φ is
restrictable, then φ⟨n⟩ is also (intermediate and) restrictable, for any n ≥ 1.

Theorem 3.3.15. Let R be a commutative noetherian ring and let T be an in-
termediate restrictable compactly generated t-structure in D(R). Then T induces
a derived equivalence.

Proof. Up to shifting T, we may assume that the the associated sp-filtration φ
has φ(1) = ∅. Proposition 3.3.10 then shows that there is a chain of HRS-tilts
from the standard t-structure to T, each step with respect to a hereditary torsion
pairs of finite type. Morevoer, by Proposition 3.3.14, each of the t-structures
D = T0,T1,T2, . . . ,Tn = T of this chain is restrictable. Now we show by
induction on i that Ti induces derived equivalence. For i = 0 there is nothing
to do. Assume that we have shown that Ti induced derived equivalence. Then
we can apply Proposition 2.7.12: since Ti+1 is restrictable, the torsion pair used
in this HRS-tilt must also be restrictable. Then, by Corollary 3.3.3, Ti+1 also
induces derived equivalence.

Corollary 3.3.16. Let R be a commutative noetherian ring. Every bounded
cosilting object of D(R) whose t-structure is restrictable is cotilting.

Proof. It follows from [47, Proposition 3.10] that every bounded cosilting object
is pure-injective. The associated t-structure is then compactly generated by [28,
Corollary 2.14]. Since the complex is bounded, the associated t-structure is an
intermediate t-structure. The result then follows from Theorem 3.3.15 and from
the fact that a cosilting t-structure induces a derived equivalence if and only if
it is cotilting (Proposition 2.6.13).

Taking Theorem 3.3.15 into account, the assumption that T induces a derived
equivalence in Corollary 3.2.7 is redundant, therefore leading to the following
simplification.
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Corollary 3.3.17. Let R be a commutative noetherian ring and T an interme-
diate restrictable compactly generated t-structure in D(R) with heart H. Then
there is a bijection between hereditary torsion pairs of finite type in H and
specialisation-closed subsets of Spec(R).

At this point, one might speculate whether every intermediate compactly
generated t-structure leads to a derived equivalence. We instead show an ex-
ample of such a t-structure that does not induce a derived equivalence. In
other words, this provides (implicitly) an example of a bounded (3-term) pure-
injective cosilting complex which is not cotilting over a commutative noetherian
ring. Note that by Corollary 2.9.14 such an example cannot be found among
2-term cosilting complexes.

Example 3.3.18. Recall the situation considered in Example 3.2.15 and as-
sume, furthermore, that R is connected, i.e. that it has no non-trivial idempo-
tent elements. With the same notation, Ht is the heart of the t-structure corre-
sponding to the sp-filtration Spec(R) ⊇ V ⊇ ∅. By Lemma 3.2.10 we know that
the set V also corresponds to a hereditary torsion pair (of finite type, by Theo-
rem 3.2.6) in Ht, namely s = (T,C[1]), where C is the Giraud subcategory asso-
ciated to T in Mod(R). Consider the heart Hs of the HRS-tilt of the t-structure
with heart Ht with respect to s. The corresponding t-structure, by Lemma 3.3.8
is associated to the intermediate sp-filtration Spec(R) ⊇ V ⊇ V ⊇ ∅. Notice
that this filtration does not satisfy the weak Cousin condition and, hence, this
t-structure is not restrictable.

By construction, we have Hs = C[2] ∗ T. Notice that since t is perfect, for
all objects T in T and C in C we have HomD(R)(T,C[3]) ≃ Ext3R(T,C) = 0 and
hence all triangles

C[2] −→ X −→ T −→ C[3]

split. In other words, the torsion pair (C[2],T) in Hs is a split torsion pair.
Moreover, the same argument shows that HomD(R)(T,C[2]) ≃ Ext2R(T,C) = 0

and, thus, we have that in fact also (T,C[2]) is a torsion pair in Hs. In other
words, C[2] and T are abelian subcategories of Hs and Hs ≃ C[2]× T.

Now, since R is connected, it follows that D(R) is an indecomposable trian-
gulated category, i.e. it is not the product of two triangulated subcategories (see
[10, Example 3.2]). However, it is clear that D(()Hs) is not indecomposable,
as it is equivalent to the product D(()C[2]) × D(()T). As a consequence, Hs

cannot be derived equivalent to Mod(R). Note that, in particular, this provides
an example of a cosilting (3-term) object of D(R) which is not cotilting.

We conclude the paper exploring some consequences for the hearts of t-
structures of Db(mod(R)).

Proposition 3.3.19. Let R be a commutative noetherian ring, and B a bounded
t-structure of Db(mod(R)), with heart B. Then B is the category of finitely
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presented objects of a locally coherent Grothendieck category which is derived
equivalent to Mod(R). Moreover, Serre subcategories of B are in bijection with
specialisation-closed subsets of Spec(R).

Proof. Consider the compactly generated t-structure Θ(B). It is intermediate
because so is B, and it is restrictable by construction. Hence, its heart H is
derived equivalent to Mod(R), by Theorem 3.3.15. Now, by Proposition 2.5.43,
H is a locally coherent Grothendieck category with fp(H) = H∩Db(mod(R)) =

B. Finally, since Serre subcategories of B are in bijection with hereditary torsion
pairs of finite type H (see [27, 36]), and therefore with specialisation closed
subsets of Spec(R) by Corollary 3.3.17.
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Chapter 4

Coderived equivalences for
commutative noetherian rings

The material of this Chapter is taken from joint work with M. Hrbek [29].
Let R be a commutative noetherian ring, and T an intermediate restrictable
t-structure in D(R), with heart H. We recall some examples:

Example 4.0.1. Let R be a commutative noetherian ring.

• The t-structure obtained by HRS-tilting the standard t-structure with
respect to a hereditary torsion pair in Mod(R) is compactly generated and
restrictable (see the previous Chapter). These t-structures correspond to
sp-filtrations Φ such that Φ(n) = Spec(R) for all n < 0 and Φ(n) = ∅ for
all n > 0 (Remark 3.2.9).

• Assume that d is a codimension function on Spec(R), that is, a function
d : Spec(R)→ Z such that d(q) = d(p)+1 whenever p ⊊ q are primes with
q minimal over p. Then the assignment Φd(n) = {p ∈ Spec(R) | d(p) > n}
defines an sp-filtration which satisfies the weak Cousin condition.

Furthermore, any pointwise dualizing complex D induces a codimension
function dD [26, p. 287], and therefore a restrictable t-structure, see [1,
§6].

• If R admits a dualizing complex D, the restrictable t-structure induced
by the codimension function dD has a particularly nice description, we
follow [1, §6.4]. The functor RHomR(−, D) induces a duality functor on
the category Db(mod(R)), and therefore it sends the standard t-structure
to another t-structure on Db(mod(R)), called the Cohen-Macaulay t-
structure. This t-structure then naturally lifts to a restrictable t-structure
in D(Mod(R)), see [48, §3], and coincides with the compactly generated
t-structure corresponding to the sp-filtration ΦdD .

99
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Our goal in this Chapter is to extend the derived equivalence D(H) ≃ D(R)

of Theorem 3.3.15 to an equivalence between coderived categories.

4.1 Krause’s recollement for locally coherent Gro-
thendieck categories

In [39], Krause constructed the following recollement, for a locally noetherian
Grothendieck category A:

Kac(Inj(A)) K(Inj(A)) D(A).⊆

ir

il

Q

Qr

Ql

The functor Qr is the right adjoint of the Verdier localisation Q, given by
homotopically injective resolutions (see §2.3.3); the existence of ir follows (see
Proposition 2.2.7). The main content of the recollement is the existence of the
left adjoint Ql; in order to prove it, it is shown that Qr identifies the objects of
Db(fp(A)) with the compact objects of K(Inj(A)).

We are going to extend this construction to the case of A locally coherent
Grothendieck category, with the additional property that D(A) is compactly
generated. This was done by Šťovíček [78, Theorem 7.7] under the additional
assumption that A admits a set of finitely presented generators of finite projec-
tive dimension (see [78, Hypothesis 7.1]). This assumption implies that D(A)

is compactly generated, but it is strictly stronger: we demonstrate an example,
which is a Happel-Reiten-Smalø tilt in the derived category of a commutative
noetherian ring, in Example 4.2.8. Our approach here is closer to the original
one of Krause, but relies on some of the results of Šťovíček [78, §6] (these do
not depend on the aforementioned [78, Hypothesis 7.1]).

Our starting point is the following result of Šťovíček.

Proposition 4.1.1. [78, Corollary 6.13] Let A be a locally coherent Grothendieck
category. Then K(Inj(A)) is compactly generated and the functor assigning to an
object of Db(fp(A)) its injective resolution induces an equivalence Db(fp(A)) ∼=
K(Inj(A))c.

Corollary 4.1.2. Let A be a locally coherent Grothendieck category. Then the
functor Q : K(Inj(A))→ D(A) admits a right adjoint Qr.

Furthermore, the equivalence Db(fp(A)) ∼= K(Inj(A))c of Proposition 4.1.1 is
induced by the restrictions of the adjoint functors Qr and Q.

Proof. By Proposition 4.1.1, K(Inj(A)) is compactly generated. Since A has
exact coproducts, the functor Q preserves coproducts, and so [55, Theorem 4.1]
applies and produces the desired right adjoint.
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It follows directly from the adjunction that for any X ∈ D(A), Qr(X) is
homotopy equivalent to a homotopically injective resolution of X (which exists
by Proposition 2.3.8). By Proposition 4.1.1 we have that Qr(X) restricts to
the equivalence Db(fp(A)) ∼= K(Inj(A))c with the inverse equivalence being the
restriction of Q to K(Inj(A))c.

4.1.1 Compact objects of D(A) and the (small) singularity
category

The main obstacle in extending Krause’s proof to the locally coherent case is
showing that any compact object of D(A) belongs to Db(fp(A)), and therefore
represents a compact object also in K(Inj(A)) via Qr; the proof in the locally
noetherian case [39, Lemma 4.1] does not generalize directly.

Following Gillespie [21], an object M of a Grothendieck category A is said
to be of type FP∞ if the functor ExtiA(M,−) naturally preserves direct limits
for all i ≥ 0. It will be convenient for our purposes to extend this notion to any
object of the bounded derived category.

Definition 4.1.3. Let A be a Grothendieck category. An object X ∈ Db(A)

is of type FP∞ if for any direct system (Mi | i ∈ I) in A and any n ∈ Z the
natural map

lim−→
i∈I

HomDb(A)(X,Mi[n])→ HomDb(A)(X, lim−→
i∈I

Mi[n])

is an isomorphism.

Not very surprisingly, Definition 4.1.3 admits a somewhat more internal
characterization using homotopy colimits of bounded directed coherent diagrams
(see §2.4), which in turn provides a “bounded” version of the following notion
from the theory of stable derivators.

Definition 4.1.4 ([73, Definition 5.1]). Given a directed small category I,
X ∈ D(A), and Y ∈ D(AI), there is a natural map (see [77, Definition 6.5])

lim−→
i∈I

HomD(A)(X,Yi)→ HomD(A)(X, hocolimIY).

An object X ∈ D(A) is called homotopically finitely presented if the map
above is an isomorphism for any choice of I and Y.

Lemma 4.1.5. Let A be a Grothendieck category. An object X ∈ Db(A) is
of type FP∞ if and only if for any directed small category I and any coherent
diagram Y ∈ Db(AI) the natural map

lim−→
i∈I

HomDb(A)(X,Yi)→ HomDb(A)(X, hocolimIY)

is an isomorphism.
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Proof. Since Y ∈ Db(AI), the coherent diagram Y is represented by a direct
system (Yi | i ∈ I) in C(A) such that the cohomology of the complexes Yi
is uniformly bounded. Therefore, there is n ∈ Z and k ≥ 0 such that for
all i ∈ I, the cohomology of Yi vanishes outside of degrees n, . . . , n + k. If
k = 0, by applying the soft truncation we may assume that Y is such that
(Yi | i ∈ I) is a direct system of stalk complexes in degree n, and therefore the
required isomorphism is provided by the definition of an object of type FP∞.
The general case follows by induction on k > 0. Indeed, applying hocolimI to
the soft truncation triangle of Y in Db(AI) we obtain the triangle

hocolimIτ
≤nY→ hocolimIY→ hocolimIτ

>nY→ (hocolimIτ
≤n)[1]

in Db(A). Notice that soft truncations commute naturally with the component
functors (−)i, and we have triangles in Db(A)

τ≤nYi → Yi → τ>nYi → (τ≤nYi)[1].

Then there is the following commutative diagram, in which the horizontal
maps are induced by the two triangles above and the vertical ones are the natural
maps:

lim−→i∈I Hom(X, τ>nYi[−1]) lim−→i∈I Hom(X, τ≤nYi) lim−→i∈I Hom(X,Yi)

Hom(X, hocolimIτ
>nY[−1]) Hom(X, hocolimIτ

≤nY) Hom(X, hocolimIY)

lim−→i∈I Hom(X, τ>nYi) lim−→i∈I Hom(X, τ≤nYi[1])

Hom(X, hocolimIτ
>nY) Hom(X, hocolimIτ

≤nY[1])

Then the induction step follows directly by Five lemma, as both the coherent
diagrams τ>nY and τ≤nY are subject to the induction hypothesis for k− 1.

Lemma 4.1.6. Let A be a Grothendieck category. The objects of type FP∞ of
X ∈ Db(A) form a thick subcategory of Db(A)c.

Proof. By exactness of coproducts in A, the coproducts in Db(A) are precisely
the coproducts of collections of objects with uniformly bounded cohomology
computed in D(A). Therefore, any coproduct in Db(A) can be realized as a
directed homotopy colimit of a suitable diagram of Db(AI) whose components
are finite subcoproducts. In this way Lemma 4.1.5 shows that any object of
type FP∞ in Db(A) is compact in Db(A). The fact that objects of type FP∞

form a triangulated subcategory follows from the Five lemma similarly as in the
proof of Lemma 4.1.5; the closure under retracts is clear.

Lemma 4.1.7. Let A be a locally coherent Grothendieck category. An object
X ∈ Db(A) is of type FP∞ if and only if X ∈ Db(fp(A)).
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Proof. An object F ∈ fp(A) is of type FP∞ as an object in Db(A), see [21,
Theorem 3.21]. By Lemma 4.1.6, any object in the thick closure of fp(A) in
Db(A) is of type FP∞, which shows that X ∈ Db(fp(A)) implies that X is of
type FP∞.

For the converse implication, let X ∈ Db(A) be of type FP∞ and let n be a
maximal integer such thatHn(X) ̸= 0. For anyM ∈ A the soft truncation yields
a natural isomorphism HomDb(A)(X,M [−n]) ∼= HomA(H

n(X),M). Since X is
of type FP∞, it follows that the functor HomA(H

n(X),−) : A → Ab preserves
direct limits, and so Hn(X) belongs to fp(A). Using the previous paragraph and
Lemma 4.1.6 we infer that the soft truncation τ<nX is of type FP∞. Continuing
by finite induction we conclude that all cohomologies of X belong to fp(A), and
so X ∈ Db(fp(A)), see e.g. [33, Theorem 15.3.1].

Remark 4.1.8. Combining Lemmas 4.1.7 and 4.1.6 we obtain the inclusion
Db(fp(A)) ⊆ Db(A)c. We do not know whether the converse inclusion holds
true in general for a locally coherent Grothendieck category such that D(A)

is compactly generated. However, in §4.2, we will show that this these two
subcategories coincide in case A is the heart of an intermediate cotilting t-
structure over a commutative noetherian ring.

Proposition 4.1.9. Let A be a locally coherent Grothendieck category. There
is an inclusion D(A)c ⊆ Db(fp(A)).

Proof. Let C be a compact object of D(A). For each n ∈ Z there is a natural
map C → E(Hn(C))[−n] in D(A) to a shift of the injective envelope of Hn(C).
This induces a morphism C →

∏︁
n∈ZE(Hn(C))[−n]. Products in D(A) are

computed as component-wise products of homotopically injective resolutions;
so in this case, the compontent-wise product of the E(Hn(C))[−n]. In this
particular case, it coincides with the component-wise coproduct. This is also
the coproduct in D(A), since A has exact coproducts. Therefore we obtain
a morphism C →

∐︁
n∈ZE(Hn(C))[−n] in D(A). By compactness of C, this

map factors through a finite subcoproduct. It follows that C has finitely many
non-zero cohomologies.

By [73, Proposition 5.4], C is homotopically finitely presented in D(A).
In particular, C is of type FP∞ in Db(A). Therefore, C ∈ Db(fp(A)) by
Lemma 4.1.7.

Remark 4.1.10. Let A be a locally coherent Grothendieck category. Proposi-
tion 4.1.9 shows that D(A)

c is a thick subcategory of Db(fp(A)), and therefore
we can form the Verdier quotient Dsing(A) = Db(fp(A))/D(A)

c. Following the
locally noetherian case [39], we call Dsing(A) the (small) singularity category
of A.
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4.1.2 The left adjoint Ql

Lemma 4.1.11. Let A be a locally coherent Grothendieck category. For any
C ∈ D(A)

c and any Y ∈ K(Inj(A)), there is a natural isomorphism

HomD(A)(C,QY ) ∼= HomK(Inj(A))(QrC, Y ).

Proof. Consider the natural transformation

ηC,Y : HomK(Inj(A))(QrC, Y )→ HomD(()A)(QQrC,QY )

induced by Q. By Corollary 4.1.2, the functors Qr and Q induce an equivalence
Db(fp(A)) ∼= K(Inj(A))c. We see that QQrC is naturally isomorphic to C and
also, in view of Proposition 4.1.9, that ηC,Y is an isomorphism whenever Y ∈
K(Inj(A))c. Consider the subcategory K of K(Inj(A)) consisting of all objects
Y such that ηC,Y is an isomorphism for all C ∈ D(A)c. A standard argument
shows that K is a triangulated subcategory. Since C is compact in D(A) and
QrC is compact in K(Inj(A)), the subcategory K is closed under coproducts.
Then K is a localizing subcategory of K(Inj(A)) containing all compact objects,
and therefore K = K(Inj(A)) by Proposition 4.1.1.

Lemma 4.1.12. Let A be a locally coherent Grothendieck category such that
D(A) is compactly generated. Then the functor Q : K(Inj(A))→ D(A) admits a
left adjoint Ql.

Proof. Let L be the localizing subcategory of K(Inj(A)) generated byQr(D(A)c).
Then L is a compactly generated triangulated category, and the restriction
Q↾L : L → D(A) is a functor between compactly generated triangulated cate-
gories that preserves coproducts and by Corollary 4.1.2 restricts further to an
equivalence Lc ∼= D(A)c. Then Q↾L is an equivalence by Lemma 2.1.23, and so
there is an inverse equivalence P : D(A)

∼−→ L. We define Ql as the composition
of P and the inclusion ι : L ↪→ K(Inj(A)).

The inclusion ι of L into K(Inj(A)) has a right adjoint τ : K(Inj(A)) → L,
see e.g. [55, Theorem 4.1]. It follows that Ql = ι ◦ P has a right adjoint Q ◦ τ .
It remains to show that Q ◦ τ is naturally equivalent to Q. Applying Q to the
counit transformation ι ◦ τ → idK(Inj(A)) we see that it is enough to show that
any object of L⊥0 is sent to zero by Q, i.e. L⊥0 ⊆ Kac(Inj(A)). If Y ∈ L⊥0

then HomK(Inj(A))(QrC, Y ) = 0 for all C ∈ D(A)c. By Lemma 4.1.11, this
implies HomD(A)(C,QY ) = 0 for all C ∈ D(A)c, and since D(A) is compactly
generated, we have QY = 0, as desired.

We record the following auxiliary property of the adjoints of Q for later use.

Lemma 4.1.13. In the setting of Lemma 4.1.12 we have an isomorphism
QrC ∼= QlC for all C ∈ D(A)c.
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Proof. By Lemmas 4.1.12 and 4.1.11, there are natural isomorphisms for all
Y ∈ K(Inj(A))

HomK(Inj(A))(QlC, Y ) ∼= HomD(A)(C,QY ) ∼= HomK(Inj(A))(QrC, Y ).

The isomorphism QrC ∼= QlC thus follows from the Yoneda lemma.

Theorem 4.1.14. Let A be a locally coherent Grothendieck category such that
D(A) is compactly generated. Then there is a recollement:

Kac(Inj(A)) K(Inj(A)) D(A)⊆

ir

il

Q

Qr

Ql

Proof. Recall that the functor Q is a Verdier localization functor whose kernel
is the full subcategory Kac(Inj(A)). By Proposition 2.2.7, it is enough to es-
tablish that Q admits both left and right adjoint functors, which we showed in
Corollary 4.1.2 and Lemma 4.1.12.

Corollary 4.1.15. In the setting of Theorem 4.1.14, the category Kac(Inj(A))

is compactly generated and the subcategory of compact objects Kac(Inj(A))c is
equivalent up to retracts to the singularity category Dsing(A) of A.

Proof. This follows directly from [54, Theorem 2.1] applied to the situation of
Theorem 4.1.14.

Corollary 4.1.16 (cf. [39, Corollary 4.4]). Let A be a locally coherent Grothen-
dieck category such that D(A) is compactly generated. Then any product of
acyclic complexes of injective objects is acyclic.

Remark 4.1.17. In the locally noetherian situation [39], the category Kac(Inj(A))

is called the stable derived category of A and denoted by S(A), while other
sources [6, 78] call it the (large) singularity category of A. In the latter two
citations, it is shown that S(A) is a homotopy category of C(A) endowed with a
suitable abelian model structure. It is also explained in [78, §7] that S(A) nat-
urally identifies with the subcategory of all acyclic complexes of the coderived
category Dco(A) via the equivalence K(Inj(A)) ∼= Dco(A)), and the same equiv-
alence identifies the recollement of Theorem 4.1.14 with the recollement of the
form

S(A) Dco(A) D(A)⊆ Q
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4.2 Restrictable t-structures

Recall from Theorem 3.1.17 that if R is a commutative noetherian ring and T is
an intermediate cotilting t-structure with heart H, then T is compactly gener-
ated and H is a locally finitely presentable Grothendieck category by Proposi-
tion 2.5.42. In view of the previous section, we are mostly interested in the case
when H is in addition locally coherent. Therefore, in this section we consider
the following setting.

Setting 4.2.1. Let R be a commutative noetherian ring. Let TC be a t-structure
in D(R), with heart HC , such that:

(C1) TC is the cotilting t-structure associated to a cotilting object C.

(C2) TC is intermediate.

(C3) HC is a locally coherent Grothendieck category.

Condition (C2) is equivalent to the requirement that C ∈ Kb(Inj(R)), which
is sometimes included in the definition of a cotilting object. The fact that C is
cotilting provides us with a triangle equivalence

realC : D(HC)→ D(Mod(R))

which restricts to the level of bounded derived categories and which lifts to an
equivalence between the standard derivators, see Proposition 2.6.15.

The main goal of this section is to characterize Setting 4.2.1 using the re-
strictability of the t-structure TC . To do that, we first need to better understand
the compact objects in the bounded derived category of HC . Recall from Re-
mark 4.1.8 that we have an inclusion Db(fp(HC)) ⊆ Db(HC)

c. We will use the
derived equivalence to Mod(R) to show that this inclusion is an equality.

Lemma 4.2.2. Let A and E be Grothendieck categories and η : DA → DE a
bounded equivalence of derivators. Then for an object X ∈ Db(A) is of type
FP∞ if and only if η1(X) is of type FP∞ in Db(E).

Proof. Let I be a directed small category and Y ∈ Db(AIC). Then there is
the following commutative square induced by application of the equivalence η
between derivators, where all of the maps are the naturally induced ones:

lim−→i∈I HomD(A)(X,Yi) lim−→i∈I HomD(E)(η
1X, (ηIY)i)

HomD(A)(X, hocolimIY) HomD(E)(η
1X, hocolimI(η

IY))

∼=

∼=

Note that both the horizontal isomorphisms are induced by the triangle equiva-
lence η1. Indeed, this follows from the two canonical isomorphisms induced by
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the derivator equivalence η:

hocolimI(η
IY) ∼= η1(hocolimIY) and (ηIY)i ∼= η1(Yi),

see Diagrams (2.1) and (2.2) at the end of §2.4. Since the equivalence η is
bounded, ηIY ∈ Db(EI). Therefore, if η1 is of type FP∞ then the right vertical
map is an isomorphism by Lemma 4.1.5. Then the square implies that the left
vertical map is an isomorphism for any choice of Y ∈ Db(AI), and so X is of
type FP∞. The converse implication follows similarly using the fact that η1 and
ηI are equivalences between the bounded derived categories.

Lemma 4.2.3. In Setting 4.2.1, we have Db(HC)
c = Db(fp(HC)). In partic-

ular, the derived equivalence realC restricts to an equivalence Db(fp(HC)) →
Db(mod(R)).

Proof. Recall from Proposition 2.6.15 that the intermediate cotilting t-structure
T induces a bounded equivalence realC : DHC

→ DMod(R) of derivators. In par-
ticular, we have a triangle equivalence Db(HC)

∼−→ Db(Mod(R)) obtained by
restriction of real1C : D(HC)

∼−→ D(Mod(R)). Then real1C further restricts to an
equivalence Db(HC)

c ∼−→ Db(Mod(R))c between the categories of compact ob-
jects. Since R is noetherian, Db(Mod(R))c = Db(mod(R)) (see Lemma 2.6.2(2))
and Db(mod(R)) is also precisely the subcategory of Db(Mod(R)) consisting of
objects of type FP∞, see Lemma 4.1.7. Then Lemma 4.2.2 applies and shows
that Db(HC)

c coincides with the subcategory of all objects of type FP∞ of
Db(HC). But by Lemma 4.1.7 this is precisely the subcategory Db(fp(HC)).

Finally, note that we proved the second statement along the way, since
realC = real1C .

Corollary 4.2.4. In Setting 4.2.1, the functor realC induces a triangle equiva-
lence Dsing(HC)→ Dsing(Mod(R)) between singularity categories.

Proof. By Lemma 4.2.3, the derived equivalnce realC : D(HC) → D(Mod(R))

restricts to an equivalence Db(fp(HC))→ Db(mod(R)). Since realC also restricts
to an equivalence D(HC)

c → D(Mod(R))c between the subcategories of compact
objects, the result follows formally by passing to Verdier quotients.

Now we are ready to formulate the main result of this section, that is, to
characterize the case in which the heart HC is a locally coherent category. Our
results can be seen as a refinement of the characterization of the locally coherent
property of hearts due to Marks and Zvonareva [48, Corollary 4.2], but only in
the special case of intermediate compactly generated t-structures in D(Mod(R)).

Theorem 4.2.5. Let R be a commutative noetherian ring and T be an inter-
mediate compactly generated t-structure in D(Mod(R)) with heart H. Then the
following are equivalent:
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(1) we are in Setting 4.2.1, that is, realbT is an equivalence and H is locally
coherent;

(2) the t-structure T restricts to Db(mod(R)).

Proof. Recall that realbT being an equivalence amounts to T being induced by
a cotilting object C by Proposition 2.6.13, and therefore the description in (1)
indeed corresponds to Setting 4.2.1.

The implication (2)⇒ (1) is proven in [48, Corollary 4.2] and Corollary 2.9.13.
It remains to show (1) ⇒ (2). Assume now that H is locally coherent. To

establish that T is restrictable, we just need to recall from Lemma 4.2.3 that
the derived equivalence realC : D(H)

∼−→ D(Mod(R)) restricts to an equiva-
lence Db(fp(H))

∼−→ Db(mod(R)). The t-structure T corresponds under real to
the standard t-structure on D(H), which clearly restricts to a t-structure in
Db(fp(H)).

As another application of Lemma 4.2.3, we can show that the two versions
of coderived categories of HC due to Becker and Positselski coincide. Recall
that an object M ∈ HC is fp-injective if Ext1HC

(F,M) = 0 for all F ∈ fp(HC).
Furthermore, M ∈ HC is of finite fp-injective dimension if M is isomorphic
in D(()HC) to a bounded complex of fp-injective objects concentrated in non-
negative degrees.

Lemma 4.2.6. In Setting 4.2.1, any object in HC of finite fp-injective dimen-
sion is of finite injective dimension.

Proof. LetM ∈ HC , putX = realC(M) ∈ Db(R), and let us denote the converse
equivalence to realC as real−1

C : D(R)
∼−→ D(HC). Since the t-structure T is

intermediate, and using Lemma 4.2.3, there is an integer n ∈ Z such that
real−1

C (mod(R)) ⊆ D(fp(HC))∩D≥n. If M is of finite fp-injective dimension then
HomD(HC)(D(fp(HC))

≥n,M [i]) = 0 for all i ≫ 0. Applying realC we therefore
obtain HomD(R)(mod(R), X[i]) = 0 for all i≫ 0, which amounts to X ∈ Db(R)

being of finite injective dimension in D(R), since R is noetherian. Equivalently,
we have HomD(R)(D≥0, X[i]) = 0 for i ≫ 0. But using the intermediacy of T
again, we know that realCHC [j] ⊆ D≥0 for j ≪ 0, and so it follows by applying
real−1

C that HomD(HC)(HC ,M [i + j]) = 0 for i + j ≫ 0, which in turn implies
that M is of finite injective dimension in HC .

Corollary 4.2.7. In Setting 4.2.1, the coderived category K(Inj(HC)) (in Becker’s
sense) is equivalent to the coderived category in Positselski’s sense.

Proof. This follows directly from [64, §3.7, Theorem] in view of Lemma 4.2.6
.
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We finish this section with an example of a locally coherent Grothendieck
category which does not satisfy [78, Hypothesis 7.1] even though its derived
category is compactly generated. In fact, we obtain it as a heart HT in D(R)

induced by a compactly generated, intermediate and restrictable t-structure.

Example 4.2.8. Let (R,m) be a commutative and noetherian local ring, of
dimension 1, which is not Cohen-Macaulay; for example, take R to be the
localisation of k[x, y]/(x2, xy), for an algebraically closed field k, at the maximal
ideal m = (x, y). In particular, we have 1 = dim(R) > depth(R) = 0; and
then, by the Auslander-Buchsbaum formula, every non-zero finitely generated
module is projective or has infinite projective dimension (in other words, the
small finitistic global dimension of R is 0). Moreover, since R is not Cohen-
Macaulay, m is an associated prime of R; and the other primes are minimal,
so they are associated as well, i.e. Ass(R) = Spec(R). Therefore, every cyclic
module R/pR for a prime p is a subobject of a projective module (R itself). It
follows from Matlis’ Theorem and [5, Theorem 7.1] that the finitistic injective
global dimension of R and, by duality, also the finitistic weak global dimension
of R are 0. We recall that this means that any R-module of finite flat dimension
is automatically flat.

Let V = {m}, consider the associated hereditary torsion pair t = (T,F)

in Mod(R), and let H be the HRS-tilt of Mod(R) with respect to t; namely,
H = F[1]∗T. Notice that since D(H) ∼= D(R) (by Corollary 2.9.13, together with
Remark 3.3.1) the former is compactly generated. Also, H is the heart of the
Happel-Reiten-Smalø t-structure corresponding to the torsion pair (T,F), and
this is an intermediate t-structure which is compactly generated and restrictable
(Remark 3.2.9 and Proposition 2.7.12).

Nonetheless, we shall show that there are no non-zero finitely presented
objects of finite projective dimension in H, and therefore [78, Hypothesis 7.1] is
not satisfied.

Since R has dimension 1, every subset of Spec(R) is coherent, and therefore
V corresponds to a flat ring epimorphism R → S; given our choice of V , S
will be a regular ring of dimension 0. In H, there is a hereditary torsion pair
s = (T,Mod(S)[1]) (see Lemma 3.2.10(1)).

Let X be a finitely presented object of H, i.e. X ∈ H ∩ Db(mod(R)), and
assume it has finite projective dimension. Consider its approximation sequence
with respect to s in H, i.e. the triangle

T → X → L[1]→ T [1]

with T ∈ T and L an S-module. In particular, since gl.dim(S) = 0, L is a
projective S module; since S is a flat R-module, it has finite projective dimension
over R [68, Seconde partie, Corollaire 3.2.7], and then so does L. From the
triangle above, we deduce that T has finite projective dimension as well. Then,
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its flat dimension in Mod(R) is also finite, and since the finitistic weak global
dimension of R is 0, T is a flat R-module. Now, we claim that this implies
T = 0. Indeed, consider a presentation

0→ K → F → T → 0

with F = R(α) a free R-module. Since T is flat, this sequence is pure exact, and
therefore the torsion radical t of t gives a short exact sequence

0→ tK → tF → T → 0.

By construction, tR is supported on V = {m}, and since it is finitely gener-
ated, this means that V (ann(tR)) = {m}. Hence m =

√︁
ann(tR), and since

R is noetherian it follows that there exists n such that mntR = 0. Therefore,
tR, tF = (tR)(α) and also T are R/mn-modules. T is also flat over R/mn, and
since this is an artinian local ring, T is free, i.e. T ∼= (R/mn)(β). But then, if
T ̸= 0, its direct summand R/mn should be a finitely presented flat R-module,
and therefore projective, which is a contradiction because it would force R to
be artinian (and therefore 0-dimensional).

It follows that our finitely presented objectX of H is isomorphic to L[1]. But
then, L is a finitely presented R-module of finite projective dimension, hence it
is projective, hence free. Now, since L is also an S-module, if L ̸= 0 this would
imply that R ∈ Mod(S). In particular, R would be torsion-free with respect to
t, which is not the case since m ∈ Ass(R). We conclude that X ∼= L[1] = 0.

4.3 The equivalence of recollements

Let R be a commutative noetherian ring. By Theorem 4.2.5, Setting 4.2.1
characterises the case in which we have an intermediate compactly generated
restrictable t-structure T.

Consider now the following seemingly new situation.

Setting 4.3.1. Let H be a locally coherent Grothendieck category, and assume
that there exists an object T in D(H) such that:

(T1) T is compact tilting.

(T2) T has finite projective dimension, i.e. HomD(H)(T,H[i]) = 0 for i≫ 0.

(T3) EndD(H)(T ) is isomorphic to a commutative noetherian ring R.

Condition (T1) ensures that D(H) is compactly generated. Since T is com-
pact, it belongs to Db(A), see Proposition 4.1.9. Under this assumption, simi-
larly to before, condition (T2) is equivalent to requiring the tilting t-structure
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TT of D(H) associated to T to be intermediate. Conditions (T1) and (T3) imply
that its heart HT is isomorphic to Mod(R), and we have a triangle equivalence

realT : D(R) = D(HT )→ D(H).

Using the equivalences realC and realT , we see that these two settings are the
two sides of the same picture: starting from Setting 4.2.1, the choices H := HC

and T := real−1
C (R) fit Setting 4.3.1; conversely, taking C := real−1

T (W ) for an
injective cogenerator W of H, one obtains the t-structure TC as the pullback
along realT of the standard t-structure of D(H). In the following we will work
with Setting 4.3.1, with Setting 4.2.1 serving as motivation.

Since H is locally coherent and D(H) is compactly generated (by T ), we
have the recollement of Theorem 4.1.14; and there is also Krause’s recollement
for R:

Kac(Inj(H)) K(Inj(H)) D(H) Kac(Inj(R)) K(Inj(R)) D(R)

Our goal is to construct an equivalence between these two recollements (see
Definition 2.2.17). In order to do that, we replace the derived equivalence realC

by another one which we are able to lift to the coderived level. We start by
fixing a convenient resolution of T .

Lemma 4.3.2. Up to shift, T admits a resolution T := (F−n → F−n+1 →
· · · → F0) with finitely presented objects Fi ∈ fp(H).

Proof. Since T is compact, by Proposition 4.1.9 it belongs to Db(fp(H)), so it is
quasi-isomorphic to a complex over the abelian category fp(H). By taking soft
truncations this complex can be made strictly bounded.

Now we consider the functor Hom(T,−) : C(H) → C(Z), defined as the
totalisation of the bicomplex Hom•,•(T,−). Notice that this bicomplex is always
bounded along the direction of T (because we chose a strictly bounded resolution
of T ).

Since R is commutative, D(H) ∼= D(R) is an R-linear category, and then so is
H. The bicomplex Hom•,•(T,−) and its totalisation Hom(T,−) have therefore
terms in Mod(R) and R-linear differentials; this gives us a functor

Ψ := Hom(T,−) : C(H)→ C(R). (4.1)

Moreover, if X ∈ C(H) is contractible, then the rows of Hom•,•(T,X) are
also contractible, since HomH(Fi,−) is an additive functor for all −n ≤ i ≤ 0.
It follows that Hom(T,X) ∈ C(R) is also contractible, which gives us a functor

Ψ := Hom(T,−) : K(H)→ K(R). (4.2)
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In particular, by restriction of the domain, Ψ induces functors on the subcat-
egories K(Inj(H)) ⊆ K(fpInj−H) ⊆ K(H), which we will continue to denote by
Ψ.

We record immediately that Ψ induces a derived equivalence D(H) ∼= D(R).

Lemma 4.3.3. The functor RHomH(T,−) := QΨQr : D(H) → D(R) is an
equivalence. Moreover, it restricts to an equivalence Db(H) → Db(R), and also
to an equivalence Db(fp(H))→ Db(mod(R)).

Proof. By (T1) and (T3) we have RHomH(T, T ) ∼= EndD(H)(T ) ∼= R, so the
functor RHomH(T,−) sends a compact generator of D(H) to a compact gen-
erator of D(R). Moreover, since RHomH(T,−) is R-linear on Hom-sets, it
must induce the isomorphism EndD(H)(T ) ∼= EndR(R) = R of endomorphism
rings. Since T is a compact generator of D(H) and R is a compact gen-
erator of D(R), a standard arguments shows that RHomH(T,−) induces an
equivalence D(H)c

∼−→ D(R)c between the categories of compact objects (see
e.g. [51, Proposition 6]). Lastly, RHomH(T,−) preserves coproducts, since T
is compact. Then, the derived equivalence is established by double dévissage
(Lemma 2.1.23).

For the claim about the bounded equivalence, let X ∈ D(H). Then its image
RHomH(T,X) belongs to Db(R) if and only if HomD(H)(T,X[i]) = 0 for all but
finitely many i ∈ Z; and this means that X has finitely many cohomologies with
respect to TT . Since TT is intermediate, this is equivalent to X belonging to
Db(H). Therefore, RHomH(T,−) restricts to an equivalence Db(H)

∼−→ Db(R),
and therefore also to an equivalence Db(H)c

∼−→ Db(R)c between compact objects
of the bounded derived categories. By Lemma 4.2.3, this last equivalence is the
same as the desired equivalence Db(fp(H))

∼−→ Db(mod(R)).

Lemma 4.3.4. Ψ: C(H) → C(R) preserves direct limits (and in particular
coproducts). Therefore, also the induced functor Ψ: K(H) → K(R) and its
restriction Ψ: K(fpInj−H)→ K(R) preserve coproducts.

Proof. Coproducts in K(H) are computed termwise, as in C(H). Moreover,
since fpInj−H is closed under coproducts in H, coproducts in K(fpInj−H) are
computed as in K(H). It is then enough to prove the claim for Ψ: C(H)→ C(R).

Now, let Xα := (· · · → Xi
α → Xi+1

α → · · · ) ∈ C(H) be a direct system of
objects, and consider their direct limit lim−→Xα = (· · · → lim−→Xi

α → lim−→Xi+1
α →
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· · · ). Ψ sends it to the totalisation of the bicomplex

· · · HomH(F0, lim−→Xi
α) HomH(F0, lim−→Xi+1

α ) · · ·

· · · HomH(F−1, lim−→Xi
α) HomH(F−1, lim−→Xi+1

α ) · · ·

...
...

· · · HomH(F−n, lim−→Xi
α) HomH(F−n, lim−→Xi+1

α ) · · ·

Since the Fi are finitely presented in H, the functors HomH(Fi,−) commute nat-
urally with the direct limits, so Hom•,•(T, lim−→Xα) is isomorphic in C(C(H)) to
the direct limit of the bicomplexes Hom•,•(T,Xα). Totalisation also commutes
with direct limits, and so Ψ preserves them.

In order to obtain a functor between the coderived categories, we want Ψ

to preserve coacyclicity. Recall that a locally finitely presentable Grothendieck
category A admits a natural notion of a pure exact sequence, and that a complex
in C(A) is pure-acyclic if it is acyclic and in addition, each exact sequence
0→ Zi(X)→ Xi → Zi+1(X)→ 0 induced by the cocycles is pure exact in A.

We start by recalling the following fact.

Proposition 4.3.5 ([78]). Over a locally coherent Grothendieck category, pure-
acyclic complexes are coacyclic.

Proof. This follows mainly from [78, §6.2]; we collect the argument for the
convenience of the reader. Let A be a locally coherent Grothendieck category,
and X a complex in C(A). Then X corresponds to a coacyclic object of K(A) if
and only if it is Ext1C-orthogonal to C(Inj(A)), i.e. if it belongs to the left class of
the functorially complete cotorsion pair generated by disks of fp(A). Now, this
left class is closed under retracts and transfinite extensions, and pure-acyclic
complexes are (retracts of) transfinite extensions of disks of fp(A) in C(A) by
[78, Lemma 5.6].

Lemma 4.3.6. The restriction Ψ: K(fpInj−H) → K(R) preserves coacyclic
complexes.

Proof. As a partial converse of Lemma 4.3.5, a complex X ∈ C(H) of fp-
injectives is coacyclic in K(H) if and only if it is pure-acyclic [78, Proposi-
tion 6.11]. By [78, Lemma 4.14], a complex X in C(H) is pure-acyclic if and only
if it is a direct limit of bounded contractible complexes. Since Ψ: C(H)→ C(R)

preserves both direct limits (Lemma 4.3.4) and contractibility, Ψ(X) will also be
pure-acyclic by the same characterisation. Then we conclude by Lemma 4.3.5
that Ψ(X) is also coacyclic.
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In view of the equivalences

K(Inj(H)) K(fpInj−H)/{pure acyclics} Dco(H)
⊆
∼= ∼=

by Lemma 4.3.6 we deduce that Ψ induces a functor

RcoΨ: Dco(H)→ Dco(R). (4.3)

On an objectX ∈ Dco(H), RcoΨ is computed by first resolvingX by a complex of
fp-injectives (or even injectives), then applying Ψ and considering the resulting
complex as an object of Dco(R). When identifying Dco(H) ∼= K(Inj(H)) and
Dco(R) ∼= K(Inj(R)), RcoΨ is then the composition

RcoΨ: K(Inj(H)) K(H) K(R) K(Inj(R))
⊆ Ψ Iλ (4.4)

where Iλ : K(R)→ K(Inj(R)) is the reflection of Proposition 2.3.17.

Proposition 4.3.7. RcoΨ: Dco(H)→ Dco(R) is an equivalence.

Proof. We want to argue by double dévissage.
First, RcoΨ: Dco(H)→ Dco(R) preserves coproducts, since Ψ does, by Lem-

ma 4.3.4. Now we show that it induces an equivalence between the subcategories
of compact objects. In view of the identification Dco(H) ∼= K(Inj(H)), a compact
object of Dco(H) is identified with the homotopically injective resolution X of an
object in Db(fp(H)); in particular, this is a bounded below complex. When we
apply Ψ and then Iλ, as in (4.4), we obtain again a bounded below complex, first
in K(R) and then in K(Inj(R)). This last object Y := IλΨ(X), in particular, is
a homotopically injective complex. Since we have X ∼= QrQX and Y ∼= QrQY

in K(Inj(H)) and K(Inj(R)), respectively, we can write

RcoΨ(X) = Y ∼= QrQY = QrQIλΨX = QrQΨX ∼= QrQΨQrQX =: (∗)

Now, by definition, RHomH(T,−) := QΨQr, so we can continue

(∗) = Qr RHomH(T,QX)

It is therefore sufficient to show that Qr RHomH(T,Q−) is an equivalence
between K(Inj(H))c and K(Inj(R))c. Now, Q : K(Inj(H))c → Db(fp(H)) and
Qr : D

b(mod(R))→ K(Inj(R))c are equivalences, and RHomH(T,−) : Db(fp(H))→
Db(mod(R)) is an equivalence by Lemma 4.3.3.

Now that we have the equivalence between the coderived categories, we show
that it preserves the recollements. First we need a technical lemma.

Lemma 4.3.8. IλT ∼= QlQT in Dco(H) ∼= K(Inj(H)).
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Proof. Let E be the homotopically injective resolution of T : we have a triangle
in K(H)

A→ T → E → A[1]

with A acyclic. Since T is bounded below, E and then A are also bounded
below. A is therefore also coacyclic. This means that E ∼= IλT in K(Inj(H)).
Now, since E is homotopically injective we have E ∼= QrQE ∼= QrQT ; but
QT is compact in D(H), and therefore QrQT ∼= QlQT by Lemma 4.1.13. We
conclude as wanted that IλT ∼= QlQT in K(Inj(H)).

Lemma 4.3.9. RcoΨ: Dco(H)→ Dco(R) preserves acyclics.

Proof. Identifying Dco(H) ∼= K(Inj(H)) and in view of (4.4), let X ∈ K(Inj(H))

be acyclic. For every n ∈ Z we have

HnIλΨX ∼= HnΨX = HnHom(T,X) ∼=

∼= HomK(H)(T,X[n]) ∼= HomK(Inj(H))(IλT,X[n])
(1)∼=

∼= HomK(Inj(H))(QlQT,X[n]) ∼= HomD(H)(QT,QX[n])
(2)
= 0

where (1) is by Lemma 4.3.8 and (2) because QX = 0.

Theorem 4.3.10. RcoΨ: Dco(H) → Dco(R) induces an equivalence of recolle-
ments, that is, there is a diagram

S(H) Dco(H) D(()H)

S(Mod(R)) Dco(R) D(R)

SΨ ∼= RcoΨ ∼= RΨ ∼=

in which the rows are the recollements from Remark 4.1.17 of H and Mod(R)

and such that all the six obvious squares commute.

Proof. Identify Dco(H) ∼= K(Inj(H)) and Dco(R) ∼= K(Inj(R)). By Proposi-
tion 4.3.7, RcoΨ is an equivalence. By Lemma 4.3.9, it preserves acyclicity.
In view of basic results on recollement equivalences (see §2.2), it is enough to
show that the following square is commutative up to equivalence

K(Inj(H)) D(H)

K(Inj(R)) D(Mod(R))

∼=RcoΨ

Q

∼=RΨ
Q

where RΨ = RHomH(T,−). Since RcoΨ preserves acyclics, the composition
QRcoΨ kills objects from Kac(Inj(H)), and thus the approximation triangle with
respect to the stable t-structure (Kac(Inj(H)), Qr(D(H)) in K(Inj(H)) yields a
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natural equivalence QRcoΨ ∼= QRcoΨQrQ. Then we can compute similarly as
in Proposition 4.3.7:

QRcoΨQrQ = QIλΨQrQ ∼= QΨQrQ = RΨQ.

The rest follows by denoting the induced triangle equivalence S(H)→ S(Mod(R))

by SΨ.
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