W) Check for updates

Received: 3 May 2021 Revised: 20 November 2021 Accepted: 11 February 2022

DOI: 10.1002/asi.24629

_JASIST U183

RESEARCH ARTICLE

Learning to rank from relevance judgments distributions

Alberto Purpura | Gianmaria Silvello | Gian Antonio Susto

Department of Information Engineering,
University of Padua, Padua Abstract
LEarning TO Rank (LETOR) algorithms are usually trained on annotated cor-
Correspondence

Alberto Purpura, Department of
Information Engineering, University of
Padua, 35122 Padua, Italy.

Email: purpuraa@dei.unipd.it

pora where a single relevance label is assigned to each available document-
topic pair. Within the Cranfield framework, relevance labels result from merg-
ing either multiple expertly curated or crowdsourced human assessments. In
this paper, we explore how to train LETOR models with relevance judgments
distributions (either real or synthetically generated) assigned to document-
topic pairs instead of single-valued relevance labels. We propose five new prob-
abilistic loss functions to deal with the higher expressive power provided by
relevance judgments distributions and show how they can be applied both to
neural and gradient boosting machine (GBM) architectures. Moreover, we
show how training a LETOR model on a sampled version of the relevance
judgments from certain probability distributions can improve its performance
when relying either on traditional or probabilistic loss functions. Finally, we
validate our hypothesis on real-world crowdsourced relevance judgments dis-
tributions. Overall, we observe that relying on relevance judgments distribu-
tions to train different LETOR models can boost their performance and even
outperform strong baselines such as LambdaMART on several test collections.

1 | INTRODUCTION assess the same document-topic pair, and the final relevance
label for the pair is obtained by aggregating these scores
1.1 | Motivation (Hosseini et al., 2012). This process is a cornerstone for sys-

tem training and evaluation and has contributed to the con-

Ranking is a problem that we encounter in a number of
tasks we perform every day: from searching on the Web to
online shopping. Given an unordered set of items, this prob-
lem consists of ordering the items according to a certain
notion of relevance. Generally, in information retrieval
(IR) we rely on a notion of relevance that depends on the
information need of a user, expressed through a keyword
query. When creating a new experimental collection, the
corresponding relevance judgments are obtained by asking
different judges to assign a relevance score to each
document-topic pair. Multiple judges—either trained experts
or participants of a crowdsourcing experiment—usually

tinuous development of IR, especially in the context of
international evaluation campaigns. Nonetheless, the opin-
ion of different judges on the same document-topic pair
might be very different or even diverge to the opposite ends
of the spectrum—either because of random human errors or
due to a different interpretation of a topic. Inevitably, the
aggregation process conflates the multiple assessors view-
points on document-topic pairs onto a single one, thus losing
some information—even though it also reduces annotation
errors and outliers. Our research hypothesis is that machine
learning (ML) models—that is, LETOR (Tax et al., 2015) and
neural information retrieval (NIR) (Onal et al., 2018)

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals LLC on behalf of Association for Information Sci-

ence and Technology.

J Assoc Inf Sci Technol. 2022;1-17.

wileyonlinelibrary.com/journal/asi 1

https://orcid.org/0000-0003-1701-7805
mailto:purpuraa@dei.unipd.it
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/asi
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fasi.24629&domain=pdf&date_stamp=2022-03-01

PURPURA ET AL.

R AS JASIST

models—could use all the labels collected in the annotation
process to improve the quality of their rankings. Indeed,
judges disagreement on a certain document-topic pair can be
due to an inherent difficulty of the topic or to the existence
of multiple interpretations of it. We argue that designing ML
models able to learn from the whole distributions of rele-
vance judgments could improve the models’ representation
of relevance and their performance through the usage of this
additional information.

1.2 | Methods

Following this idea, we propose to interpret the output of a
LETOR model as a probability value or distribution—
according to the experimental hypotheses—and define differ-
ent Kullback-Leibler (KL) divergence-based loss functions to
train a model using a distribution of relevance judgments
associated to the current training item. Such a training strat-
egy allows us to leverage all the available information from
human judges without additional computational costs com-
pared to traditional LETOR training paradigms.

The loss functions we propose can be used to train
any ranking model that relies on gradient-based learning,
including popular NIR models or LETOR ones.

In this work we focus on transformer-based neural
LETOR models and on one decision tree-based GBM
model—the model at the base of the popular LambdaMART
(Burges, 2010) ranker and used as a strong baseline in many
recent LETOR research papers such as Bruch (2019), Bruch
et al. (2020), Bruch et al. (2019), Pasumarthi et al. (2020),
and Zhen et al. (2021).

1.3 | Evaluation

We assess the quality of the proposed training strategies on
four standard LETOR collections (MQ2007, MQ2008,
MSLR-WEB30K (Qin & Liu, 2013) and OHSUMED (Qin,
Liu, Xu, & Li, 2010)) and three different transformer-based
LETOR models. We also conduct a crowdsourcing experi-
ment to build a new LETOR collection based on the
COVID-19 MultiLingual Information Access (MLIA) data.!
We then use the raw relevance labels and their aggregated
version to assess the impact on a LETOR model trained on
raw relevance labels versus their aggregated form.

1.4 | Contributions

(a) The definition of five new loss functions to train dif-
ferent LETOR models using probability distributions of
relevance labels; (b) an extensive evaluation of the loss

functions on neural and decision tree-based LETOR
models using standard test collections and a newly cre-
ated crowdsourced LETOR test collection based on
COVID-19 MLIA data.

1.5 | Outline

In section 2, we describe the most relevant training strat-
egies for LETOR and NIR models; in section 3, we pre-
sent the probabilistic loss functions leveraging on
relevance judgments distributions and the novel neural
LETOR model we employ for evaluation; in section 4, we
describe the experimental setup and in section 5 we dis-
cuss the evaluation results; in section 6, we draw some
conclusions and discuss future work.

2 | RELATED WORK

Decision tree-based approaches such as LambdaMART
(Burges, 2010) have been for many years the most popu-
lar ML models in this domain, but recently—thanks to
the growing size of LETOR collections, new optimization
functions (Bruch et al., 2020) and feature normalization
strategies (Zhuang, Wang, Bendersky, & Najork, 2020)—
deep learning approaches, transformer-based ones in par-
ticular (Zhen et al., 2021), are showing an increasingly
competitive performance.

Transformer-based LETOR models rely on one or
more self-attention layers. This type of neural layer archi-
tecture was originally proposed in Vaswani et al. (2017),
and later popularized by language models such as bidi-
rectional encoder representations from transformers
(BERT) (Devlin et al., 2018). This architecture allows
LETOR models to efficiently evaluate and compare lists
of candidate relevant documents to a user query, provid-
ing a numerical estimate of their relevance. One of the
latest and most successful approaches of this kind is data
augmented self-attentive latent cross model (DASALC)
(Zhen et al., 2021). It relies on a few strategies such as
neural feature transformation, self-attention layers, a list-
wise ranking loss, and model ensembling, to outperform
strong non-neural baselines such as LambdaMART on
public LETOR collections. Strategies such as neural fea-
ture transformation are frequently employed in the con-
text of neural LETOR models to normalize the
representation of their inputs so that they could be better
interpreted by such models (Zhuang, Wang, Bendersky, &
Najork, 2020). Self-attention layers—such as the one we
employ in the proposed neural LETOR model described
in section 3—allow to efficiently compare groups of items
at the feature level. Finally, listwise ranking losses and

PURPURA ET AL.

model ensembling strategies are already popular solu-
tions in LETOR and machine learning to improve the
performance of ranking models (Bruch et al., 2019;
Burges, 2010).

In this work, we will show how we can achieve simi-
lar improvements in a more efficient way through the
usage of a new class of probabilistic loss functions that we
propose.

Indeed, in addition to the development of new archi-
tectures, another important branch of research in the
LETOR domain focuses on the study of new loss func-
tions specific to ranking problems (Tax et al., 2015).
These loss functions are generally categorized as
pointwise, pairwise, and listwise (Chen et al., 2009).
Pointwise loss functions are used to train a model to fit
the corresponding relevance score for each document-
topic pair as in a regression task. Loss functions
belonging to this class can be described using the following
general formulation: Pointwise(q,d,y) =f(s(g,d),y), where
q indicates a query, d a document, y its relevance label, s
(-,-) the function learned by a ML model to compute
the relevance of a document given a query, and f{-) the
generic function which compares the score computed by the
model that is being trained with the corresponding relevance
label. One of the possible implementations of f{-) is the mean
squared error (MSE) (Liu et al., 2018). Pairwise loss functions
consider pairs of documents and compare their relevance
scores using different strategies. This class of losses can
be formalized as: Pairwise(q,d;,d>) =f(s(q,d1),s(q,d2)),
where the function f can have different formulations such
as the Hinge function ¢(z1,2,) = max(0,1 —z; +2p),
where z; =s(q,d;)Vie {1,...,n} (Guo et al., 2016). Finally,
listwise loss functions take into account a set of docu-
ments relative to a certain query and compute the loss for
the group of items as: Listwise(q, {d1,....,dn }, {V15--sVn}) =
f((s(q,d1),--8(q,dn))s {¥15 -V) Where {y1,....y,} are the
relevance judgments associated to {d;,...,d,,} and the func-
tion f{-) can take different formulations such as the
ApproxNDCG (Qin, Liu, & Li, 2010) loss.

Among the numerous loss function formulations pro-
posed by the LETOR community, the most widely
employed in the latest state-of-the-art text-based NIR
(MacAvaney et al., 2019) and LETOR models (Zhuang,
Wang, Bendersky, & Najork, 2020) are the pairwise Hinge
(Onal et al., 2018) and the listwise ApproxNDCG loss
(Bruch et al., 2019; Qin, Liu, & Li, 2010), respectively. The
formulation of the Hinge loss as used in the NIR domain is
Hinge(q,d*,d”) =max(0,1—s(q,d") +s(q,d”)), where
d" and d~ identify, respectively, a relevant and a not-
relevant document for the query g. The goal of this loss
function is to maximize the difference between the rele-
vance probabilities—indicated by the function s(q,-)—
computed for each document. The Hinge loss is

| JASIST BUIREE

frequently chosen to train text-based NIR models such as
DRMM (Guo et al, 2016), MatchPyramid (Pang
et al., 2016), or the most recently proposed CEDR
(MacAvaney et al., 2019), but was also used as a baseline
in LETOR research works such as in Zamani and
Croft (2018), where it demonstrated to be a competitive
candidate among other pointwise or pairwise loss
functions. The main advantage of this loss function is
its ability to perform well on relatively small
datasets—as it is often the case for text-based NIR
models when evaluated on shared IR test collections.
Differently from the Hinge loss, the ApproxNDCG loss
can take into account more than two documents at a
time and, as the name suggests, provides a differentia-
ble approximation of the normalized Discounted
Cumulated Gain (nDCG) measure for the evaluation
of a ranked list. Given a permutation z of items {xy,...,x,}
and the corresponding sequence of relevance labels y, the
nDCG is defined as

DCG(z,y)

nDCG(n:,y) = m,

(1)

where z* is the ideal ranking of the items according to
the relevance labels y. The discounted cumulated gain
(DCG) is computed as (Chen et al., 2009)

Wi—1
DCG(2
(ry) = Zlogz 1+r(xi,n))’ @)

where r(x;,7) is the function returning the rank of item Xx;
in 7 and y; is its label. This measure, however, is not dif-
ferentiable because the function r(-,-) is not. To tackle
this problem, Qin, Liu, and Li (2010) propose a differen-
tiable approximation of nDCG which can be used as a
loss function to train ML models (Bruch et al., 2019). In

the ApproxNDCG loss, the non-differentiable r(-,-) func-
tion is replaced by its approximation,
T(xi, 7 _1+ZI Vx,ezr (3)

VER!

where s(-) indicates the scoring function of the model we
are training and I, ., is the indicator function which is
1 if u <v and 0 otherwise. In turn, the indicator function
is approximated with: o(v —u) = (1 +e *"")~!, where a
is a parameter to control the steepness of the sigmoid func-
tion o(-). More recently, a stochastically treated version of
the ApproxXNDCG function was proposed by Bruch
et al. (2020). In the paper, zero-mean logistic noise is added
to the sigmoid function presented earlier, which becomes
o((v—u)+ Z,,), where Z,, ~ Logistic(mean = 0,scale = f3).

R UEAS JASIST

PURPURA ET AL.

Intuitively, adding random noise to the model outputs
induces it to increase the difference between the rele-
vance scores of relevant and not-relevant items to main-
tain their relative ordering in the final ranked list.
ApproxXNDCG and its variant with stochastic treatment
(ST) are the most popular and best performing listwise
loss functions among the recently published neural
LETOR works such as Bruch et al. (2020), Bruch
et al. (2019), Zhuang, Wang, Bendersky, Grushetsky,
et al. (2020), and Zhuang, Wang, Bendersky, and
Najork (2020).

Regarding the collection of relevance judgments,
there is still an open debate in the IR community on how
to reliably collect them and on the best strategies for their
aggregation. Crowdsourcing is a valuable option in this
context (Alonso, 2019). The TREC crowdsourcing track
(Lease & Kazai, 2011; Smucker et al., 2012; Smucker
et al., 2013), for example, explored the challenges related
to the collection and management of relevance judg-
ments for Web pages and search topics. Numerous aggre-
gation options are also described in the IR literature on
crowdsourcing (Ferrante, Ferro, & Piazzon, 2020;
Hosseini et al., 2012; Ravana & Moffat, 2009) involving
strategies to weigh the annotations of each judge
depending on the topic difficulty and/or his/her level of
confidence on it. Here, we take a new approach to this
problem, eliminating the relevance judgments aggrega-
tion step and training a model on the distribution of rele-
vance judgments associated to each document-topic pair.

We propose five different loss functions that allow
ranking models to take advantage of relevance judgments
distributions prior to their aggregation. Since, to the best
of our knowledge, no similar method was previously
presented in the literature, we compare the newly pro-
posed training strategies to five high-performing loss
functions representative for each class of functions
described before, that is, MSE, Hinge, ApproxNDCG,
ApproxNDCG with ST and ListMLE.

3 | PROPOSED APPROACH

In this section we introduce the proposed pointwise,
pairwise, and listwise loss functions and the neural
LETOR model that we use as reference architecture.

3.1 | Pointwise loss functions

These formulations rely on KL divergence to compare
two probability distributions, that is, the relevance score
computed by our LETOR model for a document-topic
pair and its corresponding true relevance label. We

interpret the relevance label assigned to a document as if
it was generated by a Binomial random variable model-
ing the judges' annotation process. For example, we
assume that n assessors provided one binary relevance
label for each document-topic pair, that is, to state
whether the pair was a relevant or a not-relevant one.
This process can be modeled as a Binomial random vari-
able P~ Bin(n,p) where the success probability p for
each sample is the average of the binary responses sub-
mitted in n trials. Since in most LETOR datasets, rele-
vance judgments are not real values in the [0,1] range,
we normalize them to fit this interval.

We then apply the same reasoning for the interpreta-
tion of our model output probability score as another
Binomial distribution P ~ Bin(n,p) with the same param-
eter n—empirically tuned for the numerical stability of
the gradients during training—and probability p equal to
the output of the model which is kept in the [0,1] € R
range employing a sigmoid activation function at the out-
put layer.

At this point, the model output and relevance labels
distributions are expressed as Binomial distributions with
the same parameter n and different success probabilities;
hence, we can compare them using the KL divergence,

D1, (PHIA?) =log (%) np +logG :lﬁ)) n(l—p), (4)

that is differentiable because it is the sum of two differen-
tiable and continuous functions for p and p in the open
(0,1) interval. Since KL divergence is not symmetric—
which would lead to issues in the comparison of different
items during model optimization—we employ the follow-
ing symmetric and non-negative formulation as the loss
function for each data point in a training batch:

PointwiseKL<Bin> = (DKL (P i’

131‘) +DKL<1A)i

Pi)) «w. (5)

Since we train our model feeding it all the items
corresponding to one or more ranked lists provided in
the training data, we need to balance the contributions of
relevant (the minority) and not-relevant (the majority)
items to the final loss function value. For this reason,
before computing the total loss value in a batch by sum-
ming the contribution of each data point, we rescale each
term by a factor w;, inversely proportional to the number
of times an item of the same class appeared in the batch.

Since our relevance labels are graded and normalized
between [0,1] € R, we consider as not-relevant the data
points associated to a relevance label lower than an
empirically set threshold, and the remaining ones as rele-
vant. In our experiments, we set this threshold to 0.1—

PURPURA ET AL.

instead of for example 0.0—for it to be used also when
simulating the relevance labels distributions as described
in section 5, sampling them from continuous probability
distributions.

Whenever an actual relevance judgments distribution is
available, we propose to use another pointwise loss function
which takes into account the distribution of values over a
number of relevance grades, interpreting them as outcomes
from a multinomial distribution (Agrawal, 2020;
Bishop, 2006) P ~ Mul(n, (p;,...,p;))—Wwhich is a generali-
zation of the aforementioned Binomial distribution with
the same parameter n. The outcomes of the modeled ran-
dom process take a finite number of values, where
Z;‘lei =1. Each p; indicates the probability of one of the
k possible relevance grades to be selected by the pool of
judges that were employed to asses a certain document-
topic pair. To obtain a comparable distribution to the out-
put of our model we adjust the output layer size to k and
employ a softmax activation function over each output
sequence obtaining the probabilities (p,,...,p,), Which
allow us to define the random variable
P~Mul(n, (p,,...D,)). We then compare the two distri-
butions with the same strategy used before, changing the
formulation of the KL divergence to Multinomial
distributions,

k .
Dxrvun) (P H?) = Z pjlog%. (6)
i=j

This function is continuous and differentiable for
non-zero probability values but, again, not symmetric.
Therefore, we train our model using the following sym-
metric and non-negative formulation to evaluate the
quality of approximation of the relevance of each item:

) om.

(7)

ﬁi) + Dxr(vu) (1/51

PoinmliseKL(Mu1) = (DKL(Mul) (P i

As in the previous case, before computing the total
loss in a batch, we rescale the contribution of each data
point in it by a factor w;.

In this case, we recommend the collection of a num-
ber of relevance labels for each query-document pair suf-
ficient to estimate the distribution of opinions on its
relevance for the user base of the search system. For
example, if we are evaluating the relevance of a recently
published academic study with respect to a certain topic,
if our audience is made of experts from the same aca-
demic field, then a wider range of relevance labels should
be collected to capture all of the nuances of the opinions
field professionals could have on the topic. On the other

| JASIST BUIREE

hand, if our audience is the general public, the number
of relevance judgments required can be smaller and pro-
portional to the public agreement on the specific topic.

Note also that, despite the interpretation we provide for
the parameter n in the Binomial and Multinomial distribu-
tions as the number of judges providing relevance labels
for the same query-document pair, in the remainder of this
paper we consider n as a hyperparameter of the model.
Indeed, even if there could be a relation between the num-
ber of judges providing relevance labels and the
corresponding random variable which could model this
process, this intuition would be hard to verify empirically.
Indeed, the number of judges available for the creation of a
new IR collection is often limited by real-world
constraints—such as labor cost or the availability of an
appropriate number of trained professionals—therefore,
our hypothesis becomes hard to verify for a large number
of topics where potentially dozens or even hundreds of
judges could be required for the annotation of each query-
document pair in an exhaustive study.

3.2 | Pairwise loss functions

We also propose two pairwise loss functions. The intui-
tion here is to increase the model robustness and general-
ization power through a comparison between
distributions instead of real-valued relevance scores. To
achieve this goal, given a topic, we compare all pairs of
relevant and not-relevant—or less relevant if relevance
labels are not binary—documents in a batch by consider-
ing the output relevance scores produced by our model
and the respective relevance labels. In other words, for
each topic in an experimental collection we consider
every pair of documents available with a different rele-
vance label—obtained by either aggregating relevance
scores if relevance judgments distributions are available,
or taking their exact value—and compare them to train a
LETOR model with one of the loss functions described
below. We evaluate two possible interpretations for these
relevance scores.

The first option, similarly to what we did for the
Pointwisegy gin) loss function, is to consider the relevance
scores as the success probabilities of Binomial random
variables and then to compute their KL divergence.

The second option is to consider the relevance scores
of each pair as samples from two different Gaussian ran-
dom variables P* ~ A Hpe,0) and P~ ~N Hp-,0) With
the same standard deviation ¢ but centered on the rele-
vance labels—or model output scores—u,;,, and y,,-. Our
hypothesis is that relevance judgments provided by differ-
ent judges for a certain document-topic pair (relevant or
not-relevant) will have a certain standard deviation (o)

PURPURA ET AL.

*LwiLey IIEEH

and will be all centered around a certain value u, following
a Gaussian random process. Therefore, if we assume the
standard deviation—that is, the disagreement of different
judges over each annotated sample—to be constant over
time, we can model the process with a Gaussian random
variable with p equal to the output relevance score of our
model—interpreted as a sample from the true
distribution—and standard deviation ¢ to be adjusted
according to the level of agreement/disagreement that we
hypothesize in the annotation process.

Depending on the modeling strategy, the proposed
loss functions take the following formulations typical of
pairwise hinge losses (Chen et al., 2009), where we
replace the term dedicated to compare a pair of item with
their sign-corrected KL divergence value,

Pairwise (gin) = max (0,m —sign(p” — p~) Dxy(gin) (PiinsPhin)

(®)

where m is a slack parameter to adjust the distance
between the two distributions, p* and p~ are the outputs
of the LETOR model associated to two documents—the
former with a higher relevance label than the latter —
Pl ~Bin(n,p") and Py, ~Bin(n,p~) are two Binomial
distributions corresponding to a relevant and to a not-
relevant document-topic pair, respectively. The respective
success probabilities are equal to the sigmoid-bounded rele-
vance probability scores returned by the LETOR model to
train, as done for the corresponding pointwise loss function,
see Equation (5). In this case, if the relevant data point has a
relevance probability p* > p~, the loss is equal to the differ-
ence between m and the KL divergence between the distri-
butions. This difference is lower bounded by zero, thanks to
the max operation implemented with the rectified linear
unit (ReLU) function. In this situation, the slack variable
m can be tuned to increase or decrease the distance
between the two distributions. Conversely, if p~ > p™, then
the loss is positive and equal to the sum of m and the value
of the KL divergence between the two distributions.

The formulation of the pairwise loss function relying
on Gaussian distributions has a similar form, but it uses
the formulation of the KL divergence between two
Gaussian random variables Pt~ N (/,tp+,ap+>
and P~ NN(,upf,apf),

012,+ + (,Mp+ —,up7>2 ©)
.

Up,

_ Op-

N1
Diay (P|[P) =3 | 2108

1+

()'p+

This function is differentiable and, if the two random
variables have the same variance, also symmetric and

2 o 2
not-negative—that is, Dy (P|[P~ :W—%

Therefore, we can employ it to train the model as

Pairwise (v = max (0,m —sign(p* —p~) D) (Pr»Py)-
(10)

3.3 | Listwise loss function

Finally, we propose a listwise loss function also based on
the KL divergence between distributions. In this case, we
consider the whole set of relevance probabilities associ-
ated to k documents in a ranked lists of a batch and their
respective relevance labels as two multivariate Gaussian
distributions. In a similar way as in Equation (9), we
compute the KL divergence between two multivariate
Gaussian distributions P~N (,u;, Z;) and
PN./\/(,up,Ep), obtaining

DKL(Nmuh):% tr(zp_lzj;)
5w+
o G2

If the two distributions have the same diagonal
covariance matrix, Equation (11) reduces to

1 T _
Dyr (W) :5<ﬂp _'“$> z! K”P —,u;)}, (12)

which is also symmetric and not negative. As for the
Pointwisegygin)y and Pointwisegy), we rescale the
components of the distributions associated to relevant
and not-relevant items by a factor w inversely propor-
tional to their respective class frequency in the current
ranked list. Therefore, the loss function value associated
to one ranked list in a batch is computed as

LiStWiseKL(Nmuh) = DKL(/\/muh) (ﬁHP) *W, (13)

where P~ N\ ;,Z represents the output distribution of
relevance probabilities returned by our model and P~
N (ﬂp,E) indicates the distribution of true relevance judg-
ments associated to each item in a ranked list. The loss func-
tion values associated to each ranked list are then averaged
over a batch.

PURPURA ET AL.

3.4 | Neural LETOR model

The architecture of the transformer-based neural model
that we employ in our experiments is depicted in
Figure 1 and is inspired to other popular ones such as
Pobrotyn et al. (2020), Sun and Duh (2020), and Zhen
et al. (2021). The first layer of the proposed architecture—
depicted in Figure 2—is a standard multi-head self-attention
(SA) layer as the one introduced in Vaswani et al. (2017) to
compare the different document representations in input.
The outputs of each SA head—of size m = f/k, that is, equal
to the original document representation size f divided by the
number k of attention heads used—are then concatenated
and fed to a regularization layer with the goal of eliminating
the redundancy in the representations of different attention
heads and extracting only the features and their combinations
which are useful for our goal. The regularization layer that
we employ takes as input the concatenation of the outputs of
different attention heads associated to the documents and
begins by normalizing their components to have mean 0 and
standard deviation equal to 1. Then, we feed these normal-
ized representations into a feed-forward neural network
(FFNN) of size ¢ times the input vector size f, using the ReLU

Output Relevance Scores

S1 Sz Sn

T

[Output Layer]

1

[Hidden Layer]
A

Regularization \

Layer

-

Multi Head Self-
Attention Layer

Concatenate

Self-Attention

Self-Attention

Head 1 Head k

Input Documents Set

d4 d2 dn

FIGURE 1
experiments

Schema of the neural model employed in our

| JASIST RUIREE

activation function. Next, we normalize its output—with the
goal of forcing to zero the components of the output which
are redundant—and feed them to another FFNN of size f.
The output of the latter layer is then summed to the normal-
ized input to the layer as described in Figure 3. Finally, we
normalize the components of the output vector of this layer
to have 0 mean and unit standard deviation. Each normaliza-
tion layer estimates the components mean and standard devi-
ations considering each feature separately. This layer is used
to improve the numerical stability of the operations in the
model by maintaining the values within a constant range.

The representation of each document returned by our
regularization layer is then fed to a hidden layer of size
h with a ReLU activation function and to an output layer.
The output layer size is equal to the number of relevance
levels of the current collection if we are using the
Pointwisegy mu loss function, one otherwise. The activa-
tion function we use depends on the output size and is
the softmax function if we are considering a multi-class
output and the sigmoid in the other cases.

4 | EXPERIMENTAL SETUP

In this section, we describe the main technical details of
our experimental setup, additional details are available in
our code repository, along with the source code of the
proposed approaches and the newly created test collec-
tion: https://github.com/albpurpura/PLTR.

4.1 | Experimental collections

The experimental collections that we consider in our

experiments are MQ2007, MQ2008, MSLR-WEB30K
(Qin & Liu, 2013) and OHSUMED (Qin, Liu, Xu, &

élf-Attention \
Head L2 Norm

Softmax

Q K \

1 1 1

Input
\\ Ranked List

FIGURE 2
proposed transformer-based LETOR model

/

Schema of the self-attention layer we employ in the

https://github.com/albpurpura/PLTR

R AS JASIST

PURPURA ET AL.

FIGURE 3

Regularization Layer

Inpul—>|Layernorm|—>| Dropout |—>| FFNN |—>| L2 Norm |—>| FFNN @ ‘
Vector

Schema of the proposed
regularization layer that we use in our
LETOR model

Li, 2010). All collections are already organized in five dif-
ferent folds with the respective training, test and valida-
tion subsets. We report the performance of our model
averaged over these folds with the exception of the MSLR-
WEB3O0K collection where we only consider Fold 1 as in
other popular research works (Ibrahim & Carman, 2016;
Zhen et al., 2021; Zhuang, Wang, Bendersky, Grushetsky,
et al., 2020; Zhuang, Wang, Bendersky, & Najork, 2020).

The MQ2007 and MQ2008 collections contain 1,700 and
800 queries, with a respective average of 40 and 18 assessed
documents per query. Their relevance scores are integer
values ranging from 0 to 2, indicating an increasing degree
of relevance. The MSLR-WEB30K collection is a subset of
30,000 queries from the retired training set of the commer-
cial search engine Microsoft Bing with an average number
of 125 judged documents per query. Since these features x;
are not normalized, we normalize them applying the fol-
lowing transformation proposed in Zhuang, Wang,
Bendersky, and Najork (2020) and also used in Zhen
et al. (2021): X; =log(|1+x;|) *sign(x;). Relevance labels
here are integers from 0 to 4. The OHSUMED (Qin, Liu,
Xu, & Li, 2010) collection contains about 16 K documents
from MEDLINE and 106 queries with an average of
125 assessed documents. Relevance labels here are in the
{0,1,2} set.

4.2 | Crowdsourcing relevance
judgments

We also conducted a crowdsourcing experiment to obtain
relevance judgments distributions for a subset of
document-topic pairs from the COVID-19 MLIA collection.
We consider the English MLIA subset, which contains
30 topics related to the COVID-19 pandemic and docu-
ments scraped from different online sources.”> We collected
relevance judgments on an average of 64 documents per
topic (SD = 4.37) with an average of 4 different judges
(SD = 7.12) per document and with an average pairwise
inter-annotator agreement of 70%. Judges are voluntary
master or Ph.D. students in computer engineering or for-
eign languages. The relevance labels that we consider are
in the {0,1,2} set, indicating increasing relevance. We built
a LETOR collection computing the documents features by
employing different retrieval models and configurations
available in the Apache Lucene framework.> We consid-
ered 24 different retrieval pipelines using a combination of
one component from each the following sets: {BM25, Lan-
guage Model with Dirichlet Smoothing (LMD), Divergence

From Randomness} retrieval model, {Lucene, Indri, Atire,
Okapi} stoplist — available online* -~ and {Porter, Lovins}
stemmer.

When required by the loss functions, we aggregated
the relevance judgments distributions to obtain a real-
valued relevance score. This was achieved by computing
a weighted average with the following weights [—1.0, 0.5,
1.0], obtaining a score within —1 and 1 which was then
rescaled and shifted between 0 and 1 to be used for train-
ing and evaluation purposes. We chose this aggregation
strategy as an alternative to the majority vote method, to
better preserve all the possible degrees of relevance for a
document-topic pair.

4.3 | Model hyperparameters and
training

The training parameters of the aforementioned neural
model are the number of attention heads k, the factor
t which is used to determine the size f x t of the first
FFNN in the proposed regularization layer, and the hid-
den layer size h. These parameters were adjusted
according to the experimental collection size and number
of features of the input data points and tuned on the vali-
dation sets of the first folds of each collection. The model
was trained for a maximum of 100 epochs with early
stopping with patience of 20 epochs on the MQ2007,
MQ2008 and MSLR-WEB30K collections, while we
reduced the maximum number of training epochs to
50 on the OHSUMED and MLIA collection. The best
model was then selected for each fold according to the
nDCG@]1 performance on the validation set. The number
of attention heads k was dependent both on the collection
size and the number of features available to represent
each document. This parameter was set to 2 for the
experiments on the MQ2007 and MQ2008 collections,
4 on the MSLR-WEB30K, 3 on the OHSUMED, and 1 on
the MLIA collection. The factor ¢ was empirically set to
3 for the experiments on all collections, while the hidden
layer size h was set to 32 for the experiments on the
MQ2007, MQ2008, and OHSUMED collections, to 128 for
the ones on the MSLR-WEB30K and to 8 for the experi-
ments on MLIA.

Since in the MSLR-WEB30K and OHSUMED collec-
tions the maximum number of documents per query is
much larger than the average on the other datasets, we
reranked in these cases only the top 150 documents
ranked by a LightGBM LambdaMART model (Ke

PURPURA ET AL.

| JASIST BUJIREE

et al., 2017) tuned considering the nDCG@1 measure on
the validation set of each collection fold. We cut the
ranked lists at 150 documents since this was also the
maximum value of documents available to rerank per-
query on the MQ2007, MQ2008, and MLIA collections.

In our experimental section, we also provide a perfor-
mance comparison of our probabilistic training approach
simulating a noisy annotation process. For each anno-
tated query-document pair, we sample a new set of rele-
vance labels from a Binomial distribution with
parameters n = 32—we determined this value empiri-
cally according of the performance of the model on the
validation set of the first fold of the experimental collec-
tions in the previous experiments with pointwise loss
functions—and p equal to the normalized relevance label
found in the dataset. In other words, if a dataset employs
relevance labels in the set {0, 1, 2}, then the p values we
employ to sample new relevance labels will take values
in the set {0, 0.5, 1}, in the same order. After the sampling
step, we average the sampled values to generate a new
“sampled” relevance label. This label is used as the
parameter p in Equations (5), (7), and (13) and compared
to the real-valued output of the model we train indicated
as p. The sampled relevance label is also used to compute
which documents to consider in each training pair pro-
vided to the pairwise loss functions described in Equa-
tions (8) and (10). This process does not change the
relevance label of highly relevant or not-relevant
documents—that is, the documents with the highest or
lowest relevance grade that have a success probability of
1.0 or 0.0, respectively—but provides some range of vari-
ability for the documents judged as partially-relevant,
with a variance proportional to the uncertainty on the
relevance of the document. Indeed the variance of each
Binomial variable P~ Bin(n,p) is defined as np(1 — p), it
is therefore higher for values closer to 0.5—that is, values
of p associated to relevance labels in the middle of the
grading scale. Intuitively, the parameter n increases or
decreases the width of the probability density function
(PDF) of the distributions we compare, that is, a larger
n can be used in the cases where there is a large variabil-
ity in the relevance judgments distribution for the same
query-document pair and vice versa. Therefore, we rec-
ommend treating n as a model parameter and tuning it
on a separate validation set.

4.4 | Evaluation measures and baselines

We evaluate the performance of the proposed loss func-
tions relying on top-heavy, widely used measures as ERR
(Chapelle et al., 2009), nDCG®@{1, 3, 5},> and P@{1, 3, 5};
these are also among the most used measures in the

LETOR literature. Moreover, despite recent critics
(Ferrante, Ferro, & Losiouk, 2020; Fuhr, 2018) and the
open debate in the community, to ease the comparison
with other LETOR approaches in the literature
(Ibrahim & Carman, 2016; Koppel et al.,, 2019; Tax
et al., 2015), we also report the average precision (AP) of
each of our runs averaged over all topics (MAP). We also
compute a paired Student's t test for each measure and
report the performance difference between the baseline
of choice (i.e., the proposed neural model trained with
the ApproxNDCG loss function or the LambdaMART
model, depending on the experiment at hand) and the
same model trained with the other loss functions; we
indicate with T or | a statistically significant difference
(a < .05), accordingly to the sign of the difference. We
selected the ApproxNDCG loss as a reference loss func-
tion for the proposed neural model since it was the one
with the best performance across all the considered col-
lections. To simplify our experimental analysis, we
report the performance of our model when trained
using the following loss functions as representatives
from the pointwise, pairwise and listwise loss catego-
ries: MSE, Hinge, ApproxXNDCG with and without ST
and ListMLE.

Given the success of the LambdaMART model in the
LETOR domain and its widespread usage as a strong ref-
erence baseline for the evaluation of new systems (Zhen
et al., 2021), we also evaluate the impact of the proposed
loss functions to train a decision tree-based GBM model,
that is the model at the base of LambdaMART
(Burges, 2010). We also evaluate the impact of the pro-
posed training strategies on two popular neural LETOR
models, that is, DASALC (Zhen et al., 2021) and a simple
transformer model with one self-attention layer similar to
the one used in Pobrotyn et al. (2020).

To perform the experiments with the GBM model, we
rely on the LightGBM library. On each collection, we
tune the hyperparameters of the GBM to obtain the
highest nDCG@1 on the validation set of Fold 1 of each
experimental collection. The hyperparameter optimiza-
tion process is performed—similarly to Qin and
Liu (2013)—through a grid search over the following
parameters: learning rate {0.001, 0.05, 0.1, 0.5}, number of
trees {300, 500, 1000}, number of leaves {200, 500, 1000}
and followed by an additional manual tuning around the
best hyperparameters combination found in the previous
step. The best model hyperparameters for each collection
are reported in our online repository. We also compare
the performance of the neural LETOR and GBM model
to the LightGBM LambdaMART implementation and to
other neural models. We tuned the hyperparameters of
each neural model we consider following the same
criteria described in Zhen et al. (2021).

10 | WIL EY PURPURA ET AL.

5 | EVALUATION OHSUMED collections. We observe that the neural

model achieves the best performance in the majority of
In Table 1, we report the performance of the proposed the collections when trained with the Pairwisegy) loss
LETOR neural model trained using different loss func- function. On the MQ2007 and MQ2008 collections, all
tions on the MQ2007, MQ2008, MSLR-WEB30K, and the proposed pairwise and listwise functions outperform

TABLE 1 Performance of the proposed LETOR neural model averaged over all topics

Loss function ERR P@l P@3 P@5 nDCG@1l nDCG@3 nDCG@5 AP
MQ2007 ApproxNDCG 0.3169 0.4639 0.4291 0.4105 0.4152 0.4150 0.4219 0.4603
ListMLE 0.3178 0.4681 0.4336 0.4116 0.4178 0.4175 0.4215 0.4596
ApproxNDCG (ST) 0.2704| 0.3842] 0.3621] 0.3494| 0.3363] 0.3391 0.3459] 0.4021|
Hinge 0.2674] 0.3723] 0.3633] 0.3511] 0.3239] 0.3334] 0.3420] 0.4004 |
MSE 0.3154 0.4574 0.4291 0.4115 0.4113 0.4136 0.4205 0.4550]
Pointwise KL (binomial) 0.3168 0.4551 0.4334 0.4132 0.4087 0.4177 0.4230 0.4601
Pairwise KL (binomial) 0.3196 0.4728 0.4377 0.41867 0.4249 0.4226 0.42977 0.4647
Pairwise KL (Gaussian) 0.3218 0.48177 0.4381 0.42017 0.43507 0.42497 0.43187 0.46657
Listwise KL (Gaussian) 0.3177 0.4657 0.4332 0.4145 0.4173 0.4192 0.4255 0.4634
MQ2008 ApproxNDCG 0.2972 0.4222 0.3639 0.3337 0.3750 0.4039 0.4484 0.4585
ListMLE 0.2801| 0.3954] 0.3482] 0.3153] 0.3508] 0.3795| 0.4236| 0.4399|
ApproxNDCG (ST) 0.2783] 0.4005 03571 0.3171] 0.3457] 0.3856 0.4234 | 0.4373]
Hinge 0.2642] 0.3533] 0.3350] 0.3099] 0.3087 0.3548 | 0.4035] 0.4228
MSE 0.2997 0.4401 0.38447 0.34317 0.3795 0.41771 0.45967 0.47097
Pointwise KL (binomial) 0.2968 0.4222 0.37977 0.3375 0.3699 0.4126 0.4520 0.4626
Pairwise KL (binomial) 0.2995 0.4388 0.37977 0.3375 0.3839 0.4179 0.4567 0.46817
Pairwise KL (Gaussian) 0.3019 0.4375 0.38527 0.3398 0.3871 0.42227 0.46037 0.46977
Listwise KL (Gaussian) 0.3008 0.4349 0.38147 0.34577 0.3827 0.4171 0.46307 0.47297
WEB30K ApproxNDCG 0.3523 0.7504 0.7158 0.6936 0.5263 0.5090 0.5084 0.5798
ListMLE 0.3354| 0.7756T 0.73627 0.71037 0.5217 0.5066 0.5068 0.59837
ApproxNDCG (ST) 0.37077 0.7804] 0.6994] 0.6811] 0.57697] 0.5065 0.5040 | 0.58187
Hinge 0.37487 0.78857 0.6899] 0.6745| 0.5884] 0.5054 0.5046 0.58771
MSE 0.36237 0.7709T 0.73347 0.70937 0.54617 0.526871 0.524871 0.59217
Pointwise KL (binomial) 0.3502 0.7596 0.72717T 0.6985T 0.5293 0.51367 0.5093 0.58627
Pairwise KL (binomial) 0.3467] 0.7812] 0.74467 0.7184] 0.5357] 0.52421 0.52417 0.59717
Pairwise KL (Gaussian) 0.3454] 0.7753] 0.74237 0.7166] 0.5315 0.52097 0.52147 0.597171
Listwise KL (Gaussian) 0.3523 0.76127 0.72587 0.70167 0.5322 0.51527 0.51417 0.58717
OHSUMED ApproxNDCG 0.4981 0.5660 0.5377 0.5057 0.4764 0.4544 0.4371 0.3828
ListMLE 0.4732 0.5377 0.4717] 0.4321] 0.4575 0.3972| 0.3737] 0.3220]
ApproxNDCG (ST) 0.4159] 0.5000 0.4119] 0.3660] 0.4009 0.3330] 0.3098 | 0.2882]
Hinge 0.4609 0.5660 04748 0.4566 0.4434 0.3930] 0.3805] 0.3530|
MSE 0.4376| 0.5377 0.4465| 0.4057] 0.4340 0.3663 | 0.3417] 0.3049|
Pointwise KL (binomial) 0.4875 0.5189 0.5031 0.5019 0.4481 0.4269 0.4312 0.3800
Pairwise KL (binomial) 0.4206] 0.4811 0.4151] 0.3868] 0.3915] 0.3360 0.3235] 0.2886]
Pairwise KL (Gaussian) 0.4520 0.5377 0.4403| 0.4000] 0.4481 0.3707| 0.3481] 0.2903 |
Listwise KL (Gaussian) 0.5248 0.6038 0.5692 0.5057 0.5189 0.4796 0.4456 0.3861

Note: 1 or | indicate a statistically significant difference (@ < .05) with the performance obtained using the ApproxNDCG loss function. Best performance
measures per collection are in bold as the loss function with the majority of best measures per collection.

PURPURA ET AL.

| JASIST BUIRE

the ApproxNDCG loss and most of the other losses with
the exception of the MSE loss on the MQ2008 collection
which is the most competitive among the baselines. On
the MSLR-WEB30K collection the best of the proposed
Pairwisegy gin) loss functions outperforms the best loss

function overall on this collection, that is, the Hinge loss,
in terms of P@3, P@5, nDCG@3, nDCG@5, and AP. We
also observe that the performance of the model trained
using the ApproxNDCG with ST loss is higher here com-
pared to other collections. Indeed, on smaller collections

TABLE 2 Performance of the proposed LETOR neural model averaged over all topics

Loss function ERR P@l
MQ2007 ApproxNDCG 0.3175 0.4645
ListMLE 0.3174 0.4639
ApproxNDCG (ST) 0.2749] 0.3895]
Hinge 0.2667] 0.3806]
MSE 0.3162 0.4569
Pointwise KL (binomial) 0.3185 0.4569
Pairwise KL (binomial) 0.3147 0.4592
Pairwise KL (Gaussian) 0.3193 0.4758
Listwise KL (Gaussian) 0.3187 0.4616
MQ2008 ApproxNDCG 0.2915 0.4120
ListMLE 0.3008T 0.44137
ApproxNDCG (ST) 0.2659| 0.3890
Hinge 0.2606] 0.3457|
MSE 0.2991 0.4260
Pointwise KL (binomial) 0.2999 0.4311
Pairwise KL (binomial) 0.30167 0.43627
Pairwise KL (Gaussian) 0.30817 0.45031
Listwise KL (Gaussian) 0.2996 0.4311
WEB30K ApproxNDCG 0.3522 0.7523
ListMLE 0.3336| 0.77327
ApproxNDCG (ST) 0.1762] 0.5103]
Hinge 0.38537 0.7919]
MSE 0.36387 0.77187
Pointwise KL (binomial) 0.3545 0.7542
Pairwise KL (binomial) 0.3475] 0.77777
Pairwise KL (Gaussian) 0.3506 0.78127
Listwise KL (Gaussian) 0.3513 0.7529
OHSUMED ApproxNDCG 0.5157 0.6038
ListMLE 0.4616] 0.5377
ApproxNDCG (ST) 0.4584] 0.5660
Hinge 0.4278| 0.5094]
MSE 0.4474| 0.5566

Pointwise KL (binomial) 0.4820 0.5094
Pairwise KL (binomial) 0.4203| 0.4717]
Pairwise KL (Gaussian) 0.4446| 0.5094]
Listwise KL (Gaussian) 0.5165 0.5755

P@3 P@5 nDCG@1 nDCG@3 nDCG@5 AP
04342 04090 04125 0.4186 0.4217 0.4608
04350 04110 04158 0.4176 0.4209 0.4591
03690 0.3579] 0.3398] 0.3459 0.3540] 0.4061|
0.3599] 0.3486] 0.3295] 0.3331] 0.3416 0.4017|

04334 04117 04122 0.4167 0.4208 0.4554|
04297 04142 04119 0.4159 0.4246 0.4602
04356 04158 04116 0.4163 0.4225 0.4612
04383 0.42017 0.4288] 0.4235 0.42941 0.4655
04370 041781 0.4146 0.4204 0.4272 0.4621
03588 0.3286 0.3661 0.3951 0.4381 0.4498
037971 0.3362] 0.3897] 0.41861 0.45821 0.46941
0.3384] 0.3077) 0.3361 0.3676] 0.4091 | 0.4297]
0.3316) 0.3092] 0.3061] 0.3521] 0.4005 0.4194]
0.3835] 0.3416] 0.3744 0.41351 0.45681 0.46631
038311 0.3378] 0.3782 0.41931 0.45547 0.46717
0.3814] 0.33907 0.3871 0.41731 0.45847 0.46671
0.3946] 0.3449] 0.4005] 0.4314] 0.46801 0.47691
0.3865] 0.3439] 0.3788 0.42101 0.46117 047171
07171 0.6938 0.5263 0.5091 0.5082 0.5797
073521 0.7102] 0.5181 0.5052 0.5061 0.598071

0.5086] 0.5060] 0.2614] 0.2773] 0.2913] 0.5041
07126 0.69987 0.5926] 0.53107 0.53167 0.58877
0734417 0.7098] 0.5483] 0.52867 0.52627 0.59247
0.72457 0.69867 0.5305 0.51371 0.5106 0.58837
074067 0.71507 0.5352] 0.52087 0.5212] 0.59577
0.74757 0.7202] 0.54021 0.52721 0.52671 0.5988

072347 0.69877 0.5250 0.5129 0.5111 0.58707
0.5377 0.4906 0.5189 0.4684 0.4395 0.3729

04748 0.4151] 0.4387] 0.4002] 0.3667 0.3116)
04465 0.4208] 0.4623 0.3765| 0.3613] 0.3257|

04465 04358 0.4009] 0.3604] 0.3517] 0.3475]
0.4528] 0.4075| 0.4434] 0.3776] 0.3493| 0.3160
0.5000 0.4830 0.4340 0.4244 0.4177 0.3727

04182 0.3811] 0.3915] 0.3376 0.3185] 0.2887
0.4340] 0.3906] 0.4245] 0.3647] 0.3401] 0.2933]
0.5377 0.5113 0.5000 0.4654 0.4473 0.38737

Note: The model is trained sampling the relevance labels from a Binomial distribution. 1 or | indicate a statistically significant difference (a < .05) with the
ApproxNDCG baseline. Best performance measures per collection are in bold as the loss function with the majority of best measures per collection.

PURPURA ET AL.

A EAS JASIST

the amount of training data is probably not sufficient for
the model to benefit from this training strategy. On the
OHSUMED collection, the best loss function is the
Listwisegy,(v/,,.,)» followed by the ApproxXNDCG loss. This
is due to the combination of a high proportion of relevant
documents in the ranked lists and little amount of
training data. For all the experiments on this collection,
we rerank the top 150 documents returned by a
LambdaMART model and, for this reason, we expect the
representations of the documents in each ranked list to
be more similar to each other rather than in other collec-
tions. Hence, approaches that consider multiple docu-
ments at a time, might have an advantage in finding the
differences between them and providing more insightful
information through their gradients to the model during
training.

In Table 2, we report the results of the experiments
training the proposed LETOR neural model using sam-
pled relevance judgments as described in section 4. As we
can see in this table, the relative performance of the neu-
ral model when relying on different loss functions
remains similar and the best loss function overall is still
the Pairwisegy - loss. However, the neural model perfor-
mance is often higher in this case than in the previous
experimental setup, regardless of the loss function used.
This is true for at least one performance measure when
using all but the Pairwisegy gin) l0oss on the MQ2007, and
for all the proposed losses on the MQ2008 collection.
We also observe a few performance improvements in
the MSLR-WEB30K collection when using all loss func-
tions with the exception of the ApproxXNDCG with ST
and the ListMLE loss. Finally, on the OHSUMED col-
lection, we observe a performance improvement in at
least one measure when using the ApproxNDCG,
ApproxNDCG with ST, MSE, or Pairwisegygin) loss.

These results support our hypothesis that acknowledging
and exploiting the possible inconsistencies in the training
data can be a viable way to improve a LETOR model's
performance.

In Table 3, we report the experiments of the
crowdsourcing experiments on the COVID19-MLIA col-
lection. In this case, we set the output size of the neural
model to 3—the same number of relevance grades that
we used for our annotation—and trained the model
either (a) by aggregating—as explained in section 4—the
model output probability scores and the collected rele-
vance judgments distributions in the same way, obtaining
one relevance score and relevance label to train the
model with the previously evaluated loss functions, or
(b) by training the model with the proposed
Pointwisegy vy loss function which can take into
account the raw probability distributions over the three
relevance classes. Note that, since relevance judgments
distributions are only available for this collections, this is
the only scenario where we can employ the proposed
Pointwisegy vy loss function.

We observe that the proposed Pointwisegy iy loss
function is the best loss function to train the neural
model on this collection. This can also be partially due to
the small size of the collection which favors pointwise
and pairwise loss functions. However, Pointwisegymu)
still outperforms other pointwise loss functions such as
the MSE and the Pointwisegy gin) losses by a sizable mar-
gin. The Hinge loss is the second best loss function on
this collection, outperforming all other baselines. The
results from this experiment further confirm our initial
hypothesis on the feasibility of training a LETOR model
using raw probability distributions as training data.

Finally, in Table 4 we report the performance com-
parison between the best performing systems relying on

TABLE 3 Performance of the proposed LETOR neural model on the COVID19-MLIA collection averaged over all topics

Loss function ERR P@l P@3 P@5 nDCG@1l nDCG@3 nDCG@5 AP

MLIA ApproxNDCG 0.3313 0.4000 0.4667 0.4800 0.3556 0.3896 0.3973 0.3593
ApproxNDCG (ST) 0.2544 0.3000 0.3333] 0.3267] 0.2708 0.2788 0.2820] 0.3144
ListMLE 0.2463] 0.2667 0.3111] 0.3133] 0.2387 0.2640 0.2705] 0.3162
Hinge 0.3455 0.5000 0.4667 0.4467 0.4330 0.3830 0.3736 0.3822
MSE 0.2675 0.3333 0.3333 0.3333] 0.2917 0.2894 0.2900] 0.3101]
Pointwise KL (multinomial) 0.3377 0.4333 0.5000 0.4933 0.3628 0.4096 0.4054 0.38347
Pointwise KL (binomial) 0.2562 0.3333 0.3222] 0.3533] 0.2798 0.2684 | 0.2898] 0.3122
Pairwise KL (binomial) 02639 03667 03444| 0.3200] 0.3111 0.2919] 0.2814| 0.3023]
Pairwise KL (Gaussian) 0.2423| 0.3333 0.3000, 0.2867| 0.2750 0.2515] 0.2498] 0.3062
Listwise KL (Gaussian) 0.2521 0.3333 0.3111] 0.3133] 0.2715 0.2656| 0.2653] 0.3258

Note: 1 or | indicate a statistically significant difference (@ < .05) with the ApproxXNDCG baseline. Best performance measures per collection are in bold as the

loss function with the majority of best measures per collection.

PURPURA ET AL.

| JASIST BUIRE

TABLE 4

Performance of different LETOR models (decision tree-based gradient boosted machine [GBM] model or the neural model

[NM]) trained with the best-performing proposed loss functions averaged over all topics

Loss function ERR P@1
MQ2007 GBM - LambdaMART 0.3211 0.4669
GBM - Pointwise KL 0.3233 0.4752
(binomial)
GBM - Listwise KL 0.3219 0.4592
(Gaussian)
NN - Pairwise KL 0.3218 0.4817
(Gaussian)
NN - Listwise KL 0.3177 0.4657
(Gaussian)
MQ2008 GBM - LambdaMART 0.3045 0.4413
GBM - Pointwise KL 0.3072 0.4439
(binomial)
GBM - Listwise KL 0.2991 0.4362
(Gaussian)
NN - Pairwise KL 0.3019 0.4375
(Gaussian)
NN - Listwise KL 0.3008 0.4349
(Gaussian)
WEB30K GBM - LambdaMART 0.3955 0.7918
GBM - Pointwise KL 0.3550] 0.7789]
(binomial)
GBM - Listwise KL 0.3861| 0.7918
(Gaussian)
NN - Pairwise KL 0.3454] 0.7753]
(Gaussian)
NN - Listwise KL 0.3523] 0.7612]
(Gaussian)
OHSUMED GBM - LambdaMART 0.4704 0.5283
GBM - Pointwise KL 0.5036 0.5755
(binomial)
GBM - Listwise KL 0.5139 0.5755
(Gaussian)
NN - Pairwise KL 0.4520 0.5377
(Gaussian)
NN - Listwise KL 0.5248 0.6038
(Gaussian)

P@3 P@5 nDCG@1 nDCG@3 nDCG@5 AP
04397 04167 04217 0.4243 0.4285 0.4646
04354 04167 0.4303 0.4207 0.4275 0.4591]
04399 04164 04152 0.4240 0.4267 0.4595
04381 0.4201 0.4350 0.4249 0.4318 0.4665
04332 04145 04173 0.4192 0.4255 0.4634
03869 0.3446 0.3858 0.4260 0.4664 0.4746
0.3941 0.3464 0.3935 0.4325 0.4690 0.4771
03852 0.3444 0.3801 0.4214 0.4633 0.4775
0.3852 03398 0.3871 0.4222 0.4603 0.4697
03814 0.3457 0.3827 0.4171 0.4630 0.4729
07541 0.7288 0.5925 0.5711 0.5670 0.6299
07503 0.7261 0.5435] 0.5344] 0.5343] 0.63261
0.7565 0.7323] 0.5825| 0.5647] 0.5615] 0.63471
07423 0.7166] 0.5315| 0.5209 0.5214] 0.5971]
07258 0.7016] 0.5322] 0.5152] 0.5141] 0.5871]
04874 04906 0.4387 0.3980 0.4037 0.4175
0.5220 0.5000 0.4953 0.4474 0.4330 0.4210
0.5314 0.5151 0.5000 0.46431 0.45251 0.4243
04403 0.4000] 0.4481 0.3707 0.3481] 0.2903|
0.5692] 0.5057 0.5189 0.47961 0.4456 0.3861]

Note: 1 or | indicate a statistically significant (@ < .05) difference with the LambdaMART model trained on the original relevance judgments. Best performance

measures per collection are in bold as the loss function with the most best measures per collection.

the proposed neural model or on a decision tree-based
GBM from the LightGBM library. We also report here the
performance of a LambdaMART model trained with the
LigthGBM library as a baseline. LambdaMART, and in
particular its LightGBM implementation is generally con-
sidered a very competitive baseline in many other
LETOR research works (Bruch, 2019; Bruch et al., 2019;
Bruch et al., 2020; Pasumarthi et al., 2020; Zhen

et al., 2021). We observe that the proposed probabilistic
loss functions are in most of the cases able to improve
the performance of a decision tree-based GBM model,
surpassing the one of LambdaMART. We also observe
that, on the MQ2007 and OHSUMED experimental col-
lections, the proposed neural model outperforms
LambdaMART and all the GBM-based models by a siz-
able margin.

"aur[aseq 2A10adsal 9Y) 1940 JudwaACIdWT ouBWLIONIad € 9ATISQO 9M JISUM SISED BY} [[B P[Oq UI 9JBIPUI S\ JOSeIep [OBd UI d[qe[ieAe

L.
m sjuswdpn(soueas[al [eulSLIo 9Y) uo uoroung sso HYANX01ddy sy} yiim paures) [spow dures 33 Aq paureiqo dueurioyrad oy} Yim 9ouIsIp (S0 > anyea-d) juedytugdis A[[eonsiels e | 10 | Yim 1edIpul 9\ 910N
m 189200+ o+ lessTo+ lvoor-o+ l8seTo+ 1yo9T-0+ TEIT0+ lssyro+ (ueissneD) T3] ASIMISIT - YHNIOASNVIL
m 862070+ €£90°0+ 60600+ 8E0T0+ 20£0°0+ 98L£0°0+ SSL00+ 1sv80°0+ (uerssnen) T3 asImITed - JHNIOASNVIL
leego 0+ ¥Ly0"0+ LLYO'0+ €820°0+ PEVO0+ 60v0°0+ 6810°0— 0€S0°0+ (Terwoutq) T3 osIMITed — YHNIOASNV UL
1sz80'0+ leLsto+ 1p09T°0+ lsvLr 0+ lyevTo+ 18LyT0+ lreero+ legsT'0+ (rerwoutq) T3 SIMIUIO] — YHNIOASNVIL
92000+ 0500°0+ 8L10°0+ 99500+ 6810°0— #600°0— LYoo+ 99200+ (uerssnen) T3 ASIMISIT - DTVSVA
0r10°0— 10870°0— 8010'0— L1000+ TL1L0°0— 6290°0— 6810°0— 9L10°0— (ueissnen) T3 SSImITed - DTVSVA
LOT0'0— 0920°0— Y100~ €820°0+ 1L¥S0°0— 9h€0°0— +600°0+ 22000+ (rerwouq) T 9SIMITEd — DTVSVA
lgzeoo+ ¥S€0°0+ 0S£0°0+ 681070+ 80200+ 0220°0+ 00000 7€20°0+ (rerwouiq) T3 9SO - DTVSVA AENNSHO
182€00— 18901°0— ToeTT0— Teyero— 198L00— 192800— 186L0°0— T0001°0— (uerssnen) T3 aSIMISIT — JHNIOASNVIL
161000+ 16L20'0— T9€g00— 191#0'0— £000°0— 1000°0— 1700°0— 161400— (uerssnen) T osImIted — YHANIOASNVIL
1Zv0070+ TL6T0°0— Ts€c00— 198€00— 11010°0+ lzy1oo+ ls€r0'0+ Torv00— (Terwoutq) T3 asimITed — YHNIOASNVIL
128000— T€¥200— T€6100— 16600°0— Tov10°0— 8200°0— 18€10°0+ 18€20°0— (Terwoutq) T3 oSIMUIO] — YHNYOASNVYL
16£00°0— 1521070~ 16£10°0— 1€910°0— 18€10°0— 151070~ 1€920°0— 1L900°0— (uerssnen) T3 SSIMISIT - DTVSVA
18v10°0+ 02000+ 6000°0— ¥L00°0— 1z810°0+ 18910°0+ 1$600°0+ 16910°0— (ueissnen) T3 asmmIred - DTVSVA
185100+ 122000+ 129000+ 820070+ lotz0°0+ 16020°0+ 1$910°0+ Tozto0— (Terwroutq) T3 asmIred - DTVSVA
1€2000— T€L10'0— 16L10°0— 126100— T¥100— 1zst00— 12920'0— 1€800°0— (Terwourq) T3 asmutod - DTVSVA J0saaM
1061070+ leTzoro+ 16€20°0+ 16100+ 1$600°0+ loLtoro+ 11820°0+ L1100+ (uerssnen) T[SSIMISIT — JHNIOASNVIL
91000+ 15000+ lectoro+ #900°0— 81000+ logzoo+ 150070+ T200°0+ (uerssnen) T3 oSIMITed — YHNIOASNV YL
levroto+ 18L10°0+ ls€z0 0+ 11820°0+ $L00°0+ 1vL1070+ 1€620°0+ l6zr0°0+ (rerwoutq) T SsImITed — YANIOASNVIL
lovroo+ loLroro+ 11€20°0+ 86100+ 9500°0+ 1791070+ W00+ 1611070+ (Terwroutrq) T3 SSIMIUIO] — JHNIOASNVIL
lvzeoo+ l6L200+ lLLzoo+ 189z0°0+ 1121070+ l8€zoo+ 18920°0+ logtoo+ (uerssnen) T3 SSIMISIT - DTVSVA
1181070+ 110200+ lotzoo+ l6¥20°0+ 1680070+ loLto0+ 0£20°0+ IYI10°0+ (ueissnen) T asImIred - DTVSVA
19€20°0+ lsLzor0+ 1$820°0+ lyveoo+ 18ST10°0+ 1v€2070+ 190£0°0+ 1791070+ (Terwoutq) T3 SSIMITed — DTVSVA
l6L10"0+ 19zz0'0+ leLtoo+ 9€20°0+ 18z10°0+ logto0+ §520°0+ lotr00+ (Terwoutq) T asmuiod - DTVSVA 800CON
1000°0+ T100°0— L0000+ 80070+ T200'0— 2000°0+ +200°0+ ST00°0+ (uerssnen) T3] oSIMISIT — JHNIOASNVIL
6£00°0— L800°0— 0900°0— ST100— S¥00°0— T200°0— ¥S10°0— T200'0— (uerssnen) T3 asimIred - JHNIOASNVIL
§200°0+ £€00°0+ 82000+ $600°0+ 000+ 1600°0+ LY00°0+ 1¥800°0+ (rerwoutq) T3 osimITed — YHNIOASNV YL
S0000— £€00°0+ lettoo+ 86000+ L000°0— 190100+ S€00°0+ 166000+ (Terwoutq) T3 oSIMIUIO] ~ YHNIOASNVIL
>~ 2000°0— #000°0+ $100°0— 0800°0— 02000+ 9000°0— 6800°0— ST000— (uerssnen) T3 ASIMISIT - ITVSVA
o 129000+ 7900°0+ 8£00°0+ L2000+ 1080070+ Lp00°0+ S€00°0+ L0000+ (ueissnen) T3 asmmIred - DTVSVA
w 10900°0+ 0500°0+ L2000+ 65000+ 1£900°0+ 15000+ $900°0+ 91000+ (Terwoulq) T asImIred - JTVSVA
W 11000~ ¥100°0— LS00°0— 7900°0— 7€00°0+ 7€00°0— L¥00'0— $100°0— (ferwoulq) T3 ssimuiod — DTVSVA LOOZON
dVIN S®Hoau £®Hpqu I®Hpqu s®d £Od 1®d a4 uonouny uonezundo
- suonouny ssof pasodoid ay3 Yirm paurel} Sppow YO,LHT JUSISPIP JO QUeULIOjdd S A TdV L

PURPURA ET AL.

| JASIST BUIRE

To conclude our evaluation, in Table 5 we report a
comparison of the performance improvements obtained
using the proposed loss functions to train two state-of-the-
art models, that is, DASALC (Zhen et al., 2021) and a sim-
pler transformer model similar to the one used in Pobrotyn
et al. (2020). More specifically, we report—for each
model—the performance difference when training it using
one of the proposed loss functions or the ApproxXNDCG
loss. From the results reported in Table 5, we observe that
in the majority of our tests the proposed family of loss func-
tions allows a better performance of both DASALC and the
transformer model compared to the ApproxNDCG loss,
especially on the MQ2008 collection. On the MQ2007 col-
lection, we observe performance improvements on all eval-
uation measures, with some differences between the two
models. In this case, the two best loss functions to train the
DASALC model are the pairwise ones, while the trans-
former model benefits more from the pointwise and list-
wise losses. This effect is observed because of the simpler
nature of the latter model and its lower number of parame-
ters to train. On the MSLR-WEB30K collection, we observe
fewer performance improvements compared to other
datasets. However, the performance differences are more
similar across models. Here, the best loss function is the
Pairwise KL (Binomial), which leads to statistically signifi-
cant performance improvements for both the considered
neural LETOR models. Finally, on the OHSUMED collec-
tion we observe a significant performance improvement on
almost all performance measures when training the trans-
former model with any of the proposed loss functions. On
the other hand, the DASALC model shows fewer perfor-
mance improvements, likely because of the higher model
complexity combined with the small number of topics in
this collection. Hence, the best loss functions in this case
are the Listwise KL (Gaussian) and the Pointwise KL
(Binomial), the same that performed the best on the pro-
posed transformer-based neural LETOR model.

Observing all the above results, we notice that the
performance of different models trained with the pro-
posed loss functions varies according to the experimental
collection used. Indeed, we conducted our evaluation
selecting a number of datasets with different characteris-
tics to show all the strengths and weaknesses of each of
the proposed loss functions and to show the best scenar-
ios where they can be employed. For example, for what
concerns the MQ2007 and M2008 collections—with 1,700
and 800 topics, respectively—we always ranked
128 (or less) documents for each topic. On the other
hand, for the MSLR-WEB30K and OHSUMED
collection—with 30,000 and 106 topic each—we consid-
ered a subset of size 128 (or smaller if fewer documents
were available) of all documents provided for each topic
in the dataset. We selected these subsets by ranking all

the available documents for each topic with a
lambdaMART model, and then then discarding the items
with a rank higher than 128.

As a consequence of the diversity of the considered
collections, we observe a few differences in the perfor-
mance of the proposed loss functions in each of our
experiments. On medium-sized collections—where docu-
ments were not filtered prior to ranking them—such as
the MQ2007 and MQ2008, we observe overall a similar
performance of all the proposed pointwise, pairwise and
listwise loss functions, with sizeable differences notice-
able only with certain evaluation metrics such as P@{1-5}
and nDCG@{1-5}. On the MSLR-WEB30K dataset we
observe a similar trend, here however we notice a more
sizeable performance difference between the pairwise
and listwise loss functions we propose and the pointwise
variant—especially when using them to train the
DASALC and the proposed LETOR model. In this case,
the larger availability of training data and the document
filtering step we applied before reranking contribute to
the better performance of more complex training
strategies—that is, pairwise and listwise loss functions.

Finally, on the OHSUMED collection—the smallest
of all the datasets we considered—we observe a different
situation. Here, despite the small number of topics avail-
able, the best-performing loss function is the listwise KL
(Gaussian). This is likely due to the document pruning
step we perform prior to ranking. This step promotes the
selection of documents which are more similar to each
other than in the previous cases and therefore gives an
advantage to loss functions which compare multiple
items at a time, that is, the proposed listwise loss func-
tion. The second best performing probabilistic loss func-
tion however is the pointwise KL one. Indeed, this loss
function allows a LETOR model to learn better than
other training strategies when a few training examples
are available—since it considers each document-topic
pair as a valid training data-point, simplifying the train-
ing objective.

6 | CONCLUSIONS AND
FUTURE WORK

We presented different strategies to train a LETOR model
relying on relevance judgments distributions. We intro-
duced five different loss functions relying on the KL
divergence between distributions, opening new possibili-
ties for the training of LETOR models. The proposed loss
functions were evaluated on a newly proposed neural
model, two transformer-based neural LETOR systems,
and on a decision tree-based GBM model—the same
model employed by the popular LambdaMART algorithm

PURPURA ET AL.

A JASIST

(Burges, 2010)—over a number of experimental collec-
tions of different sizes.

We compared the performance of the proposed loss
functions to the most representative loss functions in
the IR domain: the pointwise mean squared error
(MSE) loss (Liu et al., 2018), the pairwise Hinge loss
(Guo et al., 2016), the listwise ApproxNDCG loss (Qin,
Liu, & Li, 2010) with and without the stochastic treat-
ment (ST) proposed in (Bruch et al., 2020) and the
ListMLE loss (Xia et al., 2008). In our experiments, the
proposed loss functions outperformed the aforemen-
tioned baselines in several cases and gave a significant
performance boost to LETOR approaches—especially
the ones based on neural models—allowing them to
also outperform other strong baselines in the LETOR
domain such as the LightGBM implementation of
LambdaMART (Burges, 2010; Zhen et al., 2021).

We also evaluated the option of training a neural
LETOR model simulating the distribution of relevance
judgments for each document-topic pair in the train-
ing data. The results from this experiment further con-
firmed our hypothesis on the utility of using relevance
judgments distributions to train a LETOR model,
showing performance improvements across different
measures.

Finally, we conducted a crowdsourcing experiment
on the COVID-19 MLIA collection, building a new
LETOR collection with real relevance judgments distribu-
tions. We share this collection and labels to be used for
the development and evaluation of other LETOR
approaches that will follow the proposed training para-
digm. These experiments consolidated our hypothesis
and showed encouraging results on the usage of probabi-
listic loss functions also on this dataset. As future work,
we plan to further develop the proposed neural architec-
ture to take advantage of probability distributions on
model weights—that is, employing Bayesian neural
layers (Anoop et al., 2015)—and to evaluate the perfor-
mance of the proposed loss functions to train a model
based on implicit user feedback signals such as clicks and
dwell time.

ACKNOWLEDGMENT

Open access funding enabled and organized by
Projekt DEAL.

ORCID

Alberto Purpura ‘@ https://orcid.org/0000-0003-1701-7805
ENDNOTES

! http://eval.covid19-mlia.eu

2 http://eval.covid19-mlia.eu

3 https://lucene.apache.org
* https://bitbucket.org/frrncl/gopal/src/master/src/main/resources/

> The nDCG formulation we employ is the one used by the
TREC_eval tool. https://github.com/usnistgov/trec_eval

REFERENCES

Agrawal, R. (2020). Finite-sample concentration of the multinomial
in relative entropy. IEEE Transactions on Information Theory,
66, 6297-6302.

Alonso, O. (2019). The practice of crowdsourcing. In Synthesis lec-
tures on information concepts, retrieval, and services (p. 11).
Morgan & Claypool Publishers.

Anoop, K., Rathod, V., Murphy, K., & Welling, M. (2015). Bayesian
dark knowledge. In Proceedings of the 28th international confer-
ence on neural information processing systems (pp. 3438-
3446). ACM.

Bishop, C. (2006). Pattern recognition and machine learning. Springer.

Bruch, S. (2019). An alternative cross entropy loss for learning-to-
rank. arXiv:1911.09798.

Bruch, S., Han, S., Bendersky, M., & Najork, M. (2020). A stochastic
treatment of learning to rank scoring functions. In Proceedings
of the 13th international conference on web search and data min-
ing (pp. 61-69). ACM.

Bruch, S., Zoghi, M., Bendersky, M., & Najork, M. (2019). Revisiting
approximate metric optimization in the age of deep neural net-
works. In Proceedings of the 42nd international ACM SIGIR con-
ference on research and development in information retrieval
(pp. 1241-1244). ACM.

Burges, C. (2010). From RankNet to LambdaRank to LambdaMART:
An overview (Microsoft Research Technical Report MSR-TR-
2010-82). Microsoft Research.

Chapelle, O., Metlzer, D., Zhang, Y., & Grinspan, P. (2009).
Expected reciprocal rank for graded relevance. In Proceedings
of the 18th ACM conference on information and knowledge man-
agement (pp. 621-630). ACM.

Chen, W., Liu, T., Lan, Y., Ma, Z., & Li, H. (2009). Ranking mea-
sures and loss functions in learning to rank. In Proceedings of
the 22nd international conference on neural information
processing systems. ACM.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). Bert: Pre-
training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Ferrante, M., Ferro, N., & Losiouk, E. (2020). How do interval
scales help us with better understanding IR evaluation mea-
sures? IR Journal, 23, 289-317.

Ferrante, M., Ferro, N., & Piazzon, L. (2020). s-AWARE: Supervised
measure-based methods for crowd-assessors combination. In
11th international conference of the CLEF Association. ACM.

Fuhr, N. (2018). Some common mistakes in ir evaluation, and how
they can be avoided. SIGIR Forum, 51, 32-41.

Guo, J., Fan, Y., Ai, Q., and Croft, W. (2016). A deep relevance
matching model for ad-hoc retrieval. Proceedings of 25th inter-
national conference of the CIKM. ACM .

Hosseini, M., Cox, 1., Mili¢-Frayling, N., Kazai, G., & Vinay, V.
(2012). On aggregating labels from multiple crowd workers to
infer relevance of documents. In Proceedings of the 34th
European conference on advances in information retrieval
(pp. 182-194). ACM.

https://orcid.org/0000-0003-1701-7805
https://orcid.org/0000-0003-1701-7805
http://eval.covid19-mlia.eu
http://eval.covid19-mlia.eu
https://lucene.apache.org
https://bitbucket.org/frrncl/gopal/src/master/src/main/resources/
https://github.com/usnistgov/trec_eval

PURPURA ET AL.

| JASIST BUIRE

Ibrahim, M., & Carman, M. (2016). Comparing pointwise and list-
wise objective functions for random-forest-based learning-to-
rank. ACM TOIS, 34, 1-38.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W,, Ye, Q., &
Liu, T. (2017). LightGBM: A highly efficient gradient boosting
decision tree. In Proceedings of the 31st international conference
on neural information processing systems (pp. 3149-
3157). ACM.

Koppel, M., Segner, A., Wagener, M., Pensel, L., Karwath, A., &
Kramer, S. (2019). Pairwise learning to rank by neural net-
works revisited: Reconstruction, theoretical analysis and practi-
cal performance. In Joint European conference on machine
learning and knowledge discovery in databases. Springer.

Lease, M. & Kazai, G. (2011). Overview of the TREC 2011
crowdsourcing track. Paper presented at the proceedings of
TREC, National Institute of Standards and Technology.

Liu, X., Van De Weijer, J., & Bagdanov, A. (2018). Leveraging
unlabeled data for crowd counting by learning to rank. In
IEEE/CVF conference on computer vision and pattern recogni-
tion (CVPR). IEEE.

MacAvaney, S., Yates, A., Cohan, A., & Goharian, N. (2019). CEDR:
Contextualized embeddings for document ranking. In Proceed-
ings of the 42nd international ACM SIGIR conference on research
and development in information retrieval (pp. 1101-
1104). ACM.

Onal, K., Zhang, Y., Altingovde, I., Rahman, M., Karagoz, P.,
Braylan, A., Dang, B., Chang, H., Kim, H., McNamara, Q.,
Angert, A., Banner, E., Khetan, V., Mcdonnell, T., Nguyen, A.,
Xu, D., Wallace, B., Rijke, M., & Lease, M. (2018). Neural infor-
mation retrieval: At the end of the early years. Information
Retrieval, 21, 111-182.

Pang, L., Lan, Y., Guo, J., Xu, J., & Cheng, X. (2016). A study of
matchpyramid models on ad-hoc retrieval. arXiv:1606.04648.

Pasumarthi, R., Zhuang, H., Wang, X., Bendersky, M., & Najork, M.
(2020). Permutation equivariant document interaction network
for neural learning to rank. In Proceedings of the 2020 ACM
SIGIR on international conference on theory of information
retrieval (pp. 145-148). ACM.

Pobrotyn, P., Bartczak, T., Synowiec, M., Biatobrzeski, R., &
Bojar, J. (2020). Context-aware learning to rank with self-atten-
tion. arXiv:2005.10084.

Qin, T. & Liu, T. (2013). Introducing letor 4.0 datasets. arXiv:
1306.2597.

Qin, T., Liu, T., & Li, H. (2010). A general approximation frame-
work for direct optimization of information retrieval measures.
IR Journal, 4, 375-397.

Qin, T., Liu, T., Xu, J., & Li, H. (2010). Letor: A benchmark collec-
tion for research on learning to rank for information retrieval.
Information Retrieval, 13, 346-374.

Ravana, S. D., & Moffat, A. (2009). Score aggregation techniques in
retrieval experimentation. In Proceedings of the 20th Austral-
asian database conference. Australian Computer Society.

Smucker, M., Kazai, G., & Lease, M. (2012). Overview of the TREC
2012 crowdsourcing track. Paper presented at the proceedings of
TREC.

Smucker, M., Kazai, G., & Lease, M. (2013). Overview of the TREC
2013 crowdsourcing track. Paper presented at the proceedings of
TREC.

Sun, S. & Duh, K. (2020). Modeling document interactions for
learning to rank with regularized self-attention. arXiv:
2005.03932.

Tax, N., Bockting, S., & Hiemstra, D. (2015). A cross-benchmark
comparison of 87 learning to rank methods. IP&M, 51,
757-772.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A., Kaiser, L., & Polosukhin, 1. (2017). Attention is all
you need. In 31st conference on neural information processing
system. Curran Associates, Inc.

Xia, F., Liu, T., Wang, J., Zhang, W., & Li, H. (2008). Listwise
approach to learning to rank: Theory and algorithm. In Pro-
ceedings of the 25th international conference on machine learn-
ing (pp. 1192-1199). ACM.

Zamani, H., & Croft, W. (2018). On the theory of weak supervision
for information retrieval. In Proceedings of the 2018 ACM SIGIR
international conference on theory of information
retrieval. ACM.

Zhen, Q., Le, Y., Honglei, Z., Yi, T., Rama, K., Xuanhui, W,
Michael, B., & Marc, N. (2021). Neural rankers are hitherto out-
performed by gradient boosted decision trees. In Proceedings of
ICLR. OpenReview.

Zhuang, H., Wang, X., Bendersky, M., Grushetsky, A., Wu, Y.,
Mitrichev, P., Sterling, E., Bell, N., Ravina, W., & Qian, H.
(2020). Interpretable learning-to-rank with generalized additive
models. arXiv:2005.02553.

Zhuang, H., Wang, X., Bendersky, M., & Najork, M. (2020). Feature
transformation for neural ranking models. In Proceedings of the
43rd international ACM SIGIR conference on research and devel-
opment in information retrieval. ACM.

How to cite this article: Purpura, A., Silvello, G.,
& Susto, G. A. (2022). Learning to rank from
relevance judgments distributions. Journal of the
Association for Information Science and Technology,
1-17. https://doi.org/10.1002/asi.24629

https://doi.org/10.1002/asi.24629

	Learning to rank from relevance judgments distributions
	1 INTRODUCTION
	1.1 Motivation
	1.2 Methods
	1.3 Evaluation
	1.4 Contributions
	1.5 Outline

	2 RELATED WORK
	3 PROPOSED APPROACH
	3.1 Pointwise loss functions
	3.2 Pairwise loss functions
	3.3 Listwise loss function
	3.4 Neural LETOR model

	4 EXPERIMENTAL SETUP
	4.1 Experimental collections
	4.2 Crowdsourcing relevance judgments
	4.3 Model hyperparameters and training
	4.4 Evaluation measures and baselines

	5 EVALUATION
	6 CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENT
	Endnotes
	REFERENCES

