
1.  Introduction
Satellite interferometric radars (InSAR) are ushering in a new decade of large-scale monitoring data at unsur-
passed spatial and temporal resolution to support real-time early warning systems (EWS) for impending disasters 
(Carlà et al., 2019; Intrieri et al., 2018, 2019; Yang et al., 2019). Game-changing opportunities have been an-
ticipated for monitoring and forecasting landslides and related hazards (Intrieri et al., 2018; Yang et al., 2019). 
Realizing such opportunities, however, depends crucially on algorithms that can efficiently sift through these 
big and complex data and distill the information into timely and accurate intelligence for risk management de-
cision-making (Anantrasirichai et al., 2018; Cigna & Tapete, 2021; Sansosti et al., 2014; Zinno et al., 2016). 
Having such data-driven approaches deployed directly on large-scale spaceborne deformation data can benefit 
landslide-monitoring practitioners in many ways, including: (a) new opportunities can be identified in monitoring 
and forecasting landslide hazards for remote areas that are difficult, if not impossible, to access for in situ sur-
veys; (b) more timely prediction of landslides can be delivered at lower cost, compared to traditional slope-based 
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methods which depend on the availability of detailed geophysical characteristics of the impending failure; (c) a 
potential hazard subset area can be extracted from the vast amount of monitoring space well in advance for de-
tailed slope stability assessment; (d) the need for predefined assumptions on the type of failure or the underlying 
trigger mechanism can be eliminated, since automatic intelligence are directly and continually learned from the 
streaming deformation data. By and large, such algorithms are still lacking, given the challenges imposed by the 
imbalanced, high-dimensional, spatiotemporal data that invariably result from observations of slope dynamics at 
large spatial scales (Carlà et al., 2019; Intrieri et al., 2019; Yang et al., 2019).

Observations of precursory displacements give rise to high-dimensional, spatiotemporal data (Intrieri et al., 2018; 
Yang et al., 2019). Clues to where and when failure happens are hidden in the spatiotemporal structures or corre-
lations embodied in the data (Gao et al., 2019; Intrieri et al., 2018; Singh & Tordesillas, 2020; Tordesillas, Zhou, 
et al., 2020; Zhou et al., 2020). Traditional landslide forecasting methods employed in early warning systems 
do not account for these structures, as they typically focus only on the analysis of individual univariate time 
series from selected locations of the studied domain, as discussed in recent reviews (Carlà et al., 2019; Intrieri 
et al., 2019; Stähli et al., 2015) and several applications (Intrieri et al., 2017; Intrieri & Gigli, 2016; Kothari & 
Momayez, 2018). Furthermore, even after the advent of persistent scatterers interferometry and ground-based in-
terferometric synthetic aperture radar (GB-InSAR) that are able to produce nearly spatially continuous displace-
ment maps, the whole spatial data set is rarely exploited (Dick et al., 2015). The difficulty is that spatiotemporal 
data analytics is still in its infancy and methods that can robustly extract and characterize spatiotemporal struc-
tures, while remaining computationally feasible, are still being developed (Wang et al., 2020). In recent studies, 
progress have been made in resolving this issue by developing a new class of data-driven tools that characterize 
the emerging spatiotemporal patterns to predict the ultimate failure pattern early in the precursory regime (Das 
& Tordesillas, 2019; Singh & Tordesillas, 2020; Tordesillas et al., 2018, 2021; Tordesillas, Zhou, et al., 2020; 
Wang et al., 2020; Zhou et al., 2020). By design, these tools exploit the whole-of-slope radar data. Application 
of these in the analysis of ground motion radar data gave promising results (Das & Tordesillas, 2019; Singh & 
Tordesillas, 2020; Tordesillas et al., 2018, 2021; Wang et al., 2020; Zhou et al., 2020). In particular, analysis of 
thousands of displacement time series data for a developing rockslide in an operational open pit mine, obtained 
using GB-InSAR, gave a precise prediction of the ultimate location and geometry of the failure region, weeks in 
advance of the event (Tordesillas et al., 2018, 2021). Building on this capability, a subsequent stochastic spatio-
temporal forecasting algorithm identified imminent failure 10 hr prior to the collapse (Wang et al., 2020).

A limitation of some of these new data-driven tools, specifically those which use standard clustering methods to 
identify the failure location (Das & Tordesillas, 2019; Zhou et al., 2020) is that they work well only for balanced 
data. In the case of landslide monitoring, this means that measurement points in the potential unstable slope have 
to account for a significant proportion of the entire data set in order to detect the unique precursory failure dynam-
ics in space and time. Typically, balanced data are only available on small-scale analysis (e.g., GB-InSAR data 
where one is already aware about the location of the impending landslide and so the imbalance can be avoided by 
a priori spatial subsetting of data). However, this is only an exception but not the rule, since the usual InSAR data 
provides large area coverage containing only a tiny fraction of measurement points within the unknown failure 
location (e.g., the Sentinel-1 data in Carlà et al., 2019). Direct application of the existing algorithms designed for 
balanced data to characterize the early prefailure dynamics from a regional-scale satellite data is infeasible, since 
the dynamics in the data from the points of interest, namely those that will later end up in the failure region, is 
heavily obfuscated due to the overwhelming number of stable points amidst many other unstable moving sites 
that did not eventuate into a catastrophic collapse. Accordingly, this study seeks to address this issue by develop-
ing a new framework that can handle such severe imbalance in monitoring data, such that an accurate and timely 
prediction to the location of the impending landslide can be made directly from the imbalanced satellite data.

To achieve this, we first apply a data-driven tool on the Xinmo landslide, in order to identify the most outlying 
aspects (a subset of features out of a collection of potential features) that best distinguishes a given target object 
from the others. The tool is called outlying aspects mining (OAM; Duan et al., 2015; Vinh et al., 2016), and the 
output feature subset is referred to the optimal feature subspace (OFS), which constitutes the most unique charac-
teristics of the target object. To deploy OAM, we uniformly divide the monitoring area in the Xinmo Sentinel-1 
data into multiple grid cells and treat the cell that is the closest spatially to the landslide source area as the target 
cell, in order to learn the OFS. This is done for a wide range of grid cell sizes to ensure the search method is robust 
to scale variations. We then show that the resultant OFS can be used to find the temporally persistent outlying 
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cell across a range of spatial scales during the monitoring period. In turn, our method can accurately identify 
almost a year in advance the location of the Xinmo landslide, such that the outlyingness is further confirmed by 
the persistent spatiotemporal dynamics observed at this location from December 2016. We further validate the 
performance of our prediction method on the Stromboli rockfalls, showing that the rockfall affected areas can be 
effectively detected, which is beyond the capability of traditional methods applied to satellite data.

We emphasize that the proposed framework is a general approach for landslide monitoring and forecasting from 
large-scale spaceborne deformation data. It has broad potential applicability in different settings since no assump-
tions on the type of failure or the underlying trigger mechanism are needed. The prediction component of the 
framework delivers an early forecast of the location and geometry of the impending failure. Finally, predicting 
the time of failure is outside the scope of this study.

2.  Study Areas and Data Used
We test our methodology on two very different landslides: the 2017 Xinmo rock avalanche (Figure 1) and the 
2015–2016 Stromboli rockfall sequence (Figure 2). These two case studies represent optimal examples for the 
study of catastrophic collapse phenomena in rock bodies at the regional (Xinmo) and slope (Stromboli) scale, 
using satellite interferometric radar technique. The suitability and applicability of our method to other types of 
landslides such as soil-based failures are outside the scope of this investigation.

2.1.  Xinmo Landslide

On 24 June 2017, a rock avalanche occurred on the mountain above Xinmo village, Sichuan, China, in a bedrock 
mainly composed of metamorphic sandstone and phyllite. Initially, a volume of 4.3 million m3 mass detached 

Figure 1.  Xinmo landslide. (a) Cross-section of the landslide (from Fan et al., 2017) with the location of the site in the inset. (b) Postevent image taken by unoccupied 
aerial vehicle (UAV) on 26 June 2017 (Fan et al., 2017). (c) Subset of the Sentinel-1 data showing (outlined in red) the detail of the deformation over the area that 
first detached on 24 June 2017 (Intrieri et al., 2018). (d) Perspective view of the whole landslide highlighting how most of the landslide body was experiencing no 
deformation before the failure with the exception of the area lined in red near the crest of the mountain.
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from near the crest of the mountain and gained momentum along the slope. The volume of the unstable mass 
increased up to 13 million m3 as the rock avalanche entrained new material until it eventually reached Xinmo 
village with an estimated velocity of 250 km/hr (Fan et al., 2017). This caused the death of 83 people and the 
destruction of 64 houses. The impact also generated a seismic shaking with a Richter magnitude ML = 2.3 (Fan 
et al., 2017). The landslide also partially obstructed the Songping river. This area is known to be tectonically 
active and several strong earthquakes (with associated landslides) occurred in the last decades, such as the 1933 
Diexi earthquake (M = 7.5), the 1976 Songpan-Pingwu earthquake swarm (M = 7.2), and the 2008 Wenchuan 
earthquake (M = 8.0). Detailed studies (Fan et al., 2017) revealed that partially interconnected cracks, probably 
generated by the 1933 Diexi earthquake, were present in the location of the source area. The trigger is to be 
brought back to prolonged rainfall increasing hydrostatic pressures within the cracks, possibly causing slow creep 
deformations leading to crack opening and propagation, and eventually to the mass collapse, which started as a 
large rockslide in the source area and then evolved into an extremely rapid (Varnes & Cruden, 1996) flow-like 
event, classifiable as a rock avalanche (according to the classification of Hungr et al., 2014).

Figure 2.  Stromboli rockfalls. (a, b) Geographic location of the test site. (c) Main geological-geomorphological features Stromboli. (d) Sentinel-1 (descending orbit) 
SqueeSAR displacement data (from Di Traglia, Nolesini, Solari, et al., 2018) during February 2015 to October 2016. (e, f) Photos taken by helicopter of the area 
affected by rockfalls observed from different points of view (photo: Federico Di Traglia).
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2.2.  Stromboli Rockfalls

Stromboli volcanic island is located in the Tyrrhenian Sea, off the northern coast of Sicily, Italy. The volcano 
collapsed several times, forming two depressions on its NW (Sciara del Fuoco; SdF) and SE flank, showing 
bilateral flank instability. The SdF depression is filled with volcaniclastic deposits and lavas, emitted from a 
summit crater terrace located at c. 750 m a.s.l., and from vents within the SdF. Present-day volcano slope insta-
bility comprises mobilization of coarse-grained and fine-grained sediments directly or indirectly related to the 
eruptive activity (Calvari et al., 2016; Di Traglia et al., 2020). Slope failures will produce a wide spectrum of 
mass movement phenomena, from small rockfall (continuously affecting the SdF) to (debris) rotational or (rock) 
planar slides, evolving in (rock/debris) avalanches (Di Traglia, Bartolini, et al., 2018) and eventually triggering 
tsunamis (Di Traglia, Nolesini, Ciampalini, et al., 2018). After the last flank eruption (August–November 2014), 
the gravitational readjustment of the lava breccia, sometimes evolving into rockfalls, has been detected using 
various methods (Di Traglia et al., 2020; Di Traglia, Nolesini, Ciampalini, et al., 2018; Schaefer et al., 2019). In 
particular, frequent rockfalls detached from two different source areas (𝐴𝐴 1 and 𝐴𝐴 2 , Figure 2), mostly in summer 
2015 and summer 2016. During the summer, the rockfalls are more frequent due to phenomena of cyclic thermal 
stressing (Collins & Stock, 2016). In this period, the volcanic activity was low and most of the slope phenomena 
were not induced by the eruptive activity but by the slope dynamics of the volcano's flank (Di Traglia et al., 2020; 
Schaefer et al., 2019).

2.3.  Sentinel-1 Data

The analyses carried out in this study use SAR images acquired by Sentinel-1 constellation in C-band (6.5-cm 
wavelength) with the Interferometric Wide swath mode, which collects data with a 250-km swath at 5-m × 14-m 
spatial resolution. The images are acquired along the descending orbit (incidence angle of 40.78°) and have been 
processed using SqueeSAR algorithm (Ferretti et al., 2011) to retrieve reliable displacement information from the 
monitoring region. The resultant Xinmo data spans from 9 October 2014 to 19 June 2017, i.e., 5 days before the 
failure, and comprises over 130,000 measurement points (MPs) which are spread across a 460 km2 area. Of these, 
around 170 MPs (∼0.1%) lie in the landslide source area: the region characterized by accelerating deformation 
in Intrieri et al. (2018). The extracted Stromboli data consist of 8,373 displacement time series from 23 February 
2015 to 15 October 2016 (Di Traglia, Nolesini, Solari, et al., 2018), of which only around 20 MPs are located 
in the rockfall detachment areas shown in Figure 2c. Both Xinmo and Stromboli contain displacement data of 
44 timestamps: the most frequent time interval in Xinmo is 24 days, whereas Stromboli has a better temporal 
resolution of 12 days.

3.  Method
An overview of the proposed framework is given in Figure 3. There are two phases: characterization (Figure 3a) 
and prediction (Figure 3b). The characterization phase aims at finding unique features associated with the land-
slide source area. In this phase, we have displacement data of all MPs (over 130,000) in the monitoring domain 
and the knowledge of when and where the landslide occurred to train our model. The source area is a relatively 
small region of ∼170 MPs that are characterized by accelerating deformation (Intrieri et al., 2018). The character-
ization phase outputs the optimal feature subspace (OFS) that best distinguishes the landslide source from other 
areas. This is achieved by analyzing the data at each timestamp as (a) partitioning the monitoring space into mul-
tiple grid cells; (b) deriving new features for each cell based the displacement data of its member MPs; (c) exam-
ining how distinctive each candidate feature subspace is via outlying aspects mining (OAM); and afterward, (d) 
summarizing the scores over all timestamps to obtain the final evaluation metric. Built upon the identified OFS, 
the prediction phase finds the temporally persistent outlying grid cell across a wide range of spatial scales during 
the monitoring period to narrow down the search perimeter and pinpoints the area where the landslide will likely 
occur. Two levels of predictions are generated in the prediction phase. The first is the intermediate prediction at 
each timestamp which represents the potential area of high landslide risk. Specifically, at each timestamp, each 
MP in the entire monitoring region receives its prediction support score 𝐴𝐴 (𝜌𝜌

(𝑡𝑡)

𝑖𝑖
) , indicating its likelihood of failure. 

𝐴𝐴 𝐴𝐴
(𝑡𝑡)

𝑖𝑖
 quantifies the proportion of times an MP lies in the most outlying cell, across all grid partitions of different 

spatial scales. The intermediate prediction is then given as the group of MPs with the highest prediction support 
score at that time. Temporal signals such as change of maximum prediction support score with the increase of 
time and the spatial distance between intermediate predictions of consecutive timestamps can be tracked. And 
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the trends in these signals facilitates the identification of the second level prediction—the final prediction. As a 
general guide, we regard the final prediction as the intermediate prediction that is marked by a temporally persis-
tent high prediction support score (>0.5), at the same time, showing no changes in its position. A list of notations 
used can be found in Table 1.

Figure 3.  An overview of the proposed framework. (a) Characterization phase that identifies the optimal feature subspace (OFS) based on the Sentinel-1 data. (b) 
Prediction phase applies the identified OFS to predict the landslide location from the given imbalanced data. A toy example at time t with 100 measurement points 
(MPs) is used for illustration. Each monitoring point i is assigned a prediction support score 𝐴𝐴 𝐴𝐴

(𝑡𝑡)

𝑖𝑖
 that quantifies the proportion of times it lies in the most outlying cell, 

across all grid partitions. An intermediate prediction is given at t by outputting the set of MPs with maximum prediction support. Then the final prediction of landslide 
location is a product of two dynamical trends marked by a temporally persistent: high prediction support score above 0.5; and a low to zero value of normalized distance 
compared to earlier time stages.
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3.1.  Space Partitioning

The monitoring region is divided into multiple n × n uniformly sized grids, where n ∈ {5, 10, 15, 20, 25, 30, 35, 
40}, such that at each timestamp eight grids are generated with different cell sizes. For each grid partition, the 
cell with the least inter-median distance to the landslide source is defined as the target cell and all other cells are 
the ones to be distinguished from the target cell. Grid cells in 𝐴𝐴 5×5 and 𝐴𝐴 40×40 are small areas of 18.4 and 0.3 km2, 
respectively, which are similar in size to the regions studied in Intrieri et al. (2018) that can fully encapsulate 
the landslide source. To reduce the amount of computation, we exploit the fact that the MPs are not uniformly 
distributed in the monitoring region by eliminating those cells that contain <100 MPs (a number comparable to 
the average cell density for the finest grid 𝐴𝐴 40×40 ).

3.2.  Feature Engineering

At each timestamp, a grid cell is characterized by a list of 32 features (Table 2) derived from the displacement 
time series. These features can be categorized into three types: (a) f1 – f15, basic statistics related to measurements 
at the current timestamp; (b) f16 – f22, time-related features based on information over the last five timestamps 
(the same time interval as in Intrieri et al., 2018); and (c) f23 – f32, clustering-based features assigning the MPs of 
each grid cell to two clusters—one cluster corresponding to the sliding region, the other to the stable cluster—
following Zhou et al. (2020) and Tordesillas, Zhou, et al. (2020). Essentially, f1 – f22 capture the basic spatio-
temporal dynamics in each cell while the clustering-based features encode more advanced insights demonstrated 
in Zhou et al. (2020). In their work, a comparative study has been conducted between the landslide source area 
and other potential risky regions that are experiencing instabilities to reveal distinctive dynamics that are unique 
in the landslide source. By performing a clustering analysis, Zhou et al. (2020) shows that while approaching 
to the failure time, larger and more consistent kinematic separation can be found between the stable and sliding 
clusters in the landslide source and a better linear fitting can also be found by applying the Fukuzono's method 

Term Definition

M Total number of valid grid cells in a grid partition

N Total number of features

I Total number of measurement points (MPs)

J Total number of grid partitions

gi The ith grid cell of a grid partition

g* Target cell that is the closest to the actual landslide source area

fi The ith feature

𝐴𝐴  Grid partition of M nonoverlapping cells {g1, g2, …, gM}

𝐴𝐴 𝑖𝑖×𝑗𝑗 Grid partition that divides the monitoring space into an i × j grid

𝐴𝐴  The set of all features {f1, f2, …, fN}

𝐴𝐴  The feature subspace that is a subset of 𝐴𝐴 

𝐴𝐴 𝐴𝐴
(𝑡𝑡)


(𝑔𝑔𝑖𝑖,) Outlyingness degree (OD): quantifies the outlyingness of cell gi at timestamp t 

given the feature subspace 𝐴𝐴  and the grid partition 𝐴𝐴 

𝐴𝐴 𝐴𝐴
(𝑡𝑡)


(𝑔𝑔∗

,) Outlyingness relative degree (ORD): quantifies the outlyingness of subspace 𝐴𝐴  at 
timestamp t given the target cell g* and the grid partition 𝐴𝐴 

ω(t) Weight of the ORD score at time t

Tend The final timestamp

Thl Half-life parameter such that the weight of historical data is reduced every Thl days

𝐴𝐴 𝐴𝐴
(𝑡𝑡)

𝑖𝑖
Prediction support score of the ith MP at timestamp t: the proportion of times ith 

MP lies in the most outlying cell, across all grid partitions

𝐴𝐴 𝐴𝐴
(𝑡𝑡)
max

Maximum prediction support score at timestamp t

Table 1 
List of Notations
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(Fukuzono, 1985) over MPs in the sliding cluster. K-means (Lloyd, 1982), the most popular clustering algorithm 
that partitions data samples into K nonoverlapping clusters based on their distribution in the feature space, is used 
for each cell to obtain the clustering assignment based on their displacement at each timestamp. That is, the fol-
lowing minimization problem is solved to find the clustering assignment for MPs within the ith grid cell at time 
t, 𝐴𝐴 

(𝑡𝑡)
(𝑔𝑔𝑖𝑖) =

{

𝑐𝑐
(𝑡𝑡)

1
, 𝑐𝑐

(𝑡𝑡)

2
,… , 𝑐𝑐

(𝑡𝑡)

𝐾𝐾

}

 as

(�)(��) = argmin
(�)(��)

�
∑

�=1

∑

�(�)∈�(�)�

(�(�) − �(�)
� )

2
,� (1)

No. Description

f1 Mean displacement

f2 Mean velocity

f3 Mean acceleration

f4 Standard deviation in displacement

f5 Standard deviation in velocity

f6 Standard deviation in acceleration

f7 First quartile in displacement

f8 Second quartile in displacement

f9 Third quartile in displacement

f10 First quartile in velocity

f11 Second quartile in velocity

f12 Third quartile in velocity

f13 First quartile in acceleration

f14 Second quartile in acceleration

f15 Third quartile in acceleration

f16 Cumulative displacement within the past five timestamps

f17 Mean of average displacement within the past five timestamps

f18 Standard deviation of average displacement within the past five timestamps

f19 Mean of average velocity within the past five timestamps

f20 Standard deviation of average velocity within the past five timestamps

f21 Mean of average acceleration within the past five timestamps

f22 Standard deviation of average acceleration within the past five timestamps

f23 Mean displacement in the sliding region

f24 Mean velocity in the sliding region

f25 Mean acceleration in the sliding region

f26 Silhouette score (Rousseeuw, 1987) w.r.t. displacement

f27 Silhouette score w.r.t. velocity

f28 Silhouette score w.r.t. acceleration

f29 Clustering similarity compared to the past timestamp measured by normalized mutual information (Vinh et al., 2010)

f30 Proportion of MPs in the sliding region

f31 Slope of the linear regression fitted in the inverse of average velocity (Fukuzono, 1985) in the sliding region over the 
past five timestamps

f32 r-squared of the linear regression fitted in the inverse of average velocity in the sliding region over the past five 
timestamps

Table 2 
List of Used Features That Describe a Given Grid Cell
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where x(t) is the displacement of a single MP in gi at time t, 𝐴𝐴 𝐴𝐴
(𝑡𝑡)

𝑘𝑘
 is the kth cluster in the cell, and 𝐴𝐴 𝐴𝐴

(𝑡𝑡)

𝑘𝑘
=

1

|𝑐𝑐
(𝑡𝑡)

𝑘𝑘
|

∑

𝑥𝑥(𝑡𝑡)∈𝑐𝑐
(𝑡𝑡)

𝑘𝑘

𝑥𝑥
(𝑡𝑡) 

is the corresponding cluster center. The number of clusters, K, is set to 2 for all grid cells and all timestamps. Based 
on this clustering assignment, several features are extracted such as the Silhouette scores (Rousseeuw, 1987) that 
quantify the clustering quality with respect to different features, the normalized mutual information (NMI; Vinh 
et al., 2010) that measures the clustering persistence between consecutive timestamps, and the goodness of the 
linear fitness in the inverse velocity method (Fukuzono, 1985) in the identified sliding cluster and so on.

3.3.  Outlying Aspects Mining

At each timestamp, we find the OFS that best characterizes the target cell g*. That is, we explore a set of promis-
ing feature subspaces and measure how outlying g* is in the given feature subspaces, to find the subset of features 
where g* is a significant outlying object among all cells. Specifically, we use the same search mechanism as 
Duan et al. (2015), which brute-forces all feature subspaces up to a user-specified maximum dimensionality. We 
limit the maximum number of features a subspace can have to 3. That is, 5,488 feature combinations (from the 32 
engineered features listed in Table 2) that have less or equal to 3 features are examined. This allows us to identify 
the feature subspace that characterizes the target cell well, while saving computation time.

An essential component of OAM is the scoring function that quantifies the outlyingness degree (OD) of objects in 
the given feature subspace. Without loss of generality, we assume that the lower the OD score, the more outlying 
the object is. We denote such scoring function by α such that 𝐴𝐴 𝐴𝐴

(𝑡𝑡)


(𝑔𝑔𝑖𝑖,) denotes the OD of a query cell gi with 

respect to other grid cells in 𝐴𝐴  given the feature subspace 𝐴𝐴  at timestamp t.

In this work, we choose isolation path (iPath; Vinh et al., 2016) as the method for measuring the OD of a query 
cell. This method builds upon the isolation forest (Liu et al., 2008) outlier detection algorithm. In isolation forest, 
multiple binary random trees are constructed, with an inner node of a tree indicating a random split on a random 
chosen feature, while a leaf node standing for one single object that is isolated from the others. The iPath score of 
a query point is the average path length from the tree root to the corresponding leaf node. Intuitively, in a feature 
subspace where the query object is an outlier compared to the others, the query object is expected to be easily 
isolated via a small number of splits since they are far away from the majority, hence, has a lower iPath score.

The direct use of OD as the performance metric gives rise to difficulties in summarizing the values from different 
timestamps, since their value ranges can vary from one timestamp to another. To resolve this, instead of using 
the raw OD score, we propose the following outlyingness relative degree (ORD) score as the performance metric

𝛽𝛽
(𝑡𝑡)


(𝑔𝑔

∗
,) =

|

|

|

{

𝑔𝑔𝑖𝑖|𝛼𝛼
(𝑡𝑡)


(𝑔𝑔𝑖𝑖,) < 𝛼𝛼

(𝑡𝑡)


(𝑔𝑔∗

,)
}

|

|

|

𝑀𝑀
,

� (2)

where 𝐴𝐴
|

|

|

{

𝑔𝑔𝑖𝑖|𝛼𝛼
(𝑡𝑡)


(𝑔𝑔𝑖𝑖,) < 𝛼𝛼

(𝑡𝑡)


(𝑔𝑔∗

,)
}

|

|

|

 is the number of cells that have smaller OD scores than g*, and M is the 
number of valid cells in 𝐴𝐴  . The ORD score lies between 0 and 1: the best (worst) performing subspace is assigned 
an ORD score of 0 (1).

3.4.  Summarizing Scores

To answer the question on which is the best subspace that characterizes g*, we propose to summarize the ORD 
time series, 𝐴𝐴 𝐴𝐴

(1)


(𝑔𝑔∗

,),… , 𝛽𝛽
(𝑡𝑡)


(𝑔𝑔∗

,),… , 𝛽𝛽
(𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 )


(𝑔𝑔∗

,) , of subspace 𝐴𝐴  and grid partition 𝐴𝐴  , to a single score by 
the weighted average. We refer to this weighted outlyingness relative degree as the WORD score. An exponential 
weighting (Aggarwal et al., 2004) function is employed to control the relative importance between the historical 
and more recent information. This ensures that identifying the cell which overlaps with MPs in the landslide 
source area becomes increasingly important as the landslide time draws near. Formally, this can be expressed as

𝜔𝜔
(𝑡𝑡)
= 2

−(𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒−𝑡𝑡)∕𝑇𝑇ℎ𝑙𝑙 ,� (3)

where Tend − t measures how far away (in days) t is from the final timestamp (recall that Tend is known in the 
characterization phase), and Thl is the so-called half-life parameter (Aggarwal et al., 2004). One can easily see 
that the weight of the final timestamp is 1, and the weights of previous timestamps are reduced by half every Thl 
days. With the help of the time-weighted summary of ORD scores, one pair of feature subspace and grid parti-
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tion now has a single WORD value as the performance metric. This enables 
a straightforward comparison among different grid partitions, since we can 
further summarize the performance of a grid partition as the average WORD 
score over its feature subspaces (or vice versa, when comparing subspaces by 
averaging over multiple grid partitions).

3.5.  Predicting the Landslide Location Using OFS

The algorithm presented above is designed to identify the OFS that best dis-
tinguishes the target cell. The OFS contains up to three features from the list 
of 32 engineered features. Here, we discuss how to apply the discovered OFS 
to predict the source location of an unknown impending landslide.

A depiction of the proposed implementation is given in Figure 3b. At each 
timestamp, an intermediate prediction is obtained. Specifically, suppose 
there are I MPs in the whole monitoring region. Multiple grids of different 
spatial scales are applied to the monitoring domain and for each grid, the 
most outlying cell is found relative to the OFS and is assigned the label of 
failure, while all other cells are labeled stable. A prediction support score, 

𝐴𝐴 𝐴𝐴
(𝑡𝑡)

𝑖𝑖
 , is then assigned to the ith MP, i = 1, 2, …, I, which is given by the ratio 

of the number of times the ith MP lies in the failure cell across all grids to the total number of grids analyzed, J. 
This procedure can be thought of as a system comprising J predictors (grid partitions) whose task is to predict the 
landslide location based on a “voting scheme”. Each predictor votes the most outlying cell as its prediction based 
on the OFS and its particular spatial scale. The prediction support is the ratio of agreement among the J predictors 
and signifies the confidence level of the prediction. We denote the maximum prediction support among all MPs 
at time t by 𝐴𝐴 𝐴𝐴

(𝑡𝑡)
max while the intermediate prediction of the likely location of the landslide is defined as the set of 

MPs with support equal to 𝐴𝐴 𝐴𝐴
(𝑡𝑡)
max .

Next, a second level examination is performed to produce the final prediction. This inspects the temporal persis-
tence in two signals: the change of 𝐴𝐴 𝐴𝐴

(𝑡𝑡)
max with the increase of time, and the spatial distance between intermediate 

predictions of consecutive timestamps. The distance between two intermediate predictions is measured as the 
distance between their centers (the median positions among their member MPs), and we normalize the horizon-
tal and vertical coordinates of all MPs into [0, 1] to ensure that this distance is bounded in 𝐴𝐴 [0,

√

2] . The final 
prediction is the region with persistent outlyingness. Among all intermediate predictions produced during the 
monitoring period, the one with a temporally persistent high prediction support (>0.5), at the same time, with 
close to zero changes in its position, is regarded as the final prediction.

3.6.  Implementation

ORD is measured based on iPath using the Python scikit-learn package (Pedregosa et al., 2011) with the follow-
ing default parameters: the number of trees in iPath is set to 100, and the half-life parameter Thl for computing 
the WORD score is set to 30 days. To measure the clustering performance of the target cell in each grid partition, 
K-means is used with the number of clusters set to 2 by using the displacement at the corresponding timestamp 
as the feature, following Zhou et al. (2020). For predicting the landslide location, we use a total of 46 n × n grid 
partitions where n = 5, 6, …, 50. A general guide is to use a wide spectrum of grid partitions with different sizes 
such that cells in the fine-grained grids have comparable size to the impending failure site (e.g., in Xinmo, a cell 
in the grid partition with n ≈ 40 has similar size as the landslide source area), whereas coarse-grained grids intro-
duce a boarder spatial coverage, to ensure that the prediction is robust to scale variations.

4.  Results
4.1.  Characterization Results on Xinmo

According to Table 3, even though the number of cells to be considered is much larger in the fine grid partitions, 
distinguishing the target cell from the others is a more challenging task for the coarse grid partitions since de-
tails of the kinematic differences among MPs are smeared out in these cases. For example, the average WORD 

Grid partition Avg. WORD Precision Recall

𝐴𝐴 5×5
0.2393 0.4714 1.0000

𝐴𝐴 10×10
0.1553 0.9706 0.9538

𝐴𝐴 15×15
0.2329 0.9485 0.5318

𝐴𝐴 20×20
0.1172 0.9821 0.9538

𝐴𝐴 25×25
0.1584 1.0000 1.0000

𝐴𝐴 30×30
0.0902 1.0000 0.4624

𝐴𝐴 35×35
0.1469 1.0000 0.8439

𝐴𝐴 40×40
0.1411 1.0000 0.9538

Note. Average WORD score among all feature subspaces quantifies the 
effectiveness in mining the outlying aspects (the lower, the better). Precision 
and recall validate the quality of each grid partition based on clustering its 
corresponding target cell (the higher the value, the better the performance).

Table 3 
Characterization Results on Different Grid Partitions
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scores of 𝐴𝐴 5×5 (0.2393) and 𝐴𝐴 15×15 (0.2329) are nearly doubled, compared to 𝐴𝐴 20×20 (0.1172) and 𝐴𝐴 30×30 (0.0902). 
Overall, the top-3 best performing grid partitions are 𝐴𝐴 20×20 , 𝐴𝐴 30×30 , and 𝐴𝐴 40×40 , in which it is relatively easy to 
distinguish the target cell from the rest. A further consideration is that grid partitions should be fine enough so 
that the developing separation between the sliding and stable zones inside the target cell can be detected by the 
clustering analysis (Das & Tordesillas, 2019; Singh & Tordesillas, 2020; Tordesillas et al., 2018; Tordesillas, 
Zhou, et al., 2020). This is quantified by precision and recall (Powers, 2011) based on the ground truth, which 
is identified by clustering the displacement within a small region around the landslide source at the final times-
tamp, 5 days before the landslide (Intrieri et al., 2018). With respect to precision, most grid partitions perform 
well: precision is around or above 0.95. The exception is 𝐴𝐴 5×5 (0.4714), where a group of MPs above the actual 
landslide area is erroneously clustered as the sliding cluster (see the clustering visualization in Figure 4a). This 
reinforces the earlier point that using too coarse a grid can blur the ground motion contrasts and compromise 
the accuracy of the prediction. With respect to recall, three grid partitions, 𝐴𝐴 15×15 , 𝐴𝐴 30×30 , and 𝐴𝐴 35×35 , demonstrate 
significantly lower recall compared to others. This is because the actual landslide source is not fully encapsulated 
in the target cell of these grid partitions (Figure 4a): instead, the source overlaps with the target cell as well as its 
adjacent cells. That said, this “splitting” of the landslide source does not necessarily lead to poor performance in 
distinguishing the target cell from the other competing grid cells. In fact, among the eight grid partitions studied, 
the target cell in 𝐴𝐴 30×30 has the lowest WORD score. This suggests that the target cell in 𝐴𝐴 30×30 , which encapsulates 
only 80 out of the 170 MPs in the landslide source area, is nevertheless well distinguished from all the other cells. 
In summary, the splitting of the landslide source should not lead to erroneous results, as long as a grid partition 
divides the entire domain into small enough cells such that MPs in and around the landslide region show clear 
kinematic contrasts.

Based on the aforementioned results, we limit the comparison among subspaces by using only the WORD scores 
produced by the top-3 best performing grid partitions: 𝐴𝐴 20×20 , 𝐴𝐴 30×30 , and 𝐴𝐴 40×40 . The top-10 outlying feature sub-
spaces are identified via averaging the WORD scores over the top-3 grid partitions (Figure 4b). Among them, 
the 75% percentile (or third quartile) of the displacement, f9, is the most informative feature to use to distinguish 
the target cell from the others. When f9 is used solely, the target cell is always identified as the most outlying cell 
after 19 May 2016, across all top-3 grid partitions. In addition to having the lowest average WORD score among 
all studied subspaces, f9 also contributes to all the other top performing subspaces. When any of these other top 
subspaces are used, the target cell is consistently identified as the most outlying cell from 30 July 2016 onwards. 
Considering individual features presented in the top-10 outlying feature subspaces, apart from f9, basic statistics 
in the spatial (f1—mean displacement of a cell) and temporal (f17—mean of average displacement of a cell within 
the past five timestamps) domains, and clustering patterns (f26—clustering quality as measured by Silhouette 
score, f29—clustering persistence as measured by NMI) are also important aspects that characterize the target cell 
(Figure 4c). Compared to f9, however, the contribution of these features to the outlyingness of the target cell is 
limited. We illustrate this with an example comparison between f17 and f9 (Figure 4d). As the landslide time draws 
near, the target cell progressively distances itself from all the other cells—mainly to the right—the direction of 
increasing f9.

4.2.  Distinguishing the Xinmo Landslide Source

In this section, we show the output of the proposed prediction algorithm on Xinmo by using the identified OFS. 
Strictly speaking, this can only be considered as a “proof of concept” for the prediction method, since we are 
employing the same data used in the characterization phase. More specifically, this analysis serves to demonstrate 
the unique spatiotemporal dynamics of the landslide source, and how this can be exploited to distinguish the 
source from the other moving unstable areas in this vast monitoring domain. The effectiveness of our prediction 
algorithm is validated on an entirely different sites, the 2015–2016 rockfalls on Stromboli.

Two regimes of deformation, before and after 30 July 2016, emerge during the monitoring period preceding the 
Xinmo landslide. Frequent changes of positions can be found in the intermediate predictions, i.e., the collection 
of MPs with the maximum prediction support at different timestamps, during Regime 1 (pre-30 July 2016), 
before converging permanently in the landslide source area in Regime 2 (post-30 July 2016). The intermediate 
prediction first appearing at 30 July 2016 accurately identifies the location of landslide source almost 1 year in 
advance of the time of failure—24 June 2017—and then emerges into the final prediction at 3 December 2016 
(∼7 months in advance), from then the maximum prediction support maintains a high value of above 0.5. Regime 
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1 is marked by a low prediction confidence: 𝐴𝐴 𝐴𝐴
(𝑡𝑡)
max fluctuates below 0.5 (Figure 5b—red line). This concurs with 

the relatively low ground motions observed for most of the entire Sentinel-1 data set with none of the MPs man-
ifesting persistent outlying motion. In laboratory tests of samples driven to failure and rockfall studies (Singh & 
Tordesillas, 2020; Tordesillas et al., 2018; Tordesillas, Zhou, et al., 2020; Zhou et al., 2020), this lack of a persis-

Figure 4.  The third quartile in displacement, f9, is the optimal feature subspace (OFS) to characterize the landslide source area in Xinmo. (a) Visualizations of 
K-means clustering on the displacement at the final timestamp for the target cell g* with respect to different grid partitions. Red indicates the predicted sliding cluster, 
as determined by its higher mean displacement than that of the blue cluster. Note the red cluster in 𝐴𝐴 25×25 perfectly encapsulates the landslide source area in Intrieri 
et al. (2018) (see Figures 1c and 1d), since both the precision and recall are equal to 1. (b) Outlyingness relative degree (ORD) time series of the top-10 feature 
subspaces identified by iPath for the top-3 (out of 8) grid partitions. The lower the score, the better the performance. From top to bottom, the subspaces are ranked by 
their average WORD scores over the top-3 grid partitions. All top subspaces identify the target cell as the most outlying cell after 30 July 2016, which is almost 1 year 
in advance of the Xinmo landslide. (c) The five most frequent features in the top-10 subspaces. (d) Visualization of grid cells in the feature space defined by the two 
most frequent features f9 (x axis) and f17 (y axis). For all grid partitions, the target cell (red star) is getting more isolated in the lead up to failure. Compared f9 to f17, the 
target cell distances itself mainly rightwards from all the other cell: f9 pulls out the target cell better than f17.
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tent and coherent pattern in outlying motion among a group of MPs is typical of the stable regime. As shown in 
Figure 5b (blue solid line), the spatial proximity in the intermediate predictions between consecutive timestamps 
spikes to a normalized distance as high as 0.9 (the spatial coordinates of MPs are normalized to a value range of 
0–1, so the maximum normalized distance in 𝐴𝐴

√

2 ). In a monitoring area of 460 km2, this corresponds to a jump of 

Figure 5.  The proposed algorithm accurately identifies the location of the Xinmo landslide almost 1 year in advance and identified the location of rockfalls in 
Stromboli. (a) Prediction support score 𝐴𝐴 𝐴𝐴

(𝑡𝑡)

𝑖𝑖
 at different timestamps in Xinmo (the higher the value of a measurement point (MP) is, the more likely it is in the failure 

location). Within each subplot, the lower-left is a zoomed-in visualization of the red box, a small area around the predicted landslide region (MPs with 𝐴𝐴 𝐴𝐴
(𝑡𝑡)

𝑖𝑖
= 𝜌𝜌

(𝑡𝑡)
max ), 

which overlaps the actual landslide source area (compare with Figures 1c and 1d) from 30 July 2016 onwards. (b) Changes in 𝐴𝐴 𝐴𝐴
(𝑡𝑡)
max and normalized distances with time in 

Xinmo. The intermediate prediction is attained at the correct position from 30 July 2016 onwards, with 𝐴𝐴 𝐴𝐴
(𝑡𝑡)
max increasing as the landslide time draws near. (c) The number 

of MPs with 𝐴𝐴 𝐴𝐴
(𝑡𝑡)

𝑖𝑖
 higher than a given threshold ɛ in Xinmo. More than 120 MPs consistently receive high confidence 𝐴𝐴 (𝜌𝜌

(𝑡𝑡)

𝑖𝑖
≥ 0.5) in Regime 2. (d, e) Prediction support 

score 𝐴𝐴 𝐴𝐴
(𝑡𝑡)

𝑖𝑖
 in Stromboli area on 24 April 2015 and 15 October 2016. Note that the 2015–2016 rockfall detachment areas fall within the zone characterized by higher 𝐴𝐴 𝐴𝐴

(𝑡𝑡)

𝑖𝑖
 . 

(f) Changes in 𝐴𝐴 𝐴𝐴
(𝑡𝑡)
max and the normalized distance to previous timestamp with respect to time in Stromboli. (g) The number of MPs with 𝐴𝐴 𝐴𝐴

(𝑡𝑡)

𝑖𝑖
≥ 𝜀𝜀 in Stromboli. The periods 

of observed higher rockfall occurrence are reported in Di Traglia, Nolesini, Solari, et al. (2018) and Schaefer et al. (2019).
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around 17 km. The dramatic changes in the intermediate predictions suggest Regime 1 is relatively stable. Indeed, 
no anomalous motions are identified in the actual landslide source area (Figure 5b—blue dashed line): the median 
position of MPs in the intermediate prediction never coincides with that of the landslide source area.

In contrast, after 30 July 2016, a group of MPs begin to manifest increasing outlying motions. This is evident in 
the essentially steady increase in 𝐴𝐴 𝐴𝐴

(𝑡𝑡)
max as more and more predictors, varying in spatial scales, identify MPs from 

this area to be in their most outlying cell. This sees a boost in 𝐴𝐴 𝐴𝐴
(𝑡𝑡)
max from 0.35 at the start of Regime 2 to 0.7 in 

the tertiary creep phase, 5 days before the landslide. Note the pinpoint accuracy and persistence of the prediction 
from 30 July 2016 with both inter-median distances to actual landslide source center and to the last prediction 
remaining at zero for Regime 2 (Figure 5b). The majority of high confidence scoring 𝐴𝐴 (𝜌𝜌

(𝑡𝑡)

𝑖𝑖
≥ 0.5) MPs in this 

intermediate prediction (Figure 5c) correspond to those identified to be in the landslide source using traditional 
time series analysis (Intrieri et al., 2018). Overall, findings suggest that the last intermediate prediction, which 
no longer changes in position from 30 July 2016 onwards, is manifesting outlying behavior across an increasing 
range of spatial scales as the landslide time draws near.

4.3.  Robustness to False Alarms on Xinmo

As demonstrated above, our prediction algorithm temporarily identifies a few sites outside the actual landslide 
source area as the intermediate predictions during Regime 1. Let A1–A4 denote the small regions centered 
around these intermediate predictions at 26 November 2014, 14 March, 1 May, and 28 August 2015, respec-
tively, and A* be the area around the true landslide source that is first detected at 30 July 2016. During Regime 
1, accelerating motions manifest in A1–A4 and similar magnitude or even higher values in displacement or 
velocity can be frequently found, compared to the motion in A* (Figures 6a and 6b). For example, considerably 
higher displacements than A* can be found for A1 and A3 from the beginning of monitoring period to June 
2015. The displacement in A4 is indistinguishable from A* until July 2016. During April 2015, the highest 
velocity can be found in A2, differentiating itself from the other areas. Given these anomaly deformation signals 
presented in A1–A4, conventional threshold-based approaches (Allasia et al., 2013; Barla & Antolini, 2016; 
Cigna et al., 2013; Crosta & Agliardi, 2002; Intrieri et al., 2012; Macciotta et al., 2016; Wang et al., 2010) can 
be easily misled and trigger false alarms, if the displacement/velocity thresholds were not carefully chosen, 
which mistakenly predict the active motions in these sites as landslide events, whereas in reality they have not 
developed into catastrophic failures. Unlike these methods which rely on subjective/expert decision-making, 
our framework provides an automatic and objective method for eliminating false alarms by examining their 
persistence in spatiotemporal dynamics (Figure 5b) in a way that leaves only the actual location of landslide as 
the final prediction. To further illustrate that A1–A4 are indeed false alarms where landslides do not occur, we 
perform an in-depth clustering analysis in these regions, along with A*, for the time period between the begin-
ning of monitoring, to the timestamps when they are eliminated (i.e., when a different intermediate prediction 
is obtained by our algorithm).

Findings in Zhou et al. (2020) and Tordesillas, Zhou, et al. (2020) suggested that the small region around the 
landslide source exhibits distinct spatiotemporal dynamics that can be revealed by clustering the displacement 
of its member MPs. Specifically, while approaching the time of failure, clustering patterns in such small-scale 
region tend to converge to a stable solution such that the sliding area that is characterized by relative larger mean 
displacement no longer changes its position. At the same time, the kinematic separation among different clusters 
increases. In contrast, such distinct spatiotemporal pattern is missing in false alarm regions which briefly show 
instabilities but do not eventuate.

Consistent with these findings, our results in Figure 6 confirm that A1–A4 are false alarms without the unique 
spatiotemporal dynamics presented in the true landslide area (A*). Specifically, no clear clustering patterns in 
the spatial domain can be found in A1–A3. The fast-moving cluster is mixed with other MPs in the stable clus-
ter. The spatial distribution of MPs in the active cluster of A4 and A*, on the other hand, is much compact and 
clearly separated from the stable cluster (Figure 6c). Different from the temporal signals in A4, A* demonstrates 
a unique increase of clustering persistence (NMI, Figure 6d) to above 0.8 from February 2016. During the same 
time, the kinematic separation between the active and stable clusters in A* is further enhanced (Silhouette score, 
Figure 6e). Such unique characteristics in A* validate the capability of our algorithm in eliminating false alarms 
and pinpointing the correct landslide source.
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4.4.  Robustness to Parameters on Xinmo

The performance of our framework is insensitive to the change of parameters. For example, in the characteriza-
tion phase, changes in parameters of the weighting function (3), which aims at controlling the relative importance 
between the historical and more recent information, may affect the order among different feature subspaces. We 
show that their effects are less significant. By stopping the summarization of ORD time series at an early times-
tamp (e.g., end of 2016, Figure 7a), f9 remains as the highest ranked feature subspace among all candidates, mean-

Figure 6.  Clustering analysis performed on the areas of false alarm (A1–A4) and the landslide source area (A*) in Xinmo. (a, b) Average displacement and velocity 
among measurement points (MPs) within each area during the monitoring period. (c) Visualization of clusters generated by K-means for each site (accumulated from 
the beginning of monitoring to the timestamps when they are eliminated by our prediction algorithm). Red cluster is the fast-moving cluster with relative higher average 
displacement than the blue one. (d) Change of clustering persistence measured by normalized mutual information (NMI). (e) Change of clustering quality measured by 
Silhouette score.
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while, presents itself in all other top-10 feature subspaces. Similarly, even though changing the half-life parameter 
from 30 days to 7 and 60 days (Figures 7b and 7c) slightly alters the order among top performing feature sub-
spaces, compared to Figure 4b, we still see several subspaces repeating themselves in the top-10 best performing 
subspaces (e.g., (f9), (f9, f17)). More importantly, f9 remains constantly appearing in all of the top performing fea-
ture subspaces, proving its general optimality in distinguishing the target cell from the other competing regions.

4.5.  Prediction Results on Stromboli

The Stromboli data span a long analysis period of 2 years, and covers several seasons for the same environmental 
conditions that apply to the whole slope. Displacement values and displacement rates are high in many other areas 
of the slope (recall Figure 2d). In the period considered, our model does not identify false alarms in the other ar-
eas of the slope, but only where the collapses actually occurred. The intermediate predictions from our algorithm 
correspond to the area that is characterized by strong erosion in Di Traglia et al. (2020) (Figures 5d and 5e). The 
area of subaerial part of the flank of the volcano is about 106 m2, while the rockfall detachment areas are smaller 
(103–104 m2), and they can occur throughout the slope (Di Traglia, Bartolini, et al., 2018). Moreover, the phys-
ically based analysis of the slope stability identifies many areas characterized by greater instability (mainly due 
to the high topographical gradient of the slope; Schaefer et al., 2019). Therefore, it is impossible to know a priori 
where collapses will occur, while the method proposed here is able to identify the exact location of the block re-
lease areas. To our knowledge, detecting such regions is beyond the capability of traditional methods on satellite 
data, especially when the monitoring domain encompasses many fast-moving areas that are subject to thermal 
contraction and movement, and the area affected by rockfalls is not the one characterized by the highest displace-
ments. Generally, 𝐴𝐴 𝐴𝐴

(𝑡𝑡)
max remains relatively high throughout the monitoring period (above 0.7 until 5 June 2016 to 

just below 0.6 at the end; Figure 5f). The normalized distance in intermediate predictions between consecutive 
timestamps is under 0.03, suggesting the instabilities persisted while remaining localized to a small fraction of 
MPs (around 20 MPs out of the total of 8,373 MPs). The temporal pattern of high confidence 𝐴𝐴 𝐴𝐴

(𝑡𝑡)

𝑖𝑖
≥ 0.5 MPs are 

consistent with the high rockfall frequencies reported in Di Traglia, Nolesini, Solari, et al. (2018) and Schaefer 
et al. (2019), especially in two of the three observed regimes of deformation (Figure 5g). Regime 1 (23 February 
2015–10 September 2015) is when the most outlying ground motions can be observed among multiple unstable 
sites (MPs) that likely interact (Singh & Tordesillas, 2020; Zhou et al., 2020). Regime 2 (10 September 2015–17 
May 2016) differentiates itself with no change to the intermediate prediction, which usually indicates the increas-
ing risk of collapse in that location (Das & Tordesillas, 2019; Singh & Tordesillas, 2020; Zhou et al., 2020). 
Indeed, a brief period of activity ensues during 17 May to 5 June, at the start of Regime 3 (17 May 2016 to 3 
October 2016), when the number of high confidence MPs see a small rise to a peak, before MPs in the region 
decelerate for the rest of the monitoring period.

4.6.  Validation of Results on Stromboli

Similar to the analysis performed in Section 4.3, we further validate the effectiveness of our method by perform-
ing the clustering analysis on a narrowed-down region around the intermediate predictions generated by our al-
gorithm (the yellow boxes in Figures 5d and 5e). The group of MPs with highest prediction support 𝐴𝐴 𝐴𝐴

(𝑡𝑡)
max matches 

the location of red cluster in K-means (Figure 8a), which is the cluster that demonstrates the highest instability 
compared to other clusters. Additionally, as shown in Figure 8b, the clustering persistence (similarity of clus-

Figure 7.  Robustness of parameters. (a) Top-10 feature subspaces when Tend is set to 27 December 2016. (b, c) Outlyingness relative degree (ORD) time series of the 
top-10 feature subspaces identified by using a half-life parameter in the weighting function (3) as 7 and 60 days, respectively.
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tering assignment between consecutive time steps measured by NMI) dramatically increases from 0.5 to above 
0.9 during Regime 1, suggesting that the failure is gradually developing during this phase. From the beginning 
of Regime 2, the clustering assignment generated by K-means barely changes over time, with the area above the 
rockfall detachment area, 𝐴𝐴 1 , being always marked as the most unstable cluster that is likely to collapse. The clus-
tering quality (kinematic separation among clusters measured by Silhouette score in Figure 8c), on the other hand, 
highlighted a difference between Regimes 2 and 3. In Regime 2, a steady increase in Silhouette can be found to 

Figure 8.  Clustering analysis on the narrowed-down region around the intermediate predictions during the monitoring period of Stromboli. (a) Visualization of clusters 
generated by K-means at different time stages. The colors represent the clustering membership, where the mean displacement in each cluster is decreasing from red to 
yellow to blue. (b) Change of clustering persistence measured by normalized mutual information (NMI). (c) Change of clustering quality measured by Silhouette score. 
The dashed lines in (b) and (c) mark the beginning of Regime 2 (10 September 2015) and Regime 3 (17 May 2016).
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its peak at around 0.71, followed by a drop during the transition to Regime 3. This suggests an increasingly high 
likelihood of collapse in the unstable cluster at around March 2016, which is supported by the high rockfall fre-
quency from that time, as reported in Di Traglia, Nolesini, Solari, et al. (2018) and Schaefer et al. (2019). Overall, 
the clustering analysis performed in the narrowed-down space confirms that the proposed prediction algorithm 
can correctly identify the location of rockslide via directly analyzing the motion information of MPs within the 
entire monitoring domain captured by satellite and finding the most outlying area across multiple spatial scales.

Ideally, one should use the OFS associated with a specific site (identified by applying the characterization phase 
on the historical failure events on the target site) as the input feature for the prediction model. However, in reality 
such information may not always be available. We show that under this circumstance, the specific OFS obtained 
from Xinmo, f9, which captures the key deformation dynamics in the vast amount of monitoring region, can be an 
effective surrogate of the OFS for the new site. We use Stromboli to verify that this is true via statistical hypothe-
sis testing, where the null hypothesis is: f9, the input of prediction model, is not indicative of the key deformation 
dynamics on Stromboli. If we have significant statistical evidence to reject this null hypothesis, we would have 
high confidence on using f9 for prediction. Similarly, the output of the prediction on Stromboli can also be veri-
fied. Specifically, we design the following tests:

�• Test 1: input validation via permutation test (detailed in Appendix A). For a given timestamp t and a specific 
grid partition 𝐴𝐴  , the null hypothesis above is equivalent to saying that the f9 values of cells in 𝐴𝐴  are distributed 
homogeneously over the monitoring domain. We choose the sample variance in f9 as the test statistic. Inherent-
ly, if the null hypothesis holds true, there will be a very small chance of this sample variance deviating from 
its presumed probability distribution under the null hypothesis. We generate permutations of the test statistic 
values to quantify this small chance. Specifically, 10% of MPs are randomly selected and their positions are 
randomly shuffled to form a permutation of all MPs; this is repeated 200 times to get 200 permuted data sets. 
A test statistic value is calculated based on each permuted data set, resulting in an empirical distribution of the 
test statistic, from which the p-value of the test can be calculated as the proportion of permutations whose test 
statistic values are larger than or equal to the test statistic value of the original sample. The p-value gives the 
observed significance of rejecting the null hypothesis. The lower the p-value, the stronger evidence we have to 
reject the null hypothesis. If p-value <0.05, we say the null hypothesis is rejected at 0.05 level of significance, 
i.e., at 95% confidence level

�• Test 2: output validation via one-tailed t-test. At a given timestamp t, let MPs in the monitoring domain be di-
vided into two groups: the high and low risk regions as determined by their prediction support scores with a 
threshold value of 0.5. Here, the null hypothesis is equivalent to saying that there is no significant difference be-
tween the movements in these two groups. One-tailed t-statistic is used for the testing, and the null hypothesis is 
rejected if the mean displacement in the high-risk group is significantly greater than that of the low-risk group

For Test 1, as demonstrated in Figure 9a, the test statistic from the original data frequently locates on the right-
hand side of the empirical distribution constructed from the permutations, indicating extremely high variance in 
f9 over all cells, suggesting nonhomogeneously distributed feature values in the spatial space. Additionally, the 
trend in the p-values conforms to the evidence uncovered by the prediction support score: close to zero p-values 
can be found in Regime 1 where a relatively large number of MPs demonstrate high prediction support, whereas 
slightly higher p-values (still <0.05 in most cases) apply in the later timestamps, especially in Regime 3 where 
the maximum support decreases (Figure 9b). Results from Test 1 give strong statistical evidence to reject the null 
hypothesis, showing that f9 is a feature that carries meaningful spatial structure. In terms of Test 2, we see close 
to zero p-values throughout the monitoring period (Figure 9c), suggesting that for all timestamps, the group of 
high-risk MPs 𝐴𝐴 (𝜌𝜌

(𝑡𝑡)

𝑖𝑖
≥ 0.5) demonstrate significantly higher movement than the other regions, thus validating our 

prediction algorithm.

5.  Discussion
5.1.  A “Zoomed-In” View for Balanced Slope Failure Data

Pinpointing the location of an impending failure from space is a challenging task. To understand this, it is instruc-
tive to recall recent lessons learned on the fundamental dynamics of precursory failure for a balanced monitoring 
data. Having a balanced data on failure means essentially that a “zoomed-in” view of the unknown failure loca-
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tion was captured. That is, the sizes of the unstable and stable regions are comparable so that the number of mon-
itoring points is not significantly different for the two regions. Prior studies of failure in laboratory samples and 
of landslides/rockfalls in the field scale, based on kinematic data from simulations and physical measurements 
(Singh & Tordesillas, 2020; Tordesillas et al., 2021), uncovered a nontrivial spatiotemporal clustering pattern in 
the precursory failure regime.

In slopes, MPs in the impending failure region distinguish themselves near the failure time by moving in unison 
at increasing displacements (Singh & Tordesillas, 2020; Tordesillas et al., 2021). As a result, machine learning 
clustering algorithms like K-means can readily identify the ultimate failure region in the terminal stages when 
failure is imminent. More importantly, prior to this time, the spatiotemporal dynamics of this clustering pattern 
tracked accurately the evolution of failure and gave clues to the ultimate failure location. Chronologically, when 
the whole granular mass/body is stable, this clustering pattern is essentially nonexistent. But in the subsequent 
regime, i.e., the precursory failure regime, when instabilities develop and spread in the granular mass, a clustering 
pattern emerges. This pattern is transient initially but then ultimately persists in space and time close to and dur-
ing failure. As reported in recent studies (Singh & Tordesillas, 2020; Tordesillas et al., 2021), such spatiotemporal 
clustering pattern has been discovered in a wide range of failures, despite their scales (laboratory versus slope 
versus field) and types (brittle versus ductile).

Figure 9.  Further validation on Stromboli rockfalls via statistical tests. (a) Test statistics for Test 1. For each subplot, x axis gives the test statistic values and y axis is 
the frequency of each bin in the histogram. Red dashed line indicates the test statistic for the original sample. (b) p-Values for Test 1. (c) p-Values for Test 2.
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The spatiotemporal dynamics of kinematic clustering can be directly related to the fundamental physics of granu-
lar media deformation and failure, especially to the process of force transmission (Tordesillas et al., 2021; Torde-
sillas, Kahagalage, et al., 2020). Forces in granular bodies are mainly transmitted along preferred paths which 
are known as force chains. Force chains are akin to highways in a road network. Like any transmission network 
with preferred paths, some links in the network become prone to congestion thus forming bottlenecks. That is, 
compared to links elsewhere, the links in the bottleneck transmit forces close to their capacity which is the force 
that needs to be overcome to break the link. In Tordesillas, Kahagalage, et al. (2020); Tordesillas et al. (2021), it 
was shown that the path that percolates through the body containing such vulnerable links, i.e., force bottleneck, 
is in fact the path of least resistance to failure and is where the macrocrack in small samples eventually devel-
oped at failure. In monitoring data, this path delimits the landslide boundary at the time of collapse (Tordesillas 
et al., 2021).

The force bottleneck is an emergent structure that is highly dynamic in the prefailure regime. This is because 
a stable granular body is a highly redundant structure. Such a body has many paths available to accommodate 
stress reconfigurations that then relieve stress build up in the vulnerable bottleneck sites. This has the effect of 
diverting damage away from the preexisting bottleneck, a process that generally leads to a shift in the location 
of the bottleneck. However, as damage spreads, and the time of failure draws near, redundancies in transmission 
paths diminish until damage can no longer be avoided in the bottleneck area. This then marks the time when the 
bottleneck becomes spatially persistent, signaling the onset of imminent failure. Previously disconnected cracks 
begin to propagate rapidly and coalesce along the persistent bottleneck which is now becoming physically incised 
in the body. At the same time that material connections along this path break apart, the region of impending fail-
ure becomes increasingly detached from the rest of the slope. MPs in this active region will start to distinguish 
themselves by moving as a coherent whole (in near rigid-body motion) at increasingly higher velocities than 
those of the MPs in the stable zone. This explains why a persistent kinematic clustering can be observed in the 
displacement-state-space, with the persistent bottleneck delimiting the boundary of the landslide at the time of 
failure (Tordesillas et al., 2021).

5.2.  A “Zoomed-Out” View for Imbalanced Sentinel Data

Observing the above processes from space, however, is like “zooming-out” from the target area. The kinematic 
signal from the failure location is drowned out by the signal from all the other MPs which comprise the vast 
majority of MPs in the analyzed region. Keep in mind that the total number of MPs generally increases with 
the growth of monitoring region, while the number of MPs in the failure location remains fixed. Eventually, if 
we zoom-out far enough, the fraction of MPs in the failure location relative to the whole monitoring region may 
dwindle down to <1%, as is the case in the Xinmo data. The failure location is now significantly more difficult 
to pinpoint. The method of deploying ordinary clustering algorithms in raw displacement no longer works in 
these scenarios, as the signal from the target area is drowned out by the vast amount of information from all the 
MPs, leading to inaccurate clustering and wrong prediction of the failure location. A further complication arises 
when the monitoring region encapsulates multiple unstable sites which similarly exhibit large movements, but 
which do not lead to catastrophic failure. In fact, over the past few decades, the monitoring area of the Xinmo 
data has been a site of multiple historical seismic events (Fan et al., 2017; Intrieri et al., 2018). The recent study 
in Tordesillas, Zhou, et al. (2020) also confirms that multiple sites exhibit comparable large movements to that in 
the actual landslide source area. Also, as demonstrated in Figures 5a and 6, in the early stages of the monitoring 
period, other sites were identified as areas of high risk of failure, before the prediction settled to the true landslide 
source area with high confidence (Figure 5b).

To address the issues relating to data imbalance, we shifted our analysis from the MP level—as deployed on past 
studies of balanced data (e.g., Das & Tordesillas, 2019; Singh & Tordesillas, 2020; Tordesillas, Zhou, et al., 2020; 
Zhou et  al.,  2020)—to the cell level. In the characterization phase, we treat the target cell (see definition in 
Section 3.1) that encapsulates the landslide source as a distinct object and compare it to the other cells in the 
monitoring domain, in order to uncover the unique features associated with the failure location. This is achieved 
by applying our outlying aspect mining algorithm to identify the OFS that maximizes the outlyingness of the 
target cell. Our strategy explores a vast set of features derived from the raw displacement data which by itself can 
no longer reliably identify the failure location (recall Figure 3a, and Sections 3.1–3.4). In the prediction phase, 
we designed an algorithm (Figure 3b, Section 3.5) that can predict the location of the impending failure region 
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by first ranking the MPs according to the prediction support score—the number of times an MP is identified in 
the most outlying cell across all “zoom levels” (grid cell sizes)—then producing the final prediction based on the 
temporal persistence in signals extracted from our analysis.

5.3.  Summary of Key Findings

We summarize the key findings from our study as follows:

1.	 �Our study confirmed that the ground deformation data of sufficient spatial and temporal resolution encode 
rich dynamics underlying the catastrophic slope failure and can be a valuable source for landslide monitoring 
and prediction

2.	 �Our characterization procedure revealed that the OFS, 75% percentile of the displacement within a given cell, 
is a distinguishing characteristic that differentiates the landslide source area from the vast amount of region 
monitored by Sentinel-1. This is a cheap statistic to compute given the ease of extracting ground motion data 
from satellite images

3.	 �Results from the characterization step confirmed that standard clustering approaches which are designed for 
slope-scale data can be unreliable in distinguishing the dynamics of the landslide source in imbalanced satel-
lite data, given the inadequate performance of clustering-based features. Instead, by shifting the analysis from 
MP level to cell level, we found that the relative outlyingness in the motion among cells of different spatial 
scales has become a more trustworthy indicator in identifying the location of an impending failure

4.	 �A prediction procedure was proposed based on the OFS for identifying the temporally persistent outlying cell 
across a range of spatial scales during the monitoring period. The simplicity of the identified OFS enhances 
the efficiency of the proposed prediction procedure. Typically, only a few seconds on a standard desktop PC 
are needed to deliver a prediction. This is near-real-time prediction, especially compared to the temporal res-
olution of several days in Sentinel-1

5.	 �The proposed prediction procedure is straightforward to implement in practical early warning systems and has 
broad applicability in identifying potential landslides location in different settings. Specifically, the temporal 
signals in the changes in maximum prediction support, and the spatial distance to the previous intermediate 
prediction can be useful indicators in determining the final location of an impending collapse

6.	 �The predictions deliver more than susceptibility maps because they are informed by continuous monitoring 
and provides indications not just of potential instabilities but of regions that are approaching imminent fail-
ure. Such warning-oriented information can provide actionable intelligence to early warning systems that are 
based on deformation rate thresholds. In conjunction with the fast increasing global availability of InSAR 
data at short time intervals, our method may also provide the missing paradigm to switch from susceptibility 
mapping (spatial prediction) to spatiotemporal prediction mapping at the regional scale, a capability that 
remains elusive

7.	 �Our analysis shed new light on the use of regional-scale satellite deformation data to advance existing land-
slide-monitoring practices. Our method can be considered as a new alternative that is easy and cheap to apply, 
especially when other types of geophysical failure indicators are not readily available. At the very least, it can 
identify a potential hazard area from the vast amount of monitoring space, for direct field inspection, or for the 
application of targeted forecasting algorithms designed for smaller and more balanced data such as pointwise 
time-series inverse velocity methods (Intrieri et al., 2018)

8.	 �The proposed framework is a general toolkit of potentially broad applicability and transferability. Although 
publicly available failure data are rare, agencies engaged in design and management of early warning systems 
have a growing repository of data on past slope failures for different sites. With the rapid development in re-
mote sensing and Earth observation systems, we expect for this trend to continue unabated. Agencies may not 
openly share these historical records of failure for understandable reasons, but they do exist. One example of 
this is in open pit mining (e.g., Bingham Canyon mine; Gaida et al., 2021). This is precisely why we designed 
our platform to be one complete package—with the ability to accommodate the changing conditions that 
may intensify certain landslide triggers (e.g., climate change that may lead to increased intensity, duration, 
and frequency of rainfall (Johnston et al., 2021; Justice, 2020), earthquakes (Masih, 2018, etc.). Specifically, 
if historical data on past failure events on the vulnerable sites are available, we recommend that our entire 
platform be implemented for improved decision-making. That is, we recommend that both characterization 
and prediction components be implemented on historical failure data—especially on the most recent failures 
to update the OFS, as illustrated in Figure 10
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6.  Conclusion
We developed a method for early detection of impending failures from regional-scale Sentinel-1 data and tested 
its applicability using data on the 2017 Xinmo landslide and the 2015–2016 Stromboli rockfall. Both data suffer 
from severe imbalances, viz the fraction of measurement points in the failure region is disproportionately small 
with respect to the total number of points in each data set. This challenges the applicability of existing cluster-
ing-based approaches that are designed for balanced data, since the clustering dynamics in the failure location 
become less significant, as drowned out by the vast number of MPs in the monitoring region. To address this 
issue, we designed a procedure based on feature engineering and outlying aspects mining to systematically and 
objectively identify the optimal feature subspace (OFS). One particular feature—the third quartile in the displace-
ment within a small area—characterized the dynamics in the impending failure region the best. This suggests a 
potential utility of the identified OFS in standard operational monitoring and early warning of landslides based 
on the Sentinel-1 data. To demonstrate this, a prediction algorithm was proposed to forecast the failure location 
by identifying the temporally persistent outlying cell across a range of spatial scales during the monitoring period. 
For Xinmo, the proposed method accurately finds the location of the 2017 landslide as early as 1 year in advance 
of the event. For Stromboli, the area subject to rockfall, excluding the areas that are instead subject to thermal 
contraction and movement, are not generally identifiable from satellite data using traditional methods. However, 
we have shown that the proposed method is able to detect the area despite the fact that there are many moving 
regions and that the one affected by rockfall is not the area characterized by the highest displacements at most 
timestamps during the monitoring period. In addition, even though it is difficult to detect each single collapse 
given the spatial and temporal resolution of Sentinel-1 data, our method is able to identify the periods of highest 
frequency of rockfalls.

With the anticipated improvements in the spatial and temporal resolution of spaceborne InSAR sensors in this 
new decade, our approach has the potential to deliver timely and accurate intelligence in aid of efforts toward 
near-real-time early warning and risk mitigation of landslide hazards.

Appendix A:  Permutation Test
The purpose is to test the null hypothesis that the OFS, f9, distributes homogeneously over all cells in the moni-
toring domain. Let 𝐴𝐴  be the monitoring domain with N locations, and 𝐴𝐴 𝐴𝐴(𝑠𝑠), 𝑠𝑠 ∈  be the displacement of the sth 
location. We apply an approach of spatial random permutation test (Good, 2005; Haining, 2001) to investigate 
this homogeneity issue, and our spatial random permutation test procedure is described as following.

1.	 �Partition 𝐴𝐴  into an I × J matrix grid 𝐴𝐴 𝐼𝐼×𝐽𝐽 . Calculate f9 for each grid cell from all x(s) observations in that cell. 
Denote the results as 𝐴𝐴 {𝑓𝑓9(𝑖𝑖𝑖 𝑖𝑖), (𝑖𝑖𝑖 𝑖𝑖) ∈ 𝐼𝐼×𝐽𝐽} . Compute 𝐴𝐴 𝑓𝑓9 = (𝐼𝐼𝐼𝐼 )

−1
∑

𝑖𝑖𝑖𝑖
𝑓𝑓9(𝑖𝑖𝑖 𝑖𝑖) and the sample variance in f9 

among all cells

Figure 10.  Integrating the proposed framework into real-world landslide monitoring and early warning systems.
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(𝑘𝑘)

1
, 𝑠𝑠

(𝑘𝑘)

2
,… , 𝑠𝑠

(𝑘𝑘)

[𝑝𝑝𝑝𝑝]

}

�(c)	� Construct the kth permutation sample 𝐴𝐴
{

𝑥𝑥
(𝑘𝑘)(𝑠𝑠), 𝑠𝑠 ∈ 

}

 as following: Set x(k)(s) = x(s) if s ∉ {s1, s2, …, 
s[pN]}; set 𝐴𝐴 𝐴𝐴

(𝑘𝑘)
(𝑠𝑠

𝓁𝓁
) = 𝑥𝑥(𝑠𝑠

(𝑘𝑘)

𝓁𝓁

) for ℓ = 1, …, [pN]

Note if the permutation proportion p is chosen larger, the spatial dependence pattern in the displacement x(s) 
observations tends to be more severely corrupted through permutation, resulting in more spurious evidences 
toward rejecting the null hypothesis. In practice, often a small p is chosen, say p = 10%, to ease the effect of spa-
tial dependence distortion, but to still have enough randomness to prevent generating a degenerate permutation 
distribution (Haining, 2001).

�3	� Compute 𝐴𝐴 𝐴𝐴
(𝑘𝑘)

9
(𝑖𝑖𝑖 𝑖𝑖) based on the kth permutation sample for cell-(i, j) of 𝐴𝐴 𝐼𝐼×𝐽𝐽 . Then compute the associated 

sample variance statistic

𝑋𝑋
2

𝑘𝑘
=

1

𝐼𝐼𝐼𝐼 − 1

𝐼𝐼
∑

𝑖𝑖=1

𝐽𝐽
∑

𝑗𝑗=1

(𝑓𝑓
(𝑘𝑘)

9
(𝑖𝑖𝑖 𝑖𝑖) − 𝑓𝑓9)

2

�

�4	� Compare 𝐴𝐴 𝐴𝐴
2

0
 with the empirical distribution (e.g., histogram) of 𝐴𝐴

{

𝑋𝑋
2

𝑘𝑘
, 𝑘𝑘 = 1,⋯𝐾𝐾

}

 by computing the p-value 
as the proportion of permutations whose variance statistic are large or equal to 𝐴𝐴 𝐴𝐴

2

0

If H0 is true, the observed variance statistic 𝐴𝐴 𝐴𝐴
2

0
 value would be typical of the 𝐴𝐴 𝐴𝐴

2

𝑘𝑘
 values, meaning the p-value 

would be large. In other words, if the p-value is small, we would have strong statistical evidence to reject H0.

Data Availability Statement
The InSAR data are freely available from Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus). 
Software used in the analysis of this study and to produce figures includes the following Python packages: scikit-
learn (Pedregosa et al., 2011), SciPy (Virtanen et al., 2020), and matplotlib (Hunter, 2007).
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