
ATOMIC DECOMPOSITION OF FINITE SIGNED MEASURES

ON COMPACTS OF Rn

FRANCESCA ANGRISANI, GIACOMO ASCIONE, AND GIANLUIGI MANZO

Abstract. Recently there has been interest in pairs of Banach spaces (E0, E)

in an o − O relation and with E∗∗
0 = E. It is known that this can be done

for Lipschitz spaces on suitable metric spaces. In this paper we consider the

case of a compact subset K of Rn with the euclidean metric, which does not

give an o− O structure, but we use part of the theory concerning these pairs
to find an atomic decomposition of the predual of Lip(K). In particular,

since the space M(K) of finite signed measures on K, when endowed with

the Kantorovich-Rubinstein norm, has as dual space Lip(K), we can give an
atomic decomposition for this space.
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1. Introduction

L. Hanin has dedicated some papers [8, 9] to the description of spaces in dual-
ity with Lipschitz spaces, namely spaces of finite signed Borel measures on com-
pact metric spaces K. In what follows we will consider K a compact domain in
Rn equipped with the euclidean norm, which we denote here by | · |. More pre-
cisely, when we endow the space M(K) of such measures on K with the so-called
Kantorovich-Rubinstein norm and consider its completion, we obtain a space that
is isometric to the predual of the space of Lipschitz functions of K.
The Kantorovich-Rubinstein norm (see section 2) was introduced in the context of
optimal transport theory. As a matter of fact, the distance, induced by the norm,
between two measures µ and ν with same total mass, i.e. µ(K) = ν(K), is simply
the cost of the optimal transport from one to the other (see next section for defini-
tions).
Other than identifying M(K)∗ as Lip(K), passing to duals, one can also investi-
gate embedding properties of M(K)c, or of M0(K)c, in its bidual Lip(K)∗, where
M0(K) is the subspace of M(K) containing only measures with null total mass.
An interesting consequence of this approach is that it inspires the introduction of
the dual problem in optimal transport theory. As a matter of fact, by thinking
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of elements in M(K) as functionals on Lip(K) we obtain that the Kantorovich-
Rubinstein norm on M(K) is equivalent to the operator norm

‖µ‖KR′ = sup

{�
K

fdµ, f ∈ Lip1(K)

}
where Lip1(K) is the set of Lipschitz functions with Lipschitz constant L ≤ 1. The
fundamental problem of optimal transport theory, i.e. finding, if it exists, a mini-
mizer to the minimization problem occurring in the definition of ‖µ− ν‖KR with µ
and ν measures with same total mass, is then equivalently formulated as a maxi-
mization problem. It was proven in [3] that elements in M0(K)c are precisely those
for which the dual problem admits maximizers. Moreover, in the same paper, the
space M0(K)c is also characterized as the space of the distributional divergences
of L1(K;Rn) functions.
In this paper we will give an atomic decomposition of the spaces M(K) and M0(K)
by restriction of the decomposition of their completions, seen as preduals of Lip-
schitz spaces. We recall that the description of atomic decompositions of Hölder
spaces on compact spaces was given in [10] and [1], following different approaches; in
particular, in [10] the atomic decomposition is closer to other ”classical” examples
[4, 6], while in [1] a more abstract atomic decomposition is obtained. We decided
to follow this second approach, based on techniques from [6], which are inspired by
the o–O construction in [14].
In particular, we will see in the third section that elements of the embedded copy
of M0(K)c in Lip(K)∗ can be thought of as all the infinite sums of the type

µ =

+∞∑
j=1

δxj
− δyj

|xj − yj |
αj with αj satisfying

+∞∑
j=1

|αj | < +∞

and where {xj}j∈N and {yj}j∈N are two disjoint countable dense subsets of K.
These infinite sums are intended as bounded linear functionals on Lipschitz func-
tions f in the following way

〈µ, f〉 =

+∞∑
j=1

f(xj)− f(yj)

|xj − yj |
αj

where the right hand side is finite because
|f(xj)−f(yj)|
|xj−yj | is bounded by the Lipschitz

constant of f and αj is a sequence in `1.
On the other hand for some choices of αj , µ is not a finite signed Borel measure on
K, even if the sequence of partial sums is a Cauchy sequence in the Kantorovich
norm, showing that M0(K) is not complete. A fourth section of this paper is
dedicated to obtain a similar result for M(K)c. In such a case, since we are not
identifying functions that differ from each other by a constant, the atomic decom-
position will be not only expressed as an infinite linear combination of dipoles, but
a correction term in form of an atom (i.e. δxj

) has to be added to each summand.

2. Lipschitz spaces, spaces of Borel measures and their completions

In this section we will introduce the notation concerning the spaces and the
norms we will work with. Let us fix a bounded open set Ω ⊂ Rn and let us denote
K = Ω.
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2.1. Lipschitz spaces and fractional Sobolev spaces.

Definition 2.1. We define the Lipschitz spaces

Lip(K) =

f : K → R : sup
(x,y)∈K2

x6=y

|f(x)− f(y)|
|x− y|

< +∞


and

Lip0(K) = Lip(K)/R,
i.e. the Lipschitz space Lip(K) modulo constant functions.
In Lip0(K), to simplify the notation, we will identify any function f : K → R with
its equivalence class. If we endow Lip0(K) with the norm

‖f‖Lip0(K) = sup
(x,y)∈K2

x 6=y

|f(x)− f(y)|
|x− y|

,

then this normed space is a Banach space, while on Lip(K) the functional ‖·‖Lip0(K)

would only work as a seminorm.
Furthermore, Lip(K) would be a Banach space if endowed with the norm

‖f‖Lip(K) = max{‖f‖Lip0(K) , ‖f‖L∞(K)}.

In the following we will need to embed the spaces Lip(K) and Lip0(K) in suitable
reflexive Banach spaces. For our purposes, the natural candidates are fractional
Sobolev spaces. An almost complete survey on such spaces is given in [5].

Definition 2.2. Let us denote by W s,p(Ω) for s ∈ (0, 1) and p > 1 the fractional
Sobolev space consisting of the functions f ∈ Lp(Ω) such that

‖f‖p
Ẇ s,p(Ω)

:=

�
Ω

�
Ω

|f(x)− f(y)|p

|x− y|ps+n
dxdy < +∞.

If we endow W s,p(Ω) with the norm

‖f‖W s,p(Ω) = ‖f‖Ẇ s,p(Ω) + ‖f‖Lp(Ω)

it is a reflexive separable Banach space. The homogeneous fractional Sobolev space
Ẇ s,p(Ω) is defined as Ẇ s,p(Ω) = W s,p(Ω)/R and if we endow this space with the
norm ‖f‖Ẇ s,p(Ω) it is a reflexive separable Banach space.

Remark 2.1. Let us recall that if ps > n, by a fractional Morrey-type embedding
theorem, we have that W s,p(Ω) ↪→ C(K). In this case we will always consider the
continuous version of a function in W s,p(Ω).

Another characterization of Ẇ s,p(Ω) for sp > n is given as the space of functions
f ∈ W s,p(Ω) such that f(z) = 0, for an a priori fixed point z ∈ K (here we are
implicitly using the embedding W s,p(Ω) ↪→ C(K)). In particular we have (by using
the same idea adopted for Lip(K)) that the norm

‖f‖W s,p(Ω),z = ‖f‖Ẇ s,p(Ω) + |f(z)|

is equivalent to ‖·‖W s,p(Ω). By identifying C(K)/R in the same way we have

Ẇ s,p(Ω) ↪→ C(K)/R.
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2.2. Spaces of Borel measures and Lipschitz-free spaces.

Definition 2.3. We denote the space of finite signed Borel measures on K by
M(K), the subspace of finite positive measures on K by M+(K), and the subspace
of M(K) consisting only of measures µ such that µ(K) = 0 by M0(K).
Via the Hahn-Jordan decomposition, a signed measure µ can be seen as the dif-
ference of two positive Borel measures µ+ and µ−, i.e. µ = µ+ − µ−; the total
variation of µ is defined as the sum of the two, i.e. |µ| = µ+ + µ−.

The total variation µ ∈M(K) 7→ |µ|(K) ∈ R is a norm on M(K) that gives to
the space the structure of Banach space. However, it does not take into account
the metric structure of the domain K (for instance |δx − δy|(K) = 2, for any
(x, y) ∈ K2). On the other hand, even in the more general setting of a compact
metric space K, Kantorovich and Rubinstein introduced a norm ‖ · ‖KR on M(K)
inducing a distance that is a natural extension of the distance on K.
As a matter of fact, K naturally embeds in M(K) by associating to each point x
in K the Dirac measure δx concentrated in x. We will introduce a norm ‖ · ‖KR
that will have the interesting property that ‖δx − δy‖KR = |x − y|, in some sense
extending the metric on K to M(K).
To define the Kantorovich-Rubinstein norm on M(K), we first start by doing so on
the space M0(K) ⊂M(K) of balanced measures µ, i.e. such that µ(K) = 0 and
hence µ+(K) = µ−(K).

Definition 2.4 ([11, 12, 13]). Consider any µ ∈M0(K) and define a family Ψµ ⊂
M+(K×K) of positive Borel measures on the Cartesian square K×K of K in the
following way: Ψ ∈ Ψµ if and only if, for any Borel set E ⊂ K, Ψ(K,E)−Ψ(E,K) =
µ(E) (called balance condition)
The Kantorovich-Rubinstein norm of µ is defined as

‖µ‖KR0
:= inf

{�
K×K

|x− y|dΨ(x, y) : Ψ ∈ Ψµ

}
.

Definition 2.5. For µ ∈M(K) we define the “extended” Kantorovich-Rubinstein
norm of µ as

‖µ‖KR := inf{‖ν‖KR0
+ |µ− ν|(K) : ν ∈M0(K)}.

An important thing to notice is that (M0(K), ‖·‖KR0
) and (M(K), ‖·‖KR) are

not Banach spaces.

Remark 2.2. Given (x, y) ∈ K we have ‖δx − δy‖KR0
= |x− y| while ‖δx‖KR = 1,

showing that the Kantorovich-Rubinstein norm satisfies the desired property of
concordance with the metric on K.

The completion of the space of finite Borel measure on K with respect to the
Kantorovich-Rubinstein norm is denoted by M(K)c, while we denote by M0(K)c

the completion of M0(K) with respect to the norm ‖·‖KR0
.

It has been shown (see for instance [7]) that M(K)∗ is isometric to Lip(K) while
M0(K)∗ is isometric to Lip0(K). Moreover, it is interesting to recall another char-
acterization of M0(K)c. Indeed, in [3] it is shown that if K is a compact subset
of Rn then for any distribution µ ∈M0(K)c there exists a function f ∈ L1(K;Rn)
such that

µ = div f.
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Moreover (see [3]), for any distribution µ ∈ M0(K)c there exists a function f ∈
BLip0(K) such that

‖µ‖KR =

�
K

fdµ,

so that the norm is attained.

3. Atomic decomposition of M0(K)c

Our aim is to give an atomic decomposition of elements µ of M0(K)c, and so in
particular of measures that are null on K, as an infinite sum of simpler elements
that we will call atoms.

Definition 3.1. We will call δ-atom any measure µ ∈ M(K) whose support is
finite. Moreover, we call dipoles the measure µ ∈M0(K) of the form µ = α(δx−δy)
for some α ∈ R and (x, y) ∈ K2.

To obtain a decomposition of elements of M0(K)c - which will induce a decom-
position of elements of M0(K) - we generalize the approach of [2], which relies on
the o–O structure of (c0,α, C0,α), by using results contained in [6], which allow us
to remove the dependence on the ”little o” space, because for Lip and Lip0 it is
trivial. We start by writing Lip0 in a suitable way.

Lemma 3.1. There exists a sequence of operators (Lj)j∈N : X = (Ẇ s,p(Ω)) →
Y = R such that

Lip0(K) = {f ∈ Ẇ s,p(Ω) : sup
j∈N
|Ljf | < +∞}

and

‖f‖Lip0(K) = sup
j∈N
|Ljf |.

Proof. First of all, let us fix s ∈ (0, 1) and ps > n, so that Ẇ s,p(Ω) ↪→ C(K)/R.
Let us consider D1 ⊂ K a numerable set such that K = D1 and K1 = K \D1. Now
let us consider D2 ⊂ K1 a numerable set such that K1 = D2. Finally, let us define
D = D1 ×D2. Observe that D1 ∩D2 = ∅ so, for any (x, y) ∈ D, x 6= y. Moreover,
D is numerable, hence we can enumerate D = {(xj , yj)}j∈N. Finally D = K ×K.
Let us define

Lj : f ∈ Ẇ s,p(Ω)→ f(xj)− f(yj)

|xj − yj |
∈ R .

Lj is obviously linear. Moreover, since Ẇ s,p(Ω) ↪→ C(K)/R we have

f(xj)− f(yj)

|xj − yj |
≤ 2

|xj − yj |
‖f‖L∞(K) ≤ Cj ‖f‖Ẇ s,p(Ω) ,

hence Lj ∈ (Ẇ s,p(Ω))∗ for any j ∈ N.

Finally, let us observe that by density of D in K×K and continuity of f ∈ Ẇ s,p(Ω)
it holds

‖f‖Lip0(K) = sup
j∈N
|Ljf |

concluding the proof. �

Now that we have this rewriting of the definition of Lip0(K) we can use the
techniques exploited in [6] to obtain the desired atomic decomposition.
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Theorem 3.2. There exists a constant C ∈ (0, 1) such that for any distribution
µ ∈M0(K)c there exists a sequence (αj)j∈N ∈ `1(R) such that

µ =

+∞∑
j=1

δxj − δyj
|xj − yj |

αj

and

C

+∞∑
j=1

|αj | ≤ ‖µ‖KR0
≤

+∞∑
j=1

|αj |,

where the sequences (xj)j∈N and (yj)j∈N are defined in Lemma 3.1. Moreover, the
sequence of δ-atoms (µj)j∈N ⊂M0(K) defined as

µj =
δxj
− δyj

|xj − yj |
spans M0(K)c, with ‖µj‖KR0

= 1 for any j ∈ N. In particular the δ-atoms µj are
dipoles, hence admit support of cardinality exactly 2.

Proof. By [6, Theorem 3] we know that there exists C ∈ (0, 1) such that for any
µ ∈M0(K)c

µ =

+∞∑
j=1

L∗jαj ,

where L∗j is the adjoint operator of Lj , and

C

+∞∑
j=1

∥∥L∗jαj∥∥KR0
≤ ‖µ‖KR0

≤
+∞∑
j=1

∥∥L∗jαj∥∥KR0
.

Now let us recall that

〈f, L∗jαj〉 = 〈Ljf, αj〉 =
f(xj)− f(yj)

|xj − yj |
αj

but, since L∗j : R→ (Ẇ s,p(Ω))∗ we also have�
K

fdL∗jαj = 〈f, L∗jαj〉

hence

L∗jαj =
δxj
− δyj

|xj − yj |
αj

concluding the proof. �

The problem of characterizing the space M0(K)c has been faced in several ways.
In particular it is interesting to remember that in [3], such a space is shown to

be isometric to the space L1(K;Rd)/V0 where V0 = {σ ∈ L1(K;Rd) : div σ =

0}, given by σ ∈ L1(K;Rd)/V0 7→ − div σ ∈ M0(K)c. The motivation of such
reasearch towards a characterization of M0(K)c is linked (as the authors state
in the introduction of their paper) to the convergence of infinite sums of dipoles
to distributions that are not balanced measures. Here we have shown that such
infinite sums of dipoles are indeed the main component of M0(K)c and the dipoles
represent an atomic part of such a space. Let us finally recall that the infinite sums
of dipoles are shown to have a characterization as −div σ for some σ ∈ L1(K;Rd)
by using the theory of tangential measures (see [3, Example 3.7]).
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4. Atomic decomposition of M(K)c

This section is devoted to a similar atomic decomposition in the larger space
M(K)c, with the help of the space Lip(K). This time we cannot use the same
operators as in Lemma 3.1 since they define a seminorm on Lip(K). The following
rewriting of Lip(K) relies on the fact that we can consider on R2 the `∞ norm.

Lemma 4.1. There exists a sequence of operators (Lj)j∈N ∈ L(W s,p(Ω),R2), where

we equip R2 with the norm ‖(x, y)‖`∞ = max{|x|, |y|}, such that

Lip(K) = {f ∈W s,p(Ω) : sup
j∈N
‖Ljf‖`∞ < +∞}

and
‖f‖Lip(K) = sup

j∈N
‖Ljf‖`∞ .

Proof. First of all, let us fix s ∈ (0, 1) and ps > n, so that W s,p(Ω) ↪→ C(K). Let
us consider D1 ⊂ K a numerable set such that K = D1 and K1 = K \ D1. Now
let us consider D2 ⊂ K1 a numerable set such that K1 = D2. Finally, let us define
D = D1 ×D2. Observe that D1 ∩D2 = ∅ so, for any (x, y) ∈ D, x 6= y. Moreover,
D is numerable, hence we can enumerate D = {(xj , yj)}j∈N. Finally D = K ×K.
Let us define

Lj : f ∈ Ẇ s,p(Ω)→
(
f(xj)− f(yj)

|xj − yj |
, f(xj)

)
∈ R2 .

Lj is obviously linear. Moreover, since W s,p(Ω) ↪→ C(K) we have

max

{
|f(xj)− f(yj)|
|xj − yj |

, |f(xj)|
}
≤ max

{
2

|xj − yj |
, 1

}
‖f‖L∞(K) ≤ Cj ‖f‖W s,p(Ω) ,

hence Lj ∈ L(W s,p(Ω),R2) for any j ∈ N.
Finally, let us observe that by density of D in K ×K, D1 in K, and continuity of
f ∈ Ẇ s,p(Ω) it holds

‖f‖Lip(K) = sup
j∈N
‖Ljf‖`∞

concluding the proof. �

As we did in the previous section, we can now use the techniques of [6] to obtain
the atomic decomposition of M(K)c.

Theorem 4.2. There exists a constant C ∈ (0, 1) such that for any distribution
µ ∈M(K)c there exists a sequence ((α1

j , α
2
j ))j∈N ∈ `1(R2) such that

µ =

+∞∑
j=1

(
δxj − δyj
|xj − yj |

α1
j + δxj

α2
j

)
and

(4.1) C

+∞∑
j=1

||α1
j | − |α2

j || ≤ ‖µ‖KR0
≤

+∞∑
j=1

|α1
j |+ |α2

j |,

where the sequences (xj)j∈N and (yj)j∈N are defined in Lemma 4.1. In particular,
the sequence of δ-atoms (µj)j∈N ⊂M(K) defined as

(4.2) µj =

{
δxk
−δyk

|xk−yk| j = 2k − 1

δxk
j = 2k
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spans M(K)c, and ‖µj‖KR = 1 for any j ∈ N.

Proof. By [6, Theorem 3] we know that there exists C ∈ (0, 1) such that for any
µ ∈M(K)c

µ =

+∞∑
j=1

L∗jαj ,

where L∗j is the adjoint operator of Lj , αj = (α1
j , α

2
j ) ∈ R2, and

(4.3) C

+∞∑
j=1

∥∥L∗jαj∥∥KR ≤ ‖µ‖KR0
≤

+∞∑
j=1

∥∥L∗jαj∥∥KR .
Now let us recall that

〈f, L∗jαj〉 = 〈Ljf, αj〉 =
f(xj)− f(yj)

|xj − yj |
α1
j + f(xj)α

2
j

but, since L∗j : R2 → L(Ẇ s,p(Ω),R2) we also have

�
K

fdL∗jαj = 〈f, L∗jαj〉

hence

L∗jαj =
δxj
− δyj

|xj − yj |
α1
j + δxjα

2
j .

Now let us determine some upper and lower bounds for
∥∥L∗jαj∥∥KR. To do this, let

us recall that

‖δx − δy‖KR = |x− y| ∀x, y ∈ K, ‖δx‖KR = 1 ∀x ∈ K.

Hence we have for the upper bound

(4.4)
∥∥L∗jαj∥∥KR ≤

∥∥δxj
− δyj

∥∥
KR

|xj − yj |
|α1
j |+

∥∥δxj

∥∥
KR
|α2
j | = |α1

j |+ |α2
j |

while for the lower bound

(4.5)
∥∥L∗jαj∥∥KR ≥

∣∣∣∣∣
∥∥δxj

− δyj
∥∥
KR

|xj − yj |
|α1
j | −

∥∥δxj

∥∥
KR
|α2
j |

∣∣∣∣∣ =
∣∣|α1

j | − |α2
j |
∣∣ .

Using Equations (4.4) and (4.5) in Equation (4.3) we finally achieve Equation (4.1).
�

Remark 4.3. Let us observe that the sequence of δ-atoms (µj)j∈N is composed by
delta measures and dipoles. In particular if j is even, then µj is a delta measure
and then the cardinality of its support is exactly 1. On the other hand, if j is odd,
then µj is a dipole and then the cardinality of its support is exactly 2. Thus we
have that for any distribution µ ∈M(K)c there exists a sequence (αj)j∈N ∈ `1(R)

such that µ =
∑+∞
j=1 αjµj where µj are δ-atoms with support of cardinality at most

2.
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