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NONDEGENERATE ABNORMALITY, CONTROLLABILITY, AND
GAP PHENOMENA IN OPTIMAL CONTROL WITH STATE
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Abstract. In optimal control theory, infimum gap means that there is a gap between the
infimum values of a given minimum problem and an extended problem, obtained by enlarging the
set of original solutions and controls. The gap phenomenon is somewhat ``dual"" to the problem of
the controllability of the original control system to an extended solution. In this paper we present
sufficient conditions for the absence of an infimum gap and for controllability for a wide class of
optimal control problems subject to endpoint and state constraints. These conditions are based on
a nondegenerate version of the nonsmooth constrained maximum principle, expressed in terms of
subdifferentials. In particular, under some new constraint qualification conditions, we prove that (i)
if an extended minimizer is a nondegenerate normal extremal, then no gap shows up; (ii) given an
extended solution verifying the constraints, either it is a nondegenerate abnormal extremal or the
original system is controllable to it. An application to the impulsive extension of a free end-time,
nonconvex optimization problem with control-polynomial dynamics illustrates the results.
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1. Introduction. In the calculus of variations and in the theory of optimal
control it is a rather common procedure to enlarge the space of solutions for those
problems that do not admit a solution in a, say, ordinary space. Of course, a funda-
mental requirement for a good extension is that there is no gap between the infimum
of the original problem and that of the extended problem. However, even if the set of
ordinary solutions is C0-dense in the set of extended trajectories, in the presence of
constraints an infimum gap does in general occur, whenever all ordinary solutions in
a C0-neighborhood of a feasible extended trajectory (a local extended minimizer, for
instance) violate the constraints. In this case, we will refer to the extended trajec-
tory as isolated. By defining the original control system controllable to an extended
trajectory whenever the trajectory is not isolated, we see that gap avoidance and
controllability are strictly related issues. Since Warga's early works [32, 33], it has
emerged that the existence of an infimum gap, or better, following our terminology,
the fact that an extended trajectory is isolated, is related to the validity of a max-
imum principle in abnormal form (as customary, abnormality means that the scalar
multiplier associated with the cost is zero). In particular, results of this kind have
been obtained for the classical extension by relaxation (convex [25, 26] or in measure
[33, 15]) and, more recently, for the impulsive extension of control-affine systems with
unbounded controls, with or without state constraints (see [13], [23], respectively).
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ABNORMALITY, CONTROLLABILITY, AND GAP 281

Let us also mention [24], where a general extension is considered, but in the absence
of state constraints and for smooth data. These results are obtained by different tech-
niques, which essentially reflect two different approaches to the maximum principle:
approach (a), based on the construction of approximating cones to reachable sets and
on set separation arguments [32, 33, 15, 24], and approach (b), which makes use of
perturbation and penalization techniques and of the Ekeland's variational principle
[25, 26, 23, 13]. For nonsmooth optimal control problems, methods (a), (b) are not
easily comparable, as they require different assumptions on dynamics and target but,
above all, lead to different abnormality conditions, which involve the ``derivative con-
tainers"" introduced in [33] or the ``quasi-differential quotients"" defined in [24] in case
(a), while in case (b) one uses a by now standard form of the nonsmooth constrained
maximum principle due to Clarke, expressed in terms of subdifferentials (see [7]).

The main purpose of this paper is to extend approach (b), applied so far only
to particular cases, to identify under which general assumptions for the extension
of an optimal control problem the following statement is valid: an isolated extended
trajectory is an abnormal extremal. Furthermore, we give sufficient conditions for
which we prove the stronger result: an isolated extended trajectory is an abnormal
extremal of a nondegenerate version of the maximum principle.

Precisely, we consider the optimization problem

(P )

\left\{         
minimize \Psi (y(S))

over (\omega , \alpha , y) \in V(S)\times A(S)\times W 1,1([0, S];\BbbR n), verifying

\.y(s) = F(s, y(s), \omega (s), \alpha (s)) a.e., y(0) = \v x0,

h(s, y(s)) \leq 0 \forall s \in [0, S], y(S) \in T,

where V(S) := L1([0, S];V ), A(S) := L1([0, S];A), and the extended optimization
problem, say, (Pe), which is obtained by (P ) replacing in the minimization the control
setV(S) with the larger setW(S) := L1([0, S];W ), whereW = V . The data comprise
the functions \Psi : \BbbR n \rightarrow \BbbR , F : \BbbR \times \BbbR n \times W \times A \rightarrow \BbbR n, h : \BbbR \times \BbbR n \rightarrow \BbbR , the bounded
set V \subset \BbbR m, the compact set A \subset \BbbR q, and the closed set T \subset \BbbR n. We refer to any
triple (\omega , \alpha , y), where (\omega , \alpha ) \in W(S)\times A(S) and y solves the Cauchy problem

(1.1) \.y(s) = F(s, y(s), \omega (s), \alpha (s)) a.e., y(0) = \v x0,

as an extended process or simply a process. A process (\omega , \alpha , y) is feasible if h(s, y(s)) \leq 
0 for all s \in [0, S] and y(S) \in T. The processes (\omega , \alpha , y) of (P ), where \omega \in V(S),
will be called strict sense processes.

As a further extension, we consider the convex relaxation of (Pe):

(Pr)

\left\{                 

minimize \Psi (y(S))

over (\omega , \alpha , \lambda , y) \in W1+n(S)\times A1+n(S)\times \Lambda n(S)\times W 1,1([0, S];\BbbR n), verifying

\.y(s) =

n\sum 
k=0

\lambda k(s)F(s, y(s), \omega k(s), \alpha k(s)) a.e., y(0) = \v x0,

h(s, y(s)) \leq 0 \forall s \in [0, S], y(S) \in T,

where \Lambda n(S) := L1([0, S]; \Delta n) and \Delta n is the n-dimensional simplex:

\Delta n :=

\Biggl\{ 
\lambda = (\lambda 0, . . . , \lambda n) : \lambda k \geq 0, k = 0, . . . , n,

n\sum 
k=0

\lambda k = 1

\Biggr\} 
.
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282 GIOVANNI FUSCO AND MONICA MOTTA

Problem (Pr) is briefly referred to as the relaxed problem and a process (\omega , \alpha , \lambda , y)
for (Pr) is referred to as relaxed process. We will identify a process (\omega , \alpha , y) with the
relaxed process (\omega , \alpha , \lambda , y), where \omega := (\omega , . . . , \omega ), \alpha := (\alpha , . . . , \alpha ), and, for instance,
\lambda := (1 + n) - 1(1, . . . , 1).

The controls \alpha and \omega play a different role, as only the control set V(S) to which
\omega belongs is extended. This distinction is reflected by the hypotheses on the dynamics
F. Referring to section 2 for details, we observe that while continuity of F in a will
be enough, with respect to w a form of uniform continuity will be needed, both of F
and of its Clarke generalized Jacobian DxF. Moreover, not only V = W , but there
must also exist an increasing sequence of closed subsets Vi \subseteq V such that \cup iVi = V
(in Remark 2.2 below we will discuss possible extensions of this hypothesis). This
formulation of the problem includes as special cases both the extension by convex
relaxation considered in [26] (if F does not depend on w) and the impulsive, in
general nonconvex, extension investigated in [23, 13].

In Theorem 2.1, we state our first main result, that any isolated feasible relaxed
process is an abnormal extremal. The relevance of this result lies, in fact, in its
consequences, which are (i) a ``normality test"" for no gap, namely, if for a (local)
minimizer \=z := (\=\omega , \=\alpha , \=\lambda , \=y) of (Pr) or (Pe) the cost multiplier is \not = 0 for any set of
multipliers in the maximum principle, at \=z there is no (local) infimum gap; (ii) the
original control system (1.1) is controllable to any feasible relaxed process which is
not an abnormal extremal (see Theorems 2.2 and 2.3 below).

When the state constraint is active at the initial point (0, \v x0), it is well-known
that sets of degenerate multipliers such that any feasible relaxed process is abnormal
do exist, making the above results (i), (ii) in fact useless. This ``degeneracy question""
seems to have been disregarded in the literature on the relationship between gap and
normality, apart from [13], where, however, conditions are introduced which are never
met in the case of a fixed initial point.

Based on the above considerations, in section 3 we provide a condition inspired by
the nondegeneracy conditions proposed in [9, 10] ((H4) below), under which we refine
the results of section 2. In particular, we establish that any feasible relaxed process
which is isolated is an abnormal extremal for a nondegeneratemaximum principle, and
derive as corollaries a ``nondegenerate normality test"" for no gap and a ``nondegenerate
controllability condition"" (see Theorems 3.1, 3.2, and 3.3 below).

The ``normality"" and the ``nondegenerate normality"" tests are useful especially
because in certain situations they allow us to deduce the absence of gap from easily
verifiable conditions, in the form of constraint and endpoint qualification conditions
for normality, on which there is a wide literature (see, e.g., [11, 12, 16, 2] and references
therein). As shown in [23, 22, 13], where some explicit normality sufficient conditions
for the control-affine impulsive extension are provided, these conditions are in general
weaker than those previously obtained to get the absence of gap directly, as in [1, 18].

In section 4 we extend the previous results to free end-time optimal control prob-
lems. We limit ourselves to considering the case of Lipschitz continuous time de-
pendence, leaving the case of measurable time dependence to future investigations.
Actually, Lipschitz continuous time dependence always arises in the impulsive ex-
tension of nonlinear problems with unbounded controls under the graph-completion
approach, to which we apply our results in section 5. Impulsive optimal control prob-
lems have been extensively studied together with their applications, mostly in the case
of control-affine systems, starting from [28, 31, 5, 17, 19]. We focus instead on the
less investigated case of control-polynomial dynamics [27, 21]. Among applications for
which the polynomial dependence is relevant let us mention Lagrangian mechanical
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ABNORMALITY, CONTROLLABILITY, AND GAP 283

systems, possibly with friction forces, where inputs are identified with the derivatives
of some coordinates. In this case, the degree of the polynomial is 2, as a consequence
of the fact that the kinetic energy is a quadratic form of the velocity (see, e.g., [4, 6]).

1.1. Notation and preliminaries. Given an interval I \subseteq \BbbR and a set X \subseteq 
\BbbR k, we write W 1,1(I;X), L1(I;X), L\infty (I;X), for the space of absolutely continuous
functions, Lebesgue integrable functions, and essentially bounded functions defined
on I and with values in X, respectively. For all the classes of functions introduced
so far, we will not specify domain and codomain when the meaning is clear and we
will use \| \cdot \| L1(I), \| \cdot \| L\infty (I), or \| \cdot \| L1 , \| \cdot \| L\infty to denote the L1 and the ess-sup

norm, respectively. Furthermore, we denote by \ell (X), co(X), Int(X), X, and \partial X
the Lebesgue measure, the convex hull, the interior, the closure, and the boundary
of X, respectively. As customary, \chi 

X
is the characteristic function of X, namely

\chi 
X
(x) = 1 if x \in X and \chi 

X
(x) = 0 if x \in \BbbR k \setminus X. For any subset Y \subset X, projY X

will denote the projection of X on Y . We denote the closed unit ball in \BbbR k by \BbbB k,
omitting the dimension when it is clear from the context. Given a closed set O \subseteq \BbbR k

and a point z \in \BbbR k, we define the distance of z from O as dO(z) := miny\in O | z  - y| .
We set \BbbR \geq 0 := [0,+\infty [. For any a, b \in \BbbR , we write a \vee b := max\{ a, b\} . We use
NBV +([0, S];\BbbR ) to denote the space of increasing, real valued functions \mu on [0, S]
of bounded variation, vanishing at the point 0 and right continuous on ]0, S[. Each
\mu \in NBV +([0, S];\BbbR ) defines a Borel measure on [0, S], still denoted by \mu , its total
variation function is indicated by \| \mu \| TV or by \mu ([0, S]), and its support is spt\{ \mu \} .

Some standard constructs from nonsmooth analysis are employed in this paper.
For background material we refer the reader, for instance, to [7, 29]. A set K \subseteq \BbbR k

is a cone if \alpha k \in K for any \alpha > 0, whenever k \in K. Take a closed set D \subseteq \BbbR k and a
point \=x \in D, the limiting normal cone ND(\=x) of D at \=x is given by

ND(\=x) :=

\biggl\{ 
\eta \in \BbbR k : \exists xi

D\rightarrow \=x, \eta i \rightarrow \eta such that lim sup
x\rightarrow xi

\eta i \cdot (x - xi)

| x - xi| 
\leq 0 \forall i

\biggr\} 
,

in which the notation xi
D - \rightarrow \=x is used to indicate that all points in the converging

sequence (xi)i lay in D. Taking a lower semicontinuous function G : \BbbR k \rightarrow \BbbR and a
point \=x \in \BbbR k, the limiting subdifferential of G at \=x is

\partial G(\=x) :=

\biggl\{ 
\xi : \exists \xi i \rightarrow \xi , xi \rightarrow \=x s.t. lim sup

x\rightarrow xi

\xi i \cdot (x - xi) - G(x) +G(xi)

| x - xi| 
\leq 0 \forall i

\biggr\} 
.

If G : \BbbR k \times \BbbR h \rightarrow \BbbR is a lower semicontinuous function and (\=x, \=y) \in \BbbR k \times \BbbR h, we write
\partial xG(\=x, \=y), \partial yG(\=x, \=y) to denote the partial limiting subdifferential of G at (\=x, \=y) w.r.t.
x, y, respectively. When G is differentiable, \nabla G is the usual gradient operator and
\nabla xG, \nabla yG denote the partial derivatives of G. Given a locally Lipschitz continuous
function G : \BbbR k \rightarrow \BbbR and \=x \in \BbbR k, the reachable hybrid subdifferential of G at \=x is

\partial \ast >G(\=x) := \{ \xi : \exists (xi)i \subset diff(G) \setminus \{ \=x\} s.t. xi \rightarrow \=x, G(xi) > 0 \forall i, \nabla G(xi) \rightarrow \xi \} 

while the reachable gradient of G at \=x is

\partial \ast G(\=x) := \{ \xi : \exists (xi)i \subset diff(G) \setminus \{ \=x\} s.t. xi \rightarrow \=x and \nabla G(xi) \rightarrow \xi \} ,

where diff(G) denotes the set of differentiability points of G. We define the hybrid
subdifferential as \partial >G(\=x) :=co \partial \ast >G(\=x). The set \partial \ast G(\=x) is nonempty, closed, and
in general nonconvex, and its convex hull coincides with the Clarke subdifferential
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\partial cG(\=x), that is, \partial cG(\=x) = co \partial \ast G(\=x). Finally, when G is locally Lipschitz continuous,
\partial cG(\=x) = co \partial G(\=x). Given a locally Lipschitz continuous function G : \BbbR k \rightarrow \BbbR l and
\=x \in \BbbR k, we write DG(\=x) to denote the Clarke generalized Jacobian, defined as

DG(\=x) := co \{ \xi : \exists (xi)i \subset diff(G) \setminus \{ \=x\} s.t. xi \rightarrow \=x and \nabla G(xi) \rightarrow \xi \} ,

where now \nabla G denotes the classical Jacobian matrix of G. If G : \BbbR k \times \BbbR h \rightarrow \BbbR l and
(\=x, \=y) \in \BbbR k \times \BbbR h, DxG(\=x, \=y), DyG(\=x, \=y) denote the Clarke generalized Jacobian of G
at (\=x, \=y) w.r.t. x, y, respectively.

2. Infimum gap, isolated processes, and abnormality. In the following,
when the final time S > 0 is clear from the context, we simply write V, W, A, \Lambda n,
instead of V(S), W(S), A(S), \Lambda n(S), respectively.

2.1. Basic assumptions. We shall consider the following hypotheses, in which
(\=\omega , \=\alpha , \=\lambda , \=y) is a feasible relaxed process, which we call the reference process and, for
some \theta > 0, we set

\Sigma \theta := \{ (s, x) \in \BbbR \times \BbbR n : s \in [0, S], x \in \=y(s) + \theta \BbbB \} .

(H1) There exists a sequence (Vi)i of closed subsets of V such that Vi \subseteq Vi+1 for
every i and

\bigcup +\infty 
i=1 Vi = V .

(H2) The constraint function h is upper semicontinuous and K
h
-Lipschitz contin-

uous in x, uniformly w.r.t. s in [0, S].
(H3) (i) For all (x,w, a) \in \{ x \in \BbbR n : (s, x) \in \Sigma \theta for some s \in [0, S]\} \times W \times 

A, F(\cdot , x, w, a) is Lebesgue measurable on [0, S] and for any (s, x) \in \Sigma \theta ,
F(s, x, \cdot , \cdot ) is continuous on W\times A. Moreover, there exists k \in L1([0, S];\BbbR \geq 0)
such that, for all (s, x, w, a), (s, x\prime , w, a) \in \Sigma \theta \times W \times A, we have

| F(s, x, w, a)| \leq k(s), | F(s, x\prime , w, a) - F(s, x, w, a)| \leq k(s)| x\prime  - x| .

(ii) There exists some continuous increasing function \varphi : \BbbR \geq 0 \rightarrow \BbbR \geq 0 with
\varphi (0) = 0 such that for any (s, x, a) \in \Sigma \theta \times A, we have

| F(s, x, w\prime , a) - F(s, x, w, a)| \leq k(s)\varphi (| w\prime  - w| ) \forall w\prime , w \in W,
DxF(s, x, w\prime , a) \subseteq DxF(s, x, w, a) + k(s)\varphi (| w\prime  - w| )\BbbB \forall w\prime , w \in W.

When hypothesis (H3) is valid for k \equiv K
F
for some constant K

F
> 0, we will

refer to (H3) as (H3)\prime .

Remark 2.1. Condition (H1), which is always satisfied when the set V is relatively
open, implies (and is in general stronger than) the density of V in W in the L1-norm.
Indeed, given \omega \in W, from (H1) it follows that for any \delta > 0 there exists some index
i\delta , such that the Hausdorff distance dH(Vi,W ) < \delta /S for every i \geq i\delta . Hence, by
the selection theorem [3, Thm. 2, p. 91] for such i there is some measurable function
\omega i(s) \in projVi

(\omega (s)) for a.e. s, which thus verifies \| \omega i  - \omega \| L1 \leq S\| \omega i  - \omega \| L\infty \leq 
SdH(Vi,W ) < \delta . In particular, when V = L1([0, S];V ) for some subset V \subset W such
that int(W ) \subseteq V \subseteq W and W = int(W ), the validity of (H1) follows by elementary
properties of closed and open subsets of \BbbR n.

Remark 2.2. As one can easily deduce from the proofs in section 6 below, condi-
tion (H1) could be replaced by the hypothesis that there exists a subset V \subset W :=
L1([0, S];W ) which is closed by finite concatenation and verifies the following:
(i) there exists an increasing sequence of closed subsets (Vi)i \subseteq V such that \cup iVi = V

and, for any \omega \in W and \delta > 0, there are i\delta and \omega \delta \in Vi\delta , such that \| \omega \delta  - \omega \| L1 \leq \delta ;
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(ii) for every i, for the optimization problem obtained from (P ) by replacing V with
Vi, a nonsmooth constrained maximum principle is valid.

For example, from [14] a condition sufficient for (ii) to hold true is the C0-closure
of the set of the solutions to (1.1) as (\omega , \alpha ) \in Vi \times A for every i.

Remark 2.3. Condition (H3)(ii) is satisfied, for instance, when F(s, x, w, a) =
F1(s, x, a) +F2(s, x, w, a), where F1, F2 verify hypothesis (H3)(i) and, in addition,
the functionF2(s, \cdot , w, a) is C1 and\nabla xF2 is continuous on the compact set \Sigma \theta \times W\times A.
Another situation where condition (H3) is verified is when the dynamic function has
a polynomial dependence on the control variable w, with locally Lipschitz continuous
coefficients in the state variable, as we will see in detail in section 5 (see (5.1) and
hypothesis (H5) below).

2.2. Infimum gap and isolated processes. Let us write \Gamma , \Gamma e, \Gamma r, to denote
the sets of strict sense, extended, and relaxed processes which are feasible, respectively.
As observed in the introduction, \Gamma , \Gamma e can be identified with subsets of \Gamma r.

Definition 2.1 (minimizer). A process \=z := (\=\omega , \=\alpha , \=\lambda , \=y) \in \Gamma g, g \in \{ e, r\} , is
called a local \Psi -minimizer for problem (Pg) if, for some \delta > 0, one has

\Psi (\=y(S)) = inf \{ \Psi (y(S)) : (\omega , \alpha , \lambda , y) \in \Gamma g, \| y  - \=y\| L\infty < \delta \} .

The process \=z is a \Psi -minimizer for problem (Pg) if \Psi (\=y(S)) = inf\Gamma g
\Psi (y(S)).

Definition 2.2 (infimum gap). Fix \=z := (\=\omega , \=\alpha , \=\lambda , \=y) \in \Gamma r.
(i) Let \Psi : \BbbR n \rightarrow \BbbR be a continuous function. When there is some \delta > 0 such that

\Psi (\=y(S)) < inf \{ \Psi (y(S)) : (\omega , \alpha , y) \in \Gamma , \| y  - \=y\| L\infty < \delta \} 

(as customary, when the set is empty we set the infimum = +\infty ), we say that at \=z
there is a local \Psi -infimum gap. We say that there is a \Psi -infimum gap with problem
(Pg), g \in \{ r, e\} , if inf\Gamma g

\Psi (y(S)) < inf\Gamma \Psi (y(S)).
(ii) When at \=z there is a local \Psi -infimum gap or if there is a \Psi -infimum gap (with
(Pe) or (Pr)) for some \Psi as above, we say that at \=z there is a local infimum gap or
that there is an infimum gap with (Pe) or (Pr), respectively.

Obviously, a \Psi -infimum gap with (Pe) implies a \Psi -infimum gap with (Pr), and it
may happen that inf\Gamma r

\Psi (y(S)) < inf\Gamma e
\Psi (y(S)) < inf\Gamma \Psi (y(S)).

The notion of local infimum gap at \=z is equivalent to the notion of isolated process,
first introduced in [23], which is independent of any optimization problem.

Definition 2.3 (isolated process and controllability). We say that a process
\=z := (\=\omega , \=\alpha , \=\lambda , \=y) \in \Gamma r is isolated (in \Gamma ) if, for some \delta > 0, one has

\{ (\omega , \alpha , y) \in \Gamma : \| y  - \=y\| L\infty < \delta \} = \emptyset .

The control system (1.1) is said to be controllable to \=z if \=z is not isolated.

Proposition 2.1. Let \=z := (\=\omega , \=\alpha , \=\lambda , \=y) \in \Gamma r. Then
(i) if \=z is isolated, then at \=z there is a local infimum gap and, for some \delta >

0, one has inf \{ \Psi (y(S)) : (\omega , \alpha , y) \in \Gamma , \| y  - \=y\| L\infty < \delta \} = +\infty for every
continuous \Psi ;

(ii) if at \=z there is a local infimum gap, then \=z is isolated.
As a consequence, \=z is isolated if and only if at \=z there is a local infimum gap.
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Proof. The proof of (i) is trivial, hence we limit ourselves to proving (ii). Suppose
that at \=z there is a \Psi -local infimum gap for some continuous \Psi and some \delta > 0, but
\=z is not isolated. Then, for every i \in \BbbN , i \geq 1

\delta , there exists a feasible strict sense
process zi = (\omega i, \alpha i, yi) \in \Gamma such that \| yi  - \=y\| L\infty < 1

i , and, by the continuity of \Psi ,

\Psi (\=y(S)) < inf \{ \Psi (y(S)) : (\omega , \alpha , y) \in \Gamma , \| y  - \=y\| L\infty < \delta \} \leq lim
i

\Psi (yi(S)),= \Psi (\=y(S)),

which gives the desired contradiction.

Incidentally, if at \=z there is a local \Psi -infimum gap for some \Psi , for some \delta > 0
there is in fact a local \~\Psi -infimum gap and inf

\bigl\{ 
\~\Psi (y(S)) : (\omega , \alpha , y) \in \Gamma , \| y  - \=y\| L\infty <

\delta 
\bigr\} 
= +\infty for every continuous function \~\Psi .

2.3. Abnormality and infimum gap. We introduce a notion of normal and
abnormal extremal for the relaxed optimization problem.

Definition 2.4 (normal and abnormal extremal). Let \=z := (\=\omega , \=\alpha , \=\lambda , \=y) be a
feasible relaxed process. Given a function \Psi : \BbbR n \rightarrow \BbbR which is Lipschitz continuous
on a neighborhood of \=y(S), we say that \=z is a \Psi -extremal if there exist a path p \in 
W 1,1([0, S];\BbbR n), \gamma \geq 0, \mu \in NBV +([0, S];\BbbR ), m : [0, S] \rightarrow \BbbR n Borel measurable and
\mu -integrable function, verifying the following conditions:

\| p\| L\infty + \| \mu \| TV + \gamma \not = 0;(2.1)

 - \.p(s) \in 
n\sum 

k=0

\=\lambda k(s) co \partial x
\bigl\{ 
q(s) \cdot F(s, \=y(s), \=\omega k(s), \=\alpha k(s))

\bigr\} 
a.e.;(2.2)

 - q(S) \in \gamma \partial \Psi (\=y(S)) +NT(\=y(S));(2.3)

for every k = 0, . . . , n, for a.e. s \in [0, S], one has

q(s) \cdot F
\bigl( 
s, \=y(s), \=\omega k(s), \=\alpha k(s)

\bigr) 
= max

(w,a)\in W\times A
q(s) \cdot F

\bigl( 
s, \=y(s), w, a

\bigr) 
;(2.4)

m(s) \in \partial >
x h (s, \=y(s)) , \mu -a.e.;(2.5)

spt(\mu ) \subseteq \{ s \in [0, S] : h (s, \=y(s)) = 0\} ,(2.6)

where

q(s) :=

\Biggl\{ 
p(s) +

\int 
[0,s[

m(\sigma )\mu (d\sigma ), s \in [0, S[,

p(S) +
\int 
[0,S]

m(\sigma )\mu (d\sigma ), s = S.

We will call a \Psi -extremal normal if all possible choices of (p, \gamma , \mu ,m) as above have
\gamma > 0 and abnormal when it is not normal. Since the notion of abnormal \Psi -extremal
is actually independent of \Psi , in the following abnormal \Psi -extremals will be simply
called abnormal extremals.

Theorem 2.1. Let \=z := (\=\omega , \=\alpha , \=\lambda , \=y) be a feasible relaxed process. Assume that
hypotheses (H1)--(H3) are verified. If at \=z there is a local infimum gap, then \=z is an
abnormal extremal.

Remark 2.4. Since an extended process is a special case of a relaxed process,
implicit in the definition of relaxed extremal is the definition of extended extremal.
In particular, if \=z = (\=\omega , \=\alpha , \=y) \in \Gamma e, clearly the costate differential inclusion (2.2) and
the maximality condition (2.4) in the above definition read, for a.e. s \in [0, S],
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 - \.p(t) \in co \partial x

\Bigl\{ 
q(s) \cdot F(s, \=y(s), \=\omega (s), \=\alpha (s))

\Bigr\} 
,(2.7)

q(s) \cdot F
\bigl( 
s, \=y(s), \=\omega (s), \=\alpha (s)

\bigr) 
= max

(w,a)\in W\times A
q(s) \cdot F

\bigl( 
s, \=y(s), w, a

\bigr) 
,(2.8)

respectively.

A first noteworthy direct consequence of Theorem 2.1 is the following sufficient
condition for the absence of an infimum gap.

Theorem 2.2. Suppose there exists a local \Psi -minimizer \=z := (\=\omega , \=\alpha , \=\lambda , \=y) for (Pe)
or (Pr), for which hypotheses (H1)--(H3) are verified and \Psi is Lipschitz continuous
in a neighborhood of \=y(S), and which is a normal \Psi -extremal. Then, at \=z there is no
local \Psi -infimum gap for (Pe) or (Pr), respectively. If \=z is a \Psi -minimizer, then there
is no infimum gap for (Pe) or (Pr), respectively.

Remark 2.5. By a well-known constrained maximum principle (see [29, Chap.
9]), local \Psi -minimizers of (Pr) are \Psi -extremal in a stronger form than in Definition
2.4, in which the costate differential inclusion (2.2) is replaced by

(2.9)  - \.p(s) \in co \partial x

\Biggl\{ 
n\sum 

k=0

\=\lambda k(s) q(s) \cdot F(s, \=y(s), \=\omega k(s), \=\alpha k(s))

\Biggr\} 
for a.e. s \in [0, S].

The need to consider (2.2) derives from the perturbation technique used in the proof
of Theorem 2.1 (see also [25]). In fact, (2.2) may differ from (2.9) only in case of
nonsmooth dynamics. Precisely, if F(s, \cdot , \=\omega k(s), \=\alpha k(s)) is continuously differentiable
at \=y(s), for all k = 0, . . . , n and a.e. s \in [0, S], then both differential inclusions reduce
to the adjoint equation

 - \.p(s) =

n\sum 
k=0

\=\lambda k(s) q(s) \cdot \nabla xF(s, \=y(s), \=\omega k(s), \=\alpha k(s)) for a.e. s \in [0, S].

Thanks to Proposition 2.1, from Theorem 2.1 we can also deduce the following
sufficient condition for controllability to the reference trajectory.

Theorem 2.3. Let \=z := (\=\omega , \=\alpha , \=\lambda , \=y) be a feasible relaxed process and assume that
hypotheses (H1)--(H3) are verified. Then, either

(i) \=z is not isolated in \Gamma , namely, there exists a sequence of feasible processes
(\omega i, \alpha i, yi) \in \Gamma such that \| yi  - \=y\| L\infty \rightarrow 0 as i \rightarrow +\infty , or

(ii) \=z is an abnormal extremal.

Proof. Suppose by contradiction statements (i) and (ii) are false, namely, let \=z
be an isolated process which is not an abnormal extremal. Then, by Proposition 2.1
at \=z there is a local infimum gap and \=z should be an abnormal extremal by Theorem
2.1.

The proof of Theorem 2.1 is given in section 6.

3. Infimum gap and nondegenerate abnormality. In the particular case of
fixed initial point, when the state constraint is active at the initial time there always
exist sets of degenerate multipliers, as, for instance, \gamma = 0, \mu = \delta \{ 0\} , p(s) =  - m(0) \in 
\partial >
x h(0, \v x0) for all s \in [0, S].1 With the degenerate multipliers, the maximum principle

is clearly useless, not only to select minimizers but also to identify no-gap conditions
in the form of a ``normality test.""

1For any r \in \BbbR , \delta \{ r\} is the Dirac unit measure concentrated at r.
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Definition 3.1 (nondegenerate normal and abnormal extremal). Assume that
\=z := (\=\omega , \=\alpha , \=\lambda , \=y) is a feasible relaxed process. Given a function \Psi : \BbbR n \rightarrow \BbbR which
is Lipschitz continuous on a neighborhood of \=y(S), let \=z be a \Psi -extremal. We call a
nondegenerate multiplier any set of multipliers (p, \gamma , \mu ,m) that meets the conditions
of Definition 2.4 and also verifies the following strengthened nontriviality condition

(3.1) \mu (]0, S]) + \| q\| L\infty + \gamma \not = 0,

where q is as in Definition 2.4. We call \=z a nondegenerate normal \Psi -extremal if
all possible choices of nondegenerate multipliers have \gamma > 0 and a nondegenerate
abnormal \Psi -extremal when there exists at least one nondegenerate multiplier with \gamma =
0. Since nondegenerate abnormal \Psi -extremals do not depend on \Psi , in the following
we will call them simply nondegenerate abnormal extremals.

As is easy to see, a nondegenerate abnormal extremal is always an abnormal ex-
tremal, and, conversely, any normal \Psi -extremal is also nondegenerate normal. How-
ever, we may have situations where a nondegenerate normal \Psi -extremal is not a
normal \Psi -extremal, as illustrated in Example 5.1 below.

To introduce our constraint qualification conditions, we define \Lambda 1
n \equiv \Lambda 1

n(S) as

(3.2) \Lambda 1
n := L1([0, S]; \Delta 1

n), \Delta 1
n := \cup n

k=0 \{ ek\} (e0, . . . , en canonical basis of \BbbR 1+n),

and extend the relaxed control system by introducing a new variable, \xi . Precisely,
with a small abuse of notation, in the following we call a relaxed process any element
(\omega , \alpha , \lambda , \xi , y) with (\omega , \alpha , \lambda ) \in W1+n \times A1+n \times \Lambda n and (\xi , y) which satisfies

(3.3)

\Biggl\{ 
( \.\xi , \.y)(s) =

\Bigl( 
\lambda (s),

\sum n
k=0 \lambda 

k(s)F(s, y(s), \omega k(s), \alpha k(s))
\Bigr) 
a.e.,

(\xi , y)(0) = (0, \v x0).

Observe that a relaxed process (\omega , \alpha , \lambda , \xi , y) with \lambda \in \Lambda 1
n corresponds to the extended

process (\omega , \alpha , \xi , y), where (\omega , \alpha ) :=
\sum n

k=0 (\omega k, \alpha k)\chi \{ s\in [0,S]: \lambda (s)=ek\} . In particular, the
function y is a solution of (1.1) associated with the control (\omega , \alpha ).

Let \=z := (\=\omega , \=\alpha , \=\lambda , \=\xi , \=y) be a feasible relaxed process. Define the constraint set

\Omega := \{ (s, x) \in \BbbR 1+n : h(s, x) \leq 0\} .

We shall consider the following hypothesis.
(H4) If (0, \v x0) \in \partial \Omega , there exist some \~\delta > 0, \=s \in ]0, S], a sequence of extended

processes (\~\omega i, \~\alpha i, \~\lambda i, \~\xi i, \~yi)i with (\~\omega i, \~\alpha i, \~\lambda i)i \subset (W(S) \cap V(\=s)) \times A \times \Lambda 1
n,

and sequences (\^\omega i, \^\alpha i)i \subset V(\=s) \times A(\=s), and (\~ri)i \subset L1([0, S];\BbbR \geq 0) with
limi\rightarrow +\infty \| \~ri\| L1 = 0, such that the following properties (i)--(iv) are verified.
(i) One has

(3.4) lim
i\rightarrow +\infty 

\| (\~\xi i, \~yi) - (\=\xi , \=y)\| L\infty = 0;

(ii) for every i, one has

(3.5) h(s, \~yi(s)) \leq 0 \forall s \in [0, \=s];

(iii) for every i, there is a Lebesgue measurable subset \~Ei \subset [0, S] such that,
for a.e. s \in \~Ei, one has

(3.6) (\~\omega i, \~\alpha i, \~\lambda i)(s) \in 
n\bigcup 

k=0

\{ (\=\omega k(s), \=\alpha k(s), ek)\} + (\~ri(s)\BbbB m)\times \{ 0\} \times \{ 0\} ,

and limi\rightarrow +\infty \ell ( \~Ei) = S;
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(iv) for every i and for all (\zeta 0, \zeta ) \in \partial \ast h(0, \v x0), for a.e. s \in [0, \=s] one has

(3.7) \zeta \cdot 
\bigl[ 
F(s, \v x0, (\^\omega i, \^\alpha i)(s)) - F(s, \v x0, (\~\omega i, \~\alpha i)(s))

\bigr] 
\leq  - \~\delta .

Remark 3.1. Some comments on hypothesis (H4) are in order.
(1) It prescribes additional conditions to assumptions (H1)--(H3) only when the

initial point (0, \v x0) lies on the boundary of the constraint set \Omega . Incidentally,
this is not equivalent to having h(0, \v x0) = 0, as it may clearly happen that
h(0, \v x0) = 0 but (0, \v x0) \in Int(\Omega ).

(2) When (0, \v x0) \in \partial \Omega , the first part of hypothesis (H4) substantially requires the
existence of strict sense processes that approximate the reference process and
satisfy the state constraint on some (small) interval [0, \=s], with controls which
are close to controls (\=\omega i, \=\alpha i, \=\lambda i) belonging to

\bigcup n
k=0\{ (\=\omega k(s), \=\alpha k(s), ek)\} for a.e.

s \in [0, S]. Let us point out that, disregarding the state constraint (3.5),
the existence of approximating controls that satisfy the remaining conditions
(3.4), (3.6) follows by the relaxation theorem together with hypothesis (H1),
as we will see in the proof of Theorem 2.1 below, in subsection 6.2. Relation
(3.7), on the other hand, is an adaptation of known constraint qualification
conditions (see, e.g., [9, 10]), in which the reference (relaxed) control is re-
placed by approximating strict sense controls (\~\omega i, \~\alpha i) \in V(\=s)\times A(\=s).

(3) If hypotheses (H1), (H2), and (H3)\prime with reference to \=z are verified, then in
hypothesis (H4) one can assume that the control sequence (\^\omega i, \^\alpha i)i belongs to
the extended control set W(\=s)\times A(\=s) rather than V(\=s)\times A(\=s). Indeed, using
the notation of (H1)--(H3)\prime , let us choose some \rho > 0 such that Kh KF\varphi (\rho ) \leq 
\~\delta 
2 , and let j \in \BbbN verify dH(Vj ,W ) \leq \rho . Hence, for every i \in \BbbN there exists
a measurable selection \^\omega \ast 

i (s) \in projVj
(\^\omega i(s)) for a.e. s \in [0, S], such that

\| \^\omega \ast 
i  - \^\omega i\| L\infty \leq \rho (see also Remark 2.1), and, for all (\zeta 0, \zeta ) \in \partial \ast h(0, \v x0) (by

adding and subtracting \zeta \cdot F(s, \v x0, (\^\omega 
\ast 
i , \^\alpha i)(s))), one has

\zeta \cdot 
\bigl[ 
F(s, \v x0, (\^\omega 

\ast 
i , \^\alpha i)(s)) - F(s, \v x0, (\~\omega i, \~\alpha i)(s))

\bigr] 
\leq  - \~\delta 

2 , a.e. s \in [0, \=s],

as soon as (\^\omega i, \^\alpha i) satisfies (3.7).
(4) When hypothesis (H3)\prime is verified, then the upper semicontinuity of the set

valued map \partial \ast h(\cdot , \cdot ) and (3.7) in (H4) imply that there exist \delta , \varepsilon > 0 such
that for any (\zeta 0, \zeta ) \in \partial \ast h(\sigma , x) with \sigma \in [0, \varepsilon ] and x \in \{ \v x0\} + \varepsilon \BbbB , for any
s \leq \=s, for any continuous path y : [0, s] \rightarrow \{ \v x0\} + \varepsilon \BbbB , and for any measurable
map \eta : [0, s] \rightarrow \{ 0, 1\} , the following integral condition holds:

(3.8)

\int s

0

\eta (\sigma ) \zeta \cdot 
\bigl[ 
F(\sigma , y, \^\omega i, \^\alpha i)(\sigma ) - F(\sigma , y, \~\omega i, \~\alpha i)(\sigma )

\bigr] 
d\sigma \leq  - \delta \ell (s, \eta (\cdot )),

where

(3.9) \ell (s, \eta (\cdot )) := \ell (\{ \sigma \in [0, s] : \eta (\sigma ) = 1\} ).

In particular, relation (3.8) holds for any (\zeta 0, \zeta ) \in \partial ch(\sigma , x), as the scalar
product is bilinear, and for all \zeta \in \partial >

x h(\sigma , x), since (see, e.g., [29, Thm.
5.3.1])

\partial >
x h(\sigma , x) \subseteq \partial c

xh(\sigma , x) \subseteq \{ \zeta : \exists \zeta 0 s.t. (\zeta 0, \zeta ) \in \partial ch(\sigma , x)\} \forall (\sigma , x) \in \BbbR 1+n.

Relation (3.8) is in fact the condition used in the proof of Theorem 3.1 below.
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(5) When hypothesis (H3)\prime is verified, it is not difficult to verify that condition
(3.8) still holds if we replace (H4), (iv), with the following assumption:
(iv)\prime there exists \~\varepsilon > 0 such that, for every i, for all \zeta \in \partial c

xh(\sigma , x) with
\sigma \in [0, \~\varepsilon ] and x \in \{ \v x0\} + \~\varepsilon \BbbB , for a.e. s \in [0, \=s] one has

(3.10) \zeta \cdot 
\bigl[ 
F(s, \v x0, (\^\omega i, \^\alpha i)(s)) - F(s, \v x0, (\~\omega i, \~\alpha i)(s))

\bigr] 
\leq  - \~\delta .

Theorem 2.1 can be refined as follows.

Theorem 3.1. Let \=z := (\=\omega , \=\alpha , \=\lambda , \=\xi , \=y) be a feasible relaxed process. Assume that
hypotheses (H1)--(H2)--(H3)\prime --(H4) are verified. If at \=z there is a local infimum gap,
then \=z is a nondegenerate abnormal extremal.

As in the previous section, from Theorem 3.1 one can derive the following results.

Theorem 3.2. Suppose there exists a local \Psi -minimizer \=z := (\=\omega , \=\alpha , \=\lambda , \=\xi , \=y) for
(Pe) or (Pr) for which (H1)--(H2)--(H3)\prime --(H4) are verified, where \Psi is Lipschitz con-
tinuous in a neighborhood of \=y(S), and which is a nondegenerate normal \Psi -extremal.
Then, at \=z there is no local infimum gap for (Pe) or (Pr), respectively. If \=z is a
\Psi -minimizer, then there is no infimum gap for (Pe) or (Pr), respectively.

Theorem 3.3. Let \=z := (\=\omega , \=\alpha , \=\lambda , \=\xi , \=y) be a feasible relaxed process and assume
that hypotheses (H1)--(H2)--(H3)\prime --(H4) are verified. Then, either

(i) \=z is not isolated in \Gamma , namely, there exists a sequence of feasible processes
(\omega i, \alpha i, yi) \in \Gamma such that \| yi  - \=y\| L\infty \rightarrow 0 as i \rightarrow +\infty , or

(ii) \=z is a nondegenerate abnormal extremal.

The proof of Theorem 3.1 is given in section 6.

Remark 3.2. As will be clear from the proofs in section 6, Theorems 3.1, 3.2, and
3.3---as well as Theorems 2.1, 2.2, and 2.3---remain true if we replace the fixed set of
control values A with a compact Borel measurable multifunction A : [0, S]\rightsquigarrow \BbbR q.

Moreover, we could substitute the endpoint constraint (y(0), y(S)) \in \{ \v x0\} \times T

with the more general constraint

(y(0), y(S)) \in \~T

for some closed subset \~T \subset \BbbR n+n. In fact, in this case the proof of Theorem 2.1 can
be easily adapted, while, arguing as in [13], one can deduce that Theorem 3.1 remains
true if hypothesis (H4) is replaced, for instance, by the following condition:

(3.11) \partial >
x h(0, y(0)) \cap ( - \Pi x1NT(y(0), y(S))) = \emptyset .2

Nevertheless, condition (3.11) is never satisfied when \~T = \{ \v x0\} \times T and (0, \v x0) lies
on the boundary of the state constraint. This is the main reason why in this article
we prefer to focus on this special case.

4. Free end-time problems with Lipschitz time dependence. We consider
the optimization problem

(P \ast )

\left\{         
minimize \Psi (S, y(S))

over the set of S > 0 and (\omega , \alpha , y) \in V(S)\times A(S)\times W 1,1([0, S];\BbbR n),

verifying the Cauchy problem (1.1) on [0, S] and the constraints

h(s, y(s)) \leq 0 \forall s \in [0, S], (S, y(S)) \in T\ast ,

2Let X \subseteq \BbbR k1+k2 for some natural numbers k1, k2, and write x = (x1, x2) \in \BbbR k1 \times \BbbR k2 for any
x \in X. Then, \Pi xiX will denote the projection of X on \BbbR ki for i = 1, 2.
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where T\ast is a closed subset of \BbbR 1+n and \Psi : \BbbR 1+n \rightarrow \BbbR . An extended process or
process is an element (S, \omega , \alpha , y), where S > 0, (\omega , \alpha ) \in W(S) \times A(S), and y solves
the Cauchy problem (1.1) on [0, S]. When \omega \in V(S), the process is called a strict
sense process. A process (S, \omega , \alpha , y) is feasible if h(s, y(s)) \leq 0 for all s \in [0, S]
and (S, y(S)) \in T\ast . We call an extended problem, and write (P \ast 

e ), the problem of
minimizing \Psi (S, y(S)) over the set of feasible extended processes.

The associated relaxed problem is

(P \ast 
r )

\left\{                   

minimize \Psi (S, y(S))

over S > 0, (\omega , \alpha , \lambda , y) \in W
1+n(S)\times A

1+n(S)\times \Lambda n(S)\times W 1,1([0, S];\BbbR n) s.t.

\.y(s) =

n\sum 
k=0

\lambda k(s)F(s, y(s), \omega k(s), \alpha k(s)) a.e. s \in [0, S], y(0) = \v x0,

h(s, y(s)) \leq 0 \forall s \in [0, S], (S, y(S)) \in T
\ast ,

A process (S, \omega , \alpha , \lambda , y) for (P \ast 
r ) is referred to as a relaxed process. As in the previous

sections, we can identify the set of strict sense processes (extended processes) with the
subset of relaxed processes (S, \omega , \alpha , \lambda , y) with (\omega , \alpha , \lambda ) \in V1+n(S)\times A1+n(S)\times \Lambda 1

n(S)
[(\omega , \alpha , \lambda ) \in W1+n(S)\times A1+n(S)\times \Lambda 1

n(S)]. We will use \Gamma \ast , \Gamma \ast 
e, \Gamma 

\ast 
r to denote the sets

of feasible strict sense, feasible extended, and feasible relaxed processes, respectively.
Throughout this section, we strengthen hypotheses (H2)-(H3) treating time as

a state variable. As in section 3, we add to (P \ast 
r ) the variable \xi (s) =

\int s

0
\lambda (s\prime ) ds\prime ,

s \in [0, S], and call a relaxed process any element (S, \omega , \alpha , \lambda , \xi , y), where (\omega , \alpha , \lambda ) \in 
W1+n(S)\times A1+n(S)\times \Lambda n(S) and (\xi , y) solves (3.3) on [0, S].

We shall consider the following hypotheses, in which ( \=S, \=\omega , \=\alpha , \=\lambda , \=\xi , \=y) is a given
feasible relaxed process for (P \ast 

r ) and, for some \theta > 0, we set

\Sigma \ast 
\theta :=

\bigl\{ 
(t, x) \in \BbbR \times \BbbR n : (t, x) \in (s, \=y(s)) + \theta \BbbB 1+n, s \in [0, \=S]

\bigr\} 
.

(H2)\ast The constraint function h is K
h
-Lipschitz continuous in \Sigma \ast 

\theta .
(H3)\ast (i) The function F is continuous on \Sigma \ast 

\theta \times W \times A. Furthermore, there is some
constant KF > 0 such that, for all (s, x, w, a), (s\prime , x\prime , w, a) \in \Sigma \ast 

\theta \times W \times A,

| F(s\prime , x\prime , w, a) - F(s, x, w, a)| \leq KF| (s\prime , x\prime ) - (s, x)| .

(ii) There exists some continuous increasing function \varphi : \BbbR \geq 0 \rightarrow \BbbR \geq 0 with
\varphi (0) = 0 such that for any (s, x, a) \in \Sigma \ast 

\theta \times A, we have

Dt,xF(s, x, w\prime , a) \subseteq Dt,xF(s, x, w, a) + \varphi (| w\prime  - w| )\BbbB \forall w\prime , w \in W.

Let us identify a continuous function \~y : [0, \tau ] \rightarrow \BbbR k with its extension to \BbbR by
constant extrapolation of the left and right endpoint values. Then, for all \tau 1, \tau 2 > 0,
and (\~y1, \~y2) \in C0([0, \tau 1];\BbbR k)\times C0([0, \tau 2];\BbbR k), we define the distance

(4.1) d\infty 
\bigl( 
(\tau 1, \~y1), (\tau 2, \~y2)

\bigr) 
:= | \tau 2  - \tau 1| + \| \~y2  - \~y1\| \infty , (\| \cdot \| \infty := \| \cdot \| L\infty (\BbbR )).

We can now extend the concepts of local minimizer, local infimum gap, and isolated
process to free end-time problems, by formally replacing trajectories y and L\infty -norm
over trajectories with pairs (S, y) endowed with the distance d\infty . For instance, if
\=z := ( \=S, \=\omega , \=\alpha , \=\lambda , \=y) is a feasible relaxed process, at \=z there is a local infimum gap if
there is some \delta > 0 such that

\Psi ( \=S, \=y(S)) < inf
\bigl\{ 
\Psi (S, y(S)) : (S, \omega , \alpha , y) \in \Gamma \ast , d\infty 

\bigl( 
(S, y), ( \=S, \=y)

\bigr) 
< \delta 

\bigr\} D
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292 GIOVANNI FUSCO AND MONICA MOTTA

for some continuous function \Psi : \BbbR 1+n \rightarrow \BbbR , while \=z is an isolated process if\bigl\{ 
(S, \omega , \alpha , y) \in \Gamma \ast : d\infty 

\bigl( 
(S, y), ( \=S, \=y)

\bigr) 
< \delta 

\bigr\} 
= \emptyset 

for some \delta > 0. As in the case with fixed end-time, at \=z there is a local infimum gap
if and only if \=z is isolated.

Definition 4.1 (extremal and nondegenerate extremal). Let \=z := ( \=S, \=\omega , \=\alpha , \=\lambda , \=y)
be a feasible relaxed process and assume that hypotheses (H2)\ast , (H3)\ast are verified.
Given a function \Psi : \BbbR 1+n \rightarrow \BbbR which is Lipschitz continuous on a neighborhood
of ( \=S, \=y( \=S)), we say that \=z is a \Psi -extremal if there exist a pair of paths (p\ast , p) \in 
W 1,1([0, \=S];\BbbR 1+n), \gamma \geq 0, \mu \in NBV +([0, \=S];\BbbR ), (m\ast ,m) : [0, \=S] \rightarrow \BbbR 1+n Borel
measurable and \mu -integrable functions, verifying the following conditions:

\| p\| L\infty + \| \mu \| TV + \gamma \not = 0;(4.2) \bigl( 
\.p\ast , - \.p

\bigr) 
(s) \in 

n\sum 
k=0

\=\lambda k(s) co \partial t,x
\bigl\{ 
q(s) \cdot F(s, \=y(s), \=\omega k(s), \=\alpha k(s))

\bigr\} 
a.e. s \in [0, \=S];\bigl( 

q\ast ( \=S), - q( \=S)
\bigr) 
\in \gamma \partial \Psi (S, \=y(S)) +NT( \=S, \=y( \=S));

for every k = 0, . . . , n, for a.e. s \in [0, \=S], one has

q(s) \cdot F
\Bigl( 
s, \=y(s), \=\omega k(s), \=\alpha k(s)

\Bigr) 
= max

(w,a)\in W\times A
q(s) \cdot F

\Bigl( 
s, \=y(s), w, a

\Bigr) 
;(4.3)

n\sum 
k=0

\=\lambda k(s)q(s) \cdot F(s, \=y(s), \=\omega k(s), \=\alpha k(s)) = q\ast (s) a.e. s \in [0, \=S];(4.4)

(m\ast ,m)(s) \in \partial >
t,x h (s, \=y(s)) \mu -a.e. s \in [0, \=S];

spt(\mu ) \subseteq \{ s \in [0, \=S] : h (s, \=y(s)) = 0\} ,

where (q\ast , q)(s) :=

\Biggl\{ 
(p\ast , p)(s) +

\int 
[0,s[

(m\ast ,m)(\sigma )\mu (d\sigma ), s \in [0, \=S[,

(p\ast , p)( \=S) +
\int 
[0, \=S]

(m\ast ,m)(\sigma )\mu (d\sigma ), s = \=S.

A \Psi -extremal is normal if all possible choices of (p\ast , p, \gamma , \mu ,m\ast ,m) as above have \gamma > 0
and abnormal when it is not normal. Given a \Psi -extremal \=z, we call a nondegenerate
multiplier any set of multipliers (p\ast , p, \gamma , \mu ,m\ast ,m) and (q\ast , q) as above, that also verify

(4.5) \mu (]0, S]) + \| q\| L\infty + \gamma \not = 0.

A \Psi -extremal is nondegenerate normal if all the choices of nondegenerate multipliers
have \gamma > 0, and it is nondegenerate abnormal when there exists a nondegenerate mul-
tiplier with \gamma = 0. In the following, abnormal (nondegenerate abnormal) \Psi -extremals
will be simply called abnormal (nondegenerate abnormal) extremals.

Theorems 2.1 and 3.1 extend to free end-time optimization problems as follows.

Theorem 4.1. Let \=z := ( \=S, \=\omega , \=\alpha , \=\lambda , \=\xi , \=y) be a feasible relaxed process for (P \ast 
r ), and

suppose that at \=z there is a local infimum gap.
(i) If hypotheses (H1)--(H2)\ast --(H3)\ast hold, then \=z is an abnormal extremal.
(ii) If, in addition, also hypothesis (H4) for S = \=S is verified, then \=z is a nonde-

generate abnormal extremal.

Proof. Let \=z := ( \=S, \=\omega , \=\alpha , \=\lambda , \=\xi , \=y) be a feasible relaxed process at which there is
a local infimum gap. By the above considerations, this is equivalent to supposing
that \=z is an isolated process. Adapting a standard time-rescaling procedure (see, e.g.,
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ABNORMALITY, CONTROLLABILITY, AND GAP 293

[29, Thm. 8.7.1]), we transform problems (P \ast ), (P \ast 
e ), and (P \ast 

r ) into fixed end-time
problems and show that \=z is an isolated process also with respect to feasible strict
sense processes of a rescaled, fixed end-time problem. At this point, the thesis follows
by applying Theorems 2.1 and 3.1 to the rescaled problem.

From the fact that \=z is isolated, it follows that there exists some \delta > 0 such that

(4.6)
\bigl\{ 
(S, \omega , \alpha , y) \in \Gamma \ast : d\infty 

\bigl( 
(S, y), ( \=S, \=y)

\bigr) 
< 3\delta 

\bigr\} 
= \emptyset .

Set \=\delta := min
\bigl\{ 

\delta 
3 \=S KF

, 1
2

\bigr\} 
.

We define the rescaled optimization problem ( \^P \ast ) as

( \^P \ast )

\left\{           
minimize \Psi (y\ast ( \=S), y( \=S))

over (\omega , \alpha , \zeta , y\ast , y) \in V( \=S)\times A( \=S)\times L1([0, \=S]; [ - \=\delta , \=\delta ])\times W 1,1([0, \=S];\BbbR 1+n) s.t.

( \.y\ast , \.y)(s) = (1 + \zeta (s))
\bigl( 
1,F(y\ast (s), y(s), \omega (s), \alpha (s))

\bigr) 
a.e., (y\ast , y)(0) = (0, \v x0),

h(y\ast (s), y(s)) \leq 0 \forall s \in [0, \=S], (y\ast ( \=S), y( \=S)) \in T
\ast ,

A process (\omega , \alpha , \zeta , y\ast , y) for the fixed end-time problem ( \^P \ast ) is referred to as a rescaled
strict sense process. Let \^\Gamma \ast denote the set of the feasible rescaled strict sense processes,
that is, the set rescaled strict sense processes that verify h(y\ast (s), y(s)) \leq 0 for all
s \in [0, \=S] and (y\ast ( \=S), y( \=S)) \in T\ast . We call rescaled extended processes the processes
(\omega , \alpha , \zeta , y\ast , y) with \omega \in W( \=S) and write ( \^P \ast 

e ) to denote the rescaled extended problem
associated with ( \^P \ast ).

We can identify \=z = ( \=S, \=\omega , \=\alpha , \=\lambda , \=\xi , \=y) with a process \v z := (\v \omega , \v \alpha , \v \zeta , \v \lambda , \v \xi , \v y\ast , \v y) \in 
W2+n( \=S)\times A2+n( \=S)\times (L1[0, \=S]; [ - \=\delta , \=\delta ]))2+n \times \Lambda n+1( \=S)\times W 1,1([0, \=S];\BbbR 2+n \times \BbbR 1+n)
of the rescaled relaxed problem associated with ( \^P \ast 

e ), by setting

\v \omega := (w, \=\omega ), \v \alpha := (a, \=\alpha ), \v \zeta := 0, \v \lambda := (0, \=\lambda ), \v \xi = (0, \=\xi ), \v y\ast := id, \v y := \=y,

for arbitrary w \in W and a \in A. Since \=z is an isolated feasible relaxed process for the
free end-time problem, \v z is feasible and isolated for the relaxed rescaled problem. In
particular, we claim that

(4.7)
\Bigl\{ 
(\omega , \alpha , \zeta , y\ast , y) \in \^\Gamma \ast : \| (y\ast , y) - (\v y\ast , \v y)\| L\infty ([0, \=S]) < \delta 

\Bigr\} 
= \emptyset .

Indeed, let (\omega , \alpha , \zeta , y\ast , y) be an arbitrary feasible, rescaled strict sense process veri-
fying \| (y\ast , y)  - (\v y\ast , \v y)\| L\infty ([0, \=S]) < \delta . Consider the time-transformation y\ast : [0, \=S] \rightarrow 
[0, S], where S := y\ast ( \=S). Observe that y\ast is a strictly increasing, Lipschitz continu-
ous function, with Lipschitz continuous inverse, (y\ast ) - 1. It can be deduced that the
process (S, \^\omega , \^\alpha , \^y), where

(\^\omega , \^\alpha , \^y) := (\omega , \alpha , y) \circ (y\ast ) - 1 in [0, S],

is a feasible strict sense process for the free end-time problem (P \ast ), i.e., (S, \^\omega , \^\alpha , \^y) \in 
\Gamma \ast . Indeed, recalling the definitions of \=\delta and d\infty ,3 after some calculations, we get

d\infty 
\bigl( 
(S, \^y), ( \=S, \=y)

\bigr) 
= | S  - \=S| + \| \^y  - \=y\| \infty \leq | y\ast ( \=S) - \v y\ast ( \=S)| 

+ sup
s\in [0,S\vee \=S]

\bigl[ 
| y((y\ast ) - 1(s \wedge S)) - \v y((y\ast ) - 1(s \wedge S))| + | \v y((y\ast ) - 1(s \wedge S)) - \v y(s \wedge \=S)| 

\bigr] 
\leq \| y\ast  - \v y\ast \| L\infty ([0, \=S]) + \| y  - \v y\| L\infty ([0, \=S]) + \delta < 3\delta ,

3By definition, \^y and \v y are replaced with their constant, continuous extensions to \BbbR .
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294 GIOVANNI FUSCO AND MONICA MOTTA

since, in particular,

sup
s\in [0,S\vee \=S]

| \v y((y\ast ) - 1(s \wedge S)) - \v y(s \wedge \=S)| \leq 3KF
\=S \=\delta \leq \delta .

Therefore, (4.6) yields (4.7), and the feasible rescaled relaxed process \v z is isolated
in \^\Gamma \ast , as claimed. In order to apply the results of Theorems 2.1 and 3.1 to ( \^P \ast )
with reference to the process \v z, it remains to show that if we consider (w, a, \lambda , \zeta ) as
control variables and \~x := (s, x) as the state variable for the (now time-independent)
problem ( \^P \ast ), all the hypotheses assumed in their statements are fulfilled. To this
aim, observe that (H2) trivially follows from (H2)\ast , while (H3)\ast easily implies (H3)\prime .
In particular, the compactness of \Sigma \ast 

\theta \times W \times A\times [ - \=\delta , \=\delta ] and the continuity of (1+ \zeta )F
on it guarantee the validity of (H3)\prime for the rescaled dynamics function (1 + \zeta )F.
Finally, recalling that \v \zeta \equiv 0 and \v y\ast (s) = s for all s \in [0, \=S], hypothesis (H4) can be
trivially reformulated as a hypothesis on the rescaled process \v z. At this point, from
Theorems 2.1 and 3.1 we can derive that \=z is an abnormal extremal, nondegenerate
when hypothesis (H4) is verified. In particular, the only nontrivial results, namely
conditions (4.3), (4.4), and the nontriviality conditions (4.2), (4.5) can be obtained
through routine arguments (see, e.g., the proof of [29, Thm. 8.7.1]).

Again, from Theorem 4.1 we can get normality tests for gap avoidance and suf-
ficient controllability conditions for the free end-time problem completely analogous
to Theorems 2.2--2.3 and 3.2--3.3, respectively.

5. An application to nonconvex, control-polynomial impulsive prob-
lems. We consider the free end-time optimal control problem:

(P\ast )

\left\{                       

minimize \Psi (T, y(T ), v(T ))

over T > 0, (u,a, y, v) \in Ld([0, T ];U)\times L1([0, T ];A)\times W 1,1([0, T ];\BbbR n+1) s.t.

( \.y, \.v)(t) =

\Biggl( 
f(t, y,a) +

d\sum 
k=1

\Biggl( \sum 
1\leq j1\leq \cdot \cdot \cdot \leq jk\leq m

gkj1,...,jk (t, y) u
j1 \cdot \cdot \cdot ujk

\Biggr) 
, | u| d

\Biggr) 
a.e.,

(y, v)(0) = (\v x0, 0),

h(t, y(t)) \leq 0 \forall t \in [0, T ], v(T ) \leq K, (T, y(T )) \in T
\ast .

Here, U \subseteq \BbbR m is a closed cone, A \subseteq \BbbR q is a compact subset, K > 0 is a fixed constant,
possibly equal to +\infty , and the target set T\ast \subseteq \BbbR 1+n is closed. Notice that v(t) is
simply the Ld-norm to the power d of the control function u on [0, t]. The variable
v is sometimes called fuel or energy and v \mapsto \rightarrow \Psi (t, x, v) is usually assumed monotone
nondecreasing for every (t, x) (see, e.g., [20, 21]). The integer d \geq 1 will be called the
degree of the control system. Problem (P\ast ) is referred to as the original problem and
we call a process (T, u,a, y, v) for (P\ast ) an original process. We say that (T, u,a, y, v)
is feasible if h(t, y(t)) \leq 0 for all t \in [0, T ], v(T ) \leq K, and (T, y(T )) \in T\ast .

Throughout this section, we shall consider the following structural hypothesis:

(H5) The functions f : \BbbR 1+n \times A \rightarrow \BbbR n, gkj1...jk : \BbbR 1+n \rightarrow \BbbR n are continuous,

all gkj1...jk are locally Lipschitz continuous, and f(\cdot , \cdot , a) is locally Lipschitz
continuous uniformly w.r.t. a \in A. Furthermore, the constraint function
h : \BbbR 1+n \rightarrow \BbbR is locally Lipschitz continuous.

5.1. The impulsive extension. In order to apply the theory developed in the
previous sections, we reformulate problem (P\ast ) and embed it into a free end-time
extended problem with bounded controls. To do this, we use a compactification
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procedure based on a reparameterization technique, commonly adopted to obtain
an impulsive extension of unbounded control problems, as generalized to polynomial
systems (see, e.g., [27, 21]). Let us choose

W :=
\bigl\{ 
(w0, w) \in \BbbR \geq 0 \times U : (w0)d + | w| d = 1

\bigr\} 
, V :=

\bigl\{ 
(w0, w) \in W : w0 > 0

\bigr\} 
.

For every S > 0, we set W(S) := L1([0, S];W ),4 V(S) := L1([0, S];V ), and A(S) :=
L1([0, S];A), and introduce the space-time or extended problem:5

(P \ast 
e )

\left\{                 

minimize \Psi (y0(S), y(S), \nu (S))

over S > 0, (\omega 0, \omega , \alpha , y0, y, \nu ) \in W(S)\times A(S)\times W 1,1([0, S];\BbbR 1+n+1) s.t.

( \.y0, \.y, \.\nu )(s) =
\Bigl( 
(\omega 0)d(s),F(y0(s), y(s), \omega 0(s), \omega (s), \alpha (s)), | \omega (s)| d

\Bigr) 
a.e.,

(y0, y, \nu )(0) = (0, \v x0, 0),

h(y0(s), y(s)) \leq 0 \forall s \in [0, S],
\bigl( 
y0(S), y(S), \nu (S)

\bigr) 
\in T\ast \times ] - \infty ,K],

where, for any (t, x, w0, w, a) \in \BbbR \times \BbbR n \times \BbbR \geq 0 \times U \times A, we have set
(5.1)

F(t, x, w0, w, a) := f(t, x, a)(w0)d +

d\sum 
k=1

\Biggl( \sum 
1\leq j1\leq \cdot \cdot \cdot \leq jk\leq m

gkj1,...,jk (t, x) w
j1 \cdot \cdot \cdot wjk (w0)d - k

\Biggr) 
.

Adopting notation and terminology of section 4, a process (S, \omega 0, \omega , \alpha , y0, y, \nu ) of prob-
lem (P \ast 

e ) is referred to as an extended process and it is feasible if h(y0(s), y(s)) \leq 0
for all s \in [0, S] and

\bigl( 
y0(S), y(S), \nu (S)

\bigr) 
\in T\ast \times ]  - \infty ,K]. When \omega 0 > 0 almost ev-

erywhere, namely (\omega 0, \omega ) \in V(S), (S, \omega 0, \omega , \alpha , y0, y, \nu ) is called a strict sense process.
The problem of minimizing \Psi (y0(S), y(S)) over feasible strict sense processes is still
denoted by (P \ast ).

The associated relaxed problem is

(P \ast 
r )

\left\{                                   

minimize \Psi (y0(S), y(S), \nu (S))

over S > 0, controls (\omega 0, \omega , \alpha , \lambda ) \in W
3+n(S)\times A

3+n(S)\times \Lambda 2+n(S), and

trajectories (y0, y, \nu ) \in W 1,1([0, S];\BbbR 1+n+1) s.t.

( \.y0, \.y, \.\nu )(s) =

2+n\sum 
k=0

\lambda k(s)
\Bigl( 
(\omega 0,k)d(s),F(y0(s), y(s), \omega 0,k(s), \omega k(s), \alpha k(s)),

\bigm| \bigm| \bigm| \omega k(s)
\bigm| \bigm| \bigm| d \Bigr) ,

(y0, y, \nu )(0) = (0, \v x0, 0),

h(s, y(s)) \leq 0 \forall s \in [0, S], (S, y(S)) \in T
\ast .

A process (S, \omega 0, \omega , \alpha , \lambda , y0, y, \nu ) for (P \ast 
r ) is referred to as a relaxed process. We will

use \Gamma \ast , \Gamma \ast 
e, \Gamma 

\ast 
r to denote the sets of feasible strict sense, feasible extended, and feasible

relaxed processes, respectively.
The original problem (P\ast ) can be identified with problem (P \ast ), as established

by the following lemma, an immediate consequence of the chain rule.

Lemma 5.1 (embedding). Assume hypothesis (H5). Then the map

I : \{ (T, u,a, y, v), original processes\} \rightarrow \{ (S, \omega 0, \omega , \alpha , y0, y, \nu ), extended processes\} 

4The controls (\omega 0, \omega ) \in W(S) actually belong to L\infty \cap L1, since W is compact.
5The original time t coincides now with the state component y0, while s is the new ``pseudotime""

variable.
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defined as

I(T, u,a, y, v) := (S, \omega 0, \omega , \alpha , \zeta , y0, y, \nu ),

where, setting \sigma (t) := t+ v(t) for all t \in [0, T ],

S := \sigma (T ), (y0, y, \nu )(s) := (id, y, v) \circ \sigma  - 1(s) \forall s \in [0, S],

(\omega 0, \omega )(s) := (1 + | u| d) - 1
d (1, u) \circ \sigma  - 1(s), \alpha (s) := a \circ \sigma  - 1(s) a.e. s \in [0, S],6

is injective and has as image the subset of strict sense processes. Moreover, I maps
any feasible original process into a feasible strict sense process, with the same cost.

The extended problem (P \ast 
e ) consists thus in considering processes (S, \omega 0, \omega , \alpha , y0,

y, \nu ), where \omega 0 may be zero on nondegenerate subintervals of [0, S]. On these intervals,
the time variable t = y0 is constant---i.e., the time stops---while the state variable y
evolves, according to F(t, y, 0, \omega , \alpha ) =

\sum 
1\leq j1\leq \cdot \cdot \cdot \leq jd\leq m gdj1,...,jd(t, y) \omega 

j1 \cdot \cdot \cdot \omega jd , which
can be called fast dynamics. For this reason, problem (P \ast 

e ) is often referred to as
the impulsive extension of the original problem (P\ast ) (more details on polynomial
impulsive problems can be found in [27, 21] and references therein).

Let us introduce the unmaximized Hamiltonian H, defined by

H(t, x, p0, p, \pi , \omega 
0, \omega , a) := p0(\omega 

0)d + p \cdot F(t, x, w0, w, a) + \pi | \omega | d

for all (t, x, p0, p, \pi , \omega 
0, \omega , a) \in \BbbR 1+n+1+n+1 \times W \times A. The concepts of extremal and

nondegenerate extremal read now as follows.

Definition 5.2 (extremal and nondegenerate extremal). Assume (H5) and let
\=z := ( \=S, \=\omega 0, \=\omega , \=\alpha , \=\lambda , \=y0, \=y, \=\nu ) be a feasible relaxed process. Given a cost function \Psi 
which is Lipschitz continuous on a neighborhood of (\=y0( \=S), \=y(S), \=\nu ( \=S)), we say that
\=z is a \Psi -extremal if there exist a path (p0, p) \in W 1,1([0, \=S];\BbbR \times \BbbR n), \gamma \geq 0, \pi \leq 0,
\mu \in NBV +([0, \=S];\BbbR ), (m0,m) : [0, \=S] \rightarrow \BbbR 1+n Borel measurable and \mu -integrable
functions, verifying the following conditions:

\| p0\| L\infty + \| p\| L\infty + \| \mu \| TV + \gamma \not = 0;(5.2)

for a.e. s \in [0, S], one has

( - \.p0, - \.p)(s) \in 
2+n\sum 
k=0

\=\lambda k(s)co \partial t,x H
\Bigl( 
\=y0(s), \=y(s), q0(s), q(s), \pi , \=\omega 

0,k(s), \=\omega k(s), \=\alpha k(s)
\Bigr) 
;(5.3) \bigl( 

 - q0( \=S), - q( \=S), - \pi 
\bigr) 
\in \gamma \partial \Psi 

\bigl( 
\=y0( \=S), \=y( \=S), \=\nu ( \=S)

\bigr) 
+NT\ast \times ] - \infty ,K]

\bigl( 
\=y0( \=S), \=y( \=S), \=\nu ( \=S)

\bigr) 
;(5.4)

for every k = 0, . . . 2 + n, for a.e. s \in [0, S], one has

H
\Bigl( 
\=y0(s), \=y(s), q0(s), q(s), \pi , \=\omega 

0,k(s), \=\omega k(s), \=\alpha k(s)
\Bigr) 

(5.5)

= max
(\omega 0,\omega ,a)\in W\times A

H
\Bigl( 
\=y0(s), \=y(s), q0(s), q(s), \pi , \omega 

0, \omega , a
\Bigr) 
= 0;

(m0,m)(s) \in \partial >
t,x h

\bigl( 
\=y0(s), \=y(s)

\bigr) 
\mu -a.e.; spt(\mu ) \subseteq \{ s \in [0, \=S] : h

\bigl( 
\=y0(s), \=y(s)

\bigr) 
= 0\} ,

where (q0, q)(s) :=

\Biggl\{ 
(p0, p)(s) +

\int 
[0,s[

(m0,m)(\tau )\mu (d\tau ), s \in [0, \=S[,

(p0, p)( \=S) +
\int 
[0, \=S]

(m0,m)(\tau )\mu (d\tau ), s = \=S.

We will call a \Psi -extremal normal if all (p0, p, \pi , \gamma , \mu ,m0,m) as above have \gamma > 0, and
abnormal when it is not normal.

6Since every Ld-equivalence class contains Borel measurable representatives, we are tacitly as-
suming that all Ld-maps we are considering are Borel measurable.
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Given a \Psi -extremal \=z we call nondegenerate multipliers all (p0, p, \pi , \gamma , \mu ,m0,m)
and (q0, q) as above, that also verify

(5.6) \mu (]0, S]) + \| q0\| L\infty + \| q\| L\infty + \gamma \not = 0.

If \gamma \partial v\Psi 
\bigl( 
\=y0( \=S), \=y( \=S), \=\nu ( \=S)

\bigr) 
= 0 and \=\nu ( \=S) < K, then \pi = 0. Furthermore, if \=y0(0) <

\=y0( \=S), (5.2) (resp., (5.6)) can be strengthened to

(5.7) \| p\| L\infty + \| \mu \| TV + \gamma \not = 0 [\mu (]0, S]) + \| q\| L\infty + \gamma \not = 0].

We will call a \Psi -extremal nondegenerate normal if all (p0, p, \pi , \gamma , \mu ,m0,m) and (q0, q)
as above and verifying (5.6) have \gamma > 0, and nondegenerate abnormal when it is not
nondegenerate normal.

5.2. Main results. Given a feasible relaxed process \=z := ( \=S, \=\omega 0, \=\omega , \=\alpha , \=\lambda , \=y0, \=y, \=\nu ),
let us consider the obvious corresponding version of hypothesis (H4) (on [0, \=S]), which
we still denote (H4) for simplicity. From Theorem 4.1 follow gap-abnormality relations
for the original problem with respect to its relaxed impulsive extension (P \ast 

r ).

Theorem 5.1. Let \=z := ( \=S, \=\omega 0, \=\omega , \=\alpha , \=\lambda , \=y0, \=y, \=\nu ) be a feasible process for the relaxed
impulsive extension (P \ast 

r ), and suppose that at \=z there is a local infimum gap. If
hypothesis (H5) is verified, then \=z is an abnormal extremal. If hypothesis (H4) is also
satisfied, then \=z is a nondegenerate abnormal extremal.

Proof. It is sufficient to show that hypothesis (H5) allows the application of
Theorem 4.1(i). In fact, with regard to the conditions on the multipliers which
are peculiar of the impulsive problem (the absence of the multiplier \pi in the non-
triviality conditions (5.2), (5.6), and the strengthened versions in (5.7)), these can
be proved exactly as in the control-affine case (see [23, Thm. 3.1], [13, Thm. 1.1]).
To this aim, we observe that hypothesis (H1) is trivially verified, by choosing, e.g.,
Vi := \{ (w0, w) \in V : w0 \geq 1

i+1\} for every i \in \BbbN , while (H5) yields (H2)\ast directly.
Condition (H3)\ast easily follows from (H5), taking into account the control-polynomial
structure of the dynamics as regards point (ii).

As corollaries, we have the following.

Theorem 5.2. Assume hypothesis (H5) and let \Psi be locally Lipschitz continuous.
(i) Let \=z be a local \Psi -minimizer for (P \ast 

e ) or (P \ast 
r ) which is a normal \Psi -extremal.

Then, at \=z there is no local infimum gap. If \=z is a \Psi -minimizer, then there
is no infimum gap.

(ii) Let \=z be a local \Psi -minimizer for (P \ast 
e ) or (P \ast 

r ), at which condition (H4) is
verified and which is a nondegenerate normal \Psi -extremal. Then, at \=z there
is no local infimum gap. If \=z is a \Psi -minimizer, then there is no infimum gap.

Theorem 5.3. Assume hypothesis (H5). Then, either
(i) \=z is not isolated in \Gamma \ast or
(ii) \=z is an abnormal extremal, in fact, a nondegenerate abnormal extremal, if

condition (H4) is verified.

Remark 5.1. The above results extend and complement the results previously
obtained in [13]. First of all, in this paper we consider control systems with polynomial
dependence on the unbounded control, whereas in [13] we have only dealt with the
case of control-affine systems. This is a substantial difference, because this extension
allows us to treat higher order, not only first order, impulse inputs, which occur, for
instance, in some applications to Lagrangian mechanics (see, e.g., [4, 6]).

D
ow

nl
oa

de
d 

03
/1

5/
22

 to
 1

47
.1

62
.2

2.
66

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

298 GIOVANNI FUSCO AND MONICA MOTTA

Furthermore, in [13] convex relaxation of the extended problem is not considered.
Notice that in case d = 1 the set of velocities of the extended system is in general
not convex, unless the drift f is independent of a and the cone U is convex (see, e.g.,
[19]). Hence, generally the extended problem does not admit a minimum.

Finally, in the present paper we prove a nondegenerate normality test for no gap
in the case of fixed initial point, which had been left as an open question in [13].

Remark 5.2. When the feasible reference process \=z belongs to the subclass of
extended processes, namely \=z := ( \=S, \=\omega 0, \=\omega , \=\alpha , \=y0, \=y, \=\nu ) \in \Gamma \ast 

e, in the previous theorems
condition (H4) can be replaced by the following, simpler condition:7

(H6) If (0, \v x0) \in \partial \Omega , there are some \~\delta > 0, \=s \in ]0, \=S], some sequence of strict
sense processes (\~\omega 0

i , \~\omega i, \~\alpha i, \~y
0
i , \~yi, \~\nu i)i \subset V(\=s) \times A(\=s) \times W 1,1([0, \=s];\BbbR 1+n+1),

some sequences (\^\omega 0
i , \^\omega i, \^\alpha i)i \subset W(\=s)\times A(\=s), and (\~ri)i \subset L1([0, \=s];\BbbR \geq 0) with

limi\rightarrow +\infty \| \~ri\| L1([0,\=s]) = 0, such that the following properties (i)--(iii) are ver-
ified.
(i) For every i, one has

h(\~y0i (s), \~yi(s)) \leq 0 \forall s \in [0, \=s];

(ii) for every i, there is a Lebesgue measurable subset \~Ei \subset [0, \=s] such that

(\~\omega 0
i , \~\omega i)(s) \in (\=\omega 0, \=\omega )(s) + \~ri(s)\BbbB , \~\alpha i(s) = \=\alpha (s), a.e. s \in \~Ei;

limi\rightarrow +\infty \ell ( \~Ei) = \=s;

(iii) for every i, for all (\zeta 0, \zeta ) \in \partial \ast h(0, \v x0), and for a.e. s \in [0, \=s], one has

\zeta 0 \cdot [(\^\omega 0
i (s))

d  - (\~\omega 0
i (s))

d]

+\zeta \cdot 
\bigl[ 
F(0, \v x0, (\^\omega 

0
i , \^\omega i, \^\alpha i)(s)) - F(0, \v x0, (\~\omega 

0
i , \~\omega i, \~\alpha i)(s))

\bigr] 
\leq  - \~\delta .

Lemma 5.3. Assume hypothesis (H5) and let \=z := ( \=S, \=\omega 0, \=\omega , \=\alpha , \=y0, \=y, \=\nu ) \in \Gamma \ast 
e.

Then, condition (H6) implies condition (H4).

Proof. To prove that (H5)--(H6) imply condition (H4), let us consider a sequence
\delta i \downarrow 0 and for every i define the strict sense control

(\v \omega 0
i , \v \omega i, \v \alpha i)(s) :=

\left\{     
(\~\omega 0

i , \~\omega i, \~\alpha i)(s) if s \in [0, \=s],

(\=\omega 0, \=\omega , \=\alpha )(s) if s \in ]\=s, \=S] and \=\omega 0(s) > 0,

(\delta i,
d
\sqrt{} 
1 - \delta di \=\omega (s), \=\alpha (s)) if s \in ]\=s, \=S] and \=\omega 0(s) = 0,

where (\~\omega 0
i , \~\omega i, \~\alpha i) is as in (H6). By identifying, for every i, the strict sense process, say,

(\v \omega 0
i , \v \omega i, \v \alpha i, \v y

0
i , \v yi, \v \nu i), of (P

\ast ) corresponding to (\v \omega 0
i , \v \omega i, \v \alpha i) with a relaxed process---as

we have been doing since the introduction---we derive that conditions (H4)(ii) and
(H4)(iii) on \v Ei := \~Ei\cup ]\=s, \=S] \subset [0, \=S] are verified. Condition (H4)(i) follows from
well-known continuity properties of the input-output map, associated with the control
system in (P \ast ). Finally, in view of Remark 3.1(3), (H6)(iii) implies (H4)(iv), although
the controls (\^\omega 0

i , \^\omega i, \^\alpha i) are extended, not necessarily strict sense, controls.

In some situations, hypothesis (H6) simplifies considerably.

7We recall that \Omega = \{ (t, x) : h(t, x) \leq 0\} .
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Lemma 5.4. Assume (H5). Let (0, \v x0) \in \partial \Omega and let \=z := ( \=S, \=\omega 0, \=\omega , \=\alpha , \=y0, \=y, \=\nu ) be
a feasible extended process. If there are some \~\delta > 0, \=s \in ]0, \=S], and an extended control
(\^\omega 0, \^\omega , \^\alpha ) \in W(\=s)\times A(\=s) such that, for all (\zeta 0, \zeta ) \in \partial \ast h(0, \v x0) and for a.e. s \in [0, \=s],

(5.8)
\zeta 0 \cdot [(\^\omega 0(s))d  - (\=\omega 0(s))d]

+\zeta \cdot 
\bigl[ 
F(0, \v x0, (\^\omega 

0, \^\omega , \^\alpha )(s)) - F(0, \v x0, (\=\omega 
0, \=\omega , \=\alpha )(s))

\bigr] 
\leq  - \~\delta ,

and either \=\omega 0 > 0 a.e. in [0, \=s], or there is some \~\delta 1 > 0 such that, for a.e. s \in [0, \=s],

(5.9) sup
(\zeta 0,\zeta )\in \partial \ast h(0,\v x0)

\bigl[ 
\zeta 0 \cdot (\=\omega 0(s))d + \zeta \cdot F(0, \v x0, ((\=\omega 

0, \=\omega ), \=\alpha )(s))
\bigr] 
\leq  - \~\delta 1,

then condition (H6) is satisfied.

Proof of Lemma 5.4. Let us first suppose that \=\omega 0 > 0 a.e. in [0, \=s]. Then, condi-
tions (H6)(i), (ii) are verified by choosing, for every i, (\~\omega 0

i , \~\omega i, \~\alpha i) = (\=\omega 0, \=\omega , \=\alpha ), while
(H6)(iii) follows directly from (5.8), by taking (\^\omega 0

i , \^\omega i, \^\alpha i) \equiv (\^\omega 0, \^\omega , \^\alpha ) for every i. If
instead (5.9) is assumed, let us consider a sequence \delta i \downarrow 0 and for every i, let us set

(\~\omega 0
i , \~\omega i, \~\alpha i)(s) :=

\Biggl\{ 
(\=\omega 0, \=\omega , \=\alpha )(s) if \=\omega 0(s) > 0,

(\delta i,
d
\sqrt{} 
1 - \delta di \=\omega (s), \=\alpha (s)) if \=\omega 0(s) = 0,

for a.e. s \in [0, \=s]. Then, (\~\omega 0
i , \~\omega i, \~\alpha i) \in V(\=s)\times A(\=s) verifies (H6)(ii) with \~Ei = [0, \=s] and

\~ri \equiv \delta i. Let (\~y
0
i , \~yi, \~\nu i) be the corresponding solution of the extended control system in

(P \ast 
e ) with initial condition (\~y0i , \~yi, \~\nu i)(0) = (0, \v x0, 0). From condition (5.9), using the

Lebourg mean value theorem [29, Thm. 4.5.3] to estimate h(\~y0i (s), \~yi(s)) - h(0, \v x0), one
can derive that h(\~y0i (s), \~yi(s)) \leq 0 for all s \in [0, \=s], for every i large enough, so proving
the validity of (H6)(i). Finally, from condition (5.8) (by adding and subtracting
\zeta 0 \cdot (\~\omega 0

i (s))
d + \zeta \cdot F(0, \v x0, (\~\omega 

0
i , \~\omega i, \~\alpha i)(s)) and by taking (\^\omega 0

i , \^\omega i, \^\alpha i) = (\^\omega 0, \^\omega , \^\alpha )), we
get condition (H6)(iii), possibly reducing \~\delta , for all i large enough.

5.3. An example. The following example illustrates how Theorem 5.2(ii), in
which the normality hypothesis is understood in its nondegenerate form, can be used
to exclude the occurence of an infimum gap. Of course, Theorem 5.2(i) is of no use
here, because for problems of this nature, in which the initial state lies in the boundary
of the state constraint set, extremals are never normal in the sense of Definition 5.2.

Example 5.1. Consider the problem

(5.10)

\left\{             

minimize  - y(1)
over (u, y, v) \in L1([0, 1];\BbbR 2)\times W 1,1([0, 1];\BbbR 3 \times \BbbR ) satisfying
( \.y, \.v)(t) =

\Bigl( 
f(y(t)) + g1(y(t))u

1(t) + g2(y(t))u
2(t), | u(t)| 

\Bigr) 
,

(y, v)(0) = ((1, 0, 0), 0),
y(t) \in \Omega \forall t \in [0, 1], v(1) \leq 2, y(1) \in T,

in which \Omega := [ - 1, 1]3, T := [ - 1, 0]\times [0, 1]2, and

g1(x) :=

\left(  1
0
0

\right)  , g2(x) :=

\left(  0
 - 1
 - x1

\right)  , f(x) :=

\left(  0
x2x3

0

\right)  \forall x \in \BbbR 3 .
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Here, W = \{ (\omega 0, w) \in \BbbR \geq 0 \times \BbbR 2 : w0 + | w| = 1\} , V = \{ (\omega 0, w) \in W : w0 > 0\} , and
the associated extended problem is\left\{             

minimize  - y1(S)
over S > 0, (\omega 0, \omega 1, \omega 2, y0, y, \nu ) \in W(S)\times W 1,1([0, S];\BbbR \times \BbbR 3 \times \BbbR ) satisfying

( \.y0, \.y, \.\nu )(s) =
\Bigl( 
\omega 0(s), f(y(s))\omega 0(s) + g1(y(s))\omega 

1(s) + g2(y(s))\omega 
2(s), | \omega (s)| 

\Bigr) 
,

(y0, y, \nu )(0) = (0, (1, 0, 0), 0),
y(s) \in \Omega \forall s \in [0, S], (y0(S), y(S), \nu (S)) \in \{ 1\} \times T\times ] - \infty , 2].

As it is easy to see, an extended minimizer is given by the following feasible extended
process \=z := ( \=S, \=\omega 0, \=\omega , \=y0, \=y, \=\nu ), where

\=S = 2, (\=\omega 0, \=\omega ) = (\=\omega 0, \=\omega 1, \=\omega 2) = (1, 0, 0)\chi 
[0,1]

+ (0, - 1, 0)\chi 
]1,2]

,
(\=y0, \=y, \=\nu ) = (\=y0, \=y1, \=y2, \=y3, \=\nu ) = (s, 1, 0, 0, 0)\chi [0,1] + (1, 2 - s, 0, 0, s - 1)\chi [1,2] .

From the maximum principle [13, Thm. 1.1], \=z is a \Psi -extremal accordingly to Defini-
tion 5.2. Hence, there exist a set of multipliers (p0, p, \pi , \gamma , \mu ) and functions (m0,m)
with \pi = 0, since \nabla v\Psi \equiv 0 and \=\nu (2) = 1 < 2, m0 \equiv 0, as the state constraint does
not depend on time, and \mu ([0, 2]) = \mu ([0, 1]). Moreover, for every s \in [0, 1] the fact
that \=y(s) \in \Omega is equivalent to h(\=y(s)) \leq 0, with h(x1, x2, x3) := x1  - 1, so that the
condition m(s) \in \partial >

x h(\=y(0)) \mu -a.e. yields m(s) = (1, 0, 0) \mu -a.e. in [0, 1]. By the
adjoint equation, it follows that the path (p0, p) = (p0, p1, p2, p3) \equiv (\=p0, \=p1, \=p2, \=p3) is
constant. From the transversality condition

 - (q0, q1, q2, q3)(2) \in \gamma \{ (0, - 1, 0, 0)\} + \BbbR \times NT(0, 0, 0),

where q0 \equiv \=p0, and q(s) = (\=p1 + \mu ([0, 1]), \=p2, \=p3) for all s \in ]1, 2], we derive that \=p0,
\=p1 \in \BbbR , \=p2, \=p3 \geq 0, and q1(2) = \=p1 + \mu ([0, 1]) = \gamma  - \alpha 1 with \alpha 1 \geq 0. The maximality
condition in ]1, 2] implies that \=p2 = \=p3 = 0. In particular, from the relations

max
w1\in [ - 1,1]

\bigl\{ 
q1(s)w

1
\bigr\} 
\chi [0,1](s) = \=p0\chi [0,1](s) = 0,  - q1(s)\chi ]1,2](s) = 0,

we also deduce that \=p0 = 0, q1(s) = \=p1 + \mu ([0, s[) = 0 for a.e. s \in [0, 1[, and
q1(s) = \=p1 + \mu ([0, 1]) = \gamma  - \alpha 1 = 0 for every s \in ]1, 2]. In particular, q(s) = 0 for a.e.
s \in [0, 2], \mu ([0, s[) =  - \=p1 for a.e. s \in [0, 1] implies that (\=p1 \leq 0 and) \mu =  - \=p1\mu (\{ 0\} ),
while the last relation yields that \gamma = \alpha 1.

It is immediate to see that the set of degenerate multipliers (p0, p, \gamma , \mu ) with
p0 = p2 = p3 = 0, p1 =  - 1, \mu = \delta \{ 0\} , and \gamma = 0 meets all the conditions of the
maximum principle. So, \=z is an abnormal extremal. However, since \=w0 > 0 for a.e.
s \in [0, 1] and the control (\^\omega 0, \^\omega ) = (\^\omega 0, \^\omega 1, \^\omega 2) \equiv (0, - 1, 0) verifies (5.8), from Lemma
5.4 it follows that condition (H6) is satisfied. Therefore, in view of Theorem 5.2(ii), to
deduce that there is no infimum gap it is enough to observe that \=z is nondegenerate
normal, namely, that \gamma \not = 0 for all sets of multipliers as above, which in addition verify

\mu (]0, 2]) + \| q\| L\infty + \gamma \not = 0.

This is true, since the previous calculations imply that \| q\| L\infty = 0 and \mu (]0, 2]) = 0.

6. Proofs of Theorems 2.1 and 3.1. Preliminarily, let us observe that, since
the proofs involve only relaxed and extended processes with trajectories close to the
reference trajectory (\=\xi , \=y) and the controls assume values in compact sets, using stan-
dard cut-off techniques we can assume that all hypotheses (H2)--(H3)\prime are satisfied not
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ABNORMALITY, CONTROLLABILITY, AND GAP 301

only in \Sigma \theta , but in the whole space \BbbR 1+n. Hence, for any (\omega , \alpha , \lambda ) \in W1+n\times A1+n\times \Lambda n

there is a unique solution (\xi , y)[\omega , \alpha , \lambda ] to (3.3) defined on [0, S]. Similarly, for any
(\omega , \alpha ) \in W \times A, we will write y[\omega , \alpha ] to denote the corresponding solution to (1.1).

6.1. Proof of Theorem 3.1. The proof is divided into several steps in which
successive sequences of optimization problems are introduced that have as admissi-
ble controls only strict sense controls, and costs that measure how much a process
violates the constraints. Using the Ekeland principle, minimizers are then built for
these problems, which converge to the initial isolated process. Furthermore, applying
a maximum principle to these approximate problems with reference to the abovemen-
tioned minimizers, we obtain in the limit a set of multipliers with \gamma = 0 and verifying
the strengthened nontriviality conditions (3.1) for the relaxed problem with reference
to the isolated process (\=\omega , \=\alpha , \=\lambda , \=y).

Step 1. Define the function \Phi : \BbbR n+1 \rightarrow \BbbR , given by

\Phi (x, z) := dT(x) \vee z

and for any y \in W 1,1([0, S];\BbbR n), introduce the payoff

J(y) := \Phi 
\Bigl( 
y(S), max

s\in [0,S]
h(s, y(s))

\Bigr) 
.

Fix a sequence (\varepsilon i)i such that \varepsilon i \downarrow 0. Let (\~\omega i, \~\alpha i, \~\lambda i)i be a control sequence as in
hypothesis (H4), such that, eventually passing to a subsequence, for every i, the
corresponding trajectory (\~\xi i, \~yi) of (3.3) verifies

(6.1) \| (\~\xi i, \~yi) - (\=\xi , \=y)\| L\infty \leq \varepsilon i.

For every i, let \rho i \geq 0 verify

\rho 4i = sup
\bigl\{ 

J(y) : (\omega , \alpha , y) \in \Gamma , \| y  - \=y\| L\infty \leq 2\varepsilon i
\bigr\} 
.

By the Lipschitz continuity of \Phi , it follows that limi\rightarrow +\infty \rho 4i = 0. Moreover, \rho i > 0
for every i large enough, since \=z is an isolated process by Proposition 2.1.

In the following, as it is clearly not restrictive, we will always assume that the
properties valid from a certain index onward apply to each index i \in \BbbN . By well-
known continuity properties of the input-output map (\omega , \alpha ) \mapsto \rightarrow y[\omega , \alpha ], for every
\varepsilon i there exists \delta i > 0 such that if \| \omega  - \~\omega i\| L1 \leq \delta i, then \| y[\omega , \~\alpha i]  - \~yi\| L\infty \leq \varepsilon i.
According to hypothesis (H1) and Remark 2.1, for any i there exists an element of
the sequence (Vj)j , which we denote by V\delta i , and some \r \omega i \in V\delta i := L1([0, S];V\delta i) such
that \| \r \omega i  - \~\omega i\| L1 \leq \delta i. In particular, if we define

\v \omega i(s) :=

\Biggl\{ 
\~\omega i(s) a.e. s \in [0, \rho i],

\r \omega i(s) a.e. s \in ]\rho i, S],
(\v \alpha i(s), \v \lambda i(s)) := (\~\alpha i(s), \~\lambda i(s)) a.e. s \in [0, S],

and (\v \xi i, \v yi) := (\xi , y)[\v \omega i, . . . , \v \omega i, \v \alpha i, . . . , \v \alpha i, \v \lambda i], then \| \v \omega i  - \~\omega i\| L1 \leq \delta i and \v yi is a strict
sense trajectory such that \| (\v \xi i, \v yi) - (\~\xi i, \~yi)\| L\infty \leq \varepsilon i. From (6.1) it follows that

(6.2) \| (\v \xi i, \v yi) - (\=\xi , \=y)\| L\infty \leq 2\varepsilon i.

Hence, by the very definition of \rho i we deduce that for any i the process \v zi :=
(\v \omega i, \v \alpha i, \v \lambda i, \v \eta i, \v \xi i, \v yi), where \v \eta i \equiv 0, is a \rho 4i -minimizer for the optimal control problem:
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302 GIOVANNI FUSCO AND MONICA MOTTA

\bigl( 
\^Pi

\bigr) 
\left\{                       

Minimize J(y)

over the set of control (\omega , \alpha , \lambda , \eta ) \in V\delta i \times A \times \Lambda 1
n \times L1([0, S]; \{ 0, 1\} ),

and trajectories (\xi , y) \in W 1,1([0, S];\BbbR 1+n \times \BbbR n), satisfying
\.\xi (s) = \lambda (s) a.e. s \in [0, S],

\.y(s) = F(s, y, \~\omega i, \~\alpha i) + \eta (s)[F(s, y, \^\omega i, \^\alpha i) - F(s, y, \~\omega i, \~\alpha i)] a.e. s \in [0, \rho i],

\.y(s) = F(s, y(s), \omega (s), \alpha (s)) a.e. s \in ]\rho i, S],
(\xi , y)(0) = (0, \v x0),

where (\^\omega i, \^\alpha i) is as in hypothesis (H4). We call an element (\omega , \alpha , \lambda , \eta , \xi , y) verifying
the constraints in ( \^Pi) a process for problem ( \^Pi) and use \Gamma i to denote the set of
such processes. By introducing, for every (\omega \prime , \alpha \prime , \lambda \prime , \eta \prime , \xi \prime , y\prime ), (\omega , \alpha , \lambda , \eta , \xi , y) \in \Gamma i,
the distance

(6.3)
d((\omega \prime , \alpha \prime , \lambda \prime , \eta \prime , \xi \prime , y\prime ), (\omega , \alpha , \lambda , \eta , \xi , y))

:= \| \omega \prime  - \omega \| L1([0,S]) + \ell \{ s \in [0, S] : (\alpha \prime , \lambda \prime , \eta \prime )(s) \not = (\alpha , \lambda , \eta )(s)\} ,

we can make (\Gamma i,d) a complete metric space. Then, from Ekeland's principle it follows
that there exists a process zi := (\omega i, \alpha i, \lambda i, \eta i, \xi i, yi) \in \Gamma i, which is a minimizer of the
optimization problem

(Pi)

\Biggl\{ 
Minimize J(y) + \rho 2i

\int S

0
[| \omega (s) - \omega i(s)| + \ell i(s, \alpha (s), \lambda (s), \eta (s))] ds

over (\omega , \alpha , \lambda , \eta , \xi , y) \in \Gamma i,

where \ell i(s, a, \lambda , \eta ) := \chi \{ (a,\lambda ,\eta )\not =(\alpha i(s),\lambda i(s),\eta i(s))\} for any (s, a, \lambda , \eta ) \in [0, S]\times A\times \Lambda 1
n \times 

\{ 0, 1\} , and verifies

(6.4) d
\bigl( 
(\omega i, \alpha i, \lambda i, \eta i, \xi i, yi), (\v \omega i, \v \alpha i, \v \lambda i, \v \eta i, \v \xi i, \v yi)

\bigr) 
\leq \rho 2i .

Thus, by (6.2) and the continuity of the input-output map associated with the control
system (3.3), it follows that, eventually passing to a subsequence, as i \rightarrow +\infty ,

(6.5)
\bigm\| \bigm\| (\xi i, yi) - \bigl( 

\=\xi , \=y
\bigr) \bigm\| \bigm\| 

L\infty \rightarrow 0,
\bigl( 
\.\xi i, \.yi

\bigr) 
\rightharpoonup 

\bigl( \.\=\xi , \.\=y\bigr) weakly in L1.

Furthermore, hypothesis (H4) and (6.4) imply that, for every i, there exist some
nonempty subset Ei \subseteq \~Ei \subseteq [0, S] and some ri \in L1([0, S];\BbbR \geq 0) with ri \geq \~ri ( \~Ei, \~ri
as in (H4)) such that, as i \rightarrow +\infty , \ell (Ei) \rightarrow S, \| ri\| L1 \rightarrow 0, and

(6.6) (\omega i, \alpha i, \lambda i)(s) \in 
n\bigcup 

k=0

\{ (\=\omega k(s), \=\alpha k(s), ek)\} + (ri(s), 0, 0)\BbbB for a.e. s \in Ei.

From (6.5) and the fact that \=z is isolated, it follows that J(yi) > 0 for all i, namely,
at least one of the following inequalities holds true:8

(6.7) dT(yi(S)) > 0, ci := max
s\in [0,S]

h(s, yi(s)) > 0.

Step 2. For each i \in \BbbN , set

\~h(s, x, c) := h(s, x) - c \forall (s, x, c) \in \BbbR 1+n+1.

8Notice that, to any process (\omega , \alpha , \lambda , \eta , \xi , y) \in \Gamma i corresponds a strict sense process (\u \omega , \u \alpha , \u y),
where \u y \equiv y and (\u \omega , \u \alpha )(s) = (\~\omega i, \~\alpha i)(s)+\eta (s)(\^\omega i - \~\omega i, \^\alpha i - \~\alpha i)(s) a.e. s \in [0, \rho i], (\u \omega , \u \alpha )(s) = (\omega , \alpha )(s)
a.e. s \in ]\rho i, S].
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The process (zi, ci) = (\omega i, \alpha i, \lambda i, \eta i, \xi i, yi, ci) turns out to be a minimizer for

(Qi)

\left\{     
Minimize \Phi (y(S), c(S)) + \rho 2i

\int S

0
[| \omega (s) - \omega i(s)| + \ell i(s, \alpha (s), \lambda (s), \eta (s))] ds

over (\omega , \alpha , \lambda , \eta , \xi , y) \in \Gamma i, c \in W 1,1([0, S];\BbbR ), verifying

\.c(s) = 0, \~h(s, y(s), c(s)) \leq 0 \forall s \in [0, S].

Passing eventually to a subsequence, we may suppose that

either (a) ci > 0 for each i \in \BbbN or (b) ci \leq 0 for each i \in \BbbN .

Case (a). Preliminarily, we show that, for every i, one has h(s, yi(s)) < ci for all
s \in [0, \rho i]. This result is a straightforward consequence of the following lemma.

Lemma 6.1. For every i \in \BbbN , one has h(s, yi(s)) \leq 0 for all s \in [0, \rho i].

Proof. From a standard application of the Gronwall's lemma one can deduce that
there is \=C > 0 such that, for every i, one has

(6.8) | yi(s) - \~yi(s)| \leq \=C \ell (s, \eta i(\cdot )) \forall s \in ]0, \rho i],

where the nondecreasing map s \mapsto \rightarrow \ell (s, \eta i(\cdot )) is as in (3.9). Fix now i \in \BbbN . By
the Lebourg mean value theorem [29, Thm. 4.5.3], for every s \in [0, \rho i] there exists
(\zeta s0i , \zeta 

s
i
) \in \partial ch(s, xi(s)) for some xi(s) in the segment [yi(s) , \~yi(s)] \subseteq \BbbR n, such that9

h(s, yi(s)) - h(s, \~yi(s)) = \zeta si \cdot (yi(s) - \~yi(s))
=

\int s

0
\zeta si \cdot [F(\sigma , yi, \~\omega i, \~\alpha i) - F(\sigma , \~yi, \~\omega i, \~\alpha i)] d\sigma 

+
\int s

0
\eta (\sigma )\zeta si \cdot [F(\sigma , yi, \^\omega i, \^\alpha i) - F(\sigma , yi, \~\omega i, \~\alpha i)] d\sigma 

\leq 
\int s

0
\=CK

h
K

F
\ell (\sigma , \eta i(\cdot ))d\sigma  - \delta \ell (s, \eta i(\cdot )) \leq \ell (s, \eta i(\cdot ))

\bigl( 
 - \delta + \=CK

h
K

F
s
\bigr) 
\leq 0,

where the last relations follow from (3.8), (6.8), and the fact that s \leq \rho i \downarrow 0. Finally,
condition (3.5) implies the thesis.

Our aim is now to apply the Pontryagin maximum principle to problem (Qi)
with reference to the minimizer (zi, ci), for which, thanks to Lemma 6.1, the con-
straint is inactive on [0, \rho i]. By standard arguments (see the proof of [13, Thm. 2.2])

we deduce that \partial 
>

t,x,c
\~h(s, yi(s), ci) = \partial 

>

t,xh(s, yi(s)) \times \{  - 1\} and that, if (\beta yi
, \beta ci) \in 

\partial \Phi (yi(S), ci(S)), then there is some \sigma 1
i , \sigma 

2
i \geq 0 with \sigma 1

i + \sigma 2
i = 1, such that \beta yi

\in 
\sigma 1
i (\partial dT(yi(S)) \cap \partial \BbbB n), \beta ci = \sigma 2

i , and \sigma k
i = 0, k \in \{ 1, 2\} , when the maximum in

dT(yi(S))\vee ci(S) is strictly greater than the kth term in the maximization. Thus, the
maximum principle [29, Thm. 9.3.1] yields the existence of some multipliers (pi, \pi i) \in 
W 1,1([0, S];\BbbR n+1) associated with (yi, ci), \mu i \in NBV +([0, S];\BbbR ), \gamma i \geq 0, \sigma 1

i , \sigma 
2
i \geq 0

with
\sum 2

k=1 \sigma 
k
i = 1, and Borel measurable, \mu i-integrable functions mi : [0, S] \rightarrow \BbbR n,

such that
(i)\prime \| pi\| L\infty + \| \mu i\| TV + \gamma i + \| \pi i\| L\infty = 1;
(ii)\prime  - \.pi(s) \in co \partial x

\bigl\{ 
qi(s) \cdot F(s, yi, \omega i, \alpha i)(s)

\bigr\} 
for a.e. s \in [\rho i, S],

and \.\pi i(s) = 0 for a.e. s \in [0, S];
(iii)\prime  - qi(S) \in \gamma i \sigma 

1
i (\partial dT(yi(S)) \cap \partial \BbbB n), \pi i(0) = 0,  - \pi i(S)+

\int 
[0,S]

\mu i(d\sigma ) = \gamma i\sigma 
2
i ;

(iv)\prime mi(s) \in \partial 
>

x h (s, yi(s)) \mu i-a.e. s \in [0, S],
(v)\prime spt(\mu i) \subseteq \{ s : h (s, yi(s)) - ci = 0\} \subset [\rho i, S],

9Notice that by the boundedness of the dynamics, both \~yi(s) and yi(s) lay on \v x0+sK
F
\BbbB . Hence,

for i sufficiently large, s \in [0, \varepsilon ] and xi(s) \in \v x0 + \varepsilon \BbbB , where \varepsilon > 0 is as in Remark 3.1(4).
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(vi)\prime 1
\int \rho i

0
\eta i pi\cdot [F(s, yi, \^\omega i, \^\alpha i) - F(s, yi, \~\omega i, \~\alpha i)] ds\geq 

\int \rho i

0
\{ (1 - \eta i) pi \cdot [F(s, yi, \^\omega i, \^\alpha i)

 - F(s, yi, \~\omega i, \~\alpha i)] - 2\gamma i\rho 
2
i

\bigr\} 
ds; 10

(vi)\prime 2
\int S

\rho i
qi\cdot F(s, yi, \omega i, \alpha i)ds \geq 

\int S

\rho i

\bigl\{ 
qi \cdot F(s, yi, \omega , \alpha ) - 2\gamma i\rho 

2
i

\bigr\} 
ds for all (\omega , \alpha , \lambda , \eta ) \in 

V\delta i \times A \times \Lambda 1
n \times L1([0, S]; \{ 0, 1\} ),

where

qi(s) :=

\Biggl\{ 
pi(s) +

\int 
[0,s[

mi(\sigma )\mu i(d\sigma ), s \in [0, S[,

pi(S) +
\int 
[0,S]

mi(\sigma )\mu i(d\sigma ), s = S.

Observe that, for each i, by (ii)\prime and (iii)\prime we derive \| \mu i\| TV =
\int 
[0,S]

\mu i(ds) = \gamma i\sigma 
2
i

and \pi i \equiv 0. Furthermore, since \| mi\| L\infty \leq K
h
, then by (iii)\prime we get

\gamma i\sigma 
1
i = | qi(S)| \leq \| pi\| L\infty +K

h
\| \mu i\| TV .

By summing up these estimates and the nontriviality condition (i)\prime , we get

2\| pi\| L\infty + (2 +K
h
)\| \mu i\| TV + \geq \gamma i(\sigma 

1
i + \sigma 2

i  - 1) + 1 = 1.

Hence, scaling the multipliers, we obtain \| pi\| L\infty + \| \mu i\| TV = 1 and \gamma i \leq \~L :=
2 +K

h
.

Case (b). Now, ci \leq 0 for each i, so that (6.7) implies dT(yi(S)) > 0. Thus,
the process (\omega i, \alpha i, \lambda i, \eta i, yi, \xi i, \^ci) with \^ci := ci + \^\varepsilon for \^\varepsilon > 0 suitably small is still
a minimizer of problem (Qi) and, in addition, it verifies h(s, yi(s))  - \^ci < 0 for all
s \in [0, S] (namely, the state constraint is inactive on [0, S]). Hence, by applying
the maximum principle for problem (Qi) with reference to this minimizer we deduce
the existence of multipliers (pi, \pi i) \in W 1,1([0, S];\BbbR n+1), which satisfy conditions (i)\prime --
(vi)\prime with \pi i \equiv 0, \mu i = 0, \sigma 2

i = 0, and \gamma i > 0. In this case, from (iii)\prime we get
0 < \gamma i = | qi(S)| = | pi(S)| \leq \| pi\| L\infty , and, scaling the multipliers appropriately, we
obtain \| pi\| L\infty = 1 and \gamma i \leq 2 (\leq \~L as above).

Step 3. For either the case where ci > 0 for each i or the case where ci \leq 0
for each i, passing to the limit as i \rightarrow +\infty for suitable subsequences and arguing
as in the proof of [13, Thm. 2.2, Step 4], we can deduce the existence of a set of
multipliers p \in W 1,1([0, S];\BbbR n), \mu \in NBV +([0, S];\BbbR ) and a Borel measurable, \mu -
integrable function m : [0, S] \rightarrow \BbbR n, such that

(6.9)
\| p\| L\infty + \| \mu \| TV = 1, spt(\mu ) \subseteq \{ s \in [0, S] : h(s, \=y(s)) = 0\} ,
 - q(S) \in NT(\=y(S)), m(s) \in \partial >

x h(s, \=y(s)) \mu -a.e. s \in [0, S],

where

q(s) :=

\Biggl\{ 
p(s) +

\int 
[0,s[

m(\sigma )\mu (d\sigma ), s \in [0, S[,

p(S) +
\int 
[0,S]

m(\sigma )\mu (d\sigma ), s = S.

Furthermore,

(6.10) qi \rightarrow q in L1, pi \rightarrow p in L\infty , \.pi \rightharpoonup \.p weakly in L1.

10By (v)\prime it follows that qi \equiv pi on [0, \rho i]. Notice also that (vi)\prime 1 holds in a more general form; in
fact we can replace 1 - \eta i(\cdot ) in the right-hand side with any measurable function \eta : [0, \rho i] \rightarrow \{ 0, 1\} .
Furthermore, we assume without loss of generality diam(W ) = 1, since W is supposed to be compact,
so that | \omega (s) - \omega i(s)| + \ell i(s, \alpha (s), \lambda (s), \eta (s)) \leq 2 for any s \in [0, S].
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Now, let \Omega i := [\rho i, S] \cap Ei, where Ei is as in (6.6), so that \ell (\Omega i) \rightarrow S. Recalling
\partial x(q \cdot F) = q \cdot DxF, by (ii)\prime , (6.6), and (H3)(ii) we deduce, for a.e. s \in \Omega i,

\bigl( 
 - \.pi, \.\xi i, \.yi

\bigr) 
(s) \in 

n\bigcup 
k=0

\Bigl[ \bigl( 
co \partial x

\bigl\{ 
qi(s) \cdot F(s, yi, \=\omega 

k, \=\alpha k)(s)
\bigr\} \bigr) 

\times \{ (ek,F(s, yi, \=\omega 
k, \=\alpha k)(s))\} 

\Bigr] 
+
\bigl( 
(1 +K

h
)\varphi (ri(s))\BbbB n

\bigr) 
\times \{ 0\} \times 

\bigl( 
\varphi (ri(s))\BbbB n

\bigr) 
\subseteq 

n\bigcup 
k=0

\Bigl[ \bigl( 
co \partial x

\bigl\{ 
q(s) \cdot F(s, yi, \=\omega 

k, \=\alpha k)(s)
\bigr\} \bigr) 

\times \{ (ek,F(s, yi, \=\omega 
k, \=\alpha k)(s))\} 

\Bigr] 
+
\Bigl( \bigl( 

(1 +K
h
)\varphi (ri(s)) +K

F
| qi(s) - q(s)| 

\bigr) 
\BbbB n

\Bigr) 
\times \{ 0\} \times 

\bigl( 
\varphi (ri(s))\BbbB n

\bigr) 
.

By the properties of \varphi (\cdot ), the compactness of W , and the dominated convergence
theorem we have \varphi (ri) \rightarrow 0 in L1 as i \rightarrow \infty . Hence, all the hypotheses of the
compactness of trajectories theorem [29, Thm. 2.5.3] are satisfied, so that we can
pass to the limit and get\Bigl( 

 - \.p, \.\=\xi , \.\=y
\Bigr) 
(s) \in co

\Bigl( n\bigcup 
k=0

\bigl[ \bigl( 
co \partial x

\bigl\{ 
q(s) \cdot F(s, \=y, \=\omega k, \=\alpha k)(s)

\bigr\} \bigr) 
\times \{ (ek,F(s, \=y, \=\omega k, \=\alpha k)(s))\} 

\bigr] \Bigr) 
for a.e. s \in [0, S].

By the Caratheodory representation theorem, there exists a measurable function \lambda =
(\lambda 0, . . . , \lambda n) \in \Lambda n such that

(6.11)

\Bigl( 
 - \.p, \.\=\xi , \.\=y

\Bigr) 
(s) \in 

n\sum 
k=0

\lambda k(s)
\Bigl( 
co \partial x

\bigl\{ 
q(s) \cdot F(s, \=y, \=\omega k, \=\alpha k)(s)

\bigr\} 
\times \{ (ek,F(s, \=y, \=\omega k, \=\alpha k)(s))\} 

\Bigr) 
for a.e. s \in [0, S].

But now

\.\=\xi (s) =

n\sum 
k=0

\lambda k(s)ek =

n\sum 
k=0

\=\lambda k(s)ek a.e. s \in [0, S].

Therefore, for every k = 0, . . . , n+1, \lambda k(s) = \=\lambda k(s) a.e. s \in [0, S] and (2.2) is proved.
Let us prove (2.4). Taking (\omega , \alpha ) \in W\times A, by (H1) and Remark 2.1 there exists

a sequence (vi)i \in V such that vi \in V\delta i for any i and \| \omega  - vi\| L1 \leq \delta i \downarrow 0. By (vi)\prime 2,
we deduce that, for any i, one has\int S

0

qi(s) \cdot \.yi(s)\chi [\rho i,S](s)ds \geq 
\int S

0

\bigl\{ 
qi(s) \cdot F(s, yi, vi, \alpha )(s) - 2\gamma i\rho 

2
i

\bigr\} 
\chi [\rho i,S](s)ds.

Passing to the limit and using (6.5), (6.10) in the left-hand side and the dominated
convergence theorem in the right-hand side, we obtain\int S

0

q(s) \cdot \.\=y(s) ds \geq 
\int S

0

q(s) \cdot F(s, \=y(s), \omega (s), \alpha (s)) ds.

Since this last relation holds for any selector (\omega , \alpha ) \in W\times A, by a measurable selection
theorem we can conclude that

(6.12) q(s) \cdot \.\=y(s) = max
(w,a)\in W\times A

q(s) \cdot F(s, \=y(s), w, a) a.e. s \in [0, S].
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Finally, (6.12) trivially implies (2.4). Thus \=z is an abnormal extremal. To prove that
it is in fact a nondegenerate abnormal extremal, it remains to show that the above
multipliers verify the strengthened nontriviality condition

(6.13) \| q\| L\infty + \mu (]0, S]) \not = 0.

To this aim, assume by contradiction that \| q\| L\infty + \mu (]0, S]) = 0. Then, the non-
triviality condition (6.9) yields that \mu (\{ 0\} ) \not = 0 and p \equiv  - \mu (\{ 0\} )\zeta for some \zeta \in 
\partial >
x h(0, \v x0). For every i, by the maximality condition (vi)\prime 1 and condition (3.8), it

follows that

0 \geq 
\int \rho i

0

(1 - 2\eta i) p \cdot [F(s, yi, \^\omega i, \^\alpha i) - F(s, yi, \~\omega i, \~\alpha i)] ds

+

\int \rho i

0

\bigl\{ 
(1 - 2\eta i) (pi  - p) \cdot [F(s, yi, \^\omega i, \^\alpha i) - F(s, yi, \~\omega i, \~\alpha i)] - 2\gamma i\rho 

2
i

\bigr\} 
ds

\geq 
\int \rho i

0

p \cdot [F(s, yi, \^\omega i, \^\alpha i) - F(s, yi, \~\omega i, \~\alpha i)]\chi \{ \sigma : \eta i(\sigma )=0\} (s) ds

 - 
\int \rho i

0

p \cdot [F(s, yi, \^\omega i, \^\alpha i) - F(s, yi, \~\omega i, \~\alpha i)]\chi \{ \sigma : \eta i(\sigma )=1\} (s) ds

 - 2\rho i(KF
\| pi  - p\| L\infty + \~L\rho 2i )

\geq \mu (\{ 0\} ) \delta \ell (\rho i, 1 - \eta i(\cdot )) - 2K
F
K

h
\ell (\rho i, \eta i(\cdot )) - 2\rho i(KF

\| pi  - p\| L\infty + \~L\rho 2i )

\geq \rho i
\bigl[ 
\mu (\{ 0\} ) \delta  - \mu (\{ 0\} ) \delta \rho i  - 2K

F
K

h
\rho i  - 2K

F
\| pi  - p\| L\infty  - 2\~L\rho 2i

\bigr] 
> 0,

where we use the facts that \ell (\rho i, \eta i(\cdot )) \leq \rho 2i and consequently \ell (\rho i, 1 - \eta i(\cdot )) \geq \rho i - \rho 2i ,
which follow from (6.4). Thus, we obtain the desired contradiction.

6.2. Proof of Theorem 2.1. Preliminarily, observe that hypothesis (H3) can
be reduced to (H3)\prime . We can clearly take k \geq 1 in assumption (H3), but actually
we may (and we do) assume without loss of generality k \equiv 1. Indeed, reasoning
as in [8, sect. 2], we can introduce the time change t = \sigma (s) :=

\int s

0
k(\tau )d\tau , so that

(\^\omega , \^\alpha , \^\lambda , \^y) := (\omega , \alpha , \lambda , y)\circ \sigma  - 1 is a process for the transformed problem, with dynamics
\^F = 1

k

\sum n
j=0 \lambda 

j F(s, y, \omega j , \alpha j), verifying (H3) for k \equiv 1, and interval [0, \sigma (S)], if and
only if (\omega , \alpha , \lambda , y) is a process for the relaxed problem. Furthermore, the transformed
process, say, \^z, corresponding to \=z := (\=\omega , \=\alpha , \=\lambda , \=\xi , \=y) is isolated for the transformed
problem, and if \^z is an abnormal extremal for the transformed problem for some
(\^p, 0, \^\mu , \^m) as in Definition 2.4, then \=z is an abnormal extremal with (p, \gamma , \mu ,m) veri-
fying p = \^p \circ \sigma , \gamma = 0, d\mu = k d\^\mu , and m = \^m \circ \sigma .

First of all, we notice that (\=\xi , \=y) is a solution of the differential inclusion

\bigl( 
\.\xi , \.y

\bigr) 
(s) \in co

n\bigcup 
k=0

\{ (ek,F(s, y(s), \=\omega k(s), \=\alpha k(s)))\} a.e. s \in [0, S].

Let us fix a sequence \varepsilon i \downarrow 0. By the relaxation theorem [29, Thm. 2.7.2], there
exists a sequence of extended processes (\=\omega i, \=\alpha i, \=\lambda i)(s) \in 

\bigcup n
k=0\{ (\=\omega k(s), \=\alpha k(s), ek)\} 

for a.e. s \in [0, S] such that, for any i, the corresponding trajectory (\=\xi i, \=yi) :=
(\xi , y)[\=\omega i, . . . , \=\omega i, \=\alpha i, . . . , \=\alpha i, \=\lambda i] satisfies

\| (\=\xi i, \=yi) - (\=\xi , \=y)\| L\infty \leq \varepsilon i.

Let J(\cdot ) and (\rho i)i be as in the proof of Theorem 3.1 and (\delta i)i such that for every
\omega \in W with \| \omega  - \=\omega i\| L1 \leq \delta i, then \| y[\omega , \=\alpha i] - \=yi\| L\infty \leq \varepsilon i. Then, thanks to hypothesis
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(H1), for any i there exists \v \omega i \in V\delta i such that \| \v \omega i  - \=\omega i\| L1 \leq \delta i. As a consequence, if
we define \v \alpha i \equiv \=\alpha i, \v \lambda i \equiv \=\lambda i, and \v yi = y[\v \omega i, \v \alpha i], then \v yi is a strict sense trajectory that
satisfies \| \v yi  - \=yi\| L\infty \leq \varepsilon i and

(\v \omega i, \v \alpha i, \v \lambda i)(s) \in 
n\bigcup 

k=0

\{ (\=\omega k(s), \=\alpha k(s), ek)\} + (\v ri(s)\BbbB m)\times \{ 0\} \times \{ 0\} a.e. s \in [0, S]

for some measurable sequence \v ri \rightarrow 0 in L1. Therefore, the process (\v \omega i, \v \alpha i, \v \lambda i, \v \xi i, \v yi)
is a \rho 4i -minimizer for the optimal control problem

\bigl( 
\v Pi

\bigr) 
\left\{         

minimize J(y)

over (\omega , \alpha , \lambda , y, \xi ) \in V\delta i \times A \times \Lambda 1
n \times W 1,1([0, S];\BbbR n+n), satisfying

( \.\xi , \.y)(s) =
\bigl( 
\lambda (s), F(s, y(s), \omega (s), \alpha (s))

\bigr) 
a.e. s \in [0, S],

(\xi , y)(0) = (0, \v x0).

From now on, except for minor obvious changes, the proof proceeds as the proof of
Theorem 3.1 and is actually simpler, since we disregard the nondegeneracy issue.

7. Conclusions. In this article we provide sufficient conditions in the form of a
normality test for the absence of gap phenomena when we pass from a quite general
optimal control problem with nonsmooth data, endpoint and state constraints, to an
extended version of it, in a new unified framework, that embraces both the extension
of the class of ordinary controls to include impulse controls and convex relaxation.
When the initial point lies on the boundary of the constraint set, we also introduce
some nondegeneracy conditions under which we obtain a nondegenerate normality
test, which may detect the absence of a gap in a situation where the usual normality
test is of no use.

The uniform framework introduced in this paper may have implications for fu-
ture infimum gap research in several directions. On the one hand, it may be the
starting point for some generalizations, such as, for instance, (i) determine sufficient
conditions to avoid gap phenomena in free end-time optimal control problems with
measurable time dependence, in the presence of endpoint and state constraints. This
situation is completely different from the case of Lipschitz continuous time depen-
dence investigated in section 4, since the time-rescaling procedure used there is no
longer applicable. To our knowledge, there is only one result of this kind, which con-
cerns the classical extension by convex relaxation without state constraints (see [30]).
(ii) Establish under which general assumptions a strict sense local minimizer which is
not also an extended or a relaxed local minimizer satisfies the (extended) Pontryagin
maximum principle in abnormal form. Even in this case, results are known only for
the relaxed extension (see [25, 26, 30]).

On the other hand, by considering different extension/relaxation procedures for
classes of control systems not considered in this paper (such as distributed parameters
systems or multistage problems), it should be possible to adapt the analysis developed
in this work to weaken the regularity assumptions on the dynamics function F in the
control variable w. This would be a first step toward unifying the results on the
infimum gap phenomenon achieved by following the two different approaches (a) and
(b) described in the introduction, which is a long-standing issue. In fact, approach
(a) generally requires less regularity of F than (b).

Acknowledgment. We wish to thank the referees, whose valuable inquiries and
remarks have considerably helped us to improve the presentation of the results.
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