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Abstract Thegrowth and treatment of tumors is an important problem to society that involves themanifestation
of cellular phenomena at length scales on the order of centimeters. Continuummechanical approaches are being
increasingly used to model tumors at the largest length scales of concern. The issue of how to best connect
such descriptions to smaller-scale descriptions remains open. We formulate a framework to derive macroscale
models of tumor behavior using the thermodynamically constrained averaging theory (TCAT), which provides
a firm connection with the microscale and constraints on permissible forms of closure relations. We build
on developments in the porous medium mechanics literature to formulate fundamental entropy inequality
expressions for a general class of three-phase, compositional models at the macroscale. We use the general
framework derived to formulate two classes ofmodels, a two-phasemodel and a three-phasemodel. The general
TCAT framework derived forms the basis for a wide range of potential models of varying sophistication, which
can be derived, approximated, and applied to understand not only tumor growth but also the effectiveness of
various treatment modalities.

Keywords TCAT · Porous medium · Multiphase flow · Species transport · Model formulation ·
Mass transfer · Reactions

List of symbols

A Chemical affinity
C Green’s deformation tensor
C Molar species concentration
ĉ Nonnegative solid compressibility coefficient
D̂ Second-rank symmetric dispersion tensor

d Rate of strain tensor, d =
[
∇v + (∇v)

T
]
/2

E Internal energy density
E Partial mass energy
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Eα∗∗ Macroscale entity-based total energy conservation equation, Eq. (3)
F Smooth differential functional form
f General scalar function
G Geometric orientation tensor, Gα = I − I′α for α ∈ II, Gwns = I − I′′wns
κ→α

G0 Macroscale transfer rate of potential energy due to variability of mass exchange per volume
g Body force per unit mass, gravity
H Partial mass enthalpy
h Energy source density
hα
0 Macroscale energy source density for entity α due to body force and velocity fluctuations

I Identity tensor
I′ Unit tensor in a surface, I′α = I − nβnβ for α ∈ II, β ∈ I+cα
I′′ Unit tensor in a common curve, I′′wns = lwns lwns
I Set of entity indices
Icα Connected set of indices for entity α, Icα = I+cα ∪ I−cα
I+cα Connected set of indices of one dimension higher than entity α
I−cα Connected set of indices of one dimension lower than entity α
If Set of fluid-phase indices
II Set of interface indices
IP Set of phase indices
Irxniα Set of reactions involving the i species in the α entity
Irxnα Set of reactions in the α entity
Is Set of species indices
Is\N Set of species indices except species N
I\S Set of entity indices except the solid phase

Jαβ
α Macroscale surface curvature, Jαβ

α = 〈∇′ · nα〉Ωαβ,Ωαβ for α, β ∈ If
j Jacobian
K̂ Nonnegative reaction rate coefficient
K Gaussian curvature
KE Kinetic energy per mass due to velocity fluctuations
K̂M Mass transfer coefficient
k̂wn
1 Parameter for rate of relaxation of interfacial area
l Unit vector tangent to a common curve
iκ→iα
M Macroscale transfer rate of mass of species i in entity κ to species i in entity α per volume

Miα∗∗ Macroscale species mass conservation equation, Eq. (1)
MW Molecular weight
N Number of chemical species
n Unit normal vector
Pα∗∗ Macroscale entity-based momentum conservation equation, Eq. (2)
p Pressure
κ→α

Q1 Macroscale transfer rate of internal energy from entity κ to entity α per volume
κ→α

Q∗
1 Macroscale energy exchange between entities which dimensionalities differ by two

q Non-advective energy flux
qg0 Non-advective energy flux associated with mechanical processes
R Molar rate of reaction
R̂ Positive definite resistance tensor
Rg Ideal gas constant
r Mass production rate density
κ→α

T0 Macroscale transfer rate of momentum from entity κ to entity α per volume
κ→α

T∗ Macroscale momentum exchange between entities which dimensionalities differ by two
t Stress tensor
t Time



A continuum mechanical framework for modeling tumor growth and treatment 463

u Diffusion/dispersion velocity, uiα = viα − vα , uiα = viα − vα

v Velocity
W Weighting function for averaging
w Velocity of a domain boundary
x Mole fraction

Greek letters

γ Interfacial or common curve lineal tension
ε Porosity
εα Specific entity extent measure
θ Temperature
κG Geodesic curvature, κGwns = lwns · ∇′′lwns · nws
κN Normal curvature, κNwns = lwns · ∇′′lwns ·ns
	 Entropy production rate
μ Chemical potential
ν Molar stoichiometric reaction coefficient
ρ Mass density
ϕws,wn Macroscale measure of contact angle
χαs
s Fraction of the solid surface in contact with fluid phase α, χαs

s = εαs/(εws + εns), α ∈ If

χn Specific Euler characteristic of the non-wetting fluid phase, defined in Eq. (57)
ψ Body force potential per mass
� Spatial domain
ω Mass fraction

Subscripts and superscripts

c Chemotherapeutic drug species qualifier
e Extra-cellular matrix species qualifier
f Fluid phase qualifier
f s Fluid–solid interface qualifier
g Glucose species qualifier
i Chemical species qualifier
k Chemical reaction qualifier
l Living tumor species qualifier
n Non-wetting phase qualifier
n Necrotic tumor species qualifier
N Reference chemical species qualifier
ns Qualifier for interface between non-wetting and solid phases
o Oxygen species qualifier
s Solid-phase qualifier
w Wetting-phase qualifier
wn Qualifier for interface between wetting and non-wetting phases
wns Qualifier for common curve where wn, ws and ns interfaces meet
ws Qualifier for interface between wetting and solid phases
α Entity qualifier
β Entity qualifier
κ Entity qualifier
α Superscript indicating mass average over entity α

α Superscript indicating uniquely defined average over entity α
∗ Indicates a concentrated force in an exchange between entities with a difference in dimension-

ality equal two
− Above a superscript refers to a density weighted macroscale average
= Above a superscript refers to a uniquely defined macroscale average
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eq Subscript indicating the property is at equilibrium
w Water species qualifier
x Collective background species qualifier for the non-wetting fluid phase
y Collective background species qualifier for the solid phase
z Collective background species qualifier for the wetting fluid phase

Subscripted entity/species qualifiers refer to microscale quantities, and superscripted entity/species qualifiers
refer to macroscale quantities. If both entity/species subscript and superscript are present, the quantity is
averaged over the entity boundary

Other mathematical symbols

Dα/Dt Material derivative of entity α, Dα/Dt = ∂/∂t + vα · ∇
∇′ Microscale surficial del operator, ∇′ = I′α · ∇
∇′′ Microscale curvilinear del operator, ∇′′ = I′′α · ∇
〈 fα〉�β,�γ ,W = ∫

�β

W fαdr/
∫

�γ

Wdr General average of microscale property fα

〈 fα〉�β,�γ = 〈 fα〉�β,�γ ,1

f β
α = 〈 fα〉�β,�β , General average
f α = 〈 fα〉�α,�α , Intrinsic average

f β
α = 〈 fα〉�β,�β,ρα , General density-weighted average
f α = 〈 fα〉�α,�α,ρα , Intrinsic density-weighted average
f iα = 〈 fiα〉�α,�α,ρα , Intrinsic density-weighted average

f β
iα = 〈 fiα〉�β,�β,ραωiα , General species mass density weighted average

f iα = 〈 fiα〉�α,�α,ραωiα , Intrinsic species mass density weighted average

Abbreviations

SEI Simplified entropy inequality
TCAT Thermodynamically constrained averaging theory

1 Introduction

Tumor growth and treatment is an area of science of significant interest to society. Ideally, scientists wish to
understand fundamental aspects of tumor growth in sufficient detail to enable accurate mathematical models
of the behavior at the length scale of interest in humans, which is on the order of centimeters. The problem
that arises is a common problem in science and applied mathematics: how to most efficiently and effectively
account for important small-scale behavior in larger scale models. To understand the issue more completely,
one must consider the scales involved, which we will identify as the molecular scale, the microscale, and the
macroscale.

At the molecular scale, one might endeavor, for example, to understand the processes and reactions that
lead to the damage and repair of DNA, gene variations important for specific types of cancer, the role of
environmental factors, and interactions among contributing factors. Within this context, important fundamen-
tal understanding, such as the hallmarks of cancer [24,25], emerges. Such fundamental, small-scale work is
a principal focus of the medical research community and much has been learned over the last few decades.
However, a disconnect exists between the molecular scale of such fundamental work and the typical length
scale of tumors in humans. As a result, it is not obvious how molecular-scale studies can be used to describe
tumor growth [39]. Because of this, tumor growth is often described based upon purely statistical represen-
tations of empirical fits to observations [7,8,27,34,58,62]. While such fits to data may be good, mechanistic
understanding is lacking from such approaches. Put another way, empirical fits are not based on system physics
and thus provide an insufficient basis fundamentally to describe factors affecting tumor growth and also to
make meaningful, mechanistically based descriptions of how fundamental changes in a system will affect
tumor growth.
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As an alternative, microscale continuum methods can be used to describe tumor growth. The microscale
is a small scale at which continuum mechanical approaches are valid. Even though tumors occur in biological
systems, it can be reasoned that common continuummechanical notions such as conservation principles, mass
transfer, reactions, and thermodynamics are applicable and are relatively well understood at the microscale.
The challenge that emerges from a microscale modeling approach is the need to represent meaningfully the
processes that occur in a wide variety of matter types including healthy tissue, active tumor regions, necrotic
tumor regions, extra-cellular matrix regions, and blood vessels. At the microscale, the domains of each of these
entities change with time; interfaces form between the entities; and common curves form where three entities
meet. Because of this inherent complexity, and the length scales of interest, microscale modeling approaches
are not practical or feasible for the mechanistic description of the dynamics of tumors in a living being.

Just as averaging of molecular-scale phenomena is necessary to formulate a microscale continuum model
that abstracts away a portion of the mechanistic detail, larger-scale averaging can be performed to derive a
macroscale representation from a microscale formulation. At the macroscale, one endeavors to describe the
dynamics of the entities (phases, interfaces, common curves) involved in an averaged sense with notions such
as volume fractions and other specific entity measures—concepts that do not exist at the microscale. A point
in a macroscale model thus represents the averaged conditions embodying all entities around the centroid of
a small region. Such models can be formulated in a deterministic sense if and when the averaged conditions
are insensitive to small changes in the scale of the averaging region. Useful macroscale models must account
for subscale behavior in an approximate, averaged sense; but they must also mechanistically describe tumor
dynamics at the scale of applications.

A variety of approaches exist to formulate macroscale models of tumor growth [57]. More broadly consid-
ered, a variety of homogenization and averaging methods have been applied to develop macroscale models of
porous medium systems [2,21]. Typically macroscale model formulations are formed and closed phenomeno-
logically directly at the macroscale. Examples for this are the multiparameter models based on mixture theory
[26,37,50,51].While an expedient approach, phenomenological macroscale models do not provide a firm con-
nection with the microscale and cannot be assured to be consistent with the second law of thermodynamics.

Recent continuum mechanics work has resulted in the development of the thermodynamically constrained
averaging theory (TCAT) [15,19,44]. The TCAT approach formally averages microscale quantities to the
macroscale, including not only phases but also interfaces and common curves, incorporates thermodynamics
in a scale-consistent manner, and results in entropy inequality expressions that can be used to guide the
formulation of models. TCAT also includes evolution equations for the geometry of the phase regions and
their boundaries that reduce the closure problem, are based upon mathematical theorems, and are separate
from all conservation principles. Recently, notions from integral and differential geometry have been used
rigorously to address closure relations needed to describe capillary pressure [42,47]. Because macroscale
TCAT models are firmly connected with microscale antecedents, experimental observations or computational
simulations at the microscale can be averaged to the macroscale and used to validate a resultant macroscale
model. Considerable microscale resources exist, which can be leveraged to advance macroscale models.

While some aspects of TCAT formulations have been used to model tumor growth [31,54], a complete and
rigorous hierarchy of models formulated and closed using TCAT procedures has not yet been accomplished.
Such an advancement is possible by leveraging recent advances in the TCAT approach and applying these to
tumor growth and treatment. This advancement provides the development of a hierarchy of models of varying
sophistication that can be applied to this important class of problems.

2 Goal and objectives

The overall goal of this work is to develop a framework for modeling tumor growth and treatment at the
macroscale. The specific objectives of this work are: (1) to summarize available macroscale conservation,
potential, and thermodynamic equations applicable to modeling tumors; (2) to provide a general simplified
entropy inequality (SEI), which can be used to guide model closure; (3) to formulate a rigorous two-phase
macroscale model for tumor growth; (4) to formulate a rigorous three-phase macroscale model for tumor
growth; and (5) to discuss ways in which the model-building framework can be used to formulate models to
describe a wide variety of more complex and detailed systems than the ones provided explicitly herein.
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3 TCAT approach

The approach to be taken to meet the goal and objectives of this work is to leverage existing TCAT model-
building components [19,52] to formulate models for tumor growth. The advantage of this approach is one of
relative simplicity and expediency: using the available formulated components, model building is relatively
straightforward; and the substantial amount of effort andmanipulations needed to derive an SEI are eliminated.
The disadvantage of this approach is that it could be viewed as jumping into the middle of a carefully struc-
tured model formulation approach. To circumvent this potential misperception, a brief summary of the TCAT
approach is provided to orient readers who are not yet familiar with TCAT. General guidance for the TCAT
approach is available in the literature [15,19,44–46], and specific details of a two-fluid phase compositional
model for a porous medium system have also been presented [52].

In general, the TCAT approach is initiated with a general, minimal description of the system to be modeled.
This description includes the entities to be modeled, specification of the physical and chemical phenomena
occurring within each entity, and the interactions among entities. For the case of concern herein, entities
considered include three phases, three interfaces, and a common curve. Entropy, momentum, and energy are
resolved at the entity level, and the chemical composition of the mass of each entity is resolved. Classical
irreversible thermodynamics is used, and continuum methods are assumed to be valid and deterministic at the
macroscale.

All conservation, balance, thermodynamic, and potential equations are formulated at the microscale and
then systematically averaged to the macroscale. The macroscale balance of entropy is arranged to solve for
the entropy density production rate, which is known to be a nonnegative quantity from the second law of
thermodynamics. All macroscale conservation and potential equations are arranged such that the terms in
the equation sum to zero. Each collection of terms is multiplied by a Lagrange multiplier and added to a
system entropy balance. The Lagrange multipliers are solved for to eliminate material derivatives to the extent
possible, yield a dimensionally consistent equation, and connect the processes that produce entropy to the rate
of entropy production. Rearrangement of this augmented entropy inequality and reduction to a strict flux–force
form, requiring approximations, is a key archival result of the TCAT approach. All of themanipulations leading
up to this equation do not need to be repeated for each application that uses the SEI for a given class of models.
Furthermore, macroscale conservation and evolution equations are also already available and can be used to
formulate models. The chief remaining work when leveraging an extant model hierarchy is thus to use the SEI
to formulate model closure relations and combine these equations with conservation and evolution equations
to produce a well-posed model. Because of the general approach taken that includes minimal assumptions, a
typical SEI supports the formulation of a hierarchy of models of varying sophistication, which results from
applying secondary restrictions to the general SEI (e.g. entities of importance and their properties, specific
forms of closure relations). This brief overview of the TCAT approach will be detailed in the sections that
follow and used to produce example tumor growth models.

We will consider tumor growth models that can be idealized as containing two fluid phases and one solid
phase. Compositional effects for mass will be important. An existing TCAT model hierarchy that meets these
specifications has been derived [52] and will be relied upon as a foundation for the TCAT modeling approach
that follows. Use of this hierarchy will simplify the model formulation process.

4 Macroscale equations

Macroscale equations relied upon in the TCAT approach to form an entropy inequality include conservation
equations, a balance of entropy equation, thermodynamic equations, and potential equations. In this section,
we summarize only the conservation equations, which are used to construct the target models of concern in this
work. Details of the derivation of these equations are available in the literature [19,52]. The approach followed
in this work leverages available results without the burden of reproducing these model components—greatly
simplifying the model-building process.

We make use of the conservation equations for mass, momentum, and energy, which can be written in a
common form for all species in all entities. The compositional, mass–conservation equation for species i in
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entity α is

Miα∗∗ =
Dα

(
εαραωi α

)

Dt
+ εαραωi αI:dα + ∇ ·

(
εαραωi αuiα

)

− εαr iα −
∑

κ∈Icα

iκ→iα
M = 0 for i ∈ Is, α ∈ I, (1)

where εα is the entity extent measure (volume fraction, specific interfacial area, specific common curve length),

ρα is the mass density, ωi α is the mass fraction, I is the identity tensor, dα is the rate of strain tensor, uiα is
the deviation velocity, r iα is the rate of mass production of species i resulting from all reactions in entity α,
iκ→iα
M represents the rate of mass transfer of species i from connected entity κ to entity α, Is is the index set of

chemical species, Icα is the index set of connected entities, and I is the index set of all entities in the system.
Superscripted entity and species qualifiers denote macroscale quantities.

In general, the set Icα may contain entities of lower dimensions and higher dimensions than the dimension
of the α entity. For example, the closed set of the solid phase adjoins the wetting fluid phase and the non-wetting
fluid phase at the interface that forms between the respective pairs of phases, and the common curve formed
at the intersection of the solid phase and the two fluid phases. Thus, Ics = {ws, ns, wns}, where s in an index
specifying the solid phase, and the grouping of indices refer to the respective interface and common curve
entities. We will restrict the inter-entity transfer of mass and entropy to entities of at most one dimension
higher or lower than a reference entity. For momentum and energy, we will allow a concentrated force along
the common curve to act on the solid phase in the most general case, and the inter-entity transfer of internal
energy will include interactions between the common curve and the solid phase as well. These restrictions are
incorporated into the form of the conservation and balance equations written.

Conservation of momentummay be considered from either a compositional or an overall entity perspective
[17]. Taking the latter approach, the momentum equation is written as

Pα∗∗ =
Dα

(
εαραvα

)

Dt
+ εαραvαI:dα −

∑
i∈Is

εαραωi αgiα

−
∑

κ∈Icα

∑
i∈Is

iκ→iα
M

(
vα,κ + uα,κ

i

)
−

∑
κ∈Icα

κ→α

T0

− ∇ ·
(
εαtα

)
= 0 for α ∈ I, (2)

where vα is the velocity, giα is the body force per unit mass acceleration vector, vα,κ is the velocity of flow in

an entity averaged over the boundary of the entity, uα,κ
i is the deviation velocity in an entity averaged over the

boundary of the entity, tα is the stress tensor,
κ→α

T0 represents the transfer of momentum from entity κ to entity
α, and singular, or concentrated, forces of a common curve acting on a solid phase are included [19].

Conservation of energy equations is written for an overall entity as

Eα∗∗ = DαEα

Dt
+ vα ·

Dα
(
εαραvα

)

Dt
+
∑
i∈Is

⎛
⎝Kiα

E + uiα · uiα
2

⎞
⎠ Dα

(
εαραωi α

)

Dt

− vα · vα

2

∑
i∈Is

Dα
(
εαραωi α

)

Dt
+
∑
i∈Is

εαραωi α D
α

Dt

⎛
⎝Kiα

E + uiα · uiα
2

⎞
⎠

+
⎡
⎣Eα + εαρα v

α · vα

2
+
∑
i∈Is

εαραωi α

⎛
⎝Kiα

E + uiα · uiα
2

⎞
⎠
⎤
⎦ I:dα
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−
∑
i∈Is

εαραωi αgiα ·
(
vα + uiα

)
− εαhα

0 − εαhα

−
∑

κ∈Icα

∑
i∈Is

iκ→iα
M

⎡
⎣E

α,κ

i +
(
vα,κ + uα,κ

i

)
·
(
vα,κ + uα,κ

i

)

2
+ K α,κ

Ei

⎤
⎦

−
∑

κ∈Icα

κ→α

T0 · vα,κ −
∑

κ∈Icα

κ→α

Q1

− ∇ ·
(
εαtα · vα + εαqα

)
= 0 for α ∈ I, (3)

where Eα is the internal energy density, Kiα
E is the kinetic energy per unit mass resulting from velocity

fluctuations, E
α,κ

i is the partial mass energy averaged over the boundary of the entity, K α,κ
Ei is the average

deviation kinetic energy averaged over the boundary of the entity, qα is the non-advective energy flux, hα is

the energy source density, hα
0 is the energy source density due to body force and velocity fluctuations, and

κ→α

Q1
is the transfer of internal energy from entity κ to entity α other than by phase change.

Equations (1)–(3) are the basic conservation equations needed to formulate the models of interest in this
work. Additional, and available, equations needed for model simplification, closure, and completion will be
introduced as needed in the formulation process.

5 Simplified entropy inequality

A key concept from the TCAT approach is the use of an entropy inequality to formulate closure relations that
are consistent with the second law of thermodynamics. A strict flux–force form of the entropy inequality is
needed to satisfy this purpose; this form is referred to as the SEI. The formulation of an SEI requires skill and
substantial mathematical manipulations. However, once derived the SEI can be used without understanding
all of the details needed to arrive at the final form. A general SEI is available for the class of model considered
in this work [52] and can be written as
∑
α∈If

1

θα

(
εαtα + εα pαI

)
:dα + 1

θ s

(
εsts − εsts

)
:ds

+
∑
α∈II

1

θα

[
εαtα − εαγ α

(
I − Gα

)] :dα

+ 1

θwns

[
εwnstwns + εwnsγ wns (I − Gwns)] :dwns

−
∑
α∈I

⎡
⎣εαqα + εαqα

g0 +
∑
i∈Is

εαραωi α

⎛
⎝μiα + Kiα

E + uiα · uiα
2

⎞
⎠ uiα

⎤
⎦ · ∇

(
1

θα

)

−
∑
α∈I

∑
i∈Is\N

1

θα
εαραωi αuiα · ∇

⎡
⎣μiα + Kiα

E + uiα · uiα
2

+ ψ iα

−
⎛
⎝μNα + K Nα

E + uNα · uNα

2
+ ψNα

⎞
⎠
⎤
⎦

−
∑
α∈I

∑
i∈Is

1

θα

⎛
⎝μiα + Kiα

E + uiα · uiα
2

+ ψ iα

⎞
⎠ εαr iα

+
∑
α∈I

∑
i∈Is

1

θα
〈riαψiα〉Ωα,Ω
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+
∑
α∈If

∑
κ∈Icα

∑
i∈Is

iα→iκ
M

⎡
⎣ 1

θα

⎛
⎝μiα + Kiα

E + uiα · uiα
2

+ ψ iα

⎞
⎠

− 1

θκ

⎛
⎝μiκ + Kiκ

E + uiκ · uiκ
2

+ ψ iκ

⎞
⎠
⎤
⎦

+
∑

κ∈Ics

∑
i∈Is

is→iκ
M

⎡
⎣ 1

θ s

⎛
⎝μis + Kis

E + uis · uis
2

+ ψ is + σ s:Cs

3ρs j s

⎞
⎠

− 1

θκ

⎛
⎝μiκ + Kiκ

E + uiκ · uiκ
2

+ ψ iκ

⎞
⎠
⎤
⎦

+
∑
α∈II

∑
i∈Is

iα→iwns
M

[
1

θα

⎛
⎝μiα + Kiα

E + uiα · uiα
2

+ ψ iα

⎞
⎠

− 1

θwns

⎛
⎝μiwns + Kiwns

E + uiwns · uiwns

2
+ ψ iwns

⎞
⎠
]

−
∑
α∈If

{
α→wn
Q1 + α→wn

G0 +
∑
i∈Is

(
E

wn
iα + Kwn

Eiα + uwn
iα · uwn

iα

2
+ ψwn

iα

)
iα→iwn

M

+
⎡
⎣α→wn

T0 +
∑
i∈Is

(
vwn
α − vs

2
+ uwn

iα

)
iα→iwn

M

⎤
⎦ ·

(
vwn
α − vs

)

−
(
Dsεα

Dt
− χαs

s
Dsε

Dt

)
pwn
α

}(
1

θα
− 1

θwn

)

−
∑
α∈If

{
α→αs
Q1 + α→αs

G0 +
∑
i∈Is

(
E

αs
iα + K αs

Eiα + uαs
iα · uαs

iα

2
+ ψαs

iα

)
iα→iαs
M

+
⎡
⎣α→αs

T0 +
∑
i∈Is

(
vαs
α − vs

2
+ uαs

iα

)
iα→iαs
M

⎤
⎦ ·

(
vαs
α − vs

)

− χαs
s

Dsε

Dt
pαs
α

}(
1

θα
− 1

θαs

)

−
∑

κ∈I−
cs

{
s→κ

Q1 + s→κ

G0 +
∑
i∈Is

(
E

κ

is + K κ
Eis + uκ

is · uκ
is

2
+ ψκ

is

)
is→iκ
M

+
⎡
⎣s→κ

T0 +
∑
i∈Is

(
v κ
s − vs

2
+ uκ

is

)
is→iκ
M

⎤
⎦ ·

(
v κ
s − vs

)

− χκ
s
Dsε

Dt
(ns · ts · ns)κs

}(
1

θ s
− 1

θκ

)

−
{

wn→wns
Q1 + wn→wns

G0 +
∑
i∈Is

(
E

wns
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	α ≥ 0, (4)

where all symbols are defined in the notation section and the interactions between the solid phase and the
common curve have been explicitly noted.

The general SEI given by Eq. (4) contains the flux–force pairs that can produce entropy in a system.
While they may appear overwhelming to the non-specialist, a brief review of the terms by line number can
aid understanding of the fluxes considered for which closure relations will be developed. Lines 1–3 are fluxes
involving stress tensors and their products with deformation rate tensors. Line 4 is a conductive heat transfer
and deviation term flux and their product with a temperature gradient force. Lines 5 and 6 consist of a deviation
velocity flux and a force that is a gradient in potential terms, and higher order terms in deviation velocities.
Lines 7 and 8 are reaction fluxes resulting from potentials and deviation quantities grouped as forces. Lines
9–14 represent inter-entity mass transfer resulting from differences in potentials and deviation quantities. Lines
18–31 express the inter-entity transfer of energy resulting from forces that are a difference in temperatures.
Lines 32–46 are momentum fluxes resulting from differences in entity velocities. Lines 47 and 48 are fluxes
in extent measures resulting from a deviation in capillary pressure between the fluid phases from equilibrium.
Lines 49 and 50 are changes in porosity resulting from a balance of forces in the direction normal to the solid
phase. Lines 51 and 52 represent a change in the wetted fraction of the solid phase resulting from motion of
the common curve due to a balance of forces acting tangent to the surface of the solid phase, Lines 53 and 54
express the changes in the porosity resulting from common curve forces acting normal to the solid surface, and
Line 55 is the total entropy density production rate of the system. Because each member of the set of fluxes is
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independent of all other members of the set of fluxes, the fluxes can be considered in turn to derive permissible
forms of the closure relations. Examples of how to do so are available in the literature [19,28,52]; examples
for modeling tumors are detailed in the following sections.

6 Two-phase system

6.1 Description

The purpose of this section is to consider a relatively simple macroscale model to describe tumor growth.
This example will enable a straightforward exposition demonstrating the TCAT model building and closure
process. Since the focus is on the model formulation process, neither the model solution nor evaluation will
be considered herein.

We wish to use the TCAT model components summarized above to formulate a macroscale model con-
sisting of two phases: a solid phase denoted with the index s, and a single fluid phase denoted with the index
f , which is a subset of the more general two-fluid phase TCAT model hierarchy that is summarized above.
The solid phase consists of the extra-cellular matrix (ECM), live and necrotic tumor cells, glucose, oxygen,
water, and a chemotherapeutic drug. These species are important for the solid phase because of the separation
of mass transfer and homogeneous phase reactions, and the conceptual representation of the operative pro-
cesses affecting tumor growth. The fluid phase represents the interstitial fluid, which consists of a dominant
water species, glucose, oxygen, and a chemotherapeutic drug. Both phases contain a background species that
comprises all other species that are not explicitly considered. Lysis of necrotic cells is also considered.

Based on the above description, the index set of entities is

I = { f, s, f s}, (5)

where f s denotes the fluid–solid interface.
The index set of the nine species considered is denoted

Is = {l, n, e, g, o, c, w, x, y}, (6)

where l denotes a living tumor species, n a necrotic tumor species, e the extra-cellularmatrix species, g glucose,
o oxygen, c a chemotherapeutic drug, w the water, x a collective background species for the fluid phase, and
y a collective background species for the solid phase. The background species represent a set of non-reactive
background species that do not undergo mass transfer. The solid phase may contain all species but x , and the
fluid phase may contain the g, o, c, w and x species.

Primary restrictions specify the general basis for the TCAT model framework to be used. The primary
restrictions for the model are: continuum mechanics represents the system of concern with sufficient fidelity;
a clear separation of length scales exists between the microscale and the macroscale; and classical irreversible
thermodynamics can be used to describe the system of concern. Secondary restrictions are specified to simplify
the general TCAT model hierarchy to the simplest possible form that represents the system of concern. These
restrictions have implications for model formulation and closure, including simplification of the general SEI.
The secondary restrictions for this application are: (SR1-2P) the system consists of one fluid phase, one
solid phase, and an interface; (SR2-2P) the system is isothermal; (SR3-2P) the interface is massless, (SR4-2P)
kinetic energy terms are higher order and of negligible importance; (SR5-2P) body force vectors and potentials
are identical for all species; (SR6-2P) chemical reactions can be formulated in terms of chemical affinities;
(SR7-2P) inertial terms in the momentum equations are insignificant due to the slow dynamics of the systems
considered; (SR8-2P) density-weighted, area-averaged velocities and deviation velocities are equal to their
volume-averaged counterparts; (SR9-2P) the Lagrangian stress tensor product with the Green’s deformation
tensor can be neglected from the driving force difference for mass transfer to the solid phase; and (SR10-2P)
the activity coefficient of all species is unity.

6.2 Formulation

The two-phasemodel described abovewill be formulated into a closedmathematical model. The steps involved
in doing so are detailed in the subsections that follow and include the formulation of a restricted SEI, use of
the restricted SEI to formulate a permissible set of closure relations, and a closed model formulation based
upon conservation equations and closure approximations.
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6.2.1 Restricted SEI

Equation (4) is a general expression that applies to a wide range of systems involving two fluid phases, a
solid phase, three interfaces, and a common curve; and a set of flux–force pairs involving dissipative processes
involving mass, momentum, and energy. This general expression can be simplified for the example two-phase
system described above, and many other applications of concern as well. While several general SEIs have been
developed for various systems [16–18,28,29,52], the ability to simplify a general SEI for a complex system
to describe simpler systems involving fewer entities than the general expression is a hallmark of the TCAT
approach. For the application at hand, the original seven entity SEI can be reduced to a three entity SEI, where
I = { f, s, f s}. Furthermore, the other secondary restrictions noted above result in substantial simplifications
of Eq. (4), while preserving the necessary terms needed to formulate a closed, well-posed model. Applying all
secondary restrictions to Eq. (4) yields the restricted SEI given by
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	α ≥ 0, (7)

where θ is the isothermal temperature of the system, Irxnα is the index set of all reaction equations in the
α phase, Rkα is a molar rate of reaction, Akα is a chemical affinity, and SR6-2P has been used to write the
reactions in terms of chemical affinities [19]. Each of these flux–force pairs is explained physically and used
to formulate a permissible set of closure relations in the section that follows.

6.2.2 Closure relations

We will consider the flux–force pairs in Eq. (7) in order and use these pairs to formulate a permissible set
of closure relations, which will be used to formulate a closed, solvable model. References will be made to
line numbers in this equation as individual flux–force pairs are considered. Each member of the set of fluxes
is independent of all other fluxes, and each member of the set of forces is independent of all other forces.
However, a flux may depend upon not only the conjugate force that appears as product in the SEI but also
on other members of the set of forces as well, which is referred to as cross-coupled closure. The SEI is an
equation that specifies constraints on permissible forms of closure relations. For both of these reasons, closure
relations are not unique, and the complexity of the approximate forms can be tailored to the applications.
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Approaches to derive approximations have been developed and found to have utility for describing a range of
physical systems [19]. We will follow these traditional approaches to generate models that can be compared
to data. If the models are not consistent with the observations, the closure relation approximations and the
model restrictions may be reexamined and modified as needed. Thus, a clear path to modifying macroscale
continuum models exists.

The first term in Line 1 of Eq. (7) represents a flux involving the stress tensor for the fluid and the fluid
pressure, and the conjugate force is the deformation rate tensor for the fluid. The product of this flux and force
must be nonnegative under all conditions and zero at equilibrium. A zero-order approximation is the simplest
possible approximation, and it has been found to provide a good description of macroscale porous medium
systems [19]. The zero-order approximation is that the flux term is zero under all conditions such that

t f + p f I = 0, (8)

allowing the macroscale stress tensor to be approximated as

t f = −p f I. (9)

This is a reasonable approximation because at themacroscale fluid flow through a porousmedium is essentially
inviscid,withmomentum transfer to the solid phase particles being adominant process. This dominant exchange

process is represented by
f → f s
T0 , which appears in Line 7 and is discussed below.

Following a similar line of reasoning, the stress tensor for the solid phase is

ts = ts, (10)

and the stress tensor for the interface appearing in Line 2 of Eq. (7) is

t f s = γ f s
(
I − G f s

)
. (11)

Equation (10) suggests that the macroscale stress tensor for the solid phase can be derived based upon intrinsic
averaging of the microscale stress tensor, which is determinate based upon the solid behavior at the microscale.
Equation (11) relates the interfacial stress tensor to the product of the interfacial tension and the orientation of
the interface.

Line 3 in Eq. (7) involves a flux represented by the deviation velocity uiα and the conjugate force, which
is the gradient of the chemical potential. The difference in chemical potential occurs because of the necessary
constraint that
∑
i∈Is

ωi αuiα = 0 for α ∈ I, (12)

which implies that N − 1 deviation velocities are independent. Choosing w as the dominant reference species
in the f phase and e as the dominant reference species in the s phase yields the linear first-order closure relation
for the fluid phase given by

ωi f ui f = −D̂
f
iw · ∇

(
μi f − μw f

)
for i ∈ {g, o, c, x}, (13)

and the corresponding closure relation for the solid-phase deviation velocity given by

ωi suis = −D̂
s
ie · ∇

(
μis − μes

)
for i ∈ {l, n, g, o, c, w, y}, (14)

where D̂
α

i j are second-rank symmetric tensors that parameterize the deviation velocities in terms of gradients
in chemical potentials.

Line 4 of Eq. (7) expresses the flux–force pair of the rate of reaction and the chemical activity. A permissible
closure relation must be generated from this pair and related to the reaction term appearing in Eq. (1), which
is the term involving r iα that is the rate of mass production of species i per time resulting from all reactions
in phase α. A linear closure relation is

Rkα = −K̂kαA
kα for α ∈ IP, (15)
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Table 1 Reactions for two-phase systems

Description Reaction References

Tumor formation νg f s MWgCgs + νof s MWoCos → νt f s MWtCts [12,48]
Tumor destruction νtdsMWtCts + νcdsMWcCcs → νedsMWeCes + νwdsMWwCws [35,41]
Necrotic formation νtnsMWtCts → νnnsMWnCns [3,12]
Necrotic lysis νnlsMWnCns → νels MWeCes + νwls MWwCws [33]

where K̂kα is a nonnegative reaction rate coefficient for the kth reaction in the α phase. Substitution of this
approximation into the SEI yields a nonnegative production rate.

Two tasks remain to formulate closure approximations for r iα: the closure approximation must be related
to the general reaction variable, and the set of chemical reactions occurring in each phase must be formulated.
The overall mass production rate results from the set of reactions such that

r iα =
∑

k∈Irxnα
νikαMWi R

kα for α ∈ IP, (16)

and the affinity is defined as

Akα =
∑
i∈Is

μiανikαMWi for k ∈ Irxnα, α ∈ IP, (17)

where MW is the molecular weight, and ν is a molar stoichiometric reaction coefficient. Equations (15)–(17)
can be combined to yield the mass production rate resulting from reaction given by

r iα = −
∑

k∈Irxnα
K̂kανikαMWi

⎛
⎝∑

i∈Is
μiανikαMWi

⎞
⎠ for α ∈ IP. (18)

If the set of molar biochemical reactions and molecular weights are known for all reactions in each phase,
then the species mass production rate is fully specified and closed.When the reactions are nonlinear, resolution
issues related to averaging exist, which will not be considered herein [19].

It is assumed that no reactions occur in the fluid phase, which implies that the g, c, and o species are non-
reactive in this phase, although all species may undergo mass transfer to and from the solid phase. Reactions
occur in the solid phase that lead to tumor growth, the consumptionof glucose, oxygen and the chemotherapeutic
drug species, tumor species death due to the chemotherapy drug, conversion of a living tumor to a necrotic
tumor resulting from a lack of oxygen, and necrotic tumor lysis. The set of reactions are summarized in Table 1,
where Ciα is the molar concentration of species i in phase α, and MWi is the molecular weight of species i .

Line 5 of Eq. (7) is a flux–force pair involvingmass transfer between the fluid and solid phases. A conjugate
flux–force closure for the mass transfer density rate is

i f →is
M = K̂ i f s

M

(
μi f + ψ f − μis − ψ s

)
, (19)

where K̂ i f s
M is a nonnegative mass-transfer rate coefficient.

Lines 6 and 7 of Eq. (7) are a flux–force pair involvingmomentum of the fluid phase. A conjugate flux–force
closure can be formulated for the isotropic case as

∇
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−
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where R̂
f
is a positive definite resistance tensor for the fluid phase.
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Line 8 of Eq. (7) involves the forces acting on the fluid–solid interface, and a conjugate flux–force closure
can be written as

−∇ ·
[(

I − G f s
)

ε f sγ f s
]

−
f → f s
T0 −

s→ f s
T0 = R̂

f s ·
(
v f s − vs

)
, (21)

where R̂
f s

is a positive-semidefinite resistance tensor for the interface.
Line 9 of Eq. (7) involves the change in the porosity related to forces acting on the fluid–solid interface. A

conjugate flux–force approximation can be written as

Dsε

Dt
= ĉ

[
p f s
f + (ns · ts · ns) f ss + γ f s J f s

s

]
, (22)

where ĉ is a nonnegative solid compressibility coefficient.
The set of conjugate flux–force closure relations summarized in this subsection can be combined with a

set of conservation of mass and momentum equations to yield a closed model. This model is formulated in the
section that follows.

6.2.3 Closed model

A closed two-phase model can be formulated by combining conservation equations given in Sect. 4 with
closure relations given in Sect. 6.2.2. Because we are assuming isothermal conditions, the model will include
conservation of species mass and entity momentum equations, but it will not be necessary to include conserva-
tion of energy equations. Other choices of secondary restrictions would result in different macroscale models,
but the derivation process would follow a similar path.

The conservation of mass equations for a species in the fluid phase are
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and for the solid phase

Ds
(
εsρsωi s

)

Dt
+ εsρsωi s I:ds + ∇ ·

(
εsρsωi suis

)

− εsr is −
i f →is
M = 0 for i ∈ {l, n, g, o, c, w, y}, (24)

where the dominant species for each phase is eliminated using the constraint equation
∑
i∈Is

ωi α = 1 for α ∈ IP, (25)

where IP is the index set of phases and some species are omitted from each phase by definition. Thus,
four species conservation of mass equations exist for the fluid phase, and seven species conservation of mass
equations exist for the solid phase. Combining these equations with constraints given by Eq. (25) fully specifies
the composition of both phases.

Equations (23) and (24) contain terms involving deviation velocities, reactions, and interphase mass trans-
fer. The previously derived closure relations can be used to explicitly specify these equations. Substituting
Equations (14) and (19) into Eq. (23) yields the species conservation of mass equation for the fluid phase
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and for the solid phase
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where only the reactions involving species i need to be considered for the i species transport equation, which
is specified by the summation over index set Irxnis that is the set of all reactions in the s entity that involve
species i .

Chemical potentials can be written in terms of mass fractions to minimize the closure problem with the
conservation of mass equations. The macroscale chemical potential may be written as

μiα = μiα
0 (pα, θα) + Rgθ

α

MWi
ln

(
xiαγ̂ iα

)
, (28)

where μiα
0 (pα, θα) is a reference state chemical potential, Rg is the ideal gas constant, xiα is a mole fraction,

and γ̂ iα is an activity coefficient, which we will assume is equal to 1 for all species and all compositions
encountered. The mole fraction can be written as

ωi α = MWi

MWα

xiα, (29)

where the molecular weight of the α entity is defined as

MWα =
∑
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MWi x
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)−1

. (30)

Equation (1) can also be summed over all species, which yields an overall conservation of mass equation for
an entity. This equation can be further expanded using an approximation for the macroscale velocity, which
follows from the conservation of momentum equations that follow. These standard manipulations are detailed
in the literature [19].

Recall the conservation of momentum equation, which can be written as
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This equationmaybe combinedwith the closure relations andmanipulated to deduce apair of closedmomentum
equations for the phases. The interface momentum equation is trivial because of the secondary restriction
specifying a massless interface. Equations (9), (19), and (20) can be substituted into Eq. (31) to yield the
resultant fluid phase momentum equation
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f ·
(
v f − vs

)

+
∑
i∈Is

K̂ i f s
M

(
μi f + ψ f − μis − ψ s

)(
v f + ui f

)
= 0, (32)
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or approximated using the Gibbs–Duhem equation as [19]

ε f ∇ p f − ε f ρ f g f + R̂
f ·
(
v f − vs

)

+
∑
i∈Is

K̂ i f s
M

(
μi f + ψ f − μis − ψ s

)(
v f + ui f

)
= 0, (33)

where the inertial terms have been dropped due to the slow dynamics of the system and the area averaged
velocities multiplying the mass exchange approximations have been replaced with the volume averages, as
specified in secondary restrictions SR7-2P and SR8-2P.

Equation (31) can be summed over all entities, eliminating the momentum exchange terms, and yielding
after substitution of the closure relations for the macroscale stress tensors

D f
(
ε f ρ f v f

)

Dt
+

Ds
(
εsρsvs

)

Dt
+ ε f ρ f v f I:d f + εsρsvs I:ds

− ε f ρ f g f − εsρsgs − ∇ ·
[
−ε f p f I + εsts + γ f s

(
I − G f s

)]
= 0. (34)

Furthermanipulations using this equation are possible, and expressions for the stress tensor havebeendeveloped
using TCAT [20]. The end objective of such a momentum equation is to determine the velocity of the solid
phase. Conditions may exist in which this velocity can be approximated without consideration of the details
of solid mechanics. The existence of mass exchange complicates the usual solid mechanics mapping between
Eulerian and Lagrangian coordinate systems, and open research questions remain, whichwill not be considered
in this work.

7 Three-phase system

7.1 Description

For the two-phase systemconsidered above, the tumor specieswere considered part of the solid phase.However,
it is generally accepted that cells and tissues may be modeled as fluids [14]. Such approaches may be used to
model adhesion of cells among themselves, to the ECM, and to substrates [1,30,56], and to model chemotaxis
and haptotaxis to represent active cellularmovement, such as observed in angiogenesis, invasion, and branching
[9,31].

Hence, the purpose of this section is to consider a more complicated three-phase model involving tumor
growth. This will require defining the entities, species in the entities, reactions, and other aspects of the model.
An alternative form of the SEI will be relied upon to guide model closure. The basic model-building steps will
parallel those steps followed to formulate the two-phase model presented in the previous section.

The three phases consist of a solid phase, s, a wetting fluid denoted w, and a non-wetting fluid phase
denoted n. The wetting fluid preferentially wets the solid phase compared to the non-wetting fluid phase,
although a contact angle can exist between the fluid–fluid interface and the solid surface; measured through
the wetting fluid phase this contact angle will be < 90 degrees and 0 degrees for a strongly water wet solid
phase. The index set of all entities is

I = {w, n, s, wn, ws, ns, wns}, (35)

where the grouping of two symbols denotes the interface that forms between the two respective phases and
wns is an index for the common curve formed where three phases meet.

The index set of the ten species considered is identical to the set previously considered for the two-phase
tumor model with the exception that an additional collective background species z is added to the set

Is = {l, n, e, g, o, c, w, x, y, z}. (36)

Table 2 summarizes the entities, the index used for each entity, and species composition of each entity in the
system; the composition of interfaces and common curves will not be resolved in this restricted model, so the
composition of these entities is neglected. The primary restrictions for the three-phase model are identical to
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Table 2 Composition of three-phase systems

Entity Index Species

Wetting phase w {g, o, c, w, z}
Non-wetting phase n {l, n, g, o, c, w, x}
Solid phase s {e, g, o, w, y}
Fluid–fluid interface wn {—}
Wetting fluid–solid interface ws {—}
Non-wetting fluid–solid interface ns {—}
Common curve wns {—}

the primary restrictions for the previously presented two-phase model. The secondary restrictions are similar to
the secondary restrictions for the two-phase model, although not identical: (SR1-3P) the system is isothermal;
(SR2-3P) the interfaces and common curves are massless, (SR3-3P) kinetic energy terms are higher order and
of negligible importance; (SR4-3P) body force vectors and potentials are identical for all species; (SR5-3P)
chemical reactions can be formulated in terms of chemical affinities; (SR6-3P) inertial terms in the momentum
equations are insignificant due to the slow dynamics of the systems considered; (SR7-3P) density-weighted,
area-averaged velocities and deviation velocities are equal to their volume-averaged counterparts; (SR8-3P)
the Lagrangian stress tensor product with the Green’s deformation tensor can be neglected from the driving
force difference for mass transfer to the solid phase; (SR9-3P) the activity coefficient of all species is unity;
(SR10-3P) common curve effects are considered higher order and neglected; (SR11-3P) the contact angle is
considered constant as a result of the relatively slow dynamics of tumor growth; and (SR12-3P) the curvature
of the solid phase is not dependent upon the fluid wetting the solid surface.

7.2 Formulation

The three-phase model described above is formulated into a closed model following a similar approach that
was taken for the simpler two-phase model formulated above. The sections that follow detail the restricted
SEI, the closure relations, and the closed model.

7.2.1 Restricted SEI

Applying the secondary restrictions specified in Sect. 7.1 to the general SEI given by Eq. (4) results in the
restricted SEI for a compositional three-phase system given by

∑
α∈If

1

θ

(
εαtα + εα pαI

)
:dα + 1

θ

(
εsts − εsts

)
:ds

+
∑
α∈II

1

θ

[
εαtα − εαγ α

(
I − Gα

)] :dα

−
∑

α∈IP

∑
i∈Is\N

1

θ
εαραωi αuiα · ∇

(
μiα − μNα

)

−
∑
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∑
k∈Irxnα

1

θ
εαRkαAkα

+
∑
i∈Is

iw→in
M

1

θ

(
μiw + ψw − μin − ψn

)

+
∑
i∈Is

iw→is
M

1

θ

(
μiw + ψw − μis − ψ s

)

+
∑
i∈Is

in→is
M

1

θ

(
μin + ψn − μis − ψ s

)
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− 1

θ
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− ∇

(
εw pw

)
+ εwρw

⎛
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ωi w∇μiw + ∇ψw + gw

⎞
⎠
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εn pn
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⎛
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(
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)
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]
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·
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+ 1
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⎣Dsεw

Dt
− χws
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Dsε

Dt
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eq

)

pwn
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pwn
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n − γ wn Jwn
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+ 1

θ
χws
s

Dsε

Dt

[
pws
w + (ns · ts · ns)ws

s + γ ws Jws
s

]

+ 1

θ
χns
s

Dsε

Dt

[
pnsn + (ns · ts · ns)nss + γ ns J nss

]

=
∑
α∈I

	α ≥ 0. (37)

Equation (37) can be used to generate closure relations that are consistent with the second law of thermo-
dynamics. While the form of this equation is much simpler than the general case given by Eq. (4) because of
the secondary restrictions applied, it is significantly more complicated than the two-phase SEI given by Eq. (7)
as a result of the additional entities that must be considered.

7.2.2 Closure relations

The procedure suggested for deriving closure relations is similar to that used for the two-phase case, although
additional relations are needed for the three-phase case. We consider the first 16 lines of Eq. (37) to generate
a candidate set of closure relations, which will in turn be used to formulate a closed model in the following
section.

A zero-order closure for the fluid phases yields from Line 1 of Eq. (37)

tα = −pαI for α ∈ If , (38)

and for the solid phase

ts = ts . (39)

A zero-order approximation based on Line 2 yields an approximation for the stress tensor for the interfaces

tα = γ α
(
I − Gα

)
for α ∈ II. (40)

A first-order conjugate flux–force approximation based upon Line 3 in Eq. (37) yields the following
approximations for the deviation velocities in each of the phases

ωi wuiw = −D̂
w

iw · ∇
(
μiw − μww

)
for i ∈ {g, o, c, z}, (41)

ωi nuin = −D̂
n
il · ∇

(
μin − μln

)
for i ∈ {n, g, o, c, w, x}, (42)
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Table 3 Reactions for three-phase systems

Description Reaction References

Tumor formation νg f nMWgCgn + νof nMWoCon → νt f nMWtCtn [48,49]
Tumor destruction νtdnMWtCtn + νcdnMWcCcn → νednMWeCen + νwdnMWwCwn [4,35]
Necrotic formation νtnnMWtCtn → νnnnMWnCnn [13,61]
Necrotic lysis νnlnMWnCnn → νelnMWeCen + νwlnMWwCwn [33,61]

and

ωi suis = −D̂
s
ie · ∇

(
μis − μes

)
for i ∈ {g, o, w, y}, (43)

where water is taken as the reference species in the wetting phase, the live tumor species is the reference
species in the non-wetting phase, and the extra-cellular matrix species is the reference species for the solid
phase.

Line 4 in Eq. (37) can be used in a conjugate flux–force form to approximate thermodynamically consistent
reaction rates. Themanner in which this is done is analogous to the approach previously detailed for the simpler
two-phase model. An example set of reactions are detailed in Table 3. The reactions are related to tumor
growth, destruction, necrotic species formation, and lysis. All reactions occur in the non-wetting fluid phase.
We emphasize that this is merely an example set of reactions and alternative reaction sets are permissible. The
general expression for reactions in phases is

r iα = −
∑

k∈Irxnα
K̂kανikαMWi

⎛
⎝∑

i∈Is
μiανikαMWi

⎞
⎠ for α ∈ IP. (44)

A first-order conjugate form closure relation for the rate of mass transfer can be deduced from Lines 5–7
in Eq. (37) and is of the form

iα→iβ
M = K̂ iαβ

M

(
μiα + ψα − μiβ − ψβ

)
for α, β ∈ IP, (45)

where the indices denote that mass transfer can occur between any of three binary combinations of phases.
Lines 8–11 of Eq. (37) can be used to generate cross-coupled approximations involving the interphase

transfer of momentum for the fluid phases of the form

∇
(
εw pw

)
−
∑
i∈Is

εwρwωi w
[
∇
(
μiw + ψw

)
+ gw

]
+ w→wn
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T0

=
∑
κ∈If

R̂
w

κ ·
(
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)
, (46)

and

∇
(
εn pn

)
−
∑
i∈Is

εnρnωi n
[
∇
(
μin + ψn

)
+ gn

]
+ n→wn

T0 + n→ns
T0

=
∑
κ∈If

R̂
n
κ ·
(
vκ − vs

)
, (47)

where R̂ is a positive semi-definite resistance tensor.
A first-order approximation based upon Line 12 in Eq. (37) yields

∇ ·
[(
I − Gα

)
εαγ α

]
+

∑

κ∈I+
cα

κ→α

T0

= −R̂
α

α ·
(
vα − vs

)
−

∑

κ∈I+
cα

R̂α
κ ·

(
vκ − vs

)
for α ∈ II. (48)
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Lines 13 and 14 from Eq. (37) can be used to develop a first-order approximation for the relaxation of
capillary pressure to its equilibrium state, which is the case when the term in Line 14 vanishes. The resulting
approximation is

Dsεw

Dt
− χws

s
Dsε

Dt
−

γ wnk̂wn
1

(
εwn − εwn

eq

)

pwn
w − pwn

n
= ĉwn (pwn

w − pwn
n − γ wn Jwn

w

)
, (49)

where ĉwn is a positive capillary pressure relaxation coefficient.
As a result of SR12-3P, the curvature of the solid phase simplifies to

J sss = Jws
s = Jnss , (50)

which provide an approximation for the change in porosity as a function of normal forces on the solid surface
of the form

Dsε

Dt
= ĉss

[
χws
s pwn

w + χns
s pnsn + (ns · ts · ns)ss +

(
χws
s γ ws + χns

s γ ns
)
J sss

]
, (51)

where ĉss is a positive compressibility coefficient.
In addition to the closure relations that can be deduced from the SEI, evolution equations based upon

averaging theorems [19,22] can also be used to close the three-phasemodel. The use of such evolution equations
to produce closed models is an important aspect of TCAT models. For the three-phase model considered here,
an evolution equation for the fluid–fluid interfacial area can be written as

Dsεwn

Dt
+ ∇ ·

[
εwn

(
wwn − Gwn · vs

)]
+ εwnGwn:ds − Jwn

w

(
Dsεw

Dt
+ χws

s
Dsεs

Dt

)

− k̂wn
(
εwn
eq − εwn

)
− cosϕws,wn(εws + εns)

Dsχws
s

Dt

+ sin ϕws,wn εwns

εws + εns

Dsεs

Dt
= 0, (52)

where neglecting common curve contributions this equation simplifies to

Dsεwn

Dt
+ ∇ ·

[
εwn

(
wwn − Gwn · vs

)]
+ εwnGwn:ds − Jwn

w

(
Dsεw

Dt
+ χws

s
Dsεs

Dt

)

− k̂wn
(
εwn
eq − εwn

)
− cosϕws,wn(εws + εns)

Dsχws
s

Dt
= 0. (53)

Gwn is a diagonal tensor of trace 1 for the isotropic case, which is a reasonable approximation. For other
cases, an evolution equation for this quantity is needed, which can be derived at the microscale, averaged to
the macroscale, and approximated in a convenient form.

The interfacial velocity vector is given bywwn , which is themacroscale velocity of the fluid–fluid interface,
whichmoves in a direction normal to the interface.An exact equation for this kinematic quantity is not available.
An approximation can be derived based upon the averaging theorems of the form

εwn2wwn = −∂εw

∂t

(
∇εw + 〈nw〉Ωws ,Ω

)
, (54)

where an approximation is needed for the average of the normal vector, which is trivial for the common
isotropic case.
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As surfaces deform, their curvatures change. An evolution equation relating the change in the mean and
the Gaussian curvature can be written as

εwn ∂Kwn
n

∂t
+ Kwn

n
∂εwn

∂t
+ ∇ ·

(
εwnKwn

n wwn
)

+ Jwn
n

2
∇∇:

[(
I − Gwn) ∂εn

∂t

]

+ Jwn
n

2
∇ ·

(
εwn Jwn

n wwn
)

= 0. (55)

A constraint equation based upon Galilean invariance for the mean curvature is

− ∇ ·
[
εwn Jwn

n

(
I − 2Gwn)]+ 2Kwn

n ∇εn

− ∇∇:
((
I − Gwn)∇εn

)
= 0, (56)

and the Gaussian curvatures can be related to the Euler characteristic for smooth closed boundaries using the
Gauss Bonnet theorem giving

4πχn = εwnKwn
n + εns K ns

n . (57)

Additional closure relations for the three-phase model are available through the specification of state
equations. Another example of a state equation is a formulation that can be deduced from integral geometry
that relates volume fractions, interfacial areas, and curvatures of the form [47]

εn = F
(
εwn + εns, εwn Jwn

w + εns J nss , χn
)

, (58)

where F is a smooth differentiable function that can be deduced from state data. Equation (58) has been shown
to provide an accurate representation of capillary pressure that is based on theory, hysteretic free—unlike
traditional capillary pressure equations, and applicable for not only equilibrium conditions but also dynamic
states as well [23]. Equations of state can be formulated to relate densities to pressures and compositions as
well.

7.2.3 Closed model

The purpose of this section is to assemble the pieces needed for a complete, closed three-phase model of
tumor growth, which can be used as a basis to derive numerical approximations. The three-phase model
is more complicated than the previously formulated two-phase model. This results from the existence of
additional entities and the attendant closure problem. Overall conservation equations for mass and momentum
are needed for each phase, and compositional equations including mass transfer and reactions are needed for
the species in a phase. The massless interface and common curve assumptions do simplify the formulation for
lower dimensional entities. We note that other TCAT formulation approaches are possible, and we are merely
providing an example for completeness. This model follows from the conservation equations and closure
relations based upon the SEI that were previously presented. The quantities we wish to resolve include the
composition of each phase, the velocity and mass density of each phase, fluid pressures and solid stresses,
entity extents, and interfacial curvatures needed to approximate the state of the system. The model that follows
is based upon these considerations.

Summing Eq. (1) over all species yields a set of conservation of mass equations for the phases of the form

Dα
(
εαρα

)

Dt
+ εαραI:dα −

∑
i∈Is

∑
κ∈Icα

iκ→iα
M = 0 for α ∈ IP, (59)
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which can be written using Eq. (45) as

Dα
(
εαρα
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Dt
+ εαραI:dα −

∑
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∑
κ∈Icα

K̂ iκα
M

(
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)
= 0

for α ∈ IP, (60)

where the chemical potentials can be written in terms of mole fractions and mass fractions as previously
formulated in Eqs. (28) and (30).

Species composition for each phase follows from

Dα
(
εαραωi α
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Dt
+ εαραωi αI:dα + ∇ ·

(
εαραωi αuiα

)

− εαr iα −
∑
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where the deviation velocities follow from substitution of Eqs. (41)–(43), reaction terms from Eq. (44), and
mass transfer from Eq. (45). Note that a complete set of mass conservation equations must be formulated and
solved subject to the constraint
∑
i∈Is

ωi α = 1 for α ∈ IP. (62)

Conservation of mass equations are not required for interfaces or the common curve because they have been
specified as massless.

As a result of secondary restrictions SR6-3P and SR7-3P, Eq. (2) can be simplified, Eqs. (38), (45), and
(46) substituted in and the resulting conservation of momentum equations for the fluid phases written as
∑
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which can be approximated using the Gibbs–Duhem equation as [19]
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where viscous coupling of momentum transport between the fluid phases follows naturally from the cross-
coupled closure relations [36].

A momentum equation is also required for the solid phase, which can alternatively be expressed as the
total change in momentum for the system, which can be formulated summing Eq. (2) over all entities using
the closure approximations given by Eqs. (38) and (40) yielding
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In the event that a zero velocity at themacroscale is not a reasonable assumption for the solid phase, expressions
available in the literature [20] can be used to produce a solvable equation. As previously noted, additional work
on the solidmechanics of these biomechanical systems iswarranted, and this is an active area of research [6,11].

The three-phase model is complete when augmented with evolution equations for the volume fraction
given by Eq. (49) and the interfacial area given by Eq. (53), and equations of state given by Eq. (58) and state
equations for the dependency of phase densities as a function of pressures and compositions. Approximations
would also be needed for the specific interfacial area εns and the mean curvature of the solid phase Jnss .

8 Discussion

Tumor occurrence and growth exhibits classical problems of scale. A complete understanding requires molec-
ular, genetic, and cellular perspectives, while the systems of concern are at scales of the human body and thus
several orders of magnitude above the length scales of fundamental concern. The perspective advanced herein
is a practical approach focused on advancing a mechanistic mathematical description that is able to describe
the system of concern. The TCAT approach provides a means to formulate such models, which are founded
upon conservation principles, thermodynamics, and a set of mathematical theorems. Even though molecular
and cellular approaches are essential to advance fundamental understanding of tumor formation and growth,
the laws of continuum mechanics must still apply provided the necessary primary restrictions have been met.
The approach taken is to develop macroscale models in which tumors are described in an averaged sense with
admissible changes in both space and time. With this general approach, a wide variety of specific models is
possible.

The primary goal of this workwas to illustrate how the TCAT approach can be used to formulatemacroscale
models of varying sophistication and complexity. Two specific examples were provided: a two-phase formu-
lation, and three-phase formulation; the former included a single fluid phase and the latter included two fluid
phases and both included a solid phase. Both of these examples included interfaces, and the full three-phase
case can include a common curve, which was included in the SEI but dropped for simplicity in the final exam-
ple formulation. Both approaches include several species, reactions for tumor formation, tumor destruction,
necrotic tissue formation, and necrotic lysis, and mass transfer. We emphasize that the examples provided
are intended to be a starting point for advancement in understanding of the how the TCAT approach can be
applied, evaluated, and validated. It is expected that details of the methods, especially the species and reaction
sets, will evolve as understanding of the essential components of an optimally useful model also evolve. As
understanding, and available computing power, expands, so too will the complexity and fidelity of the under-
lying models. However, the approaches illustrated will provide a solid foundation for continuum mechanical
modeling of tumor growth.

Some previous tumor growth models have included elements of TCAT but not to the extent detailed in
this work [32,53–55,60]. They have been successful in modeling tumor growth but not entirely satisfactory.
Especially the missing interfaces required questionable approximations when linking capillary pressures with
saturations. It is hoped that the presented approach will allow a step forward in this direction. The next
steps beyond the numerical implementation of the detailed equations will be the inclusion of angiogenesis
in the model and finally the addition of drug delivery. The number of parameters involved will require a
sensitivity analysis to identify the leading order effects and to motivate the most important experimental work.
Uncertainty quantification is strongly linked to this problem. It is hoped that mechanistic models of the sort
presented herein will help to elucidate mechanisms resulting in cancer growth and treatment, which may be
considered independent of the genetic origins. In fact, recent studies have revealed extensive variations in
genetic signatures, gene expression, and post-translational modifications among different tumors and within
tumors, creating complex tumor heterogeneities. Heterogeneity is frequently attributed to genetics, but it is
related to non-genetic influences too [5]. Clearly, this directly impacts therapeutic treatments and outcomes
[40,43,59]. Thus, better understanding of heterogeneitieswill help to improve treatments ofmetastatic diseases.
This brings us to the final aim of our modeling effort which is the evaluation of the efficiency of cancer drugs.
This needs an efficient model of tumor growth linked to a bio-distribution model of the drug under scrutiny.

A motivation for three-fluid-phase models would be a need to represent tumor systems based upon three
distinct phaseswith immiscible fluid-like properties that form separate regions ofmatterwith distinct interfacial
tensions. While such models may be needed, much can be done with the general framework for one-fluid and
two-fluid models advanced in this work. In the event that model evaluation and validation efforts of the sorts
of models advanced in this work result in a conclusion that three-fluid-phase continuum models are needed to
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represent tumor growthwith adequate fidelity, TCAT can be used to derive suchmodels.While the conservation
and balance equations are in place for such advancements, additional thermodynamic, evolution equation, and
state equation work would be required. A new general SEI would also need to be derived. Of course, such a
theoretical framework would be applicable to others systems as well.

Models with some similarities to those detailed herein are being used for successful medical applications
(e.g. [6,38]), and extensions to clinical applications of drug delivery and evaluation of drug efficiency are also
possible; initial works in these directions can be found in [4,10].

Because the intent of this work was to provide a foundational example of how TCAT can be used to
formulate macroscale models to describe tumor growth, it has not included the numerical methods aspects
of approximating these models. Furthermore, the worth of a model is dependent upon its ability to represent
physical systems of concern with sufficient fidelity to be of use to those assessing such systems. Such an
assessment requires not only an approximation of the formulation but also parameter estimation and comparison
to observed systems. It is hoped that this work will enable efforts to approximate, apply, evaluate, and validate
a range of candidate TCAT models in pursuit of realistic and worthwhile representations of systems important
to society. Much work remains to be done to fulfill this vision.

9 Conclusions

Several conclusions follow from this work:

1. Macroscale continuum mechanical approaches provide a means to describe tumor formation, growth, and
various treatment modalities at a length scale relevant to human systems of concern.

2. TCAT provides a framework for formulating such macroscale models in a manner that is consistent across
length scales with respect to established conservation and thermodynamic principles.

3. Two-phase and three-phase TCAT models were formulated as examples of the formulation process and
reduced to a closed form.

4. The work advances prior efforts in providing a more complete set of entities and including recent advances
in differential geometry evolution equations and integral geometry state equations, which provide accurate
closure approximation for two-fluid porous medium models.

5. The foundational nature of this work is intended to support future work to improve upon the example
formulations provided in this work in concert with numerical approximation of the formulated models,
parameter estimation, evaluation, and validation.

6. It is anticipated that advances in fundamentalmolecular and cellular level understanding of tumor formation,
growth, and treatment processes will inform and help improve continuum scale models of focus in this
work, which may enable more routine simulation at scales of concern and help advance more effective
treatment approaches.
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