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Abstract 

For pharmaceutical companies, the economic return on investments on research and 

development has been decreasing in recent years, mainly due to the large cost (~$2 billion) and 

time (~10 years) for bringing a new product to the market in the latest years. At the same time, 

an alarming number of drug shortages and recalls for quality concerns has been registered by 

regulators. These events affect companies, from the financial side, but also patients, who might 

experience increasingly large costs for drugs, or unavailability of essential medicines. The lack 

of adoption of modern technology and approaches for pharmaceutical development and 

manufacturing is acknowledged as a main actor for the occurrence of drug shortages and recalls, 

and for the overwhelming increase of the time- and cost-to-market for new products. A recent 

example is the sluggish rollout of COVID-19 vaccines, which has been significantly affected 

by technological limitations in pharmaceutical development and manufacturing, especially 

regarding process scale-up.  

In the early 2000s, a modernization momentum of the sector was initiated. Regulators such as 

the United States Food & Drug Administration and the European Medicines Agency created a 

series of initiatives, the most impactful one being the Quality-by-Design (QbD) framework. 

Within the QbD initiative, regulators defined a novel pharmaceutical development and 

manufacturing paradigm, rooted in product and process understanding and based on sound 

science and quality risk management. Under the previous so-called Quality-by-Testing 

approach, the end-product was directly tested for verifying its quality. In a QbD approach, 

instead, the quality is proactively designed into the product. This transition represents a main 

step forward, as it comes with the realization that increased testing does not inherently bring 

improvement to the product quality.  

Since the release of the QbD initiative, pharmaceutical development and manufacturing have 

undergone a strong modernization. However, much effort is still needed by the pharmaceutical 

sector to catch up with other industries on the adoption of modern development and 

manufacturing technologies. Recently, QbD is evolving towards a new phase, that features the 

adoption of novel emerging technology, the most important ones being continuous processing, 

active (i.e., closed-loop) quality control and increased use of mathematics. 

Mathematical modeling can be used for developing digital tools pivotal to the efficient and 

rapid implementation of QbD, and its adoption has also been recommended by regulators with 

dedicated guidelines. Mathematical methodologies can support all stages of the pharmaceutical 

life cycle, and enable the implementation of continuous processing and active quality control. 
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Within this context, the role and expertise of chemical engineers, especially of the process 

systems engineering field, are of utmost importance. 

The objective of this Dissertation is to promote the use of advanced mathematical modeling 

techniques within pharmaceutical development and manufacturing environments to: 

• reduce pharmaceutical development time and cost; 

• increase the efficiency and the robustness of pharmaceutical manufacturing. 

These objectives are achieved by developing and/or implementing mathematical methodologies 

in key areas of pharmaceutical development and manufacturing: operation design, process 

monitoring and process control. The case studies space across the whole pharmaceutical 

flowsheet, but are particularly focused on continuous manufacturing processes. Applications of 

mathematical modeling are specifically addressed to tackle current bottlenecks towards the 

transition to end-to-end continuous pharmaceutical processing. 

With respect to innovative applications of mathematical modeling for pharmaceutical 

process monitoring, a proof of concept of a novel approach for monitoring the powder mixture 

composition in continuous direct compression lines is presented. The composition of the 

powder mixture fed to direct compression lines is typically not directly measured, but obtained 

as calculation from the mass flow delivered by each of the feeders supplying the blend 

ingredients. The powder mass flow is, in turn, estimated numerically from the time series of 

(noisy) measurements of powder net weight in the hopper of the feeders. Proprietary algorithms 

embedded in the feeder software filter such mass flow estimations through statistical filters, to 

counteract noise propagation from the net weight measurements. In the Dissertation, an 

alternative approach to mass flow (and, in turn, to powder mixture composition) estimation is 

proposed, based on state estimation. It is demonstrated through data from a pilot plant that the 

state estimator can effectively reconcile noisy measurements, and that it provides more accurate 

powder composition estimations, when compared to traditional approaches relying on statistical 

filtering of noise. 

A novel methodology for process monitoring, based on hybrid data-driven/knowledge-driven 

modelling, is introduced in this Dissertation. The proposed approach merges traditional 

standalone data-driven and knowledge-driven process monitoring approaches, taking the 

advantages of both. In practice, the hybrid monitoring approach consists in data-driven 

monitoring of a data matrix that includes i) “actual” data coming from sensor measurements, 

and ii) “digital” data, coming from a state estimator (based on a first-principles model of the 

system under investigation). When benchmarked against conventional monitoring techniques, 

the conceived hybrid monitoring approach shows superior fault detection and diagnosis 

performances, even when the first-principles model is affected by process/model mismatch. 

Hybrid monitoring is particularly interesting for pharmaceutical applications, as it perfectly fits 
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to the QbD paradigm of factoring the available knowledge on the physics of the process into 

the control strategy. 

On the digital operation design side, a mechanistic model for a novel continuous integrated 

filter-dryer carousel system, scarcely studied before, is developed, and used for determining the 

probabilistic design space of the unit (i.e., the region of operating conditions and raw material 

properties that, under a certain probability, allow attaining the product quality). The carousel 

can continuously filter, wash and dry crystallization slurry streams into dry crystals cakes, 

tackling a current technological gap for the implementation of end-to-end continuous 

processing. For a set of feed conditions and control inputs, the developed model calculate the 

solvents and impurities content in the cake (product critical quality attributes) across carousel 

operation. Before of using the model for the digital design of the unit operation, filtration and 

drying experiments are carried out, respectively, on a Nutsche filter and on a thermogravimetric 

analyser, for model calibration and validation. 

Following a life cycle approach to process modeling, the model used for designing the 

carousel operation is then further developed and tailored for process control applications on 

the unit. An advanced real time simulator is developed, with computational routines simulating 

sensors and actuators present in physical carousels. The simulator supports the implementation 

of control loops for control strategy testing. Filtration and drying experiments on a 

paracetamol/ethanol slurry system are carried out on a pilot scale carousel, to calibrate and 

validate the simulator. For the first time, a closed-loop control strategy is proposed for this type 

of units, based on a novel Quality-by-Control framework. The proposed control strategy also 

includes advanced model-based routines, such as state estimation and real time optimization, 

which are based on the developed mechanistic model of the carousel. The conceived control 

system is tested on the simulator, under a set of disturbances known to affect the unit operation 

(e.g., filter mesh fouling), and demonstrated superior control performance compared to 

traditional QbD control strategies, based on open-loop quality control within the design space. 

The results presented and discussed in this Dissertation make several steps forward in the 

journey to adopt model-based methodologies for modernizing pharmaceutical development and 

manufacturing. Enabling technologies for the novel Quality-by-Control paradigm and for the 

transition to end-to-end continuous manufacturing have been developed. In particular, the 

presented results are expected to promote the adoption of advanced fault detection and 

diagnosis, digital operation design and closed-loop quality control routines in the 

pharmaceutical industry.  
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Riassunto 

L'industria farmaceutica ha dato un enorme contributo alla società negli ultimi decenni, con un 

aumento dell'aspettativa di vita globale di 20 anni negli ultimi 50 anni ed una quota significativa 

del prodotto interno lordo mondiale generata dalle aziende farmaceutiche (per esempio, circa il 

2,2% nel 2017).  

Recentemente, il settore farmaceutico è stato sottoposto ad un numero crescente di sfide. Per le 

aziende farmaceutiche, il ritorno economico sugli investimenti in ricerca e sviluppo è diminuito 

negli ultimi anni, soprattutto a causa dei crescenti costi (~2 miliardi di dollari) e tempi (~10 

anni) per portare un nuovo prodotto sul mercato negli ultimi anni. Allo stesso tempo, le autorità 

regolatorie hanno riportato un numero allarmante di carenze e richiami di farmaci per problemi 

di qualità. Questi eventi colpiscono le aziende farmaceutiche, dal lato finanziario, ma anche i 

pazienti, che rischiano di essere sottoposti a costi sempre più elevati per i farmaci, o possono 

sperimentare indisponibilità di farmaci essenziali. La mancanza di adozione di tecnologie e 

approcci moderni per lo sviluppo e la produzione di farmaci è riconosciuta come una causa 

principale per il verificarsi di carenze e richiami di farmaci e per l'aumento considerevole del 

tempo e dei costi di commercializzazione di nuovi prodotti. Consideriamo, per esempio, il 

recente caso del lancio dei vaccini COVID-19. Nonostante l'entusiasmo iniziale dopo la 

scoperta dei vaccini a fine 2020/inizio 2021, ci si è resi conto rapidamente che l'immunità di 

gregge su scala globale sarebbe stata raggiunta solo dopo anni. Un ruolo importante nel ritardo 

del lancio dei vaccini è stato giocato dalle attuali limitazioni tecnologiche nello sviluppo e nella 

produzione farmaceutica, specialmente per quanto riguarda lo scale-up del processo.  

Gli attuali limiti tecnologici dello sviluppo e della produzione farmaceutica sono noti da tempo. 

Nei primi anni 2000, è stato avviata un’iniziativa di modernizzazione del settore farmaceutico, 

chiamata Quality-by-Design (QbD), da parte di enti regolatori come la United States Food & 

Drug Administration e la European Medicines Agency. Nell'ambito dell'iniziativa QbD, i 

regolatori hanno definito un nuovo paradigma di sviluppo e produzione farmaceutica, radicato 

nella comprensione del prodotto e del processo e basato su una solida scienza e sulla gestione 

del rischio di qualità. Secondo il precedente approccio chiamato Quality-by-Testing, la qualità 

del prodotto veniva testata direttamente sul prodotto finale. In un approccio QbD, invece, la 

qualità è progettata proattivamente nel prodotto. Questa transizione rappresenta un importante 

passo avanti.  

Dal lancio dell'iniziativa QbD, lo sviluppo e la produzione farmaceutica hanno subito una forte 

modernizzazione. Tuttavia, sono ancora necessari molti sforzi da parte del settore farmaceutico 

per mettersi al passo con le altre industrie sull'adozione delle moderne tecnologie di sviluppo e 
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produzione. Recentemente, l’iniziativa QbD sta evolvendo verso una nuova fase, che prevede 

l'adozione di nuove tecnologie emergenti: la produzione in continuo, il controllo ad anello 

chiuso della qualità del prodotto, e un maggiore uso della modellazione matematica per lo 

sviluppo e la produzione farmaceutici. 

La modellazione matematica può essere utilizzata per sviluppare strumenti digitali 

fondamentali per l'implementazione efficiente e rapida dell’iniziativa QbD, e la sua adozione è 

stata raccomandata anche dagli enti regolatori con linee guida dedicate. Le metodologie 

matematiche possono supportare tutte le fasi del ciclo di vita farmaceutico, e consentire 

l'implementazione della produzione in continuo e del controllo ad anello chiuso della qualità 

del prodotto. In questo contesto, il ruolo e le competenze degli ingegneri chimici sono di 

massima importanza. 

L'obiettivo di questa Dissertazione è sviluppare e applicare metodi matematici per: 

- ridurre i tempi e i costi dello sviluppo farmaceutico; 

- aumentare l'efficienza e la robustezza della produzione farmaceutica. 

Questi obiettivi sono raggiunti sviluppando e/o implementando metodologie matematiche in 

aree chiave dello sviluppo e della produzione farmaceutica: progettazione delle operazioni 

produttive, monitoraggio di processo e controllo di processo. I casi di studio di questa 

Dissertazione sono particolarmente focalizzati su processi produttivi in modalità continua.  

 

Per quanto riguarda applicazioni innovative della modellazione matematica al 

monitoraggio di processi farmaceutici, viene presentato un nuovo approccio per il 

monitoraggio della composizione della miscela di polveri in linee di pastigliatura continua. In 

impianti industriali, ogni ingrediente della miscela di polveri da inviare alla pastigliatrice viene 

fornito al processo attraverso un alimentatore separato. La composizione della miscela di 

polvere alimentata a valle dagli alimentatori non viene misurata direttamente, ma ottenuta dal 

rapporto delle portate massive erogate da ciascun alimentatore. La portata massiva della polvere 

è, a sua volta, stimata numericamente da misurazioni (rumorose) del peso netto della polvere 

nella tramoggia degli alimentatori. Algoritmi proprietari incorporati nel software degli 

alimentatori filtrano e uniformano tali stime di portata massiva attraverso filtri statistici, nel 

tentativo di contrastare la propagazione del rumore dalle misurazioni del peso netto della 

polvere. Nella Dissertazione, viene proposto un approccio alternativo alla stima della portata di 

polvere (e, a di conseguenza, della composizione della miscela di polveri), basato sulla stima 

di stato. La stima dello stato è una famiglia di tecniche matematiche che, dato un modello 

matematico di un processo e misure in tempo reale da un impianto, stimano gli stati non misurati 

del Sistema, e forniscono stime delle misure di impianto attenuate dal rumore. In questa 

Dissertazione, per la prima volta viene testato uno stimatore di stato su dati di una linea pilota 

di pastigliatura, per monitorare la composizione della miscela di polveri nell'impianto. Si 

dimostra che lo stimatore di stato può riconciliare efficacemente le misurazioni rumorose, e che 
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fornisce stime più accurate della composizione della polvere, rispetto agli approcci tradizionali 

basati sull’utilizzo di filtra statistici per il rumore. 

In questa Dissertazione, viene anche introdotta una nuova metodologia per il monitoraggio 

del processo, basata su modellazione ibrida. L'approccio proposto fonde i tradizionali 

approcci di monitoraggio di processo basati unicamente su modelli a base di dati o su modelli 

a principi primi, prendendo i vantaggi di entrambi. L'approccio di monitoraggio ibrido consiste 

nel convenzionale monitoraggio basato su dati, ma di una matrice che include i) dati "reali" 

provenienti di sensori di processo, e ii) dati "digitali", provenienti da uno stimatore di stato 

(basato su un modello di principi primi del sistema in esame). Confrontato con tecniche di 

monitoraggio convenzionali, l'approccio di monitoraggio ibrido proposto dimostra migliori 

prestazioni rispetto al rilevamento e alla diagnosi dei guasti, anche quando il modello a principi 

primi presenta errori di modellazione significativi. Il monitoraggio ibrido è particolarmente 

interessante per le applicazioni farmaceutiche, in quanto si adatta perfettamente al paradigma 

QbD di incorporare la conoscenza disponibile sulla fisica del processo nel sistema di controllo. 

Per quanto riguarda la progettazione digitale delle operazioni produttive, è stato sviluppato 

un modello a principi primi per un nuovo sistema continuo integrato di filtrazione-essiccamento 

a carosello. Il modello è stato utilizzato per determinare il design space dell'unità (cioè, la 

regione delle condizioni operative e delle proprietà delle materie prime che, con una 

determinata probabilità, permettono di raggiungere la qualità del prodotto desiderata). Il 

carosello può filtrare, lavare ed essiccare in maniera continua slurries prodotti da 

cristallizzatori, trasformandoli in torte di cristalli secchi. Il carosello è una nuova tecnologia che 

mira a superare l’assenza di unità di processo funzionanti in continuo per la filtrazione ed 

essiccamento di slurries, operazioni necessarie per sviluppare processi farmaceutici 

completamente continui, dall’inizio alla fine. Fissate le condizioni operative e di processo, il 

modello sviluppato calcola il contenuto di solventi e impurità nella torta (specifiche di qualità 

del prodotto) durante il funzionamento del carosello.  

Il modello usato per progettare le operazioni produttive del carosello è stato poi ulteriormente 

sviluppato ed utilizzato per applicazioni di controllo di processo sull'unità. È stato sviluppato 

un simulatore avanzato, con funzioni digitali che simulano i sensori e gli attuatori presenti nei 

caroselli fisici. Il simulatore può essere utilizzato per testare differenti strategie di controllo. 

Esperimenti di filtrazione ed essiccamento su uno slurry di paracetamolo/etanolo sono stati 

eseguiti su un carosello in scala pilota, per calibrare e convalidare il simulatore. Per la prima 

volta, è stata proposta una strategia di controllo ad anello chiuso per questo tipo di unità, basata 

sul recente paradigma Quality-by-Control. La strategia di controllo proposta include anche 

metodologie avanzate basate su modello, come la stima dello stato e l'ottimizzazione in tempo 

reale. Il sistema di controllo concepito è stato testato sul simulatore, in presenza di una serie di 
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disturbi noti per influenzare il funzionamento dell'unità (ad esempio, lo sporcamento delle 

maglie dei filtri del carosello), ed ha dimostrato prestazioni di controllo migliori rispetto a 

strategie di controllo QbD tradizionali, basate sul controllo di qualità ad anello aperto. 

I risultati presentati e discussi in questa Dissertazione rappresentano un significativo passo 

avanti per l'adozione di metodologie basate su modelli per modernizzare lo sviluppo e la 

produzione farmaceutica. Sono state sviluppate tecnologie per il nuovo paradigma Quality-by-

Control e per la transizione alla produzione farmaceutica in continuo. In particolare, i risultati 

presentati promuovono l'adozione di metodologie avanzate per il rilevamento e la diagnosi 

avanzata di guasti, per la progettazione digitale delle operazioni produttive e per il controllo di 

processo ad anello chiuso nell'industria farmaceutica. 
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Chapter 1 

Motivation and state of the art* 

This Chapter provides an overview of the current state of pharmaceutical development and 

manufacturing, and produces the motivation of this Dissertation. Current state and future trends 

of the pharmaceutical industry from a socio-economic perspective are first described. After 

briefly introducing the pre-launch and post-launch life stages of a new pharmaceutical product, 

the pharmaceutical regulatory framework is outlined and its historical evolution is addressed. 

Pharmaceutical emerging technology and the enabling role of process systems engineering for 

its implementation are then evaluated. In particular, the role of mathematical modeling for the 

modernization of pharmaceutical development and manufacturing is critically discussed. An 

outlook on the state-of-the-art mathematical modeling for supporting operation design, process 

monitoring and process control is provided. Finally, the innovative objectives of this research 

are described, and a roadmap for the Dissertation is drawn. 

1.1 The pharmaceutical industry: a socio-economic outlook 

The pharmaceutical industry gave a tremendous contribution to the well-being of people in the 

last decades, with the global life expectancy increasing as much as 20 years over the last 50 

years (IFPMA, 2021), and the life expectancy of European citizens rising of even 30 years 

across the last century (EFPIA, 2021). High quality medicine and vaccines have a paramount 

role in the sustainability of well-functioning healthcare systems, as they significantly contribute 

to cost reduction in other healthcare spending sectors, such as mid- and long term 

hospitalizations costs (IFPMA, 2021). In addition to the immediate benefits to the patients’ 

lives, the pharmaceutical industry gives a substantial contribution to the world’s economy. In 

2017, the pharmaceutical sector generated, through direct and indirect effects, about 2.2% of 

the world’s gross domestic product, corresponding to approximately $1,838 billion (WifOR, 

2020). The workforce directly employed by the pharmaceutical industry includes about 5.5 

million people on a global scale, while figures rise to 74.3 million when the employment 
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induced in the supply chain and in other sectors is considered.  

Despite the COVID-19 pandemic significantly impacted the healthcare sector and the economic 

forecasts for 2020 and 2021, the pharmaceutical industry economy is expected to follow a solid 

growth trend (EvaluatePharma, 2020a; IFPMA, 2021; IQVIA Institute, 2020). Due to the initial 

rush into the development of vaccines and treatments for COVID-19, almost 160 clinical trials 

for new drugs have been put on hold in 2020, but most of the research that had been suspended 

resumed since then (EvaluatePharma, 2020b). Also the 2020 drop in pharmaceutical product 

sales, forecasted by analysts to be of about $4.9 billion for the top 15 companies 

(EvaluatePharma, 2020a), is estimated to be temporary. Overall, the pre-pandemic factors 

influencing pharmaceutical products use and spending in the near- and middle term future 

remain substantially unchanged (IQVIA Institute, 2020). 

The world drug market is expected to reach a size of $1.6 trillion in 2025 (Table 1.1), growing 

at a compound annual growth rate (CAGR) of 3-6% through 2025. These estimations exclude 

spending on COVID-19 vaccines, which are projected to be of about $157 billion, and to mainly 

involve the vaccination campaign to finish by 2022 (IQVIA Institute, 2020). The 

pharmaceutical market will grow at 7-10% CAGR in the so-called “pharmerging countries”   

(Table 1), 21 countries, such as Mexico, Poland and Argentina, with per capita income below 

$30,000 and an aggregate pharmaceutical  growth in five years over $1 billion (IFPMA, 2021).  

 

Table 1.1. Worldwide pharmaceutical market: spending and growth rate in 

2016-2020 and forecasts for 2021-2025 for selected countries and for the total 

market. Adapted from IQVIA Institute (2020). CAGR = compound annual 

growth rate. 

Countries 2020 SPENDING 

[$bn] 

2016-2020 

CAGR 

2025 SPENDING 

[$bn] 

2021-2025 

CAGR 

Global 1,265.2 4.6% 1580–1610 3–6% 

Developed 959.5 3.8% 1130–1160 1.5–4.5% 

10 Developed 847.2 3.8% 990–1020 1.5–4.5% 

United States 527.8 4.2% 605–635 2–5% 

Japan 88.2 -0.2% 75–95 -2–1% 

Germany 54.9 5.3% 65–85 3.5–6.5% 

France 36.3 2.4% 43–47 1–4% 

Italy 33.3 4.2% 38–42 2–5% 

United Kingdom 30.2 5.3% 38–42 2.5–5.5% 

Spain 25.7 4.6% 28–32 1.5–4.5% 

Canada 22.8 4.8% 28–32 2–5% 

South Korea 16.2 6.8% 18–22 4.5–7.5% 

Australia 11.8 3.3% 13–17 1–4% 

Other developed 112.3 4.2% 125–155 2.5–5.5% 

Pharmerging 290.8 7.4% 415–445 7–10% 

China 134.4 4.9% 170–200 4.5–7.5% 

Brazil 28.7 10.7% 43–47 7.5–10.5% 

Russia 17.5 10.8% 33–37 11–14% 

India 21.1 9.5% 28–32 7.5–10.5% 

Other Pharmerging 89.1 9.6% 120–150 8.5–11.5% 

Lower income 

Countries 

15.0 3.9% 18–22 3–6% 
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Developed countries will grow at a lower 1.5-4.5% CAGR pace (Table 1.1), as gains from 

newly approved products will not outweigh losses due to patents expirations (IQVIA Institute, 

2020). Despite the lower CAGR, developed countries will be responsible for the largest part of 

the market size increase, even though comparisons with the CAGRs in 2016-2020 (Table 1.1) 

show the growing importance of pharmerging countries for the pharmaceutical market. Looking 

at the prescription drug sales and market share for the top 10 pharma players in 2018 and to the 

forecasts for 2026 (Table 1.2), it emerges that, despite all companies present a positive CAGR, 

the total market share of the top 10 companies will shrink. Patent expiration is the main reason 

for this phenomenon. Pharmaceutical companies will have to diversify their portfolios by 

bringing new products to the market, to compensate for the loss of brand exclusivity. However, 

the return on investment (ROI) on research and development (R&D) for new medicines has 

been constantly decaying over the last years. Deloitte (2021) reports that, for a selected cohort 

of 15 biopharmaceutical companies, the ROI on R&D decreased from 7.2% in 2014 to just 

1.6% in 2019, with a constant decay. A modest recovery to 2.5% was measured in 2020, but 

this result does not imply an inversion of the trend. As a matter of fact, the cost to bring a new 

product to the market is steadily growing (+67% from 2010 to 2019; Deloitte, 2019), due to 

increasing complexity of product and process development, and to the expanding cycle time for 

launching a new product.  

 
Table 1.2. Worldwide pharmaceutical market: prescription drug sales and 

market share in 2018 and forecasts for 2026 for the top 10 companies and for 

the total market. Adapted from EvaluatePharma, 2020b. 

Rank Company Prescription sales [$bn] Market share Rank change 

  2019 2026 CAGR 2019 2026  

1 Roche 48.2 61.0 +3.4% 

+4.9% 

+2.5% 

+3.8% 

+7.2% 

+2.2% 

+8.6% 

+2.6% 

+8.5% 

+3.9% 

+4.5% 

+8.5% 

+6.9% 

5.5% 4.4% 

4.0% 

3.9% 

3.8% 

3.8% 

3.7% 

3.2% 

3.0% 

2.9% 

2.9% 

35.8% 

64.2% 

100.0% 

+0 

2 Johnson & Johnson 40.1 56.1 4.6% +3 

3 Novartis 46.1 54.8 5.3% -1 

4 Merck & Co 40.9 53.2 4.7% +0 

5 AbbVie 32.4 52.7 3.7% +2 

6 Pfizer 43.8 51.1 5.0% -3 

7 Bristol-Myers Squibb 25.2 44.7 2.9% +3 

8 Sanofi 34.9 41.7 4.0% -2 

9 AstraZeneca 23.2 41.0 2.7% +2 

10 GlaxoSmithKline 31.3 40.8 3.6% -2 

 Total Top 10 366.1 497.1 42.0%  

 Other 505.8 893.1 58.0%  

 Total 871.8 1,390.3 100.0%  

 

To contrast the decreasing ROI on R&D and maintain their competitiveness, pharmaceutical 

companies are required to innovate their approaches to all the stages of the pharmaceutical life 

cycle. An additional crucial driver for pharmaceutical industry modernization comes from the 

large number of medicine shortages and recalls that occurred in recent years with severe 

economic and health consequences (ISPE, 2017; Natof and Pellegrini, 2021). More modern 

approaches to pharmaceutical development and manufacturing would lead to significantly less 
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alarming tolls of shortages and recalls, as also warned by the regulatory agencies (Yu and 

Kopcha, 2017). The change of paradigm consists in adopting Industry 4.0 and process systems 

engineering enabling technologies that have been revolutionizing the manufacturing sector in 

recent years (Isaksson et al., 2018; Kagermann et al., 2011). Immediate benefits of 

pharmaceutical industry modernization are, but are not limited to: 

• cost reduction for drug discovery, product and process development and manufacturing; 

• decrease of the cycle time between patent filing and product launch; 

• faster and more efficient scale-up from the development to the manufacturing scale; 

• greater product quality assurance; 

• decrease of medicine shortages and recalls. 

The advantages of this innovation effort are both for companies, in terms of ROI and of 

economic gain, and for patients, who can expect to have broader access to innovative and high 

quality medicines and vaccines at a lower price, with less incidence of potentially life-

threatening events such as shortages and recalls. As a proof, let us consider the recent case of 

the COVID-19 vaccines. Shortly after that regulatory agencies across the world emitted 

emergency use authorizations for different sera in late 2020 and early 2021, it became clear that 

pharmaceutical companies where not ready to ramp up the vaccines production to quickly meet 

the worldwide demand (ECDC, 2021). The task was indeed difficult, considering the physical 

lack of an adequate number of suitable facilities. However, the shortage was also caused by the 

poor diffusion in the pharmaceutical sector of efficient scale-up approaches from the 

development to the manufacturing scale, which are instead established in most of the other 

manufacturing industries (Liu et al., 2020; Sarkis et al., 2021). In addition, outdated 

manufacturing technology still in use in many pharmaceutical plants can play a role in multiple 

batch rejections (Johnson & Johnson, 2021; Torjesen, 2021), further delaying vaccines rollout 

with tremendous implications on the health of the population and on the global economy. 

The recent urgency of innovation of the pharmaceutical industry meets a modernization 

momentum in the sector that has been growing since the early 2000s, under several initiatives 

promoted by regulatory agencies, such as the United States Food & Drug Administration (FDA) 

and the European Medicines Agency (EMA), to improve pharmaceutical quality assurance. 

Actually, as the pharmaceutical industry is a strongly regulated sector, every modernizing 

change to a stage of the product life cycle must be designed in accordance with, and cannot be 

understood if decoupled from, the national and international regulations. For this reason, after 

a brief outline of the pre-launch and post-launch life stages of a pharmaceutical product in §1.2, 

in §1.3 an overview is provided on the pharmaceutical regulatory framework for the countries 

adhering to the International Council for Harmonisation of Technical Requirements for 

Pharmaceuticals for Human Use (ICH). The ICH was founded in Brussel in 1990 by 

representatives of the regulatory agencies of the United States of America (USA), of the 

European Union (EU) and of Japan, and has since then acquired new members.  
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1.2 The journey of a new pharmaceutical product 

The launch of new molecular entitities and new biologicals entities, usually simply referred to 

as biologicals, is a costly process (Table 1.3), of average duration of 12-13 years since the 

discovery of the new active substance (EFPIA, 2021). Since approved drugs must compensate 

for the R&D expense of candidate drugs that do not obtain the final approval for 

commercialization, the average R&D expense for new drugs in 2019 was larger than the 

impressive amount of $3 billion (Table 1.3). Overall, the pharmaceutical industry is estimated 

to have invested in R&D about $179 billion in 2018, which has been claimed to be 7.3 times 

the R&D expense in the same year of the aerospace and defense industries, 6.5 times the one 

of the chemical industry, and 1.5 times that of the computer services industry (IFPMA, 2021). 

Nevertheless, pharmaceutical companies continue to imposingly invest in R&D to widen their 

portfolios, to maintain and increase their competitiveness. In 2020, more than 8000 active 

substances were in the different stages of the development pipeline. 

 
Table 1.3. Drugs approved by the FDA in the years 2007-2019: number and 

R&D expense per drug, calculated dividing the total R&D expense per year 

by the number of approved drugs. The 3 year lag R&D expense considers the 

R&D expense for 3 years prior to the drug approval instead of the same year. 

Adapted from EvaluatePharma (2020a). 

Year # drugs approved 

 by FDA 

R&D expense  

per drug [$ bn] 

R&D expense 

per drug – 3-year lag [$ bn]] 

2007 25 4.9 - 

2008 31 4.2 - 

2009 35 3.6 - 

2010 26 4.9 4.7 

2011 35 3.9 3.7 

2012 44 3.1 2.9 

2013 35 4.0 3.7 

2014 51 2.8 2.7 

2015 56 2.7 2.4 

2016 27 5.9 5.1 

2017 55 3.1 2.6 

2018 62 2.9 2.4 

2019 53 3.5 3.0 

 

Figure 1.1 presents the pre-launch and post-launch life stages of a pharmaceutical product, 

together with the breakdown into the different stages of the budget to be invested for the new 

product. Research involves mainly the first phase of the process, and includes two steps: i) drug 

discovery and ii) pre-clinical testing. During drug discovery, researchers attempt to find 

promising agents for fighting a disease using basic and innovative scientific methods. Then, the 

identified compounds are patented, and pre-clinical (or pre-human) testing starts. The active 

substance is tested for safety and efficacy in-silico and in-vivo, to decide whether to continue  
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Figure 1.1. Life stages of a pharmaceutical product. Data from EFPIA (2021) 

and IFPMA (2021). 

the approval process with clinical tests on humans. Examples of pre-clinical studies are tests on 

the acute and chronic toxicity properties and the pharmacokinetics of the compound. On 

average, only one out of 5,000-10,000 compounds that enter pre-clinical studies reaches the 

final approval (Lipsky and Sharp, 2001). Overall, the duration of the research phase is of 3-6 

years, and it consumes, on average, 15.7% of the budget for bringing to the market a new 

product (EFPIA, 2021).  

Compounds that seem promising after the pre-clinical tests enter the development stage, which 

consists of clinical trials on humans carried out in three phases. Before starting the actual trials, 

an application must be filed with regulators, such as the investigational new drug application 

(IND) with the FDA or the clinical trial application (CTA) with the EMA. Regulators review 

the application, containing information such as the pre-clinical tests results and the clinical trials 

design, and decide whether to approve the research on humans. During development, both the 

product and the process to manufacture it are designed. In phase I of the clinical trials, the 

candidate compound is tested on 20-100 volunteers, to understand the safety of the compound 

on humans and to design a suitable dose. Compounds passing phase I (average rate of success 

of 57%; IFPMA, 2021) go on to phase II, where the main focus is understanding if the candidate 

drug is effective. In phase II, the group of volunteers is typically of 100-500 patients, with an 

average success rate of 39% of passing to phase III (IFPMA, 2021). Successful results for phase 

II allow starting phase III clinical trials, during which the candidate drug is tested for safety and 

efficacy on a large number of volunteers (1,000-5,000). During phase III, candidate drugs are 

also benchmarked against the current standard treatment available in the market, if there is one. 

Chances for a new compound to pass phase III clinical trials are, on average, of 68% for phase 

III (IFPMA, 2021). Phase III clinical trials are the most expensive phase of the launch of a new 
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product (~30% of the budget), and require to manufacture a large amount of the candidate drug. 

The needed amount of active pharmaceutical ingredient (API) or drug product rapidly passes 

from a few grams for pre-clinical/phase I tests to hundreds of kilograms in phase III, due to the 

significant number of volunteers involved in this phase. The clinical material production ramp-

up is typically conducted with an empiric approach through a series of scale-ups, aimed at 

delivering the supplies for the trials as fast as possible, rather than at developing robust 

manufacturing processes (Suresh and Basu, 2008). At the end of the trials, process development 

is frozen and the process is quickly scaled-up to the manufacturing scale for the final validation. 

Hence, the lack of robustness of the process in development scale propagates to the process in 

manufacturing scale, with severe consequences in manufacturing efficiency. 

Overall, the duration of the development phase is of 6-7 years, and absorbs, on average, 47.4% 

of the budget for launching a new product (EFPIA, 2021). The cost for manufacturing the 

clinical trials supplies is a significant part of the overall cost of conducting the trial themselves, 

which also includes expenses such as reimbursements to volunteers and clinical staff. Suresh 

and Basu (2008) estimated that the cost for conducting clinical trials makes up for about 50-

60% of the development budget alone, while the remaining 40-50% is the cost for product 

development, including for the manufacture of clinical trial supplies. 

For compounds successfully passing the clinical trials, a submission for approval is submitted 

to regulators, such as the new drug application (NDA) or the biologic license application (BLA) 

to the FDA or the marketing authorisation application (MAA) to the EMA. This phase takes 

about 4.3% of the budget for the product launch. Regulators may take up to 2 years for 

reviewing the application, and deciding whether to give the launch authorization. In case of 

positive response, the approved drug enters the manufacturing stage. Periodic reviews (phase 

IV clinical trials) of safety and efficacy must be carried out after the product launch, and take 

up to 11.2% of the total budget (EFPIA, 2021). A patent for a drug expires 20 years after having 

been granted, although in some cases an extension of five years might be given. After patent 

expiration, profits decay because of competition with generics (IQVIA Institute, 2020).  

Pharmaceutical companies, in order to increase their profit and the ROI on the R&D expense, 

should aim at i) reducing the R&D cost (up to 65% cumulative cost for product launch) , ii) 

reducing the product launch time and iii) modernizing scale-up and manufacturing approaches, 

also for clinical supplies manufacturing in the development stage. Product launch time 

reduction (aim ii) is particularly relevant: IBM (2005) estimated that, for a product with $1 

billion annual peak sales in its life cycle, bringing the sales peak from the current time interval 

of 10 years after launch to 5 years after launch would increase the revenues from the product 

of $1.6 billion. Suresh and Basu (2008) estimated that, for the whole industry, development 

modernization can create between $12 and $18 billion a year of additional revenue, just by 

decreasing the time to market of new products. The introduction of science-based approaches 

for process development and scale-up (aim iii) is also pivotal to maximizing the manufacturing 
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efficiency, and minimizing the occurrence of shortages and recalls. Moving from empirical to 

science-based process development and scale-up since the development stage is fundamental 

to reduce the (significant) cost for making clinical trials supplies, and to deliver robust 

manufacturing processes. It has been estimated that cost savings in manufacturing for the whole 

industry in the range of $20 to $50 billion every year (Suresh and Basu, 2008) can be achieved 

by developing robust manufacturing processes. 

There is consensus among analysts and experts of the field (Deloitte, 2020a, 2019a; IBM, 2005; 

McKinsey & Company, 2021) that the strategies and tools for achieving aims (i-iii) are: 

• artificial intelligence, digitalization and mathematical modeling as accelerators for drug 

discovery (Deloitte, 2019b); 

• cloud computing for speeding up information sharing among research collaborators, 

across companies and with health authorities worldwide (Deloitte, 2020a). Ten top 

biopharmaceutical companies sponsored the foundation of Accumulus Synergy, a cloud 

computing platform formed in 2020 to reduce regulatory review times and innovate data 

exchange between the biopharmaceutical industry and global health authorities 

(Accumulus Sinergy, 2021);  

• adoption of innovative approaches for clinical trials design and execution (Deloitte, 

2020b). These include the use of artificial intelligence, of telemedicine technology for 

trials decentralization and of real world evidence and data (data from patients databases 

or other private or public registries) for enhancing trials design and fastening the 

regulatory approval; 

• implementation of the Quality-by-Design (QbD) paradigm (§1.3) in pharmaceutical 

development and manufacturing (IBM, 2005; Kourti and Davis, 2012; Yu and Kopcha, 

2017); 

• the use of emerging technologies (Fisher et al., 2016; O’Connor et al., 2016; Troup and 

Georgakis, 2013) in pharmaceutical development and manufacturing for advanced 

process design, monitoring and control, including continuous manufacturing, process 

modeling, data analytics, active process control, real-time release testing, PAT and 

advanced monitoring systems. These technologies will be detailed in §1.4. 

1.3 The pharmaceutical regulatory framework 

1.3.1 Historical evolution 

The first regulations for the pharmaceutical industry came in response to fatal incidents. Safety 

studies for new drugs became mandatory in the United States only with the 1938 Food, Drug 

and Cosmetic Act (Ballentine, 1981), after Elixir Sulfanilamide, a drug for streptococcal 
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infections, caused more than 100 casualties in the United States in 1937. Efficacy studies for 

new medicines became a requirement in the United States only in 1962, as a consequence of 

the public interest in the topic drawn by the thalidomide-related birth defects of the early 1960’s 

(Hamburg, 2012). Although regulations were put in place for the first time to assure safety and 

efficacy of drugs for the first time, the pharmaceutical industry started to become a highly 

regulated environment, reluctant to innovation and relying on brand exclusivity for making 

profits. The direct consequence became that in the early 2000s, as reported by the Wall Street 

Journal (Abboud and Hensley, 2003), in spite of cutting-edge new drug discoveries, 

pharmaceutical manufacturing technologies were still lagging far behind those of potato chips 

and soap industries. Regulators acknowledged this issue, and started pushing for a general 

modernization of the industry. The FDA laid its vision for pharmaceutical manufacturing 

innovation with the document “Current Good Manufacturing Practices (cGMPs) for the 21st 

century” (FDA, 2004a), aiming to promote more efficient and flexible manufacturing 

approaches that produce high quality drugs without the burden of extensive regulatory 

oversight. With the subsequent process analytical technology (PAT; FDA, 2004b) and QbD 

(ICH, 2009; Yu, 2008; Yu et al., 2014) initiatives, the FDA, together with the other regulators 

of the ICH, defined a novel pharmaceutical development and manufacturing paradigm, rooted 

in product and process understanding and based on sound science and quality risk management.  

The quality of a pharmaceutical product can be defined as the absence of contamination and the 

suitability for the therapeutic use promised in the label to the consumer (Woodcock, 2004). 

Under the previous so-called Quality-by-Testing approach, the end-product was directly tested 

for verifying its quality. In a QbD approach, instead, the quality is proactively designed into the 

product (ICH, 2009; Juran, 1992). This transition represents a main step forward, as it comes 

with the realization that increased testing does not inherently bring improvement to the product 

quality. Regulators understood that they can assess the pharmaceutical quality delivered by a 

running plant only during inspections (Yu and Woodcock, 2015), and that it is far more 

convenient to encourage manufacturers to develop processes capable of robustly building the 

quality into the product.  

Since the launch of the QbD initiative, substantial progress has been made towards this 

direction. Still, much challenges remain ahead. During the global heparin crisis of 2007-2008, 

a contaminant included in the drug product caused several casualties (Liu et al., 2009). The 

contaminant had passed the quality control system undetected, proving that there is still much 

space of improvement in pharmaceutical quality control. Another critical issue involves drug 

shortages and recalls, which recently have been registered in unacceptably large numbers (FDA, 

2013a; O’Connor et al., 2016). The unprecedented shortages and recalls volume indicates 

failures in routine manufacturing operations and scale-up procedures, often combined with the 

use of old-fashioned equipment and improper quality management systems (Yu and Woodcock, 

2015). Actually, manufacturing and quality issues were found to cause more than 60% of all 
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biologicals shortages (FDA, 2013a). In response to these and other events, regulators recently 

made further moves to promote the modernization of pharmaceutical development and 

manufacturing, with a renewed focus on quality. The FDA created a new Office of 

Pharmaceutical Quality within the Center for Drug Evaluation and Research, with the purpose 

of integrating review, inspection and research activities for boosting quality enhancement 

across the pharmaceutical life cycle. The FDA has also established a new pharmaceutical 

quality assessment (Knowledge-aided Assessment & Structured Application, KASA; Yu et al., 

2019) system, to modernize the procedure of quality assessment of regulatory drug applications. 

Under the KASA system, modern structured and quantitative approaches are adopted for 

evaluating drug applications, with the purpose of increasing the consistency among regulatory 

approvals for different products and the effectiveness of the regulatory oversight across the 

product life cycle. 

The ultimate aim encouraged by regulators for tackling the current challenges in pharmaceutical 

quality control is the implementation of robust pharmaceutical processes, under the so-called 

“six sigma quality” (Yu and Kopcha, 2017). Under a six sigma quality system, established in 

most manufacturing industries, there are six process standard deviations between the process 

mean of each quality variable and the relevant nearest specification limit. Six sigma quality 

eventually results in no more than 3.4 quality failures occurring per million opportunities, 

compared to 308,537 defects per million opportunities under two sigma quality. Current 

pharmaceutical manufacturing is, in most of the cases, two to three sigma quality (Yu and 

Kopcha, 2017). To achieve the six sigma standard, it is necessary to introduce novel technology 

in pharmaceutical development and manufacturing. Such emerging technology, new for the 

pharmaceutical industry, but not necessarily new to other industries, has been encouraged 

through the recent Emerging Technology Program (FDA, 2017; O’Connor et al., 2016) by the 

FDA, and through the EU Innovation Network in Europe (EMA, 2018). There is agreement 

among regulators, practitioners and academics (Am Ende, 2019; Fisher et al., 2016; Su et al., 

2017) that the emerging technologies to focus on to deliver next-generation pharmaceutical 

quality are: 

a) transition to a more continuous processing mode (Fisher et al., 2019; Lee et al., 2015; 

Plumb, 2005); 

b) process simulation and modeling (Chatterjee et al., 2017; Chen et al., 2020); 

c) advanced data analytics (Severson et al., 2018; Steinwandter et al., 2019); 

d) active process control on quality, including advanced techniques such as model 

predictive control (MPC; Rawlings et al., 2017); 

e) enabling technology for real-time release testing, namely for online monitoring of the 

product quality (as opposed to end testing), including PAT (De Beer et al., 2011; Simon 

et al., 2015) and soft-sensors based on mathematical techniques (Pantelides and Renfro, 

2013; Sinner et al., 2021); 
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f) routines for automatic detection of special cause variability that might compromise the 

product quality (ICH, 2011; Kourti, 2019). 

These technologies have gradually been introduced in the pharmaceutical industry, due the 

initiatives of regulators for improving pharmaceutical quality assurance (Yu and Kopcha, 2017) 

and to the economic advantages that come to manufacturers (Isaksson et al., 2018). However, 

the implementation is far from being well established yet. For this purpose, the contribution 

from the fields of chemical and process systems engineering, possessing key expertise in 

digitalization strategies (Collins, 2018; Troup and Georgakis, 2013), will be crucial. 

It is important to remark here that the original QbD guidelines (ICH, 2012a, 2009, 2008, 2005) 

already allowed (and promoted) the introduction of the novel technologies that have emerged 

lately. Hence, the recent pharmaceutical modernization trends should be seen as an evolution 

of QbD from its early 2000s implementation version (Yu, 2008) to a contemporary smart 

manufacturing framework (Davis et al., 2015), which someone has referred to as “Pharma 4.0” 

(Boni, 2016; Steinwandter et al., 2019), but that is still fully adherent to the initial QbD 

cornerstones.  

1.3.2 The Quality-by-Design framework 

An overview of the main ICH regulations defining the QbD initiative is provided in Table 1.4. 

The ICH Q7 guideline (ICH, 2000) introduced the cGMPs, lying the foundations for QbD. The 

core concepts of QbD are outlined by the ICH guidelines Q8(R2), Q9 and Q10 (ICH, 2009, 

2008, 2005). The ICH guideline Q8(R2) presents the QbD approach to drug product 

development. The ICH guideline Q9 introduces the quality risk management system, and 

provides information on the risk-based approach to pharmaceutical quality attainment promoted 

by QbD. A pharmaceutical quality system framework for effective quality management across 

the product life cycle is presented in the ICH guideline Q10. ICH guideline Q8(R2), Q9 and 

Q10 have a special focus on pharmaceutical development and manufacturing of drug products. 

The ICH guideline Q11 (ICH, 2012a) clarifies how to apply the QbD paradigm to development 

and manufacturing of drug substances, and provides further descriptions of the QbD concepts 

outlined in the previous guidelines. ICH guideline Q12 (ICH, 2019) addresses the 

manufacturing phase of the product life cycle, and introduces a QbD framework to facilitate 

post-approval changes and continual improvement. Recently, ICH released for public 

consultation the draft version of guideline Q13 (ICH, 2021), which introduces definitions and 

tools to facilitate the transition of continuous pharmaceutical manufacturing. 

The common ground across all guidelines is the ultimate aim of QbD, namely inherently 

building the quality into the product with a scientific and risk-based approach, to be adopted 

during all the product life stages. This is achieved through enhanced product and process 

understanding and through critical investigation of the sources of variability affecting the  
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Table 1.4. Main ICH quality guidelines defining the QbD framework. 

Date Guideline Reference Status 

10/11/2000  Q7 – Good manufacturing practice guide for active pharmaceutical 

ingredients  

ICH 

(2000) 

Final 

guidance  

09/11/2005  Q9 – Quality risk management system.  ICH 

(2005) 

Final 

guidance  

04/06/2008  Q10 – Pharmaceutical quality system  ICH 

(2008) 

Final 

guidance  

01/08/2009  Q8(R2) – Pharmaceutical development  ICH 

(2009) 

Final 

guidance  

11/11/2010  Q8, Q9, Q10 Questions and Answers  ICH 

(2010) 

Final 

guidance  

06/12/2011  Q8, Q9, Q10 Points to consider  ICH 

(2011) 

Final 

guidance  

01/05/2012  Q11 – Development and manufacture of drug substances (chemical 

entities and biotechnological/biological entities) 

ICH 

(2012) 

Final 

guidance  

23/08/2017  Q11 Questions and answers  ICH 

(2017) 

Final 

guidance  

20/11/2019  Q12 – Technical and regulatory considerations for pharmaceutical 

product lifecycle management 

ICH 

(2019) 

Final 

guidance 

27/07/2021 Q13 – Continuous manufacturing of drug substances and drug 

products 

ICH 

(2021) 

Draft 

guidance 

 

product quality. QbD is opposed to the traditional Quality-by-Testing, consisting in quality tests 

on the end product and in empiric product and process development. Regulators summarize the 

main goals of QbD as (Yu et al., 2014): 

• to reach the target product quality specifications, based on the evaluated clinical 

performance; 

• to increase process capability and reduce product variability and defects through 

enhanced product and process design, understanding and control; 

• to enhance development and manufacturing efficiencies; 

• to improve root cause analysis for special variability occurrences and to enhance post-

approval change management. 

These goals can be achieved through the different elements of QbD ( Yu et al., 2014): 

1. determination of a quality target product profile (QTPP) that identifies the product 

critical quality attributes (CQAs). CQAs are the characteristics of the drug that are 

critical to quality from the patient’s perspective;  

2. product design and understanding, including the assessment of the raw material 

properties that have a critical impact on the product quality (referred to as critical 

material attributes, CMAs);  

3. process design and understanding, including identification of critical process parameters 

(CPPs), and of functional relationships linking CMAs and CPPs to CQAs; 
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4. design of a control strategy that includes specifications for the drug substance(s), 

excipient(s), and drug product as well as controls for each step of the manufacturing 

process;  

5. process capability and post-approval continual process improvement. 

Before going on, it is necessary to provide clarification for the introduced QbD jargon (ICH, 

2017, 2009): 

• QTPP: a summary of the product quality characteristics that are deemed necessary to 

achieve the desired safety and efficacy. According to the ICH guideline Q8(R2) (ICH, 

2009), a QTPP should include the following: 

o intended use in clinical setting, route of administration, dosage form, delivery 

systems;  

o dosage strength(s);  

o container closure system;  

o therapeutic moiety release or delivery and attributes affecting pharmacokinetic 

characteristics (e.g. dissolution, aerodynamic performance) appropriate to the 

drug product dosage form being developed;  

o drug product quality criteria (e.g. sterility, purity, stability and drug release) 

appropriate for the intended marketed product.  

• CQA: “physical, chemical, biological, or microbiological property or characteristic that 

should be within an appropriate limit, range, or distribution to ensure the desired product 

quality” (ICH, 2009). CQAs are identified from the QTPP using as criterion the 

criticality to safety and efficacy attainment. CQAs are usually properties of the drug 

product, of the drug substance, and of intermediates. For the sake of simplicity, in this 

Dissertation, the CQAs of the intermediates will (improperly) be referred to as 

“product” CQAs, as often done in the literature; 

• CMA: properties of the raw materials that affect the product CQAs; 

• CPP: “a process parameter whose variability has an impact on one or more CQAs and 

therefore should be monitored or controlled to ensure the process produces the desired 

quality” (ICH, 2009). In most of the cases, CPPs are those variables that in conventional 

control science jargon are referred to as manipulated variables; 

• control strategy: set of planned actions, routines and controls, derived from product and 

process understanding, to be followed during manufacturing to ensure process 

performance and product quality. A control strategy can include control and monitoring 

plans for the CPPs and CMAs related to drug substance and drug product and 

intermediate, the operating conditions of the facility and of the equipment, in-process 

controls, specifications of the finished product, and the methodologies and frequency 

for implementing monitoring and control activities. Note that the definition of control 
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strategy in the pharmaceutical context differs from the standard engineering meaning, 

according to which the term control is related to the concept of process control; 

• process capability: ability of a process to realize a product that meets the target quality 

requirements. The concept of process capability can be defined in statistical terms, as 

the number of standard deviations between the process mean and the nearest 

specification limit (Yu and Kopcha, 2017); 

Essentially, QbD consists in the determination of the characteristics of the drug that are critical 

for attaining the desired clinical performance, in their translation into CQAs, in the design of a 

product that can deliver them and in a robust process to manufacture it, after having obtained a 

critical understanding of the relation between product formulation/manufacturing variables and 

CQAs. Under a QbD approach, the process control strategy is designed with a risk-based 

approach and relies on solid process understanding. In addition, the process capability should 

be continuously improved, by reducing the process variability through increased product and 

process understanding.  

The stages of the product life cycle (§1.2) relevant for QbD implementation are (ICH, 2008):  

i) pharmaceutical development, ii) technology transfer (i.e., the scale-up from the development 

to the manufacturing scale, or the transfer between manufacturing sites for marketed products) 

iii) commercial manufacturing, and iv) product discontinuation, for which a suitable approach 

based on process and product understanding should be followed for activities such as continued 

complaint handling and retention of documentation and samples. Current QbD guidelines 

provide recommendations and frameworks mostly for the pharmaceutical development and 

commercial manufacturing stages. Technology transfer and product discontinuation are 

addressed only in a general fashion, recommending to adopt science- and risk-based 

approaches, but lacking of technical information on how to do so to leave more flexibility to 

companies. Hence, in the remainder of this paragraph we summarize the key concepts of the 

QbD ICH guidelines that apply to the stages of pharmaceutical development and commercial 

manufacturing. Table 1.5 shows the main differences between a minimal and an enhanced 

(QbD) approach to pharmaceutical development and manufacturing. It is important to 

remember that minimal and enhanced approaches are not mutually exclusive, and that they can 

be used in combination. For instance, one CQA can be tested through traditional end testing, 

while enhanced approaches can be used for testing other one(s). 

Pharmaceutical development aims at (ICH, 2009) “designing a quality product and its 

manufacturing process to consistently deliver the intended performance of the product”. The 

minimal approach to pharmaceutical development to be followed when filing a marketing 

authorization consists of the following steps (ICH, 2009): 

• step #1: QTTP definition, based on the desired clinical performance; 
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• step #2: CQAs identification. CQAs of the drug product, of the drug substance and of 

the components of the drug product formulation are identified from the previously 

defined QTTP; 

• step #3: manufacturing process design, including process synthesis, operation design 

and equipment selection; 

• step #4: control strategy design. 

An QbD approach to pharmaceutical development (Figure 1.2) includes one or more of the 

additional following enhanced elements (ICH, 2009): 

• step #3 enhanced: 

a) risk assessment for carrying out the systematic evaluation, understanding and design 

of product formulation and manufacturing process, including: i) identification of 

CMAs and CPPs that can have an effect on the product CQAs and ii) determination 

of functional relationships linking CMAs and CPPs to product CQAs; 

b) description of a design space (DS) from the determined relations between CMAs 

and CPPs and CQAs; 

• step #4 enhanced:  

using the enhanced product and process understanding and quality risk management to 

establish an enhanced control strategy, which can include advanced features, such as a 

DS and/or real time release testing (RTRT). 

Hence, the enhanced approach to pharmaceutical development can include the design of two 

key QbD enabling technologies: 

• DS: “multidimensional combination and interaction of input variables (e.g., material 

attributes) and process parameters that have been demonstrated to provide assurance of 

quality” (ICH, 2009). In other words, the DS is the multivariate space of CPPs and 

CMAs that guarantees that the desired product CQAs are met. When a DS is approved 

by regulators, the manufacturer is allowed to move process operation within the DS 

during manufacturing. Operation outside of the DS requires to initiate a regulatory post 

approval change process. The introduction of the concept of DS represents a revolution 

in pharmaceutical development and manufacturing, as previously process operation was 

allowed only at the fixed combination of CPPs and CMAs contained in the application 

to regulators; 

• RTRT: the ability to evaluate and ensure the quality of intermediates and/or final product 

during process operation based on process data, including a valid combination of 

CMAs, CPPs and CQAs (ICH, 2009). RTRT can replace end product testing, even 

though for batch release the review and quality control steps of cGMP are still 

necessary. 
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Figure 1.2. Pharmaceutical development and manufacturing workflow under 

the QbD framework. Mathematical models can be used for supporting each 

stage, as sketched on the right and detailed in §1.4. 

 

Both DS identification and RTRT design require having gained systematic product and process 

understanding, which is the foundation of the QbD approach. In order to do so, multivariate 

experiments are typically carried out, as opposed to univariate experiments that are the common 

choice when the minimal approach is adopted. Note that, even though the DS is a revolutionary 

concept introduced by QbD, DS description is only a (non-mandatory) activity within control 

strategy design under QbD, which generally includes careful development of all routines and 

control actions for conducting the process. Moreover, DS description is not strictly necessary 

for developing an enhanced control strategy, although it is strongly encouraged. 

Commercial manufacturing aims at “achieving product realization, establishing and 

maintaining a state of control and facilitating continual improvement (ICH, 2008)”. In the   

manufacturing phase, in a minimal approach: 

• step #5: manufacturing 

a) operating conditions are fixed; 

b) quality is mainly tested on intermediates and on the end-product (end-product 

testing); 
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Table 1.5. Main differences between minimal and enhanced (QbD) 

approaches to pharmaceutical development and manufacturing. Adapted from 

ICH guideline Q8(R2) (ICH, 2009). 

Aspect Minimal approaches Enhanced approaches - QbD 

Pharmaceutical 

development 
• mainly empirical 

• univariate experiments for product and 

process understanding 

• systematic, relating mechanistic 

understanding of CMAs and CPPs to 

product CQAs 

• multivariate experiments for product 

and process understanding 

Manufacturing 

process 
• fixed operating conditions 

• process performance validated on few 

initial batches 

• focus on reproducibility 

• operating conditions can move within 

DS 

• process performance validated 

multiple times across life cycle, 

ideally continuously (continuous 

process verification) 

• focus on control strategy and 

robustness 

• process monitoring with statistical 

process control 

Control strategy  • control strategy developed with empiric 

approaches to reproduce conditions 

found to deliver target quality during 

development 

• product quality  verified through 

intermediates and end product testing 

• control strategy developed with solid 

product and process understandings 

• product quality inherently built into 

the product 

• possibility or real time release testing, 

or of reduced end product testing 

Lifecycle 

management  
• reactive: problem solving and corrective 

action 

• proactive: preventive action 

• continual improvement facilitated 

 

c) the process performance is validated only for few initial batches. 

Enhanced approaches, instead, feature an enhanced control strategy: 

• step #5 enhanced 

a) the operating conditions can be moved within the DS, if it has been approved; 

b) RTRT often replaces end-product testing for one or more CQAs; 

c) continuous process verification is carried out, continuously evaluating the process 

performance to assess that it is realizing the desired quality. 

Enhanced approaches can also include the following additional elements: 

d) continual process improvement, achieved by using data collected on the 

manufacturing line for improving and optimizing the current process. Revision and 

maintenance activities are also required when operating under an enhanced control 

strategy, for example to validate the chemometric models of PAT used for RTRT or 

to review mathematical models used for design space description; 

e) process capability increase, namely reduction of the process variability. This is 

achieved by identifying the sources of common cause variability, and implementing 

mitigating actions. Process capability increase is a main enabler of six sigma quality 

(Yu and Kopcha, 2017). Univariate statistical process control (SPC), or multivariate 

statistical process control (MSPC; Kresta et al., 1991), is encouraged by ICH 
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guidelines (ICH, 2011, 2009) to promptly detect the occurrence of special cause 

variability that might affect the product quality; 

As a note to elements a-b) of enhanced approaches, as already stressed, for pharmaceutical 

products it is not enough to guarantee that the final product CQAs are within specification, but 

it must also be assessed that CPPs and CMAs were within the DS during the product 

manufacture. This requirement is based on the acknowledgement that only consistent paths will 

assure overall quality consistency, as different paths to a same end point for certain quality 

properties may result in different values for secondary properties, such as downstream 

processability (Kourti, 2019). Even though this reasoning is indeed correct, this conservative 

approach is based on the belief that comprehensive product and process understanding has not 

been reached. Theoretically, if all the product quality variables were known and it would be 

possible to verify that a given product meets the target specifications for all the quality 

attributes, it would not matter the operating conditions path that led to obtaining the product.  

1.3.3 Current state of implementation of Quality-by-Design  

Since the launch of the initiative, QbD elements have started to be introduced not only in 

applications for launching new products, but also in processes for products at a later 

development stage and for legacy products (Cook et al., 2014; Grangeia et al., 2020; ter Horst 

et al., 2021). Merck paved the way with the first application containing QbD elements approved 

by the FDA, the NDA for the drug Januvia (FDA, 2006). The first application approved by the 

FDA containing a formal DS description was approved in 2013 (FDA, 2013b): the BLA 

submitted by Genentech (Roche) for Gazyva, which is also the first approved BLA that follows 

QbD principles. In the EU, the EMA approved the first application with QbD principles and 

DS description in 2012: the MAA for Kalydeco, submitted by Vertex Pharmaceuticals. In 2012, 

a survey (Cook et al., 2014) evaluated the answers from 149 anonymous respondents, mainly 

from industry. Most of respondents (54% to 76%) reported widespread utilization of most QbD 

elements introduced with the ICH guideline Q8(R2) (ICH, 2009). The QbD tools most used by 

respondents were design of experiments (DoE; 76% of respondents), risk assessment (72% of 

respondents) and QTTP identification (66% of respondents). The survey (Cook et al., 2014) 

also reported frequent (55% of respondents) use of DS description, nowadays considered a 

cornerstone for QbD implementation. Grangeia et al. (2020) recently analyzed 60 research 

papers on QbD applications, most of which authored or co-authored by industrial practitioners. 

The authors reported widespread use of risk assessment and DoE tools, with DS description 

assuming always more relevance in latest years. If the industrial surveys and research 

contributions (Cook et al., 2014; Grangeia et al., 2020) demonstrate that the pharmaceutical 

industry is familiar with the QbD concepts, QbD application is still not fully established in the 

submissions for regulatory authorization filed in recent years. A recent analysis (ter Horst et al., 
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2021) of the EMA reports for MAAs reviewed and assessed in the years 2014-2019 showed 

that only 38% of full applications for new drugs contained QbD elements. Just 35% of them 

also contained a DS description in 2018 (ter Horst et al., 2021). A similar trend was found in 

the assessment reports of the Japan regulatory agencies: despite the inclusion of QbD elements 

in new applications rose from 9% in 2009 to 71% in 2018 (Kajiwara et al., 2020), only 2% of 

applications contained a DS description, and just 3% of applications for drug products included 

RTRT procedures. Use of QbD for new molecular entities development is larger than for 

biologicals (ter Horst et al., 2021), mainly due to the higher complexity of biotechnological 

processes (Rathore et al., 2018). A recent survey (Reinhardt et al., 2020) confirmed that the 

implantation of industry 4.0 technology into the pharmaceutical industry is proceeding at a slow 

pace. 

Different causes contribute to the sluggish implementation of QbD in applications submitted to 

regulatory agencies. In the industrial survey by Cook et al. (2014), more than 50% of responders 

expressed a neutral or negative feedback with respect to the impact of QbD on ROI. Actually, 

even though it has widely been demonstrated that QbD implementation has paramount middle- 

and long- term economic benefits for pharmaceutical companies (IBM, 2005; McKinsey & 

Company, 2021; Yu and Kopcha, 2017), it is also true that the initial costs for companies new 

to QbD are not negligible (Vishwasrao and Singh, 2016). QbD also usually requires large 

experimental campaigns for gaining product and process understanding. Such campaigns are 

sometimes more expensive than those carried out for product development under the traditional 

approach, even if they enable more flexibility in the manufacturing stage. Another finding is 

that companies are sometimes discouraged to introduce QbD elements in regulatory 

submissions even if QbD was applied upon development, due to the perception that receiving 

an approval for a QbD application is more difficult (Milmo, 2014). Concerns have been 

expressed that the larger amount of data coming from QbD experimental campaigns could 

highlight phenomena difficult to explain, which would rise questions from regulators. Further 

questions from regulators could arise from misalignment in the terminology or 

misinterpretation of the guidelines.  

The response to the slow adoption of QbD and to skepticism lies in innovation. The 

pharmaceutical industry will benefit from the introduction of modern technologies under the 

QbD framework, as occurred to other industries previously (Isaksson et al., 2018). The 

pharmaceutical emerging technology (§1.3.1 and §1.4), especially the use of mathematical 

modeling, can play a crucial role in boosting QbD implementation, through cost reduction and 

enhanced robustness that inherently come with the digitalization of pharmaceutical 

development and manufacturing. 



20                                                                                                                                                                 Chapter 1 

____________________________________________________________________________ 

© 2021 Francesco Destro, University of Padova (Italy) 

1.4 Pharmaceutical emerging technology: future trends of Quality-

by-Design 

Within the recent modernization trend, the pharmaceutical industry is attempting to catch up 

with state-of-the-art technologies that are established in other manufacturing industries. This 

transition requires adopting simultaneously i) technology from the novel Industry 4.0 paradigm 

(Kagermann et al., 2011) and ii) technology that has been established for a long time in other 

industries, but not in pharma, yet. 

The initiative “Industrie 4.0” originated in Germany in 2011 (Kagermann et al., 2011) to 

promote the innovation of the manufacturing industry. Industry 4.0 aims at creating an efficient 

smart manufacturing environment based on cyber-physical systems, where the physical 

equipment is connected and exchanges information in real time with a digital counterpart that 

autonomously runs process operation through advanced monitoring and control algorithms. 

Industry 4.0 does not only involve process automation and digitalization, which actually already 

occurred in most of the manufacturing sectors, except for pharma. It is the autonomous 

decision-making feature of Industry 4.0 that makes it different from previous industrial 

revolution technology.  

In the remainder of this paragraph, we briefly outline the most important emerging 

pharmaceutical technology, grouped in three sub-sections: continuous processing, active 

process control, and mathematical modeling. Please note that a detailed overview of modern 

sensors, knowledge management and data exchange systems, although of paramount 

importance for Industry 4.0, is out of the scope of this Dissertation. The interested reader may 

find these technologies reviewed elsewhere (De Beer et al., 2011; Gyürkés et al., 2020; Kim et 

al., 2021; Pantelides and Renfro, 2013; Reinhardt et al., 2020; Suresh et al., 2010). 

1.4.1 Continuous manufacturing 

Traditionally, pharmaceutical manufacturing has been carried out predominantly in batch 

mode. In recent years, many studies from regulators, academics and practitioners (Burcham et 

al., 2018; Collins, 2018; Fisher et al., 2019, 2016; Ierapetritou et al., 2016; Lee et al., 2015) 

demonstrated that pharmaceutical continuous manufacturing has many advantages compared 

to batch processing. Such benefits are both for manufacturers and for patients, and include 

reduced manufacturing time and cost, decreased facility footprint, greater product consistency 

and process flexibility, potential to reduce shortages, and simplified scale-up procedures. 

Continuous manufacturing is also an enabler of other pieces of pharmaceutical emerging 

technology, especially of active (i.e., engineering) process control. Actually, continuous 

processes are inherently more controllable than their batch counterparts, and they are more 

prone to the implementation of advanced monitoring and data analytics routines.  
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Regulators are promoting the transition to continuous manufacturing through several initiatives, 

aimed at clarifying how to develop a continuous process for a new medicine or vaccine under 

the QbD framework. In the novel ICH guideline Q13 (ICH, 2021) and in a recent document by 

the FDA (FDA, 2019), regulators outlined their quality considerations for continuous 

manufacturing, highlighting features that are peculiar to continuous processes, rather than to 

batch processes. One important recommendation given by the ICH and the FDA is the necessity 

of implementing material traceability approaches, namely to track the material flow through the 

integrated continuous system. Residence time distribution models (Kruisz et al., 2018; Sencar 

et al., 2020) are suggested for this purpose. Material traceability, combined with process 

monitoring routines, is needed for identifying and tracking nonconforming material generated 

in the plant, to be diverted in suitable diversion points that have to be designed into the plant. 

The implementation of active process control and RTRT in continuous processes is also 

strongly encouraged by the FDA (FDA, 2019). RTRT can be enabled by mathematical models 

used as surrogates of direct measurements. 

The idea of transitioning to continuous processing has been in the pharmaceutical industry for 

long (Plumb, 2005). Many examples of single pharmaceutical unit operations exist in the 

academic and industrial literature. Recent developments in continuous flow chemistry (Bana et 

al., 2017; Baumann and Baxendale, 2015) allow continuous synthesis of small molecules, even 

through multi-step reactions. The first biopharmaceutical product manufactured through 

continuous perfusion was approved by FDA in 1993, and to date about 20 biologicals are 

synthetized through continuous processing (Fisher et al., 2019). Continuous implementations 

also exist for most of the other pharmaceutical unit operations, including crystallization 

(Acevedo et al., 2016; Wood et al., 2019a; Yang et al., 2015), powder feeding (Hanson, 2018), 

powder blending and tableting (Nagy et al., 2017; Su et al., 2019a). Still, the integration of all 

unit operations in an end-to-end continuous pharmaceutical process is little explored in the 

literature (Domokos et al., 2020; Mascia et al., 2013), and even less in the industrial practice. 

As of December 2020, only six drug products manufactured continuously have been approved 

by the FDA: Daurismo by Pfizer, Orkambi, Symdeko/Symkevi and Trikafta by Vertex 

Pharmaceuticals, Prezista by Johnson & Johnson and Verzenio by Eli Lilly (GlobalData 

Healthcare, 2020). In 2020, the first application for continuous manufacturing of an API and 

the first continuous biomanufacturing process were approved (FDA, 2020). Recently, 

Continuus Pharmaceuticals, a spin-out from an MIT-Novartis collaboration, obtained a $69.3 

million government contract to build the first FDA approved end-to-end manufacturing facility 

using its proprietary technology for the production of small-molecule medicines (Continuus 

Pharmaceuticals, 2021).  

Several challenges remain ahead for the widespread implementation of continuous 

manufacturing, despite the more flexible regulatory environment that is being drawn in recent 

years. Among them, the main ones are: 
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• capital cost. Even if it has been proven that continuous processing is economically 

convenient with respect to batch processing (Schaber et al., 2011), the large capital 

costs are sometimes a limitation for converting an already built batch process into a 

continuous one. High-volume of production is the main driver for converting a batch 

process to a continuous one, as happened for the Johnson & Johnson’s plant producing 

Prezista (Centers, 2015); 

• end-to-end continuous integration. Technology for connecting in a continuous fashion 

the single unit operations is not mature yet. In particular, a gap exists between upstream 

(drug substance) and downstream (drug product) manufacturing, for which continuous 

solutions already exist, and the intermediate purification section. Focusing on small 

molecules manufacturing, API purification is typically carried out through subsequent 

crystallization, filtration, washing and drying steps. However, continuous technology 

for filtration, washing and drying of crystallization slurries (§4.2), and for their 

continuous integration with crystallization, is still lagging behind (Burcham et al., 

2018; McWilliams et al., 2018); 

• active process control. Continuous processes are more easily controllable than their 

batch counterparts. As a result, product quality attainment is achieved more 

consistently and at a lower cost, when a control system is in place. However, the know-

how on control of continuous pharmaceutical processes is still limited, especially when 

end-to-end integrated plants are considered. Even though there is growing interest in 

the pharmaceutical sector towards implementing active process control (Su et al., 

2019b), pharmaceutical operation is typically still run at open-loop, as a result of the 

“golden batch” tradition. More advancement is needed both from the regulatory 

agencies, the industrial and the academic sides to enable the implementation of active 

process control, without which continuous processing is far less attractive. 

1.4.2 Active process control: towards Quality-by-Control 

A control strategy (§1.3.2) for a pharmaceutical process can include three levels of controls Yu 

et al., 2014), as depicted in Figure 1.3: 

• Level 1. A Level 1 control strategy makes uses of process control techniques for actively 

controlling the product quality. Active process control is defined as “a system consisting 

of hardware and software architecture, mechanisms, and algorithms that automatically 

adjusts a process to maintain the process output within a desired range.” (FDA, 2019), 

and in practice coincides with the engineering definition of process control (Seborg et 

al., 2017). Under a Level 1 control strategy, the CMAs are monitored, and the product 

CQAs are kept close to the target values. This is achieved by automatically adjusting 

the CPPs, in response to CMAs changes (feedforward control). In the case in which 
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CQAs are monitored in real time, CPPs can be adjusted also in response to CQAs 

changes (feedback control). In other words, the CPPs are manipulated in response to 

disturbances to track the desired CQAs set-points. Advanced techniques can be 

implemented at Level 1, such as MPC (Rawlings et al., 2017), real time optimization 

(RTO; Biegler et al., 2015), and state estimation (Ray, 1981). Level 1 control can also 

enable RTRT, which can be achieved not only through PAT, but also making use of soft 

sensors based on mathematical models (FDA, 2019; ICH, 2011; Yu et al., 2014); 

• Level 2. Under a Level 2 control strategy, process operation is conducted at open-loop 

within the established DS. As when the process is operated in the DS the product quality 

is guaranteed, reliance on end-product testing is decreased with a Level 2 control 

strategy; 

• Level 3. A Level 3 control strategy consists in operating the process under tightly 

constrained intervals of CMAs and CPPs, as there is limited understanding of the 

sources of variability and of the impact of CMAs and CPPs on the product CQAs. 

Hence, extensive end-product testing is also conducted. 

A Level 3 control strategy corresponds to the traditional Quality-by-Testing approach, while a 

Level 2 control strategy, possibly mixed with some Level 3 control strategy elements, is aligned  

 

 

 
Figure 1.3. Three levels of control strategies of a pharmaceutical process (Yu 

et al., 2014). A Level 1 control strategy can consist of layers: Layer 0, Layer 

1 and Layer 2 (Su et al., 2019b). 
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to the QbD paradigm. Level 3 control strategies are still the most adopted in pharmaceutical 

manufacturing, even though Level 2 strategies are rapidly gaining pace (§1.3.3). 

The ultimate aim of the QbD initiative is to achieve the implementation of Level 1 strategies, 

capable of guaranteeing quality assurance with the maximum efficiency. The benefits of 

implementing a modern Level 1 control strategy are both for companies and for patients, as 

stressed by regulators, practitioners and academics (Collins, 2018; Fisher et al., 2019; Troup 

and Georgakis, 2013; Yu et al., 2014). McKinsey (2021) estimates that the adoption of a smart 

quality control system for process development and manufacturing could have a tangible impact 

on profit, reduce the product launch time by more than 30%, increase manufacturing and supply 

chain capacity and responsiveness by 20 to 30% and prevent major compliance issues by 

reducing manual errors and variability.  

Recently, Level 1 control strategies have started to appear more and more frequently in 

academic publications (Mesbah et al., 2017; Rehrl et al., 2016; Sen et al., 2014), originating the 

so-called novel Quality-by-Control (QbC) paradigm (Su et al., 2019a). QbC represents an 

advanced version of QbD, in which active process control is the core of the control strategy. A 

hierarchical process control approach (Figure 1.3), structured according to the ISA-95 

Enterprise-Control System Integration Standard, has been proposed to guide the development 

of QbC control strategies (Su et al., 2019a, 2017). The proposed hierarchical structure presents 

three layers (Layers 0-2), not to be confused with the levels of control strategies outlined in Yu 

et al. (Yu et al., 2014). Layer 0 control consists of the built-in control systems of the unit 

operations, which are used for controlling the CPPs of the process. Layer 0 control makes use 

of programmable logic controllers (PLCs) or simple PID controllers (Seborg et al., 2017). Layer 

1 control relies on PID loops to control the CQAs and reduce the impact of disturbances. 

Practically speaking, Layer 1 supervises Layer 0 through cascade control, typically with a single 

input single output (SISO) approach, and can span across single or multiple unit operations. 

PAT tools are usually resorted to at Layer 1 for measuring the CQAs. Layer 2 uses model-based 

techniques to achieve advanced process control and monitoring. Techniques commonly 

implemented at Layer 2 include MPC, RTO, state estimation and advanced fault detection and 

diagnosis routines (Venkatasubramanian et al., 2003a, 2003b). Note that a control system is 

considered to be of Level 1 if it includes at least Layers 0-1, since the implementation of Layer 

0 alone does not close the loop on the CQAs.  

All this considered, a tight interconnection arises between the main emerging technologies in 

QbD: continuous manufacturing, active process control and mathematical modeling. The 

transition to continuous manufacturing requires the QbC framework for systematic control 

system design, while QbC implementation is gaining momentum under the increased interest 

in continuous processing. Mathematical modeling is as an invaluable tool for boosting the 

implementation of both continuous processing and active process control (Collins, 2018; Fisher 

et al., 2016). In-silico simulators based on mathematical models can be used for testing different 
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control strategies and for optimizing the process operating conditions. In addition, mathematical 

models are necessary for implementing the advanced process control and monitoring routines 

that constitute Level 2 of the QbC framework. 

1.4.3 The role of mathematical modeling in the QbD framework  

A mathematical model is a description of a system in the form of equations, variables and 

parameters. Based on the amount of knowledge on the physics of the system embedded in the 

equations, mathematical models can be broadly divided into three different categories (Bonvin 

et al., 2016; Figure 1.4): knowledge-driven, data-driven or hybrid. 

Knowledge-driven models (also referred to as mechanistic, first-principles or white-box) are 

the mathematical representation of the available physical understanding of a system. 

Knowledge-driven models are made up of conservation and/or constitutive equations. The 

variables of a knowledge-driven model include inputs, outputs and, most importantly, states, 

which fully characterize the internal state of the system and, for dynamic models, allow 

monitoring and forecasting its time evolution. The parameters of the model have a physical 

meaning. Examples of knowledge-driven models are, but are not limited to: mass and energy 

balances, thermodynamic models, population balance models, and mass/heat transfer models. 

Discrete element and finite element methods are typically used for solving the equations of 

knowledge-driven models numerically. Pharmaceutical applications of computational  

 

 

 

 
Figure 1.4. Classification of mathematical models based on the amount of 

knowledge on the physics of the system under investigation. 
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fluid dynamics, combining knowledge-driven modeling and numerical routines for simulating 

fluid and/or powders flow, are also gaining momentum (Babnik et al., 2020; Sarkar et al., 2019). 

Data-driven models (also referred to as empirical) are a mathematical representation of the 

available data for a system. Data-driven models do not carry any information on the physical 

mechanisms occurring in the system under investigation. The equations simply relate the inputs 

and the outputs of the dataset used for model calibration. Hence, the variables of data-driven 

models are the inputs and the outputs of the dataset, and no additional information can be 

obtained on the internal system state. The parameters of the models do not have a physical 

meaning, and they express how the equations should be tuned for representing the system of 

interest. Examples of data-driven models are, but are not limited to: univariate and multivariate 

regression models, advanced data analytics, artificial neural networks, genetic algorithms, 

support vector machines and latent-variables models (LVMs). 

Compared to data-driven models, knowledge-driven models are typically more time consuming 

to develop and computationally burdening, although they usually need less data for calibration. 

However, knowledge-driven models provide a comprehensive insight on the state of the system, 

and usually have good extrapolation properties, while data-driven models do not have these 

features. Hybrid models (also referred to as semi-empirical or gray box) combine knowledge-

driven and data-driven components to take the advantages of both (Sansana et al., 2021; von 

Stosch et al., 2013). Hybrid models components can be arranged in a serial structure, in a 

parallel one or into a more complex serial/parallel architecture. An example of a hybrid model 

is a first-principles model of a bioreactor, in which a kinetic rate is estimated with a data-driven 

model (e.g., artificial neural networks), since the actual kinetics is not fully understood from a 

first-principles perspective.  

The ICH guideline “Q8, Q9, Q10 Points to consider” (ICH, 2011) clarifies the role of 

mathematical models within the QbD framework. For the purposes of regulatory submissions, 

models are classified based on their contribution in assuring the quality of the product as: 

a) low impact: models used to support product and/or process development (e.g., 

formulation optimization); 

b) medium impact: models used for product quality assurance, but in combination with 

other indicators of quality (e.g., most design space models); 

c) high impact models: models whose predictions are main indicators of the product 

quality (e.g., a chemometric model for analyzing the product quality). 

Regulators provide a step-by-step guide for model development and implementation within the 

QbD framework (ICH, 2011): 

• Preliminary phase 

1. definition of the purpose of the model 

2. decision of model type and of experiments to support model development; 

3. selection of the variables of the model; 
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4. evaluation of the limitations of the model assumptions; 

• Experimental phase 

5. if historical data are not available, new experiments have to be carried out to 

support model development at either the laboratory, pilot or manufacturing 

scale; 

• Model development  

6. development of the equations of the model and parameter estimation; 

• Model validation and pre-implementation activities 

Validation procedures are tighter for higher impact models. The following elements are 

appropriate for high impact models, and are considered on a case-by-case basis for low 

and medium impact models: 

7. setting the criteria for a successful validation and/or verification; 

8. testing the model accuracy through cross-validation; 

9. testing the model accuracy using an external dataset; 

10. verifying the model accuracy by parallel testing with a reference method. 

Models used to support a DS or that are part of the control strategy have to be 

verified at the manufacturing scale, too; 

11. evaluating the impact of the uncertainty of the model prediction on the product 

quality. If appropriate, defining an approach to reduce the associated residual 

risk; 

12. documentation of the model development and validation activities. If suitable, 

preparation of a verification plan across life cycle; 

• Model implementation and maintenance during the life cycle 

13. release for usage; 

14. after implementation, model verification continues throughout the product life 

cycle for high impact models, and possibly for medium impact models, too. 

Verification consists in the repetition of steps 8-10, or a subset of them deemed 

suitable for the considered model. Model maintenance and update might be 

needed as result of model verification. 

The model development and implementation procedure of Steps 1-14 couples traditional 

scientific methodologies for mathematical modeling with the QbD focus on quality risk 

analysis. More specifically, modelers are invited to select the variables of the model based on 

risk considerations, to account for the risk associated with modeling assumptions (step 4), to 

estimate the uncertainty of the model, to evaluate its impact on the product quality (step 11), 

and to introduce mitigation strategies, if possible. 

The encouragement of regulators (ICH, 2011, 2009, 2008) to adopt mathematical modeling for 

modernizing the pharmaceutical industry, together with the economic benefits, resulted in an 

increasing interest in the topic across the pharmaceutical community (Reklaitis et al., 2017; 
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Sarkis et al., 2021). A survey to 21 pharmaceutical industry professionals (Troup and 

Georgakis, 2013) reported use of mathematical modeling for process analytics, process 

monitoring, plant-wide information systems, unit operation modeling, quality control, and 

process optimization. All respondents declared to use SPC for process monitoring, while 67% 

use also MSPC for process monitoring, and LVMs to analyze historical datasets. On the 

modeling side, only 44% of respondents reported that more than 10% of unit operations had a 

knowledge-driven model developed. Instead, 33% of the companies routinely developed data-

driven models for 80–100% of unit operations, and another third declared development of data-

driven models for 40–60% of all unit operations. When asked for the rationale of the 

predominance of data-driven modeling, respondents mentioned the large time and resources 

needed for developing a knowledge-driven model, including the requirement for modeling 

expertise and the extent of resources necessary for model validation. Nonetheless, respondents 

also acknowledged the increased process understanding, robustness and extrapolation 

properties of knowledge-driven models. More recently, Rogers and Ierapetritou (2015a) 

revealed advances in the modeling of particulate processes, which boosted a renewed interest 

in knowledge-driven and hybrid modeling in the pharmaceutical sector. In 2017, a 

comprehensive review on QbD implementation (Reklaitis et al., 2017) reported that knowledge-

driven and hybrid models were used always more often throughout the pharmaceutical life 

cycle, although data-driven models were still the most chosen approaches for process 

monitoring, control and data analytics.  

Current research trends are focused on further enabling the life cycle approach to the use of 

mathematical modeling, with a special attention to promote the adoption of continuous 

processing and active process control. The target is having a mathematical model to support the 

initial process synthesis activities and the subsequent development and manufacturing phases, 

including DS description and real time operation. Transitioning across the different stages, the 

complexity of the mathematical model can be tuned to meet the level of accuracy and 

computational burden needed for a particular application. Model-based process synthesis is 

almost unexplored in the pharmaceutical sector (Casas-Orozco et al., 2021; Gernaey and Gani, 

2010; Papadakis et al., 2018), despite it is an established methodology in the broader process 

industry (Grossmann and Daichendt, 1996). On the design space side, recent research and 

review articles (Bano et al., 2018b, 2018a; Boukouvala et al., 2010; Chatterjee et al., 2017; 

García-Muñoz et al., 2015; Reklaitis et al., 2017; Tomba et al., 2013) demonstrate that 

mathematical methodologies for DS description are now mature, including techniques for both 

knowledge-driven, hybrid and data-driven models. Future trends in operation design and DS 

description require addressing the bottlenecks of end-to-end continuous systems, and the 

presence of active process control. Regarding real time operation, very recent reviews (Chen et 

al., 2020; Steinwandter et al., 2019) report that online application of mathematical models in 

the pharmaceutical industry is gaining pace, for process monitoring, process control and 
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operation optimization.  

Real time use of mathematical models is evolving towards the digital twin framework 

(Kritzinger et al., 2018). A digital twin (Grieves, 2014) of one or multiple unit operations is 

made up of: i) a physical component (i.e., the equipment), ii) a virtual component (i.e., a series 

of computer routines), and iii) an automated data exchange infrastructure between the physical 

and virtual components. During operation, the virtual component receives data from the process 

and, based on the collected data and model-based algorithms, autonomously communicates to 

the physical components decisions on how to conduct the process (e.g., through MPC). The 

establishment of the digital twins in the pharmaceutical sector is currently limited by real time 

model computational time, by model maintenance, by real time data exchange and by concerns 

in data security and confidentiality (Chen et al., 2020; Steinwandter et al., 2019). Actually, the 

most common scenario consists in the so-called digital shadows (Udugama et al., 2021), in 

which the data communication proceeds only from the physical component to the virtual one 

for the purpose of process monitoring. 

An overview of mathematical modeling applications for supporting pharmaceutical 

development and manufacturing is outlined in the next paragraph, to give an idea of different 

uses of mathematical models across the product life cycle. 

1.5 Mathematical modeling for supporting pharmaceutical 

development and manufacturing 

1.5.1 Overview 

Considering the workflow for implementing QbD in pharmaceutical development and 

manufacturing (§1.4 and Figure 1.2), examples of applications of mathematical models at 

different stages are (Chatterjee et al., 2017; ICH, 2011; Kourti et al., 2015): 

• step #2: CQAs identification  

o in vivo vs in vitro correlation (IVIVC) models. Through IVIVC models, an in 

vitro property of a drug (e.g., dissolution) can be used as surrogate for an in vivo 

performance (e.g., bioavailability), and it can be classified as a CQA (Rossi et 

al., 2007); 

o models for optimizing the product formulation; 

• step #3: manufacturing process design 

o model-based design of experiments (MBDoE; Franceschini and Macchietto, 

2008), used to maximize the process understanding gained from an experimental 

campaign; 
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o use of models for supporting process synthesis, optimization and scale-up (e.g., 

use of process simulators; Papadakis et al., 2018); 

o support selection of CPPs and CMAs through quantitative or semi-quantitative 

approaches to risk assessment, such as failure mode effects analysis (FMEA) or 

failure mode effects and criticality analysis (FMECA); 

o global sensitivity analysis (Saltelli et al., 2008) for aiding selection of CPPs and 

CMAs; 

o models for operation design (§1.5.1), namely design space description and scale-

up; 

• step #4: control strategy design 

o chemometric models for PAT tools. In the most typical case, an LVM is used 

for correlating a spectrum obtained from a spectroscopy tool to a variable of 

interest, such as the API content in a tablet; 

o soft sensors, namely mathematical models or model-based techniques that 

estimate the value of (unmeasured) variables of interest, inferring them from 

process data (Pantelides and Renfro, 2013). Soft sensors can be used for end-

point determination and they can enable RTRT; 

o models and model-based techniques for process monitoring, namely fault 

detection and diagnosis (Venkatasubramanian et al., 2003a, 2003b). SPC and 

MSPC are the most employed methodologies for this purpose. Process 

monitoring can ensure that the process in state of control, supporting RTRT 

(ICH, 2011). Soft sensors are often part of the process monitoring framework. 

Additional details on the use of models for process monitoring are presented in 

§1.5.2; 

o models for process control, which include, among others, models for offline 

optimization of manipulated variable trajectories, models for feedforward 

control and models for MPC. The state-of-the-art on the use of mathematical 

models for process control in pharmaceutical development and  manufacturing 

is given in §1.5.3. 

• step #5: manufacturing 

The manufacturing stage makes use of the models that are part of the designed control 

strategy (step #4). Other uses of mathematical modeling in the manufacturing stage are, 

but are not limited to: 

o continuous process verification: process monitoring methodologies (e.g., 

MSPC) can demonstrate that the process is in normal operating conditions and 

that the process variability is within the common cause limits; 
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o continual improvement: use of models, especially of data-driven type, for 

investigating historical data, with the purpose of troubleshooting and process 

improvement;  

o process capability increase: MSPC can be used for understanding the main 

causes of the common cause variability, which can then be tackled with the 

purpose of achieving six sigma quality. 

This spectrum of applications demonstrates the potential impact of mathematical modeling on 

the pharmaceutical industry modernization and digitalization, lying the basis for the Pharma 

4.0 paradigm (Boni, 2016; Steinwandter et al., 2019).  

In the next sub-paragraphs, state-of-the-art mathematical modeling for operation design, 

process monitoring and process control in the context of pharmaceutical development and 

manufacturing is provided. Model-based pharmaceutical process synthesis (Papadakis et al., 

2018) and design of experiments (De-Luca et al., 2020; Shahmohammadi and McAuley, 2020) 

are of pivotal importance, too. However, they are still little addressed in the literature, and fall 

outside the scope of this Dissertation. 

1.5.2 Operation design 

Operation design consists in the determination of the operating conditions at which a process 

should be conducted to assure the product quality. In some cases, an additional interest is to 

optimize a given objective function, such as the economic profit (to be maximized), or the risk 

of obtaining non-compliant products (to be minimized).  

In the context of QbD, operation design is strictly linked with the regulatory concept of DS. DS 

description consists in the determination of the multivariate space of CMAs and CPPs that allow 

attaining the desired product CQAs. As clarified by regulatory guidelines (ICH, 2009), proven 

acceptable ranges of individual CPPs and CMAs varied keeping the other parameters and 

attributes constant do not constitute a DS, as they do not account for the mutual interaction. In 

regulatory submissions, the DS is usually described in graphical terms (Figure 1.5) within the 

knowledge space, namely the region of CPPs and CMAs that has been explored in the DS 

description exercise. The normal ranges of operating conditions within the DS are defined as 

control space. The literature on DS description techniques and applications is a wide corpus, 

whose thorough review is out of the scope of this Dissertation. Design space scale-up (García-

Muñoz, 2009; Liu et al., 2011) and maintenance (Bano et al., 2019), even though of paramount 

importance, have been little addressed in the literature so far, and are also out of the purpose of 

this Dissertation. In the remainder of this section we outline the main techniques for DS 

description, and the most recent trends and applications in relation to continuous processing 

and active process control. 
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1.5.2.1 Mathematical techniques for design space description 

DS description is an activity inherently based on mathematical modeling. Even when the DS is 

submitted to regulatory agencies in graphical form as in Figure 1.5, it has previously been 

obtained through a mathematical model. The traditional approach to DS description is based on 

simple data-driven modeling, through the following procedure (Boukouvala et al., 2010; 

Chatterjee et al., 2017; Huang et al., 2009): 

1. extensive experimental campaign in a pre-defined knowledge space of raw material 

attributes and process parameters; 

2. risk assessment to determine process parameters that critically impact CQAs, namely 

the CPPs; 

3. use of simple data-driven modeling and optimization for describing the DS boundaries; 

4. confirmatory experiments to validate the DS before regulatory submission. 

Multivariate data analysis on DoE data and response surface methodology (RSM; Box and 

Wilson, 1992) are the most common approaches for carrying out step 3. A multivariate model, 

such as multiple linear regression, is built upon the experimental data. The DS is then obtained 

in mathematical form through inversion of the mathematical model, or, more commonly, 

represented in graphical form through contour plots spanning the knowledge space (Goyal and 

Ierapetritou, 2002). RSM is still based on multivariate modeling of DoE data, but it also 

includes: i) an iterative modeling procedure, and ii) an optimization step. Following an RSM, 

experimental and modeling activities are iteratively executed until a satisfactory fitting is 

achieved. An optimization strategy is then followed to assess the values of CMAs and CPPs 

that produce the target product CQAs. This traditional approach requires long and expensive 

experimental campaigns and strives with describing high-dimensional DSs, especially if 

presenting collinearities among the inputs. Nonetheless, RSM has long represented the most  

 

 

 
Figure 1.5. Graphical representation of a design space within the knowledge 

space. An illustrative control space inside the design space is also reported. 

Adapted from MacGregor and Bruwer (2008). 
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common approach to DS description, and still has widespread use in industry and academia 

(Belmir et al., 2021; Khafagy et al., 2020; Minatovicz et al., 2021), thanks to the easiness of 

implementation and to the availability of dedicated software. 

In recent years, DS description evolved into more mature forms, including one or both of the 

following elements: 

i) use of knowledge-driven models. Knowledge-driven modeling for supporting DS 

description is nowadays the preferred choice for well-known processes, as they can 

provide a comprehensive description of complex relations between CMAs, CPPs 

and product CQAs. Moreover, knowledge-driven models allow to increase process 

understanding, a pillar of QbD. A practical advantage is that knowledge-driven 

models can be used for in-silico experiments, which significantly reduce the 

(physical) experimental campaign burden. Despite the advantages of knowledge-

driven models, traditional DS description based on RSM is still widespread, 

especially for new and not well understood processes, due to the aforementioned 

facility of implementation; 

ii) accounting for model uncertainty. Traditional DS description procedures associate 

unique values of product CQAs to every combination of CMAs and CPPs, without 

accounting for model uncertainty. Traditional multivariate analysis and RSM on 

DoE data do not yield a probabilistic DS. Neither does the deterministic DS obtained 

from a knowledge-driven model account for model uncertainty. To fulfill the risk-

based mandate of the QbD paradigm, a DS should be determined under a 

probabilistic approach, associating to every combination of CMAs and CPPs a 

probability distribution of product CQAs, or, at best, the probability that the desired 

product CQAs will be met. Next, some procedures for probabilistic DS description 

are outlined. 

Formally, a probabilistic DS has been defined (Castagnoli et al., 2010; Lebrun et al., 2012) as 

the set of CMAs and CPPs, subset of the knowledge space, where the probability that the CQAs 

will meet the target specifications is above a certain probability threshold. A part from the 

experimental activities, probabilistic DS description requires two mathematical elements:  

a) a model to relate the CMAs and the CPPs to the product CQAs; 

b) a mathematical methodology that provides the probabilistic DS, given the desired CQAs 

specifications and the model of point (a), also considering the model uncertainty. 

Regarding the mathematical modeling activity (a), any among data-driven, knowledge-driven 

and hybrid models can be resorted to. Use of knowledge-driven models is preferred, if first-

principles knowledge is available for the system.  

The many mathematical methodologies (b) for probabilistic DS description in the literature can 

be categorized in two approaches (Figure 1.6): i) inverse techniques based on optimization, 

such as flexibility analysis (Grossmann et al., 2014) and model inversion, such as LVMs 
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Figure 1.6. Summary of inverse and direct techniques for design space 

description. The highlighted techniques can account for model uncertainty, 

leading to a probabilistic design space. The other techniques, instead, yield a 

deterministic design space, not considering the model uncertainty. 

 

approaches (Tomba et al., 2012), and ii) direct techniques with explicit sampling of the 

knowledge space (García-Muñoz et al., 2015). 

With inverse techniques, the probabilistic DS is obtained through direct (analytical or numerical) 

inversion of the mathematical model, or by solving an optimization problem in which the model is 

expressed as a set of constraints. LVMs inversion is a popular example of inverse technique for DS 

description (García-Muñoz et al., 2010). In an LVM framework (Wise and Gallagher, 1996), few 

latent variables are extracted from the set of original variables, expressing the linear 

combinations of CMAs and CPPs that most affect the product CQAs. The envelope of CMAs 

and CPPs that allow satisfying the desired product CQAs with a given probability (i.e., the 

probabilistic DS) is achieved by inverting the LVM, and by back-propagating its uncertainty 

(Bano et al., 2017; Facco et al., 2015; Tomba et al., 2012). DS description through latent-

variables modeling was first introduced as an improvement to traditional RSM, even without 

uncertainty back-propagation, to reduce the experimental burden and to deal with DSs of high 

dimensionality. The advantage is that the obtained DS can be represented in the latent space, 

which usually has a more intuitive graphical representation than the higher-dimensional space 

of the original variables. Applications include DS description of different unit operations, for 

instance tableting (Liu et al., 2011b) and granulation (Tomba et al., 2013) processes. However, 

the use of knowledge-driven models for DS description is preferred, as they can give a more 

accurate and comprehensive process representation, especially when nonlinearities are 

involved. 

Flexibility analysis is a more advanced inverse technique for DS description (Floudas et al., 

2001; Grossmann and Morari, 1983). It is one of the most popular techniques for operation 

design in process systems engineering, related to the analogous concepts of resilience, 

feasibility and operability (Grossmann et al., 2014). The flexibility test (Halemane and 
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Grossmann, 1983) and the flexibility index (Swaney and Grossmann, 1985) are the two classic 

approaches to flexibility analysis. For DS description, a set of constraints is first fixed, 

specifying the desired product CQAs explicitly through the model in terms of CMAs and CPPs. 

Then, multi-level (nonlinear) programs are solved to assess the portion of the knowledge space 

that satisfies such constraints under uncertainty in the model parameters. Solving the multi-

level optimization problems can be challenging, especially when the simulations use a 

comprehensive knowledge-driven model, or when data-driven constraints are included. Hence, 

DS description is often carried out by developing a computationally efficient surrogate of the 

original model with data-driven techniques. Such hybrid model is then used for solving the 

flexibility problem instead of the original model (Bhosekar and Ierapetritou, 2018). A trade-off 

between surrogate accuracy and computational burden has to be achieved. Examples of DS 

description with surrogate-based flexibility analysis are a study on a roller compactor (Rogers 

and Ierapetritou, 2015b) and one on a whole continuous tableting line (Wang et al., 2017). 

When the knowledge space presents high dimensionality, even surrogate-based flexibility 

analysis might become computationally untreatable. Recently, Bano and coworkers (Bano et 

al., 2018b) coupled latent-variables modeling with surrogate-based flexibility analysis to tackle 

this issue. The methodology was tested on a simulated continuous direct compaction line. More 

recently, Laky et al. (2019) proposed two algorithms, extending the flexibility test and of the 

flexibility index to compute the probabilistic DS more efficiently. The proposed approaches 

were also tested on an industrial Michael addition reaction case study. A novel flexibility index 

formulation (Ochoa et al., 2021) has also recently been proposed to select a hyperrectangular 

operating conditions region inside the DS (i.e., the control space). Case studies on 

pharmaceutical reactive systems demonstrated very promising computational times. 

Differently from inverse approaches, direct techniques for DS description are based on the 

intuitive idea of creating a fine grid in the knowledge space and of using the model through 

simulations for verifying, for every combination of CMAs and CPPs (model inputs), whether 

the product CQAs (model outputs) are acceptable or not. The DS obtained with this procedure 

is referred to as deterministic DS. Switching to a probabilistic DS requires evaluating how the 

variability on the product CQAs is influenced by the variability (i.e., uncertainty) of the model 

parameters. This can be done by running several (at least 200-500) Monte Carlo realizations at 

every discretization point (García-Muñoz et al., 2015). At each realization, the model 

parameters are sampled from their probability distribution, previously obtained during model 

calibration. The (frequentist) probability of meeting the desired product CQAs for a given 

combination of CMAs and CPPs is given by the fraction of the realizations that yielded 

compliant CQAs.  

As an alternative to the frequentist approach, Bayesian inference has been used to propagate 

the uncertainty in the model parameters to the product CQAs for probabilistic DS description 

(Peterson, 2008, 2004). A multivariate regression model relating CMAs and CPPs to product 
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CQAs is first developed from DoE experimental data, or from data generated in-silico from a 

detailed knowledge-driven model. The knowledge space is then discretized, and for each 

discretization point the joint posterior distribution of the product CQAs is computed through 

Monte Carlo techniques. The probabilistic DS is finally defined as the region of the knowledge 

space where the posterior predictive probability of the CQAs to meet the target specifications 

is acceptable. DS description with a Bayesian approach finds applications in crystallization 

processes (Castagnoli et al., 2010) and solid oral dosage form manufacturing (Chatzizacharia 

and Hatziavramidis, 2014). The Bayesian framework is particularly interesting within the 

context of pharmaceutical development. During the initial development stages, the DS can be 

computed based on the few data available. Every time new data become available during the 

progress of the development phase, the DS can be updated in a very computationally efficient 

manner through Bayesian inference, which is based on the concept of updating a prior belief 

into a posterior distribution through the use of data. Tabora et al. (2019) recently provided a 

perspective on the role of Bayesian modeling in pharmaceutical development. 

Global sensitivity analysis (GSA; Saltelli et al., 2008) is another important family of direct 

approaches to DS description. Traditionally, the main application of GSA in DS determination 

is reducing the DS dimensionality and the computational time for DS description by assessing 

which inputs (model parameters, process parameters and raw material attributes) do not 

significantly affect the product CQAs. For this purpose, recent applications (Öner et al., 2020; 

Wang et al., 2017) made use of Sobol’s methods (Sobol, 1993), a type of GSA technique that 

decomposes the product CQAs variability into the contributions of the different inputs. After 

the critical inputs are selected with GSA, any direct or inverse technique can be used for DS 

description. However, recent works made use of GSA for directly describing the DS (Kotidis 

et al., 2019; Öner et al., 2020). The approach consists in spanning the model inputs space to 

determine the probability distributions of the product CQAs, and the region where the 

constraints on quality are satisfied. GSA for DS description is expected to gain interest in the 

near future, thanks to the increasing availability of automated software, such as the freely 

available easyGSA toolbox (Al et al., 2019) and the GSA routines implemented in the advanced 

modeling framework gPROMS®. 

The straightforwardness of direct techniques for probabilistic DS description make them very 

appealing to the pharmaceutical community. Unfortunately, the computational burden grows 

exponentially with the number of CMAs and CPPs, due to the increasing dimensionality of the 

knowledge space. Especially when using detailed and accurate knowledge-driven models, this 

approach can quickly become computationally untreatable. GSA is a useful tool for reducing 

the dimensionality problem, but it is often not sufficient. Hybrid modeling has been proposed 

as a tool for tackling this issue, through the creation of (faster) data-driven surrogates of detailed 

knowledge-driven models. In the context of the frequentist approach to uncertainty propagation 

for DS description, Kucherenko et al. (2020) recently demonstrated a two-order of magnitude 



Motivation and state of the art                                                                                                                                     37 

_______________________________________________________________ 

© 2021 Francesco Destro, University of Padova (Italy) 

reduction of computational time with respect to traditional Monte Carlo sampling with the use 

of surrogate modeling and adaptive sampling. Within the Bayesian approach, the computational 

problem related to high-dimensional knowledge spaces has been tackled by Bano et al. (2018a). 

The authors introduced latent-variables modeling within the Bayesian framework, to reduce the 

problem dimensionality. Recently, Kusumo et al. (2020) proposed a nested sampling approach 

to compute the Bayesian evidence, which led to improved computational times compared to the 

traditional Monte Carlo sampling. 

Despite the large number of direct and inverse techniques, DS description is still not an 

established practice in regulatory submissions (§1.3.3). The main reason is the computational 

complexity of the techniques for DS description, whose implementation requires highly trained 

personnel. Automated software for DS description with user-friendly interfaces is expected to 

widely boost the adoption of DS description practices by industry. 

1.5.2.2 Design space description and continuous pharmaceutical processing 

The recent interest towards end-to-end continuous pharmaceutical manufacturing is making the 

description of plant-wide DSs an increasingly relevant problem. DS description for individual 

continuous units has been explored in many publications, including, for instance, flow synthesis 

(Armstrong et al., 2019), crystallization (Kishida and Braatz, 2012; Wang and Lakerveld, 2017) 

and twin-screw granulation (Liu et al., 2017). With the shift to continuous processing, 

developing DSs for whole manufacturing lines is extremely important, to assess how the 

variability in the process inputs propagates downstream, across the whole plant. Nonetheless, 

the extension to multiple units or to a whole manufacturing line is scarcely studied in the 

literature, due to the required computational burden and modeling expertise. Bano et al. (2018b) 

recently proposed a DS description for integrated milling and tableting operations, using a 

technique combining latent-variables modeling and surrogate-based flexibility analysis. Wang 

et al. (2017) presented a DS for a whole tableting line, comprising feeding, milling, blending 

and tableting. Also in this case, DS description was performed through surrogate-based 

flexibility analysis. A DS for a whole continuous tableting line was also proposed by García-

Muñoz et al. (2018), who used a comprehensive knowledge-driven model of the plant to assess 

the propagation of disturbances from the feeding section into the downstream part of the line. 

The probabilistic DS of a pharmaceutical upstream process for ibuprofen synthesis has been 

presented by Montes et al. (2018), who made use of knowledge-driven modeling, Monte Carlo 

simulation and global sensitivity analysis for DS description.  Recently, Lee et al. (2020) 

studied an active pharmaceutical ingredient (API) continuous manufacturing process, made up 

of continuous flow reactors in series and a downstream continuous thin film evaporator. A 

comprehensive knowledge-driven model for the process was first developed and calibrated with 

an experimental campaign. In-silico experiments were then carried out on a surrogate of the 
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model, to quantify the relations between CPPs and product CQAs for subsequent DS 

description.  

Despite the reported examples of DS description for the standalone upstream and downstream 

sections, DS determination for an end-to-end continuous pharmaceutical process is still missing 

in the literature, to the best of the author’s knowledge. An important step towards this objective 

is constituted by the development of dynamic models encompassing multiple unit operations, 

as the ones recently proposed for pharmaceutical and biopharmaceutical processes (Benyahia 

et al., 2012; Smiatek et al., 2020; Velayudhan, 2014), and by their use for propagating the CQAs 

distributions across the flowsheet (Zahel et al., 2017). Actually, in most of the aforementioned 

examples of DS description for processes encompassing multiple unit operations, the first step 

in the DS determination procedure is the development of a model for a process. In-silico 

experiments for DS description were then carried out, directly through the model or with a 

surrogate, instead of performing more complex physical experiments across multiple units. In 

this direction, an important bottleneck to be addressed is the research and technological gap in 

continuous integrated implementations of the steps that usually connect upstream and 

downstream manufacturing: crystallization, slurry filtration, cake washing and cake drying 

(Burcham et al., 2018; McWilliams et al., 2018). Few technologies in the market allow carrying 

out continuously the steps following crystallization, namely the API isolation steps (Gursch et 

al., 2016; Liu et al., 2019). Hence, physical implementation and DS description for the API 

isolation section of the process represents an enabling step towards the description of the DS 

for a whole manufacturing line.  

1.5.2.3 Design space description and active process control 

In all the examples of DS descriptions reported so far, the process was operating at open-loop 

with respect to quality, namely under a Level 3 control strategy (§1.4.2). Within the recent 

interest in moving towards Level 2 and Level 1 control strategies, the impact on the DS of the 

closure of the loop on quality becomes an important research topic. MacGregor and Bruwer 

(2008) first acknowledged that the control system should be designed before of DS description 

activities, as the DS is influenced by the control system. The authors analyzed the effect of 

closed-loop control on the DS of a pharmaceutical process, which resulted expanded upon 

introduction of active process control (Figure 1.7). Actually, a basic assumption of control 

engineering is that, to achieve tight quality control, a larger variability must be accepted in the 

manipulated variables. In practice, closed-loop control transfers the variability from the quality 

variables into the manipulated variables, i.e., from where it hurts to where it does not (Luyben 

and Luyben, 1997). Formally speaking, the control loop on quality can be closed through i) 

feed-forward control and/or ii) feedback control (Seborg et al., 2017). Under feed-forward 

control, the process operation is automatically adjusted in response to registered changes in the 
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raw materials properties or environment conditions. Under feedback control, instead, the 

process parameters are adjusted in response to measured (or inferred) changes in the CQAs.  

 

 
Figure 1.7. Comparison of DS with and without closed-loop control on 

quality. Adapted from MacGregor and Bruwer (MacGregor and Bruwer, 

2008). 

 

García-Muñoz et al. (2010) first presented the implications of introducing feed-forward control 

on quality in a pharmaceutical process. The authors demonstrated that the feed-forward 

controller led to an extremely widened acceptance region for the particle size distribution of the 

incoming material in a wet granulation process. More recently, Boukouvala et al. (2017) 

demonstrated the enlargement of the DS for a roller compaction process upon implementation 

of feedback control. Apart from these examples, few contributions highlight the impact of 

closed-loop control on the DS, despite the increasing applications of active process control in 

pharmaceutical development and manufacturing (Su et al., 2019b). This is, however, a study of 

paramount importance, since within the pharmaceutical regulatory framework (§1.3.2) it is 

important to validate the path of operating conditions that brought to attaining the final product 

quality, beside the actual final quality. Recently, Harinath et al. (2016) even suggested that 

control system design and DS description should be carried out simultaneously. The authors 

proposed an approach based on robust optimal control for simultaneously maximizing the DS 

and designing a linear feedback controller, for a continuous time system described by a state-

space model with linear fractional uncertainties. Actually, the idea of joint DS determination 

and control system design is not entirely new, despite not being applied in pharma. The 

flexibility analysis theory already envisions the optimization of the control system within the 

multi-level optimization problem to be solved for operation design (Floudas et al., 2001; 

Grossmann et al., 2014). Research towards systematic application of these concepts to 

pharmaceutical development and manufacturing can have a tremendous impact on 

pharmaceutical quality and efficiency. A synergic effort between academia, industry and 

regulators is needed for these innovations to happen (Myerson et al., 2015). 
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1.5.3 Process monitoring 

In the manufacturing industry, process monitoring consists in a series of activities for 

determining whether a process is operating under normal operating conditions, or if a fault 

occurred (fault detection). In the latter case, the cause for the occurrence of the fault is also 

explored (fault diagnosis), or identified among a set of known fault scenarios (fault 

identification). Techniques based on knowledge-driven (Gao et al., 2015; Venkatasubramanian 

et al., 2003a), data-driven (Jiang et al., 2019; Venkatasubramanian et al., 2003b) and hybrid 

models (Sansana et al., 2021) can be used for fault detection, diagnosis and identification. 

Process monitoring is a key task in the pharmaceutical industry, where the state-of-control of 

the process must be assured for quality reasons. Although in the manufacturing industry process 

monitoring is primarily centered around the concept of fault, within the pharmaceutical sector 

it is traditionally intended with the slightly different meaning of measuring, either directly or 

through inference, the CMAs, CPPs and product CQAs. The aim is to verify that the process is 

being conducted within the operating conditions approved by regulators, and to support RTRT, 

as opposed to the traditional end-testing of the product CQAs. This is usually achieved through 

SPC, namely through univariate control charts reporting the control limits identified in normal 

operating conditions for the considered variable (Figure 1.8). Within the recent innovation trend  

 

 

 
Figure 1.8. Process monitoring: SPC vs MSPC. SPC: fault detection and 

diagnosis performed through univariate charts on process variables. MSPC: 

i) fault detection through two multivariate charts (T2 and SPE), summarizing 

the variability of all the process variables, ii) fault diagnosis through 

contribution plots, calculated at time instant when a fault is detected on T2 

or/and SPE chart. CL = confidence limit. 
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of the pharmaceutical industry, traditional process monitoring approaches have been 

modernized through the use of i) PAT tools, ii) soft sensors, and iii) advanced data-driven 

monitoring. 

The introduction of PAT for monitoring CMAs, CPPs and CQAs (Claßen et al., 2017; De Beer 

et al., 2008; Sarraguça et al., 2014) represented the first stage of innovation of pharmaceutical 

manufacturing within the PAT and QbD initiatives. PAT requires the use of mathematical 

modeling, namely of chemometric models for relating the spectra collected by advanced sensors 

such as near-infrared (NIR) spectroscopy or Raman spectroscopy to the variable that is being 

measured. Projection to latent structures (PLS) regression (Geladi and Kowalski, 1986; Wise 

and Gallagher, 1996) is the chemometric method most commonly used for PAT. Machine 

vision, including multivariate image analysis (Geladi et al., 1989) and textural analysis (García-

Muñoz and Carmody, 2010), has also been used as a PAT tool in pharmaceutical processes. 

Recent applications are for coating uniformity assessment (García-Muñoz and Gierer, 2010) 

and for measuring the API content in a powder mixture within a continuous blending process 

(Galata et al., 2021).  

When physical sensors are not available for measuring a variable of interest, or the 

measurement is too expensive, sporadic or delayed, soft sensing can be resorted to. Soft sensors 

(Souza et al., 2016) infer the value of a secondary variable from a set of primary measurements 

making use of a mathematical model, which can be knowledge-driven, data-driven or hybrid. 

Literature contributions on soft-sensing for pharmaceutical development and manufacturing are 

abundant, and only selected applications are discussed here. A common use of soft sensors is 

for measuring the concentration of API in powder mixtures along continuous direct 

compression lines and in the final drug product. For this purpose, Rehrl et al. (2018) proposed 

soft sensors based on (data-driven) residence time distribution models. Recently, Kamyar et al. 

(2021) used a combination of knowledge-driven and data-driven soft sensors for measuring the 

blend composition along a direct compression line and the potency of the final tablets. Other 

applications of soft sensors involve measuring species concentrations in bioreactors 

(Sagmeister et al., 2013), moisture content in fluid bed dryers (Gagnon et al., 2017; Pla et al., 

2018) and multiple variables in freeze drying processes (Drǎgoi et al., 2013). The applications 

of soft-sensors in the pharmaceutical industry mentioned so far follow a so-called “open-loop” 

approach, in which the mathematical model receives input measurements from the process and, 

based on only that, predicts the variable(s) of interest. More advanced soft sensors are, instead, 

at “closed-loop”, namely based on state estimation (Ray, 1981). They estimate the variable(s) 

of interest making use not only of the process input measurements, but also of process output 

measurements. The output measurements are used as a feedback from the plant, to improve the 

soft sensor estimation and tackle the mismatch between the mathematical model and the process 

(plant/model mismatch; Figure 1.9). Soft sensors implementing state estimation routines have 

found multiple recent applications, including in bioreactors (Sinner et al., 2021),  
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Figure 1.9. Conceptual scheme of the rationale of a state estimator. 

 

direct compression lines (Liu et al., 2018) and freeze-drying (Bosca and Fissore, 2011). Next 

generation soft-sensors for pharmaceutical applications will have to make increasing use of 

knowledge-driven modeling and state estimation, following the QbD paradigm of developing 

robust processes relying on solid, and possibly physics-based, process understanding. 

Even though process monitoring in the pharmaceutical industry has traditionally been carried 

out in a univariate fashion with more focus on quality assurance than on fault analysis, several 

recent contributions report the implementation of more advanced fault detection, diagnosis and 

identification routines in pharmaceutical processes. To this purpose, data-driven techniques 

have been resorted to, especially MSPC based on LVMs. An LVM can detect when new 

measurements coming from a plant are foreign to the stochastic structure of the normal 

operating conditions. Under MSPC, multivariate control charts (Figure 1.8) are used for 

detecting faults effectively, and contribution plots (Miller et al., 1998) are then used for fault 

diagnosis, to assess which of the measurements used for building the LVM are most responsible 

for the fault conditions (more details multivariate process monitoring by latent-variables 

modeling are provided in §3.2.2). The penicillin bioreactor simulator by Birol et al. (2002) has 

been widely employed for testing fault detection, diagnosis and identification routines in 

biomanufacturing (Monroy et al., 2012; Ündey et al., 2003). Kirdar et al. (2007) demonstrated 

that MSPC charts were useful for fault detection and diagnosis during routine manufacturing 

for a cell culture unit operation. García-Muñoz and Settell (2009) tested MSPC on a pilot-scale 

spray drying process. The monitoring system proved effective fault detection. Kona et al. (2013) 

proposed an MSPC system for fault detection in a batch fluid bed granulation process. Gupta 

et al. (2013) applied to a continuous granulation line, consisting of two feeders, a continuous 

blender and a roller compactor, an integrated framework for fault detection and diagnosis. The 

framework made use of multiple techniques, including wavelet analysis (Addison, 2017), 

MSPC, and qualitative trend analysis. More recently, MSPC has been applied to an API 
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synthesis process (Dumarey et al., 2019) and to a mixing process for manufacturing a 

pharmaceutical ointment (Bostijn et al., 2019). In the latter case, measurements from PAT were 

also included in the data matrix on which the LVM for MSPC was built. Measurements from 

PAT were added into the data matrix for MSPC also by Tahir et al. (2019), for monitoring a 

hot-melt extrusion process producing a paracetamol-affinisol extrudate. The authors also 

included within the MSPC framework the API concentration at the end of the extruder as 

predicted by a soft sensor. For MSPC of a freeze-drying process for pharmaceutical products, 

Colucci et al. (2021) even included in the data matrix information collected from an infrared 

camera and from the textural analysis carried out on RGB images of the final product. In all the 

applications mentioned so far, principal components analysis (PCA; Jackson, 1991) or PLS are 

the types of LVMs used for MSPC (Kresta et al., 1991). Instead, Quatrini et al. (2020) 

developed an MSPC monitoring system for a granulator using canonical variate analysis (Li et 

al., 2019) as LVM. The authors demonstrated effective fault detection and identification 

performances, and claim that canonical variate analysis allowed to better manage the time 

dynamics and nonlinearities of the process compared to the more commonly used PCA.  

As discussed in §1.5.1, pharmaceutical manufacturing is always more often adopting MSPC 

monitoring systems such as in the examples described so far. The main limitation of data-driven 

approaches is that, even though they proved much effective for fault detection, fault diagnosis 

might, on the other hand, be challenging. This is especially true when the variables representing 

the root-cause of a faulty condition are not measured and, hence, not included in the data-driven 

monitoring system. 

The use of knowledge-driven models for process monitoring has been proposed to overcome 

this limitation (Venkatasubramanian et al., 2003a). Knowledge-driven models have the 

advantage of embedding the fundamental knowledge on the mechanisms driving the process 

under investigation. This piece of information can enhance the fault detection and, even more, 

the fault diagnosis performance of the monitoring system. The main knowledge-driven 

monitoring approaches rely on parity relations (Gertler, 1998) or on state estimators (Caccavale 

et al., 2009; Deshpande et al., 2009). Both approaches are based on the underlying idea of 

detecting a fault when the process measurements depart from the predictions of the 

measurements given by a knowledge-driven model that is being run in parallel to the process. 

Recent studies (Liu et al., 2018; Moreno et al., 2018) presented a knowledge-driven monitoring 

framework for a direct continuous tableting line, to mitigate the effects of random measurement 

errors and for detection of non-random sensors malfunctions. Apart from this example, there 

are almost no pharmaceutical applications of process monitoring based on knowledge-driven 

modeling. Even though state estimators have found applications in pharmaceutical development 

and manufacturing, they are used as soft sensors, without fault detection and diagnosis routines 

implemented (Liu et al., 2018; Sinner et al., 2021). The complexity of knowledge-driven models 

development and the presence of process-model mismatch are the main reason for the low 
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popularity of knowledge-driven monitoring. Even the integration of knowledge-driven and 

data-driven approaches into a hybrid monitoring framework has found almost no applications 

in pharmaceutical manufacturing, except for soft-sensing. Considered the great interest within 

a QbD framework in developing physics-based process understanding, future research should 

be directed in the synthesis of monitoring systems using more knowledge-driven elements. 

1.5.4 Process control 

The traditional industrial approach to controlling process variables consists in the use of 

feedback control (Figure 1.10a), most frequently through PID controllers. At a given time, a 

PID controller keeps a controlled variable as close as possible to a reference set-point, by 

adjusting the value of a manipulated variable in response to a measured or inferred difference 

between the controlled variable and the set-point at the same time. The wide success of PID 

control in the process industry is due to its effectiveness in tackling most control problems, 

coupled to the easiness of implementation. PID controllers are commonly employed in the 

pharmaceutical industry for controlling the CPPs (Level 3 control strategy); however they have 

rarely been used for controlling the product CQAs (Level 1 or 2 control strategy). The main 

disadvantage of feedback control is that no corrective action is initiated until after a deviation 

of the controlled variable from the setpoint is registered, hence deviations from the setpoint will  

 

  
(a) 

                 
(b) 

Figure 1.10. Schematics of a system under (a) feedback control and (b) 

feedforward control.  
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always occur with disturbances or setpoint change. Even in the case of known or measured 

disturbances, PID control does not take any preventive action. In contrast, when feedforward 

control (Figure 1.10b) routines are implemented, one or more disturbance variables are 

measured, and corrective actions can be immediately taken, ideally before they compromise the 

process. Note that a system might also be under simultaneous feedback/feedforward control. 

While feedback control is based on a PID control law, feedforward control requires a model of 

the process, to quantify how both the disturbance and the manipulated variable affect the 

controlled variable. Feedforward control has found different applications in pharmaceutical 

manufacturing, both alone and in combination with feedback control, including in continuous 

flow synthesis (A E Cervera-Padrell et al., 2012), high-shear wet granulation (García-Muñoz et 

al., 2010; Mathe et al., 2020), herbal drug manufacturing (Yan et al., 2014), fluid bed coating 

(Zhao et al., 2019) and continuous tableting (Singh et al., 2015). Combined feedback and 

feedforward control allow achieving good control performances in many situations. In addition 

to feedforward control, another model-based application for control strategy development 

consists in developing process simulators, which enable one to test and optimize the control 

loops. Plant-wide design of the control strategy of a continuous pharmaceutical plant has been 

demonstrated by Lakerveld et al. (2013). 

MPC has been proposed as a more advanced model-based control methodology (Rawlings et 

al., 2017), which fulfills the QbD paradigm of controlling pharmaceutical processes based on 

solid scientific understanding. An MPC (Figure 1.11) uses a model to forecast the process states  

 

 

 
Figure 1.11. Operational mode of an MPC. Adapted from Seborg et al. (2017). 
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trajectory over a prediction horizon, comprising a fixed number of time steps. Based on the 

predictions, an optimization problem is solved to determine the optimal actions over a control 

horizon, contained within the prediction horizon. Only the control action for the next time step 

is applied, and the optimization problem is repeated at the following time step to obtain the 

subsequent control action to implement. The objective function of the optimization problem 

usually has two terms: i) the weighted sum of errors between the predicted trajectory of the 

controlled variable(s) and the reference setpoint trajectory and ii) the weighted sum of error 

between the control actions and the reference control actions. MPC leads to improved setpoint 

tracking compared to PID control, both for disturbance rejection and for setpoint change. 

Moreover, MPC is inherently more suitable for controlling systems with multiple inputs and 

multiple outputs. The main drawbacks are the implementation complexity and the 

computational burden, which often prevent MPC practical implementation. Nevertheless, MPC 

is always more applied in manufacturing systems, especially in its linear form. 

In the pharmaceutical sector, MPC has rarely been applied to physical systems, although many 

recent simulation studies are demonstrating its effectiveness and advantages (Jelsch et al., 

2021). MPC is the enabling technology for achieving robust Level 1 control strategies. 

Applications of MPC to pharmaceutical synthesis have recently been proposed. 

Nikolakopoulou et al. (2020) presented, through a simulation study, a fast MPC framework for 

the startup of a compact modular reconfigurable system for continuous-flow synthesis. The 

MPC was based on a linear model. Wong et al. (2018) studied, in-silico, the implementation of 

an MPC, based on artificial neural networks, to a complex reaction network in a CSTR. 

Regarding the purification section, MPC has extensively been applied to crystallizers (Nagy et 

al., 2013; Nagy and Braatz, 2012; Orehek et al., 2020). A very common implementation 

involves the optimization of the crystallizer cooling profile for controlling the crystal size 

distribution. To date, the only reported study on MPC for integrated purification operations, 

namely crystallization and the subsequent filtration and drying, is the in-silico work proposed 

by Sen et al. (2014). MPC for purification  through a semi-continuous chromatographic process 

was presented by Papathanasiou et al. (2019, 2017). Many MPC applications to drug product 

manufacturing have recently been proposed. Rehrl et al. (2016) tested an MPC in-silico, on a 

feeding-blending system, demonstrating improved performances compared to PID control. The 

mathematical model used within the MPC framework was made up of simple knowledge-driven 

models (mass balances) and transfer functions. In subsequent work (Celikovic et al., 2020; 

Kirchengast et al., 2019), MPC was successfully tested on physical equipment, highlighting the 

benefits of model-based control with respect to standard PID control and feedforward control. 

Nonlinear MPC on a batch fluidized bed dryer for pharmaceutical wet granules has been 

demonstrated by Gagnon et al. (2017), both in a simulation study and in a pilot-scale system. 

A moving-horizon estimator was also implemented, to evaluate the system states and an 

unmeasured moisture disturbance. MPC applied to a tablet press was proposed by Haas et al. 
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(2017) in a simulation study, and by Su et al. (2019b) in physical equipment. Recently, Huang 

et al. (2021) presented on a simulation study a combined state estimation/nonlinear MPC 

approach to handle process-model mismatch in a rotary tablet press. A hybrid PID-MPC control 

strategy was successfully tested on a physical continuous tableting line (Singh et al., 2016, 

2014a, 2014b), modeling the units through population balance models and discrete elements 

method. PAT tools were also used within the MPC framework. An additional process 

monitoring layer was also implemented on the line, through MSPC routines based on PCA. 

Few studies address MPC applied to plant-wide pharmaceutical processes. Mesbah et al. (2017) 

used a nonlinear plant simulator for evaluating a plant-wide MPC for the end-to-end continuous 

pharmaceutical manufacturing plant. Paulson et al. (2018) recently showed in a simulation 

study that a fast stochastic MPC applied to an end-to-end continuous line could control the 

product CQAs effectively, with 25 times less variability than with standard MPC and with 

computational times feasible with real time implementation.  

The next steps in development of advanced control strategies will have to focus on plantwide 

MPC for pharmaceutical processes, tackling current bottlenecks in connecting the different 

process sections and for operations lagging behind, such as purification. At the same time, an 

acceleration on the implementation on physical plants is needed, too. An increasing use of 

comprehensive nonlinear models within MPC frameworks is also envisioned positively within 

a QbD perspective. RTO (Biegler et al., 2015; Seborg et al., 2017) is another advanced model-

based technique that can be included within a control strategy. Under RTO, the set points of the 

controlled variables are calculated by solving an optimization problem, either maximizing the 

economic profit or other objective functions of interest. RTO is often, but not always, coupled 

to a lower level MPC that attempts to minimize the error between the controlled variables and 

their optimized set points. RTO routines are called at a larger time interval compared to lower 

level control actions, and the optimization problem is usually based on a steady-state model of 

the process. Few RTO applications exist in pharmaceutical manufacturing (Giridhar and 

Reklaitis, 2020), and more work is needed in this direction. 

Overall, plant simulators for control strategies testing, MPC, RTO, soft sensors, and fault 

analysis algorithms are the enabling technologies for reaching the ultimate objective of 

developing a complete digital twin, to be run in parallel with the process, continuously 

exchanging information for active process control and monitoring. 

1.6 Objectives of the research 

In recent years, the pharmaceutical industry has been experiencing a decreasing ROI on R&D, 

and increasing time and costs for bringing new products to the market (Deloitte, 2021; EFPIA, 

2021). At the same time, an alarming number of drug shortages and recalls has been registered 
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(ISPE, 2017; Natof and Pellegrini, 2021). These phenomena are affecting both companies, from 

the financial side, and patients, who might experience high costs for drugs or unavailability of 

essential medicines. This is, for instance, the case for the COVID-19 vaccines rollout: after the 

initial enthusiasm for the vaccine discovery, the world quickly realized that it would have taken 

years to reach herd immunity on a global scale, due to the current technological limitations in 

pharmaceutical development and manufacturing, especially on the scale-up side. The lack of 

adoption of modern technology and approaches for pharmaceutical development and 

manufacturing has a critical role for the occurrence of shortages and recalls, and also in the 

increasing time- and cost-to-market for new products. 

Pharmaceutical development and manufacturing have undergone a deep modernization in the 

last decade. However, there is still much work to be done by the pharmaceutical industry to 

catch up with the other manufacturing sectors on the adoption of modern Industry 4.0 

technology.  

The general objective of the PhD research is to aid the development of emerging pharmaceutical 

technology to: 

• reduce pharmaceutical development time and cost; 

• increase the efficiency and the robustness of pharmaceutical manufacturing. 

To achieve these objectives, it is pivotal to transition to model-based pharmaceutical 

development and manufacturing. Even though the ICH guidelines promote the use of 

mathematical modeling, its use is still not widespread in the industry. This PhD research aims 

at tackling this delay by conceiving and applying mathematical models in key areas of 

pharmaceutical development and manufacturing: operation design, process monitoring and 

process control. The transitions to continuous pharmaceutical manufacturing and active process 

control are also addressed, in relation to the role of mathematical models for the implementation 

of these emerging technologies. The case studies span across the whole pharmaceutical train of 

operations, including drug substance manufacturing, purification and drug product 

manufacturing.  

The specific objectives pursued in the PhD research are: 

1. advanced process monitoring: development and implementation of modern 

pharmaceutical monitoring systems, for prompt fault detection and smooth fault 

diagnosis to inherently improve the efficiency and robustness of the manufacturing 

process (main objective (b)). This will be achieved through the implementation in the 

monitoring framework of knowledge-driven models and of state estimators, making a 

step forward from current data-driven monitoring approaches. The use of knowledge-

driven models, even if they present process-model mismatch, enhances the physical 

understanding of the system embodied in the monitoring framework. This, in turn, 

provides a better insight on the inner state of the system for fault detection and diagnosis. 

In addition, the implementation of state estimators within the monitoring framework, 
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for soft-sensing of the system states and for measurement reconciliation, increases the 

robustness of the monitoring system to disturbances and to measurement error, and 

tackles the modeling error;  

2. digital operation design: synthesis and use of dynamic simulators for pharmaceutical 

processes in the development stage. The simulator, upon validation with experimental 

data, can be used for performing quickly operation design and process scale-up, 

replacing extensive experimental campaigns and yielding robust processes. This is 

immediately beneficial to both main objectives (a-b); 

3. control-relevant modeling, to boost the adoption of active process control in the 

pharmaceutical industry. Mathematical simulators can be used for conceiving and 

testing in-silico the control system even from the pharmaceutical development phase, 

leading to more robust manufacturing processes (main objective (b)) and to potentially 

manufacturing faster and at a lower cost the drug for clinical trials (main objective (a)). 

Mathematical models are also enablers for advanced process control methodologies, 

such as MPC and RTO; 

When developing and applying mathematical methodologies for specific objectives 1-3, the 

following additional specific objectives are pursued: 

4. aiding the transition to continuous manufacturing: several case studies on mathematical 

modeling for design, monitoring and control of continuous pharmaceutical processes 

are developed in this Dissertation. In particular, special attention is dedicated to 

continuous unit operations for API crystals isolation from crystallization slurries, a 

bottleneck for end-to-end continuous pharmaceutical manufacturing;  

5. knowledge-driven modeling: ICH guidelines encourage the use of physics-based 

models over data-driven models, where possible, as they provide a deeper degree of 

understanding of the process. These indications are followed in the Dissertation; 

6. life cycle approach to mathematical modeling: (even simple) process models developed 

in early stages of pharmaceutical development can be improved and used for advanced 

purposes across the whole life cycle. For instance, a model used for preliminary 

operation design during development can be the basis for a more advanced model to be 

used for (nonlinear) MPC, or it can even be factored in a digital twin of the process. 

1.7 Dissertation roadmap 

The roadmap of this Dissertation is sketched in Figure 1.12, and additional details on the content 

of each chapter are provided in Table 1.6. Chapters 2 and 3 focus on process monitoring. 

Chapter 4 deals with operation design, while Chapter 5 focuses on process control. 

Chapter 2 presents the proof of concept for the implementation of a state estimator (moving-
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horizon estimator) to the feeding section of a direct compression line. The feeding section is 

composed by five loss-in-weight powder feeders operating in parallel, each one feeding one 

component of the tablet formulation to the downstream blending and compression units. The 

state estimator uses powder net weight measurements from load cells placed under each feeder 

for estimating the powder flowrate fed downstream, and, in turn, the composition of the powder 

mixture fed to downstream units. The net weight measurements are very noisy, due to the nature 

of the load cell setup. It is shown that the state estimator can effectively reconcile the noisy 

measurements, and provides more accurate powder composition estimations, compared to 

traditional approaches relying on statistical filtering. 

Chapter 3 introduces a novel hybrid framework that bridges traditional standalone data-driven 

and knowledge-driven process monitoring approaches, to exploit the advantages of both. The 

process monitoring system features a data-driven model that includes two different data types: 

i) “actual” data coming from sensor measurements, and ii) “virtual” data coming from a state 

estimator, based on a first-principles model of the system under investigation. The hybrid 

monitoring framework is benchmarked on three simulated case studies, namely a fed-batch 

fermentation process for the manufacturing of penicillin, a segmented fluid bed dryer for wet 

pharmaceutical granules, and a continuous polycondensation process. The proposed hybrid 

monitoring approach shows superior fault detection and diagnosis performances when 

compared against conventional monitoring techniques, even when the first-principles model is 

affected by process/model mismatch. 

Chapter 4 outlines a mathematical model for a novel integrated filter-dryer carousel system, 

designed for continuously filtering, washing and drying a crystallization slurry stream into a 

dry crystals cake. For a set of feed conditions and control inputs, the model tracks the solvents 

and impurities content in the cake (product CQAs) as the process evolves with time. For the 

isolation of paracetamol from a crystallization slurry, the filtration and drying model parameters 

are identified through experiments, respectively, on a Nutsche filter and on a thermogravimetric 

analyzer. The calibrated model is then used for determining the probabilistic design space and 

the maximum throughput for the isolation of paracetamol from a multi-component slurry, 

containing a non-volatile impurity, too.  

The mathematical modeling framework of Chapter 4 is further developed into a real time 

simulator, which includes computational routines simulating sensors and actuators present in 

physical carousels, and supports the implementation of control loops. To calibrate the simulator, 

filtration and drying experiments are carried out on a pilot scale carousel for a 

paracetamol/ethanol slurry system. A closed-loop control strategy for the unit, based on the 

QbC paradigm, is then conceived and tested on the simulator, under a set of disturbances known 

to affect the unit operation. The proposed control strategy features model-based routines, such 

as real time optimization and state estimation, both based on the developed mathematical model  
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Figure 1.12. Dissertation roadmap: scheme. 

 

Table 1.6. Dissertation roadmap: aims and details of the research presented in each chapter.  

Chapter Specific aim Main application Model  Case study Data source Novelty  

2 1, 4, 5 Process monitoring From literature Continuous tableting  Industrial collaborator Application  

3 1, 4, 5 Process monitoring From literature Batch penicillin manufacturing Simulated Methodology  

    Continuous fluid bed drying    

    Continuous polycondensation    

4 2, 4, 5, 6 Operation design Developed Continuous filter-dryer for API isolation Experimental campaign Model+Application  

5 3, 4, 5, 6 Process control Developed Continuous filter-dryer for API isolation Experimental campaign Model+Control system  
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of the carousel. The designed QbC framework is the first proposed closed-loop control strategy 

for this type of unit, and it shows superior control performance when benchmarked against 

traditional QbD control strategies, which are based on open-loop quality control.  

Table 1.6 provides a synoptic view of the content of each chapter. In Chapters 2 and 3, the 

employed mathematical models are taken from the literature. Model development activities, 

instead, have been carried out in Chapters 4 and 5. Knowledge-driven models are used in all 

chapters, alone, or in a hybrid fashion, combined with data-driven components.  

All chapters include elements of continuous processing. Chapters 2, 4 and 5 are entirely focused 

on continuous processes, while Chapter 3 contains both batch and continuous case studies. 

Experimental data for the study of Chapter 2 have been kindly provided by an industrial 

collaborator. Chapter 3 contains only in-silico studies, while experiments for data collection 

have been carried out during the research activities presented in Chapters 4 and 5.  

The novelty claimed for each chapter is of different type. While Chapter 2 presents the 

application of an established methodology (state estimation) to a new field (powder 

composition monitoring), Chapter 3 proposed a novel methodology for process monitoring (the 

hybrid monitoring framework). Chapters 4 and 5 present studies on the continuous carousel for 

intensified filtration, washing and drying of crystallization slurries, which is, by itself, a novel 

concept, scarcely studied before, and an enabler of end-to-end continuous processing. While 

Chapter 4 presents the first design space description for this type of unit, in Chapter 5, a closed-

loop control system for the unit is proposed and tested for the first time. 

Note that, since many different processes and mathematical methodologies are discussed across 

the Dissertation, the materials and methods information and the mathematical background are 

directly provided in the chapters where they are relevant, instead than in a separate chapter. 

Moreover, due to the many mathematical expressions contained in the Dissertation, the symbols 

for the variables, parameters and arrays encountered in the equations are chapter-dependent, 

and are thoroughly defined upon the first appearance in each chapter. Acronyms, despite being 

consistent across the Dissertation, are re-introduced again in each chapter, for sake of clarity. 
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Chapter 2 

Powder composition monitoring in 

pharmaceutical continuous 

manufacturing through state estimation* 

In this Chapter, we propose the use of a soft sensor, rooted on a physics-based model, for 

monitoring the composition of the powder fed to a continuous solid-dosage line. The soft sensor 

is a moving-horizon state estimator, which carries out model-based reconciliation of the feeder 

mass measurements, thus enabling accurate composition estimation of the powder mixture. 

Experimental datasets from a direct compression line are used to validate the methodology. 

Results demonstrate improvement in monitoring the powder composition in loss-in-weight 

feeding with respect to the traditional industrial approach, relying on statistical filters. 

2.1 Introduction 

Continuous manufacturing is gaining interest in the pharmaceutical community, due to the 

many advantages with respect to the so-far-dominant batch production mode (Lee et al., 2015; 

Plumb, 2005). Although many pharmaceutical operations are already carried out continuously, 

their integration in an end-to-end continuous processing framework still remains challenging. 

Focusing on solid-dosage manufacturing, an important bottleneck for the transition to 

continuous processing lays on powder feeding and blending. In the direct compression and 

direct encapsulation of powders, the powder composition cannot be changed after the feeders. 

Appropriate estimation and monitoring of the fed composition are therefore fundamental to 

develop robust control strategies in a continuous line.  

Besides the active pharmaceutical ingredient (API), pharmaceutical tablets and capsules include 

excipients and lubricants. The materials must be fed according to formulations specifically 

designed for meeting either target physicochemical properties or proper manufacturability (e.g., 
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API dissolution profile and powder flowability). In industrial operations, each material is 

supplied to the process through a separate loss-in-weight feeder. The powder, stored in a 

hopper, is gently pushed by a horizontal agitator into a rotating screws system, located below 

the hopper, from where the material is pushed out of the feeder. 

Monitoring feeding operations is a challenging task. Despite recent progress in image analysis 

for powder composition monitoring (Facco et al., 2017; Galata et al., 2021) and the increasing 

availability of PAT tools for powder composition assessment along the manufacturing line, 

these advanced technologies are not established or widespread yet. As a result, the dispensed 

powder mixture composition is not directly measured in real time in pharmaceutical 

manufacturing. Instead, the mass composition of a given ingredient (e.g., the API) in the 

mixture is obtained by calculation, namely by dividing the ingredient mass flow by the sum of 

the mass flows of all ingredients. The mass flow of each ingredient is itself not measured, but 

is estimated numerically by the feeder as the ratio between a powder mass weight difference 

(loss in weight) in the hopper and the time interval across which this difference is measured. 

This estimated mass flow can exhibit a low signal-to-noise ratio, due to the propagation of noise 

from the powder net weight measurements (Gyürkés et al., 2020), and is further filtered and 

smoothed by proprietary algorithms embedded in the equipment. The effects of variations in 

the API fed concentration can potentially be seen (after axial mixing) through downstream 

concentration assessment (García-Muñoz et al., 2018) obtained by high-performance liquid 

chromatography (HPLC) or spectroscopic measurements (De Beer et al., 2011). However, as 

will be discussed in detail in Section 2.2, the dynamics of the variation of the API fed 

concentration, as calculated from the mass flow estimations, is not always in good agreement 

with the one assessed downstream. This issue is even more relevant with cohesive powders that 

are difficult to feed, and for which the net weight measurements are very noisy.  

Better instantaneous estimation of feeder powder mass flows is desirable for improving the 

control strategy of a solid-dosage manufacturing line. Within the Quality-by-Design (Food & 

Drug Administration, 2004; Fisher et al., 2016) framework, practitioners are encouraged to 

modernize pharmaceutical manufacturing through the adoption of control strategies relying on 

risk analysis and solid process understanding. Fully understanding how the variability of 

process inputs (raw material properties and process operating conditions) impacts the process 

outputs (product critical quality attributes) is of paramount importance. In this perspective, 

improving the estimation of feeder powder mass flow is critical to implementing Quality-by-

Design in solid-dosage manufacturing. However, this monitoring problem is largely unexplored 

in the literature, and industrial practice leaves this aspect up to the equipment vendors. 

Recent studies on pharmaceutical powder feeding and blending design, monitoring and control 

for solid-dosage manufacturing are comprehensively reviewed elsewhere (Su et al., 2020). 

Several contributions address the selection of suitable feeder configurations (e.g., hopper 

capacity, screws characteristics) for given powder systems and process requirements 
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(Blackshields and Crean, 2018; Cartwright et al., 2013; Engisch and Muzzio, 2012). From the 

design space description side, García-Muñoz et al. (2017) assessed the impact of the feeders 

mass flow variability onto the drug product composition in a continuous direct compression 

process using a mathematical model for the process. Other studies focus on the improvement 

of feedback and feedforward control. Hanson (2018) demonstrated the advantages of 

introducing a ratio controller in the feeding system, linking the set-points of the mass flow 

controllers to the current API powder mass flow. Model predictive control of a feeding-blending 

system in a continuous pharmaceutical tableting plant was reported by Singh et al. (2014). The 

authors showed improved performance in the control of the API content in the tablets for servo 

problems, with respect to traditional proportional-integral-derivative control. Nonetheless, 

fluctuations in the API concentration in the products were still observed, mostly because of the 

propagation of measurement inaccuracies into the control loop. In Rehrl et al. (2016), the 

benefits of model predictive control implementation in a blending system are further outlined 

through a simulation study. The authors point out that, for applications in physical units, it is 

necessary to put in place a state estimator, to provide accurate estimations of unmeasured state 

variables (states), such as mass flows and composition. 

State estimation (Ray, 1981) is a family of mathematical techniques that, given a mathematical 

model of a process and real time measurements from a plant, estimate the unmeasured system 

states and provide noise-attenuated estimations of the actual measurements. Moving-horizon 

estimation (Rao, 2000; Rao and Rawlings, 2002) estimates the current system states with an 

optimization-based strategy. For nonlinear systems, moving-horizon estimation is known to 

outperform alternative state estimation techniques in many applications (Haseltine and 

Rawlings, 2005).  

Very few studies address state estimation in solid-dosage form manufacturing, despite the great 

advantages it can bring. Recently, Liu et al. (2018) tested a robust moving-horizon estimator 

(MHE) on a pharmaceutical feeding-blending system. They conducted an in-silico analysis 

under the ideal assumption of no plant/model mismatch. The state variables relevant to the 

process (powder hold-ups in feeders and blenders, powder mass flows and powder mixture 

composition across the system) were successfully reconstructed by the estimator, also in the 

presence of gross measurement errors, such as outliers and drifts.  

In this study, we apply state estimation techniques to obtain a much improved instantaneous 

estimate of the mass flow of material being dispensed by a screw feeder in a continuous line. 

We develop a novel MHE-based powder composition monitoring scheme for the feeding and 

blending section of a real continuous tableting line, following a Quality-by-Design approach 

rooted in enhanced process understanding. The powder composition monitoring scheme 

developed encompasses the system from feeder to powder in the die, and does not include the 

compaction system in the tablet press. The process, detailed elsewhere (García-Muñoz et al., 

2018), is made up of three sections: feeding, blending, and compression. An MHE is 
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implemented in the feeding section, based on a first-principles mathematical model describing 

loss-in-weight feeder operation (Bascone et al., 2020). The MHE estimates the outlet powder 

mass flow from each feeder using a model of the feeders and measurements of the motor speeds 

and load cell masses. This in turn enables estimating the API concentration fed downstream, so 

that a comparison with actual measurements is possible. The intermediate blending effect is 

accounted for through an additional mathematical model calibrated with tracing experiments or 

step change experiments. We benchmark the proposed monitoring approach against a typical 

industrial one that uses API concentration values calculated from the mass flow estimations as 

obtained from the software embedded in the feeders.  

The remainder of this chapter is organized as follows. The problem is stated formally in Section 

2.2. Section 2.3 describes the experimental setup and provides mathematical background to 

MHE and feeders modeling. The workflow for implementing the proposed monitoring system 

on the direct compression line is discussed in Section 2.4. Realtime monitoring of the line is 

demonstrated in Section 2.5, before of the concluding remarks. 

2.2 The need for a better flowrate estimation 

Let us consider a direct compression line made by F feeders, each one providing a different 

ingredient to the powder mixture. The mass flow estimations are provided to the user by the 

software interface of feeder i (i = 1, …, F). Namely, the following estimation signals are 

available for our particular case study: 

• 𝑚̇𝑖
𝑖𝑛𝑠𝑡, the raw instantaneous mass flow calculated as ratio between the difference of 

two consecutive measurements of powder mass weight in the hopper (loss in weight) 

and the difference between their respective sampling times; 

• 𝑚̇𝑖
𝑎𝑣𝑔

, a smoothed version of 𝑚̇𝑖
𝑖𝑛𝑠𝑡, calculated using a thirty-second moving average; 

• 𝑚̇𝑖
𝑠𝑚𝑜𝑜𝑡ℎ, an additional smoothed version of 𝑚̇𝑖

𝑖𝑛𝑠𝑡, obtained by a strong smoothing of 

𝑚̇𝑖
𝑖𝑛𝑠𝑡 through proprietary algorithms embedded in the equipment. 

The API theoretical fed concentration 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 is calculated for this case study using the 

moving-average mass flow signals, according to: 

𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =

𝑚̇𝑖
𝑎𝑣𝑔

∑ 𝑚̇
𝑖
𝑎𝑣𝑔𝐹

𝑖=1

   ,                                (2.1) 

where the API is fed from the first feeder (i = 1). For comparison, we define 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡 as the API 

concentration calculated from the raw instantaneous signals:  

𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡 =

𝑚̇𝑖
𝑖𝑛𝑠𝑡

∑ 𝑚̇𝑖
𝑖𝑛𝑠𝑡𝐹

𝑖=1

   .                                 (2.2) 
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Additionally, spectroscopic and HPLC measurements are taken downstream, on both the 

powder mixture entering the tablet press feed frame and the final tablets. It was observed that 

certain downstream powder composition variations measured with spectroscopic tools and 

HPLC are not registered by 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡, which is a quite noisy signal (Figure 2.1a). On the other hand, 

the API concentration calculated from 𝑚̇𝑖
𝑠𝑚𝑜𝑜𝑡ℎ (not shown in Figure 2.1) cannot fully capture 

the composition variation dynamics due to oversmoothing. For this reason, a moving average 

mass flow 𝑚̇𝑖
𝑎𝑣𝑔

 can be carefully configured to make these dynamics evident upstream. 

Nonetheless, the API fed concentration inferred from 𝑚̇𝑖
𝑎𝑣𝑔

 (i.e., 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) still shows a low 

signal-to-noise ratio compared to the direct composition assessment, and lags behind fast-

changing variations, as a consequence of the moving-average smoothing (Figure 2.1b).  

Better instantaneous estimates of mass flow for improved quality assurance are therefore 

desirable, as the feeders are critical elements of the control strategy.  

 

   
(a)                                                                                         (b) 

Figure 2.1. Time profiles of the ratio between actual API concentrations and 

target API concentrations from a direct compression line (data from Dataset 

A discussed in Section 2.3). (a) Full view; (b) zoom-in. The concentration 

values are determined according to different methods: i) 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡; ii) 𝑐𝐴𝑃𝐼

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙; 

iii) assessed on the powder mixture that enters the tablet press feed frame 

using near-infrared (NIR) spectroscopy; iv) assessed on the final tablets using 

a Bruker Tandem IIIA FT-NIR instrument (Bruker Corp. Germany); v) 

assessed on the final tablets using HPLC. 

2.3. Materials and methods 

2.3.1 Process description and experimental data collection 

The experimental data for designing and validating the proposed monitoring methodology were 

collected in a continuous direct compression pilot plant for a molecule in development (García-

Muñoz et al., 2017; Figure 2.2). Five (𝐹 = 5) loss-in-weight feeders (Coperion K-Tron KT20) 

dispense the API and the other four ingredients of the formulation to the downstream continuous 

horizontal mixer. The powder is then discharged into a vertical hopper and, after passing 
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through a transition piece, enters the feed frame of the rotary tablet press. All operations 

occurring in between the feeders and the press feed frame form the blending section of the 

process. Powder blending is necessary for mixing the formulation ingredients, and allows 

partially compensating for feeder disturbances. Powder blending is known to occur not only in 

the horizontal mixer but in the tablet press feed frame. The specific details about the formulation 

are irrelevant for the study and are withheld for confidentiality. 

The loss-in-weight feeders (Figure 2.3) are made up of a motor-driven screw system, an 

agitator, a hopper where the material is stored, and a load cell installed below the unit. The 

measurements provided by the feeder and used by the proposed monitoring system as if they 

were available in real time are: i) the net weight 𝑚𝑖 of material in feeder, and ii) the motor drive 

command DCi, ranging from 0 to 100%.  

 

 

                          
Figure 2.2. Schematic of the direct compression line used for data collection. 

Five loss-in-weight feeders operate in parallel, sending the powder 

formulation to the horizontal mixer. Additional powder blending occurs in the 

feed frame of the tablet press, before the powder is fed in the die. The blending 

model in this work encompasses all the mixing occurring before the powder 

enters the die. 
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Figure 2.3. Schematic of a loss-in-weight feeder. The powder stored in the 

hopper, aided by an agitator (not shown), flows into the twin-screw system, 

from where it is pushed out of the feeder. A load cell (not shown) measures 

the mass of powder in the unit. From the mass measurements, a powder mass 

flow measurement is inferred and used by the flow controller for adjusting the 

motor (M) speed, to track the reference mass flow setpoint. 

 

The feeders measurements DCi and 𝑚𝑖 and the three aforementioned (Section 2.2) mass flow 

estimations 𝑚̇𝑖
𝑖𝑛𝑠𝑡, 𝑚̇𝑖

𝑎𝑣𝑔
 and 𝑚̇𝑖

𝑠𝑚𝑜𝑜𝑡ℎ are updated by the internal feeder software through high-

frequency readings, but they are all made available to the user only every 2 s. The feeders can 

operate at open loop (volumetric mode) or at closed loop (gravimetric mode). When operating 

in closed-loop mode, the internal mass flow controller uses the high-frequency measurements 

(not accessible to the user) to keep the mass flow at the relevant setpoint, by adjusting DCi. A 

ratio controller (Hanson, 2018) continuously receives the high-frequency API mass flow 

estimation and, based on that, updates the set points of the other flow controllers, in such a way 

as to enforce the target concentration for each ingredient.   

The API concentration in the powder mixture in the feed frame was estimated through near-

infrared (NIR) spectroscopy. Extended iterative optimization technology (EIOT), a recently-

developed methodology (Shi et al., 2019) was used to correlate the NIR signal to the API 

concentration, here denoted as 𝑐𝐴𝑃𝐼
𝑁𝐼𝑅, using optimization to enforce a modified Beer-Lambert 

law to the spectra. Discrete API concentration measurements were also obtained on tablets 

sampled at the press outlet.  HPLC and concentration estimations derived from data collected 

with a Bruker Tandem IIIA FT-NIR instrument (Bruker Corp. Germany) were used to this 

purpose, and the relevant measurements are indicated with 𝑐𝐴𝑃𝐼
𝐻𝑃𝐿𝐶 and 𝑐𝐴𝑃𝐼

𝑡𝑎𝑛𝑑𝑒𝑚 , respectively. 

While 𝑐𝐴𝑃𝐼
𝑁𝐼𝑅 was made available to the user every 2 s, only few measurements of 𝑐𝐴𝑃𝐼

𝐻𝑃𝐿𝐶 and 

𝑐𝐴𝑃𝐼
𝑡𝑎𝑛𝑑𝑒𝑚 were collected during the operation. 
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In this study, three datasets (Table 2.1) were collected during closed-loop continuous runs 

(without hopper refills) for a molecule in development in a pilot plant facility. This data was 

used for calibration and validation of the monitoring system. The profiles of 𝑚̇1  
𝑎𝑣𝑔

 and DC1 for 

Dataset A in feeder 1 are shown in Figure 2.4 to illustrate how a typical closed-loop operation 

evolves. As time progresses, powder densification in the screws decreases. To maintain 𝑚̇1  
𝑎𝑣𝑔

 

close to the set-point of 6.5 kg/h (Figure 2.4a), the controller progressively increases DC1 

(Figure 2.4b), thus increasing the number of revolutions per minute of the feeder screw. 

 

    
 (a) (b) 

Figure 2.4. Dataset A, feeder 1: time profiles of (a) 𝑚̇1,𝑎𝑣𝑔 and (b) DC1. The 

built-in feeder flow controller manipulates DC1 to keep the mass flow at its 

set-point. While time progresses during a run, powder densification in the 

screw decreases, due to the smaller hold-up in the hopper. The controller 

responds by increasing DC1 (hence the number of revolutions per minute of 

the screw). 

 

 
Table 2.1. List of datasets collected during continuous runs of the direct 

compression line. 

 Final tablet  

mass [mg] 

API target concentration 

 in tablet [%] 

Experiment  

duration [min] 

Dataset A 50 40 55 

Dataset B 150 40 35 

Dataset C 200 40 35 

 

All datasets in Table 2.1 refer to the same tablet formulation. Although the final mass of the 

tablets obtained varies across datasets, the feeding and blending sections always operate in the 

same way. The set of time-dependent variables characterizing each dataset is summarized in 

Table 2.2. As will be detailed later, DCi and mi are the only measurements required by the 

proposed monitoring system; the other variables are used for validating and benchmarking it. 

Additional real-time measurements available through the feeder software interface, but not 

meaningful for process monitoring, are not discussed here. 
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Table 2.2. List of time-dependent variables characterizing each dataset. A 

comprehensive list of symbols is reported as a separate section. 

Symbol Type Variable Measurement 

unit  

𝑐𝐴𝑃𝐼
𝐻𝑃𝐿𝐶  Measured API concentration measured with HPLC on tablets [kg/kg] 

𝑐𝐴𝑃𝐼
𝑁𝐼𝑅  Measured API concentration measured with NIR on powder mixture 

entering the feed frame 

[kg/kg] 

𝑐𝐴𝑃𝐼
𝑡𝑎𝑛𝑑𝑒𝑚  Measured API concentration estimated with spectra collected from tablets 

with a Bruker Tandem IIIA FT-NIR instrument 

[kg/kg] 

𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡   Calculated Fed concentration of API calculated from 𝑚̇𝑖

𝑖𝑛𝑠𝑡  (Equation 2.2) [kg/kg] 

𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙   Calculated Theoretical fed concentration of API (Equation 2.1) [kg/kg] 

DCi Measured Motor drive command of feeder i [%] 

mi Measured Powder mass in feeder i [kg] 

𝑚̇𝑖
𝑖𝑛𝑠𝑡   Calculated Mass flow from feeder i obtained as rate of change of measured 

mass (raw instantaneous mass flow) 

[kg/h] 

𝑚̇𝑖
𝑎𝑣𝑔

  Calculated Mass flow from feeder i obtained as thirty-seconds moving-

average of 𝑚̇𝑖
𝑖𝑛𝑠𝑡  

[kg/h] 

𝑚̇𝑖
𝑠𝑚𝑜𝑜𝑡ℎ  Calculated Mass flow from feeder i obtained by smoothing 𝑚̇𝑖

𝑖𝑛𝑠𝑡  with a 

statistical filter 

[kg/h] 

 

 

2.3.2 State estimation: moving-horizon estimation of state variables 

Let us consider the mathematical model of a process. The model predicts the time evolution of 

the system states according to: 

d𝐱̃(𝑡)

d𝑡
 = 𝐅(𝐱̃(𝑡), 𝐮(𝑡)) ,                                      (2.3) 

where 𝐱̃∈ℝ𝑛𝑥 is the vector of the nx predicted states, u∈ℝ𝑛𝑢  is the vector of the nu system inputs, 

𝐅(∙): ℝ𝑛𝑥+𝑛𝑢 ↦ ℝ𝑛𝑥 is the vector function representing the model, and 𝑡 is the time. The system 

states may be measured or not. Note that in the remainder of the manuscript, the tilde symbol 

“ ̃ ” on top of a variable denotes that the variable has been calculated by means of a model 

prediction. 

The continuous-time model (3) can be expressed in discrete-time form as: 

𝐱̃(𝑡𝑘+1) = 𝐟(𝐱̃(𝑡𝑘), 𝐮(𝑡𝑘)) ,                                           (2.4) 

in which 𝑡𝑘+1 is the time step subsequent to 𝑡𝑘, and 𝐟(∙): ℝ𝑛𝑥+𝑛𝑢 ↦ ℝ𝑛𝑥 is the discrete-time 

form of the model. 

Assume that 𝑛𝑦 variables are measured from the process at a given time step 𝑡𝑘, and that they 

are collected in vector y∈ℝ𝑛𝑦 . A prediction of the measured variables can be obtained by: 

𝐲̃(𝑡𝑘) = 𝐠(𝐱̃(𝑡𝑘)) ,                                 (2.5) 

where 𝐲̃∈ℝ𝑛𝑦  is the vector of the measured values as predicted by the model, and 𝐠(∙): ℝ𝑛𝑥 ↦

ℝ𝑛𝑦  is the vector function describing the measurement model. 
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Even though a mathematical model can provide real-time predictions at any time step as a soft-

sensor, unfortunately this piece of information cannot be used on its own for process monitoring 

due to the effect of the accumulation of error. Modeling errors (often referred to as plant/model 

mismatch) appear since the state variables predicted by Equation 2.4 are different from the 

actual (and unknown) ones, as evidenced by the fact that 𝐲̃(𝑡𝑘) ≠ 𝐲(𝑡𝑘). On the other hand, 

also process monitoring based on real-time measurements only may be ineffective, due to both 

lack of measurements and measurement noise. 

State estimation (Ray, 1981) is a family of techniques that combines the use of the mathematical 

model of a system and of real-time measurements from the system to improve the prediction of 

the system states over the one provided by the model on its own. Namely, at each time step the 

state estimator calculates an estimation of the states in such a way as to reconcile the values of 

the measurements predicted by the model at that time step (or within a given time window 

including it) to the actual measurements at the same time step (or time window). State 

estimation adjusts the model at each sampling instant using the available measurements, thus 

improving the model predictions by providing accurate estimates for the states, namely the 

unmeasured quantities of interest. 

In this study, we make use of moving-horizon state estimation (Rao, 2000; Rao and Rawlings, 

2002).  An intuitive representation of the rationale behind an MHE is illustrated in Figure 2.5 

and discussed in the following text, while a formal mathematical background for MHE is 

provided at the end of this subsection. At the current time step 𝑡𝑘 (Figure 2.5a), the MHE 

estimates the states of the system by finding a trade-off between the predictions from the model 

and the measurements available in a receding horizon 𝑇(𝑡𝑘) = {𝑡|𝑡𝑘−𝐻 ≤ 𝑡 ≤ 𝑡𝑘} that includes 

the past H time steps (H is called window size). Instead, older measurements and estimations 

are retained in the so-called archived horizon (where the estimated states are not updated 

anymore). This is done practically by solving an optimization problem, namely by finding the 

set of estimated states in 𝑇(𝑡𝑘) that minimize an objective function that is basically made by 

the sum of the squared model errors and measurement errors within the receding horizon. At 

time step 𝑡𝑙 inside the receding horizon, the vectors of model error 𝐰 ∈ ℝ𝑛𝑥 and measurement 

error 𝐯 ∈ ℝ𝑛𝑦 are defined as follows: 

𝐰(𝑡𝑙) = 𝐱̂(𝑡𝑙+1) − 𝐱̃(𝑡𝑙+1),   for 𝑙 =  𝑘 − 𝐻, 𝑘 − 𝐻 + 1,… , 𝑘 − 1       (2.6) 

𝐯(𝑡𝑙) = 𝐲(𝑡𝑙) − 𝐠(𝐱̂(𝑡𝑙)),      for 𝑙 =  𝑘 − 𝐻, 𝑘 − 𝐻 + 1,… , 𝑘  ,               (2.7) 

where 𝐱̂∈ℝ𝑛𝑥 is the vector of the estimated states (note that in the remainder of the manuscript, 

the caret symbol “ ̂ ” on top of a variable denotes that the variable has been calculated by means 

of state estimation). At the left boundary of the window, instead of the model error, the arrival 

cost (which depends on the estimation obtained at time step 𝑡𝑘−1 instead that on a model 

prediction) is considered in the objective function of the optimization problem, accounting  for 
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Figure 2.5. Schematic view of an MHE. For illustrative purposes, we assume 

that the measured variables coincide with the system states (𝒈(𝒙(𝑡𝑙)) =

𝒙(𝑡𝑙) in Equation 2.7). (a): State estimation at current time step (𝑡𝑘 = 30). 

(b): Window slide at next time step (𝑡𝑘 = 31), before of performing the state 

estimation procedure again. (c): Schematic view of the MHE of Figure 5a, 

proposed again using the advanced notation for estimations, predictions and 

measurements introduced in Equations 2.8-2.10. 

(a) 

(b) 

(c) 
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all the discarded measurements now laying inside the archived horizon. At the next time step 

𝑡𝑘+1 (Figure 2.5b), when new measurements become available, the window slides one time step 

forward. The new measurement set is included in the receding horizon, while the oldest one is 

discarded and enters the archived horizon. The estimation procedure is then iterated. The arrival 

cost at 𝑡𝑘+1 is calculated using the estimation at the new left boundary of the window obtained 

at 𝑡𝑘.  

A formal mathematical definition of the mathematical background of MHE is further provided. 

Let us consider a time step 𝑡𝑙 lying inside the receding horizon 𝑇(𝑡𝑘). We further detail the 

introduced notation by denoting with 𝐱̂(𝑡𝑙|𝑡𝑘) the estimation of the system states at time 𝑡𝑙 when 

the system is at time 𝑡𝑘 (i.e., the estimation is based on all measurements within the receding 

horizon). At the current time step 𝑡𝑘, the optimal estimation of the states inside 𝑇(𝑡𝑘), namely 

{𝐱̂(𝑡𝑘−𝐻|𝑡𝑘), … , 𝐱̂(𝑡𝑘|𝑡𝑘)}, is obtained by solving the following nonlinear programming 

problem: 

 

min
𝐱̂(𝑡𝑘−𝐻|𝑡𝑘),𝐰(𝑡𝑘−𝐻),…,𝐰(𝑡𝑘−1) 

{ Θ(𝐱̂(𝑡𝑘−𝐻|𝑡𝑘)) +  
1

2
∑ 𝐯(𝑡)T𝐑−1𝐯(𝑡)
𝑡𝑘
𝑡=𝑡𝑘−𝐻

+

                                                                + 
1

2
∑ 𝐰(𝑡)T𝐐−1𝐰(𝑡)}
𝑡𝑘−1
𝑡=𝑡𝑘−𝐻

                 (2.8)  

  subject to: 𝐱̃(𝑡𝑙+1|𝑡𝑘) = 𝐟(𝐱̂(𝑡𝑙|𝑡𝑘), 𝐮(𝑡𝑙))               (2.9a) 

𝐱̂(𝑡𝑙+1|𝑡𝑘) = 𝐱̃(𝑡𝑙+1|𝑡𝑘) + 𝐰(𝑡𝑙)               (2.9b) 

𝐲(𝑡𝑙) = 𝐠(𝐱̂(𝑡𝑙|𝑡𝑘)) + 𝐯(𝑡𝑙)                 (2.9c) 

 𝐰(𝑡𝑙) ∈ 𝐖𝑙,                             (2.9d)    

 𝐱̂(𝑡𝑙+1|𝑡𝑘) ∈ 𝐗𝑙,                            (2.9e) 

 

where, Θ(𝐱̃(𝑡𝑘−𝐻)) is referred to as the arrival cost, R∈ℝ𝑛𝑦 x 𝑛𝑦 is the measurement error 

variance matrix, Q∈ℝ𝑛𝑥 x 𝑛𝑥 is the model error variance matrix, 𝐱̃(𝑡𝑙+1|𝑡𝑘) is the vector of 

predicted states at time step 𝑡𝑙+1, obtained at 𝑡𝑘 from initial conditions 𝐱̂(𝑡𝑙|𝑡𝑘), and 𝐖𝑙 and 𝐗𝑙, 

(which define the boundaries of, respectively, 𝐰(𝑡𝑙) and 𝐱̂(𝑡𝑙), are taken as polyhedral convex 

sets. 

The objective function in Equation 2.8 represents in mathematical form the request of finding 

the optimal set of estimated states that minimize the sum of squared model errors and 

measurement errors within the receding horizon. Note that Equations 2.9b and 2.9c are, 

respectively, equivalent to Equations 2.6 and 2.7. The arrival cost accounts for all the data 

collected in the archived horizon (0 ≤ 𝑡 < 𝑡𝑘−𝐻), not directly considered in the objective function 

(Equation 2.8). It is defined as: 

Θ(𝐱̂(𝑡𝑘−𝐻|𝑡𝑘)) =
1

2
((𝐱̂(𝑡𝑘−𝐻|𝑡𝑘−1) − 𝐱̂(𝑡𝑘−𝐻|𝑡𝑘))

T 𝐏−𝟏(𝑡𝑘−𝐻|𝑡𝑘−1)(𝐱̂(𝑡𝑘−𝐻|𝑡𝑘−1) −

𝐱̂(𝑡𝑘−𝐻|𝑡𝑘)))                             (2.10) 
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in which P(𝑡𝑘−𝐻|𝑡𝑘−1) is the covariance of the estimation of 𝐱̂(𝑡𝑘−𝐻|𝑡𝑘−1). 

The goodness of the MHE estimation increases with both H and the arrival cost computation 

accuracy. Hence, the computational burden for solving an MHE problem can be reduced by 

using a smaller H, and compensating with an improved approximation of the arrival cost. In 

this study, we follow a recently proposed approach for the calculation of the arrival cost (López-

Negrete and Biegler, 2012), which computes P(𝑡𝑘−𝐻|𝑡𝑘−1) from the reduced Hessian of 

Problem 2.8-2.10 at the solution. The mathematical notation introduced to formalize the MHE 

problem is summarized in Figure 2.5c, to be compared with the qualitative schematic view of 

the MHE algorithm presented in Figure 5. 

In the MHE formulation of Equations 2.8-2.10, 𝐯(𝑡𝑙) and w(𝑡𝑙) are assumed to be zero-mean 

Gaussian processes of variances R and Q, respectively. In the presence of gross errors, robust 

implementations of MHE can be resorted to (Nicholson et al., 2014). Matrices Q and R are 

regarded as tuning parameters, respectively representing the confidence in the model and in the 

measurements. If the model is trusted more than the measurements, due to significant noise, 

larger elements for the matrix R should be selected than for Q, and vice versa.  

2.3.3 Feeder model description 

Many data-driven and hybrid first-principles/data-driven models for loss-in-weight feeders are 

described in the literature. In this study, we use a model recently proposed by Bascone et al. 

(2020). The model is made up of two differential equations:  

d𝑚̃𝑖(𝑡)

d𝑡
 = 𝑚̇𝑖

𝑟𝑒𝑓𝑖𝑙𝑙
(𝑡) − 𝑚̃̇𝑖(𝑡)                             (2.11) 

τ𝑖
d𝑚̃̇𝑖(𝑡)

d𝑡
+ 𝑚̃̇𝑖(𝑡) = 𝑛 𝑃𝐴 η ρ𝑖(𝑡) 𝑁𝑖(𝑡),                 (2.12) 

where 𝑚̃𝑖 is the predicted mass of powder in the feeder, 𝑚̇𝑖
𝑟𝑒𝑓𝑖𝑙𝑙

 is the powder refill mass flow, 

𝑚̃̇𝑖 is the predicted powder mass flow at the feeder outlet, τ𝑖 is the feeder time constant 

(calibration parameter), 𝑛 is the number of starts of the screw thread, P is the pitch of the screw, 

A is the cross-sectional area available for powder flow in the screw, η is the volumetric 

efficiency of the feeder (ratio between conveyed powder volume and screw volume available 

during one revolution, calculated from the material and feeder geometrical properties as in 

Bascone et al., 2020), Ni is the screw rotation speed, and ρ𝑖 is the time-variable effective density 

of the powder in the screws. 

The effective density is given by: 

ρ𝑖(𝑡) = ρ𝑖
0 + 𝑘𝑖 ln(σ𝑉(𝑡))   ,                                      (2.13) 
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where ρ𝑖
0 is the density in the absence of vertical stress due to the powder in the hopper 

(calibration parameter), ki is an additional calibration parameter, and σ𝑉 is the vertical stress in 

the hopper, expressed in [Pa]. The vertical stress σ𝑉 varies with time, and is a nonlinear function 

of 𝑚̃𝑖; in this study, we calculate σ𝑉 with the set of equations proposed by Bascone et al. (2020) 

for Coperion K-Tron KT20 feeders. 

The screw rotation speed 𝑁𝑖 is obtained from DCi and the maximum screws rotation speed Nmax 

as: 

𝑁𝑖(𝑡) =
𝐷𝐶𝑖

100 
𝑁𝑚𝑎𝑥 .                              (2.14)   

Overall, the dynamic model described by Equations 2.11-2.14 has (for each feeder) two states 

(𝑚̃𝑖 and 𝑚̃̇𝑖), two inputs (DCi and 𝑚̇𝑖
𝑟𝑒𝑓𝑖𝑙𝑙

), and three calibration parameters (𝑘𝑖, ρ𝑖
0 and τ𝑖). 

Materials physical properties and quantitative geometrical information on the twin-screw 

system configuration used in the process of interest are not disclosed due to confidentiality 

reasons. The main geometrical properties of KT20 feeders are reported in Bascone et al. (2020). 

2.4 Implementation of the powder composition monitoring system  

In this section, we present the general workflow required for implementing the powder 

composition monitoring system in a continuous direct compression line (Figure 2.6). The steps 

to be carried out are: i) feeder model calibration, ii) blending model calibration, and iii) MHE 

design. A general overview of the monitoring system is given in Subsection 2.4.1, together with 

remarks on the role of the blending model and the procedure for its calibration. For the feeding 

section, model calibration and state estimator design will be described in detail in Sections 2.4.2 

and 2.4.3, respectively. We remind that the caret symbol ̂  on top of a variable means that the 

variable has been obtained through state estimation, while variables with the tilde symbol ̃  on 

top have been obtained through model predictions. Concentrations and mass flows without any 

symbol on top are instead measurements, either direct or indirect (Table 2.2). 

𝑐̂𝐴𝑃𝐼
𝑝𝑟𝑒−𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔(𝑡) =

𝑚̂̇1(𝑡)

∑ 𝑚̂̇𝑖
5
𝑖=1 (𝑡)

                    (2.15) 

The blending effect throughout the line up to the point where the powder enters the die in the 

tablet press is modeled through a first-order-plus-dead-time dynamics (FOPDT; Seborg et al., 

2017), accounting for the powder axial mixing and the residence time in this section of the 

process:  

𝜏𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔
𝑑𝑐𝐴̂𝑃𝐼

𝑏𝑙𝑒𝑛𝑑𝑒𝑑(𝑡)

𝑑𝑡
+ 𝑐̂𝐴𝑃𝐼

𝑏𝑙𝑒𝑛𝑑𝑒𝑑(𝑡) = 𝑐̂𝐴𝑃𝐼
𝑝𝑟𝑒−𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔

(𝑡 − 𝜃𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔) ,              (2.16) 
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where 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 is the estimated API concentration at the blender outlet, and the calibration 

parameters 𝜃𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔 and 𝜏𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔 are, respectively, the blending dead time and time constant. 

As a remark, 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 is the variable of interest for monitoring purposes, representing the API 

concentration that will also characterize the final tablets.  

The blending model is calibrated offline with data from a step experiment (Figure 2.7) taken 

from the literature (García-Muñoz et al., 2018) and carried out in the same blending units used 

for the experimental activities of this study. The estimated values of the blending parameters 

are: 𝜃𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔 = 60 s and 𝜏𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔 = 35 s. For simplicity, the blending model is used in a purely 

predictive fashion, instead of being embedded in the state estimation framework. 

 

 

 
Figure 2.6. Scheme of the proposed monitoring system for a direct 

compression line. The moving-horizon estimator uses real-time measurements 

of motor drive command and of powder mass from each feeder, and estimates 

the pre-blending API concentration. Powder blending occurring in the 

horizontal mixer and (to a lesser extent) in the vertical surge hopper and in 

the transition piece is accounted for through a first-order-plus-dead-time 

(FOPDT) dynamics. The API concentration in the blended powder mixture 

entering the feed frame is eventually calculated. 



68                                                                                                                                                                 Chapter 2 

_______________________________________________________________ 

© 2021 Francesco Destro, University of Padova (Italy) 

 
Figure 2.7. Step change experiment for blending model calibration. 

Experimental data are reported as solid lines and are taken from Figure 5 in 

García-Muñoz et al. (2017). 

 

2.4.1 Feeder model calibration 

Dataset A (Table 2.2) is used for calibrating the feeder model (Section 2.3.3) to each of the five 

feeders supplying the ingredients of the formulation. Maximum-likelihood estimation (MLE) 

under the assumptions discussed by Rawlings et al. (1993) is used for model parameter 

estimation, minimizing the objective function: 

ΦMLE(𝛉𝑖) =
𝑛𝑒𝑥𝑝

2
ln (∑ (𝑚̃𝑖(𝑡𝑘, 𝛉𝑖) − 𝑚𝑖(𝑡𝑘))

𝑡𝑓
𝑡𝑘=0

 ,                (2.17) 

where 𝑛𝑒𝑥𝑝 is the number of experimental points in the dataset, 𝑡𝑓 is the final time step of the 

experiment, and 𝛉𝑖 is the set vector of estimated parameters for feeder i. Note that, for a given 

feeder i, 𝛉𝑖 needs to be estimated again if the ingredient, the type of feeder, or the feeder 

characteristics (e.g., hopper or screws) are changed during the process life cycle. Bascone et al. 

(2020) indicate a linear dependence on 𝑁𝑖 for all calibration parameters. From preliminary 

parameter estimation results, we conclude that, for the process of interest, the calibration 

parameters are constant and do not depend on Ni, except for ρ𝑖
0, which is calculated according 

to: 

ρ𝑖
0 = ρ𝑖

0,𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + ρ𝑖
0,𝑠𝑙𝑜𝑝𝑒𝑁𝑖 ,                   (2.18) 

where ρ𝑖
0,𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

 and ρ𝑖
0,𝑠𝑙𝑜𝑝𝑒

 respectively are the intercept and the slope of the equation 

representing the linear dependency of ρ𝑖
0 on Ni.  Hence, θ𝑖 defined as: 

𝛉𝑖 = [𝑘𝑖 ρ𝑖
0,𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡ρ𝑖

0,𝑠𝑙𝑜𝑝𝑒
 τ𝑖]                                            (2.19) 
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We solve the optimization problem for parameter estimation in the Pyomo environment, based 

on Python (Hart et al., 2017). The feeders model is first coded into the Pyomo environment in 

the time-continuous form of Equations 2.11-2.14. Then, the set of differential-algebraic 

equations are transformed in time-discrete form using a simultaneous strategy (Biegler, 2007), 

exploiting the Pyomo.dae toolbox (Nicholson et al., 2018).The differential equations are 

approximated with polynomials using Radau orthogonal collocation (Biegler, 2010), with 1500 

finite elements (corresponding to nexp) and 3 collocation points.  The obtained time-discrete 

feeder model equations are used as constraints in the optimization problem for minimizing 

ΦMLE (Equation 2.17). The solution is reached using the large-scale nonlinear solver IPOPT 

(Wächter and Biegler, 2006), providing the optimal estimation of parameters 𝛉̂𝑖 for i = 1, 2, …, 

5 (Table 2.3). The corresponding estimation uncertainty is given by the variance-covariance 

matrix (whose diagonal is reported in standard deviation form in Table 2.3), approximated as 

the inverse of the Hessian of the objective function (Equation 2.17) at the solution (Bard, 1974). 

For computing the Hessian at the solution, we use sIPOPT (Pirnay et al., 2012), an extension 

of IPOPT. All parameters are estimated with sufficiently small uncertainty, except ρ4
0,𝑠𝑙𝑜𝑝𝑒

. 

However, we verified that this parameter has a low sensitivity on the API concentration in the 

tablet. 

 
Table 2.3. Feeder model: parameter estimation results. For each parameter, 

the estimation uncertainty is reported as standard deviation from the 

estimated value.  

Parameter Feeder 1 Feeder 2 Feeder 3 Feeder 4 Feeder 5 

Estimatio

n 

Std. 

dev. 

Estimatio

n 

Std. 

dev. 

Estimatio

n 

Std. 

dev. 

Estimatio

n 

Std. 

dev. 

Estimatio

n 

Std. 

dev. 

ki [kg/m3] 

 

-3.16 1.34E

-2 

6.66  2.40E

-2 

-1.85  3.44E

-2 

10.46  1.81 -2.21  1.64E

-1 

ρ𝑖
0,𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

 [kg/m3] 403.12 8.52E

-1 

265.16  

 

1.64 274.61 1.08 133.19 1.44E

1 

249.36  2.01 

ρ𝑖
0,𝑠𝑙𝑜𝑝𝑒

[kg/m3/rpm

] 

-3.28 1.11E

-1 

-1.25 8.54E

-2 

-4.71 2.18E

-1 

-4.34 1.14E

1 

-10.05 3.50E

-1 

𝜏𝑖 [s] 0.72 1.28E

-1 

2.10 5.09E

-7 

0.52 6.42E

-2 

0 1.10E-

4 

0.98 1.27E

-1 

 

The model performance (no state estimation) is assessed in Figure 2.8 for Dataset A 

(calibration) and Dataset B (validation). The plots in the figure refer to Ingredients 1 (API) and 

2 of the formulation, making up for more than 80% of the tablet. Figure 2.8a, and its zoomed-

in version Figure 2.8b, show that, in Dataset A, the experimental powder mass profile (i.e., the 

only measurement used in the objective function of Equation 2.17) is fitted well by the model 

for material 1. The model predicts API mass flow values (𝑚̃̇1) that agree well with 𝑚̇1
𝑎𝑣𝑔

 (Figure 

2.8c), resulting in a composition signal that is much less noisy than 𝑚̇1
𝑖𝑛𝑠𝑡. Analogous 

considerations can be drawn for Ingredient 2 in Dataset A (Figure 2.8d), and Ingredients 1-2 in 

Dataset B (Figure 2.8e-f).  
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2.4.2 MHE design 

Based on the calibrated feeder model, the MHE is implemented in the Pyomo environment, 

starting from the continuous form of the feeders model already coded for parameter estimation. 

A time step of 2 s is used (corresponding to the sampling time of the actual measurements), and 

a value of 𝐻 = 30 is selected, since it is found to be a good compromise between computational 

burden and estimation accuracy. The MHE framework is defined by the optimization problem 

of Equations 2.8-2.10. The discrete-time model f(𝐱̂(𝑡𝑙+1|𝑡𝑘), 𝐮(𝑡𝑘)) of Equation 2.9a is 

obtained using the same approach adopted for parameter estimation, namely through 

discretization with Radau orthogonal collocation of Equations 2.8-2.11. Also in this case, 3 

collocation points are used, but the number of finite elements is set to 30, corresponding to the 

selected value of H. The measurement model g(𝐱̂(𝑡𝑙|𝑡𝑘)) appearing in Equation 2.9c is defined 

as:  

𝐠(𝐱̂(𝑡𝑙|𝑡𝑘)):   𝐱̂(𝑡𝑙|𝑡𝑘)    ↦    [𝑚̂1(𝑡𝑙|𝑡𝑘)   𝑚̂2(𝑡𝑙|𝑡𝑘)   …   𝑚̂5(𝑡𝑙|𝑡𝑘)]                 (2.20) 

At each tk, IPOPT (Wächter and Biegler, 2006) is used for solving the MHE optimization 

problem, and the estimated hold-ups and mass flows at the current time step (respectively, 

𝑚̂𝑖(𝑡𝑘) and 𝑚̂̇𝑖(𝑡𝑘) for i = 1, …, 5) are stored. Then, sIPOPT (Pirnay et al., 2012) is resorted to 

for calculating the reduced Hessian of Problem 2.8-2.10 at the solution with respect to 

𝐱̂(𝑡𝑘−𝐻+1|𝑡𝑘). Following the approach proposed by López-Negrete and Biegler (2012), from 

the reduced Hessian we calculate 𝐏(𝑡𝑘−𝐻+1|𝑡𝑘), which is used at 𝑡𝑘+1 for updating the arrival 

cost (Equation 2.10). At each time step, the estimated state vector includes 10 elements, while 

the input and measurement vectors have 5 elements each, namely: 

𝐱̂ = [𝑚̂1   𝑚̂̇1   𝑚̂2   𝑚̂̇2   …   𝑚̂5   𝑚̂̇5 ]  ∈ ℝ
10                           (2.21) 

𝐮 = [DC1   DC2   …    DC5] ∈ ℝ
5                   (2.22) 

𝐲 = [𝑚1   𝑚2    …    𝑚5] ∈ ℝ
5   .                 (2.23) 

Implementation of the MHE requires designing the tuning matrices R (measurement noise 

variance matrix) and Q (model error variance matrix. Matrix R is designed as a diagonal matrix: 

R=diag([σ𝑚1 
2      σ𝑚2

2     …     σ𝑚5
2 ]) ,                                         (2.24) 

where σ𝑚𝑖

2  (variance of the mass measurement of feeder i) is assigned the value 1 × 10−6 for i 

= 1, …, 5. Matrix Q is tuned as a diagonal matrix, too:   

𝐐 = diag([σ𝑚̃1

2      σ𝑚̃̇1

2      σ𝑚̃2

2      σ𝑚̃̇2

2     …     σ𝑚̃5

2       σ𝑚̃̇5

2 ]) ,                                    (2.25) 

in which, for each feeder i, 𝜎𝑚̃𝑖

2  and σ𝑚̃̇1

2 are the variances of the element of 𝐰(𝑡𝑙) corresponding 
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(a)                                                                                          (b) 

      
(c)                                                                                          (d) 

     
(e)                                                                                              (f) 

Figure 2.8.  Experimental measurements compared against the predictions of 

the calibrated model. (a) Dataset A, 𝑚1 vs 𝑚̃1, (b) zoom-in of Figure 2.8a, (c) 

Dataset A, 𝑚̇1
𝑖𝑛𝑠𝑡  vs 𝑚̇1

𝑎𝑣𝑔
 vs 𝑚̃̇1, (d) Dataset A, 𝑚̇2

𝑖𝑛𝑠𝑡  vs 𝑚̇2
𝑎𝑣𝑔
 vs 𝑚̃̇2, (e) 

Dataset B, 𝑚̇1
𝑖𝑛𝑠𝑡  vs 𝑚̇1

𝑎𝑣𝑔
 vs 𝑚̃̇1, (f) Dataset B, 𝑚̇2

𝑖𝑛𝑠𝑡  vs. 𝑚̇2
𝑎𝑣𝑔

 vs 𝑚̃̇2. Figure 

2.8e also reports a zoom-in of 𝑚̇1
𝑎𝑣𝑔

 vs 𝑚̃̇1. 

to the discretized version of (respectively) Equation 2.10 and Equation 2.11. Note that Equation 

2.10 has no modeling error, as it represents the material balance of powder in the feeder. Hence, 

the elements of  𝐰(𝑡𝑙) corresponding to Equation 2.10 are set to 0. For the same reason, 𝜎𝑚̃𝑖

2  is 

set to 0, for i = 1, …, 5. On the other hand, Equation 2.11 is subject to error, and the variances 

σ𝑚̃̇𝑖

2  are assigned by trial and error. Namely, we used Dataset A and adjusted the diagonal 

elements until the variability interval observed for 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 was roughly comparable to the one 

observed experimentally for 𝑐𝐴𝑃𝐼
𝑁𝐼𝑅 (i.e., for the only concentration measurement available at 

sufficiently high rate from downstream). The tuning parameters that were found to have the 

strongest impact on the state estimation are σ𝑚̃̇1

2 and σ𝑚̃̇2

2 , which is not surprising because 
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Ingredients 1 and 2 are the main components of the tablet formulation. 

The 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 values obtained with four different tunings of the MHE (Table 2.4) are illustrated 

in Figure 2.9, with increasing values of σ𝑚̃̇𝑖

2  from Figure 2.9a to Figure 2.9d. As expected, the 

lowest 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 fluctuations are registered in Figure 2.9a, where the MHE response is 

practically equivalent to the model prediction. By increasing σ𝑚̃̇𝑖

2 , the MHE is tuned to trust the 

model less and less, and to give increasingly more importance to the measurements (see 

Equation 2.8). When measurements are weighted very strongly (Figure 2.9d), the 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 

profile becomes qualitatively similar to the very noisy API concentration calculated from the 

raw instantaneous mass flows (Figure 2.1a). The parameters used for the estimation shown in 

Figure 2.9c are eventually selected, as they lead to a 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 profile that more closely 

resembles the 𝑐𝐴𝑃𝐼
𝑁𝐼𝑅 one. 

 
Table 2.4. MHE tuning comparison (Dataset A). Values of the tuning 

parameters of Q (Equation 2.25) used for obtaining the estimations reported 

in Figure 2.9.  

 σ𝑚̃̇1

2  σ𝑚̃̇2

2  σ𝑚̃̇3

2  σ𝑚̃̇4

2  σ𝑚̃̇5

2  

Tuning Figure 2.9a 0 0 0 0 0 

Tuning Figure 2.9b 7.5 7.5 1.5 7.5 15 

Tuning Figure 2.9c 300 7.5 1.5 7.5 15 

Tuning Figure 2.9d 3000 7.5 1.5 7.5 15 

2.5. Real-time monitoring: proof of concept 

We test the proposed monitoring system on Datasets A-C. Real-time monitoring is mimicked 

by using the data stored in the datasets as if they were coming from the sensors of the running 

plant. For Dataset A, the obtained profiles of the estimated mass flows 𝑚̂̇1 and 𝑚̂̇2 at the feeder 

outlet (Figures 2.10a and 2.10b, respectively) show much greater variability than the 

corresponding 𝑚̇𝑖
𝑎𝑣𝑔

, and slightly smaller than 𝑚̇𝑖
𝑖𝑛𝑠𝑡. The same considerations apply to 

𝑐̂𝐴𝑃𝐼
𝑝𝑟𝑒−𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔

, which is compared to 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡 and 𝑐𝐴𝑃𝐼

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 in Figure 2.10c. 

The resulting 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 profile (downstream the blending section) is validated against 𝑐𝐴𝑃𝐼

𝐻𝑃𝐿𝐶, 

𝑐𝐴𝑃𝐼
𝑁𝐼𝑅 and 𝑐𝐴𝑃𝐼

𝑡𝑎𝑛𝑑𝑒𝑚 measurements in Figure 2.11a (in the industrial practice, 𝑐𝐴𝑃𝐼
𝐻𝑃𝐿𝐶 is considered 

the most reliable API concentration measurement across the whole process line). We remark 

that none of these validation measurements are used by the monitoring system for estimating 

𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑. Visual inspection shows that 𝑐̂𝐴𝑃𝐼

𝑏𝑙𝑒𝑛𝑑𝑒𝑑 is aligned well with the HPLC and NIR-derived 

measurements in the final tablet. Quantitively speaking, the sum of squared errors (SSE) 

between 𝑐𝐴𝑃𝐼
𝐻𝑃𝐿𝐶 and 𝑐̂𝐴𝑃𝐼

𝑏𝑙𝑒𝑛𝑑𝑒𝑑 is ~20% smaller than the SSE between 𝑐𝐴𝑃𝐼
𝐻𝑃𝐿𝐶 and the blending 

outlet concentration calculated applying the blending dynamics (Equation 2.16) to 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 

(Figure 2.11b). The SSE reduction is even greater (~40%) when 𝑐𝐴𝑃𝐼
𝑡𝑎𝑛𝑑𝑒𝑚 is considered, instead 

of 𝑐𝐴𝑃𝐼
𝐻𝑃𝐿𝐶. When 𝑐̂𝐴𝑃𝐼

𝑏𝑙𝑒𝑛𝑑𝑒𝑑 is benchmarked against the blending outlet concentration calculated  
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(a)                                                                             (b) 

 
(c)                                                                            (d) 

Figure 2.9. MHE tuning comparison (Dataset A). Time profile of 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑  

obtained with decreasing confidence in the model from (a) to (d). The values 

of the different tuning parameters are reported in Table 2.4. The time profile 

of 𝑐𝐴𝑃𝐼
𝑁𝐼𝑅 is reported for comparison. 

 

applying the blending dynamics to 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡 (Figure 2.11c), the SSE reduction with respect to 𝑐𝐴𝑃𝐼

𝐻𝑃𝐿𝐶 

is greater than 40%, while the one with respect to 𝑐𝐴𝑃𝐼
𝑡𝑎𝑛𝑑𝑒𝑚 is greater than 60%. 

Although 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 and 𝑐𝐴𝑃𝐼

𝑁𝐼𝑅 do not match perfectly in Figure 2.11a, it appears from the same 

figure that 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 captures the underlying low-frequency dynamics that is apparent in the 𝑐𝐴𝑃𝐼

𝑁𝐼𝑅 

signal. Instead, the blending outlet concentration calculated from 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 (Figure 2.11b), 

essentially, does not display any dynamics, due to the low signal-to-noise ratio of 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 

(Figure 2.1). Application of fast Fourier transform (a mathematical technique capable of 

identifying the frequencies of the underlying dynamics of a signal) to 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑, 𝑐𝐴𝑃𝐼

𝑁𝐼𝑅 and 

𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 confirms these observations. Figure 2.12 shows the Fourier transform-derived 

power spectra (not to be confused with the spectra obtained through PAT in the plant) of the 

𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑, 𝑐𝐴𝑃𝐼

𝑁𝐼𝑅 and 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙signals. Both 𝑐̂𝐴𝑃𝐼

𝑏𝑙𝑒𝑛𝑑𝑒𝑑 and 𝑐𝐴𝑃𝐼
𝑁𝐼𝑅 have their main components 

laying in the low frequencies band of 0.001-0.005 Hz, corresponding to periods of about 3-15 

min (coherently with the plots displayed in Figure 2.11a). Instead, 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 mostly presents 

higher-frequency components that are associated with noise, and, after the blending effect is 

applied to 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙, almost no low-frequency dynamics is left (Figure 2.11b). 
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(a)                                                                             (b) 

   
(c) 

Figure 2.10. Comparison of pre-blending estimations and measurements 

(Dataset A). (a) 𝑚̇1
𝑖𝑛𝑠𝑡 vs 𝑚̂̇1 vs 𝑚̇1

𝑎𝑣𝑔
; (b) 𝑚̇2

𝑖𝑛𝑠𝑡 vs 𝑚̂̇2 vs 𝑚̇2
𝑎𝑣𝑔

; (c) 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡  vs 

𝑐̂𝐴𝑃𝐼
𝑝𝑟𝑒−𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔

 vs 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 . 

   
(a)                                                                            (b) 

  
(c)                                                                                          

Figure 2.11. Comparison of post-blending estimations and measurements 

(Dataset A).   (a) 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 , (b) 𝑐𝐴𝑃𝐼

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙   + blending effect (Equation 2.16) 

and (c) 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡  + blending effect (Equation 2.16). We include 𝑐𝐴𝑃𝐼

𝐻𝑃𝐿𝐶, 𝑐𝐴𝑃𝐼
𝑁𝐼𝑅 and 

𝑐𝐴𝑃𝐼
𝑡𝑎𝑛𝑑𝑒𝑚 for reference. 
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Figure 2.12. Single-sided Fourier transform derived power spectrum of 𝑐𝐴𝑃𝐼

𝑁𝐼𝑅, 

𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑  and 𝑐𝐴𝑃𝐼

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  (Dataset A). Note that the sampling time of the 

datasets is 2 s, corresponding to a sampling frequency of 0.50 Hz. 

 

The partial misalignment between 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 and 𝑐𝐴𝑃𝐼

𝑁𝐼𝑅 in Figure 2.11a might be due to 

unmodelled stochastic phenomena occurring in the blending section, or to the need of 

improving the feeder model (on the structural side and/or on the parametric one). In particular, 

the datasets used in this study come from a pilot-plant experimental campaign on a drug product 

that was not analyzed in further experiments. Hence, limited data were available for calibrating 

the chemometric model relating the NIR spectra to the API concentration, and complete trust 

in 𝑐𝐴𝑃𝐼
𝑁𝐼𝑅 cannot be argued.  

The results demonstrate that the proposed monitoring framework provides better estimations of 

the API concentration across the process than done by a conventional approach based on 

monitoring the API concentration by 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙. Notice that the variability of the API 

concentration upstream the blending section as estimated by the MHE is greater than the one 

represented by 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 (see Figure 2.10c). This is expected given that the latter is calculated 

with a moving average, which is a dampened signal by definition.  

To further appreciate the benefits of including the state estimator in the monitoring system, 

consider again Figure 2.11c. It can be seen that the API concentration at the blending outlet as 

obtained by applying the blending dynamics of Equation 2.16 to 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡 still displays high-

frequency fluctuations (e.g. from ~30 to ~45 min), not resembling any of the measured 𝑐𝐴𝑃𝐼
𝐻𝑃𝐿𝐶, 

𝑐𝐴𝑃𝐼
𝑁𝐼𝑅 and 𝑐𝐴𝑃𝐼

𝑡𝑎𝑛𝑑𝑒𝑚 profiles. No practical improvement is achieved by either using a discrete 

three-point derivative for calculating 𝑚̇𝑖
𝑖𝑛𝑠𝑡, or applying a low-pass filter to 𝑐𝐴𝑃𝐼

𝑖𝑛𝑠𝑡. This means 

that, despite 𝑐̂𝐴𝑃𝐼
𝑝𝑟𝑒−𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔

 variability is similar to the one of 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡 (Figure 2.10c), the 

fluctuations observed in the MHE estimations reflect the underlying process dynamics, instead  
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(a)                                                                                    (b) 

   
(c)                                                                                            (d) 

Figure 2.13. Comparison of post-blending estimations and measurements 

(Datasets B and C).   (a) 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑, Dataset B, (b) 𝑐𝐴𝑃𝐼

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  + blending effect 

(Equation 2.16), Dataset B, (c) 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑, Dataset C, (d) 𝑐𝐴𝑃𝐼

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  + blending 

effect (Equation 2.16), Dataset C. 𝑐𝐴𝑃𝐼
𝐻𝑃𝐿𝐶 , 𝑐𝐴𝑃𝐼

𝑁𝐼𝑅 and 𝑐𝐴𝑃𝐼
𝑡𝑎𝑛𝑑𝑒𝑚 are reported in all 

plots for comparison. 

 

     
(a) (b) 

Figure 2.14. 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 compared against 𝑐𝐴𝑃𝐼

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  + blending effect 

(Equation 2.16) for (a) Dataset A and (b) Dataset B. 

 

of noise as in 𝑐𝐴𝑃𝐼
𝑖𝑛𝑠𝑡; re-configuring the number of points of the moving-average for calculating 

𝑚̇𝑖
𝑎𝑣𝑔

 would not suffice for achieving the good performance reached by the MHE. 

We test the MHE-based monitoring system also for Datasets B and C of Table 2.1. The 

manufactured tablets have a different mass than those related to Dataset A, and this would 

suggest to consider retuning both the model and the MHE. Nevertheless, for simplicity we 

consider a worst-case scenario where the tuning is not adjusted. The results shown in Figure 
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2.13 are still satisfactory. In fact, 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 is coherent with 𝑐𝐴𝑃𝐼

𝐻𝑃𝐿𝐶 and 𝑐𝐴𝑃𝐼
𝑡𝑎𝑛𝑑𝑒𝑚, while the 

blending outlet concentration calculated by applying the blending dynamics to 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 

essentially does not display any dynamics. 

By overlapping 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 with 𝑐𝐴𝑃𝐼

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 after blending (Figure 2.14), it is once again 

confirmed that 𝑐𝐴𝑃𝐼
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 is an over-smoothed signal mainly including high-frequency noise 

components, while 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 includes lower-frequency components representing the underlying 

dynamics of the process. The misalignment between 𝑐̂𝐴𝑃𝐼
𝑏𝑙𝑒𝑛𝑑𝑒𝑑 and 𝑐𝐴𝑃𝐼

𝑁𝐼𝑅 in Figures 2.13a and 

2.13c might be due to the aforementioned reasons, such as disturbances in the blending or to 

the need to improve the feeders model. However, for these datasets an even more important 

role in the mismatch might be played by the unreliability of 𝑐𝐴𝑃𝐼
𝑁𝐼𝑅, possibly due to poor sensor 

readings. For instance, referring to Figure 2.13e, the occurrence of 10% variations of API 

concentrations in less than 2 min (e.g., from ~12 to ~14 min) with no likewise variations in the 

feeders mass measurements seems unlikely. Finally, since the tablets produced in the 

experiments of Datasets B and C have increasingly larger mass, another reason for the mismatch 

might be related to the need of tuning the MHE for experiments producing tablets of a fixed 

mass. These possibilities will be further inquired in future work. 

As a concluding remark, the computational burden of the monitoring framework is compatible 

with real-time implementation. The state estimation results were obtained in approximately 

50% of the process time with an Intel® CoreTM i7-8565U CPU @1.80 GHz processor and total 

memory of 16.0 GB RAM. The computational time can be further reduced by using smaller 

values for H as in Liu et al. (2018) or with fast MHE approaches (Zavala et al., 2008). 

2.6. Conclusions 

We presented a novel approach to monitoring powder feeding in continuous solid-dosage forms 

manufacturing, and successfully validated it against experimental datasets collected on a direct 

compression line. The monitoring system is based on a state estimator (MHE), which 

effectively reconciles the mass measurements coming from loss-in-weight feeders with 

downstream measurements potentially coming from a PAT instrument, and estimates the 

delivered powder mass flows by means of a model-based optimization strategy. The monitoring 

system exploits a detailed mathematical model of the process for state estimation purposes, 

meeting the Quality-by-Design framework invitation to develop control strategies rooted on 

enhanced process understanding. The powder mass flows estimated with the proposed 

monitoring approach (and, in turn, the estimated API concentration in the final dosage forms) 

are highly consistent with downstream HPLC and spectroscopic measurements, when 

compared with traditional approaches to feeding monitoring. Additionally, powder 

concentration estimations are provided in a practically continuous way, which is a significant 
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advantage over sampled measurements. We showed that using statistical filters instead of the 

state estimator for calculating the powder mass flows from the mass measurements, as done by 

default by loss-in-weight feeder software, can lead to inaccuracies. Finally, the required 

computational time is compatible with real time implementation.  

Future work on a different molecule will involve additional validation activities on extended 

datasets, for which a reliable chemometric model relating the NIR spectra to the API 

concentration in the powder mixture is available. The integration of the state estimator with 

latent-variable modeling for fault detection and diagnosis purposes is also envisioned, 

following a hybrid monitoring approach outlined in Chapter 3. 

We believe state estimation technology is the appropriate way to obtain maximum synergy from 

the resources invested in the development of a deterministic model for a process, and the 

resources dedicated to the implementation of PAT solutions. State estimation puts the data from 

PAT solutions in the context of a the wholistic view of the process that is represented in a 

deterministic model. This is, in the opinion of the authors, the first step in the journey to adopt 

model-based closed loop control in the pharmaceutical industry. 

 



 

_________________________ 
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Chapter 3 

Hybrid data-driven/knowledge-driven 

process monitoring* 

In this Chapter traditional standalone data-driven and knowledge-driven process monitoring 

approaches are bridged by proposing a novel hybrid framework that exploits the advantages of 

both simultaneously. Namely, a novel process monitoring approach is proposed, based on a 

data-driven model that includes two different data types: i) “actual” data coming from sensor 

measurements, and ii) “virtual” data coming from a state estimator, based on a first-principles 

model of the system under investigation. The proposed approach is tested on three simulated 

case studies: a continuous polycondensation process for the synthesis of poly-ethylene 

terephthalate, a fed-batch fermentation process for the manufacturing of penicillin, and a 

pharmaceutical segmented fluid bed dryer. The hybrid monitoring approach shows superior 

fault detection and diagnosis performances with respect to conventional monitoring techniques, 

even when the first-principles model is relatively simple and process/model mismatch exists. 

The hybrid monitoring system is particularly relevant within the Quality-by-Design context, as 

the available physical knowledge on the process is directly factored into the control strategy. 

3.1 Introduction 

Process monitoring is a key task in the process industry, as detecting a fault and assessing its 

cause before the production is compromised can save valuable assets. Several data-driven (DD) 

methodologies for fault detection and diagnosis have been proposed in the last decades (Jiang 

et al., 2019; Qin, 2012). Among them, latent-variables models (LVMs; Jackson, 1991) are a 

powerful class of DD multivariate approaches that proved very effective for fault detection and 
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diagnosis (Kresta et al., 1991), and gained increased relevance with the Industry 4.0 “big data” 

era. LVMs detect a fault when new measurements coming from the plant sensors are unknown 

to the correlation structure of the training data, which define the normal operating conditions 

(NOC) for the process. Faults are typically detected using multivariate control charts (Nomikos 

and Macgregor, 1995). Contribution plots (Miller et al., 1998) can then be exploited to pinpoint 

the measurements most related to the faulty conditions. However, when the number of available 

measurements is relatively small, detection of a fault through an LVM may be delayed, because 

the fault must propagate into the system until the few measured variables are affected. On the 

other side, diagnosing the root-cause of a fault may be challenging due to the smearing-out 

effect (Qin, 2012). In fact, since LVMs are not cause-effect models, it may be difficult to 

identify causality patterns between measurements under abnormal process conditions. This 

issue is particularly relevant if the variables embodying the root-cause of the fault are not 

measured, and therefore cannot be included in the LVM. 

To overcome this limitation, monitoring methodologies exploiting first-principles knowledge 

about the process under investigation may be considered. Process monitoring methodologies 

based on knowledge-driven (KD) models have been thoroughly reviewed elsewhere (Gao et 

al., 2015; Venkatasubramanian et al., 2003a). The most popular KD approaches are based on 

parity relations (Gertler, 1998) or on state estimators (Blanke et al., 2006; Caccavale et al., 

2009; Deshpande et al., 2009; Mohd et al., 2015; Rusinov et al., 2013), possibly implemented 

for simultaneous state and parameter estimation (Varshney et al., 2019). Generally speaking, 

KD models have the advantage of embedding the available understanding on the mechanisms 

driving the process under investigation. This piece of information can help fault detection and 

diagnosis, and is missing in DD monitoring approaches. However, KD models are generally 

more complex to develop than their DD counterparts and, when used for monitoring, the 

performances can be severely affected by process-model mismatch. In addition, the fault 

models have typically to be known a priori (Caccavale et al., 2009; Rusinov et al., 2013).  

Hybrid models (von Stosch et al., 2013; Zendehboudi et al., 2018) combine DD methods with 

the information available from first-principles knowledge about the process, and are promising 

techniques for overcoming the limitations of DD and KD monitoring (He and Wang, 2018; Reis 

et al., 2019). Hybrid models for process monitoring usually consist of a KD soft-sensing 

framework in which a DD component is added to make up for missing deterministic information 

(Bonvin et al., 2016; Jia et al., 2011). Other hybrid approaches (Tidriri et al., 2016) use DD 

techniques to monitor the residuals of a KD model, or they develop complex schemes with 

subsequent DD and KD steps, tailored to specific applications (Ghosh et al., 2011). Recent 

contributions (Baklouti et al., 2019, 2018) showed the benefits of building advanced control 

charts to monitor the states estimated by a state estimator. However, these approaches are 

typically univariate, and therefore suffer from the well-known limitations of univariate 

monitoring with respect to its multivariate counterpart (Jackson, 1991; Kresta et al., 1991; 
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Seborg et al., 2017). Even though all these methodologies are gaining interest, state-of-the-art 

hybrid monitoring methods still lack a general framework to combine results coming from DD 

and KD modeling approaches (Tidriri et al., 2016). 

In this study, we couple the easy-to-design features of DD process monitoring approaches to 

the descriptive capability of KD models, in order to develop a novel multivariate monitoring 

methodology with improved fault detection and diagnostic capabilities. Namely, we propose a 

latent-variable-based monitoring model that uses an augmented data matrix including two 

different data types: i) “actual” data coming from sensor measurements, and ii) “virtual” data 

coming from a dynamic KD model able to capture the main features of the system under 

investigation. Process-model mismatch for the KD model is (at least partially) compensated for 

by using a state estimator, which returns a set of virtual data consisting of estimated system 

states, adapted parameters, and reconstructed measurements to be included in the DD model. 

We test the proposed methodology on three simulated processes: a fed-batch fermentation 

process for the production of penicillin, a pharmaceutical segmented fluid-bed dryer, and a 

continuous poly-ethylene terephthalate (PET) polymerization process. The latter case study is 

here included to demonstrate how the proposed hybrid approach is effective also for non-

pharmaceutical applications. 

The remainder of this article is organized as follows. In Section 3.2 the mathematical 

methodologies later applied are briefly summarized. The proposed hybrid monitoring 

framework is outlined in Section 3.3. The case studies are presented in Section 3.4, and the 

results are discussed in Sections 3.5 and 3.6. Conclusions to the study are finally reported in 

Section 7. 

3.2 Methods 

3.2.1 Process monitoring by extended Kalman filtering 

Let the first-principles model (FPM) of a dynamic system be expressed as a set of ordinary 

differential equations: 

𝐱̇(𝑡) = 𝐟(𝐱(𝑡), 𝐮(𝑡), 𝑡) + 𝐰(𝑡)         (3.1) 

where f is a nonlinear function, 𝐱(𝑡) denotes the system state vector at time t, 𝐮(𝑡) is the input 

vector, and 𝐰(𝑡) is the process noise vector, which is assumed to be a white Gaussian process 

with mean 0 and variance Q(t). Assuming that measurements are available at discrete time steps 

𝑡𝑘 from the plant, they can be related to the system states through an appropriate measurement 

model: 
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𝐲(𝑡) = 𝐡(𝐱(𝑡), 𝐮(𝑡), 𝑡) + 𝐯(𝑡)          (3.2) 

where 𝐲(𝑡) is the measurement vector, and 𝐯(𝑡) is the measurement noise vector, which is 

assumed to be a white Gaussian process with mean 0 and variance R(t). 

The discrete time data extended Kalman filter (EKF; Ray, 1981) provides the estimated state 

vector 𝐱̂(𝑡) and the state covariance P(𝑡), given the initial estimation of the states 𝐱̂0 and the 

initial state covariance P0. The algorithm includes two steps, prediction and update, which are 

alternatively performed at each time point k = 1, 2, …, K. The predictions of the states and of 

the state covariance at time 𝑡𝑘 (𝑡𝑘
−), obtained before the measurements are available, are 

respectively referred to as 𝐱̂(𝑡𝑘
−) and P(𝑡𝑘

−), whereas the corrected estimations after the 

sampling time (𝑡𝑘
+) are denoted as 𝐱̂(𝑡𝑘

+) and P(𝑡𝑘
+). 

During the prediction step, 𝐱̂(𝑡𝑘−1
+ ) and 𝐏(𝑡𝑘−1

+ ) are propagated, with the integration of  

Equations 3.3-3.4, to obtain (respectively) 𝐱̂(𝑡𝑘
−) and 𝐏(𝑡𝑘

−): 

𝐱̇̂(𝑡) = 𝐟(𝐱̂(𝑡), 𝐮(𝑡), 𝑡)           (3.3) 

𝐏̇(𝑡) = 𝐅𝐏 + 𝐏𝐅T + 𝐐(𝑡)                      (3.4) 

where F is the Jacobian matrix: 

𝐅 = (
𝜕𝐟

𝜕𝐱
)
𝐱̂(𝑡),𝑢(𝑡),𝑡

             (3.5) 

At each sampling point k, the predicted estimations are corrected with the update equations: 

𝐱̂(𝑡𝑘
+) = 𝐱̂(𝑡𝑘

−) + 𝐊(𝑡𝑘) 𝛄(𝑡𝑘)             (3.6) 

𝐏(𝑡𝑘
+) = 𝐏(𝑡𝑘

−) − 𝐊(𝑡𝑘)𝐇𝑘𝐏(𝑡𝑘
−)          (3.7) 

where the Kalman gain 𝐊(𝑡𝑘), the innovation 𝛄(𝑡𝑘), and the Jacobian matrix 𝐇𝑘 are 

respectively calculated with: 

𝐊(𝑡𝑘) =  𝐏(𝑡𝑘
−) 𝐇𝑘

T𝐕(𝑡𝑘)
−1                       (3.8) 

𝛄(𝑡𝑘) = 𝐲(𝑡𝑘) − 𝐡(𝐱̂(𝑡𝑘
−), 𝐮(𝑡𝑘), 𝑡𝑘)         (3.9) 

𝐇𝑘 = (
𝜕𝐡

𝜕𝐱
)
𝐱̂(𝑡𝑘

−),𝐮(𝑡𝑘),𝑡𝑘
                    (3.10) 

The matrix 𝐕(𝑡𝑘) in Equation 3.8 is calculated with:     

𝐕(𝑡𝑘) = 𝐇𝑘 𝐏(𝑡𝑘
−) 𝐇𝑘

T + 𝐑(𝑡𝑘)                   (3.11) 

In Equation 3.8, for the inversion of matrix 𝐕(𝑡𝑘) factorization is resorted to instead of direct 

inversion, for computational efficiency and robustness. Rigorous methods to design P0, Q and 

R exist (Schneider and Georgakis, 2013). In this study, we take a simpler approach that proved 
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effective also in several other studies (Delgado-Aguiñaga et al., 2016; Pérez et al., 2015; Ricker 

and Lee, 1995). Namely, we design P0 as a diagonal matrix, based on the expected uncertainty 

on the initial estimation for each state. Additionally, we set Q as a time-invariant diagonal 

matrix, and we tune it by trial and error in such a way as to obtain robust convergence. Finally, 

we design R as: 

𝐑 = diag(σ𝑖)  ,                    (3.12) 

where σ𝑖 is the variance of the noise of the i-th measurement sensor. 

The EKF provides reconstructed values for y(tk), tackling the measurement noise. Such 

reconstructed values are useful for better monitoring the process evolution. Specific 

implementations of the EKF can be set up for tackling colored noise or measurement bias 

(Simon, 2006), if that emerges useful for monitoring. 

The EKF can also perform online parameter adaptation, upon augmentation of the state vector 

𝐱̂ with the subset 𝐩̂ of the FPM parameters that one seeks to adapt in real time. The nominal 

values p0 of the parameters are taken as initial conditions for 𝐩̂, and negligible dynamics with 

additive process noise of small variance can be assumed. State augmentation can be resorted to 

for improving the estimation of unmeasured states through bias estimation (Liotta et al., 1997), 

too. Bias estimation consists in the insertion of an additive term (bias) at the right-hand side of 

Equation 3.3 for selected states. Biases are assigned null initial values and a random walk model 

of small variance. To meet the observability conditions, the augmented states cannot exceed in 

number the available measurements.  

Conventional KD fault detection approaches (Blanke et al., 2006; Deshpande et al., 2009) are 

based on the assumption that the innovation sequence 𝛄(𝑡) of the EKF without augmented states 

follows a white 0 mean Gaussian distribution with variance V(t). Deviations from this behavior 

indicate a fault and can be detected by monitoring for each time instant the test statistics in 

Equation 3.13, which follows the central χ2 distribution with R degrees of freedom (where R is 

the number of measurements in 𝐲): 

ϵ(𝑡𝑘) = 𝛄(𝑡𝑘)
T𝐕(𝑡𝑘)

−1𝛄(𝑡𝑘)  .                 (3.13) 

Upon rejection of the null hypothesis for ϵ(𝑡𝑘) at time tk, the innovation sequence over a time 

window of size S (tuning parameter) is used for confirming the fault condition, with the 

following test statistic: 

ϵ(𝑡𝑘, 𝑆) = ∑ 𝛄(𝑡𝑖)
T𝐕(𝑡𝑖)

−1𝛄(𝑡𝑖)
𝑘+𝑆
𝑖=𝑘   .                  (3.14) 

If ϵ(𝑡𝑘, 𝑆) violates the confidence limit for the central χ2 distribution with R·S degrees of 

freedom, the fault is confirmed. Fault isolation is then typically carried out by online adaptation 

of all the parameters related to possible fault conditions, and by identifying which parameter is 
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drifting from its nominal value (Che Mid and Dua, 2017; Ku et al., 1994). 

3.2.2 Multivariate process monitoring by principal component analysis 

Principal component analysis (PCA) is a dimensionality reduction technique aimed at 

extracting the few underlying factors (called principal components, PCs) that explain most of 

the variability from a NOC dataset Z [N×M] including N observations on M variables (Jackson, 

1991). The data matrix Z is auto-scaled to zero mean and unit variance, and the PCs are 

extracted by decomposing Z as (Wise and Gallagher, 1996): 

𝐙 = ∑ 𝐭𝑎𝐩𝑎
T𝐴

𝑎=1 + 𝐄 ,                    (3.15) 

where 𝐭𝑎 are [N×1] score vector of the a-th PC, 𝐩𝑎 [M×1] is the loading vector for the same 

PC, and E is the matrix of residuals, which are random noise if an appropriate number 𝐴 of PCs 

is selected. For each observation n, two monitoring statistics can be calculated from the PCA 

model, namely the Hotelling 𝑇2 and the squared prediction error (SPE), according to: 

𝑇𝑛
2 = ∑ 𝑡𝑎,𝑛 λ𝑎

−1𝐴
𝑎=1 𝑡𝑎,𝑛                              (3.16) 

SPE𝑛 = 𝒆𝑛𝒆𝑛
T                      (3.17) 

where 𝑡𝑎,𝑛 is the element in 𝐭𝑎 corresponding to observation n, λ𝑎 is the eigenvalue associated 

to the a-th PC, and 𝒆𝑛 is the residual vector. Confidence limits can be obtained for both statistics 

from the available set of NOC. In this study, we obtained the confidence limits SPElim (on SPE) 

and 𝑇lim
2  (on T2) by means (respectively) of the Jackson-Mudholkar equation (Wise and 

Gallagher, 1996), and of the F-distribution confidence limit equation (Wise and Gallagher, 

1996). We calculated both limits at 99% confidence. 

When a new observation 𝐳new [1×M] becomes available from the process at time 𝑡𝑛𝑒𝑤, it is first 

normalized on the mean and variance of the NOC dataset, then it is projected onto the model 

space, and finally SPEnew and 𝑇new
2  are calculated. If at least one of the two statistics exceeds 

its relevant confidence limit for some (e.g., three) consecutive observations, a fault is alarmed. 

The fault can be diagnosed using contribution plots (Miller et al., 1998), which point to the 

variables included in Z that most contribute to the confidence limit violation. The [1×M] 

contribution vectors for 𝐳new can be built  calculating the contributions for each variable m as: 

cnew,𝑚
SPE = 𝑒new,𝑚 ,                               (3.18) 

cnew,𝑚
𝑇2 = ∑ 𝑡𝑎,𝑛𝑒𝑤 λ𝑎

−0.5𝐴
𝑎=1 𝑝𝑎,𝑚  ,                   (3.19) 

where 𝑒new,𝑚 and 𝑝𝑎,𝑚 are the elements corresponding to variable 𝑚 respectively in 𝒆new and 

𝐩𝑎. We use the residuals as contributions to SPE in order to preserve the sign of the error, which 

proves useful for fault diagnosis. The vector of residuals 𝐜new
SPE  is known to follow a normal 
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distribution if A is selected appropriately (Wise and Gallagher, 1996). For the case studies under 

investigation, we found that also the 𝐜NEW
𝑇2  contributions are normally distributed, an occurrence 

that has been noted also by other investigators (Ündey et al., 2003; Westerhuis et al., 2000). 

Therefore, we calculated Gaussian control limits (at 99% confidence) for both contributions. 

Although these limits should not be considered to have statistical significance, they are 

nevertheless helpful for comparing contributions presenting significantly different magnitudes 

also with respect to the NOC.  

When the observations in Z are auto-correlated, the standard PCA approach should be modified 

to account for the effect of time. For example, dynamic PCA (DPCA; Ku et al., 1995) can be 

used, where L lagged measurements are included in Z to obtain the NOC matrix  Zdyn: 

𝐙𝑑𝑦𝑛 =

[
 
 
 
𝐳T(𝑡1) 𝐳T(𝑡0) … 𝐳T(𝑡1 − 𝐿)

𝐳T(𝑡2) 𝐳T(𝑡1) … 𝐳T(𝑡2 − 𝐿)
⋮ ⋮ ⋱ ⋮

𝐳T(𝑡𝑀) 𝐳T(𝑡𝑀 − 1) … 𝐳T(𝑡𝑀 − 𝐿)]
 
 
 

  .              (3.20) 

Alternatively, a multi-model moving-window PCA (MW-PCA, (Camacho et al., 2008)) 

approach can be resorted to, with a PCA model calibrated at each time point 𝑡𝑘 on the data for 

the previous 𝑊 time points, where 𝑊 is the time window width. The NOC matrix 𝐙𝑀𝑊(𝑡k) for 

the PCA model at time 𝑡𝑘is defined as:  

𝐙𝑀𝑊(𝑡k) =  [𝐳
T(𝑡𝑘) 𝐳T(𝑡𝑘 − 1) … 𝐳T(𝑡𝑘 −𝑊)]   .                        (3.21) 

3.3. Proposed hybrid monitoring framework 

The proposed hybrid monitoring framework is based on the approach sketched in Figure 3.1. A 

process with measured inputs u and unknown disturbances d produces a set of measured outputs 

y. The KD block exploits an FPM and the online measurements u and y to perform state 

estimation, online adaptation of the FPM parameters, and measurement reconstruction. In this 

study, an EKF (Ray, 1981) has been used to carry out these tasks, though other estimators might 

be used (Mohd et al., 2015). The DD block is based on an LVM that extracts operation-relevant 

information from the available set of field measurements (u and y) as well as from the virtual 

data (estimated states  𝐱̂, adapted model parameters 𝐩̂, and reconstructed measurements 𝐲̂) 

returned by the KD block. The augmented overall data matrix becomes: 

Z = [𝐱̂   𝐩̂   𝐲̂   u   y]                                (3.22) 
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Figure 3.1. Proposed hybrid monitoring framework. 

 

The advantage of this architecture is that, through the state estimator, the DD multivariate 

monitoring model can receive information related also to the inner mechanisms driving the 

system (in the form of states and FPM parameters), which can be very useful to monitor the 

process, but would otherwise not be accessible in the absence of a KD block. Therefore, the 

proposed hybrid approach is multivariate in nature, a feature that is known to offer significant 

advantages over single-variable methods (Jackson, 1991; Kresta et al., 1991; Seborg et al., 

2017). The main features of the hybrid monitoring framework are the following: 

• the estimated states (and possibly adapted parameters) provide meaningful indications 

about the phenomena involved in faults, which can facilitate fault detection and diagnosis. 

Large contributions from an estimated state or an adapted parameter indicate that the fault 

might be related to a physical phenomenon linked to that state or parameter. For this reason, 

the parameters to be selected for online adaptation (if any) are those mostly related to 

specific faults to be monitored. Although parameter estimation for fault detection and 

diagnosis has already been discussed in the literature (Che Mid and Dua, 2017; Ku et al., 

1994), the distinctive advantage of the proposed framework is that the overall co-variation 

of states, parameters, and measurements is assessed by the hybrid framework, which can 

improve the monitoring performance; 

• a subset of the measured inputs and outputs (y and u) may be not modeled by the FPM. 

Yet, due to their inclusion in the Z matrix, the LVM can exploit the deterministic 

information they embed, by assessing how they correlate not only with the other 

measurements, but also with the estimated variables; 

• measurements are considered twice by the LVM: once in terms of y and once in terms of 

𝐲̂. Hence, the filter innovations 𝛄(𝑡), which are sometimes monitored for fault detection in 

KD monitoring approaches (Blanke et al., 2006; Deshpande et al., 2009; 

Venkatasubramanian et al., 2003a), are (indirectly) fed to the monitoring system and are 

analyzed in a multivariate fashion.  

 

DATA-DRIVEN BLOCK

• Fault detection

• Fault diagnosis

Latent-variable model

KNOWLEDGE-DRIVEN BLOCK

• State estimation

• Parameter estimation

• Measurements reconstruction

First-principles model

y

u

       
d 𝐱̂ , 𝐩̂ , 𝐲̂
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3.4. Case studies  

In this section, the three simulated case studies used to test the proposed methodology are 

presented. For each case study, two models are employed, namely: 

• a detailed model is used to represent the true plant behavior; this model will be referred to 

as “the process”; 

• a simplified model is used to design the state estimator; this model will be referred to as 

“the FPM” or, more simply, “the model”. 

The main features of the case studies are summarized in Table 3.1. Case studies 1 and 2 involve 

a process of average complexity and size (<10 differential equations), while for Case study 3 a 

detailed process (~200 differential equations) validated on an industrial pharmaceutical 

segmented fluid bed dryer is resorted to. Parametric and structural process-model mismatch  

 
Table 3.1. Comparison of the main features of the two case studies 

investigated. 

Feature Case study 1 Case study 2 Case study 3 

process name PET manufacturing penicillin manufacturing Pharmaceutical 

segmented fluid bed 

dryer 

process type continuous fed-batch continuous 

number of differential 

states of process  

4 9 223 

process-model mismatch parametric and (mild) 

structural 

parametric and structural parametric 

unmodeled measurements pressures temperature none 

knowledge-driven block state estimation; 

measurement 

reconstruction 

state estimation; 

measurement 

reconstruction; parameter 

adaptation 

state estimation; 

measurement 

reconstruction 

data-driven block dynamic PCA moving-window PCA moving-window PCA 

 

exist in Case studies 1 and 2, although in Case study 2 the structural mismatch is more 

significant. Case study 3, instead, involves only parametric mismatch. In Case studies 1 and 3, 

only state estimation and measurement reconstruction are carried out by the EKF in the KD 

block, whereas in Case study 2 the EKF is also exploited for online parameter adaptation. 

DPCA is used in the DD block for Case studies 1 and 3, whereas MW-PCA is used in Case 

study 2. 

3.4.1 Case study 1: PET manufacturing 

PET synthesis occurs through three main steps: transesterification/esterification, pre-

polymerization, and polycondensation. In this study, we refer to the polycondensation step. The 
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process is constituted by a series of three CSTRs (Figure 3.2) described by the following set of 

equations (Ling and Kravaris, 2016): 

𝑑𝑐EG,𝑖

𝑑𝑡
=

1 

𝜏
(𝑐EG,𝑖−1 − 𝑐EG,𝑖) − ℎ𝑖  (𝑐EG,𝑖 − 𝑐EG,𝑖

∗ ) + 0.5 𝑅pol,𝑖                (3.23) 

𝑑𝑐OH,𝑖

𝑑𝑡
=

1 

𝜏
(𝑐OH,𝑖−1 − 𝑐OH,𝑖) − 𝑅pol,𝑖                  (3.24) 

𝑑𝑐COOH,𝑖

𝑑𝑡
=

1 

𝜏
(𝑐COOH,𝑖−1 − 𝑐COOH,𝑖) + 𝑅degr,𝑖                  (3.25) 

𝑑𝑐ESTER,𝑖

𝑑𝑡
=

1 

𝜏
(𝑐ESTER,𝑖−1 − 𝑐ESTER,𝑖) + 0.5 𝑅pol,𝑖 − 𝑅degr,𝑖                (3.26) 

𝑅pol,𝑖 = 𝑘pol,𝑖(𝑐OH,𝑖
2 − 8 𝑐EG,𝑖𝑐ESTER,𝑖)                  (3.27) 

𝑅degr,𝑖 = 𝑘degr,𝑖𝑐ESTER,𝑖                    (3.28) 

𝑐EG,𝑖
∗ =

𝑃𝑖

𝑃EG,𝑖
𝑠𝑎𝑡 (𝑇) 𝑣̂EG exp (1+𝜒)

                    (3.29) 

where i identifies a given reactor (i = 1, 2, 3).  

 

 
Figure 3.2. Case study 1: scheme of the PET polycondensation process with 

three CSTRs in series (adapted from (Ling and Kravaris, 2016)). 

 

In the above model equations, EG, OH, COOH and ESTER respectively denote ethylene glycol, 

hydroxyl end-groups, acid end-groups, and ester groups; 𝑐𝑗,𝑖 is the concentration of species j in 

reactor i (𝑐𝑗,0 being the inlet concentration of species j to the first reactor); 𝜏 is the residence 

time in a reactor, and is the same for all reactors; 𝑅pol,𝑖 and 𝑅degr,𝑖 respectively refer to the rates 

for the polycondensation and degradation in reactor i. In the Flory-Huggins equation (3.29), 

𝑐EG,𝑖
∗  is the equilibrium concentration of ethylene glycol (the only species existing in the vapor 

phase) in reactor i, 𝑃𝑖 is the pressure in reactor i, 𝑃EG,𝑖
𝑠𝑎𝑡  is the EG vapor pressure, 𝑣EG is the EG 

molar volume in the liquid phase, and 𝜒 is the polymer-solvent interaction parameter. The 

values of the parameters of the Flory-Huggins equation are set as in (Ling and Kravaris, 2016). 

The process is assumed to be isothermal, so the energy balance is neglected. The meaning of 
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Product

EG

CSTR 1 CSTR 2 CSTR 3

EG EG



Hybrid data-driven/knowledge-driven process monitoring with pharmaceutical case studies                                 89 

_______________________________________________________________ 

© 2021 Francesco Destro, University of Padova (Italy) 

the rest of the symbols is reported in Table 3.2, together with the values of all parameters and 

feed conditions. Their nominal values are taken from (Ling and Kravaris, 2016), but 

fluctuations are added as smoothed pseudo-random binary signals in order to more closely 

mimic a real situation where process noise increases normal process variability. 

The key performance indicator is the degree of polymerization in the third reactor (DP3), which 

cannot be measured online and is calculated as: 

𝐷𝑃3 = 1 +
2 𝑐ESTER,3 

𝑐OH,3+𝑐COOH,3+𝑐Eg,3 
                   (3.30) 

where 𝑐Eg,3 is the concentration of a byproduct, which is assumed to be equal to 𝑐COOH,3 (Ling 

and Kravaris, 2016). 

The 9 measurements available online from the process are: 

• 𝑦𝑐OH,𝑖[mol L-1], concentration of hydroxyl end-groups in reactor i; 

• 𝑦𝑐COOH,𝑖[mol L-1], concentration of acid end-groups in reactor i; 

• 𝑦𝑃𝑖 [Pa], pressure in reactor i. 

White noise with standard deviation of typical industrial sensors is added to the detailed model 

outputs; namely, the standard deviations are 7E-3 mol L-1 for 𝑦𝑐OH,𝑖, 3E-4 mol L-1 for 𝑦𝑐COOH,𝑖, 

and 1 Pa for 𝑦𝑃𝑖 (notice that the types of sensors for OH and COOH concentration 

measurements are different (Ling and Kravaris, 2016)). The measurement intervals for 𝑦𝑐OH,𝑖 

and 𝑦𝑐COOH,𝑖 are set to 1 min and 10 min, respectively (Ling and Kravaris, 2016). Measurements 

for pressure are recorded every 10 min, because they are not needed at greater frequency for 

process monitoring. 

The NOC dataset includes data from 5300 min of steady-state operation. We generate faulty 

datasets by running the process as under NOC, but applying the fault after 300 min from the 

 

 

Table 3.2. Case study 1: parameters and feed conditions in the detailed and 

simplified models. In the detailed model, fluctuations are added to the nominal 

values as smoothed-pseudo random binary signals with the indicated 

maximum/minimum amplitudes. In the simplified model, constant (nominal) 

values are used. 

Parameter or feed condition Symbol Units Nominal value Max/min amplitude 

Residence time (all reactors) 𝜏 min 60 0 

Mass transfer coefficient reactor 1 ℎ1 min-1 2.70 0.80 

Mass transfer coefficient reactor 2 ℎ2 min-1 2.03 0.61 

Mass transfer coefficient reactor 3 ℎ3 min-1 1.35 0.41 

Kinetic constant, reaction 1 𝑘pol,𝑖 L mol-1 min-1 6.66E-02 0.017 

Kinetic constant, reaction 2 𝑘degr,𝑖 min-1 8.34E-06 1.25E-06 

Pressure in reactor i Pi  Pa 130 6.5 

Feed concentration of ethylene glycol 𝑐EG,0 mol L-1 6.50E-03 9.75E-04 

Feed concentration of OH end-groups 𝑐OH,0 mol L-1 0.40 0.080 

Feed concentration of COOH end-groups 𝑐COOH,0 mol L-1 2.57E-03 2.57E-04 

Feed concentration of ester groups 𝑐ESTER,0 mol L-1 11.20 0.022 
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start of the NOC sequence. Simulations are run for 1300 min. We consider four faulty 

sequences, all of which eventually result in an impactful decrease of DP3: 

• Fault #1: slowly decreasing ester concentration in the feed (𝑐ESTER,0 decreases by 0.01% per 

min). As a consequence, the concentration of ester in the first reactor starts decreasing, 

eventually reducing DP3 (Equation 3.30). 

• Fault #2: minor fault in the agitation system of the second reactor (ℎ2 decreases by 0.05% 

per min). The smaller mixer speed hinders the mass transfer of ethylene glycol from the 

liquid to the vapor phase. Ethylene glycol starts accumulating in the second reactor, thus 

reducing the rate of polycondensation (Equation 3.27), and eventually affecting DP3 

(Equation 3.30). 

• Fault #3: significant fault in the agitation system of the second reactor (ℎ2 decreases by 

0.1% per min). The consequences are as for Fault #2, but with greater magnitude. 

• Fault #4: increasing pressure in the second reactor (P2 increases by 3% per min). The 

pressure increase inhibits ethylene glycol mass transfer (Equations 3.23 and 3.29), with 

effects on DP3 similar to Faults #2 and #3. 

To assess reproducibility of the results for different patterns of measurement and process noise, 

we consider 10 different realizations of each fault scenario. 

The simplified FPM model employs Equations 3.23-28, but with constant parameters and feed 

conditions. In addition, the effect of pressure on 𝑐EG,𝑖
∗  in each reactor i (Equation 3.29) is 

neglected and 𝑐EG,𝑖
∗  is assumed constant. As a result, the FPM presents parametric and (mild) 

structural mismatch. 

3.4.2 Case study 2: penicillin manufacturing 

The manufacturing of penicillin by biomass fermentation is modeled by Birol et al. (Birol et 

al., 2002). The process is carried out in a reactor operating batchwise for the first 50 h (growth 

phase). During this period, the concentration of biomass grows, and no penicillin is produced. 

Then, the substrate feed is turned on, and in this fed-batch phase the biomass concentration 

grows slowly and the penicillin concentration increases.  

For ease of reading, the set of equations defining the detailed model (Birol et al., 2002) is 

reported in Appendix A, together with the values of all inputs, parameters, and process noise 

characteristics. The simplified FPM model includes significant parametric and structural 

mismatch, and is also reported in Appendix A. 

The 6 measurements available online from the process are pH (𝑦𝑝𝐻), temperature (𝑦𝑇), oxygen 

concentration (𝑦O2), volume (𝑦𝑉), CO2 concentration (𝑦CO2), and feed flow rate (𝑦𝐹). A 

measurement interval of 3 min is considered for process monitoring. Note that 𝑦𝑇 and 𝑦𝑝𝐻 are 

not accounted for by the FPM, 𝑦𝐹 is the only input of the FPM, and the other available 

measurements correspond to states of the FPM. White noise is added to all measurements, 
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consistently with the typical precision of industrial instrumentation. The standard deviations of 

the noise signals are 0.05 for 𝑦𝑝𝐻, 0.05 K for 𝑦𝑇, 0.0025 gO2 L-1 for 𝑦O2, 0.01 L for 𝑦𝑉, 0.06 

molCO2 L
-1 for  𝑦CO2, and 0.0002 L h-1 for 𝑦𝐹. 

The NOC dataset includes 35 batches, each one lasting 300 h. Four faulty batches are 

considered, with the same length as the normal ones. The faulty batch characteristics are as 

follows: 

• Fault #1: slow ramp decrease in the aeration rate (unmeasured variable), which causes a 

drop in the oxygen mass transfer coefficient and in the oxygen concentration in the reactor; 

• Fault #2: slow ramp decrease of the substrate concentration in the feed (unmeasured 

variable), which inhibits the biomass growth; 

• Fault #3: slow ramp decrease of the maximum growth rate kinetic parameter, which 

reduces the biomass concentration in the reactor; 

• Fault #4: high cooling water temperature (unmeasured variable), which causes the reactor 

temperature to rise. 

Numerical details on the faulty sequences are reported in Appendix A. We implement ten 

different realizations of each fault scenario. 

3.4.3 Case study 3: pharmaceutical segmented fluid bed drying 

The segmented fluid bed dryer model available in gPROMS FormulatedProducts is used for 

synthetic data generation for Case Study 3. The model (223 differential equations and 6256 

algebraic equations) represents the physical phenomena occurring in real fluid bed dryers 

(Burgschweiger and Tsotsas, 2002). We use the dryer model to simulate a pharmaceutical 

process (Figure 3.3) in which the moisture content of wet granules fed to the unit is reduced by 

flowing hot air. The dryer receives a continuous feed of wet granules, with each of the six 

segments behaving as a fluidized bed that cycles through four phases: loading, drying, 

discharging and waiting. We refer to the sequence of loading, drying and discharging phases in 

a given segment as a “batch”; the waiting phase is not considered here as the segment is empty 

in that period of time. During the dryer operation, a batch is processed in each of the segments. 

In Figure 3.3, segment #2 is being loaded with wet granules, thus starting a new batch for that 

segment. When segment #2 is fully loaded, the loading of segment #3 (which was in the waiting 

phase until that moment) starts. Meanwhile, segment #4 is discharging, while segments #1, #5 

and #6 are in the drying phase. Hot air is continuously fed to the dryer, and its flow is distributed 

between the six segments through a distributor plate (not shown in Figure 3.3). Details about 

the model assumptions and equations can be found in Burgschweiger and Tsotsas (2002). We 

assume that, as in typical industrial settings, measurement sensors are available for five inputs  
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Figure 3.3. Case study 3: sketch of a six-segmented fluid bed dryer. The full 

lines represent the active streams in the current phase of the process, while 

the dashed lines are streams not currently under operation. FT, MT and TT 

represent flowrate, moisture/humidity and temperature transmitters. The air 

distributor plate is not shown. 

 

 (total flowrate, temperature and relative humidity of the inlet air; total flowrate and moisture 

of the wet granules) and six outputs (temperature in each segment). The air flows to individual 

segments are not measured. Note that, for a given batch, only one output measurement is 

available (namely, the temperature of the segment wherein the batch is being carried out). We 

simulate 100 NOC batches, corresponding to a total of about 6 h of dryer operation. The 

duration of each batch is fixed and equal to 800 s. To mimic inter-batch variability under NOC, 

all the five measured inputs are varied according to smoothed pseudo-random binary sequences 

(PRBSs) of maximum amplitude  0.5% around the set-point. Also the split ratios of the air 

among the six segments follow a smoothed PRBS pattern of maximum amplitude 1% around 

their nominal values. Thus, the air is not distributed evenly between the segments (not even 

under NOC), a situation that may arise in practice due to the distributor plate design. We 

generate data for 3 faulty batches involving disturbances in the air flow to the segments, 

something which could be caused by partial blockage of the distributor plate. All abnormal 

batches start from NOC; at t = 300 s, for a given faulty batch we introduce a step (‒5% for Fault 

#1, ‒10% for Fault #2) or a ramp (‒0.025%/s for Fault #3) decrease in the air flow to the relevant 

segment. The segment air flow changes are simulated by changing the air split ratios. For each 

fault, Figure 3.4 compares the inlet air flow to the segment to the flow variability (expressed as 

99% confidence limits) induced by the application of the smoothed PRBSs on both the total 

inlet air inflow and the split ratios. The input and output measurements are affected by white 

noise with standard deviations of 1% of the set-point for the inputs, and 0.05 °C for the outputs. 
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Figure 3.4. Case study 3: profiles of segment inlet air flow (unmeasured) for 

the three faulty batches.  

 

3.5. Results and discussion for Case Study 1 

3.5.1 Design of the hybrid monitoring model 

The 21 variables selected for inclusion in the augmented data matrix of the hybrid monitoring 

model are listed in Table 3. They comprise the 9 available field measurements and the 12 states 

estimated by the EKF using the FPM and the available measurements. No model parameters 

are included in the augmented matrix.  

The difference in the concentration measurement intervals (1 min vs. 10 min, see §3.4.1) is 

dealt with using a two time-scale EKF (Figure 3.5), which we borrow from (Scali et al., 1997). 

EKF-1 receives the frequent measurements and performs the prediction and correction steps for 

all states except 𝑐COOH,𝑖, which is predicted at open loop due to the observability conditions. 

EKF-2 receives the infrequent measurements and provides corrections for 𝑐COOH,𝑖. The 

accuracy of estimation of the unmeasured states 𝑐EG,𝑖 and 𝑐ESTER,𝑖 is improved through bias 

estimation (Liotta et al., 1997). Following the approach adopted in (Ling and Kravaris, 2016), 

to satisfy the observability conditions three biases are updated in EKF-1 (𝑏EG,1, 𝑏EG,2 and 𝑏EG,3), 

whereas the other three biases are updated in EKF-2 (𝑏ESTER,1, 𝑏ESTER,2 and 𝑏ESTER,3). 

We design the initial state variance matrices (P0, EKF-1 and P0, EKF-2) as diagonal matrices with 

zero variance for the biases, and the same variance (equal to 1E-6) for all the other states. We 

tune QEKF-1 and QEKF-2 heuristically to achieve quick and robust convergence, resulting in: 

QEKF-1 = diag(4E-6     0     0     0     1E-6     1E-8     0     0     1E-6     2.5E-9     0     0 

4E-10            0     4E-10     0     4E-10     0)                          (3.31) 
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ycOH,1,ycOH,2,ycOH,3

Corrections to cCOOH, i 
and bESTER, i for i = 1, 2, 3 

ycCOOH,1,ycCOOH,2,ycCOOH,3

PROCESS EKF-1

EKF-2

 
Figure 3.5. Architecture of the knowledge-driven block (two time-scale EKF) 

implemented for Case Study 1 (adapted from Ling and Kravaris, 2016). 

 

 

Table 3.3. Case study 1: list of variables included in the augmented data 

matrix of the hybrid monitoring model. 

Var. no. Variable name Reactor no. Symbol Units Variable type 

1 pressure  1 𝑦𝑃1    Pa Measurement  
2 hydroxyl end-groups 

concentration  

1 𝑦𝑐OH,1  mol L-1 Measurement 

3 acid end-group 

concentration  

1 𝑦𝑐COOH,1 mol L-1 Measurement 

4 pressure  2 𝑦𝑃2  Pa Measurement 

5 hydroxyl end-group 

concentration  

2 𝑦𝑐OH,2  mol L-1 Measurement 

6 acid end-group 

concentration 

2 𝑦𝑐COOH,2 mol L-1 Measurement 

7 pressure  3 𝑦𝑃3  Pa Measurement 

8 hydroxyl end-group 

concentration  

3 𝑦𝑐OH,3  mol L-1 Measurement 

9 acid end-group 

concentration  

3 𝑦𝑐COOH,3 mol L-1 Measurement 

10 ethylene glycol 

concentration  

1 𝑐EG,1  mol L-1 Estimated state 

11 hydroxyl end-group 

concentration  

1 𝑐OH,1  mol L-1 Estimated state/Reconstructed 

measurement 

12 acid end-group 

concentration  

1 𝑐COOH,1  mol L-1 Estimated state/Reconstructed 

measurement 

13 ester end-group 

concentration  

1 𝑐ESTER,1 mol L-1 Estimated state 

14 ethylene glycol 

concentration  

2 𝑐EG,2  mol L-1 Estimated state 

15 hydroxyl end-group 

concentration  

2 𝑐OH,2  mol L-1 Estimated state/Reconstructed 

measurement 

16 acid end-group 

concentration  

2 𝑐COOH,2  mol L-1 Estimated state/Reconstructed 

measurement 

17 ester end-group 

concentration  

2 𝑐ESTER,2  mol L-1 Estimated state 

18 ethylene glycol 

concentration  

3 𝑐EG,3  mol L-1 Estimated state 

19 hydroxyl end-group 

concentration  

3 𝑐OH,3  mol L-1 Estimated state/Reconstructed 

measurement 

20 acid end-group 

concentration  

3 𝑐COOH,3  mol L-1 Estimated state/Reconstructed 

measurement 

21 ester end-group 

concentration  

3 𝑐ESTER,3 mol L-1 Estimated state 
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QEKF-2 = diag(0     0     2.5E-9     0     0     0     2.5E-9     0     0     0    2.5E-9     0     0  

3.6E-7      0     3.6E-7     0     3.6E-7)                          (3.32)  

In Equations 3.31 and 3.32, the first twelve elements along the diagonal correspond to the 

estimated states (variable nos. 10-21 in Table 3), whereas the last six refer to the bias vector 

[𝑏EG,1   𝑏ESTER,1  𝑏EG,2   𝑏ESTER,2   𝑏EG,3   𝑏ESTER,3]. Finally, REKF-1 and REKF-2 are built 

according to Equation 3.12, with 𝜎𝑦OH,𝑖= 4.9E-5 and 𝜎𝑦COOH,𝑖= 9E-8. The typical estimation 

performance during a transient is shown in Figure 3.6 for one unmeasured state in the second 

reactor. The estimation accuracy is satisfactory. 

 

 
Figure 3.6.  Case study 1: EKF estimation performance for one unmeasurable 

state in the second reactor during a transient. 

 

 

We design a DPCA model on the 21 variables listed in Table 3 under NOC, sampling all signals 

every 10 min. The number L of lagged measurements to be included in Zdyn (Equation 3.20) is 

heuristically derived from the overall residence time in the three reactors (3 × 60 = 180 min), 

resulting in L = 18. The resulting size of Zdyn is [512×399]. Eight PCs are used (this number 

being found by cross-validation), explaining 54% of data variability on T2, with the remaining 

46% being explained by SPE. The resulting control charts under NOC are shown in Figure 3.7: 

no false alarms are issued. 

3.5.2 Fault detection and diagnosis 

We compare the monitoring performances of the hybrid model to those of a standard DD 

monitoring model and of a standard KD monitoring approach. The standalone DD model uses 

only the 9 measurements available from the process and is based on a DPCA model designed 

with the same characteristics of the hybrid model (18 lagged measurements spaced by 10 min). 

Cross-validation suggests using 8 PCs for this model, too. Monitoring through a standalone KD 

model is carried out using an EKF and χ2 tests on ϵ(𝑡𝑘) and ϵ(𝑡𝑘, 𝑆) (Deshpande et al., 2009).  
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(a) 

 
 (b) 

Figure 3.7. Case study 1: control charts under normal operating conditions: 

(a) SPE chart, (b) Hotelling T2 chart, (c) contributions to SPE. The dashed 

lines represent the 99% confidence limits. 

 

The confirmation test is implemented with the same moving window of the hybrid and DD 

models; no state augmentation is used. 

For each fault scenario, the fault detection time is reported in Table 3.4 as an average across the 

relevant fault realizations. Whereas the detection performances for Fault #4 result the same for 

the hybrid and the DD models, the hybrid model detects Fault #1 and Fault #3 much more 

promptly than the DD one (170 and 320 min earlier, respectively). Additionally, Fault #2 (a 

subtle one) goes undetected by the DD model, whereas it is correctly detected by the hybrid 

model. The KD method leads to the worst detection performance, as it is severely compromised 

by the process-model mismatch. Fault #2 is not detected, and the average detection times for 

the other fault scenarios are greater than those of the hybrid and DD models (changing the 

confirmation test window size does not lead to any substantial improvement). For this reason, 

the KD model will not be investigated further for this case study. Incidentally, if the process is 

monitored by univariate control charts on measurements or estimated states, unsatisfactory 

detection performances for all fault scenarios are obtained (results are expected and are not 

reported for conciseness). 

The reason why the hybrid model performs better than the DD model in fault detection can be 

explained as follows. Thanks to the presence of the KD block (Figure 3.1), the hybrid model 

embeds more information about the inner working of the process, namely on how the measured 

variables and the states are expected to co-vary under NOC. Hence, mutual deviations of 

measured variables and states from the relevant reference trajectories (such as those occurring 

after the onset of a fault) can be detected effectively. For example, Fault #3 starts impacting on 

the (estimated) states earlier than it does on the measurements, as can be seen from Figure 3.8 

for the representative profiles of the ethylene glycol concentration (an estimated state in the 

second reactor) and of the hydroxyl end-group concentration (a measured output in the same 
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Table 3.4 Case study 1: fault detection time using the hybrid monitoring model, 

the data-driven monitoring model and the knowledge-driven monitoring model. 

The detection time runs from the fault onset, and the reported values are averaged 

across the 10 realizations of the relevant fault. For the hybrid and data-driven 

models, the monitoring statistics alarming the fault is also indicated. 

Fault number and type 

Primarily affected 

variable or 

parameter  

Hybrid model 

detection time 

(min) 

Data-driven model 

detection time (min) 

Knowledge-driven 

model detection time 

(min) 

#1: ester feed concentration 

decrease 
𝑐ESTER,0 550 (SPE) 720 (T2) 880  

#2: minor agitation fault ℎ2 590 (SPE) (undetected) (undetected) 

#3: major agitation fault ℎ2 380 (SPE) 700 (SPE) 930 

#4: pressure increase 𝑃2 40 (SPE) 40 (SPE) 890 

 

 

 
Figure 3.8. Case study 1: time profiles of the ethylene glycol concentration (estimated 

state) and of the ethylene glycol concentration (measured variable) before and after 

the onset of Fault #3 (time = 300 min). The triangles indicate the detection instant of 

the hybrid model and of the data-driven model. 

reactor). This piece of information is captured by the DD block, and this allows anticipating the 

fault detection. On the other hand, if the fault impacts on a measured variable directly, rather 

than through (or after) the change in one or more states (as occurs for reactor 2 pressure in Fault 

#4), it is unlikely that the information provided by the KD block to the hybrid model can lead 

to a significant improvement in the detection performance. 

Contribution plots of the hybrid and of the DD models at the first out-of-control signal are used 

for fault diagnosis. For Fault #1, Figure 3.9a shows that the hybrid monitoring model points to 

the concentration of ester in the first reactor (variable no. 13 in Table 3.3, an estimated state) as 

most related to the deviation from the NOC, which would straightforwardly suggest an 

abnormal feed concentration change as a possible root-cause of the fault. On the other hand, the 

information provided by the DD monitoring model for fault diagnosis is more ambiguous: 

Figure 3.10a misleadingly draws the attention to the concentration of acid end-groups in the 

third reactor (variable no. 9), a measurement that is not related to the root-cause of the fault 
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directly. In ~50% of the realizations of this fault, the DD model provides T2 contributions 

outside the control limits for acid end-groups also in the first and in the second reactors. Indeed, 

due to the reduced ester concentration in the reactors caused by the fault, also the acid end-

group concentrations are expected to decrease because of the ester degradation kinetics 

(Equation 3.28), but this is only a secondary (slower) effect. With respect to Faults #2 and #3, 

the hybrid model (Figure 3.9b and 3.9c) clearly identifies an abnormal ethylene glycol 

concentration in the second reactor (variable no. 14, an estimated state) as the variable most 

directly related to the fault, thus correctly pointing the attention to a possibly abnormal mass 

transfer of EG in that reactor. On the other hand, as already mentioned, Fault #2 is not detected 

by the DD monitoring model because it is too small in magnitude, whereas for Fault #3 the DD 

model points to measured variable no. 5, i.e. to the hydroxyl end-group concentration in reactor 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.9. Case study 1: representative contribution plots for the hybrid monitoring 

model at the first out-of-control observation for (a) Fault #1, (b) Fault #2, (c) Fault 

#3, and (d) Fault #4. Variables are numbered as in Table 3. In all plots, the 

contributions of field measurements are in green, while those of 

estimated/reconstructed variables are in red with diagonal lines. Control limits at 

99% confidence are shown as dashed lines. 
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2 (Figure 3.10b). In fact, accumulation of ethylene glycol due to the fault hinders the 

polycondensation reaction (Equation 3.27), leading to an increase in 𝑦𝑐OH,2. However, 

attributing a reduction in the polycondensation rate of reaction to a high ethylene glycol 

concentration may not be straightforward. 

Finally, Fault #4 can be diagnosed very easily both by the hybrid model (Figure 3.d) and by the 

DD model (Figure 3.c), because this fault impacts on reactor 2 pressure (measured variable no. 

4) directly. Note that very accurate state estimation is not required for the hybrid monitoring 

system to perform well. In fact, the main task of the KD block in Figure 3.1 is only to provide 

information on how the estimated states (together with reconstructed measurements  

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.10. Case study 1: representative contribution plots for the purely data-

driven model at the first out-of-control observation for (a) Fault #1, (b)Fault #3, 

and (c) Fault #4. Variables are numbered as is in Table 3. Control limits at 99% 

confidence are shown as dashed lines. 

and possibly adapted parameters) co-vary during the process operation, regardless of the fact 

that the actual values of the states may be somewhat different from the actual (and unknown) 

ones. To clarify this point, we consider a stronger process/model mismatch by altering the FPM 

dynamics through summation of a constant term (equal to ‒2E-3) to the right-hand side of 

Equation 3.24, even though the process dynamics remains the same. Additionally, we degrade 

the filter performance by tuning QEKF-2 as: 

QEKF-2 = diag(0     0     2.5E-9     0     0     0     2.5E-9     0     0     0     2.5E-9     0  

   0     4E-8     0     4E-8     0     4E-8) .                          (3.33) 

This results in unsatisfactory state estimation, as shown in Figure 3.11 for the same state and 

transient considered in Figure 3.6. Nevertheless, the fault detection and fault diagnosis 

performance of the hybrid monitoring model are almost the same as those reported in Table 3.4 

and shown in Figure 3.9 (results are not reported for conciseness).  
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Figure 3.11. Case study 1: EKF estimation performance on the unmeasurable 

state and under the same dynamic conditions of Figure 3.4, in the presence of 

significant process-model mismatch and bad filter tuning. 

3.6. Results and discussion for Case Study 2 

3.6.1 Design of the hybrid monitoring model 

The augmented data matrix of the hybrid monitoring model includes the 15 variables listed in 

Table 3.4. To improve the monitoring performance, in addition to state estimation the EKF 

performs online adaptation of three FPM parameters: μ𝑋,max (maximum growth parameter), 𝐾𝑙𝑎 

(mass transfer coefficient) and 𝑠𝐹 (substrate concentration in the feed). We select these 

parameters because they can provide useful insights for typical potential faults that may affect 

the reactor, namely changes in kinetics, mass transfer, or feed composition. 

The modeled measurements (𝑦O2, 𝑦𝑉, 𝑦CO2) and measured input (yF) are supplied to the EKF 

every 3 min. The P0, Q and R matrices used are designed using the same criteria as in Case 

study #1, resulting in (states and measurements are ordered as is in Table 3.4):  

 

P0 = diag(1.00E-4     1.00E-4     1.00E-4     1.00E-4     1.00E-4     1.00E-4      

2.25E-4      1.00 0.00)                                    (3.34) 

Q = diag(2.50E-8     1.00E-9     9.00E-7      2.50E-8     9.00E-5     2.50E-8 

6.50E-8      2.50E-3 8.00E-2)                 (3.35) 

R = diag(6.25E-06 1.00E-04 3.60E-03)                 (3.36) 

 

The resulting state estimation performance is satisfactory (Figure 3.12). Nevertheless, as 

illustrated in Figure 3.13, the adapted parameters drift away from their “true” values even under 

NOC, because the EKF adjusts the model parameters in the attempt to compensate for the 

detected process-model mismatch. This does not represent an issue for the hybrid system,  
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Table 3.4 Case study 2: list of variables included in the augmented data matrix 

of the hybrid monitoring model. 

# Symbol Variable Unit Type of variable  

1 𝑦𝑝𝐻  pH -  Measurement  

2 𝑦𝑇  temperature K Measurement  

3 𝑦O2  oxygen concentration gO2  L-1 Measurement  

4 𝑦𝑉  volume L Measurement  

5 𝑦CO2  CO2 concentration molCO2L
-1 Measurement  

6 𝑦𝐹  feed flow rate L h-1 Measurement  

7 X biomass concentration gX L-1 Estimated state  

8 P penicillin concentration gP L-1 Estimated state  

9 S substrate concentration gS L-1 Estimated state  

10 𝑐O2  oxygen concentration gO2  L-1 Estimated state/Reconstructed measurement  

11 V volume L Estimated state/Reconstructed measurement  

12 𝑐CO2  CO2 concentration molCO2L
-1 Estimated state/Reconstructed measurement  

13 μ𝑋,max  maximum growth parameter h-1 Adapted parameter  

14 𝐾𝑙𝑎  mass transfer coefficient h-1 Adapted parameter  

15 𝑠𝐹  feed concentration gS L-1 Adapted parameter  

 

 

 

 
(a)                                                                                               (b) 

 
(c) 

Figure 3.12. Case study 2: EKF state estimation performance for three unmeasured 

states during a representative NOC batch: (a) substrate concentration, (b) biomass 

concentration, and (c) penicillin concentration 
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(a)                                                                                                  (b) 

  
     (c) 

Figure 3.13. Case study 2: EKF parameter adaptation performance during a 

representative NOC batch of (a) the maximum specific biomass growth rate 

𝜇𝑋,𝑚𝑎𝑥 , (b) the mass transfer coefficient Kla, and (c) the substrate feed 

concentration sF. 

 

because it is the pattern of change of the adjusted parameter profiles together with the profiles 

of all other measured and estimated variables that matters for process monitoring, regardless of 

the fact that each single parameter is estimated accurately or not. Incidentally, note that, in the 

presence of significant structural mismatch, a comparison between the “process” and the 

“model” parameters might even not be entirely appropriate, because the meaning of a parameter 

within the “process” may be different from the one the same parameter has in the “model”. This 

is especially true when a model parameter (e.g., the maximum growth rate kinetic parameter; 

see Appendix A) is used to compactly represent a set of physical mechanisms that are expected 

to occur in the process, but are not described accurately by the model equations. 

We design an MW-PCA model for the DD block of the hybrid monitoring system. Considering 

that the total batch duration is 300 h, measurements are retained every 1 h. After exploring 

several windows widths, we select W = 50 h as the width leading to satisfactory monitoring 

performances. The size of 𝐙𝑀𝑊 is [35×15] after 1 h, and grows of 15 columns per hour until 50 

h. Then, a fully developed 𝐙𝑀𝑊 of size [35×750] is used until the end of the batch. Three PCs 
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are used (found by cross-validation), with an explained variance profile of ~45% in the 

production phase, after reaching a minimum of ~25% at the switch between the growth and the 

production phases, due to the high variability of the switching instant across the NOC batches. 

The loadings of the first two PCs over one window width during the production phase (Figure1) 

allow assessing the auto- and cross-correlation of the variables included in the augmented data 

matrix. MW-PCA provides a correlation model in which estimated states, adapted parameters 

and measurements (including those not accounted for by the FPM) are all intimately linked. For 

example, from the analysis of the loadings on the first PC (Figure 3.14a), it emerges that the 

reactor temperature (variable no.2, which is measured but not modeled by the FPM) is not only 

strongly auto-correlated, but also cross-correlated to several variables modeled by the FPM, 

such as for example the reactor volume (variable no.11). As will be shown in the next section, 

exploitation of the cross-correlation between states, measurements and parameters enhances the 

monitoring capability of the hybrid model. 

 

 
(a) 

 
(b) 

Figure 3.14. Case study 2: loadings for (a) the first PC and (b) the second PC of the 

MW-PCA model over one window width during the production phase. The variables 

are numbered as in Table 3.4. 

3.6.2 Fault detection and diagnosis 

We compare the fault detection and diagnosis performances of the hybrid monitoring model to 

those of a standalone DD monitoring model that uses only the 6 measurements available from 

the process (3.4.2 and first six entries in Table 3.5). We use a window width of 50 h also for 

the DD model, and cross-validation suggests retaining 3 PCs. 

We also implement the KD fault detection and confirmation tests on the innovation sequence 

of the EKF without parameter estimation for comparison. However, as shown in Figure 3.15, 

this approach performs poorly: due to process-model mismatch, false alarms are issued under 

NOC. Consequently, we build a benchmark KD approach by monitoring drifts of the adjusted  
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(a)                                                                                (b) 

Figure 3.15. Case study 2: control charts under normal operating conditions 

for the knowledge-driven approach. (a) χ2 test on the single-point innovation 

(fault detection), (b) χ2 test on the innovations on a 50 h moving window (fault 

confirmation). The dashed lines represent the 99% confidence limits. 

 

parameters with respect to their nominal values (Ku et al., 1994). Typical profiles of the 

adjusted parameters under faulty conditions are shown in Figures 3.16-3.18. 

For each fault scenario, the fault detection time is reported in Table 3.6 as an average across the 

relevant fault realizations for the three monitoring approaches. The KD monitoring approach 

struggles with the high variability of the adjusted parameter profiles under NOC, which masks 

faulty parametric drifts. Only Fault #1 and Fault #2 are correctly detected and diagnosed (see 

also Figure 3.17a and Figure 3.17b), although much later than with the hybrid model. On the 

other hand, neither Fault #3 nor Fault #4 can be detected. This approach also suffers from an 

additional limitation. Due to the fact that EKF adjusts the model parameters to compensate for  

the process-model mismatch, the effect of a fault gets smeared into simultaneous variations of 

all parameters. This limits the possibility to monitor each single parameter in order to detect 

and isolate the faults. For example, looking at the very fluctuating substrate feed concentration 

estimation during certain realizations of Fault #3 (Figure 3.18c), one might wrongly ascribe the 

faulty condition to this parameter. 
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(a)                                                                                                       (b) 

 
(c)                                                                                                     (d) 

Figure 3.16. Case study 2: EKF parameter adaptation performance for the 

maximum specific biomass growth rate 𝜇𝑋,𝑚𝑎𝑥  during a representative batch 

for (a) Fault #1, (b) Fault #2, (c) Fault #3, and (d) Fault #4. Adapted = value 

of the parameter estimated by the EKF. Actual = actual value of the parameter 

in the plant. 

 

 

 

 

Table 3.5. Case study 2: fault detection time using the hybrid monitoring 

model, the data-driven monitoring model and the knowledge-driven 

monitoring model. The detection time runs from the fault onset, and the 

reported values are averaged across the 10 realizations of the relevant fault. 

For the hybrid and data-driven models, the monitoring statistics alarming the 

fault is also indicated. 

Fault number type 

Primarily 

affected variable 

or parameter 

Hybrid model 

detection time 

(h) 

Data-driven model 

detection time (h) 

Knowledge-driven 

model detection 

time (h) 

#1: aeration rate decrease 𝐾𝑙𝑎 45 (SPE) 110 (SPE) 70 

#2: substrate feed concentration decrease 𝑠𝐹 35 (SPE) 70 (SPE) 62 

#3: growth rate decrease μ𝑋,max 14 (SPE) 28 (SPE) (undetected) 

#4: cooling water temperature rise 𝑇 35 (SPE) 35 (SPE) (undetected) 
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(a)                                                                                                       (b) 

 
(c)                                                                                                     (d) 

Figure 3.17 Case study 2: EKF parameter adaptation performance for the 

mass transfer coefficient Kla during a representative batch for (a) Fault #1, 

(b) Fault #2, (c) Fault #3, and (d) Fault #4. Adapted = value of the parameter 

estimated by the EKF. Actual = actual value of the parameter in the plant. 

 

On the other hand, all fault scenarios are detected with hybrid and DD monitoring models for 

all fault realizations. Still, the hybrid monitoring model alarms the faults much earlier than the  

DD one for all faults except Fault #4. For this fault, the reactor temperature (a measured 

variable) is affected by the fault at the same time as the states, and therefore the information the 

KD block passes to the DD block does not contribute to improve the detection performance. 

The DD monitoring model does not allow to diagnose the faults unambiguously, because 

different faults generate qualitatively similar contribution plots. For example, both Fault #1 

(Figure 3.19a) and Fault #3 (Figure 3.19c) point to the oxygen concentration (variable no.3), 

which is indeed a measurement strongly affected by both faults, but is not useful to clearly 

discriminate the root-causes of the faults. Reactor temperature (measured variable no.2) is 

pinpointed as the suspected variable for both Fault #2 (Figure 3.19b) and Fault #4 (Figure 

3.19d), but this leaves the diagnosis problem open. The main difficulty with the DD monitoring 

model is that in this system there are too few measurements on which a fault can manifest. This 

implies that different faults become visible only through the same measurements, which makes 

fault diagnosis harder. On the other hand, in the hybrid monitoring system the estimated states 
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(a)                                                                                                       (b) 

 
(c)                                                                                                     (d) 

Figure 3.18. Case study 2: EKF parameter adaptation performance for the 

substrate feed concentration sF during a representative batch for (a) Fault #1, (b) 

Fault #2, (c) Fault #3, and (d) Fault #4. Adapted = value of the parameter 

estimated by the EKF. Actual = actual value of the parameter in the plant. 

 

and parameters provide a set of additional “virtual measurements” that can capture a qualitative 

signature of the fault. Not only does this allow to anticipate fault detection, but it can also point 

to the root-cause of the fault in a more straightforward way, because ‒ by design ‒ the virtual 

measurements represent the underlying mechanisms through which the fault propagates into 

the system. In fact, the contribution plots derived from the hybrid model (3.20) provide 

information that is very helpful for fault diagnosis. The aeration problem (Fault #1, 3.20a) is 

marked by anomalously small contributions for the mass transfer coefficient (variable no. 14) 

and the oxygen concentration (variable no. 10), whereas in Fault #2 the abnormal feed 

concentration is clearly spotted (Figure 3.4b, variable no.15). For the biomass growth rate 

decrease problem (Fault #3; 4c), the most significant contributions refer to variables related to 

the biomass reaction, including the online adapted kinetic parameter (variable no. 13); from this 

piece of information, a biomass growth reaction problem can be diagnosed in a relatively easy 

way. The 3.20d), but temperature is a measurement where an abnormal reactor cooling can 

leave a  footprint directly. Hence, the hybrid model contribution plot does no better than the 

DD model one. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.19. Case study 2: representative contribution plots for the purely 

data-driven model at the first out-of-control observation for (a) Fault #1, (b) 

Fault #2, (c) Fault #3, and (d) Fault #4. Variables are numbered as is in Table 

33.5. Control limits at 99% confidence are shown as dashed lines. 

3.7. Results and discussion for Case Study 3 

3.7.1 Design of the hybrid monitoring model 

The hybrid system of Figure 3.1 is implemented to monitor the batches operated in the dryer 

segments. The measured inputs u and outputs y for a batch are summarized in Table 3.7 

(Variables #1-6).  

The EKF available within the gPROMS platform is employed as the state estimator in the 

knowledge-driven block. Process-model mismatch arises from the fact that the EKF is not 

aware of the disturbances in the split ratios. The update step of the EKF is performed every 5 

s. To improve the EKF robustness, we filter its inputs with a moving average approach. The 

state estimator is initialized with the true initial states x0 under NOC and with a null P0 matrix, 
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because at the beginning of the process the dryer is empty and there is no uncertainty on this 

condition. The only non-null entries of the Q matrix are the diagonal elements corresponding 

to the vapor phase enthalpy of each segment, which are set equal to 1. R is a diagonal matrix, 

whose ith element is the variance of the sensor noise for measurement 𝑦𝑖.  

We apply the EKF to each of the 100 NOC batches to reconstruct the differential states and the 

algebraic variables. We arrange dataset Z as in Equation 3.22, thus augmenting the set of 5 

input measurements u and 1 output measurement y (Table 3.7, Variables #1-6) with 9 estimated  

 

 

 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

Figure 3.20. Case study 1: representative contribution plots for the hybrid monitoring 

model at the first out-of-control observation for (a) Fault #1, (b) Fault #2, (c) Fault 

#3, and (d) Fault #4. Variables are numbered as in Table 33.5. In all plots, the 

contributions of field measurements are in green, while those of 

estimated/reconstructed variables are in red with diagonal lines. Control limits at 

99% confidence are shown as dashed lines. 
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Table 3.7. List of variables included in the augmented data matrix of the 

hybrid monitoring model 

# Variable Unit Variable type 

1 Total flowrate of inlet air to the dryer kg/h Input (u) 

2 Relative humidity of inlet air to the dryer % Input (u) 

3 Temperature of inlet air to the dryer °C Input (u) 

4 Total flowrate of inlet granules kg/h Input (u) 

5 Moisture of inlet granules kg/kg Input (u) 

6 Segment temperature °C Output (y) 

7 Heat loss rate J/s Estimated ( x ) 

8 Mass of air in the segment kg Estimated ( x ) 

9 Mass of granules in the segment kg Estimated ( x ) 

10 Temperature of air in the segment °C Estimated ( x ) 

11 Temperature of granules in the segment °C Estimated ( x ) 

12 Drying rate kg/s Estimated ( x ) 

13 Moisture of granules in the segment kg/kg Estimated ( x ) 

14 Absolute humidity of air in the segment g/kg Estimated ( x ) 

15 Relative humidity of air in the segment % Estimated ( x ) 

variables 𝐱̃ (Table 3.7, Variables #7-15) selected to provide additional information on the 

unmeasured phenomena occurring in the dryer. 

We divide each batch of 800 s into time intervals of 10 s, and construct a separate dynamic 

PCA model at each of the corresponding 81 time points. By trial and error, we select a number 

of lags l = 4 (cfr. Equation 3.21), resulting in a [100×75] 𝐙𝑑𝑦𝑛 (tk) matrix for each time point. 

We retain 10 PCs in each of the 81 PCA models, with the explained variance ranging from 75% 

to 85%.  

The hybrid monitoring system can be implemented for real-time applications as the EKF, i.e., 

the most demanding component of the framework, requires a computational time smaller than 

the sampling time. 

3.7.2 Fault detection and diagnosis 

The hybrid model proves capable of detecting all faults (Figure 3.21), with the first out-of-

control signal always coming from the T2 chart. The larger step decrease (‒10%, Fault #2) in 

the air flow to a segment is detected earlier than the ramp fault (Fault #3). The hardest fault to 

detect is the smaller step (‒5%, Fault #1). The SPE does increase sharply at the beginning of 

the discharging phase (t = 750 s), but the faults are already detected well before that on the basis 

of the T2 criterion. 

Contributions to T2 shortly after fault detection are similar for all faults, and Figure 3.22 shows 

an example for Fault #2. Note that most of the out-of-limit contributions to T2 result not from 

measurements (green bars), but from estimated values (red bars). Figure 3.22 shows that, for 

the batch under investigation, the segment temperature is smaller than normal, both for the raw 

measurement (Variable #6) and for its value as reconstructed by the EKF (Variable #10). In 

addition, the drying rate (Variable #12) is smaller than normal. Taken together, these two results 

suggest than the fault is probably due to a reduced energy exchange (low temperature) in the 
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segment, which is causing a reduction of the drying rate. Since the source of energy for the 

process is the total hot air feed, one may diagnose the fault as a problem in the air feed received 

by the segment. This diagnosis is corroborated by the fact that the relative air humidity in the 

segment (Variable #15) is abnormally high despite the lower drying rate (Variable #12). This 

indicates that the flux of water being vaporized is picked up by a lower air flow.  

To compare the monitoring performance of the proposed hybrid system to the one of a standard 

PCA approach, we also performed a PCA on a reduced dataset including sensor measurements 

only (Variables #1-6). Results are not shown for conciseness, but they nevertheless deserve 

discussion. Though the faults are still detected (with minor delay), the contributions can only 

point to the measured temperature in the segment (Variable #6) as responsible for the fault. 

Without the additional information generated by the EKF, diagnosing the fault is much harder 

and further investigation would therefore be required. Note that the multivariate analysis 

introduced by the PCA is essential for fault detection. Figure 3.23 shows univariate charts for 

three of the five variables exhibiting out-of-control contributions in Figure 3.22; the 

corresponding charts for the other two variables are very similar. We note that Fault #1 does 

not result in significant deviations from the confidence limits established under NOC. Faults #2 

and #3 do result in some deviations, but their magnitude is very small: the strongest deviations, 

those in the measured temperature (Variable #6), are only ~0.2°C for Fault #2 and ~0.5°C for 

Fault #3. 

 

 

 

(a)                                                                                   (b) 

Figure 3.21. Fault detection: (a) SPE monitoring chart and (b) T2 monitoring 

chart for the three fault scenarios. 
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Figure 3.22. Contributions to T2 few instants after fault detection for Fault 

#2. Variables are numbered as in Table 3.7. Green bars refer to measured 

variables, red bars to estimated variables. Confidence limits at 99% for NOC 

are shown as black dashed lines. 

 

 

 

 

 

 
Figure 3.23 Mean-centered univariate monitoring charts of selected variables 

displaying high contributions in Fig. 3.22. Variables are numbered as in Table 

3.7. 
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3.8. Conclusions 

In this study, we proposed a novel framework for multivariate process monitoring based on a 

hybrid modeling approach. Real-time deterministic information about the process is first 

obtained in a knowledge-driven block from a state estimator in the form of estimated states, 

reconstructed measurements, and possibly adapted parameters. The information is then passed 

to a data-driven block, where it is exploited, in conjunction with the available field 

measurements, by a latent-variable model that accomplishes multivariate fault detection and 

diagnosis. The design of the two blocks is largely independent, which makes implementation 

of the proposed methodology easier. The proposed hybrid monitoring framework perfectly 

responds to the request of the Quality-by-Design initiative to factor the available knowledge on 

the physics of the process into the control strategy. 

We tested the hybrid methodology on three simulated case studies, namely two continuous 

process and a fed-batch one. It typically allowed for earlier fault detection than standard data-

driven and knowledge-driven approaches taken in isolation, even when the state estimator did 

not perform entirely satisfactorily. In addition, using the hybrid approach significantly 

facilitated fault diagnosis. 

The very satisfactory fault detection performance of the hybrid approach derives from the fact 

that the estimated states (and possibly the adapted parameters) provide a set of additional 

variables a fault can leave a footprint on. In most cases, these variables respond to the fault 

earlier than the measurements, causing an anticipated shift or break of the normal correlation 

structure of the data, which can be promptly captured and alarmed by the latent-variable model. 

With respect to fault diagnosis, if a fault manifests itself as an abnormal change in one or more 

states (or parameters), diagnosing that fault with the hybrid model is generally easier, because 

the states and parameters straightforwardly point to the inner mechanism that is being impacted 

by the fault. This enables one to disclose the root-cause of the fault with less ambiguity than 

can be done using field measurements alone. 

The successful performance of the hybrid monitoring system is due to the inclusion of the 

estimated states (and possibly of the adapted parameters) within a multivariate framework 

together with the measurements, rather than to the mere implementation of a knowledge-driven 

component. In fact, traditional knowledge-driven approaches (like innovation sequence 

monitoring or parametric drift detection) lack the well-known advantages of process monitoring 

by latent-variable modeling, and they were found not to be able to cope with even mild process-

model mismatch.  

As for all data-driven methodologies, a word of caution must be mentioned for the hybrid 

approach in relation to the region wherein the process is run. In fact, the monitoring 

performance may be compromised if the process is operated away from the region over which 

the data-driven component was calibrated. 
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Chapter 4 

Intensified continuous filtration-drying of 

pharmaceuticals: mathematical modeling 

and design space description* 

This Chapter introduces a mathematical model of a novel integrated filter-dryer carousel system, 

designed for continuously filtering, washing and drying a slurry stream into a crystals cake. For a set 

of feed conditions and control inputs, the model allows tracking the solvents and impurities content 

in the cake (critical quality attributes) throughout the whole process. For the isolation of paracetamol 

from a crystallization slurry, the filtration and drying model parameters are identified through 

experiments, respectively, on a Nutsche filter and on a thermogravimetric analyzer. The calibrated 

model is then used for operation design for the isolation of paracetamol from a multi-component 

slurry, containing a non-volatile impurity, too. The probabilistic design space and the maximum 

throughput are identified. 

4.1 Introduction 

Over the past decade, industry and academia have dedicated considerable effort in aiding the shift of 

pharmaceutical manufacturing from the traditional batch production towards a more continuous 

operating mode (Burcham et al., 2018; Ierapetritou et al., 2016). Continuous manufacturing allows 

for greater product consistency and easier scale-up compared to batch processing, at typically lower 

costs and production times (Fisher et al., 2016). This change of paradigm has also been promoted by 

regulatory agencies (Lee et al., 2015) within the Quality-by-Design (QbD) initiative (Food & Drug 

Administration, 2004), aimed at modernizing pharmaceutical manufacturing. Even though many 

pharmaceutical unit operations are already continuous, few examples of end-to-end continuous 

pharmaceutical processes are documented in the literature (Domokos et al., 2020; Mascia et al., 2013). 

It is accepted that active pharmaceutical ingredient (API) purification (also known as isolation), 

namely, the sequence of API crystallization, filtration, washing and drying operations before of the 
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downstream section, is a main bottleneck for the transition to end-to-end continuous processing 

(Rantanen and Khinast, 2015). API purification stages are of fundamental importance, since 

impurities herein retained within the crystals will inevitably be included in the final drug product, 

subject to tight impurity content requirements (International Council for Harmonisation, 2016). 

Significant progress has recently been made in the digital design and control of continuous 

crystallization systems, including experimental validation and implementation (Nagy et al., 2013; 

Wood et al., 2019b). Nonetheless, significant advancement is still needed in the subsequent 

solid/liquid separation, namely in continuous filtration, washing and drying at a scale suitable for API 

manufacturing (Burcham et al., 2018; McWilliams et al., 2018).   

Traditional solid/liquid separation design, thoroughly reviewed by Tarleton and Wakeman (2006), is 

based on empirical knowledge and shortcut approaches. These methods do not rely on detailed 

process understanding, recommended by the QbD guidelines, nor they consider the strong 

interactions existing among design and operating parameters of the different purification unit 

operations. Examples of these coupled dynamics are (but are not limited to) the impact of the size 

and shape distribution of the crystals produced in the crystallizer on the following steps (Acevedo et 

al., 2016) and the effect of the washing operating conditions on drying (Ottoboni et al., 2020b). All 

this considered, the steps of API purification should be considered together for the purposes of 

process design, optimization and control, with the support of detailed mathematical modeling. 

However, both experimental and computational studies on integrated continuous API purification are 

scarce in the literature, and little progress has been made from traditional short-cut design of the 

individual unit operations. Wibowo and coauthors (2001) use short-cut models for evaluating the 

effect of the crystal size distribution (CSD) attained during crystallization on the subsequent solid-

liquid separation, and for comparing different design alternatives. Empirical correlations and short-

cut models are also exploited by Cheng and coauthors (2010) for proposing a workflow of 

experiments and modeling for managing the impurity content in the entire train of isolation 

operations. More detailed purification models are developed by Benyahia et al. (2012) for their plant-

wide dynamic simulator of a continuous pharmaceutical process. The authors analyze the effect of 

the washing conditions on the impurity content of the final product, but results are quite limited to 

their specific application, and the interactions among the operating conditions of the purification steps 

are not examined in depth. Neither pioneering experimental works on end-to-end continuous 

pharmaceutical manufacturing (Domokos et al., 2020; Mascia et al., 2013) specifically tackle the 

current issues in drug isolation, albeit they represent important steps forward in continuous 

purification. Sen et al. (2013) provide more insights on the integration of purification unit operations 

and on their effect on downstream operation through hybrid population balances/discrete element 

method modeling. They develop an integrated flowsheet model combining continuous crystallization, 

filtration, drying and powder mixing. Subsequent work (Sen et al., 2013b) uses the model for in-silico 

optimization of one process parameter per unit operation (crystallization cooling schedule, filtration 

pressure gradient, drying gas temperature and mixer rotation speed). However, the authors do not 
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investigate important phenomena occurring in real plants (for example, cake washing or the 

dependence of cake porosity on the CSD), nor they discuss the effect of model uncertainty. A study 

relying on comprehensive mathematical modeling for knowledge-based design of continuous 

integrated API filtration, washing and drying is still missing in the literature.  

In this work, we develop a detailed mechanistic model of a novel intensified continuous filtration-

washing carousel, particularly suited for API purification (Liu et al., 2019), which has recently been 

upgraded to include a drying component. This work follows up on recent experimental and modeling 

progress that successfully integrates the carousel operation (in filtration-only mode) with upstream 

continuous crystallizers (Acevedo et al., 2016; Liu et al., 2019; Nagy et al., 2021). The carousel 

presents a main cylindrical body, composed by multiple stations. In each station, one or more 

processing steps are carried out batchwise in a cylindrical port. Every fixed time interval (cycle 

duration), the main body rotates, moving each port to the next station and enabling continuous 

operation. Traditional short-cut design is particularly challenging for the unit, as the set cycle duration 

fixes the residence time for each processing step, further increasing the aforementioned coupling 

among purification operations. Following a QbD approach, we enhance the process understanding by 

developing standalone dynamic models for the different processing steps, using multi-component 

macroscopic and microscopic mass, energy and momentum balances (Bird et al., 2006). Then, we 

assemble together the models into a carousel simulator. We account for the effect of the upstream 

crystallization by calculating the physical properties of the filtered cake based on the size and shape 

distributions of the crystals, if they are not available from experimental data. For this purpose, we 

tailor literature models for mixtures of non-spherical particles, such as porosity models (Yu et al., 

1996; Zou and Yu, 1996) and specific cake resistance models (Bourcier et al., 2016), to applications 

for API purification.  

After the modeling activities, we develop a case study on paracetamol (PCM) isolation from a multi-

component slurry (also including a non-volatile impurity). We calibrate the filtration and drying 

components of the carousel model with an experimental campaign. To have more flexibility on the 

operating conditions, we perform the experiments in separate standalone equipment for filtration 

(Nutsche filter) and drying (thermogravimetric analyzer, TGA). Then, we use the calibrated model 

for identifying the probabilistic design space (DS) with a risk-based approach (García-Muñoz et al., 

2015), using Monte Carlo simulations to account for model uncertainty. The calculated DS represents 

a step forward in the design of continuous integrated API purification, as, for every investigated 

combination of critical process parameters (CPPs) and feed conditions (critical material attributes, 

CMAs), the DS provides the probability of satisfying the target critical quality attributes (CQAs) of 

the product.  

The rest of the manuscript is organized as follows. The carousel technology is described in Section 

4.2, while the developed mathematical models are discussed in Section 4.3. Experimental results and 

model calibration are presented in Section 4.4, before of DS identification results (Section 4.5) and 

final conclusions follow. 
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4.2 The continuous carousel for integrated filtration-washing-drying 

The carousel manufacturer (Alconbury Weston Ltd, UK) produces different types of continuous 

carousels for filtration, washing and drying, varying in size and number of ports. The aim of the 

carousel is to transform the crystallization slurry into a high purity dry cake of API crystals, 

containing a concentration of residual solvents and impurities (CQAs) below a certain target.  The 

carousel setup that is the object of this study is a prototype unit (Figure 4.1) with five ports and a 

maximum hold-up of 10 mL per port, installed in the Crystallization Systems Engineering laboratory 

at Purdue University. The five ports are anchored to the main cylindrical body in correspondence of 

five processing stations, all at atmospheric pressure in the top part. The bottom of the first four stations 

is closed with a filter mesh, connected to a vacuum pump providing the pressure drop ΔP acting as 

driving force for the processes occurring in each port. The fifth station is instead open at the bottom, 

to allow for product discharge. Continuous carousel operation is made possible by alternating a 

processing cycle, during which every port operates batchwise, to a carousel rotation, which moves 

every port (and the material in it) into the following processing station. At the beginning of every 

cycle, the slurry from the crystallizer is charged into the first port, and filtration subsequently starts. 

The crystals in the slurry settle on top of the filter mesh, leading to cake formation, while the liquid 

is filtered out. At the end of filtration, the liquid is not present anymore on top of the cake, but only 

inside of the pores. If filtration finishes before the end of the cycle, deliquoring starts, consisting in 

the mechanical removal of the liquid in the porosity by the effect of ΔP. Meanwhile, cake washing is 

carried out in the second station, where a controlled volume of wash solvent is released on top of the 

cake at the beginning of every cycle. Cake washing consists in replacing the mother liquor with a 

wash solvent, aiming: i) to reduce the content of impurities, especially the non-volatile ones that 

cannot be eliminated through thermal drying and/or ii) to enhance cake drying by using a wash solvent 

more volatile than the mother liquor. After the end of cake washing, which is a fast process, cake 

deliquoring occurs for the rest of the cycle duration in the second station. Deliquoring is carried out 

also in the third station, for all the cycle duration. A final drying step with hot air is performed on the 

cake in the fourth station. Thermal drying is necessary to meet the target CQA since, due to capillarity 

and mass transfer limitations, cake deliquoring cannot remove the liquid in the cake pores below a 

certain equilibrium concentration. Non-volatile impurities are not removed through thermal drying, 

hence their content must be reduced accordingly to quality thresholds earlier in the processing stream. 

Finally, the cake is discharged from the carousel in the fifth station, through a pneumatic piston. In 

the unit in Figure 4.1, stations 1-4 do not actually operate all simultaneously, but one cycle of 

operation in stations 1-3 is alternated to a drying step in station 4, since the unit is a prototype for data 

collection. For the modeling work in this study, we refer to the operation mode of the production 

scale carousels, in which all ports operate simultaneously. 
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Figure 4.1. Schematic diagram of the continuous carousel for integrated filtration, 

washing and drying installed at Purdue University. Stations 1-4 present a filter mesh 

at the bottom, and are connected to the vacuum pump, while station 5 is open for 

cake discharge. A cleaning-in-place procedure is automatically triggered when 

significant mesh fouling is detected, allowing the cleaning solvent stored above 

Station 3 into the carousel. 

4.3 Carousel mathematical model development 

4.3.1 Carousel mathematical model overview 

For the purposes of this work, it is of interest to predict the residual solvents and impurities content 

in the discharged product for a set of given inputs, rather than simulating the processing of different 

cakes simultaneously in the carousel stations. Hence, the carousel model was developed with the 

input/output structure sketched in Figure 4.2. A part from the values of CMAs, CPPs and control 

variables (CVs) and the thermophysical properties of the pure components of the solid, liquid and gas 

phases, the model needs as inputs the physical properties of the cake (porosity ε and specific resistance 

α), which can be either measured or calculated from the size and shape distribution of the crystals in 

the feed slurry (§4.3.2). The outputs of the model are the CQAs, expressed as mass fractions of 

residual solvents and impurities in the discharged cake.  

The carousel model is obtained by assembling together standalone dynamic models of the four 

processes occurring in the carousel, namely i) slurry filtration, ii) cake deliquoring, iii) cake washing 

and iv) thermal drying. All the models are coded as MATLAB functions, except for the deliquoring 

and drying models, implemented in a C environment and interfaced with MATLAB through a C- 

MEX function to increase the computational speed. An external wrapper calls the standalone models  
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Figure 4.2. Input/output structure of the carousel mathematical model.  

 

of the processing steps with the order in which they occur in the carousel (Figure 4.3), as described 

in Section 4.2. To increase the code robustness, the simulator is implemented for being able to handle 

the limiting cases in which, due to low cake filterability or adverse combinations of CPPs, CMAs and 

CVs, filtration and/or washing last for more than one cycle duration. Furthermore, if the cake entering 

the drying step has the pores still filled with liquid above 20% of the equilibrium deliquoring content, 

the simulator performs a deliquoring step instead than a drying one, until the liquid content in the 

pores is low enough to actually allow the gas to flow in the cake. 

The models of the processing steps are all based on differential multi-component balances for the 

reference system in Figure 4.4, to track the dynamic axial profiles of cake composition through the 

process. The hypotheses common to all the models are: i) multiphase system (solid and liquid phases 

always present, gas phase present in deliquoring and drying), ii) multicomponent system (formed by 

API, one or more solvents, and possibly additional impurities), iii) absence of radial gradients of any 

variable and property (axial symmetry hypothesis), iv) homogeneity and isotropy of cake physical 

properties and of crystals size and shape distribution, and v) ideality of liquid and gas phases. All 

processes are also assumed to be isothermal, except for the thermal drying. The input/output structure 
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of the standalone models of the processing steps is summarized in Table 4.1. Beside the relevant 

physical properties, all models need as input Δ𝑃 and the initial profiles of cake saturation (S, ratio 

between volume of liquid in the pores and pores volume) and of components concentration in the 

liquid phase (𝑐𝑖,𝑙 [kg/m3] for species i), and they provide the final values of the same profiles as 

outputs, which become inputs to the following model. The only exception is filtration, for which the 

volume and crystals concentration of the slurry fed to the first station of the carousel has to be 

provided, instead of the initial cake saturation profile. Additional inputs and outputs specific to only 

certain models are listed in Table 4.1, and their meanings are discussed in detail upon presentation of 

the models in the next subsections. From the S and 𝑐𝑖,𝑙 profiles calculated by the models, the solvents 

and impurities content (CQAs) in every point of the cake can be monitored all across carousel 

processing. 

In the next subsections, we first briefly introduce the models that, using the crystals size and shape 

distribution, calculate ϵ and α, which are properties needed by all the other models. Then, we outline 

the models of the different processing steps. 

4.3.2 Cake porosity and specific resistance models 

We provide the carousel simulator with a cake properties module, for predicting ϵ and α from the 

crystals size and shape distribution of the inlet slurry. Although experimental measurements of ϵ and 

α lead to higher accuracy, the module is useful for connection with an upstream crystallizer model, 

for integrated crystallization-filtration-washing-drying simulation. The porosity model is based on 

the work of Yu et al. (1996), who proposed (and validated) a modified linear packing model for 

predicting the porosity of non-spherical particles mixtures. Given the CSD expressed as percentage 

volume distribution f(di), with respect to particle size di, the modified linear packing model assumes 

that one bin of size di is the controlling component, determining the porosity of the whole mixture. 

Under this assumption, the cake specific volume V (with ϵ =1-1/V) is given by: 

𝑉 = max { 𝑉𝑖
𝐶} ,                     (4.1) 

where 𝑉𝑖
𝐶 is the specific volume calculated assuming that the i-th component of the CSD is the 

controlling one. Arranging the bins in decreasing size order, 𝑉𝑖
𝐶 is obtained with the following set of 

equations, for every i-th component: 

𝑉𝑖
𝐶 = 𝑉𝑖 + ∑ [𝑉𝑗 − (𝑉𝑗 − 1) 𝑔(𝑟) − 𝑉𝑖] 𝑥𝑣,𝑗 + ∑ [𝑉𝑗 − 𝑉𝑗 𝑓(𝑟) − 𝑉𝑖] 𝑥𝑣,𝑗

𝑛
𝑗=𝑖+1

𝑖−1
𝑗=1               (4.2) 

𝑟 = {

𝑑𝑝,𝑖

𝑑𝑝,𝑗
 if 𝑗 < 𝑖

𝑑𝑝,𝑗

𝑑𝑝,𝑖
 if 𝑗 > 𝑖

                                  (4.3) 

𝑓(𝑟) = (1 − 𝑟)3.3 + 2.8 𝑟 (1 − 𝑟)2.7                   (4.4) 
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𝑔(𝑟) = (1 − 𝑟)2 + 0.4 𝑟 (1 − 𝑟)3.7                    (4.5) 

Table 4.1. Summary of inputs and outputs required by the models of the carousel 

processing steps. In addition to the listed inputs, the physical properties relevant to 

each model have to be provided. The symbols ti and tf respectively denote the initial 

and final time instant of a processing step. 

Processing step I/O Symbol Variable 

Filtration Inputs Δ𝑃  pressure drop 

  Vslurry slurry volume 

  cslurry slurry concentration 

  𝑐𝑖,𝑙(ti, z) initial concentration profile of liquid phase components 

 Outputs Δ𝑡𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 filtration duration 

  𝐻𝑐𝑎𝑘𝑒   cake height 

  Vfilt(t) filtrate volume dynamic profile 

  𝑆(tf, z) final cake saturation profile 

  𝑐𝑖,𝑙(tf, z) final concentration profile of liquid phase components 

Deliquoring Inputs Δ𝑃  pressure drop 

  Δ𝑡𝑑𝑒𝑙𝑖𝑞   deliquoring duration 

  𝑆(ti, z) initial cake saturation profile 

  𝑐𝑖,𝑙(tf, z) initial concentration profile of liquid phase components 

 Outputs 𝑆(tf, z) final cake saturation profile 

  𝑐𝑖,𝑙(tf, z) final concentration profile of liquid phase components 

Washing Inputs Δ𝑃  pressure drop 

  𝑐𝑖,𝑤  wash solvent composition 

  W wash ratio 

  𝑆(ti, z) initial cake saturation profile 

  𝑐𝑖,𝑙(ti, z) initial concentrations of liquid phase components 

 Outputs Δ𝑡𝑤𝑎𝑠ℎ𝑖𝑛𝑔  washing duration 

  𝑆(tf, z) final cake saturation profile 

  𝑐𝑖,𝑙(tf, z) final concentration profile of liquid phase components 

Thermal drying Inputs Δ𝑃  pressure drop 

  Δ𝑡𝑑𝑟𝑦𝑖𝑛𝑔  drying duration 

  Tdrying drying gas inlet temperature 

  𝑐𝑖,𝑔  drying gas inlet composition 

  𝑆(ti, z) initial cake saturation profile 

  𝑐𝑖,𝑙(ti, z) initial concentration profile of liquid phase components 

 Outputs 𝑆(tf, z) final cake saturation profile 

  𝑐𝑖,𝑙(tf, z) final concentration profile of liquid phase components 
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Filtration model

filtration starts in port 1

Deliquoring model

pre-deliquoring in port 1

Washing model

washing starts in port 2 

Deliquoring model
deliquoring in ports 2 and/or 3

Drying model

drying in port 4

IF Δtfiltration < Δtcycle 

(does filtration end in port 1?)

IF Δtfiltration < 2 Δtcycle

(does filtration end in port 2?)

IF Δtfiltration < 3 Δtcycle

(does filtration end in port 3?)

IF Δtfiltration < 4 Δtcycle

(does filtration end in port 4?)

IF Δtwashing < 3 Δtcycle – 
- Δtfiltration-Δtpre-deliq

(does washing end in port 2 or 3?)

IF Δtwashing < 4 Δtcycle  - Δtfiltration - 
Δtpre-deliq

(does washing end in port 4?)

THEN

THEN

THEN

THEN

THEN

THEN

ELSE

ELSE

ELSE

ELSE ELSE

ELSE

Δtpre-deliq = 0

Δtpre-deliq =
 Δtcycle - Δtfiltration

Δtdeliq = 3Δtcycle - 

Δtfiltration

Δtdrying= 4Δtcycle - 

Δtfiltration

filtration does not finish washing does not finish

Δtdrying= 4Δtcycle - 

Δtfiltration - 
Δtpre-deliq- Δtwashing

Δtdrying= Δthot

Δtdeliq = 3Δtcycle - 

Δtfiltration-Δtpre-

deliq-Δtwashing

Vslurry

cslurry

ΔP

ΔP

ΔP
W 
ci,w 

ΔP

ΔP 

ci,g

Tdrying

cake discharged

 
Figure 4.3. Structure of the carousel model, showing how the models of the 

processing steps are assembled together to mimic the operation of the physical unit. 

For conciseness, the only reported inputs are the CMAs, CPPs and CVs, to remark 

which step they directly affect. The complete inputs and outputs list is in Table 4.1. 

 

 

 

 

Figure 4.4. Reference system of the models of the carousel processing steps. In the 

most general case, solid, liquid and gas phases are all present in a differential 

volume. The components of the liquid phase can be volatile (vaporized by thermal 

drying) or not. 
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where Vi is the specific volume of a cake composed only by particles of size di, g(r) and f(r) are 

interaction functions between two components of size ratio r, xv,i is the volumetric fraction of the i-th 

component in the mixture (calculated from f(di)), and dp,i is the equivalent packing diameter of the i-

th component (calculated following Yu et al., 1996). The effect of the shape distribution on ϵ is 

accounted for by calculating Vi with the relations proposed by Zou and Yu (1996). 

We calculate α following a resistance additivity hypothesis (Bourcier et al., 2016), considering the 

contribution of every component of the particles mixture: 

α =∑ f(𝑑𝑖)180
1− ϵ

ϵ3
1

ϕ𝑖
2𝑑𝑖

2 ρ𝑠
                                                   (4.6) 

where ρ𝑠 is the solid mass density, and Φ𝑖 is the sphericity of the i-th component of the particle 

mixture, calculated as: 

Φ𝑖 =
𝜋
1
3(6 𝑘𝑉(𝑑𝑖))

2
3

𝑘𝑆(𝑑𝑖)
                       (4.7) 

in which 𝑘𝑉(𝑑𝑖) and 𝑘𝑆(𝑑𝑖) are, respectively, the surface and the volume shape factors of the crystals 

of size di. We neglect the cake compressibility, as the cakes processed in the carousel are not 

particularly subject to this phenomenon, due to small cake size and relatively low applied Δ𝑃. Suitable 

power law relations (Huggins et al., 2019) can be introduced for compressible systems. The cake 

permeability k is then defined from α as: 

𝑘 =
1

𝛼𝑚 ρ𝑠(1−ϵ)
                       (4.8) 

4.3.3 Filtration model 

At the end of filtration, the cake is fully saturated (S equal to one in every point of the cake), and the 

liquid composition is the same as in the fed slurry. The remaining outputs of the filtration model 

(Table 4.1) to be calculated are the filtration duration Δ𝑡𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛, the final cake height 𝐻𝑐𝑎𝑘𝑒 and the 

dynamic profile of filtrate Vfilt, which are obtained accordingly to the following discussion. 

The driving force for filtration Δ𝑃 is equal to the sum of the pressure drops through the cake Δ𝑃𝑐𝑎𝑘𝑒 

and of the pressure drops through the filter mesh Δ𝑃𝑓𝑖𝑙𝑡𝑒𝑟:  

Δ𝑃 = Δ𝑃𝑐𝑎𝑘𝑒(𝑡) + Δ𝑃𝑓𝑖𝑙𝑡𝑒𝑟(𝑡)                   (4.9)  

Factoring the Darcy law (Muskat and Meres, 1936) into Equation 4.9 and rearranging, the 

instantaneous filtrate flowrate is: 

𝑑𝑉𝑓𝑖𝑙𝑡

𝑑𝑡
=

𝛥𝑃

𝛼 𝜇𝑙
𝐴2

𝑉𝑠𝑙𝑢𝑟𝑟𝑦 𝑐𝑠𝑙𝑢𝑟𝑟𝑦

𝑉𝑓𝑖𝑙𝑡,𝑓𝑖𝑛𝑎𝑙
 𝑉+

𝑅𝑚𝜇𝑙
𝐴

                                       (4.10) 
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where μ
l
 is the liquid viscosity, A is the filter cross-section, Vslurry is the slurry volume loaded in the 

carousel at every cycle, cslurry is the crystals concentration in the slurry, Rm is the filter mesh resistance 

and Vfilt, final is the volume of filtrate at the end of filtration, which is calculated with a mass balance: 

Vfilt, final = Vslurry (1-
cslurry

ρs

(1+
ϵ

1+ϵ
))                  (4.11) 

The integration of Equation 4.10 assuming constant ΔP yields the quadratic law for 𝑉𝑓𝑖𝑙𝑡(t): 

𝛼 𝜇𝑙

2 𝐴2

𝑉𝑠𝑙𝑢𝑟𝑟𝑦 𝑐𝑠𝑙𝑢𝑟𝑟𝑦

𝑉𝑓𝑖𝑙𝑡,𝑓𝑖𝑛𝑎𝑙
𝑉𝑓𝑖𝑙𝑡
2 (𝑡)  +

𝑅𝑚𝜇𝑙

𝐴
𝑉𝑓𝑖𝑙𝑡(𝑡) −  𝛥𝑃 𝑡 =  0                                       (4.12) 

Imposing 𝑉𝑓𝑖𝑙𝑡 equal to 𝑉𝑓𝑖𝑙𝑡,𝑓𝑖𝑛𝑎𝑙 in Equation 4.12, Δ𝑡𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 is obtained as: 

𝛥𝑡𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝜇𝑙 𝛼 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 𝑉𝑓𝑖𝑙𝑡,𝑓𝑖𝑛𝑎𝑙 

2 𝐴2𝛥𝑃
+
𝜇𝑙𝑅𝑚𝑉𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑒,𝑓𝑖𝑛𝑎𝑙

𝐴 𝛥𝑃
                                   (4.13) 

At the end of filtration and during all the subsequent carousel processing, 𝐻cake and ΔPcake correspond 

to, respectively: 

Hcake=
Vslurry cslurry

ρs
(1-ϵ) A

                                                                          (4.14) 

𝛥𝑃𝑐𝑎𝑘𝑒(𝑡 ≥  𝛥𝑡𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛) = 𝛥𝑃 (1 −
 𝑅𝑚

α 𝐻𝑐𝑎𝑘𝑒 ρ𝑠(1 − ϵ)+𝑅𝑚
)                                               (4.15) 

4.3.4 Deliquoring model 

Differently from the filtration model, the deliquoring model has to account for the presence of a gas 

phase, flowing into the cake and replacing the liquid under the action of ΔP. Due to capillary forces, 

there is a minimum pressure threshold Pb to be applied to the cake to set in motion the liquid in the 

pores. Because of capillarity, there is also an equilibrium saturation of the cake S∞, at which 

deliquoring stops, and further cake desaturation can be carried out only through thermal drying. Pb 

and S∞ can be obtained for a system of interest with experimental measurements, or they can be 

predicted based on the cake physical properties and on ΔPcake. We calculate Pb and S∞ with literature 

equations (Wakeman, 1976) for cakes of mono-sized particles, to which we introduce an additive 

hypothesis to account for the CSD in the cake as follow: 

𝑃𝑏 = ∑ f(𝑑𝑖) 
4.6 (1− 𝜖) 𝜎

𝜖 𝑑𝑖
                              (4.16) 

𝑆∞ = ∑ f(𝑑𝑖) 0.155 (1 + 0.031 𝑁𝑐𝑎𝑝
−0.49)                                                                                     (4.17) 

where 𝜎 is the liquid surface tension and 𝑁𝑐𝑎𝑝 is the capillary number, calculated as: 
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𝑁𝑐𝑎𝑝 =
ϵ3𝑑𝑖

2(ρ𝑙 𝑔 𝐻𝑐𝑎𝑘𝑒+Δ𝑃𝑐𝑎𝑘𝑒)

(1−ϵ)2 𝐻𝑐𝑎𝑘𝑒 σ
                   (4.18) 

The local velocity of the liquid ul is given by the Darcy law for multiphase flow (Muskat and Meres, 

1936): 

ul=-
k krl

μl 
 

dPl

dz
                     (4.19) 

in which Pl is the local pressure of the liquid and krl is the liquid relative cake permeability. We 

calculate krl with the following relations (Wakeman, 1979): 

𝑘𝑟𝑙 = 𝑘 𝑆𝑅
2+3𝜆                         (4.20) 

𝑆𝑅 =
𝑆−𝑆∞

1−𝑆∞
= (

𝑃𝑏

𝑃𝑔−𝑃𝑙
)
λ

                                                                          (4.21) 

where λ is the pore size distribution parameter (usually assumed equal to 5), SR is the local reduced 

saturation and Pg is the local gas pressure. In Equation 4.19, we calculate Pl through Equation 4.21, 

assuming linear and constant gas pressure gradient during the process, with total gas pressure drop 

through the cake equal to ΔPcake (Equation 4.15). With this assumption, we neglect the initial 

deliquoring transient for a fully saturated cake, during which there is no gas at the outlet of the bed, 

to avoid solving the gas mass balance and the Darcy law for the gas phase. This initial transient is 

very quick and it has little impact on the process. 

In the academic and industrial practice, deliquoring is modeled and designed through design charts 

(Tarleton and Wakeman, 2006). However, design charts provide only the average values of cake 

saturation and liquid composition within the cake, neglecting axial gradients. Considering the axial 

gradients in the model is important not only for calculating the cake composition accurately, but also 

for monitoring regions of excessively low saturation in the cake, which might lead to cracking. For 

these reasons, in this work we develop a detailed deliquoring model based on partial differential 

equations, starting our derivation from Wakeman’s early results (Wakeman, 1979).  

Under the hypotheses stated in §4.3.1 and in absence of mass transfer between liquid and gas, the 

liquid phase mass balance reads: 

𝜕𝑆

𝜕𝑡
= −

1

𝜖

𝜕𝑢𝑙

𝜕𝑧
                     (4.22) 

We account for initial gradients in the liquid composition by including in the model the liquid phase 

species mass balances, assuming absence of species diffusion in the liquid: 

𝜕𝑐i,l 

𝜕𝑡
= −

𝑢𝑙

ϵ𝑆

𝜕𝑐i,l

𝜕𝑧
 , for  𝑖 = 1,… ,𝑁𝐿                  (4.23) 

The initial conditions are inputs of the model (Table 4.1). The boundary conditions are:  
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{
𝑆𝑅(𝑡, 𝑧 = 0) = 0, ∀𝑡 > 0
𝜕𝑐𝑖,𝑙 (𝑡,𝑧 = 0)

𝜕𝑧
= 0,   ∀𝑡 > 0 

                   (4.24) 

The model of Equations 4.16-24 presents 1+𝑁𝐿 partial differential equations (PDEs), which we semi-

discretize with a high-resolution finite volume approach (Van Leer, 1974) along z. The resulting 

ODEs are integrated with MATLAB’s ode23s solver. To increase numerical stability, we reformulate 

the model in dimensionless form, as suggested by Wakeman (1979).  

4.3.5 Washing model 

During the washing of a cake that did not undergo a pre-deliquoring step, full saturation is always 

maintained. In this situation, the dynamic profiles of ci,l are given by the following species mass 

balances: 

𝜕𝑐i,l

𝜕𝑡
= −

𝑢𝑙

ϵ

𝜕𝑐i,l

𝜕𝑧
−

𝜕

𝜕𝑧
(𝐷𝑖,𝑎𝑥,𝑙

𝜕 𝑐i,l 

𝜕𝑧
)   for 𝑖 = 1,… ,𝑁𝐿                 (4.25) 

where 𝐷𝑖,𝑎𝑥,𝑙 is the axial diffusion coefficient for species i in the liquid, and ul is calculated with 

Equation 4.19, assuming constant liquid pressure gradient with total liquid pressure drops through 

the cake equal to Δ𝑃𝑐𝑎𝑘𝑒 (Equation 4.15). For all the NL components, 𝐷𝑖,𝑎𝑥,𝑙 can be obtained from 

experimental data, or it can be calculated with (Wakeman and Tarleton, 2005): 

{
 
 

 
 𝐷𝑖,𝑎𝑥,𝑙 𝐷𝑖,𝑙⁄ =

1

√2
                                                                  𝑖𝑓 Re Sc < 1

𝐷𝑖,𝑎𝑥,𝑙 𝐷𝑖,𝑙⁄ =
1

√2
+ 55.5 (Re Sc)0.96           𝑖𝑓 Re Sc > 1 𝑎𝑛𝑑 𝐿 < 10 𝑐𝑚

𝐷𝑖,𝑎𝑥,𝑙 𝐷𝑖,𝑙⁄ =
1

√2
+ 1.75 Re Sc                    𝑖𝑓 Re Sc > 1 𝑎𝑛𝑑 𝐿 > 10 𝑐𝑚

                         (4.26) 

where 𝐷𝑖,𝑙 is the molecular diffusion coefficient of species i in the liquid and 𝑅𝑒𝑆𝑐 is the product of 

the Reynolds and of the Schmidt numbers, which we compute using the additive hypothesis to 

account for the CSD: 

𝑅𝑒𝑆𝑐 =  ∑ f(𝑑𝑖) 𝑢𝑙
𝑑𝑖

𝐷𝑖,𝑙
                   (4.27) 

The initial profiles of ci,l are inputs of the model. The boundary conditions are: 

𝑐i,l (𝑡, 𝑧 = 0) = 𝑐𝑖,𝑤, ∀𝑡 > 0, for 𝑖 = 1,… ,𝑁𝐿                (4.28) 

where 𝑐𝑖,𝑤 is the concentration of species i in the wash liquid. 

Popular short-cut methods employ pre-computed solutions of Equation 4.25 (Tarleton and Wakeman, 

2006) to calculate the average cake composition and/or the composition at the bottom of the cake. 

These washing design charts are available only for certain values of 𝐷𝑖,𝑎𝑥,𝑙, and interpolation is 

resorted to if the solution at intermediate values is needed. In this work, we calculate the whole 
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dynamic axial profiles of solvents and impurities concentrations in the liquid phase of the cake during 

washing through the analytical solution of Equations 4.25 (Lapidus and Amundson, 1952), which 

does not require any interpolation exercise. As usually done for washing, instead of time we use as 

independent variable the washing ratio W (ratio between the used volume of wash solvent and the 

volume of pores of the cake): 

ϕ𝑖(𝑊, z) =
𝑐i,l (𝑊,   𝑧)−𝑐i,l (𝑊=0,   𝑧)

𝑐𝑖,𝑤−𝑐i,l (𝑊=0,   𝑧)
= 0.5 {erfc (

𝑧/𝐻𝑐𝑎𝑘𝑒−λ𝑎𝑑𝑠𝑊

2 √λ𝑎𝑑𝑠𝑊
√
𝑢𝑙 𝐻𝑐𝑎𝑘𝑒

ϵ 𝐷𝑖,𝑎𝑥,𝑙
 ) +

exp (
𝑢𝑙 𝑧

ϵ 𝐷𝑖,𝑎𝑥,𝑙
)  erfc (

𝑧/𝐻𝑐𝑎𝑘𝑒+λ𝑎𝑑𝑠𝑊

2 √λ𝑎𝑑𝑠𝑊
√
𝑢𝑙 𝐻𝑐𝑎𝑘𝑒

ϵ 𝐷𝑖,𝑎𝑥,𝑙
)}               (4.29) 

in which λ𝑖,𝑎𝑑𝑠 accounts for sorption effects. Note that the washing duration Δtwashing is immediately 

obtained from the definition of W (input of the carousel model), using the (known) volume of cake 

pores and Equation 4.19. 

Simulating the washing of a cake that underwent pre-deliquoring requires solving additional 

equations, accounting for the coupling between cake resaturation and dispersion phenomena. A 

comprehensive model exist in literature for this process (Wakeman and Attwood, 1990), from which 

Wakeman and Tarleton (2005) derived the following relation, used in this work to compute the effect 

of pre-deliquoring on washing: 

𝑊𝑐𝑜𝑟𝑟 = 𝑊 + 1.51(1 − 𝑆𝑎𝑣𝑔) exp(−1.56 ϕ𝑖(𝑊, z = 𝐿)) −  

7.4(1 − 𝑆𝑎𝑣𝑔
2 ) exp(−1.72 ϕ𝑖(𝑊, z = 𝐿))                           (4.30) 

where 𝑊𝑐𝑜𝑟𝑟 is a corrected washing ratio, accounting for pre-deliquoring, W is the washing ratio for 

the saturated cake, Savg is the average initial saturation, and ϕ𝑖 is calculated with Equation 4.29.  

The outlined washing model neglects changes of dry cake mass and CSD due to partial dissolution 

of the crystals into the wash solvent. This simplifying assumption holds true for most applications, 

since the wash solvent flow through the cake is typically fast, and the volume of wash solvent 

employed in common industrial operation is a fraction of the volume of the cake. Dissolution during 

washing should instead be accounted for in systems where the crystals are highly soluble in the wash 

solvent, and in which large volumes of wash solvent have to be employed due to difficult impurities 

removal. This scenario is out of the purposes of this work. 

4.3.6 Thermal drying model 

The model for convective cake drying is based on the following equations. The local drying rate 

ṁi
L→G [kg/(m3 s)] for the 𝑁𝐿,𝑣𝑜𝑙 volatile species still present in the liquid phase is (Burgschweiger 

and Tsotsas, 2002): 
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ṁi
L→G = {

hM,i a(𝑃i,sat- 𝑃i,g)ηi
                 𝑖𝑓 𝑃i,sat > 𝑃i,g

0                                                𝑖𝑓 𝑃i,sat ≤ 𝑃i,g

,  for 𝑖 =  1, … ,𝑁𝐿,𝑣𝑜𝑙              (4.31) 

where hM,i is the mass transfer coefficient, calculated with correlations or from experimental data, a 

is the cake specific surface, either computed as a = 6/dp (where dp is the Sauter diameter from the 

CSD) or measured, and, for species i, 𝑃i,sat is the saturation pressure, 𝑃i,g is the partial pressure, and 

η
i
 is a factor accounting for mass transfer limitations occurring, mostly because of capillarity, when 

the mass fraction of i in the cake (wi, cake) becomes lower than a critical value wi, cake
crit  (falling rate 

period). η
i
 is instead equal to one when wi, cake is greater than wi, cake

crit  (constant rate period). In the 

falling rate period, η
i
 is typically linearly or quadratically dependent on wi, cake, and it should be 

estimated with experiments. More than one falling rate period (and the corresponding critical solvent 

content) can be identified for certain systems. When the equilibrium  mass fraction of i (wi, cake
𝑒𝑞

) is 

reached, η
i
 drops to zero. The species mass balance with respect to the concentration of i in the cake 

𝑐𝑖,𝑐𝑎𝑘𝑒 is:  

𝜕

𝜕𝑡
𝑐𝑖,𝑐𝑎𝑘𝑒 = − ṁi

L→G, for 𝑖 =  1, … , 𝑁𝐿,𝑣𝑜𝑙                 (4.32) 

Equation 4.32 is not solved for non-volatile species, as their concentration in the cake does not vary 

during drying. In addition, in the equation both 𝑐𝑖,𝑐𝑎𝑘𝑒 and  ṁi
L→G are function of time and z. The 

local cake saturation is related to the species concentrations in the cake with: 

𝑆 =
∑ 𝑐𝑖,𝑐𝑎𝑘𝑒/𝜌𝑖,𝑙
𝑁𝐿
𝑖=1

ϵ
  , for 𝑖 =  1, … ,𝑁𝐿                           (4.33)  

where ρ𝑖,𝑙 is the liquid density of pure i. The species mass balances in the gas phase for the volatile 

solvents and impurities read, in terms of mass fraction wi,g: 

ρ𝑔ϵ(1 − 𝑆)
𝜕

𝜕𝑡
𝑤𝑖,𝑔 = −ρ𝑔𝑢𝑔

𝜕

𝜕𝑧
𝑤𝑖,𝑔 + 𝑚̇𝑖

𝐿→𝐺 ,                   for 𝑖 =  1, … ,𝑁𝐿,𝑣𝑜𝑙                       (4.34) 

where ρ
g
 is the density of the gas, and ug is the gas velocity, calculated with the Darcy law for mono-

phase gas flow in a porous medium (Muskat and Meres, 1936). 

Inter-phase energy transfer is very fast for the process, as found from experiments on the carousel 

and literature correlations (Bird et al., 2006). Hence, we assume local thermal equilibrium among 

phases for the development of the differential energy balance: 

(ρ
s
cp,s(1- ϵ)+ρ

l
cp,lϵS+ρ

g
cp,gϵ(1-S))

∂T

∂t
=-∑ (ṁi

L→G
i λi) - ug cp,gρ

g

∂T

∂z
+ 𝑄̇                             (4.35) 

where ρ𝑙 is the liquid phase density, cp,g is the gas phase specific heat,  cp,l is the liquid phase specific 

heat, cp,s is the solid phase specific heat, T  is the local temperature, λ𝑖 is the latent heat of vaporization 

of species i and 𝑄̇ is the heat exchange with the environment, namely the heat loss through the dryer 
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walls (assumed equal to zero for the purposes of this study). 

The saturation and composition initial conditions are inputs of the model. The initial temperature 

corresponds to the room value for every z. The boundary conditions are given by the drying gas inlet 

composition and the drying gas inlet temperature Tdrying, both inputs of the carousel model. The drying 

model of Equations 4.31-35 presents 1+NL,vol PDEs, which we semi-discretize along z with a first-

order upwind scheme. The resulting ODEs are integrated with MATLAB’s ode15s solver. 

4.4 Paracetamol case study: experimental results and model calibration  

We develop a case study on API isolation from a slurry containing PCM (the API), isopropyl alcohol 

(IPA, the mother liquor), and a non-volatile impurity. Pure ethanol (EtOH) is selected as wash solvent. 

The case study involves two steps: i) carousel model calibration, and ii) probabilistic DS identification 

through the calibrated carousel model. The former step is discussed in this section, the latter in the 

following one.  

Table 4.2 reports the thermophysical properties used in the case study for the solid phase and for the 

pure components of the liquid phase. The transport properties of pure components of the liquid phase 

are obtained from temperature-dependent relations: molecular diffusion coefficients are assumed to 

be the same as in water, and calculated from Yaws (2009), while viscosities are calculated according 

to Yaws and Le Xuan Dang (2009). Following modeling assumption v) (§3.1), ideal solution and 

ideal gas mixing rules are used, respectively, for the liquid and gas phases. Thermophysical properties 

of the pure components of the gas phase and the saturation pressures were calculated with 

temperature-dependent relations from Perry's Chemical Engineer's Handbook (Green and Southard, 

2019). Note that in the simulation studies we consider the presence of a non-volatile impurity as a 

generic component in the slurry to demonstrate the carousel simulator capabilities to deal with multi-

component systems and non-volatile impurities. However, in the experimental campaign carried out 

for this study, no impurities were present in the slurry. Physical and transport properties of the non-

volatile impurity in the simulations are assumed to be the same as IPA’s (Table 4.2), the mother liquor 

in which it is dissolved, except for the saturation pressure, set to zero at all temperatures. It is also 

assumed that the non-volatile impurity does not adsorb in the solid (λads equal to one). 

We calibrate the carousel model on the system through filtration and drying experiments. 

Experimental validation of the washing component of the carousel model is not carried out in this 

study, as washing is not a critical step under the introduced assumption of absence of adsorption of 

the non-volatile impurity. Hence, the dispersion coefficients are directly calculated through Equations 

4.26-27.   

We use standard equipment for filtration and drying experiments: a Nutsche filter (a pocket filter 

produced by Alconbury Weston Ltd) and a TGA (Perkin Elmer TGA 4000). This experimental 

procedure allows for greater flexibility and easier data collection, compared to experiments directly  
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Table 4.2. Paracetamol case study: thermophysical properties of the solid phase 

and of the pure components of the liquid phase. 

Symbol Parameter UOM Value 

cp,EtOH,l  Pure liquid specific heat - EtOH [kJ/kg K] 2.570 

cp,impurity,l  Pure liquid specific heat – impurity [kJ/kg K] 2.667 

cp,IPA,l  Pure liquid specific heat - IPA [kJ/kg K] 2.667 

cp,s  Solid specific heat [kJ/kg K] 1.300 

    

Φ𝑖  Crystals sphericity [ - ] 1 

𝜆𝐸𝑡𝑂𝐻   Latent heat of vaporization – EtOH  [kJ/kg] 846 

𝜆𝐼𝑃𝐴  Latent heat of vaporization – IPA  [kJ/kg] 664 

λ𝐸𝑡𝑂𝐻,𝑎𝑑𝑠  Washing sorption coefficient – EtOH  [ - ] 1 

λ𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦,𝑎𝑑𝑠  Washing sorption coefficient – non-volatile impurity  [ - ] 1 

λ𝐼𝑃𝐴,𝑎𝑑𝑠  Washing sorption coefficient – IPA  [ - ] 1 

𝜌𝐸𝑡𝑂𝐻,𝑙  Pure liquid density – EtOH  [kg/m3] 842 

𝜌𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦,𝑙  Pure liquid density – non-volatile impurity  [kg/m3] 786 

𝜌𝐼𝑃𝐴,𝑙  Pure liquid density – IPA  [kg/m3] 786 

ρ
s
  Solid mass density [kg/m3] 1290 

𝜎  Liquid surface tension [N/m] 22.39 

 

performed on the carousel. On the other hand, filtration occurs in the Nutsche filter and in the carousel 

ports in the same way, and the drying kinetics in the TGA and in the carousel are the same. Actually, 

a slightly conservative value is obtained with the TGA, as the higher gas velocity during carousel 

drying can enhance the kinetics. The CSD of the PCM crystals used for the experiments, measured 

with a Mastersizer 3000 by Malvern Panalytical (UK), is reported in Figure 4.5.  

A PCM/EtOH slurry with crystals concentration of 25%w is used for the filtration experiments, to 

estimate α and Rm (note that the parameters are not influenced by the type of mother liquor). The 

Nutsche filter presents a mesh of the same material and pores size (20 μm) of the meshes installed in 

the carousel, but with a larger diameter (5 cm). An overhead pressure provides the ΔP necessary for 

filtration. We carried out two experiments, each one consisting of two filtration runs. The first run of 

each experiment (Run #1 and #3) is performed at ΔP=0.1 bar, while the second one (Run #2 and #4) 

at ΔP=0.7 bar. The filter mesh is cleaned with pure EtOH after Run #2, but in between the two runs 

of each experiments (Runs #1-2 and Runs #3-4) the cake is unloaded without further cleaning. This 

choice aims to reproduce carousel operation, where the meshes are cleaned with an automatic 

cleaning-in-place procedure (Liu et al., 2019) only when significant fouling is detected, instead than 

at the end of each cycle. The regressed parameters (Table 4.3), obtained through maximum likelihood 

estimation from the measured filtrate volume profiles, display small estimation uncertainty. Overall, 

the cake demonstrates high filterability properties. The good fitting of the runs (Figure 4.6) at different 

ΔP using the same α verifies the low compressibility assumption used for the modeling. Since the 

degree of fouling in each run is different, independent filter mesh resistance parameters are 

considered: Rm,1, Rm,2, Rm,3 and Rm,4. As expected, the regressed Rm,1 and Rm,3 are lower than Rm,2 and 

Rm,4, proving that part of the fine crystals in the CSD (Figure 4.5) remain trapped in the mesh, 
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increasing its resistance. The obtained cakes present an average ε of 0.36. Using the PCM CSD, α 

and ε predicted by the models reported in §4.3.2 show good agreement with the experimental findings 

(Φ𝑖 equal to one is used in the calculations), as reported in Table 4.3. 

 

 
Figure 4.5. Measured CSD of the PCM used for the filtration and drying 

experiments.  

 

 

 

 
Figure 4.6. Filtration experiments: measured filtrate volume profile vs model 

fitting. Left: Runs #1-2. Right: Runs #3-4. ΔP=0.1 bar for Runs #1 and #3, while 

ΔP=0.7 bar for Runs #2 and #4. 

 

 

Table 4.3. Filtration experiments: estimated parameters and relevant standard 

deviations. The values of α and ε predicted by the models in §4.3.2 are reported for 

comparison. 

Symbol Parameter UOM Estimated value Estimation std. dev. Model prediction 

Rm,1 Filter mesh resistance, run #1 [1/m] 4.18E9   1.45E6 - 

Rm,2 Filter mesh resistance, run #2 [1/m] 22.48E9 3.30E7 - 

Rm,3 Filter mesh resistance, run #3 [1/m] 2.98E9  3.04E6 - 

Rm,4 Filter mesh resistance, run #4 [1/m] 15.58E9  1.03E7 - 
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α Specific cake resistance [m/kg] 1.04E9  5.13E5 3.52E9 

ε Cake porosity [ - ] 3.6E-1   1.0E-2 3.5E-1 

 

Due to the quick deliquoring transient reported in Figure 4.6, deliquoring parameters are not 

estimated, as additional specific experiments are required for this purpose (Ripperger, 2013) and 

deliquoring is not a critical step for this system. 

The only parameters to be estimated for the drying model are those appearing in Equation 4.31, the 

drying rate equation: hM,i and the relation ηi(𝑤i,cake), for i corresponding to EtOH and IPA. We only 

estimate the parameters for EtOH, assuming that they are equal to those for IPA, considering that i) 

they are similar solvents, ii) the parameters mainly depend on the cake properties, rather than on the 

solvent type, and iii) in the case study, the liquid phase of the cakes entering the dryer is mainly 

composed by EtOH. The wet cakes obtained at the end of the filtration experiments are used for the 

drying experiments, after resaturation with pure EtOH. Five TGA experiments were carried out, each 

one at a different temperature (30 °C, 40 °C, 50 °C, 60 °C and 70 °C), to assess the temperature 

dependence of the parameters. For each experiment, a pan containing a small (~20-40 mg) piece of 

wet cake is inserted in the TGA chamber, which is subsequently heated up. When the designed 

temperature for a given experiment is reached, the TGA starts recording the sample weight, keeping 

at the same time the chamber temperature (approximately) constant and uniform. The drying rates for 

the experiments (Figure 4.7) are obtained as time derivate of the measured weight, normalized by the 

sample volume. Two critical solvent contents are identified for all the experiments: wEtOH, cake
𝑐𝑟𝑖𝑡,1

 equal 

to 0.11, at which the drying rate switches from the constant period to a linearly falling period, and 

w𝐸𝑡𝑂𝐻, cake
𝑐𝑟𝑖𝑡,2

 equal to 0.018, below which a higher order decay is followed. The dry cakes obtained at 

the end of the experiments were left to dry in an oven at 40°C for 48 h. No additional change of 

weight was registered, leading to the conclusion that w𝐸𝑡𝑂𝐻, cake
𝑒𝑞

 is equal to zero. 

For parameter estimation, we assume that the volatilized EtOH immediately leaves the cake during 

the experiment, due to the small sample size. Hence, ṁEtOH is uniform (but not constant) in the sample, 

and during the constant rate period (from Equation 4.31):  

hM,EtOH a =
ṁEtOH

𝑃EtOH,sat

L→G

                                        (4.36) 

As first attempt, we assume that hM,EtOH and the relation η
EtOH

(𝑤EtOH,cake) do not depend on 

temperature, as found for the critical solvent contents. Using the collected data in the constant rate 

periods of all the experiments and Equation 4.36 in a maximum likelihood estimation framework, the 

specific mass transfer coefficient hM,EtOH a results equal to 2.25E-5 kg m-3 s-1 Pa-1 (standard deviation 

= 5.89E-8 kg m-3 s-1 Pa-1). Independent values of hM,EtOH and a are not identified, since they are not 

required by any of the models. Then, the following η
EtOH

(𝑤EtOH,cake) polynomials are regressed for 

the falling rate periods: 
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{
ηEtOH=3.37 𝑤EtOH,cake+0.63                                                                 if  0.0118< 𝑤EtOH,cake<0.110 

ηEtOH= −3.57E7 𝑤EtOH,cake
4 +1.71E6 𝑤EtOH,cake

3                                                                                         

−3.02 𝑤EtOH,cake
2 +2.34E2 𝑤EtOH,cake+8.60E−3                       if  0<𝑤EtOH,cake<0.018       

                     (4.37) 

The drying rate calculated with Equation 4.31 using the regressed hM,EtOH a and Equation 4.37 shows 

good agreement with experimental results (Figure 4.7). Hence, the increasing drying rate at higher 

temperatures is mainly due to larger saturation pressures, instead than to changes in the mass transfer 

phenomena. The experiment at 70 °C shows a slightly worse fitting when compared to the other ones, 

especially in the constant rate period. This may be due to that fact that the small temperature gradients 

developing within the TGA chamber due to the proximity with the EtOH boiling temperature are not 

considered in the calculation of 𝑃EtOH,sat (very steep at 70 °C) for the model prediction in Figure 4.7. 

This issue does not occur when the drying model is used for carousel operation simulation, for which 

temperature gradients are not neglected. 

 

 
Figure 4.7. Drying experiments: drying rate obtained from the experimental weight 

measurements vs drying model prediction. The specific drying rate from the 

experiments is smoothed with a low-pass filter. 
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4.5 Paracetamol case study: design space description and throughput 

maximization 

We calculate the DS for PCM isolation on the carousel prototype presented in §4.2, making use of 

the calibrated carousel model (§4.3-4). The considered carousel has a port diameter equal to 1 cm. 

The liquid phase of the slurry is constituted at 95%w by IPA, and at 5%w by a non-volatile impurity. 

Cake washing is carried out with pure EtOH, to reduce the impurity content. For all solvents and 

impurities, the maximum acceptable content in the discharged cake is 0.5%. 

The CPPs are identified as Δ𝑡𝑐𝑦𝑐𝑙𝑒 and  𝑉𝑠𝑙𝑢𝑟𝑟𝑦, while 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 is the CMA. We consider 𝑊 as a CV 

instead of a CPP, since, under the assumption of absence of adsorption of impurities in the solid, the 

CQAs are not impacted by even significant variations of W. In the case study, we fix 𝑊 to a value of 

one, which proved to be enough to meet the target impurity content. The other CVs are 𝑇𝑑𝑟𝑦𝑖𝑛𝑔 and 

ΔP, which we set to the maximum admissible values for the process (respectively, 70 °C and 50 kPa), 

to maximize their contribution to meeting the CQAs target values. The DS is identified within a 

probabilistic framework (García-Muñoz et al., 2015), accounting for uncertainty on six model 

parameters (Table 4.4). The uncertain model parameters are those estimated from experimental data 

(ℎ𝑀 𝑎, 𝑅𝑚 , α and ϵ), and two additional ones, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦,𝑑𝑖𝑠𝑡 and  𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑑𝑖𝑠𝑡, expressing the small 

fluctuations that 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 and  𝑉𝑠𝑙𝑢𝑟𝑟𝑦 present around their set-points during operation. In the 

simulations for DS identification, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 and Vslurry are calculated adding to the values set as input 

of the carousel model by, respectively, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦,𝑑𝑖𝑠𝑡 and  𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑑𝑖𝑠𝑡 (normally distributed with zero 

mean and standard deviation equal to 3% of the corresponding set-point). The parameters ℎ𝑀 𝑎, α 

and ϵ are considered normally distributed, with mean equal to the respective estimated values. The 

standard deviations of the distributions are set to 5% of the mean, instead than using the (smaller) 

standard deviation obtained in §4.3 with parameter estimation, to conservatively account for 

additional process variability and disturbances that can occur during operation (e.g.: small changes in 

the CSD of the fed slurry). A uniform distribution is resorted to for Rm, aiming to reproduce the 

increase of fouling during operation assessed with the filtration experiments. The lower bound of the 

distribution corresponds to the resistance values found for the clean meshes (Runs #1 and #3), while 

the upper bound is representative of the threshold at which the cleaning-in-place procedure is 

triggered in the carousel. For the purposes of this work, it is assumed that all meshes foul at the same 

rate. 

For DS identification, a CPPs and CMAs grid is first built. We vary Δ𝑡𝑐𝑦𝑐𝑙𝑒 from 25 s to 395 s, with 

step 10 s, while 𝑉𝑠𝑙𝑢𝑟𝑟𝑦is varied from 1 mL to 10 mL (maximum port capacity), with step 0.5 mL 

(smaller steps would be of the same magnitude of  𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑑𝑖𝑠𝑡).  The CMAs vector contains only 

𝑐𝑠𝑙𝑢𝑟𝑟𝑦, which is varied between 50 kg/m3 and 200 kg/m3, with step 25 kg/m3. For every grid point, 

a Monte Carlo simulation with 400 realizations is carried out. For each realization, different values 

for the uncertain model parameters are sampled from their probability distributions, and the 

associated CQAs of the discharged cake are calculated with the carousel model. The percentage of 
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realizations satisfying the CQAs requirements in a grid point corresponds to the probability of 

meeting the quality target for the associated combination of CPPs and CMA.  

The probabilities calculated through the Monte Carlo simulations are reported in Figure 4.8, as planes 

at constant  𝑐𝑠𝑙𝑢𝑟𝑟𝑦. We set the minimum acceptable probability for a grid point to be in the DS to 

90%. As expected, the minimum Δ𝑡𝑐𝑦𝑐𝑙𝑒 for obtaining the target CQAs with an acceptable probability 

increases with 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 and  𝑐𝑠𝑙𝑢𝑟𝑟𝑦. We obtain the following equation for the curve of separation 

between the DS and the region of non-acceptable probability, through multi-linear regression: 

Δ𝑡𝑐𝑦𝑐𝑙𝑒 = 𝑎1 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑎2 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑎3𝑐𝑠𝑙𝑢𝑟𝑟𝑦 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑎4              (4.38) 

with a1=-2.78E6 s/m3, a2=-1.05E-1 s m3/kg, a3=3.06E5 s/kg and a4=5.14E1 s. The values of 𝑎1, 𝑎2, 

𝑎3 and 𝑎4 are calibrated on the grid points at  𝑐𝑠𝑙𝑢𝑟𝑟𝑦 = 50, 100, 150 and 200 kg/m3, while the grid 

points at  𝑐𝑠𝑙𝑢𝑟𝑟𝑦 = 75, 125 and 175 kg/m3 are used for validation. The curve obtained with Equation 

4.38 effectively delimits the DS on both the calibration and validation datasets (Figure 4.8). We also 

validate it for Δ𝑡𝑐𝑦𝑐𝑙𝑒 >  395 s for  𝑐𝑠𝑙𝑢𝑟𝑟𝑦=150, 175 and 200 kg/m3 (conditions in Figures 4.8e-g), to 

obtain the DS boundary for all the explored values of  𝑉𝑠𝑙𝑢𝑟𝑟𝑦 and  𝑐𝑠𝑙𝑢𝑟𝑟𝑦 in the grid. For this purpose, 

we carry out additional Monte Carlo simulations in a less refined grid (the plots are not reported here 

for conciseness). Hence, the DS is expressed by: 

DS = {(𝑉𝑠𝑙𝑢𝑟𝑟𝑦, Δ𝑡𝑐𝑦𝑐𝑙𝑒, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦)|Δ𝑡𝑐𝑦𝑐𝑙𝑒  ≥  𝑎1 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑎2 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑎3𝑐𝑠𝑙𝑢𝑟𝑟𝑦 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑎4 }  

         (4.39) 

with 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 ∈ [𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑖𝑛, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑎𝑥] and 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 ∈ [𝑐𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑖𝑛, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑎𝑥] (𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑖𝑛, 

𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑎𝑥, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑖𝑛 and 𝑐𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑎𝑥 are the boundaries of the grid used for the Monte Carlo 

simulations). As a remark, for cakes presenting larger α, higher order terms might be needed for fitting 

the DS boundary beside the linear dependencies on  𝑉𝑠𝑙𝑢𝑟𝑟𝑦 and  𝑐𝑠𝑙𝑢𝑟𝑟𝑦 and the interaction term used 

in Equation 4.38. 

 

 

Table 4.4. Uncertain parameters for probabilistic DS calculation. 

Uncertain parameter Unit Probability distribution  

Cake porosity ϵ [ - ] N(0.36, 3.24E-4 ) 

Filter medium resistance Rm [1/m] U(3E9, 3E10) 

Specific mass transfer coefficient hM a [kg/(m3 s Pa)] N(2.25E-5, 1.27E-12) 

Slurry concentration disturbance cslurry,dist [ - ] N(0, 9.00E-4 cslurry
2 ) 

Slurry volume disturbance Vslurry,dist [kg/kg] N(0, 9.00E-4 Vslurry
2 ) 

Specific cake resistance α  [m/kg] N(1E9, 2.50E15) 
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Figure 4.8. Paracetamol case study: probabilistic DS, representing the 

probability of meeting the target CQAs. Green triangles: probability ≥ 

90%, yellow circles: 80% ≤ probability < 90%, orange squares: 60% ≤ 

probability < 80% and red diamonds: probability < 60%. In the figures, 

cslurry is (a) 50 kg/m3, (b) 75 kg/m3, (c) 100 kg/m3, (d) 125 kg/m3, (e) 150 

kg/m3, (f) 175 kg/m3 and (g) 200 kg/m3. The solid line represents the DS 

boundary calculated with Equation 4.38. 

(a) (b) 

(d) (c) 

(e) (f) 

(g) 
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The maximum throughput Tmax that can be processed within the DS is obtained solving the following 

optimization problem: 

𝑇𝑚𝑎𝑥 = max
 𝑉𝑠𝑙𝑢𝑟𝑟𝑦,Δ𝑡𝑐𝑦𝑐𝑙𝑒, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 

 𝑇                                                                      (4.40) 

subject to:                         𝑇 =
  𝑐𝑠𝑙𝑢𝑟𝑟𝑦 𝑉𝑠𝑙𝑢𝑟𝑟𝑦

Δ𝑡𝑐𝑦𝑐𝑙𝑒
                                   (4.41a) 

                                 Δ𝑡𝑐𝑦𝑐𝑙𝑒  ≥  𝑎1 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑎2 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑎3𝑐𝑠𝑙𝑢𝑟𝑟𝑦 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 + 𝑎4            (4.41b)    

                                 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 ∈ [𝑐𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑖𝑛, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑎𝑥]                                                                 (4.41c) 

                                 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 ∈ [𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑖𝑛, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑎𝑥]                                                                 (4.41d) 

where T is the throughput processed in the carousel. It can be easily assessed that the optimum of 

Problem 4.40-41 lays on the DS boundary, hence Equations 4.40 and 4.41a can be reformulated as: 

𝑇𝑚𝑎𝑥 = max
 𝑉𝑠𝑙𝑢𝑟𝑟𝑦, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 

            𝑇                                                                                                         (4.42) 

subject to:                          𝑇 =
  𝑐𝑠𝑙𝑢𝑟𝑟𝑦 𝑉𝑠𝑙𝑢𝑟𝑟𝑦

𝑎1 𝑉𝑠𝑙𝑢𝑟𝑟𝑦+𝑎2 𝑐𝑠𝑙𝑢𝑟𝑟𝑦+ 𝑎3𝑐𝑠𝑙𝑢𝑟𝑟𝑦 𝑉𝑠𝑙𝑢𝑟𝑟𝑦+𝑎4
                     (4.43) 

Overall, the reformulated optimization problem is defined by Equations 4.42, 4.43 and 4.41c-d. 

Δ𝑡𝑐𝑦𝑐𝑙𝑒 does not explicitly appear anymore, although it is immediately available from Equation 4.38. 

The gradients of the objective function 𝑇 with respect to 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 and 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 are always positive under 

the domain defined by the constraints, hence 𝑇𝑚𝑎𝑥 (195 mg of crystals per minute) is reached for 

𝑐𝑠𝑙𝑢𝑟𝑟𝑦 = 𝑐𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑎𝑥= 200 kg/m3 and 𝑉𝑠𝑙𝑢𝑟𝑟𝑦= 𝑉𝑠𝑙𝑢𝑟𝑟𝑦,𝑚𝑎𝑥 = 10 mL. The plots of the throughput at 

the DS boundary for different values of 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 and 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 (Figure 4.9) support the derived analytical 

solution of the optimization problem. In other applications, 𝑇𝑚𝑎𝑥  may be found in between the grid 

boundaries, rather than at the boundaries themselves. For this case study, the low nonlinearity of the 

DS boundary possibly prevents achieving a stationary point of maximum, although from Figure 4.9 

it can be noted that such condition would eventually have been reached if the maximum capacity of 

the ports were larger. In any case, for the purposes of pharmaceutical manufacturing, guaranteeing 

the quality of the product assumes a greater importance than maximizing the throughput. Hence, it is 

suggested to operate in proximity of 𝑇𝑚𝑎𝑥, but more inside the DS, instead than at the boundary.  

To conclude this section, we demonstrate an additional application of the carousel model, regarding 

the selection of the number of ports during the design of a new carousel. Thanks to the flexibility of 

arrangement of the processing steps models in the carousel simulator, we repeat the DS space 

calculation with the same procedure employed for obtaining the results in Figure 4.8d, but simulating 

a carousel with an additional drying station (six stations overall). From the comparison (Figure 4.10), 

it clearly emerges that, for a given 𝑉𝑠𝑙𝑢𝑟𝑟𝑦, acceptable CQAs can be reached with two drying stations 

in less than half of the time needed with only one drying station. Actually, for the carousel with only 

five stations, simulations show that drying is the rate determining step.  
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Figure 4.9. Paracetamol case study: throughput T at the design space 

boundary (Equation 4.38) for varying 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 and 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 . 

 

  

Figure 4.10. Paracetamol case study: DS comparison of the carousel configuration 

with one drying station (left, equivalent to Figure 4.8d) and two drying stations 

(right). The markers legend is as in Figure 4.8, and cslurry is 125 kg/m3. 

4.6 Conclusions 

The paper presents a mathematical model of a novel continuous carousel for the isolation of crystals 

from a slurry. The model is developed by assembling together independent filtration, deliquoring, 

washing and drying modeling components, that can also be arranged to mimic different continuous 

isolation setups. A cake properties module is implemented for calculating the cake porosity and 

specific resistance from the slurry crystal size and shape distribution. Dynamic profiles of cake 

composition are tracked throughout all carousel processing by the model, that overcomes the short-

cut methods more commonly used for designing this type of process. In particular, a differential 
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deliquoring model is used, instead of widely employed design charts. The developed cake drying 

model presents novel features, as it accounts for the presence of a flow of hot gas, not usually present 

in other equipment (and models) for cake drying. 

A case study on the digital design of a process for isolating PCM from a crystallization slurry, is 

presented to demonstrate the carousel model capabilities. After successfully calibrating the model 

with filtration and drying experiments, the probabilistic design space of the process is identified. 

Model uncertainty is considered through Monte Carlo simulations, sampling the uncertain model 

parameters from their probability distributions. The maximum throughput that can be processed in 

the carousel with acceptable probability of meeting the product quality specifications was also 

evaluated. 

The proposed model and approach to the digital design of continuous integrated crystals isolation 

represents a step forward in the field and in end-to-end continuous pharmaceutical manufacturing. 

The calculated design space responds to the need of considering the critical process parameters, the 

variability in the feed conditions and the model uncertainty altogether in a probabilistic framework 

when designing the filtration, washing and drying sections of a pharmaceutical process. Future work 

will involve the digital design of other crystals isolation processes and the integration of an upstream 

crystallizer model for carrying out integrated crystallization-filtration-drying digital design. 

Experimental validation of the washing component of the model for systems where washing is a 

critical step will be considered, and the effect of partial dissolution of the crystals into the wash 

solvent will be incorporated in the modeling framework. Process control applications are also 

envisioned, by using the developed model as digital twin of the process for testing control strategies 

(including active control), and for model-based process control. 
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Chapter 5 

Intensified continuous filtration-drying of 

pharmaceuticals: Quality-by-Control on a 

novel real time simulator* 

In this Chapter, the mathematical modeling framework of Chapter 4 is developed into ContCarSim, 

a real time simulator of a continuous carousel for filtration-drying of active pharmaceutical 

ingredients. Differently from the carousel model of Chapter 4,  the simulator developed in this 

Chapter includes computational routines simulating sensors and actuators present in physical 

carousels (Ottoboni et al., 2020a), and supports the implementation of control loops. The simulator 

is calibrated with novel filtration and drying experiments on a pilot scale carousel for a 

paracetamol/ethanol slurry system. A closed-loop control strategy for the unit, based on the Quality-

by-Control paradigm, is then conceived and tested on the simulator, under a set of disturbances known 

to affect the unit operation. The designed Quality-by-Control framework leads to improved 

performance compared to early stage Quality-by-Design control strategies, which rely on open-loop 

quality control. The developed simulator will be made freely available at the link: 

https://github.com/francescodestro/ContCarSim. 

5.1 Introduction 

In the latest years, pharmaceutical development and manufacturing have been undergoing a 

modernization trend, aimed at increasing the economic efficiency and the capability to attain and 

consistently maintain product quality. These efforts have been promoted by regulators such as the 

United States Food & Drug Administration (FDA) and the International Council for Harmonisation 

(ICH), through the process analytical technology (FDA, 2004b) and quality-by-design (QbD; ICH, 

2009) initiatives. Under a QbD approach to pharmaceutical development and manufacturing, quality 

is inherently built into the product, by designing and conducting the manufacturing process with a 



142                                                                                                                                                                            Chapter 5 

_______________________________________________________________ 

© 2021 Francesco Destro, University of Padova (Italy) 

science- and risk-based approach. QbD represents a major improvement with respect to the traditional 

pharmaceutical approach of Quality-by-Testing (QbT), based on extensive testing on the end-product. 

The guidelines provided by regulators (ICH, 2012b, 2009, 2008, 2005) present different QbD 

elements that can be adopted by practitioners for process development and manufacturing. Following 

a typical QbD pharmaceutical development workflow (ICH, 2009), the product critical quality 

attributes (CQAs) are first identified from the quality target product profile. Subsequently, the critical 

process parameters (CPPs) and the raw materials properties (critical material attributes, CMAs) that 

are critical for product CQAs attainment are established through a quality risk assessment procedure. 

Then, the design space (DS) is determined, as the multivariable region of CMAs and CPPs that allow 

obtaining the target product CQAs. Finally, a control strategy is designed, as a set of actions, routines 

and controls to maintain the process in a state of control and guarantee the product quality. A 

document by FDA regulators (Yu et al., 2014) distinguished among three levels of control strategies. 

A Level 3 control strategy, corresponding to the QbT approach, consists in operating the process 

under tight intervals of CMAs and CPPs, which have been proven to yield the target product CQAs 

in the regulatory approval application. In a more advanced Level 2 control strategy, a DS is 

established, and the process is operated therein. Level 2 control strategies guarantee more flexibility 

on the operating conditions than Level 3 strategies, and allow reducing the reliance on end-product 

testing. However, in a Level 2 control strategy the product CQAs are still controlled at open-loop, by 

moving the CPPs within the DS in response to registered changes in the CMAs. In a Level 1 control 

strategy, instead, the product quality is actively controlled making use of process control techniques. 

The CPPs are automatically adjusted in response to measured changes of the CMAs (feedforward 

control) or of the CQAs (feedback control). This is achieved through PID control or more advanced 

techniques, such as model predictive control and real time optimization (RTO; Seborg et al., 2017). 

A Level 1 control strategy facilitates real time release testing, namely the ability to evaluate and 

ensure the quality of intermediates and/or final product during process operation based on process 

data, including a combination of CMAs, CPPs and CQAs (ICH, 2009). Real time release testing can 

potentially replace end-product testing. Soft sensors (e.g., those based on state estimation; Ray, 1981) 

can replace direct measurements of CMAs, CPPs and CQAs to support real time release testing (ICH, 

2011). Although both Level 1 and Level 2 control strategies include QbD elements, the ultimate aim 

of the QbD initiative is to reach widespread establishment of Level 1 control strategies, from which 

both pharmaceutical companies and patients can benefit (Collins, 2018; Fisher et al., 2019). Active 

process control on quality can reduce the occurrence of shortages and recalls and can provide higher 

quality attainment. Moreover, McKinsey (McKinsey & Company, 2021) estimated that introducing 

an advanced quality control system for process development and manufacturing could have a 

paramount impact on profit of pharmaceutical companies, by reducing the product launch time by 

even 30% and increasing manufacturing and supply chain capacity by up to 30%, in addition to 

preventing major product shortages and recalls. Even though the adoption of Level 1 control strategies 

is still in embryonic phase, many recent academic publications (Mesbah et al., 2017; Rehrl et al., 
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2016; Sen et al., 2014) demonstrated the advantages of closed-loop quality control in different 

pharmaceutical processes, including plant-wide applications (Lakerveld et al., 2013). The recent 

interest towards control strategies comprising elements of active process control has led to the 

establishment of a novel paradigm in pharmaceutical development and manufacturing, which has 

been named Quality-by-Control (QbC; Su et al., 2019b). QbC is an evolved form of QbD, rather than 

a QbD-independent initiative, in which active process control represents the core feature of the control 

strategy. A hierarchical structure, following the ISA-95 Enterprise-Control System Integration 

Standard, has recently been proposed (Su et al., 2019b, 2017) to support the development of QbC 

control systems. The hierarchical structure includes three layers (Figure 1.3): i) Layer 0, consisting 

of the built-in control systems of the equipment, ii) Layer 1, at which the loop on quality is closed 

through PID control, and iii) Layer 2, which features advanced model-based process control and 

process monitoring techniques. 

In addition from active quality control, the transition to a more continuous production mode is another 

pharmaceutical emerging technology promoted by the QbD initiative (ICH, 2021; Lee et al., 2015). 

Continuous processing, when feasible, is preferred to the traditional batch production mode, due to 

the many advantages it offers (Burcham et al., 2018; Fisher et al., 2019; Ierapetritou et al., 2016). As 

for active process control, the benefits of continuous processing are for both manufacturers and 

patients, and include reduced manufacturing time and cost, greater product quality consistency, and 

potential to reduce recalls and shortages. Furthermore, process control is usually easier in a 

continuous plant and has been explored more in the literature for continuous processes rather than for 

their batch counterparts. 

As a matter of fact, a tight interconnection exists between the two most important pharmaceutical 

emerging technologies: QbC is gaining much relevance under the increasing popularity of continuous 

processes, while the transition to more continuous operation modes is boosted by the QbC tools for 

systematic control system design. Many literature contributions on continuous processing and QbC 

have been published around the topics of reacting systems (Bana et al., 2017; A E Cervera-Padrell et 

al., 2012; Albert E. Cervera-Padrell et al., 2012; Nikolakopoulou et al., 2020), crystallization 

(Acevedo et al., 2016; Nagy et al., 2013; Nagy and Braatz, 2012; Wood et al., 2019a), and of solid-

dosage form manufacturing lines (García-Muñoz et al., 2010; Hanson, 2018; Singh et al., 2015; Su et 

al., 2019a, 2019b, 2017). However, end-to-end continuous pharmaceutical processes with active 

quality control are scarcely explored in the literature (Lakerveld et al., 2013; Mesbah et al., 2017). 

Filtration, washing and drying of crystallization slurries are pivotal unit operations for connecting the 

drug substance and drug product manufacturing sections of a pharmaceutical process into an end-to-

end continuous integrated system. However, although they can constitute a bottleneck in the 

implementation of plant-wide continuous automated pharmaceutical processes, they have been 

scarcely studied from a continuous integrated processing and QbC perspective.  

In this study, we make a step forward toward the implementation of end-to-end continuous 

pharmaceutical manufacturing with closed-loop quality control, by presenting a QbC framework for 
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a novel continuous carousel for integrated filtration and drying of crystallization slurries. Cake 

washing can also be carried out within the unit, but this processing step is not considered in this 

chapter. The carousel presents multiple processing stations embedded in a main cylindrical body. 

During carousel operation, cylindrical ports containing the material being processed are aligned with 

the stations, and processing steps are carried out simultaneously in each port in a batch mode. 

Continuous operation is enabled by carousel rotations, which transfer each port to the following 

station at each time interval (cycle duration), as defined by the user. The slurry from the crystallizer 

is loaded into the first station, and is eventually discharged as dry crystals cake from the last station, 

after having been processed in all the stations in between. Previous studies on similar carousels 

involved experimental design of the unit and its operation (Ottoboni et al., 2020b, 2020a, 2019), and 

experimental and modeling results that successfully integrated the carousel, in filtration-only mode, 

with upstream continuous crystallization systems (Acevedo et al., 2016; Liu et al., 2019; Nagy et al., 

2021). In Chapter 4, a comprehensive mathematical model of the unit has been developed and used 

for designing the carousel operation, in filtration-washing-drying mode, in a QbD perspective, namely 

by describing the probabilistic DS of the unit for a paracetamol crystals isolation process. The model 

was calibrated and validated through filtration experiments in a Nutsche filter, and drying 

experiments on a thermogravimetric analyzer.  

In this study, we elaborate on the mathematical model of the carousel of Chapter 4, to develop 

ContCarSim, a real-time simulator of the unit, calibrated and validated through experiments carried 

out on an actual prototype carousel, for an ethanol/paracetamol slurry. Differently from the carousel 

model of Chapter 4,  the simulator developed in this Chapter includes computational routines 

simulating sensors and actuators present in physical carousels (Ottoboni et al., 2020a), and supports 

the implementation of control loops. Improvements to the energy balance of the model drying 

component are proposed to enhance the match with novel experimental findings. A three-layer QbC 

control strategy for the carousel is then conceived and tested on the simulator. Layer 0 consists in the 

built-in controllers of the equipment, such as those needed for manipulating the CPPs and handling 

the carousel rotation/feeding routines. In Layer 1, the control strategy features an end-point controller 

for automatically triggering a carousel rotation when the target product CQAs are met in the final 

station of the carousel. In Layer 2, an RTO algorithm is used for optimizing the operating conditions 

at each cycle. A state estimator is also put in place for monitoring the product CQAs in a probabilistic 

framework, to support the end-point controller at Layer 1 and to enable real time release testing. The 

proposed QbC control strategy is benchmarked against a traditional QbD approach under a set of 

disturbances occurring in normal operating conditions, such as mesh fouling and concentration 

fluctuations in the fed slurry.  

The remainder of the manuscript is organized as follows. In Section 5.2, the pilot scale carousel used 

for the experimental campaign is presented. In Section 5.3, the simulator is described, including the 

underlying mathematical modeling framework. The calibration of the simulator through an 

experimental campaign is reported and discussed in Section 5.4. Section 5.5 presents QbD and QbC 
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design and control challenges that can be addressed with ContCarSim. Section 5.6 proposes a QbC 

framework for the carousel. The response of the proposed QbC control strategy to a set of 

disturbances is discussed and benchmarked with traditional QbD approaches in Section 5.7. The 

concluding section follows. 

The simulator will be made publicly available at the link: 

https://github.com/francescodestro/ContCarSim. 

5.2 Experimental setup: the pilot scale carousel 

In this section, we complement the description of the carousel technology given in §4.2 with technical 

information on the pilot scale carousel used for the experimental campaign reported in §5.4. The unit 

(Figure 4.1) can continuously process an inlet slurry stream into a dry crystals cake. A schematic 

P&ID of the process is provided in Figure 5.1, with the legend of equipment, sensors and controllers 

reported in Table 5.1. 

The carousel features five cylindrical ports, each one of 15 mm diameter, which allow a maximum 

hold-up of 10 mL. The ports are embedded in a main cylindrical body, aligned to five processing 

stations (Stations 1-5). For illustrative purposes, in Figure 5.1 the stations are represented as vessels 

in series (V102-V106), although the actual layout of the carousel is as in Figure 4.1. In the carousel 

 

 
Figure 5.1. P&ID of the prototype continuous carousel setup for integrated 

filtration, washing and drying. The equipment legend is reported in Table 5.1.  
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prototype, Stations 1-4 present a filter mesh at the bottom (F101-104), and are connected to a vacuum 

pump (P101) that provides the pressure gradient necessary for filtration and drying. Instead, Station 

5 is open at the bottom for cake discharge, which is enabled by the action of a pneumatic piston. In 

commercial scale carousels and in the developed simulator (Section 5.3), the pressure gradient is 

increased with a compressor (P102), whereas all ports are maintained at atmospheric pressure on the 

top part.  

The carousel operates in cyclic mode: processing cycles, during which every port processes batch-

wise the material therein contained, are alternated to carousel rotations, during which the ports 

containing the material being processed are moved to the following station. Carousel rotations are 

represented in the P&ID as material streams, controlled by FC101. The alternating processing cycles 

and carousels rotations are interrupted when significant mesh fouling is detected: a cleaning-in-place 

cycle is triggered, and all meshes are automatically cleaned by sending a wash solvent into the 

carousel (Figure 4.1). Stations 1-3 are dedicated to filtration and deliquoring, while in Station 4 

thermal drying is carried out. In Station 2 cake washing can also be carried out through a wash solvent  

 
Table 5.1. Legend of the P&ID diagram of Figure 2, including unit operations and 

ancillary equipment. Some pieces of equipment are present both in the carousel 

prototype used for data collection and in the implemented carousel simulator 

(Section 5.3), while other ones are present in only one of the two.  

Name Description Present  

in 

prototype?  

Present  

in 

simulator? 

Unit ID    

F101-F104 Filter mesh below Stations 1-4 (respectively) Yes Yes 

P101 Vacuum pump Yes No 

P102 Compressor No Yes 

E101 Drying gas heater Yes Yes 

VI101 Slurry tank Yes Yes 

VI102 Carousel Station 1 Yes Yes 

VI103 Carousel Station 2 Yes Yes 

VI104 Carousel Station 3 Yes Yes 

VI105 Carousel Station 4 Yes Yes 

VI106 Carousel Station 5 Yes Yes 

VI107 Filtrate collector Yes Yes 

    

Controllers and 

sensors 

   

AI101 Slurry concentration sensor (ultrasonic probe; Bamberger and 

Greenwood, 2004a, 2004b) 

No Yes 

FC101 Fictitious flowrate controller representing carousel 

rotation and slurry feeding routines enabled by PLC 

Yes Yes 

FI101 Flowmeter for gas entering carousel ports Yes Yes 

LI101 Camera system (Ottoboni et al., 2020a) measuring volume of 

fed slurry and cake height 

No Yes 

PC101 Pressure controller   

PI102 Pressure indicator Yes Yes 

TC101 Drying gas inlet temperature controller Yes Yes 

TI101 Thermocouple for inlet drying gas temperature Yes Yes 

TI102 Thermocouple for outlet drying gas temperature Yes Yes 

WI101 Scale for inferring filtrate flowrate Yes Yes 
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(Figure 4.1), but this feature was not considered in this study (the washing equipment is not reported 

in the P&ID of Figure 5.2). In Station 5, only cake discharge occurs.  

Slurry processing in the prototype occurs as follows. The crystallization slurry is fed to Station 1 at 

the beginning of each cycle, by keeping the valve between the slurry tank (V101) and Station 1 open 

for a time interval (feed duration) assigned by the user (a linear correlation between feed duration and 

fed slurry volume for a given slurry system can be quickly regressed with suitable experiments). After 

slurry feeding, a subsequent filtration step starts in Station 1, and it continues until filtration ends, or 

throughout the whole cycle duration, until the following carousel rotation. In the latter situation, 

filtration will continue in Station 2. During filtration, the liquid contained in the slurry is filtered out 

of the port by the action of the vacuum pump and stored in filtrate collector V107, while the crystals 

are retained on top of the filter mesh, leading to cake formation. We distinguish between actual 

filtration, when there is a slurry hold-up on top of the cake being formed, and the subsequent 

deliquoring, during which the only remaining liquid is the one retained inside the cake pores. Upon 

deliquoring, the liquid in the pores of the cake is mechanically displaced out of the cake by the action 

of the vacuum pump, until a certain pore saturation equilibrium is achieved. Filtration duration 

depends on the cake properties and on the pressure drop delivered by the vacuum pump. Depending 

on filtration duration, the cake can also be partially deliquored in Stations 1-3, or it might even enter 

Station 4 with some slurry hold-up (drying cannot be properly conducted in this situation, which 

should be avoided). Thermal drying is performed in Station 4 by flowing a hot gas stream through 

the cake. As the carousel is a prototype for process development and scale-up studies, the filtration 

and drying stations are not activated simultaneously as in commercial carousels, but in subsequent 

filtration and drying cycles, followed by a carousel rotation. This feature has been exploited in this 

study to decouple filtration and drying experiments, which is more informative for model calibration 

purposes.  

The sensor and controller network installed in the carousel and exploited in the experimental 

campaign is made up of: i) FC101, a fictitious flowrate controller that represents the rotation and 

slurry feeding routines controlled by the carousel programmable logic controller (PLC), ii) FI101, a 

flowmeter measuring the gas flowrate entering the carousel ports, iii) PI102, measuring the pressure 

at the bottom of the filter meshes, iv) TC101, controlling the temperature of the gas entering the 

drying port by acting on heater E101, v) thermocouple TI101, measuring the drying gas inlet 

temperature, iv) thermocouple TI102, measuring the drying gas outlet temperature, and vii) WI101, a 

scale placed under filtrate collector V107 for inferring the filtrate flowrate. All measurements are 

sampled every 0.15 s. Level indicator L101 (camera vision  system; Ottoboni et al., 2020a) and slurry 

composition sensor AI101 (ultrasonic probe; Bamberger and Greenwood, 2004a, 2004b) are present 

in commercial scale carousels and are implemented in the simulator (§5.3), but they are not installed 

in the available carousel prototype. 
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5.3 Carousel simulator description 

The simulator is made up by assembling together filtration, deliquoring and drying models (detailed 

in §5.3.2) with the same sequence with which they occur during carousel operation (§5.2). The models 

are dynamic, and are developed for the one-dimensional system of Figure 5.2, with the axial 

coordinate of the cake denoted by the symbol 𝑧. Filtration and deliquoring models are used for 

simulating V102-V104, while the drying model is used for V105. Implemented routines automatically 

detect when filtration finishes for a given batch, and simulate deliquoring for the remaining time spent 

by the material in V102-V104. If a cake entering V105 is not deliquored enough for proper air flow, 

deliquoring is simulated in place of drying, until drying can actually start. The simulator also properly 

handles the limiting case in which filtration has not finished in the batch entering V105, yet. 

The carousel simulator reproduces the operation of the carousel setup described by Figure 5.1. As 

detailed in Table 5.1, in the simulator the pressure gradient is provided by compressor P102, and 

vacuum pump P101 is not implemented.  

 

 
Figure 5.2. Reference system for the filtration, deliquoring and drying models. The 

different notation for experimental gas temperature measurements and gas 

temperatures calculated by the simulator is elucidated. Note that the gas outlet 

temperature 𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠  is measured with a thermocouple placed in the outlet pipe placed 

below the filter mesh, however it can fairly be approximated to the temperature of 

the gas at the bottom of the cake. 

5.3.1 Simulator input/output structure 

The input/output structure of the simulator is given in Table 5.2.  The inputs to be provided to the 

simulator are: i) parameters to be calibrated from experiments, ii) the thermophysical properties of 

the pure components of the system and of the cake, iii) set-points for the controllers implemented in 

the simulator, and iv) suitable profiles for the system disturbances.  
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Table 5.2. Input/output structure of the carousel simulator. 

 Symbol Variable Unit Relevant 

equipment 

Inputs     

Calibration parameters α𝐻𝐿,1  Air-wall heat transfer coefficient - intercept - V105 

 α𝐻𝐿,2  Air-wall heat transfer coefficient - slope s/m V105 

 η
𝑖
  Drying effectiveness factor for species 𝑖 - V105 

 ξ  Tunneling parameter - V105 

 τ𝐻𝐿,1  Air-wall heat transfer time constant s V105 

Disturbances 𝑐𝑠𝑙𝑢𝑟𝑟𝑦   Slurry concentration  kg/m3 V102, AI101 

 ℎ𝑀
𝑑𝑖𝑠𝑡  Drying kinetic constant disturbance - V105 

 ℎ𝑇
𝑑𝑖𝑠𝑡  Cake/gas heat transfer coefficient in dryer 

disturbance 

- V105 

 𝑅𝑚,1  Mesh resistance – Station 1 1/m V102 

 𝑅𝑚,2  Mesh resistance – Station 2 1/m V103 

 𝑅𝑚,3  Mesh resistance – Station 3 1/m V104 

 𝑅𝑚,4  Mesh resistance – Station 4 1/m V105 

 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑑𝑖𝑠𝑡    Fed slurry volume disturbance - V102 

 𝐰𝑖𝑛,𝑔  Inlet mass fraction gas phase components - V105 

 𝐰𝑙,𝑠𝑙𝑢𝑟𝑟𝑦 Mass fraction of slurry liquid phase 

components 

- V102 

 ϵ𝑑𝑖𝑠𝑡   Cake porosity disturbance - V102-V105 

     

Thermophysical 

properties 

 Cake physical properties […] V102-V105 

 𝑆∞  Cake deliquoring equilibrium saturation -  

 α𝑐𝑎𝑘𝑒   Specific cake resistance m/kg  

 ϵ𝑐𝑎𝑘𝑒   Cake porosity -  

  Properties of pure components of solid, 

liquid and gas phases 

[…] All 

Controlled variables set-

points 
𝑇𝑖𝑛,𝑔
𝑠𝑝

  Drying gas inlet temperature set-point °C V106, TC101 

 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

  Fed slurry volume set-point m3 V102, FC101 

 Δ𝑃𝑠𝑝  Pressure gradient set-point bar V102-V105, 

PC101 

 Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

  Cycle duration set-point s V102-V105, 

FC101 

Outputs     

Simulated measurements 𝑦𝑐𝑠𝑙𝑢𝑟𝑟𝑦   Slurry concentration measurement kg/m3 AI101 

 𝑦𝐻𝑐𝑎𝑘𝑒   Cake height measurement m LI101 

 𝑦𝑀𝑓𝑖𝑙𝑡  Filtrate mass measurement kg WI101 

 𝑦𝑃   Pressure at meshes bottom bar PI101 

 𝑦𝑇𝑖𝑛  Drying inlet gas temperature measurement °C TC101 

 𝑦𝑇𝑜𝑢𝑡  Drying outlet gas temperature measurement °C TI101 

 𝑦𝑉̇𝑑𝑟𝑦𝑒𝑟  Gas flowrate measurement NL/min FI101 

 𝑦𝑉𝑠𝑙𝑢𝑟𝑟𝑦   Fed slurry volume measurement 

measurement 

m3 LI101 

States 𝑆1  Cake saturation – station 1  - V102 

 𝑆2  Cake saturation – station 2 - V103 

 𝑆3  Cake saturation – station 3 - V104 

 𝑆4  Cake saturation – station 4 - V105 

 𝑤𝑖,𝑐𝑎𝑘𝑒,1 Mass fraction of solvent/impurity i in cake 

– Station 1  

- V102 
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 𝑤𝑖,𝑐𝑎𝑘𝑒,2 Mass fraction of solvent/impurity i in cake 

– Station 2 

- V103 

 𝑤𝑖,𝑐𝑎𝑘𝑒,3 Mass fraction of solvent/impurity i in cake 

– Station 3 

- V104 

 𝑤𝑖,𝑐𝑎𝑘𝑒,4 Mass fraction of solvent/impurity i in cake 

– Station 4 

- V105 

 

5.3.1.1 Inputs 

The calibration parameters are thoroughly described in §5.3.2, when introducing Equations 5.10-5.12 

and 5.18-5.21. Thermophysical properties of pure components or of the cake should be taken from 

cake porosity ϵ𝑐𝑎𝑘𝑒 and specific resistance α𝑐𝑎𝑘𝑒). For running the simulator, the following controller 

set-points have to be assigned: cycle duration Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 and fed slurry volume 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

, needed by PLC 

FC101, drying gas inlet temperature 𝑇𝑖𝑛,𝑔
𝑠𝑝

 for TC101, and pressure gradient Δ𝑃𝑠𝑝 provided by 

compressor P102. The cycle duration, pressure gradient and drying gas inlet temperature are assumed 

to be perfectly controlled with no dynamics; therefore, their calculated values are always equal to the 

relevant set-points. On the other hand, the fed slurry volume 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 is not necessarily equal to 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

, 

because a set of multiplicative factors 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑑𝑖𝑠𝑡 , each one associated to a specific cycle, can be set as 

disturbances, so that, for every cycle, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 = 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝  𝑉𝑠𝑙𝑢𝑟𝑟𝑦

𝑑𝑖𝑠𝑡 . Analogous multiplicative 

disturbances, whose values vary at every cycle, are set for the specific cake resistance α, the cake 

porosity ϵ, the drying kinetic constant ℎ𝑀,𝑖, for species 𝑖, and the heat transfer coefficient between 

cake and air during drying ℎ𝑇, and are, respectively, denoted as: α𝑑𝑖𝑠𝑡, ϵ𝑑𝑖𝑠𝑡, ℎ𝑀,𝑖
𝑑𝑖𝑠𝑡, and ℎ𝑇

𝑑𝑖𝑠𝑡. Hence, 

in the equations of the simulator: α = α𝑐𝑎𝑘𝑒  α
𝑑𝑖𝑠𝑡, ϵ = ϵ𝑐𝑎𝑘𝑒  ϵ

𝑑𝑖𝑠𝑡, ℎ𝑀,𝑖 = ℎ𝑀,𝑖,𝑐𝑎𝑘𝑒 ℎ𝑀,𝑖
𝑑𝑖𝑠𝑡, and ℎ𝑇 =

ℎ𝑇,𝑐𝑎𝑘𝑒 ℎ𝑇
𝑑𝑖𝑠𝑡 (ℎ𝑀,𝑖,𝑐𝑎𝑘𝑒 and ℎ𝑇,𝑐𝑎𝑘𝑒 are, respectively, defined in Equations 5.11-12). While ϵ𝑑𝑖𝑠𝑡 is an 

input of the simulator (Table 5.2), α𝑑𝑖𝑠𝑡 is calculated according to the Kozeny-Carman equation 

(Ripperger, 2013): α𝑑𝑖𝑠𝑡 = 1 + (1 − ϵ𝑑𝑖𝑠𝑡)/(ϵ𝑑𝑖𝑠𝑡)3. The crystals concentration of the fed slurry 

𝑐𝑠𝑙𝑢𝑟𝑟𝑦, the vector 𝐰𝑙,𝑠𝑙𝑢𝑟𝑟𝑦 of the mass fractions of every component 𝑖 of the liquid phase of the 

slurry (for 𝑖 = 1, 2, …, 𝑁𝐿; with 𝑁𝐿 total number of components of the liquid phase of the system), 

and the vector 𝐰𝑖𝑛,𝑔 of the inlet mass fraction of every component i of the drying gas are additional 

disturbances in the simulator (note that the solid phase of the slurry is constituted by pure crystals). 

Profiles for the resistances of the meshes of Stations 1-4 (𝑅𝑚,1, 𝑅𝑚,2, 𝑅𝑚,3 and 𝑅𝑚,4), representing 

the degree of mesh fouling, also have to be provided.  

5.3.1.2 Outputs 

The outputs generated by the simulator are i) variables that are not measured in the real system (e.g., 

states) and ii) variables that are also measured in the real system (further referred to as simulated 

measurements and denoted by the symbol 𝑦). The former group is made up of solvents and impurities 

content (𝑤𝑖,𝑐𝑎𝑘𝑒,𝑗, for i = 1, 2, …, 𝑁𝐿, for every  processing station 𝑗 =1, 2, …, 4) and saturation (𝑆𝑗, 

𝑗 =1, 2, …, 4; ratio between volume of liquid in the cake and pores volume) of the cakes being 
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processed in each of the stations. Variables 𝑤𝑖,𝑐𝑎𝑘𝑒,𝑗 and 𝑆𝑗 are provided as dynamic one-dimensional 

profiles along the axial coordinate of the cake, following the reference system of Figure 5.2. The 

simulated measurements and the corresponding sensors in Figure 5.1 are: the slurry concentration 

measurement 𝑦𝑐𝑠𝑙𝑢𝑟𝑟𝑦  (from AI101), the cake height 𝑦𝐻𝑐𝑎𝑘𝑒  and slurry volume 𝑦𝑉𝑠𝑙𝑢𝑟𝑟𝑦  (from LI101), 

the measured inlet (from TI101) and outlet drying gas temperatures (from TI102), the measurement 

of pressure below the filter meshes 𝑦𝑃 (from PI101; 𝑦𝑃 always corresponds to atmospheric pressure 

in the simulator, due to the absence of vacuum pump P101), the gas flowrate measurement 𝑦𝑉̇𝑑𝑟𝑦𝑒𝑟  

(from FI101), and the measurements of weight of filtrate 𝑦𝑀𝑓𝑖𝑙𝑡
 (from WI101).  All simulated 

measurements are generated from the corresponding calculated variables in the simulator, either by 

adding white noise, or by rounding the calculated variable up to the readability of industrial sensors. 

White noise with standard deviation equal to 2 kg/m3, as for sensors described in the literature 

(Bamberger and Greenwood, 2004a, 2004b) is assigned to 𝑦𝑐𝑠𝑙𝑢𝑟𝑟𝑦 . Variables  𝑦𝐻𝑐𝑎𝑘𝑒  and 𝑦𝑉𝑠𝑙𝑢𝑟𝑟𝑦  are 

considered noise free, due to the high accuracy of camera systems installed in commercial scale 

carousels (Ottoboni et al., 2020a). Variables 𝑦𝑇𝑖𝑛 and 𝑦𝑇𝑜𝑢𝑡 are generated by rounding the actual 

temperatures to a 0.1°C readability, as for standard commercial thermocouples. The actual gas 

flowrate used in the simulator is rounded to 0.1 NL/min readability to obtain 𝑦𝑉̇𝑑𝑟𝑦𝑒𝑟, to meet the 

accuracy of the flowmeter installed in the prototype carousel. Filtrate weight measurements have 

white noise of standard deviation of 0.05 g, as in the scale installed in the prototype carousel used for 

data collection in this work (§5.2). The sampling time of the measurements and of the states made 

available to the user can be freely adjusted, and is fixed to 0.25 s in this study. 

5.3.2 Mathematical modeling 

The filtration and deliquoring models implemented in the simulator are basically the same of those 

described in Chapter 4, respectively in §4.3.3 and §4.3.4. The only change regards the inclusion in 

the filtration model of an equation for calculating the dynamic profile of filtrate mass, a required 

output of the carousel simulator (Table 5.2), but not directly available from the equations in §4.3.3: 

𝑀𝑓𝑖𝑙𝑡(𝑡) =
−𝑏𝑓𝑖𝑙𝑡+√𝑏𝑓𝑖𝑙𝑡

2 −4𝑎𝑓𝑖𝑙𝑡𝑐𝑓𝑖𝑙𝑡

2 𝑎𝑓𝑖𝑙𝑡 ρ𝐿
 ,                              (5.1) 

where 𝑀𝑓𝑖𝑙𝑡(𝑡) is the filtrate mass collected from the filtration onset up to time 𝑡, ρ𝐿 is the filtrate 

density, and: 

𝑎𝑓𝑖𝑙𝑡 =
α μ𝑙

2 𝐴2

𝑉𝑠𝑙𝑢𝑟𝑟𝑦 𝑐𝑠𝑙𝑢𝑟𝑟𝑦

𝑉𝑓𝑖𝑙𝑡,𝑓𝑖𝑛𝑎𝑙
                      (5.2) 

𝑏𝑓𝑖𝑙𝑡 =
𝑅𝑚μ𝑙

𝐴
                         (5.3) 

𝑐𝑓𝑖𝑙𝑡 = − Δ𝑃 𝑡 ,                              (5.4) 

in which α is the specific cake resistance, μ
l
 is the liquid viscosity, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 is the fed slurry volume, 



152                                                                                                                                                                            Chapter 5 

_______________________________________________________________ 

© 2021 Francesco Destro, University of Padova (Italy) 

𝑐𝑠𝑙𝑢𝑟𝑟𝑦 is the crystals concentration in the fed slurry, A is the filter cross-section, Vfilt, final is the volume 

of filtrate at the end of filtration (Equation 4.11), Rm is the filter mesh resistance and Δ𝑃 is the pressure 

gradient across the port. 

The filtration model is implemented as a MATLAB function, whereas the deliquoring and drying 

models are coded in a C environment and interfaced with MATLAB through a C-MEX function, to 

enhance the computational speed. 

The drying component is derived from the model in §4.3.6, but it has been updated based on the 

experimental results of §5.4.3 to better reproduce the behavior of the carousel, as outlined in the 

remainder of this section. The drying model is based on the material balance on the cake of the 𝑁𝐿,𝑣𝑜𝑙 

volatile species (Equation 5.5), on the material balance in the gas phase of the 𝑁𝐿,𝑣𝑜𝑙 volatile species 

(Equation 5.6), on the energy balance of the cake (considered as a pseudo-homogeneous phase 

combining liquid and solid; Equation 5.7) and on the energy balance of the gas phase (Equation 5.8), 

all dynamic one-dimensional partial differential equations: 

𝜕

𝜕𝑡
𝑤𝑖,𝑐𝑎𝑘𝑒 = − 

ṁi
L→G

ρ𝑐𝑎𝑘𝑒
,      for 𝑖 =  1, … , 𝑁𝐿,𝑣𝑜𝑙                             (5.5) 

ρ𝑔ϵ(1 − 𝑆)
𝜕

𝜕𝑡
𝑤𝑖,𝑔 = −ρ𝑔𝑢𝑔

𝜕

𝜕𝑧
𝑤𝑖,𝑔 + 𝑚̇𝑖

𝐿→𝐺 ,        for 𝑖 =  1, … , 𝑁𝐿,𝑣𝑜𝑙                                     (5.6) 

(𝜌𝑠𝑐𝑝,𝑠(1 −  𝜖) + 𝜌𝑙𝑐𝑝,𝑙𝜖𝑆)
𝜕𝑇𝑐𝑎𝑘𝑒

𝜕𝑡
= ℎ𝑇𝑎(𝑇𝑔 − 𝑇𝑐𝑎𝑘𝑒) + ∑ (𝑚̇𝑖

𝐿→𝐺𝜆𝑖)
𝑁𝐿,𝑣𝑜𝑙
𝑖 + 𝑄̇𝑠                        (5.7)          

(𝜌𝑔𝑐𝑝,𝑔𝜖(1 − 𝑆))
𝜕𝑇𝑔

𝜕𝑡
= −ℎ𝑇𝑎(𝑇𝑔 − 𝑇𝑐𝑎𝑘𝑒)  −  𝑢𝑔𝑐𝑝,𝑔𝜌𝑔

𝜕𝑇𝑔

𝜕𝑧
 ,                  (5.8) 

where 𝑤𝑖,𝑐𝑎𝑘𝑒 is the mass fraction of 𝑖 in the cake, ρ𝑐𝑎𝑘𝑒 is the cake density (ρ𝑐𝑎𝑘𝑒 = ρ𝑠(1 − ϵ) +

ρ𝑙  𝑆 ϵ), ṁi
L→G is the drying rate [kg/m3], ρ𝑔 is the gas density, 𝑤𝑖,𝑔 is the mass fraction of 𝑖 in the gas 

phase, 𝑢𝑔 is the superficial gas velocity, cp,s is the solid phase specific heat, cp,l is the liquid phase 

specific heat, 𝑇𝑐𝑎𝑘𝑒 is the temperature of the cake, 𝑎 is the cake specific surface, 𝑇𝑔 is the gas 

temperature, λ𝑖 is the latent heat of vaporization of species i, 𝑄̇𝑠 is the heat exchange between the 

cake and the environment (namely the heat loss through the dryer walls, assumed equal to zero in this 

work), and cp,g is the gas phase specific heat.  

For simulation purposes, 𝑢𝑔 is calculated from through the Darcy law for mono-phase gas flow in a 

porous medium (Muskat and Meres, 1936): 

𝑢𝑔 = −
1 

α ρ𝑠 (1−ϵ) μ𝑔 
 
Δ𝑃  

𝐻𝑐𝑎𝑘𝑒
 ,                     (5.9) 

As a remark, all the variables of Equations 5.5-5.8 are local variables, that vary with both time and 𝑧. 

Note that the material balances in the cake for the non-volatile components of the cake are not solved, 

since their concentration in the cake is constant during drying. For the same reason, the species 

material balance is solved only for the volatile components of the cake. 

The local drying rate ṁi
L→G [kg/(m3 s)] for 𝑖 =  1, … , 𝑁𝐿,𝑣𝑜𝑙 is computed as (Burgschweiger and 

Tsotsas, 2002): 
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ṁi
L→G = {

hM,i a(𝑃i,sat- 𝑃i,g)ηi
                 𝑖𝑓 𝑃i,sat > 𝑃i,g

0                                                𝑖𝑓 𝑃i,sat ≤ 𝑃i,g

,  for 𝑖 =  1, … ,𝑁𝐿,𝑣𝑜𝑙              (5.10) 

where 𝑃i,sat is the saturation pressure, 𝑃i,g is the partial pressure of i in the gas phase, and η
i
 is the 

effectiveness factor, accounting for internal mass transfer limitations, varying from zero and one. 

Function η
i
(𝑤𝑖,𝑐𝑎𝑘𝑒,4) is equal to one when 𝑤𝑖,𝑐𝑎𝑘𝑒,4 is larger than a certain critical value 𝑤𝑖,𝑐𝑎𝑘𝑒

𝑐𝑟𝑖𝑡 , and 

starts decaying when 𝑤𝑖,𝑐𝑎𝑘𝑒,4 drops below 𝑤𝑖,𝑐𝑎𝑘𝑒
𝑐𝑟𝑖𝑡 , eventually reaching a null value when 𝑤𝑖,𝑐𝑎𝑘𝑒,4 

approaches an equilibrium value 𝑤𝑖,𝑐𝑎𝑘𝑒
𝑒𝑞

. Suitable experiments (Burgschweiger and Tsotsas, 2002) 

should be conducted for identifying η
i
(𝑤𝑖,𝑐𝑎𝑘𝑒,4), 𝑤𝑖,𝑐𝑎𝑘𝑒

𝑐𝑟𝑖𝑡  and 𝑤𝑖,𝑐𝑎𝑘𝑒
𝑒𝑞

 for 𝑖 = 1, 2, … ,𝑁𝐿. 

The main difference between the model of Equations 5.5-5.8 and the model in §4.3.6 is that here the 

assumption of fast heat transfer (i.e., temperature equilibrium) between the gas phase and the cake is 

dropped. Following a more general approach the gas and the cake temperature , are separately 

computed through two distinct energy balances (Equations 5.7 and 5.8), connected by the heat transfer 

term.  

Conventional correlations for heat and mass transfer in packed beds (Bird et al., 2006; Treybal, 1980), 

lead to overestimation of heat and mass transfer coefficients when applied to systems with small 

particles, such as crystals cakes, in which the Reynolds number (proportional to 𝑑32, the Sauter mean 

diameter of the crystal size distribution) can assume abnormally low values. Different reasons have 

been proposed to explain this phenomenon (Cornish, 1965; Gabor et al., 1985; Glicksman and Joos, 

1980). In the simulator, we use correlations that describe the reduction of heat and mass transfer in 

packed beds composed of fine particles by considering channeling phenomena, affecting the fluid 

flow (Kunii and Suzuki, 1967): 

ℎ𝑀,𝑖,𝑐𝑎𝑘𝑒 =
ρ𝑔𝑢𝑔

𝑎  ξ 𝑑32 𝑃
                      (5.11) 

ℎ𝑇,𝑐𝑎𝑘𝑒 =
𝑐𝑝,𝑔ρ𝑔𝑢𝑔

𝑎  ξ 𝑑32
  ,                     (5.12) 

where ξ is the channeling parameter, which should be regressed from experimental data. In Equations 

5.7-5.9, hM,i and ℎ𝑇 are, respectively, calculated by multiplying the mass (ℎ𝑀,𝑖,𝑐𝑎𝑘𝑒) and heat (ℎ𝑇,𝑐𝑎𝑘𝑒) 

transfer coefficients found from Equations 5.11-5.12 by the corresponding multiplicative 

disturbances (ℎ𝑀,𝑖
𝑑𝑖𝑠𝑡 and ℎ𝑇

𝑑𝑖𝑠𝑡). 

The drying model of Equations 5.5-5.12 presents 1+NL,vol partial differential equations, which are 

integrated with MATLAB’s ode15s solver upon semi-discretization along z (grid spacing equal to 0.3 

mm) with a first-order upwind scheme. The simulator outputs related to drying in Table 5.2 are 

directly obtained from the integration, or indirectly through trivial mass balances. The initial 

conditions of the drying model are the outputs of the filtration or of the deliquoring model. The initial 

𝑇𝑔 and 𝑇𝑐𝑎𝑘𝑒 correspond to room temperature for every z. The boundary conditions are given by the 

drying gas inlet composition, input of the simulator (Table 5.2), and the temperature of the drying gas 

entering the cake 𝑇𝑔(𝑡, 𝑧 = 0).  
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Preliminary experiments drying experiments on the carousel showed that, due to the heat transfer 

from the air flowing into the dryer to the walls, the gas temperature 𝑇𝐻𝐿 on top of the cake is lower 

than 𝑇𝑖𝑛
𝑚𝑒𝑎𝑠, the gas temperature measured by TI101 (Figure 5.2). To reproduce this phenomenon in 

the simulator, we introduce an equation for calculating 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐, the calculated temperature of the drying 

gas on top of the cake (Figure 5.2), used as boundary condition in the drying model by imposing 

𝑇𝑔(𝑡, 𝑧 = 0) = 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐. The dynamic macroscopic energy balance for the gas flowing in the part of the 

dryer above the cake reads, under the simplifying assumption of perfect mixing: 

𝑑(ρ𝑔𝑐𝑝,𝑔𝑉𝑒𝑚𝑝𝑡𝑦 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐)

𝑑𝑡
= ρ𝑔𝑢𝑔𝑐𝑝,𝑔𝐴𝑑𝑟𝑦𝑒𝑟

𝑐𝑟𝑜𝑠𝑠 (𝑇𝑖𝑛
𝑐𝑎𝑙𝑐 − 𝑇𝐻𝐿

𝑐𝑎𝑙𝑐) − ℎ𝐻𝐿𝐴𝑒𝑚𝑝𝑡𝑦
𝑙𝑎𝑡 (𝑇𝑖𝑛

𝑐𝑎𝑙𝑐 − 𝑇𝑟𝑜𝑜𝑚) ,          (5.13) 

where 𝑉𝑒𝑚𝑝𝑡𝑦 is the volume of the empty portion of the dryer, 𝐴𝑑𝑟𝑦𝑒𝑟
𝑐𝑟𝑜𝑠𝑠  is the cross-section of the dryer, 

ℎ𝐻𝐿 is the heat transfer coefficient between the drying gas and the dryer walls, 𝐴𝑒𝑚𝑝𝑡𝑦
𝑙𝑎𝑡  is the surface 

of the empty part of the dryer, and 𝑇𝑟𝑜𝑜𝑚 is the room temperature during the experiment. In Equation 

5.13, 𝑉𝑒𝑚𝑝𝑡𝑦 and 𝐴𝑒𝑚𝑝𝑡𝑦
𝑙𝑎𝑡  depend on 𝐻𝑐𝑎𝑘𝑒. Since, even with highly concentrated slurries, 𝐻𝑐𝑎𝑘𝑒 is 

much smaller (<20%) than the dryer height, we simplify Equation 5.13 by assuming that, for every 

𝐻𝑐𝑎𝑘𝑒, 𝑉𝑒𝑚𝑝𝑡𝑦 = 𝑉𝑑𝑟𝑦𝑒𝑟 (the dryer volume), and 𝐴𝑒𝑚𝑝𝑡𝑦
𝑙𝑎𝑡 = 𝐴𝑑𝑟𝑦𝑒𝑟 (the dryer surface). Practically 

speaking, this assumption means that the temperature decrease from the dryer inlet to the top of the 

cake does not depend on 𝐻𝑐𝑎𝑘𝑒. Rearranging Equation 5.13 with the introduced simplifying 

assumption: 

𝑉𝑑𝑟𝑦𝑒𝑟

𝑢𝑔 𝐴𝑑𝑟𝑦𝑒𝑟
𝑐𝑟𝑜𝑠𝑠

𝑑𝑇𝐻𝐿
𝑐𝑎𝑙𝑐

𝑑𝑡
= 𝑇𝑖𝑛

𝑐𝑎𝑙𝑐 − 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐 −

ℎ𝐻𝐿𝐴𝑑𝑟𝑦𝑒𝑟
𝑙𝑎𝑡

ρ𝑔𝑢𝑔𝑐𝑝,𝑔𝐴𝑑𝑟𝑦𝑒𝑟
𝑐𝑟𝑜𝑠𝑠 (𝑇𝑖𝑛

𝑐𝑎𝑙𝑐 − 𝑇𝑟𝑜𝑜𝑚)              (5.14) 

Introducing the time constant τ𝐻𝐿 and the heat loss coefficient α𝐻𝐿, Equation 5.14 is reformulated as: 

τ𝐻𝐿
𝑑𝑇𝐻𝐿

𝑐𝑎𝑙𝑐

𝑑𝑡
= 𝑇𝑖𝑛

𝑐𝑎𝑙𝑐 − 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐 − α𝐻𝐿  (𝑇𝑖𝑛

𝑐𝑎𝑙𝑐 − 𝑇𝑟𝑜𝑜𝑚) ,               (5.15) 

with: 

τ𝐻𝐿 =
𝑉𝑑𝑟𝑦𝑒𝑟

𝑢𝑔 𝐴𝑑𝑟𝑦𝑒𝑟
𝑐𝑟𝑜𝑠𝑠                     (5.16) 

α𝐻𝐿 =
ℎ𝐻𝐿𝐴𝑑𝑟𝑦𝑒𝑟

𝑙𝑎𝑡

ρ𝑔𝑢𝑔𝑐𝑝,𝑔𝐴𝑑𝑟𝑦𝑒𝑟
𝑐𝑟𝑜𝑠𝑠                                (5.17) 

Discretizing Equation 5.15 with respect to time, at time step 𝑡𝑘: 

𝑇𝐻𝐿
𝑐𝑎𝑙𝑐(𝑡𝑘) = (1 − α(𝑡𝑘)) 𝑇𝐻𝐿

𝑐𝑎𝑙𝑐(𝑡𝑘−1) + α(𝑡𝑘)(𝑇𝑖𝑛
𝑐𝑎𝑙𝑐 − β𝐻𝐿 (𝑇𝑖𝑛

𝑐𝑎𝑙𝑐 − 𝑇𝑟𝑜𝑜𝑚) ),                       (5.18) 

where: 

α(𝑡𝑘) =
𝑡𝑘−𝑡𝑘−1

τ𝐻𝐿+𝑡𝑘−𝑡𝑘−1
                    (5.19) 
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Equation 5.18 is initialized by setting at 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐 = 𝑇𝑟𝑜𝑜𝑚 at 𝑡𝑘 = 0 (beginning of each carousel cycle). 

From Equations 5.16-5.17, and neglecting the weak dependence of α𝐻𝐿 on temperature and pressure, 

𝑢𝑔 is the only variable on which τ𝐻𝐿 and α𝐻𝐿 depend. We introduce an additional simplifying 

assumption, by reformulating Equations 5.16-5.17 in linear terms with respect to 𝑢𝑔, and introducing 

calibration parameters τ𝐻𝐿,1, τ𝐻𝐿,2, α𝐻𝐿,1 and α𝐻𝐿,2. Equations 11 and 12, respectively, become: 

τ𝐻𝐿 = τ𝐻𝐿,1 + τ𝐻𝐿,2𝑢𝑔                              (5.20) 

α𝐻𝐿 = α𝐻𝐿,1 + α𝐻𝐿,2𝑢𝑔                  (5.21) 

From a sensitivity analysis, τ𝐻𝐿,2 does not significantly impact the model predictions, and is set equal 

to zero for reducing the number of calibration parameters. Overall, in the simulator, 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐 is calculated 

through Equations 5.18-21, which present three calibration parameters (τ𝐻𝐿,1, α𝐻𝐿,1 and α𝐻𝐿,2), and 

depend on 𝑢𝑔 and 𝑇𝑖𝑛
𝑐𝑎𝑙𝑐. 

5.4 Carousel simulator calibration 

5.4.1 Overview 

The simulator is calibrated to a process for isolating paracetamol from a paracetamol/ethanol slurry, 

with 25%w crystals concentration. The considered paracetamol, used for the experiments reported in 

this section, comes from the same batch of the one used for the experiments of Chapter 4. The size 

distribution of the crystals used for the experiments is characterized with a Mastersizer 3000 by 

Malvern Panalytical (Malvern, UK), yielding d32 equal to 47.2 μm. and a specific surface a equal to 

100.9 m2/kg. The crystal size distribution has been reported in Figure 4.5. No impurities are present 

in the slurry; hence the liquid phase is solely composed by ethanol, and the solid phase is constituted 

by pure paracetamol crystals.  

Simulator calibration consists in assigning the thermophysical properties and the calibration 

parameters of Table 5.2, together with providing suitable profiles for the disturbances.  

The thermophysical properties of liquid ethanol are obtained from Perry's Chemical Engineers’ 

Handbook (Green and Southard, 2019). While paracetamol crystals density is taken from the literature 

(Haynes, 2014), we consider the specific heat as a calibration parameter, to improve the agreement 

of the simulator predictions with drying experiments results (Section §5.4.4). We obtain the cake 

properties α𝑐𝑎𝑘𝑒, ϵ𝑐𝑎𝑘𝑒 and 𝑆∞ (deliquoring equilibrium saturation §4.3.4) from experimental data 

(§5.4.1), too. Air is selected as the drying gas. Thermophysical properties of the pure components of 

the gas phase and the saturation pressures are also taken from Perry's (Green and Southard, 2019), 

resorting to temperature-dependent relations. Ideal gas mixing rules are used for calculating the gas 

phase properties from the pure components properties. 
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Table 5.3 shows the values of the parameters estimated from experiments in this study, including both 

the default calibration parameters of the simulator (Table 5.2), the thermophysical properties treated 

as calibration parameters following the above discussion (𝑐𝑝,𝑠, 𝑆∞, α𝑐𝑎𝑘𝑒, and ϵ𝑐𝑎𝑘𝑒), and additional 

parameters estimated from the experiments, although not directly needed by the simulator. Note that 

all the estimated parameters pass the t-test for statistical significance. The next subsections detail the 

experimental and the model calibration procedures followed for reaching the parameter estimation 

results reported in Table 5.3. A final subsection describes the disturbances implemented in the 

simulator. 

 
Table 5.3. Simulator calibration: parameter estimation results from filtration, 

drying and heat loss experiments. 
Symbol Parameter Unit Estimated 

value 

Estimated from Estimation 

technique 

t-value 

(95% CL)*

  

𝑐𝑝,𝑠  Paracetamol crystals 

specific heat 

J/(kg 

K) 

2267 Drying 

experiments 

MLE 3.69 

𝑅𝑚,1
𝑓𝑖𝑙𝑡1

  Filter mesh resistance – 

filtration experiment #1 

1/m 7.6E9 Filtration 

experiments 

MLE 63.58 

𝑅𝑚,1
𝑓𝑖𝑙𝑡2

  Filter mesh resistance – 

filtration experiment #2 

1/m 4.7E9 

 

Filtration 

experiments 

MLE 11.67 

𝑅𝑚,1
𝑓𝑖𝑙𝑡3

  Filter mesh resistance – 

filtration experiment #3 

1/m 4.9E9 Filtration 

experiments 

MLE 26.59 

𝑅𝑚,1
𝑓𝑖𝑙𝑡4

  Filter mesh resistance – 

filtration experiment #4 

1/m 3.8E9 Filtration 

experiments 

MLE 77.70 

𝑆0
𝑑𝑟𝑦1

  Initial ethanol content – 

drying experiment #1 

- 0.089 Drying 

experiments 

MLE 2.36 

𝑆0
𝑑𝑟𝑦2

  Initial ethanol content – 

drying experiment #2 

- 0.132 Drying 

experiments 

MLE 2.10 

𝑆∞  Cake deliquoring 

equilibrium saturation 

- 0.085 Drying 

experiments 

Qualitative 

estimation 

- 

α𝑐𝑎𝑘𝑒   Specific cake resistance m/kg 2.6E9 Filtration 

experiments 

MLE 97.59 

α𝐻𝐿,1  Air-wall heat transfer 

coefficient - intercept 

- 0.70 Heat loss 

experiments 

MLE 254.68 

α𝐻𝐿,2  Air-wall heat transfer 

coefficient - slope 

s/m -0.72 Heat loss 

experiments 

MLE 60.52 

ϵ𝑐𝑎𝑘𝑒   Cake porosity - 3.5E-1 Filtration and 

drying experiments 

Measurement 

(§2.2) 

- 

η
EtOH

  Drying effectiveness 

factor for ethanol 

- Equation 18 Chapter 4 - - 

ξ  
 

Tunneling parameter - 199.8 Drying 

experiments 

MLE 3.66 

 

τ𝐻𝐿,1  Air-wall heat transfer 

time constant 

s 68.9 Heat loss 

experiments 

MLE 50.34 

*Reference t-value at 95% confidence = 1.65. 

5.4.2 Filtration: experiments and model calibration 

Four filtration experiments (#F1-4) are carried out by loading the crystallization slurry into the first 

port of the carousel setup (§5.2), and activating vacuum pump P101. Filtrate time profiles (Figure 
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5.3) are recorded through WI101 (Mettler Toledo ML6002T precision balance, of readability 0.01 g). 

The filtration pressure gradient is also measured (through PI101) and recorded. In each experiment, 

a different volume of slurry in the range 4-10 mL is fed to the carousel, to better characterize the 

filtration behavior across the whole span of slurry volumes that are fed to the carousel during normal 

operation. Before every filtration experiment, pure ethanol is loaded into the first port of the carousel 

and filtered out through the vacuum pump, to clean up the mesh and restore similar initial mesh 

 

 
(a)                                                                              (b) 

 
(c)                                                                            (d) 

Figure 5.3. Filtration experiments: measured  filtrate volume vs. model prediction 

for: (a) #F1, (b) #F2, (c) #F3, and (d) #F4. Experimental values are reported also 

for deliquoring, while model predictions stop at the end of filtration. 

 

conditions for every run.  

Filtration experiments #F1-4 are used for estimating α𝑐𝑎𝑘𝑒 (Table 5.3), fitting (Figure 5.3) the filtrate 

weight profiles with the filtration model (§5.3.2) through maximum likelihood estimation (MLE). 

The pressure gradient profiles measured during the experiments with PI101 are used as model inputs. 

Even though the filter mesh is cleaned after every run, independent filter mesh resistance parameters 

(𝑅𝑚,1
𝑓𝑖𝑙𝑡1

, 𝑅𝑚,1
𝑓𝑖𝑙𝑡2

, 𝑅𝑚,1
𝑓𝑖𝑙𝑡3

 and 𝑅𝑚,1
𝑓𝑖𝑙𝑡4

) are regressed for the four experiments. A non-negligible variability 

of the fouling conditions after mesh cleaning is registered (Table 5.3). The estimated α𝑐𝑎𝑘𝑒, equal to 
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2.6E9 m/kg, is aligned to specific cake resistances previously found on the analogous 

paracetamol/ethanol slurry analyzed in Chapter 4 (§4.4). 

5.4.3 Heat loss in dryer: experiments and model calibration 

Heat loss experiments are carried out to calibrate the heat loss model of Equations 5.18-5.21, used in 

the simulator for calculating the gas temperature on top of the cake 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐. Four (#H1-4) “heat loss 

experiments” (Figure 5.4) are carried out, at different air inlet temperature and air flowrate conditions, 

to study their impact on the heat transfer phenomena. The experiments are carried out by flowing hot 

air in the empty dryer, with no material in the port, and recording the air inlet 𝑇𝑖𝑛
𝑚𝑒𝑎𝑠 and outlet 

temperatures 𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠, and the air flowrate 𝑉̇𝑖𝑛

𝑚𝑒𝑎𝑠. The air inlet temperature set-point 𝑇𝑠𝑝
𝑚𝑒𝑎𝑠 is changed 

stepwise (Figure 5.4b,c,d), to cover the temperature interval at which paracetamol is 

 

 
(a)                                                                              (b) 

 
(c)                                                                            (d) 

Figure 5.4. Heat loss experiments. measured inlet drying air temperature (𝑇𝑖𝑛
𝑚𝑒𝑎𝑠), 

inlet drying air temperature set-point (𝑇𝑠𝑝
𝑚𝑒𝑎𝑠), and of outlet drying air temperature 

(𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠)vs model predictions of outlet drying air temperature (𝑇𝐻𝐿

𝑐𝑎𝑙𝑐 = 𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠) for: 

(a) #H1, (b) #H2, (c) #H3 and (d): #H4. 
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typically, dried (30-80°C). Note that, in the carousel prototype, the air flowrate is not a controlled 

variable, and it depends on the local mesh fouling conditions and on the cake height. The air flowrate 

measured during heat loss experiments (not plotted here for conciseness) fluctuates within small 

ranges, as in the drying experiments of Figures 5.5c,d. For heat loss experiments #H1-4, the ranges 

are, respectively: 0.8-1.4 NL/min, 1.3-1.8 NL/min, 1.9-2.5 NL/min, and 4.1-4.4 NL/min. The air 

flowrate ranges of experiments #H1-4 cover all the range of variability encountered during carousel 

operation. The air flowrate range of #H1 corresponds to severe mesh fouling conditions, when very 

little gas flows. On the other hand, the air flowrate registered during #H4 corresponds to the maximum 

flowrate that can be obtained for the current carousel/vacuum pump setup, and corresponds to 

completely cleaned mesh conditions. Mesh fouling conditions of #H2 and #H3 are intermediate 

between those of #H1 and #H4. 

Experiments #H1-4 are used for estimating τ𝐻𝐿,1, α𝐻𝐿,1 and α𝐻𝐿,2 (Equations 5.18-5.21), through 

MLE, by fitting 𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠 with 𝑇𝐻𝐿

𝑐𝑎𝑙𝑐. 𝑇𝑖𝑛
𝑚𝑒𝑎𝑠 and 𝑉̇𝑖𝑛

𝑚𝑒𝑎𝑠 profiles are used as inputs to the model (𝑉̇𝑖𝑛
𝑚𝑒𝑎𝑠 

is used for calculating the actual 𝑢𝑔, instead of resorting to Equation 5.9). A good fitting is achieved 

(Figure 5.4), and all estimated parameters pass the t-test (Table 5.3). Note that in the drying 

experiments of Figures 5.5a and 5.5b, at the end of drying, 𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠 approaches 𝑇𝐻𝐿

𝑐𝑎𝑙𝑐, validating the 

calibrated heat loss model. 

5.4.4 Drying 

Two drying experiments are performed using the same slurry employed for filtration, for calibrating 

the drying model. Air is used as drying gas. Drying experiments are carried out as follow. A slurry 

volume of 8 mL is fed to the carousel, filtered for 40 s in the first station, and then filtered for other 

40 s in the second one. Immediately afterwards, the wet cake is directly transferred to Station 4 

through carousel rotations, for the drying step. The measurements of air inlet temperature (𝑇𝑖𝑛
𝑚𝑒𝑎𝑠), 

air outlet temperature (𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠) and air inlet flowrate (𝑉̇𝑖𝑛

𝑚𝑒𝑎𝑠) during the drying are recorded (Figure 

5.5). Note that, as for heat loss experiments, the air flowrate is not a manipulated variable in the 

carousel prototype. The set-point of the air inlet temperature 𝑇𝑠𝑝
𝑚𝑒𝑎𝑠 is set to 50 °C for experiment 

#D1, and to 70 °C for experiment #D2. However, the heating system of the prototype carousel cannot 

quickly heat the inlet air up to the set-point: a slowly increasing 𝑇𝑖𝑛
𝑚𝑒𝑎𝑠 profile, starting from ambient 

temperature, is registered during the experiments (Figures 5a and 5b). At the beginning of drying, the 

outlet temperature 𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠 drops (Figure 5a,b), due to the latent heat of vaporization of ethanol. As the 

drying rate slows down, 𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠 starts rising again. The cakes collected at the end of the drying step 

are discharged from the carousel, weighed and placed in a convective oven at 30 °C. Subsequent 

measurements after 24 h revealed no change of weight, meaning that no residual ethanol was present 

in the cake at the end of drying in the carousel. The cakes obtained from filtration and drying 

experiments present a porosity of 0.35, consistently with results of Chapter 4 (§4.4). 

Parameters 𝑐𝑝,𝑠 and ξ are estimated by making use of experiments #D1-2. Since the actual initial cake 
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saturations in the experiments (𝑆0
𝑑𝑟𝑦1

 and 𝑆0
𝑑𝑟𝑦2

) are unknown, they are considered additional 

parameters to be estimated. The drying effectiveness factor η
𝐸𝑡𝑂𝐻

 for ethanol and the relevant critical 

ethanol contents in the cake are taken from §4.4, as derived (Equation 4.37) from thermogravimetric 

analysis experiments on an analogous paracetamol/ethanol drying cake. 𝑉̇𝑖𝑛
𝑚𝑒𝑎𝑠 and 𝑇𝑖𝑛

𝑚𝑒𝑎𝑠 profiles 

are used as inputs to the model. Variable 𝑉̇𝑖𝑛
𝑚𝑒𝑎𝑠 is used to directly calculate 𝑢𝑔, instead than resorting 

to Equation 5.9. The heat loss model (Equations 5.18-5.21) is used to calculate 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐 from 𝑇𝑖𝑛

𝑚𝑒𝑎𝑠 and 

𝑢𝑔. 

The measured air outlet temperature profiles 𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠 are fitted with the calculated outlet air 

temperature profiles 𝑇𝑜𝑢𝑡
𝑐𝑎𝑙𝑐(= 𝑇𝑔(𝑡, 𝑧 = 𝐻𝑐𝑎𝑘𝑒)) through MLE (Figures 5.5a and 5.5b). The estimated 

set of parameters leads to predicting the temperatures profiles of the cake at the bottom 𝑇𝑐𝑎𝑘𝑒,𝑏𝑜𝑡𝑡𝑜𝑚
𝑐𝑎𝑙𝑐 , 

reported in Figures 5a and 5b. However, since in the experiments the cake temperature is not 

measured in any point, 𝑇𝑐𝑎𝑘𝑒,𝑏𝑜𝑡𝑡𝑜𝑚
𝑐𝑎𝑙𝑐  cannot be validated, and the estimated ξ, 𝑐𝑝,𝑠, 𝑆0

𝑑𝑟𝑦1
 and 𝑆0

𝑑𝑟𝑦2
  

 

  
(a)                                                                              (b) 

  
(c)                                                                              (d) 

Figure 5.5. Drying experiments. Measured drying air inlet (𝑇𝑖𝑛
𝑚𝑒𝑎𝑠) and outlet 

(𝑇𝑜𝑢𝑡
𝑚𝑒𝑎𝑠)temperatures, drying air inlet temperature set-point (𝑇𝑠𝑝

𝑚𝑒𝑎𝑠) vs model 

predictions of drying air temperature at cake top 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐 , of drying air outlet 

temperature 𝑇𝑜𝑢𝑡
𝑐𝑎𝑙𝑐, and of drying air temperature at cake bottom 𝑇𝑐𝑎𝑘𝑒,𝑏𝑜𝑡𝑡𝑜𝑚

𝑐𝑎𝑙𝑐  for (a) 

#D1, and (b) #D2. The measured air flowrate 𝑉̇𝑖𝑛
𝑚𝑒𝑎𝑠 is also reported for (c) #D1 

and (d) #D2. 
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are not univocally identifiable from the available set of measurements. For instance, if the actual cake 

temperature drop due to drying were lower, the optimal set of estimated parameters would be 

different. In any case, the experiments confirm the assumption introduced in §5.3.2 that the drying 

gas and the cake are not in (local) thermal equilibrium. Actually, the heat of vaporization spent by 

the solvent vaporized during experiments #D1-2 is much larger than the sensible heat lost by the gas 

and the cake, if calculated from a heat balance based on 𝑇𝑜𝑢𝑡
𝑐𝑎𝑙𝑐 under the assumption of local thermal 

equilibrium between gas and cake. Since the energy for the vaporization of the solvents during drying 

can only come from the gas and from the cake, the only possible explanation is that, during drying, 

the cake reaches lower temperatures than the gas, providing to the vaporizing solvents the energy 

necessary to close the heat balance. This conclusion is also supported by the compatibility of the 

difference between 𝑇𝑐𝑎𝑘𝑒,𝑏𝑜𝑡𝑡𝑜𝑚
𝑐𝑎𝑙𝑐  and 𝑇𝑜𝑢𝑡

𝑐𝑎𝑙𝑐 with values found in the literature for co-current rotary 

drying (Chhabra and Basavaraj, 2019) and with experiments on a similar convective cake drying 

process (Li, 2014). Considering also that it is not possible to insert thermocouples in the cake in the 

available carousel setup, and that the purpose of the simulator is providing a realistic digital 

framework for control strategy testing, we retain the estimated set of parameters of Table 5.3 in the 

simulator. 

All the estimated parameters pass the t-test (Table 5.3). The estimated ξ is  compatible with values 

from the literature (Kunii and Suzuki, 1967). The estimated 𝑐𝑝,𝑠 is slightly larger than values found 

in the literature (Harada et al., 2013); this looks reasonable, because this parameter is partly 

compensating for inaccurate modeling of the energy balance. 𝑆0
𝑑𝑟𝑦1

 and 𝑆0
𝑑𝑟𝑦2

 are estimated to be, 

respectively, 8.9 % and 13.2 %, values close to typical deliquoring equilibrium saturations (Ripperger 

et al., 2013). Based on these results, 𝑆∞ is assigned a value of 8.5 % (the weak dependence of 𝑆∞ on 

the pressure gradient is neglected). 

5.4.5 Disturbances 

The disturbances of Table 5.2 assume a new value at every carousel cycle, but do not vary within the 

same cycle. The only exceptions are the liquid phase of the slurry, always fixed to pure ethanol, and 

the drying gas inlet composition, always fixed to air’s. In this study, for simulations in normal 

operating conditions of the process, we assign Gaussian distributions N(μ, σ2) of mean μ = 1 [-] and 

variance  σ2 = 4E-4 [-] to ℎ𝑀
𝑑𝑖𝑠𝑡,  ℎ𝑇

𝑑𝑖𝑠𝑡, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑑𝑖𝑠𝑡 , and ϵ𝑑𝑖𝑠𝑡. Assigned a mean slurry concentration 

μ𝑐𝑠𝑙𝑢𝑟𝑟𝑦 desired for a certain simulation, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 is calculated as 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 = N(μ𝑐𝑠𝑙𝑢𝑟𝑟𝑦, μ𝑐
2
𝑠𝑙𝑢𝑟𝑟𝑦

4E-4) 

kg/m3.  

A realistic routine simulating filter mesh fouling and cleaning-in-place is implemented in the 

simulator (Figure 5.6). 𝑅𝑚,1, 𝑅𝑚,2, 𝑅𝑚,3, and 𝑅𝑚,4 are first initialized, sampling each one from N(3E9, 

1E18) [1/m]. The chosen distribution of resistance of clean meshes reproduces the variability 

estimated from the filtration experiments (Table 5.3). At the end of each cycle during which some 

material is processed in Station 𝑖 (i.e., when the station is not empty), the corresponding 𝑅𝑚,𝑖 increases 
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of 2E9 1/m. During the first cycle of carousel operation, only the first processing station works, as no 

material has reached the subsequent stations, yet. Just from the fourth cycle on, all stations V102-

V105 will be fully operational. When the filter mesh resistance reaches a threshold value (set to 

1.2E10 1/m), the mesh cleaning-in-place procedure is triggered. No additional material is loaded into 

the carousel for the following three cycles, which are required to complete the processing and 

discharge of the batches of slurry trapped into the carousel ports. Then, the filter mesh resistances are 

re-initialized, sampling again from 𝑁(3E9, 1E18) [1/m], and the feeding and fouling routines are 

repeated again. Note that in the version of ContCarSim used for generating the results presented in 

this Chapter, the idle time for mesh cleaning has been assumed to be null1. A null duration has also 

been assigned to the inter-cycle idle time for routines such as carousel rotation and piston ejection. 

 

 
Figure 5.6. Sample profile of filter mesh resistance disturbance implemented in 

the simulator. 

5.5 Quality-by-Design and Quality-by-Control challenges 

The simulator proposed in this study can be used for testing different control strategies within the 

QbD and QbC frameworks.  

The general objective of the process is delivering dry cakes meeting the target quality, namely a 

residual ethanol content (critical quality attribute) below 0.5%w. This is achieved by setting suitable 

values for the operating variables, for a given inlet slurry concentration (critical material attribute of 

the process). Following the QbD jargon, the critical process parameters are identified as 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 and 

Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

, since they significantly impact the residual ethanol in the discharged cake. 𝑇𝑖𝑛,𝑔
𝑠𝑝

 and Δ𝑃𝑠𝑝, 

instead, are identified as the control variables, which affect the product quality to a smaller extent, 

compared to the critical process parameters. Control routines can be implemented in the simulator for 

adjusting the desired values of the operating variables (set-point of the relevant controllers). The  
_______________________________________________________________________ 

1In the final release of ContCarSim, it will be possible to set non-null durations for the inter-cycle and mesh cleaning idle 

times. 
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simulator also features blocks specifically dedicated to the implementation of state and parameter 

estimation routines. Note that, although the simulator makes the values of multiple outputs available, 

only the simulated measurements can be used by the developed control and estimation routines, as in 

real life carousels. 

The following specific challenges are envisioned for the simulator: 

1. Open-loop operation. Determination of operating points delivering the target product quality 

and description of the design space of the unit; 

2. State estimation and soft-sensing. Implementation of state estimators, soft sensors, and real 

time parameter estimation routines for monitoring key process variables, such as the ethanol 

content in the cake being dried and the resistance of the filter meshes; 

3. Closed-loop control by manipulation of 𝑇𝑖𝑛,𝑔
𝑠𝑝

 and 𝑃𝑐𝑜𝑚𝑝𝑟
𝑠𝑝

. Implementation of (model-free and 

model-based) control routines for automatic adjustment of the control variables (i.e., 𝑇𝑖𝑛,𝑔
𝑠𝑝

 

and Δ𝑃𝑠𝑝) to meet the target product quality in response to disturbances (in disturbance 

scenarios 0-2) and/or to changes in the inlet slurry concentration. Description of the design 

space of the unit with such closed-loop routines in place; 

4. Closed-loop control by manipulation of 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

.. Implementation of (model-free 

and model-based) control routines for automatic adjustment of the critical process parameters 

(i.e., 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

), to meet the target product quality in response to disturbances (in 

disturbance scenarios 0-2) and/or to changes in the inlet slurry concentration; 

5. Throughput maximization under a reference scenario. We define the specific objective of 

implementing closed-loop control routines acting on 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 to maximize the 

cumulative mass of the cakes (meeting the target quality) discharged by the carousel during 

a simulation of 1 hour duration, with 𝑐𝑠𝑙𝑢𝑟𝑟𝑦
𝑛𝑜𝑚  equal to 250 kg/m3, 𝑇𝑖𝑛,𝑔

𝑠𝑝
 fixed to 323 K, and 

𝑃𝑐𝑜𝑚𝑝𝑟
𝑠𝑝

 set to 105 Pag, and with the inter-cycle and mesh cleaning idle times set to zero. The 

maximum throughput that can be achieved in these conditions should be assessed under 

disturbance scenarios 0-2;  

6. Throughput maximization under a general scenario. Implementing closed-loop control 

routines acting on 𝑇𝑖𝑛,𝑔
𝑠𝑝

, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

, Δ𝑃𝑠𝑝, and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

, to maximize the cumulative mass of the 

cakes (meeting the target quality) discharged by the carousel in a given timeframe, under 

disturbance scenarios 0-2, for different  𝑐𝑠𝑙𝑢𝑟𝑟𝑦
𝑛𝑜𝑚  and inter-cycle and mesh cleaning idle times. 

In addition to the listed tasks, the simulator can also be used for generating data for data analytics 

studies, or for benchmarking fault detection, identification and diagnosis methodologies. 

Despite its advanced features, the simulator has some limitations. The assumption of perfect control 

of the operating variables may not be met in physical carousels, especially for the inlet drying air 

temperature. Moreover, all simulated measurements are generated without any delay or sensor 

dynamics. Another limitation involves filter mesh fouling. In practice, the actual fouling increase 

from cycle to cycle depends on the current operating conditions, especially the fed slurry volume and 
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concentration. Since not enough data were available for characterizing the fouling dependence on the 

operating conditions, the fouling schedule is kept constant in the simulator (§5.4.5). 

Despite these limitations, ContCarSim is a realistic simulator that can be used for promoting the 

adoption of advanced control strategies in pharmaceutical manufacturing on the one hand, and to 

improve the operation of the novel carousel technology for continuous filtration-drying on the other 

hand. 

5.6 A Quality-by-Control framework  

We propose a three-layered (Layer 0, 1 and 2) control system  for the carousel technology (Figure 

5.7), based on the recently proposed QbC framework (Su et al., 2019b). The set-points of the control 

variables are fixed: Δ𝑃𝑠𝑝 to 1 bar and 𝑇𝑖𝑛,𝑔
𝑠𝑝

 to 50°C. In the remainder of this chapter, the carousel 

simulator is used for implementing and testing the control strategy, and is referred to as “the carousel”. 

5.5.1 Layer 0 

Layer 0 of the control system consists of the built-in controls of the carousel and of the ancillary 

equipment implemented in the simulator (§3.1). Conducting carousel operation with only Layer 0 in  

 

 
Figure 5.7. Proposed QbC strategy for the carousel. 
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place is equivalent to adopting a QbD approach, in which the CPPs are adjusted at open-loop within 

the DS. We determine the probabilistic DS of the process with only Layer 0 implemented, for 

benchmarking the three-layered control system proposed in this study with the traditional QbD open-

loop approach. To this purpose, we build a three-dimensional grid whose axes are: 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 (varying 

from 0.5 mL to 10 mL, step 0.5 mL), Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 (varying from 5 s to 300 s, step 5 s), and μ𝑐𝑠𝑙𝑢𝑟𝑟𝑦 

(varying from 50 kg/m3 to 250 kg/m3, step 50 kg/m3). For each point of the grid, we carry out a Monte 

Carlo simulation with 400 realizations. For each realization, the cycle-varying disturbances (𝑐𝑠𝑙𝑢𝑟𝑟𝑦, 

ℎ𝑀
𝑑𝑖𝑠𝑡, ℎ𝑇

𝑑𝑖𝑠𝑡, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑑𝑖𝑠𝑡 , α𝑑𝑖𝑠𝑡, ϵ𝑑𝑖𝑠𝑡 and filter mesh resistance) are sampled from the respective 

probability distributions2 (§5.4.5). Then, the product CQA is calculated for the given set of grid point 

conditions and disturbances. The probability of attaining the target quality in a given 

grid point corresponds to the percentage of realizations satisfying the target CQA (i.e., residual 

ethanol content in discharged cake < 0.5 wt%). The DS (Figure 5.8) corresponds to the region of the 

grid where such probability is greater than 90%. 

For simplicity, we assume that a fixed μ𝑐𝑠𝑙𝑢𝑟𝑟𝑦 equal to 250 kg/m3 comes from upstream. Figure 5.9a 

shows the section of the DS of Figure 5.8 corresponding to this inlet concentration. When a control 

strategy centered only on Layer 0 is used, the operating conditions (𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

) are assigned 

offline, and maintained constant during process operation, unless significant variations in 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 are  

 

 
Figure 5.8. Probabilistic DS with a control system consisting of only Layer 0. Green 

triangles: probability ≥ 90%, yellow circles: 80% ≤ probability < 90%, orange 

squares: 60% ≤ probability < 80% and red diamonds: probability < 60%. 
 

 

_______________________________________________________________________ 

2All disturbances sampled from respective normal distribution, while the filter mesh resistance is sampled from U[3E9, 

14E10] 1/m 
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registered. Within the DS, we select the combination of 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 that maximize the carousel 

throughput 𝑇 at each cycle: 

𝑇 =
𝑉𝑠𝑙𝑢𝑟𝑟𝑦 𝑐𝑠𝑙𝑢𝑟𝑟𝑦

Δ𝑡𝑐𝑦𝑐𝑙𝑒
 .                  (5.21) 

The maximum 𝑇 in the DS is achieved at the DS boundary. However, in order to minimize the risk 

of obtaining an out-of-specification product, we select an operating point (represented by a grey circle 

in Figure 5.9b) close to the maximum value of 𝑇, but slightly more inside the DS, namely 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝 = 

6 mL and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝 = 80 s. Note that, if mesh cleaning did not occur instantaneously, as considered in 

the current implementation of the simulator (§5.4.5), the idle time for mesh cleaning would have to 

be accounted for in the denominator of Equation 5.21. 

 

 
(a)                                                                              (b) 

Figure 5.9. (a): probabilistic DS at a slurry inlet concentration μ𝑐𝑠𝑙𝑢𝑟𝑟𝑦 = 250 

kg/m3 with a control system consisting of only Layer 0. (b): slurry throughput in the 

DS. The selected operating conditions for carousel open-loop operation are 

highlighted by a grey circle. 

 

5.5.2 Layer 1 

In Layer 1 of the control system, an end-point controller is implemented to close the loop on the CQA. 

For the first three cycles after a cleaning-in-place procedure, cake drying is not carried out, and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 

is fixed to 30 s. From the fourth cycle on, cake drying is carried out, and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 is automatically 

adjusted to terminate the cycle when 𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4 reaches the target quality threshold. Since no real 

time measurements are available in the carousel for 𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4, the cycle termination time is inferred 

from 𝑦𝑇𝑜𝑢𝑡. Figure 5.10 shows the relation between 𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4 and 𝑦𝑇𝑜𝑢𝑡 for three batches of slurry, 

processed with filter meshes that present increasing resistances (3E9 1/m, 9E9 1/m, and 15E9 1/m). 

The selected values of mesh resistance correspond to the range of variability encountered during 

carousel operation, in between two cleaning-in-place procedures. All the other cycle-varying 

disturbances are kept to the mean value of the respective probability distributions. For all batches, 
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𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 is set to 6 mL, the value selected in §5.5.1 for open-loop operation with Layer 0-only control. 

The target quality value is reached by 𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4, in all the three batches, after that the air outlet 

temperature inversion has been registered, although for slightly different values of 𝑦𝑇𝑜𝑢𝑡 (Figure 5.10). 

We fix the cycle end-point of Layer 1 to the instant of time when a value of 𝑦𝑇𝑜𝑢𝑡 equal to 18.7°C is 

recorded after the temperature inversion. This is a conservative choice, as for clean filter meshes (e.g., 

resistance equal to 3E9 1/m), the cycle could be terminated earlier. Installation of a composition 

analyzer for the outlet drying air could further enhance the promptness of the detection of the end-

point. 

 

 
 Figure 5.10. Residual ethanol in the cake (𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4) vs outlet gas temperature 

measurement during drying (𝑦𝑇𝑜𝑢𝑡) for 𝑅𝑚,4 =3E9, 9E9 and 15E9 1/m. 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

= 6 

mL. Other operating conditions and settings of the simulator are described in §5.4. 

The temperature end-point for the Layer 1 end-point controller is also reported. 

5.5.3 Layer 2 

In Layer 2 of the control system, advanced model-based techniques are implemented for process 

monitoring and control; namely, we use: i) online parameter estimation, ii) state estimation, and 

iii) RTO. 

5.5.3.1 Online parameter estimation 

At the end of every cycle, online parameter estimation is carried out for estimating the current 
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resistance of the mesh of the first station (𝑅𝑚,1
𝑒𝑠𝑡𝑖𝑚), together with the porosity (ϵ𝑒𝑠𝑡𝑖𝑚) and the specific 

resistance (α𝑒𝑠𝑡𝑖𝑚) of the wet cake that has just formed in V102. Porosity is estimated as: 

ϵ𝑒𝑠𝑡𝑖𝑚 = 1 −
𝑦𝑉𝑠𝑙𝑢𝑟𝑟𝑦  𝑦𝑐𝑠𝑙𝑢𝑟𝑟𝑦

ρs 𝑦𝐻𝑐𝑎𝑘𝑒  𝐴 
   .                 (5.22) 

MLE is used for estimating α𝑒𝑠𝑡𝑖𝑚 and 𝑅𝑚,1
𝑒𝑠𝑡𝑖𝑚 from the 𝑦𝑀𝑓𝑖𝑙𝑡

 profile, with the same procedure 

followed for offline parameter estimation with the filtration experiments (§5.4.2). Note that, although 

𝑦𝑀𝑓𝑖𝑙𝑡
 is the sum of the weight of the filtrate collected from V102-V105, here we assume it to be equal 

to the filtrate from V105. This is a reasonable assumption, considering that, with the operating 

conditions used in this study, filtration always finishes in V102, and the amount of filtrate collected 

from the deliquoring in V103-V104 is several orders of magnitude smaller than the one from the 

actual filtration, occurring in V102. 

Estimation of the resistance 𝑅𝑚,4
𝑒𝑠𝑡𝑖𝑚 of the filter mesh of Station 4, is also performed, factoring 𝑦𝐻𝑐𝑎𝑘𝑒 , 

𝑦𝑉̇𝑑𝑟𝑦𝑒𝑟 , and α𝑒𝑠𝑡𝑖𝑚 into Equation 5.9. From 𝑅𝑚,1
𝑒𝑠𝑡𝑖𝑚, 𝑅𝑚,4

𝑒𝑠𝑡𝑖𝑚, 𝑦𝑐𝑠𝑙𝑢𝑟𝑟𝑦 , 𝑦𝐻𝑐𝑎𝑘𝑒 , 𝑦𝑉𝑠𝑙𝑢𝑟𝑟𝑦 , α𝑒𝑠𝑡𝑖𝑚 and 

ϵ𝑒𝑠𝑡𝑖𝑚, the process is monitored to detect the occurrence of special cause variation from normal 

operating conditions. Moreover, the sequence of estimations of 𝑅𝑚,1
𝑒𝑠𝑡𝑖𝑚 and 𝑅𝑚,4

𝑒𝑠𝑡𝑖𝑚 for subsequent 

cycles is used for inferring the evolution of the filter mesh resistance fouling.  

At the beginning of every cycle in which a batch is transferred in V105 for drying, the estimated 

saturation profile of the cake at the beginning of drying (𝑆0
𝑒𝑠𝑡𝑖𝑚(𝑧)) is estimated by factoring α𝑒𝑠𝑡𝑖𝑚, 

ϵ𝑒𝑠𝑡𝑖𝑚 and the relevant thermophysical and process parameters in the filtration and deliquoring 

models. Then, an extended Kalman filter (EKF) is run for estimating the ethanol content in the cake 

during drying (𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4
𝑒𝑠𝑡𝑖𝑚 ), as discussed in the next subsection. 

5.5.3.2 State estimation 

The EKF, based on the heat loss and drying models (§5.3.2), makes use of the estimated α𝑒𝑠𝑡𝑖𝑚, ϵ𝑒𝑠𝑡𝑖𝑚 

and 𝑆0
𝑒𝑠𝑡𝑖𝑚 and of the process measurements 𝑦𝑇𝑖𝑛, 𝑦𝑇𝑜𝑢𝑡, and 𝑦𝑉̇𝑑𝑟𝑦𝑒𝑟  to estimate 𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4

𝑒𝑠𝑡𝑖𝑚 . The 

EKF also provides the standard deviation of the estimation error (σ𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4
𝑒𝑠𝑡𝑖𝑚 ), based on the model 

and measurement error variance, and on the estimation uncertainty on the initial saturation profile 

𝑆0
𝑒𝑠𝑡𝑖𝑚(𝑧), as further detailed at the end of this subsection. 

When Layer 2 is activated, 𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4
𝑒𝑠𝑡𝑖𝑚  is used in the end-point controller of Layer 1, instead of 𝑦𝑇𝑜𝑢𝑡. 

Following the risk-based approach promoted by the QbD paradigm, the estimation uncertainty is 

accounted by triggering the carousel rotation only when (Figure 5.11): 

𝑤𝐸𝑂𝐻,𝑐𝑎𝑘𝑒,4
𝑒𝑠𝑡𝑖𝑚 + 2 σ𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4

𝑒𝑠𝑡𝑖𝑚  > 0.005  .               (5.23) 

Mathematical details on the implementation of the EKF follow, for the remainder of this subsection. 

Let us consider the nonlinear process model of Equation 5.24, represented by a set of ordinary 

differential equations: 
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𝐱̇(𝑡) = 𝐟(𝐱(𝑡), 𝐮(𝑡), 𝑡) + 𝐰(𝑡),                          (5.24) 

where 𝐱 is the state vector, 𝐮 is the input vector, 𝐟 is a vector of nonlinear functions, and the process 

noise 𝐰 is considered to follow an N(0, 𝐐(𝑡)) distribution, where 𝐐 is the model error variance. Let 

us define a measurement model 𝐡, relating the vector 𝐲 of measurements from a plant, available at 

finite sampling times 𝑡𝑘:  

 

 
Figure 5.11. Layer 2: the state estimator estimates the residual ethanol in the cake 

during the drying process in Station 4. Confidence limits for the estimations are also 

provided by the estate estimator. The cycle end is triggered through a carousel 

rotation when the upper confidence limit of the estimated residual ethanol in the 

cake reaches the target quality value of 0.05%w. 

 

 

𝐲(𝑡) = 𝐡(𝐱(𝑡), 𝐮(𝑡), 𝑡) + 𝐯(𝑡)  ,               (5.25) 

where the measurement noise v is assumed to follow an N(0, 𝐑) distribution, where 𝐑 is the 

measurement error variance. The discrete-time data EKF algorithm (Ray, 1981), given the models of 

Equations 5.24-25, provides 𝐱̂, estimation of the state vector, and 𝐏, the estimation error covariance, 

through a series of subsequent prediction and updates steps. First, the EKF is initialized through the 

initial states estimation 𝐱̂𝟎 and the initial estimation error covariance 𝐏𝟎. A prediction step follows. 

For a general time interval in between two sampling times 𝑡𝑘−1 and 𝑡𝑘, prediction steps are carried 

out, by integrating Equations 5.26-27 from, respectively, the updated estimations of states 

𝐱̂(𝑡𝑘−1|𝑡𝑘−1) and estimation error covariance 𝐏(𝑡𝑘−1|𝑡𝑘−1) at 𝑡𝑘−1, to yield the predictions of the 

states 𝐱̂(𝑡𝑘|𝑡𝑘−1) and of the estimation error covariance 𝐏(𝑡𝑘|𝑡𝑘−1) at 𝑡𝑘: 

𝐱̇̂(𝑡) = 𝐟(𝐱̂(𝑡), 𝐮(𝑡), 𝑡)                   (5.26) 

𝐏̇(𝑡) = 𝐅𝐏 + 𝐏𝐅T + 𝐐(𝑡) ,                  (5.27) 

where 𝐅 is the Jacobian matrix of the process model: 
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𝐅 = (
𝜕𝐟

𝜕𝐱
)
𝐱̂(𝑡),𝐮(𝑡),𝑡

                    (5.28) 

At each sampling time 𝑡𝑘, the estimations are updated through: 

𝐱̂(𝑡𝑘|𝑡𝑘) = 𝐱̂(𝑡𝑘|𝑡𝑘−1) + 𝐊(𝑡𝑘) [𝐲(𝑡𝑘) − 𝐡(𝐱̂(𝑡𝑘|𝑡𝑘−1), 𝐮(𝑡𝑘), 𝑡𝑘)]                 (5.29) 

𝐏(𝑡𝑘|𝑡𝑘) = 𝐏(𝑡𝑘|𝑡𝑘−1) − 𝐊(𝑡𝑘)𝐇
𝐓𝐏(𝑡𝑘|𝑡𝑘−1) ,               (5.30) 

where the Kalman gain K and the Jacobian matrix H, both at 𝑡𝑘, are respectively calculated following: 

𝐊(𝑡𝑘) = 𝐏(𝑡𝑘|𝑡𝑘−1) 𝐇
𝐓[𝐇 𝐏(𝑡𝑘|𝑡𝑘−1) 𝐇

𝐓 + 𝐑]−1                 (5.31) 

𝐇 = (
𝜕𝐡

𝜕𝐱
)
𝐱̂(𝑡𝑘|𝑡𝑘−1),𝐮(𝑡𝑘),𝑡𝑘

                                         (5.32) 

The implementation of Equations 5.24-5.32 for state estimation of cake drying in Layer 2 of the 

carousel control system is performed as follow. The same drying model used in the carousel simulator 

(§5.3.2) is used for state estimation within the EKF (Equation 5.9 is not used, as 𝑢𝑔 is directly 

computed from 𝑦𝑉̇𝑑𝑟𝑦𝑒𝑟 , input of the EKF) . Hence, the model vector 𝐟 is constituted by the space-

discretized version of Equations 5.5-5.9. For computational burden reasons, the discretization grid 

has 10 points: 𝐟 ∈ ℝ40, independently from the cake height. Note that in the simulator (§5.3.2), the 

equations are discretized with a finer grid (of spacing 0.3 mm), originating process-model mismatch.  

The following parameters are employed in the equations of the EKF model, instead of the 

corresponding ones in the carousel simulator, further increasing the process-model mismatch: i) 

ϵ𝑒𝑠𝑡𝑖𝑚 (instead of ϵ), ii) α𝑒𝑠𝑡𝑖𝑚 (instead of α), iii) 𝑦𝐻𝑐𝑎𝑘𝑒  (instead of 𝐻𝑐𝑎𝑘𝑒), iv) 𝑅𝑚,4
𝑒𝑠𝑡𝑖𝑚 (instead of  

𝑅𝑚,4) and v) 𝑢𝑔 is calculated from 𝑦𝑉̇𝑑𝑟𝑦𝑒𝑟 , affected by noise (instead than from Equation 5.9); also, 

vi) ℎ𝑀,𝑑𝑖𝑠𝑡 and vii) ℎ𝑇,𝑑𝑖𝑠𝑡 are set to 1 [-] (instead of using the actual local value of the disturbance, 

§5.4.5). All the other parameters are taken as in the simulator (§5.4). The corresponding states vector 

𝐱 ∈ ℝ40 is: 

𝐱 = [𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒(𝑡, 𝑧1)   𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒(𝑡, 𝑧2)  …   𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒(𝑡, 𝑧10)   𝑤𝐸𝑡𝑂𝐻,𝑔(𝑡, 𝑧1)   𝑤𝐸𝑡𝑂𝐻,𝑔(𝑡, 𝑧2)    

…   𝑤𝐸𝑡𝑂𝐻,𝑔(𝑡, 𝑧10)   𝑇𝑐𝑎𝑘𝑒(𝑡, 𝑧1)   𝑇𝑐𝑎𝑘𝑒(𝑡, 𝑧2)   …   𝑇𝑐𝑎𝑘𝑒(𝑡, 𝑧10)   𝑇𝑔(𝑡, 𝑧1)   𝑇𝑔(𝑡, 𝑧2)  …   𝑇𝑔(𝑡, 𝑧10)]

,                                (5.33) 

where 𝑧1, 𝑧2, … , 𝑧10 are the coordinates of the ten nodes of the discretization grid. The inputs from 

the process used by the EKF are: 

𝐮 = [𝑦𝑉̇𝑑𝑟𝑦𝑒𝑟    𝑦𝐻𝑐𝑎𝑘𝑒    𝑦𝑇𝑖𝑛]                   (5.34) 

In the EKF, the heat loss model of Equations 5.18-5.21 (calibration parameters as in §5.4.3) is used 

for calculating 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐 from 𝑦𝑇𝑖𝑛. 𝑇𝐻𝐿

𝑐𝑎𝑙𝑐 is then used as boundary condition: 𝑇𝑔(𝑡, 𝑧 = 0) = 𝑇𝐻𝐿
𝑐𝑎𝑙𝑐. The 

output vector used within the EKF is 𝐲 = 𝑦𝑇𝑜𝑢𝑡, and the corresponding measurement model is 𝐡 =

 𝑇𝑔(𝑧 = 𝑧10).  
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In the initialization of the EKF, 𝐱𝟎 is built with the structure of Equation 5.33. For every grid point 

𝑧𝑖: 𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒(0, 𝑧𝑖) is calculated through a mass balance from 𝑆0
𝑒𝑠𝑡𝑖𝑚(𝑧𝑖), 𝑤𝐸𝑡𝑂𝐻,𝑔(0, 𝑧𝑖) = 0, and 

𝑇𝑐𝑎𝑘𝑒(𝑡, 𝑧𝑖) = 𝑇𝑔(𝑡, 𝑧𝑖) = 295 K. Practically speaking, the only uncertain elements of 𝐱𝟎 are 

𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒(0, 𝑧𝑖), for each 𝑧𝑖 node of the discretization grid. From considerations on the error 

propagation from 𝑆0
𝑒𝑠𝑡𝑖𝑚(𝑧) and based on the results of simulations carried out for this purpose, the 

estimation variance of 𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒(0, 𝑧𝑖) is approximated to 1E-6. Hence, 𝐏𝟎 ∈ ℝ
40 x 40 is defined as 

a diagonal matrix, whose only non-null entries are the first 10 elements of the diagonal, set to 1E-6. 

Based on the measurement noise of TI102: 𝐑 = 0.01. 

𝐐(𝑡𝑘) is calculated as a time-variant matrix, updated at every 𝑡𝑘, through the algorithm proposed by 

Valappil and Georgakis (2000): 

𝐐(𝑡𝑘) = 𝐉𝑝,𝑛𝑜𝑚(𝑡𝑘) 𝐂𝑝 𝐉𝑝,𝑛𝑜𝑚
𝐓 (𝑡𝑘) ,                 (5.35) 

where 𝐂𝑝 is the covariance matrix of the uncertain parameters 𝐩, and 𝐉𝑝,𝑛𝑜𝑚(𝑡𝑘) is the Jacobian of 𝐟 

with respect to 𝐩: 

𝐉𝑝,𝑛𝑜𝑚(𝑡𝑘) = (
𝜕𝐟

𝜕𝐩
)
𝐱̂(𝑡𝑘|𝑡𝑘−1),𝐮(𝑡𝑘),𝑡𝑘

                             (5.36) 

Vector 𝐩 contains the parameters that, among the set of mismatched  parameters i-vii, affect the most 

the process-model mismatch in the EKF framework: 𝐩 = [𝑢𝑔   ℎ𝑀   ℎ𝑇    ϵ]. As suggested in the 

literature (Valappil and Georgakis, 2000) for systems affected only by parametric mismatch 

(neglecting the structural mismatch introduced by the approximation in the discretization grid), 𝐂𝑝 is 

built as a diagonal matrix, presenting the variance of the parametric fluctuations as diagonal elements: 

𝐂𝑝 = 𝑑𝑖𝑎𝑔([4E-6   1.6E-21   2.5E-5   4.9E-5]). Note that Equations 5.35-5.36 inherently yield the 

local variance of the model error, and provide a reliable (Schneider and Georgakis, 2013) estimation 

of 𝐐(𝑡𝑘). Hence, the designed 𝐐 and 𝐑 matrices allow to effectively propagate the uncertainty 𝐏𝟎 in 

the initial state estimate 𝐱𝟎 into the estimation error covariance 𝐏 of the estimated states 𝐱. 

The EKF update step is called every 5 s during the process, even though the measurements are 

sampled every 0.25 s. The EKF provides to the end-point controller of Layer 1, at time 𝑡, 

𝑤𝐸𝑂𝐻,𝑐𝑎𝑘𝑒,4
𝑒𝑠𝑡𝑖𝑚 (𝑡), obtained as average of the ten 𝑤𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒(𝑡, 𝑧𝑖) in the state vector. The estimation 

standard deviation σ𝐸𝑡𝑂𝐻,𝑐𝑎𝑘𝑒,4
𝑒𝑠𝑡𝑖𝑚  is instead directly obtained from 𝐏. 

5.5.3.3 Real time optimization 

While Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 is the only manipulated variable adjusted by the controllers presented so far, the RTO 

routine of Layer 2, presented in this subsection, is meant to optimize 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

, at every cycle. This is 

done by solving the following optimization problem, before the beginning of every cycle:  

                                 max
𝑇𝑠𝑝,𝑉𝑠𝑙𝑢𝑟𝑟𝑦

𝑠𝑝
𝑇𝑠𝑝                  (5.37) 

subject to:   𝑤𝐸𝑂𝐻,𝑐𝑎𝑘𝑒,𝑓𝑖𝑛𝑎𝑙
𝑐𝑎𝑙𝑐 (𝑇𝑠𝑝, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦

𝑠𝑝 , 𝐝𝒆𝒔𝒕𝒊𝒎) < 0.005                                   (5.38a) 
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0 𝑚𝐿 <  𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝 < 10 𝑚𝐿 ,               (5.38b) 

where: 𝐝𝒆𝒔𝒕𝒊𝒎 is the estimated vector of the process disturbances, 𝑤𝐸𝑂𝐻,𝑐𝑎𝑘𝑒,𝑓𝑖𝑛𝑎𝑙
𝑐𝑎𝑙𝑐 (𝑇, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦

𝑠𝑝 , 𝐝𝒆𝒔𝒕𝒊𝒎) 

is the prediction of the mass fraction of ethanol in the final cake, and 𝑇𝑠𝑝 is the theoretical throughput: 

 𝑇𝑠𝑝 =
𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 μ𝑐𝑠𝑙𝑢𝑟𝑟𝑦

Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝    .                            (5.39) 

Note that in the RTO Problem of Equations 5.37-5.39, 𝑇𝑠𝑝 is selected as one of the optimization 

variables in order to obtain a linear objective function (Equation 5.37), even though it is not an explicit 

input of the carousel simulator. The solution of the RTO yields the optimal 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 to feed at the 

current cycle, and (indirectly through Equation 5.39) the optimal Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 to use for processing the 

current batch. The actual Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 used in the process will be manipulated by the Layer 1 end-point 

controller, to meet the target CQA in the cake being dried in V105. For the first three cycles after a 

cleaning operation, when no cake is being dried in V105, the optimal Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 found at the end of the 

cleaning (namely, a state of clean meshes) is used. 

Within the RTO Problem, mathematical models are needed for the computation of 𝑤𝐸𝑂𝐻,𝑐𝑎𝑘𝑒,𝑓𝑖𝑛𝑎𝑙
𝑐𝑎𝑙𝑐  in 

Equation 5.38a. For this purpose, we use the filtration, deliquoring and drying models presented in 

§5.3.2, arranged as in the carousel simulator. For the calculation of 𝑤𝐸𝑂𝐻,𝑐𝑎𝑘𝑒,𝑓𝑖𝑛𝑎𝑙
𝑐𝑎𝑙𝑐 , all inputs of the 

simulator (Table 5.2) have to be provided (calibration parameters, thermophysical properties, set-

points of the controlled variables, and disturbances). The actual calibration parameters and 

thermophysical properties implemented in the carousel simulator are used. Two of the set-points of 

the controlled variables are known (Δ𝑃𝑠𝑝 and 𝑇𝑖𝑛,𝑔
𝑠𝑝

), while the other two are obtained from the 

optimization variables: 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 explicitly, and Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 implicitly, through Equation 5.39 (recall that, 

in this case study, μ𝑐𝑠𝑙𝑢𝑟𝑟𝑦 is fixed to 250 kg/m3). The actual values of the elements of the disturbances 

vector 𝐝 are, instead, generally unknown, thus originating process-model mismatch. The elements of 

𝐝 are (Table 5.2): 

𝐝 = [𝑐𝑠𝑙𝑢𝑟𝑟𝑦   ℎ𝑀
𝑑𝑖𝑠𝑡   ℎ𝑇

𝑑𝑖𝑠𝑡    𝑅𝑚,1   𝑅𝑚,2   𝑅𝑚,3   𝑅𝑚,4   𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑑𝑖𝑠𝑡     𝐰𝑖𝑛,𝑔    𝐰𝑙,𝑠𝑙𝑢𝑟𝑟𝑦    ϵ

𝑑𝑖𝑠𝑡] ,             (25) 

and they are estimated in 𝐝𝒆𝒔𝒕𝒊𝒎 as follows. Since the RTO problem is solved before the beginning 

of every cycle, 𝑐𝑠𝑙𝑢𝑟𝑟𝑦, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑑𝑖𝑠𝑡  and ϵ𝑑𝑖𝑠𝑡 cannot be inferred from the online parameter estimation 

routines, and they are approximated by the mean value of their probability distributions (respectively: 

μ𝑐𝑠𝑙𝑢𝑟𝑟𝑦, 1 [-] and 1 [-]). We also approximate both ℎ𝑀
𝑑𝑖𝑠𝑡 and ℎ𝑇

𝑑𝑖𝑠𝑡 to 1 [-], the mean value of their 

probability distributions. We fix 𝐰𝑖𝑛,𝑔 to air composition, and 𝐰𝑙,𝑠𝑙𝑢𝑟𝑟𝑦 to pure ethanol. The filter 

mesh resistances estimations in 𝐝𝒆𝒔𝒕𝒊𝒎 are intended as the estimation of the resistance that the slurry 

loaded in the current cycle will encounter when being processed in Station 𝑖. Considering the fouling 

schedule implemented in the simulator (Section 3.3), for a generic cycle, 𝑅𝑚,𝑖 is approximated 

as: 𝑅𝑚,1
𝑒𝑠𝑡𝑖𝑚 + 2E9 [1/m], for 𝑖 =1, 2, 3, 4. Instead, in the specific case of cycles initiated immediately 

after a cleaning-in-place routine, 𝑅𝑚,𝑖 (for 𝑖 =1, 2, 3, 4) is directly approximated to 3E9 1/m. 



Intensified continuous filtration-drying of pharmaceuticals: Quality-by-Control on a novel real time simulator          173 

_______________________________________________________________ 

© 2021 Francesco Destro, University of Padova (Italy) 

The RTO problem of Equations 5.37-5.39 is solved with the fmincon optimizer implemented in 

MATLAB. To enhance the robustness of the RTO solution, at every cycle we solve the optimization 

problem three times, varying the initial guess provided to the optimizer among a set of three initial 

points belonging to the DS. The (feasible) solution leading to the largest 𝑇𝑠𝑝 is implemented in the 

process. Both EKF and RTO computational times are compatible with real time implementation. 

5.7 Control strategy response to disturbances and faults: Quality-by-

Design vs Quality-by-Control 

The simulator calibrated on the paracetamol/ethanol slurry system is used to generate data for 1 h of 

carousel operation, under the set of disturbances occurring in normal operating conditions (§5.4.5). 

The simulation is run five times, comparing the performance of different control strategies (§5.6). 

Figure 5.12 shows the residual ethanol content in the discharged cakes, the cycle duration and the fed 

slurry volume, obtained during the simulations under the following control strategies: i) Layer 0-only 

(denoted as Layer 0), ii) Layers 0-1 (denoted as Layer 1), iii) Layers 0-1 + an EKF at Layer 2 used as 

soft sensor for end-point control (denoted as Layer 2 – only EKF), iv) Layers 0-1 + a perfect state 

estimator at Layer 2 used as soft sensor for end-point control (denoted as Layer 2 – perfect estimator), 

and v) a complete Layers 0-1 implementation, with both EKF and RTO routines at Layer 2 (denoted 

as Layer 2 – EKF + RTO). Note that the perfect state estimator of the Layer 2 – perfect estimator 

control strategy is an ideal mathematical tool that could be implemented, for comparison purposes, 

just because the plant object of this study is virtual. In real world case study, no perfect state estimator 

can be implemented. The final throughput achieved with the different control strategies is reported in 

Table 5.4. 

Focusing first on the fed slurry volume panel of Figure 5.12, it can be assessed that all the control 

strategies, except for Layer 2 – EKF + RTO, always use a constant value for 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 (i.e., 6 mL; 

§5.6.1). The optimal 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 calculated by the RTO system of the Layer 2 – EKF + RTO control 

strategy is, instead, always lower than 6 mL. Note that the three consecutive cycles during which the 

fed slurry is null (e.g., cycle #7-9), appearing periodically with all control strategies, correspond to 

the cycles of the cleaning-in-place routine (§5.4.5). When the RTO routine is turned on, the optimizer 

selects larger optimal 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 for increasing filter mesh fouling. Considering for example the process 

cycles #10-15, 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 increases when operating under the Layer 2 – EKF + RTO control strategy 

from cycle #10 (clean meshes conditions) up to cycle #15, the last one before mesh cleaning. Even 

though the increasing trend of the optimal 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 in between two cleaning-in-place procedures is 

consistent during carousel operation, slightly different optimal 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 are found for different cycles 

occurring after a given number of cycle after the cleaning-in-place (e.g., cycles #10, #19, and #28). 

This is because the optimal 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 calculated by the RTO system depends on the whole set of 

estimated disturbances 𝐝𝒆𝒔𝒕𝒊𝒎, and not only on the local fouling conditions. 
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Considering the cycle duration panel of Figure 5.12b, all control strategies adjust Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 during 

operation, except for the Layer 0 one. During the first three cycles after a cleaning-in-place procedure, 

Layer 1 and Layer 2 control strategies use a lower Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

  than for other cycles, as outlined in §5.6.2 

and §5.6.3, since only filtration and deliquoring are carried out. The Layer 2 – EKF + RTO control 

strategy selects a growing Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 with the passing of cycles after a cleaning-in-place procedure, 

consistently with the increasing 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 profile found from the solutions of the RTO problem for 

increasing fouling mesh conditions. All the other Layer 1 and Layer 2 control strategies do not present 

clear Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 patterns. 

 

 
Figure 5.12. Comparison of carousel performance under different control 

strategies: residual ethanol in discharged cakes, cycles duration and fed slurry 

volumes following 1 h of normal operating conditions operation. 
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Table 5.4. Comparison of carousel performance under different control strategies: 

slurry throughput achieved in 1 h of normal operating conditions operation. 

Control strategy Throughput [mL] % Layer 0 throughput 

Layer 0 180.1 100 

Layer 1 228.3 127 

Layer 2   

only EKF 240.3 133 

only perfect estimator 258.4 143 

EKF + RTO 251.5 140 

 

Figure 5.12 also shows that all the control strategies allow meeting the quality requirements on the 

residual ethanol content in all the discharged cakes. The residual ethanol content is the lowest when 

operating with the Layer 0 control strategy, as it is the most conservative approach, drying the cakes 

more than needed to compensate for the lack of feedback control routines. On the other hand, the 

Layer 2 – perfect estimator control strategy allows discharging cakes with the maximum acceptable 

residual ethanol content, avoiding to spend any time more than needed on drying. The other Layer 1 

and Layer 2 control strategies behave intermediately between these two extremes. Since drying is the 

slowest processing step in the carousel, drying longer than needed implies being able to process a 

sub-optimal slurry throughput. 

As confirmed from Table 5.4, more advanced control strategies allow processing a larger throughput. 

The Layer 0 control strategy leads to the poorest performance, as the operating conditions are fixed, 

instead of being adapted to optimize the process performance. Introduction of the Layer 1 end-point 

temperature controller allows processing, in the same time frame, 11 more cakes (Figure 5.12) of the 

same mass, corresponding to a throughput increase of about 27%. With the introduction of the EKF 

to directly monitor the residual ethanol in the cake, 3 more cakes (still of the same mass) are obtained 

(+33% throughput compared to Layer 0-only). If, instead of the EKF, an (ideal) perfect state estimator 

was available for monitoring the residual ethanol in the cake being dried, additional 8 cakes of the 

same mass could be processed in the carousel in the same time frame, corresponding to a throughput 

increase of about 43% with respect to Layer 0-only operation. 

The throughput increase due to the implementation of (even simple temperature-based) end-point 

controllers is very large, due to the benefits of regulating Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 based on the inferred drying duration, 

as opposite to keeping Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 fixed, as in Layer 0. The more accurate the estimation, the larger the 

throughput. With the perfect state estimator (circles in Figure 5.12), the carousel rotation is triggered 

immediately after that the cake being dried reaches the target ethanol content. With the end-point 

controller based on the EKF, the estimation uncertainty is instead considered when triggering the 

cycle rotation (Equation 5.23), leading to drying the cakes more than needed. When resorting to the 

end-point controller on temperature, the cakes are dried even longer (Figure 5.12), as the end-point 

on temperature is more unreliable, and a conservative approach must be adopted (Figures 5.10). 

Another drawback of end-point temperature control is that the drying air outlet temperature at the end 

of drying depends non-linearly on the cake mass. Hence, for mid/large variations of 𝑐𝑠𝑙𝑢𝑟𝑟𝑦 and 
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𝑉𝑠𝑙𝑢𝑟𝑟𝑦, the end-point of Figure 5.10 is not valid anymore, and should be re-assessed. End-point 

control based on state estimation does not suffer from this limitation, hence it can be coupled with 

control routines adjusting 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

, too. 

This is the case of the Layer 2 – EKF + RTO control strategy, which, instead, manipulates both Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 

and 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 (diamonds in Figure 5.12), aiming to maximize the slurry throughput. With this approach, 

as many as 101 cakes are obtained from the carousel operation in a 1 h time frame. Even though the 

cakes mass varies, depending on the local 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

 (Figure 5.12), the final throughput is 40% larger 

than with the Layer 0-only approach.  

Note that the RTO implementation of Equations 5.37-39 optimizes the operating conditions for one 

batch at a time. More advanced RTO implementations can be conceived, for instance by optimizing 

the operating conditions for a series of consecutive batches, and factoring the triggering of the 

cleaning-in-place procedure inside the optimization problem. However, this is beyond the scope of 

this study, which aims at providing an overview of the benefits of active process control for the 

carousel operation. 

5.8 Conclusions 

We developed a comprehensive simulator for the carousel technology, and calibrated it with an 

experimental campaign on a process for isolating paracetamol from a paracetamol/ethanol slurry 

system. Then, we conceived a three-layered (Layers 0-1-2) control strategy for the unit, following the 

recent QbC paradigm. The control strategy includes at Layer 1 an end-point controller, for 

automatically triggering the end of a processing cycle and the consequent product discharge when the 

product CQAs are met in the final processing step of the unit. Layer 2 features an EKF, used as soft 

sensor for monitoring the product CQAs and to support the end-point controller of Layer 1, and an 

RTO routine, to optimize the amount of slurry to be fed to the unit at every processing cycle. 

Following a risk analysis-based approach promoted by the QbD initiative, the estimation uncertainty 

computed by the EKF is accounted for when using the EKF estimations for identifying the cycle end-

point. 

The conceived control strategy was implemented in the simulator, and benchmarked against other 

control strategies of growing complexity under a set of disturbances occurring under normal operation 

of the carousel, such as filter mesh fouling. The proposed control system demonstrated to be able to 

always guarantee the target product quality, and led to a significantly larger slurry throughput, 

compared to the traditional QbD approach of operating in a fixed point of the DS. The complete 

Layers 0-1-2 control strategy leads to achieving the largest slurry throughput. Nonetheless, even the 

inclusion of a simple Layer 1 end-point controller, using temperature measurements instead than EKF 

estimations for detecting the end of a cycle, significantly improved the process performance, 

compared to traditional open-loop operation. 
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Conclusions and future perspectives 

This Dissertation makes several steps forward in the modernization of pharmaceutical development 

and manufacturing by promoting the use of mathematical methodologies for digitally-supported 

operation design, process monitoring and process control. The general objectives of reducing 

pharmaceutical development time and cost, and of increasing product quality attainment 

performances in pharmaceutical manufacturing through mathematical modelling are achieved by 

pursuing the following six specific objectives: 

1. development and implementation of advanced process monitoring methodologies for 

pharmaceutical manufacturing; 

2. model-based pharmaceutical operation design; 

3. control-relevant modeling of pharmaceutical processes; 

4. mathematical modeling for aiding the transition to continuous pharmaceutical manufacturing; 

5. development and use of knowledge-driven models for supporting pharmaceutical 

development and manufacturing; 

6. life cycle approach to mathematical modelling of pharmaceutical processes. 

Table C.1 outlines the main achievements of this Dissertation, arranged chapter-wise (Table 1.6 in 

§1.7 provides additional details on the content of each chapter). 

In Chapter 1, a thorough review on the historical evolution and on the state of implementation of 

Quality-by-Design is provided. A special focus is drawn on the emerging pharmaceutical technology 

and on state-of-the-art mathematical modeling for pharmaceutical development and manufacturing. 

Chapters 2 and 3 are centered around the topic of process monitoring. Case studies applying to 

pharmaceutical manufacturing monitoring techniques commonly applied in other industries are 

presented, and a novel hybrid data-driven/knowledge-driven methodology for fault detection and 

diagnosis is introduced. The results demonstrate that advanced process monitoring techniques in 

pharmaceutical manufacturing can significantly improve the product quality attainment 

performances, and support process capability enhancement towards the six sigma standard. It is 

expected that the promising achievements reported in Chapters 2-3, partly resulting from industrial 

collaborations, will promote the adoption of these type of techniques for process monitoring by the 

pharmaceutical industry. Moreover, the novel hybrid approach to process monitoring presented in 

this Dissertation is expected to gain the interest of other industries beside the pharmaceutical sector, 

as it demonstrated superior performances compared to state-of-the-art standalone data-driven or 

knowledge-driven methodologies in fault detection and diagnosis. 

Chapters 4 and 5 both involve model-based studies around a novel carousel for continuous 

intensified filtration-washing-drying of crystallization slurries. A life cycle approach to 

mathematical modeling is followed. A mathematical model for the unit is developed 
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Table C.1. Summary of the main achievements of this Dissertation, with indication of their relevant references, organized chapter-wise. 

Chapter Specific 

aim 

Main 

activity 

Main achievement Reference  

1 1-6 Review • Review on state of implementation of Quality-

by-Design, on emerging pharmaceutical 

technology and on state-of-the-art mathematical 

modeling for pharmaceutical development and 

manufacturing 

Destro, F. and M. Barolo. A perspective on mathematical modeling for the 

digitalization of pharmaceutical development and manufacturing. In 

preparation 

 

 

2 1, 4, 5 Process 

monitoring 
• State estimator effectively reconciles noisy 

measurements from loss-in-weight feeders, and 

provides better powder composition estimations 

compared to traditional approaches based on 

statistical filtering 

• First proof of concept of state estimation for 

monitoring powder composition in direct 

compression lines, tested on data from pilot plant 

 

Destro, F., S. García Muñoz, F. Bezzo, and M. Barolo (2021).  Improving 

powder feeding monitoring in continuous solid dosage forms manufacturing 

through state estimation. Int. J. Pharm., 605, 120808. 

 

3 1, 4, 5 Process 

monitoring 
• Novel hybrid data-driven/knowledge-driven 

approach to process monitoring 

• Proposed hybrid approach outperforms 

traditional data-driven and knowledge-driven 

approaches in fault detection and diagnosis  

• Available first-principles knowledge on the 

system factored in the monitoring system, 

coherently with Quality-by-Design paradigm 

Destro, F., P. Facco, S. García-Muñoz, F. Bezzo, and M. Barolo (2020). A 

hybrid framework for process monitoring: Enhancing data-driven 

methodologies with state and parameter estimation. J. Process Control, 92, 333-

351. 

Destro, F., A. J. Salmon, P. Facco, C. C. Pantelides, F. Bezzo, M. Barolo (2020). 

Monitoring a segmented fluid bed dryer by hybrid data-driven/knowledge-

driven modeling. IFAC-PapersOnLine, 53, 11638-11643. 

 

4 2, 4, 5, 6 Modeling, 

Operation 

design 

• Study on novel unit for continuous isolation of 

crystals from slurries through intensified 

filtration-washing-drying. The unit tackles 

bottleneck in end-to-end continuous 

pharmaceutical manufacturing 

• Mechanistic model of the unit developed and 

used for determination of probabilistic design 

space 

• Execution of filtration and drying experiments, 

respectively, on Nutsche filter and 

thermogravimetric analyzer, for model 

calibration and validation; 

Destro, F., I. Hur, V. Wang, M. Abdi, X. Feng, E. Wood, S. Coleman, P. Firth, 

A. Barton, M. Barolo, and Z. K. Nagy (2021). Mathematical modeling and 

digital design of an intensified filtration-washing-drying unit for 

pharmaceutical continuous manufacturing. Chem. Eng. Sci. 244 (23), 116803. 

Destro, F., V. Wang, M. Abdi, X. Feng, E. Wood, S. Coleman, P. Firth, A. 

Barton, M. Barolo, and Z. K. Nagy. An intensified unit for continuous 

integrated filtration, washing and drying of drug substances: mathematical 

modelling and design space identification. IFAC PapersOnLine, 54, 85-90. 

Laky, D. J., D. M. Casas-Orozco, F. Destro, M. Barolo, Z. K. Nagy (In press), 

Integrated synthesis, crystallization and drying of active pharmaceutical 
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ingredients: a model-based framework for process optimization and control. Z. 

K. Nagy, R. Ramandrachan, P. Pardalos (Ed.), In: Optimization of 

Pharmaceutical processes, models and methods, Springer Nature, Basingstoke 

(UK). In press 

5 3, 4, 5, 6 Modeling, 

Process 

control 

• Real time carousel simulator for control-relevant 

applications developed from carousel model of 

Chapter 4 (life cycle approach to process 

modeling) 

• Filtration and drying experiments on a physical 

carousel carried out for model calibration and 

validation 

• Closed-loop control system for the unit 

conceived and tested on the simulator (first 

closed-loop control study on this type of unit).  

• Proposed control system includes model-based 

routines, (i.e., state estimation and real time 

optimization), based on developed mathematical 

model of the unit 

 

 

Destro, F., Z. K. Nagy, and M. Barolo. Quality-by-Control of intensified 

continuous filtration-drying of active pharmaceutical ingredients. In 

preparation 

Destro, F., Z. K. Nagy, and M. Barolo. A simulator for control-relevant 

applications in intensified continuous filtration-drying of active pharmaceutical 

ingredients. In preparation 

Destro, F., V. Wang, M. Abdi, X. Feng, E. Wood, S. Coleman, P. Firth, A. 

Barton, M. Barolo, and Z. K. Nagy (2021), Quality-by-Control of continuous 

drug substance isolation: study on a novel unit for integrated filtration-drying, 

In: Computer-Aided Chemical Engineering 50, Proc. of the 31st European 

Symposium on Computer Aided Process Engineering (M. Türkay, R. Gani, 

Eds.), Elsevier, Amsterdam (The Netherlands), 1363-1369. 

 



180                                                                                                                                   Conclusions and future perspectives 

_______________________________________________________________ 

© 2021 Francesco Destro, University of Padova (Italy) 

and used for offline design of the unit operations. Then, the model is further developed, and its use 

to support real time operation with soft-sensing and model-based process control is demonstrated. 

Chapters 4-5 prove that the use of mathematical modeling and active process control can significantly 

reduce the time and investment needed for process development, and improve the quality attainment 

performance in the manufacturing stage. Since the results demonstrate that the investment needed to 

implement this type of approaches in industrial lines is outweighed by the benefits, it is expected that 

the reported studies will promote the adoption of these techniques by practitioners. Moreover, the 

carousel unit object of the research work reported in Chapters 4-5 is a novel technology, one of the 

few available in the marketing for continuous filtration-drying. Since these operations are a current 

technological gap for the implementation of end-to-end continuous processing, the developed 

mathematical framework will also promote future studies on this unit and the transition to continuous 

processing. The developed carousel simulator (ContCarSim) will be made available to the public 

(www.github.com/francescodestro/ContCarSim) as a benchmark for Quality-by-Design and Quality-

by-Control studies. ContCarSim is one of the first benchmarks for design- and control-relevant 

applications for pharmaceutical processes. 

More in detail, in Chapter 2, a novel approach is presented for monitoring the composition of 

powder mixtures in continuous tableting lines. As shown in the chapter, the traditional approach 

of using statistical filters for calculating the powder mass flows (and, in turn, the powder composition) 

from the time series of mass measurements can lead to inaccuracies, even though this is done by 

default by loss-in-weight feeders software. A novel monitoring system rooted on a state estimator is 

proposed, which effectively reconciles noisy mass measurements coming from loss-in-weight feeders 

through a model-based optimization strategy. The API concentration in the final tablets estimated 

through the proposed monitoring approach present high consistency with HPLC and spectroscopic 

measurements collected downstream. With the proposed methodology the powder composition is 

estimated continuously, with a significant advantage over sampled measurements, such as those from 

HPLC. The results show that state estimation is a suitable way to obtain maximum synergy from the 

resources invested in the development of a mechanistic model for a process, and the resources 

dedicated to the implementation of PAT. 

In Chapter 3, a novel methodology for multivariate process monitoring based on hybrid 

modeling is proposed. Real-time deterministic information about the process is first obtained from a 

state estimator in the form of estimated states, noise-deprived measurements, and possibly estimated 

parameters. The information is then passed to a data-driven model, where it is exploited, in 

conjunction with the available field measurements, for multivariate fault detection and diagnosis. 

When tested on batch and continuous case studies, the hybrid monitoring approach typically allows 

for earlier fault detection than with traditional data-driven and knowledge-driven approaches taken 

in isolation, even when the state estimator did not perform entirely satisfactorily. Moreover, the 

hybrid approach significantly facilitates fault diagnosis. The proposed hybrid monitoring framework 

is expected to gain the interest of the pharmaceutical community, as it perfectly meets the request of 
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the Quality-by-Design initiative to factor the available knowledge on the physics of the process into 

the control strategy. 

Chapter 4 presents a mathematical model for the novel continuous intensified carousel for the 

isolation of crystals from slurries. Independent filtration, deliquoring, washing and drying modeling 

components are developed and combined to mimic carousel operation. A cake properties module 

estimates the crystals cake physical properties from the slurry crystal size and shape distribution. The 

carousel model tracks dynamic profiles of cake composition throughout all carousel processing, 

overcoming the limitations of short-cut methods traditionally used for designing this type of process. 

After successfully calibrating the model with filtration (on a Nutsche filter) and drying experiments 

(on a thermogravimetric analyzer), it is used for describing the probabilistic design space for a 

process for isolating paracetamol from a slurry system. The maximum throughput of the slurry system 

under investigation that can be processed in the carousel with acceptable probability of meeting the 

product quality specifications is also determined. 

In Chapter 5, the carousel model introduced in Chapter 4 is further developed for process control-

relevant studies on the unit. An advanced real time simulator of the carousel is implemented, with 

digital routines simulating sensors and actuators present in physical units for the purpose of control 

strategy testing. A pilot scale carousel is used for carrying out filtration and drying experiments on a 

paracetamol/ethanol slurry system, to calibrate and validate the simulator. Following the recent 

Quality-by-Control paradigm, a closed-loop quality control strategy is proposed for this type of units 

for the first time. The proposed control strategy also features model-based control and monitoring 

elements, such as state estimation and real time optimization, which exploit the developed 

mechanistic model of the carousel, following a life cycle approach to pharmaceutical process 

modeling. When tested on the simulator, under a set of disturbances known to affect the unit operation 

(e.g., filter mesh fouling), the proposed closed-loop quality control system proves improved control 

performance with respect to the traditional QbD approach, consisting on operating at open-loop 

within the design space. 

Different research areas for future investigations stem from the results presented and discussed in 

this Dissertation: 

• Regarding the approach presented in Chapter 2 for powder composition monitoring in 

continuous direct compression lines, future studies can involve tests of the methodology on 

datasets from manufacturing lines, and, eventually, the implementation of the state estimator 

on a physical line; 

• The results on state estimation of Chapter 2 represent the first step in the journey of adopting 

model-based closed-loop quality control and advanced process monitoring in continuous 

direct compression lines. The use of the state estimator within a model predictive control 

framework, or for hybrid process monitoring with the approach presented in Chapter 3, is also 

envisioned; 
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• Following the promising results obtained with the hybrid monitoring approach of Chapter 3, 

future studies can involve tests of the approach on additional processes, including on physical 

systems (e.g., direct compression lines, such as exploiting the state estimation framework of 

Chapter 2); 

• Still on the hybrid monitoring side, an important feature to be added to the framework is a 

strategy for automatic selection of the variables to be actively included within the multivariate 

monitoring framework. Actually, for large systems, it is impractical to include all the states 

and parameters obtained from a state estimator in the data matrix for hybrid process 

monitoring, as proposed in Chapter 3. Routines for maintenance of the hybrid monitoring 

framework should also be investigated; 

• Regarding the work on the continuous carousel for integrated filtration-drying (Chapters 4 

and 5), significant research work can originate from the obtained results. First, the developed 

simulation studies on operation design and process control for the paracetamol/ethanol slurry 

system can be validated on a physical unit. Other control strategies for the unit can also be 

designed, tested on the simulator, and then benchmarked against the control strategy 

introduced in Chapter 5. In particular, space of improvement can be seen through the 

implementation of advanced optimization frameworks at Layer 2. Case studies on other slurry 

systems can also be conducted. An interesting application regards the investigation of 

processes where washing is a critical step (e.g., when impurities adsorb the solid phase); 

• The integration of a crystallizer in the simulator of Chapter 5 represents another major step 

forward to be achieved in future research work. Integrated design of crystallization-filtration-

drying processes, operation and control system is acknowledged as a research topic of pivotal 

importance in pharmaceutical development and manufacturing. Even a relatively simple 

crystallizer model, factored into the carousel simulator, would allow evaluating the mutual 

interaction between crystallization, filtration and drying design and operating parameters, 

opening up many possibilities for optimization and control studies.  
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Appendix A  

Penicillin manufacturing: detailed and 

simplified models 

The fed-batch process for the manufacturing of penicillin by biomass fermentation is simulated using 

the detailed model by Birol et al. (2002): 

𝑑𝑋

𝑑𝑡
= μ𝑥𝑋 −

𝑋

𝑉

𝑑𝑉

𝑑𝑡
                                                                                         (A.1) 
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𝑑𝑡
                               (A.2) 
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                                               (A.3) 
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with: 

𝐾𝑙𝑎 = 𝛼1√𝑓𝑔 (
𝑃𝑤

𝑉
)
𝛼2

 .                              (A.5) 

d𝑉
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with: 
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𝛿 = [
10−14

[H+]
− [H+]] 𝑉 −

𝐶𝑎/𝑏(𝐹𝑎+𝐹𝑏)Δ𝑡

𝑉+(𝐹𝑎+𝐹𝑏)Δ𝑡
.                                                                    (A.11) 

d𝑄𝑟
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d𝑋

d𝑡
𝑉 + 𝑟𝑞2𝑋𝑉.                                                                                              (A.12) 
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].                                                         (A.13) 

We report in Table A.1 the symbols used for the states and outputs, and in Tables A.2 and A.3 those 

used for the parameters and the inputs, respectively. 

To allow for more variability under NOC, thus making the monitoring problem more challenging, we 

detune the pH and temperature loops with respect to the original tuning in (Birol et al., 2002). We 

also include process noise as fluctuations in the inputs, as reported in Table A.3. 

 
Table A.1. Case study 2: states of the detailed model, with indication on whether they are measured, 

and whether or not they are included also in the simplified model. 

State variable Symbol Initial value Units Measured? In the FPM? 

Biomass concentration  X 0.1 g𝑋 L-1 No Yes 

Penicillin concentration P 0 g𝑃 L-1 No Yes 

Substrate concentration S 15 g𝑆 L-1 No Yes 

Dissolved oxygen concentration 𝑐O2  1.16 gO2  L-1 Yes Yes 

Volume V 100 L Yes Yes 

CO2 concentration 𝑐CO2  0.5 mmolCO2 L-1 Yes Yes 

Hydrogen ion concentration [H+]  10−5.1 mol L-1 Yes No 

Temperature T 297 K Yes No 

Heat released 𝑄𝑟  0 cal No No 

The faulty batches discussed in Section 4.2 are initialized as the NOC ones, and then the following 

changes are considered in the detailed model: 

• Fault #1: aeration rate decreases by 0.01 L h-1 from 150 h to 300 h; 

• Fault #2: substrate feed concentration decreases by 0.50 g𝑆 L-1 h-1 from 150 h to 300 h; 

• Fault #3: μ𝑋,max decreases by 3.2E-4 h-2 from 15 h to 140 h; 

• Fault #4: 𝑇𝑐 = 298 K from the beginning of the batch. 

The simplified model by Bajpai and Reuss (Bajpai and Reuß, 1980), complemented with the CO2 

balance and a simplified version of the volume loss equation from Birol et al. (Birol et al., 2002), are 

used as the FPM. Namely, the FPM is composed by Equations A.1-4, Equation A.7-8 and the 

following equations as the volume balance and the biomass growth kinetics: 

𝑑𝑉

𝑑𝑡
= 𝐹 − λ𝑉                                     (A.14) 

μ𝑋 = μ𝑋,max
𝑆

𝑘𝑥 𝑋+𝑆

𝐶O2

𝑘𝑜𝑥 𝑋+ 𝐶O2
                                       (A.15) 

States, parameters and inputs are set as in Tables A.1-3. Note that the FPM retains only 6 of the 9 

states of the process. The main sources of parametric and structural mismatch are as follows: 

• protons, heat and energy balances (Equations A.10-13) are not included in the FPM; 
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Table A.2. Case study 2: parameters the detailed model, with indication on whether or not they are 

included also in the simplified model. 

Parameter Symbol Units Value In the FPM? 

Penicillin hydrolysis rate constant 𝐾  h-1 0.04 Yes 

Yield of biomass on substrate 𝑌𝑋 𝑆⁄   g𝑋 g𝑆
−1  0.45 Yes 

Yield of penicillin on substrate 𝑌𝑃 𝑆⁄   g𝑃 g𝑆
−1  0.90 Yes 

Maintenance coefficient on substrate 𝑚𝑥  h−1   0.014 Yes 

Feed substrate concentration 𝑠𝐹  g𝑆 L-1 600 Yes 

Yield of biomass on oxygen 𝑌𝑋 𝑂⁄   g𝑋 gO2
−1

 0.04 Yes 

Yield of product on oxygen 𝑌𝑃 𝑂⁄   g𝑃 gO2
−1 0.20 Yes 

Maintenance requirement of oxygen 𝑚𝑜  h−1  0.467 Yes 

Solubility of oxygen in broth 𝑐O2
∗   gO2L

−1  1.16 Yes 

Volume loss parameter λ  h-1 2.5E-4 Yes 

Constant relating CO2 to growth α  mmolCO2 g𝑋
−1 h-1 0.143 Yes 

Constant relating CO2 to maintenance energy β  mmolCO2 g𝑋
−1 h-1 4E7 Yes 

Constant relating CO2 to penicillin production γ  mmolCO2 L−1 h-1 10E-4 Yes 

Maximum specific biomass growth rate μ𝑋,max  h-1 0.092 Yes 

Contois saturation constant  𝑘𝑥  g𝑋 L
−1  0.15 Yes 

Oxygen limitations constants (no limitation) 𝐾𝑜𝑥 , 𝐾𝑜𝑝 g𝑋
−1 L 0 Yes 

Oxygen limitations constants (with limitation) 𝐾𝑜𝑥 , 𝐾𝑜𝑝 g𝑋
−1 L 2E-2, 5E-4 Yes 

Maximum specific rate of product formation μ𝑃,max  h-1 0.005 Yes 

Inhibition constant 𝑘𝑝  g𝑆 L
−1  0.0002 Yes 

Inhibition constant for product formation 𝐾𝐼  g𝑆 L
−1  0.10 Yes 

Constant P - 3 Yes 

Feed temperature of substrate 𝑇𝑓  K 298 No 

Constant for 𝜇 𝐾1  [mol/L] 1E-10 No 

Constant for 𝜇 #2 𝐾2  [mol/L] 7E-5 No 

Arrhenius constant for growth 𝑘𝑔  - 7E3 No 

Activation energy for growth 𝐸𝑔  cal mol-1 5100 No 

Arrhenius constant for cell death 𝑘𝑑  - 1E33 No 

Activation energy for cell death 𝐸𝑑  cal mol-1 50000 No 

Density × heat capacity of the medium ρ𝑐𝑝  cal °C-1 L-1 1/1500 No 

Density × heat capacity of the cooling liquid ρ𝑐𝑝𝑐  cal °C-1 L-1 1/2000 No 

Yield of heat generation 𝑟𝑞1  cal g𝑋
−1  60 No 

Constant in heat generation 𝑟𝑞2  cal g𝑋
−1 h−1 1.6783× 10−4 No 

Heat transfer coefficient 𝑎  cal h-1 °C-1 1000 No 

Constant 𝑏  - 0.60 No 

Constant for 𝐾𝑙𝑎 α1  - 70 No 

Constant for 𝐾𝑙𝑎 α2  - 0.4 No 

Proportionality constant γ  mol [H+]g𝑋
−1 1E-5 No 

Cooling water temperature 𝑇𝑐  K 290 No 

 

Table A.3. Case study 2: input variables of the detailed and simplified models, with 

indication on whether or not they are measured. In the detailed model, fluctuations are added 

around the nominal values as smoothed pseudo-random binary signals with the indicated 

maximum/minimum amplitudes. In the simplified model, constant (nominal) values are used.  

Input variable Symbol Units  Nominal value Max/min amplitude Measured? In the FPM? 

Feed substrate F L h-1 0.045* 8E-4 Yes Yes 

Aeration rate 𝑓𝑔  L h-1 8 0.08 No No 

Agitator power 𝑃𝑤  W 30 0.45 No No 

*F = 0 L h-1 in the first 50 h of the batch 

 

• Equations A.14-16 do not consider the effects of pH and temperature on the kinetic parameters 

and on the volume loss by evaporation, which are significant in the process and are accounted 

for in the detailed model; 
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• in the process, the mass transfer coefficient 𝐾𝑙𝑎 depends on two inputs (fg and Pw, Equation A.5), 

which are subject to small fluctuations. The FPM neglects this dependency, assuming 𝐾𝑙𝑎 = 120.3 

h-1. 
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