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Abstract

The convergence of wireless networks and control theory has been the key factor for
many successful applications like smart homes, smart cities, smart factories, and smart
agriculture. Today, new wireless control applications with small sampling periods, e.g. in
cooperative robotics, are feasible thanks to the latest high-speed 5G and Wi-Fi networks.
However, they are still relegated to research laboratories. The reason is that, differently
from systems with ideal communications, stability does not imply reliability. Tempo-
rary large deviations from the expected trajectory are likely to occur even if stability
is theoretically guaranteed, especially with high-speed wireless networks. Motivated by
practical examples, we propose to move from the concept of stability to the concept of
safety, defined as the satisfaction of suitable constraints.

Solutions available in the literature guarantee safety of the control system over wireless
only if communication blackouts are excluded. Since this is not possible with high-speed
wireless networks, we study new predictive control strategies able to enforce the con-
straints even in presence of blackouts. The key idea is to consider two control loops: the
inner control loop makes use of a simple controller, to be implemented at the plant side,
able to stabilize the system, possibly used only during blackouts, while the outer control
loop comprises a sophisticated predictive constrained controller, specifically designed to
enforce constraints and to track reference signals despite packet loss.

In this thesis, we propose three novel solutions: the first based on Reference Gover-
nor, the second based on MPC for Tracking, and the third based on Reference Governor
tailored for multi-agent systems. For any proposed strategy, we theoretically verify the
recursive feasibility of the underlying optimization problem, the constraint satisfaction
with probability 1 without any assumption on the communication network, and the con-
vergence to the desired set-point under very mild hypotheses. All the algorithms achieve
good results with real Wi-Fi networks. The solutions are both robust when the channel
is bad and high-performing when the channel is good. Preliminary experimental tests
show the validity of the proposed approach.

The thesis concludes with a sensor transmission power allocation algorithm for remote
estimation that explicitly takes advantage of the latest wireless technologies. It is suitable
both for multi-agent systems controlled by a central unit and for general monitoring
applications relying on the Internet of Things.

iii



M

iv



Acknowledgments

I would like to thank my advisor, professor Luca Schenato, for being the best model
for a PhD student. His vision and his foresight overshadow his outstanding knowledge of
the field. I am very grateful for his encouragement at the right moment and his lessons
on the way of approaching research.

I would like to express my gratitude to all the professors and researchers with whom
I have worked in the last three years, professor Dey, professor Farina, professor Carli,
professor Tramarin, and professor Garone, for his crazy ideas. Special thanks go to dr.
Branz and dr. Antonello, probably the most skilled engineer in the world, that make the
great part of the experimental setup used in this thesis.

I want to thank also all my colleagues from the University of Padova and from the
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1
Introduction

The wireless revolution of the last decades has impacted everyday life far beyond the

mere way of communicating. The easy connection of wireless networks has enabled the

connected world where we live in, where both people and devices are constantly linked

in a networked fashion. This trend is expected to increase and wireless communications

will find even more space in the next few years.

Control engineers have looked with interest at the advent of new communication tech-

nologies as witnessed by the large attention paid to Networked Control Systems (NCSs).

Differently from the standard control architecture, where the sensors and the actuators

are connected to the control unit by means of point-to-point dedicated cables, a NCS

consists of a control system where at least a link between the plant and the controller is

implemented through a communication network, either wired or wireless.

The interest in NCSs specifically relying on wireless networks is supported by several

practical reasons. In fact, wiring can be drastically reduced, reconfigurability and inter-

operability are enhanced, troubleshooting is simplified. Most importantly, fewer compu-

tational capabilities can be allocated to the plant, and more complex control algorithms

can be implemented. For these reasons, wireless communications are very appealing for

many relevant control applications like industrial plants covering wide areas, and sys-

tems with many sensors and actuators. Also, in modern factories, the new Industry 4.0

paradigm [1] and the Industrial Internet-of-Things [2] call for a more pervasive use of

wireless networks. Smart buildings [3], smart cities [4], and smart grids [5] can effectively

rely on wireless networks. For other applications, like mobile and multi-agent robotics,

wireless communications are not only convenient but required.

Unfortunately, wireless networks are not as reliable as point-to-point connections or

wired networks and they cannot be assumed ideal in the control design. Packet loss and

delays are the two main non-idealities that affect communications over wireless. In order

to close the feedback loop over wireless, their effects on the system have to be carefully

studied and adequately addressed, both in the communication network design and in the

control design.
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1.1 State of the Art

In the following, we show how the interplay of communication and control has been

studied from the network science perspective and from the control theory perspective.

We conclude the section with an overall picture of the current deployment of wireless

networks in real control applications.

1.1.1 Communication for Control

Existing wireless networks can be essentially divided in two groups: networks for automa-

tion purposes and networks for general purposes.

The most widespread and settled solutions for automation are WirelessHart and ISA

100.11a, both based on the IEEE 802.15.4 standard [6]. These networks have been specif-

ically designed to guarantee high reliability (few corrupted received packets) and small

latencies (few out-to-date receptions), see [6]. They provide a raw data-rate of 250 kbit/s

over a time-slotted channel. Unfortunately, the minimum time slot duration is equal

to 10 ms, so, even in the simplest case with a single sensor and a single actuator, the

sampling period cannot be decreased below 20 ms [7]. In the case of multiple sensors and

actuators, like in the case of multi-agent systems, the sampling period fatally increases

and the performances are limited.

Nowadays, the most popular wireless networks for general purposes are Wi-Fi, based

on IEEE 802.11 standard, and 5G. These networks are throughput-oriented, so the total

amount of delivered data is favored over the timeliness in delivering each data packet [8].

To this end, they provide high data-rates and more efficient medium access protocols

[8]. Consequently, when they are used for control applications, smaller sampling periods

can be achieved but the stochasticity in the feedback loop, represented by packet losses

and delays, is largely increased. To achieve both high performances and high safety,

we are forced to use general purposes wireless networks and to cope with the resulting

unreliability.

A first approach to deal with control over general purpose wireless networks is to reduce

the unreliability through a suitable design of the communication parameters. Several

solutions are available in the literature, mainly tailored for Wi-Fi. At the Physical layer,

both the transmission power and the data-rate can be adapted according to the channel

condition on a packet basis. In fact, the transmission power can be increased when the

channel noise is high to decrease the loss probability, while it can be decreased when the

channel noise is low to save energy [9]. Similarly, high data-rates can be selected in good

channel conditions to decrease the sampling period, while low data-rates employing more

robust modulations can be selected in bad channel conditions to reduce packet losses [10].

Along this line, an adaptive transmission rate scheme based on LQG cost is studied in

[11], while a model-free data-driven scheme is devised in [12]. Moreover, the presence of
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multiple antennas can be exploited to increase the reliability of the communication, see

the proof of concept [8]. Alternatively, it is possible to act at the Data Link layer as

suggested in [13]. Refined solutions can be obtained following the approach of [14], which

exploits the analytical model of the MAC layer of IEEE 802.15.4 standard to optimize the

number of retransmissions, the minimum backoff exponent, and the maximum number

of backoffs. A more radical solution is the ad-hoc wireless protocol tested in [15] called

Real Time Wi-Fi (RT-WiFi). It exploits the Physical layer of the IEEE 802.11 standard

to guarantee high transmission rates and a Data Link layer based on TDMA to enforce

determinism in the communication. Experimental tests show that RT-WiFi outperforms

Wi-Fi in terms of latencies and thus it is more suitable for control applications. The

authors argue that (aggregate) transmission rates up to 6 kHz are possible with RT-

WiFi. The idea of combining the data-rates of the Physical layer of IEEE 802.11 standard

and the determinism of TDMA protocol at the Data Link layer is used also in WIA-FA

networks, based on the recently approved IEC 62948 standard [16].

A second approach is to cope with the network unreliability in the control design.

Clearly, a suitable model of the wireless network is important in order to design an effec-

tive control algorithm. In most of the existing works on NCSs, packet losses are modeled

as independent and identically distributed random variables with Bernoulli distribution.

This model is attractive because of its simplicity but it is not able to capture the ex-

perimental behavior of general purpose wireless networks. A more accurate model is the

well-known Gilbert-Elliott model, whose main idea is proposed in [17][18]. The channel

is modeled through a Markov chain with two states, usually referred to as “Good” and

“Bad”. Accordingly, the probability of transition from a state to another depends only on

the current state. In the more general formulation, losses can occur in every channel state

as independent events, and the loss probability depends only on the channel state. This

includes the special case where the packet is always lost in Bad state and always delivered

in Good state, which in turn includes the case of independent losses when the transition

probabilities are taken symmetric. The idea can be easily generalized to consider more

states, possibly characterized by SNR [19], or higher-dimensional Markov chains, where

the packet loss probability depends on the number of consecutive packet losses so far [20].

Along the same line, Hidden Markov Models are used [21]. An overview of the existing

models tailored for Wi-Fi can be found in the recent work [22].

The validity of these models depends on the network standard and on the environment.

For this reason, experimental tests are necessary to understand their applicability to the

specific case. For Wi-Fi, detailed experimental campaigns are carried out e.g. in [8]

and [23]. For illustrative purposes, we report some experimental data obtained in our

laboratory.

The experimental setup, originally devised in [23], comprises a host PC and a tar-

get board connected through a Wi-Fi network in an office-like environment. Network
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Figure 1.1: Blackouts (b/o) with good channel conditions. In the bottom panel, we can
see that long blackouts are possible even with good channel conditions.

parameters are set according to [24]. The experiment consists of the transmission of

time-stamped packets from the host PC to the target board and the other way around.

At each side, a fixed time-span T elapses between two following transmissions, mimicking

sampling instants and thus the communication between a plant and a remote control unit.

Using the time-stamps, we retrieve the arrival processes and compute the communication

blackouts that occurred during the experiment. Formally, at time instant t, the blackout

b/o is the period elapsed since the last received packet. For a complete description of

the experimental setup see Appendix A.3. The interested reader is referred to [23] for

an exhaustive experimental campaign for different T and a detailed description of the

results in terms of delays and packet losses. In the following, we give a taste of the typ-

ical behavior of the Wi-Fi network for the case of T = 5 ms focusing on communication

blackouts.

In top panel of Figure 1.1 we can see the behavior of the network in good channel

conditions. We can see that only 15 times over 30 s (6000 packets) more than two

consecutive packets have been lost. The longest blackout has a length of 12 packets,

corresponding to 60 ms. This network evolution, in general, allows control applications.

Bottom panel of Figure 1.1 still reports the network evolution under good channel

conditions. However, in this case, we see a very long communication blackout of 120

packets, corresponding to 600 ms. This is particularly annoying because the blackout

was almost unexpected, since the network performances were satisfactory so far. If the

open-loop system is unstable, we may expect the trajectory to diverge.

Since the above experimental data have been collected in ideal conditions, with only

minor interference from other networks, we introduce a new Wi-Fi network in the labora-

tory. This is a very realistic setup, since it is reasonable to consider other Wi-Fi networks

in the environment, both for general traffic and possibly for other control applications.
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Figure 1.2: Blackouts (b/o) with bad channel conditions. We can see that bad channel
conditions can last for both short (top panel) and long periods (bottom panel)

It follows that the channel experienced by the considered network depends on the traffic

on the other network. As shown in top panel of Figure 1.2, the channel condition can be

good for long periods (see from 0 to 20 s), but long blackouts can still occur in a short

period of time (less than 4 s) due to a temporary disturbed channel. Moreover, in the

same configuration, bad channel conditions can last for a long period, see bottom panel

of Figure 1.2. In that case, the average packet loss probability in the period from 5 s to

20 s is 0.7 and 5 blackouts longer than 100 packets occur. Control applications in these

conditions are really challenging and performances may be unsatisfactory.

These experimental results give important insight on the problem. First, we can see

that communication blackouts are possible even in good channel conditions. In general,

this behavior prevents the remote stabilization of an unstable plant. Second, we see that

channel conditions are strongly time-varying. Control algorithms have to adapt to the

channel conditions, to avoid both instability in bad channel conditions and conservative-

ness in good channel conditions.

1.1.2 Theory of Networked Control Systems

Different approaches have been proposed to theoretically study control system over wire-

less networks.

Following e.g. [25][26][27][28][29], the plant is modeled as a continuous-time system

but, due to the presence of the wireless network, transmissions (of the measurements and

of the control inputs) occur only at sampled time instants. Transmission instants may

be governed by the medium access protocol or by event-trigger mechanisms [30], while

the network may introduce delays on the reception (and so on the application) instant

of the packet. According to this model, a packet is used as soon as it has been received.

Typically, the controller is designed as if the network is not present and most of the
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Figure 1.3: Standard setup considered in the literature. The switches indicate an inter-
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effort is dedicated to deriving the Maximum Allowable Transmission Interval (MATI)

that preserves stability. The resulting control design is called Emulation-based and is

widely adopted in the literature [31][32][33][34].

An alternative approach, used e.g. in [35][36][37][38][39], proposes to model the plant

as a discrete-time system with transmissions occurring at sampling instants. According

to this model, a packet is used at the sampling instant following its reception. In this

sense, any delay smaller than a sampling period has the same effect on the system. Since

this is the model used in this thesis, we summarize some relevant results obtained using

this approach and we use them to illustrate the main known drawbacks of control over

wireless. We consider linear systems with Gaussian noise. Since the results are simpler,

by way of example, we focus on the TCP-like case.

The first problem when controlling a remote plant is to estimate the state of the system.

Interestingly, the optimal filter for linear systems in presence of packet loss can be easily

obtained using the Kalman filter for time-varying systems: in fact, the resulting system

is equivalent to the original system but with time-varying output matrix, equal to the

original one when the packet is arrived and equal to the null matrix when the packet

is lost [35]. The optimal estimate is obtained applying a closed-loop update (i.e. the

Kalman filter update with the original non-null output matrix) if the packet is arrived

or applying an open-loop update using only the model (corresponding to the Kalman

filter update with the null output matrix) if the packet is lost. As a consequence, the

error covariance does not converge due to the dependence on the arrival process and the

optimal gain is time-varying.

The first drawback then is that, differently from the system with ideal channels, the

estimation error covariance is not always bounded. It has been shown that, if pack-

ets are lost according to independent Bernoulli random variables, there exists a critical

threshold λc on the arrival probability below which the expected error covariance diverges

[35]. Similar results hold for more general channel models [39]. This limits the applica-

tion of control over wireless networks to the cases where some minimal average channel

6



requirements are guaranteed.

With the aim of providing a full understanding of the channel requirements to apply

control over wireless, large efforts have been made to characterize the critical threshold

λc. The simple upper bound λ̄ = 1 − 1/
∏

i |λi|2 where λi are the unstable eigenvalues

of the system matrix A has been provided in [38] following [36]. The well-known lower

bound λ = 1− 1/|λmax|2 where λmax is the largest eigenvalue of A is given in [35]. It has

been shown that the exact value coincides with the lower bound when the output matrix

C is invertible, when A has a unique unstable eigenvalue, and when A is diagonalizable

with simple and distinct eigenvalues [40]. The equivalence between the critical value and

the lower bound has been proved in [41] if the submatrix of C relative to the observable

space of the system is invertible and in [42] if A is diagonalizable and the system is

non-degenerate. The latter result has been generalized for more general channel models

in [43].

The problem of remote estimation over wireless networks has been extended to consider

multiple sensors [44] and delays [45], expressed in terms of number of sampling periods.

Notably, in these cases, the algorithms are natural extensions of the original Kalman

filtering with packet loss [35]. The work [46] studies how to optimally encode the infor-

mation transmitted from the sensor to the remote estimator. Interestingly, the optimal

scheme among all causal algorithms for any packet loss model is a standard Kalman filter

at the sensor. Then, the optimal estimate at the remote estimator is set equal to the

estimate of the local estimator if the packet is arrived, or it is obtained with an open-loop

update using the system model if the packet is lost. If packets are lost according to

independent Bernoulli random variables, also in this case, there exists a critical threshold

on the arrival probability and it coincides with the lower bound of the critical threshold

for the case where the raw measurement is transmitted. It follows that, for systems for

which the exact critical threshold and the lower bound coincide, stability is not enhanced

if the optimal state estimate is transmitted instead of the raw measurement.

The second problem when controlling a remote plant is to design the controller. It

has been shown that the optimal controller is a linear function of the state estimate

and is independent of the arrival processes. While the standard optimal regulator always

stabilizes the original system, when packets are lost according to independent Bernoulli

random variables, the stability can be lost if the arrival probabilities are below a certain

threshold. In that case, the LQG cost is unbounded and the state covariance diverges

[38]. Since the duality of the optimal control and estimation problems holds, many results

achieved for remote estimation can be obtained also for remote control, in particular for

what concerns the critical threshold. It follows that, in several cases, the critical arrival

probability is equal to 1 − 1/|λmax|2 where λmax is the largest eigenvalue of A. We can

conclude that, as in the estimation problem, minimal average channel requirements have

to be met in order to remotely control the plant.
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The problem of remote control over wireless networks has been extended to consider

multiple actuators [47]. The work [48] studies the problem of how to compute the con-

trol input at the actuator when the packet transmitted from the remote controller is

not arrived. It has been shown that the stability conditions are not improved for any

possible algorithm implemented at the actuator, even if it can exploit the system model.

Clearly, the performances in terms of LQG cost change depending on the algorithm used.

For instance, the work [49] considers the two simplest strategies, namely the zero-input

strategy, where the control input is set to zero when a packet is lost, and the hold-input

strategy, where the previous control input is kept. For scalar systems, it has been shown

that the hold-input strategy outperforms the zero-input strategy for small packet loss

probabilities and high input penalization.

A particular instance of the control problem over wireless networks is the design of

the constrained controller. Differently from unconstrained problems, where the re-

quirements are on the average state, constraints have to be enforced point-wise in time.

In the literature, different designs based on Model Predictive Control (MPC) have been

proposed. The main idea is to use the sequence of future inputs, that is computed by

MPC as by-product to obtain the current control input, to cope with future communi-

cation flaws. The work [50] studies the case where the link between sensor and MPC

is ideal for nonlinear systems without disturbances. The solution has been extended in

[51] for the case with bounded disturbances. In the work [52], the optimization is not

solved at each time instant but only if either a new measurement has been arrived, or

the last measurement has been arrived i steps ago and all the last i control sequences

have been lost. The work [53] proposes to introduce a fictitious delay before using a new

control sequence in order to preserve the admissibility of any applied input. In general,

it has been shown that state constraints are satisfied if the number of consecutive packet

losses is smaller than the horizon of the MPC. So, the second drawback of control over

wireless is that, differently from the system with ideal channels, constraints are not al-

ways satisfied but the number of consecutive packet losses has to be bounded and known

in advance. We can conclude that, in order to satisfactorily control a remote plant over

wireless, the network has to satisfy both average requirements on the channel, namely the

minimal arrival rate, and instantaneous requirements, namely the bound on the number

of consecutive packet losses.

In the UDP-like case, the control design is much more challenging. In particular, it has

been shown that the separation principle does not hold even in the linear case [38]. In

particular, the control input is a nonlinear function of the state estimate and the optimal

estimate is a nonlinear function of the control input. The same holds also in the realistic

case where the acknowledgment is randomly lost [54]. Since the exact optimal estimate

and control have been shown to be intractable [55][56], several suboptimal solutions have

been proposed. For instance, the state estimate can be computed using the expected
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Figure 1.4: Practical deployment of wireless sensors. Courtesy of Emerson�. Left panel:
pressure sensor. Right panel: corrosion sensor.

applied input in the Kalman filter [37], estimating the applied input based on the received

measurement [57], or using optimal static gains [58]. When constraints are present, with

UDP-like protocol, the solutions are usually more conservative [59].

1.1.3 From theory to practice

To date, wireless networks are deployed in many control applications. In the simplest

case, the wireless network is used to connect a set of spatially distributed sensors to

a central monitoring unit. This application, referred to as Wireless Sensor Network

(WSN), is today widely established and several off-the-shelf solutions are now provided

by important companies like Siemens, Emerson, and ABB, just to mention a few. Two

examples of wireless sensors available on the market are reported in Figure 1.4. Extensive

use of WSNs has been made for monitoring purposes in industrial environment since the

seminal successful application at Cherry Point refinery in 2006 [60]. Another interesting

application of WSNs is the monitoring of civil infrastructures, like bridges, skyscrapers,

and other buildings. A curious early implementation has been deployed in the Golden

Gate Bridge in San Francisco bay [61] (based on TinyOS). Other interesting applications

of WSNs can be found in the medical area, see [62] for a detailed survey. In this field, an

interesting pilot application has been implemented at Johns Hopkins Hospital Emergency

Department [63]. Each patient is provided with a compact device including a small

microprocessor, an IEEE 802.15.4 chip, and a sensor board connected to a pulse oximetry

probe. The overall architecture, called MEDiSN, comprises relay nodes, a gateway, and

a central server. Using an ad-hoc communication suite and app services, the WSN allows

doctors to monitor patient data from remote in an efficient way. A similar architecture,

called CodeBlue, has been experimentally tested in [64].

The aforementioned applications are limited to sensing and no control action is trans-

mitted over wireless. In the last years, however, in several cases, wireless networks have

been used for both the links of the control loop. Smart homes are one of the most prolific
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application fields. In fact, a home can be seen as a dynamical system with several outputs,

e.g. the temperature and the room light, and input, e.g. air conditioning, heating, and

the light switches. In this context, typical applications are temperature control and light

control. For instance, the work [65] implements a light controller in an office environment

using light sensors, motion sensors, a central computational unit, and local LED drivers,

connected through a wireless network (ZigBee). Results are really promising: the control

system reduces the total power consumption by 55% during a six months period. The

work [66] implements a temperature control in an office in Hong Kong using occupancy

sensors, temperature sensors, a central computational unit, and a variable-air-volume

conditioning system, connected by wireless. The control law regulates the supply airflow

rate by acting on the opening rate of the variable-air-volume boxes. The solution out-

performs significantly the conventional control in terms of total power consumption and

improves the comfort of persons in the room.

Also agriculture is a breeding ground for control over wireless. For instance, a scheme

employing local (ZigBee) and cellular (GPRS) wireless communications have been used

in an automated irrigation system for sage, thyme, origanum, and basil, in Mexico [67].

Results are outstanding: the system achieves water savings of up to 90% compared with

traditional irrigation practices. Along this line, international research projects [68][69]

have been funded to put into practice smart agriculture solutions exploiting control and

wireless technologies.

Wireless communications have been successfully used also in process control. A notable

work is [70] where a wireless control system has been implemented for a starch cooker

process at the Iggesund paper mill in Sweden. The considered application comprises

three stages of the overall process. First, a starch-water mixture is cooked through steam

injection, then it is diluted and opportunely mixed, and finally it is sent to a storage tank.

The process is regulated by three independent controllers: the temperature during the

cooking is controlled regulating the steam injection, the concentration after the dilution

is controlled regulating the water flow, and the pressure is controlled regulating the flow

to the storage. The three controllers, taken identical to the preexisting PID controllers,

are implemented in a central computational unit connected with the sensors and the

actuators through a wireless network. Interestingly, the paper mill operators could not

distinguish if the paper was produced using the wireless control system or using the

preexisting wired controllers.

As shown in the examples above taken from smart homes and smart agriculture, wire-

less networks have promoted a technological shift by enabling control strategies in ap-

plications where it was difficult or almost impossible to close a feedback loop. Large

improvements can be achieved also in process control by connecting many sensors, actu-

ators, and advanced remote computational units. Notably, from the theoretical point of

view, standard control strategies apply in these cases since transmission rates are really
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Figure 1.5: Case study of NCSs. Left panel: architecture of the cyberphysical avatar by
[71]. Right panel: three mobile manipulators used in [75]. So far, high-frequency control
applications over wireless are limited to research laboratories.

low (generally speaking, less than 1 transmission per second) and the communication can

be made sufficiently reliable.

We argue that a similar technological shift that enables the large deployment of multi-

agent robotic systems can be achieved thanks to wireless communications. So far, how-

ever, despite the large body of literature on control with packet losses, this application

is only at its infancy. To date, just a few practical implementations have been done. A

complete architecture of a cyber-physical avatar employing both Wi-Fi and WirelessHart

is presented in [71]. The control of inverted pendulum systems has been implemented in

the early work [72] using Bluetooth, in [73] on IEEE 802.15.4, and in the more recent

work [24] using Wi-Fi. A case study involving multiple inverted pendulum systems with

independent control loops has been experimentally tested in [74].

A notable application is the mobile gait rehabilitation system presented in [76]. The

core of the system is a compact rotary series elastic actuator (RSEA) that provides

assistive torque to the patient’s knee joints. The mechanism simply consists of a DC

motor and a link attached to the patient leg connected by a torsional spring. The sensors

included in the system are the encoders on the motor and on the knee, several IMU

motion sensors, and two smart shoes with air pressure sensors. A control algorithm

is implemented on a computer connected to the system through a wireless networks.

Several control strategies and wireless networks have been integrated in the system, see

[77][78], proving the feasibility of the application. In this case, the possibility of using

a computer to implement the control algorithm allows to keep the hardware simple and

cost effective. More recently, the work [75] successfully implements a system of three

mobile manipulators that grasp and manipulate a rigid object. The solution uses a

distributed control algorithm and a wireless network providing fast communications. The

experiments show the feasibility of robotic manipulation with ideal channel conditions.

These applications, however, are academic and, even if promising, to date they are not

readily implementable on real system on uncontrolled environment.
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1.2 Contribution

This thesis tries to address the constrained control problem over wireless both from a

theoretical point of view and from a practical perspective. In this section, we retrace the

reasoning done to understand the problem, to solve the limits of the existing solutions,

and to test the proposed algorithms.

1.2.1 Theoretical advances in NCSs

As shown in section 1.1.2, a lot of attention has been paid to the characterization of

the conditions for the stability of the system in mean-square sense. However, much

less attention has been paid to understand which conditions ensure safety of the closed-

loop system with wireless communications. For common stochastic systems, safety is

usually implied by stability. Indeed, with the optimal regulator, the state and the error

covariances are known in advance and converge. Based on their values, it is possible to

obtain bounds, satisfied with very high probability, on the deviations of the system state

and of the estimation error from their expected values. Since both the state and the error

are Gaussian, the bounds are generally small. For instance, the error norm is smaller than

3 times the square root of the error covariance with 99,7% probability. If measurement

noise is negligible, the bound is equal to the process noise standard deviation.

It is natural to wonder if the same holds for control over wireless. In particular, is

the qualitative behavior of an unstable stochastic system with ideal communications the

same as an unstable stochastic system with lossy communications? Even more, is the

qualitative behavior of a stable stochastic system with ideal communications the same as

a stable stochastic system with lossy communications? Surprisingly, the answer to these

questions is no. In fact, differently from the standard case, we show in chapter 2 that the

estimation error has heavy-tailed distribution. Informally, this means that the probability

of deviations larger than an arbitrary threshold is higher than the probability in the

Gaussian case. It follows that, if we compare a stable system with ideal communications

and a stable system with wireless communications, in the latter we see larger deviations

more often. These deviations can result in dangerous system responses, like oscillations

or unexpected overshoots, and suggest that stability is not sufficient to guarantee safety.

Interestingly, we also show that there exist loss probabilities for which the error has

unbounded covariance (so the estimator is not mean-square stable) but admits a steady-

state distribution (and so it is bounded in probability). It follows that, even if we have

a mean-square unstable system with wireless communications, the evolution of the error

may not divergent. We can conclude that, even if the works on stabilization through

wireless networks have advanced the understanding of stochastic control and triggered

the development of several useful methodological tools, stability does not seem the right

objective to boost the adoption of control over wireless.
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To increase the impact of control over wireless, it is important to provide the reliability

guarantees required by most control applications. Informally, what is required is to

guarantee safety by avoiding both catastrophic and dangerous events. Typical examples

are collisions with obstacles, violations of the prescribed physical limits, the damage of

the load due to undesired oscillations, and stress on the systems due to uncoordinated

actions (e.g. in the case of cooperative robotics). More properly, safety can be identified

through suitable constraints. Then, we may say that the system is safe if constraints are

satisfied with probability 1. We use this concept as guideline in the design of the control

algorithms proposed in this thesis.

As outlined in the previous section, existing constrained control algorithms require

that the number of consecutive packet losses is bounded and known in advance. Unfor-

tunately, communication blackouts are present in real wireless networks, especially when

the channel is pushed to the limit by the control application e.g. through a low sampling

period. Even if the network condition is usually good, with only sporadic packet losses,

the presence of temporary blackouts is a common experience when using a wireless con-

nection. Blackouts may arise due to routine internal processes of the network stack, to

the presence of a new node trying to access the network, to other communications on

the same network, to the interference of other networks, or to temporary electromagnetic

noise. In section 1.1.1 we show that long blackouts in Wi-Fi networks may arise even

in good channel conditions and lasting poor conditions can be caused by the presence of

other interfering networks. Novel constrained control strategies are needed to deal with

communication blackouts. This is the core of the thesis.

For example, consider now a remote linear system with disturbances and a zero-order

hold at the actuator to compensate for packet losses. Assume that the state is required

to belong to a compact set. It is easy to show that, if the system is unstable, there

always exists a blackout length such that constraints are violated. On the other hand,

if the system is stable and the current state satisfies the constraints, we know from

the literature that there exists an input that can be kept constant for any arbitrary

long period without violating the constraints. These considerations imply an important

conclusion: in order to satisfy constraints with communication blackouts, the system needs

to be stabilized at the plant side. For this reason, in chapter 3 we assume that the system

is stable, possibly thanks to an inner control loop. In chapter 4 this assumption is relaxed

and we assume that a smart actuator has access to the system state to apply a stabilizing

control law during long blackouts. In both cases, the plant is assumed to be provided

with a small computational unit not sufficient to implement the sophisticated control

algorithms required to enforce constraints. On the other side, the remote control unit

is provided with high computational power to tackle the problem of reference tracking

under constraints. This setup is graphically depicted in Figure 1.6. We can see that the

resulting control system consists of two control loops. An inner control loop, implemented
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Figure 1.6: Setup considered in chapters 3 and 4. Sensor and actuator are co-located.

at the plant side, is used to be robust against blackouts. This controller is usually simple,

it is designed to stabilize the system and to achieve good system responses, but it is not

able to enforce constraints. The outer control loop, closed over a wireless network, is used

to enforce constraints while tracking a reference signal.

Due to the presence of blackouts, the plant has to be able to autonomously evolve for

arbitrarily long periods without violating the constraints. This does not only require the

system to be stabilized at the plant side but also the inputs transmitted to the plant have

to be specifically designed to be valid in the future. The capability of enforcing constraints

even in presence of future blackouts can be achieved using predictive control strategies.

In this thesis we employ the Reference Governor (RG) [79] and the Model Predictive

Control (MPC) [80]. In both cases, the system evolution is predicted to guarantee that

also future states are admissible. Moreover, predictive control strategies are known to

improve the performances of the system by exploiting the model, thus taking advantage

of the knowledge on the system.

To recap, in order to guarantee safety in the presence of blackouts, we have to design

a simple local control strategy, able to stabilize the system, and a remote predictive

constrained control algorithm, that takes into account the missing information from the

plant (due to past states that have been lost) and the missing information at the plant

(due to the future control inputs that may be lost).

In this thesis, we have proposed a solution based on RG (chapter 3), a solution based

on MPC for Tracking (chapter 4), and a solution based on RG tailored for multi-agent

systems (chapter 5). For any proposed strategy, we have theoretically verified the recur-

sive feasibility of the underlying optimization problem, the constraint satisfaction with

probability 1 without any assumption on the network, and the convergence to the desired

set-point under very mild hypotheses.

Finally, the thesis concludes with a smart transmission power allocation algorithm

(chapter 6). It is suitable both for multi-agent systems controlled by a central unit

and for general monitoring applications relying on Internet-of-Things. It explicitly takes

advantage of the latest wireless technologies using advanced reception techniques.
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Figure 1.7: Experimental setup used in the thesis. Left panel: PC and board used to
collect Wi-Fi communication data. Right panel: Segway.

1.2.2 From theory to practice

In order to test the validity of the proposed constrained algorithms for future robotics, we

have conducted an accurate experimental campaign on the two-wheeled balancing robot

of Figure 1.7. As we can see, it consists of a rigid chassis, with dimension 20 cm×20 cm×
10 cm, and two wheels, with radius 3.4 cm. We often refer to it as Segway-like robot or

simply Segway since, due to its structure, its dynamics are similar to a Segway electric

vehicle.

The Segway is an interesting testbed because the open-loop system is nonlinear and

unstable. Even if it can be linearized around the vertical position and stabilized with

standard techniques, deviations from the equilibrium quickly deteriorate the accuracy

of the linearization and the performances of the controller. If large tilt angles are not

avoided, the Segway will be out of control and it will dramatically fall. It is natural to

require the tilt angle to be limited in a suitable interval to preserve the integrity of the

system while moving to any desired point of the plant. Indeed, in this case, the relation

between constraint satisfaction and safety is clear. Additionally, the presence of limits

on the actuators makes the control problem even more challenging. More details on the

Segway are given in Appendix A.2

We proceed step-by-step. First, we start with WiFi-in-the-loop experiments where a

real Wi-Fi network is used while the Segway is emulated. In particular, communication

data have been collected in an experimental campaign carried in our laboratory. The

experiments consist of the transmission of time-stamped packets from a host PC to a

target board, and the other way around, with a given periodicity. A detailed description

of the experimental setup is given in Appendix A.3 and some representative channel

evolutions are shown in section 1.1.1. The collected data have been included in a Simulink

model where the plant model and the control unit have been implemented. In this way,

we accurately simulate the nonlinear plant dynamics, the sensing devices (encoders and

MPU), the actuator saturation, and the network, based on the experimental data. In
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Figure 1.8: System response with WiFi-in-the-loop setup. Comparison between proposed
strategies and standard Networked MPC [59]. Constraints are indicated in dark gray.

this framework, we have tested the RG with packet losses devised in chapter 3 and the

MPC for Tracking over wireless devised in chapter 4.

Typical results under bad channel conditions are reported in Figure 1.8. We can see that

the Networked MPC [59] is not able to enforce the constraints due to long blackouts. If

the Segway is pre-stabilized by a local controller, the violations are modest, but still up to

0.05 rad on a limit of 0.1 rad, and the reference is reached, but 1 s later than the proposed

strategies. If the Segway is not equipped with a local controller, the consequences are

catastrophic: the Segway falls down (the tilt angle is equal to π/2) and cannot proceed

anymore. Conversely, both the proposed RG and the proposed MPC for Tracking succeed

in reaching the desired set-point. The performances are almost identical, but we can

see more but smaller oscillations with the proposed RG with respect to the proposed

MPC for Tracking. Most importantly, the constraints are always satisfied. Notably, we

have repeatedly tested the proposed strategies with different channel conditions, network

parameters, control design parameters, and sampling periods, and we have seen that

safety is achieved in any case.

Due to the promising results, the WiFi-in-the-loop validation is followed by a full

experimental test. Since RG over wireless and MPC for Tracking over wireless give
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Figure 1.9: System response with proposed RG. Simulation with ideal communication
and full experiment on Segway.

comparable performances in the WiFi-in-the-loop tests, we choose to put in practice the

proposed RG because of the simplicity of the implementation. Indeed, the size of the

optimization variable is much smaller: it is m for RG, while it is (N + 1)m + n for the

MPC for Tracking, where m is the dimension of the input, n is the dimension of the state,

and N the horizon of MPC. For the case at hand, m = 1, n = 4, and N = 50. Moreover,

in good channel conditions, the number of constraints is smaller with RG, since the

constraints with RG coincide with the terminal constraints of MPC for Tracking. Since

the optimization variable is scalar, RG does not neither need optimization algorithms (e.g.

gradient descent) since the optimal point can be found with a linear search in an array

with length equal to the number of constraints. Also the smart actuator is extremely

simple.

In the full experimental setup, the proposed RG is implemented on a host PC, while the

Segway is equipped with an Arduino microcrontroller, where the stabilizing inner loop is

implemented, and a Raspberry board, used to manage the communication between the

plant and the control unit. All the details are given in Appendix A.4.

In this experiment, we have to deal with both the network non-idealities and the

physical system non-idealities. While the effects of the former have been already tested
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in the WiFi-in-the-loop experiments, the latter were not considered yet. In fact, even

if the dynamics were accurately simulated in the WiFi-in-the-loop tests, the parameters

used in the control design were matched with the parameters of the simulated model.

Unfortunately, in practice, the Segway prototype cannot be adequately identified due

to its complicated physical structure. Moreover, the mechanical design of the robot is

affected by some inaccuracies, like non-ideal mass distribution, that give oscillations. All

these features make the control of the robot challenging, especially if limits on the tilt

angles are required.

The obtained results are depicted in Figure 1.9. We can see that the system evolution

is affected by oscillations, but constraints are satisfied, and the system quickly converges

to the set point. We believe that the performances are satisfactory, provided the scarce

knowledge on the plant parameters and its intrinsic mechanical limitations.

From the outcomes of the experiments, we think that the proposed solution under

average channel conditions is able to achieve the same performances of classic solutions

that require wired dedicated cables. From the outcomes of the WiFi-in-the-loop experi-

ments, we believe that the proposed algorithm guarantees safety also with bad channel

conditions. These results, still preliminary, indicate that to use a local simple controller

to stabilize the system and a wireless controller to enforce constraints is a promising

direction for advanced control applications.

1.2.3 Outline

The thesis is structured as follows. In chapter 2 we consider the problem of remote

estimation with intermittent observations, showing that the distribution of the estimation

error is heavy-tailed. We then address the problem of constrained control over wireless

networks. In chapter 3, we propose a solution based on RG, while in chapter 4 we devise

a solution based on MPC for Tracking. The problem is generalized to case with multiple

actuators and sensors in chapter 5, where an algorithm based on RG is proposed. Finally,

chapter 6 addresses the problem of transmission power allocation for remote estimation.
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2
Heavy-Tails Everywhere

According to [81], for the scalar case, the distribution of a random variable X is heavy-

tailed if and only if limx→+∞ eαxP(X > x) = +∞ for any α > 0. Informally, this

means that heavy-tailed distributions are those that converge to 0 more slowly than an

exponential function. This also means that the probability of the tail, namely of values

larger than an arbitrary large threshold, of a heavy-tailed distribution is higher than the

probability of the tail of an exponential random variable, and therefore of a Gaussian

random variable as well. A pictorial comparison is reported in Figure 2.1.

In the past, it has been shown that heavy-tailed distributions appear in many different

domains, like in economics (e.g. the financial asset returns [82]), in computer science

(e.g. the sizes of files stored on servers available on the World Wide Web [83]), as well

as in many aspects of human behavior (e.g. the email activity pattern [84]). As nicely

explained in [85], heavy-tails in human behavior appear because the decision on when

executing a task is based on some perceived priority, so that many tasks are immediately

executed while others are long delayed. In the recent work [86], it has been outlined that

heavy-tails appear in feedback systems with stochastic multiplicative noise.

Heavy-tails are ubiquitous also in control over wireless networks, both on the control

side and on the network side. We first show the presence of heavy-tails in wireless net-

works experimentally. We make use of the experimental setup described in Appendix A.3

featuring a host PC and a target board connected through a Wi-Fi network. The exper-

iment consists of the transmission of a time-stamped packet every T = 5 ms. From the

time-stamps of the received packets we retrieve the lengths of the communication black-

outs, i.e. the periods between two following packets received with at most a delay T .

The experimental probability density function of the blackouts is reported in left panel of

Figure 2.2. For sake of comparison, we also report the case where packet losses are inde-

pendent and identically distributed (i.i.d.) random variables with Bernoulli distribution

and mean equal to the average packet loss probability occurred during the whole experi-

ment. We can see that blackouts longer than 10 packets have a higher probability in the

experimental data. To better understand if the distribution of blackouts is heavy-tailed,
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Figure 2.1: Comparison between a Gaussian distribution and a heavy-tailed distribution.
Left panel: probability density function. Right panel: tail distribution.
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Figure 2.2: Blackouts (b/o) for an i.i.d. channel and an experimental Wi-Fi channel.
Left panel: probability density function. Right panel: tail distribution. While blackout
distribution is exponential with i.i.d. channel, it is heavy-tailed with Wi-Fi.

as suggested in [87], we plot the tail distribution, also referred to as complementary cu-

mulative distribution function, with log scale. Indeed, if the distribution is exponential,

the tail distribution is P(X > x) = e−αx and log(P(X > x)) = −αx, so, in log scale, the

tail distribution is a line passing through the origin. The plot is reported in right panel

of Figure 2.2. We can see that, with i.i.d. packet losses, the blackouts are exponentially

distributed, while the distribution of experimental blackouts results to be heavy-tailed.

This has an important consequence: the well-known i.i.d. channel model, even with a

conservative estimate of the loss probability, is optimistic for fast communications over

fast wireless networks (Wi-Fi). We have also experimentally shown that the delay of

received packets, defined as the difference between the time-stamp of the packet and the

current local time-stamp, are heavy-tailed (see [24]).

In the following, we theoretically show that heavy-tailed distributions appear in the
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problem of remote estimation over lossy networks. In particular, differently from works

[88][89][90][42] that focus on the distribution of the error covariance of the optimal esti-

mator, we directly focus on the distribution of the error, whose effects are immediately

visible in practical implementation, and we consider a general linear estimator. We show

that, if the sequence of estimation errors converges to a stationary distribution, it is

heavy-tailed. Then, we obtain a sufficient condition for which the stationary distribution

exists. The condition is weaker than the stability condition of the optimal estimator stud-

ied in [35][40][41][42][43]. This does not mean that the stability condition of the optimal

estimator is actually conservative, but that the error does not show a threshold behav-

ior. For this reason, increasing the packet loss probability, the estimation performances

smoothly deteriorate, rather than diverging once the stability threshold is violated. Fi-

nally, we provide further insight on the problem focusing on the scalar case, for which we

obtain an accurate characterization of the tail distribution.

2.1 Problem formulation

We consider a discrete-time linear system

xt+1 = Axt + wt (2.1)

yt = Cxt + vt (2.2)

where xt ∈ Rn is the system state, wt ∈ Rn is the process noise, yt ∈ Rp is the system

output, and vt ∈ Rp is the measurement noise. We assume that process and measurement

noises are independent and identically distributed random vectors with Gaussian distri-

bution, namely wt ∼ N (0, Q) for t ≥ 0, vt ∼ N (0, R) for t ≥ 0, wt is independent of wk

for t ̸= k, vt is independent of vk for t ̸= k, and wt is independent of vk for any t, k ≥ 0.

We also assume that the initial state x0 is a Gaussian random variable independent of

the process and measurement noise, namely x0 ∼ N (x̄0, P̄0) and x0 is independent of wt

and vt for any t ≥ 0.

The measurements are transmitted to a remote estimator over a wireless network af-

fected by packet loss. More formally, we introduce the arrival process γt ∈ {0, 1} defined

as

γt =

1 if yt is available to the estimator

0 otherwise
(2.3)

We assume that γt are independent and identically distributed random variables with

Bernulli distribution and mean γ, namely γt ∼ B(γ) for t ≥ 0 and γt is independent of

γk for t ̸= k. The process mean γ is referred to as arrival rate, while 1− γ is the packet

loss probability.

Let x̂(t|t) ∈ Rn denote the estimate of the state xt. We consider a general linear
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estimator expressed as

x̂t+1|t+1 = Ax̂t|t − γtKt

(
yt − Cx̂t|t

)
(2.4)

starting from a given x̂0|0, where Kt is the estimator gain, possibly time-varying. Note

that this general formulation includes the well-known Kalman filter with packet losses.

Let et ∈ Rn denote the estimation error, defined as

et = xt − x̂t|t. (2.5)

We can easily show that the error dynamics are

et+1 = (A− γtKtC)et + (wt − γtKtvt) (2.6)

Since A− γtKtC is a random matrix, the characterization of the process et is not trivial.

In the following, we address this problem.

2.2 Larger errors, more often

Besides the intuitive definition given in the introductory paragraph, for the results of this

chapter, it is convenient to use the following equivalent definition.

Definition 2.1. Let X ∈ Rn be a random vector. The distribution of X is said heavy-

tailed if there exists a finite r ∈ R such that E[||X||r] = +∞.

We are now ready to state the main theorem of this section.

Proposition 2.1. Assume that the matrix A is strictly unstable and assume that the pair

(A,Q
1
2 ) is reachable. Assume that the arrival rate is γ < 1. If the sequence et converges

to a stationary distribution, it must be heavy-tailed.

Proof. Using the law of total expectation, we get

E[||et+1||r] = E[||et+1||r|γt = 1]P(γt = 1) + E[||et+1||r|γt = 0]P(γt = 0)

≥ E[||et+1||r|γt = 0]P(γt = 0)

= (1− γ)E[||Aet + wt||r|γt = 0]

≥ (1− γ)E[||Aet||r]

where the last inequality holds since et and wt are independent (see [91], page 275).

Iterating, we get

E[||et+1||r] ≥ (1− γ)tE[||Ate1||r]
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Manipulating the norm we obtain

E[||et+1||r] ≥ (1− γ)tE
[(
e′1(A

t)′Ate1
) r

2

]
= (1− γ)tE

[(
trace

[
e′1(A

t)′Ate1
]) r

2

]
= (1− γ)tE

[(
trace

[
Ate1e

′
1(A

t)′
]) r

2

]
≥ (1− γ)t

(
trace

[
AtE [e1e

′
1] (A

t)′
]) r

2

where the last step follows from the Jensen’s inequality, that holds for r ≥ 2. By defini-

tion, we immediately get

E [e1e
′
1] ≥ E[w0w

′
0] = Q

using the independence of w0, v0, x0, γ0 and the fact that w0, v0 have null expectation.

Consequently

E[||et+1||r] ≥ (1− γ)t
(
trace

[
AtQ(At)′

]) r
2

Since the pair (A,Q
1
2 ) is reachable, there exist a t̄ ∈ Z and c > 0 such that

trace
[
AtQ(At)′

]
≥ c|λmax|2t

for any t ≥ t̄. It follows that

E[||et+1||r] ≥ (1− γ)t(c|λmax|2t)
r
2 = c

r
2 ((1− γ)|λmax|r)t

Choose now r̄ = − log(1−γ)
log |λmax| . Note that r̄ > 0 and it is finite since γ < 1. Under the

assumption that |λmax| > 1 and that γ < 1, it holds that limt→+∞ ((1− γ)|λmax|r)t = +∞
for any r > max{2, r̄}. If the sequence et converges to a stationary distribution, we can

conclude that it is heavy-tailed.

This result has important practical consequences. When controlling an unstable sys-

tem over unreliable links, large deviations of the estimation error are not as rare as in

the case of reliable links. While, in the ideal case, violations of safety margins can be

neglected thanks to the exponential decay of the Gaussian distribution of the error, safety

guarantees are ruined due to the presence of heavy-tails. We clarify this claim through

a toy example. Consider the scalar system with A = 1.2, C = 1, K = A, Q = 1, R = 0,

and arrival rate equal to 0.4. In Figure 2.3, we report the error evolution for the toy

system (blue line). For sake of comparison, we report a sequence of independent Gaus-

sian random variables with variance equal to the sample variance of the error evolution

obtained from the toy system (red line). This can be seen as the error evolution if it were

Gaussian, as in the case with ideal channel. We can see that, in the Gaussian case, almost
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Figure 2.3: Error evolution for a toy system. Large deviations are present with lossy
channels, while they are not in a comparable scenario with ideal channel.

every samples are in the set [−5, 5], with only rare and small excesses. The largest value

obtained over 1000 steps is equal to 7.5. The real error evolution is often smaller than the

sample from the Gaussian random variable. However, the error is more often outside the

set [−5, 5], and also large deviations are present. The largest value obtained is around

15, and it occurs several times. The closed-loop system, even if it is stable, exhibits an

unsatisfactory behavior and the large deviations may lead to critical conditions that have

to be avoided in many applications.

The previous proposition theoretically motivates the widespread mistrust of control

over wireless for safety-critical and industrial applications. Unfortunately, this cannot be

avoided with simple (linear) control strategies and motivates the change of perspective

that is proposed in this thesis.

Note that the previous proposition applies for the general class of time-varying linear

estimator and therefore for the well-known Kalman filter with packet loss [35]. It follows

that no linear estimation strategy can avoid the presence of heavy-tails in the error

distribution. The results are also valid for more general noise and arrival process models.

In fact, the proof simply requires wt and et to be independent, and the covariance Q of

the process noise wt to be finite.

A critical assumption of the previous proposition is that the error sequence converges to

a stationary distribution. Indeed, when the optimal time-varying estimator is considered,

it is not trivial to show that a stationary distribution of the error exists. In the following

section, we focus on the case of constant estimators, for which we are able to identify a

sufficient condition for the existence of the stationary distribution. Based on this result,

we are able to explain another important difference between stochastic systems with ideal

links and with lossy links, namely the absence of a clear threshold behavior.
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2.3 No threshold behavior of the error

In this section we assume that Kt = K for any t ≥ 0. It follows that the error dynamics

is

et+1 = (A− γtKC)et + (wt − γtKvt) (2.7)

The main results of this section rely on the Renewal theory and on its application to

the theory of random difference equations. We formalize the preliminary results needed

for our study in the following two theorems.

Theorem 2.1 (Theorem 6 [92]). Consider the following stochastic dynamic system

Et+1 = FtEt + Zt

where Et ∈ Rn, Zt ∈ Rn are random vector and Ft ∈ Rn×n is a random matrix. Assume

that the pairs (Ft, Zt), t ≥ 0, are independent and identically distributed. Define the

following quantities

St=
t−1∑
k=0

F0 · · ·Fk−1Zk, S=
∞∑
k=0

F0 · · ·Fk−1Zk, λ= lim
k→∞

1

k
log (||F0 · · ·Fk||) .

Then, the following properties hold true:

1. The random vector Et has the same distribution as St + Ft−1Ft−2 · · ·F0E0.

2. If E
(
log+ ||F0||

)
< +∞, then λ exists with probability 1.

3. If λ < 0 with probability 1 and there exists r > 0 such that E (∥Z0∥r) < +∞, then

S converges with probability 1.

4. If λ < 0 with probability 1, then Ft−1Ft−2 · · ·F0E0 converges to 0 with probability 1.

5. If λ < 0 with probability 1 and there exists r > 0 such that E (∥Z0∥r) < +∞, then

the distribution of Et converges to the distribution of S.

Theorem 2.2 (Theorem 2 [93] and Lemma E.0.1 [94]). If E
(
log+ ||F0||

)
< +∞, it holds

that

λ = lim
k→+∞

1

k
log (||F0 · · ·Fk||) = lim

k→+∞

1

k
E[log (||F0 · · ·Fk||)] ≤ E[log ∥F0∥] = µ (2.8)

and for scalar systems (n = 1), it holds that λ = µ.

In the literature, λ is referred to as the Lyapunov exponent. From Theorem 2.1, it

is clear that the convergence in distribution of Et is strictly related to the sign of λ.

Theorem 2.2 provides an alternative expression for λ and the useful upper-bound µ that,

usually, can be explicitly computed. We can now state the main result of this section.
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Proposition 2.2. If

(1− γ) log(||A||) + γ log(||A−KC||) < 0 (2.9)

then et converges in distribution to a stationary distribution.

Proof. The proof is obtained by verifying the hypotheses of Theorem 2.1 (in particular,

the ones of Item 5) with Ft = A−γtKC and Zt = wt−γtKvt. It is easy to see that, under

the considered model, the pairs (Ft, Zt) are independent and identically distributed. By

direct computation we have

E
(
log+ ||F0||

)
=

(1− γ) log(||A||) + γ log(||A−KC||) if ||A−KC|| > 1

(1− γ) log(||A||) otherwise.

In both cases, E
(
log+ ||F0||

)
< +∞, so we can use Theorem 2.2 to obtain

λ ≤ E[log ∥F0∥] = (1− γ) log(||A||) + γ log(||A−KC||) < 0

where the last inequality follows from condition (2.9). The Lyapunov exponent is thus

strictly negative. Then, what is left to prove is that there exist r > 0 such that E [||Z0||r] <
+∞. If we pick r = 2 we have

E
[
||Z0||2

]
= E [trace [Z0Z

′
0]]

= trace [E [Z0Z
′
0]]

= trace
[
E[w0w

′
0 + γ20Kv0v

′
0K

′ + γ0w0v
′
0K

′ + γ0Kv0w
′
0]
]

= trace [Q+ γKRK ′] < +∞

which concludes the proof.

Previous proposition guarantees the existence of a stationary distribution for constant

estimator, thus it allows to apply Proposition 2.1 and ensures the presence of heavy-tails

in the error distribution. See [95] for numerical method to find the stationary distribution.

In general, condition (2.9) is not tight since it relies on the upper-bound µ of the

Lyapunov exponent. In the past fifty years, many works have addressed the derivation

of lower and upper bounds for the Lyapunov exponent [96]. To date, the exact value can

be explicitly computed only for special random matrices. For instance, as outlined in

Theorem 2.2, µ and λ coincide for the special case of scalar systems.

The previous proposition can be used to draw some further considerations related

to the stability of the estimator. In this respect, mean-square stability is the most used

notion in the literature. Mathematically, the estimator is said mean-square stable if there

exists a positive matrixM0 such that the expected error covariance Pt is bounded byM0,
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Figure 2.4: Stability regions.

that is E[Pt] < M0 for t ≥ 0. For general multi-dimensional systems, with the optimal

(time-varying) estimator, there exists a critical arrival rate γc such that the estimator

is mean-square stable if and only the arrival rate γ is greater than γc [35]. For scalar

systems, with arbitrary constant estimator, the mean-square stability condition is given

by

(1− γ)A2 + γ(A−KC)2 < 1. (2.10)

The results of this section suggest to consider the notion of bounded in probability. A

sequence of random variables Xt is said bounded in probability if for any ϵ > 0 there

exists a Nϵ such that P[Xt > Nϵ] < ϵ for t ≥ 0. Intuitively, it means that the probability

of large values is uniformly bounded. It can be shown that, if et converges to a stationary

distribution, then it is bounded in probability. It follows that the error is bounded in

probability if (2.9) holds and, for scalar systems, the condition is tight since Theorem 2.2.

In general, mean-square stability is a sufficient condition for stability in probability. If

the error distribution were Gaussian, then mean-square stability and stability in prob-

ability would coincide. This is the case without packet loss. However, in the problem

at hand, the stationary distribution of the error is heavy-tailed and therefore not Gaus-

sian. It follows that, when the estimator is mean-square stable, the error is bounded

in probability, while there may be cases where the error is bounded in probability but

the estimator is not mean-square stable. This happens, for example, for scalar systems,

for which condition (2.10) is more stringent than condition (2.9). A pictorial represen-

tation for the toy system introduced above (but arbitrary K) is reported in Figure 2.4.

It can be seen that mean-square stability guarantees that the sequence et is bounded in

probability. In the case without measurement noise, with the optimal constant estima-

tor satisfying CK = A, we have that the estimator is mean-square stable if and only if

γ > γc = 1− 1/|λmax|2 = 1− 1/A2, while the error is bounded in probability if and only

if γ > 0.
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Figure 2.5: Error norm evolutions for a toy system. A violation of the threshold for
mean-square stability does not result in a qualitative difference in the error norm.
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Figure 2.6: Error norm evolutions for a toy system. A violation of the threshold for mean-
square stability in the case of ideal channel results in a drastically different evolution.

Differently from the case without packet loss, we see that the two notions of stability

are not coincident. In past years, a large attention has been given to the study of

the threshold γc, since it distinguishes bounded and divergent evolutions of the error

covariance. However, even if the error covariance is unbounded, since the distribution

is not Gaussian, the error may be bounded in probability. We explore the implications

through the toy example introduced above. We set the loss probability 1 − γ equal to

0.99 times and 1.01 times the critical loss probability 1/A2. In this way, in the first case,

the estimator is mean-square stable, while, in the second, the expected error covariance

diverges. In Figure 2.5 we report 10 evolutions of the error norm |et| for both the cases.

We can see that no qualitative differences are present. For sake of comparison, we report

the evolution for the same toy example with ideal channel. Also in this case, we consider

a mean-square stable estimator, whose gain K is chosen to satisfy (A−KC) = 0.99, and
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an unstable one, with K such that (A−KC) = 1.01. In this case, the threshold behavior

is evident. From these results, we expect that, increasing the packet loss probability, the

estimation performances smoothly deteriorate, rather than diverging once the stability

threshold is violated. We conclude that the notion of mean-square stability may be

misleading in the case of control over wireless.

2.4 Analytical characterization: power-law distribution

For sake of completeness, in this section we provide additional details on the stationary

distribution of the error for scalar systems with constant estimator. In particular, we

show that, under mild assumptions, the stationary distribution asymptotically decays as

a power law and we characterize the decay rate.

We say that a random variable is non-arithmetic if its support is not a set of form rZ,
for an arbitrary r ∈ R. Roughly speaking, it means that the support is not included in

the set of the multipliers of r. Now we can recall the results from the Renewal theory

needed for our study.

Theorem 2.3 (Theorem 2.3 [97] and Theorem 2.2.4 [94]). Let F and Z be two random

variables. Assume (i) {F ≥ 0} with probability 1, (ii) log(F ) conditioned on F > 0

is non-arithmetic, (iii) there exists α > 0 such that E[|F |α] = 1, E[|Z|α] < +∞, and

E[|F |α log+(F )] < +∞, (iv) P(Fx + Z = x) < 1 for all x ∈ R. Then there exists a

random variable E that satisfies E = FE +Z in distribution, and E is independent of F

and Z. Moreover it holds that

lim
x→+∞

xαP(E > x) = c+ (2.11)

lim
x→+∞

xαP(E < −x) = c− (2.12)

where c+ and c− are strictly positive constants.

The first result of the previous theorem is that a stationary distribution exists. Indeed,

under assumptions (i)-(iii), it can be shown that E[log+(F )] < +∞ and that E[log(F )] <
0, so the existence of a stationary distribution is implied by Theorem 2.1. The novelty

of the theorem is the characterization of the limit behavior of the distribution of E for

large values in the support. Roughly speaking, the theorem states that the distribution

P(E > x) asymptotically converges to 0 as c+x
−α, namely the tail probability follows

a suitable power law. Since c+ and c− are strictly positive, the cases where the limit is

zero is excluded. This excludes that P(E > x) converges faster than x−α. Expressions to

compute the positive constants c+ and c− can be found in [97] and [94]. Since they are

quite involved, they are omitted here.

We now apply the previous theorem for the case at hand.
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Proposition 2.3. Consider a scalar unstable system with A > 1. Assume that A−KC >

0 and A−KC < 1. Assume that log(A)/ log(A−KC) /∈ Z. Assume that

(1− γ) log(A) + γ log(A−KC) < 0 (2.13)

Then, there exist an unique α > 0 and c > 0 such that

lim
x→+∞

xαP(|E| > x) = c (2.14)

and α satisfies

(1− γ)Aα + γ(A−KC)α = 1 (2.15)

Proof. The proof is obtained by verifying the hypotheses of Theorem 2.3 with F =

A − γtKC and Z = wt − γtKvt for an arbitrary t. Since F = A > 0 with probability

1 − γ and F = A − KC > 0 with probability γ, Assumption (i) holds. Since all the

elements of the support of F are strictly positive, the support of log(F ) conditioned on

F > 0 is equal to the support of log(F ). Then, Assumption (ii) follows from the fact

that log(A)/ log(A −KC) /∈ Z. Denote f(α) = (1 − γ)Aα + γ(A −KC)α. We take the

derivative and we obtain

f ′(α) = (1− γ) log(A)Aα + γ log(A−KC)(A−KC)α

With simple manipulations, we can find that f ′(α) > 0 if and only if α > ᾱ with

ᾱ =
log
(
−γ log(A−KC)

(1−γ) log(A)

)
log
(

A
A−KC

)
We can conclude that f(α) is convex. It follows that, since f(0) = 1, there exists a

(unique) α > 0 such that f(α) = 1, thus satisfying (2.15), if and only if ᾱ > 0. Since A >

A−KC, ᾱ > 0 if and only if the argument of the logarithm at numerator in the equation

above is strictly greater than 1. This is verified under the condition (2.13). For such an

α, E[|F |α] = 1, E[|Z|α] = E[|wt+γtKvt|α] = (1−γ)E[|wt|α]+γE[|wt+Kvt|α] < +∞ since

Gaussian random variable have finite moments, and E[|F |α log+(F )] = γ|A|α log(A) <
+∞. This proves that Assumption (iii) holds. Assumption (iv) trivially holds because

the distribution of Z is continuous, while the distribution of F is discrete with finite

support. We can now apply Theorem 2.3, concluding the proof.

For the scalar case with constant estimator, under some additional technical assump-

tions, the previous proposition shows that the distribution of the error is not only

heavy-tailed, namely limx→+∞ eαxP(X > x) = +∞, but is fat-tailed, namely it satis-

fies limx→+∞ xαP(X > x) = c. We can conclude that the probability of the tails is even

larger than what ensured by Proposition 2.1.
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The previous proposition provides also the expression of the decay rate α. In particular,

the smaller the arrival rate γ is, the smaller ᾱ is, and the smaller α is. Similarly, the

greater A is, the smaller α is.

Interestingly, the previous proposition cannot be applied in the case without measure-

ment noise and with the optimal (constant) estimator. In fact, in that case, K = A/C

and the support of F is {A, 0}, so the support of log(F ) conditioned on {F > 0} is not

arithmetic. In that case, other arguments from Renewal theory can be used to show that

the stationary distribution of the error asymptotically follows a power law.

2.5 Conclusion

In this section, we have presented further advances in the understanding of the estima-

tion problem with intermittent observations. In particular, we have shown that the error

distribution is heavy-tailed, we have outlined the differences between the mean-square

stability and boundedness in probability, and we have analytically characterized the dis-

tribution in the case of scalar systems. The results of this chapter have an important

practical consequence: since both the distribution of the estimation error with Bernoulli

packet losses and the distribution of blackouts in Wi-Fi networks are heavy-tailed, large

deviations of the system trajectory are likely to occur even if the system is mean-square

stable. To deal with this problem, we need to move from the concept of stability to a

new concept of safety, more suitable for practical applications.
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3
Reference Governor over Wireless

Outside research laboratories, where technological solutions are used on the field, an

unexpected behavior or a failure of the control system may lead to dangerous or even

catastrophic events. When point-to-point dedicated connections or wired networks are

used, high safety levels are usually guaranteed with a suitable control design. However,

when wireless networks are used to close the feedback loop, safety guarantees are dra-

matically jeopardized due to packet loss. To investigate this problem, we first need to

more properly define the concept of safety.

In general, safety is strongly related to mean-square stability. A system is said mean-

square stable if the (expected) state covariance is bounded. Similarly, the estimator is

said mean-square stable if the (expected) estimation error covariance is bounded. Unfor-

tunately, even with ideal communications, the boundedness of the state covariance does

not exclude large transient deviations from the expected trajectory. This behavior is dras-

tically emphasized with packet losses if the open-loop system is unstable. For instance, it

is known from the literature that the error covariance (and the probability of large error)

grows when a packet loss occurs. Moreover, as we have shown in the previous chapter,

the distribution of the estimation error is heavy-tailed so, even if the error covariance is

not large, large errors occur more often than in the Gaussian case. For these reasons,

mean-square stability is not sufficient to guarantee safety and a new definition needs to

be introduced.

Consider now some illustrative examples. First, consider the imminent large-scale

deployment of self-driving cars. This application will require each vehicle to communicate

with the others in order to safely share the road and to manage crossroads and turns. In

this case, a dangerous crush can happen if a car crosses the road center line or passes too

close to another car. We can see that crashes can be avoided if certain limitations in terms

of position and speed are satisfied. A similar reasoning can be done for platooning of

vehicles. A second example is the use of robots in the industrial scenario. Think of a set of

robotic arms that collaborate to assemble an object. In this case, a damage to the object

may be caused by undesired oscillations of an arm or uncoordinated movements. Again,
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Figure 3.1: Typical task in multi-agent systems. Two dual-arm mobile robots collaborate
to transport a load. Limits on their positions have to be satisfied to avoid obstacles and
harms to the object. Courtesy of [98].

harms can be avoided if suitable constraints are satisfied. The same is valid for mobile

robots that transport an object. In the latter case, also collisions with obstacles or humans

can be expressed through limits on the system state. A typical example is depicted in

Figure 3.1. Finally, consider the Segway-like robot introduced in Appendix A.2 and

assume that we want to move it forward by a certain distance. Even if this is a simple

single-agent system and the task is a simple constant set-point tracking, we need to avoid

the tilt angle to be larger than a limit value, above which the robot will fall. This example

is particularly interesting from the technical point of view because, on one hand, we want

to increase the tilt angle to increase the speed of the robot and, on the other, we want

to keep it below the critical value.

These examples suggest a strong connection between safety and satisfaction of suitable

constraints. In the following we say that safety is ensured if constraints are satisfied. Our

objective is to design a control algorithm that ensures safety in presence of packet loss.

As we have shown in section 1.1.1, in the case of fast communications relying on fast

networks like Wi-Fi or 5G, blackouts are not excluded. Unfortunately, during blackouts,

the feedback loop is interrupted and the system evolves in open-loop. If the open-loop

system is unstable, the state diverges and constraints are violated. For this reason, in

this chapter, we require that the open-loop system is stable.

For the case with ideal communications, several constrained control algorithms have

been studied in the literature. In particular, Model Predictive Control (MPC) is one of the

most used solutions. However, the problem of reference tracking under constraints with

stable systems can be solved efficiently with Reference Governor (RG). A RG is an add-

on scheme that enforces constraints on a stable system by modifying the reference input

whenever necessary [79]. More specifically, the reference input is changed if the predicted

trajectory under the unchanged reference will lead to a constraint violation. Similarly

to MPC, at each instant, RG updates the input by solving a constrained optimization

problem. However, the horizon during which the predicted trajectory must satisfy the
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constraints is infinite, the input is kept constant over the horizon, and the cost function

is independent of the state but depends only on the distance to the desired reference.

Traditionally, RG is appealing for its low computational complexity compared to MPC.

In the simplest formulation, it can be solved by finding the minimum element of a vector

obtained through simple matrix multiplications and so it can be implemented also on

some on-board embedded systems. RG is particularly attractive also for NCSs, because,

once a reference is applied, it can be kept constant for an arbitrarily long period without

violating the constraints. This means that the resulting scheme is naturally robust against

infinitely long blackouts.

To date, some works have studied RG with non-ideal communications. The case of

bounded delays has been considered e.g. by [99][100][101], where the reference input is

designed to be robust whatever delay will occur. Conversely, the case of possibly random

and possibly unbounded delays has been addressed in the works [102][103]. In these

works, the main idea is to admit a fixed period between the computation instant of the

reference input and its application so that it can be delivered before the instant when it

is needed with a high probability. A recovery procedure is introduced to address the case

where the reference input is not available. An alternative idea, proposed in [102][103], is

to compute an input that is robust with respect to all the possible sequences of inputs

applied at the plant. This allows to update the applied input as soon as possible and to

satisfy the constraints for an arbitrarily long blackout without any recovery procedure.

In this chapter, we follow a similar idea.

First, we consider two simple strategies to be implemented at the plant side: a zero-

order hold, which keeps the current value until a new packet arrives, and a discrete

integrator, which adds the new arrived value to the previous output. Then, we design

two RG schemes to work in combination with the two strategies at the plant side: the

Reference Reset, to be used in combination with the zero-order hold, and the Additive

Update, to be used with the discrete integrator. Following the idea of [102][103], to over-

come the uncertainty on the system state due to the lossy communications, we impose

that the new quantity provided by the RG is admissible for any possible applied input

trajectory. We prove that theoretical properties as recursive feasibility and convergence,

usually achieved by standard RG, are guaranteed. Interestingly, through accurate sim-

ulations we show that none of the two strategies is optimal and which is better may

depend on the specific system and on the constraints. Moreover, we provide an accurate

validation of the scheme in a wireless-in-the-loop setup where communication data are

obtained from experiments with a real Wi-Fi network and we show the benefits of the

proposed strategy compared to other solutions based on RG and on MPC. Finally, the

proposed algorithm has been implemented on a real system, the Segway-like robot in-

troduced in Appendix A.2. The experimental results indicate that the proposed RG is a

suitable solution for constrained control over wireless.
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3.1 Problem formulation

We consider a discrete-time linear system

xt+1 = Axt +But + wt (3.1)

where xt ∈ Rn is the state, ut ∈ Rm is the applied input, wt ∈ W ⊂ Rn is an unknown

disturbance, with W compact and containing the null vector. We assume that all the

eigenvalues of the matrix A are strictly inside the unitary circle, corresponding to the

case where the system is stable, possibly thanks to an inner control loop. The system

has to fulfill the set of constraints

H(Cxt +Dut) ≤ h ∀t ≥ 0 (3.2)

with C ∈ Rp×n, D ∈ Rp×m, H ∈ Rq×p, and h ∈ Rq. For instance, matrices C,D,H, and h

can be set in order to avoid the system trajectory to enter dangerous regions of the state

space, like obstacle positions for a mobile robot. The constraints can be conveniently

reformulated through the set Y defined as

Y = {y : Hy ≤ h}. (3.3)

Then, constraints (3.2) are equivalent to

Cxt +Dut ∈ Y ∀t ≥ 0 (3.4)

The objective is to design the input ut in order to track a prescribed desired reference

rt and so that the system always satisfies the constraints. According to the application,

the desired reference is provided by a higher trajectory planner or by a user request. The

simplest example is rt = r so that (I−A)−1Br is a desired target state.

To solve this problem we introduce a control unit that, at each time step, computes an

input vt based on the estimate of the state xt and on the desired reference rt. We assume

that the plant and the control unit are connected through a wireless network introducing

delays and packet losses in the loop, see Figure 3.2. It follows that the applied input ut

can not be readily manipulated and the control unit has not direct access to the state xt

of the plant. More specifically, we assume that, at time instant t, the plant transmits a

packet containing the pair (xt, ut) and we introduce the arrival process γt ∈ {0, 1} defined

as

γt =

1 if (xt, ut) is available to the control unit to compute vt+1

0 otherwise
(3.5)

At the same way, we assume that, during the period between time instant t− 1 and time
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Figure 3.2: Setup. In this chapter, the remote control unit is based on Reference Governor
and the plant is pre-stabilized.

instant t, just after the computation, the control unit transmits the computed input vt

and we introduce the arrival process θt ∈ {0, 1} defined as

θt =

1 if vt is available to the smart actuator at time t

0 otherwise.
(3.6)

Arrival processes take into account both random delays and packet losses. In particular,

delays are treated as losses if the corresponding packet is not available when required. In

order to let the network be as general as possible, at this stage, no assumptions are made

on the distribution of γt and θt.

We define the information available to the control unit when computing vt as

IC
t = {v0, . . . , vt−1, γ0u0, . . . , γt−1ut−1, γ0x0, . . . , γt−1xt−1} (3.7)

where, with a little abuse of notation, if γk = 0 then γkxk = ∅. Similarly, we define the

information available to the plant when applying ut as

IP
t = {θ0v0, . . . , θtvt, u0, . . . , ut−1} (3.8)

Then, we are interested in the problem of designing the laws f( · ) and g( · )

ut = f(IP
t ) vt = g(IC

t ) (3.9)

such that constraints (3.2) are satisfied and the input ut tracks the desired reference rt.

In order to solve this problem, in this chapter, we adapt the standard RG scheme to

the considered setup. Before providing the proposed solution, in order to introduce the

basic concepts of RG, we outline the solution with ideal channels. Before proceeding, we

need to introduce some notation. Given two sets X, Y ⊂ Rn, the Minkowsky Set Sum

is defined as X ⊕ Y = {x + y : x ∈ X, y ∈ Y }, while the Minkowsky Set Difference is

defined as X ∼ Y = {x : x−y ∈ X, ∀y ∈ Y }. Further details are given in Appendix A.1.
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3.2 Background: ideal channel

Note that, with ideal channel, it is always possible to choose ut = vt. So, the problem

boils down to the design of g( · ).

First, we recall the Maximal Output Admissible Set studied in [104]. Preliminarily, we

define

x̂(k|x, u) = Akx+
k−1∑
ℓ=0

Ak−ℓ−1Bu (3.10)

Fk = C
k⊕

ℓ=0

AℓW. (3.11)

We can see that x̂(k|x, u) is the nominal prediction k steps ahead of the system state

starting from initial condition x and under constant input u. The set Fk is the reachable

set in k steps starting from the origin for a (disturbance) input belonging to W . Roughly

speaking, Fk represents the set of the possible effects of a sequence of disturbances with

length k on the system state. Then, the Maximal Output Admissible Set (MOAS) is

defined as

O∞ = {(x, u) : Cx̂(k|x, u) +Du ∈ Y ∼ Fk ∀k ≥ 0} . (3.12)

For a fixed x, O∞ represents the largest set of constant inputs u which guarantee that

the system evolution starting from x will always satisfy the constraints for any possible

sequence of disturbances.

In general, O∞ consists of infinitely many inequalities, and thus it may be intractable

for practical applications. Interestingly, this problem can be avoided using an inner

approximation of O∞ that can be made arbitrarily close to it. Introduce

Oϵ = {(x, u) : C(I − A)−1Bu+Du ∈ (1− ϵ)(Y ∼ F∞)} (3.13)

with an arbitrary ϵ ∈ (0, 1) and F∞ = limk→+∞ Fk. The limit exists and is bounded since

A is stable and W is compact containing the origin. Now introduce

Õ∞ = O∞ ∩Oϵ. (3.14)

The set Õ∞ is the set of pairs (x, u) for which the evolution of the system starting from x

with input u is always admissible and such that the steady state satisfies the constraints

with a small margin ϵ. Under very mild technical assumptions, it can be shown that

Õ∞ consists of a finite number of inequalities [104]. Moreover, there exists an iterative

procedure to obtain Õ∞ in a finite number of steps. An exhausting description of Õ∞

can be obtained from [105] for the case without disturbances and from [106] for the case

with disturbances.
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Based on Õ∞, the Reference Governor can be expressed in general as

vt =argmin
v

C(rt, ut−1, v) (3.15)

s.t. (Axt−1 +But−1, v) ∈ Õ∞ (3.16)

where C(rt, ut−1, v) is a suitable cost function. A typical choice is C(rt, ut−1, v) = ||rt−v||2Q
with Q ≥ 0, and the resulting algorithm is called Command Governor [107]. To reduce

the computational burden, it is common to restrict v to be v = αrt + (1 − α)ut−1 with

α ∈ [0, 1]. In this case, the resulting algorithm is properly referred to as Reference

Governor [108][104]. More elaborated choices are also possible, see e.g. [109] and [110].

Reference and Command Governors have several important theoretical properties.

First, under the assumption that the optimization problem is feasible at time instant

t = 0, the optimization problem is feasible for any t > 0 thanks to the particular defi-

nition of Õ∞. Second, by construction, the system evolution satisfies the constraints for

any t ≥ 0. Third, it can be shown that, if rt is constant, ut converges to the closest

admissible input in finite time. For the proofs see e.g. [104].

3.3 Maximal Output Admissible Set with Packet Loss

In order to extend RG for the case with lossy channels, we introduce the Maximal Output

Admissible Set with Packet Loss defined as

O∞(i) = {(x, u) : Cx̂(k|x, u) +Du ∈ Y ∼ Fk+i ∀k ≥ 0} . (3.17)

Differently from the case with ideal channel, the Maximal Output Admissible Set with

Packet Loss depends on i ∈ N. More specifically, the predicted nominal trajectory

Cx̂(k|x, u) + Du is required to belong to the more tightened set Y ∼ Fk+i instead of

Y ∼ Fk. In this way, we can take into account the larger uncertainty (at the control

unit) on the current state due to the past disturbances when the last i packets (trans-

mitted from the plant) have been lost. We can see that O∞(0) = O∞ and, if W = {0},
O∞(i) = O∞ for any i ≥ 0.

As done in the case of ideal channel, we consider a tightened version of O∞(i) obtained

by imposing the steady state to satisfy the constraints with a small margin ϵ > 0. We

obtain

Õ∞(i) = O∞(i) ∩Oϵ (3.18)

where Oϵ is defined in (3.13).

Preliminarily, we introduce the set

Ot(i) = {(x, u) : Cx̂(k|x, u) +Du ∈ Y ∼ Fk+i k ≤ t} . (3.19)
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We now provide the main properties of Õ∞(i).

Theorem 3.1. Assume that A is asymptotically stable and (A,C) is observable. Assume

that Y and W are compact sets containing the origin. Then, the following properties hold

for i ≥ 0

1. Õ∞(i+ 1) ⊆ Õ∞(i).

2. Õ∞(i) is compact if C(I − A)−1B +D has rank m.

3. Õ∞(i) is convex if Y is convex.

4. Õ∞(i) is symmetric if Y and W are symmetric.

5. Õ∞(i) is not-empty if Y ∼ F∞ contains the origin.

6. Õ∞(i) is finitely determined, namely there exists a ti such that Õ∞(i) = Ot(i) ∩Oϵ

for t ≥ ti. Moreover ti+1 ≤ ti.

7. Õ∞(i) is positively invariant, namely if (x, u) ∈ Õ∞(i) then (Ax+ Bu, u) ∈ Õ∞(i)

and (Ax+Bu, u) ∈ Õ∞(i+ 1).

Proof. Point 1 follows from Fk+i ⊆ Fk+i+1 that holds since W is compact containing the

origin. Point 2 follows from the compactness of Õ∞(0) [104]. For sake of completeness,

we report the complete proof following Theorem 5.1 from [106]. Denote Yk = Y ∼ Fk.

Consider the extended system

Ā =

[
A B

0 Im

]
C̄ =

[
C D

]
LetH = (C̄ ′, (C̄Ā)′, (C̄Ā2)′, · · · , (C̄Ān+m−1)′)′. IfH is full-rank,H† = (H′H)−1H′ exists

and On+m−1(i) = H†(Yi × Yi+1 × · · · × Yi+n+m−1). Since Y is compact, also On+m−1(i)

is compact. Since Õ∞(i) ⊆ On+m−1(i), Õ∞(i) is compact. So we have to show that H
is full-rank. It is known that H is full-rank if and only if (Ā, C̄) is observable. Using a

suitable change of coordinate T we can obtain the equivalent pair ( ¯̄A, ¯̄C) where

T =

[
In (In−A)−1B

0 Im

]
¯̄A =

[
A 0

0 Im

]
¯̄C =

[
C D + C(In−A)−1B

]
Using the PBH criterion of observability, we can show that ( ¯̄A, ¯̄C) is observable if (A,C)

is observable and D + C(In−A)−1B has rank m. This proves Point 2.

If Y is convex, Fk is convex due to basic properties of the Minkowski set difference, see

Appendix A.1 (note that no assumptions on W are needed). Expressing the constraints

in O∞(i) as C̄Āk(x′, u′)′ ∈ Y ∼ Fk+i, we can conclude that O∞(i) is convex. Similarly,
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it is possible to prove that Oϵ is convex. We can conclude that Õ∞(i) is convex, proving

Point 3.

If W is symmetric, AkW is symmetric. It follows that, due to basic properties of the

Minkowski set sum, Fk is symmetric. If also Y is symmetric, due to basic properties of

the Minkowski set difference, Yk is symmetric. With the same reasoning of the previous

Point, we can conclude that Õ∞(i) is symmetric, proving Point 4.

If Y ∼ F∞ contains the origin both (1 − ϵ)(Y ∼ F∞) and Y ∼ Fk contain the origin.

It follows that Õ∞(i) contains at least the origin.

To prove Point 6 we start from the case with i = 0, for which we can follow [104]. We

start considering the case where ( ¯̄A, ¯̄C) is observable and Y is compact, so that On+m−1(0)

is compact. We have that

¯̄C ¯̄At =
[
CAt D + C(I−A)−1B

]
→
[
0 D + C(I−A)−1B

]
for t→ +∞.

Denote Õt(i) = Ot(i) ∩Oϵ. By construction, for (x, u) ∈ Õt(0) we have

[
0 D + C(I−A)−1B

] [ x

u

]
∈ (1− ϵ)(Y ∼ F∞).

Plugging these two conditions together we get

¯̄C ¯̄At+1Õn+m−1(0) → (1− ϵ)(Y ∼ F∞) for t→ +∞.

Note that this holds only if (x, u) is finite, so it requires Õn+m−1(0) to be compact. If

0 ∈ int(Y ∼ F∞), then (1− ϵ)(Y ∼ F∞) ⊂ Y ∼ F∞. It follows that

¯̄C ¯̄At+1Õn+m−1(0) ⊆ Y ∼ F∞ ⊆ Y ∼ Ft+1

for some large t. Let t0 be the smallest t for which the previous inequality holds. If

t0 > n+m− 1, we have that Õt0(0) ⊆ Õn+m−1(0) and thus

¯̄C ¯̄At0+1Õt0(0) ⊆ ¯̄C ¯̄At0+1Õn+m−1(0) ⊆ Y ∼ Ft0+1.

For (x, u) ∈ Õt0(0) it holds that ¯̄C ¯̄Ak(x′, u′)′ ∈ Y ∼ Fk for any k ≤ t0, but from the

previous inclusion we have that ¯̄C ¯̄At0+1(x′, u′)′ ∈ Y ∼ Ft0+1. This means that Õt0(0) ⊆
Õt0+1(0). Since Õt0+1(0) ⊆ Õt0(0), we can conclude that Õt0(0) = Õt0+1(0). With the

same argument we have that Õt(0) = Õt0(0) for any t ≥ t0. This proves Point 4 for i = 0.

The following chain of inequalities holds

¯̄C ¯̄At0+1Õn+m−1(i) ⊆ ¯̄C ¯̄At0+1Õn+m−1(0) ⊆ Y ∼ F∞ ⊆ Y ∼ Ft0+1+i
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This can used to prove Point 4 for any i. The argument also holds for ti defined as the

smallest t for which ¯̄C ¯̄At+1Õn+m−1(i) ⊆ Y ∼ Fti+1 holds true. At most ti = t0, while in

general ti ≤ t0. In the case ( ¯̄A, ¯̄C) is not observable, we can change the basis in order

to split observable subspace and unobservable subspace. The latter does not affect the

constraints. We can repeat the procedure on the observable subspace, for which it is

finitely determined if Y is compact. Since Õ∞(i) is equivalent for equivalent systems,

this proves Point 5.

To check positive invariance let (x, u) ∈ Õ∞(i). Then we have by definition that

C

(
Akx+

k−1∑
ℓ=0

AℓBu

)
+Du ∈ Y ∼ Fk+i

for k ≥ 0. By using the change of variable k̄ = k − 1 we have

C

(
Ak̄+1x+

k̄∑
ℓ=0

AℓBu

)
+Du ∈ Y ∼ Fk̄+1+i

and

C

(
Ak̄x̄+

k̄−1∑
ℓ=0

AℓBu

)
+Dv ∈ Y ∼ Fk̄+1+i

for k̄ ≥ −1 with x̄ = Ax+Bu. If it holds for k̄ ≥ −1 it holds also for k̄ ≥ 0 proving that

(x̄, v) ∈ Õ∞(i+ 1) ⊆ Õ∞(i).

Previous properties have important consequences from the computational point of view.

In particular, Point 2 (compactness) and Point 3 (convexity) guarantee that the optimal

point is unique and can be found with efficient optimization algorithms. Point 4 simplifies

the construction of the set. Point 5 allows to know in advance if the set is not empty, so

if the optimization problem is well posed. Note that if Y and W are symmetric, Y ∼ F∞

is not empty if and only if it contains the origin. In that case, Point 5 can be specialized

and the if condition becomes an if and only if implication.

Since the set is finitely determined, infinite-horizon constraints required to be robust

against future communication blackouts can be expressed by a finite (tractable) number

of inequalities. Moreover, also algorithmic derivation of Õ∞(i) is possible by iterating the

computation of Õt(i) until Õt+1(i) = Õt(i), that is verified for t ≥ ti (see [106]). Inter-

estingly, since ti+1 ≤ ti Õt(i) can be obtained from Õt(0) by tightening the constraints

Cx̂(k|x, u) +Du ∈ Y subtracting set Fk+i from set Y . This provides Ot0(i) ∩ Oϵ that is

equal to Oti(i)∩Oϵ with possibly some redundant inequalities. The (set) subtraction can

be done easily if W is expressed thorough linear inequalities. In the notable case where

W = {w : Inw ≤ w and − Inw ≤ −w}, it consists of simple vector subtractions.

Since the set is positively invariant, if an admissible input v is applied, it would be
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admissible at the next time step, even if the updated state does not arrive at the control

unit. Unfortunately, if v is not applied and the previous input u is hold, v may be

not admissible at the next time instant. Consider the following toy example without

disturbances: A = −1/2, B = 2, −1 ≤ x ≤ 1, rt = 0.9, and at time t = 0 system is at

the equilibrium (x0, u0) = (−0.9,−0.9). Consider that vt is chosen according (3.15) and

ut = θtvt + (1 − θt)ut. If γ0 = 1, then v1 = 0.37, and if θ1 = 1 then u1 = v1 and the

system moves to x2 = 1. If γ1 = 1, then v2 = 0.9. However if θ2 = 0 the system moves

to x3 = 0.61. In that case the input v = 0.9 is no more admissible and v3 = 0.87. We

can see that the computed input vt may not have a monotonic behavior even for a fixed

desired rt, differently from what happens in standard RG.

3.4 Design of the Smart Actuator

We start from the design of the Smart Actuator and we consider two different laws f( · ).

As a first choice, let the function f( · ) be a Zero-Order Hold that keeps the current value

until a new packet arrives

ut = θtvt + (1− θt)ut−1. (3.20)

This solution comes out naturally from the positively invariance of the MOAS (see Point

6 of Theorem 3.1). The second alternative is a discrete integrator that adds the new

arrived value to the previous output

ut = ut−1 + θtvt (3.21)

For instance, this choice can be interesting when the system is sensitive to large incre-

ments of the reference and when system dynamics are sufficiently fast to follow (almost)

instantaneously an admissible increment.

Both the proposed f( · ) laws are really simple, so all the complexity is relegated to

the control unit. In particular, function g( · ) needs to take into account the missing

information from the plant, due to possible past states x that have been lost, and for

missing information at the plant, due to the future updates of the input v that may be

lost.

3.5 Design of the Remote Constrained Controller

We start considering the case where f( · ) is a Zero-Order Hold as in (3.20). The resulting

strategy is called Reference Reset (RR) since when a new packet arrives, it resets the

applied input to the new value.

The first step is to retrieve the estimate of the current state and the corresponding

applied input. Let it denote the number of consecutive packet losses on the link from
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the plant to the controller at time instant t. It follows that, when computing vt, the

last known applied input is ut−it−1. Since that, the computed inputs vt−it , . . . , vt−1

have been transmitted and arrived according to the realization of the random sequence

θt−it , . . . , θt−1. Since for a binary random sequence of length i we have 2i possible

realizations, we have 2it possible sequences of applied inputs. Let Θ = (ϑ1, . . . , ϑi) be

an arbitrary binary vector of length i and denote

Ut−i:t =


vt−1

. . .

vt−i

ut−i−1

 (3.22)

In the case where the arrival sequence θt−it , . . . , θt−1 is equal to Θ, the corresponding

estimate of the state at time t is

x̂(t,Θ) = Ait+1xt−it−1 + AitBut−it−1 +RitΛ
RR
Θ Ut−it:t (3.23)

where Ri is the reachability matrix in i steps

Ri =
[
B AB · · · Ai−2B Ai−1B

]
(3.24)

and ΛRR
Θ is the selection matrix given by the sequence Θ under the Reference Reset

strategy

ΛRR
Θ =


ϑ1Im (1− ϑ1)ϑ2Im . . .

it∏
ℓ=1

(1− ϑℓ)Im

0 ϑ2Im . . .
it∏

ℓ=2

(1− ϑℓ)Im

0 0 . . . . . .

0 0 ϑitIm (1− ϑit)Im


. (3.25)

From the previous analysis, we can see that there exists a different estimate for each

possible past input sequence, namely for any Θ ∈ {0, 1}it .
In order to manage the uncertainty on the current state due to the unknown past

applied inputs since the last received packet, we impose that the new computed input vt

satisfies the constraints for any possible past sequence of applied inputs. Formally, the

function g( · ) is implicitly defined as the following optimization problem

vt = argmin
v

||rt − v||2 (3.26)

s.t. (x̂(t,Θ), v) ∈ Õ∞(it), Θ ∈ {0, 1}it (3.27)

If the problem is infeasible at time t, vt does not exist. In that case, in order to keep

the formalism introduced for the arrival process, the remote control unit transmits an
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empty packet which, even if received, does not produce any effect at the smart actuator.

Moreover, we also assume that if ||rt − vt|| > ||rt − ut−it−1||, vt is discarded. Again, an

empty packet is transmitted.

Note that, in order to manage the uncertainty on the current state due to past distur-

bances since the last received packet, we use the Maximal Output Admissible Set with

Packet Loss Õ∞(it). The number of constraints grows exponentially with the length of

the blackout it and the problem may become intractable. To take into account this sit-

uation, let the bound L be such that the optimization problem can be solved before the

transmission instant when it ≤ L. Then, if it > L, namely the remote control unit is not

able to solve the optimization problem in time, an empty packet is transmitted.

Following the same reasoning, we repeat the procedure for the case where f( · ) is a

discrete integrator as in (3.21). The resulting strategy is called Additive Update (AU)

since when a new packet arrives, it is added to the applied input.

For an arbitrary sequence Θ, the corresponding estimate of the state at time t is

x̂(t,Θ) = Ait+1xt−it−1 + AitBut−it−1 +RitΛ
AU
Θ Ut−it:i (3.28)

where ΛAU
Θ is the selection matrix given by the sequence Θ under the Additive Update

strategy

ΛAU
Θ =


ϑ1Im ϑ2Im · · · ϑitIm Im

0 ϑ2Im · · ·
0 0 · · ·
0 0 0 ϑitIm Im

0 0 0 0 Im

 (3.29)

In the case of the AU strategy we also need to retrieve the applied input corresponding

to the estimate x̂(t,Θ). In particular, given the arrival sequence Θ, the corresponding

applied input at time instant t− 1 is

û(t− 1,Θ) =
[
ϑ1Im ϑ2Im · · · ϑitIm Im

]
Ut−it:t. (3.30)

In this case, the function g( · ) is implicitly defined as the following optimization problem

vt = argmin
v

(
min
Θ

||rt − (û(t− 1,Θ) + v)||2
)

(3.31)

s.t. (x̂(t,Θ), û(t− 1,Θ) + v) ∈ Õ∞(it), Θ ∈ {0, 1}it (3.32)

It can be shown that when the applied input and the current state are known, the

two optimization problems are equivalent. This holds also if the current state is not

known but the applied input is known for any past instant, so that the set of state
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estimates is a singleton. We can conclude that, if at least a link is completely reliable, for

instance in the notable case where the RG is collocated with the smart actuator, the two

strategies are equivalent. Conversely, when both links are lossy, a possible asymmetry

in the information sets may arise and the optimal design of both g( · ) and f( · ) is not

trivial, as we underline in [111]. We point out that also alternative strategies can be

devised. For example, the optimal input for any possible state estimate can be computed

and sent. Also hybrid strategies can be devised, where both the problems are solved and

both the solutions are sent, and then the smart actuator chooses the best to apply. In all

these cases, the critical point is the possible asymmetry of information between the two

sides of the system.

3.6 Theoretical properties

In this section, we study the theoretical properties of the proposed strategy. We focus on

the RR strategy but they can be adapted also for the AU strategy.

A well-known property of standard RG schemes is the recursive feasibility of the un-

derlying optimization problem, guaranteed since Õ∞(0) is positively invariant, under the

assumption that the problem is feasible at t = 0. Under the RR strategy, feasibility of

the optimization problem may be temporarily lost due to the more stringent constraints

if it>0. It is however possible to state the following theorem.

Proposition 3.1. Assume that (x0, u0) ∈ Õ∞(0). Then, (x̂(t, ∅), ut−1) ∈ Õ∞(0) and the

optimization problem (3.26) is feasible for any t ≥ 0 s.t. γt−1 = 1.

Proof. Let j such that θt−j = 1 and θk = 0 for t − j < k < t. Let Θ = (θt−it , · · · , θt)
the actual arrival sequence occurred in the link from the controller to the plant, and let

Θ̄ = (θt−it , · · · , θt−j). Then it holds that

xt = Ait+1xt−it−1 + AitBut−it−1 +RitΛ
RR
Θ Ut−it:t +

it∑
k=0

Akwt−k

= Ait+1xt−it−1 + AitBut−it−1 + AjRit−jΛ
RR
Θ Ut−it:t−j +

it−j∑
k=0

AkBvt−j +
it∑

k=0

Akwt−k

= Ajx̂(t− j, Θ̄) +

it−j∑
k=0

AkBvt−j +
it∑

k=0

Akwt−k

By construction (x̂(t − j, Θ̄), vt−j) ∈ Õ∞(it − j). Since Õ∞(i) is positively invariant

(see Theorem 3.1), it holds that (Ajx̂(t − j, Θ̄) +
∑it−j

k=0 A
kBvt−j, vt−j) ∈ Õ∞(it). Since∑it

k=0A
kwt−k ∈ Fit , we can choose vt = vt−j. So (xt, vt) ∈ Õ∞(0) and the optimization

problem is feasible.
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According to the previous proposition, feasibility is guaranteed as soon as a packet

has been received by the control unit. In particular, during periods characterized by an

ideal communication without losses, the proposed scheme works exactly like a standard

governor and the problem is recursively feasible. If the problem is infeasible during

blackouts, it becomes feasible as soon as a packet is received and a new update can be

sent (and eventually applied) without any resynchronization procedure as e.g. in [103].

Safety and constraint satisfaction for any packet loss sequence follows from the previous

proposition. For sake of completeness, we formalize the statement here.

Proposition 3.2. Assume that (x0, u0) ∈ Õ∞(0). Then, constraints (3.2) are satisfied

with probability 1 for any t ≥ 0.

Interestingly, the above safety property is the most general possible since it does not

require any assumption on the network. The robustness of the ideal case, in terms of

hard constraint satisfaction, is achieved through the proposed solution for any network

and channel condition, even in presence of blackouts. Conversely, in order to achieve

tracking of reference signals, additional assumptions on the network are required.

Assumption 3.1. Assume that P(
⋂

k>0{θtkγtk = 0}) = 0 for any infinite sequence

{tk}+∞
k=0 with tk+1 > tk.

We can now state the main theorem.

Proposition 3.3. Assume that (x0, u0) ∈ Õ∞(0), and rt = r for t ≥ 0. If W = {0},
under Assumption 3.1, the applied input ut reaches the reference r

∗ and the state converges

to (I − A)−1Br∗, where r∗ = argminv ||r − v||2 such that ((I − A)−1Bv, v) ∈ Õ∞(0).

Proof. The proof consists of 3 steps.

First step: consider an input u and denote

x̄u = (I − A)−1Bu ȳu = Cx̄u +Du.

Assume that (x̄u, u) ∈ Õ∞(0). In particular, it implies that ȳu ∈ (1− ϵ)Y . Consider now

an arbitrary initial state as x̄0. We have

yk = CAkx̄0 + C

k−1∑
ℓ=0

AℓBu+Du

= CAkx̄0 + C

k−1∑
ℓ=0

AℓBu+Du+ CAkx̄u − CAkx̄u

= ȳu + (CAkx̄0 − CAkx̄u)

Since by construction ȳu ∈ (1 − ϵ)Y , we have that yk ∈ Y if H(CAkx̄0 − CAkx̄u) ∈
Bϵ(0). Since A is stable, we know that there exists a δ such that if ||x̄0 − x̄u|| < δ
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then HCAk(x̄0 − x̄u) ∈ Bϵ(0), and consequently yk ∈ Y . We can conclude that for any

(x̄u, u) ∈ Õ∞(0) then there exists a δ > 0 such that if x̄0 ∈ Bδ(x̄u) then (x̄0, u) ∈ Õ∞(0).

In other words, from any point x̄0 it is possible to move arbitrarily close to any steady-

state admissible point x̄u, provided that they are close enough.

Second step: let {st}+∞
t=0 be the sequence of applied inputs that have been (sent back

and) received by the control unit, that is st = ut−it−1. Since vt is assumed to be discarded

when ||vt − r|| > ||ut−it−1 − r|| we have that ||st − r|| ≥ ||ut − r||, that implies

||st+1 − r|| = γt||ut − r||+ (1− γt)||st − r|| ≤ ||st − r||

We have that the sequence ||st − r|| is monotonically non-increasing and bounded by 0,

so it converges to ||v − r||. With standard arguments, we can show that st converges to

v. Consider the sequence of time instants {tk}+∞
k=0 such that vtk is defined, while it is not

defined elsewhere. If vtk converges, it must converge to v. Assume by contradiction that

vtk does not converge. Equivalently, there exists a δ > 0 and a sequence {τk}+∞
k=0 included

in the sequence {tk}+∞
k=0 such that ||vτk −r|| > δ. Now, pick ϵ = δ/2. Since st is converging

to v, there exists a tϵ such that ||st − v|| < ϵ for any t > tϵ. By Assumption 3.1, with

probability 1, there exists a τ > tϵ belonging to the sequence {τk} such that θτγτ = 1.

By construction, sτ = vτ , that implies ||sτ − r|| = ||vτk − r|| > δ, reaching an absurd.

Third step: assume by contradiction that v ̸= r∗. Given a δ1 > 0, there exists t1 such

that ||ut−v|| < δ1 for t > t1. Given a δ2 > δ1, there exists a t2 > t1 such that ||xt−x̄v|| < δ2

for t > t2. Introduce vα = αr∗+(1−α)v. Given a δ3 > 0, there exists a ᾱ > 0 sufficiently

small such that ||x̄vα − x̄v|| < δ3 for α < ᾱ. We can conclude that for δ = δ3 + δ2 then

||xt − x̄vα|| < δ for α < ᾱ and t > t2. It follows from the first step that (xt, vα) ∈ Õ∞(0).

But we have that

||vα − r|| = ||(1− α)vt + αr∗ − r||
≤ (1− α)||vt − r||+ α||r∗ − r||
≤ ||vt − r||

by convexity of the norm, reaching an absurd and proving the convergence of the applied

input to r∗. The convergence of the state immediately follows. The case with general W

can be treated analogously.

Essentially, if the desired reference r is constant, the applied input ut will reach the best

admissible approximation r∗ of the desired reference r. Clearly, if the desired reference r

is admissible, ut will reach it. The result can be generalized for time-varying references

that converge to a steady-state constant value. In the literature similar results exist also

for other governors without packet losses: the proposition guarantees that the proposed

governor behaves “as expected”, converging to the desired point despite the packet loss.
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3.7 Simulations: assessment of the proposed strategies

In order to compare the two proposed strategies and to assess their performances, we

carry out a simulation test featuring two plants and different channel conditions.

As for the channel, the arrival processes γt and θt are modeled as independent and

identically distributed random variables with Bernoulli distribution and time-varying

(piecewise constant) mean. In particular, we set E[γt] and E[θt] equal to 1 (no packet

loss) in the first period (from 0 to τ , for a given period τ), equal to 0.6 in the second

period (from τ to 2τ), and equal to 0.2 (bad channel) in the third period from (from 2τ

to 3τ). In the following, the link from the control unit to the actuator is referred to as

uplink, while the link from the sensor to the control unit is referred to as downlink.

As a first plant, we consider a simple double-integrator system with sampling period

T = 0.01 s characterized by

Aol =

[
1 T

0 1

]
Bol =

[
T 2

2

T

]

with disturbance belonging to the set

W = {w = (w1, w2)
′ : −0.05 ≤ w1 ≤ 0.05, w2 = 0}

Through state feedback, we allocate the eigenvalues at ±0.5i and we implement nominal

tracking. The constraints are set as

C =
[
0 1

]
D = 0 Y = {y : −10 ≤ y ≤ 10}

and the desired reference r is set equal to 1. Intuitively, the system models the dynamics

of a simple mass in one-dimensional space driven by an external force. So, the first

component of the state is the position, the second one is the velocity, and the system

input is the applied force. According to this analogy, the objective is to drive the system

to a desired position while keeping the velocity bounded.

The communication blackouts, defined as the period elapsed at the current time instant

since the last received packet, obtained during the simulation, are reported in Figure 3.3.

We can see that, in the first period, the duration of communication blackouts is always

0, while, in the third period, long blackouts up to 0.2 s are present. The realization of

the arrival processes during the simulation can be easily inferred.

Top panel of Figure 3.4 reports the evolutions of the system position for the proposed

strategies under the channel conditions represented in Figure 3.3. As expected, in the

period from 0 s to 2 s where packet loss is not present, the system responses are identical

for the two strategies. Also in the period from 2 s to 4 s, the evolution under the two
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Figure 3.3: Blackouts (b/o). Top: uplink. Bottom: downlink
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Figure 3.4: System response with simulated channels. System: double integrator. Com-
parison between RR strategy (3.26) and AU strategy (3.31). AU outperforms RR.
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Figure 3.5: Blackouts (b/o). Top: uplink. Bottom: downlink
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Figure 3.6: System response with simulated channels. System: Segway. Comparison
between RR strategy (3.26) and AU strategy (3.31). In this case, RR outperforms AU.
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strategies are almost identical and no clear differences are present in terms of settling

time. Conversely, in the period from 4 s to 6 s, the two strategies obtain substantially

different evolutions. We can see that AU takes approximately half the time of RR to reach

the desired reference. For this particular system, AU scheme addresses the losses more

efficiently. This can be due to the presence of oscillations in the response of the controlled

system and the fast response to a new reference. Indeed, in different states, there exists

a quantity that can be added to the current input without violating the constraints but

there may not exist an input (or it is more conservative) that is admissible for all.

Bottom panel of Figure 3.4 shows the velocities achieved with the two strategies and

the non-admissible region according to the constraints (indicated in gray). We see that

both the strategies analyzed in this chapter succeed in satisfying the constraints even

with high loss probabilities.

Interestingly, the proposed strategies naturally adapt to the channel quality. As long

as the channel condition gets worse, e.g. moving from the first period to the second, or

from the second to the third, longer periods are required to reach the desired reference.

The proposed strategies naturally deteriorate the performances in order to guarantee the

safety of the remote system.

As a second plant, we simulate the pre-stabilized linear model of the Segway-like robot

described in Appendix A.2 with sampling period T = 10 ms. In particular, matrices C,

D, H, and h are set to take into account the limits on the input fed to the motors, that

is required to remain in the interval [−11 V, 11 V], and the safety constraints on the tilt

angle, that is required to remain in the interval [−0.1 rad, 0.1 rad]. The communication

blackouts during the simulation are reported in Figure 3.5, while the system responses

for the proposed strategies are reported in Figure 3.6.

Similarly to the double integrator, the two strategies are almost identical in the first

two periods. However, conversely to the previous case, RR outperforms AU when loss

probability is high. Also for the Segway-like robot, the proposed strategies adapt to

the channel conditions but the performances of RR in terms of settling time are only

marginally affected by (i.i.d. Bernoulli arrival processes with) high loss probability. This

motivates the choice of RR for the following experimental tests involving the Segway.

These two simple examples show that none of the two strategies is optimal and which

is better may depend on the specific system and on the constraints.

3.8 WiFi-in-the-loop simulations: comparisons

In this section, we set up an accurate simulation test featuring communication data from

a real Wi-Fi network. As for the plant, we consider the Segway-like robot described in

Appendix A.2. The sampling period is T = 5 ms and we pre-stabilize the system by a

linear state feedback. We accurately simulate the nonlinear plant dynamics, the local
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linear controller, the sensing devices (encoders and MPU), and the actuator saturation.

Computational time is neglected. As for the network, we use the communication data

collected with the experimental setup of Appendix A.3. For control design purposes, the

model is linearized. We consider the constraints on the tilt angle and on the input fed

to the motors. In the following, we compare the RR strategy, since it achieves better

performances than AU when applied to the Segway, with other two strategies.

As a first strategy, we consider a simple event-based RG: the control unit is triggered

when a packet is received, it solves the standard RG problem and transmits the computed

input. If no packets arrive from the plant, the event-based RG does not update the

previous computed input and keeps sending the same quantity. This strategy is relevant

because it is representative of what it is done in practice e.g. with drones: in normal

channel conditions, a new input is computed by a remote computer in a suitable way

(not necessarily with RG) to avoid obstacles but, if the connection is temporarily down,

the previous input is re-transmitted until a new measurement is received. The main

advantage of this strategy is that it is simple to implement. However it may lead to

constraint violations because the input computed in the past may be no more admissible.

As a second strategy, we adapt the Networked MPC devised in [59] for the case at

hand. The key idea is to keep the first τ inputs of the previous control sequence also

in the next sequence, and to initialize the MPC problem on the state prediction τ steps

ahead. In this way, each input is sent τ times and the solution is unaffected if the number

of consecutive packet losses on the uplink is smaller than τ . At the controller side, a buffer

is used to store the computed inputs and the past received measurements. At the plant

side, a buffer is used to store the last received control sequence, and a suitable logic is

implemented to extract the input associated to the current time instant. Formally, let it

denote the number of consecutive packet losses on the link from the plant to the controller

at time instant t. Then, the algorithm consists of the state estimator

x̂k+1 = Ax̂k +Bvk−τ
k k = t− it, . . . , t+ τ

and of the controller

(vtt+τ , . . . , v
t
t+τ+N−1) = argmin

u

N−1∑
k=0

||x(k)− x̄||2Q + ||u(k)− ū||2R + ||x(N)− x̄||2P

x(k + 1) = Ax(k) +Bu(k) x(0) = x̂t+τ

Cx(k) +Du(k) ∈ Y ∼ Fk+τ+it k = 0, . . . , N − 1

x(N) ∈ Xf (x̄)

with u = (u(0), u(1), . . . , u(N − 1)), x̄ is the desired set-point, and ū such that x̄ =

Ax̄+Bū. The transmitted packet Ut is obtained by merging the new computed sequence
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with the first elements of the previous transmitted packet, obtaining

Ut = (vt−τ
t , vt+1−τ

t+1 , . . . , vtt+τ , . . . v
t
t+τ+N−1).

If the bound τ is never violated, the applied input is always ut = vt−τ
t . In order to

overcome violations of the bound τ , we propose to use the next inputs of the received

sequence, eventually holding the last input when the sequence is finished. Recursive

feasibility, constraint satisfaction, and convergence to the desired set-point x̄ require

the number of consecutive packet losses both on the downlink and on the uplink to be

bounded, together with some technical assumptions on the system and on the design of

P and Xf (x̄).

The resulting solution is not robust against blackouts longer than τ packets. In fact,

when more than τ consecutive packets are lost, the estimate computed at the control

unit is no more aligned with the actual system state and the computed input sequence

may be no more valid. In line of principle, if the open-loop system is stable, τ can be

taken arbitrarily large, expanding the set of channel conditions for which safety is theo-

retically ensured. However, this comes at the price of a loss of performances especially in

good channel conditions, since applied inputs are derived from long open-loop prediction.

Moreover, note that, if the open-loop system is unstable, there may exist a k such that

Y ∼ Fk is empty, so τ cannot be chosen arbitrarily large.

The following results have been obtained under the optimistic design assumption of

blackouts of at most τ = 20 transmissions. Moreover we choose N = 50, Q = P = G′G,

R = 1, with G = (1 0 0 0). Since we consider time-varying set-points, also the terminal set

Xf (x̄) should be time-varying. However, this would require to design a suitable algorithm

to change Xf (x̄), for which there do not exist simple solutions in the literature. For this

reason, we remove the terminal constraints. Unfortunately, this choice, together with

the occurrence of blackouts longer than τ , may lead the optimization problem to be

unfeasible for some time instant. In those cases, the problem is relaxed converting the

hard constraints into soft ones.

We consider the system response with a desired reference rt equal to a step signal,

with size 1 m and step time 3 s. The channel evolution used in the test is reported in

Figure 3.7 and the responses are reported in Figure 3.8. In the top panel, reporting the

position of the robot, we see that the proposed strategy converges faster to the desired

reference r with respect to the event-based RG. The advantage of the proposed solution

is cumulating over time and the desired reference is reached in approximately 1.2 s less

(30% less). Also the performances of the Networked MPC are worse than the proposed

strategy. In the bottom panel we have the evolution of the tilt angle, where the constraints

are indicated in gray. We see that, as expected, the proposed RG always satisfies the

constraints. We stress that, when the segway-like robot is proceeding forward, the best
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Figure 3.7: Blackouts (b/o). Top: uplink. Bottom: downlink
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Figure 3.8: System response with WiFi-in-the-loop setup. Comparison between proposed
solution, an Event-based RG, and standard Networked MPC [59].
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tilt angle satisfying the constraints is equal to 0.1 rad, while the tilt angle decreases when

the segway is stopping. When the tilt angle is decreasing in the period between 3 s and

7 s, we can infer that ut has not been updated due to packet losses (see also top panel of

Figure 3.7). Roughly speaking, this can be seen as the way that RG implements in order

to operate safely. As for the MPC, we can see that constraints are not satisfied in many

cases due to blackouts longer than τ , leading to the worse tracking performances and

possibly also to instability. This occurs, for instance, when longer blackouts are present

in the link from the control unit to the plant. Other WiFi-in-the-loop tests with different

channel conditions can be found in [112].

3.9 Experiments

In this section, we test the proposed RG on a full experimental setup. The experiment

involves a remote PC, which plays the role of the control unit, the Segway robot, which

plays the role of the plant, and the Wi-Fi network. The mathematical model of the Segway

robot is given in Appendix A.2, while the mechanical and electronic characteristics of the

prototype are given in Appendix A.4. In particular, the Segway is equipped with a

Raspberry board, to manage wireless communications, and an Arduino microcrontroller,

for low level computations. Accordingly, the proposed RG is implemented on the PC,

the smart actuator is implemented on the Raspberry board, while the stabilizing inner

loop is implemented on the Arduino microcrontroller. The sampling period is T = 5 ms,

control design is carried out as in Appendix A.2, while network parameters are set as in

Appendix A.3.

Differently from the WiFi-in-the-loop experiments, where the dynamics of the system

were accurately simulated but the model parameters were assumed to be known, in this

experiment, model errors are unavoidable and largely affect the control performances.

Indeed, high accuracy is not possible in practice due to the complicated shape and mass

distribution of the Segway. Due to nature of prototype, the mechanical design of the

robot is not ideal and several small inaccuracies are present. First, the presence of a

mechanical backlash in the motor gearbox produces oscillations, within a band of a few

degrees, at steady-state. Moreover, the mass distribution is not perfect. This implies

that the equilibrium position is not perfectly vertical, and most importantly, degrades

the quality of the predictions. Furthermore, an offset in the measurements from the

IMU is present. We correct it with a rudimentary cancellation, but a small error is still

present. Finally, the battery cannot always supply the nominal voltage, equal to 11.1 V.

To avoid the cases where the supplied power is less than expected, which may give wrong

predictions and uncontrolled movements, we reduce the limit of voltage input to 9 V.

During the experiments, the channel condition was good, with a packet loss probability

of 0.05 and blackouts always shorter than 6 packets. The system response is reported in
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Figure 3.9: System response. Simulation with ideal communication and full experiment
on Segway. Despite the non-ideal mechanical design and model errors, constraints are
satisfied and the desired set-point is reached.
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Figure 3.9. For sake of readability, we also report the expected (and desired) behavior

obtained from simulations with ideal model and ideal channel. As we can see in the center

panel, the experimental tilt angle evolution is really noisy. Even at the equilibrium (in

the period from 0 s to 2 s), oscillations of 0.02 rad are present. They are due to the non-

ideal mass distribution and backlash in the motor gearbox, as confirmed by extensive

experimental campaigns also with different setups. Larger oscillations of the tilt angle

are present when the Segway is moving (in the period from 4 s to 7 s). They are probably

due to the incorrect system model used in the prediction: alternately, the RG slows down

the segway, because it predicts a possible future constraint violation, and accelerates,

because the state is later than expected from the model. This behavior is emphasized by

the rudimentary state estimator, which computes the speed by simple differentiation of

the position measurement. In the bottom panel, we can see both the oscillations of the

speed with respect to the simulated model and the high-frequency error due to the basic

estimator.

Despite the inaccurate state estimate and the wrong model, the system always satisfies

the constraints. The evolution is qualitatively comparable with the simulated plant, and

the system response is satisfactory. The settling time to cover 3 m is less than 4 s and it

is identical to the one obtained with the simulated matched model with ideal channel.

It can be noticed that a small steady-state error is present. This is due to the model

error and it can be removed by adding an integrator in the inner control loop. This setup

can be easily managed by RG with an additional state.

We would like to point out that, with the considered prototype, small violations may be

present because of the inaccurate model and the noisy state feedback. However, this is a

problem of the specific control application, and we believe that it would not be present in

systems with a more sophisticated mechanical design. Nonetheless, also in the considered

setup, this can be regarded by enlarging the set W of possible disturbances at the price

of additional conservativeness. Note that this is not required by the presence of the

network, differently e.g. from [59], where additional conservativeness (the fictitious delay

τ) is added to the networked solution with respect to the case with ideal communication.

The presented results show the feasibility of constrained control applications over wire-

less. From the outcomes of the experiments, we think that the performances of the

proposed algorithm under average channel conditions do not differ much from the perfor-

mances of standard solutions with dedicated cables. On the other hand, wireless networks

enable much larger flexibility and open the door to an incredible number of applications,

like multi-agent mobile manipulation and transportation, where dedicated wired cables

can be unlikely employed. In bad, but still rare channel conditions, we expect that the

proposed solution would be outperformed by standard solutions with dedicated cables.

However, the WiFi-in-the-loop experiments seem to indicate that safety can be guaran-

teed in any condition.
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3.10 Conclusion

Based on the observation that safety of the control system can be described through

suitable constraints, in this chapter we have addressed the problem of constrained con-

trol over wireless networks. Due to the presence of communication blackouts, we have

required the plant to be stabilized by an inner control loop. We have proposed a detailed

solution based on RG that is particularly appealing from the computational point of view.

Theoretical guarantees and experimental results obtained using real Wi-Fi data and a real

robot make the proposed scheme a valid candidate to address constrained control over

wireless. However, we guess that the performances may be limited by the inner control

loop and by the short-horizon state-independent cost function of the RG, especially if the

desired reference is more elaborated than a simple set-point. In the following chapter, we

look for a more advanced strategy based on MPC.
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4
MPC for Tracking over Wireless

The safety of control systems over wireless networks can be expressed through suitable

constraints. In the previous chapter, we have shown that constraints can be enforced even

in presence of communication blackouts if the plant is stable. For this reason, we have first

introduced a local inner control loop closed over reliable links that stabilizes the system.

Then, we have designed an outer control loop based on RG that, even with packet loss,

provides suitable inputs to enforce constraints and to track general reference signals. The

experimental results obtained including a real Wi-Fi network are promising. However, the

inner control loop and the simple cost function may reduce the performances, especially

for more elaborated reference signals. A possible way to improve the performances is to

consider a more advanced strategy based on MPC.

Several MPC schemes are available in the literature to deal with packet loss and random

delays. The main idea is to use the sequence of future inputs, that is computed by MPC

as by-product to obtain the current control input, to cope with future communication

flaws. The work [50] studies the case where the link between sensor and MPC is ideal for

nonlinear systems without disturbances. The solution has been extended in [51] for the

case with bounded disturbances. A key aspect of these works is that MPC and sensor

are co-located, so the current state is always known. Conversely, if the link between

sensor and MPC is affected by packet loss, in order to estimate the state to compute

an admissible input sequence, the controller needs exact knowledge of the past inputs

applied by the actuator. A similar problem arises when delayed control sequences are

not discarded: if the last applied inputs do not coincide with the first elements of the

new received sequence, it is not guaranteed that the subsequent elements of the new

sequence are admissible. In the literature, this problem is referred to as input consistency,

that is the consistency between the input trajectory as known by the controller and the

actual applied input trajectory at the actuator. Similarly, state consistency is achieved

when the input trajectory used to estimate the state coincides with the actual applied

input trajectory at the actuator. Note that, state consistency does not imply that the

estimate and the actual state are coincident but that they differ at most by the effects
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of the disturbance. When both links are lossy, input and state consistency are therefore

a crucial point to guarantee the validity of the new control sequence. The work [113]

guarantees input consistency by computing and transmitting, at each time instant, a

different control sequence for any possible delay and for any possible combination of

applied inputs. A smart actuator is employed to select the right sequence from the

received packet. The work [52] uses a reliable acknowledgment mechanism to guarantee

input consistency. According to this strategy, the optimization problem is not solved at

each time instant but only if either a new measurement has been arrived, or the last

measurement has been arrived i steps ago and all the last i control sequences have been

lost. The most general case with both unreliable links and without acknowledgment has

been studied in the work [59] whose main idea is to preserve the validity of any computed

sequence introducing a fictitious delay. A detailed description of the algorithm is given

in section 3.8. The solution is adapted for the simpler case with acknowledgment in

[53]. A similar approach for continuous-time systems without disturbances is studied in

[114]. In this case, the controller is triggered by a received packet and the sensor may

transmit also not periodically. The same idea has been adapted in [115] for the case with

acknowledgment. Unfortunately, aforementioned works guarantee constraint satisfaction

and stability only if the interval between two consecutive received packets is bounded.

This point is particularly limiting because, as shown in section 1.1.1, communication

blackouts are unavoidable in fast networks as Wi-Fi.

Interestingly, unbounded sequences of packet losses can be allowed if state constraints

are excluded. For instance, the work [116] considers Markovian packet losses without state

and input constraints. Along the same line, the work [117] considers also random delays,

the work [118] considers finite quantization levels, and the work [119] considers limited

bit-rate. More recently, input constraints have been included. The work [120] considers

the case with linear systems with possibly unbounded disturbances and independent

identically distributed losses on the link from the controller to the actuator. The solution

has been extended in [121] and [122], for stabilization and tracking problems, respectively,

in the case where both links are affected by independent identically distributed losses.

However, we do require constraints on the state since they are fundamental to guarantee

safety.

From the above analysis, we can conclude that existing works allow unbounded se-

quences of packet losses at the price of excluding state constraints, and the other way

around. Moreover, aforementioned works (except for [122]) focus only on stabilization,

and general tracking problems are not considered. Indeed, while it is possible to general-

ize existing solutions to consider fixed references, modifications to deal with time-varying

set-points are not trivial due to the changes required on the terminal condition.

In this chapter, we aim to overcome these limits. On one side, we adopt the MPC

for Tracking, originally devised in [123], and then extended in [124][125]. On the other
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side, we adopt a smart actuator to manage the input sequences from the remote MPC.

We assume that the smart actuator is able to implement a simple local state feedback

controller. The main idea is to use, when the control sequence from the MPC is ex-

pired, a local auxiliary tracking law to drive the system to an intermediate safe reference

specifically provided by the MPC to be reached in an admissible way. This structure is

less general than other existing schemes, e.g. [59], because it requires the sensor and the

actuator to be co-located. However, differently from chapter 3, we do not require the

system to be stable but we provide the smart actuator with a stabilizing control law to

be used only in presence of long blackouts. In this way we get rid of the inner control loop

during good channel conditions and an optimal input trajectory can be used. We show

that constraints are enforced without any assumption on the network model. Under mild

assumptions on the arrival processes and without requiring the number of consecutive

packet losses to be bounded, we prove the convergence to any admissible set-points.

4.1 Problem formulation

We consider a discrete-time linear system

xt+1 = Axt +But (4.1)

yt = Coutxt (4.2)

where xt ∈ Rn is the state, ut ∈ Rm is the applied input, and yt ∈ Rp is the system

output. The system has to fulfill the set of constraints

H(Cxt +Dut) ≤ h ∀t ≥ 0 (4.3)

with C ∈ Rp×n, D ∈ Rp×m, H ∈ Rq×p, and h ∈ Rq.

The objective is to design the input ut such that the system output yt tracks a pre-

scribed reference signal rt and so that the system always satisfies the constraints. To

this end, we introduce a remote controller, provided with computational power to tackle

the problem of reference tracking under constraints, and a smart actuator, provided with

limited computational capabilities and access to the system state. We assume that the

smart actuator does not have sufficient computational power to implement the sophis-

ticated control algorithms required to enforce constraints but it is able, if needed, to

implement a simple stabilizing law. We assume that the plant and the controller are

connected through a network introducing delays and packet loss in the loop. The setup

is depicted in Figure 4.1.

Let Ut denote the packet transmitted by the controller during the period (t − 1, t),

and Xt the packet transmitted by the plant during the period (t, t + 1). The packet Ut

contains a sequence of N + 1 future inputs together with the time stamp qt of the last
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Figure 4.1: Setup. In this chapter the remote control unit is based on MPC.

packet received by the controller

Ut =
{
utt, u

t
t+1, . . . , u

t
t+N , qt

}
. (4.4)

In particular, qt = k if Xk is the most recent packet received by the controller when

computing Ut, with k < t. Similarly, the packet Xt contains the current state together

with the time stamp st of the last packet used by the plant

Xt = {xt, st} . (4.5)

Specifically, st = k if ut is extracted from the packet Uk, with k ≤ t. To represent the

stochastic behavior of the network, we introduce the arrival process θt ∈ {0, 1} associated

to the link from the control unit to the plant, defined as

θt =

1 if Ut is available to the smart actuator at time t

0 otherwise,
(4.6)

and the arrival process γt ∈ {0, 1} associated to the link from the plant to the control

unit, defined as

γt =

1 if Xt is available to the control unit to compute Ut+1

0 otherwise.
(4.7)

Arrival processes take into account both random delays and packet losses. In particular,

delays are treated as losses if the corresponding packet is not available when required. In

order to let the network be as general as possible, at this stage, no assumptions are made

on the distribution of γt and θt.

We define the information available to the plant when applying ut as

IP
t = {θ0U0, . . . , θtUt, x0, . . . , xt, u0, . . . , ut−1}

where, with a little abuse of notation, if θk = 0 then θkUk = ∅. Similarly, we define the
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information available to the control unit when computing Ut as

IC
t = {U0, . . . , Ut−1, γ0X0, . . . , γt−1Xt−1} .

Referring to Figure 4.1, we want to design the laws f( · ) and g( · )

ut = f(IP
t ) (utt, u

t
t+1, . . . , u

t
t+N) = g(IC

t )

such that the constraints are satisfied and the system output yt tracks the desired reference

signal rt.

In order to solve this problem, in this chapter, we adapt the MPC for Tracking devised

in [123] to the considered setup. Before providing the proposed solution, in order to

introduce the original algorithm and the notation used, we outline the solution with ideal

channels.

4.2 Background: ideal channel

Let x̄ denote a steady state, and let ū and ȳ be the corresponding steady-state input

and output, respectively. It is possible to characterize the relation between x̄, ū, and ȳ

through the following condition

[
A−I B 0

C 0 −I

] x̄

ū

ȳ

 =

[
0

0

]
. (4.8)

A non-trivial solution exists if and only if (A,B) is stabilizable.

For a given steady-state pair (x̄, ū) and a stabilizing gain K, we introduce the auxiliary

(tracking) control law

u = ū+K(x− x̄). (4.9)

The evolution of the system (4.1) under (4.9) can be expressed using the extended state

z = (x, x̄, ū) and the corresponding auxiliary controlled system

zt+1=Aezt, Ae =

[
A+BK −BK B

0 I

]
. (4.10)

Similarly, also the constraints (4.3) under the auxiliary law (4.9) can be formulated using

the extended state as

zt ∈ Z Z =
{
z=(x, x̄, ū) : HCx+HD(ū+K(x−x̄)) ≤ h

}
. (4.11)

Then, a set S is an admissible invariant set for tracking if S ⊆ Z and, if z ∈ S, then
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Ak
ez ∈ S for any k ≥ 0. The maximal admissible invariant set for tracking is

O∞ = {z : Ak
ez ∈ Z, k ≥ 0}, (4.12)

which corresponds to the Maximal Output Admissible Set for the auxiliary controlled

system. As explained in section 3.3, O∞ is not finitely determined but it is possible to

approximate it as closely as desired by a set Õ∞ that is finitely determined

Õ∞ = O∞ ∩Oϵ Oϵ = {z = (x, x̄, ū) : (x̄, x̄, ū) ∈ (1− ϵ)Z} (4.13)

with an arbitrary ϵ ∈ (0, 1). The set Õ∞ is the set of z = (x, x̄, ū) such that the evolution

of the original system starting from x with input u = ū+K(x− x̄) is always admissible

and such that the steady state satisfies the constraints with a small margin ϵ.

Consider the cost function

V (x,u, x̄, ū, ȳ, r) =
N−1∑
k=0

||x(k)− x̄||2Q + ||u(k)− ū||2R + ||x(N)− x̄||2P + ||ȳ − r||2T (4.14)

with u = (u(0), u(1), . . . , u(N − 1)), x = (x(0), x(1), . . . , x(N)). The resulting MPC

problem P(x, r) is

min
u,ū,x̄

V (x,u, x̄, ū, ȳ, r)

x(k + 1) = Ax(k) +Bu(k), x(0) = x,

HCx(k) +HDu(k) ≤ h, k = 0, 1, . . . , N − 1, (4.15)

(x(N), x̄, ū) ∈ S, x̄, ū, ȳ satisfy (4.8),

where S is an admissible invariant set for tracking. Typical choices of S are Õ∞, that is

the largest possible set, or the singleton {(x̄, x̄, ū)}, that is the smallest one. In standard

MPC for Tracking [123], at each time step t, the optimization problem is solved with

initial condition x = xt and the applied control input ut is the first element ut(0) of

the minimizer of the optimization problem. Due to the lossy network, this is not always

possible so we modify the procedure to consider the cases when xt is not available to the

controller and when ut(0) is not available to the actuator

4.3 Design of the Remote Constrained Controller

Due to the non-zero delay introduced by the communications and the computations, even

in ideal channel conditions, the state xt+1 is not available at the remote control unit when

computing Ut+1, but it has to be estimated. When the packet Xt arrives, the estimate

x̂t+1|t of xt+1 can be derived from xt and ut, provided that the latter can be retrieved
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from st using f( · ). However, if the packet Xt has been lost, the controller does not have

the knowledge of the applied input and there exists a different estimate for each possible

past input sequence. It is then crucial to guarantee that the estimate and the state are

consistent, namely obtained with the same past input values, otherwise the future inputs

may lead to a constraint violation. To guarantee state consistency we propose to solve

the MPC problem using the state estimate obtained as if the last packets transmitted

by the controller were applied to the system. Then, the smart actuator is designed to

discard the received input sequence in the case that the estimate used to generate it is

not consistent with the current state.

We now provide the details of the remote constrained controller. First, the control unit

estimates the state as if the last packets transmitted by the controller were arrived. This

can be formalized as

ût|t = γtut + (1− γt)u
t
t (4.16)

x̂t|t = γtxt + (1− γt)x̂t|t−1 (4.17)

x̂t+1|t = Ax̂t|t +Bût|t (4.18)

starting from û0|0 = u0 and x̂0|0 = x0. Based on the state estimate, the controller solves

the MPC for Tracking problem P(x̂t|t−1, rt). Let u
t = (ut(0), . . . ,ut(N−1)), ūt, x̄t denote

the corresponding minimizers, and denote ȳt = Cx̄t. The law g( · ) is defined as

utt+k =

ut(k) for 0 ≤ k < N

ūt −Kx̄t for k = N.
(4.19)

Note that the first N inputs are directly obtained from the optimal sequence ut, while the

last one wraps the information on the pair x̄t, ūt. The sequence utt+k is then encapsulated

together with the time stamp qt, iteratively obtained as qt+1 = γtt+ (1− γt)qt.

4.4 Design of the Smart Actuator

As explained in the previous section, in order to guarantee state consistency, the actuator

has to decide whether to keep or discard the most recently received sequence by checking if

it was obtained with an estimate consistent with the real state. To this end, we introduce

a mismatch detection variable Θt defined as

Θt =


∏t

k=qt+1 θk if θt = 1

0 otherwise.
(4.20)
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Note that if θt = 1 then qt is available to the smart actuator and the product can be

computed. If the previous packet from the plant has been received by the controller, i.e.,

qt = t− 1, then Θt = θt. On the other hand, if the last ℓ packets from the plant have not

been received by the controller, i.e., qt = t− ℓ, then Θt = 1 if and only if all the previous

ℓ packets from the controller have been received. If at least one of them has been lost,

the input trajectory used by the estimator and the actual applied input trajectory at

the actuator are different: in that case even if θt = 1, Ut has to be discarded. Then the

sequence Uk to be used is the last one for which Θk = 1. The extraction of the suitable

input from the suitable sequence can be done using the variable st, that is the time stamp

corresponding to the input sequence currently applied at the plant. It can be seen as an

internal state of the smart actuator and it can be computed as

st = Θtt+ (1−Θt)st−1. (4.21)

Based on the available input sequences, the input to be applied is derived according to

the law f( · ) implicitly defined as

ut =

ustt if t− st < N

ustst+N +Kxt = ūst +K(xt − x̄st) otherwise.
(4.22)

When a new sequence is arrived, if not discarded, it is stored and the first input is used.

When a packet is lost or discarded, the previous sequence is shifted and the first input

is applied. The procedure is iteratively repeated until the sequence is expired, when the

last input is held. However, while the first N inputs, if used, are directly applied to the

system, the last one is superposed on the state feedback, obtaining the auxiliary tracking

law. In that case, the smart actuator becomes de facto a local controller. For this reason

it must have access to the measured state. An important exception is when the plant is

already stable (possibly thanks to an inner control loop), so that K = 0.

4.5 Theoretical properties

We start this section showing that, under the proposed strategy, the estimate is consistent

with the actual state.

Lemma 4.1. If Θt = 1, then xt = x̂t|t−1.

Proof. Let τ ≤ t be such that γτ = 1 and γτ+ℓ = 0 for 0 ≤ ℓ < L = t − τ, namely

the last packet has been received by the controller L steps ago. It follows that qt = τ

and x̂t|t−1 = ALxτ +
∑L−1

ℓ=0 A
L−1−ℓBuτ+ℓ

τ+ℓ. Moreover if Θt = 1 by definition we have that

θτ+ℓ = 1 for 0 ≤ ℓ < L, namely the last L packets has been received by the plant. It

follows that xt = ALxτ +
∑L−1

ℓ=1 A
L−1−ℓBuτ+ℓ

τ+ℓ, so xt = x̂t|t−1.
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Even if, in general, xt may be different from x̂t|t−1, in particular when Θt = 0, the

previous proposition guarantees that consistency between actual state and estimated one

is always guaranteed when it is needed, namely in the time instants when the sequence

used by the actuator changes.

Based on the previous lemma, we can show that the proposed strategy is able to guar-

antee recursive feasibility and constraint satisfaction for any arbitrary network condition.

This is in contrast with existing MPC schemes for lossy channels, which require strong

assumptions on the network, like perfect acknowledgement [52][121] or a limited number

of consecutive packet losses [51],[59],[114]. We first prove the recursive feasibility of the

optimization problem.

Proposition 4.1. Assume there exists a t0 s.t. γt0−1 = 1 and θt0 = 1. Assume that the

optimization problem P(xt0 , rt0) is feasible. Then, the optimization problem P(x̂t|t−1, rt)

is feasible for any t ≥ t0.

Proof. The proposition is proved by induction. The basic case holds for t0 by assumption.

Now assume that the problem is feasible for any τ < t. We have three distinct cases:

γt = 0, γt = 1 with Θt−1 = 1, and γt = 1 with Θt−1 = 0. When γt = 0, i.e., when the

last packet sent by the plant has been lost, the recursive feasibility at time t is shown

from the feasibility at time t−1 using standard arguments. When γt = 1 and Θt−1 = 1,

the proposed logic ensures that xt = x̂t|t−1 according to Lemma 4.1, so the problem is

equivalent to the former case with γt = 0. When γt = 1 and Θt−1 = 0, then there

exists a τ < t such that Θτ+ℓ = 0 for 0 < ℓ ≤ L = t − τ and Θτ = 1. According to

Lemma 4.1, we have xτ = x̂τ |τ−1. By assumption of the inductive argument, the problem

is feasible at time τ and it provides the sequence uττ+k such that HCx(k) +HDuττ+k ≤ h

with x(k + 1) = Ax(k) + Buττ+k, x(0) = x̂τ |τ−1 = xτ . If L < N then xt = x(L) and an

admissible sequence is given by the remaining N − L inputs from the sequence at time

τ and L inputs obtained from the auxiliary law. If L ≥ N then (xt, x̄
τ , ūτ ) ∈ S and an

admissible sequence is given by the auxiliary law.

From the above proposition, it immediately follows the constraint satisfaction without

any assumption on the network.

Proposition 4.2. Assume there exists a t0 s.t. γt0−1 = 1 and θt0 = 1. Assume that

the optimization problem P(xt0 , rt0) is feasible. Then, constraints (4.3) are satisfied with

probability 1 for any t ≥ t0.

This property is particularly important because it ensures that, no matter how bad

is the network quality, the system evolves within the constraints. In practice, the mild

assumption is intended to require that the control unit is able to communicate with the

plant before it is “too late”. In other words, in the period before receiving the first

admissible sequence, the plant has to evolve in a safe way without the MPC. As a special
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case, feasibility and constraint satisfaction are guaranteed if x0 = x̄, ut = ū, t < t0, with

(x̄, x̄, ū) ∈ Õ∞, namely if the system is initially in an admissible steady state condition.

Note that, so far, no assumption is required on the reference. In particular, the recursive

feasibility under an arbitrary rt is achieved in the considered framework. This extends

the applicability of the proposed solution with respect to most existing algorithms, which

require the reference to be fixed (typically, the origin). A simplistic method to employ

existing algorithms under time-varying references is to remove the terminal constraint.

However, when dealing with lossy networks, this may be critical because, if we do not

require the terminal state to belong to an admissible invariant set, after a sufficient long

blackout on the uplink, the system can violate the constraints (even if it is provided with

the auxiliary stabilizing law) or the optimization problem may become unfeasible, leading

to possible future constraint violations.

Provided that recursive feasibility and constraint satisfaction are guaranteed for any

reference rt, it is important to assess the tracking properties of the proposed solution.

To this end, we now focus on a constant reference rt = r. We denote the corresponding

steady state and input as (x̄r, ūr), x̄r = Ax̄r + Būr, r = Cx̄r. The following additional

assumptions both on the controller and on the network are made.

Assumption 4.1. The following conditions hold:

1. Q,R, T are positive definite.

2. K is a constant gain s.t. (A+BK) is Hurtwitz.

3. P satisfies P = (A+BK)′P (A+BK) +Q+K ′RK.

4. S = Õ∞.

5. Pr(∩t≥k {γt−1θt = 0}) = 0 ∀k ≥ 0.

We have the following result.

Proposition 4.3. Suppose that Assumption 4.1 holds and that feasibility is guaranteed.

Assume that rt = r and r is such that (x̄r, x̄r, ūr) ∈ (1− ϵ)Z. Then, the system output yt

converges to r with probability 1.

Proof. In order to prove the proposition, we start with some notation. Since the cost

function is evaluated along the trajectory x and it is completely determined by the input

sequence u and by x(0), we use the notation V (x,u, x̄, ū, ȳ, r) = V (x(0),u, x̄, ū, ȳ), where

we also drop the dependence on r. Denote the optimal value of the cost function of P(x, r)

as V ∗(x). Denote the system evolution driven by the auxiliary tracking law determined

by x̄, ū starting from x as

u(k|x, x̄, ū) = ū+K(x(k|x, x̄, ū)− x̄)

x(k + 1|x, x̄, ū) = Ax(k|x, x̄, ū) +Bu(k|x, x̄, ū).
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Now introduce the virtual sequence of future inputs at plant side, consisting of the re-

maining inputs from the last received sequence and of the auxiliary tracking law based

on the last received intermediate reference. It can be defined as

ũt+1 =

ut+1 if Θt+1 = 1

(ũt(1), . . . , ũt(N − 1), ūst +K(xt+N − x̄st)) otherwise.

It can be seen as the buffer at the plant side storing the current version of the next N

inputs. We call it virtual because in general it is different both from the optimal sequence

computed by the MPC and from the sequence that will be applied. Based on the virtual

input sequence, we define the virtual value function at the plant side

V(xt) = V (xt, ũt, x̄
st , ūst , ȳst).

Now we provide some preliminarily results that will be used in the proof. In particular

it is immediate to see that

x(k + 1|x, x̄, ū)− x̄ = (A+BK)(x(k|x, x̄, ū)− x̄).

Then, due to Item 3 in Assumption 4.1, it can be shown that

||x(k|x, x̄, ū)− x̄||2Q + ||u(k|x, x̄, ū)− ū||2R
= ||x(k|x, x̄, ū)− x̄||2P − ||x(k + 1|x, x̄, ū)− x̄||2P (4.23)

The proof then consists of 3 steps.

Step 1. At each time step we have

V(xt+1) = V (xt+1, ũt+1, x̄
st+1 , ūst+1 , ȳst+1)

≤ V (xt, ũt, x̄
st , ūst , ȳst+1)− ||xt − x̄st||2Q − ||ũt(0)− ūst||2R

≤ V(xt)− ||xt − x̄st ||2Q

where the first inequality, following from (4.23), is indeed an equality if Θt+1 = 0, while

it is an inequality if Θt+1 = 1 since V(xt+1) = V ∗(xt+1) and the virtual sequence with

Θt+1 = 0 is admissible, thus possibly suboptimal. Since V(xt) ≥ 0, V(xt) converges and
limt→+∞ ||xt − x̄st ||2Q

a.s.
= 0.

Step 2. Define the sequence {tk} such that Θtk = 1 and Θt = 0 for any tk−1 < t < tk.

It corresponds to the sequence of time instants where the state and the estimate coincide,

so x̂tk|tk−1 = xtk . Moreover, by definition of st, we have that stk = tk. It follows that

||x̂tk|tk−1−x̄tk ||2Q = ||xtk−x̄stk ||2Q. Since Item 5 in Assumption 4.1, we have that tk is defined

for any k ≥ 0, so we can take the limit. From Step 1 we have limk→+∞ ||x̂tk|tk−1−x̄tk ||2Q
a.s.
= 0.
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Applying Lemma 3 in [123] it must be limk→+∞ ||Cx̂tk|tk−1 − r||2T
a.s.
= 0 and finally we have

limk→+∞ ||Cxtk − r||2T
a.s.
= 0.

Step 3. We have the following chain of inequalities

||Cx̄st − r||2T ≤ V(xt) ≤ ||xt − x̄st ||2P + ||Cx̄st − r||2T

where the last inequality, provided by Lemma 2 in [123], holds if xt ∈ Õ∞∩{(x, x̄, ū) : x̄ =

x̄st , ū = ūst}, i.e. when xt is sufficiently close to x̄st s.t. the auxiliary law is admissible.

It follows that V(xt) asymptotically tends to ||Cx̄st − r||2T but V(xt) converges according
to Step 1, so ||Cx̄st − r||2T converges and also ||Cxt − r||2T converges. Since it converges to

0 on the subsequence {tk} due to Step 2, we have that it converges to 0 on t, concluding

the proof.

Interestingly, convergence with the proposed algorithm does not require many more

assumptions than needed by standard MPC for Tracking. What is additionally required

is only Item 5 in Assumption 4.1. However it is very mild since it only requires that there

always exists an infinite sequence of instants where two consecutive successful receptions,

one per side, occur. Indeed, in the interval between two successful transmissions from the

plant, the input sequence used by the actuator changes if and only if the first sequence

transmitted by the controller in that interval is received. If it does not happen, all the

subsequent packets are not compatible with the actual state, so they are discarded and

the system does not converge to r. Similarly, if one of the two links is down from t

onward and Cx̄t ̸= r, then there is no chance the system converges to r. In these cases

it is immediate to see that yt converges to Cx̄k where k is the largest time instant for

which Θk = 1. Clearly, these situations are very rare in practice, and the assumption is

less restrictive than to require the number of consecutive packet losses to be bounded.

4.6 Simulations: assessment of the proposed strategy

In this section, we assess the performances of the proposed strategy for different control

design parameters through simulations. Since the terminal condition is strictly related

to the safety against blackouts, it is interesting to test different terminal sets S.

As for the channel, the arrival processes γt and θt are modeled as independent and

identically distributed random variables with Bernoulli distribution and constant mean

E[γt] = E[θt] = 0.25.

As for the plant, we simulate the unstable linearized model of the Segway described in

Appendix A.2 with sampling period T = 10 ms. In particular, matrices C, D, H, and h

are set to take into account the limits on the input fed to the motors, that is required to

remain in the interval [−11 V, 11 V], and the safety constraints on the tilt angle, that is

required to remain in the interval [−0.1 rad, 0.1 rad].
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We set the control parameters as R = 1, Q = diag{10, 1000, 1, 1}, T = 10P , and P as

in Item 3 of Assumption 4.1. We consider two possible terminal sets. On one hand, we

choose S = Õ∞, that is the largest terminal set possible and guarantees the convergence

to the any admissible set-point. In this case, we set N = 50. On the other hand, we

restrict the terminal state x(N) to be equal to the steady-state x̄. Clearly, we need also

to require HCx̄ + HDū ≤ h, equivalent to (x̄, x̄, ū) ∈ Z, so that the steady-state is

admissible. Note that, if we further reduce the terminal set by the small quantity ϵ,

namely we impose the terminal conditions (x(N), x̄, ū) ∈ (1− ϵ)Z, the terminal set S is

equivalently described by the conditions (x(N), x̄, ū) ∈ Õ∞ and x(N) = x̄. This more

clearly shows the reduction on the possible terminal states introduced in the latter case.

Since the system state needs to be driven at the equilibrium at the end of the horizon, the

control sequence is usually less aggressive and system response is slower. For this reason,

in this case, we set N = 100. In the case with ideal communications, for the system at

hand, the two solutions have very similar performances.

The system responses under the channel evolution of Figure 4.2 are reported in Fig-

ure 4.3. As we can see in the top panel, the controller designed with S = Õ∞ converges

faster to the desired reference. In fact, during blackouts, subsequents elements of the

control sequence are used and, for the case with x(N) = x̄, they drive the system to

the equilibrium in N steps. Therefore, the system slows down. This can be seen also in

the bottom panel, since an higher tilt angle corresponds to an higher speed. It is worth

mentioning that both the designs are able to satisfy the constraints even in presence of

packet loss. This confirms that the proposed strategy is able to guarantee safety of the

system.

4.7 WiFi-in-the-loop simulations: comparisons

In this section, we test the proposed MPC for Tracking in a WiFi-in-the-loop setup. We

consider the Segway-like robot described in Appendix A.2 with sampling period T = 5 ms.

Differently from section 3.8, we do not include the inner stabilizing loop, so the open-loop

system is unstable. The simulation comprises the complete nonlinear model of the plant,

including the non-ideliaties of sensors (quantization) and actuators (saturation), and real

Wi-Fi communication data collected with the experimental setup of Appendix A.3. We

use the same realization used in section 3.8.

We compare the proposed solution with the standard Networked MPC adapted from

[59], detailed in section 3.8. The main idea of [59] is to postpone the initial point of the

optimization problem τ steps ahead in order to be robust against up to τ consecutive

packet losses.

The constrained control algorithms are designed on the linearized model of the robot.

We consider the constraints on the tilt angle and on the input fed to the motors. For both
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Figure 4.2: Blackouts (b/o). Top: uplink. Bottom: downlink
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Figure 4.3: System response with simulated channels. Comparison between different
terminal set S. Choosing a larger terminal set improves the performances when packet
loss is present.
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Figure 4.4: Blackouts (b/o). Top: uplink. Bottom: downlink
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Figure 4.5: System response with WiFi-in-the-loop setup. Comparison between proposed
solution and standard Networked MPC [59]. Due to long blackouts, the Segawy falls when
controlled by standard Networked MPC.
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the algorithms we set N = 50, R = 1, Q = diag{10, 1000, 1, 1}, and P as in Item 3 of

Assumption 4.1. For the proposed algorithm, we setK = −(B′PB+R)−1BPA, T = 10P ,

an terminal condition S = Õ∞. For the standard Networked MPC, we set τ = 30 and

we do not include terminal constraints to easily manage time-varying reference. When

infeasible, the problem is relaxed converting the hard constraints into soft ones. In this

chapter, computational time is neglected. This is a crucial point since the MPC problem

may be not always solved in the prescribed period. Nevertheless, note that a violation of

the required execution time can be treated as a packet loss.

In Figure 4.4, reporting the blackout lengths, we can see that the bound τ is violated.

Consequently, the standard Networked MPC does no more guarantee constraint satis-

faction and, in fact, as shown in Figure 4.5, the bound on the tilt angle is immediately

violated. Later in the simulation, due to other long blackouts, the segway falls down: the

robot lays horizontally (the tilt angle is equal to π/2) and cannot proceed anymore. Con-

versely, the proposed strategy always satisfies the constraints despite the packet losses.

Roughly speaking this is achieved by “slowing down”: during blackouts, instead of pro-

ceeding forward with the maximum tilt angle allowed, namely at the maximum speed,

the tilt angle decreases, indicating that the Segway robot starts to stop. This behavior

implies that the settling time is approximately 0.5 s slower than in the ideal scenario, but

safety is guaranteed. Other WiFi-in-the-loop tests with a different sampling period and

different channel conditions can be found in [126].

4.8 Conclusion

In this chapter, we have proposed an algorithm based on MPC for tracking reference

signals under constraints and over wireless. We have shown that constraints are satisfied

for arbitrary channel condition, and we have shown that the desired signal is tracked

under mild requirements. WiFi-in-the-loop experiments have confirmed that constraints

are always satisfied even under severe noise conditions and have shown the validity of

the proposed strategy for industrial and safety-critical applications. With respect to the

RG devised in chapter 3 we do not explicitly require the open-loop system to be sta-

ble, but we require the smart actuator to have access to the system state in order to

apply an auxiliary law during blackouts. For simple constant reference tracking prob-

lems, the performances of the proposed RG and of the proposed MPC for Tracking are

comparable, as indicated by the WiFi-in-the-loop tests. However, MPC for Tracking has

more degrees of freedom than RG, so we expect better performances in more challeng-

ing tasks. Nonetheless, differently from RG presented chapter 3, the presented MPC is

not conceived for systems with disturbances. To generalize the presented solution to the

case with bounded disturbances we can employ the Tube-based MPC for Tracking [124].

Similarly to chapter 3, this requires to add an inner control loop always activated.
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5
Reference Governor for Multi-Agent Systems

Many interesting and trending control applications comprise multiple spatially distributed

sensors and actuators. For instance, in cooperative robotics, the actuators are physically

located on the different agents, and the sensors as well. In those applications, wired

connections to put into communication the agents are usually an annoying obstacle,

especially with drones and mobile robots. To date, to avoid wired links, there exist

mainly three alternatives. First, a solution with (almost) no communication can be used.

In this case, each agent is provided with an off-line suitable reference trajectory to be

followed independently of the other agents. This solution is however not robust, since

no feedback from the other agents is used, and it is probably conservative. A second

solution makes use of implicit communications. In this case, each agent is equipped with

an advanced sensing apparatus that allows to (partially) measure the state of the other

agents. Depending on the application, typical examples are cameras to retrieve positions

and relative angles, time-of-flight sensors to retrieve the distance, and force sensors to

retrieve the force applied by the other agents. Typical algorithms are [127][128]. With this

solution, a desired reference trajectory is provided to some special agents, called leaders,

that have to track it, while the remaining agents, called followers, are in charge to follow

the leaders according to a prescribed local control law. This solution is definitely more

robust than the solution with no communications but still some drawbacks are present.

In fact, the overall performances are limited by the computational capabilities on-board

and by the accuracy of the sensors. More importantly, only information on the current

state can be obtained through sensors and no knowledge on the future intentions can

be exploited. This limit can be overcome only using explicit communications. In fact,

the third alternative employs wireless communications. With this solution, both the

state and the future inputs can be transmitted and performances can be improved using

predictive strategies. Both centralized [129][130] and distributed algorithms [131][132]

are available in the literature. To date, most of the control algorithms that consider

communications in multi-agent systems makes the assumption that the links are ideal.

Indeed, when slow communication rates are used (less than 10 transmissions per second),
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Figure 5.1: Qualitative expected performances for the different solutions.

transmissions are usually quite reliable and packet losses can be neglected. This solution

is satisfactory in several applications characterized by slow dynamics, like HVAC systems

in buildings. On the other hand, this can be limiting in systems that require small

sampling periods, like cooperative robotics. To push the performances to the limit, we

need to use fast communications, which may introduce both packet losses and blackouts.

The control algorithm has to be modified to take into account them. The benefits of fast

wireless networks in multi-agent mobile manipulation have been shown e.g. in [75], but

packet losses have not been considered so far. A pictorial representation of the expected

performances for the different solutions is reported in Figure 5.1.

In this chapter, we propose a first solution to the problem of control of multi-agent

systems with packet loss and constraints starting from the RG presented in chapter 3.

In the literature, only a handful of works considers a similar problem. The work [103]

proposes two centralized solutions that explicitly take into account (possibly unbounded)

delays due to the communication network, but they require resynchronization procedures

and they are computationally demanding. The work [133] devises a sequential distributed

RG scheme where only an agent for time instant is allowed to update its input. The work

[134] extends the solution of [133] using the graph colorability theory. According to [134],

agents with decoupled dynamics and constraints, colored in the same way, are allowed

to update the input simultaneously. The turn-based approach of [133] can be suitable to

avoid the cases where an admissible input leads to a constraint violation because applied

only by some actuators. However, solutions [133][134] do not take into account packet

losses.

The proposed solution is a suitable extension of RG presented in chapter 3 with features

of [133] to solve the multi-agent constrained control problem with wireless communication.

Suitable strategies have been introduced to deal with the fact that actuators are spatially

distributed, so the new input may be only partially applied due to packet losses. Recursive

feasibility and constraint satisfaction have been proved without any assumption on the

network. Convergence to a desired constant set-point is guaranteed under very mild

hypothesis on the network and with small conservativeness introduced on the set of
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admissible inputs. Simulations show that the proposed strategy is better than the solution

with implicit communication (even with ideal hardware) and than the solution with slow

(ideal) communications.

5.1 Problem formulation

We consider a set of NA spatially distributed actuators and a set of NS spatially dis-

tributed sensors. This generalizes the case of N = NA = NS agents, each one equipped

with a local sensor and a local actuator, to include the cases where additional sensors are

present e.g. on the load or in the environment. We denote

x(t) =


x1(t)

x2(t)

· · ·
xNS

(t)

 u(t) =


u1(t)

u2(t)

· · ·
uNA

(t)

 (5.1)

where x(t) ∈ Rn is the system state, with xi(t) ∈ Rni , and u(t) ∈ Rm is the system

input, with ui(t) ∈ Rmi . Accordingly, sensor i has direct access to xi(t), while actuator i

directly manipulates ui(t). The system is modeled as

x(t+ 1) = Ax(t) +Bu(t). (5.2)

We assume that all the eigenvalues of the matrix A are strictly inside the unitary circle.

The system has to fulfill the constraints

y(t) ∈ Y (5.3)

where y(t) ∈ Rc is the constrained output defined as

y(t) = Cx(t) +Du(t) (5.4)

and Y ⊂ Rc. We assume that the pair (A,C) is observable and that Y is closed containing

the origin.

The objective is to design the input u(t) such that the system output yout(t) = Coutx(t)

tracks a prescribed desired reference signal r(t) while enforcing the constraints y(t) ∈ Y .

For sake of simplicity, we assume that Cout(I−A)−1B = I and we consider the simplified

problem where the input u(t) has to follow the desired reference r(t).

We propose to solve the problem through a central control unit and to use a shared

wireless network to connect the control unit with the actuators and the sensors. Specif-

ically, the wireless network is used for transmissions 1) from the sensors to the control

unit, 2) from the control unit to the actuators, and 3) from the actuators back to the
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Figure 5.2: Setup. The blue box represents a shared wireless network.

control unit. The latter is equivalent to the acknowledgment of the transmissions from

the control unit to the actuators. In line of principle, we would like that all the com-

munications take place during each sampling period with success. However, this may

overload the network and deteriorate the performances. To avoid this problem a suitable

transmission scheduling algorithm may be studied. We do not consider this problem in

this chapter.

At each time step, the central control unit computes the input v(t) = (v′1(t), · · · , v′NA
(t))′,

with vi(t) ∈ Rmi , based on the estimate of the state x(t) and on the desired reference

r(t) = (r′1(t), · · · , r′NA
(t))′, ri(t) ∈ Rmi . However, since the wireless network introduces

delays and packet losses in the loop, the input u(t) can not be readily manipulated ac-

cording to v(t) and the control unit has not direct access to the state x(t) of the system.

More specifically, we assume that, at time instant t, the sensor i transmits the measure

xi(t) and we introduce the arrival process γi(t) ∈ {0, 1} defined as

γi(t) =

1 if xi(t) is available to the control unit to compute v(t+ 1)

0 otherwise.
(5.5)

This definition captures also the case where the transmission of xi(t) is not scheduled,

opportunely setting γi(t) = 0. Also actuators communicate to the control unit the current

applied input. To model this, we introduce the arrival process νi(t) ∈ {0, 1} defined as

νi(t) =

1 if ui(t) is available to the control unit to compute v(t+ 1)

0 otherwise.
(5.6)

Finally, we assume that, during the period between time instant t− 1 and time instant t,

just after the computation, the control unit transmits vi(t) and we introduce the arrival
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process θi(t) ∈ {0, 1} defined as

θi(t) =

1 if vi(t) is available to the actuator i at time t

0 otherwise.
(5.7)

Based on the arrival processes, we define the information available to the central control

unit when computing v(t) as

IC(t) =
{
v(0), · · · , v(t− 1)

}
∪
{
γi(0)xi(0), · · · , γi(t− 1)xi(t− 1) : i ∈ {1, . . . , NS}

}
∪
{
νi(0)ui(0), · · · , νi(t− 1)ui(t− 1) : i ∈ {1, . . . , NA}

}
while we define the information available to actuator i at time instant t as

Ii(t) =
{
ui(0), ui(1), · · · , ui(t− 1)

}
∪
{
θi(0)vi(0), · · · , θi(t− 1)vi(t− 1)

}
for any i ∈ {1, . . . , NA}. Then, we are interested in the problem of designing the laws

fi( · ) and g( · )

ui(t) = fi(Ii(t)) v(t) = g(IC(t)) (5.8)

for i ∈ {1, . . . , NA} such that constraints (5.3) are satisfied.

5.2 Design of the Smart Actuators

The first step is to design the laws fi( · ) implemented at the smart actuators. As done

in the single-agent case of chapter 3, the function fi( · ) is a simple Zero-Order Hold that

keeps the current value until a new packet arrives

ui(t) = θi(t)vi(t) + (1− θi(t))ui(t− 1). (5.9)

5.3 Design of the Actuator Scheduler

With respect to the single-agent case, the problem is more difficult due to the presence of

multiple channels. The peculiar issues of the considered problem can be summarized in

two points: 1) if a new input is computed to be admissible if applied by all the actuators,

constraints may be violated in situations where the packet has been received and used

only by some actuators, 2) when a new input is sent but no information is received back

at the control unit, the number of possible states doubles, thus it grows exponentially

with the number of consecutive packet losses in the link from each actuator to the control

unit. To solve these problems, we propose to consider a smart Actuator Scheduler.

To solve problem 1), similarly to the single-agent case, we propose to design vi(t) to
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be robust for any possible uj(t), j ̸= i. However, this would require that the system

evolutions for all the 2NA possible combinations of ui(t) satisfy the constraints, and the

corresponding problem may be cumbersome. For this reason, taking inspiration from

[133], we propose to use an asynchronous approach where, at each time instant t, only

the input vi(t) for the actuator i is computed, while other inputs are not changed. To

formalize this solution, we introduce the binary selection variable αi(t) ∈ {0, 1} defined

as

αi(t) =

1 if actuator i is selected at time t

0 otherwise.
(5.10)

Then, the asynchronous approach is characterized by the constraint

NA∑
i=1

αi(t) ≤ 1. (5.11)

Then, the input vi(t) is computed and transmitted if αi(t) = 1, while it is not if αi(t) = 0.

In this sense, αi(t) regulates both the computation and the transmissions. Accordingly,

we always have θi(t) = 0 if αi(t) = 0. Technically, for actuators such that αi(t) = 0, vi(t)

can be set equal to any value because, since it is not transmitted, it does not have any

effect.

According to the asynchronous approach, any agent can be chosen at any time instant.

However, the number of possible states depends on the number of past transmitted inputs

that have not been followed by a packet received at the control unit so far. That is, if L

inputs have been transmitted to actuator i during a period in which no packet from i has

been received, the number of possible states is at least 2L. Then, to solve problem 2), we

propose to compute a new input vi(t) only for actuators whose applied input ui(t− 1) is

known. This limits the number of possible states to be equal to 2NA in the worst case,

but in general much smaller, and even equal to 1 in good channel conditions.

To formalize this solution we introduce an eligibility variable βi(t) ∈ {0, 1} defined as

βi(t) =


1 if νi(t) = 1

0 if νi(t) = 0 and αi(t− 1) = 1

βi(t− 1) if νi(t) = 0 and αi(t− 1) = 0

(5.12)

It is easy to see that, if βi(t) = 1, then the applied input ui(t− 1) is known at the control

unit. So, the actuator i can be selected at time t only if βi(t) = 1. Equivalently, we can

introduce the counter ∆i(t), defined as the period elapsed since the last known applied

input at the actuator i. It can be recursively obtained as

∆i(t) = (1− βi(t))(∆i(t) + 1) (5.13)
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Then, the actuator i can be selected at time t only if ∆i(t) = 0.

Finally, the actuator scheduling is obtained through the following optimization problem

α(t) = argmin
α

C(α) (5.14)

s.t.

NA∑
i=1

αi ≤ 1 (5.15)

NA∑
i=1

(1− βi(t))αi = 0 (5.16)

where C( · ) is a suitable cost function. The first constraint imposes that at most an actu-

ator is selected. The second constraint imposes that only eligible actuators are chosen. In

the following, we choose as cost C(α) the linear function
∑NA

i=1 ciαi, where we set ci equal

to the number of steps since the last time αi was equal to 1. In this way, we implement

a modified round-robin allocation protocol. More sophisticated functions, possibly state

dependent, can be designed following e.g. [135][136].

5.4 Design of the State Estimator

For sake of clarity, we preliminarily introduce a set of buffers U0:t
i , containing the past

known inputs of actuator i. Specifically, the buffer U0:t
i is recursively obtained by adding

an entry at the end of U0:t−1
i , starting from U0:0

i = ui(0). If νi(t) = 1, then the last

∆i(t−1)+1 entries of the buffer are set equal to ui(t). If νi(t) = 0, the last entry of U0:t
i is

set equal to the last entry of U0:t−1
i , eventually keeping it empty if no value was present.

It is easy to see that only the last ∆i(t) entries may be empty and they are filled as soon

as νi(t) = 1, while the first t−∆i(t) + 1 entries contain the sequence ui(k) for k from 0

to t−∆i(t).

In order to obtain any possible current state, we need to store also the sequences of

non-acknowledged inputs of any actuator. To this end we introduce

û+i (t) = νi(t)ui(t)+αi(t)(1−νi(t))vi(t)+(1−αi(t))(1−νi(t))û+i (t−1) (5.17)

û−i (t) = νi(t)ui(t) + (1− νi(t))û
−
i (t− 1) (5.18)

stating from û+i (t) = û−i (t) = ui(0). They represent the two possible inputs applied at

actuator i. We now split the problem of obtaining the state estimate in two parts: we

first compute the (unique) estimate of the state at the last time instant for which the

applied inputs are known, and then we compute all the estimates of the possible current

states obtained from any possible past input trajectory.
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5.4.1 Estimate up to the last known applied input

When computing v(t), we obtain û(k) = (û′1(k), . . . , û
′
NS

(k))′ from the buffers U0:t−1
i as

ûi(k) = U0:t−1
i (k) (5.19)

for k from t − 1 − ∆(t − 1) to t − 1 − ∆(t). The state is estimated according to the

following standard recursive procedure

x̂(k|k) =

 γ1(k) 0 0

0 · · · 0

0 0 γN(k)

x(k) +
 1− γ1(k) 0 0

0 · · · 0

0 0 1− γN(k)

 x̂(k|k − 1)

(5.20)

x̂(k + 1|k) = Ax̂(k|k) +Bû(k) (5.21)

for k from t− 1−∆(t−1) to t− 1−∆(t). Note that, at each time instant, this procedure

is iterated from x̂(t− 1−∆(t−1)|t− 2−∆(t−1)), obtained at the previous time instant,

to x̂(t − ∆(t)|t − 1 − ∆(t)). At the first time instant, the procedure is initialized at

û(0) = u(0), x̂(0|0) = x(0). When ∆(t) = ∆(t − 1) + 1 no steps are performed while,

in general, ∆(t− 1) + 1−∆(t) steps are performed. If ∆(t) = 0, this procedure returns

x̂(t|t− 1).

5.4.2 Estimates compatible with the possible inputs

When computing v(t), x̂(t − ∆(t)|t − 1 − ∆(t)) is given by the previous procedure. To

efficiently obtain any possible current state we keep updated the following three quantities

ẑ0i (t) =

∆(t)−1∑
ℓ=∆i(t)

A∆i(t)AℓBiûi(t− 1− ℓ) (5.22)

ẑ+i (t) =

∆i(t)−1∑
ℓ=0

AℓBiû
+
i (t− 1− ℓ) (5.23)

ẑ−i (t) =

∆i(t)−1∑
ℓ=0

AℓBiû
−
i (t− 1− ℓ) (5.24)

with Bi = B1i where 1i ∈ Rn×mi is equal to 1i = (0, 0, Imi
, 0, 0)′. The first term represents

the forced response of the system at time t due to the input sequence ûi(t − 1 − ℓ) at

actuator i, ℓ from ∆i(t) to ∆(t)− 1, while keeping the input of all the other actuators to

0. Recalling that û+i (t−1−ℓ) = v(t−∆i(t)) and û
−
i (t−1−ℓ) = u(t−1−∆i(t)) for ℓ from

0 to ∆i(t)− 1, the terms ẑ+i (t) and ẑ
−
i (t) represent the forced responses of the system at

time t under the two possible input sequences applied at actuator i starting from t−∆i(t).
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Note that ẑ+i (t) and ẑ
−
i (t) are 0 if ∆i(t) = 0, while ẑ0i (t) = 0 if ∆i(t) = ∆(t). We can use

them to retrieve

x̂+i (t) = ẑ0i (t) + ẑ+i (t) (5.25)

x̂−i (t) = ẑ0i (t) + ẑ−i (t) (5.26)

that represent the two possible forced responses of the system at time t under the two

possible input sequences applied at actuator i starting from t − ∆(t). These quantities

will be used to retrieve in a efficient way any possible state compatible with the available

information to the control unit.

Let Λ = (λ1, . . . , λNA
) be a binary sequence of length NA. We define

x̂(t,Λ) = A∆(t)x̂(t−∆(t)|t− 1−∆(t)) +

NA∑
i=1

λix̂
+
i (t) + (1− λi)x̂

−
i (t) (5.27)

û(t,Λ) =

NA∑
i=1

1i(λiû
+
i (t) + (1− λi)û

−
i (t)) (5.28)

Varying Λ we get any possible pair of state and input that is compatible with available

information at the control unit.

5.5 Design of the Remote Constrained Controller

To be robust against arbitrarily long blackouts, we propose to design v(t) such that, if

kept constant, the predicted evolution of the system over the infinite horizon will satisfy

the constraints. This will be achieved using the Maximal Output Admissible Set (MOAS)

and adapting the standard RG for the considered case. We now recall the MOAS already

introduced in section 3.2. Denote

x̂(k|x, u) = Akx+
k−1∑
ℓ=0

Ak−ℓ−1Bu. (5.29)

Then, the MOAS is defined as

O∞ = {(x, u) : Cx̂(k|x, u) +Du ∈ Y ∀k ≥ 0} . (5.30)

Since, in general, it is not finitely determined, we consider the inner approximation Õ∞

obtained as

Õ∞ = O∞ ∩Oϵ Oϵ = {(x, u) : C(I − A)−1Bu+Du ∈ (1− ϵ)Y }. (5.31)
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The set Õ∞ is the set of pairs (x, u) for which the evolution of the system starting

from x with input u is always admissible and such that the steady state satisfies the

constraints with a small margin ϵ. Under mild technical assumptions, Õ∞ is compact,

finitely determined, and positively invariant, see section 3.3.

Let i be such that αi(t) = 1. The input vi(t) is obtained by solving the optimization

problem expressed as

vi(t) = argmin
v

||ri(t)− v||2Qi
(5.32)

s.t. (x̂(t,Λ), û(t− 1,Λ) + 1i(v − ûi(t− 1,Λ)) ∈ Õ∞ ∀Λ ∈ {0, 1}N (5.33)

The law f( · ) can be implicitly expressed as the concatenation of the optimization prob-

lems (5.14) and (5.32).

5.6 Theoretical properties

In this section we prove the main theoretical properties of the proposed solution. In

particular, we show that the optimization problem is recursively feasible, constraints are

satisfied with probability 1, and the system converges to the desired set-point.

For easy of notation let NA = N and denote aUi (t) the period elapsed at the current

time instant t since the last time the input at actuator i has been computed. We start

with the following preliminary lemma.

Lemma 5.1. Let Λ = (λ1, . . . , λi . . . , λN) ∈ {0, 1}N and Λ̄ = (λ̄1, . . . , λ̄i . . . , λ̄N) ∈
{0, 1}N . If λ̄i = (1 − νi(t))λi + νi(t)θi(t − aUi (t)) for any i ∈ {1, . . . , N}, then it holds

that

x̂(t+ 1,Λ) = Ax̂(t, Λ̄) +Bû(t, Λ̄)

û(t,Λ) = û(t− 1, Λ̄) +
N∑
i=1

αi(t)1i

(
λ̄ivi(t) + (1− λ̄i)ûi(t− 1, Λ̄)− ûi(t− 1, Λ̄)

)
Proof. The proof follows from standard computations. Since it is quite long, it is omitted

for sake of readability.

Previous lemma shows how the set of possible estimates changes at each time instant.

In particular, when νi(t) = 1, there is no uncertainty on the input applied at the actuator

i, and both x̂(t + 1,Λ) and û(t,Λ) are indeed independent of λi. The independence at

a generic time τ propagates at the next time instant τ + 1 as long as αi(τ + 1) = 0.

It follows that, even if νi(t) = 0 but the input applied at the actuator i is known, the

estimate x̂(t + 1,Λ) and û(t,Λ) are the same both for λi = 1 and λi = 0. This result

is what we expected from the proposed design. Roughly speaking, first the possible

86



states double due to the new possible input at the selected actuator, and then the set of

possible states is shrunk thanks to the information feedback from the actuators. We use

the previous lemma to relate the estimate at the next time instant to the estimate at the

previous time instant through the relation between Λ̄ and Λ. We need this relation to

show the recursive feasibility and constraint satisfaction of the proposed solution.

Proposition 5.1. Assume that (x(0), u(0)) ∈ Õ∞. Then, we have that (x̂(t,Λ), û(t −
1,Λ)) ∈ Õ∞, Λ ∈ {0, 1}N , for any t ≥ 0, and the optimization problem (5.32) is feasible

for any t ≥ 0 such that βi(t) = 1.

Proof. We prove the theorem by inductive argument. For the considered initial condi-

tions, x̂(t,Λ) = Ax(0)+Bu(0) for any Λ. Pick an arbitrary i ∈ {1, . . . , N}. By choosing

v = ui(0), û(0,Λ) + 1iv = u(0) and it is a feasible solution of the optimization problem

at time t = 1 since (Ax(0) + Bu(0), u(0)) ∈ Õ∞ because Õ∞ is positively invariant. So

the statements holds at time t = 1.

Assume that the statement holds for t, namely (x̂(t,Λ), û(t,Λ)) ∈ Õ∞ for any Λ ∈
{0, 1}N . If there exists a i ∈ {1, . . . , N} βi(t) = 1 then ∆i(t) = 0 and ûi(t,Λ) = ui(t) for

any Λ ∈ {0, 1}N . If we choose αi(t+1) = 1 and vi(t+1) = ui(t), then û(t,Λ) = û(t,Λ)+

1i(v−ûi(t,Λ)) for any Λ ∈ {0, 1}N and (Ax̂(t,Λ)+Bû(t,Λ), û(t,Λ)+1i(v−ûi(t,Λ)) ∈ Õ∞

since Õ∞ is positively invariant. This proves the feasibility at time t+1. Recall now that

x̂(t+ 1,Λ) = Ax̂(t, Λ̄) +Bx̂(t, Λ̄) for a given λ̄, according to the previous Lemma.

If λ̄i = 0, û(t+ 1,Λ) = u(t, Λ̄). By inductive hypothesis, (x̂(t, Λ̄), x̂(t, Λ̄)) ∈ Õ∞. Since

Õ∞ is positively invariant, (Ax̂(t, Λ̄)+Bu(t, Λ̄), u(t, Λ̄)) ∈ Õ∞, and thus (x̂(t+1,Λ), û(t+

1,Λ)) ∈ Õ∞.

If λ̄i = 1, û(t + 1,Λ) = û(t, Λ̄) + αi(t)1i

(
vi(t+ 1)− ûi(t, Λ̄)

)
. By construction, we

have that (Ax̂(t, Λ̄) + Bu(t, Λ̄), u(t, Λ̄) +
∑N

i=1 αi(t)1i

(
vi(t+ 1)− ûi(t, Λ̄)

)
) ∈ Õ∞ and

(x̂(t+ 1,Λ), û(t+ 1,Λ)) ∈ Õ∞, concluding the proof.

Since the optimization problem (5.32) is feasible if βi(t) = 1, and it is solved if and only

if αi(t) = 1, when α(t) is chosen according to (5.14), we can conclude that the overall

strategy (5.14)-(5.32) always provides a new admissible input vi(t). The only case when

a new input is not computed is when βi(t) = 0 for any i. This happens when the input

of every actuator is not known at the remote control unit. In this case, the optimization

problem (5.32) is not solved for any i and the control unit waits until a packet from at

least an actuator is received. In general, the optimization problem may be feasible also

if βi(t) = 0, but this may increase exponentially the number of possible states.

Under the proposed strategy, safety is guaranteed for any sequence of packet losses.

We formalize the result in the following statement, the proof immediately follows from

the previous proposition.

Proposition 5.2. Assume that (x(0), u(0)) ∈ Õ∞. Then, constraints (5.3) are satisfied

with probability 1 for any t ≥ 0.
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Figure 5.3: Admissible (green) and non-admissible (red) directions.

As for the single-agent case, this is the most general result possible since it does not

require any assumption on the network. Even if an agent is disconnected for long periods

due to issues on the communication hardware or due to noisy channel conditions, safety

is guaranteed. Clearly, in that case, it is not possible in general to guarantee the conver-

gence to any desired set-point. Indeed, it is easy to see that, when a long blackout occurs,

the system converges to an intermediate set-point, suboptimal but still safe. Under some

mild hypotheses, however, we can guarantee that the system asymptotically converges

to the optimal set-point with probability 1. It is intuitive that, similarly to the single-

agent case, we need some minimal assumptions on the network to avoid communication

blackouts of infinite length. In addition, differently from the single-agent case, we require

some mild assumptions on the constraints. Indeed, due to the asynchronous updates, the

control problem becomes a game between the agents and so we may reach a suboptimal

equilibrium. Based on the results of [133] for distributed RG, we can avoid this problem

with a minimal reduction of the set of admissible inputs, as we outline in the remaining

part of the section.

We start with some definitions. First recall that u = (u′1, · · · , u′N)′ with dimensions

ui ∈ Rmi andm =
∑N

i=1mi. We recall the notation x̄u = (I−A)−1Bu and ȳu = Cx̄u+Du.

Moreover we define the set

U = {u ∈ Rm : ȳu ∈ (1− ϵ)Y } (5.34)

We introduce the following definitions from [133].

Definition 5.1. A vector v ∈ Rm is an admissible direction at u in U if ∃ᾱ > 0 such

that u+ αv ∈ U for any α ∈ [0, ᾱ]

Roughly speaking, a direction is admissible at u if small shifts along it are still in the set

U . A pictorial representation of an admissible direction and a non-admissible direction

is reported in Figure 5.3.
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u1

u2

u1

Figure 5.4: A non-viable point (left panel) and a viable point (right panel). Admissible
directions are indicated in green, while non-admissible directions are in red. Note that
sets U (in gray) are slightly different in the two panels.

Definition 5.2. A point u ∈ U is viable if, for any vector v = (v′1, . . . , v
′
i, . . . , v

′
N)

′ ∈ Rm

that is an admissible direction at u in U , there exists an i such that the vector 1ivi ∈ Rm

is an admissible direction at u in U .

Roughly speaking, to be viable, a point requires that, for any direction v obtained by

simultaneously acting on all the actuators that is admissible, there exists at least a sub-

direction, namely a direction obtained by acting only on an actuator, that is admissible.

In other words, at any point u, we must avoid the case where there exist admissible

directions that require to act on more than an actuator simultaneously. A pictorial

representation of a viable and a non-viable point for two slightly different sets U is

reported in Figure 5.3. Viability property of points in the set U will be fundamental to

prove the convergence.

For sake of completeness, we also recall the definition of Pareto-optimal point in the

considered setup.

Definition 5.3. A vector u ∈ U ⊂ Rn is Pareto-optimal if there does not exist a vector

v = (v′1, . . . , v
′
N)

′ ∈ Rm, vi ∈ Rmi such that u+ v ∈ U and

||uj + 1jvj − rj||Qj
≤ ||uj − rj||Qj

for any j ∈ {1, . . . , N}
||ui + 1ivi − ri||Qi

< ||ui − ri||Qi
for at least a i ∈ {1, . . . , N}

In order to prove the main theorem, we need three preliminary lemmas, given and

explained in the following.

Lemma 5.2. If (x̄u, u) ∈ Õ∞ then ∃ ¯̄α > 0 such that (x̄u, u+αv) ∈ O∞ for any α ∈ [0, ¯̄α]

and for any v ∈ Rm with ||v|| = 1.

Proof. Since A is stable, there exists a δ > 0 such that ||C
∑k−1

ℓ=0 A
ℓB + D|| < δ for

k ≥ 0. It follows that (C
∑k−1

ℓ=0 A
ℓB +D)v ∈ Bδ for k ≥ 0, where Br is a ball of suitable
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dimensions with radius r. Since (x̄u, u) ∈ Õ∞, if the the origin is strictly included in Y ,

there exists a δ̄ > 0 such that Cx̄u +Du ∈ Y ∼ Bδ̄. It follows that

ŷ(k|x̄u, u+ αv) = CAkx̄u + C
k−1∑
ℓ=0

AℓBu+ αC
k−1∑
ℓ=0

AℓBv +Du+ αDv

= Cx̄u +Du︸ ︷︷ ︸
Y∼Bδ

+α

(
C

k−1∑
ℓ=0

AℓB +D

)
v︸ ︷︷ ︸

Bδ̄

If we pick ¯̄α > 0 such that ¯̄αδ̄ < δ then ŷ(k|x̄u, u+ αv) ∈ Y , concluding the proof.

Please note that (x̄u, u) ∈ Õ∞ while (x̄u, u+αv) ∈ O∞. It follows that the input u+αv

may not satisfy the steady-state condition, namely (x̄u+αv, u+αv) may not belong to Oϵ.

However, the previous lemma shows that, for any steady-state admissible pair (x̄u, u), a

small change of u along any direction satisfies the constraints (5.3). This allows us to

prove the following lemma.

Lemma 5.3. If the input u is viable in U then, for any v = (v′1, . . . , v
′
i, . . . , v

′
N)

′ that is an

admissible direction at u in U , there exists an i and an α̃ > 0 such that (x̄u, u+α1ivi) ∈
Õ∞ for any α ∈ [0, α̃].

Proof. By definition of viability, if we pick an arbitrary admissible direction v̄ at u in

U , there exist an i and an ᾱ > 0 such that u + α1iv̄i ∈ U for α ∈ [0, ᾱ]. Since u ∈ U ,

then (x̄u, u) ∈ Õ∞. From the previous lemma, it follows that there exists a ¯̄α > 0 such

that (x̄u, u + α1iv̄i/||v̄i||) ∈ O∞ for α ∈ [0, ¯̄α]. If we pick α̃ = min(ᾱ, ¯̄α/||v̄i||), we have

that (x̄u, u + α1iv̄i) ∈ O∞ and u + α1iv̄i ∈ U for α < α̃. Merging these two conditions

it follows that (x̄u, u + α1iv̄i) ∈ Õ∞ for α < α̃. Since v̄ is arbitrary, this concludes the

proof.

According to the previous lemma, viability in U implies a similar property in the

MOAS. For the convergence result, the following Lemma proved in [133] will be useful.

Lemma 5.4. Each point belonging to U is viable in U if and only if each point belonging

to ∂U is viable in U , where ∂U is the frontier of U .

It follows that, to check if the points of set U are viable, it is enough to check if the

points of the frontier of U are viable (in U).

We now make the following assumption.

Assumption 5.1. The following conditions hold:

1. Actuators are selected according to a modified round-robin protocol, namely C(α) =∑N
i=1 a

U
i (t)αi
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2. Each point belonging to ∂U is viable in U

3. P[∩k>t{νi(k) = 0}] = 0 for any t > 0 and P[∩k>0{θi(tk) = 0}] = 0 for any infinite

sequence {tk}+∞
k=0 with tk+1 > tk

We are now ready to provide the convergence theorem.

Proposition 5.3. Assume that (x(0), u(0)) ∈ Õ∞, and r(t) = r for t ≥ 0. Then,

under Assumption 5.1, u(t) reaches a Pareto-optimal point u∗ and x(t) converges to

(I − A)−1Bu∗.

Proof. For easy of notation, we omit the weight of the norm. If αi(t) = 0, then ||ri −
ui(t)||2 = ||ri − ui(t − 1)||2. Consider now αi(t) = 1. It requires that ûi(t − 1,Λ) =

ui(t − 1) for any Λ. As shown in Proposition 5.1, ui(t − 1) is an admissible solution of

the optimization problem, it follows that

||ri − vi(t)||2 ≤ ||ri − ui(t− 1)||2.

Moreover

||ri − ui(t)||2 = θi(t)||ri − vi(t)||2 + (1− θi(t))||ri − ui(t− 1)||2

≤ θi(t)||ri − ui(t− 1)||2 + (1− θi(t))||ri − ui(t− 1)||2

= ||ri − ui(t− 1)||2.

We have that the sequence ||ri−ui(t)||2 is monotonically not-increasing and lower-bounded

by 0, so it converges. With standard argument we can show that ui(t) converges to a

point ui. Let u = (u′1, . . . , u
′
N)

′ and u(t) converges to u. It follows that x(t) converges to

x̄u.

Consider the sequence tk defined as follows: t0 = 0 and tk such that αi(t) = 0 for

tk−1 < t < tk and αi(tk) = 1. It correspond to the sequence where a new input for

actuator i is computed. Under the modified round-robin algorithm (Assumption 5.1.1)

and the hypothesis on the links from the actuators to the control unit (Assumption 5.1.3),

we have that tk is defined for any k > 0, so we can take the limit. By contradiction,

assume that vi(tk) is not converging to ui. Equivalently, there exists a δ > 0 and a

sequence {τk}+∞
k=0 such that ||vi(τk)−ui|| > δ. Now, pick ϵ = δ/2. Since ui(t) is converging

to ui, there exists a tϵ such that ||ui(t)− ui|| < ϵ for any t > tϵ. By the hypothesis on the

links from the control unit to the actuator (Assumption 5.1.3), with probability 1, there

exists a τ > tϵ belonging to the sequence {τk} such that θi(τ) = 1. By construction,

vi(τ) = ui(τ), that implies ||ui(τ)− ui|| > ϵ, reaching an absurd.

By definition, û+i (t) is either equal to vi(t−aUi (t)) or ui(t), while û−i (t) is either equal to
ui(t−aUi (t)−1) or ui(t). From the convergence of ui(t) and vi(t), we have that û

+
i (t) and
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û−i (t) converge to ui, and the same also for ûi(t,Λ) for any Λ. By construction, x̂(t,Λ)

converge to x̄u for any Λ.

Similarly to Step 1 in the proof of Proposition 3.3, it can be proved that for any

(x̄u, u) ∈ Õ∞ then there exists a δ > 0 such that if x ∈ Bδ(x̄u) then (x, u) ∈ Õ∞. It

means that vi(t) = ui for some t, and it follows that û(t,Λ) = u from a certain t onward.

Suppose by contradiction that u ∈ S is not Pareto-optimal, namely there exists a

vector v = (v′1, . . . , v
′
N)

′ ∈ Rm, vi ∈ Rmi such that u+ v ∈ S and

||uj + 1jvj − rj||Qj
≤ ||uj − rj||Qj

for any j ∈ {1, . . . , N}
||ui + 1ivi − ri||Qi

< ||ui − ri||Qi
for at least a j ∈ {1, . . . , N}

Consider now the convex combination α(uj+1jvj)+(1−α)uj. By convexity of the norm

we have

||α(uj + 1jvj) + (1− α)uj − r||Qj
< α||uj + 1jvj − r||Qj

+ (1− α)||uj − r||Qj

for any α ∈ (0, 1) and any j. By subtracting at both sides ||uj − r||Qj
we get

||α(uj + 1jvj) + (1− α)uj − r||Qj
− ||uj − r||Qj

< α(||uj + 1jvj − r||Qj
− ||uj − r||Qj

)

The right hand side is ≤ 0 by the choice of v, so

||α(uj + 1jvj) + (1− α)uj − r||Qj
− ||uj − r||Qj

< 0

for any α ∈ (0, 1) and any j. From Assumption 5.1.2 and Lemma 5.4, u is viable. By

Lemma 5.3, there exist an i and an α̃ > 0 such that (x̄u, u+ α1ivi) ∈ Õ∞ for α ∈ [0, α̃].

According to the previous inequality, this violates the optimality of the current applied

input, reaching an absurd.

The previous Proposition guarantees that the system converges to the desired set-point

under very mild hypotheses.

Assumption 5.1.1 is needed to exclude the pathological cases where actuators with no

admissible direction are always selected instead of the actuator that makes the current

point viable. Indeed, more sophisticated costs in the scheduling problem, possibly state-

dependent, can be considered to improve the performances. For instance, we may take

C(α) =
∑N

i=1 αi||ri − ui(t)||. In that case, Assumption 5.1.1 can be relaxed but it is

still necessary to avoid that the actuators with an admissible improvement are always

excluded. A possible solution is to temporarily exclude an actuator from the set of

eligible actuators if its previous optimal input was equal to the applied input, namely

v(t− aUi (t)) = u(t− aUi (t)− 1). Also, stochastic schedulers can be considered.

Assumption 5.1.2 is required to avoid the system to be stuck in a non (Pareto) optimal
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point. Since we consider a centralized approach, it is always possible to check if the overall

constraints satisfy the conditions. Note that it is enough to guarantee the viability of the

points of the frontier of U , since it implies the viability of any point of U . The work [133]

provides a useful procedure to check if all the points of ∂U are viable. Even more, they

show that there exists an inner approximation U ′ arbitrarily close to U whose points are

viable. Intuitively, the procedure consists in cutting the vertices of U that are not viable.

This idea is graphically shown in Figure 5.4

Assumption 5.1.3 outlines the mild requirements on the communication network. In

particular, it ensures that blackouts of infinite length are excluded for any link. Note that

the assumption on the arrival processes θi(t) is slightly more restrictive than the condition

on νi(t). On one hand, the condition on νi(t) excludes the existence of infinite sequences

of consecutive packet losses from any t onward. On the other, the condition on θi(t)

excludes the existence of infinite sequences of packet losses, also not consecutive. This is

required because we do not transmit a new input vi(t) at any t but only when αi(t) = 1

and, since the sequence of transmission instants is not known in advance but depends on

the sequence νi(t) and on the cost C(α), we require the condition to hold for any possible

sequence of transmissions. Note that no assumption on the arrival processes γi(t) are

made because the feedback needed by the control algorithm is given by the information

transmitted by the actuators. However, the communications from the sensors are essential

to improve the performances of the system in the case with disturbances. In that case,

it also plays an important role in the convergence theorem, since long blackouts on the

link from the sensors to the control unit reduce the set of admissible inputs as shown in

the single-agent problem (see section 3.3).

5.7 Simulations: assessment of the proposed strategy

In this section, we assess the performances of the proposed centralized strategy on a

multi-agent systems. For illustrative purposes, we provide also the typical results that

can be achieved using implicit communications and slow wireless communications.

We consider a cooperative load transportation task implemented using two Segway-

like robots. A pictorial representation of the setup is reported in Figure 5.5. The two

robots are facing each other and they hold the two ends of a rope. Attached to the

rope, at its mid point, there is a plate used to carry a small load. The objective is

to transport the load to a desired position while preventing the plate from touching the

floor and the rope from being completely tight. These constraints can be easily formalized

through a minimum and a maximum distance between the two robots. Even if the load

transportation using two segways is not particularly efficient, it is an interesting case

of study because it includes both coupled constraints (on the distance between the two

agents) and decoupled constraints (on the tilt angle and on the voltage input).
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Figure 5.5: Representation of the considered setup (side view).

At this stage, we consider that the load is light so that the force of the rope on the two

agents can be neglected. The dynamics are therefore decoupled and the overall model

can be directly derived from the model of the segway

Ama =

[
A 0

0 A

]
Bma =

[
B 0

0 B

]

where A and B are the closed-loop system matrices introduced in Appendix A.2 with

sampling period T = 0.01 s. We require that the tilt angles are within the interval

[−0.1 rad, 0.1 rad], the control inputs are in [−11 V, 11 V] and the distance between the

agents (simple derived from the states of the two agents) is in [0.40 m, 0.60 m]. Matrices

C and D are derived accordingly.

The arrival processes θi(t), γi(t), νi(t) are modeled as independent and identically dis-

tributed Bernoulli random variables with mean equal to 0.5. The objective is to transport

the load 1 m ahead, that corresponds to a move of both the segways 1 m ahead.

The results are depicted in Figure 5.6. In the top panel, we can see that both the

agents reach the desired reference, from which we can deduce that the load reaches the

desired position. The settling time is approximately of 3.5 s. If we look at the center

panel and at the bottom panel, we can see that constraints are always satisfied despite

the packet loss. Interestingly, we see that Agent 1 is slowing down in the period [1 s, 2 s],

probably due to a blackout on the links with the control unit. Indeed, Agent 2 gets closer,

but the constraint on the minimum distance is always satisfied.

We now compare the proposed algorithm to a solution with slow communications. In

particular, we consider a centralized standard RG with sampling period T = 0.1 s and we

assume that it is not affected by packet loss, since wireless networks are usually enough

reliable at this communication rate. In the case without disturbances, the response is ap-

proximately identical to the proposed algorithm. However, in the case with disturbances

(set as in Appendix A.2), the solution with slow communications is more conservative

because the disturbance set is larger due to the longer sampling period. Figure 5.7 re-

ports the position of Agent 1 under the proposed algorithm with good channel conditions

(loss probability equal to 0.1), with bad channel conditions (loss probability equal to 0.5),

and under the alternative solution with ideal channel (loss probability equal to 0). The

conservativeness introduced due to the disturbance produces an evident degradation of
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Figure 5.6: System response with simulated channels. Constraints on the tilt angles and
on the distance between the two Segways are satisfied.
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Figure 5.7: System response with fast communications (black lines) and slow communi-
cation (blue line). To increase the transmission rate is beneficial if the resulting packet
losses are addressed.
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Figure 5.8: System response with implicit communications. It is not possible to enforce
the constraints with simple leader-follower strategies.
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the settling time. Note that the solution devised in this chapter is not conceived for the

case with disturbances. However, if dynamics are decoupled, the proposed algorithm can

be easily generalized using a suitable MOAS with packet loss similar to section 3.3.

To underline the benefits of the proposed algorithm, we simulate the system evolution

with a solution based on implicit communication. In particular, we assume that Agent 1,

playing the role of the leader, is provided with an ideal trajectory that has to follow inde-

pendently of Agent 2. Conversely, Agent 2, playing the role of the follower, is equipped

with an ideal sensing apparatus that is able to retrieve the position of Agent 1. Then, it

derives the desired position reference through the simple local law u2(t) = K(d(t) − d∗)

where d(t) is the distance from the Agent 1, d∗ = 0.5 m is the desired distance, and K

is a suitable gain. More sophisticated constrained control algorithms like MPC cannot

be used since they cannot be implemented on-board. This control law is commonly used

in the literature of formation control. We set the gain K with a trial-and-error proce-

dure in order to enforce constraints. Surprisingly, we discover that there does not exist

a gain K such that the constraints are satisfied. In fact, if an higher K is chosen, the

response is fast enough to guarantee that the maximum distance is never violated, but

the tilt angle increases above the limit. Conversely, if a smaller K is chosen, the response

is slow enough to keep the tilt angle inside the boundary but the maximum distance is

not satisfied. The best evolution possible is achieved with K = 0.25 and it is reported

in Figure 5.8. In particular, we can see that distance between the two agents reaches

a maximum of 0.65 m. In that circumstances, the rope is completely tight, the force

of the rope on the two agents is no more negligible, and each agent affects the other.

The overall system evolution will not meet the desired specifics in terms of smoothness

and catastrophic events may happen, e.g. the breaking of the rope and of the load. In-

cluding disturbances in the dynamics, noise and delays in the measurement, or stricter

constraints, the performances are expected to get worse.

Due to the asynchronous approach, the scalability of the proposed solution is one of

the major concerns. In fact, with respect to the parallel approach where the input of each

actuator is updated at each sampling instant, in the proposed asynchronous approach,

the input of an actuator is updated, on average, once every NA sampling instant. In

general, we expect the performance to deteriorate increasing the number of agents. To

understand how much, we set up a simulation test based on the system introduced above

but considering a line of N segway robots. More specifically, each Segway holds the two

ends of two different ropes, each hanging a load. The other ends of the two ropes are

held by the proceeding and the following robot in the line. This does not happen for the

first and the last robot of the line, which hold only a rope.

The dynamics of the system are a simple generalization of the model introduced above

for the case of two Segways, as well as the constraints on the tilt angles, the relative

distances, and the control inputs. The arrival processes are modeled as independent and
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Figure 5.9: System response with different number of agents in good channel conditions.
The performances deteriorate by increasing the number of agents. For the problem at
hand, the proposed solution is effective up to 5 agents, while for more agents it needs to
be improved, possibly applying the graph colorability theory.

identically distributed Bernoulli random variables with mean equal to 0.9. The objective

is to transport every load 1 m ahead, that corresponds to a move of all the Segways 1 m

ahead.

The position of a representative agent for the different cases is reported in Figure 5.9.

We can see that in the case of N = 4 agents the response is only slightly slower than the

case with N = 2 agents, with a settling time 0.2 s longer (5.5% worse). Performances

deteriorate more clearly for N = 6 and N = 8 agents, with a settling time 0.6 s longer

(16.5% worse) and 1.1 s longer (33% worse), respectively. On one hand, these results

confirm that the proposed solution is effective for systems with some agents, roughly up

to 5 for the considered system. On the other hand, the proposed solution achieves worse

performances by increasing the number of agents and it is not suitable for the cases with

many actuators and sensors.

There are several ways to improve the performances obtained for large N . First,

the sampling period in the asynchronous approach does not need to be equal to the

sampling period chosen in the parallel approach, but it can be taken N times smaller

if this is allowed by the computational and communication resources. In this way, the

performances are not limited by the delay of N sampling periods before updating the

applied input. Moreover, the inner control loop, usually implemented by each agent,

can run at an arbitrary higher rate, improving the response of the system. Finally,

the proposed solution can be improved by exploiting the idea of [134] and the graph

colorability theory. Consider, for instance, the case with N = 3 Segways. The first and

the last robot do not directly affect each other, since dynamics are decoupled and no

constraint involves the state of both. It follows that the input of the first robot can be

evaluated regardless of the input of the last, and the other way around, and thus both the
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inputs can be reliably updated at the same sampling instant. For the considered system,

this allows to group the Segways in two sets and to alternately update the inputs of a

set of agents and of the other. This solution drastically reduces the period between two

following updates for the same agent and can lead to better performances.

Even if these improvements are possible, computational and communication resources

are an important bottleneck. More sensors and more actuators require more communica-

tions, and more computations as well. Smart transmission scheduling schemes are needed

in order to provide the required information without redundancy to the control unit. At

the same way, it is important to reduce the computational complexity of the optimization

problem.

It is important to stress that the proposed solution focus on the problem of cooperative

robotics and so, in many relevant cases, the number of agents is small. The proposed

centralized asynchronous solution with wireless communications is tailored to achieve

coordination and safety in this kind of application.

5.8 Conclusion

In this chapter, we have devised a centralized solution to the problem of control of multi-

agent systems with packet loss and constraints. We have obtained it by merging the

RG over wireless proposed for the single-agent case in chapter 3 and the distributed

RG devised in [133], with suitable improvements. In the future, following the same

reasoning, we can extend the MPC for Tracking over wireless proposed in chapter 4 to

the multi-agent case by resorting known results on distributed MPC [137][138]. Moreover,

a distributed version of the proposed solution can be devised with simple modifications.

It requires to adopt a fixed actuator scheduling policy, like the standard round-robin

protocol, and to allow an agent to update its input only if other applied inputs are

known. This solution may introduce additional conservativeness but it can be limited

using the colored approach by [134]. Finally, to enhance the applicability of the proposed

algorithm for mobile manipulation, we can study how to add on the top of the proposed

RG a centralized motion planner available in the literature. The motion planner can

provide to the proposed RG a possible trajectory, and the RG is in charge of enforcing

the constraints by opportunely acting on each agent and by taking into account the

possible communication losses.
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6
Sensor Selection and Power Allocation for

Remote Estimation over Wireless

In the previous chapter we let the problem of transmission scheduling open. However,

how the sensors and the actuators access to the shared network can have a dramatic

impact on the performances of the system. For instance, if two agents periodically try

to communicate and they are almost synchronized, one of the two will always find the

network busy. Also, the hidden terminal problem can arise with harmful effects on the

control performances. Transmission scheduling at the control layer is the most settled

method in the literature to mitigate these problems. In particular, a significant num-

ber of works have focused on the well-known sensor scheduling problem: for each time

slot, a set of sensors is selected to transmit in order to optimize the remote estimation

performances while avoiding collisions or undesirable delays and minimizing transmission

power consumption.

Since the joint scheduling of the acknowledgments from the actuators and of the mea-

surements from the sensors is particularly challenging, we start from the simpler problem

of sensor selection. Indeed, the interest in this problem goes beyond multi-agent systems.

It is reflected in various applications, especially those related to the Internet of Things,

like smart homes, smart cities, wearable devices, advanced healthcare, and it is worth

studying by itself. For this reason, we consider a more general setup than in chapter 5

with unstable systems, partial observations, and Gaussian disturbances.

Usually, the access to the wireless medium is implicitly regulated at the application

layer, so the MAC protocol can be kept as is (e.g. CSMA/CA with Wi-Fi). Conversely,

in this chapter, we consider a cross-layer design where not only transmission instants

but also the transmission powers used at the Physical layer are set according to the

control performances. Transmission power control on a packet basis is in fact allowed

by the most recent wireless standards (e.g. see the case of IEEE 802.11ax [139] and

5G [140]) and supported by many off-the-shelf devices (a practical implementation on

Wi-Fi has been devised by [141]). Moreover, differently from most existing solutions, we
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admit multiple simultaneous transmissions to exploit the time-frequency resources to the

maximum. This setup is particularly appealing for the problem considered in chapter 5,

where we would like to retrieve as much information as possible from the system in

order to reduce the conservativeness of the constrained control algorithm. The capability

of demodulating multiple signals in the presence of mutual interference, also known as

multi-user detection, is well-known in the field of broadband wireless communications,

see [142]. Multi-packet reception is a particular type of multi-user detection technique

where the receiver is equipped to decode multiple simultaneous transmissions. This can

be achieved in many ways, such as at the signal modulation level (CDMA), by multiple

antennas at transmitter and receiver (MIMO), or by using collision resolution methods

based on signal processing as discussed in [143]. These techniques have proven to be

very appealing for the next-generation wireless networks. Applications to Wi-Fi have

been studied e.g. in [144], while 5G includes Non-Orthogonal Multiple Access (NOMA),

which enables multi-packet reception using Successive Interference Cancellation (SIC).

See [145][146] for a comprehensive overview. In the automation field, ZigBee has been

adapted to include this feature [147].

In this chapter, we consider the optimal power allocation for remote estimation with

multi-packet reception capabilities. The problem is more general than solutions already

available in the literature. In fact, most of the existing works have considered the problem

of sensor selection: for example, optimal periodic policies have been studied in [148][149],

general optimal (infinite-horizon) policies in [150][151], decentralized event-based trigger

solution in [152][153], and the case with packet losses is considered in [154]. Transmission

power allocation for control applications has been explicitly considered in a few works.

The case with a single sensor, thus without mutual interference, has been studied in

[153][155] with only two (non-null) power levels and in [156] with a continuous bounded

range of powers. More recently, also the problem of transmission power allocation with

multiple possibly interfering nodes has been analyzed. The work [157] has studied the

properties of the one-step-ahead optimal policy for remote estimation when the trans-

mission power may take continuous unbounded values. Power allocation with multiple

receivers has been recently studied in [158], where multiple systems communicate at each

time instant to a dedicated remote estimator. Powers are then allocated in order to match

minimum arrival probabilities for each system so that a minimum estimation quality is

enforced.

The aim of this chapter is to introduce a tool to accommodate future sensor networks

and control systems that will rely on next-generation wireless networks supporting power

selection at the transmitter and multi-packet reception at the receiver. We introduce

a very general system model including multiple sensors, multiple transmission power

levels, a realistic fading channel model with mutual interference and arrival probabilities

based on received SINR, and two different receiver design schemes, namely with and
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Figure 6.1: Setup. Sensors can choose among a finite set of possible tranmission powers.
Arrival processes γ1, . . . , γN are not independent but depend on the transmission powers
of every sensor. We assume that the transmission power is computed at the remote
estimator and transmitted to the sensors without errors.

without SIC. Under the considered framework we derive the optimal power allocation

strategy by solving an (infinite or finite-horizon) optimization problem that accounts for

the average estimation quality and penalizes the total average transmission power. We

theoretically characterize the existence conditions of the infinite-horizon optimal policy

and the structural properties of the one-step-ahead policy, with particular attention to

multi-agent systems. By simulations on realistic systems, we show the improvements in

terms of estimation quality given by SIC, that halves the error covariance with respect

to simpler coding-decoding algorithms in the case of two segway-like robots.

6.1 Problem formulation

We consider a system equipped with a set of N spatially distributed sensors and we use a

wireless network to connect the sensors to a remote estimator, see Figure 6.1. We assume

that the sensors are provided with an advanced transmitter whose transmission power can

be selected on a packet basis. Moreover, we assume that the remote unit is provided with

an advanced receiver that is able to decode multiple incoming signals. We are interested

into the problem of designing the law that maps the current error covariance to the next

transmission powers. In this preliminary work, we assume that the transmission power

P tx(t) is computed at the remote estimator and transmitted to the sensors without errors.

The underlying assumption is that the remote estimator can use high transmission powers

without energy concerns (as in the case where it is connected to the main power supply)

and that the optimal transmission power can be encoded using few bits (as in the case

where the number of sensors and powers is relatively small) so that high redundancy can

be used in the transmission without wasting bandwidth. In the following we provide a

complete description of the model considered.
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6.1.1 System model

We consider a discrete-time linear system

x(t+ 1) = Ax(t) + w(t) (6.1)

where x(t) ∈ Rn is the system state and w(t) ∈ Rn is the process noise. We consider a

set of N sensors. The measurement process is modeled as

yi(t) = Cix(t) + vi(t) (6.2)

where yi(t) ∈ Rpi is the measurement of the i-th sensor and vi(t) ∈ Rpi is the measurement

noise. We assume that process and measurement noise are independent and identically

distributed random vectors with Gaussian distribution, namely w(t) ∼ N (0, Q) for t ≥ 0,

vi(t) ∼ N (0, Ri) for t ≥ 0, w(t) is independent of w(k) for t ̸= k, vi(t) is independent

of vi(k) for t ̸= k, vi(t) is independent of vj(k) for i ̸= j and for t, k ≥ 0, and w(t) is

independent of vi(k) for any i and for t, k ≥ 0. We also assume that the initial state x(0)

is a Gaussian random vector independent of the process and measurement noise, namely

x(0) ∼ N (x̄(0), P (0)) and x(0) is independent of w(t) and vi(t) for any i and for t ≥ 0.

At time instant t, the i-th sensor transmits a packet containing yi(t) to a remote

estimator over a wireless network. We introduce the arrival process γi(t) ∈ {0, 1} defined

as

γi(t) =

1 if yi(t) is available to the estimator

0 otherwise
(6.3)

Complete characterization of the arrival process γi(t) will be provided in the following

subsections.

In this chapter, we consider the optimal estimator. To this end, we define the infor-

mation available to the control unit as

I(t) =
N⋃
i=1

Ii(t), Ii(t) =
{
γi(0)yi(0), . . . , γi(k − 1)yi(k − 1)

}
(6.4)

where, with a little abuse of notation, if γi(k) = 0 then γi(k)yi(k) = ∅. Now we define

x̂(t|t− 1) = E[x(t) | I(t)] (6.5)

P (t|t− 1) = E[(x(t)− x̂(t|t− 1))(x(t)− x̂(t|t− 1))′ | I(t)]. (6.6)

According to [159], x̂(t|t−1) is the optimal estimator given I(t), and the matrix P (t|t−1)

denotes the corresponding estimation error covariance matrix. In the considered setting

with intermittent partial observations, under the assumption that γi(t) is independent of
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x(k), the optimal estimator has been obtained in [47]. In order to more easily manage the

update of the error covariance matrix, we arrange the results of [47] with the information

form of the optimal estimator given by [160], obtaining

P (t|t) =

(
P−1(t|t− 1) +

N∑
i=1

γi(t)C
′
iR

−1
i Ci

)−1

(6.7)

P (t+ 1|t) = A(t|t)A′ +Q (6.8)

initialized at P (0|0) = P (0). Above equations can be obtained using the same reasoning

of [38] and applying the Matrix Inversion Lemma.

6.1.2 Channel model

The wireless medium is modeled as a fading channel with Additive White Gaussian Noise

(AWGN) whose average power at the remote estimator is σ2. The transmission power

P tx
i (t) used by the i-th sensor to transmit yi(t) is selected from a finite set Pi

Pi =
{
0, P tx

i,1, P
tx
i,2, . . . , P

tx
i,max

}
. (6.9)

Let si denote the slow fading component of the channel power gain (usually dependent

on path loss etc.) from the i-th sensor to the remote estimator, while ri(t) is the fast

fading component of the same channel during the t-th sampling period. We assume that

slow fading components are constant, while we assume that fast fading components are

independent and identically distributed random variables with Exponential distribution

and unit mean, namely ri(t) ∼ Exp(1), ri(t) is independent of ri(k) for t ̸= k, and ri(t)

is independent of rj(k) for i ̸= j and for t, k ≥ 0. It follows that the received power (at

the remote estimator) P rc
i (t) from the i-th sensor is

P rc
i (t) = siri(t)P

tx
i (t). (6.10)

It follows that the received power P rc
i (t) is an exponential random variable with mean

siP
tx
i (t), i.e. P rc

i (t) ∼ Exp(λi(t)) with λi(t) = (siP
tx
i (t))−1. Due to the independence of

fast fading gains ri(t), received powers are temporally and spatially independent, namely

P rc
i (t) is independent of P rc

i (k) for t ̸= k and P rc
i (t) is independent of P rc

j (k) for i ̸= j

and for t, k ≥ 0. This model, commonly referred to as Rayleigh fading, is related to

the case when the number of reflected paths is large, such as in a factory or in an

urban environment with many scatterers. In that case, the received electric field can be

decomposed into two orthogonal components: each one is given by the sum of a large

number of (zero-mean) terms and so it can be approximated by a Gaussian random

variable. Therefore, the channel power gain is the sum of the squares of two Gaussian

105



random variables, resulting in an exponential distribution (see e.g. [161, Ch. 3.2] and

[162, Ch. 14.1]). In the following we denote P rc(t) = (P rc
1 (t), P rc

2 (t), . . . , P rc
N (t)) and

P tx(t) = (P tx
1 (t), P tx

2 (t), . . . , P tx
N (t)).

6.1.3 Receiver model

In contrast with most of the literature on transmission scheduling for remote estimation,

we assume that the receiver has multi-packet reception capabilities, namely, it is able to

decode multiple incoming signals. Successful reception of a packet requires that the signal

carrying the information is strong enough with respect to the amount of interference and

noise that disturb the transmission. In this view, following e.g. [163], the arrival process

γi(t) is modelled as

γi(t) = fi(P
rc(t)) =

1 if SINRi(P
rc(t)) > α

0 otherwise
(6.11)

where SINRi(P
rc(t)) is the Signal-to-Interference-and-Noise Ratio (at the decoding in-

stant) corresponding to the packet containing yi(t), while α > 0 is the reception threshold.

The reception threshold depends on communication parameters like the modulation, the

coding scheme, and the symbol rate. Since the received powers are independent across

time slots, γi(t) are independent across time slots, too. However γi(t), γj(t) for j ̸= i may

be dependent on each other due to interference within a given time slot. In this chapter,

we consider two different receiver design schemes, implementing two different reception

techniques, that result in two different expressions for the SINR.

The first receiver, referred to as simple receiver, decodes each signal independently so

that the SINR is

SINRi(P
rc(t)) =

P rc
i (t)∑

j ̸=i

P rc
j (t) + σ2

. (6.12)

According to this definition, the transmission from sensor i is affected by the interference

of the transmissions from each other sensor j ̸= i [161, Ch. 6.1.1]. In typical information

theoretic fashion, the received interference power is simply added to the noise power.

The underlying assumption is that interference is statistically independent of combined

channel and receiver noise. This is motivated by the use of random Gaussian codebooks

at the transmitters to achieve the channel capacity for various types of fading channels,

such as multiple-access, broadcast, and interference channels [164]. In this case we need

to have α ∈ (0, 1) to enable multi-packet reception.

The second examined receiver differs from the first for the implementation of Successive
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Interference Cancellation (SIC) algorithm. In this case, the sensor with the highest

received power is decoded first and the reconstructed signal is subtracted out from the

total received signal so that the second strongest signal can be decoded next when the

strongest interference is no more present. In this way, after the first successful reception,

other packets are decoded under an improved SINR and the probability of simultaneous

received packets is definitely increased. According to a formal information theoretic

treatment [165], sensors are usually relabeled by sorting the received powers in descending

order so that the interference power is due only to subsequent sensors in the new order.

We equivalently define the set Ji(t) containing the indices of the sensors whose received

powers are higher than the received power from i-th sensor

Ji(t) =
{
j : P rc

j (t) > P rc
i (t)

}
. (6.13)

Then, the SINR for the i-th sensor in this case is given by

SINRi(P
rc(t)) =



P rc
i (t)∑

j /∈Ji(t)
j ̸=i

P rc
j (t) + σ2

if SINRj(P
rc(t)) > α for any j ∈ Ji(t)

P rc
i (t)∑

j ̸=i

P rc
j (t) + σ2

otherwise.

(6.14)

According to this definition, the transmission from sensor i is affected by the interference

of the transmissions from each other sensor not decoded yet, possibly all the sensors j ̸= i

if packets with higher received power have not been decoded [165]. Note that, even if

α ≥ 1 multi-packet reception is possible with SIC.

6.2 Channel characterization

In this section we provide the probabilities of the arrival process as a function of the

transmission powers. To this end, if P tx
i > 0 then λi = (P tx

i si)
−1 is well-defined and the

joint distribution of received powers given the transmitted ones is

p(P rc
1 , . . . , P

rc
N |P tx

1 , . . . , P
tx
N ) =

N∏
i=1

λie
−λiP

rc
i (6.15)

since channel gains are independent. Adapted to the σ-algebra of the random variable

P rc, we can define the subset R(γ) for γ = (γ1, . . . , γN) as

R(γ) = {P rc : fi(P
rc) = γi i = 1, . . . , N} (6.16)
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Figure 6.2: Possible received powers and corresponding outcome of the arrival process.
Left panel: without SIC. Right panel: with SIC.

that is the subset of the possible received powers indicating whether packets have arrived

or not as defined by γ. Explicit expressions for sets R(γ) can be retrieved by combining

(6.11) with (6.12) or (6.14). Note that they are different in general for the case with

and without SIC, see for example the case with two sensors reported in Figure 6.2. A

remarkable exception is R(0, . . . , 0), namely where no packets are correctly received, since,

if the packet with the highest received power is not decoded, no advantages are given by

SIC. Finally we can obtain the probability P (γ|P tx = u) of γ given the transmitted power

P tx=u as the N -dimensional integral

P (γ |P tx = u) =

∫ ∫
· · ·
∫
R(γ)

p(P rc |P tx = u)dP rc. (6.17)

The arrival probabilities can be computed either analytically or numerically. In the

case where P tx
i = 0, λi is not defined and the joint distribution needs to be modified

accordingly in order to consider that P rc
i = 0 with probability 1. The expression is

omitted for sake of readability.

In the following we highlight the dependence of the arrival random variable γi on the

transmitted power P tx = u as

γi(u) = fi(siriu) (6.18)

according to (6.10) and (6.11), and its expected value

pi(u) = P (γi = 1 |P tx = u) = E[γi(u)]. (6.19)

It is easy to show that the probability pi(u) of receiving a packet from sensor i is mono-

tonically increasing with respect to the power P tx
i allocated to sensor i and monotonically

decreasing with respect to P tx
j for j ̸= i.

We conclude this section providing the exact expressions for the case with 2 sensors, as

an example. We denote by pij(u) the probability that γ1 = i and γ2 = j, with i, j ∈ {0, 1},
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under the allocated power u = ([u]1, [u]2). More specifically,

p11(u) = P(γ1 = 1, γ2 = 1 |P tx
1 =[u]1, P

tx
2 =[u]2)

p10(u) = P(γ1 = 1, γ2 = 0 |P tx
1 =[u]1, P

tx
2 =[u]2)

p01(u) = P(γ1 = 0, γ2 = 1 |P tx
1 =[u]1, P

tx
2 =[u]2)

p00(u) = P(γ1 = 0, γ2 = 0 |P tx
1 =[u]1, P

tx
2 =[u]2)

If P tx
1 > 0 and P tx

2 > 0, under the assumption that α ∈ (0, 1), we have

p11 =

(
λ1

λ1 + αλ2
+

λ2
λ2 + αλ1

− 1

)
e−(λ1+λ2)

α
1−α

σ2

(6.20)

p10 =
λ2

λ2 + αλ1
e−αλ1σ2 − p11 (6.21)

p01 =
λ1

λ1 + αλ2
e−αλ2σ2 − p11 (6.22)

p00 = 1− (p11 + p10)− (p11 + p01) + p11

=1− λ2
λ2 + αλ1

e−αλ1σ2 − λ1
λ1 + αλ2

e−αλ2σ2

+

(
λ1

λ1 + αλ2
+

λ2
λ2 + αλ1

− 1

)
e−(λ1+λ2)

α
1−α

σ2

(6.23)

If P tx
1 > 0 and P tx

2 = 0 we have

p11 = 0 p10 = e−αλ1σ2

p01 = 0 p00 = 1− e−αλ1σ2

(6.24)

while if P tx
1 = 0 and P tx

2 > 0 we have

p11 = 0 p10 = 0 p01 = e−αλ2σ2

p00 = 1− e−αλ2σ2

. (6.25)

Clearly, if P tx
1 = P tx

2 = 0 then p11 = p10 = p01 = 0, p00 = 1.

When SIC is employed, the corresponding probabilities (denoted by the superscript

SIC) are given by

pSIC11 =

(
λ2

λ2 + αλ1
e−λ1ασ2

+
λ1

λ1 + αλ2
e−λ2ασ2

)
e−(λ1+λ2)ασ2

+

(
1− λ2

λ2 + αλ1
− λ1
λ1 + αλ2

)
e−(λ1+λ2)

α
1−α

σ2

(6.26)

pSIC10 =
λ2

λ2 + αλ1
e−ασ2λ1

(
1− e−ασ2(λ2+αλ1)

)
(6.27)

pSIC01 =
λ1

λ1 + αλ2
e−ασ2λ2

(
1− e−ασ2(λ1+αλ2)

)
(6.28)

pSIC00 = p00. (6.29)
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The cases where at least one transmitted power is null are equivalent to the case without

SIC. As we can see, the expressions are quite involved and it is difficult to obtain general

equations for an arbitrary number of sensors N .

6.3 Optimal power allocation: infinite horizon

We cast the power allocation task as a stochastic control problem. In particular, we define

the state space X as the set of positive definite matrices of dimension n × n, and the

action space U ⊂ RN as the set of possible combination of transmission powers, namely

U =
{
P tx = (P tx

1 , . . . , P
tx
N ) : P tx

i ∈ Pi

}
. (6.30)

An infinite-horizon policy is expressed as

U = {u1, u2, u3 . . . } (6.31)

where ut : X → U is the function mapping the states P (t|t − 1) into the control action

P tx(t) = ut(P (t|t−1)). We are interested in the policy that minimizes the infinite-horizon

discounted cost

J (U, P (0)) = lim
K→∞

E

[
K−1∑
t=0

βkC(P (t+ 1|t), ut+1(P (t+ 1|t)))

∣∣∣∣∣P (0)
]

(6.32)

where β ∈ (0, 1) is the discount factor and C(P, u) is the one-step-ahead cost from state

P with action u. The use of a discount factor is common in infinite-horizon stochastic

control problems to put more emphasis on current cost terms and less importance on

costs incurred in the distant future. The discounted problem is more amenable from the

theoretical point of view since the assumptions for the existence of the stationary optimal

policy are milder than those for the average cost problem. However, the latter can still

be considered for our problem at the price of added technical assumptions.

We choose

C(P, u) = E[Tr(g(P, u))|P, u] + µ̄u (6.33)

where µ̄ = (µ, µ, . . . , µ) is a regularization parameter and the function g(P, u) is the

Riccati-like operator

g(P, u) = A

(
P−1 +

N∑
i=1

γi(u)C
′
iR

−1
i Ci

)−1

A′ +Q. (6.34)

that provides the next error covariance starting from P with arrival process γi(u). The

cost balances the estimation quality, given by the trace of the error covariance, and
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the transmission power consumption of the sensors through the regularization parameter

µ. Minimizing the cost for different values of µ corresponds to minimizing the error

covariance under different energy constraints: a larger µ implies a more stringent energy

budget. Formally the problem is then

U∗ = argmin
U
J (U, P (0)) (6.35)

resembling a discounted infinite-horizon Markov Decision Process (MDP).

In general the problem may not admit a solution. Moreover, even if the solution exists,

the optimal action for a given error covariance may be time-dependent and thus not

tractable for practical implementations. Several results are available in the literature of

optimal control for MDP, providing sufficient conditions for the existence of an optimal

solution that is stationary, namely that does not depend on time. A very strong condition

is to have the one-step-ahead cost C(P, u) bounded, that is not true in our case. A weaker

sufficient condition requires the existence of a positive scalar m > 0 and of a measurable

function w : X → R+ such that

C(P, u) < mw(P ) and
∑
z∈X

w(z)P(z|P, u) < w(P )

for any pair (P, u), P ∈ X , u ∈ U . Roughly speaking, this requires the cost to be

(bounded by a function that is) a contraction in mean for any possible action. The

most general condition to prove is the existence of a policy Ū = (ū1, ū2, . . . ) such that

J(Ū , P (0)) < ∞ for any P (0) ∈ X . See [166] for a full treatment. In the remainder of

this section, based on the last condition, we show that a stationary optimal policy exists

if it is possible to keep the evolution of the expected error covariance bounded.

Let J be a set of indices of sensors. Then consider the output matrix CJ as the

stacked version of the output matrices Ci for i ∈ J . It can be noticed that 2N possible

combinations of sensors can be selected, so essentially we have 2N possible different CJ .

Among all the possible sets, choose a set J such that (A,CJ ) is detectable. Denote by

RJ the corresponding block-diagonal matrix obtained from the matrices Ri for i ∈ J .

Then, for the given set, we can introduce two power allocation policies, characterized,

respectively, by the perfect multi-packet reception probability, defined as

pmp = P(γi = 1, i ∈ J |P tx
i = P tx

i,max, i ∈ J and P tx
j = 0, j /∈ J ) (6.36)

and the worst-channel arrival probability, defined as

pwc = min
i∈J

P(γi = 1 |P tx
i = P tx

i,max and P tx
j = 0, j ̸= i) (6.37)
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Let Λ(A) = 1−1/
∏

ℓ |λuℓ (A)|2 where λuℓ (A) is the ℓ-th unstable eigenvalue of A. Then,

we have the following sufficient stability condition.

Lemma 6.1. Let the set J be such that the pair (A,CJ ) is detectable and let the pair

(A,
√
Q) be reachable. Assume that at least one of the following conditions holds

1. pmp > Λ(A),

2. pwc > Λ(A|J |).

Then, there exists a policy Ū such that ∃MP (0) > 0 for which E[P (t|t − 1)] ≤ MP (0) for

any t ≥ 0.

Proof. We first assume that condition 1 holds. Consider the policy Ū = {ū1, ū2, . . . }
where at each time instant all the sensors belonging to the set J transmit at the maximum

power

[ūt]i =

P tx
i,max if i ∈ J

0 otherwise

where [u]i is the i-th entry of the vector u. Denote by 1J the binary vector whose i-th

entry is equal to 1 if i ∈ J , and 0 otherwise. We can define the operator

ḡ(X) = AXA′ +Q− pmpAXC
′
J (CJXC

′
J +R)−1CJXA

′

and the sequence

P̄t+1 = ḡ(P̄t) from P̄1 = P (1|0)

By induction we can show that E[P (t|t − 1)] ≤ P̄t under the proposed policy. To this

end, assume that E[P (t|t− 1)] ≤ P̄t for an arbitrary t > 0. Then we have

E[P (t+ 1|t)] = E

A(P (t|t− 1)−1 +
∑
i∈J

γiC
′
iR

−1
i Ci

)−1

A′ +Q


= E

A(P (t|t− 1)−1 +
∑
i∈J

C ′
iR

−1
i Ci

)−1

A′

∣∣∣∣∣γ = 1J

 pmp +Q

+ E

A(P (t|t− 1)−1 +
∑
i∈J

γiC
′
iR

−1
i Ci

)−1

A′

∣∣∣∣∣γ ̸= 1J

 (1− pmp)

≤ E

A(P (t|t−1)−1+
∑
i∈J

C ′
iR

−1
i Ci

)−1

A′

pmp+Q+E[AP (t|t−1)A′](1−pmp)

≤ AP̄tA
′ +Q− pmpAP̄tC

′
J (CJ P̄tC

′
J +RJ )

−1CJ P̄tA
′ = P̄t+1

where we use the Matrix Inversion Lemma and the Jensen’s inequality. We can conclude

that E[P (t|t−1)] ≤ P̄t for any t ≥ 0. In addition from [35][38] we know that if pmp > Λ(A)
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there exists a MP (0) such that P̄t ≤MP (0). It follows that E[P (t|t− 1)] ≤MP (0) conclud-

ing the proof.

We now assume that condition 2 holds. Consider the periodic policy Ū = {ū1, ū2, . . . }
where at each time instant a sensor i ∈ J transmits at the maximum power, while

other sensors do not communicate. If we relabel the sensors so that J = {1, 2, . . . , L}, a
possible policy is

[ūt]i =

P tx
i,max if i ∈ J and ∃k ∈ N : t = Lk + i

0 otherwise

where [u]i is the i-th entry of the vector u. For sake of clarity, we prove the lemma for

J = {1, 2, 3, 4} but the general case can be proved analogously. Introduce the following

operators

h(X) = AXA′ +Q

gi(X) = X − piXC
′
i(X + CiRiC

′
i)

−1CiX = (X−1 + piCiR
−1
i Ci)

−1

g̃i(X) = X − pwcXC
′
i(X + CiRiC

′
i)

−1CiX = (X−1 + pwcCiR
−1
i Ci)

−1.

Under the proposed periodic policy we have

E[P (4t+ 4|4t− 3)] ≤ h ◦ g4 ◦ h ◦ g3 ◦ h ◦ g2 ◦ h ◦ g1 (E[P (4t|4t− 1)])

≤ h ◦ g̃4 ◦ h ◦ g̃3 ◦ h ◦ g̃2 ◦ h ◦ g̃1 (E[P (4t|4t− 1)])

≤ h ◦ h ◦ h ◦ h ◦ g̃4 ◦ g̃3 ◦ g̃2 ◦ g̃1 (E[P (4t|4t− 1)])

where the first inequality holds because h◦gi(X) is concave [35], the second holds because

h◦gi(X) is monotonically decreasing w.r.t. pi, and the third holds if Q >
∑

i∈J (C
′
iR

−1
i Ci)

[167], otherwise a similar relation can be obtained with some manipulations.

Consider now the system Ā = A4, Q̄ =
∑3

k=0A
kQ, C̄ = CJ , R̄ = RJ . We can define

the operator

ḡ(X) = AXA′ +Q− pwcAXC
′
J (CJXC

′
J ) +R)−1CJXA

′

and the sequence

P̄t+1 = ḡ(P̄t) from P̄1 = P (1|0)

We have that ḡ(X) = h ◦ h ◦ h ◦ h ◦ g̃4 ◦ g̃3 ◦ g̃2 ◦ g̃1(X) by [11]. Similarly to what done

above, we can prove by induction that E[P (4t|4t − 1)] ≤ P̄t for any t ≥ 0. It is known

from [35][38] that if pwc > Λ(Ā), then ∃MP (0) > 0 such that P̄t ≤ MP (0). It follows that

E[P (t|t− 1)] ≤MP (0) concluding the proof.

113



The previous theorem provides two sufficient but not necessary conditions for the

boundedness of the error covariance, equivalent to the mean-square stability of the esti-

mator. The first one is related to the arrival rate when all the measurements required

for the system to be detectable are simultaneously transmitted. The second one relates

the stability of the remote estimate to the characteristic of the worst channel and to

the under-sampled system, as if the outputs are transmitted in a unique packet every

|J | sampling periods. Note that the set of indices J can be chosen according to an

optimization problem where pmp or pwc can be maximized. Moreover, in line of princi-

ple, the stability condition may be made less stringent by using intermediate solutions,

e.g. coupling 4 sensors in two pairs and so on. It is worth mentioning that condition

(2) is the same for any kind of receiver, while condition (1) is never valid for receivers

without multi-packet reception capabilities. In this sense, there are cases where stability

is guaranteed if multi-packet reception is enabled, while it may not be for a standard

receiver. This improvement is clearly visible with SIC since it enhances the probability of

receiving multiple packet simultaneously, and so also pmp: e.g., for a system with a single

unstable eigenvalue λu(A), J = {1, 2}, P tx
i,max = 1, si = 1, σ2 = 0.1, it can be numerically

derived that condition (2) requires λu(A) < 1.6, whereas condition (1) without SIC is

λu(A) < 1.05, while condition (1) with SIC is λu(A) < 2.6.

We are now ready to state the existence of a (stationary) optimal policy for problem

(6.35). Define the Value function

Vβ(P ) = min
U
J(U, P ) (6.38)

and let X+(P ) denote the finite set of possible error covariances that can be reached in

one step from P

X+(P ) =

z ∈ X : z = A

(
P−1 +

N∑
i=1

γiC
′
iR

−1
i Ci

)−1

A′ +Q, γi ∈ {0, 1}

 (6.39)

Then we have the following result.

Proposition 6.1. Under the hypothesis of Lemma 6.1, there exists an optimal infinite-

horizon policy that is stationary. The optimal action u∗(P ) can be found by solving the

optimality equation

Vβ(P ) = C(P, u∗(P )) + β
∑

z∈X+(P )

Vβ(z)P(z|P, u∗(P )) (6.40)

Proof. To prove the theorem we rely on the results given by [168] for the existence of

an optimal stationary policy in general state space and finite action set. Essentially, the
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existence of the stationary optimal policy requires the Value function to be finite. This

can be proved as follows. By Lemma 6.1 there exists a policy Ū = (ū1, ū2 . . . ) and a

MP (0) such that E[P (t|t− 1)] < MP (0). It follows that

E[C(P (t+ 1|t), ūt+1(P (t+ 1|t)))|P (0) = P ]

≤ E [Tr(AP (t+ 1|t)A′ +Q)|P (0) = P ] + µ̄E [ūt+1(P (t+ 1|t))|P (0) = P ]

≤ Tr(AMPA
′ +Q) + µ̄N =MP

Then

J(Ū , P ) = E

[
∞∑
t=0

βtC(P (t+ 1|t), ūt+1(P (t+ 1|t)))
∣∣∣P (0) = P

]

=
∞∑
t=0

βtE
[
C(P (t+ 1|t), ūt+1(P (t+ 1|t)))

∣∣∣P (0) = P
]

≤
∞∑
t=0

βtMP =
MP

1− β

Finally,

Vβ(P ) = inf
U
J(U, P ) ≤ J(Ū , P ) ≤MP/(1− β)

namely the Value function is finite. Then, the existence of an optimal stationary policy

follows from Theorem 1 in [168]. The optimality equation can be obtained by noting

that only a finite number of values of the error covariance P (t+1|t) can be reached from

P (t|t− 1) in one step.

The previous proposition ensures that the problem admits a feasible solution and allows

us to limit our search in the set of stationary policies. To this end, there are many

well-known algorithms based on dynamic programming tools such as the Value Iteration

algorithm and the Relative Value Iteration algorithm [169].

6.4 Optimal power allocation: finite horizon

Similarly to what done for the infinite-horizon case, we can formulate also the finite-

horizon power allocation problem. Indeed, depending on the application, the finite-

horizon optimal policy may bring practical advantages, for example, when the system

can be observed only for a fixed amount of time known in advance. For an arbitrary

horizon of length K, the problem is to find a policy U

U = {u1, u2, u3, . . . , uK} (6.41)
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that minimizes the finite-horizon cost

J (U, P (0)) =
K−1∑
t=0

βtC(P (t|t− 1), ut(P (t|t− 1))) (6.42)

with β ∈ (0, 1]. In that case, the existence of the optimal policy is straightforward since

stability is not required.

We conclude the section with a surprising result for the optimal policy with one-step-

ahead horizon.

Proposition 6.2. Consider K = 1 and Pi = {0, P tx
i,max}. Assume that the sensors sample

distinct outputs, namely such that CiC
′
j = 0 for any i ̸= j. Then, there always exists an

error covariance matrix P̄ where the optimal action u∗(P̄ ) is such that P tx
i = P tx

i,max for

any i.

Proof. For sake of simplicity we prove the theorem for the easiest case with two sensors.

Preliminarily let us denote q1 = p10(1, 0) and q2 = p01(0, 1), while for simplicity we

denote p11 = p11(1, 1), p10 = p10(1, 1), p01 = p01(1, 1), and p00 = p00(1, 1). With the new

notation, according to formulas of section 6.2, we have

p11 + p10 = q1
λ2

λ2 + αλ1
p11 + p01 = q2

λ1
λ1 + αλ2

Then for α ∈ (0, 1) we have

q1q2 − q1(p11 + p01)− q2(p11 + p01) = q1q2

(
1− λ1

λ1 + αλ2
− λ2
λ2 + αλ1

)
< 0

where the inequality holds because the term in parentheses in monotonically increasing

with respect to α and equal to 0 at α = 1. We will use this result in the following.

By hypothesis C1C
′
2 = 0 and without loss of generality we assume C1C

′
1 = C2C

′
2 = 1.

Then we can choose a set of n − 2 vectors v3, v4, . . . , vn (row for convenience) such that

Civ
′
j = 0, i = 1, 2, j = 3, 4, . . . , n, vℓv

′
j = 0, ℓ, j = 3, 4, . . . , n, and vjv

′
j = 1, j = 3, 4, . . . , n,

obtaining an orthonormal basis of the space Rn. Using such a basis we define the set Xσ

of symmetric positive definite matrices of the form

Pσ = σ1C
′
1C1 + σ2C

′
2C2 +

n∑
j=3

σjvjv
′
j

for any arbitrary combination of the eigenvalues σ1, σ2, σj > 0. We now evaluate the
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Riccati-like operator on an arbitrary Pσ ∈ Xσ and for an arbitrary action u

g(Pσ, u) =A
(
P−1
σ + γ1C

′
1R

−1
1 C1 + γ2C

′
2R

−1
2 C2

)−1
A′ +Q

=A
(
σ−1
1 C ′

1C1+σ
−1
2 C ′

2C2+
∑

j
σ−1
j v′jvj+γ1C

′
1R

−1
1 C1+γ2C

′
2R

−1
2 C2

)−1

A′+Q

=A
(
(σ−1

1 + γ1R
−1
1 )C ′

1C1 + (σ−1
2 + γ2R

−1
2 )C ′

2C2 +
∑

j
σ−1
j v′jvj

)−1

A′ +Q

=A

(
R1σ1

R1 + γ1σ1
C ′

1C1 +
R2σ2

R1 + γ2σ2
C ′

2C2 +
∑

j
σjv

′
jvj

)
A′ +Q

where the dependence of γ on u is omitted for clarity. Based on this, we get

C(Pσ, (1, 0))− C(Pσ, (0, 1)) = q1
σ2
2

σ2 +R2

Tr(AC ′
2C2A

′)− q2
σ2
1

σ1 +R1

Tr(AC ′
1C1A

′)

Within the set Xσ we now restrict to the subset of matrices Pσ̄ characterized by σ̄1, σ̄2, σ̄j

for which C(Pσ̄, (1, 0)) = C(Pσ̄, (0, 1)), namely satisfying

σ̄2
2

σ̄2 +R2

Tr(AC ′
2C2A

′) =
q1
q2

σ̄2
1

σ̄1 +R1

Tr(AC ′
1C1A

′)

Now consider

C(Pσ̄, (1, 1))− C(Pσ̄, (1, 0))

= C(Pσ̄, (1, 1))−
1

2
(C(Pσ̄, (1, 0)) + C(Pσ̄, (1, 0)))

=
(q1
2
−(p11+p10)

) σ̄2
1

σ̄1+R1

Tr(AC ′
1C1A

′) +
(q2
2
−(p11+p01)

) σ̄2
2

σ̄2+R2

Tr(AC ′
2C2A

′)+µ

=

(
q1 − (p11 + p10)− (p11 + p01)

q1
q2

)
σ̄2
1

σ̄1 +R1

Tr(AC ′
1C1A

′) + µ

Since the term in parentheses is negative, we can see that the right hand side is mono-

tonically decreasing with respect to σ̄1 and unbounded. It follows that ∃¯̄σ1 > 0 such that

C(Pσ̄, (1, 1)) < C(Pσ̄, (1, 0)) for σ̄1 > ¯̄σ1. We can conclude that the action u = (1, 1) is op-

timal at least for the matrices Pσ̄ with σ̄1 > ¯̄σ1, σ̄2 such that C(Pσ̄, (1, 0)) = C(Pσ̄, (0, 1)),

and arbitrary σ̄j > 0.

Interestingly enough, this proposition holds in general but not for scalar systems, where

all the sensors observe noisy versions of the same quantity and so the assumption CiC
′
j =

0 does not hold. In fact, it can be numerically shown that there are configurations

of the parameters for which there does not exist an error variance such that multiple

simultaneous transmissions are optimal. Conversely, previous proposition applies, among

the others, for the notable case where each sensor observes a different component of

the state. Even if the previous proposition shows that there always exists a covariance
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Figure 6.3: Setup. Dynamics of SYS1 and SYSN are decoupled.

matrix such that employing multiple simultaneous transmissions is convenient, that error

covariance may be not reachable along every sample path.

6.5 Special case: decoupled systems

In this section we present the analytical characterization of the optimal policy with hori-

zon of length K = 1 for the case of decoupled systems. Indeed, considering decoupled

systems is interesting because it resembles the case where multiple independent systems

are observed by a central unit. This scenario has been specifically considered e.g. by

[170][171][158]. Even more, in industrial WSNs, the dynamics of the monitored systems

is often decoupled. The system considered in section 5.7 is a possible example of practical

interest.

We assume that each subsystem is equipped with a (possibly multi-dimensional) sensor

and we denote

A=

 A1 0

· · ·
0 AN

 C=

 C10 0

· · ·
0 CN0

 Q=

 Q1 0

· · ·
0 QN

 P =

 P1 0

· · ·
0 PN


where 0 should be interpreted as a block of suitable dimension with all null entries, and

u = ([u]1, . . . , [u]N)
′. The considered setup is represented in Figure 6.3.

Introduce the following function

ψi(Pi) = Tr
[
AiPiC

′
i0(Ci0PiC

′
i0 +Ri)

−1Ci0PiA
′
i

]
(6.43)

and ψ(P ) = (ψ1(P1), . . . , ψN(PN)). Roughly speaking, it is the term by which the trace

of the estimation error covariance is reduced if a measurement is received. In this sense

it can be seen as the gain given by a new measurement with respect to the case where it

has been lost. The function ψi( · ) has the following property.

Lemma 6.2. The function ψi(X) is monotonically increasing with respect to X.

Proof. Define ψi(X) = Tr(X − (X−1 + C ′
iR

−1
i Ci)

−1). Note that if ψi(X) is monoton-
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ically increasing, the same holds for ψi(X). Given f( · ) a differentiable function of an

(invertible) matrix X−1, from [172] (see also Sec. 2.2 of [173]) we have that

df(X)

dX−1
= −X ′df(X)

dX
X ′

and thus
df(X)

dX
= −X−T df(X)

dX−1
X−T

Let f(X) = Tr((X−1 + C ′
i0R

−1
i Ci0)

−1. For X symmetric, it follows that

df(X)

dX
=
dTr((X−1 + C ′

i0R
−1
i Ci0)

−1)

dX

= −X−1d(X
−1 + C ′

i0R
−1
i Ci0)

−1

dX−1
X−1

= X−1(X−1 + C ′
i0R

−1
i Ci0)

−2X−1

where we use Equation (64) from [173]. Then we have

dψi(X)

dX
= I −X−1(X−1 + C ′

i0R
−1
i Ci0)

−2X−1

Pre and post-multiplying by X we obtain

X
dψi(X)

dX
X = X2 − (X−1 + C ′

i0R
−1
i Ci0)

−2 ≥ 0

concluding the proof.

The monotonicity of ψi( · ) entails the structural properties of the optimal policy, as

shown in the following. We start from the derivation of an optimality condition.

Proposition 6.3. Consider a decoupled system and horizon K = 1. Then J(u, P ) <

J(v, P ) if and only if

N∑
i=1

ψi(Pi)pi(u) + µ̄u >
N∑
i=1

ψi(Pi)pi(v) + µ̄v (6.44)

Proof. For easy of notation, we consider the case of two systems. The theorem is proved

by using the trick of splitting the cost in two parts, based on the following decomposition

(
P−1 + γ1(u)C

′
1R

−1
1 C1 + γ2(u)C

′
2R

−1
2 C2

)−1

=

[
P−1
1 + γ1(u)C

′
10R

−1
1 C10 0

0 P−1
1 + γ2(u)C

′
20R

−1
2 C20

]−1
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We can express the expected value as

E[Tr(A(P−1+γ1(u)C
′
1R

−1
1 C1 + γ2(u)C

′
2R

−1
2 C2)

−1A′)|P, u]
= E[Tr(A1(P

−1
1 + γ1(u)C

′
10R

−1
1 C10)

−1A′
1|P, u]+

E[Tr(A2(P
−1
2 + γ2(u)C

′
20R

−1
2 C20)

−1A′
2)|P, u]

= (1− p1(u))Tr(A1P1A1) + (1− p2(u))Tr(A2P2A
′
2)

+ p1(u)Tr(A1(P
−1
1 + C ′

10R
−1
1 C10)

−1A′
1)

+ p2(u)Tr(A2(P
−1
2 + C ′

20R
−1
2 C20)

−1A′
2)

so that we can rewrite the one-step-ahead cost as

J(P, u) = C(P, u)
= (1− p1(u))Tr(A1P1A

′
1) + (1− p2(u))Tr(A2P2A

′
2)

+ p1(u)Tr(A1(P
−1
1 + C ′

10R
−1
1 C10)

−1A′
1)

+ p2(u)Tr(A2(P
−1
2 + C ′

20R
−1
2 C20)

−1A′
2)

+Q1 +Q2 + µu

If we define

ψi(Pi) = Tr(AiPiA
′
i)− Tr(Ai(P

−1
i + C ′

i0R
−1
i Ci0)

−1A′
i)

= Tr(AiPiC
′
i0(Ci0PiC

′
i0 +Ri)

−1Ci0PiA
′
i) ≥ 0

where we used the Matrix Inversion Lemma, the minimization of J(P, u) is equivalent to

the maximization of ψ1(P1)p1(u) + ψ2(P2)p2(u) + µu, concluding the proof.

Intuitively, since ψi(P ) > 0 and pi is monotonically increasing with respect to the

power allocated to the i-th sensor, the optimal policy allocates more power to the sensor

with the largest ψi(P ). On the other hand, since pi is monotonically decreasing with

respect to the power allocated to j-th sensor, the optimal policy looks for a balance of

the allocated powers weighted by ψi(P ).

As an immediate consequence, the previous theorem shows that the optimal policy has

a threshold-like behaviour with respect to the scalar transformation ψ(P ) of P . Indeed

for any possible control action u we can set a system of |U| linear inequalities in the

variables ψi(Pi) obtaining the region where the control action u is optimal. It follows

that the optimal action can be easily expressed using an indicator function and can be

implemented using finite memory to store the thresholds. Using the monotonicity of

ψi(Pi), this result can be enhanced obtaining the following characterization with respect

to the error covariance Pi.

Proposition 6.4. Consider a decoupled system and horizon K = 1. If P̃i ≥ Pi and

P̃j = Pj for j ̸= i, then for the optimal action u∗ it holds that [u∗(P̃ )]i ≥ [u∗(P )]i.
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Proof. For easy of notation, we consider the case of two systems. Consider P2 and [u]2

fixed. We highlight this by denoting C(P1, [u]1) = C(P, ([u]1, [u]2)). Moreover let

P̃ =

[
P̃1 0

0 P2

]

with P̃1 ≥ P1 and ũ = ([ũ]1, [u]2) with [ũ]1 ≥ [u]1. Then we have

C(P̃1, [u]1)− C(P1, [u]1) = (1− p1(u))Tr(A1P̃1A
′
1) + (1− p1(u))Tr(A1P1A

′
1)

+ p1(u)Tr(A1(P̃
−1
1 + C ′

10R
−1
1 C10)

−1A′
1)

+ p1(u)Tr(A1(P
−1
1 + C ′

10R
−1
1 C10)

−1A′
1)

= Tr(A1(P̃1 − P1)A
′
1)− p1(u)(ψ1(P̃1)− ψ1(P1))

≥ Tr(A1(P̃1 − P1)A
′
1)− p1(ũ)(ψ1(P̃1)− ψ1(P1))

= C(P̃1, [ũ]1)− C(P1, [ũ]1)

where the inequality holds because ψi(Pi) is monotonically increasing w.r.t. Pi and pi(u)

is monotonically increasing w.r.t. [u]i for fixed [u]j, j ̸= i. We can conclude that

C(P̃1, [ũ]1)− C(P1, [ũ]1) ≤ C(P̃1, [u]1)− C(P1, [u]1)

From Theorem 2.6.1 by [174] C(P1, [u]1) is submodular in (P1, [u]1). From Theorem 2.8.1

by [174] submodularity is a sufficient condition for optimality of monotone increasing

policies. See also the proof of Theorem 6.1 in [175]. In particular since C(P1, [u]1) is

submodular in (P1, [u]1), then [u∗(P1)]1 = argmin C(P1, [u]1) is non-decreasing in P1.

As shown in section 6.2, pi is a complicated function of allocated powers and it is not

possible in general to have further insight on the structure of the optimal policy. The

following proposition clarifies the easiest case, where only two power levels are available.

Proposition 6.5. Consider a decoupled system, N = 2 subsystems, horizon K = 1, and

Pi = {0, P tx
i,max}. Define

S00 =

{
P : ψ1(P1) <

µ

p10(1, 0)
, ψ2(P2) <

µ

p01(0, 1)

}
S11 = {P : (p10(1, 0)− p1(1, 1))ψ1(P1) + µ < p2(1, 1)ψ2(P2)

and (p01(0, 1)− p2(1, 1))ψ2(P2) + µ < p1(1, 1)ψ1(P1)}

S10 = {P : p10(1, 0)ψ1(P1) > p01(0, 1)ψ2(P2)} \ {S00 ∪ S11}
S10 = {P : p10(1, 0)ψ1(P1) < p01(0, 1)ψ2(P2)} \ {S00 ∪ S11}
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Figure 6.4: Optimal policy without SIC (left panel) and with SIC (right panel) with
M1=µp01(0,1)/pe and M2=µp10(1,0)/pe, where pe = p1(1,1)p10(1,0) + p2(1,1)p01(0,1) −
p10(1,0)p01(0,1) and similarly with SIC. It is easy to show that M1>M

SIC
1 , M2>M

SIC
2 ,

and S11 is larger with SIC.

Then we have that

U∗(P ) =


(0, 0) if P ∈ S00

(0, P tx
2,max) if P ∈ S01

(P tx
1,max, 0) if P ∈ S10

(P tx
1,max, P

tx
2,max) if P ∈ S11

(6.45)

Proof. It easily follows from Proposition 6.3 using standard calculus tools.

The previous proposition identifies 4 simple regions given by the optimality conditions

provided by Proposition 6.3. Figure 6.4 reports the typical shape of the regions for

the case with and without SIC. The reader can find an analogy between Figure 6.2,

that depicts the received powers and the corresponding value of the arrival variable,

and Figure 6.4, that depicts the values of the functions ψi( · ) of the error covariance

and the corresponding optimal action. Remarkably, R00 and S00 are the same with and

without SIC, while R11 and S11 without SIC are strictly included in R11 and S11 with SIC.

Unfortunately, in general, it is not possible to analytically associate the error covariance

matrix P to the optimal action u∗(P ) without passing through ψi( · ). However this is

possible if Ai is scalar, where it is easy to invert the functions ψi( · ), see [176].

6.6 Simulations: assessment of the proposed strategies

We start this section by providing some implementation details on the derivation of the

proposed optimal infinite-horizon policy. For numerical purposes, it is convenient to

discretize the action and state spaces. In our case, while the action space U is already

discrete and finite, the state space X is the infinite-dimensional set of positive semidefinite

matrices, for which a universal quantization mechanism does not exist. In this section,
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we propose to obtain a discrete set as follows: first we collect multiple sample paths gen-

erated with random arrival processes and random initial conditions, then we cluster them

into D different clusters based on the Frobenius norm mimicking what is done by the

k-means algorithm for vector quantization, finally we obtain the set Xd by including the

clusters’ centroids. In this way, D can be tuned to obtain a trade-off between the accu-

racy of the quantization and the computational burden, while the focus is on the matrices

given by the actual updates of the covariance matrix instead of exploring the whole space

X . Based on the discretized state space Xd, we find the optimal policy off-line. To this

end, we proceed as follows: first, the finite set X+
d (P ) of the discretized error covariance

matrices that can be reached in one step from P is computed for any P ∈ Xd, then, an

iterative procedure is carried out to find the fixed point of the optimality equation (6.40)

based on the Value Iteration algorithm. The optimal policy consists of a map from any

matrix in Xd to the corresponding optimal action and it can be stored in a lookup table.

Then, at time instant t, we find the matrix belonging to Xd that minimizes the distance to

P (t+ 1|t) and we use the corresponding optimal action. Further implementation details

are given in [177].

Since multi-packet reception is naturally applicable in control of multi-agent systems,

we consider a system featuring 2 identical drones that communicate their own positions to

a remote control unit. The use of multiple drones is interesting for many different appli-

cations like environmental monitoring and object transportation. The system parameters

are chosen as

A1 = A2 =

[
1 T

0 1

]
C10 = C20 =

[
1 0

]
Q = 0.1I

where T = 0.1 s is the sampling period. This model is used also for other systems like

ground robots or simple vehicles. It is reasonable to assume that both on-board transmit-

ting systems are identical, and, if the drones are close to each other with respect to the

central unit without obstacles on the line-of-sight, also the channels can be considered

identical. For this reason we set

P tx
1,max = P tx

2,max = 1 s1 = s2 = 1 σ2 = 0.1

where we have normalized the powers and the channel power gains. We set M = 4,

α = 0.75 and β = 0.9.

We start by reporting a pictorial representation of the optimal policy with SIC. To this

end, we may use the function ψ(P ). Indeed, using the function ψ(P ), each covariance

matrix P can be mapped to a point of the plane ψ1(P1) × ψ2(P2), where Pi is the error

covariance matrix relative to subsystem i. Then, using the relation in Proposition 6.3,
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Figure 6.5: Optimal policy with SIC (µ = 0.1). Left panel: K = 1. Right panel: K = ∞.
System: two drones. In the legend, no colors are assigned to actions not used on Xd. Note
that the optimal policy always allocates strictly non-null powers to both the sensors.

the plane ψ1(P1)×ψ2(P2) can be divided into a finite number of subregions, each of them

associated to a specific optimal action, producing a plot similar to Figure 6.4. Here,

however, we prefer to represent the plane Tr(P1)×Tr(P2), where Tr(Pi) is the trace of Pi,

instead of the plane ψ1(P1) × ψ2(P2). In fact, Tr(Pi) gives an immediate understanding

of the quality of the current estimate of the state of subsystem i: the higher Tr(Pi),

the worse the knowledge on subsystem i is. The optimal one-step-ahead policy and

the optimal infinite-horizon policy with SIC are reported in the left and right panels

of Figure 6.5, respectively. In the two plots, the points are not uniformly distributed

because they are taken from the discretized state space Xd, which is not distributed over

the whole space. In the left panel, we can see that, for a fixed Tr(P2), the optimal

one-step-ahead power allocated to sensor 1 is not decreasing with respect to Tr(P1).

The same holds for sensor 2. Similarly, the total power increases by moving along a

straight line starting from the origin. Since larger Pi entails larger Tr(Pi), this is expected

from Proposition 6.4, which states that the optimal one-step-ahead transmission power

of sensor i increases for larger Pi for a fixed Pj. It is interesting to stress that for

Tr(P1) = Tr(P2) ≃ 1.8 it holds that minU J(U, P ) = J
((
1, 2

3

)
, P
)
= J

((
2
3
, 1
)
, P
)
). In

that case we decide to fix U∗ =
(
1, 2

3

)
. It causes an asymmetry in the optimal policy

even if the system consists of two independent identical subsystems. As it can be seen

in the right panel, the optimal infinite-horizon policy has similar features. Differences

are present especially in the bottom left corner of the plane: the optimal action for error

covariances P such that Tr(P1) ≃ 1.25, Tr(P2) ≃ 1.5 shifts from
(
1
3
, 2
3

)
to U∗ =

(
2
3
, 2
3

)
, and

the same happens for Tr(P1) ≃ 1.5, Tr(P2) ≃ 1.25, while the set of error covariances with
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Figure 6.6: Assessment of the optimal infinite-horizon policy with SIC for different num-
bers of available power levels M (left panel) and noise σ2 (right panel). System: two
drones.

Tr(P1) ≃ Tr(P2) ≃ 1.25 is split into three different regions, and the most conservative

action
(
1
3
, 1
3

)
is no more optimal for any considered covariance. Interestingly, the optimal

policy allocates non-null power to both sensors for any P ∈ Xd, namely multi-packet

reception is always used.

We now focus on the performances of the proposed policies. The following plots report

the mean trace of the error covariance matrix for different mean power consumptions

(normalized over the consumption for a single transmission at the maximum power).

Such a plot allows comparing different policies (or the same policy with different pa-

rameters) in a fair way by providing the different estimation performances achieved with

the same power consumption. To obtain the following plots, we set different values of µ

and we simulate the system evolution over a long time horizon under the corresponding

policy. To assess how the optimal infinite-horizon policy with SIC behaves for different

hardware and network conditions, we vary the number of available transmission power

levels (Figure 6.6, left panel) and the background noise (Figure 6.6, right panel). In the

left panel of Figure 6.6 we can see that increasing the number of levels M improves the

estimation quality for the same mean power consumption. On one hand, the improve-

ment is particularly clear for low power consumptions, where we can see that, with more

transmission levels, the energy is more efficiently employed. On the other hand, the im-

provement tends to saturate when increasing the number of levels, especially when the

energy bound is not stringent (right part of the plot): the mean error covariance with

a mean power consumption of 2 is identical for any considered value of M , and with a

mean power consumption higher than 0.4 for M = 4 and M = 8. In the right panel of
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Figure 6.7: Assessment of the optimal infinite-horizon policies for different receivers (with
and without SIC) and different numbers of available power levelsM . System: two drones.

Figure 6.6, we can see that with better network conditions, i.e. lower background noise

σ2, the estimation quality is improved for the same mean power consumption. In general,

a lower error covariance can be achieved with lower σ2 but some error covariances can

be achieved also with higher σ2 at the price of higher mean power consumptions. For

instance, a mean error covariance of 3.4 can be achieved with a mean power consumption

of 0.2 with σ2 = 0.1, of 0.6 with σ2 = 0.5, and of 1.7 with σ2 = 0.9.

We now compare the performances of the infinite-horizon optimal policy for both the

receivers, namely with and without SIC, and for transmitters with different numbers of

available power levels, specifically M = 2 and M = 4. Results are reported in Figure 6.7.

We can see that, allowing more than 2 power levels, the mean error covariance is smaller.

The difference is particularly evident when we impose a stringent constraint on the power

consumption (left part of the plot). The performance without SIC is similar to the coun-

terpart with SIC when the mean power consumption is small. This is due to the fact that

communications are highly penalized so that simultaneous transmissions are selected for

error covariances that the system reaches less often. The difference becomes more evi-

dent when the energy constraint is less stringent: with M = 4, we achieve a reduction of

the mean trace of error covariance up to 10%. Note that in the case of SIC, both with

M = 2 and M = 4, the optimal policy tends to be more aggressive in terms of power

allocation: indeed, for small µ, with SIC, simultaneous transmissions at the maximum
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Figure 6.8: Comparison between existing algorithms (K = 1). Simple tx [154]. Simple
rc [157]. Proposed: M = 4 with SIC. System: two segways.

power are often scheduled, while in the case without SIC, even with µ = 0 the mean

power consumption is equal to 1. This is due to the fact that alternating transmissions

from sensor 1 to sensor 2 are preferred because the loss probability with simultaneous

transmissions is high. Presented results indicate the importance of SIC in order to always

optimally allocate the available power when it is limited (left part of the plot), and to

further decrease the mean error covariance when requirements on the power consumption

are not stringent (right part).

To validate the proposed algorithm we compare it with other existing algorithms that

rely on a simpler hardware. In particular, we consider the simplest solution studied in

[154] where transmitters have only two power levels and the receiver has no multi-packet

reception capabilities (only one sensor is scheduled at a given time). We will refer to it as

“Simple tx”. Then we consider a more advanced solution adapted from [157] where the

transmitters have 4 power levels and the receiver is able to decode multiple simultaneous

packets but does not implement SIC. We will refer to it as “Simple rc”. Finally, we

consider the proposed policy as derived in section 6.4 with SIC andM = 4. We carry out

the test on a more extreme case where the system consists of two segways. For sake of

simplicity, in this chapter, we consider the simplified model obtained by the discretization
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with T = 0.01 s of the linearized continuous-time system

A1 = A2 =

[
0 1

g/ℓ 0

]
C10 = C20 =

[
1 0

]
Q = 0.1I

where g is the gravitational acceleration and ℓ = 0.25, equivalent to the case of a rigid

body with height 20 cm. This model can capture the simplified dynamics of wheeled

robots transporting an object. Differently from the system with two drones, the dynam-

ics are unstable, so the estimation and the power allocation problem are more challenging.

Communication parameters are set as for the previous example. Results are reported in

Figure 6.8. We can see that the proposed strategy outperforms the existing algorithms.

In particular, the difference with respect to Simple tx is evident when the energy require-

ments are strict, i.e., when the mean power consumption is small. On the other hand, the

difference with respect to Simple rc is the largest for a mean power consumption equal

to 1, for which the mean error covariance achieved by the proposed strategy using SIC

is half of the existing algorithm. Note that Simple rc achieves the same error covariance

of Simple tx and it is not able to go beyond a mean power consumption of 1, namely a

single transmission at the maximum power at each time step. Conversely, with SIC, it is

convenient to have simultaneous transmissions to get information from both the systems

more often. This shows that simultaneous transmissions are really advantageous with the

concurrent implementation of SIC.

6.7 Conclusion

In this chapter, we have explored the power allocation problem for remote estimation

in the case where multiple incoming packets from simultaneous transmissions can be

decoded by the receiver. We have shown the existence of a stationary optimal policy for

the infinite-horizon problem and we have shown that the optimal one-step-ahead policy

has a threshold behavior with respect to a scalar transformation of the error covariance

if the system is decoupled. Through extensive numerical simulations, we have shown

the improvements of the proposed strategy, especially when SIC is implemented. The

proposed solution is suitable for multi-agent systems, as well for the Internet of Things.
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7
Conclusions

In this thesis, we have started from the observation that stability does not imply safety

when the feedback loop is closed over wireless. This has been theoretically explained in

chapter 2, where we have focused on the problem of remote estimation for the single-agent

case. We have considered the widespread setup with Gaussian noise and without control

input. First, using simple arguments, we have shown that the stationary distribution of

the estimation error, if it exists, is heavy-tailed. Then, using results of the Renewal theory,

we have derived a sufficient condition for the existence of the stationary distribution.

From these results, it follows that large deviations of the system trajectory are likely

to occur even if the system is mean-square stable. To deal with this problem, we have

proposed to move from the concept of stability to a new concept of safety, more suitable

for practical applications.

Based on practical examples, we have proposed to represent safety requirements through

suitable constraints on the system evolution. The objective of the thesis was to devise

control algorithms able to guarantee constraint satisfaction without making assumptions

on the wireless network.

In chapter 3 and chapter 4, we have focused on the problem of constrained control

over wireless for the single-agent case. In both cases, as often done in the literature of

constrained control, we have assumed that the sensor has access to the complete state

of the system. In chapter 3 we have proposed a solution based on RG. We have first

extended the theory of Maximal Output Admissible Set for the case of packet losses.

We have shown that, under the proposed strategy, safety is always satisfied without any

assumption on the network. Then, we have proved that the system converges to any

admissible desired set-point if infinite sequences of packet losses have probability 0.

In chapter 4 we have extended the MPC for Tracking to the case with packet losses.

By using a local smart actuator able to stabilize the system in presence of blackouts, we

have proved that safety is always guaranteed without any requirement on the network.

The scheme achieves convergence to any admissible desired set-point if there exists an

infinite sequence of time instants where two consecutive receptions, one per link, occur.
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In chapter 5 we have addressed the problem of multi-agent constrained control over

wireless. The proposed centralized solution features a suitable actuator scheduler, that

selects only the agents whose applied input is known, and a remote estimator, that

computes any possible state of the system. We have shown that safety is guaranteed

without any assumption on the network. Using results on distributed RG, we have shown

that the convergence to any admissible desired set-point is achieved under suitable mild

assumptions on the actuator scheduler, on the constraint set, and on the network.

In chapter 6 we have considered the problem of sensor transmission power allocation

for remote estimation in the case where the receiver is able to simultaneously decode

multiple incoming packets. We have considered two different receivers, one implementing

standard multi-packet reception techniques, and one implementing SIC. Based on funda-

mental results on wireless communications, we have derived a detailed analytical model

of the network. For the infinite-horizon power allocation problem, using results from the

theory of Kalman filtering with intermittent observations, we have derived two sufficient

conditions for the existence of a stationary optimal policy. For the one-step-horizon prob-

lem, if the system is decoupled, we have shown that the optimal policy has a threshold

behavior with respect to a scalar transformation of the error covariance.

Accurate simulations have shown the validity of the proposed algorithms. In particu-

lar, WiFi-in-the-loop simulations have proved the effectiveness of the proposed RG and

MPC schemes for constrained control over the latest wireless networks. The solutions

guarantee both safety in bad channel conditions and high performances in good channel

conditions. Results achieved by the proposed RG in experimental tests involving the

Segway-like robot are promising: despite non-ideal mechanical design and model errors,

the constraints are satisfied and the desired reference is reached very quickly.

This thesis has verified both theoretically and experimentally that constrained control

with fast wireless communications is feasible. This result raises new research questions.

Regarding the single-agent problem, it is reasonable to ask when it is convenient to shift

from the legacy wired controller to a remote controller. In general, the local controller

cannot be very sophisticated but, depending on the application, its performances may be

altogether comparable to the performances of advanced schemes like MPC. Is it possible

to determine which is the optimal choice between the wired and the wireless alternatives?

Are there system characteristics that can be used to decide which architecture gives the

best performances?

This question is less relevant for multi-agent systems, since wireless communications

are unavoidable. However, it is still not clear which is the optimal amount of compu-

tational resources that can be made available to the plant side. We have assumed that

the smart actuator can only implement a logic to select the control input from a finite

set of values, and eventually implement a state-feedback controller. It is important to

understand if performances can be improved allowing the actuator to implement more
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elaborated control laws. Possible hybrid solutions with a centralized control unit and a

local algorithm based on formation control theory can be effective, especially in the case

of time-varying constraints. What is the optimal distribution of roles between the central-

ized controller and the local controller? Which is the trade-off between communication

rate and communication reliability that optimizes the performances of the systems? In

the next years, we will pursuit the answer to these questions.
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A
Appendix

A.1 Minkowsky Set Sum and Difference

In this thesis we widely use set operations. In the following we recall some basic definitions

and properties. Let X ⊆ Rn and Y ⊆ Rn be two sets, and let α ∈ R. The scalar

multiplication of a set is defined as

αX = {αx : x ∈ X}. (A.1)

The matrix multiplication AX with A ⊆ Rm×n is defined analogously. The Minkowsky

Set Sum is defined as

X ⊕ Y = {x+ y : x ∈ X, y ∈ Y }. (A.2)

The Minkowsky Set Difference, also referred to as the Pontryagin set difference, is defined

as

X ∼ Y = {x : x− y ∈ X, ∀y ∈ Y }. (A.3)

A pictorial representation of the Minkowsky Set Sum and of the Minkowsky Set Difference

is reported in Figure A.1. Efficient algorithms based on linear programming have been

devised to compute the Minkowsky Set Sum and Difference in the case of polyendron.

The case of more general sets is more cumbersome but it is still possible to find suitable

approximations. In the following theorem we summarize some useful properties of set

operations.

Theorem A.1. The following statements hold: (i) αX ⊂ X if and only if α ∈ [0, 1)

and 0 ∈ int(X) (ii) (α1 + α2)X = α1X ⊕ α2X if α1 ≥ 0, α2 ≥ 0, and X is convex

(iii) X⊕Y is bounded if X and Y are bounded (iv) X⊕Y is closed if X and Y are closed

(v) X ⊕ Y is convex if X and Y are convex (vi) X ⊕ Y is symmetric if X and Y are

symmetric (vii) X ∼ Y ⊆ X if 0 ∈ Y (viii) (X ∼ Y ) ⊕ Y ⊆ X (ix) X ∼ Y is bounded

if X is bounded (x) X ∼ Y is closed if X is closed (xi) X ∼ Y is convex if X is convex

(xii) X ∼ Y is symmetric if X and Y are symmetric
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X Y X ∼ Y X ⊕ Y

Figure A.1: Set operations.

For more details, see [106]. In particular, it is interesting to stress that (X ∼ Y )⊕ Y

does not return the whole X, but a subset of X. This can be seen also in Figure A.1,

third panel.

A.2 Testbed: the Segway-like Robot

For most of the numerical examples carried out in this thesis, we consider an accurate

model of the two-wheeled balancing robot depicted in Figure A.2, often referred to as

Segway-like robot or simply Segway. It consists of a rigid chassis with two wheels, that

results in an inverted-pendulum-like structure and can be regarded as a small-scale version

of a Segway electric vehicle. In the figure, we can discern the battery, the electronic

boards, and, in the bottom part of the rigid chassis, the dc motors connected to the

wheels. Approximately, the rigid chassis has dimensions 20 cm× 20 cm× 10 cm and the

radius of the wheels is 3.4 cm.

Under the assumption that steering is not allowed (so wheels are always coupled), the

system state consists of the wheel angle (which provides the position of the center-of-mass

of the wheel along a straight line), the tilt angle (namely the angle between the vertical

axes of the robot chassis and the line orthogonal to the plane), and their derivatives.

The control input is the voltage supplied to the dc motors moving the wheels, and the

Figure A.2: The Segway-like robot
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system outputs are the measurements from a on-board MPU and encoders on the motors.

The continuous-time nonlinear mathematical model is derived following the Lagrangian

approach [178]. For the purposes of this thesis, the system is linearized around the

equilibrium, characterized by null tilt angle (and null derivatives). Finally, the system

is discretized using exact discretization. With sampling period T = 0.01 s, the system

matrices are

Aol =


1 0.0022 0.0098 0.0001

0 1.0027 0.0001 0.0099

0 0.4345 0.9624 0.0359

0 0.5488 0.0198 0.9801

 Bol =


0.0002

−0.001

0.0472

−0.0317


Note that the system is unstable with unstable eigenvalue equal to 1.0741. When needed,

we implement a LQR controller with weights

Q =


100 0 0 0

0 1000 0 0

0 0 1 0

0 0 0 1

 R = 10

and we consider nominal tracking design. The resulting state feedback gain and the

feedforward gain are

K =
[
−2.8747 −83.6534 −2.1875 −8.8631

]
Nr = −2.8747

so the closed-loop system matrices are

A = Aol −KBol B = NrBol

In this thesis, the system output matrix is chosen equal to Cout = (1 0 0 0) or to

the identity matrix, depending on the case, while the measurement noise is either a

independent and identically distributed Gaussian random variable with zero mean and

variance R or null.

In order to avoid significant deviations of the linear model from the nonlinear dynamics,

we consider to limit the tilt angle in the interval [−0.1 rad, 0.1 rad], while the input is

constrained in the interval [−11 V, 11 V] due to limits in the actuation system. This can

be formalized introducing the constrained output ycstrt = Cxt +Dut with

C =

[
0 1 0 0

−K

]
D =

[
0

Nr

]
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and imposing ycstrt ∈ Y = {y : Hy ≤ h} with

H =


1 0

−1 0

0 1

0 −1

 h =


0.1

0.1

11

11

 .
To capture model inaccuracies and approximations due to the linearization, distur-

bances are also considered. Different models are used in the thesis according to the

applications. For estimation purposes, the disturbance process wt is assumed to be an

independent and identically distributed Gaussian random vector with zero mean and co-

variance Q. For constrained control applications, the disturbance wt is assumed bounded,

belonging to the set W = ABwW with

Bw =


0.01

0.001

0

0

 W = {w : −1 ≤ w ≤ 1}

A.3 Experimental setup for communication data collection

The experimental setup, originally presented in [23], comprises an host PC (Intel Core

i5-6400, 2.70 GHz, 16GB RAM, Ubuntu 17.04 with wireless Qualcomm Atheros AR9227

chip and PC-link interface) and a target board (Raspberry Pi 3 mod. B with Broadcom

BCM2837 Wi-Fi module). The host PC, set as access point, creates the Wi-Fi network

(IEEE 802.11n standard) that is joined by the target board only. Communication pa-

rameters have been set as indicated in [24]. In particular, at the Physical layer, MCS

index is taken as HT7, corresponding to 64-QAM modulation, 5/6 coding rate, with a

resulting bitrate of 65 Mbit/s. At the Data Link layer, the MAC transmission retries is

set equal to 1. At the Transport layer, UDP protocol is implemented. Since both the

devices run GNU/Linux operating system, networks parameters are set by resorting to

the nl80211 library, that provides a set of functions to manage IEEE 802.11 standard

features from the user space. External disturbance is produced through another Wi-Fi

network connecting a smartphone and another PC.

The experiment consists of the transmission of time-stamped packets from the host

PC to the target board and the other way around, with a fixed time-span between two

following transmissions from each machine. This is achieved by running two suitably

coded programs. Using the time-stamps of the packets, it is possible to retrieve the

arrival processes, and from the arrival processes it is possible to derive the blackouts. For

instance, let γt be the arrival process of the packet transmitted from the board to the

136



host PC, where γt = 1 if the t-th packet from the board is arrived at the PC before that

the (t+1)-th packet is transmitted from the PC. Then, the blackout bot at time instant

t on the link from the board to the PC can be computed recursively as

bot+1 =

0 if γt = 1

bot + 1 if γt = 0.

The setup mimics the communication at sampling instants between a plant and a remote

control unit.

A.4 Experimental setup for constrained control of Segway

The experimental setup comprises a host PC and the Segway connected through a Wi-Fi

network.

The Segway used in the experiments is a custom prototype devised and built in our

laboratory at the Department of Information Engineering of the University of Padova by

dr. Riccardo Antonello. The prototype is equipped with a Raspberry Pi 3B+ and with

an Arduino Mega 2560 microcontroller, interfaced with the Raspberry Pi 3B+ via UART

serial connection. The Raspberry board provides the connection to Wi-Fi networks and

it is used to connect the robot and the remote computer. The Arduino board provides

the voltage commands to the two brushed DC gearmotors (Pololu 30:1 Metal Gearmotor

37Dx68L mm) through a dual H-bridge voltage driver (Arduino motor shield based on

ST L298). Moreover, the Arduino board performs the inertial measurement readings,

interfacing with an IMU sensor (GY521 module based on Invensense MPU6050) via

I2C serial connection, and wheel angle readings, interfacing with encoder counter board

(Superdroid Dual Quadrature Encoder Buffer based on LSI/CSI LS7366R) connected via

SPI. Power to the vehicle is provided by a LiPo battery pack (11.1V, 4300mAh). The

host PC and the Wi-Fi network are set as in the previous section.

Differently from the model used in the simulations, in the experimental setup we have

considered a cascade of three control loops. The first inner loop consists of two inde-

pendent speed PID controllers for the two wheel angles. It has been added to enhance

robustness against model uncertainties. The second loop is a LQR balance and longitu-

dinal position controller with input feed-forward. The output of the LQR controller, that

is the acceleration reference, is then integrated, subtracted to the wheel speed, and fed

as input to the two PIDs, while the input of the LQR controller is the wheel angle refer-

ence. The system state is obtained through a very simple estimator: the wheel angle is

computed as the average of the measurements of the two wheel encoders, the tilt angle is

derived from the IMU measurements using a complementary filter, and their derivatives

are obtained with a discrete-time filter. The PID controllers, the LQR feedback, and
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the estimator are implemented on the Arduino microcontroller. The third loop consists

of the RG over wireless (3.26) implemented on the PC and it is closed over the Wi-Fi

network. More specifically, the state estimate and the applied reference are forwarded by

the Arduino microcontroller to the Raspberry board and then transmitted over the Wi-Fi

network to the host PC. Based on the available information, the host PC computes the

new input and transmits it to Raspberry board over Wi-Fi. If arrived, the Raspberry

forwards the new input to the Arduino microcontroller, otherwise it forwards the last

received input.

Note that the plant consists of the physical robot and the two inner control loops (PID

and LQR), so the overall system is stable, as required by RG. The Raspberry implements

both the transmission logic at the sensor and the smart actuator (ZOH). Clearly, the PC

represents the remote control unit.
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