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Abstract

Many natural hazards involve large deformations of unsaturated soils, e.g. rainfall-

induced landslides, embankment collapses due to wetting, seepage-induced insta-

bilities of dams and levees, etc. The study of these phenomena requires account-

ing for the complex hydro-mechanical interactions between solid skeleton and

pore fluids and modeling large deformations to predict the post-failure behaviour,

which poses significant computational challenges. In recent years, several hydro-

mechanical coupled MPM formulations were developed to model saturated and

unsaturated soils. These approaches are slightly different in terms of governing

equations, integration schemes and have been implemented in different MPM soft-

ware; thus, they benefit from various computational features. The purpose of this

paper is to present an overview of the available MPM approaches to model unsat-

urated soils discussing differences and similarities of the formulations and their

impact on the results under different conditions in a range of geotechnical appli-
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cations. In addition, the effect of partially saturated conditions on the critical time

step in explicit numerical integration schemes is studied for the first time. Different

analytical expressions are derived and compared with the numerical results.

Keywords: unsaturated soils, material point method, large deformations,

dynamic coupled analysis, critical time step, state-of-the-are

1. Introduction1

Many geotechnical applications involve multi-phase interactions and large defor-2

mations of the ground. This is the case of rainfall-induced landslides, embankment3

collapses due to seepage or wetting, shallow foundation stability, and penetration4

problems in unsaturated soils, etc. Soil is a mixture of solid grains and pore5

fluids (liquid and/or gas) that interact with each other. In some cases, e.g. when6

considering dry or saturated soils in fully drained or fully undrained conditions,7

the interactions among the different phases can be simplified or even neglected.8

However, when the soil is in partially saturated conditions (i.e. gas and liquid9

coexist in the pores) or in saturated conditions when simultaneous generation and10

dissipation of fluid pore pressure is present, the mechanical and hydraulic response11

of the soil is fully controlled by the coupling between pore fluids and solid skeleton12

controls. Hence, the hydromechanical interactions need to be considered to accu-13

rately capture the material behaviour. The numerical analysis of these problems14

requires implementing multi-phase formulations and the consideration of appro-15

priate boundary conditions (BCs) that can reproduce realistic scenarios of water16

infiltration, seepage, ponding, and changes in the water table.17

Historically, fully-coupled hydro-mechanical formulations have been developed18

and adapted to traditional numerical frameworks such as finite elements (FEM)19
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and finite differences (FDM) methods. However, it is well known that these tools20

are limited to modeling relatively small deformations because of mesh tangling21

limitations. Alternatively, the numerical tools used for the analysis of post-failure22

runouts (i.e. propagationmodels) typically use rheological models that are difficult23

to trace back to soil’s pre-failure conditions and commonly rely on depth-averaged24

integration schemes that cannot capture the failure initiation [1, 2, 3]25

Several techniques have been proposed to overcome such difficulties e.g. A Ar-26

bitaryLagrangian Eulerian (ALE), Coupled Eulerian – Lagrangian (CEL), Particle27

Finite Element Method (PFEM), Finite Element Method with Lagrangian Integra-28

tion Points (FEMLIP), Smooth Particle Hydrodynamics (SPH), Material Point29

Method (MPM), etc [e.g. 4, 5, 6, 7, 8]. A review of these methods and their ap-30

plicability for the study of landslide mass movements can be found in [9]. Among31

them, the Material Point Method (MPM) has recently increased its popularity in32

the geotechnical community. The MPM is a particle-based numerical method es-33

pecially well suited for the simulation of large deformations in history-dependent34

materials. It was initially developed in the framework of fluid mechanics under35

the name of Particle-In-Cell method (PIC) by Harlow [10] in Los Alamos National36

Laboratory. The basis of the method was to represent the flow of a continuum37

mass by a collection of material points (MPs) that moved through a background38

fixed mesh. It was not until 1994 that Sulsky et al. [8] extended the concept to solid39

mechanics for single-phase materials. During the last twenty years, MPM has been40

increasingly applied in the geotechnical engineering field for the study of soils and41

granular earth material. In particular, slope instabilities, failure of earth retain-42

ing structures, tunneling and underground collapses, soil penetration testing, pile43

installation, scour, internal erosion, among others [e.g. 11, 12, 13, 14, 15, 16, 17].44
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Different MPM coupled multi-phase formulations have been developed to ad-45

dress hydro-mechanical interactions between the solid skeleton and pore fluids.46

These approaches are slightly different in terms of governing equations, integra-47

tion schemes, and they benefit of different computational features. In particular,48

this paper addresses the challenges of modeling hydro-mechanical interactions and49

large deformations of unsaturated soils using the MPM framework. The objectives50

are to provide an overview and discuss the available MPM approaches to model51

solid-liquid-gas mixtures, highlighting differences and similarities of the formu-52

lations, implementation aspects, and boundary conditions. Particular attention is53

paid to explain the relevance and physical meaning of common simplifications and54

their implications for the use of these approaches in practical applications. For the55

first time, the effect of partially saturated conditions on the time step in explicit56

MPM numerical integration schemes is studied. A set of analytical expressions for57

the critical time step are derived and compared with numerical results. Addition-58

ally, a discussion on existing applications is provided and the preliminary results59

of potential future applications is presented.60

The paper is organized into four different sections. First, the MPM formulations61

are presented and discussed. Secondly, different implementation aspects are ex-62

amined including boundary conditions and critical time step. Then, an overview of63

geotechnical applications is presented. Finally, the conclusions are summarized.64

2. MPM formulations for unsaturated soils65

Unsaturated porous media consist of a combination of three phases (?ℎ): solid66

((), liquid (!), and gas (�). The phases interact with each other determining the67

mechanic and hydraulic behaviour of the material. The solid phase is made of68
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solid grains that constitute the solid skeleton while the fluid phases (i.e. liquid and69

gas) fill the pore space.70

In MPM, the material is considered as a continuum and is represented by a finite71

number of material points (MPs) that move together with the reference domain72

carrying all the information (e.g. stress, strain, mass, constitutive state variables).73

The computational cycle is summarized in Fig. 1. At the beginning of each time74

step, information carried by MPs is mapped to the nodes of the computational75

mesh and nodal mass, nodal velocities, forces, and dragging terms are evaluated.76

The main governing equations, usually the momentum balances, are solved in77

terms of main unknowns, typically acceleration or velocity. The nodal solution78

is interpolated using shape functions and the kinematic quantities and position79

of the MPs are updated accordingly. Finally, strains and stresses among other80

quantities are evaluated at the MPs using compatibility equations, mass balances,81

and constitutive relationships. At the end of the computational cycle, the nodal82

information is generally discarded. These features make the MPM a powerful tool83

in geotechnics. MPM also suffers from numerical artifacts (e.g. cell-crossing84

instability, volumetric locking, sporadic occurrence of empty elements in the85

material domain). Many publications are available in the literature describing the86

MPM algorithm and the numerical solutions to address its limitations (the reader87

is directed to [18] for an overview).88

Two MPM frameworks have been presented to study multi-phase problems [19]:89

the single-point approach and the multi-point approach. The single-point frame-90

work represents the multi-phase soil mixture as a unique continuum represented91

with one set of MPs. During the calculation, all MPs move with the displacement92

of the solid skeleton represented using Lagrangian formulation and consequently93
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Fig. 1. Diagram of the MPM computational cycle (modified from [22]).

the solid mass in the MP remains constant. Fluids are allowed to flow in and94

out of the reference porous domain and their motion is described with respect to95

the moving solid skeleton. The single-point approach is the general framework96

selected to represent soils in unsaturated conditions as discussed herein. The97

multi-point framework requires more than one set of MPs to represent different98

phases. In particular, the double-point approach for saturated soil is available in99

the literature and represents solid skeleton and liquid with two completely separate100

sets of MPs [e.g. 20, 21]. Each set of MPs moves accordingly to the displacement101

of the corresponding phase and carries the information of one phase only, hence102

solid and fluid are represented using Lagrangian formulation. In the double-point103

configuration presented in [20, 21], the soil is considered either fully dry or fully104

saturated but this same approach can be extended to include hydro-mechanical105

interactions resulting from partially saturated conditions. Based on the authors106

knowledge, the study of unsaturated soils using a three-point approach (i.e. three107

sets of MP for solid, liquid and gas) has never been attempted yet.108

The aim of following subsections is to provide an overview of the MPM formu-109

lations available in the literature for the simulation of unsaturated soils, proposed110

by Yerro et al. [23], Yerro [24], Bandara et al. [25], Wang et al. [26, 27], Lei and111
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Solowski [28], Lei et al. [16], Ceccato et al. [29, 30], Martinelli et al. [31]. A112

summary of the main features discussed below is provided in Tab. 1.113

The governing equations of a comprehensive hydro-mechanically coupled formu-114

lation for unsaturated soils in a continuum framework should consider the balance115

equations of the phases and the interactions among them. Additionally, compat-116

ibility equations and constitutive relationships are also required to complete the117

equations set. General assumptions considered in all MPM formulations presented118

below include: (a) solid grains are incompressible, (b) fluids are weakly compress-119

ible, (c) fluid flows are laminar (Darcy’s law is valid for gas and liquid phases), (d)120

fluid convective terms are negligible, and (e) isothermal conditions.121

2.1. Momentum balance equations122

The first MPM formulation for unsaturated soils was proposed by Yerro [24], Yerro123

et al. [23]. This is a three-phase single-point formulation and each MP represents124

the solid-liquid-gas mixture. The main governing equations posed at the nodes of125

the computational mesh are the linear momentum balances of the gas, liquid, and126

mixture (Eqs. 1, 2, and 3, respectively). The first two are posed per unit of fluid127

volume, while the mixture is posed per unit of total soil volume. This formulation128

is fully dynamic and all relative acceleration terms are fully accounted with the129

accelerations of each phase being the primary unknowns of the system, i.e. aS, aL130

and aG.131

d�a� = ∇?� − f3� + d�g (1)

d!a! = ∇?! − f3! + d!g (2)

=(d(a( + =!d!a! + =�d�a� = ∇ · 2 + d<g (3)

7



Ta
bl

e
1.

Su
m
m
ar
y
of

m
os
tr
el
ev
an
tc
ha
ra
ct
er
ist
ic
so

fc
ur
re
nt
ly

av
ai
la
bl
e
M
PM

fo
rm

ul
at
io
ns

fo
ru

ns
at
ur
at
ed

so
ils
.

Fo
rm

ul
at

io
n

Ye
rr

o
et

al
.[

23
]

Ye
rr

o
[2

4]
Ba

nd
ar

a
et

al
.[

25
]

W
an

g
et

al
.

[2
6,

27
],

Le
e

et
al

.
[3

2]
,

C
ec

ca
to

et
al

.

[3
3,

29
]

Le
ia

nd
So

lo
w

sk
i[

28
],

Le
i

et
al

.[
16

]

C
ec

ca
to

et
al

.[
30

]
M

ar
tin

el
li

et
al

.[
31

]

N
um

be
ro

fp
ha
se
s

so
lid

-li
qu
id
-g
as

so
lid

-li
qu
id
-g
as

so
lid

-li
qu
id

(+
su
ct
io
n)

so
lid

-li
qu
id

(+
su
ct
io
n)

so
lid

-li
qu
id

(+
su
ct
io
n)

so
lid

-li
qu
id

(+
su
ct
io
n)

so
lid

-li
qu
id

(+
su
ct
io
n)

D
yn

am
ic
s

Fu
lly

dy
na
m
ic

Fu
lly

dy
na
m
ic

Re
la
tiv

e
ac
ce
le
ra
tio

n
of

th
e

liq
ui
d
is
ne
gl
ec
te
d

Fu
lly

dy
na
m
ic

Fu
lly

dy
na
m
ic

Fu
lly

dy
na
m
ic

Fu
lly

dy
na
m
ic

M
ai
n
go
ve
rn
in
g
eq
ua
tio

ns
m
om

en
tu
m

of
th
e
m
ix
tu
re
,

m
om

en
tu
m

of
th
e

liq
ui
d,

m
om

en
tu
m

of
th
e
ga
s

m
om

en
tu
m

of
th
e
m
ix
tu
re
,

m
om

en
tu
m

of
th
e

liq
ui
d,

m
om

en
tu
m

of
th
e
ga
s

m
om

en
tu
m

of
th
e
m
ix
tu
re
,

m
om

en
tu
m

of
th
e
liq

ui
d

m
om

en
tu
m

of
th
e
m
ix
tu
re
,

m
om

en
tu
m

of
th
e
liq

ui
d

m
om

en
tu
m

of
th
e
m
ix
tu
re
,

m
om

en
tu
m

of
th
e
liq

ui
d

m
om

en
tu
m

of
th
e
m
ix
tu
re
,

m
om

en
tu
m

of
th
e
liq

ui
d

m
om

en
tu
m
of

th
es

ol
id
,m

o-

m
en
tu
m

of
th
e
liq

ui
d

Pr
in
ci
pa
lu

nk
no
w
ns

0
(
,0

!
,0

�
0
(
,0

!
,0

�
0
(
,F

0
(
,0

!
0
(
,0

!
0
(
,0

!
0
(
,0

!

M
as
se

xc
ha
ng
e

Li
qu
id
-G

as
Li
qu
id
-G

as
N
o

N
o

So
lid

-L
iq
ui
d

N
o

N
o

St
re
ss

so
il

In
de
pe
nd

en
ts
tre

ss
va
ria

bl
es

In
de
pe
nd

en
ts
tre

ss
va
ria

bl
es

B
is
ho

p
eff

ec
tiv

e
str
es
s

B
is
ho
p
eff

ec
tiv

e
str
es
s

B
is
ho
p
eff

ec
tiv

e
str
es
s

B
is
ho

p
eff

ec
tiv

e
str
es
s

B
is
ho
p
eff

ec
tiv

e
str
es
s

Mainhypothesis

In
co
m
pr
es
si
bl
e
so
lid

gr
ai
ns

x
x

x
x

x
x

x

W
ea
kl
y
co
m
pr
es
si
bl
e
flu

id
s

x
x

x
x

x
x

x

La
m
in
ar

flu
id

flo
w

(D
ar
cy
’s

la
w
)

x
x

x
x

x
x

x

Is
ot
he
rm

al
co
nd

iti
on

s
x

x
x

x
x

x
x

So
lid

-fl
ui
dr
el
at
iv
ea

cc
el
er
at
io
n

is
ne
gl
ec
te
d

x

G
as

pr
es
su
re

is
ne
gl
ec
te
d

x
x

x
x

x

G
as

de
ns
ity

is
ne
gl
ec
te
d

x
x

x
x

x

G
ra
di
en
t
of

de
gr
ee

of
sa
tu
ra
-

tio
n
is
ne
gl
ig
ib
le

x
x

x

G
ra
di
en
to

fp
or
os
ity

is
ne
gl
ig
i-

bl
e

x
x

x

G
ra
di
en
t
of

liq
ui
d

de
ns
ity

is

ne
gl
ig
ib
le

x
x

x
x

8



Where =(, =! and =� are the volumetric concentration ratio of solid, liquid, and132

gas; d(, d! , d� are densities of all phases and dm is density of the mixture133

(d< = =(d( + =LdL + =�d�); f3
�
and f3

!
are gas and liquid drag forces; ?� and134

?! are gas and liquid pressures; 2 is the total stress tensor; and g is the gravity135

vector. The porosity of the solid skeleton becomes = = =! +=� , and the volumetric136

concentration ratio of the fluid phases can be expressed in terms of the degree of137

saturation ((!) and porosity as =! = =(! and =� = =(1 − (!), respectively for138

liquid and gas. Note that fully saturated conditions are the particular case when139

the degree of saturation (! is one.140

The fluid flow (either liquid or gas) is assumed laminar and the liquid and gas drag141

forces (f3
�
and f3

!
) are written taking into account that Darcy’s law is valid (Eq. 4).142

The subscript 5 denotes fluid phase, that can be either gas � or liquid !.143

f35 =
= 5 ` 5

: 5
(v 5 − v() (4)

Where ` 5 and : 5 correspond to the viscosity and intrinsic permeability of the144

fluids (i.e. 5 = �, !). The intrinsic permeability is defined in terms of hydraulic145

conductivity (^ 5 ) as146

: 5 = ^ 5
` 5

d 5 6
(5)

The three momentum balances are integrated into the domain and discretised at147

the nodes of the computational mesh (the detailed expressions can be found in148

[24, 23]). At the beginning of each computational cycle, information carried by149

the MPs is mapped to the mesh to calculate nodal mass, nodal velocities, internal150
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and external forces, and dragging terms. Nodal gas and liquid accelerations are151

obtained first from solving the discretised version of Eqs. 1 and 2 independently.152

Finally, the nodal acceleration of the solid skeleton is obtained by solving Eq. 3153

and using updated nodal fluid velocities.154

The rest of the MPM formulations addressing unsaturated conditions assume that155

the density and pressure of the gas phase are negligible (d� = 0 and ?� = 0). These156

formulations are essentially two-phase approaches that account for the suction157

effect. In consequence, the linear momentum balance of the gas is dropped from158

the system of equations and only two momentum balance equations are considered159

instead of three. This simplification reduces the computational cost. In the160

formulations proposed by Wang et al. [26, 27], Lei and Solowski [28], Lee et al.161

[32], Lei et al. [16], Ceccato et al. [29, 30] all dynamic terms, i.e. liquid and solid162

inertia, are considered and the main unknowns of the system are the accelerations163

of the solid and liquid phases (a( and a!). The linear momentum of the liquid is164

identical to Eq. 2. The linear momentum of the mixture is equivalent to Eq. 3 but165

removing the dynamic term corresponding to the gas phase, which yields Eq. 6.166

=(d(a( + =!d!a! = ∇ · 2 + d<g (6)

Very similarly, the formulation from Martinelli et al. [31] considers all dynamic167

terms and the solid and liquid accelerations as primary variables, but the momen-168

tum balance of the solid per unit of total volume (Eq. 7) is posed instead of the169

momentum balance of the mixture. I is the identity matrix.170

=(d(a( = ∇ · (2 − =! ?!I) + (d< − =!d!)g + f3! (7)
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Finally, the formulation by Bandara et al. [25] neglects the relative acceleration of171

the liquid with respect to the solid skeleton. Therefore, all phases have the same172

acceleration a (i.e. acceleration of the system, a = a( = a!). The momentum173

balances of the liquid, which is equivalent to the generalized Darcy equation174

(Eq. 8), and the mixture (Eq. 9) are the governing equations posed at the nodes of175

the computational mesh and the main unknowns are the acceleration of the system176

a and the liquid seepage velocity (w = =(! (v! − v()).177

w = −^!
`f
(∇?! + d! − d!g) (8)

d<a( = ∇ · 2 + d<g (9)

2.2. Mass balance equations178

Additional governing equations include the mass balances. In the three-phase179

MPM formulation [23, 24] the liquid and gas are considered to be a mixture of180

water and air, and mass exchange between liquid and gas phases is allowed to181

account for "water vapour" in the gas and "dissolved gas" in the liquid. The182

process of mass exchange is not included herein to facilitate the reading of the183

paper. Assuming incompressible solid grains (D(d(
DC = 0), the expressions for the184

mass balance of the solid and fluids (i.e. liquid and gas) phases are written as185

Eqs. 10 and 11, respectively. D( (•)
DC is the material derivative with respect to the186

solid motion.187

D(=

DC
− (1 − =)∇ · v( = 0 (10)

=
D( (d 5 ( 5 )

DC
+ ∇ · (d 5 ( 5 =(v 5 − v()) + d 5 ( 5∇ · v( = 0 (11)
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The mass balance of the solid (Eq. 10) represents the variation of porosity =188

caused by volumetric deformation of the solid skeleton. In those problems where189

the spatial variations of fluids mass in the soil are small (∇(d 5 ( 5 =) ≈ 0), Yerro190

et al. [23] simplify the term with the gradient of the advective fluxes of the fluid191

phases (i.e. ∇ · (d 5 ( 5 =(v 5 − v())) yielding to Eq. 12. The effect of neglecting192

part of the advective flow gradients is further discussed in Sec. 2.5.193

=
D( (d 5 ( 5 )

DC
+ d 5 ( 5 =∇ · (v 5 − v() + d 5 ( 5∇ · v( = 0 (12)

The solid material derivatives from Eqs. 11 and 12 are evaluated using the chain194

rule and considering the fluid pressures (?� and ?!) as state variables (Eq. 13).195

The fluid mass balances are solved in the MPM computational cycle in terms of196

the variation of liquid and gas pressure (D( ?!
DC and D( ?�

DC ).197

D( (d 5 ( 5 )
DC

=

(
( 5
md 5

m?!
+ d 5

m( 5

m?!

)
D(?!

DC
+

(
( 5
md 5

m?�
+ d 5

m( 5

m?�

)
D(?�

DC
(13)

The two-phase MPM formulations neglect the gas density and only the mass198

balances of the solid and liquid phases are required. All approaches consider the199

mass balance of the solid as presented in Eq. 10, but propose slightly different200

versions of the mass balance of the liquid. Ceccato et al. [30] consider the liquid201

mass balance with no simplification regarding the the gradient of the advective202

fluxes, leading to Eq. 14. Wang et al. [26, 27], Ceccato et al. [33, 29], Lee et al.203

[32], Martinelli et al. [31] neglect the gradients of the liquid mass (∇(d!(!=) ≈ 0)204

and use Eq. 15 instead. Bandara et al. [25] rewrites Eq. 14 in terms of w.205
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=
D(d!(!

DC
= −∇ · (d!(!=(v! − v()) − d!(!∇ · v( (14)

=
D(d!(!

DC
= −d!(!=∇ · (v! − v() − d!(!∇ · v( (15)

The solid material derivatives from Eqs. 14 and 15 are evaluated assuming a206

weakly-compressible liquid (see Sec. 2.4.2), and the variation of the liquid pressure207

(D( ?!
DC ) is derived accordingly.208

D(d!(!

DC
= d!

D((!

DC
− d!
 !

D(?!

DC
(16)

Finally, the formulation proposed by Lei and Solowski [28], Lei et al. [16] extends209

the previous works to account for internal erosion of the solid skeleton, based210

on the work from Yerro et al. [34] for saturated conditions. The mass exchange211

between the solid and liquid phases is allowed according to an erosion law that212

controls the rate of eroded mass. This implies that the mass balances of solid and213

liquid phases (Eq. 10 and Eq. 14) are extended with an additional term to account214

for the lost or gained mass, respectively. In this formulation, the gradient of the215

liquid density is neglected, but gradients of porosity and degree of saturation are216

accounted. In addition to the solid and liquid mass balances, the mass balance of217

the eroded grains (i.e. liquidized spices) is also required in the system.218

2.3. Compatibility equations219

All formulations consider the same compatibility equations to obtain the infinites-220

imal strain rate tensor of each phase 9?ℎ (i.e. ?ℎ = (, !, �) at the MPs. These221

can be written in terms of the corresponding phase velocities as in Eq. 17. In the222
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MPM computational cycle, the compatibility equation is evaluated at the MPs and223

updated nodal velocities are considered to calculate the corresponding gradients.224

D(9?ℎ

DC
=

1
2

[
∇ · v?ℎ + (∇ · v?ℎ))

]
(17)

2.4. Constitutive laws225

Different constitutive laws are required to complete the set of governing equations.226

These are evaluated at the MPs, generally at the end of the computational cycle.227

2.4.1. Stress-strain relationship for solid skeleton228

The relationship between the strains of the solid skeleton and the stress is defined229

by means of a constitutive equation. Various hydro-mechanical stress frameworks230

are available in the literature to describe the behaviour of unsaturated soils [35].231

They are inherited from the Bishop single effective stress approach [36] or from the232

independent stress variable approach [37]. The Bishop effective stress approach is233

themost commonly implemented in theMPM formulations [25, 27, 16, 32, 30, 31].234

The general form of the constitutive equation is presented incrementally as Eq. 18,235

where the effective stress essentially controls the stress state of unsaturated soil236

and is defined as Eq. 19. D is the tangent matrix, 9 is the strain vector of the237

solid skeleton, 2=4C is the net stress (2=4C = 2 − ?�I), B is the matric suction238

(B = ?� − ?!), and j is an effective stress parameter generally assumed equal to239

(! . Note that most of the works assume ?� = 0.240

32′ = D · 39 (18)

2′ = 2=4C − jBI (19)
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The independent stress variable approach is used in [23], where the net stress is241

defined more generally as Eq. 20. In this context, the stress state is described by242

two state variables (i.e. 2=4C and B) and a double constitutive matrix is required243

(Eq. 21), where h is a constitutive vector controlling the influence of suction.244

2=4C = 2 −max{?� , ?!}I (20)

32=4C = D · 39 + h3B (21)

Very limited number of constitutive models have been considered in both stress245

frameworks. Linear elasticity has been used for validation purposes and the stan-246

dard elastic-perfectly plastic Mohr Coulomb and the Mohr Coulomb with suction247

hardening [38] have also been used for the study of different failure problems248

(Sec. 4 includes a review of the applications). Finally, the Jaumann stress rate is249

adopted in case of large deformation to achieve objectivity (i.e. frame indifferent250

formulation) of the Cauchy stress rate matrix [25, 31].251

2.4.2. Weakly-compressible fluids252

All the currently available MPM formulations for unsaturated soils consider linear253

elastic weakly-compressible fluids (Eq. 22), where  5 is the bulk modulus of the254

reference fluid.255

− 1
d 5

md 5

mC
=

1
 5

m? 5

mC
(22)

2.4.3. Soil water retention curve256

The soil water retention curve (SWRC) is an essential relationship required to257

model the behaviour of unsaturated soils that correlates suction (B = ?� − ?!) with258
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degree of saturation ((!). For the purpose of simulating realistic soil behaviour,259

the Van Genuchten SWRC [39] (Eq. 23) is preferred among the authors, where260

?0 and _ are fitting parameters. Alternatively, a linear SWRC (Eq. 24) is also261

employed for validation purposes, where 0E is a constant parameter, (<8= is the262

residual degree of saturation, and (<0G is the maximum degree of saturation.263

(! = (<8= + ((<0G − (<8=)
[
1 +

(
?� − ?!
?0

) 1
1−_

]−_
(23)

(! = 1 − 0E (?� − ?!) (24)

2.4.4. Liquid relative hydraulic conductivity264

It is well known that unsaturated soils are less permeable than fully saturated265

soils. The liquid relative hydraulic conductivity (i.e. the ratio between the actual266

liquid hydraulic conductivity and the saturated hydraulic conductivity, ^!/^B0C)267

is a function of the degree of saturation. This dependence is also included in268

the MPM formulations with the introduction of the hydraulic conductivity curve269

(HCC). The most commonHCC are the functions proposed by Hillel [40] (Eq. 25),270

and Mualem [41] (Eq. 26), where A and _ are fitting parameters.271

^!

^B0C
= (A! (25)

^!

^B0C
=

√
(!

[
1 −

(
1 − (

1
_

!

)_]2
(26)

2.5. Discussion272

This section discusses the effect of the gradient of advective fluxes in the fluid273

mass balance equations. Eq. 11 can be written as Eq. 27, where 5 = !, �, by274

expanding the gradient of the advective flux term.275
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=
D( (d 5 ( 5 )

DC
+∇(d 5 ( 5 =) · (v 5 − v() + d 5 ( 5 =∇ · v 5 + d 5 ( 5 (1− =)∇ · v( = 0 (27)

The first addend is related to the liquid mass change as a result of pressure and276

degree of saturation variation in time (Eq. 16). All other terms explain the variation277

of liquid mass as a result of the liquid inflow/outflow gradients resulting from278

different mechanisms. In particular, the second term in Eq. 27 describes the279

variation of the liquid mass induced by a flow triggered by the fluid mass gradient;280

the third term describes the variation of liquid mass due to the divergence of the281

fluid velocity (equivalent to a volumetric deformation of the fluid); and the fourth282

term describes the variation of liquid mass due to the divergence of the solid283

velocity (equivalent to a volumetric deformation of the solid skeleton).284

The mass balance equation is solved at the MP level, where the computation of the285

last two terms of Eq. 27 is straightforward because nodal velocities are already286

available during the traditional computational cycle. In contrast, the evaluation of287

the fluid mass gradient requires the additional step of mapping the quantity d 5 ( 5 =288

to the nodes and then calculate the gradient at the MP [24]. This is relatively289

simple and does not increase significantly the computational cost. The gradient290

of fluid mass can be calculated as Eq. 28. While the spatial gradient of liquid291

density (∇d 5 ) and porosity (∇=) can be assumed negligible in most cases, the292

gradient of the degree of saturation depends on the pressure gradient and the293

SWRC. The importance of the last term of Eq. 28 increases with pressure gradient294

and m( 5 /m? 5 .295

∇(d 5 ( 5 =) = ( 5 =∇d 5 + ( 5 d 5∇= + =d 5∇( 5 (28)
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To visualize the effect of this term, the evolution of suction in a 1m soil column296

during an infiltration test is considered. For C = 0, an initial suction B0 is applied297

along the column. For C > 0, zero suction is imposed at the top boundary while the298

bottom is impervious. Gravity is neglected. The soil permeability is constant and299

the SWRC is linear (Eq. 24). Under these assumptions, an analytical expression300

that describes the evolution of the normalized suction along the column with time301

can be derived from the mass balance equation of the liquid following [42]302

Numerical simulations are performed with the two-phase formulations for unsat-303

urated soils with the material parameters listed in Tab. 2.304

Figure 2 compares the results obtained with the complete mass balance equation305

(Eq. 14, circles) and with the simplified mass balance equation (Eq. 15, cross306

symbol) considering different values of initial suction B0 and m(!/m?! = 0E. For307

B0 = 500:%0 and 0E = 1 ·10−3 (Fig. 2a) the simplifiedmass balance equation leads308

to a delay in the evolution of suction, while the complete mass balance equation309

gives results in very good agreement with the analytical solution. Decreasing the310

slope of the SWRC to 0E = 1 · 10−5 (Fig. 2b) or reducing the initial suction to311

B0 = 5:%0, i.e. the pressure gradient, (Fig. 2c) the two approaches give very312

similar results. Indeed, in these cases, the contribute of the last term of Eq. 28 is313

very small and neglecting the gradient of fluid mass is an acceptable simplification.314

For the range of pressure gradients and SWRC typical of many civil engineering315

applications the error introduced using Eq. 15 is acceptably small.316

Similar results are obtained with the three-phase formulation as discussed in [43].317
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Solid density [:6/<3] d( 2700

Liquid density [:6/<3] d! 1000

Porosity [-] = 0.4

Liquid bulk modulus [:%0]  ! 80000

Liquid dynamic viscosity [:%0 · B] `! 1 · 10−6

Intrinsic permeability liquid [<2/B] ^! 1 · 10−11

Table 2. Material parameters for 1D infiltration example with applied pressure.

Fig. 2. Evolution of normalized suction with depth. Comparison between numerical and analytical

formulations.

3. Implementation aspects318

This section presents an overview of different implementation aspects concern-319

ing unsaturated MPM formulations such as the stability of the solution and the320

application of boundary conditions.321

3.1. Time integration scheme and critical time step322

All MPM formulations presented for the study of unsaturated soils are based on323

numerical schemes explicitly integrated in time. Commonly, the Euler-Cromer324
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algorithm is used. Explicit schemes are conditionally stable depending on a325

maximum or critical time step ΔC2, that depends on the material properties and326

characteristic size of the computational grid. According to the authors’ knowl-327

edge, no studies have been performed concerning the effects of partially saturated328

conditions on ΔC2.329

3.1.1. Review of stability criteria330

In two-phase problems we can define two time scales of interest, namely that of331

excess pore pressure dissipation related to consolidation and infiltration and that332

of compression wave propagation within the solid-fluid mixture. In mathematics,333

consolidation (infiltration) is seen as parabolic behaviour, while wave propagation334

is hyperbolic behaviour. The associated critical time steps are expresses by Eq.335

29 and Eq. 30 respectively, where !8 is a characteristic length, i.e. the size of an336

element.337

ΔC2 =
!2
8

22
(29)

ΔC2 =
!8

E2
(30)

The coefficient 2 can be written as Eq. 31 where �′2 is the effective oedometric338

modulus. Note that for (! = 1 and 3(!
3B

= 0 it coincides with the consolidation339

coefficient.340

2 =
:!

`!

(
1
� ′2
+ (!=

 !
+ = 3(!

3B

) (31)

E2 in Eq. 30 represents the one-dimensional compressing wave speed propagation341
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and can be estimated with Eq. 32, where �2 and d are the oedometric modulus342

and the density of the considered material.343

E2 =

√
�2

d
(32)

Eq. 32 can be particularized for undrained conditions using �2 = �′2 + =/ ! and344

d = dB0C or for dry conditions using �2 = �′2 and d = d3AH.345

Yerro [24] and Mieremet [44] mathematically studied the stability of the two-346

phase MPM formulation for saturated conditions proposed in [45]. In the work of347

Yerro [24], the eigenvalue problem is solved to study the stability of four different348

equations: (a) the liquid momentum balance ΔC2,;8@D83 , (b) the mixture momentum349

balance ΔC2,<8GCDA4, (c) the coupled hydro-mechanical system (ΔC2,2>D?;43) (i.e.350

liquid and mixture momentum balances), and (d) the momentum balance of the351

mixture in undrained conditions (ΔC2,D=3A08=43). The critical time step criterion for352

the undrained analysis is identical to Eq. 30, while the other three criteria share353

the following expression354

ΔC2,.4AA> =
2
l

[
− b +

√
b2 + 1

]
(33)

where l and b vary depending on the set of equations considered, and provided in355

Tab.3 (saturated column).356

Mieremet [44] considered the stability of the coupled hydro-mechanical system357

concerning liquid and mixture momentum balances. Rigorous mathematical sta-358

bility analysis were conducted by means of the matrix method [46], and an esti-359

mation of ΔC2 is proposed as360
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ΔC2,"84A4<4C =
−20 +

√
402 + 8(1 +

√
12 − 43)

1 +
√
12 − 43

(34)

where terms 0, 1 and 3 are reported inTab. 4 (saturated column). The performance361

of the proposed criterion is verified with 1D FEM-based simulations.362

3.1.2. New stability criteria for unsaturated conditions363

Assuming that saturation can be understood as a particular case of unsaturated364

conditions, one could expect that the ΔC2 for unsaturated formulations is an ex-365

tension of those obtained for saturated conditions. In this work, the stability of366

the MPM formulation proposed by Ceccato et al. [30] in unsaturated conditions is367

studied considering the same approach followed by Yerro [24]. The stability of (a)368

the momentum balance of the liquid, (b) the momentum balance of the mixture,369

and (c) the coupled system is derived. The main passages to obtain the stability370

criteria are presented in detail in the Appendix (Sec. 7). The obtained expressions371

for the critical time step follow the same structure as Eq. 33. The new terms l372

and b are reported in Tab. 3 (unsaturated column).373

Given the consistent complexities in applying the same rigorous procedure by374

Mieremet [44] to the formulation by Ceccato et al. [30], a simplified "adaptation"375

of Eq. 34 to unsaturated conditions is proposed. The terms 0, 1 and 3 are modified376

in a similar manner to l and b in saturated vs. unsaturated conditions (3). In377

the term 0, (2
!
is added and dB0C is replaced by d<. In terms 1 and 3, the liquid378

bulk modulus  ! is replaced by (!(
3(!
3B

)
+ (!
 !

, based on l� and l" unsaturated379

expressions. Note that, consistently for all the criteria, the saturated case ((! = 1)380

is a particular case of the unsaturated expressions.381
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Saturated Unsaturated

Coupled l� =
1
!8

√
 !
d!
+ �2
d( (1−=) +

(1−=)
=

 !
d(

l� =
1
!8

√[
(!(

3(!
3B
+ (!
 !

) ] [ 1
d!
+ 1
d(

(
1
=
− (!

)]
+ �2
d( (1−=)

b� =
=`!

2:!l�

[
=

(1−=)d( +
1
d!

]
b� =

(!=`!
2:!l�

[
(!=
(1−=)d( +

1
d!

]
Liquid l! =

1
!8

√
 !
d!

l! =
1
!8

√
(!

d!

(
3(!
3B
+ (!
 !

)
b! =

=`!
2:!l!

1
d!

b! =
(!=`!
2:!l!

1
d!

Mixture l" =
1
!8

√
�2

(1−=)d( +
(1−=)
=

 !
d(

l" =
1
!8

√
1
d(

[
�2
(1−=) +

(
− (! + 1

=

)
(!(

3(!
3B
+ (!
 !

) ]
b" =

=2`!
2(1−=)d(:!l" b" =

(2
!
=2`!

2(1−=)d(:!l"

Table 3. Parameters l and b used in ΔC2 expression by Yerro [24]. Left column: original version

for saturated conditions. Right column: new development for unsaturated conditions.

Saturated Unsaturated

Mieremet 0 =
=dB0C `

(1−=)d(d!:! Mieremet030?C43 0 =
(!

2=d<`
(1−=)d(d!:!

1 =
4(=dB0C !+(1−2=)d! !+=d!�2)

=(1−=)d(d!!2
8

1 =

4
(
=d<

(!(
3(!
3B
+ (!
 !

) +(1−2=)d!
(!(

3(!
3B
+ (!
 !

) +=d!�2)
=(1−=)d(d!!2

8

3 =
16�2 !

(1−=)d(d!!4
8

3 =

16�2
(!(

3(!
3B
+ (!
 !

)
(1−=)d(d!!4

8

Table 4. Parameters 0, 1 and 3 used in ΔC2 expression by Mieremet [44]. Left column: original

version for saturated conditions. Right column: adapted criterion for unsaturated conditions.
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3.1.3. Numerical analysis and discussion382

In this section, the performances of the unsaturated criteria are evaluated. A trial383

and error procedure is used to explore ΔC2 in unsaturated conditions. A series of384

MPM-based simulations is performed with Anura3D [47] using the unsaturated385

formulation in [30]. The objective is to determine ΔC2 for different degrees of386

saturation. The model is a soil column, 1m high and 0.05m wide. At the top of the387

column, an external load of 100kPa is applied, see Fig. 3 (a). An initial suction388

is imposed to the entire column and the same suction is applied at the top of the389

column during the rest of the calculation to ensure that the degree of saturation390

remains as constant as possible in the model. The material is linear elastic and the391

intrinsic permeability (:! = 2 · 10−10<2, equivalent to a hydraulic conductivity392

of ^ ≈ 2 · 10−3</B) is assumed constant. The mesh is made by linear triangular393

elements of 0.05m side length. The bottom boundary is fully fixed and impervious.394

The lateral boundaries only allow vertical movement and are impervious.395

The same analysis is repeated for three soil types (sand, silt, and clay) to evaluate396

the effect of the SWRCs on the numerical stability. The Van Genuchten model397

is used to describe three reference SWRC from [48] (Fig. 3 (b)). The SWRC398

parameters are provided in Tab. 5. The simulations are performed for each soil399

type ensuring a large range of suction values, covering degrees of saturation from400

saturated ((! = 1.0) to approximately dry conditions ((! = 10−2).401

Moreover, to evaluate the critical time step in diverse conditions we consider402

different sets of analysis varying the porosity (= = 0.4 and = = 0.6) and the Young403

modulus (�1 = 104:%0 and �2 = 5 · 104:%0). The Poisson ratio is assumed404

constant for all the simulations, a = 0.2.405

24



1 10 100 1000
pL [kPa]

0

0.2

0.4

0.6

0.8

1

S L
 [-

]

Sand Silt Clay

(a) (b)

Fig. 3. Critical time step in unsaturated conditions obtained from numerical simulations: (a)

geometry of the problem, (b) SWRCs tested.

The time step of each calculation is manually increased until the simulation doesn’t406

converge. This iterative process is repeated for each combination of material pa-407

rameters. The maximum value that ensures the solution convergence is considered408

the critical time step.409

The critical time steps obtained from the numerical tests performed in sand, silt,410

and clay are presented in Fig. 4, Fig. 5 and Fig. 6, respectively. In all figures, the411

numerical results plotted together with the stability criteria proposed in this work412

for unsaturated conditions (Tab. 3 and 4). In addition, the expressions from the413

literature, i.e. consolidation and infiltration (Eq. 29), and CFL in undrained and414

dry conditions (Eq. 30) are also presented for reference. All the expressions are415

evaluated considering !8 = 0.035< which corresponds to the minimum altitude416

of the element.417

The numerical results show a general increase of ΔC2 in the unsaturated regime.418
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Fig. 4. ΔC2 results from MPM simulations compared with mathematical expressions and literature

criteria. Sand SWRC.
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Fig. 5. ΔC2 results from MPM simulations compared with mathematical expressions and literature

criteria. Silt SWRC.
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Fig. 6. ΔC2 results from MPM simulations compared with mathematical expressions and literature

criteria. Clay SWRC.
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Sand Silt Clay

(<8= [-] 0.003 0.001 0.001

(<0G [-] 1.0 1.0 1.0

?A4 5 [kPa] 9.9 100.0 196.0

_ [-] 0.8 0.75 0.5

Table 5. Van Genuchten parameters for the three SWRCs used in the critical time step numerical

analysis.

The coupled criterion ΔC2,�>D?;43 appears as the one better fitting the results,419

however, it overestimates ΔC2 near the extremes (dry and saturated conditions).420

ΔC2,"84A4<4C030?C43 is the second closest criterion, and it trends to be more con-421

servative than ΔC2,�>D?;43 . It is important to note that near the dry conditions422

((! ≈ 10−2) a sharp decrease of ΔC2 is consistently observed. This decrease is423

highlighted by ΔC2,�>D?;43 , ΔC2,!8@D83 and ΔC2,"84A4<4C030?C43 criteria. It should be424

noted that the use of ΔC2,"84A4<4C030?C43 is limited by negative values under the425

square root present at the numerator of this expression (Eq. 34). This situation426

seems to occur when suction values are extremely high (i.e. (! is very low).427

This behaviour occurs for silt SWRC when B > 1800:%0 and for clay SWRC428

when B > 4500:%0 (although it is difficult to appreciate in the figures because429

of the logarithmic scale). These values of suction are hardly encountered in real430

geotechnical scenarios.431

To better quantify the increase of ΔC2 in unsaturated conditions and to visualize the432

effect of each material parameter on it, in Fig. 7(a) the numerical ΔC2 values are433

normalized with respect to ΔC2,"84A4<4C (criterion for saturated conditions, Eq. 34).434

We can observe that smaller porosity values result in bigger ΔC2, as highlighted435
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by circle and diamond symbols. On the other side, the higher Young modulus436

results in lower ΔC2 values, visible with square and cross symbols. Furthermore,437

the higher Young modulus gives a more flat trend in the interval between (! =438

0.2 and (! = 0.8. It is interesting to observe the comparable (in some cases439

identical) increase in ΔC2 among the different materials for the same combination440

of porosity and Young modulus. The major differences occur when approaching441

dry conditions.442

In addition, in Fig.7(b), the outcomes using the samemodel scaled up 10 times, !8 =443

0.5< are introduced to emphasize the mesh size effect on ΔC2. This comparison is444

related to the silt material. It is clear that ΔC2 depends on the mesh size. Results445

with the coarser mesh have a different trend of critical time step. The sharp446

reduction of ΔC2 near dry conditions is no more present, on the contrary, in this447

normalization, ΔC2 is continuously increasing and the two porosity values tested448

results in very similar results. A more extensive investigation in this regard is449

further necessary to understand the different behaviours.450

These preliminary results can encourage future studies and provide an indicative451

support to stimulate researchers using MPM unsaturated formulations in testing452

higher values of ΔC2 in situations where significant variations of (! or extreme453

values in the unsaturated regime, i.e. full saturation or dry conditions, are not454

encountered. Further studies need to be performed to investigate the effect of455

other parameters such as permeability on the stability of the solution.456

3.2. Boundary conditions457

Given the multi-phase nature of the formulation, the boundary conditions (BCs)458

need to be applied on each phase separately (solid, liquid, and eventually gas).459
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saturation degree (a) (!8 = 0.05<). Comparison of normalized ΔC2 for different mesh sizes using
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Material point (MP)

Boundary node (BN)

Non-active node

Active node

Boundary cell

Traction or 
pressure BC

Boundary layer

Material point with prescribed 
traction or pressure

Fig. 8. BC applied with the boundary layer approach.

Two kinds of BCs can be distinguished – essential and natural. Essential BCs460

are imposed directly on the solution, and the degrees of freedom are eliminated461

from the system of equations. Fixities, prescribed accelerations, velocities, or462

displacements are typical examples of essential BCs. Natural BCs are imposed463

on a secondary variable, such as stresses or pressures, and they are included in464

the weak form of the governing equations. In classical FEM, the application of465

BCs is relatively simple as these can be specified directly on the boundary nodes,466

which coincide with the boundary of the continuum body, and are well defined467

throughout the computation. However, the computational mesh in MPM does not468

necessarily align with the boundary of the material making the application of the469

BCs more challenging.470
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pressure BC

Fig. 9. BC applied at the boundary MP or at the boundary nodes.

Bandara et al. [25] apply the concept of boundary layer in which the applied471

traction or pressure is prescribed to all theMP inside the boundary cells. Boundary472

cells are those adjacent to empty cells, and they are determined at each time step473

(Fig. 8). The disadvantage of this approach is that traction (or pressure) is474

distributed over a thickness that has the size of the cell. In the Anura3D software475

[47] used by [23, 30, 32, 31] loads can be applied on either the boundary element476

side or the boundary material points (BMPs, Fig. 9) [49]. The first option477

is applicable only when the boundary of the body remains aligned with loaded478

element boundaries throughout the computation. The nodal traction force is479

integrated like in FEM applying Gauss quadrature and then used in the momentum480

balance equation. The applied load is thus integrated accurately, and the traction481

nodal force is non-zero only for the nodes belonging to the loaded surface. The482
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second option consists of storing the load on specific MPs (loaded BMP, LBMP)483

that can move through the mesh. This is mapped from LBMPs to all nodes of484

the element where it is located by means of the shape functions. In this way, the485

surface force is distributed across the layer of elements that borders the boundary,486

but the effect is less severe compared to the boundary layer approach. The LBMPs487

may move a long distance and become non-boundary material points, which may488

lead to unrealistic results.489

An alternative definition of pressure BC is the hydraulic head BC, which is very490

useful to simulate, for example, water levels in reservoirs [30, 50]. A total head491

value �̂ is prescribed on the boundary, which is related to the applied pressure ?̂!492

by means of Bernoulli’s equation (Eq. 35) where ℎ6 is the geometric head493

�̂ = ℎ6 −
?̂!

d!6
(35)

Essential BCs on the liquid phase include impermeable boundaries and infiltration494

BC. While the first is trivial, the second is more complex because the infiltration495

capacity of a soil depends on its hydraulic conductivity, and it can be solved496

in different ways. Bandara et al. [25] impose the infiltration velocity F̂ at the497

surface boundary nodes (BNs), i.e. nodes of the cell side which bound active and498

non-active nodes (Fig. 8). The infiltration velocity is applied only if the MPs499

located adjacent to the BNs are unsaturated. There is no control on the maximum500

infiltration velocity, i.e. the user should not apply a value of F̂ larger than the501

maximum soil infiltration capacity F̂<0G if ponding is not allowed. The case502

F̂ > F̂<0G will lead to pore pressures higher than zero at the boundary, meaning503

that a layer of free water is present above the free surface.504
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Martinelli et al. [31] and Ceccato et al. [30] apply a predictor-corrector scheme:505

liquid and solid velocities (Ẽ! , Ẽ() are predicted assuming zero pressure at the506

infiltration boundary and then (eventually) corrected to ensure the prescribed507

infiltration rate F̂ = =! (E! − E(). If the net infiltration discharge @=4C (Eq. 36) is508

positive, ponding conditions occur, and if fluid accumulation above the boundary is509

not allowed (it must remain at zero pressure), no correction is necessary, meaning510

that the maximum soil infiltration capacity is met. If the net infiltration discharge511

is negative or liquid ponding is allowed above the surface, then the liquid velocity512

must be corrected to ensure the correct infiltration rate.513

@=4C = (=! (ṽC+ΔC! − ṽC+ΔC( ) − ŵ) · n (36)

n is the normal direction at the node that is determined by means of the gradient514

of mass.515

The two approaches differ in terms of velocity correction. Martinelli et al. [31]516

correct both liquid and solid velocity, while Ceccato et al. [30] correct only liquid517

velocity. The first one accurately ensures the conservation of momentum balance518

of the mixture at the boundary, i.e. the total stress remains constant at the ground519

level. The second one implicitly assumes that the relative acceleration between520

solid and liquid is negligible and that the effective stress at the boundary is constant521

and equal to zero.522

In order to emphasize the difference between the two implementations on the523

results, a 1D infiltration example is used for comparison. A 1m-high soil column524

is considered with the material parameters listed in Tab. 6. For simplicity,525

the intrinsic permeability is assumed constant and equal to :! = 1 · 10−11<2,526
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corresponding to an hydraulic conductivity of ^ = 1.0 · 10−4m/s. Van Genuchten527

SWRC is accounted (Eq. 23), with parameters ?A4 5 = 3:%0, _ = 0.7, (<8= = 0.0,528

(<0G = 1.529

Solid density [:6/<3] d( 2700

Liquid density [:6/<3] d! 1000

Porosity [-] = 0.4

Liquid bulk modulus [:%0]  ! 80000

Liquid dynamic viscosity [:%0 · B] `! 1 · 10−6

Young modulus [:%0] � 10000

Poisson ratio [-] a 0.2

Table 6. Material parameters for 1D infiltration example with applied infiltration velocity.

The column is discretised with 20 rows of 2 square triangular elements filled with530

3 MPs each (Fig. 10a). The bottom and lateral boundaries are impervious, while531

a vertical infiltration rate F̂H = 1.0 · 10−4 m/s is applied at the top boundary. An532

initial suction of 2kPa is assigned along the column at C = 0, which corresponds533

to an initial degree of saturation (!0 = 0.85.534

The liquid infiltrates from the top and flows down through the column accumu-535

lating at the impervious bottom. Liquid suction decreases while soil saturates.536

As expected, the approaches proposed by Martinelli et al. [31] and Ceccato et al.537

[30] give different results. Due to the different correction of solid velocity, soil538

displacements at the column head are different. The approach from Ceccato et al.539

[30] results in a non-realistic solid velocity at the beginning of the calculation.540

This difference reduces with time, i.e. with the reduction of relative acceleration541

between liquid and solid. Despite the results obtained in terms of liquid pres-542
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Fig. 10. 1D infiltration BC (a) geometry of the problem, (b) liquid pressure with depth, (c)

displacement with time.

sures are very similar (Fig. 10b), the formulation from Martinelli et al. [31] is543

theoretically more accurate and therefore recommended.544

In some cases, it is unknown if the boundary is an essential or a natural BC, for545

example, interface between soil and atmosphere where the fluid is free to exit at546

zero pressure when the soil is saturated. Still, it cannot enter when the soil is547

partially saturated. This boundary is called potential seepage face, and it is typical548

of the downstream surface of a dam or levee, or it can also arise on the reservoir549

side after a rapid drawdown of the water level.550

Once more, Bandara et al. [25] solve this BC with the concept of boundary layer.551

If the boundary cell is fully saturated, i.e. (! = 1 for all MP inside the cell, the552

pore pressure of all the MPs inside the cell is set to zero. If the boundary cell is553

unsaturated, i.e. there is at least 1 MP for which (! < 1, then zero infiltration554
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rate is prescribed at the boundary nodes. The BC switches between natural and555

essential depending on the saturation level of the boundary cell. Ceccato et al.556

[30] solves the potential seepage face as a particular case of infiltration boundary557

condition in which F̂ = 0 and applies the predictor-corrector scheme described558

previously. In this case, the BC switches between natural and essential depending559

on the infiltration discharge (Eq. 36). Similarly, the formulation by Martinelli560

et al. [31] can also be used for the same purpose.561

4. Applications562

All MPM formulations for partially saturated soils developed to simulate large-563

deformation problems were first validated using applications where soil displace-564

ment is limited. In general, the 1D infiltration problem is considered and the565

MPM results are compared with analytical solutions [24, 29], experimental data566

[25, 27, 16], or FEM calculations [33, 30, 31, 16].567

For large-deformation applications, the MPM formulations for unsaturated soils568

were mainly used to study rainfall-induced slope failures, with particular emphasis569

on levees [30], embankments [24, 23] and landslides [25, 27, 32, 51, 16]. Ceccato570

et al. [30] looked at the displacement evolution of a levee after failure induced571

different boundary conditions, i.e. the rapid drawdown of the water level on the572

river side or an infiltration due to heavy rainfall, highlighting the importance of573

a large deformation tool for improving the accuracy of risk assessment. Yerro574

[24], Yerro et al. [23] described the instability of a embankment slope subjected575

to rain infiltration for a real case described in [52]. The model was able to show576

the development of the initial failure surface, and the progressive large strain577

deformation of the slope together with the dynamics of the motion characterised578
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by the history of displacement, velocity and acceleration of the unstable mass.579

The first rainfall-induced landslide using MPM considering a rainfall boundary580

condition was performed by Bandara et al. [25] for a case study inspired by the581

full-scale field test performed in Rüdlingen, Switzerland [53]. The model was582

able to show the negative effects on the stability of unsaturated slopes due to the583

presence of continuous rainfall and shallow soil cover to bedrock surface. Wang584

et al. [27] highlighted the importance of using coupled formulations for rainfall-585

induced landslides, as large difference in retrogressive failure modes was observed586

compared to the total stress analysis. More recently, the catastrophic event of587

the Fei Tsui Road landslide, occurred on 13 August 1995 in Hong Kong, was588

studied [32, 51, 54]. The first attempt was made by Lee et al. [32] where a linearly589

distributed suction with depth was initialized and the rainfall was applied as zero590

suction at the free surface. The evolution of the degree of saturation during the591

failure is illustrated in Fig. 11. Later on, Liu et al. [51] revised the initial conditions592

and simulated the failure process using a rainfall intensity equal to the saturated593

conductivity of the soil. Lastly, Cuomo et al. [54] simulated the complete rainfall594

event, exploring the failure process also in axisymmetric conditions.595

Beside slope instability, other interesting applications using MPM for unsaturated596

soils are in the field of site investigation, soil-structure interaction (e.g. pile597

installation), excavation and trenching, and many others. For example, the role of598

unsaturated behaviour during soil characterization by means of site investigation599

(e.g. CPT, SPT, DMT, etc.) is relevant for soils above the water table. A new600

example of cone penetration test (CPT) in unsaturated soil is illustrated hereafter.601

The numerical simulation represents a penetration of a CPT, with radius A2 = 3.6602

cm, in a virtual calibration chamber. The thickness of the soil domain is 1 m and603
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Fig. 11. Evolution of the degree of saturation during failure ([32])

the radius of 84 cm, loaded by 50 kPa constant in time. The computational mesh604

and numerical settings are equivalent to the one used by Martinelli and Galavi605

[55] for dry sand, but here unsaturated soil is considered. The soil behaviour606

is simulated using Mohr-Coulomb model with friction angle q = 28◦ and zero607

cohesion. The full list of material parameters is in Table 6 and the water retention608

curve is the one for "clay" in Table 5. The contact between pile and penetrometer is609

perfectly smooth. The simulations are performed using the unsaturated formulation610

described in [31], with the additional assumption that soil-water relativemovement611

is negligible.612

Three different values of initial suction in the liquid pressure are considered (i.e.613

0, 50 and 100 kPa), and the corresponding initial effective stress is then calculated614

to meet the equilibrium. The cone penetrates 40 cm into the soil sample and the615

cone resistance (@2) is calculated as the ratio between the vertical reaction forces616
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on the cone and the area of the cross section of the penetrometer. The evolution617

of @2 during the penetration is illustrated in Fig. 12, where the cone resistance618

increases with the initial suction (D0).619

Fig.13 shows the distribution of pore water pressure in a close-up view of the620

computational mesh, close to the cone, at the penetration of 40 cm. It is observed621

that, if D0 = 0, the soil domain is fully saturated and large pore water pressure622

is computed nearby the cone and along the shaft. In this case, a soil region of623

approximately 5 cone radii (5A2) is affected by such a large pore water pressure624

change. As the initial suction increases (D0 = 50 or 100 kPa), the degree of625

saturation decreases and the volumetric compressibility increases. It follows that,626

during the penetration, large pore pressures can still be developed below the cone,627

due to the large volumetric strains. However, the larger soil compressibility makes628

such a pore pressure changes concentrated in the vicinity of the penetrometer,629

whereas the rest of the domain remain almost unaffected.630

Despite the relatively simple constitutive model used for to describe soil behaviour,631

this example highlights the important role of the initial suction and the unsaturated632

behaviour of soils on the measured cone resistance during site investigations.633

As discussed in Sec. 3.1, all MPM formulations developed for unsaturated soil634

are implemented in explicit, typically suitable for fast processes (e.g. impacts,635

fast flows). For some of the applications which include long-term process (e.g.636

consolidation or creep), the very small time step, required by explicit integration637

schemes for stability criteria, makes the simulation extremely time consuming and638

sometimes unfeasible. The implementation of implicit MPM codes will overcome639

this issue.640
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Fig. 12. Cone resistance with depth. Effect of initial suction (D0) in water.

Fig. 13. Cone penetration of 40 cm. Distribution of pore water pressure in the soil nearby the

cone. Effect of initial suction (D0) in water: (a) D0 = 100 kPa; (b) D0 = 50 kPa; (c) D0 = 0 kPa.

(negative values are in compression)
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5. Conclusions641

This paper presented an overview of the MPM formulations available for the642

simulation of unsaturated soils. Three-phase and two-phase formulations are643

proposed in the literature. The first one accounts for solid-liquid-gas interactions,644

while the second one neglects the pressure and density of the gas. While the three-645

phase formulations can be essential for the simulation of problems where pressure646

variations are important such as extremely rapid motions and explosion, the two-647

phase formulations are adequate for the study of problems where the gas pressure648

remains constant. The two-phase approach is computationally more efficient than649

the three-phase one because a reduced number of governing equations is required.650

Most of the formulations include all inertial terms, which is idealwhen dealingwith651

dynamic problems. Neglecting the relative acceleration of the fluid with respect652

to the solid is not recommended in dynamic problems where relative movement653

between liquid and solid is expected. Finally, a few approaches neglect the gradient654

of fluid mass when evaluating the mass balances. This assumption is acceptable655

for most of the pressure gradients and SWRC present in many geotechnical appli-656

cations, but it can induce errors when large gradients of pressure and degree of657

saturation are expected.658

All MPM formulations currently available for unsaturated soils are integrated659

using explicit time schemes. The stability of the solution is limited by a critical660

time step. This paper presents the first investigation on the effects of degree of661

saturation (among other properties) on the stability of the solution. In general, the662

critical time step increases in unsaturated conditions. Practical recommendations663

are proposed based on the results to optimize the time step of the calculations.664
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Nevertheless, the implementation of implicit schemes is needed to study long-term665

processes efficiently.666

Despite the large number of geotechnical applications involving unsaturated soils,667

a limited number of problems have been investigated, mainly focused on slope668

stability and runout analysis. In this paper, preliminary results of a CPT model are669

presented to illustrate the capabilities of unsaturatedMPM in application involving670

soil-structure interaction.671
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7. Appendix675

In this appendix, we present the steps followed to study the stability of the for-676

mulation presented by Ceccato et al. [30] for the simulation of unsaturated soils.677

Three different ΔC2 criteria are obtained taking into the stability of (a) the coupled678

system of momentum balance equations, (b) the momentum balance of the liquid679

phase, and (c) the momentum balance of the mixture.680

7.1. Stability of the coupled system of momentum balance equations681

The governing equations in the strong form considered are the liquid momentum682

balance and the mixture momentum balance as in683

d!a! = ∇?! − f3! + d!g (37)
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=(d(a( + =!d!a! = ∇ · 2 + d<g (38)

Additionally, themass balance equation is considered to express the liquid pressure684

as function of velocity (Eq.39). A linear elastic solid constitutive law (Eq.40) is685

assumed to express effective stress as function of solid displacements. The sign686

convention used expresses suction B as B = −?! .687

=

(
(L
mdL
m?L
+ dL

m(L
m?L

)
DS?L

DC
= dL=(Ldiv(vS − vL) − dL(Ldiv(vS) (39)

32′ = Ec · 39 (40)

If a single node 8 is considered, the momentum balances per unit volume at time C:688

can be written as a system of second-order ordinary differential equations (ODE).689

The homogeneous form for both equations is690

d!0
:
! + @!E

:
! − @!E

:
( +  !D

:
! +
(1 − =)
=

 !D
:
( = 0 (41)

(1 − =)dB0:( + =(!d!0
:
! +  (D

:
( +
(1 − =)
=

 !D
:
( +  !D

:
! = 0 (42)

where

@! =
(!=`!

:!
(43)

 ! =
(!

!2
8

· 1(
3(!
3B
+ (!
 F

) (44)

 ( =
�2

!2
8

(45)

In this notation  F is the bulk modulus of the liquid, while  ! is a term which691

includes  F, (! is the saturation degree, 3(!
3B

is the derivative of (! respect to692
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suction, and !8 is the characteristic length of the element. The use of an Euler-693

Cromer time scheme leads to the following set of equations for the kinematic694

variables of liquid and solid phases.695

E:+1! = E:! + ΔC 0
:
! (46)

E:+1( = E:( + ΔC 0
:
( (47)

D:+1! = D:! + ΔC E
:+1
! (48)

D:+1( = D:( + ΔC E
:+1
( (49)

From Eq.41 and Eq.42 it is possible to express accelerations as function of all the696

other terms as follows.697

0:! = −
@!

d!
E:! +

@!

d!
E:( −

 !

d!
D:! −

(1 − =)
=d!

 !D
:
( (50)

0:( = −
=(!d!

(1 − =)dB
0:! −

 (

(1 − =)dB
D:( −

 !

=d(
D:( −

 !

(1 − =)dB
D:! (51)

Now, the acceleration expressions (Eqs. 50 and 51) are substituted in the explicit698

time scheme set (Eqs. 48, 46, 49, 47).699

D:+1! = D:! + ΔC
[
E:! + ΔC

(
− @!
d!

E:! +
@!

d!
E:( −

 !

d!
D:! −

(1 − =)
=d!

 !D
:
(

)]
(52)

E:+1! = E:! + ΔC
(
− @!
d!

E:! +
@!

d!
E:( −

 !

d!
D:! −

(1 − =)
=d!

 !D
:
(

)
(53)

D:+1( = D:( +ΔC
[
E:B +ΔC

(
− =(!d!

(1 − =)dB
0:! −

 (

(1 − =)dB
D:( −

 !

=d(
D:( −

 !

(1 − =)dB
D:!

)]
(54)
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E:+1( = E:( + ΔC
(
− =(!d!

(1 − =)dB
0:! −

 (

(1 − =)dB
D:( −

 !

=d(
D:( −

 !

(1 − =)dB
D:!

)
(55)

The coefficients’ matrix of the system of Eqs.52, 53, 54, 55 is evaluated to solve700

the eigenvalues problem,701

34C (� − _�) = 0 (56)

Thus, a quadratic equation for _ is obtained, where the terms ≥ ΔC32 are neglected,702

_2 + _
(
ΔC2@!& −

2ΔC22
dB
+
 !ΔC

2
2

d!
− 2

)
+

(
1 − ΔC@!&

)
= 0 (57)

If Eq.57 is solved for ΔC2 by imposing |_ | = 1, it results in703

ΔC2 =

−@!& +
√
(@!&)2 + 4

(
 !
d!
− 2

dB

)
(
 !
d!
− 2

dB

) (58)

Arranged in a more general form, it is equivalent to Eq.33 proposed by [24],704

ΔC2 =
2
l

[
− b +

√
b2 + 1

]
(59)

where705

l2 =

√( !
d!
− 2

dB

)
=

1
!8

√√√[ (!(
3(!
3B
+ (!
 F

) ] [ 1
d!
+ 1
d(
(1
=
− (!)

]
+ �2

d( (1 − =)

(60)

b2 =
@!&

2l2
=
(!=`!

2:!l2

[ (!=

(1 − =)d(
+ 1
d!

]
(61)
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7.2. Stability of the momentum balance of the liquid phase706

Same procedure presented for the coupled system can be applied to study the707

stability of the momentum balance of the liquid phase. By considering the ho-708

mogeneous form of Eq.41 (without the terms referring to the solid phase), we709

obtain710

d!0
:
! + @!E

:
! +  !D

:
! = 0 (62)

The set of two ODEs (by considering the Euler-Cromer time scheme) is now711

D:+1! = D:! + ΔC
[
E:! + ΔC

(
− @!
d!

E:! −
 !

d!
D:!

)]
(63)

E:+1! = E:! + ΔC
(
− @!
d!

E:! −
 !

d!
D:!

)
(64)

The characteristic polynomial based on the resolution of the eigenvalues problem712

for Eqs. 63 and 64 is713

_2 + _
(ΔC2@!
d!
+
 !ΔC

2
2

d!
− 2

)
+

(
1 − ΔC2@!

d!

)
= 0 (65)

Eq.65 solved for ΔC2 gives714

ΔC2 =

− @!
d!
+

√(
@!
d!

)2
+ 4 !

d!

 !
d!

(66)

Arranged in a more general form, it is equivalent to 33, where715
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l! =

√
 !

d!
=

1
!8

√√√
(!

d!

(
3(!
3B
+ (!
 F

) (67)

b! =

(
@!
d!

)
2l!

=
(!=`!

2:!l!
1
d!

(68)

7.3. Stability of the momentum balance of the mixture716

Same procedure presented for the coupled system can be applied to study the sta-717

bility of the momentum balance of the mixture. By considering the homogeneous718

form of Eq.42, we obtain719

(1 − =)d(0:( + =(!@!E
:
( +

[
 ( + (1 − =)

(
− (! +

1
=

)
 !

]
D:( = 0 (69)

The set of 2 ODEs (by considering the Euler-Cromer time scheme) is now720

D:+1( = D:( + ΔC (E
:
B + ΔC0:B ) (70)

E:+1( = E:B + ΔC0:B (71)

The characteristic polynomial (related to Eqs.70 and 71) is now721

_2 + _
[
%ΔC22 +

(!ΔC2=@!

(1 − =)d(
− 2

]
+

[
1 − (!ΔC2=@!(1 − =)d(

]
= 0 (72)

where the term % is expressed as722

% =
1
d(

[  (

(1 − =) +
(
− (! +

1
=

)
 !

]
(73)
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If we solve Eq.72 for ΔC2 we obtain723

ΔC2 =

(
− =(!@!
(1−=)dB +

√(
=(!@!
(1−=)dB

)2
+ 4%

)
%

(74)

Arranged in a more general form, it is equivalent to 33, where724

l" =
√
% =

1
!8

√√√ 1
d(

[ �2

(1 − =) +
(
− (! +

1
=

) (!(
3(!
3B
+ (!
 F

) ] (75)
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(
=(!@!
(1−=)dB

)
2l"

=
(2
!
=2`!

2(1 − =)dB:!l"
(76)
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