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Riassunto

Questa tesi di dottorato tratta alcune applicazioni dei metodi di estrapolazione.

Spesso in analisi numerica e nella matematica applicata si devono trattare successioni

che convergono lentamente al loro limite. I metodi di estrapolazione possono essere

utilizzati per accelerare la convergenza di una successione che converge lentamente o

anche per sommare serie divergenti.

I primi due capitoli della tesi sono dedicati alle trasformazioni di successioni scalari.

Viene ripreso il ∆2 di Aitken e vengono proposte tre nuove trasformazioni che lo gener-

alizzano. Le proprietà di convergenza e di accelerazione di una delle trasformazioni sono

discusse teoricamente e verificate sperimentalmente usando delle successioni divergenti

e convergenti. La trasformazione di Shanks e l’ε-algorithm di Wynn sono accuratamente

studiati; vengono richiamate le regole particolari proposte da Wynn per il trattamento

delle singolarità isolate, ovvero quando due elementi consecutivi sono uguali o quasi

uguali, ed anche le regole particolari, più generali, proposte da Cordellier, per il trat-

tamento delle singolarità non isolate, ovvero quando più di due elementi sono uguali.

Viene proposta una nuova generale implementazione delle regole particolari in modo da

poter trattare tutti i casi possibili, ossia la presenza di singolarità causata da due o più

elementi che sono uguali o quasi uguali.

Nella parte rimanente della tesi ci si concentra sull’estrapolazione vettoriale. Prima

vengono brevemente descritti l’ε-algorithm vettoriale, l’ε-algorithm topologico e la sua

versione semplificata, recentemente introdotta da Brezinski e Redivo-Zaglia. Succes-

sivamente, vengono presentate, con una notazione unificata le Algebraic Reconstruc-

tion Techniques (ART), le Simultaneous Iterative Reconstruction Techniques (SIRT) e

altri metodi iterativi di regolarizzazione, che sono comunemente utilizzati per risol-

vere problemi inversi lineari. Infine, vengono illustrati i vantaggi ottenuti applicando

l’estrapolazione ai precedenti metodi iterativi, utilizzati su problemi relativi alle im-

magini. In particolare, viene utilizzato il simplified topological ε-algorithm al fine di

estrapolare una successione generata da metodi di tipo Landweber e Cimmino quando

si risolvono problemi di ricostruzione e di restauro di immagini. I risultati numerici

mostrano un buon comportamento dei metodi accelerati rispetto alle loro versioni non

accelerate ed anche rispetto ad altri metodi.
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Abstract

This Ph.D. thesis discusses some applications of extrapolation methods. In numer-

ical analysis and in applied mathematics one has often to deal with sequences which

converge slowly to their limit. Extrapolation methods can be used to accelerate the

convergence of a slow converging sequence or even to sum up divergent series.

The first two chapters of this thesis are devoted to scalar sequence transformations.

We revisit Aitken’s ∆2 process and we propose three new transformations which gen-

eralize it. The convergence and acceleration properties of one of our transformations

are discussed theoretically and verified experimentally using diverging and converging

sequences. Shanks transformation and Wynn’s ε-algorithm are studied extensively; we

remind the particular rules due to Wynn for treating isolated singularities, i.e. when

two consecutive elements are equal or almost equal, and the more general particular

rules proposed by Cordellier for treating non-isolated singularities, i.e. when more than

two elements are equal. A new implementation of the generalized particular rule is

given covering all the cases, namely singularities caused by two or more elements that

are equal or almost equal.

In the remaining part of the thesis we focus on vector extrapolation. First we briefly

describe the vector ε-algorithm, the topological ε-algorithm and the simplified topolog-

ical ε-algorithm, which was recently introduced by Brezinski and Redivo-Zaglia. In the

sequel, we present under a unified notation the Algebraic Reconstruction Techniques,

the Simultaneous Iterative Reconstruction Techniques, and other iterative regulariza-

tion methods, which are commonly used for solving linear inverse problems. Last,

we study the gain of applying extrapolation on these methods in imaging problems.

In particular, we use the simplified topological ε-algorithm in order to extrapolate a

sequence generated by methods such as Landweber’s and Cimmino’s when solving im-

age reconstruction and restoration problems. The numerical results illustrate the good

performance of the accelerated methods compared to their unaccelerated versions and

other methods.
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Introduction

In numerical analysis and in applied mathematics, often we have to deal with slow

converging sequences and series. As a result, we have to compute a big amount of

terms in order to obtain a good approximation. This problem can be solved by using

convergence acceleration methods which are based on the idea of extrapolation. In this

thesis we focus on the acceleration that a sequence transformation can bring. More

precisely, we use a sequence transformation in order to transform the initial sequence

into another one, which, under some assumptions, converges faster to the same limit.

In other words, if the transformation is able to accelerate the convergence of the initial

sequence, then a smaller number of terms needs to be computed and this enables to

estimate the limit faster and sometimes more accurately. We would like to stress that

sequence transformations are also used for summing up divergent sequences and series.

It has been shown that a universal transformation able to accelerate any sequence

cannot exist (see [30, 31]). For this reason, in practical situations it is better to con-

struct new transformations depending on the specific class of sequences that we want to

accelerate. Of course, if a class is too small, the transformation will be very specific and

it will be able to accelerate only a limited number of sequences. On the other hand, nu-

merical experiments have shown that such a specialization provides better acceleration

properties of the transformation when applied to certain sequences.

Several works are available in the literature about sequence transformations (e.g.

[14, 16, 18, 30, 60, 69, 73]) and how to use them in practical situations (e.g. [11, 54,

56, 67]). In particular, [61, 62, 63] study extensively vector extrapolation algorithms.

See also [37] for a discussion on the efficiency of several numerical techniques in the

evaluation of power series expansions for special functions.

In this thesis we study the most significant scalar sequence transformations. We also

construct some new transformations for the acceleration of a special class of sequences.

1



2 CONTENTS

Furthermore, we revise certain vector extrapolation methods. For one of them we test

its performance when applied to well-known iterative regularization methods. This is-

sue is related to one of the numerous applications of extrapolation methods, namely the

solution of a system of equations. More precisely, when we use an iterative method for

approximating the solution of a system, we obtain a sequence which we will attempt to

accelerate by using a vector extrapolation algorithm.

The main contributions of this thesis are summarized in the following list:

• The introduction of a new algorithm for implementing properly the general par-

ticular rules of the ε-algorithm so that the algorithm becomes more efficient.

• We introduce some new scalar sequence transformations, which generalize

Aitken’s ∆2 process.

• We revise under a unifying framework all the Algebraic Reconstruction Tech-

niques, the Simultaneous Iterative Reconstruction Techniques, and other known

iterative regularization methods. We emphasise on Cimmino’s method, present-

ing the original work of Cimmino in a more comprehensible way, introducing a

general formula and a new variant.

• we apply a general extrapolation method, namely the simplified topological ε-

algorithm, to various iterative methods and we explore the performance in imaging

problems. We give some insight into the acceleration properties of some particular

methods and we provide some informal and additional insight into the regularized

properties of the proposed strategies. We study the choice of the vector y used

in the definition of the simplified topological ε-algorithm and we propose some

“good” choices considering a certain extrapolated method.

The contents of each chapter are presented below:

• Chapter 1: We revise some basic scalar extrapolation methods and algorithms,

namely ∆2 process, Shanks transformation and ε-algorithm. The particular rules

of Wynn are revised.

• Chapter 2: Cordellier’s particular rules which extend those of Wynn are studied.

The algorithm that implements the ε-algorithm with the general particular rules

is extended, so that it can treat any kind of singularities.
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• Chapter 3: We construct three transformations that aim to the acceleration of

a certain class of sequences generalizing ∆2 process. One of the transformations

is studied further theoretically and its convergence and acceleration properties

are analyzed. Numerical experiments compare the performance of the proposed

transformations, also with other known scalar sequence transformations and il-

lustrate the good performance in the convergence acceleration of both diverging

and converging sequences.

• Chapter 4: We briefly describe the vector ε-algorithm of Wynn, the topological

ε-algorithms of Brezinski, and the simplified topological ε-algorithms recently

proposed by Brezinski and Redivo-Zaglia.

• Chapter 5: We revise the Algebraic Reconstruction Techniques (ART) and the

Simultaneous Iterative Reconstruction Techniques (SIRT). We study separately

Cimmino’s method, for which we propose a generalization and discuss several

variants among which a new one. The projected SIRT methods and the semi-

iterative methods are also recalled.

• Chapter 6: We use the simplified topological ε-algorithm in order to accelerate

the convergence of several iterative regularization methods. Apart from the nu-

merical tests which are focused on imaging problems, we provide an insight and

algorithmic details about the simplified topological ε-algorithm (STEA) applied

to Cimmino and Landweber methods. We also develop a theoretical study on the

acceleration properties of a particular extrapolated method and we provide some

informal and additional insight into the regularized properties of the proposed

strategies. The choice of the vector y involved in the formulation of STEA is

discussed.

The author would like to stress that the results presented in Chapter 3 are published in

[23]. Also, the material presented in Chapter 6 is part of the work originally developed

in the submitted paper [35].

Notation. Throughout this thesis, elements of the vector space RN (or a generic

topological space) are written in bold, while regular typeface corresponds to scalars.

Unless otherwise stated, we denote the ith component of a vector z ∈ RN by zi, i =



4 CONTENTS

1, . . . , N . All vectors are column vectors, ai = ATei is the column vector formed by the

ith row of A, ei is the ith canonical basis vector of appropriate dimension, and I is an

identity matrix of appropriate size. The notation 〈y,x〉 = yTx stands for the standard

inner product on RN , and ‖x‖ denotes the Euclidean vector norm. The spectral radius

(the largest positive eigenvalue) of a matrix A is denoted by ρ(A). N (A) stands for the

null space of the matrix A, and R(A) is the range or column space of the matrix A.



Chapter 1

Scalar extrapolation methods and

algorithms

In this chapter we give an insight into sequence transformations (or extrapolation meth-

ods), which are used in order to estimate more efficiently the limit of a convergent

sequence or to sum up divergent sequences and series. First, we revise some well-known

scalar extrapolation methods, namely ∆2 process and Shanks transformation. We ex-

tensively study the scalar ε-algorithm, one of the classical extrapolation algorithms

used for the implementation of Shanks transformation. We focus on the particular

rules given by Cordellier [28] who extended Wynn’s particular rules [76] to the case of

an arbitrary number of equal quantities in the ε-array. The chapter concludes with an

appropriate Matlab code covering all the cases.

1.1 An introduction in sequence transformations

Let (Sn) be a sequence of (real or complex) numbers which converges to S. We may

use a sequence transformation T and transform the initial sequence (Sn) into another

sequence (Tn). An example of a scalar sequence transformation is Aitken’s ∆2 process

[3]

Tn =
SnSn+2 − S2

n+1

Sn+2 − 2Sn+1 + Sn
, n = 0, 1, . . . (1.1)

In order to present some practical interest, the new sequence (Tn) should

X converge,

5
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X have the same limit as (Sn),

X converge faster than (Sn), that is lim
n→∞

Tn − S
Sn − S

= 0.

If the last relation is satisfied, we say that the transformation T accelerates the conver-

gence of the sequence (Sn).

The three aforementioned properties usually do not hold for all the convergent

sequences (Sn). Especially the last property is the most difficult to be satisfied for all

the sequences. In fact, it has been proved that a transformation able to accelerate any

sequence does not exist (see [30, 31]). Instead, every sequence transformation is only

able to accelerate the convergence of certain classes of sequences. For example, Aitken’s

process accelerates the convergence of all the sequences for which ∃ λ ∈ [−1,+1[ such

that

lim
n→∞

Sn+1 − S
Sn − S

= λ.

However, for this transformation the first two properties are not satisfied for all con-

vergent sequences. In [18, Section 2.3] one can find examples of convergent sequences

(Sn) for which the sequence (Tn) obtained by Aitken’s process has two accumulation

points. On the other side, it is true that if such a (Tn) converges, then its limit is the

same as the limit of the sequence (Sn) (see [68]).

In conclusion, we may say that in practical situations it is preferable to develop

new algorithms depending on the class of sequences of interest. Apparently, if this

class is too small, such transformation will be very specific and hence it will be useful

only in particular cases; on the other hand, such specialization typically provides better

acceleration properties. For this reason, in the study of a sequence transformation the

first question to be asked and solved (before those of convergence and acceleration) is

which is the kernel. The kernel KT of a transformation T : (Sn) 7−→ (Tn) is defined as

the set of all the sequences (Sn) which are transformed by T into a constant sequence,

which is usually the limit (if it exists) of the sequence Sn,

i.e. ∃S such that Tn = S, ∀n ≥ N (for some N > 0).

For instance, it has been proved that the kernel of ∆2 process consists of all and only

the sequences of the form

Sn = S + aλn, n = 0, 1, . . . (1.2)
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where a and λ are scalars such that a 6= 0 and λ 6= 0, 1. In general, sufficiency is difficult

to prove. We refer to [18, 20] for a detailed discussion on this transformation.

The equation (1.2) is the explicit form of the kernel since it gives explicitly the form

of the sequences belonging to the kernel of Aitken’s process. An equivalent expression

is the so-called implicit form of the kernel, which for ∆2 process is described by the

next relation

Sn+1 − S = λ(Sn − S) (1.3)

The solution of the above difference equation is given by (1.2).

If the sequence to be accelerated belongs to the kernel of the transformation we use,

then, by construction, ∀n ≥ N, Tn = S. Although it has not yet been proved, numerical

experiments have always confirmed that the “closer” a sequence is to the kernel, the

faster the transformed sequence will converge (to the same limit).

Note that usually S is the limit of the sequence (Sn) but this is not always the case.

For example, in Aitken’s process, S is the limit of (Sn) if |λ| < 1; otherwise, for (Sn)

diverging, S is called the antilimit of the sequence. If |λ| = 1, then (Sn) has no limit at

all or it only takes a finite number of distinct values and S is their arithmetical mean.

Now that we have explained everything about the kernel of a transformation, we may

answer to the question What an extrapolation method is. A sequence transformation

T : (Sn) 7−→ (Tn) is said to be an extrapolation method if it is such that

∀n ≥ N, Tn = S if and only if (Sn) ∈ KT .

In other words, any sequence transformation is an extrapolation method.

Next we will explain how a transformation T is built from its kernel. In particular,

we will study the simple case of Aitken’s ∆2 process.

1.2 Aitken’s ∆2 process

The most simple sequence transformation that we will treat in this thesis is ∆2 process

(1.1). Let us see how this transformation can be derived from the kernel of ∆2 process.

We consider (1.3) and we write it under the following more general form

a0(Sn − S) + a1(Sn+1 − S) = 0, n = 0, 1, . . . (1.4)
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with a0 a1 6= 0 and a0 + a1 6= 0. In order to compute S we need to know the value of

a0, a1. We have, for all n,

a0∆Sn + a1∆Sn+1 = 0, (1.5)

where ∆ is defined by ∆Sn = Sn+1 − Sn and ∆k+1Sn = ∆kSn+1 −∆kSn, n = 0, 1, . . ..

Adding to the equation (1.5) the condition a0 + a1 = 1 we obtain a system in the

unknowns ai. Once we know the coefficients ai, we can compute S as follows

S = a0Sn + a1Sn+1. (1.6)

Writing (1.6) for the indices n, n+ 1, we obtain the system{
S = a0Sn + a1Sn+1

S = a0Sn+1 + a1Sn+2

(1.7)

If Sn does not belong to the kernel (1.4), we can still develop the above procedure.

The only difference is that now both the coefficients ai and the linear combination

a0Sn + a1Sn+1 will depend on n and k.

Since Tn = S, we can write{
Tn = a0Sn + a1Sn+1

Tn = a0Sn+1 + a1Sn+2

(1.8)

We add and subtract Sn to the first equation and Sn+1 to the second one. Being

a0 + a1 = 1, we set b = a0 − 1 and we have{
Sn = Tn + b∆Sn

Sn+1 = Tn + b∆Sn+1

(1.9)

Using Cramer’s rule for the solution of a system of linear equations, we write Tn as the

following ratio of determinants

Tn =

∣∣∣∣∣ Sn Sn+1

∆Sn ∆Sn+1

∣∣∣∣∣∣∣∣∣∣ 1 1

∆Sn ∆Sn+1

∣∣∣∣∣
The computation of the determinants gives

Tn =
SnSn+2 − S2

n+1

Sn+2 − 2Sn+1 + Sn
, n = 0, 1, . . . (1.10)
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Note that the denominator is ∆2Sn = ∆Sn+1 − ∆Sn and this explains the name ∆2

process. Alexander Craig Aitken (1895-1967) used this method in [3] (1926), so it is also

named after Aitken. However, the ∆2 process was actually discovered by the Japanese

mathematician Takakazu Seki (?-1708) before 1680. The same method was obtained

by Hans von Naegelsbach (1838-?) in 1876 and by James Clerk Maxwell (1831-1879)

in 1873 but neither of them used it for the purpose of acceleration (see e.g. [15, 55] and

the references therein).

Formula (1.10) is highly numerically unstable since, if Sn, Sn+1 and Sn+2 are almost

equal when n tends to infinity, cancellation errors arise both in the numerator and in

the denominator and Tn is badly computed [18]. For that reason, in practice, we use

one of the following equivalent formulas

Tn = Sn −
(∆Sn)2

∆2Sn
= Sn+1 −

∆Sn∆Sn+1

∆2Sn
= Sn+2 −

(∆Sn+1)2

∆2Sn
, n = 0, 1, . . . (1.11)

Of course, cancellation errors again arise but in the correcting term to Sn, Sn+1, Sn+2

respectively, thus formulas (1.11) are much more stable than (1.10). Formulas (1.11) can

be considered particular rules for ∆2 process which we use in order to avoid propagation

of rounding errors due to the computer’s arithmetic.

1.3 Shanks transformation

This is certainly one of the most familiar scalar extrapolation methods. It was found by

Shanks [59] as a generalization of Aitken’s ∆2 process. Its kernel is the set of sequences

satisfying the homogeneous linear difference equation of order k

a0 (Sn − S) + a1 (Sn+1 − S) + · · ·+ ak (Sn+k − S) = 0, n = 0, 1, . . . (1.12)

where the coefficients ai are arbitrary constants independent of n such that a0ak 6= 0,

a0 + · · ·+ak 6= 0. Note that if we write (1.12) for k = 1 we obtain (1.4) that is Aitken’s

∆2 process.

We repeat the steps we followed for Aitken’s process, assuming that a0+· · ·+ak = 1,

we obtain, a formula analogous to (1.6)

S = a0Sn + · · ·+ akSn+k, n = 0, 1, . . . .

If Sn does not belong to the kernel (1.12), we can still develop the same procedure,

but now both the coefficients ai and the linear combination a0Sn + · · · + akSn+k will
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depend on n and k. For remembering this dependence we add to ai the superscript

(n, k) and we write

ek(Sn) = a
(n,k)
0 Sn + · · ·+ a

(n,k)
k Sn+k, k, n = 0, 1, . . . (1.13)

The coefficients a
(n,k)
i , i = 1, . . . , k, are solution of the system

a
(n,k)
0 + · · · + a

(n,k)
k = 1

a
(n,k)
0 ∆Sn + · · · + a

(n,k)
k ∆Sn+k = 0

...
...

...

a
(n,k)
0 ∆Sn+k−1 + · · · + a

(n,k)
k ∆Sn+2k−1 = 0

. (1.14)

Cramer’s rule gives

ek(Sn) =

∣∣∣∣∣∣∣∣∣∣∣

Sn Sn+1 · · · Sn+k

∆Sn ∆Sn+1 · · · ∆Sn+k

...
...

...

∆Sn+k−1 ∆Sn+k · · · ∆Sn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

∆Sn ∆Sn+1 · · · ∆Sn+k

...
...

...

∆Sn+k−1 ∆Sn+k · · · ∆Sn+2k−1

∣∣∣∣∣∣∣∣∣∣∣

k, n = 0, 1, . . . (1.15)

By construction, we have the following result

Theorem 1.1. ([18]) For all n, ek(Sn) = S if and only if ∃a0, a1, . . . , ak, with a0 ak 6= 0

and a0 + · · ·+ ak 6= 0, such that, for all n,

a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0. (1.16)

In other words, for k fixed (Sn) 7−→ (ek(Sn))n if and only if (Sn) belongs to the kernel

of Shanks transformation.

It is clear that the determinants in (1.15) cannot be computed easily as in Aitken’s

process, since for a large k such a computation would be prohibitive for the time required

but mostly from a numerical point of view. So what we do in this case is to compute

ek(Sn) recursively via an extrapolation algorithm. In particular, for the implementation

of Shanks transformation, we use the well-known ε-algorithm of Wynn.
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1.4 The scalar ε-algorithm

One of the most important scalar extrapolation algorithms is ε-algorithm. Proposed by

Wynn [75] for implementing Shanks transformation, the scalar ε-algorithm computes

the numbers ε
(n)
k by the following rules{

ε
(n)
−1 = 0, ε

(n)
0 = Sn, n = 0, 1, ...

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε(n)

k )−1, k, n = 0, 1, ...
(1.17)

Definition 1.1. We will refer to the relationship

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε(n)

k )−1 (1.18)

as the normal rule of the ε-algorithm.

Its connection with Shanks transformation is described by the following relationship

ε
(n)
2k = ek(Sn), k, n = 0, 1, . . .

The numbers ε
(n)
2k+1 are intermediate results and they are equal to 1/ek(∆Sn). The

numbers ε
(n)
k are displayed in a double entry table, called the ε-array, in such a way that

the index k denotes a column and the superscript n a descending diagonal. Notice that

the sum of k and n is constant among an ascending diagonal and reveal the number of

the diagonal (see Table 1.1).

Starting from the first two columns, the rule of the ε-algorithm allows to proceed

in the ε-array from left to right and from top to bottom.

By eliminating the columns with the same parity, we obtain the cross rule due to

Wynn (or Wynn’s identity)(
ε

(n)
k+2 − ε

(n+1)
k

)−1
+
(
ε

(n+2)
k−2 − ε(n+1)

k

)−1
=
(
ε

(n+2)
k − ε(n+1)

k

)−1
+
(
ε

(n)
k − ε

(n+1)
k

)−1
, k, n ≥ 0.

(1.19)

Of course, this rule is mathematically equivalent to the normal rule of the ε-algorithm. We

recall that in the application of the ε-algorithm the only useful columns are the even, whilst

the numbers ε
(n)
2k+1 are merely intermediate quantities. We can use Wynn’s identity in order

to compute only the even columns, adding the initial conditions{
ε

(n)
−2 =∞, n ≥ 2,

ε
(n)
0 = Sn, n ≥ 0.



12 CHAPTER 1. SCALAR EXTRAPOLATION ALGORITHMS

ε
(0)
−1 = 0

ε
(0)
0 = S0

ε
(1)
−1 = 0 ε

(0)
1

ε
(1)
0 = S1 ε

(0)
2

ε
(2)
−1 = 0 ε

(1)
1 ε

(0)
3

ε
(2)
0 = S2 ε

(1)
2

. . .

ε
(3)
−1 = 0 ε

(2)
1 ε

(1)
3

... ε
(3)
0 = S3 ε

(2)
2

. . .
...

... ε
(3)
1 ε

(2)
3

...
...

... ε
(3)
2

. . .
...

...
...

... ε
(3)
3

...
...

...
...

...
. . .

Table 1.1: The ε-array

Let us now come back to the normal rule of the ε-algorithm . We saw that the numbers ε
(n)
2k

are approximations of the limit S of the sequence (Sn). If the algorithm works well, then for

some k and n, ε
(n)
2k and ε

(n+1)
2k will be almost equal as they will be both good approximations

of S. Therefore in the computation of ε
(n)
2k+1, an important cancellation error will occur in

the difference ε
(n+1)
2k − ε(n)

2k . Thus ε
(n)
2k+1 will be large and badly computed. Similarly, if ε

(n+2)
2k

is close to S, then ε
(n+1)
2k+1 will be large and badly computed, too. Therefore, when we try to

compute ε
(n)
2k+2, the difference of two large and badly computed quantities appearing in the

denominator will cause numerical instability in the algorithm. In order to avoid such kind of

computational difficulties we use the particular rules of the ε-algorithm.

1.4.1 Particular rules

We already saw that the normal rule of the ε-algorithm (1.18) can suffer from a very serious

drawback: cancellation errors due to the computer’s arithmetic which result in a breakdown or

a near-breakdown. This happens when two or more consecutive elements of the same column

of the ε-array are equal or almost equal. In this case we say that we have a singularity. When

the elements involved in the singularity are only two, then we call it an isolated singularity;

otherwise we have a non-isolated singularity.
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Let us first focus on the simple case of an isolated singularity. We assume that ε
(n+1)
k−1 =

ε
(n+2)
k−1 = α. Then the state of affairs is as shown in Table 1.2. The singularity arising in the

column k− 1, influences further values of the rhombus; ε
(n+1)
k becomes formally ∞, ε

(n)
k+1 and

ε
(n+1)
k+1 are equal to α and ε

(n)
k+2 is indeterminate.

ε
(n)
k

(α)ε
(n+1)
k−1 (α)ε

(n)
k+1

ε
(n+2)
k−2 (∞)ε

(n+1)
k (∗)ε(n)

k+2

(α)ε
(n+2)
k−1 (α)ε

(n+1)
k+1

ε
(n+2)
k

Table 1.2: An isolated singularity.

In [76] Wynn describes how to jump over such a singularity. When it comes to compute

ε
(n)
k+2, instead of using the normal rule (1.18), he makes use of the particular rule

ε
(n)
k+2 = a

(
1 + a/ε

(n+1)
k

)−1
,

where

a = ε
(n+2)
k

(
1− ε(n+2)

k /ε
(n+1)
k

)−1
+ ε

(n)
k

(
1− ε(n)

k /ε
(n+1)
k

)−1
− ε(n+2)

k−2

(
1− ε(n+2)

k−2 /ε
(n+1)
k

)−1

(1.20)

If ε
(n+1)
k−1 and ε

(n+2)
k−1 are almost equal, then ε

(n+1)
k is large and ill-determined, but ε

(n)
k+1 and

ε
(n+1)
k+1 computed using the normal rule (1.18) are quite well determined, and so is ε

(n)
k+2 derived

from (1.20). When ε
(n+1)
k−1 and ε

(n+2)
k−1 are exactly equal, the singular rule for the ε-algorithm

reduces to

ε
(n)
k+2 = ε

(n+2)
k + ε

(n)
k − ε

(n+2)
k−2 . (1.21)

In order to facilitate the discussion, we denote the elements of Table 1.2 by their cardinal

position in the array (C stands for center), as shown in Table 1.3.

With this notation, (1.19) can be written as

(E − C)−1 + (W − C)−1 = (S − C)−1 + (N − C)−1 (1.22)

or, equivalently,

E = C +
[
(S − C)−1 + (N − C)−1 − (W − C)−1

]−1
. (1.23)
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N

NW NE

W C E

SW SE

S

Table 1.3

Using the normal rule of the ε-algorithm (1.18) we have

C = W + 1/(SW −NW ),

NE = NW + 1/(C −N),

SE = SW + 1/(S − C),

E = C + 1/(SE −NE).

We observe that if N = C, then NE is infinity, and if S = C, then SE is infinity. Being

NE and SE both infinity, E is undefined and the computations have to be stopped. There

is a breakdown in the algorithm. The same is true if NW = SW since then C is infinity.

If N 6= C , then NE = NW = SW . If S 6= C, then SE = SW = NW = NE and E is

undefined. If N is different from C but very close to it, then a cancellation error arises in the

computation of NE which will be large and badly computed. The same is true for SE if S is

different from C but close to it. If NW is different from SW but close to it, C will be large

and badly computed. Thus NE and SE will be almost equal and E will be different of two

large and badly computed numbers. There is a near-breakdown in the algorithm.

With the new terminology, the particular rule (1.20) can be written as follows

E = r(1 + r/C)−1,

where r = S(1− S/C)−1 +N(1−N/C)−1 −W (1−W/C)−1.
(1.24)

This rule was shown to be more stable than the rule given above for computing E. If C is

infinity, it reduces to

E = S +N −W (1.25)

thus allowing to compute E by jumping over the singularity (or the breakdown). We recall

that this rule is valid when there is only one isolated singularity that is when N and S are

not infinity, or, equivalently, when only two adjacent quantities in a column (NW and SW

in our example) are equal or almost equal.



Chapter 2

An extension of Wynn’s particular

rules

In the previous chapter we reminded the particular rules proposed by Wynn for treating

isolated singularities. Cordellier [28] extended these rules for the case of an arbitrary

number of equal quantities in the ε-algorithm. In this chapter we complete these rules

discussing also the case of non-isolated singularities caused by almost equal values and

we propose an algorithm for the implementation of ε-algorithm with the generalized

particular rule.

2.1 Cordellier’s particular rules

We recall that when three or more consecutive elements of the same column in the

ε-array are equal or almost equal, we have a non-isolated singularity. An example of

a singularity of size m + 1, that is a singularity caused by m + 1 (exactly or almost)

equal values, is shown in Table 2.1. The quantities Ni, Si (i = 0, . . . ,m + 1), Wi,

Ei (i = 1, . . . ,m), α are distinct from ∞; the Greek letter ω stands for an undefined

number. The area affected by the singularity lies inside the square block, which we will

call singular square block. In this case the number of (exactly or almost) equal values

is m+ 1, thus we say that we have a singular square block of size m+ 1. When m = 1

then we have a singularity of size 2 (isolated singularity) which was discussed in Section

1.4.1.

The quantities Ni, Si, Wi, Ei (i = 1, . . . ,m) are related by the general rule (1.22)

15
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proposed by Cordellier (see [28, Proposition 9]),

(Ei − C)−1 + (Wi − C)−1 = (Si − C)−1 + (Ni − C)−1, i = 1, . . . ,m. (2.1)

For the computation of Ei’s we make use of the generalized particular rule described

below

Ei = ri(1 + ri/C)−1, i = 1, . . . ,m,

where ri = Si(1− Si/C)−1 +Ni(1−Ni/C)−1 −Wi(1−Wi/C)−1.
(2.2)

This rule generalizes Wynn’s particular rule (1.24). When C =∞, (2.2) reduces to

Ei = Si +Ni −Wi, i = 1, . . . ,m, (2.3)

[28, Proposition 8], which is an extension of (1.25).

ε
(n)
k−1 = N0 ε

(n−1)
k+1 = N1 · · · ε

(n−m)
k+2m−1 = Nm ε

(n−m−1)
k+2m+1 = Nm+1

ε
(n)
k ∼ α · · · · · · ε

(n−m)
k+2m ∼ α

ε
(n+1)
k−1 = W1 ε

(n)
k+1 ∼ C · · · ε

(n−m+1)
k+2m−1 ∼ C ε

(n−m)
k+2m+1 = Em

ε
(n+1)
k ∼ α ω · · · ω ε

(n−m+1)
k+2m ∼ α

...
...

...
...

...
...

... ω · · · ω
...

ε
(n+m)
k−1 = Wm ε

(n+m−1)
k+1 ∼ C · · · ε

(n)
k+2m−1 ∼ C ε

(n−1)
k+2m+1 = E1

ε
(n+m)
k ∼ α · · · · · · ε

(n)
k+2m ∼ α

ε
(n+m+1)
k−1 = Sm+1 ε

(n+m)
k+1 = Sm · · · ε

(n+1)
k+2m−1 = S1 ε

(n)
k+2m+1 = S0

Table 2.1: Part of an ε-array with a singularity of size m+ 1.

2.2 A new algorithm for general particular rules

For the implementation of his particular rules, Cordellier has proposed an algorithm

(see [29, Annexe4, pp. 41-42] for the code in Pascal). This algorithm has a serious

limitation: it only treats singularities caused by exactly equal values. This means that

when almost equal values appear in the ε-array, no particular rule apply we face the
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well-known problem that the use of the normal rule may bring (i.e. cancellation errors

due to the computer’s arithmetic) and we obtain bad numerical results. Furthermore,

Cordellier’s algorithm sets all the elements inside a singular square block equal to α.

In this way, the more general cross rule (2.2), which uses the value C, is excluded. Of

course, for Cordellier this was not a problem, since his algorithm was designed to use

only formula (2.3), thus the inner values of the singular square block do not affect the

values outside.

In this section we introduce a new algorithm which overcomes the aforementioned

difficulties. In particular, the new algorithm treats as a singularity the case of two or

more almost equal values in the ε-array. This is implemented via the control described

below.

Control for singularity. If, for some fixed p,

|ε(n+1)
k − ε(n)

k |
|ε(n)
k |

< 10−p, k, n = 0, 1, . . . (2.4)

we have a singularity.

Right after the first control, another one is performed in order to check if the elements

ε
(n)
k , ε

(n+1)
k have exactly or almost equal values in order to use the appropriate particular

rule for the computation of the Ei’s. But first we need to know where the Ei’s are located

in the ε-array. For this reason the algorithm counts the number of equal consecutive

elements. In practice, this means that every time that we meet a singularity, i.e. the

elements ε
(n)
k and ε

(n+1)
k satisfy the condition (2.4), we check if ε

(n−1)
k and ε

(n)
k satisfy

the same condition. If ε
(n)
k and ε

(n+1)
k are the first consecutive elements of their column

that satisfy the above condition, then a new singular square block opens with the entry

of the element ε
(n+1)
k ; otherwise, the new element ε

(n+1)
k contributes to a non-isolated

singularity and increases by 1 the size of an old (still open) singular square block. As

soon as we find an element ε
(n+m+1)
k which, together with ε

(n+m)
k , do not satisfy the

condition (2.4), we know that we have just left behind a singular square block of size

m + 1. Then the elements Ei, i = 1, . . . ,m, are located 2m + 1 columns on the right

with respect to the column where the singularity occurs (see Table 2.1).

Remark 2.1. In our implementation we use the normal rule (1.18) in order to compute

the values inside a singular square block. However, when exactly equal values cause a

non-isolated singularity, we have to impose the value ∞ to the places where C appears
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in Table 2.1, otherwise once the first undefined value appears (due to the operation

∞−∞ in the denominator of (1.18)), this will be propagated in the rest of the ε-array.

Now, we can compute the values of Ei’s. If the singularity is caused by exactly

equal values, then we use formula (2.3). In the case of almost equal values, the theory

says that we use formula (2.2). However, note that in the case of almost equal values,

α is not the same everywhere in the singular square block, thus C also varies slightly.

In our implementation, we used (2.2) with a different C, denote it Ci, for every Ei. In

Table 2.2 we can see which quantity Ci is used in the computation of Ei and where the

quantities Wi, Si, Ni, Ei, Ci are placed in the neighborhood of a singular square block.

The arrows show the direction in which the lower index i grows.

Ni −−−−−−→

α

Wi Ci

αy
x
Ei

←−−−−−− Si

Table 2.2: The quantities Ei, Wi, Ni, Si, Ci related via formula (2.5).

Assuming that the singularity occurs at the column k in the ε-array, e.g. ε
(n+i−1)
k '

ε
(n+i)
k ' α, then the quantity Ei (i = 1, . . . ,m, given by the size of the singular square

block is m+1) which corresponds to the element ε
(n−i)
k+2(m+1)−1 is computed by the formula

Ei = ri(1 + ri/Ci)
−1, i = 1, . . . ,m,

where ri = Si(1− Si/Ci)−1 +Ni(1−Ni/Ci)
−1 −Wi(1−Wi/Ci)

−1,
(2.5)

with Si = ε
(n+i)
k+2(m+1−i)−1, Ni = ε

(n−i)
k+2i−1, Wi = ε

(n+i)
k−1 , Ci = ε

(n+i−1)
k+1 .
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2.2.1 Numerical experiments

In this section we test the new algorithm on four sequences; the first one has two isolated

singularities and so Wynn’s particular rules can be used, while in the second sequence

several non-isolated singularities caused by exactly equal values are present and thus

Cordellier’s algorithm can successfully treat this case. Of course the new algorithm,

containing as particular cases the algorithms of Wynn and Cordellier, can also be used

for both sequences and it will give the same results. However, the last two examples

we present contain non-isolated singularities caused by almost equal values. Therefore

they can be treated only by the new algorithm.

Notation. Throughout this section we will use the notation EPSALGO for the standard

ε-algorithm (which applies always the normal rule), EPSALGOW if Wynn’s particular

rules are used, EPSALGOC will stand for Cordellier’s algorithm, while the new algorithm

implementing the generalized particular rules will be denoted by EPSALGOG.

Example 1. [18, p.38] We consider the sequence given by

S0 = 1.59999999, S1 = 1.2, S2 = 1,

Sn =
Sn−1

2
+
Sn−2

4
+
Sn−3

8
for n ≥ 3.

(2.6)

According to Theorem 1.1, ∀n, ε
(n)
6 = 0, since e3(Sn) = ε

(n)
6 . Let us see if the numerical

results agree. We apply EPSALGOW using Wynn’s particular rules whenever two succes-

sive quantities have 8 common digits (i.e. ε
(n)
k and ε

(n+1)
k satisfy (2.4) with p = 8). The

resulting array is shown in Table 2.4. The two singular square blocks are marked and

the values computed by the particular rule are written in bold. Concerning the values

ε
(n)
6 , n = 0, 1, . . . 5, (values coloured in red), we observe that EPSALGOW algorithm gives a

good approximation. In Table 2.5 we compare these results with those obtained by the

ε-algorithm without using the particular rules. The comparison shows clearly the gain

from using the particular rules. In Table 2.3 one can see the whole ε-array resulting

from EPSALGO algorithm.
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n EPSALGO EPSALGOW

0 8.5200e-01 6.6613e-16

1 -5.2500e-01 -3.4417e-15

2 7.6364e-01 -1.1102e-16

3 7.0500e-01 -1.6098e-15

4 -1.5441e-02 -1.5404e-15

5 1.6237e-15 1.6237e-15

Table 2.5: Sequence (2.6). Values of ε
(n)
6 , n = 0, 1, . . . 5, as calculated by EPSALGO and

EPSALGOW.

Example 2. [29, Annexe 4, p.43] We consider the sequence given by

S0 = S1 = S2 = 1, S3 = 2,

Sn = 3Sn−4, for n ≥ 4.
(2.7)

Consulting Theorem 1.1, we expect that ∀n, e4(Sn) = 0, thus ε
(n)
8 = 0. The results

obtained by EPSALGOC algorithm agree with this theory. In Table 2.6 apart from the

values of ε
(n)
8 (coloured in red), we see in bold the values computed by the particular

rules. In total eight singular cases are treated, namely six isolated singularities and

two non-isolated singularities. Not all the singular square blocks are marked to avoid

confusion, since some values are related to more than one blocks. For instance, the

element ε
(2)
5 = 1.3333 can be seen as the element E2 related to the singularity caused

by ε
(4)
0 = ε

(5)
0 = ε

(6)
0 = 3 (non-isolated singularity), but at the same time together with

the element ε
(3)
5 it causes an isolated singularity. We would like to stress that there are

also two blocks that remain open, one caused by the elements ε
(0)
0 = ε

(1)
0 = ε

(2)
0 = 1 (see

Table 2.6) and another one due to the elements ε
(12)
0 = ε

(13)
0 = ε

(14)
0 = 27. For these

blocks there is no Ei to be calculated, but they are treated as singular square blocks

in the sense that we impose the value ∞ to the elements near the borders to avoid the

propagation of the undefined value (NaN in Matlab notation) as explained in Remark

2.1.
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Example 3. Now we will construct a sequence based on (2.6) and imposing the first

three elements to be almost equal. In this way, using the ε-algorithm with p = 8 we

meet several non-isolated singularities, which EPSALGOW cannot treat. In addition, the

singularities are caused by almost equal values, which means that EPSALGOC algorithm

fails.

So, let us consider the sequence given by

S0 = 1.599999999999, S1 = 1.599999999995, S2 = 1.599999999999,

Sn =
Sn−1

2
+
Sn−2

4
+
Sn−3

8
for n ≥ 3.

(2.8)

According to Theorem 1.1, ∀n, ε
(n)
6 = 0, since e3(Sn) = ε

(n)
6 . Indeed, the corresponding

column of the ε-array obtained by EPSALGOG algorithm gives values very close to zero

(see the values in red in Table 2.9). In the contrary, if no particular rules are used, the

results are not so good (see the values in red in Table 2.8). In Table 2.7 we compare

the values of the elements ε
(n)
6 , n = 0, 1, . . . 4, as obtained by the two algorithms and

we see that they only disagree in ε
(1)
6 , ε

(2)
6 . This comes as no surprise, since these two

elements are those that are computed by the generalized particular rule when EPSALGOG

algorithm is used. So before calculating ε
(1)
6 , ε

(2)
6 , all the values of the ε-array are the

same whether we use EPSALGO algorithm or EPSALGOG. Of course, after the column

where the particular rules are used for first time the results do not agree any more,

although we use the normal rule to fill in the rest of the ε-array (provided that no other

singularities are met).

n EPSALGO EPSALGOG

0 -5.5511e-16 -5.5511e-16

1 2.8403e+06 -8.0074e-12

2 -2.8403e+06 8.0012e-12

3 6.6613e-16 6.6613e-16

4 3.2613e-16 3.2613e-16

Table 2.7: Sequence (2.8). Values of ε
(n)
6 , n = 0, 1, . . . 4, as calculated by EPSALGO and

EPSALGOG.
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Example 4. The last test sequence is the next one

S0 = 0.999999999999, S1 = 1, S2 = 1.000000000001, S3 = 1.5

Sn = 3Sn−4 for n ≥ 4.
(2.9)

According to Theorem 1.1, ∀n, e4(Sn) = 0 , thus ε
(n)
8 = 0. As we can see in Table 2.10,

the results of EPSALGO algorithm are far from the theoretical results, whilst EPSALGOG

algorithm gives values very close to zero. In Tables 2.11 and 2.12 one can see the

whole ε-array resulting from the two algorithms. In Table 2.12 the two singular square

blocks (both of size 3) are drawn and the values computed by the particular rules are

written in bold. We stress that these values correspond to an odd column, thus they

are intermediate values. However, they contribute via the normal rule to the better

results of column ε8 in which we are interested.

n EPSALGO EPSALGOG

0 1.9587e+00 1.0658e-14

1 Inf -8.8818e-16

2 4.3333e+00 -1.1102e-14

3 -4.0343e+00 1.0658e-14

4 5.8761e+00 -3.1974e-14

5 7.9092e+00 1.7764e-15

Table 2.10: Sequence (2.9). Values of ε
(n)
8 , n = 0, 1, . . . 5, as calculated by EPSALGO and

EPSALGOG.
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Chapter 3

Generalizations of Aitken’s process

This chapter presents the work originally developed in the published paper [23]. We

study the class of sequences

Sn = S + anλ
n, n = 0, 1, . . . , (3.1)

where S and λ are unknown parameters, and (an) is a known sequence, which generalizes

the kernel of Aitken’s process (1.2). We propose three transformations whose kernel

contains sequences of the form (3.1), thus can be considered generalizations of Aitken’s

∆2 process which we studied in Section 1.2. For one of the proposed transformations we

prove the convergence acceleration, under certain sufficient conditions, of certain types

of sequences. Numerical results including comparisons with other transformations, and

experiments using both divergent and convergent sequences conclude the chapter.

We recall that Aitken’s process (1.2) converges if and only if |λ| ≤ 1. However, the

convergence of sequences of the form (3.1) depends on the convergence of the term anλ
n,

thus both on the behavior of (an) and on λ. For instance, if (an) is mildly increasing,

(3.1) converges only for values |λ| < 1.

3.1 New generalizations of Aitken’s ∆2 process

The technique we follow in order to derive the generalizations of Aitken’s ∆2 process

is similar to the one presented in Section 1.2.Starting from the kernel (3.1), we obtain

S as a function, namely S = f(Sn, . . . , Sn+k; an, . . . , an+l) for some k, l ∈ N and for all

n, we compute an, . . . , an+l by an interpolation process depending on n, and we define

31



32 CHAPTER 3. GENERALIZATIONS OF AITKEN’S PROCESS

the transformation as Tn := f(Sn, . . . , Sn+k; an, . . . , an+l) for n = 0, 1, . . . .

Transformation 1Tn. As we already mentioned the starting point is the kernel. Writ-

ing (3.1) for the indices n and n+ 1 , we have{
Sn = S + anλ

n

Sn+1 = S + an+1λ
n+1.

(3.2)

The first equation gives λn = (Sn − S)/an, thus the second equation becomes

anS − an+1λS + an+1Snλ = anSn+1. (3.3)

Instead of solving the nonlinear equation (3.3) with unknowns S and λ, we rewrite it

for the indices n, n+ 1, n+ 2. So we end up with a system of three linear equations in

the three unknowns S, λS, λ
anS − an+1λS + an+1Snλ = anSn+1 ,

an+1S − an+2λS + an+2Sn+1λ = an+1Sn+2 ,

an+2S − an+3λS + an+3Sn+2λ = an+2Sn+3 .

(3.4)

Computing S directly from (3.4) as a ratio of determinants we obtain our first

transformation

1Tn =

∣∣∣∣∣∣∣∣
anSn+1 −an+1 an+1Sn

an+1Sn+2 −an+2 an+2Sn+1

an+2Sn+3 −an+3 an+3Sn+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
an −an+1 an+1Sn

an+1 −an+2 an+2Sn+1

an+2 −an+3 an+3Sn+2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
an+1 an+2 an+3

anSn+1 an+1Sn+2 an+2Sn+3

an+1Sn an+2Sn+1 an+3Sn+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
an+1 an+2 an+3

an an+1 an+2

an+1Sn an+2Sn+1 an+3Sn+2

∣∣∣∣∣∣∣∣
=
Nn

Dn

(3.5)

The numerator Nn and the denominator Dn can be expressed in a compact form as

follows

Nn = an+3∆Sn+1(a2
n+1Sn+2 − anan+2Sn+1)− an+1∆Sn(a2

n+2Sn+3 − an+1an+3Sn+2) ,

Dn = an+3∆Sn+1(a2
n+1 − anan+2)− an+1∆Sn(a2

n+2 − an+1an+3)

As we explained in Section 1.2, a transformation written in the preceding form is

unstable. Nevertheless, since the computation of 1Tn uses the terms Sn, Sn+1, Sn+2 and
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Sn+3, we may write it as 1Tn = Sn+i− (Sn+iDn−Nn)/Dn, i = 0, 1, 2, 3, thus obtain the

following more stable formulas

Sn −
(
an an+2 an+3 ∆Sn+1 + an+1 a

2
n+2 (Sn+3 − Sn)

)
∆Sn − a2

n+1 an+3 (∆Sn+1 + ∆Sn)2

Dn

,

(3.6)

Sn+1 −
an+1 a

2
n+2 ∆Sn (∆Sn+2 + ∆Sn+1)− a2

n+1 an+3 ∆Sn+1 (∆Sn+1 + ∆Sn)

Dn

, (3.7)

Sn+2 −
an+1 a

2
n+2 ∆Sn∆Sn+2 − an an+2 an+3 (∆Sn+1)2

Dn

, (3.8)

Sn+3 −
a2
n+1 an+3 ∆Sn+2 (∆Sn+1 + ∆Sn)− an an+2 an+3 ∆Sn+1 (∆Sn+1 + ∆Sn+2)

Dn

.

(3.9)

Assuming an 6= 0 for all n ∈ N0, we can derive another equivalent expression for

the transformation 1Tn. First we divide the ith column in both the numerator and the

denominator of (3.5) by an+i. Next we replace the second and third column by their

difference with the preceding ones, reducing Nn and Dn into 2 × 2 determinants. By

setting βn = an/an+1 we obtain

1Tn =

∣∣∣∣∣ ∆ (βn Sn+1) ∆ (βn+1 Sn+2)

∆Sn ∆Sn+1

∣∣∣∣∣∣∣∣∣∣ ∆βn ∆βn+1

∆Sn ∆Sn+1

∣∣∣∣∣
.

Then, assuming that ∆Sn 6= 0 for all n ∈ N0, we divide the ith column by ∆Sn+i−1,

i = 1, 2, thus we have a compact form of our first transformation

1Tn =

∆

(
∆ (βn Sn+1)

∆Sn

)
∆

(
∆βn
∆Sn

) .

Now, we can derive more equivalent formulas for 1Tn, analogous to (3.6-3.9), i.e.
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1Tn = Sn +

∆2βn + ∆βn+1
∆Sn

∆Sn+1

+ ∆

(
βn+1

∆Sn+1

∆Sn

)
∆

(
∆βn
∆Sn

)

= Sn+1 +

∆βn+1 + ∆

(
βn+1

∆Sn+1

∆Sn

)
∆

(
∆βn
∆Sn

)

= Sn+2 +

∆βn+1
∆Sn+2

∆Sn+1

+ ∆

(
βn

∆Sn+1

∆Sn

)
∆

(
∆βn
∆Sn

)

= Sn+3 +

∆βn
∆Sn+2

∆Sn
+ ∆

(
βn

∆Sn+1

∆Sn

)
∆

(
∆βn
∆Sn

) .

Remark 3.1. If an = a for all n ∈ N0, then (3.1) reduces to (1.2). In this case the

system (3.4) has more than one solution, that we can express as follows
S

λS

λ

 = α


1

1

0

+


Sn+1

Sn∆Sn+1/∆Sn

∆Sn+1/∆Sn

 , for α ∈ R. (3.10)

The first element of this vector is S ≡ 1Tn and if we set α = −∆Sn∆Sn+1

∆2Sn
, we obtain

the second expression of (1.11).

Transformation 2Tn. Our second sequence transformation results directly from the

system (3.2), which under the hypothesis that βn 6= λ, gives S. Taking Tn = S we have

the transformation

Tn =
an+1Snλ− anSn+1

an+1λ− an
, (3.11)
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that can be also written in a more stable form as follows

Tn = Sn −
an ∆Sn

an+1 λ− an
= Sn −

βn ∆Sn
λ− βn

= Sn+1 −
an+1 ∆Snλ

an+1 λ− an
= Sn+1 −

∆Sn λ

λ− βn
.

(3.12)

In order to define our second transformation we need to compute the unknown λ.

One way is to solve the system (3.4). Using this λ in (3.12), gives a transformation

denoted in the sequel as 2Tn. Solving system (3.4), we obtain

λ =

∣∣∣∣∣∣∣∣
an −an+1 an Sn+1

an+1 −an+2 an+1 Sn+2

an+2 −an+3 an+2 Sn+3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
an −an+1 an+1 Sn

an+1 −an+2 an+2 Sn+1

an+2 −an+3 an+3 Sn+2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
an+1 an+2 an+3

an an+1 an+2

anSn+1 an+1Sn+2 an+2Sn+3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
an+1 an+2 an+3

an an+1 an+2

an+1Sn an+2Sn+1 an+3Sn+2

∣∣∣∣∣∣∣∣
. (3.13)

Assuming that an 6= 0 and ∆βn 6= 0 for all n ∈ N0, we perform analogous algebraic

manipulations as done in (3.5) and we arrive at

λ =

∆

(
∆ (βn Sn+1)

∆βn

)
∆

(
∆Sn
∆βn

) . (3.14)

One can easily confirm that, if βn converges to β ∈ R, with β 6= λ, then βn+1
∆Sn+1

∆Sn
converges to λ. Hence, we can rewrite (3.14) in the following way

λ = βn+2
∆Sn+2

∆Sn+1

+

∆Sn ∆

(
βnβn+1

∆Sn+1

∆Sn

)
βn+1 ∆βn ∆

(
∆Sn
∆βn

) .
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thus

2Tn = Sn −
βn ∆Sn∆

(
∆Sn
∆βn

)
∆

(
∆ (βn Sn+1)

∆βn

)
− βn ∆

(
∆Sn
∆βn

)

= Sn+1 −
∆Sn ∆

(
∆ (βn Sn+1)

∆βn

)
∆

(
∆ (βn Sn+1)

∆βn

)
− βn∆

(
∆Sn
∆βn

) .

Remark 3.2. We already saw in Remark 3.1 that, if an = a for all n ∈ N0, the

solutions of the system (3.4) are expressed in the equation (3.10), which gives for λ the

value
∆Sn+1

∆Sn
,∀α ∈ R. Then, (3.12) becomes equal to (1.11), that is from 2Tn we recover

Aitken’s ∆2 process.

Transformation 3Tn. Another way to compute λ in (3.12) is to apply the forward

difference operator ∆ to the system of equations (3.2), that is{
∆Sn = λn(an+1λ− an) ,

∆Sn+1 = λn+1(an+2λ− an+1) .

We eliminate the unknowns λn, λn+1 by division, thus we end up with a quadratic

equation for the unknown λ

an+2∆Snλ
2 − an+1(∆Sn + ∆Sn+1)λ+ an∆Sn+1 = 0 . (3.15)

This equation provides two solutions for λ and the criterion according to which we

accept one solution and reject the other one, is based on λ. For this reason, we write

(3.15) for the indices n and n + 1 and we consider the following system in the two

unknowns λ and λ2{
an+1(∆Sn + ∆Sn+1)λ− an+2∆Snλ

2 = an∆Sn+1 ,

an+2(∆Sn+1 + ∆Sn+2)λ− an+3∆Sn+1λ
2 = an+1∆Sn+2 .

(3.16)

We solve the system for λ and by using this value of λ in (3.12) we obtain transformation

3Tn.
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An explicit expression for λ is

λ =

∆

(
βnβn+1

∆Sn+1

∆Sn

)
∆

(
βn+1

∆Sn + ∆Sn+1

∆Sn

)
and transformation 3Tn can be expressed in one of the following equivalent formulas

3Tn = Sn + βn
∆Sn

∆Sn+2

∆

(
βn+1

∆Sn + ∆Sn+1

∆Sn

)
βn

∆βn+1

∆Sn+2

− βn+2
∆βn

∆Sn+1

= Sn+1 +
∆Sn

∆Sn+2

∆

(
βnβn+1

∆Sn+1

∆Sn

)
βn

∆βn+1

∆Sn+2

− βn+2
∆βn

∆Sn+1

.

Remark 3.3. A result analogous to that stated for transformations 1Tn and 2Tn in

Remarks 3.1 and 3.2, holds for transformation 3Tn. It suffices to prove that for an

constant, λ =
∆Sn+1

∆Sn
is a solution of the system (3.16). In fact, we can write the

solutions of this system as(
λ

λ2

)
= α

(
∆Sn

∆Sn + ∆Sn+1

)
+

(
1

1

)
, for α ∈ R.

Aitken’s ∆2 process is recovered for α =
∆2Sn

(∆Sn)2
.

3.2 Convergence and acceleration properties

Our numerical test (cf. Section 3.3.1) show that, among the three transformations

presented in the previous section, the one that performs best is 2Tn. For this reason,

we will focus on this one and study its convergence and acceleration properties.

Let us consider the sequence

S̃n = S + anλ
n + gn, n = 0, 1, . . . , (3.17)
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where gn is a “noise term”, in the sense that S̃n is not “too far” from the kernel (3.1).

In order to prove some results on the convergence of transformation 2Tn, we will make

several assumptions on the convergence behavior of gn and an as n → ∞. We first

recall a well-known criterion for the characterization of the convergence. We assume

that the elements of the sequence (3.17) satisfy

lim
n→∞

S̃n+1 − S
S̃n − S

= ρ.

We define the convergence rate of the sequence as the quantity |ρ|. If 0 < |ρ| < 1 then

S̃n converges linearly, if ρ = 1 then the convergence is logarithmic, whilst ρ = 0 means

superlinear convergence. Finally, |ρ| > 1 implies divergence.

From now on we will assume that gn is subdominant to anλ
n as n → ∞, i.e.

lim
n→∞

gn/(anλ
n) = 0. In particular, this means that the convergence rate of S̃n depends

only on the term anλ
n.

Let β = lim
n→∞

βn = lim
n→∞

an/an+1. If |β| exists and is finite then

lim
n→∞

S̃n+1 − S
S̃n − S

=
λ

β
.

If |λ| < |β| then S̃n converges linearly; for λ = β we have logarithmic convergence; if

|λ| > |β| the sequence diverges. Finally, if |β| =∞ then S̃n is superlinearly convergent

for every value of λ. In this case convergence acceleration techniques are not really

useful unless |λ| is sufficiently large. For that reason we exclude the case in which

|β| =∞, in order to achieve some theoretical results on the acceleration of 2Tn.

Note that for the sequence (3.17) the value of λ given from the system (3.4) is

an approximation depending on n, let denote it as λn. Analogously to (3.14), for the

approximation λn we have the following formula

λn =

∆

∆
(
βnS̃n+1

)
∆βn


∆

(
∆S̃n
∆βn

) . (3.18)

Let us study the convergence of λn as n → ∞. First, we give the following technical

lemmas.
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Lemma 3.1. If gn/(anλ
n)→ 0 and βn is bounded, then ∆gn/(an+1λ

n)→ 0.

Proof.

lim
n→∞

∆gn
an+1λn

= lim
n→∞

(
gn+1

an+1λn
− gn
an+1λn

)
= lim

n→∞

(
λ

gn+1

an+1λn+1
− gn
anλn

βn

)
= λ0−0 = 0.

�

Lemma 3.2. Consider the sequence (3.17) and assume that

1. lim
n→∞

gn
anλn

= 0 ,

2. there exists a finite number β such that β 6= λ for which lim
n→∞

βn = lim
n→∞

an
an+1

= β .

Then lim
n→∞

βn+1
∆S̃n+1

∆S̃n
= λ .

Proof. Making use of the hypotheses 1 and 2 we have

lim
n→∞

βn+1
∆S̃n+1

∆S̃n
= lim

n→∞

an+1

an+2

an+2λ
n+1

(
λ− an+1

an+2

+
∆gn+1

an+2λn+1

)
an+1λn

(
λ− an

an+1

+
∆gn
an+1λn

)

= lim
n→∞

λ

λ− βn+1 +
∆gn+1

an+2λn+1

λ− βn +
∆gn
an+1λn

= λ
λ− β + 0

λ− β + 0
= λ ,

since
∆gn
an+1λn

and
∆gn+1

an+2λn+1
converge to zero by Lemma 3.1.

�

We underline the meaning of hypothesis 1; it implies that the sequence is “not too

far” from the kernel of the transformation. If β = λ then S̃n converges logarithmically.

The case in which β does not exist is not easily interpreted. In Section 3.3.4 we discuss

several numerical examples related to these particular situations.

We introduce the sequence γn =
a2
n+2 − an+1 an+3

a2
n+1 − an an+2

, that we will use in the theorem

on the convergence of (λn).

Theorem 3.1. The sequence (λn) converges to λ if the following conditions are satisfied:



40 CHAPTER 3. GENERALIZATIONS OF AITKEN’S PROCESS

1. lim
n→∞

gn
an λn

= 0 ,

2. there exists β ∈ R such that lim
n→∞

βn = β ,

3. there exists γ ∈ R such that lim
n→∞

γn = γ ,

4. λ, β and γ are such that β 6= λ and λ− β3γ 6= 0 .

Proof. From (3.18) we can derive the following equivalent formulas for λn

λn =
βn+2 ∆βn ∆S̃n+2 − βn ∆βn+1 ∆S̃n+1

∆βn ∆S̃n+1 −∆βn+1 ∆S̃n

=

βn+2
∆S̃n+2

∆S̃n+1

− βn
∆βn+1

∆βn

1− ∆βn+1

∆βn

∆S̃n

∆S̃n+1

.

where
∆βn+1

∆βn
=
an+1

an+3

(
a2
n+2 − an+1 an+3

a2
n+1 − an an+2

)
= βn+1 βn+2 γn.

Making use of Lemmas 3.1 and 3.2, we obtain

lim
n→∞

λn = lim
n→∞

βn+2
∆S̃n+2

∆S̃n+1

− βnβn+1βn+2γn

1− βn+1βn+2γn
∆S̃n

∆S̃n+1

= lim
n→∞

βn+2
∆S̃n+2

∆S̃n+1

− βnβn+1βn+2γn

1− β2
n+1βn+2γn

(
βn+1

∆S̃n+1

∆S̃n

)−1

=
λ− β3γ

1− β3γ

λ

= λ
λ− β3γ

λ− β3γ
= λ.

�

We stress that βn and γn only depend on the sequence (an). Therefore, since in our

study (an) is assumed to be known, we are able to check if sequences (βn) and (γn) have

a limit and predict for which λ the estimate might not converge to the correct limit.
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Note also that, if a2
n+1 − anan+2 = 0 for some n, γn is not well-defined. Nonetheless, if

a2
n+2− an+1an+3 6= 0, we can skip this iteration, and compute the next one. If both the

numerator and the denominator of γn are equal to zero, then also the denominator of

λ as expressed in (3.13) is equal to zero. Hence, if γn is not well-defined, λn cannot be

computed.

Let us now study the convergence and acceleration properties of transformation 2Tn.

We consider two cases; the sequence S̃n converges to S or diverges.

• If the sequence S̃n is convergent, then from the third expression of formula (3.11)

we have

2Tn =
an+1S̃nλn − anS̃n+1

an+1λn − an
=
S̃nλn − an

an+1
S̃n+1

λn − an
an+1

,

thus

2Tn − S =
(S̃n − S)λn − βn(S̃n+1 − S)

λn − βn
. (3.19)

From this expression, it is easy to prove the following theorem on the convergence

of transformation 2Tn.

Theorem 3.2. Transformation 2Tn converges to S under the following conditions:

1. lim
n→∞

S̃n = S ,

2. there exist N ∈ N and δ > 0 such that |λn − βn| > δ for every n > N .

Proof. By using the hypotheses 1 and 2, (3.19) results in 2Tn − S → 0, thus

2Tn → S.

�

In order to prove that transformation 2Tn accelerates the convergence of sequences

of the form (3.17) we will need the following lemma.

Lemma 3.3. If
gn
anλn

→ 0, then

lim
n→∞

βn
S̃n+1 − S
S̃n − S

= λ .
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Proof. We have the following equivalent expressions

lim
n→∞

βn
S̃n+1 − S
S̃n − S

= lim
n→∞

βn
an+1 λ

n+1 + gn+1

an λn + gn
= lim

n→∞
βn
an+1

an
λ

1 +
gn+1

an+1 λn+1

1 +
gn
an λn

= lim
n→∞

λ

1 +
gn+1

an+1 λn+1

1 +
gn
an λn

= λ.

�

Theorem 3.3. Under the assumptions of Theorem 3.1, transformation 2Tn ac-

celerates the convergence of the sequence (3.17).

Proof. From (3.19) we obtain

2Tn − S
S̃n − S

=
λn − βn S̃n+1−S

S̃n−S

λn − βn
.

From Theorem 3.1 it holds that λn → λ and using the result of Lemma 3.3,

the numerator converges to zero. Thus, under the assumption that β 6= λ, we

conclude that

lim
n→∞

2Tn − S
S̃n − S

= 0.

�

Notice that this kind of result can be given for any estimate λ̃n that converges to

λ. Moreover, the convergence of λn to λ is the key to prove acceleration. Indeed,

it is not necessary to prove the convergence of 2Tn to S.

• Let S̃n be a divergent sequence. Then from the equation (3.19), we have

2Tn − S =
λn(anλ

n + gn)− βn(an+1λ
n+1 + gn+1)

λn − βn

=
anλ

n(λn − λ) + λngn − βngn+1

λn − βn

=
anλ

n(λn − λ)

λn − βn
+
λngn − βngn+1

λn − βn
.
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Note that it is easy to give a condition so that (λngn−βngn+1)/(λn−βn) converges

to zero. However, since anλ
n is now a divergent sequence, it is not simple to find

assumptions under which (anλ
n(λn−λ))/(λn−βn) does not diverge. In particular,

under the hypotheses of Theorem 3.1, we have λn−λ→ 0, but we did not find any

meaningful condition that ensures the convergence of 2Tn. Numerical experiments

show that transformation 2Tn does not converge when the sequence diverges.

Remark 3.4. If λn rapidly converges to λ and anλ
n does not diverge too quickly

at the beginning, 2Tn may have a semi-convergent behavior, that is it converges

during the first iterations, but then it diverges (for the concept of semi-convergence

see [64] and also [72, Appendix E]).

Remark 3.5. If λm = λ for a certain m, then Tm = S + ε, where the quantity

ε = (λmgm− βmgm+1)/(λm− βm) can be supposed to be very small (converging to

zero). This may explain why for diverging sequences we sometimes have values of

2Tn which are very close to S, even if the transformation generally diverges.

3.3 Numerical experiments

In this Section, we test the convergence of the different approximations of λ and we also

compare our best transformation, namely 2Tn, with some well-known transformations

and the transformations presented in [19]. As an application, we evaluate the digamma

function using different transformations. Finally, we test transformation 2Tn in some

special cases in which the convergence of λn to λ is not ensured thus the transformation

could fail.

All the experiments were performed using Matlab 7.12.0. In some cases, when

computing λ or Tn by solving a linear system, a singular matrix appears. Thus, when

a circle ◦ appears in a figure, it denotes the corresponding iteration. We also use the

symbol × to indicate the points where Tn or λ are computed at machine precision, thus

the error is zero. Whenever we computed λ as the solution of systems (3.4) or (3.16),

we used the Matlab backslash command \.

Note that all the experiments were performed using as 1Tn the expression (3.9) with

denominator

Dn = an+3Sn+2(a2
n+1−anan+2)+an+2Sn+1(anan+3−an+1an+2)+an+1Sn(a2

n+2−an+1an+3).
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For both 2Tn, 3Tn we use the third expression of (3.12), with λ computed as solution

of the system (3.4) and (3.16), respectively.

3.3.1 Testing the proposed transformations

In order to test our transformations we consider two sequences. The first one is con-

vergent and satisfies the condition under which 2Tn accelerates it (Theorem 3.3). The

second one is divergent and such that 2Tn is expected to semi-converge, according to

the theoretical analysis developed in Section 3.2. First, we introduce the sequence

Sn = 1 + log

(
1 +

1

n

)(
4

5

)n
+ e−n(1 + n2) (3.20)

with convergence rate ρ = 4
5
, thus Sn converges linearly, and β = limn→∞ an/an+1 = 1.

Then, we consider the sequence

Sn = 1+

(
10 sin

(
π

(
1 +

1

n2

))
+ 2 cos

(
π

(
1 +

1

n2

)))(
−6

5

)n
+e−n(1+n2) (3.21)

which is alternating, divergent and has β = limn→∞ an/an+1 = 1.
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Figure 3.1: Comparison of the absolute value of the error in the estimate of λ solving

systems (3.4) (solid line), and (3.16) (dashed line).

Figure 3.1 illustrates the absolute error of the estimate of λ obtained as a solution

of the system (3.4) or (3.16). We notice that for both the testing sequences the first
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system gives a better approximation than the second one. In particular, for the sequence

(3.21) we reach machine precision after a few iterations (see Figure 3.1b). A different

case appears in Figure 3.1a, where both approximations reach a good precision before

diverging. This semi-convergence is due to rounding errors that appear in the solution

of the systems (3.4) and (3.16) since, for converging sequences, ∆Sn → 0.

Let us now compare the performance of transformations 1Tn, 2Tn, 3Tn. We stress

that, when dealing with convergent sequences, we consider as the best transformation

the one that converges to S in a few iterations and with good precision. Instead, for

diverging sequences, semi-convergence is what we expect from a good transformation.

In Figure 3.2 the absolute errors of transformations 1Tn, 2Tn, 3Tn are illustrated. We

observe that all the transformations accelerate the convergence of the sequence even in

the case of the sequence (3.20) where we had a difficulty estimating λ (see figures 3.1a

and 3.2a). In all the examples, the best result is obtained from transformation 2Tn.

Note that for every n all the transformations use the same sequence of terms, that is

Sn, Sn+1, Sn+2, Sn+3.
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Figure 3.2: Comparison of |S−Sn| (dash-dotted line) and |S− Tn| for transformations

1Tn (dashed line), 2Tn (bold solid line) and 3Tn (solid line).
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3.3.2 Comparison with other transformations

We now compare transformation 2Tn with several well-known transformations, and the

three transformations introduced by Brezinski and Redivo-Zaglia in [19].

In Figure 3.3, we plot |S − Tn|, where Tn is one of the following transformations:

• transformation 2Tn, which uses four terms of the sequence;

• ε-algorithm (ε
(n)
2k ) with k = 2 (cf. Section 1.4), using five terms;

• Aitken’s ∆2 process, implemented with the ε-algorithm, since Tn = ε
(n)
2 , where

Tn is the Aitken’s ∆2 process (see [69, Eq. (5.1-5)]). This transformation uses

three terms.

• algorithm θ
(n)
2 (see [18] and [69]), which uses four terms;

• Levin type transformation L(n)
k (β, Sn, ωn) (see [18], [37] and [49]). For ωn we

use the formula that gives the u-transformation and we set k = 3 so that the

transformation uses four terms. The parameter β is chosen equal to 1, that is

the optimal choice for our sequences following the procedure described in [1].

However, other values of β gave similar results in our experiments.
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Figure 3.3: Comparison of |S − Sn| (solid line) and |S − Tn| values using Aitken’s

∆2 process (dashed line), ε
(n)
4 (bold dashed line), θ

(n)
2 (dash-dotted line), Levin type

transformation (dotted line) and transformation 2Tn (bold solid line).
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Figure 3.3a shows clearly that, for the sequence (3.20), transformation 2Tn converges

faster than the other transformations. Considering the divergent sequence (3.21), all

the transformations semi-converge but 2Tn reaches a higher accuracy before diverg-

ing (see Figure 3.3b). The good performance of 2Tn comes as no surprise, since this

transformation was built from the kernel (3.1), thus it is expected to perform well for

sequences of the type of Eq. (3.17).

In the sequel we compare transformation 2Tn with the transformations proposed in

[19]. In that paper, Brezinski and Redivo-Zaglia considered the kernel consisting of

sequences of the form

Sn = S + (a+ bxn)λn, n = 0, 1, . . . ,

or Sn = S + (a+ bxn)−1λn, n = 0, 1, . . . ,

where S, a, b and λ are unknown numbers and (xn) a known sequence. These kernels

obviously contain (1.2).

For the first class of sequences two transformations are proposed, namely

4Tn = Sn+1 −
∆Sn+1 − λ2rn∆Sn
(λrn − 1)(1− λ)

, with rn =
∆xn+1

∆xn
, (3.22)

and

5Tn = Sn+1 +
∆Sn+1 − λ2∆Sn

(1− λ)2
, (3.23)

where the parameter λ is evaluated as the solution of two different linear systems.

Sequences of the second form are instead treated with the transformation

6Tn =
Nn

Dn

, (3.24)

where

Nn = λ2Sn+1(Sn+2 − Sn)− 2λ(Sn+3Sn+1 − Sn+2Sn) + Sn+2(Sn+3 − Sn+1),

Dn = λ2(Sn+2 − Sn)− 2λ(Sn+3 − Sn+2 + Sn+1 − Sn) + (Sn+3 − Sn+1).

The unknowns λ and λ2 are computed by solving the following system as a linear one

with unknowns λ, λ2, λS, λ2S, S

λ2Sn+1+i(Sn+2+i − Sn+i)− 2λ(Sn+1+iSn+3+i − Sn+iSn+2+i)− λ2(Sn+2+i − Sn+i)

+2λS(Sn+3+i − Sn+2+i + Sn+1+i − Sn+i)− S(Sn+3+i − Sn+1+i) =

−Sn+2+i(Sn+3+i − Sn+1+i), i = 0, . . . , 4.
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We will test the transformations on the same sequences used in [19], namely

Sn = S + λn(2− n
7
2 ) + e−n(1 + n2), with λ =

23

20
, (3.25)

and

Sn = S + λn
1(

2 + 11
10
n
) +

(
1

10

)n
n

5
2 , with λ = −6

5
. (3.26)

We would like to stress that for our transformation we took as known the sequence

an = a + bxn or an = (a + bxn)−1, whereas in [19] a and b are unknowns and only xn

is known. This may explain the good performance of 2Tn. Indeed, for the sequence

(3.25) transformation 2Tn converges faster than transformation 4Tn and transformation

5Tn (see Figure 3.4a). In Figure 3.4b we compare the absolute errors of transformation

6Tn and transformation 2Tn for the sequence (3.26). We observe that 6Tn performs

slightly better than 2Tn. Note that for the implementation of transformation 2Tn we

used 4 terms of the sequence, while transformations 4Tn and 5Tn use 6 and 5 terms,

correspondingly. For the transformation 6Tn we used 8 terms.
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Figure 3.4: (a) Comparison of |S − Sn| (dash-dotted line) and |S − Tn| using the

transformations 4Tn (dashed line), 5Tn (solid line) and transformation 2Tn (bold solid

line) on sequence (3.25). (b) Comparison of |S − Sn| (dash-dotted line) and |S − Tn|
using transformations 6Tn (bold dashed line) and transformation 2Tn (bold solid line)

on sequence (3.26).
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3.3.3 Evaluation of the digamma function

We will now see how transformation 2Tn works in a summation problem. We consider

the following series expansion for the psi or digamma function [2]

ψ(1 + z) = −γ + zZ(z) (3.27)

Z(z) =
∞∑
ν=0

ζ(ν + 2)(−z)ν (3.28)

with γ Euler’s constant and ζ(ν+2) the Riemann zeta function (see [2] equations (6.1.3)

and (23.2.1) respectively or [70] equation 1.2). The infinite series in (3.28) converges

for |z| < 1.

We rewrite (3.28) as in [70, Eq. 2.1]

Z(z) = Zn(z) +Rn(z), (3.29)

Zn(z) =
n∑
ν=0

ζ(ν + 2)(−z)ν , (3.30)

Rn(z) = (−z)n+1

∞∑
ν=0

ζ(n+ ν + 3)(−z)ν . (3.31)

The convergence of the sequence Z(z) can only be improved if the truncation errors

Rn(z) are transformed into others with better numerical properties.

We replace the zeta functions ζ(n + ν + 3) in (3.31) by their Dirichlet series and

interchange the order of summations, thus we obtain (see [70, Eq. 2.2])

Zn(z) = Z(z)− (−1)n+1

∞∑
m=0

[z/(m+ 1)]n+1

(m+ 1)(m+ z + 1)
. (3.32)

We observe that the partial sums Zn(z) are a special case of the following class of

sequences with qj = z/j and cj = −1/[j(j + z)] (see [70, Eq. 2.3])

sn = s+ (−1)n+1

∞∑
j=1

cj(qj)
n+1.

Following the treatment presented in [70] by Weniger, we assume that all the qj’s have

the same sign and are ordered in magnitude according to

1 > |q1| > |q2| > ... > |q`| > |q`+1| > ... ≥ 0,

whilst the cj’s are unspecified coefficients.
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Note that (3.32) is of the type of Eq. (3.17) with

S̃n = Zn(z),

S = Z(z),

an = (−1)n
z

z + 1
,

λ = z,

gn = (−1)n
∞∑
m=1

[z/(m+ 1)]n+1

(m+ 1)(m+ z + 1)
.

Since λ is already known, we do not need to approximate it for the transformation

2Tn. Therefore, in order to compute 2Tn, we only need two terms of the sequence. For

this reason, in the numerical experiments we have not considered the algorithm ε
(n)
4

for evaluating the digamma function. The performance of the other transformations is

illustrated in Figure 3.5. We observe that generally transformation 2Tn behaves in the

same way or better than Aitken’s ∆2 process, θ
(n)
2 algorithm and u-transformation. In

particular, for negative values of z, transformation 2Tn reaches the best precision (see

Figure 3.5b).
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(b) z = -0.9

Figure 3.5: Digamma function. Comparison of |Z(z)−Zn(z)| (solid line) and |S − Tn|
values using Aitken’s ∆2 process (dashed line), θ

(n)
2 (dash-dotted line), Levin type

transformation (dotted line) and transformation 2Tn (bold solid line).
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3.3.4 Problematic cases

In this section we consider several sequences each of which does not satisfy at least one

of the hypotheses of Theorem 3.1. We set S = 1, so the sequences have the form

S̃n = 1 + anλ
n + gn, (3.33)

where gn = (1 + n2)e−n is a sequence converging to zero and subdominant to anλ
n.

In figures 3.6, 3.7 and 3.8 on the left we plot the absolute error of the estimate of λ

by solving the system (3.4), using the Matlab backslash operator \. On the right, we

compare the absolute error of the transformations 2Tn, Aitken’s ∆2 process, ε-algorithm,

θ
(n)
2 algorithm and u-transformation.

In the first two examples we assume that β = λ, thus the sequences converge loga-

rithmically. We already know that Aitken’s ∆2 process and ε-algorithm are not able to

accelerate such a sequence (see for example [18]). So, we test 2Tn on a logarithmically

convergent sequence in order to understand if it fails in accelerating the sequence as

Aitken’s ∆2 process and Wynn’s ε-algorithm do.
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Figure 3.6: On the left, the errors in the estimate of λ (obtained by system (3.4))

for sequence (3.34). On the right, the values |S − Sn| (solid line) are compared with

the errors obtained using Aitken’s ∆2 process (dashed line), ε
(n)
4 (bold dashed line),

θ
(n)
2 (dash-dotted line), Levin type transformation (dotted line) and transformation 2Tn

(bold line).
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To start with, we consider (3.33) with an =

(
5
4

)n+ 16
5

n
and λ = 4

5
, thus we obtain the

sequence

Sn = 1 +
1

n

(
5

4

)n+ 16
5
(

4

5

)n
+ (1 + n2)e−n. (3.34)

We see that β = λ and γ = β−2. Therefore the last condition of Theorem 3.1 is violated.

This explains the curve in Figure 3.6a, which shows that λn fails to converge to λ. The

transformation 2Tn seems to be affected, too; it converges to S but it fails to accelerate

the convergence of the sequence, like Aitken’s ∆2 process and ε-algorithm. Instead, θ
(n)
2

and u-transformation succeed a good acceleration.
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Figure 3.7: On the left, the errors in the estimate of λ (obtained by system (3.4))

for sequence (3.35). On the right, the values |S − Sn| (solid line) are compared with

the errors obtained using Aitken’s ∆2 process (dashed line), ε
(n)
4 (bold dashed line),

θ
(n)
2 (dash-dotted line), Levin type transformation (dotted line) and transformation 2Tn

(bold solid line).

Let us now consider a diverging sequence S̃n such that λ = β. We stress that

S̃n cannot be a sequence with alternating sign, since in this case we can rewrite it as

S̃n = (−1)nanλ
n+gn, with an and λ positive for every n. Then, β = limn→∞−

an
an+1

< 0,

while λ > 0. Therefore, S̃n has to be a sequence with positive terms. Note that the

summation of this kind of sequences can be very difficult (for more details see for

example [71, pp. 15-17]).



3.3. NUMERICAL EXPERIMENTS 53

Setting an = n

(
5

4

)n+ 16
5

, we obtain the following divergent sequence

Sn = 1 + n

(
5

4

)n+ 16
5
(

4

5

)n
+ (1 + n2)e−n. (3.35)

Once more, β = λ and γ = β−2, that is the fourth hypothesis of Theorem 3.1 is not

satisfied. Nevertheless, unlike the previous example, transformation 2Tn performs well

and λn converges to λ (see Figure 3.7). Therefore we reach the conclusion that our

assumption is sufficient but not necessary. As for the other transformations, Aitken’s

process and ε-algorithm diverge, θ
(n)
2 and u-transformation diverge at the same rate of

the sequence. We note that the semi-convergence of 2Tn agrees with Remark 3.4.

Remark 3.6. We recall that one of the conditions under which transformation 2Tn

accelerates a sequence S̃n is β 6= λ (see Theorem 3.3). Moreover, we have seen that if

S̃n is convergent, then β = λ if and only if S̃n converges logarithmically. In addition,

sequence (3.34) is an example of a logarithmically convegent sequence that 2Tn is not

able to accelerate. We would like to stress that these facts are consistent with the

well-known result of Delahaye and Germain-Bonne [31, 32] that there is no sequence

transformation that could accelerate the convergence of all logarithmically convergent

sequences. Furthermore, we have shown that all these sequences are definitely positive.

Hence if we deal with divergent sequences, λ = β means that we sum a monotone

sequence. Therefore, even in this case condition β = λ leads to a class of sequences

difficult to treat.

Next, we consider the sequence an = 3
2

+ (−1)n

2
, which alternatively assumes the

values 1 and 2. Using it in (3.33) gives the following sequence

Sn = 1 +

(
3

2
+

(−1)n

2

)
λn + (1 + n2)e−n. (3.36)

It is easy to verify that βn is a bounded sequence with no limit, taking alternatively

the values 2 and 1/2, while γ = −1. We consider three different cases;

• λ = 1
2
: Sn is convergent, λ = lim infn→∞ βn hence an accumulation point;

• λ = 2: Sn is divergent, λ = lim supn→∞ βn hence an accumulation point;

• λ = 9
10

: Sn is convergent, |λ− βn| > 1
2

for any n hence 2Tn → S (Theorem 3.2).
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(a) λ = 0.5
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(c) λ = 0.9

Figure 3.8: On the left, the errors in the estimate of λ (obtained by system (3.4)) for

sequence (3.36) with different values of λ. On the right, the values |S − Sn| (solid line)

are compared with the errors obtained using Aitken’s ∆2 process (dashed line), ε
(n)
4

(bold dashed line), θ
(n)
2 (dash-dotted line), Levin type transformation (dotted line) and

transformation 2Tn (bold line).
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According to the results illustrated in Figure 3.8, it seems that the lack of a limit for

βn does not affect the convergence. In fact, we get very good results in all three cases.

So we conclude that the second condition of Theorem 3.1 is not a necessary condition.

We remark that, when λ = 1
2
, the determinant of the system (3.4) is equal to

−3(Sn+2 − Sn)− 2(Sn+1 − Sn). Therefore, if ∆Sn is close to zero at machine precision,

then singularity problems arise (see Figure 3.8a). However, this is not a real problem,

since the reason is that Sn has reached the value of S at machine precision.

In Figure 3.8b we observe that, when λn = 2 at machine precision, the values of

transformation 2Tn are not computed for n odd. This happens because the denominator

in transformation 2Tn is alternatively equal to 0 and 1.

Concerning the other transformations, we see that they do not accelerate the con-

vergence of the sequence (3.36) for any of the considered values for λ, except for ε
(n)
4

which semi-converges in case λ = 0.9. Though, we recall that for the implementation

of transformation 2Tn we need less terms than for ε
(n)
4 .
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Chapter 4

Extrapolation methods for vector

sequences

In the rest of this PhD thesis we deal with the acceleration of iterative methods for

solving systems of linear equations. In these problems vector sequences arise and we will

try to extrapolate them. For this reason, this chapter is devoted to some major vector

extrapolation algorithms. More precisely, we revise the vector ε-algorithm obtained by

Wynn [74], the topological ε-algorithms explored by Brezinski [13], and the more recent

simplified topological ε-algorithms (STEA) proposed by Brezinski and Redivo-Zaglia

[21].

4.1 The vector ε-algorithm

The vector ε-algorithm, obtained by Wynn [74], is the first algorithm found for ac-

celerating vector sequences. It was obtained directly from the scalar algorithm as a

generalization to vectors, thus it shares the same rules (1.17), with the difference that

now Sn is a (real or complex) vector of dimension N and ε
(n)
−1 is the zero vector. After

defining the inverse y−1 of a vector y as

y−1 =
y

‖y‖2
,

we give the rules for the vector ε-algorithm

57
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
ε

(n)
−1 = 0,

ε
(n)
0 = Sn, n = 0, 1, ...

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε(n)

k )−1, k, n = 0, 1, ...

(4.1)

The kernel of the vector ε-algorithm obtained by McLeod [50] in the real case and

by Graves-Morris [39] in the complex case is described in the following theorem

Theorem 4.1. If the vector ε-algorithm is applied to a sequence of complex vectors

(Sn) such that ∀n ≥ N
k∑
i=0

ai(Sn+i − S) = 0 (4.2)

where S is a vector and ai, i = 0, . . . , k, complex numbers such that ak 6= 0 and

a0 + · · ·+ ak 6= 0 then ∀n ≥ N ,

ε
(n)
2k = S.

Remark 4.1. Although, the relation (4.2) has exactly the same form as the relation

defining the kernel of the scalar ε-algorithm (1.16), the condition in Theorem 4.1 is

only sufficient while it was also necessary in Theorem 1.1.

4.2 Topological Shanks transformations and topo-

logical ε-algorithms

As we saw in the previous section, the vector ε-algorithm was obtained directly from

the rule of the scalar algorithm, without a firm theoretical basis. For this reason,

Brezinski [13] proposed another way for obtaining a vector generalization of Shanks’

transformation and the ε-algorithm. The new generalization, called topological Shanks

transformation, is implemented via a recursive algorithm, namely the topological ε-

algorithm. This algorithm can be potentially applied to accelerate the convergence of

any sequence of elements of a topological vector space E, thus the name.

The procedure towards Brezinski’s topological ε-algorithm follows the spirit of

Shanks for the scalar ε-algorithm. We start from a relation similar to (1.12), i.e.

a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0 ∈ E (4.3)
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where Sn,S ∈ E and the αi’s are scalars with a0 ak 6= 0 and a0 + · · ·+ ak 6= 0. The aim

is to compute S but first we have to compute αi’s. So, we consider the system formed

by the equations

a0∆Si + · · ·+ ak∆Si+k = 0, i = n, . . . , n+ k − 1. (4.4)

Now let y be an arbitrary vector in the algebraic dual space of E, E∗. We define the

bilinear form < y,u > as

< y,u >=
N∑
i=1

yiui

where the yi’s and the ui’s are the components of y and u respectively, and we take the

duality product of the relations (4.4) with y, that is

α0 < y,∆Si > + · · ·+ αk < y,∆Si+k >= 0, n, n+ 1, . . . , n+ k − 1. (4.5)

We stress that, similarly to the scalar case, if Sn does not belong to the kernel (4.3),

the relations (4.5) still hold, and together with the assumption a0 + · · ·+ ak = 1, they

form the following system of k + 1 equations in k + 1 unknowns
a

(n,k)
0 + · · · + a

(n,k)
k = 1

a
(n,k)
0 < y,∆Sn > + · · · + a

(n,k)
k < y,∆Sn+k > = 0

...
...

...

a
(n,k)
0 < y,∆Sn+k−1 > + · · · + a

(n,k)
k < y,∆Sn+2k−1 > = 0

. (4.6)

The superscript (n, k) denotes the dependence on both n and k. From the above system,

whose the determinant is assumed to be nonzero, we compute ai’s and then S can be

obtained from

S = a
(n,k)
0 Sn+i + · · ·+ a

(n,k)
k Sn+k−i

for any i. When i = 0, we have the first topological Shanks transformation, i.e.

êk(Sn) = a
(n,k)
0 Sn + · · ·+ a

(n,k)
k Sn+k, n, k = 0, 1, . . .

For i = k, the second topological Shanks transformation writes

ẽk(Sn) = a
(n,k)
0 Sn+k + · · ·+ a

(n,k)
k Sn+2k, n, k = 0, 1, . . .

.
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Note: We will use the notation ek(Sn) every time we want to refer to both or any of

the two transformations.

Given the particular form of the right hand side of the system (4.6), topological

Shanks transformations can be written as a ratio of determinants, i.e.

ek(Sn) =

∣∣∣∣∣∣∣∣∣∣∣

Sn+i · · · Sn+k−i

< y,∆Sn > · · · < y,∆Sn+k >
...

...

< y,∆Sn+k−1 > · · · < y,∆Sn+2k−1 >

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1

< y,∆Sn > · · · < y,∆Sn+k >
...

...

< y,∆Sn+k−1 > · · · < y,∆Sn+2k−1 >

∣∣∣∣∣∣∣∣∣∣∣
By construction we have

Theorem 4.2. [13] If ∀n ≥ N , ∃ai with a0ak 6= 0 and a0 + · · ·+ ak 6= 0 such that

a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0,

then ∀n ≥ N , ek(Sn) = S.

Remark 4.2. The condition of the last theorem is only sufficient, contrarily to Theorem

1.1, where it was necessary and sufficient.

For the recursive implementation of the elements êk(Sn), ẽk(Sn) ∈ E we use the first

and second topological ε-algorithm (TEA1 and TEA2), respectively, whose common rules

are 
ε

(n)
−1 = 0 ∈ E ∗, n = 0, 1, . . . ,

ε
(n)
0 = Sn ∈ E, n = 0, 1, . . . ,

ε
(n)
2k+1 = ε

(n+1)
2k−1 +

y

〈y, ε(n+1)
2k − ε(n)

2k 〉
∈ E ∗, k, n = 0, 1, . . .

whilst the even rules differ and are given below

for TEA1 : ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε̂
(n+1)
2k − ε̂(n)

2k

〈ε̂(n+1)
2k+1 − ε̂

(n)
2k+1, ε̂

(n+1)
2k − ε̂(n)

2k 〉
∈ E, (4.7)

for TEA2 : ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε̃
(n+2)
2k − ε̃(n+1)

2k

〈ε̃(n+1)
2k+1 − ε̃

(n)
2k+1, ε̃

(n+2)
2k − ε̃(n+1)

2k 〉
∈ E. (4.8)
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Notation: The inverse of a couple (u,y) ∈ E × E ∗ used above is defined as u−1 =

y/〈y,u〉 ∈ E ∗ and y−1 = u/〈y,u〉 ∈ E [13].

Remark 4.3. When the dimension of the vectors is one, the rules of the topological

ε-algorithms reduce to the rules of the scalar ε-algorithm.

An array as that displayed in Table 1.1 for the elements of the scalar ε-algorithm

can be formed from the elements of the topological ε-algorithm.

As in the scalar case, the topological ε-algorithm is connected to the topological

Shanks transformation via the following relations

ε
(n)
2k = en(Sn), ε

(n)
2k+1 = y/〈y, en(∆Sn)〉.

The connection between the scalar and the topological ε-algorithms is described below

〈y, ε(n)
2k 〉 = ek(〈y,Sn〉).

Note: We stress that in this Ph.D. thesis we always consider E = RN , thus E ∗ = RN

and 〈·, ·〉 is the standard inner product.

4.3 Simplified topological ε-algorithms

Recently Brezinski and Redivo-Zaglia [21] introduced two new algorithms for imple-

menting the topological Shanks transformations. These new algorithms called simpli-

fied topological ε-algorithms are better than the old topological ε-algorithms both from

a theoretical point of view and for numerical reasons.

The starting point for defining the simplified topological ε-algorithm is to apply the

scalar ε-algorithm of Wynn to the sequence

(Sn) = (〈y,Sn〉). (4.9)

Then, based on algebraic properties of the topological ε-algorithms and making use of

the recursive rule of the scalar ε-algorithm, we obtain the first simplified topological

ε-algorithm (STEA1) written in one of the following equivalent formulas
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ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

1

(ε
(n+1)
2k − ε(n)

2k )(ε
(n+1)
2k+1 − ε

(n)
2k+1)

(ε̂
(n+1)
2k − ε̂(n)

2k ) , (4.10)

ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε
(n)
2k+1 − ε

(n+1)
2k−1

ε
(n+1)
2k+1 − ε

(n)
2k+1

(ε̂
(n+1)
2k − ε̂(n)

2k ) , (4.11)

ε̂
(n)
2k+2 = ε̂

(n+1)
2k +

ε
(n)
2k+2 − ε

(n+1)
2k

ε
(n+1)
2k − ε(n)

2k

(ε̂
(n+1)
2k − ε̂(n)

2k ) , (4.12)

ε̂
(n)
2k+2 = ε̂

(n+1)
2k + (ε

(n)
2k+1 − ε

(n+1)
2k−1 )(ε

(n)
2k+2 − ε

(n+1)
2k )(ε̂

(n+1)
2k − ε̂(n)

2k ) , (4.13)

k, n = 0, 1, . . ., with ε̂
(n)
0 = Sn ∈ E, n = 0, 1, . . .

and the second simplified topological ε-algorithm (STEA2) written in one of the following

equivalent formulas

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

1

(ε
(n+2)
2k − ε(n+1)

2k )(ε
(n+1)
2k+1 − ε

(n)
2k+1)

(ε̃
(n+2)
2k − ε̃(n+1)

2k ) , (4.14)

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε
(n+1)
2k+1 − ε

(n+2)
2k−1

ε
(n+1)
2k+1 − ε

(n)
2k+1

(ε̃
(n+2)
2k − ε̃(n+1)

2k ) , (4.15)

ε̃
(n)
2k+2 = ε̃

(n+1)
2k +

ε
(n)
2k+2 − ε

(n+1)
2k

ε
(n+2)
2k − ε(n+1)

2k

(ε̃
(n+2)
2k − ε̃(n+1)

2k ) , (4.16)

ε̃
(n)
2k+2 = ε̃

(n+1)
2k + (ε

(n+1)
2k+1 − ε

(n+2)
2k−1 )(ε

(n)
2k+2 − ε

(n+1)
2k )(ε̃

(n+2)
2k − ε̃(n+1)

2k ) , (4.17)

k, n = 0, 1, . . ., with ε̃
(n)
0 = Sn ∈ E, n = 0, 1, . . .

For a more detailed description on the derivation of the aforementioned formulas refer

to [21].

Several convergence and acceleration results for the simplified topological ε-

algorithm are given in [21]. For instance, let us consider the class TM of the totally

monotonic sequences, defined as

TM =
{

(Sn) such that (−1)k∆kSn ≥ 0, ∀k, n, component-wise
}
,

For this class of sequences in [21, Theorem 6.1] the authors give interesting theoretical

results. Here we report the one that we will need in Section 6.3.2.

Theorem 4.3. If (Sn) converges to S, if

(Sn = 〈y,Sn〉) ∈ TM , (4.18)
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if exist a 6= 0 and c ∈ RN such that

(aSn + c) ∈ TM , (4.19)

and if

lim
n→∞

〈y,Sn+1 − S〉
〈y,Sn − S〉

6= 1 , (4.20)

then for all k fixed,

lim
n→∞

‖ε̃(n)
2k − S‖

‖xn+2k − S‖
= 0 .

From a numerical point of view, the simplified topological ε-algorithm is better

than the topological ε-algorithm, since it helps us to overcome several computational

problems that characterize the classical topological ε-algorithms. Indeed, computing

the scalars present in the ratios in (4.10)-(4.17) instead of performing the difficult

manipulations with elements of the dual vector space E ∗ required in (4.7)-(4.8), reduces

the computational cost. Furthermore, we can use the particular rules for the scalar ε-

algorithm, in order to handle the potential singularities during the computation of

the scalars in (4.10)-(4.17), thus improve the overall numerical stability. Finally, the

simplified topological ε-algorithms require the storage of less elements compared to the

topological ε-algorithms, since only elements with an even index are used and computed.

Indeed, the ε-array corresponding to the simplified topological ε-algorithm is as the one

displayed in Table 1.1, but it contains only vectors with even lower indices.
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Chapter 5

Iterative regularization methods

In this chapter we present several iterative regularization methods that are commonly

used for the solution of a linear system of equations. We start with the class of Algebraic

Reconstruction Techniques and then we revise Simultaneous Iterative Reconstruction

Techniques. We discuss extensively the original method of Cimmino, we generalize

it and we propose a new variant. The chapter is concluded with the projected SIRT

methods and the semi-iterative methods (also called Accelerated Landweber methods).

5.1 Linear inverse ill-posed problems

Inverse problems arise every time we look for the cause of an observed effect. In

mathematical terms, we have a known system and the output is also known often

with errors. We then have to compute the input. Inverse problems are usually ill-posed

in the Hadamard sense, i.e., a solution might not exist, or if it exists it might neither

be unique nor continuously depend on the data. When considering numerical methods

for inverse problems, we are particularly concerned with the latter issue, since even

small perturbations in the data might result in a meaningless solution that is heavily

corrupted by the error components. For this reason, some sort of regularization has to

be applied. An extensive study on how to treat, analytically and numerically, this kind

of problems can be found for instance in [34, 41]. In the next sections we revise several

iterative regularization techniques for discretizations of inverse problems.

Let the known system be represented by the matrix A ∈ RM×N , the output as the

right-hand side b ∈ RM , containing the known data, and the solution be x ∈ RN . Then
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the problem can be formulated as the following system of linear equations

Ax = b, (5.1)

where the matrix A is typically a discretization of an ill-posed problem. The exact

solution x̂ = A−1b is the unique intersection point of the M hyperplanes in RN

〈ai,x〉 = bi, i = 1, 2, ..., N . (5.2)

These hyperplanes will play a fundamental role in the definition of the so called row-

action methods presented in the next sections. Row action methods can be categorized

in two classes, Algebraic Reconstruction Techniques (ART) and Simultaneous Iterative

Reconstruction Techniques (SIRT). The representative of each class is Kaczmarz and

Cimmino method, respectively, but we will briefly describe all the other methods.

5.2 Algebraic Reconstruction Techniques (ART)

Algebraic Reconstruction Techniques (ART) are fully sequential, i.e., each equation

is treated at a time, since each equation is dependent on the previous ones. In the

following we briefly describe the ART methods. For a deeper understanding of these

methods the interested reader may consult [44, 58] and the references therein.

• Kaczmarz method. The method is named after the Polish mathematician

Stefan Kaczmarz who in 1937 proposed an iterative algorithm for solving linear

systems of equations [46]. In 1970 Gordon et al. rediscovered Kaczmarz’s method

applied in medical imaging; they called it ART [38]. To avoid confusion, we will

refer to this method as Kaczmarz method, whilst ART will refer to the entire

class of algebraic reconstruction techniques.

One iteration of Kaczmarz method consists of a set of consecutive projections in

their natural order, that is,
p0 = xn

pi = pi−1 +
bi − 〈pi−1, ai〉
‖ai‖2

ai , i = 1, ...,M

xn+1 = pM

The convergence of Kaczmarz method is discussed in [17] where the authors also

give interesting projection properties.
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• Symmetric Kaczmarz method [9]. This variant uses the classical Kaczmarz

method (5.3) once for i = 1, . . . ,M and then applies the same method using the

equations in reverse order, i.e. for i = M − 1, . . . , 3, 2. Thus, one iteration of the

symmetric Kaczmarz method consists of 2M − 2 steps.

• Randomized Kaczmarz method [65]. This methods differs from the classi-

cal Kaczmarz method in the way that the equations are used. We cannot talk

about iterations, since every time we select the rows ai randomly with proba-

bility proportional to ‖ai‖2. So, in order to make possible the comparison with

other methods, we follow the definition proposed in [44] where one “iteration” of

randomized Kaczmarz method consists of M random steps.

5.3 Simultaneous Iterative Reconstruction

Techniques (SIRT)

In the literature we find several versions of SIRT methods. Here we follow the definition

given in [44, 58], where SIRT methods are written in the general form:

xn+1 = xn + λnTA
TD(b− Axn︸ ︷︷ ︸

rn

) , n = 0, 1, . . . . (5.3)

The vectors xn, xn+1 denote the current and the new iteration vector, the vector

rn = b − Axn is the residual at the current iterate, λn is a relaxation parameter,

and D ∈ RM×M , T ∈ RN×N are symmetric positive definite matrices. Typically, x0 is

the zero vector or an initial guess for the solution. Concerning the convergence of SIRT

memthods we have the following theorem.

Theorem 5.1. [24, Theorem 6.1] The iterates of the form (5.3) converge to a weighted

least squares solution x̂ of minx ‖Ax−b‖D if and only if 0 < λn < 2/ρ(TATDA). If in

addition x0 ∈ R(TAT ) then x̂ is the unique solution of minimal Euclidean norm among

all weighted least squares solutions.

Different SIRT methods depend on the choice of the matrices T and D.

• Component Averaging (CAV). Let sj be the number of nonzero elements in

the column j of the matrix A. We define the diagonal matrix S = diag(s1, . . . , sN)
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and the norm ‖ai‖2
S = 〈ai, Sai〉 =

∑M
i=1 a

2
ijsj, for i = 1, . . . ,M . By setting T = I

and D = DS = diag

(
mi

‖ai‖2
S

)M
i=1

, we obtain the method called CAV [26].

• Diagonally Relaxed Orthogonal Projections (DROP). If we consider (5.3)

with T = diag (1/sj) and D = diag

{
m1

‖a1‖2
,

m2

‖a2‖2
, . . . ,

mM

‖aM‖2

}
, we obtain the

fully simultaneous DROP (Diagonally Relaxed Orthogonal Projections) method

for linear equations. For an extensive study of this method including an analysis

of the convergence the interested reader may consult [25].

• Simultaneous Algebraic Reconstruction Technique (SART). If we denote

by Dr, Dc the diagonal matrices defined in terms of the row and the column

sums respectively, and we set T = D−1
r , D = D−1

c , we have created SART. The

convergence of SART is guaranteed for 0 < λn < 2 (see [24, 45]).

In the following we always assume T = I and λn = λ fixed (stationary SIRT

methods), that is

xn+1 = xn + λATD(b− Axn) , n = 0, 1, . . . . (5.4)

Defining Ā = D1/2A and r̄n = D1/2(b− Axn), we can write (5.4) as follows

xn+1 = xn + λĀT r̄n . (5.5)

By using the thin SVD of Ā, given by Ā = ŪΣ̄V̄ T , with Σ̄ ∈ RN×N , one can also show

by induction that

xn − x0 = V̄ Φ̄(n)Σ̄−1ŪT r̄0 ,

where

Φ̄(n) =
n−1∑
j=0

(
I − λΣ̄2

)j
(λΣ̄2) = I −

(
I − λΣ̄2

)n
. (5.6)

Therefore, SIRT methods (5.5) can be regarded as filtering methods. It can be easily

proved that SIRT methods converge to a solution of (5.1) if and only if

0 < λ < 2/‖Ā‖2 (5.7)

The next two SIRT methods are special cases of (5.4).
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• Landweber method. If we set D = I we derive the classical Landweber method

[47].

• Cimmino method. The original method of Cimmino [27] is recovered for

D =
2

µ
diag

(
mi

‖ai‖2
2

)M
i=1

, with µ =
∑M

i=1mi, where the mi’s are arbitrary positive

quantities. Therefore, Cimmino method can be regarded as a left-preconditioned

version of Landweber method. Note that here λ = 2 is hidden in D.

5.4 The original method of Cimmino

The main advantage of this method is described in the introductory note of the original

paper by Cimmino [27] where Mauro Picone writes that this method “is most worthy

of consideration in the applications because of its generality, its efficiency and, finally,

because of its guaranteed convergence which can make the method practicable in many

cases” 1. In this section we explain Cimmino’s method in details and we present it in a

different notation. Furthermore, we consider a M ×N linear system while Cimmino in

his original paper had treated the square case. An interesting and detailed report on

the work of Gianfranco Cimmino is presented in [4].

Once more we want to approximate the solution x̂ of the linear system (5.1). Ini-

tially, we assume that the matrix of the system is nonsingular. We consider the set of

hyperplanes (5.2) and in order to determine the common point O ≡ x̂, we define a series

of approximations. Taken, as the first approximation, an arbitrary point P0 ≡ x0 ∈ RN ,

we consider its symmetric points with respect to the hyperplanes (5.2), for i = 1, ...,M ,

that is

p0,i = x0 + 2
bi − 〈ai,x0〉
‖ai‖2

ai. (5.8)

Now, we fix M arbitrary positive quantities m1,m2, ...,mM and we define the centroid

of the system formed by placing the masses (or weights) mi at the M points (5.8). This

1The Italian original reads: “metodo che, secondo il mio avviso, è degnissimo di essere tenuto

presente nelle applicazioni e per la sua grande generalità e per la rapidità di calcolo numerico delle

successive approssimazioni, ed, infine, per la sua assicurata convergenza che, in molti casi, può dare al

metodo il necessario carattere di praticità”
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brings us to the second approximation P1 ≡ x1, given by

x1 =
1

µ

M∑
i=1

mip0,i = x0 +
2

µ

M∑
i=1

mi
bi − 〈ai,x0〉
‖ai‖2

ai (5.9)

where µ =
∑M

i=1 mi. We repeat the procedure starting from the new approximation x1,

and so forth. In this way, we obtain the following successive approximations

xn+1 = xn +
2

µ

M∑
i=1

mi
bi − 〈ai,xn〉
‖ai‖2

ai. (5.10)

Remark 5.1. The initial point P0 ≡ x0 and its reflections (5.8) lie on the hypersphere

with center the point O, namely, the solution x̂ of the linear system. Since the center

of gravity P1 given by (5.9) will necessarily fall inside the same hypersphere, it follows

that it will be closer to the point O, that we are looking for, than the starting point

P0. Therefore, the point Pn+1 ≡ xn+1 given by (5.10) will always fall closer to O. In

mathematical terms, this means

‖xn+1 − x̂‖ < ‖xn − x̂‖ .

The last remark shows that, in the nonsingular case, the method of Cimmino always

converges to the unique solution of the system. However, we have convergence also for

singular systems provided that they are consistent and the characteristic of the matrix

is greater than 1. Indeed, Cimmino stated and proved the following theorem.

Theorem 5.2. If the system (5.1) is consistent and rank(A) ≥ 2, then the sequence

{xn} generated by (5.10) converges to a solution of the system.

Proof. Being x̂ the solution of the system (5.1) or equivalently of (5.2), from (5.10)

we have

xn+1 − x̂ = xn − x̂− 2

µ

M∑
i=1

mi
〈ai,xn − x̂〉
‖ai‖2

ai. (5.11)

Then,
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OP
2

n+1 = ‖xn+1 − x̂‖2

= ‖xn − x̂‖2 − 4
µ 〈xn − x̂,

∑M
i=1mi

〈ai,xn−x̂〉
‖ai‖2 ai〉+ 4

µ2 〈
∑M
i=1mi

〈ai,xn−hatx〉
‖ai‖2 ai,

∑M
j=1mj

〈aj ,xn−x̂〉
‖aj‖2 aj〉

= ‖xn − x̂‖2 − 2
µ2 2µ〈xn − x̂,

∑M
i=1mi

〈ai,xn−x̂〉
‖ai‖2 ai〉+ 2

µ2 2〈
∑M
i=1mi

〈ai,xn − x̂〉
‖ai‖2

ai,
∑M
j=1mj

〈aj ,xn−x̂〉
‖aj‖2 aj〉

= ‖xn − x̂‖2 − 2
µ2 (2µ〈xn − x̂,

∑M
i=1mi

〈ai,xn−x̂〉
‖ai‖2 ai〉 − 2〈

∑M
i=1mi

〈ai,xn − x̂〉
‖ai‖2

ai,
∑M
j=1mj

〈aj ,xn−x̂〉
‖aj‖2 aj〉)

= ‖xn − x̂‖2 − 2
µ2 (2µ

∑M
i=1〈xn − x̂,mi

〈ai,xn−x̂〉
‖ai‖2 ai〉 − 2

∑M
i=1mi

〈ai,xn−x̂〉
‖ai‖2 〈ai,

∑M
j=1mj

〈aj ,xn − x̂〉
‖aj‖2

aj〉)

= ‖xn − x̂‖2 − 2
µ2 (2µ

∑M
i=1mi

〈ai,xn−x̂〉
‖ai‖2 〈xn − x̂,ai〉 − 2

∑M
i=1mi

〈ai,xn−x̂〉
‖ai‖2

∑M
j=1mj

〈aj ,xn − x̂〉
‖aj‖2

〈ai,aj〉)

= ‖xn − x̂‖2 − 2
µ2 (2µ

∑M
i=1mi

(〈ai,xn−x̂〉)2
‖ai‖2 − 2

∑M
i=1

∑M
j=1〈ai,aj〉mi

〈ai,xn−x̂〉
‖ai‖2 mj

〈aj ,xn−x̂〉
‖aj‖2 )

= ‖xn − x̂‖2

− 2
µ2 (µ

∑M
i=1mi

(〈ai,xn−x̂〉)2
‖ai‖2 + µ

∑M
j=1mj

(〈aj ,xn−x̂〉)2
‖aj‖2 − 2

∑M
i=1

∑M
j=1〈ai,aj〉mi

〈ai,xn−x̂〉
‖ai‖2 mj

〈aj ,xn−x̂〉
‖aj‖2 )

= ‖xn − x̂‖2 − 2
µ2 (
∑M
j=1mj

∑M
i=1miχ

2
i +

∑M
i=1mi

∑M
j=1mjχ

2
j − 2

∑M
i=1

∑M
j=1 ϑijmiχimjχj).

Therefore,

OP
2

n+1 = OP
2

n −
2

µ2

M∑
i=1

M∑
j=1

mimj

(
χ2
i + χ2

j − 2ϑijχiχj
)

, (5.12)

where

χk =
〈ak,xn − x̂〉
‖ak‖

, ϑij =
〈ai, aj〉
‖ai‖‖aj‖

.

If χiχj ≥ 0 then χiχj =| χiχj |≥| ϑij || χiχj |=| ϑijχiχj |≥ ϑijχiχj, as from Cauchy-

Schwarz inequality | ϑij |≤ 1. Since (χi − χj)
2 ≥ 0 implies χ2

i + χ2
j ≥ 2χiχj, we

finally have χ2
i + χ2

j ≥ 2ϑijχiχj, thus χ2
i + χ2

j − 2ϑijχiχj ≥ 0. If χiχj < 0, then

χiχj = − | χiχj |≤ − | ϑij || χiχj |= − | ϑijχiχj |≤ −ϑijχiχj, and finally we

have χ2
i + χ2

j − 2ϑijχiχj ≥ χ2
i + χ2

j + 2χiχj = (χi + χj)
2 ≥ 0. By hypothesis, mi,mj,

i, j = 1, . . . ,M , are positive, thus we conclude that

OP
2

n+1 ≤ OP
2

n. (5.13)
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�

Remark 5.2. The necessity of the condition rank(A) ≥ 2 is evident since, if all the

hyperplanes (5.2) coincide in a single hyperplane, then the successive approximations

(5.10) will provide alternately the starting point and its symmetric points with respect

to the hyperplanes.

Proposition 5.1. The equality in (5.13) holds if xn+1 = xn.

Proof. Given that χ2
i + χ2

j − 2ϑijχiχj ≥ (| χi | − | χj |)2, the only way to have

χ2
i + χ2

j − 2ϑijχiχj = 0 is χk being independent of k, let χk = c for all k. Then from

(5.12) results

OP
2

n+1 = OP
2

n −
2

µ2

N∑
i=1

N∑
j=1

2c2(1− ϑij)mimj ≤ OP
2

n −
4c2

µ2

N∑
i=1

N∑
j=1

(1− | ϑij |)mimj .

If | ϑij |= 1 then (5.13) would hold as an equality. But | ϑij | is equal to 1 only if

ai, aj are linearly dependent. This cannot be true for every pair i and j (i, j = 1, ...,M)

since we have assumed that rank(A) ≥ 2. So, the only case where (5.13) is valid with

“=” is if χk = 0 for every k = 1, ...,M . This implies that 〈ak,xn − x̂〉 = 0, thus

〈ak,xn〉 = 〈ak, x̂〉 = bk, for all k = 1, ...,M , that is xn verifies the system (5.2). As a

consequence, the sum in (5.10) is zero and therefore xn+1 = xn.

�

Corollary 5.1. [27] It holds OP
2

n+1 < OP
2

n, for every n, unless after a finite number

of approximations we find the exact solution x̂.

Proposition 5.2. The limit of the sequence of the points Pn is unique.

Proof. All the points Pn are inside the hypersphere of center O and radius OP 0,

consequently, the sequence {Pn} has an accumulation point, let P ≡ x̃. We suppose

that a subsequence {Pns−1}, s = 1, 2, ..., extracted from {Pn} converges to P , thus

(5.11) implies that the sequence {Pns}, s = 1, 2, ..., will also converge, more precisely

towards the point P∗ ≡ x̃∗ defined by

x̃∗ − x̂ = x̃− x̂− 2

µ

M∑
i=1

mi
〈ai, x̃− x̂〉
‖ai‖2

ai. (5.14)
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Repeating for (5.14) the arguments that we used for (5.10), we conclude that x̃ is a

solution of (5.2). Indeed, (5.14) implies that OP ∗ ≤ OP . So, if we assume that x̃

is not a solution of (5.2) then it should hold the inequality OP ∗ < OP , thus for r

and s big enough, OP nr < OP ns−1, since {Pnr} → P∗ and {Pns−1} → P . But this is

impossible, as when r = s − 1, then nr = ns−1 ≤ ns − 1, thus, according to (5.13),

it should be OP nr ≥ OP ns−1. Therefore, P = x̃ is necessarily a solution of (5.2).

Now, considering that the distance PP n will decrease as n increases and that there is a

sequence extracted from {Pn} with limit the point P , we conclude that P is the unique

limit of the sequence {Pn}.

�

We should mention that a theorem analogous to (5.2) holds for inconsistent systems.

Theorem 5.3. [27] The successive approximations (5.10) converge even if the system

(5.1) is consistent, always provided that rank(A) ≥ 2.

5.5 A generalization of Cimmino’s method

In the literature we find several versions of Cimmino method, some of which we revise

in this section. In order to have a general formula that unifies all the existing variants,

we introduce the Generalized Cimmino method defined as

xn+1 = xn +
λn
µ

M∑
i=1

mi
bi − 〈ai,xn〉
‖ai‖2

ai, (5.15)

where λn is a sequence of positive relaxation parameters and µ =
∑M

i=1mi with mi

positive quantities.

Remark 5.3. Formula (5.15) reminds the version of Cimmino method included in the

AIR Tools package with the difference that in [44, Equation (5)] µ is equal to M and it

is independent of mi.

We could describe the cycle of one iteration of the Generalized Cimmino method as
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follows 
p0 = xn

pi = p0 + λn
bi − 〈ai,p0〉
‖ai‖2

ai , i = 1, ...,M

xn+1 =
1

µ

∑M
i=1mipi .

(5.16)

An algorithmic scheme for the Generalized Cimmino method is described below.

Generalized Cimmino Algorithm

Input A ∈ RM×N , b ∈ RM , x0 ∈ RN ,

λn sequence of positive parameters,

m1, ...,mM ∈ R positive quantities

Set µ =
∑M

i=1 mi

for n = 0, 1, ... until convergence do

p0 ← xn

Compute pi = p0 + λn
bi − 〈ai,p0〉
‖ai‖2

ai, i = 1, ...,M

xn+1 ←
1

µ

∑M
i=1 mipi .

end for n

Note that if λn = λ = 1, that is we consider projections instead of reflections, we

derive the so called Cimmino’s projection method. Then, being

pi = p0 +
bi − 〈ai,p0〉
‖ai‖2

ai,

the following orthogonality properties hold

(i) 〈b− Api, ei〉 = 0,

(ii) 〈pi − p0,x− pi〉 = 0.
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Proof.

(i) 〈b− Api, ei〉 = 〈b, ei〉 − 〈Api, ei〉 = bi − 〈pi, ATei〉 = bi − 〈ATei,pi〉

= bi − 〈ai,pi〉 = bi − 〈ai,p0 +
bi − 〈ai,p0〉
‖ai‖2

ai〉

= bi − 〈ai,p0〉 − 〈ai,
bi − 〈ai,p0〉
‖ai‖2

ai〉

= bi − 〈ai,p0〉 −
bi − 〈ai,p0〉
‖ai‖2

〈ai, ai〉 = 0.

(ii) 〈pi − p0,x− pi〉 = 〈bi − 〈ai,p0〉
‖ai‖2

ai,x− pi〉 = 〈bi − 〈ai,p0〉
‖ai‖2

ATei,x− pi〉

= 〈bi − 〈ai,p0〉
‖ai‖2

ei, Ax− Api〉 =
bi − 〈ai,p0〉
‖ai‖2

〈ei,b− Api〉

=
bi − 〈ai,p0〉
‖ai‖2

〈b− Api, ei〉 = 0,

as follows from (i).

�

Following the analysis done for Kaczmarz method in [17] we study in an analogous

way Generalized Cimmino method. First we introduce some notation. For i = 1, ...,M

αi =
ATei
‖ATei‖2

=
ai
‖ai‖2

,

%i = b− Api,

Pi = I − λnAαieTi ,

Qi = A−1PiA, thus Qi = I − λnαiaTi .

(5.17)

Remark 5.4. For λn = λ = 1 the matrix Pi represents the oblique projection on e⊥i

along AATei, while Qi is the rank N − 1 orthogonal projection on ATe⊥i along ATei.

Thus, for any vector y, 〈Piy, ei〉 = 0 and 〈Qiy, A
Tei〉 = 0.

Remark 5.5. For λn = λ = 2 it results P 2
i = I and Q2

i = I, which is expected as in

this case we have reflections.
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Lemma 5.1. Considering (5.17), then the following relations hold

(i) pi = Qip0 + λn〈b, ei〉αi = Qip0 + (I −Qi)x

(ii) x− pi = x− p0 − λnαieTi %0 = Qi(x− p0)

(iii) %i = %0 − λn〈%0, ei〉Aαi = Pi%0

Proof.

(i) Using the definitions (5.17), we have

Qip0 + λn〈b, ei〉αi = (I − λnαiaTi )p0 + λnbi
ai
‖ai‖2

= p0 − λn
aia

T
i

‖ai‖2
p0 + λn

bi
‖ai‖2

ai

= p0 + λn(−aTi p0 + bi)
ai
‖ai‖2

= p0 + λn
bi − aTi p0

‖ai‖2
ai = pi

and

Qip0 + (I −Qi)x = Qip0 + λnαia
T
i x = Qip0 + λn

aia
T
i

‖ai‖2
x = Qip0 + λn

ai
‖ai‖2

aTi x

= Qip0 + λn
ai
‖ai‖2

bi = Qip0 + λnαi〈b, ei〉.

(ii) By construction,

pi = p0 + λn
bi − 〈ai, p0〉
‖ai‖2

ai = p0 + λnai
eTi b− eTi Ap0

‖ai‖2
= p0 + λn

ai
‖ai‖2

eTi (b− Ap0)

= p0 + λnαie
T
i %0,

thus x− pi = x− p0 − λnαieTi %0.

Furthermore, we have

Qi(x− p0) = (I − λnαiaTi )(x− p0) = x− p0 − λn
ai
‖ai‖2

aTi x + λn
ai
‖ai‖2

aTi p0

= x− p0 − λn
ai
‖ai‖2

bi + λn
ai
‖ai‖2

〈ai,p0〉 = x− p0 − λn
bi − 〈ai,p0〉
‖ai‖2

ai

= x− pi.
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(iii) By definition of %0 it holds

%0 − λn〈%0, ei〉Aαi = b− Ap0 − λn〈b− Ap0, ei〉A
ai
‖ai‖2

= b− Ap0 − λn (〈b, ei〉 − 〈Ap0, ei〉)A
ai
‖ai‖2

= b− Ap0 − λnA
(
bi − 〈p0, A

Tei〉
) ai
‖ai‖2

= b− Ap0 − λnA
bi − 〈p0, ai〉
‖ai‖2

ai

= b− A
(

p0 + λn
bi − 〈p0, ai〉
‖ai‖2

ai

)

= b− Api = %i.

Also,

Pi%0 =
(
I − λnAαieTi

)
(b− Ap0) = b− Ap0 − λnAαieTi (b− Ap0)

= b− Ap0 − λnA
ai
‖ai‖2

(
bi − eTi Ap0

)
= b− Ap0 − λnA

bi − aTi p0

‖ai‖2
ai

= b− A
(

p0 − λn
bi − 〈ai,p0〉
‖ai‖2

ai

)
= b− Api = %i.

�

In matrix form, the generalized Cimmino method (5.15) can be expressed as

xn+1 = xn + λnA
TD (b− Axn) , n = 0, 1, ...,

where

D =
1

µ
diag

{
m1

‖a1‖2
,

m2

‖a2‖2
, . . . ,

mM

‖aM‖2

}
, µ =

∑M
i=1 mi .

(5.18)

• If we consider (5.18) with λn = λ = 2 we obtain the original method of Cimmino.

If we also set mi = ‖ai‖2 we obtain a special case of von Mises’ method (stationary
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Richardson iteration) applied to the system of normal equations ATAx = ATb

[57]. Moreover, if the rows of A are normalized such that mi = ‖ai‖ = 1 for

i = 1, 2, ...,M then µ = M and the method obtained is the under-relaxed Jacobi

iteration for a special choice of the relaxation parameter [57].

• For λn = λ = 1 we derive Cimmino’s projection method.

• If in (5.18) we set λn = λM , where λ is a constant, and mi = 1, we obtain

Landweber method.

Formula (5.18) can be written, equivalently, as xn+1 = xn − λnATD (Axn − b) or

xn+1 = Qxn +Rb , (5.19)

where

Q = I − λnATDA and R = λnA
TD = (I −Q)A−1 . (5.20)

Lemma 5.2. For the sequence {xn} generated by (5.18) the following relations hold

(i) x− xn+1 = Q(x− xn)

(ii) x− xn = Qn(x− x0)

Proof.

(i) We have

Q(x− xn) = (I − λnATDA)(x− xn) = x− xn − λnATDAx + λnA
TDAxn

= x− xn + λnA
TD (b− Axn) = x− xn+1.

(ii) The second relation follows directly from (i) using induction. Indeed, for n = 0,

(i) gives x − x1 = Q(x − x0). We assume that for n = k the relation x − xk =

Qk(x− x0) holds. Then, from (5.19) we have

x− xk+1 = x− (Qxk +Rb) = x−Q
(
x +Qk(x− x0)

)
−Rb

= x−Qx−Qk+1(x− x0)−Rb

= (I −Q) x−Qk+1(x− x0)− (I −Q)A−1b

= Qk+1(x− x0).
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�

Lemma 5.3. (i) If x ∈ N (A) then Qx = x ∈ N (A)

(ii) If x ∈ R(AT ) then Qx ∈ R(AT )

(iii) For any y ∈ RM , Ry ∈ R(AT )

Proof.

(i) By definition, x ∈ N (A) implies that Ax = 0. Therefore,

Qx =
(
I − λnATDA

)
x = x− λnATDAx = x ∈ N (A).

(ii) If x ∈ R(AT ) then there exist a vector z ∈ RM such that ATz = x. So, we have

Qx = x− λnATDAx = ATz− AT (λnDAx) = AT (z− λnDAx) ∈ R(AT ).

(iii) For any y ∈ RM we have

Ry = λnA
TDy = AT (λnDy) ∈ R(AT ).

�

Proposition 5.3. The operators Q and R can be also expressed as

Q =
M∑
i=1

mi

µ
Qi , R =

M∑
i=1

mi

µ
A−1(I − Pi) (5.21)

respectively, where Qi and Pi are defined in (5.17).

Proof. We start with the remark that the diagonal matrix with elements { mi

‖ai‖2
}Mi=1

can be written as
∑M

i=1

mi

‖ai‖2
eie

T
i . Then, it is immediate that

ATD =
1

µ

M∑
i=1

mi
ai
‖ai‖2

eTi , and ATDA =
1

µ

M∑
i=1

mi
ai

‖ai‖2
aT

i .
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From (5.17) we have Qi = A−1PiA and Pi = I − λnAαieTi thus

M∑
i=1

mi

µ
Qi =

M∑
i=1

mi

µ
A−1PiA =

M∑
i=1

mi

µ
A−1

(
I − λnA

ai
‖ai‖2

eTi

)
A

=
M∑
i=1

mi

µ
A−1IA−

M∑
i=1

mi

µ
A−1λnA

ai
‖ai‖2

eTi A = I − λn
µ

M∑
i=1

mi
ai
‖ai‖2

aTi

= I − λn
µ

M∑
i=1

mi
ai
‖ai‖2

aTi = I − λnATDA = Q

and

M∑
i=1

mi

µ
A−1(I − Pi) =

M∑
i=1

mi

µ
A−1

(
λnA

ai
‖ai‖2

eTi

)
=
λn
µ

M∑
i=1

mi
ai
‖ai‖2

eTi = λnA
TD = R .

�

Note: The operator Q as expressed in (5.21) is a generalization of the operator T as

defined in the equation (96) from [53].

5.6 A new variant of Cimmino method

We dedicate this paragraph to the special case of Generalized Cimmino with λn constant

equal to the dimension M of the problem and mi = 1. This method is expressed as

follows

xn+1 = xn +
M∑
i=1

bi − 〈ai,xn〉
‖ai‖2

ai , (5.22)

or in matrix form,

xn+1 = xn + ATD(b− Axn), n = 0, 1, ... , (5.23)

with D = diag

{
1

‖a1‖2
,

1

‖a2‖2
, . . . ,

1

‖aM‖2

}
.

The idea of this new variant was born by the simple thought that if instead of the

average of the orthogonal projections we consider their sum, we could be led faster to

the solution. Indeed, when this method converges, its convergence is faster than that

of the original Cimmino method or the variant with λ = 1 (cf. Figure 5.1).
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The drawback is that the proposed method does not have a guaranteed convergence.

This is expected if we consult the convergence Theorem 5.1. It is evident that there is a

great risk that the value λ = M is not inside the bounds that guarantee the convergence.

An example where the choice λ = M does not lead the method to convergence is

illustrated in Fig. 5.2.

However, it is quite interesting the fact that the method (5.23) performs really well

for orthogonal matrices. Precisely, we state the following proposition.

Proposition 5.4. If the matrix A of the system (5.1) is orthogonal, then Generalized

Cimmino with λ = M and mi = 1 it converges to the exact solution in just 1 iteration.

Proof. If A is orthogonal, then ATDA = I, which implies Q = 0 as for the method

(5.23) Q = I − ATDA. Finally, Lemma 5.2(i) results x − xn+1 = 0 which means that

even after 1 iteration (n = 0) we reach the exact solution x.

�

Note: An analogous result holds for Kaczmarz method (see [66, Section 4]).

Remark 5.6. If we would like to check a priori whether or not the value λ = M is

inside the bounds that guarantee convergence for orthogonal matrices, the answer would

be positive. Since A is orthogonal, it holds ρ(ATDA) =
1

M
, thus the value λ = M

satisfies the condition of Theorem 5.1.

This property distinguishes the method (5.23) from Cimmino with λ = 1 or λ = 2 as

the last two methods fail to achieve the immediate convergence for orthogonal matrices.

Having the matrix Q equal to I − 1

M
ATA and I − 2

M
ATA equivalently, they perform

a slow rate of convergence even in this case. An illustrative is presented in figure 5.3.

5.6.1 Numerical comparisons

In this paragraph we compare the new variant (λ equal to the size of the problem) with

the original method of Cimmino (λ = 2) and Cimmino’s projection method (λ = 1).

The experiments have been realized using test matrices from the Matlab gallery. The

solution was always set to x = (1, ..., 1)T and the right hand side b was computed as

the product Ax. In some cases, a white noise between 10−2 and 10−4 has been added



82 CHAPTER 5. ITERATIVE REGULARIZATION METHODS

to the vector b. The preconditioning DAx = Db, where D = diag(1/‖ai‖), often met

in the literature [17], is also used here.

The first test matrix, lesp, is a 2000× 2000 tridiagonal matrix with real, sensitive

eigenvalues and condition number almost equal to 3. This example (see figure 5.1)

confirms that when the parameter λ takes the value of the size of the problem, in this

case λ = 2000, then the method performs really well. Even in the noisy case the norm

of the error attains the level of the noise. On the other hand, Cimmino method with

λ = 1 and λ = 2 fail to converge, having their errors stagnated at 101.
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Figure 5.1: Comparison of the errors for Cimmino method with different values of the

parameter λ; λ = 1, λ = 2, λ = N for lesp matrix. On the left the results are

noise-free, on the right we have added noise 10−4.

The results are almost reversed for circul matrix, a 1000 × 1000 circulant matrix

with condition number at the order of 103. As we see in figure 5.2 both the values λ = 1

and λ = 2 give a fast rate of convergence. What is quite surprising is that even after

adding a noise equal to 10−2 we still obtain errors at the level of 10−7. On the other

hand, the choice of λ = N leads to divergence. Performing the test on the values of

λ that ensure the convergence (AIR Tools package [44]) we confirmed that the value

λ = 1000 was quite out of the bounds and thus the divergence appeared.

Of a special interest are the results shown in figure 5.3. Here we have the errors of an

orthogonal matrix, namely a random, orthogonal upper Hessenberg matrix (randhess).

As we expected after the theoretical analysis, for orthogonal matrices the Generalized

Cimmino method with λ = N and mi = 1 converges immediately both for the noise-free

and the noisy case. At the same time, the other two methods still perform the usual
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Figure 5.2: Comparison of the errors for Cimmino method with different values of the

parameter λ; λ = 1, λ = 2 (original method), λ = N = 1000 for circul matrix. On

the left the results are noise-free, on the right we have added noise 10−2.

stagnation.

5.7 Projected SIRT methods

Notation. In this paragraph we denote the ith component of a vector z ∈ RN by [z]i,

i = 1, . . . , N .

Various constraints on the solution x of (5.1) can be naturally incorporated when

considering SIRT iterative solvers (5.3). When dealing with imaging problems, a typical

constraint is nonnegativity [7], i.e., [x]i ≥ 0, i = 1, . . . , N . We obtain a nonnegative

approximate solution by projecting xn+1 onto the nonnegative orthant of RN , i.e.,

xn+1 = P
(
xn + λnTA

TDrn
)
, n = 0, 1, ...,

where [P(z)]i = [z]i if [z]i ≥ 0 and [P(z)]i = 0 otherwise. The above vector can be

alternatively expressed as

xn+1 = Pn+1x̃n+1, where x̃n+1 = xn + λAT rn, (5.24)

and Pn+1 = diag(p1, . . . , pN), with pi = [x̃n+1]i if [x̃n+1]i ≥ 0 and pi = 0 otherwise.

Another physically meaningful constraint for imaging problems is the conservation of

volume v, defined as

v =
N∑
i=1

[x]i.
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We impose both nonnegativity and conservation of volume by taking, for i = 1, . . . , N ,

[xn+1]i = max([x̃n+1]i − η, 0) , where
N∑
i=1

max([x̃n+1]i − η, 0) = v , (5.25)

and x̃n+1 is defined as in (5.24). The above approach relies on Lagrange multipliers

(i.e., the scalar η > 0), and the value of v is updated at each iteration by taking the

sum of the entries of xn, the initial value of v being the sum of the entries of b.

5.8 Semi-iterative methods

The iterative regularization methods revised in the present chapter are characterized by

a slow rate of convergence. In the past decades, several strategies have been proposed

to accelerate these methods. Here we focus on the acceleration of Landweber methods

succeeded by the so-called semi-iterative methods (see, for instance, [34, 40]). These

methods combine one Landweber iteration with an averaging process over all or some

of the previous approximations of the solution. An example of semi-iterative methods

are ν-methods (cf. [34, §6.2 and 6.3], [40], and the references therein), which rely on a

three-term update formula. The ν-methods were originally introduced by Brachage [12]

to obtain theoretical estimates for the performance of the conjugate gradient method.

Nowadays, ν-methods are considered as an alternative to the conjugate gradient method

and the classical Landweber method.

At the n-th iteration, n ≥ 2, ν-methods can be expressed as

xn = xn−1 + µn(xn−1 − xn−2) + λnA
T (b− Axn−1) (5.26)

with µ1 = 0, λ1 = (4ν + 2)/(4ν + 1) and

µn =
(n− 1)(2n− 3)(2n+ 2ν − 1)

(n+ 2ν − 1)(2n+ 4ν − 1)(2n+ 2ν − 3)
, (5.27)

λn = 4
(2n+ 2ν − 1)(n+ ν − 1)

(n+ 2ν − 1)(2n+ 4ν − 1)
, n > 1 (5.28)

Depending on the regularity of the exact solution x̂, and the choice of ν, it can be

showed that a ν-method is an order-optimal regularization method.
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Figure 5.3: Comparison of the errors for Cimmino method with different values of the

parameter λ; λ = 1, λ = 2 (original method), λ = N = 1500 for randhess matrix. On

the left the results are noise-free, on the right we have added noise.
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Chapter 6

Convergence acceleration using the

simplified topological ε-algorithm

In the previous chapter we revised the iterative regularization methods which are com-

monly used for the solution of large-scale inverse ill-posed problems. In this chapter

we study the convergence acceleration of these methods. More precisely, we provide

an insight and algorithmic details about the simplified topological ε-algorithm applied

to Cimmino and Landweber methods. The numerical experiments, which consist of

applications in medical imaging (computerized tomography), seismic tomography and

image deblurring, illustrate the gain from the use of extrapolation on different methods.

We also compare the extrapolated methods with other known acceleration methods and

some Krylov subspace methods.

6.1 Presentation

Fundamentally, tomographic imaging deals with reconstructing an image from its pro-

jections. A continuous model for this problem is described by an integral equation of

the first kind along lines (rays), and depends on the technology and geometry of the

scanning device [44, 52]. In image deblurring, the goal is to restore a distorted image

given the so-called point spread function (PSF), which describes the distortion of each

point (pixel) of the image. In the following we consider spatially invariant PSFs that

are defined both experimentally and analytically. A continuous model is described by

a 2D integral equation of the first kind that models the convolution process. Suitable

87
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boundary conditions that describe the behavior of the pixels at the edges of an image

should be assigned [5, 43].

Upon discretization, a linear system of the form

Ax + e = b (6.1)

is recovered, where A ∈ RM×N and b ∈ RM are known, and the vector e ∈ RM

represents unknown errors or noise in the measured data b. We assume e to be Gaussian

white noise. In the following we denote by b̂ the unknown error-free right-hand side

vector associated to (6.1), i.e., Ax̂ = b̂; x̂ is called exact solution associated to (6.1).

The ill-posed nature of the continuous problem is inherited by the discrete one.

Let us consider the singular value decomposition (SVD) of A, given by

A = UΣV T ,

where U = [u1, . . . ,uM ] ∈ RM×M and V = [v1, . . . ,vN ] ∈ RN×N are orthogonal, and

Σ ∈ RM×N consists of diag(σ1, . . . , σmin{M,N}) with post-pended zero rows or columns

(if M > N or M < N , respectively). The singular values σi ≥ σi+1 ≥ 0 quickly and

smoothly decay to zero and, correspondingly, the singular vectors vi display increasing

oscillations. Once the solution of (6.1) is expressed with respect to the SVD of A as

x =

min{M,N}∑
i=1

uTi b

σi
vi ,

we see that, because of the presence of e in (6.1), x is dominated by the high-frequency

components σ−1
i vi for large indices i. The most popular regularization methods can

be regarded as filtering methods, i.e., methods that suitably attenuate the influence of

high-frequency noise components on the approximated solution. In this framework, the

regularized solution of (6.1) can be generically expressed as

xfilt = V ΦΣ†UTb =

min{M,N}∑
i=1

φi
uTi b

σi
vi ,

where † denotes the Moore-Penrose pseudo inverse, and Φ = diag(φ1, . . . , φmin{M,N}).

Different filtering methods differ for the definition of the filter factors φi, i = 1, . . . , N ,

but a common requirement is to have φi ' 1 for i small (i.e., no filtering on the

low-frequency components of xfilt), and φi ' 0 for i large (i.e., some filtering on the
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high-frequency components of xfilt). For this reason, the more filter factors are close

to zero, the smoother the reconstruction. Truncated SVD and Tikhonov regularization

belong to the class of filtering methods, which typically require the SVD of A to be

available. Given the 2D nature of the solution x ∈ RN , the linear system (6.1) is

inherently large-scale. For this reason, unless A has some particular structure, the

SVD of A is prohibitively expensive to compute. In this case, in practice, only iterative

regularization can be employed, which typically rely on matrix-vector multiplications

with A and/or AT . Iterative regularization consists in applying an appropriate iterative

method to (6.1) and in terminating the iterations sufficiently early, before the high-

frequency components totally corrupt the solution. This phenomenon is referred to as

semi-convergence. In the following, although there are potentially no constraints on the

dimensions of the linear system (6.1), we just consider the square or overdetermined

cases, i.e., M ≥ N .

In this thesis we consider regularizing iterative solvers for (6.1). We exclusively take

into account the methods that are collected in the Matlab package AIR Tools [44] (see

also [58] for a detailed description of the methods). In particular, we focus on Cimmino

and Landweber methods, which are very popular and basic iterative strategies. For

image deblurring problems, such basic iterative methods are usually outperformed by

the more recent class of Krylov subspace methods. Indeed, Cimmino and Landweber

methods are remarkably slower than any Krylov method [5, 36]. However, on the upside,

when employing Landweber and Cimmino methods, physically meaningful constraints

can be naturally incorporated at each iteration; the same is not true for Krylov subspace

methods. A typical constraint to be imposed in imaging problems is nonnegativity;

this comes naturally, since the pixel values of an image (i.e., entries of the vector

x) are known to be nonnegative. Moreover, a precise reformulation of these basic

iterative methods as spectral filtering methods is available. Therefore, even in the case

of image restoration problems, Landweber, Cimmino, or related methods might deliver

more accurate approximations of x̂ than (and might be eventually preferred to) Krylov

subspace methods.

Cimmino and Landweber methods are widely used in tomographic reconstruction

and image restoration problems. Several strategies have been proposed in order to

accelerate their usually slow convergence. In Section 5.8 we revised the semi-iterative

methods, also called accelerated Landweber methods. An analogous idea of automatic
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acceleration has been proposed in [8], where the authors focus on line search methods

and propose a new way to update the search direction by involving the previous approx-

imation of the solution. This strategy has been mainly applied to the Richardson-Lucy

algorithm, i.e., for problems corrupted by Poisson noise. Moreover, for this class of

problems, and when simple convex constraints (such as nonnegativity and volume con-

servation) have to be imposed, the authors of [10] derive an efficient scaled projected

gradient method. The convergence of the scaled gradient projection method is fast

thanks to special scaling strategies and step length updating rules that exploit previous

information.

In this chapter we propose a different approach originally developed in [35]. In

particular, we investigate the performance of STEA (see Section 4.3) when applied to

Cimmino and Landweber methods for tomography and image deblurring problems. We

mention that STEA has been already tested in [21] for accelerating the convergence of

Kaczmarz method and in problems where a sequence of square matrices has to be accel-

erated. The authors of [6] and [22] consider a wide range of applications and iterative

methods that can benefit from the use of TEA or STEA. Moreover, in [17], the authors

successfully apply TEA to accelerate Kaczmarz method, mostly when applied to well-

posed problems. Here we deal with ill-posed problems and we explore the convergence

acceleration brought by STEA when applied to several reconstruction techniques.

We stress that throughout this chapter we always consider the third expression of

STEA2, that is formula (4.16). However, some general remarks hold for any expression

of the simplified topological ε-algorithm. Every time it will be clear from the context

if the term STEA refers to the simplified topological ε-algorithm in general or formula

(4.16) in particular.

In the sequel, we describe the image reconstruction and restoration test problems

considered in the next sections. Then we study the convergence properties of certain

SIRT methods accelerated by STEA and we give some insight into the extrapolated

versions of these methods. Following [6, 17], we also consider the simultaneous use of

extrapolation and restart strategies. Section 6.4 presents the most significant numerical

experiments including comparisons between accelerated and unaccelerated version of

the same iterative method as well as comparisons with other well-known methods.
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6.2 Test problems

For the purposes of this chapter three test problems have been used. Their technical

details are described below.

(a) Exact object. (b) Set of noisy projections.

Figure 6.1: seismictomo test problem.

• seismictomo. This is a 2D seismic tomography test problem from [44]. We

use the phantom shown in Figure 6.1a, which models a 2D subsurface of simple

convergent boundaries of two tectonic plates with different slowness. For further

information on the seismic tomography problem and a deeper understanding of

the technical terms, the interested reader should consult [58, Chapter 6]. In

our numerical tests, we choose a discretization equal to n = 100, i.e., the two-

dimensional domain illustrating a cross section of the subsurface is divided into

n = 100 equally spaced intervals in both dimensions, creating n2 cells. On the

right boundary s = 100 sources are located and each source transmits waves to

the p = 200 seismographs or receivers, which are scattered on the surface and on

the left boundary. Therefore, the overdetermined matrix A has M = ps = 20000

rows and N = n2 = 10000 columns. We create a noisy right-hand side by adding

Gaussian white noise of level δ = ‖e‖/‖b̂‖ = 5 · 10−2 (Figure 6.1b).

• cameraman. This is an image deblurring test problem. More precisely, the exact

test image has 256 × 256 pixels. We consider a nonsymmetric Gaussian blur,

described analytically by the function

k(x, y) =
1

2πα1α2

exp

(
− 1

2α2
1

x2 − 1

2α2
2

y2

)
.
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(a) (b) (c)

Figure 6.2: cameraman test problem. (a) Exact image. (b) Blow-up (400%) of the PSF.

(c) Blurred and noisy image.

In our tests, we take α1 = 4, α2 = 2, and we only consider x, y ∈ {0, . . . , 7}.
We impose zero boundary conditions, so that A is a sparse square Toeplitz block

matrix with Toeplitz blocks. The size of A is N = 2562 = 65536. We obtain the

noisy data by adding Gaussian white noise of level δ = ‖e‖/‖b̂‖ = 10−2. We refer

to [42] and [43] for more details on analogous image deblurring test problems. In

Figure 6.2 we display the exact image, the PSF, and the blurred and noisy image

for this test problem.

(a) (b) (c)

Figure 6.3: satellite test problem. (a) Exact image. (b) Blow-up (400%) of the PSF.

(c) Blurred and noisy image, with δ = 10−1.

• satellite. This is a famous astronomical imaging test problem from Restore
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Tools [51]. This test basically models the effect of atmospheric turbulence on the

image of a satellite recovered by ground-based telescopes. We consider a mild

blur, and we impose reflective boundary conditions. A is a square matrix of size

N = 2562 = 65536. We refer to [5, 51] for a complete and detailed description of

this test problem. The noisy data are obtained by adding Gaussian white noise

of different levels, up to δ = ‖e‖/‖b̂‖ = 10−1. In Figure 6.3 we display the exact

image, the PSF, and the blurred and noisy image for this test problem.

6.3 STEA acceleration of iterative reconstruction

techniques

In this section we present the extrapolation applied to SIRT methods but we stress

that all the iterative methods presented in Chapter 5 can be treated in the same way.

However, the convergence properties hold only for the method on which the analysis is

based every time.

Algorithm 1 STEA for SIRT methods

Input A ∈ RM×N , b ∈ RM , x0 ∈ RN

Compute x1,x2 by (5.3).

Compute z0 = ε̃
(0)
2 (Extrapolation step)

for n = 2, 3, . . . until a stopping rule is satisfied do

Compute xn+1 by (5.3).

Compute zn−1 =

ε̃
(0)
n+1, if n is odd;

ε̃(1)
n , if n is even.

(Extrapolation step).

end for n

SIRT methods can be extrapolated both in a purely iterative way, or considering

suitable restarts of the methods. These two approaches are summarized in Algorithm

1 and 2, respectively. In particular, the restarting technique consists in performing, in

a first instance, a few iterations of the iterative method (starting from an initial vector

x0, usually the zero vector), and applying the extrapolation method to the sequence of

computed vectors (including x0). When a restart happens, one takes as new initial guess

x0 the vector obtained by extrapolating the previous set of iterations. In the following,
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Algorithm 2 Restarted STEA for SIRT methods

Input A ∈ RM×N , b ∈ RM , x
(0)
0 ∈ RN .

for j = 0, 1, . . . until a stopping rule is satisfied do

for n = 0, ..., `− 1 do

Compute x
(j)
n+1 by (5.3).

end for n

Compute zj =

ε̃
(0)
` , if ` is even;

ε̃
(1)
`−1, if ` is odd.

(Extrapolation step).

Take x
(j+1)
0 = zj.

end for j

each set of iterations performed within two consecutive restarts is called cycle and, in

order to keep track of the number of performed cycles, we equip x0 with a bracketed

upper index. The total number of iterations of a restarted strategy is defined as the

sum of the iterations of each cycle. We note that both the scalars m (i.e., the number

of cycles) and ` (i.e., the number of iterations at each cycle) can be set by considering

suitable stopping criteria (cf. Section 6.4).

Remark 6.1. Concerning the computational cost of Algorithm 1 and 2, we stress that

STEA adds no significant overhead. Indeed, it only requires the computation of inner

products (see (4.9)), and sums or differences of vectors, whilst the use of the scalar

ε-algorithm adds the cost of simple operations between scalars.

We now provide some theoretical insight on Algorithms 1 and 2. We perform just 3

(overall, or at each cycle) iterations of a SIRT method (5.5), so that we can apply STEA

with k = 0. In this way, we obtain a quite simple expression for the extrapolated vector

in (4.16). In fact, recalling expression (5.5) and applying the scalar ε-algorithm (1.17)

to the sequence 〈y,xn〉, we obtain for k = 0

ε
(n)
0 = 〈y,xn〉, ε

(n)
1 =

(
〈y, λĀT r̄n〉

)−1
, and ε

(n)
2 = 〈y,xn+1〉 +

〈y, ĀT r̄n+1〉〈y, ĀT r̄n〉
〈y, (ĀT Ā)ĀT r̄n〉

.

In the above expressions we have also exploited the relation r̄n − r̄n+1 = λĀĀT r̄n.

Thanks to these derivations, the scalar ratio in formula (4.16) can be specified as

ε
(n)
2 − ε

(n+1)
0

ε
(n+2)
0 − ε(n+1)

0

=
〈y, ĀT r̄n〉

λ〈y, ĀT ĀĀT r̄n〉
.
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Consequently it is easy to show that

ε̃
(n)
2 = xn+1 +

〈y, ĀT r̄n〉
λ〈y, ĀT ĀĀT r̄n〉

(xn+2 − xn+1) (6.2)

= xn+1 +
〈y, ĀT r̄n〉

〈y, ĀT ĀĀT r̄n〉
ĀT r̄n+1 (6.3)

Focussing on expression (6.2), we observe that STEA algorithm in this special case

delivers a three-term recursion formula for computing the new approximation ε̃
(n)
2 of

the solution of (6.1); for this reason, we can say that STEA is analogous to the ν-

methods (5.27). Another point in common is that the performance of STEA and ν-

methods heavily depends on the choice of the vector y ∈ RN and the parameter ν > 0,

respectively. However, from a theoretical point of view, ν-methods are well-understood

regularization methods, and their properties are studied by exploring relations with

orthogonal polynomials [40]; the same analysis has not been performed for (6.2), so far.

Moreover, while ν-methods are tailored to accelerate the convergence of Landweber

method, STEA algorithm can be potentially applied to every sequence of arrays.

6.3.1 Choice of y

In the literature, there is no theoretical study on the choice of the vector y in (4.9).

When dealing with iterative solvers for linear systems, some typical choices are y = ei,

y = (1, . . . , 1)T ∈ RN (in the following denoted by y = 1), or a random vector of

length N with components normally distributed in [−1 ,+1] (in the following denoted

by y = rand) [6, 17, 21, 22]. Despite the lack of theory on the choice of y, a good

performance of the simplified topological ε-algorithm depends also on y; based on the

extensive numerical tests performed with the topological ε-algorithm in the aforemen-

tioned papers, we conclude that a successful choice of y is highly dependent on both

the problem and the sequence. In the following we give some insight into the choice of

the vector y ∈ RN in (4.9) for Landweber method, i.e., D = I in (5.5) (so that Ā = A

and r̄n = rn). First we consider formula (6.3) in this particular case; we remark that,

at least formally, the extrapolated vector ε̃
(n)
2 can be expressed as a vector obtained by

a SIRT iterative method (5.3). Let us consider the choice y = r
(j)
0 in (6.3). We obtain
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the following expression for the extrapolated restarted Landweber vector

ε̃
(n)
2 = xn+1 +

〈r(j)
0 , AT rn〉

〈r(j)
0 , ATAAT rn〉︸ ︷︷ ︸

λextr

AT rn+1 . (6.4)

It is evident that the above update formula is very similar to the one obtained by ap-

plying the Steepest Descent (SD, sometimes also called residual norm SD [48]) method

to (6.1). Indeed, in the SD case, one gets

xn+1 = xn +
‖AT rn‖2

‖AAT rn‖2
AT rn = xn +

〈AT rn, A
T rn〉

〈AT rn, ATAAT rn〉︸ ︷︷ ︸
λSD
n

AT rn ; (6.5)

in this case, AT rn is regarded as a descent direction along the negative gradient of

‖b−Ax‖, and the relaxation parameter λSDn is regarded as a step-length that minimizes

‖b−Ax‖ at each iteration in the direction of the negative gradient. Formula (6.4) differs

from (6.5) only for different occurrences of A in the step-length λextr, which is updated

at each restart, and for the residual considered, i.e., in the extrapolated Landweber case

the residual is the one computed at the beginning of the restarts, while in the SD case

the residual is computed at the previous iteration. Since the analysis in [48] shows that

SD method can be successfully applied to regularize ill-posed systems, and since SD

is often more efficient than Landweber method (because of the adaptive choice of the

relaxation parameter), the analogy between SD and extrapolated Landweber provides a

qualitative justification of the success of the choice y = r
(j)
0 for the latter. We stress that

the same analogy does not hold if the choices y = ei, y = 1, y = x
(j)
0 (with x

(0)
0 6= 0),

or y = rand are performed. Indeed, the previous choices may also result in relaxation

parameters in (6.3) that are too big, and therefore compute bad approximations of x̂

at each iteration.

An example. In order to support the above considerations, we present a numerical

experiment with the cameraman test problem. Note that the PSF of this test problem

is separable (i.e., can be decomposed in row and column blurs, see [43]), so that we

are able to compute the SVD of the blurring matrix A. To start with, we compare the

performance of the restarted STEA for different choices of y when n = 3 steps of the

Landweber method are performed at each iteration cycle; we also take into account the

SD method (Fig. 6.4a). In Fig. 6.4b we plot the filter factors (5.6) associated to the
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(extrapolated) Landweber method and the SD method for different choices of y. We

can clearly see that the choice y = r
(j)
0 delivers components that are close to the usual

Landweber and SD filter factors, except for the first ones (corresponding to the biggest

singular values) that are quite larger. The choice y = rand delivers filter factors that

are closer to zero and, therefore, it computes over-regularized solutions.

0 20 40 60 80 100

10
−0.9

10
−0.8

10
−0.7

10
−0.6

 

 Landw.
SD

y=r
0
(j)

y=e
1

y=rand

(a)

0 2000 4000 6000 8000
−0.5

0

0.5

1

1.5

2

2.5

3

 

 

Landw.
SD

y=r
0
(j)

y=rand

(b)

Figure 6.4: cameraman test problem. (a) Relative error history using Landweber and

SD methods, and the restarted extrapolated versions of Landweber with y = rand,

y = e1, and y = r
(j)
0 . (b) Filter factors at the 50th (total) iteration of the Landweber

and SD methods, and of the extrapolated Landweber method with y = rand and

y = r
(j)
0 . On the horizontal axis we only display the first 8000 components (after that,

all the components are approximately zero); on the vertical axis, we truncate after 3

(the maximum value reached by the extrapolated Landweber method with y = r
(j)
0 is

around 15).

Although the formal derivations are more cumbersome, we believe that the same holds

when more steps of a SIRT method are performed, or when other iterative methods are

applied (see the experiments in Section 6.4). Moreover, our analysis confirms that, when

applying Algorithm 2, a reliable choice for the TEA or STEA algorithm is y = r
(j)
0 .

Analogous remarks have been stated in [6, 17]. More precisely, the authors of [6] con-

sider the Gauss-Seidel method and validate the choice of y = r
(j)
0 by many numerical

experiments; the authors of [17] consider a variant of Kaczmarz method and mention

that, from a theoretical point of view, the extrapolated vectors obtained with y = r
(j)
0
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coincide with the iterates of Lanczos-based solvers for (6.1).

6.3.2 Acceleration properties

Let us now study further the acceleration properties of STEA applied to a particular

case of nonnegatively projected Landweber method, and for a specific choice of the

vector y ∈ RN . We consider formulation (5.24) and we assume Pn = · · · = Pn+k =: P .

This assumption typically holds as soon as some stabilization occurs in the approximate

solutions. By exploiting an expression analogous to (5.6), with D = I and x0 = 0 (so

that Ā = A and r̄0 = b), it can be easily shown by induction on k ≥ 1 that

(−1)k∆kxn = −P (λATA)k−1(I − λATA)n(λATb) . (6.6)

We now verify the assumptions of Theorem 4.3. By taking y = −ATb, and exploiting

(6.6) and the fact that P (λATA)k−1(I−λATA)n is symmetric and semipositive definite

(if λ satisfies (5.7)), we get

(−1)k∆k (〈−Ab,xn〉) = 〈−Ab, (−1)k∆kxn〉

= 〈Ab, P (λATA)k−1(I − λATA)n(λATb)〉 ≥ 0 ,

so that (4.18) is verified. Hypothesis (4.19) holds if we take a = −1, and provided that

n is sufficiently big. Indeed, substituting the SVD of A into (6.6), we get

−(−1)k∆k(−xn) = PV (λΣ2)k(I − λΣ2)n︸ ︷︷ ︸
Ψ(n,k)

Σ−1UT b ,

so that −(−1)k∆k(−xn) can be regarded as a filtered vector. Recalling that

xn = PV
(
I − (I − λΣ2)n

)︸ ︷︷ ︸
Φ(n)

Σ−1UT b ≥ 0 , (6.7)

we can guarantee that (−1)k(−∆k(−xn)) ≥ 0 if

(λσ2
i )
k(1− λσ2

i )
n ≥ 1− (1− λσ2

i )
n , for i = 1, . . . , N .

After some straightforward manipulations, we get that the above condition is satisfied

if, for instance,

n ≥ − log(λσ2k
i + 1)/ log(1− λσ2

i ) .
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Regarding the last hypothesis (4.20) of Theorem 4.3, we exploit the following relation

x− xn = P (I − λATA)nx ,

which is immediate if we substitute Ax instead of b in the expression (6.7) of xn. Then,

thanks to the bounds (5.7), we have

lim
n→∞

〈(I − λATA)PATb, (I − λATA)nx〉
〈PATb, (I − λATA)nx〉

6= 1 .

Therefore, under these assumptions, convergence is guaranteed. In the next section we

test the performance of this choice of y .

6.4 Numerical experiments

In this section we perform several experiments that illustrate the gain of using STEA

for extrapolating mainly Landweber and Cimmino methods. Comparisons with other

iterative methods and acceleration techniques are also performed. We stress that, in

order to illustrate the behavior of the methods, in most of our numerical experiments

we consider a fixed number of iterations in Algorithms 1 and 2. We recall that STEA

allows us to improve the numerical stability (with respect to TEA), since the potential

singularities in (4.16) can be overcome by using the particular rules (see Section 1.4). In

our experiments the gain from handling singularities is not significant; for this reason,

in order to simplify the presentation and the discussion of the results, we always keep

the number of digits p = 12, so that no singularities are met (cf. eq. (2.4)). Note that

in all the numerical experiments we have used formula (4.16).

Regarding the relaxation parameter in (5.5), for Cimmino method we consider the

options

λ̄ = 2 or λAIR =
1.9

‖ATDA‖
. (6.8)

The first one was originally adopted by Cimmino himself [27], while the second one

is the default value employed in AIR Tools, Version 1.2. For Landweber method we

consider the options

λ̄ =
1

‖ A ‖1‖ A ‖∞
or λAIR =

1.9

‖A‖2
. (6.9)

The first one is proposed in [5], while the second one is the default value employed in

AIR Tools, Version 1.2. As a matter of notation, in all the following tables “erroropt”
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denotes the minimum relative error, obtained at iteration “itopt” of an iterative method.

“T” denotes the time required for performing “itopt” iterations, “tot.T” denotes the time

required for performing a fixed number of iterations, and “avg.T” is the average time

per iteration. All the computational times are measured in seconds. All the tests are

performed with Matlab R2013a.

Example 1. We consider the seismictomo test problem whose data are shown in

Figure 6.1. First we try to accelerate all the methods included in the AIR Tools package

by using Algorithm 1 with y = 1. We stress that Algorithm 1 is easily adapted for

ART methods. In Table 6.1 we report the minimum relative error among those obtained

during the first 10 iterations.

Without acceleration STEA acceleration

itopt erroropt T itopt erroropt T

Landweber (with λAIR) 10 0.2996 2.82 9 0.2077 2.95

Cimmino (with λAIR) 10 0.2764 1.67 10 0.2001 1.97

CAV 10 0.2863 2.41 10 0.1826 2.63

DROP 10 0.3613 1.60 10 0.2352 1.81

SART 10 0.3310 0.57 10 0.2246 0.80

Kaczmarz 6 0.6288 9.94 5 0.5959 9.97

Symmetric Kaczmarz 2 0.9344 6.51 2 0.9361 6.73

Randomized Kaczmarz 1 0.3738 50.19 3 0.3589 50.87

Table 6.1: seismictomo test problem. Minimum relative error and computational time

averaged over 100 different runs of SIRT and ART methods and their extrapolated

versions (by Algorithm 1).

Speaking for the class of SIRT methods, we observe that the use of STEA results in

a smaller relative error. In particular, for CAV method the error of the accelerated

method is 36.22% smaller than the error of the unaccelerated method. Note also that

in the case of Landweber method we not only have a better accuracy, but also a smaller

number of iterations. The same holds for Kaczmarz method, while STEA applied to

the symmetric Kaczmarz diverges immediately. Regarding randomized Kaczmarz, the
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result may vary due to the randomness of the original method. Here, we present an

interesting example where STEA succeeds in approximating the solution better than the

iterative method, which diverges after the 1st iteration. In all the cases, when applying

STEA, we observe a slight increase in the total computational time, which is due to

the extrapolation procedure. However, the extra computational cost is negligible, and

this result agrees with Remark 6.1.

We now focus on Cimmino method. Despite the fact that the value λAIR in (6.8) results

in a faster convergence rate, we will attempt to accelerate the classical Cimmino method

(i.e., with λ = λ̄ = 2), since estimating ‖ATDA‖ increases the computational cost. We

apply STEA to Cimmino method, trying both Algorithm 1 with y = 1 and Algorithm

2 with several options for the vector y, and different combinations of cycles and inner

iterations (in the following, if m cycles of ` iterations are considered, we will denote it

by m× ` iterations). The relative error of Cimmino method itself after 100 iterations is

0.5144, while Algorithm 1 with y = 1 gives a relative error equal to 0.2244 (i.e., 56.36%

smaller). The relative errors resulting from Algorithm 2 are displayed in Table 6.2. We

stress that, when writing y = r
(j)
0 for an overdetermined problem as this one, we only

consider the first N components of r
(j)
0 . Also, since in our tests we always use x

(0)
0 = 0,

when implementing Algorithm 2 with y = x
(j)
0 , we set y = b for the first cycle.

4× 25 2× 50 5× 20 20× 5 25× 4

y = 1 0.2368 0.2557 90.6303 0.4861 0.6438

y = r
(j)
0 0.1567 0.2244 0.1956 0.3423 0.3659

y = x
(j)
0 0.2243 0.1843 0.2741 0.4233 0.3169

y = −ATb 0.1979 0.2425 0.3685 0.4395 0.6308

Table 6.2: seismictomo test problem. Relative errors of Cimmino accelerated by STEA

following the restarted technique with various choices for the vector y.

Analyzing the data reported in Table 6.2 we reach the conclusion that y = 1 should

be avoided when using Algorithm 2, since it cannot guarantee the convergence. The

choices y = r
(j)
0 and y = x

(j)
0 both perform well. The choice y = −ATb is competitive

to the previous ones for cycles with 25 or 50 iterations, while when we consider fewer

inner iterations the relative errors increase. The same phenomenon has been analyzed in
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Section 6.3 for STEA applied to the non negatively projected Ladweber method (5.24).

The best result is anyway obtained when we apply 4× 25 iterations of the Algorithm 2

with y = r
(j)
0 . In Figure 6.5, we may compare the quality of the reconstructions brought

by the iterative method itself, with acceleration (Algorithm 1 with y = 1), and using

the restarted technique (Algorithm 2 with y = r
(j)
0 ).

(a) (b) (c)

Figure 6.5: Reconstructions of the seismictomo image. (a) Cimmino method, 100

iterations. (b) Algorithm 1, 100 iterations. (c) Algorithm 2, 4× 25 iterations.

Let us analyze more deeply this last case of Algorithm 2. The error history in Figure

6.6a shows the fast convergence of the Cimmino method when STEA is applied. We

observe some peaks in random iteration steps, which we may overcome by monitoring

the residual, whose graph in Figure 6.6b closely follows the graph of the error. The

residual can also be used for defining a stopping criterion. In particular, we may

apply the discrepancy principle [41], i.e., if we assume that a good estimate of the

noise level δ is available, then we can stop as soon as the residual lies below the noise

level. As we see in Figure 6.6c, for this problem the discrepancy principle gives slightly

different results by terminating the process after 89 total iterations. An alternative

stopping criterion (originally proposed in [17]) may be obtained by monitoring the ratios

‖zn+1− zn‖/‖xn+1−xn‖, where zn denotes the vectors computed by the extrapolation

procedure (see Algorithm 2). Indeed, Figure 6.6d looks like the “complementary” of

Figure 6.6a, since when the values of the ratio grow (decrease) then the values of the

error decrease (grow).
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Figure 6.6: seismictomo test problem, Algorithm 2 for Cimmino method 4× 25 itera-

tions. (a) Relative error history. (b) Relative residual history. (c) Relative error history

when the discrepancy principle is used. (d) Ratios ‖zn+1 − zn‖/‖xn+1 − xn‖.
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Example 2. We consider the cameraman test problem. In Figure 6.7 we plot the

graphs of the relative errors obtained by applying Landweber and Cimmino methods

with different relaxation parameters, together with their extrapolated versions (by Al-

gorithm 1). In particular, referring to (6.8) and (6.9), in Figure 6.7a we take the values

λ̄, while in Figure 6.7b we take the values λAIR. We only perform 10 iterations of both

methods, and we take y = 1. The performance of STEA is especially good for Cim-

mino method with parameter λ = 2: the error is 83.36% smaller, and the quality of the

reconstructions is similar to the one obtained by Cimmino method with λAIR, at a lower

computational cost (since no preprocessing for computing the relaxation parameter has

to be performed). While the computational time for the former method is around 0.15

seconds, the latter takes about 13 seconds.

2 4 6 8 10
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0

(a)

2 4 6 8 10
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10
0

(b)

Figure 6.7: cameraman test problem. Relative errors using Cimmino (dashed lines) and

Landweber (dashed-dotted line) methods, and their extrapolations (red and black solid

lines, respectively). (a) λ̄ defined in (6.8) and (6.9) is employed. (b) λAIR defined in

(6.8) and (6.9) is employed.

From now on, we only consider the restarted extrapolated versions of Cimmino and

Landweber methods (Algorithm 2), with y = r
(j)
0 and 20× 5 iterations. As relaxation

parameters we take λ̄ defined in (6.8) and (6.9) for Cimmino and Landwber methods,

respectively. We also consider a “dynamic” version of Algorithm 2, where the number

of iterations of each inner cycle is increased by one at each restart. The reason behind

this modification is that, as the number of total iterations increases, the decrease of the
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relative error tends to slow down: in this situation it is meaningful and beneficial to

extrapolate on more iterates.

In Figure 6.8 we compare the performance of different iterative regularizing methods,

including some Krylov subspace methods and ν-methods. We clearly see that the ex-

trapolated Cimmino and Landweber methods eventually deliver approximations of the

same quality as CGLS method [57] and some ν-methods, but they exhibit a much more

stable behavior. In particular, the extrapolated Cimmino and Landweber methods are

not much affected by semiconvergence. This is expected, since Cimmino and Landwe-

ber methods display a very slow convergence. When considering Algorithm 2 applied to

Cimmino and Landweber, the decrease of the relative errors within an inner iteration

cycle is very slow and the overall scheme is quite stable. We also note that the ex-

trapolated methods outperform GMRES method [57]. Probably, the GMRES performs

badly for this test problem because the PSF is highly unsymmetric (see the analysis

in [33]). Moreover, while the residuals associated to Krylov subspace methods (i.e.,

CGLS and GMRES) rapidly stabilize and are almost constant even when the relative

errors worsen, the residuals associated to the extrapolated vector mimic quite well the

behavior of the relative errors. For this reason, it is easy to detect the deterioration

of the solution by looking at the residuals, and we should expect a stopping criterion

based on the residual (such as the discrepancy principle), to be successful when applied

to the extrapolated vectors.

In Table 6.3 we report the minimum relative error achieved by all the methods taken

into account, together with the performed iterations and some timings. We must remark

that the computational time of STEA is sensibly higher than the computational time

of the other methods: the reason behind this drawback is that STEA as described in

Algorithm 2 is the only method based on restarts, and MATLAB is notoriously slow

when dealing with cycles. We also note that the performance of the ν-methods is

dependent on the parameter ν. The choice of ν theoretically depends on the regularity

of the solution: in practice, a too small ν can lead to instability, while a too big ν is

not very effective in speeding up the convergence. STEA method depends on the choice

of y; the remarks in Section 6.3, and the numerical experiments performed so far have

shown that the choice y = r
(j)
0 is reliable.

We conclude this example by showing in Figure 6.9 some restored images.
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Figure 6.8: cameraman test problem. Comparisons of different iterative methods (frames

(a) and (b) share the same legend, and the legend items “Land.” and “Cimm.” stand

for the extrapolated versions of the Landweber and Cimmino methods, respectively).

(a) History of the relative errors. (b) History of the relative residuals. (c) History of the

relative errors of the ν-methods with ν = 0.95, 4, and the unaccelerated and dynamic

STEA versions of the Landweber method.

Example 3. We consider the satellite test problem, with different noise levels

δ, and we test the performance of the projected Landweber and SD methods (the

latter is also called projected gradient method). As said in Section 6.3, these methods

incorporate some constraints on the approximate solutions; in our case, we consider

nonnegativity and conservation of volume (5.25). In Figure 6.10 we apply Algorithm

2 to both the projected Landweber and SD methods. We consider two versions of

Algorithm 2. For some tests, we take a fixed number of iterations. In particular, we

perform 10×10 iterations of each method. For some other tests, we consider a stopping

criterion based on the discrepancy principle. Namely, we stop as soon as the relative

residual lies below the noise level δ, or as soon as a maximum number ` of iterations per

cycle is reached (in our experiments, ` = 20). We also compare different choices of the

vector y. It is particularly evident that the restarted STEA algorithm is very effective

with Landweber-type methods. Indeed, for the choices y = r
(j)
0 and y = −AT r

(j)
0 , the

behavior of the relative error is quite stable (provided that the iterations are suitably

stopped), and the quality of the restorations is very good: this agrees with the analysis

performed in Section 6.3. In particular, the extrapolated projected Landweber method

outperforms the extrapolated projected SD method.

In Figure 6.11 we set under comparison the Projected Landweber method with δ = 10−1,
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: Restorations of the cameraman image. (a) Cimmino method, 150 iterations.

(b) Algorithm 1 for Cimmino method, 150 iterations. (c) Algorithm 2 for Cimmino

method, 30 × 5 iterations. (d) Landweber method, 150 iterations. (e) Algorithm 1

for Landweber method, 150 iterations. (f) Algorithm 2 for Landweber method, 30× 5

iterations.



108 CHAPTER 6. CONVERGENCE ACCELERATION USING STEA

0 20 40 60 80 100
10

−0.9

10
−0.7

10
−0.5

 

 

no extrap.
STEA, y=rand
STEA, y=r

0
(j)

STEA, y=−ATr
0
(j)

STEA, y = x
0
(j)

(a) Projected Landweber, δ = 10−2

0 20 40 60 80 100
10

−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

 

 

(b) Projected Landweber, δ = 10−1

0 20 40 60 80 100

10
−0.8

10
−0.6

10
−0.4

10
−0.2

 

 

no extrap.
STEA, y=rand
STEA, y=r

0
(j)

STEA, y = x
0
(j)

(c) Projected gradient, δ = 10−2
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Figure 6.10: satellite test problem. History of the relative errors for various projected

methods and their restarted extrapolated versions. For (a)-(d) 10× 10 iterations have

been performed. For (e)-(f) a stopping criterion based on the discrepancy principle has

been used.
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erroropt itopt tot.T avg.T

Landweber 0.1245 150 9.38 0.06

Cimmino 0.6865 150 62.97 0.42

Cimm. STEA 0.3846 12 4.53 0.37

Cimm. dynamic STEA 0.1266 150 63.26 0.42

Land. STEA 0.1162 119 53.37 0.45

Land. dynamic STEA 0.1163 67 25.64 0.38

ν = 0.50 0.1172 33 1.69 0.05

ν = 0.95 0.1163 43 2.10 0.05

ν = 1.05 0.1163 44 2.88 0.06

ν = 4.00 0.1162 79 5.57 0.07

CGLS 0.1171 33 1.45 0.04

GMRES 0.1176 12 0.41 0.03

Table 6.3: cameraman test problem. Minimum relative error, attained at the iteration

itopt.

extrapolated by restarted STEA with y = r
(j)
0 , with an accelerated version of the

Richardson-Lucy algorithm [8], as implemented in the MATLAB function deconvlucy;

5 cycles of 10 iterations are performed, taking as new initial guess at the beginning of

each cycle the approximation computed at the end of the previous cycle. We can note a

rapid decrease of the error during the first cycle of iteration, but a sudden deterioration

of the approximations during the later cycles. In Figure 6.12 we display the restored

images obtained by different methods that enforce nonnegativity constraints. The noise

level is δ = 10−1, and we take the optimal number of (total) iterations, i.e., the ones

that minimizes the relative error. All the comparisons are summarized in Table 6.4.
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Figure 6.11: satellite test problem. Projected Landweber method with δ = 10−1,

restarted STEA with y = r
(j)
0 , and accelerated Richardson-Lucy algorithm.

erroropt itopt tot.T avg.T

Proj. Landweber 0.2103 100 5.42 0.05

STEA, y =rand 0.2092 100 7.33 0.07

STEA, y = x
(j)
0 0.2081 70 6.42 0.06

STEA, y = r
(j)
0 0.2067 98 7.99 0.08

Richardson-Lucy 0.5681 10 0.72 0.07

Table 6.4: satellite test problem, with δ = 10−1. We compare the results of the

methods for constrained minimization, including the accelerated Richardson-Lucy al-

gorithm. Minimum relative error, attained at the iteration itopt.
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(a) (b)

(c) (d)

Figure 6.12: Restorations of the satellite image. (a) Algorithm 2 with y = r
(j)
0 for

Landweber method, 10 × 10 iterations. (b) Algorithm 2 with y = r
(j)
0 for projected

Landweber method, 30 × 10 iterations. (c) Accelerated Richardson-Lucy method, 10

iterations. (d) Algorithm 2 with y = r
(j)
0 for projected gradient method, 20 × 10

iterations.
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Conclusion and Future work

In this thesis we discussed several aspects of scalar and vector extrapolation. After

revising the most significant scalar transformations, we focused on the ε-algorithm

and its particular rules. More precisely, we revised the particular rules proposed by

Cordellier who extended Wynn’s particular rules in the case of an arbitrary number of

equal elements in the ε-array. The contribution of the author was the improvement of

Cordellier’s algorithm, overcoming its limitations, thus making it more efficient. As a

future work, it could be interesting to attempt an extension to the vector case.

Another scalar transformation that gained our interest was ∆2 process for which

we proposed some new generalizations. In particular, we introduced three new trans-

formations which accelerate the convergence of sequences whose kernel contain that of

∆2 process. We studied extensively the transformation that performed better in the

numerical tests. We analysed it theoretically, proving convergence and acceleration

properties, under certain hypotheses. The numerical experiments included compari-

son among the proposed transformations and comparison of our best transformation

with several well known transformations, using both convergent and divergent test se-

quences. It is remarkable that the numerical results showed that some of the conditions

we assumed are not necessary. Therefore, as a future project it would be interesting to

look for less restrictive assumptions.

One chapter of the thesis was dedicated to the revision of some well known iterative

regularization methods, commonly used for the solution of a linear system of equations.

Cimmino method with its interesting properties intrigued the author who studied it

extensively, proposed a general formulation and a new variant, which however was

proved to be competitive only in a special case.

Regarding the extrapolation methods for vector sequences, we only used the recently

proposed simplified topological ε-algorithm, which we applied on several iterative regu-

113
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larization methods for image reconstruction and restoration problems. We mainly used

Landweber and Cimmino methods giving algorithmic details and performing several

numerical experiments and comparisons with other methods. Furthermore, we studied

the acceleration properties of STEA applied to the nonnegatively projected Landweber

method, and for a specific choice of the vector y. We stress that the choice of the

vector y is an important issue that affects the performance of the simplified topolog-

ical ε-algorithm. Nevertheless, a theoretical study has never been presented. What

we managed to do is to give an insight into the choice of the vector y when using

STEA to accelerate Landweber method. As a future work, it would be interesting

to extend the use of extrapolation in image reconstruction and restoration problems,

by trying other known extrapolation methods, i.e., vector ε-algorithm (VEA), Minimal

Polynomial Extrapolation (MPE), Reduced Rank Extrapolation (RRE), Modified Min-

imal Polynomial Extrapolation (MMPE), or even create new ones based on the special

characteristics of the inverse problems at hand.
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