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Ecco che cosa ho pensato: affinché l’avvenimento più comune

divenga un’avventura è necessario e sufficiente che ci si metta a

raccontarlo. È questo che trae in inganno la gente: un uomo è

sempre un narratore di storie, vive circondato delle sue storie e

delle storie altrui, tutto quello che gli capita lo vede attraverso di

esse, e cerca di vivere la sua vita come se la raccontasse. [...]

Avrei voluto che i momenti della mia vita si susseguissero e

s’ordinassero come quelli d’una vita che si rievoca.

Sarebbe come tentar d’acchiappare il tempo per la coda.

J.P. Sartre





Riassunto

Il fondo cosmico di microonde (CMB) è per la cosmologia moderna quello che gli

acceleratori sono per la Fisica delle Particelle. È stato un aiuto fondamentale nella

costruzione di quello che oggi possiamo definire il Modello Standard della Cosmologia,

dell’Inflazione e della formazione delle strutture cosmiche. Le sue attuali, precise mis-

urazioni costituiscono la più forte conferma che l’Universo ha attraversato una fase di

espansione esponenziale, in cui perturbazioni quantistiche sono evolute fino a formare la

struttura su grande scala che oggi vediamo. In particolare, ogni modello di fisica delle

alte energie che punti a spiegare i primi stadi di vita dell’Universo deve confrontarsi con

i limiti che le osservazioni del CMB hanno posto, che sembrano favorire la più semplice

realizzazione dell’Inflazione: un singolo campo scalare “in lento rotolamento” (slow-roll)

che guida l’espansione dell’Universo e fa da sorgente alle perturbazioni adiabatiche. La

nostra comprensione dell’Inflazione tuttavia è ben lontana dall’essere completa. Sia la

mancanza di un’alternativa teorica completamente convincente che la totale esclusione

di tutti i possibili altri effetti ammessi nelle perturbazioni primordiali continuano a spin-

gere la ricerca teorica e sperimentale. Una delle possibilità più interessanti nello studio

delle conseguenze osservative di modelli inflazionari è la non-Gaussianità primordiale,

poiché permette un collegamento diretto con la fisica delle interazioni tra i campi attivi

durante l’Inflazione.

In questa Tesi, analizzeremo parte dell’interessante fenomenologia di cui l’inflazione

può essere responsabile, ponendo particolare enfasi alla questione della non-Gaussanità.

In questo contesto, simmetrie e teorie di campo efficaci possono giocare ruoli decisivi e

saranno uno degli argomenti principali di questo lavoro. L’elaborato si svilupperà come

segue:

- Nel Capitolo 1 saranno introdotti i concetti base dell’Inflazione, con particolare

attenzione alla dinamica delle perturbazioni primordiali.

- Nel Capitolo 2 rivedremo velocemente la fisica del CMB, gli osservabili legati alla

fisica dell’Inflazione e le loro attuali misure. Qui verranno introdotti i concetti base

della non-Gaussianità primordiale.
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- Nel Capitolo 3 diamo un esempio di come la non-Gaussanità può essere prodotta

andando oltre gli scenari inflazionari standard. Mostreremo come una modifica

della gravità di Einstein durante l’Inflazione potrebbe aver lasciato impronte poten-

zialmente misurabili negli osservabili cosmologici sotto forma di non-Gaussianità.

Queste modifiche infatti appaiono nella forma di un ulteriore campo, che potrebbe

avere interazioni non bananli con l’inflatone. Mostreremo esplicitamente il caso

R+αR2, in cui può esser prodotta una non-Gaussianità al livello fNL ∼ O(1− 10)

in una configurazione detta quasi-locale.

- Il capitolo 4 contiene l’introduzione all’approccio della Teoria Effettiva dell’Inflazio-

ne (EFTI) alle perturbazioni cosmologiche e degli strumenti che saranno utilizzati

nei capitoli successivi.

- I Capitoli 5 e 6 sono dedicati allo studio dei modelli inflazionari con “features”

nel potenziale o velocità del suono dell’inflatone nel contesto della EFTI. Questo

approccio permetto di studiare gli effetti delle features nello spettro di potenza e

nel bispettro delle perturbazioni di curvatura da un punto di vista indipendente

dal modello, parametrizzando le features direttamente in termini di parametri di

“slow-roll” modificati. È cos̀ı possibile ottenere un consistente spettro di potenza,

insieme a non-Gaussianità che cresce con la quantità che parametrizza la larghezza

della feature. Con questo trattamento sarà immediato generalizzare e includere

features anche negli altri coefficienti dell’azione effettiva delle perturbazioni. La

conclusione in questo caso è che, escludendo termini di curvatura estrinseca, effetti

interessanti nel bispettro possono nascere solo da features nel primo parametro

di slow-roll e nella velocità del suono. Infine, discuteremo la scala di energia

a cui i contributi a loop alle interazioni sono dello stesso ordine dei contributi

tree-level e l’espansione perturbativa smette di funzionare. Richiedendo che tutte

le scale di energia rilevanti per il problema studiato siano sotto questo cutoff,

deriveremo un forte limite sulla larghezza della feature, o, equivalentemente, sulla

sua caratteristica scala temporale, indipendentemente dall’ampiezza della feature

stessa. Faremo anche notare come una feature molto stretta, che sembra poter

garantire un miglior fit ai dati dello spettro di potenza del CMB, potrebbe essere

già oltre questo limit, mettendo in dubbio la consistenza del modello che la predice.

- Nei Capitoli 7 e 8 svilupperemo il concetto di rottura completa dei diffeomorfismi

nella teoria effettiva delle perturbazioni primordiali. Durante l’inflazione con un

singolo campo, l’invarianza per riparametrizzazioni temporali è rotta dal back-

ground cosmologico dipendente dal tempo. Qui vogliamo esplorare la situazione

più generale in cui anche i diffeomorfismi spaziali sono rotti. Per prima cosa,

considereremo la possibilità che questa rottura sia data da termini di massa o op-

eratori derivativi per le perturbazioni della metrica nella cosiddetta Lagrangiana
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in gauge unitaria. Successivamente aggiungeremo anche operatori che rompono

simmetrie discrete, come la parità e l’inversione temporale. Investigheremo le con-

seguenze cosmologiche di queste rotture, concentrandoci su operatori che hanno

effetto sullo spettro delle fluttuazioni. Identificheremo gli operatori che possono

produrre uno spettro blu per le perturbazioni tensoriali, senza la violazione della

“null energy condition”, e operatori che possono portare alla non conservazione

delle perturbazioni comoventi di curvatura su scale oltre l’orizzonte anche in In-

flazione “single-clock”. Inoltre, troveremo che gli operatori che rompono simmetrie

discrete producono nuove fasi, dipendenti dalla direzione, per le funzioni d’onda

sia degli scalari che dei tensori.

- Nel Capitolo 9 continueremo a studiare la rottura dei diffeomorfismi. Usando

i bosoni di Goldstone associati alla rottura di simmetria, esamineremo le con-

seguenze osservative sulla statistica dei modi scalari e tensoriali, con particolare

enfasi alla struttura delle interazioni e delle funzioni a tre punti. Mostreremo che

la rottura di queste simmetrie può portare ad un ampiezza aumentata per il bis-

pettro nel limite “squeezed” e a una dipendenza angolare caratteristica tra i tre

vettori d’onda.

- Il Capitolo 10 contiene considerazioni finali e possibili direzioni future. Le Appen-

dici A e B rivisitano alcuni aspetti generali della quantizzazione delle pertubazioni

primordiali e il formalismo in-in, usato per il calcolo dei bispettri presentati nel

testo principale. Le Appendici C e D contengono alcuni dettagli tecnici sulla rot-

tura dei diffeomorfismi temporali e spaziali. Nell’Appendice E discutiamo invece

come i risultati del Capitolo 9 indicano prospettive per vincolare il livello della

rottura di diffeomorfismi spaziali durante l’Inflazione.
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Abstract

The Cosmic Microwave Background (CMB) is for nowadays cosmology what collid-

ers are for Particle Physics. It has been an invaluable help to build what is now known

as the Standard Model of Cosmology and shape our knowledge about Inflation and the

formation of cosmic structures. More recently, the measurements of anisotropies in the

temperature and polarization of the CMB are perfectly compatible with a Universe that

has undergone an inflationary phase of exponential expansion, where quantum pertur-

bations were stretched on cosmological scales and evolved into the Large Scale Structure

(LSS) that we see today. In particular, any high-energy physics model which aims to

explain the first stages of the evolution of the Universe, must face the bounds that CMB

observations has put and that seem to favor the simplest realization of inflation, where

a single slowly-rolling scalar field drives the expansion of the Universe and sources adia-

batic perturbations. Our understanding of inflation however is far away to be complete.

The lack of both a compelling theoretical UV mechanism and a definite exclusion of the

many possible allowed effects in the primordial perturbations force us to push theoretical

and observational research further on. One of the most intriguing possibility to study

observational consequences of inflationary models is non-Gaussianity, as it provides a

direct link to the interactions between the fields active during inflation.

In this thesis, we will review some of the interesting phenomenology that inflation

could be responsible of, with particular attention to non-Gaussianity. In this context,

symmetries and effective field theories can play a fundamental role and will be one of

the main subjects of this work. The outline is as follows:

- In Chapter 1 the basic concepts of inflation will be introduced. The main focus

will be on primordial quantum perturbations and their dynamics.

- In Chapter 2 we will briefly review the physics of the CMB, the observables related

to the physics of inflation and their current measurements. Here basic concepts

about primordial non-Gaussianity will be introduced.

- In Chapter 3 we give an example of how primordial non-Gaussianity can be pro-
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duced when going beyond the simplest inflationary scenarios. We show that mod-

ification of Einstein gravity during inflation could leave potentially measurable

imprints on cosmological observables in the form of non-Gaussian perturbations.

This is due to the fact that these modifications appear in the form of an extra field

that could have non-trivial interactions with the inflaton. We show it explicitly

for the case R+ αR2, where nearly scale-invariant non-Gaussianity at the level of

fNL ∼ O(1− 10) can be obtained, in a “quasi-local” configuration.

- Chapter 4 contains a review of the approach of the Effective Field theory of In-

flation (EFTI) to cosmological perturbations and of the tools that will be used in

the following chapters.

- Chapters 5 and 6 are devoted to the study of inflationary models with features in

the potential or speed of sound of the inflaton, in the context of the EFTI. This

approach allows us to study the effects of features in the power-spectrum and in the

bispectrum of curvature perturbations, from a model-independent point of view, by

parametrizing the features directly with modified “slow-roll” parameters. We can

obtain a self-consistent power-spectrum, together with enhanced non-Gaussianity,

which grows with a quantity that parametrizes the sharpness of the step. With

this treatment it will be straightforward to generalize and include features in other

coefficients of the effective action of the inflaton field fluctuations. Our conclusion

in this case is that, excluding extrinsic curvature terms, the most interesting ef-

fects at the level of the bispectrum could arise from features in the first slow-roll

parameter or in the speed of sound. Finally, we find the energy-scale beyond which

loop contributions have the same size of the tree-level ones and the perturbative

expansion breaks down. Requiring that all the relevant energy scales of the prob-

lem are below this cutoff, we derive a strong upper bound on the sharpness of the

feature, or equivalently on its characteristic time scale, which is independent on

the amplitude of the feature itself. We point out that the sharp features which

seem to provide better fits to the CMB power spectrum could already be outside

this bound, questioning the consistency of the models that predict them.

- In Chapters 7 and 8 we will develop the concepts of full-diffeomorphism breaking

in the effective theory of primordial perturbations. During single-field inflation,

time-reparameterization invariance is broken by a time-dependent cosmological

background. Here we want to explore more general setups where also spatial dif-

feomorphisms are broken. First, we will consider the possibility that this breaking

is given by effective mass terms or by derivative operators for the metric fluc-

tuations in the so-called unitary-gauge Lagrangian. Then we also add operators

that break discrete symmetries like parity and time-reversal. We investigate the

cosmological consequences of the breaking of spatial diffeomorphisms and discrete
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symmetries, focussing on operators that affect the power spectrum of fluctuations.

We identify the operators for tensor fluctuations that can provide a blue spectrum

without violating the null energy condition and operators for scalar fluctuations

that can lead to non-conservation of the comoving curvature perturbation on su-

perhorizon scales even in single-clock inflation. Moreover, we find that operators

that break discrete symmetries lead to new direction-dependent phases for both

scalar and tensor modes.

- In Chapter 9 we will investigate further the subject of diffeomorphism breaking.

Using the Goldstone bosons associated to the symmetry breakings, we examine the

observational consequences for the statistics of the scalar and tensor modes, paying

particular attention to interactions and three-point functions. We show that this

symmetry breaking pattern can lead to an enhanced amplitude for the squeezed

bispectra and to a distinctive angle dependence between their three wavevectors.

- Chapter 10 contains final considerations and possible future directions. Appendices

A and B review some general aspects related to the quantization of inflationary

perturbations and the in-in formalism, used to compute the bispectra presented

in the main text. Appendices C and D contain some technical details about time

and spatial diffeomorphism breaking. In Appendix E we discuss how the results of

Chapter 9 indicate prospects for constraining the level of spatial diffeomorphism

breaking during inflation.
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CHAPTER 1

The Standard Model of Cosmology

1.1 Friedmann–Robertson–Walker Universe

The most important feature of our Universe is certainly its large scale homogeneity

and isotropy. The observable patch of the Universe is of the order of 3000 Mpc and

appears homogeneous and isotropic when coarse grained on 100 Mpc scales [7, 8]. This

observation naturally suggests and supports the hypothesis that we do not occupy any

special place in the Universe, hypothesis that is known as Cosmological Principle and is

the starting point of Modern Cosmology. The Cosmological Principle can be formulated

in a mathematical language as an assumpition on the geometry of spacetime:

• The hypersurfaces with constant time are maximally symmetric three-dimensional

subspaces of the whole four-dimensional spacetime;

• All “cosmic” tensors (such as the metric gµν or the energy-momentum tensor Tµν)

are form invariant with respect to the isometries of these subspaces.

The first point implies that it is always possible to cast the metric in the privileged form:

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.1)

where a(t) is the scale factor, k = 0,±1 is the spatial curvature and r, θ and φ are

polar coordinates. This is the well-known Friedmann–Robertson–Walker (FRW) met-

ric. The second point tells us about the behaviour of matter in a FRW Universe: the

energy-momentum tensor Tµν must be form invariant, T ′µν(x) = Tµν(x), so that T00, T0i,

and Tij transform as three-scalars, three-vectors and three-tensor respectively, under
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purely spatial isometries. It can be shown then that the energy-momentum tensor of the

Universe necessarily takes the same form as for a perfect fluid,

Tµν = (ρ(t) + p(t))uµuν + p(t)gµν , (1.2)

where uµ is the 4-velocity, ρ and p the energy density and isotropic pressure respectively.

We can insert this information into the Einstein’s field equation,

Rµν −
1

2
gµνR = 8πGTµν , (1.3)

(where Rµν is the Ricci tensor build on the metric gµν and G the gravitational constant)

and find the well-known Friedmann equations:(
ȧ

a

)2

= H2 =
8πG

3
ρ− k

a2
, (1.4)

ä

a
= Ḣ +H2 = −4πG

3
(ρ+ 3p) , (1.5)

where H = ȧ/a is the Hubble parameter. One of the Friedmann equations can be

recovered from the other making use of the conservation law:

dE + p dV = 0 =⇒ ρ̇+ 3H(ρ+ p) = 0 . (1.6)

Together with an equation of state p = p(ρ), these equations form a complete system

to determine the two unknown functions a(t) and ρ(t). Let us focus for a moment on

the Friedmann equations (1.4) and (1.5). It is clear that as long as the quantity ρ+ 3p

remains positive, the “acceleration” ä is negative, since a > 0 by definition. Moreover

we know that at present the universe is expanding, thus ȧ/a > 0. It follows that the

curve a(t) versus t must be concave downward and must have reached a(t) = 0 at some

finite time in the past. This is the singolarity universally known as Big Bang.

A homogeneous, isotropic universe whose evolution is governed by the Friedmann

equations is the framework within which one can understand the formation of galaxies

and cosmic structure. The standard cosmological model also predicts the existence of

a background black-body radiation at the temperature T ' 2.7K, which is indeed ob-

served and known as the Cosmic Microwave Background (CMB). One further outstand-

ing success is the prediction of light-element abundances produced during cosmological

nucleosyntesis, which agree with current observations (see [9] for a recent review). How-

ever it was soon realized that this picture suffers from (at least) two major unresolved

problems and lacks the answer to a fundamental question. The question is the origin

of the primordial inhomogeneities that will give rise to the cosmic structures that we

observe today, whereas the problems regard initial conditions and “unlikeliness”.
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1.1.1 The Horizon Problem

The comoving particle horizon τ is defined as the maximum distance a light ray can

travel from time 0 to time t. In a FRW Universe it can be written as

τ =

∫ t

0

dt′

a(t′)
=

∫
d ln a

(
1

aH

)
, (1.7)

where we expressed the integral as a function of the comoving Hubble radius (aH)−1.

The physical size of the particle horizon is simply:

d(t) = a(t)τ . (1.8)

In a Universe filled with a fluid with equation of state

w =
p

ρ
, (1.9)

it can be shown [10–12] that both the comoving Hubble radius and the particle horizon

always increase in time,

τ ∼ (aH)−1 ∼ a(1+3w)/2 . (1.10)

This is true, for example, for a matter fluid w = 0 or radiation fluid w = 1/3. This means

that the fraction of the Universe in causal contact grows in time, or, in other words, that

the causally connected Universe was much smaller in the past. In particular, applying

this to the Cosmic Microwave Background (CMB) and taking into account a finite-time

singularity, one concludes that the last scattering surface is made of several independent

patches that had never causally communicated in the past but incredibly share the same

degree of isotropy. If no particles could have interacted, the situation of a photon bath

with the same properties everywhere in the sky is extremely improbable. The lack of

a microphysical explanation to this paradoxical fine tuning is known as the horizon

problem.

1.1.2 The Flatness Problem

The first Friedmann equation (1.4) can be written as:

Ω(a)− 1 =
k

(aH)2 , (1.11)

where:

Ω(a) =
ρ(a)

ρcrit(a)
=

ρ(a)

3M2
PlH(a)2

, (1.12)
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where MPl = (8πG)−1/2 is the Planck Mass. As we have seen, the comoving Hubble

radius is growing (1.10), therefore the curvature parameter Ωk = Ω− 1 decreases going

backward in time. The measured value of Ωk today is very close to zero, |Ωk| < 0.005

(95% CL) [13], implying that it should have been even smaller in the past. For example,

one can show that |Ωk| ∼ O(10−64) at the Planck scale. This means that the initial

amount of energy density of matter and radiation in the universe had to be very tuned

to the critical value, one part in 1064! Like the horizon problem, this points again to an

extreme fine tuning of initial conditions, which is known as the flatness problem.

1.2 The Inflationary Solution

In the previous section we saw how crucial is the role of the comoving Hubble radius in

the formulation of the horizon and flatness problems: both of them appear since (aH)−1

is strictly increasing. This however also suggests that the horizon and flatness problems

can be solved by the same mechanism: make the comoving Hubble radius decrease in

time in the very early Universe. In this way, the flatness problem is trivially solved as

Ω− 1 would naturally converge to zero at early times (1.11), before the standard FRW

evolution begins. The horizon problem is also solved, as the region that will become

the observable Universe today actually becomes smaller during this period, so that what

appear now as causally disconnected regions in the sky were in causal contact in the

past. This mechanism of shrinking the horizon requires:

d

dt

(
1

aH

)
< 0 ⇔ ä > 0 , (1.13)

that is a period of accelerated expansion of the Universe. This period is called Inflation.

The search for the solution to the problems of horizon and flatness was the historical

motivation for inflation. Its ability to motivate one or more of the initial conditions of

the standard hot Big Bang model was noticed by several authors [14–17] and acquired

widespread appreciation with the papers [18–20]. However it is mainly for another rea-

son that inflation has now become a fundamental part of cosmology. Inflation provides

us with a powerful mechanism to generate the perturbations in the energy density of

the universe, necessary for the formation of large scale structure. Before the advent of

inflationary solution, the initial fluctuations were postulated and taken as initial condi-

tions designed to fit observational data. On the contrary, inflation explains the origin

of primordial inhomogeneities as small quantum fluctuations of the inflation field that

are stretched on very large scales by the enormous expansion. This leads to concrete

predictions for the spectrum of these primordial perturbations, that are confirmed (for
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example) by the analysis of the CMB inhomogeneities (see Chapter 2).

As the evolution of the universe obeys Friedmann equations (1.4) and (1.5), it is

clear that in order to have a period of accelerated expansion, ä > 0, we need to satisfy

the condition:

ρ+ 3p < 0 . (1.14)

As we can see, for an accelerated expansion it is necessary that the pressure of the

Universe is negative p < −ρ/3. Neither a radiation-dominated phase or a matter-

dominated phase (for which p = ρ/3 and p = 0) satisfies this condition. In this section

we will see a simple field-theoretical model where this instead can be realized and discuss

its consequences.

Consider the action of a scalar field φ, which we call the inflaton,

S =

∫
d4x
√
−gL =

∫
d4x
√
−g
[

1

2
∂µφ∂ν φg

µν + V (φ)

]
, (1.15)

where gµν is a FRW metric and
√
−g = a3 is the square root of its determinant. Writing

the energy-momentum tensor of the scalar field,

Tµν = ∂µφ∂νφ− gµνL , (1.16)

we can define the corresponding density and pressure:

ρ =
1

2
φ̇2 + V (φ) +

(∇φ)2

2a2
, (1.17)

p =
1

2
φ̇2 − V (φ)− (∇φ)2

2a2
. (1.18)

To follow the classical evolution, we separate the homogeneous and isotropic background

vacuum expectation value of the field from the quantum perturbations:

φ = φ0(t) + δφ(t,x) . (1.19)

The homogeneous part behaves like a perfect fluid with

ρ0 =
1

2
φ̇0

2
+ V (φ0) , (1.20)

p0 =
1

2
φ̇0

2 − V (φ0) . (1.21)

Under the hypothesis that the potential energy is larger than the kinetic energy φ̇2
0 �

V (φ0), we now obtain what we were looking for,

w =
p0

ρ0
' −1 < −1

3
, (1.22)

that gives an accelerated expansion of the Universe.
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In order to be more accurate, let us write the equation of motion for the inflaton φ0:

�φ = V ′(φ0) =⇒ φ̈0 + 3Hφ̇0 + V ′(φ0) = 0 . (1.23)

Physically, if φ̇2
0 � V (φ0), the field is slowly rolling down its potential, hence the name

of slow-roll inflation. The Friedmann equation (1.4) becomes:

3M2
PlH

2 =
1

2
φ̇2

0 + V (φ0) ' V (φ0) , (1.24)

while, differentiating and using (1.23), one finds:

Ḣ = −1

2

φ̇2
0

M2
Pl

' −1

6

V ′(φ0)2

3M2
PlH

2
. (1.25)

This last equation tell us that for the potential energy to dominate the energy density

of the Universe, the potential of the inflaton should be very flat:

φ̇2
0 � V (φ0) =⇒ V ′(φ0)2

V (φ0)
� H2 . (1.26)

This is the first slow-roll condition. Being the potential flat, we should also expect φ̈0

to be very small. Indeed if φ̇2
0 � V (φ0) has to be satisfied then also

φ̈0 � 3Hφ̇0 =⇒ V ′′(φ0)� H2 , (1.27)

must be satisfied, which is the second slow-roll condition.

Both conditions (1.26) and (1.27) can be expressed in more generality using only the

Hubble parameter H. If H was constant, the expansion of the Universe would be almost

exponential and inflation would be a quasi-de Sitter stage. To achieve this we should

require that the fractional change of the Hubble parameter during one Hubble time H−1

is much less than unity:

ε = − Ḣ

H2
� 1 . (1.28)

This is the definition of the (first) slow-roll parameter and correspond to condition (1.26)

if inflation is driven by a scalar field with action (1.15). At the same time, also the time

variation of ε must be small during inflation,

η =
ε̇

εH
� 1 , (1.29)

that corresponds to condition (1.27). Notice that

ä

a
= Ḣ +H2 = (1− ε)H2 , (1.30)
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therefore the condition ε < 1 is fundamental to achieve ä > 0: as soon as it it violated,

inflation comes to an end. In general, slow-roll inflation is a quasi-de Sitter stage of

expansion of the Universe when ε� 1 and |η| � 1.

The amount of inflation is measured by the number of e-folds of accelerated expan-

sion:

N =

∫ af

ai

d ln a =

∫ tf

ti

H(t)dt , (1.31)

where the subscripts i and f denotes respectively the beginning and the end of inflation.

In the case of slow-roll inflation driven by a scalar field one can use

Hdt =
H

φ̇
dφ ' −3H

V ′
Hdφ ' 1√

2ε

dφ

MPl
(1.32)

so that eq. (1.31) can be also written as an integral in field space:

N =

∫ φf

φi

1√
2ε

dφ

MPl
. (1.33)

Inflation can succesfully solve the horizon and flatness problems if N & 50− 60 (see e.g.

[21]).

1.3 Quantum Perturbations

If a perfectly homogeneous and isotropic background expansion was the end of the story,

none of the cosmic structures we see today would have never formed. Indeed our current

understanding of the large scale structures of the Universe is that they had their origin

from tiny perturbations in the energy density of the early Universe. Afterwards, when the

Universe becomes matter dominated, primeval density inhomogeneities (δρ/ρ ∼ 10−5)

were amplified by gravity1 [10]. In order to do so, there should have been small (pre-

existing) fluctuations on physical lenght scales larger than the horizon during radiation

1 The growth of small matter perturbations inside the horizon (i.e. with wavelenght λ . H−1) is

governed by the Newtonian equation:

δ̈k + 2Hδ̇k + v2
sk

2δk/a
2 = 4πGρ0δk ,

where v2
s is their speed of sound. Only for fluctuations with wavenumber smaller than the Jeans wavenum-

ber k2
J = 4πGρ0a

2/v2
s gravity wins over pressure and matter perturbations can grow. Solving the previ-

ous equation in a matter-dominated Universe, where a ∼ t2/3, one can show that δk ∼ t2/3, while in a

radiation-dominated Universe, where a ∼ t1/2, the expansion is so rapid that matter pertubations grow

too slowly δ ∼ log a.
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and matter eras, even though there is no causal mechanism in the Big Bang model to

produce them. In absence of a better explanation, they must be put by hand as initial

conditions. Fortunately, a better explanation is provided by the same mechanism that

solves the horizon and flatness problems: during inflation, small quantum fluctuations

are generated and, as the scale factor is growing exponentially while the Hubble ra-

dius remains almost constant, their wavelength soon exceeds the Hubble radius itself.

At this point, microscopic physics does not affect their evolution any more and their

amplitude “freezes” at some non-zero value, which remains almost unchanged until the

end of inflation. Then, in the standard expansion of a radiation-dominated and matter-

dominated eras, the Hubble radius increases faster than the scale factor and wavelenghts

that had exited the horizon during inflation eventually reenter. The fluctuations that

exited around 60 e-foldings or so before the end of inflation reenter with physical wave-

lengths in the range accessible to cosmological observations like the Cosmic Microwave

Background (CMB) and provide us with distinctive signatures of the high-energy physics

of the early Universe (see Chapter 2).

1.3.1 Scalar Fluctuations in a quasi-de Sitter Stage

Let us start studying the case of a scalar field φ (not necessarily the inflaton) during a

de Sitter stage of the expansion of the Universe. After expanding the scalar field φ as

in eq. (1.19), we can write the equation of motion of the perturbation δφ(t,x) as:

δ̈φ+ 3H ˙δφ− ∂2
i δφ

a2
= −m2(φ)δφ , (1.34)

where dots are time derivatives while the mass m2(φ) = V ′′(φ) is the second derivative

of the potential V (φ) with respect to φ. It is useful now to go to conformal time,

dτ =
dt

a
, =⇒ gµν = a2ηµν , (1.35)

where ηµν = diag(−1, 1, 1, 1) so that the equation of motion (1.34) becomes:

δφ′′ + 2aHδ̇φ− ∂2
i δφ+ a2m2δφ = 0 . (1.36)

After Fourier expanding the scalar field,

δφ =

∫
d3k

(2π)3 e
ik·xδφk , (1.37)

and redefining

δφk =
uk
a
, (1.38)
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we find an equation of motion of a harmonic oscillator with a time-dependent frequency:

u′′k +

(
k2 + a2m2 − a′′

a

)
uk = 0 . (1.39)

To get physical insight, let us consider eq. (1.39) in different regimes:

• on subhorizon scales, for k2 � a2H2, one recovers a free oscillator in conformal

time, whose solution is a plane wave:

uk(τ) =
e−ikτ√

2k
. (1.40)

Fluctuations with wavelenghts well within the horizon oscillates as they were in a

flat spacetime.

• on superhorizon scales, for k2 � a2H2, (take for simplicity m = 0 for the moment):

u′′k −
a′′

a
uk = 0 , (1.41)

which is satisfied by:

uk = aB(k) , (1.42)

where the constant of integration B(k) can be fixed with a rough matching with

the previous solution at the horizon aH = k, so that:

uk =
H√
2k3

. (1.43)

Fluctuations with wavelenghts much larger than the horizon freeze out and their

amplitude remain constant.

In fact, if the mass term is constant, also an exact solution to eq. (1.39) can be

found. During a de Sitter stage of inflationary expansion one can write:

a(τ) = − 1

Hτ
+O(ε) , (1.44)

where we neglect subleading terms proportional to the slow-roll parameter ε (1.28). Now

the equation of motion (1.39) can be written as

u′′k +

[
k2 − 1

τ2

(
ν2 − 1

4

)]
uk = 0 , (1.45)

where

ν2 =
9

4
− m2

H2
. (1.46)
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Eq. (1.45) is a Bessel equation and its solution can be written in terms of Hankel function

of first and second kind,

uk =
√
−τ
[
c1(k)H(1)

ν (−kτ) + cs(k)H(2)
ν (−kτ)

]
. (1.47)

In the ultraviolet regime, i.e. well within the horizon −kτ � 1 (k � aH), we expect this

solution to match the plane-wave solution (1.40). This fixes the integration constants2

and give us the exact solution:

uk(τ) =

√
π

2
e
iπ
2

(ν+1/2)
√
−τH(1)

ν (−kτ) . (1.48)

Using the asymptotic behaviour of the Hankel function we can write a simple expression

for the superhorizon limit:

uk = 2ν−3/2e
iπ
2

(ν−1/2) Γ(ν)

Γ(3/2)

(
(−kτ)1/2−ν
√

2k

)
(k � aH) , (1.49)

where Γ is the Euler Gamma function. In the case of a light field, m2/H2 � 1, at lowest

order in the small quantity (3/2− ν) we can write:

|δφk| '
H√
2k3

(
k

aH

)3/2−ν
, (1.50)

which shows that the amplitude perturbation of a light field in a quasi-de Sitter Uni-

verse remains almost constant on super horizon scales, with a tiny time dependence

proportional to its effective mass.

As an aside, it is interesting to see what happens if the field is heavier than the

Hubble parameter, more precisely when m2/H2 > 9/4. In this case, the ν parameter

(1.46) becomes imaginary, but one can define a new ν̃k = iν and proceed in the same

way. In the superhorizon limit now we have the asymptotic expression:

|δφk| '
√
π

2
e
iπ
2

(1/2+iν̃)H(−τ)3/2

[
1

Γ(iν̃ + 1)

(
−kτ

2

)iν̃
− iΓ(iν)

π

(
−kτ

2

)−iν̃]
. (1.51)

The evolution now contains an oscillating factor τ±iν̃ and a decaying factor (−τ)3/2,

which is the signal that massive fields decay on super horizon scales and their amplitude

eventually drops to zero.

2Because of quantization, actually these steps are not really straightforward. In Appendix A, we will

briefly review the quantization process and the choice of the vacuum.
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1.3.2 Metric Fluctuations

The important simplification hidden in the previous section is that, in studying per-

turbations, we completely neglected the dynamics of gravity, considering it as a fixed

background which does not receive any back-reaction from the “spectator” scalar field.

However, when we perturb the scalar field (1.19), at the same time we are perturb-

ing its energy-momentum tensor Tµν (1.16), which, in turn, will perturb the metric,

since they are connected by the Einstein equations. The most generic first order metric

perturbation of a spatially flat3 FRW metric (1.1), can be written as:

ds2 = −(1 + 2Φ)dt2 − 2a(t)Bidx
idt+ a2(t) [(1− 2Ψ)δij + Eij ] dxidxj , (1.52)

where

Bi = ∂iB − Si , ∂iSi = 0 , (1.53)

Eij = 2∂i∂jE + 2∂(iFj) + γij , ∂iFi = 0 = γi i = ∂iγ
i
j . (1.54)

Φ, B, Ψ and E are scalars, Si and Fi are vectors and γij is a tensor, as they trasform

respectively as scalars, vectors and tensors under rotations on spatial hypersurfaces.

Among these fields, many will not be dynamical when substituted into the action. In

the the case we are going to consider here, only one dynamical scalar perturbation will

survive (but notice that more general situations are possible, see Chapters 7, 8 and 9).

Let us consider the action of a scalar inflaton φ with potential V (φ) minimally coupled

to gravity:

S =

∫
d4x
√
−g
[

1

2
M2

PlR−
1

2
∂µφ∂νφg

µν − V (φ)

]
. (1.55)

The easiest way to proceed here is not via the decompisition (1.52), but with the use of

the ADM formalism [22, 23]. The metric is written as

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (1.56)

where N is called the lapse function and N i the shift function. Although using eq. (1.52)

or eq. (1.56) is equivalent, the ADM metric is designed so that the N and N i functions

enter the action (1.55) as Lagrange multipliers and algebraic equations of motion can be

solved and substituted back. Using eq. (1.56) into the action (1.55) one finds:

S =
1

2

∫
d4x
√
h
[
N(R(3) − hij∂iφ∂jφ− 2V ) +N−1(φ̇−N i∂iφ)

2
+N−1(EijE

ij − E2)
]
,

(1.57)

where

Eij =
1

2
(ḣij −DiNj −DjNi) , E = Eii , (1.58)

3As we are interested in very early universe, where spatial curvature can be neglected, we will work

out this case only, though results can be extended to non-zero spatial curvature.
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R(3) is the 3d Ricci scalar and Di is the three-dimensional covariant derivative. Now, the

key issue is that General Relativity is a gauge theory where the gauge transformations

are the generic coordinate transformations

xµ → xµ + ξµ(t,x) , (1.59)

so that any coordinate frame is equivalent. The redundancy of this description is solved

by specifying a map that allows to univocally link the same spacetime point on the two

different geometries of uniform FRW background and perturbed Universe. This “choice

of coordinate” is what is called gauge fixing. The issue of gauge invariance in Cosmology

is well-known in literature [24–29] and will not be discussed further in this Chapter. A

convenient gauge choice here is the comoving gauge:

δφ = 0 , hij = a(t)2
(
1 + 2R(t,x)

)
δij + γij(t,x) , (1.60)

where R is called comoving curvature perturbation and γij is the tensor perturbation.

The variable R can be defined also through the pertubed energy-momentum tensor [29],

δT00 = −ρ0δg00 + δρ (1.61)

δT0i = p0δg0i + (ρ+ p)(∂iδu+ δuTi ) , (1.62)

δTij = pδgij + a2(δpδij + σij) (1.63)

(where δρ, δp, δu, δuiT are the perturbed density, pressure and 4-velocity, longitudinal

and transverse components, and σij the anisotropic stress) as:

R = Ψ−Hδu , (1.64)

where Ψ was defined in eq. (1.52). Another useful variable to define is the curvature

perturbation on uniform density slices, ζ,

ζ = −Ψ−Hδρ

ρ̇
. (1.65)

It can be shown that in single-field inflation these two variables coincide in the large scale

limit [30–33]. For this reason, here we will work only with R4. As it can be seen from the

expression (1.60), in the comoving gauge R physically represents a spacetime-dependent

rescaling of the scale factor a. The gauge choice (1.60) is very similar to the Coulomb

gauge in elecrodynamics, where one sets ∂iA
i = 0, solves the equations of motion for A0

4There are different convention in the literature in the definitions of the R and ζ variables. For

example in [34] and many other works, the comoving curvature perturbation is denoted with ζ. Here we

adopt the convention of [29], where R is the comoving curvature perturbation, while ζ is the curvature

on uniform density slices.
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and puts its solution back in the action. In this case, the equations of motion for N and

N i are the momentum and hamiltonian constraints [34]:

Dj

(
N−1(Eji − Eδ

j
i )
)

= 0 (1.66)

R(3) − 2V (φ)−N−2(EijE
ij − E2)−N−2φ̇2 = 0 . (1.67)

These equations can be solved perturbatively setting

N = 1 + δN + ... , N i = ∂iψ +N i
T , (∂iN

i
T = 0) . (1.68)

As we are interested in the action up to third order in the perturbed fields, solutions

at first order are enough [34]: the reason is that the second order term in N will be

multiplying the hamiltonian constraint evaluated to zeroth order, which vanishes since

the zeroth order solution obeys the equations of motion. The third order terms multiply

the constraints evaluated to first order, which vanish due to the first order expressions

for N and N i. The first order solutions are then:

δN =
Ṙ
H
, (1.69)

ψ = −R
H

+
a2

H
∂−2Ṙ . (1.70)

Substituting them into the action (1.55), after performing some integrations by parts

one can finally obtain the action for R at second order in pertubations:

S =

∫
d4xa3M2

Plε

(
Ṙ2 − (∂iR)2

a2

)
. (1.71)

This is the quadratic action of the comoving curvature pertubations during inflation,

taking into account all pertubations, both from the inflaton and the metric sector. The

form of this action is very simple and its evolution can be studied in the same way as we

did in the previous section. Going to conformal time, the equation of motion in Fourier

space of the normalized field,

a
√

2εMPlRk = uk , (1.72)

takes the form (1.45) and has solution (1.48), with

ν2 =
9

4
+ 3ε+

3

2
η . (1.73)

We know that during inflation the slow-roll parameters (1.28), (1.29) are small, by

definition. Therefore we can expand the previous expression for ε, |η| � 1. In this case

the Hankel function H
(1)
3/2, at lowest order in ε and η, has a simpler expression and we

can read the wave function for R:

R =
H

MPl

√
4εk3

(1 + ikτ)e−ikτ . (1.74)
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As one can see in eq. (1.60), also tensor perturbations γij are generated during

inflation. As they are traceless and transverse (1.52), they describe two degrees of

freedom, that are the two helicities of the gravitational waves. More precisely, we can

go in Fourier space and decompose γ as:

γij =

∫
d3k

(2π)3

∑
λ

eλijγke
ik·x , (1.75)

where eλij with λ = +,× are the polarization tensors and satisfy:

eλij = eλji
eλii = 0 = kieλij

eλij(−k) = eλij(k)∗∑
λ e

λ
ij
∗
eijλ = 4

. (1.76)

If the action is the one of single-field slow-roll inflation (1.55), only the Ricci scalar

contain tensors terms and their action is simply:

S =
1

8
M2

Pl

∫
d4x
√
−g
(
γ̇ij γ̇

ij − ∂kγij∂
kγij

a2

)
. (1.77)

After normalizing the field as γk =
√

2hk/aMPl, the equation of motion for the tensor

mode functions in conformal time read:

h′′k +

(
k2 − a′′

a

)
hk = 0 , (1.78)

which is formally equal to the equation of motion of a massless scalar field in de Sit-

ter (1.39). We can therefore make use of the same machinery to conclude that the

superhorizon tensor modes scale as:

|hk| =
(
H

2π

)(
k

aH

)3/2−νT
, (1.79)

where νT ' 3/2− ε at lowest order in the slow-roll parameters.

1.3.3 The Power Spectrum

Whereas perturbations have a well defined time dependence, viewed as function of po-

sition at fixed time, they have random distribution, whose statistical properties are

exactly what we wish to uncover via observations. Within the standard single-field slow-

roll models of inflation, the primordial density perturbations are (almost) Gaussian, that
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is, its Fourier components have no correlations except for the reality condition. In this

situation the statistical information about the distribution is completely encoded in the

two-point function, or its Fourier transform, the power spectrum:

〈Rk1Rk2〉 = (2π)3δ(k1 + k2)PR(k1) = (2π)3δ(k1 + k2)
2π2

k3
PR , (1.80)

where P (k) is the power spectrum and P is its dimensionless version. For Gaussian

perturbations the statistical information about the distribution is completely encoded in

the two-point function, as odd-n correlators all vanish and even-n correlators are prod-

ucts of two-point correlators and their permutations. The power spectrum is therefore

the first observable we are interested in. Following the discussion of the previous section

and using eqs. (1.80), (1.48), it is now very easy to find the expression of the power

spectrum of the comoving curvature fluctuations at the end of inflation, that is τ = 0:

PR =
H2

8π2M2
Plε

(
k

aH

)ns−1

= A2
s

(
k

aH

)ns−1

, (1.81)

where As is its amplitude. The quantity ns is the scalar spectral index and is defined as:

ns − 1 =
d lnPR
d ln k

. (1.82)

In this case, using (1.73) , it is equal to

ns − 1 = −η − 2ε . (1.83)

We then learn that the spectrum of curvature perturbations generated during inflation

is “almost” scale-invariant on superhorizon scales, that is to say that the amplitude of a

fluctuation at a scale k is almost independent on the scale itself. Current bounds on the

amplitude and tilt of the power spectrum, together with constraints on departure from

Gaussianity, will be the main subject of the next Chapter.

In exactly the same way, one can derive the spectrum of tensor perturbations γij
from eq. (1.79). Summing over the two polarizations, the power spectrum of inflationary

gravitational waves is:

PT =
k2

2π2

∑
λ

|γk|2 =
2H2

π2M2
Pl

(
k

aH

)nT

= A2
T

(
k

aH

)nT

, (1.84)

where the tensor tilt is given by:

nT = −2ε . (1.85)

Also the tensor power spectrum is almost scale invariant. Notice also that the amplitude

depends only on the value of the Hubble parameter during inflation, which, if measured,

would provide important information about the energy scale of inflation. Moreover, it

17



is very interesting to compare the amplitudes of the tensor and scalar spectra, which is

done defining the tensor-to-scalar ratio as:

r =
A2
T

A2
S

. (1.86)

In the standard slow-roll single-field models of inflation that we have studied so far, the

tensor to scalar ratio becomes:

r = 16ε , (1.87)

as one can see from eqs. (1.84) and (1.81). Thus, constraints on ns and r are also

contraints on the two slow-roll parameter ε and η. If we assume to be in single-field

inflation, these are directly related to the the first two derivatives of the inflaton potential,

so that a measurement of ns and r can put stringent bounds on the shape of the scalar

potential given by an inflationary model (see Figure 2.2 in the next Chapter). Notice

also that

r = −8nT , (1.88)

which is known as the “consistency relation” between the tensor-to-scalar ratio and

tensor tilt [35–37]. This relation is valid for any single-field model fo inflation. If future

measurments will falsify this relation (see e.g. [38, 39]), this would mean that inflation

is not driven by the simple single-field dynamics we have seen and would point to non-

trivial realizations of inflation.
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CHAPTER 2

CMB Anisotropies

During the 50 years since its discovery [40], the Cosmic Microwave Background

(CMB) has been one of the main probes of cosmological theories. Looking at the CMB,

the first conclusion that observers were able to draw was that, in contrast to the very

non-linear clustered structures of matter in the Universe, the CMB is extremely uniform.

Later on, also the tiny 10−5 temperature fluctuations were discovered [41]. The CMB

data we have today [13, 42–44] are by far the most precise and accurate way to test our

knowledge of the Universe (see Table 2.3 for an up-to-date list of past and present CMB

experiments).

In this Chapter, we will briefly review the physics of the CMB, its observational

consequences and their physical interpretations, in connection with the physics of the

early Universe. For more details, we refer the reader to the many reviews in the literature,

like for example [45–50]

2.1 Basics

The CMB is a very good black body with a temperature T = 2.72548 ± 0.00057 K

[51, 52]. The basic observable of the CMB is its intensity as a function of frequency and

direction on the sky n̂, that can be described as temperature fluctuations,

Θ(n̂) =
∆T

T
. (2.1)

19



As we have already said, if the perturbations are Gaussian, all information about the

multipole moments

a`m =

∫
dn̂Y ∗`m(n̂)Θ(n̂) , (2.2)

where Y ∗`m are the spherical harmonics, are encoded in the angular power spectrum:

〈a`ma`′m′〉 = δ``′δmm′C` . (2.3)

As θ = 2π/`, small multipole moments correspond to large angular scales. The largest

scales are the ones that were outside the horizon at the time of recombination, when

the CMB was formed. As no physics could have affected them until they eventually

re-enter the horizon, these modes carry almost unaltered information about early times

and inflation. Smaller scale modes evolve in a more complicated way instead. Before the

temperature of the Universe reached T ∼ 3000 K and neutral hydrogen formed, photons

and baryons were tightly coupled in a cosmological plasma (photon-baryon fluid). If any

initial perturbations is present, the radiation pressure would act as a restoring force and

the system oscillate at the speed of sound. Physically, this give rise to oscillations in the

temperature fluctuations due to compression and rarefaction of a standing acoustic wave.

The peaks that we observe in the CMB (see Figure 2.1) correspond to modes that have

undergone these acoustic oscillations and are caught at their maxima or minima. On

even smaller scales, one starts to see the effect due to shear viscosity and heat conduction

in the fluid, since photons can travel only a finite distance before scattering again. This

translates in the damping at high ` of the temperature power spectrum (“diffusion

damping”). What an observer sees today is the projection of inhomogeneities produced

at recombination onto anisotropies in the sky. In terms of spherical harmonics (2.2), the

observed anisotropy today (i.e. at time τ0) is:

Θ(n̂, τ0) =
∑
`m

Y`m(n̂)

[
4π(−i)`

∫
d3k

(2π)3 ∆`(k)Φ(k)Y ∗`m(k̂)

]
, (2.4)

where ∆`(k) is called radiation transfer function and encode all the typical effects ob-

served in the CMB power spectrum at linear order. The C`’s can then be written as:

C` =
2

π

∫
k2dk P (k) |∆`(k)|2 . (2.5)

where P (k) is the power spectrum of primordial perturbations. It is clear then that

the temperature fluctuations δT/T are tightly bound to the initial gravitation potential

perturbations, which are set by inflation, and are therefore an unvaluable probe of the

physics of the early Universe. We are not going into the details of the complete expression

of the transfer funcion ∆`(k), which can be found and even solved analytically under

some approximations (a nice derivation from Boltzmann equations to actual observables
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can be found for example in [11]). It is interesting however to write its expression for

low multipoles, which describe the scales that were outside horizon at recombination

and have been affected by no physical processes but inflation. In this case the transfer

function is just the projection of inhomogeneities onto the spherical sky:

∆`(k) ∝ j` [k(τ0 − τ∗)] , (2.6)

where j` is the spherical Bessel function and τ∗ is the time at recombination, so (τ0− τ∗)
represents the (conformal) distance to recombination. Once put in the integral (2.5),

one can find that on very large angular scales, the power spectrum is (almost) flat:

`(`+ 1)C` ' const. (2.7)

Figure 2.1 shows this behaviour of the temperature power spectrum D` = `(` +

1)C`/2π in the Planck data [43], where one can appreciate all the processes we have

seen in our flash review of the physics of the CMB, namely an almost flat spectrum at

very large scales, acoustic peaks and diffusion damping. We can also notice that low

multipoles have large errors. This is due to the fact that the predicted power spectrum

is the average power in the multipole moment ` an observer would see in an ensemble of

Universes. However a real observer can see only one Universe with its one set of Θ`m.

This fundamental limitation, called “Cosmic Variance”, is the fact that there are only

2`+ 1 m-samples of power for each multipole, that leads to the unavoidable error:

∆Cl =

√
2

2`+ 1
C` . (2.8)

This means that for the monopole ` = 0 and the dipole ` = 1 we actually have no

information from the C`’s. Physically we cannot say if the monopole is larger in our

vicinity than its average value and cannot tell the difference between a true dipole and

the peculiar motion of the Earth with respect to the CMB.

2.2 Constraints on the Primordial Power Spectrum

One of the most important results of the experimental studies of the CMB is the use

of the temperature power spectrum to constrain the physics of inflation. The most

interesting parameters are the scalar amplitude, the scalar tilt and the tensor-to-scalar

ratio, which have been defined in eqs. (1.81), (1.82) and (1.86) and are summarized in

Table 2.1.

The most recent and most accurate experimental results at our disposal are Planck

2015 data [13, 43, 44, 53]. Table 2.2 shows values and constraints for the primordial
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Figure 2.1: The Planck 2015 temperature power spectrum [13].

cosmological parameters As, ns and r, while nT has been fixed via the consistency

relation (1.88) to nT = −8r. One of the most important result is the departure from

exact scale invariance, ns = 1, at more than 5σ. Although in principle it does not prove

that inflation is responsible for the generation of the primordial perturbations, it is a

strong confirmation of the expectation of small deviations from scale invariance, in the

red side, proportional to the slow-roll parameters (1.83). Another very important result

is the constraint on the tensor-to-scalar ratio r. As we explained in the previous Chapter,

the amplitude of the tensor spectrum is proportional only to the Hubble parameter, i.e.

the energy scale of inflation. Therefore an upper bound on r gives us an upper bound

on the quantity [43]
H

MPl
< 3.9 × 10−5 (95% CL) (2.9)

during inflation. Equivalently, in terms of the potential V (φ) of a slowly rolling scalar

field φ, a constraint on r translates into a constraint on V (φ) itself, since

V =
3π2

2
AsrM

4
Pl = (1.88 × 1016 GeV)

4 r

0.10
. (2.10)

The importance of measuring primordial gravitational waves is now clear: their ampli-
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Table 2.1: Primordial cosmological parameters.

Parameters Definition

As Scalar power spectrum amplitude (at k∗ = 0.05 Mpc−1)

ns Scalar spectral index (at k∗ = 0.05 Mpc−1)

r Tensor-to-scalar ratio (at k∗ = 0.002 Mpc−1)

nT Tensor spectrum spectral index (at k∗ = 0.05 Mpc−1)

Table 2.2: Constraints on primordial cosmological parameters [43].

Parameters Planck results

ln(1010As) 3.089± 0.036

ns 0.9666± 0.0062 (68% CL)

r < 0.10 (95% CL)

tude fixes the energy scale of inflation.

The couple of parameters (ns, r) together can be used to exclude or put constraints

on inflationary models, comparing observational results with theoretical predictions.

Figure 2.2 shows the allowed region in the (ns, r) plane together with the predictions of a

selection of single-field inflationary models1. Here we briefly summarize the constraints

for the considered models, refering the reader to the original papers and the Planck

analysis for more details:

Chaotic Inflation Consider inflationary models with a monomial potential [56]

V (φ) = λM4
Pl

(
φ

MPl

)n
, (2.11)

where inflation happens for φ > MPl. It can be seen that cubic potential is well

outside the 95% CL region and is strongly disfavoured (quartic potential of the

1Notice that predictions of models move when changing the number of e-folds to the end of inflation.

This reflect the uncertainty about the reheating process, which is the period connecting inflation and

radiation era (see for example [54, 55] and references therein). The details of this mechanism go beyond

the scope of this work.
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Figure 2.2: Marginalized joint 68% and 95% CL regions for ns and r from Planck in

combination with other data sets, compared to the theoretical predictions of selected

inflationary models [43].

kind λφ4 is not shown as it is even further away). Quadratic potentials lies at the

margin of the 95% CL contour. Fractional values like n = 4/3 or n = 2/3 [57, 58]

are instead compatible.

Hilltop models The potential has the form [59]:

V (φ) = Λ4

(
1− φp

µp
+ ...

)
. (2.12)

where the ellipsis indicates higher order terms that are negligible during inflation

but ensure positiveness of the potential later on. Figure 2.2 shows the results for

p = 4, which is compatible with data.

Power-law Inflation Inflation with an exponential potential [60],

V (φ) = Λ4e−λφ/MPl , (2.13)

gives an exact analytical solution for the scale factor which grows in time as a

power-law, a ∼ t2/λ2, hence its name. This model now lies outside the joint 99.7%

CL contour.
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Natural Inflation The periodic potential

V (φ) = Λ4

[
1 + cos

(
φ

f

)]
(2.14)

characterizes what is called natural inflation [61, 62]. This model agrees with

Planck data for f/MPl & O(1).

Spontaneously broken SUSY While Hybrid models [63, 64], predicting ns > 1, are

generically disfavoured, an example of Hybrid model with ns < 1 is the sponta-

neously broken SUSY model [65] with potential:

V (φ) = Λ4

[
1 + αh log

(
φ

MPl

)]
. (2.15)

Notice that for αh � 1 its prediction coincide with power-law potential with p� 1.

R2 inflation This is the first inflationary model proposed in [66, 67], with action

S =

∫
d4x
√
−g1

2
M2

Pl

[
R+

R2

6M

]
, (2.16)

which corresponds to a single-field slow-roll model with potential:

V (φ) = Λ4

[
1− exp

(√
2

3

φ

MPl

)]2

. (2.17)

This model is at the center of the area favoured by Planck data.

α-attractors This class of models [68–70] have potentials of the form

V (φ) = Λ4 tanh2m

(
φ√

6αMPl

)
, (2.18)

Notice that it can interpolate between chaotic models V ∼ φ2m, for α � 1, and

R2 model, for α� 1.

2.3 Primordial Non-Gaussianity

We have seen that the power spectrum of primordial perturbations provides important

information about inflation. If perturbations were perfectly Gaussian, this would be the

end of the story, as all information would have been encoded in the two-point function.

Nonetheless, it is very difficult to discriminate between models, as even completely dif-

ferent scenarios can still give identical power spectra. In practice one can formulate a

sort of “no-go theorem” [71], which states that every model
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• of single-field inflation

• with canonical kinetic term

• which always slow rolls

• in Bunch–Davies vacuum2

• in Einstein gravity

deviate from Gaussianity in a neglibile way, as the amount of produced non-Gaussianity

is proportional to the slow-roll parameters [31, 34]. However, though it would seem that

this argument discourages the search for primordial non-Gaussianity, this is indeed one

of the more interesting reasons to develop the subject. If, for example, non-Gaussianity

was revealed by observation, it would make us discard the simplest models. Without

these types of data, theoretical models with degenerate observational consequences in

the power spectrum are very difficult to disentagle. On the other hand, as there are

large differences in size and shape of non-Gaussianities between different models, the

detection of such features would break the degeneracy of model building and shed light

on the physics of inflation [72–74].

The lowest order additional correlator beyond the two-point function to take into

account is the three-point function, or equivalently in Fourier space, the bispectrum:

〈Rk1Rk2Rk3〉 = (2π)3δ3(k1 + k2 + k3)B(k1,k2,k3) . (2.19)

Under the assumption of statistical homogeneity and isotropy, the bispectrum B(ki) is

a function of the magnitude of the momenta k1, k2 and k3 forming a closed triangle

configuration k1 + k2 + k3 = 0 (condition enforced by the Dirac delta). Studies of the

primordial bispectrum are usually characterized by constraints on a single amplitude

parameter, denoted by fNL, once a specific model for B(ki) is assumed. The non-

Gaussian parameter roughly quantifies the ratio

fNL ∼
B(k, k, k)

P (k)2
(2.20)

(where P (k) is the primordial power spectrum), which measure the “strenght” of the

bispectrum with respect to the power spectrum. More precisely, one can define the

primordial shape function [75]

S(k1, k2, k3) =
1

N
(k1k2k3)2B(k1, k2, k3) (2.21)

where the normalization factor N is often chosen such that S(k, k, k) = 1. The shape

function contains a lot of information and, since different models can predict completely

2See Appendix A for more details.
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different shapes, it can be useful to distinguish between inflationary scenarios. Among

the several possible forms for the shape function S, the most studied ones are:

Local Shape This is a phenomenological model in which it is assumed that the observ-

able quantity R acquires a non-linear correction in real space [76–80],

R(x) = Rg(x)− 3

5
f local

NL

(
Rg(x)2 − 〈Rg〉2

)
. (2.22)

In this case the bispectrum becomes:

Blocal(k1, k2, k3) = 2f local
NL A2

s

(
1

k4−ns
1 k4−ns

2

+
1

k4−ns
1 k4−ns

3

+
1

k4−ns
2 k4−ns

3

)
.

(2.23)

where As is the amplitude of the power spectrum (1.81) and ns its tilt (1.82). This

shape turns out to be physically relevant for all models where non-linearities de-

velop outside the horizon, like for example in models of multifield inflation where

additional light scalar fields besides the inflaton contribute to curvature pertur-

bations (see e.g. [81]). This mechanism provides a correlation between large and

small scale modes: indeed the bispectrum is larger in the squeezed configuration

k1 � k2 ' k3, where one of the momenta is much smaller than the others.

Equilateral and Orthogonal Shapes Inflationary models with non-canonical kinetic

terms are able to generate large non-Gaussianity. An example is the effective

Lagrangian:

L = P (X,φ) , (2.24)

where X = ∂µφ∂
µφ. The inflaton fluctuations here propagate with an effective

speed of sound c2
s 6= 1. The bispectrum produced by this class of models is gener-

ically well described by a superposition of the equilateral [82, 83],

Bequil(k1, k2, k3) = 6A2
sf

equil
NL

{
− 1

k4−ns
1 k4−ns

2

− 1

k4−ns
1 k4−ns

3

− 1

k4−ns
2 k4−ns

3

(2.25)

− 2

(k1k2k3)2(4−ns)/3
+

[
1

k
(4−ns)/3
1 k

(4−ns)/3
2 k

(4−ns)/3
3

+ (5 perm.)

]}

and the orthogonal shapes [84],

Bortho(k1, k2, k3) = 6A2
sf

ortho
NL

{
− 3

k4−ns
1 k4−ns

2

− 3

k4−ns
1 k4−ns

3

− 3

k4−ns
2 k4−ns

3

(2.26)

− 8

(k1k2k3)2(4−ns)/3
+

[
3

k
(4−ns)/3
1 k

(4−ns)/3
2 k

(4−ns)/3
3

+ (5 perm.)

]}
.
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The underlying physics of these two shapes can be understood remembering that

modes are frozen outside the horizon in single-field inflation. Then large interac-

tions can occur only for modes with similar wavelenghts k1 ' k2 ' k3, that are

crossing the horizon at about the same time.

Figure 2.3: Example of local shape (2.23).

Observationally, the cosmological observable most directly related to the initial cur-

vature bispectrum is given by the bispectrum of the CMB temperature fluctuations. We

have seen that temperature anisotropies (2.1) are described with the spherical harmonics

decomposition (2.2). The bispectrum is the three-point correlator of the a`m (2.4):

Bm1m2m3
`1`2`3

= 〈a`1m1a`2m2a`3m3〉
= Gm1m2m3

`1`2`3
b`1`2`3

=

(
2

π

)3 ∫
x2dx

∫
dk1dk2dk3 (k1k2k3)2B(k1, k2k,3 )∆`1(k1)∆`2(k2)∆`3(k3)

× j`1(k1x)j`2(k2x)j`3(k3x)Gm1m2m3
`1`2`3

, (2.27)

where the integral over the angular part of x is known as Gaunt integral Gm1m2m3
`1`2`3

and

can be written in terms of the Wigner-3j symbols as (for more details see e.g. [85, 86]

and references therein):

Gm1m2m3
`1`2`3

=

∫
dΩxY`1m1(x)Y`2m2(x)Y`3m3(x)

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)(
`1 `2 `3
m1 m2 m3

)
.(2.28)
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Figure 2.4: Example of equilateral shape (2.25).

The function b`1`2`3 in eq. (2.27) is called “reduced bispectrum”. It is interesting to

notice that the bispectrum B`1`2`3 is non-zero only if the sum of the `’s is even and that

the triangle condition

|`i − `j | < `k < `i + `j (2.29)

is satisfied (exactly like the triangle condition on momenta k1 + k2 + k3 = 0).

The goal of the analysis is to extract the non-Gaussian parameter fNL (2.20) for

different primordial shapes. Essentially this is achieved with a fit of a theoretical ansatz

for the reduced bispectrum b`1`2`3 to the observed CMB bispectrum, finding an optimal

statistical estimator for fNL together with an efficient numerical implemetation3. For

the latest analysis of Planck, three different techniques have been used to measure fNL

[44], as cross-validating and comparing different outputs improves the robustness of

result. With the inclusion of polarization data, the constraints on local, equilateral and

orthogonal non-Gaussianity are [44]:

f local
NL = 0.8± 5.0 (95%CL)

f equil
NL = −4± 43 (95%CL) . (2.30)

fortho
NL = −26± 21 (95%CL)

3This subject goes beyond the scope of this work and we are not going to develop it further. More

details can be found, for example, in the review [72].
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Figure 2.5: Example of orthogonal shape (2.26).

This means that perturbations deviate from Gaussianity for less than about one part

in 105. These results, being compatible with zero, are telling us that primordial per-

turbations are Gaussian to a very high degree of accuracy and suggest that inflationary

fluctuations were linear and weakly interacting. At the same time, they provide impor-

tant constraints for model building, since they can put bounds on the allowed parameter

space for theories. On the other hand, there is still space for physically-motivated models

that go beyond simple Gaussian statistics and that are not well constrained yet. Being

now so precise and accurate, observational constraints on non-Gaussianity are one of

the main tests of inflationary scenarios. Then it becomes very important to develop

theoretical tools which allow to translate observational results into physically meaning-

ful quantities, at the same time allowing for more general possibilities which are not

currently constrained by data.
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Table 2.3: List of CMB experiments, with years and references.

Name Years Reference

Cobra 1982 Physical Review Letters, Vol. 65, pp. 537-540

Relkit 1983− 1984 Soviet Astronomy Letters, Vol. 18, p. 153

Tenerife 1984− 2000 The Astrophysical Journal, Vol. 529 (1) , pp. 47-55

BIMA 1986− 2004 The Astrophysical Journal, Vol. 647(1) , pp. 13-24

ACME/HACME 1988− 1996 The Astrophysical Journal, Vol. 541(2) , pp. 535-541

ARGO 1988, 1990, 1993 Astrophysical Journal Letters, Vol. 463, pp. L47-L50

FIRS 1989 Astrophysical Journal Letters, Vol. 432, pp. L15-L18

COBE 1989− 1993 Astrophysical Journal Letters, Vol.464, pp. L17-L20

ATCA 1991− 1997 MNRAS, Vol. 315(4) , pp. 808-822

MSAM 1992− 1997 The Astrophysical Journal, Vol. 532(1) , pp. 57-64

Python 1992− 1997 The Astrophysical Journal, Vol. 475(1) , pp. L1-L4

SK 1993− 1995 The Astrophysical Journal, Vol. 474(1) , pp. 47-66

CAT 1994− 1997 Astrophysical Journal Letters, Vol.461, pp.L1-L4

Tris 1994− 2000 The Astrophysical Journal, Vol. 688(1) , pp. 24-31

APACHE 1995− 1996 Astrophysics From Antarctica; ASP Conference Series; Vol. 141, p.81

BAM 1995 Astrophysical Journal Letters, Vol. 475, pp. L73-L76

MAXIMA 1995, 1998, 1999 Review of Scientific Instruments, Vol. 77(7) , pp. 071101-071101-25

QMAP 1996 The Astrophysical Journal, Vol. 509(2) , pp. L77-L80

BOOMERanG 1997− 2003 The Astrophysical Journal, Vol. 647(2) , pp. 823-832

CG 1997− date Astrophysical Bulletin, Vol. 66(4) , pp.424-435

MAT 1997, 1998 The Astrophysical Journal, Vol. 524(1) , pp. L1-L4

COSMOSOMAS 1998− date MNRAS, Vol. 370(1) , pp. 15-24

Archeops 1999− 2002 Astronomy and Astrophysics, Vol. 399, p.L19-L23

POLAR 2000 The Astrophysical Journal, Vol. 560(1) , pp. L1-L4

BEAST 2000− date MNRAS, Vol. 369(1) , pp. 441-448

ACBAR 2001− 2008 The Astrophysical Journal, Vol. 694(2) , pp. 1200-1219

ARCADE 2001− 2006 The Astrophysical Journal, Vol. 734(1) , id. 5, 11 pp.

DASI 2001− 2003 The Astrophysical Journal, Vol. 568(1) , pp. 38-45

MINT 2001− 2002 The Astrophysical Journal Supplement Series, Vol. 156(1) , pp. 1-11

WMAP 2001− 2010 The Astrophysical Journal Supplement, Vol. 208(2) , id. 20, 54 pp.

CAPMAP 2002− 2008 The Astrophysical Journal, Vol. 684(2) , pp. 771-789

CBI 2002− 2008 The Astrophysical Journal, Vol. 549(1) , pp. L1-L5

PIQUE 2002 The Astrophysical Journal, Vol. 573(2) , pp. L73-L76

TopHat 2002− 2004 The Astrophysical Journal, Vol. 532(1) , pp. 57-64

VSA 2002− 2004 MNRAS, Vol. 341(4) , pp. 1076-1083

COMPASS 2003− date The Astrophysical Journal, Vol. 610(2) , pp. 625-634

KUPID 2003− date New Astronomy Reviews, Vol. 47(1) 1-12, p. 1097-1106

AMI 2005− date MNRAS, Vol. 391(4) , pp. 1545-1558

QUaD 2005− 2010 The Astrophysical Journal, Vol. 705(1) , pp. 978-999

BICEP1 2006− 2008 The Astrophysical Journal, Vol. 783(2) , id. 67, 18 pp.

AMiBA 2007− date Modern Physics Letters A, Vol. 23(1) 7-20, pp. 1675-1686

SPT 2007− date The Astrophysical Journal, Vol. 782(2) , id. 74, 24 pp.

ACT 2008− date The Astrophysical Journal, Vol. 749(1) , id. 90, 10 pp.

QUIET 2008− 2010 The Astrophysical Journal, Vol. 760(2) , id. 145, 10 pp.

Planck 2009− 2013 eprint arXiv:1502.01582

BICEP2 2009− 2012 The Astrophysical Journal, Vol. 792(1) , id. 62, 29 pp.

KECKArray 2010− date eprint arXiv:1510.09217

ABS 2011− date Review of Scientific Instruments, Vol. 85(2) , id.024501
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CHAPTER 3

Quasi-local non-Gaussianity as a

Signature of Modified Gravity

We have seen in Section 2.3 that standard models of single-field inflation do not

generate large non-Gaussianity. To go beyond this, one must abandon one or more of

the assumptions on which the simplest scenarios are based. In this Chapter we will make

the example of a modification of Einstein gravity acting on the slowly-rolling scalar field

that is driving inflation. Departures from Einstein gravity during inflation have been

considered in the first inflationary model proposed [66] and in many following papers,

for example in [87–94]. However, the non-Gaussianities that might be produced are

generically below the sensitivity of future measurements and in fact well below the cosmic

variance limit for the full sky. In [3], on which this Chapter is based, we have investigated

whether deviations from General Relativity (GR) could be observable and measurable in

the sky through the enhancement of non-Gaussianity (NG) of curvature perturbations.

We found that this might be the case, in particular we show that modifications of

Einstein gravity, if already relevant during the epoch of inflation, could lead to possibly

measurable non-Gaussian signatures in the cosmological fluctuations. Also, we have also

shown that, for a large part of the parameter space, the generated non-Gaussianities

have a quasi-local shape. This is observationally promising given that future LSS surveys

can be sensitive to values of local NG fNL ∼ O(1) or even smaller (see, e.g., [95–98]).

If supported by data, these findings would yield interesting insights into the physical

mechanism behind inflation, pointing towards a non-trivial dynamics of the inflationary

fields. Conversely, a null result would also be extremely useful, as it would place limits

on possible departures from Einstein Gravity and the slow-roll paradigm.
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3.1 Introduction

The scenario we are going to study is based on the concepts of quasi-single field infla-

tionary dynamics, first introduced in [99] (to which we refer the reader for more details).

In this setup, besides the usual light inflaton which is driving inflation, one more field is

present. However this second field is neither too light to strongly modify the background

flat slow-roll direction of the inflaton, or too heavy to be unimportant for the other light

degree of freedom. The mass of the second field is in an intermediate range, namely

m ∼ O(H). If the mass was much larger, it would decouple from the inflaton and the

standard predictions of single-field inflation would be recovered. Here however, with a

mass of the order of the Hubble parameter, if large couplings exist, the massive field can

still induce interesting effects on the inflaton perturbations.

Let us start from a Lagrangian that contains all generally covariant terms up to

four derivatives built with the metric and one scalar field, that we will assume to drive

inflation [100]:

L =
√
−g

[
1

2
M2
PlΩ(ψ)2R− 1

2
h(ψ)gµν∂µψ∂

µψ − U(ψ)

+f1(ψ)
(
gµν∂µψ∂νψ

)2
+ f2(ψ)gρσ∂ρψ∂σψ�ψ

+f3(ψ)
(
�ψ
)2

+ f4(ψ)Rµν∂µψ∂νψ

+f5(ψ)Rgµν∂µψ∂νψ + f6(ψ)R�ψ + f7(ψ)R2

+f8(ψ)RµνRµν + f9(ψ)CµνρσCµνρσ

]
+f10(ψ)εµνρσCµν

κλCρσκλ . (3.1)

If the inflaton ψ is slowly-rolling, then the functions Ω(ψ), h(ψ) and fi(ψ) are varying

slowly and can be simply treated as constants up to slow-roll corrections, which we

will neglect. In this case, the Weyl-squared term can be recast as a surface term (the

Gauss-Bonnet term) plus R2 and RµνR
µν , which can then be reabsorbed. Moreover, in

order to avoid ghosts, the terms proportional to f2, f3, f6 and f8 will be here set to

zero, as well as f10 as we are not interested in parity violating signatures, which will be

discussed in a following Chapter (see Chapter 8). We are interested only in the terms

that could give rise to a possibly enhanced local (or quasi-local) NG in the squeezed

limit, different from the well-known result fNL ∼ O(ε) that is valid in standard gravity

[31, 34, 77]. Therefore we will not consider inflaton derivative self-interactions, which

are known to generate NG mainly in the equilateral configuration1. This is valid also

1Fields self-interactions in this thesis will be considered mainly in the context of the Effective Field
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for the ghost-free combination that can be built with the operators proportional to f4

and f5 [101], which would not generate significant NG in the local configuration. The

only term left to consider is therefore the term R2, which is nothing else than the first

term in an expansion in powers of the Ricci scalar of a more general f(R) theory:

L =
√
−g
[
f(R)− 1

2
gµν∂µψ∂νψ − U(ψ)

]
. (3.2)

This action describes one more degree of freedom associated to the f(R) term. Through

a standard procedure we use an auxiliary field f ′(χ) = M2
Plφ/2 to recast the action in

the form

L =
√
−g
[

1

2
M2

PlφR+ Λ(φ)− 1

2
gµν∂µψ∂νψ − U(ψ)

]
, (3.3)

where Λ(φ) = f(χ(φ))−M2
Plφχ/2. By performing a Weyl transformation gµν → e−2ωgµν ,

with e2ω = φ, to go to the Einstein frame, the action appears as a two-field interacting

model:

L̃ =
√
−g

[
1

2
M2

PlR−
1

2
gµνγab∂µϕ

a∂νϕ
b

−U1(ϕ1)− e−4ϕ1/
√

6MPlU(ϕ2)

]
,

(3.4)

where a, b = 1, 2 we have normalized the fields as

√
6MPlω = ϕ1 , ψ = ϕ2 , (3.5)

defined U1 as

U1(ϕ1) = −e−4ϕ1/
√

6MPlΛ (φ (ω (ϕ1))) , (3.6)

and defined the field metric

γab =

(
1 0

0 e−2ϕ1/
√

6MPl

)
. (3.7)

As expected, there is an equivalence between “f(R)+scalar” and a two-field model with

a specific field metric, a generic potential for ϕ1 and a “conformally-stretched” potential

for ϕ2. Then it is conceivable that the interactions between the two fields could induce

some observable effects, possibly enhancing also local NG to an observable level. It is

important to note here that if both fields contributed to the dynamics of the background,

we should rigorously impose slow-roll conditions on both of them. However, if the field

associated to the R2 terms is subdominant, then this condition could be relaxed and

its possible NG could be transferred to the inflaton field. In the Einstein frame this

is equivalent to a transfer of non-Gaussian isocurvature perturbations to the adiabatic

perturbation mode [73].

Theory of Inflation, as we will see in the following Chapters.
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Figure 3.1: Potential as a function of the two scalar fields. ϕG describes the “scalaron”

field that accounts for modifications of Einstein gravity while ϕI is the one driving

inflation. Significant non-Gaussianities (|fNL| ≈ 1− 30) are generated for generic initial

field values, provided ϕG > −3. Parameters are chosen for illustration purposes. In

particular we chose a quadratic potential [102] for the inflaton field ϕI . The right panel

shows the potential around the minimum.

3.2 The Size of non-Gaussianity

To study the possibly enchanced effect on non-Gaussianity, we will consider f(R) =
1
2M

2
PlR + R2/12M2. This choice is motivated by the fact that it corresponds to the

leading order term in an expansion of a generic f(R) in powers of R (or equivalently in

derivatives of the metric). In this case, we obtain a complete potential V (ϕ1, ϕ2) given

by:

V (ϕ1, ϕ2) =
3

4
M2M4

Pl

(
1− e−2ϕ1/

√
6MPl

)2

+e−4ϕ1/
√

6MPlU(ϕ2) .
(3.8)

It is clear that if the field ϕ1 is very heavy and the scale of the new physics induced

by the R2 term is much higher than the energy scale of the inflaton ϕ2, then its effect

should be vanishingly small. Indeed, if ϕ1 is heavy enough, it could not be excited

during inflation and its kinetic energy would be completely negligible. Therefore we

could integrate it out of the action (3.4), coming back to a standard effective single-

field scenario. This would correspond to a value of M ∼ 1 or higher, which implies

that the new physics simply enters at the Planck scale or beyond. On the other hand,

lowering the scale M . 1, the first regime we encounter is the quasi-single field regime

[99]. Progressively reducing the value of M , other regimes are possible: first the multi-

field inflation where both scalar fields are actively at play and then, when the field ϕ1

dominates the dynamics, single-field Starobinsky inflation [66]. Hereafter, we adopt a

monomial potential U(ϕ2) = m4−βϕβ2 , with β < 2 (motivated by current Planck-satellite
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constraints [43]). Our results are however fairly insensitive to the choice of β.

We are interested in the quasi single-field regime, as observables do not depend on the

particular choice of the initial conditions. In this sense we look for generic predictions.

In this case, assuming that the adiabatic direction is given by ϕ2 ≡ ϕI , we obtain

non-trivial effects from the coupling with the isocurvature field ϕ1 ≡ ϕG. (Here by

using the subscripts I and G we have made explicit that the field ϕI is the inflation

and ϕG describes the modifications of gravity). To make an estimate of the magnitude

of the effect, we can expand the action Eq. (3.4) in the flat gauge and ignore metric

perturbations for simplicity [99]. At second order, we find the leading transfer vertex:

δL2 =
2√

6MPl

e
−2ϕ̄G√
6MPl ˙̄ϕIδϕGδϕ̇I , (3.9)

where the bar refers to homogeneous quantities computed on the background. At third

order, as the isocurvature potential U ′′′1 is not subject to slow-roll conditions, the leading

vertex is

δL3 = −1

6
U ′′′1 (ϕ̄I)δϕ

3
G. (3.10)

Therefore we expect a contribution to the bispectrum of size [73]

fNL ' α(ν)
(
δ̂L2

)3
δ̂L3 P−1/2

ζ (3.11)

= − 4

9π
α(ν)

P−1
ζ√
ε
M2

ε− 3

(
ṀPl,eff

HMPl,eff

)2
3/2

×

[(
MPl,eff

MPl

)2

− 4

](
MPl,eff

MPl

)−7

where δ̂L2 and δ̂L3 are the vertices of the interaction terms, eqs. (3.9-3.10), ν =√
9/4− (Meff/H)2, Meff is the effective mass of the isocurvature mode and ε the to-

tal slow-roll parameter. In eq. (3.11) MPl,eff = MPl eϕG/
√

6MPl is the effective (reduced)

Planck mass during inflation in the Jordan frame. The numerical factor α(ν) can range

from 0.2, for heavier isocurvatons, to approximately 300; however, in the perturbative

regime, NG can gain at most an effective enhancement factor proportional to the number

of e-foldings, see [99]. The shape of the potential as a function of the two fields ϕI and

ϕG is shown in Figure 3.1. On the left panel one can appreciate that the ϕI direction is

flat but there are values of ϕG where the potential is steep. On the right panel we show

the region around the global minimum. Figure (3.2) shows the NG parameter fNL as a

function of e-folds adopting U(ϕI) = m3ϕ; our results are not sensitive to the specific

value adopted for β. As an example, for M = 10−3 and m = 10−8/3, in Planck units,

we obtain fNL ∼ O(−3), for initial values of the field ϕG = 3, ϕI = 12. Note the nearly

scale invariant dependence. For this particular example at 60 e-folds the field abandons
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slow-roll and re-heating starts. The characteristic shape of this kind of NG is interme-

diate between an equilateral shape, which is reached for small values of ν i.e., towards a

single-field regime, and a local shape, for ν ≥ 1/2 i.e., closer to a multi-field scenario.

In this set up fNL is generically negative. A quasi-local shape with fNL ≈ −1 to −30

can thus be achieved without necessity of much fine tuning. The value of fNL scales as

a function of the masses of the two potentials,

fNL ∝ −(MMPl/m)2α(ν). (3.12)

This makes it possible to test deviations from GR a couple of orders of magnitude above

the mass scale of the inflaton. Note that eq. (3.11) gives a “consistency relation” between

the amplitude of NG and its shape. In fact, fNL measures departures from the effective

gravitational constant Geff during inflation as Geff/GGR = e−ϕG/
√

6MPl .

To summarise, we have explored whether signatures of modified gravity during the

period of inflation can produce observable effects. To be used to gain insight into the

physics at play during inflation, these effects should be specific and not easily mimicked

by standard gravity, yet arising under fairly generic conditions. For this reason we con-

centrated on local (or quasi-local) NG: we have found that it is possible, in a generic

set-up, for modifications of gravity to generate deviations from Gaussian initial condi-

tions where the NG is close to the local type and has values fNL ≈ −1 to − 30 [3]. It

is interesting to note that in the same way that gravity, via its relativistic corrections,

enhances the level of NG to fNL ∼ O(−1) right after inflation (as pioneered by [96, 103]),

a modification of GR during inflation will lead to an enhancement of similar magnitude.

For quasi-local shapes NG is near maximal in the squeezed limit and the squeezed limit

is made observationally accessible in the so-called large-scale halo bias. Thanks to the

halo bias effect, a local NG of this amplitude is expected to be measurable in forthcoming

and future LSS surveys (see, e.g., [95, 96, 96, 97, 104]) if systematic effects can be kept

under control (e.g., [105]). On the other hand, the departures from exact single-field

behaviour leave some imprint on the shape of NG, and in particular on the squeezed-

limit dependence of the bispectrum on the (small) momentum. In fact, since the shape

of the effective potential, eq. (3.8), is given, there is a “consistency relation” linking the

amplitude of non-Gaussianity, fNL, to its shape (i.e., the parameter ν). For large enough

values of fNL it would be possible to constrain the scale-dependence of the bispectrum

in the squeezed limit and hence ν, from forthcoming surveys [106, 107]. Thus, in case

of a detection of NG, it may be possible to test the “consistency relation” between am-

plitude and shape. If such consistency relation were found to be satisfied to sufficient

precision, it would require a fine tuning to be produced by any multi/quasi-single field

inflation. Further, because the non-inflating field is related to gravity, the ratio between

r (the tensor-to-scalar ratio) and its power law slope (nT ) will be modified from the

standard single-field relation (1.88) with its counterpart in the two-field description in
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Figure 3.2: The NG parameter fNL as a function of number of e-folds for α(ν) = 1,

M = 10−3 and m = 10−8/3 in units of MPl to illustrate the scale dependence; fNL can

be smaller than −1 for fairly generic conditions.

the Einstein frame [81, 108]. A given form for f(R) (corresponding to a given shape of

U1(ϕG)) would break the standard consistency relation in a specific way. Notice also that

a specific running of the NG parameter fNL in Eq. (3.11) can be left imprinted by the

dynamics of the “scalaron” field ϕG, and interestingly the NG running will be correlated

with the running of the scalar spectral index [99]. Specific signatures in the trispectrum

of curvature perturbations, similar to those featured in eq. (3.11), are expected to arise

as well.
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CHAPTER 4

The Effective Field Theory of Inflation

The usual way to study inflation is to start from an action for the field (or fields),

which is either postulated or derived from models of high-energy physics, supersymmetry,

string stheory etc. After finding the background equations of an expanding inflationary

Universe, one perturbs around this solution and study the dynamics of fluctuations.

Observations then test the physics of these perturbations and hopefully put constraints

on the model. In general, the conclusions one can draw depend on the model we choose to

start with. Since is it possible to construct a huge quantity of very different inflationary

models, it becomes very interesting to find an approach that allows the study of large

classes of models at the same time and derive constraints that are less model-dependent.

After all, what we really measure are fluctuations, therefore the most useful thing to do

is to build an effective action for fluctuations, after fixing the background to the desidere

FRW evolution. This approach, which directly studies inflationary perturbations with as

less assumptions as possible about the model-dependent microphysics of the background,

is known as the Effective Field Theory of Inflation (EFTI) [109]1.

4.1 The Action in Unitary Gauge

The effective field theory approach is the description of a system only in terms of the light

degrees of fredoom with the systematic contruction of all the lowest dimension operators

compatible with the underlying symmetries. In the absence of a fundamental theory of

high-energy physics and gravity, applying this method to the theory of perturbations

1See also [100] for a slightly different approach.
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during inflation can be very powerful as it does not require any assumptions on the

field(s) driving inflation and study directly the action of perturbations. Now, following

the original paper [109], we proceed to construct the most general effective action for

the fluctuations around a given FRW inflationary background.

In constructing effective field theories, the first step is to identify the relevant degrees

of freedom of interest. When studying early-universe perturbations, independently of

what matter is actually driving the expansion, we are focusing attention on a scalar

perturbation, corresponding to a common, local shift in time for the “matter field” φ2.

Given a homogeneous FRW background φ0(t) we consider the perturbation

δφ(x) = φ(t+ π(x))− φ0(t) , (4.1)

A time-dependent FRW background, such as the inflationary quasi-de Sitter spacetime,

spontaneously breaks time-traslation invariance. Thus the scalar π(x) represents the

Goldstone boson associated with the spontaneous breakdown of this symmetry. Now,

remember that General Relativity has a powerful gauge symmetry, that is diffeomor-

phism invariance:

xµ → xµ + ξµ(t,x) . (4.2)

Under a time-diffeomorphism the scalar perturbation δφ transforms as:

t→ t+ ξ0(t,x) , δφ→ δφ+ φ̇0(t)ξ0 . (4.3)

We can now exploit the gauge freedom on ξ0 to fix the so-called unitary gauge, which sets

δφ = 0. In this way, the scalar perturbation formally disappear from the action and the

only dynamical field left is the metric, which now describes three degrees of freedom3:

the two helicities of the gravitational waves and one scalar perturbation. Having fixed

time diffeomorphisms, our theory will be invariant only under spatial diffeomorphisms:

xi → xi + ξi(t,x) . (4.4)

If the symmetry was the full diffeomorphism invariance, the only 4-derivative opera-

tor built out of the metric that we could have written in the action would have been the

Ricci scalar. Now, because of the reduced symmetry of the system, many more terms

are allowed in the action:

1. Terms which are invariant under all diffeomorphisms: these are all the polynomials

of the Riemann tensor Rµνρσ and its covariant derivative, contracted to give scalars;

2Even though we are following the example of a scalar field, the EFTI is actually independent on

what is actually driving inflation. It only requires that time diffeomorphisms are broken by only one

“clock”, which measures time during inflation and whose fluctuations can be described by a single scalar

field.
3The scalar δφ is “eaten” by the metric, in exact analogy with the Higgs mechanism of the Standard

Model of Particle Physics.
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2. Generic functions of time f(t) in front of any operators;

3. In unitary gauge, for a generic spatial diffeomorphism (4.4), the gradient ∂µt̃ be-

comes δ0
µ, so we can leave a free upper 0 index in every tensor. For example we

can use g00 and functions of it;

4. It is useful to define a unit vector perpendicular to surfaceses of constant time:

nµ =
∂µt̃√

−gµν∂µt̃∂ν t̃
. (4.5)

This allows to define the induced spatial metric on surfaces of constant time,

hµν = gµν + nµnν , that we can use to project tensors on the surfaces (for example

the Riemann tensor (3)Rµνρσ or 3d covariant derivative);

5. Covariant derivatives of nµ, that we can decompose into a part projected on the

surface of constant time and a part perpendicular to it. The first one is the extrinsic

curvature of these surfaces4:

Kµν = hµ
σ∇σnν . (4.6)

The second one does not give rise to new terms because it can be rewritten as:

nσ∇σnν = −1

2

(
−g00

)−1
hµ ν∂µ

(
−g00

)
; (4.7)

6. Using at the same time the Riemann tensor of the induced spatial metric and the

extrinsic curvature is redundant because one can be rewritten with the other and

the 3d metric. We can also avoid to use hµν explicitely, writing it in terms of gµν
and nµ.

At this point, we can conclude that the most generic action in unitary gauge is given by

[109, 110]:

S =

∫
d4x
√
−g F (Rµνρσ, g

00,Kµν ,∇µ, t) , (4.8)

where all the free indexes inside the function F are upper 0’s. Expanding in perturbations

around a FRW background, the action takes the form:

S =

∫
d4x
√
−g
[

1

2
M2

PlR− c(t)g00 − Λ(t) + . . .

]
, (4.9)

where the dots stand for terms that start quadratic in the perturbations

δg00 = g00 + 1 , δKµν = Kµν −K(0)
µν , δRµνρσ = Rµνρσ −R(0)

µνρσ . (4.10)

4The index ν is already projected on the surface since nν∇σnν = 1
2
∇σ(nνnν) = 0.
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Notice that these terms start linearly in the perturbations, as we have explicitely removed

their value on the given FRW solution, and they are well defined covariant operators.

Notice also that every tensor evaluated on the background can be a function only of

gµν , nµ and t (for example K
(0)
µν = a2Hhµν). The coefficient c(t) and Λ(t) in the action

(4.9) are uniquely determined by the background evolution. In fact, the terms in eq.

(4.9) are the only ones that produce a non-zero energy-momentum tensor at zero-order

in fluctuations:

Tµν = − 2√
−g

δSmatter
δgµν

= T (0)
µν + δTµν , (4.11)

where we can recognise

T (0)
µν = 2c(t)uµuν + (c(t)− Λ(t))gµν (4.12)

as the energy-momentum tensor of a perfect fluid with density ρ = c(t) + Λ(t) and

pressure P = c(t)− Λ(t). Through the Einstein field equation for the background,

G(0)
µν = 8πGT (0)

µν , (4.13)

we arrive at the Friedmann equations:

H2 =
1

3M2
Pl

(c(t) + Λ(t)) , (4.14)

Ḣ +H2 = − 1

3M2
Pl

(2c(t)− Λ(t)) . (4.15)

Solving for c(t) and Λ(t), we can therefore write the most generic action with broken

time diffeomorphisms in unitary gauge describing perturbations around a flat FRW

background with a Hubble rate H(t) [109]:

S =

∫
d4x
√
−g
[

1

2
M2

PlR+M2
PlḢg

00 −M2
Pl

(
3H2(t) + Ḣ(t)

)
+
M2(t)4

2!
(g00 + 1)

2

+
M3(t)4

2!
(g00 + 1)

3
+ . . .− M̄2(t)3

2
(g00 + 1)δKµ

µ −
M̄2(t)2

2
δKµ

µ
2 + . . .

]
,(4.16)

where all the time-dependent coefficient Mn(t) and M̄m(t) are free and parametrize all

the possible different effects on perturbations of any single-field models of inflation.

4.2 The Action for the Goldstone Boson

As we already said, the unitary gauge Lagrangian (4.16) describes three degrees of

freedom: the two graviton helicities and a scalar mode, that represent the Goldstone
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boson associated with the breakdown of time diffeomorphisms. This mode will become

explicit after one formally “restore” full diffeomorphism invariance through a broken

time diffeomorphism (Stuekelberg trick). This is done in analogy with the gauge theory

case and, as we will see, it will give us many advantages.

Les us review briefly what happens in a non-Abelian gauge theory and in our case,

borrowing the examples in [109]. The unitary gauge action for a non-Abelian massive

gauge field Aaµ is:

S =

∫
d4x

[
−1

4
FµνF

µν − 1

2
m2 TrAµA

µ

]
, (4.17)

where Aµ = AaµT
a and T a are the generators of the Lie algebra. Under a gauge trans-

formations,

Aµ −→ UAµU
† +

i

g
U∂µU

† =
i

g
UDµU

† , (4.18)

the action is not invariant, because of the mass term for the gauge field, and becomes:

S =

∫
d4x

[
−1

4
FµνF

µν − 1

2

m2

g2
TrDµUD

µU †
]
. (4.19)

The gauge invariance can be “restored” writing U in terms of the Goldstone boson πa

associated with the breakdown of the gauge simmetry:

U = exp [iT aπa(t,x)] . (4.20)

The π’s are scalars which transforms non-linearly under a gauge transformation as

eiT
aπ̃a(t,x) = Λ(t,x) eiT

aπa(t,x) . (4.21)

Going to canonical normalization πc = m/g · π, it can be shown that terms that mix

Goldstones and gauge fields are of the form mAaµ∂
µπac and therefore are irrelevant with

respect to the canonical kinetic term ∂µπ
a
c∂

µπac for energies E � m. Thus in the window

m � E � 4πm/g (which is the scale at which boson self-interactions become strongly

coupled) the physics of the Goldstone π is weakly coupled and it can be studied negleting

the mixing with Aaµ. Formally, in the decoupling limit g → 0 and m→ 0 for m/g =const.,

the local gauge symmetry effectively becomes a global symmetry and there is no mixing

between Goldstones and the gauge modes.

Now let us come back to inflationary fluctuations and consider the following action

terms: ∫
d4x
√
−g
[
A(t) +B(t)g00(x)

]
. (4.22)

Under a broken time diffeomorphism t→ t+ ξ0(x), g00 transforms as:

g00(x) −→ g̃00(x̃(x)) =
∂x̃

∂xµ
∂x̃

∂xν
gµν(x) . (4.23)
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Let us now write the action in terms of the transformed fields,∫
d4x
√
−g̃(x̃(x))

∣∣∣∣∂x̃∂x
∣∣∣∣ [A(t) +B(t)

∂x0

∂x̃µ
∂x0

∂x̃ν
g̃µν( ˜x(x))

]
, (4.24)

and then change integration variable to x̃:∫
d4x̃

√
−g̃((̃x))

[
A(t̃− ξ0(x(x̃)))+

+B(t̃− ξ0(x(x̃)))
∂(t̃− ξ(x(x̃)))

∂x̃µ
∂(t̃− ξ(x(x̃)))

∂x̃ν
g̃µν(x̃)

]
. (4.25)

As in the gauge theory case, we promote the parameter ξ0(x) to a field (dropping the

tildes):

ξ0(x) = −π(x) . (4.26)

This gives:∫
d4x
√
−g(x)

[
A(t+ π(x)) +B(t+ π(x))

∂(t+ π(x))

∂xµ
∂(t+ π(x))

∂xν
gµν(x)

]
. (4.27)

It is not difficult to show that this action is invariant under full spacetime diffeomorphism

upon assigning to the field π the transformation rule:

π(x) −→ π̃(x̃(x)) = π(x)− ξ0(x) . (4.28)

We can then apply this procedure to the unitary gauge action (4.16). Under time

reparametrization, the metric transforms as:

gij −→ gij ,

g0i −→ (1 + π̇)g0i + gij∂jπ , (4.29)

g00 −→ (1 + π̇)2g00 + 2(1 + π̇)g0i∂iπ + gij∂iπ∂jπ ,

which allow us to rewrite the unitary gauge action (4.16) as:

S =

∫
d4x
√
−g
[

1

2
M2

PlR−M2
Pl

(
3H2(t+ π) + Ḣ(t+ π)

)
+

+M2
PlḢ(t+ π)

(
(1 + π̇)2g00 + 2(1 + π̇)g0i∂iπ + gij∂iπ∂jπ

)
+

+
M2(t+ π)4

2!

(
(1 + π̇)2g00 + 2(1 + π̇)g0i∂iπ + gij∂iπ∂jπ

)2
+ . . .

]
. (4.30)

Notice that the action (4.16) and (4.30) describe the same degrees of freedom, thus the

same physics.
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Just like in the gauge theory case, one can find a decoupling limit where all the

dynamics is described by the Goldstone boson only. Following the gauge theory analogy

and identifying g →M−1
Pl , m2 → Ḣ, the decoupling limit is reached when

MPl →∞ , Ḣ → 0 , (4.31)

with M2
PlḢ =const. At energies much higher than the decoupling energy, E � Emix,

the mixing between gravity gauge modes and the Goldstones can be neglected. The

scale Emix generically depends on the terms that are present or not in the action. For

example, let us assume Mn = M̄m = 0 for all n, m in (4.30). In this case, the term with

the kinetic term for the Goldstone π is M2
PlḢ π̇2. Then we choose the normalization:

πc = MPlḢ
1
2π , (4.32)

toegether with the standard δg00
c = MPlδg

00. The dominant mixing term between δg

and π is:

M2
PlḢπ̇ δg

00 = Ḣ
1
2 π̇c δg

00
c � π̇2

c for E � Ḣ
1
2 . (4.33)

This case corresponds, as we will see, to the standard slow-roll inflation. Another useful

example is the following: let the term M2 in (4.30) get large. Then we should normalize:

πc = M2
2π . (4.34)

In this case the dominant mixing terms becomes:

M4
2 π̇ δg

00 =
M2

2

MPl
π̇c δg

00
c � π̇2

c for E � M2
2

MPl
. (4.35)

At this point, a question could arise. As we are interested in computing predictions

for present cosmological observations, it could seem that the decoupling limit (4.31) is

completely irrelevant for these extremely infrared scales. However, as we said in the

first introductory Chapter, it can be proved that there exist a quantity, the usual R or

ζ variables, which is constant out of the horizon at any order in perturbation theory.

Therefore the problem is reduced to calculating correlation functions just after horizon

crossing, thus we are interested in studying our Lagrangian at energies of order H. If

the decoupling scale is smaller than H, then the action in the decoupling limit will give

us the correct answer up to terms suppressed by Emix/H.

Moreover, a further simplification occurs when we look at the time dependence of the

coefficients of any operator in (4.30). Althought they can depend generically on time, we

are interested in solutions where they do not vary significantly in one Hubble time. If it

was the case, the rapid time dependence of this coefficients could win against the friction

created by the exponential expansion, so that inflation may cease to be a dynamical

attractor, which is necessary to solve the problems of standard FRW cosmology. Thus
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we can conveniently neglect all the terms that, Taylor expanding the coefficients, would

result from their time dependence:

f(t+ π) = f(t) + ḟ(t)π +
1

2
f̈(t)π2 + . . . ' f(t) . (4.36)

As we can see, this assumption allows us to neglect all terms in π without a derivative,

that is to say we are assuming an approximate continuous shift simmetry for π.

Finally, using both these arguments together, in the regime where E � Emix and

assuming an approximate shift symmetry for the Goldstone boson, the action (4.30)

dramatically simplifies to [109]:

S =

∫
d4x
√
−g

[
1

2
M2

PlR−M2
PlḢ

(
π̇2 − (∂iπ)2

a2

)
+

+2M4
2

(
π̇2 + π̇3 − π̇ (∂iπ)2

a2

)
− 4

3
M4

3 π̇
3 +

+
1

2
M̄3

1

(
2H

(∂iπ)2

a2
− (∂2

j π)
(∂iπ)2

a2

)
+ . . .

]
. (4.37)

The relation between π and the variable R which we are interested in very simple [109]:

R = −Hπ +O(ε) . (4.38)

The advantages of this approach are now clear:

• The theories of perturbation of all the possible single-field inflationary models have

a unified model-independent description, in terms only of fluctuations and symme-

tries. In the action (4.37) one can “switch on or off” some particular operators in

order to recover various single field models of inflation (we will see some examples

in the next sections). This is probably the most important point, because it allows

us to generically study very different models with a unifying formalism (see Section

4.3).

• We have parametrized our ignorance about all the possible high energy effects in

terms of the leading invariant operators. Experiments will put bounds on the size

of the various operators (for example with measurements of non-Gaussianity of

curvature perturbations), that generically describe deviations from the standard

scenario. In some sense this is similar to what one does in particle physics, where

one puts constraints on the size of the operators that describe deviations from the

Standard Model and thus encode the effects of new physics.

• It is explicit what is forced by simmetries and what is not.

• As every effective theories, it is clear the regime of validity of the action and where

an UV completion is required (see Section 4.3).
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4.3 Speed of Sound and Non-Gaussianity

As we said, the EFTI approach encompasses all single-field models of inflation. The

simplest of those models is the action for a slowly rolling scalar field (1.55):

S =

∫
d4x
√
−g
[

1

2
M2

PlR−
1

2
∂µφ∂νφg

µν − V (φ)

]
. (4.39)

This action can be straightforwardly recast in the unitary gauge (δφ = 0) form of eq.

(4.16) ,

S =

∫
d4x
√
−g

[
− φ̇0(t)2

2
g00 − V (φ0)

]
, (4.40)

as the Friedmann equations give φ̇0(t)2 = −2M2
PlḢ and V (φ0(t)) = M2

Pl(3H
2 + Ḣ).

Then we can reintroduce the Goldstone π and finally write:∫
d4x
√
−g

[
1

2
M2

PlR−M2
PlḢ

(
π̇2 − (∂iπ)2

a2

)]
. (4.41)

This action is in the form of eq. (4.37) with Mn = M̄n = 0. The absence of interaction

terms tell us that correlation function of order three or higher will be exactly zero in

this case, then the fluctuations are perfectly Gaussian. Remember that we are working

in the decoupling limit and with the assumption of an approximate shift symmetry for

π, so every conclusion will be correct up to slow-roll corrections. Then:

fNL ∼ O(ε) , (4.42)

which is just a confirmation of what we have already discussed in Section 2.3, namely that

standard single-field inflationary models produce slow-roll suppressed non-Gaussianity.

There are several models that allow us to go beyond simple slow-roll and generate

non-neglibigle non-Gaussianity. One of the first and most studied possibility is the

presence of non-canonical kinetic terms in the inflaton Langrangian. In the standard “φ

language”, the starting point is a general Lagrangian of the form [111–113]:

L = P (X,φ) where X = gµν∂µφ∂νφ . (4.43)

The matter energy-momentum tensor reads:

Tµν =
∂P

∂X
∂µφ∂νφ− P (X,φ)gµν . (4.44)

Providing that ∂µφ is time-like (i.e. X > 0), it has the same form of a perfect fluid with

pressure p = P (X,φ) [111]. Together with the slow-roll parameters (1.28) and (1.29), it

is useful here to define a speed of sound,

c2
s =

P,X
P,X + 2XP,XX

, (4.45)
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where , X denotes derivative with respect to X, and a correspondent “slow-roll” param-

eter

s =
ċs
csH

, (4.46)

which is the relative time variation of cs in one Hubble time and is usually kept small,

s� 1, in order to naturally obtain a scale-invariant power spectrum. The action (4.43)

obviously comprehends the standard slow-roll case (4.39) if one chooses:

P (X,φ) = X − V (φ) . (4.47)

Despite the different physical mechanisms that could give rise to P (X,φ) action (a

well-known example being DBI inflation [114, 115]), observable predictions for the cur-

vature power spectrum are essentially degenerate with the standard scenario to leading

order in the slow-roll parameters. Looking at the second order action for the curvature

perturbation R,

S2 =

∫
dtd3x εa3

[
Ṙ2

c2
s

− (∂iR)2

a2

]
, (4.48)

one can see that the only difference with respect to the slow-roll action (1.71) is the

presence of the c2
s in the kinetic term. This gives an identical form of the power spectrum

up to a simple rescaling proportional to the speed of sound:

PR =
H2

8π2M2
Plεcs

. (4.49)

On the other hand, distinct features are found at the level of the three-points functions.

The cubic action contains terms like

L ⊃
(

1− 1

c2
s

)
Ṙ(∂iR)2

a2
, (4.50)

which generate non-Gaussianity of the order5:

fNL ∼
1

c2
s

. (4.51)

Differently from the slow-roll case with slow-roll suppressed bispectrum, the size of non-

Gaussianity can now be large and, being proportional to c−2
s , it can become important

(and possibily detectable) in the limit of small speed of sound.

The entire class of models described by (4.43) can be easily recovered with the for-

malism of the EFTI, as in unitary gauge the action simply becomes:

S =

∫
d4x
√
−gP

(
φ̇0(t)2g00, φ(t)

)
, (4.52)

5The explicit and complete calculation together with the detailed profiles can be found, for example,

in [83, 113].
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where φ0(t) is the unperturbed solution. This action takes the form (4.37) with

M4
n(t) = φ̇0(t)2n ∂

nP

∂Xn
, (4.53)

and can be written in the π language with the usual procedure. In particular, if we

define the speed of sound of the π field as

1

c2
s

= 1− 2M4
2

M2
PlḢ

, (4.54)

the most generic action in the decoupling limit up to third order in perturbations is:

S =

∫
d4x
√
−g

[
−
M2

PlḢ

c2
s

(
π̇2 − c2

s

(∂iπ)2

a2

)

+M2
PlḢ

1− c2
s

c2
s

π̇
(∂iπ)2

a2
−M2

PlḢ
1− c2

s

c2
s

(
1 +

2

3

c̃3

c4
s

)
π̇3

]
, (4.55)

where
c̃3

c2
s

= M4
3 /M

4
2 . (4.56)

In order to prevent pathological instabilities, the coefficient of the time kinetic term in

the action must be positive. Comparing eqs. (4.37) and (4.55), one obtains the bound:

−M2
PlḢ + 2M4

2 > 0 . (4.57)

Furthermore superluminal propagation, c2
s > 1, can be forbidden6 imposing M4

2 > 0.

We have already discussed the mixing with gravity, which can be neglected at energies

E � Emix ' M2
2 /MPl. This implies that action (4.55) can be consistently used to

predict cosmological observables, which are done at energies of order H, if H �M2
2 /MPl

or equivalently when ε/c2
s � 1.

The two operators, π̇3 and π̇(∂iπ)2, produce two kind of bispectra with amplitudes

[83, 84]:

f π̇
3

NL =
10

243

(
1− 1

c2
s

)(
c̃3 +

3

2
c2
s

)
f
π̇(∂iπ)2

NL =
85

324

(
1− 1

c2
s

)
. (4.58)

The two shapes turns out to be a linear combination of the equilateral (2.25) and or-

thogonal (2.26) shapes [84] we have seen in the previous Chapter. The experimental

constraints on fNL can then be translated into constraints in the parameter space of the

theory, as it can be seen in Figure 4.1. Marginalizing over c̃3, one can also find a lower

6Superluminal propagation in effective field theories may not be a problem per se (see e.g. [116]),

but implies that the theory can not have a Lorentz invariant UV completion [117].
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Figure 4.1: 68%, 95%, and 99.7% confidence regions in the EFTI parameter space (cs, c̃3)

[44].

bound on the speed of sound of fluctuations:

c2
s ≥ 0.020 95%CL . (4.59)

As the EFTI action (4.55) is describing the leading interaction terms of all single-field

models of inflation, with the contraints in Figure 4.1 we are putting bounds on different

specific models of inflation at the same time. For example, the DBI case [114, 115]

corresponds to c̃3 = 3(1 − c2
s)/2 and can be mapped into the same constraints. The

same happens for many other models, that we will not review here. The most recent

oservational constraints, where the EFTI methods have been used, can be found in the

Planck paper [44].
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4.4 Strong Coupling

Since large interactions can be possible in the action we have seen, there could exist high-

energy regimes where the theory is not consistent any more, as strong coupling would

spoil perturbativity. In particular, the effective action (4.55) contains non-renormalizable

self-interactions between the π’s, which will become strongly coupled at a certain energy

scale Λ. This scale sets the UV cutoff and therefore the regime of validity of the theory.

To identify the cutoff of the non-Lorentz invariant action (4.55) [118], one first rescales

spatial coordinates,

xi → x̃i =
xi

cs
, (4.60)

and then canonically normalize the Goldstone as:

πc = (−2M2
PlḢcs)

1/2
π . (4.61)

The action becomes:

S =

∫
dtd3x̃

√
−g

1

2

(
π̇2
c −

(∂̃iπc)
2

a2

)
− 1√

8M2
Pl|Ḣ|c5

s

π̇c

(
(∂̃iπc)

2

a2
− 2

3
c̃3π̇

2
c

) .

(4.62)

We can now read the strong coupling scale as the energy in the denominator of the cubic

interactions:

Λ4 'M2
Pl|Ḣ|c5

s . (4.63)

As cs approaches cs = 1, the strong coupling scale becomes higher as in this limit the

theory lose their possibly dangerous interaction and collapses back to the free action

(4.41). On the contrary, as cs becomes smaller, Λ decreases and the theory can become

strongly coupled even at energies of our interest. As we are interested in making cosmo-

logical predictions at energies of the order of the Hubble scale H, we must ensure that

Λ is bigger than H, which implies [109]:

H4 �M2
Pl|Ḣ|c5

s =⇒ cs � P1/4
R ' 0.003 . (4.64)

A more accurate result can be obtained looking at the energy scale where the scatter-

ing of π’s lose perturbative unitarity, which signals the breakdown of the loop expansion,

since higher order terms becomes equally important as the lower ones (the details of this

calculation can be found for example in [119]). The final cutoff scale reads [109]:

Λ4 ' 16π2M2
Pl|Ḣ|

c5
s

1− c2
s

(4.65)
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Part II

Inflationary Models with Features
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CHAPTER 5

Inflationary Models with Features

In this Chapter we focus on the problem of studying single-field models of inflation

with sharp features in the inflaton potential in the context of the EFTI. The idea of

allowing for features in the inflationary potential has a long history [79, 120–123], but it

started to draw attention several years later as a possible explanation for the apparent

“glitches” in the angular power-spectrum of the CMB [124–134]. Despite being not

statistically significant from a Bayesian point of view, features seem to lead to marginal

improvement in the likelihood of the primordial power spectrum also in the Planck

data [43]. Beyond the power-spectrum features, it has been shown that these models

generally predict enhanced non-Gaussianity [79, 135–139] and can be motivated by some

high-energy physics mechanisms [140–150]. More generally, features can also be present

in the speed of sound [151–159], giving also in this case characteristic effects on the

power-spectrum, together with possible enhanced non-Gaussianity.

It becomes even more attractive then to find a common setup for this wide phe-

nomenology. As we will show, in the case of very small and very sharp steps in the

inflaton potential this is achievable in the context of the EFTI. This reformulation of

feature models will allow us to provide a straightforward generalization to features in

the speed of sound or in every coefficient of higher-dimension operators in the effective

Lagrangian. One of the main advantages of our approach is model-independence and a

better understanding of the regime of validity and energy scales involved. This Chapter,

which is based on [1], shows how to describe models with features in the inflaton potential

within EFTI and derive, using the in-in formalism [160], the predicted power-spectrum

and bispectrum of curvature perturbations. We also generalize the same approach to

features in other coefficients of the EFTI action and show that the most interesting case

is the case of a feature in the speed of sound.
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5.1 Features in the Hubble Parameter

The common characteristics of models with features are the breaking of the scale-

invariance of the power-spectrum and an enhancement of higher-order correlators, that

strongly depends on momenta. The traditional road followed to deal with models with

step features is to specify a form for the inflaton potential V (φ) and then study the back-

ground evolution of the field, derive expressions for the modified slow-roll parameters

and finally study their effects on the behavior of the correlation functions of curvature

perturbations. In this section we want to show how to describe models with step fea-

tures within the formalism of the EFTI, studying the effect of features in the Hubble

parameter and its derivatives. Let us first restrict to the simplest scenario, where all the

Mn(t) and M̄m(t) coefficients of higher-order operators in the effective action (4.30) are

set to zero. Consider a potential for the inflaton field of the form [139]

V (φ) = V0(φ)

[
1 + cF

(
φ− φf
d

)]
, (5.1)

which describes a step of height c and width d centered at φf with a generic step function

F . As the field crosses the feature, a potential energy ∆V ' cV is converted into kinetic

energy φ̇2 = 2Ḣ. As long as the step is small, c � 1, it does not ruin the inflationary

background evolution and its effect can be treated as a perturbation on a standard

background. The idea is then simple: we can describe these models into the EFTI

through a time-dependent Hubble parameter Ḣ. This approach can be easily extended

to features in the Mn(t) and M̄m(t) coefficients of higher-order operators, as we will

show in the following Section.

We parametrize the derivative of the Hubble parameter as

Ḣ(t) = Ḣ0(t)

[
1 + εstep(t)F

(
t− tf
b

)]
, (5.2)

which implies that the slow-roll parameter ε will be1

ε = ε0(t)

[
1 + εstep(t)F

(
t− tf
b

)]
. (5.3)

The quantity εstep represents the height of the step, while tf is its position and b its

characteristic width. The function F (x) goes from −1 to +1 as its argument passes x = 0

with a characteristic width ∆x = 1. We do not give here any further requirement on the

shape of the step and we shall remain as general as possible throughout the discussion.

The background parameters Ḣ0(t), ε0(t) and even εstep can in principle have a mild time

1In order to compare, notice that the parameters in Eqs. (5.3) and (5.1) are related by εstep = 3c/ε,

1/b = H
√

2ε/d.
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dependence, which is controlled by the zeroth-order slow-roll parameters ε0, η0, etc.

However this variation should be very small in order not to spoil inflation. Moreover,

we are interested here in the case in which the strongest time dependence comes from

the step feature, therefore we shall take them to be constant in our calculations. It also

is clear that, if we want an inflationary background, εstep should be small, |εstep| � 1,

otherwise we could have a violation of the necessary condition ε� 1. Provided that, we

can expand every quantity in εstep around an unperturbed background, as, e.g.,

ε = ε0 + ε1 + . . . , (5.4)

where dots stand for terms which are higher than first order in εstep. Although, as we

said, ε is always small, this could not be the case for higher-order slow-roll parameters,

which can temporarily become of order unity or larger. This happens, for example, for

the parameter2:

δ =
1

2

d ln ε

d ln τ
= − ε̇

2εH
, (5.5)

where dτ = dt/a is the conformal time. We can expand δ in powers of εstep as

δ = δ0 + δ1 +O(ε2step) . (5.6)

Notice that this parameter contains a derivative of ε (5.3) and hence is proportional to

1/b, which in principle can be very large. The major contribution to δ1 then comes from

δ1 ' −
1

2

εstep
H

Ḟ

(
t− tf
b

)
, (5.7)

This is the situation which we are interested in, as it corresponds to a sharp step feature.

It is useful to rewrite quantities in conformal time. This can be easily done, as we are

in a quasi-de Sitter space-time,

τ ∼ −e−Ht =⇒
t− tf
b

= −β ln
τ

τf
, (5.8)

where τf is the conformal time at which the step occurs and we defined

β =
1

bH
. (5.9)

Then,

δ1 = −1

2
εstepβ F

′
(
−β ln

τ

τf

)
, (5.10)

where primes denote derivatives with respect to the argument of F .

2The choice of the second (and higher) order slow-roll parameters is somewhat arbitrary. Other

conventions are possible, for example δ = Ḧ/2HḢ = −ε− δours.
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Now we come back to the effective action (4.30), with the Taylor expansion in eq.

(4.36). Using eq. (5.2) for the time dependence of the Hubble parameter, we obtain an

effective theory which can describe models with features in the inflaton potential. The

advantage in using this approach is twofold: first, it becomes easier to identify the regime

of validity of the theory and to assess the relative importance of operators. Second, from

this point of view one could easily generalize feature models to the other couplings in

the effective Lagrangian and study all the effects within the same formalism.

5.1.1 Power Spectrum

The first prediction we want to make is the power-spectrum of the curvature perturba-

tions in the case of a sharp step in the inflaton potential (β � 1 i.e. b � 1). In order

to obtain the equation of motion for the Goldstone boson π, we need the second-order

action, in which the Hubble parameter is Taylor expanded around π = 0 [161]

S2 =

∫
d4xa3

[
−M2

PlḢ

(
π̇2 − (∇π)2

a2

)
+ 3M2

PlḢ
2π2

]
. (5.11)

From the second-order action we derive the equation of motion for π:

π̈ +

(
3H +

Ḧ

Ḣ

)
π̇ − ∇

2π

a2
= π̈ +H (3− 2δ) π̇ − ∇

2π

a2
= 0 , (5.12)

where we have neglected a slow-roll suppressed term. It is easier to discuss the dynamics

in conformal time dτ = dt/a. We can rewrite the action (5.11) in the form

S2 =
1

2

∫
d3xdτ z2

[
π′2 − (∇π)2 − 3a2Ḣπ2

]
, (5.13)

where primes denote differentiation with respect to τ and

z2 = −2a2M2
PlḢ . (5.14)

Making the redefinition π = u/z, we obtain

S2 =
1

2

∫
d3xdτ

[
u′2 − (∇u)2 +

(
z′′

z
+ 3a2H2ε

)
u2

]
. (5.15)

Notice that the second derivative of z (5.14) contains slow-roll parameters and their

derivatives up to the second derivative of ε, which appears through the parameter

δ̇

H
= − dδ

d ln τ
. (5.16)
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It is clear that δ̇/H will give the largest contribution, being proportional to β2. To study

its effects on curvature perturbations, we look at the equation of motion for u in terms

of the variable x = −kτ ,

∂2
xu−

2

x2
u+ u =

δ̇

Hx2
, (5.17)

where we have neglected some other slow-roll terms, which are much smaller in the case

of a small, εstep � 1, and sharp, β � 1, step.3 This equation can be solved using the

Green’s function technique, treating the right-hand side of eq. (5.17) as a source function

for the left-hand side. The machinery of the General Slow-Roll (GSR) approximation

developed in [139, 162] helps us to accomplish this task and provides us with a useful

formula for the resulting power-spectrum at late times, τ → 0,

lnPR = lnPR,0 +
2

3

∫ +∞

−∞
d ln τ W (kτ)

dδ

d ln τ
, (5.18)

we have used the linear relation between π and the curvature perturbation (4.38), and

W (x) is the “window function”:

W (x) =
3 sin(2x)

2x3
− 3 cos(2x)

x2
− 3 sin(2x)

2x
. (5.19)

The zeroth-order power-spectrum is simply

PR,0 =
H2

8π2εM2
Pl

. (5.20)

Now, from (5.18), integrating by parts and using eq. (5.10) we obtain

lnPR = lnPR,0 −
1

3
εstepβ

∫ +∞

−∞
d ln τ W ′(kτ)F ′ (−β ln(τ/τf )) , (5.21)

where

W ′(x) =

(
−3 +

9

x2

)
cos(2x) +

(
15− 9

x2

)
sin(2x)

2x
(5.22)

is the derivative of W (x) with respect to lnx. Notice that if we take the limit β →
+∞, the derivative of the step, F ′(x), would become a Dirac delta function. Then

the integration in the previous equation would give a power-spectrum which exhibits

constant amplitude oscillations with frequency 2kτf up to k → +∞. As we will see

better in the next sections, the limit β → +∞ cannot be taken naively since it is not

phyisical, and we must take into account the finite width of the step. The integral in eq.

(5.21) can be analitically evaluated when β � 1 [139, 163], leading to

lnPR = lnPR,0 −
2

3
εstepW

′(kτf )D
(
kτf
β

)
, (5.23)

3All other terms are suppressed at least by 1/β, ε0 or εstep.
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where D(y) is a damping function normalized to one.

Irrespective of the particular shape of the step, D corresponds to the Fourier trans-

form of the step function F times (−ik). The typical integrals that can be found when

studying models with features. These integrals in conformal time are generally of the

form:

I = β

∫ +∞

−∞
d ln τ p(kτ) cos(2kτ)F ′ (−β ln(τ/τf )) , (5.24)

or with sine instead of cosine and where p(kτ) is a sum of polynomials. Notice that, as

β � 1, the derivative of the step F ′(x) is strongly peaked in its central value, namely

τ = τf . The polynomials varies slowly in the small region where F ′(x) is non-zero and we

can replace them by their value when F ′(x) is peaked, namely (kτ)n → (kτf )n. Then, one

can use the exponential form of sine and cosine and change variable to y = −β ln(τ/τf )

to obtain

1

2
p(kτf )

[∫ +∞

−∞
dy exp

{
2ikτfe

−y/β
}
F ′(y) +

∫ +∞

−∞
dy exp

{
−2ikτfe

−y/β
}
F ′(y)

]
.

(5.25)

Now we linearize the exponential, exp(−y/β) ' 1− y/β, to give:

1

2
p(kτf )

[
e2ikτf

∫ +∞

−∞
dy e

−
2ikτf
β

y
F ′(y) + e−2ikτf

∫ +∞

−∞
dy e

2ikτf
β

y
F ′(y)

]
. (5.26)

We can make this substitution as long as y � β, that is to say that the validity of the

approximation breaks down for τ � τf . However, since τf is the position of the step

in conformal time, this corresponds to early times or much before the step, where we

expect that the integral is already negligible. Notice now that the two integrals in the

previous equation are actually the same integral: F ′(x) is even , being the derivative

of the step F (x), which is an odd function. As a consequence, we can reconstruct the

cosine in front of the integral and write

I = p(kτf ) cos(2kτf )

∫ +∞

−∞
dy e

−
2ikτf
β

y
F ′(y) . (5.27)

It is easy to recognize the Fourier transform of the derivative of the step with respect to

the variables y and 2kτf/β, which is nothing else that the Fourier transform of the step

itself

I = 2 p(kτf ) cos(2kτf )

(
2ikτf
β
F̂
[
F (y)

])
= 2 p(kτf ) cos(2kτf )D

(
kτf
β

)
. (5.28)

We have obtained an oscillating function (with sine or cosine), times a damping envelope

D which is normalized to one. The further factor 2 is due to the fact that F (x) goes from

−1 to +1. This is a quite general result that depends only on the assumption of a very

small and very sharp step. It is also reminiscent of the classical quantum mechanics
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Figure 5.1: Step functions F (x) and damping functions D(x) for different choice of the step shape,

namely hyperbolic tangent (5.29) (black), arctangent (5.30) (dashed blue), gaussian integral (5.31) (dot-

ted red) profiles.

problem of a potential barrier, where the reflection probability is proportional to the

Fourier transform of the barrier itself. For different choice of the step shape, we obtain

different damping effects (see Figure 5.1):

F (x) = tanh(x) =⇒ D
(
kτf
β

)
=

πkτf/β

sinh (πkτf/β)
, (5.29)

F (x) =
2

π
arctan(x) =⇒ D

(
kτf
β

)
= e
−2
∣∣∣ kτfβ ∣∣∣ , (5.30)

F (x) =
2√
π

∫ +∞

−∞
e−x

2
=⇒ D

(
kτf
β

)
= e
−
(
kτf
β

)2

. (5.31)

Finally, consider the case β → ∞, which is the case of an infinitely sharp step. This

corresponds to a step function in the form of an Heaviside function, whose derivative is

a Dirac delta function. In this case the integral (5.24) is straightforward and correspond

to take τ = τf everywhere. We can see explicitly that no damping envelope arises and

oscillations persist in all k-space.

Some further comments about eq. (5.23) are in order. The function W ′(x) in (5.22)

oscillates between −1 and +1 up to k → +∞ while the function D acts as a damping

envelope. As x → 0, W ′(x) → 0 and no spurious super-horizon contributions during

inflation are generated. Moreover, the damping, decaying exponentially, “localizes” the

oscillations in an effectively finite range in k-space. This was desirable and confirms our

intuition that the feature should not affect modes either much before or much after the

step. This is clearly visible from Figure 5.2: the largest contribution is in the range of

frequencies 1 . kτf . β, which refers to the modes which are inside horizon at the time

of the feature but whose momenta are not greater than the inverse of the time, b = 1/βH,

characterizing the sharpness of the step. It is also clear that, as the parameter β becomes

larger, the range in k-space in which there are oscillations also becomes larger. In the
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Figure 5.2: Non-scale invariant part of the power spectrum (5.21) for a hyperbolic tangent step (5.29),

evaluated for εstep = 0.001 and β = 43π for illustration purposes.

limit of an infinitely sharp step, β → +∞, as we already said, the power-spectrum would

gain oscillations with constant amplitude up to k → +∞. Notice finally that the total

height of the step, namely 2εstep, does not affect neither the frequency of the oscillations

nor the damping and appear in eq. (5.23) only as a multiplicative constant in front of

the non-scale-invariant part of the spectrum.

5.1.2 Bispectrum

The starting point for computing the bispectrum is the third-order action, which can be

derived from eq. (4.30) Taylor expanding around π = 0 as in (4.36):

S3 =

∫
d4xa3M2

Pl

[
−Ḧπ

(
π̇2 − (∇π)2

a2

)
− 3ḢḦπ3

]
. (5.32)

Notice that we could in principle work in the decoupling regime: after canonical nor-

malization of the π field, πc = −MPlḢ
−1/2π, we see that we can neglect gravity-mixing

interactions if we work at energies above Emix ∼ ε1/2H, which is surely below our

infrared cutoff H, as long as ε� 1.

For the study of non-Gaussianity, we will use the standard in-in formalism (see
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Appendix B) and compute the expectation value

〈πk1πk2πk3〉 = −i (2π)3δ3 (k1 + k2 + k3)

∫ 0

−∞
dτ a 〈0|

[
π

(0)
k1
π

(0)
k2
π

(0)
k3
, HI(τ)

]
|0〉 =

= i (2π)3δ3 (k1 + k2 + k3)π
(0)
k1
π

(0)
k2
π

(0)
k3

∫ 0

−∞

dτ

H2τ2
δ (−β ln τ/τf )×

× πk1(τ)∗
[
2π′k2

(τ)∗π′k2
(τ)∗ − k2

1πk2(τ)∗πk3(τ)∗
]

+ perm. + c.c. ,(5.33)

where the interaction Hamiltonian HI(τ) can be easily read from the third-order action

(5.32). Although also the operator π3 should be present, it can be seen from the action

(5.32) that it is proportional to one more factor Ḣ. Therefore its contribution to the

bispectrum will be suppressed by the ε slow-roll parameter. Notice also that for the

computation of this three-point function at leading order we only need the unperturbed

mode function

π
(0)
k (τ) =

i

MPl

√
4εk3

(1 + ikτ) e−ikτ . (5.34)

As the deviation from the classic solution (5.34) is proportional to εstep, its contribution

inside the integral will be suppressed, being at least of order O
(
ε2step

)
4. The calculation

simplifies using the dimensionless variable y = z
√

2kπk, where z is given by (5.14), which

has the form

y0(−kτ) =

(
1− i

kτ

)
e−ikτ (5.35)

in the unperturbed case. At leading order in the slow-roll parameters and εstep we can

evaluate the ε and H factors inside the integral at horizon crossing and use τ ∼ −1/aH.

Then, using the linear relation between π and R (4.38) we can write

〈Rk1Rk2Rk3〉 = (2π)7δ3 (k1 + k2 + k3)
P2
R,0
4

∫ 0

−∞

dτ

τ2
τy0(k1τ) δ (−β ln τ/τf )×

×
[
2

d

dτ

(
τy0(k2τ)

) d

dτ

(
τy0(k3τ)

)
− k2

1τ
2y∗0(−k2τ)y∗0(−k3τ)

]
+

+perm + c.c. (5.36)

where we have reconstructed the power-spectrum PR,0 (5.20) in front of the expression.

This integral is very similar to the one in eq. (5.21) and can be treated in the same way:

as we work with very sharp steps, β � 1, we can evaluate the polynomials at τ = τf
so that we are left with the Fourier transform of the step. At the end of the calculation

we will obtain an oscillating function times a damping envelope. In order to focus on

the particular scaling of this type of non-Gaussianity, it is often useful to consider the

4As we will see, this will be not true if also a speed of sound is taken into account.
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dimensionless quantity [135]:

G(k1, k2, k3)

k1k2k3
=

k2
1k

2
2k

2
3

(2π)4P 2
R,0
B(k1, k2, k3) , (5.37)

where

〈Rk1Rk2Rk3〉 = (2π)3δ3(k1 + k2 + k3)B(k1, k2, k3) , (5.38)

or the “effective” f̃NL,

f̃NL(k1, k2, k3) = −10

3

k1k2k3

k3
1 + k3

2 + k3
3

G(k1, k2, k3)

k1k2k3
. (5.39)

Since 10k1k2k3/3
∑

i k
3
i is roughly of O(1), the two quantities are of the same order [135].

In our case, we find:

G(k1, k2, k3)

k1k2k3
=

1

4
εstepD

(
Kτf
2β

)[(k2
1 + k2

2 + k2
3

k1k2k3 τf
−Kτf

)
Kτf cos(Kτf )−

−
(k2

1 + k2
2 + k2

3

k1k2k3 τf
−
∑

i 6=j k
2
i kj

k1k2k3
Kτf

)
sin(Kτf )

]
, (5.40)

where K = k1 + k2 + k3.

Consistency Relation

It is well known that the bispectrum of curvature perturbations in single-field inflationary

models satisfies a consistency relation which relates its squeezed limit to the slope of the

power spectrum [34, 109, 164, 165] under very general assumptions: 5

lim
kL→0

B(kL, kS , kS) = −PR(kL)PR(kS)

[
(ns − 1) +O

(
k2
L

k2
S

)]
. (5.41)

In practice, eq. (5.41), which is an expansion in powers of kL/kS , tells us that the local

physics is unaffected by long-wavelength modes that, being larger than the horizon,

cannot be distinguished from a rescaling of the background. This provides us with a

powerful check of our results. With our notation (5.37), eq. (5.41) becomes [139]

lim
kL→0

G(kL, kS , kS)

k3
S

' −1

4

d lnPR
d ln k

∣∣∣∣∣
kS

' εstepβ
(
x

β

)
sin(2x)D

(
x

β

)
. (5.42)

The last equalities comes from the derivative of the power-spectrum (5.23), neglecting

terms of order O(1/β), i.e. we ignore the variation of the envelope D. For the squeezed

5See [166] and refs. therein for a detailed discussion of the conditions under which one can derive the

consistency relation and for those cases where one can evade it. See also refs. [167, 168].
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Figure 5.3: f̃NL(k1, k2, k3) for the bispectrum (5.40) for a hyperbolic tangent step (5.29) as function

of x2 = k2/k1 and x3 = k3/k1. For illustration purposes we have fixed k1 = 1 and chosen the values

εstep = 0.001, β = 43π and ln(−τf ) = 3 for the parameters.

bispectrum, taking the limit (k2 − k3)/2 = kS , k1 = kL → 0 of eq. (5.40) and focusing

on the dominant term, we find

lim
kL→0

G(kL, kS , kS)

k3
S

' εstepβ
(
kSτf
β

)
sin(2kSτf )D

(
kSτf
β

)
, (5.43)

which therefore satisfies the consistency relation. It is important to notice that, for this

kind of models, the consistency relation holds only for “very” squeezed triangles, that is

to say, here it is not enough to require kL/kS � 1. The point is that when we assume

that the only effect of the frozen super-horizon mode on the short wavelength one is a

constant background rescaling, we are assuming that there are no interactions between

modes when they are all within the horizon. This is not our case. Here the expansion in

kL/kS will work only when kL is sufficiently small that the mode is already frozen while

the short ones are not yet perturbed by the occurrence of the step feature. To derive a

bound on kL/kS , one can estimates the contribution of the non-Bunch-Davies state to

the total energy density and require that it leaves the background evolution unaltered

[169–171].
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Equilateral Limit and Scaling

Notice that in the sharp-feature case, β � 1, the dominant contribution in eq. (5.40)

comes from the terms with the steepest scaling with Kτf and near the equilateral limit

(as it can be seen for example in Figure 5.3), where all the momenta are of the same

magnitude [139, 159]. Then we can approximate

G(k1, k2, k3)

k1k2k3
' −εstepβ2

(
Kτf
2β

)2

cos(Kτf )D
(
Kτf
2β

)
. (5.44)

Focusing on the envelope only, we can clearly see that we have a maximum contribution

for non-Gaussianity at a scale Kpeak ' 2β/τf , which implies: 6

fNL

∣∣∣∣
peak

∼ εstepβ2 . (5.45)

It is clear however that the bispectrum for these models is strongly scale-dependent

both for the oscillating behavior and the envelope. Then, for arbitrary choice of the

parameters, the parameter fNL(k) can change by several orders of magnitude from a

scale to another. This means that an overall amplitude of the oscillations cannot be

defined. We argue then that the ansatz proposed in the papers [135, 136],

ffeatNL sin

(
K

kc
+ φ

)
, (5.46)

does not capture the main characteristics of the bispectra of models with very sharp

features (as noted also in [172]), if the right damping envelope is not considered. This

approximation loses all the information about the sharpness of the feature, which actually

sets the scale at which modes are most affected. The sharper the feature, the more inside

the horizon non-Gaussianity is produced. Notice also that the ansatz (5.46) does not

reproduce the correct physical behavior in the limits Kτf � 1 and Kτf � 1, since

in both cases it does not vanish automatically. One could solve these problems by

hand, multiplying the ansatz (5.46) by a suitable damping envelope [173], at the price of

introducing new unknown parameters, where “suitable” means that it must reproduce

the correct scaling of eq. (5.44), with a peak at Kτf ' β and a maximum amplitude

given by eq. (5.45). This however will not reproduce correctly the asymmetric behavior

of the envelope (5.44), which first grows as K2 and then decays exponentially fast.7

Moreover, in the limit of an infinitely sharp step, which would correspond to have a very

wide damping, we would obtain again oscillations with a constant amplitude, while, as it

has already been noticed in [139], one should obtain a quadratic divergence in momenta

6Notice that the exact numerical factor in front of eq. (5.45) is model-dependent, as it depends on

the normalization of the function x2D(x), and hence on the form of the step.
7Different scaling with K are possible if the sharp feature is not a step but, e.g., a kink [174].
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space. This behavior is easily understood: the parameter δ (5.10) in the limit β � 1

is a Dirac-delta function and its only effect in the integral (5.33) is to replace every τ

with τf , without any damping coming into play. However, as we will see in a momentthe

next Chapter, this limit can not be taken exactly, if we want to remain in a perturbative

regime.

5.2 Generalizations

Beside features in the inflaton scalar potential, it could be interesting to study possible

features, for example, in the speed of sound [151–159]. The effective field theory of

inflation is the simplest setup for such a study, as it will be a generalization of features

in the ε slow-roll parameter to other coefficients in the effective Lagrangian (4.30). This

can be realized by simply “switching on” the coefficients of higher-order operators that we

previously neglected. The coefficients of these new interactions could then be provided

with time dependences in the form of step features, in the same way as we did for the

Hubble parameter.

As we saw in the previous sections, if we allow for a time dependence of the ε

parameter (5.3), we must also require that its deviation from a constant ε0 � 1 is

small in order not to spoil inflation. This requirement is also necessary to obtain an

approximate scale-invariant power-spectrum of curvature perturbations. In the spirit of

the EFTI, a natural explanation is the presence of an approximate shift symmetry of the

Goldstone boson π, that guarantees that the terms of the Taylor expansion (4.36) are

all sub-leading with respect to the zeroth-order terms. This conclusion applies to every

coefficient in the effective action and implies that every term in the Taylor expansion is

completely negligible, including the ones coming from expanding Ḣ. The results of the

previous section, however, tell us that we can still have contributions from the expansion

in π, if the time dependence of the Hubble parameter assumes a particular form like the

one in (5.2). This effect will still give us an approximate scale-invariant power-spectrum

as long as the shift symmetry still approximately holds, in the sense that it is explicitly

broken in a small and controlled way. Then it is conceivable that also other coefficients

in the effective action (4.30) could have the same form. This justifies the generalized

study of possible step features in all the parameters appearing in the effective action.

Therefore, we can parametrize the time dependence of the Mn coefficients as

Mn(t) = M (0)
n

[
1 +mnFn

(
t− tf
bn

)]
. (5.47)

The meaning of the function Fn and the parameters mn, tf and bn are the same of eq.
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(5.3) and we impose mn � 1. Now, as we saw for the case of the ε parameter (5.3),

interesting new effects arise with operators that are proportional to the derivative of the

step, analogously to eq. (5.10), in spite of the step itself, as they are proportional to

the factor 1/bn, which can be in principle very large. Looking at the Taylor expansion

(4.36), we see that the n-th derivative of every coefficient Mn, only appears together

with πn. This means that if a coefficient Mn is present for the first time in the m-th

order action, its derivative will appear in the (m + 1)-order action. As an example,

consider the coefficient M3 in the effective action (4.30), which appears at third order

in front of the operator π̇3. If it had the time dependence of eq. (5.47), at third order

we would see one more term in the action, which is however proportional to m3 � 1,

so that its contribution would be suppressed with respect to the standard one given

by M
(0)
3 . The derivative Ṁ3, proportional to 1/b3 � 1, which therefore can be large,

will appear however with the operator ππ̇3 in the fourth-order action, that is, its effects

must be searched for in the trispectrum. This leads us to argue that, at any given order

n > 2 in the effective action, features on a parameter Mn that can be parametrized by

eq. (5.47) give non-negligible effects only if Mn itself has already appeared in the (n−1)-

th order action. Looking at the action of the EFTI and listing all the terms of the

second-order action [175], one can see that only the coefficients Ḣ, M2, M̄1, M̄2, M̄3 are

present: this means that only by adding a feature to these coefficients we could hope

to see some feature-related effects at the level of the bispectrum. In practice, we obtain

that, neglecting the extrinsic curvature terms, M̄2, M̄3, the only interesting effects in the

bispectrum can come from features in the Hubble parameter or in the speed of sound.8

5.2.1 Features in the Speed of Sound

Focusing for simplicity only on the coefficient M4
2 (t), we can easily see, from (4.30), that

we get a coefficient in front of the time kinetic term which is different from the spatial

kinetic one. In other words, we have a (time-dependent) speed of sound

c2
s(t) =

−M2
PlḢ(t)

−M2
PlḢ(t) + 2M4

2 (t)
. (5.48)

Then, it is clear that if we do not neglect the time evolution of the coefficients, we obtain

also a time variation of the speed of sound.9 Here we want to make the example of a

8Although also M̄1 is curvature-generated, the corresponding operator is a standard kinetic term and

the parameter can be rewritten as an effective speed of sound for the perturbations [175, 176]. In this

thesis, we shall not treat the case of non-vanishing M̄2, M̄3 and leave its study to a future work.
9Notice that even if we do not allow for the time evolution of the coefficient M4

2 , we still obtain a

time-dependent speed of sound because of the time-varying Hubble parameter (5.2).
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step feature in M4
2 (t),

M4
2 (t) = M4

2,0(t)

[
1 + σstep(t)F

(
t− tf
bs

)]
, (5.49)

where, as in the case of features in the Hubble slow-roll parameters, we could in principle

allow for a mild time dependence of the zeroth-order parameters. Inserting (5.49) into

(5.48), at first order in the parameter σstep we find

c2
s,0(t) = c2

s,0

[
1− σstepF

(
t− tf
bs

)]
, (5.50)

where 1/c2
s,0 = 1 − 2M2

2,0/M
2
PlḢ. Notice that although the parameter σstep, bs, tf and

the step function F (x) have similar physical interpretation as the ones in eq. (5.2), in

principle they could be totally different. For the reasons we have already discussed, we

must require that the time variation is small, namely |σstep| � 1. This allows us to

expand quantities in the parameter σstep as in eq. (5.4). Now we can define a “slow-roll”

parameter,

σ =
d ln cs
d ln τ

= − ċs
csH

, (5.51)

which controls the time evolution of the sound speed. If we expand it in powers of σstep,

at first order we have

σ1 '
1

2
σstepβs F

′
(
−βs ln

τ

τf

)
, (5.52)

where we have switched to conformal time. The important point here is that this ex-

pression is formally equal to the one found for the δ parameter in eq. (5.10).

Power Spectrum

Following the same steps of the previous sections, in order to study the effects of sharp

features in the power-spectrum we start from the second-order action

S2 =

∫
d4xa3

[
−M2

PlḢ

(
π̇2

c2
s

− (∇π)2

a2

)
+ 3

M2
PlḢ

2

c2
s

π2

]
. (5.53)

The equation of motion for the Goldstone boson π reads

π̈ +

(
3H +

Ḧ

Ḣ
− 2ċs

cs

)
π̇ − c2

s

∇2π

a2
= π̈ +H (3− 2δ + 2σ) π̇ − c2

s

∇2π

a2
= 0 , (5.54)

where we have neglected a slow-roll-suppressed term. Equation (5.54) is formally iden-

tical to eq. (5.12) and the parameter σ defined in (5.51) enters in the same place as

δ (5.5). Both the parameters have also the same form ((5.10), (5.52)) at first order in
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the parameters σstep and εstep, therefore the main effect on the power-spectrum will be

similar. Setting δ = 0 to focus only on the effects of cs, we can follow the same steps we

have followed for the case of a feature in the ε parameter. Switching to conformal time

and defining the variable

z2 = −2a2M2
PlḢ/c

2
s , (5.55)

we find an action in the form of eq. (5.13). Now the second derivative of z contains the

parameter
z′′

z
⊃ σ̇

H
= − dσ

d ln τ
, (5.56)

which gives the dominant contribution in the case of a sharp step, being proportional

to β2
s . As it can be easily understood, at this point it is straightforward to write the

expression of the power-spectrum at leading order in σstep:

PR = PR,0
[
1− 2

3
σstepD

(
ksf
βs

)
W ′(ksf )

]
, (5.57)

where we have used the variable [177]

s =

∫
csdt

a
, (5.58)

so that sf correspond to the time of the feature, W ′(ksf ) is the same oscillating function

of eq. (5.22), PR,0 is the standard power-spectrum in the presence of a constant c2
s 6= 1:

PR,0 =
H2

8π2 ε cs,0M2
Pl

. (5.59)

Again, the damping function D is nothing else than the Fourier transform of the step

itself. We can see, as already noticed in a previous paper [158] for DBI models, that very

small and very sharp steps in the scalar potential or in the speed of sound have strongly

degenerate effects on the power-spectrum, as both produce damped oscillations. If we

want to break this degeneracy between the two physically different situations, we have

to consider the effects on the bispectrum.

Bispectrum

In order to find the effects of the step in the speed of sound, we should consider the

action (4.30) up to third order in π, after Taylor-expanding the coefficients of the various

operators. If we focus only on c2
s(t + π), we see that at first order in σstep, we get two

new operators, namely,

−
M2
PlḢ

c2
s,0

σstepFs

(
−βs ln

τ

τf

)
π̇

(
π̇2 − (∇π)2

a2

)
, (5.60)
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−
2M2

PlḢ

c2
s,0

Hσ ππ̇2 , (5.61)

where σ is given by eq. (5.52). Notice that the first of them is just the standard

operator present in the EFTI with speed of sound [109], times the step function Fs
and the parameter σstep. It is clear then that the non-Gaussianity produced by this

operator will be suppressed by σstep � 1 with respect to the standard one, which scales

as fNL ∼ 1/c2
s. The other operator instead is proportional also to βs, which is very

large in the case of a sharp step. To find the corresponding bispectrum, we use the in-in

formalism, as in eq. (5.33). For the leading order result we only need the zeroth-order

mode function,

π
(0)
k (s) =

i

MPl

√
4εcs,0k3

(1 + iks) e−iks . (5.62)

and the linear relation (4.38). The calculation proceeds along the same path we followed

in the case of steps in the Hubble parameter and the result assumes a similar form

G(k1, k2, k3)

k1k2k3
=

1

4
σstepD

(
(k1 + k2 + k3)sf

2β

)[
− 2

∑
i 6=j

kikjs
2
f cos

(
(k1 + k2 + k3)sf

)
+

+

∑
i 6=j k

2
i kj

k1k2k3
sin
(
(k1 + k2 + k3)sf

)]
. (5.63)

The damping function has the same meaning and properties as the damping that we

have already seen, as it arises from the same kind of integrals. Comparing eqs. (5.40)

and (5.63), we see that, although very similar, the two bispectra can be in principle

distinguished both for the different frequency of the oscillations and for the different

combination of momenta k1, k2 and k3. As an example, we show in Figure 5.4 the

behaviour of the two bispectra in the equilateral limit, k1 = k2 = k3 = k, in the

case of very small steps in the speed of sound, σstep � 1, where the variable s can be

approximated with s ' cs,0τ . Looking at the profiles of the oscillations, we see that

both peak at a scale xpeak, corresponding to the value y = 1, where y is the argument

of the damping function D(y). Then, due to the presence of a factor cs, we have that

the first profile peak at xpeak, while the second at xcspeak = xpeak/cs, which is bigger than

xpeak as long as cs < 1. Therefore we expect that the two physically different cases

are well distinguishable as we move from cs = 1 to smaller values. This conclusion is

also reinforced by the non-negligible presence of the characteristic operators of the small

speed of sound scenario, namely the operators proportional to (1− 1/c2
s) in the effective

action of eq. (4.30)10. Moreover, as we will see in the next subsection, we should also

consider now the correction to the mode functions that we previously neglected.

10The bispectrum of the operators π̇3 and π̇(∇π)2 gives just the well-known results for an inflaton with

a non-standard kinetic term (see for example [135]), since correcting the coefficient (1 − 1/c2s) with its

step-like evolution will give only the σstep-suppressed operator (5.60), which is negligible at first order.
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Figure 5.4: As an example, we plot the equilateral limit of the bispectra (5.40) (blue) and (5.63)

(dashed black) as functions of x = −kτf in the case of a hyperbolic tangent step (5.29). The choice of

the parameters are εstep = σstep = 0.001, β = βs = 43π, cs = 0.5 for illustration purposes.

5.2.2 Accounting for a non-Bunch-Davies Wave Function: Folded

Shape

Another interesting source of features in the bispectrum comes from the correction to

the classical Bunch-Davies mode (see Appendix A). So far, we have considered only

the standard Bunch-Davies mode (5.34) in the computation (5.33), as deviations enter

with a factor εstep. Thus, as the dominant cubic operators are already proportional to

εstep, the contribution would be suppressed. However, when considering for example

speeds of sound different from one, we have also cubic operators which are zeroth-order

in εstep. As they are enhanced by c−2
s in the case of small speed of sound, the effects of a

non-Bunch-Davies wave function due to the presence of features can become relevant, as

noted in [159]. This holds even more in general for every operator in the effective action

which is zeroth-order in the parameter that controls the deviation from Bunch-Davies

and happens both if we have features in the slow-roll parameters or in the speed of

sound. In the presence of large interactions, these contributions to the non-Gaussianity

can have a comparable size with the previously considered case. The main characteristic

of this kind of non-Gaussianity is its enhancement in the folded triangle limit due to the
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presence of the negative-frequency mode.

In order to see how this mechanism works, we will compute the bispectrum arising

from the operator π̇3 in the effective action (4.30) in the case of a sharp step in the slow-

roll parameter ε and a constant speed of sound c2
s < 1. As we saw, the second order action

gives us the equation of motion (5.54), where the non-negligible effect of the parameter

δ results in a modification of the standard mode function (5.62). This is indeed the

physical interpretation of the oscillations in the power-spectrum: the feature excites a

non-Bunch-Davies component with negative frequency [135, 151, 173]. The contribution

of this modification to the wave function in the calculation of the three-points functions at

first order in εstep is obtained substituting one of the three positive-frequency mode which

enter the integration in the in-in formalism with a negative-frequency one, u− ∼ e−ix

(and summing over the different possible choices of this negative-frequency mode):

〈πk1πk2πk3〉 = (2π)3δ3 (k1 + k2 + k3)

[
3∏
i=1

−i
4M2

Plεcsk
2
i

]
1

H
×

×
∫ 0

−∞

dτ

τ

[
d

dτ

(
τyNB(−k1τ)∗

) d

dτ
(τy(−k2τ)∗)

d

dτ
(τy(−k3τ)∗)

]
+

+c.c + perm. + other choices of yNB , (5.64)

where we used the dimensionless variable y =
√

2kuk = z
√

2k πk and z is given by eq.

(5.55). The superscript “NB” refers to the negative-frequency contribution. At first

order in εstep it can be computed solving the equation of motion (5.54) through the

Green’s Function technique [159, 162, 177]:

yNB(−kτ) = −iy∗0(−kτ)

∫ τ

−∞

dτ ′

τ ′

(
1− i

cskτ ′

)2 e−2icskτ ′

2cskτ ′
dδ

d ln τ ′
, (5.65)

where y0 is given by eq. (5.35). After some lengthy algebra and an integration by parts,

we are left in eq. (5.64) with the evaluation of integrals similar to those of the previous

sections, where an oscillating exponential multiplies a polynomial in kτ . Using again

the same technique for the damping functions, we end up again with a bispectrum in

the form of a oscillating function times a damping envelope. Instead of the full result,

it is easier to focus only on the dominating factor, proportional to τf ,

G(k1, k2, k3)

k1k2k3
= εstep

(
1− 1

c2
s

)[
3

k1k2k3

∑
i 6=j k

4
i k

2
j − 2

∑
i 6=j k

3
i k

3
j − 3k2

1k
2
2k

2
3

(k1 − k2 − k3)(k1 − k2 + k3)(k1 + k2 − k3)

]
×

×D
(
Kcsτf

2β

)
Kcsτf cos

(
Kcsτf

)
. (5.66)

As it can be seen from Figure 5.5, the bispectrum (5.66) peaks in the folded limit

k1 → k2+k3, as it should, given the negative-frequency correction to the mode functions,
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Figure 5.5: f̃NL for the bispectrum (5.64) for a hyperbolic tangent step (5.29) as function of x2 = k2/k1

and x3 = k3/k1. For illustration purposes we have fixed k1 = 1 and chosen the values cs = 0.4,

εstep = 0.001, β = 43π and ln(−τf ) = 4 for the parameters.

and has superimposed oscillations similar to those found for resonant models [161, 173].

To see the running of this bispectrum in the folded limit, one has to go back to eq. (5.64)

and take k1 = k, k2 → k/2, k3 → k/2. Focusing on the dominant contribution, that is

with the steepest scaling with x = −kτ , we find

G(k1, k2, k3)

k1k2k3

∣∣∣∣∣
folded

= −1

2
εstep

(
1− 1

c2
s

)
D
(
csx

βs

)
c2
sx

2 sin(2csx) . (5.67)

Here, the maximum is at a scale cskτf ∼ β and reach the value

ffoldedNL

∣∣∣∣∣
peak

∼ εstepβ2

(
1− 1

c2
s

)
. (5.68)

This differs significantly from the maximum non-Gaussianity estimated in eq. (5.45),

where the speed of sound was exactly cs = 1. Now, in the folded limit and at the scale k

where the bispectrum peaks, we receive a further enhancement proportional to 1/c2
s. As

it has been noted for resonant models [173], also for feature models the folded bispectrum

can be less, equally or more important than the feature bispectrum depending on the

values of the parameters.
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CHAPTER 6

Perturbative Unitarity of Inflationary

Models with Features

In the previous chapter we have studied models with features using the approach of

the EFTI and we have derived predictions for the power-spectrum and bispectrum for

models where a feature is present in the slow-roll parameter ε or in the speed of sound

cs. One of the advantages of this approach is that it makes the regime of validity of

the theory more clear. Indeed large non-linear interactions can spoil the consistency

of the theory, introducing strong couplings and losing perturbativity (see Section 4.4).

Therefore it is very important to consider the energy scale of the modes most affected

by interactions sourced by features and check that the strong coupling scale is higher

than the relevant energy scale of the problem.

This Chapter, which is based on [2], addresses this problem. We considered the

perturbative consistency of inflationary models with features by means of effective field

theory methods. By estimating the size of loop contributions to the n-point functions and

comparing them with the tree-level computation, one can identify the maximal energy

scale at which the theory is unitary and perturbativity is safe. Then, by requiring that

all the relevant energy scales of the physics we are interested in are below this UV cutoff,

we can derive bounds on the parameters of the models. While in the standard slow-roll

models of inflation, the only relevant energy scale is the Hubble parameter H, when

features are present there is a new energy scale E ' 1/∆t corresponding to the inverse

of the characteristic time-scale of the interaction. In the case of feature models, that

we have studied here, we estimated the size of one-loop contributions to the three-point

functions and compared them to the tree-level expectation. Our main result is that

there is a very strong upper bound on the sharpness β = 1/∆tH of the feature beyond

which the unitarity of the theory is lost. This constraint can be interesting even from
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the observational point of view: indeed, this bound can be used to compare the ratio of

the signal-to-noise ratio for the three-point function to the one of the two-point function.

Our result is that, within the range of validity of the effective approach, the two-point

function has the highest signal-to-noise ratio, unless the height of the step is extremely

small. However, as the amplitude of the bispectrum is proportional to the height of the

step itself, in this case we expect at the same time a smaller value of non-Gaussianity.

This suggests us that if a future experiment will show a statistically significant detection

of feature effects in the bispectrum without an even more significant detection in the

power-spectrum, the result would be difficult to explain only in the frame of models with

features in the inflaton potential.

6.1 Energy Scales and Unitarity

The validity of the perturbative treatment one commonly uses relies on the assumption

that higher-order contributions are small. This is what is done for example when one

computes the equations of motion truncating the action at second order: it is implic-

itly assumed that the third-order contribution L3, for example, is small compared to

the quadratic Lagrangian L2. To confirm that assumption, then one should check that

L3/L2 � 1 in the relevant energy scales of the problem, so that the theory is perturba-

tively safe. In the standard cases, the only relevant energy scale is H, where fluctuations

are crossing the horizon, so the bound is taken at E ∼ H. However, for inflationary

models with features (or resonances [178–181]), this should be required also for the scale

where the largest interaction happens [1, 161], which corresponds to the inverse of the

relevant time-scale b of the feature (or the resonance). In the case of inflationary models

with features, we should make sure that L3/L2 � 1 is valid even in the worst possible

case i.e. at the time of the feature tf , when the interaction is maximized. As we have

seen, the sharper the feature, the more inside the horizon large interactions among the

modes are effective. The point is that the ratio L3/L2 depends on the energy scale [161].

Using the form of the third-order action (5.32), we find

L3

L2

∣∣∣∣
E

=
Ḧ

Ḣ
π

∣∣∣∣
E

. (6.1)

Now we use the fact that πE at an energy scale E is related to πH at Hubble, and hence

to R by

πE ∼
E

H
πH ∼

E

H2
R . (6.2)
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Moreover, we know from eq. (5.2) the scaling for the time derivatives of the Hubble

parameter H:

Ḣ ∼ εH2 , (6.3)

H(n) ∼ ε εstepβ
n−1Hn+1F

(
t− tf
b

)
. (6.4)

As the largest interactions happens when the inflaton is crossing the feature, we shall

take t = tf . In the case of a sharp feature, the modes which are most affected are inside

horizon, kτf ∼ k/afH ∼ β, and hence they have an energy proportional to the inverse

of the characteristic time of the feature 1/b = βH. Substituting it into eq. (6.1) and

using eqs. (6.2), (6.3), (6.4), we find

L3

L2

∣∣∣∣
E∼βH

∼ εstepβ2R , (6.5)

which is indeed proportional to the fNL
∣∣
peak

of eq. (5.45). Given that, one can find [1]

L3

L2

∣∣∣∣
E∼βH

� 1 =⇒ β2 .
1

εstepP1/2
R,0

, (6.6)

where PR,0 is the standard power spectrum at zeroth order.

However we should check also that higher-order contributions from Ln satisfy a

similar bound. In order to do this, notice that the most important interaction in the

Lagrangian at nth-order (which comes from the Taylor expansion (4.36) of the term

Ḣ(t+ π) in the effective action [161]), parametrically scales as

Ln ∼M2
PlH

(n−1)πn−2π̇2 , (6.7)

while

Ḣ ∼ εH2 , (6.8)

H(n) ∼ ε εstepβ
n−1Hn+1 . (6.9)

Our perturbative expansion is then safe if:

Ln
L2

∣∣∣∣
E∼βH

∼ εstepβ2n−4Rn−2 � 1 , (6.10)

which implies

β2 .
P−1/2
R,0

ε
1/(n−2)
step

n�1∼ P−1/2
R,0 , (6.11)

where in the last step we take the limit for n→∞. This simple argument then suggests

that we should take β2 . P−1/2
R,0 if we do not want higher-order corrections to threat
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perturbativity. An important thing to note here is that, being inside the horizon, our

theory is a quantum theory, so the violation of (6.10) is signaling an actual quantum-

mechanical strong coupling (in the sense that quantum loops are not suppressed), so that

unitarity is lost and the model is not under control [109, 119, 182, 183]. In order to state

the problem more rigorously, we will estimate the amplitudes of one-loop contributions

to the three-point function and compare them to the tree-level amplitudes1.

Consider the cubic operator,

L3 3M2
Pl Ḧ

(
t− tf
b

)
ππ̇2 , (6.12)

at the time of the feature, tf , where the interaction is maximal. Upon canonical nor-

malization, (−2M2
PlḢ)−1/2π = πc, and using (6.4), we have:

1

2

εstepβ

MPl

√
2ε
πcπ̇

2
c = εstep g πcπ̇

2
c . (6.13)

Notice that, as the operator ππ̇2 has mass-energy dimension E5, the coupling g in front

of it has dimension 1/E. Diagrammatically, the corresponging vertex and amplitude (by

dimensional analysis) are in Figure 6.1.

M(0) ∼ εstep g E (6.14)

Figure 6.1: Tree-level diagram for the interaction (6.13).

With the same simple arguments, one can see that the vertex with four πs is pro-

portional to εstepg
2, with five πs to εstepg

3 and so on. Then we can list all the possible

diagrams with three free legs and only one loop, that we show in Figure 6.2.

The list has only three diagrams, as there are no more ways to connect three free

legs with only one loop. Notice also that the largest effect comes from the last diagram,

where one has the lower power of εstep and the higher power of β (as εstep . 1 and

1Notice that one can obtain the same result considering, for example, one-loop contributions the

two-point instead of the three-point function.
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M(1) ∼ 4π (εstep g E)3 (6.15) M(1) ∼ 4π ε2step (g E)3 (6.16)

M(1) ∼ 4π εstep (g E)3 (6.17)

Figure 6.2: Loop diagrams with three external legs.

β � 1). Now, we can compare the tree-level amplitude with the loop contributions: the

energy scale where the first one is comparable to the second, i.e.

M(0) ∼M(1) , (6.18)

is to be considered as the maximum energy Λ, at which the loop expansion is under

control. Beyond that, interactions become strongly coupled and the effective theory

becomes non-unitary. It is easy to obtain Λ from the previous equation, using eqs.

(6.14) and (6.17):

Λ2 ' 16π

(
MPl

√
2ε

β

)2

. (6.19)

If we want to trust our predictions, we should then make sure that the energy scales we

study are all below this cut-off2. In particular,

βH � Λ =⇒ β2 � 2√
π
P−1/2
R,0 . (6.20)

2The same happens for resonant models, where one requires that the frequency of the resonance is

smaller than the UV cut-off of the effective theory [161].

81



Some comments are in order. The bound (6.20) is very strict and should be taken with

care, even from an observational point of view. Indeed, from Planck 2013 data analysis,

the best fit of the power spectrum seems to prefer very sharp features [133, 184], with

β ' 300. However this is already out of the allowed region, as from (6.20) we have

β . 160. This put serious questions on the consistency of these models for those values

of β, as we have shown that problems with the unitarity of the theory then arise.

Beyond the simplest case, with no other coefficients in the action but Ḣ(t), the EFTI

naturally contains higher order operators, which induce a speed of sound cs < 1 and are

source of non-Gaussianity. These interactions will have a new UV cutoff [109],

Λ4
cs ' 16π2M2

PlḢc
5
s , (6.21)

Then, it can be seen that there is an even stronger upper bound on β requiring βH be

below this cutoff:

β2 . c2
s P
−1/2
R . (6.22)

This conclusion is very general and applies to every models where the slow-time depen-

dence of the slow-roll parameters, the speed of sound or any coefficient in the effective ac-

tion is broken by some temporary effects with a characteristic time scale ∆t = b = 1/βH.

Physically, this bound is just telling us that we cannot “effectively” consider features on

arbitrary small time scales, as the theory of fluctuations is no more weakly coupled and

perturbative unitarity is lost.

6.2 Signal to Noise Ratio

As a last step, let us make some considerations on the observability of features either

in the power spectrum or in the bispectrum. As we saw, one of the most interesting

characteristic of models with features is the fact that their effects in both these observ-

ables depend on the same set of parameters, which gives, in principle, the possibility to

constrain them at the same time with two independent analyses. It could be interesting

then to ask in which observable we should expect to see a stronger signal. To answer

this question, let us estimate the signal-to-noise ratio as function of the parameters of

the model. Following [139, 185], we write:(
S

N
(δ〈R2〉)

)2

' 2π

∫
d2l

(2π)2

(
δCl
Cl

)2

, (6.23)(
S

N
(〈R3〉)

)2

' 4π

∫
d2l1

(2π)2

∫
d2l2

(2π)2

B2
(l1,l2,l3)

6Cl1Cl2Cl3
, (6.24)
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where

Cl =
1

52D2

∫
dk1||

2π
PR(k1) , (6.25)

B(l1,l2,l3) = − 2

53D4

∫
dk1||

2π

∫
dk2||

2π
B(k1,k2,k3) (6.26)

and k1,2 = (l1,2/D, k1,2||), k3 = −k1−k2, D is the distance to recombination and || is the

direction along the line of sight. For the explicit calculation, let us focus for simplicity

on the case of a feature in the ε slow-roll parameter in the form of hyperbolic tangent

(see Section 5.1). From eqs. (5.23), (5.44) we can roughly approximate the maximal

signal to noise accessible to CMB experiments in terms of εstep, β, and τf [139]:(
S

N
(δ〈R2〉)

)2

' 2πε2step

(
D

|τf |

)
lmax , (6.27)(

S

N
(〈R3〉)

)2

' 480 ε2step

(
τf

Gpc

)2( lmax
2000

)4

. (6.28)

Here lmax is the maximum multipole beyond which the signal-to-noise ratio saturates.

This is set either by the resolution of the experiment or by the damped behaviour of

our predicted observables. In fact we have seen that the amplitude of the spectrum

and bispectrum is exponentially damped away for high k, which means that there is an

effective maximum multipole beyond which the signal is strongly suppressed,

ld '
2Dβ

π|τf |
. (6.29)

Therefore we chose lmax to be the smallest values between the damping scale ld and the

resolution limit lres that we fix at lres ' 2000. Now we make the ratio between eqs.

(6.27), (6.28) to compare the signals from the modifications of the two-point function

and the three-point function. In the case ld < 2000 we find:(
S

N
(〈R3〉)

)
(
S

N
(δ〈R2〉)

) ' 10−5 β3/2 . (6.30)

Using the bound (6.6) for consistency of the perturbation expansion, we obtain the

interesting result that:(
S

N
(〈R3〉)

)
(
S

N
(δ〈R2〉)

) . 1 unless εstep . 10−3 . (6.31)
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On the other hand, if we take lmax = 2000, we obtain:(
S

N
(〈R3〉)

)
(
S

N
(δ〈R2〉)

) ' 10−3

(
|τf |
Gpc

)3

. 1 unless |τf | & 10 Gpc . (6.32)

However, as we chose lmax = 2000, we have

ld '
2Dβ

π|τf |
> 2000 . (6.33)

Then, violating the inequality (6.32) requires at the same time

10 Gpc . |τf | . 10−3Dβ

π
(6.34)

which requires in turn that

β & 104π

(
D

Gpc

)−1

. (6.35)

One more time, looking at the bound of eq. (6.6), we obtain that this can happen only

for very small values of the εstep parameter. However, as εstep becomes smaller, we also

expect that the signal-to-noise ratio of the bispectrum itself will become smaller. This

can be seen from eq. (6.28):(
S

N
(〈R3〉)

)2

. 480 ε2step

(
τf

Gpc

)2

. 480 ε2step

(
D

Gpc

)2

. (6.36)

The last inequality comes from the cutoff |τf | . D imposed by the projection onto the

spherical sky [139]. It is clear then that we would not have a signal-to-noise ratio larger

than one if we have εstep . 10−3.

This means that the most sensitive test for these models is the feature part of the

power spectrum, unless the height of the step is extremely small, so that one can increase

the value of the sharpness of the feature without violating the bound (6.6). However, in

this case, it would be too hard to detect any feature effect, as the signal-to-noise would

be very small. This conclusion remains valid if we generalize to features in the speed

of sound, where we have an even stronger bound (6.22) as we move away from cs = 1.

The only case that could in principle escape this conclusion would be the case of folded

non-Gaussianity. Those configurations can potentially make the three-point function the

leading observable for feature models since, for particular choices of the parameters, the

folded bispectrum can become dominant and enhance the signal-to-noise ratio. This can

be understood also focusing on the parametric scaling of fNL
∣∣
peak

of eq. (5.68), which

is proportional to β2 but also to 1/c2
s, receiving then a further enhancement.
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Part III

Breaking of Spatial Diffeomorphism
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CHAPTER 7

Generalised Tensor Fluctuations

The recent results from the BICEP2 and Planck collaborations [186] suggest that

CMB polarization measurements are reaching sufficient sensitivity to start detecting

primordial B-modes, if foregrounds can be understood and the gravity wave amplitude

is sufficiently large. In this optimistic situation, recent theoretical studies [38, 39, 187]

suggest that if a sufficient delensing of the B-mode signal can be performed, then both

the tensor-to-scalar ratio r, and the tilt of the tensor spectrum nT might be measured

with an accuracy sufficient to test the consistency relation (1.88)

nT = −r/8 , (7.1)

that holds for standard single clock inflation in Einstein gravity. This motivates a general

theoretical investigation of possible mechanisms for producing primordial tensor fluctu-

ations during inflation, including scenarios that are more general than the ones studied

so far. A generic prediction of standard single-field, slow-roll inflation is the production

of a nearly scale invariant spectrum of tensor modes with an amplitude proportional

to the Hubble parameter during inflation, a ratio r < 1 between the tensor and scalar

power spectra, and a tilt nT < 0 of the tensor spectrum related to r by eq. (7.1) (see e.g.

[37] for a review). The single clock consistency relation (7.1) can be violated in multiple

field models (see for example [81, 108, 188]); however, in inflationary scenarios based on

a slow-roll expansion, that do not violate the Null Energy Condition, nT is generically

negative. On the other hand, various specific examples have been proposed in the liter-

ature that are able to obtain a positive nT in a controllable way. One can include to eq.

(7.1) contributions that are higher order in slow-roll [189], or violate the Null Energy

Condition in Galileon or Hordenski constructions [190]. Alternatively, one can consider

particle production during inflation [191], or investigate specific non-standard scenarios

as solid/elastic inflation [192, 193].
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This Chapter is based on the work [4] where we take a more general perspective

to the problem of characterizing tensor fluctuations. By implementing an effective field

theory approach to inflation, we examine novel properties of the spectrum of inflationary

tensor fluctuations, that arise when breaking some of the symmetries or requirements

usually imposed on the dynamics of perturbations. During single-clock inflation, time-

diffeomorphism invariance is normally broken by the time-dependent cosmological back-

ground configuration: the construction of the most general theory for fluctuations that

preserves spatial diffeomorphisms, but breaks the time reparametrization invariance,

leads to the effective theory of single-field inflation initiated in [109], and developed by

many groups over the past few years (see [194, 195] for recent reviews on this topic).

On the other hand, it might very well be possible that during inflation also the spatial

diffeomorphism invariance is broken in the lagrangian for fluctuations. This possibility

has not been explored much in the literature, apart from interesting specific set-ups

as solid inflation [192]. Alternatively, operators with more than two spatial derivatives

acting on the tensor perturbations – preserving or not spatial diffeomorphism invariance

– could become important in situations where the leading order Einstein-Hilbert contri-

butions to the tensor sector can be neglected and provide interesting contributions to

inflationary observables. In this Chapter, we explore these possibilities using an effective

field theory approach. We consider the dynamics of metric fluctuations for single-clock

inflation in a unitary gauge in which the clock perturbations are set to zero, and for

simplicity we concentrate on operators that are at most quadratic in fluctuations, since

our main aim is to try to understand how they can affect observables such as r and nT ,

that are directly associated with the tensor power spectrum. The main conclusions of

[4] is the identification of the single operator that contributes at leading order to the

tensor spectral tilt nT and that can change its sign, leading to a positive nT without

necessarily violating the null energy condition. We have then shown that this operator

has important consequences also in the scalar sector. It generically leads to superhori-

zon non-conservation of the curvature perturbation ζ on uniform energy density slices,

even in single clock inflation – since ζ acquires an effective mass – although additional

allowed operators can render the mass of ζ (and its non-conservation after horizon exit)

arbitrary small. Including also operators with more spatial derivatives, we have shown

that non-trivial tensor sound speed can be generated and the formula for nT receives

new contributions that depend on the coefficients of these higher derivative operators.

We also discussed a special case in which such operators can mimic the effect of a mass

term in the tensor sector.

We do not wish to systematically investigate all possible operators with the proper-

ties we are interested in, but to study representative and promising examples that can be

of some use to connect inflationary model building with observations, especially when fo-

cussing on the tensor sector. On the other hand, the tools that we develop can be further
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applied and generalized to study more general situations, for example in set-ups with

broken isotropy in the effective action for fluctuations. Since we implement an effective

field theory approach to the study of perturbations from inflation, we do not attempt

to find actual theories or models whose cosmological fluctuations have the properties we

investigate, although we will also comment on possible realizations for the operators we

study. We limit our attention to operators that are quadratic in fluctuations. Given the

fact that we break some of the symmetries such as spatial diffeomorphism invariance,

many operators cubic or higher in fluctuations exist; this considerably complicates a

systematic analysis of their effects, that we explore in Chapter 9.

7.1 Breaking Spatial Diffeomorphisms in Unitary Gauge

In this section we investigate an effective field theory for cosmological perturbations

around quasi-de Sitter space, with broken spatial and time diffeomorphism invariance.

We take a conformal (FRW) ansatz for the background metric,

ds2 = ḡµν dx
µdxν = a2(η) (−ηµν dxµdxν) (7.2)

with a2(η) the conformal scale factor and a(η) = 1/(−Hη) for de Sitter space. We de-

note the metric fluctuations by hµν = gµν− ḡµν . The time-reparameterization invariance

for fluctuations is broken by the time dependence of the homogeneous background. In

addition, we would like to study the effects of breaking spatial diffeomorphism invari-

ance. The breaking of diffeomorphism invariance in the spatial sections is most easily

achieved by mass terms, although derivative operators involving metric pertubations

are also able to do so. First we consider the effects of mass terms, before including

diffeomorphism-breaking derivative operators in the next subsections. These operators

corresponding to mass terms do not necessarily originate by a theory of massive gravity

holding during inflation; they simply correspond to the most general way to express

quadratic non-derivative operators in the fluctuations that break diffeomorphism invari-

ance.

We consider the Einstein-Hilbert action expanded to second order and add generic

operators with no derivatives, that are quadratic in the metric fluctuations hµν

S =

∫
d4x
√
−gM2

Pl

[
R− 2Λ− 2 c g00

]
+

1

4
M2

Pl

∫
d4x
√
−g

[
m2

0 h
2
00 + 2m2

1 h
2
0i −m2

2 h
2
ij +m2

3 h
2
ii − 2m2

4 h00 hii

]
.

(7.3)
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The terms in the first line are the ones that will give the homogeneous and isotropic

background which we assume for inflation. They give a non-zero stress-energy tensor at

the background level,

T (0)
µν = − 2√

−g
δS

δgµν

∣∣∣∣∣
background

(7.4)

and, using Friedmann equations, the parameters c and Λ can be expressed as functions of

the Hubble parameter H and its time derivative Ḣ (that defines the slow-roll parameter

ε = −Ḣ/H2). The quadratic terms in the second line of eq. (7.3) break diffeomorphism

invariance, yet they preserve a spatial SO(3) invariance in order not to break spatial

isotropy. The term proportional to m2
0 breaks time reparameterization invariance, and

is present also in the quadratic Lagrangian (4.16) of the standard EFTI [109]: the

remaining terms in the second line of eq. (7.3), instead, are absent in [109] and break

spatial diffeomorphism invariance. They have the same structure of the Lorentz violating

mass terms of [196], this time applied to the case of an expanding (quasi-)de Sitter

universe. They were dubbed “Lorentz violating” in [196, 197] since in the flat limit (H →
0) they do break 4d Lorentz symmetry SO(1, 3) down to spatial rotational symmetry,

SO(3) 1. Since the choice of operators we consider preserves isotropy at each point

in space, they also preserve homogeneity in space. In the limit mi → 0 with i 6=
0, spatial diffeomorphisms are restored and, up to second order in perturbations, we

recover the standard EFTI in [109] without extrinsic curvature terms, where only time

diffeomorphisms are broken by powers of h00. We can consider the “mass terms” in the

second line of eq. (7.3) as arising from couplings between the metric and fields acquiring

a nontrivial time-dependent profile during inflation. We assume that their coefficients

(as well as the ones that we will meet in the following) are effectively constant in space

and time during inflation, while these coefficients go to zero after inflation and hence

are not constrained by present day observational limits. The constancy in space is

not a strict requirement since effects of gradient terms are usually negligible at large

scales during inflation. A (small) time dependence for these operators would instead

be expected, proportional to slow-roll parameters quantifying the departure from an

exact de Sitter phase during inflation: for simplicity we will neglect it. We will not

consider interactions in this paper, but we will limit our attention to terms quadratic

in perturbations. Nevertheless, for the class of mass terms contained in action (7.3),

general considerations show that the maximal cut-off is of order Λc '
√
mMPl [199],

assuming that all the non-vanishing mass parameters are of the same magnitude m. In

1For certain choices of the parameters, these mass terms (although breaking diffeomorphism invari-

ance) can recover 4d Lorentz invariance in the flat limit H → 0. The parameter choice one has to make

is

m2
0 = α+ β , m2

1 = m2
2 = −α , m2

3 = m2
4 = β . (7.5)

and the Fierz-Pauli theory corresponds to α+ β = 0. These arguments are reviewed in [198].
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order to have a reliable theory, we must ensure that Λc ≥ H, where H is the Hubble

scale during inflation, so that
m

H
≥ H

MPl
. (7.6)

Hence for inflation happening at high energy scales, the mass of the graviton must be

quite large during the inflationary process (although it can be well below the Hubble

scale). After inflation ends, we assume that the effective graviton mass becomes negli-

gible, as we mentioned above.

Let us stress that in the spirit of our effective approach to cosmological fluctuations,

only based on symmetry arguments, it is not necessary to specify the nature of the UV

model that leads to the fluctuation Lagrangian we are examining. Our theory appears as

a version of (Lorentz violating) massive gravity because we are selecting a specific gauge

– the unitary gauge – in which fluctuations of the field(s) driving inflation are set to zero:

the dynamics of perturbations is entirely described by the sector of metric fluctuations.

The UV completion of our scenario might be some specific version of massive gravity

coupled to an inflaton field (for reviews of massive gravity, see e.g. [198, 200]), or

some model of inflation making use of vectors (see [201] for a review), or sets of scalars

obeying specific symmetries. For example, solid inflation [192] is a set-up with broken

spatial diffeomorphisms (but preserving time-reparameterization); the dynamics of its

fluctuations might be considered as a subclass of our general discussion.

7.1.1 Tensor-vector-scalar Decomposition

It is helpful to rewrite the action (7.3) in terms of tensor, vector and scalar perturbations

on spatial hypersurfaces, which evolve independently at linear order:

h00 = ψ ,

h0i = ui + ∂iv , with ∂iui = 0 ,

hij = χij + ∂(isj) + ∂i∂jσ + δijτ , with ∂isi = ∂jχij = δijχij = 0 .

(7.7)

Under a diffeomorphism, η → η + ξ0, xi → xi + ξi, these perturbations transform as

χij → χij

ui → ui + ∂0ξ
T
i

si → si + ξTi

ψ → ψ + 2∂0ξ0 + 2aHξ0

v → v + ∂0ξ
L + ξ0

σ → σ + 2ξL

τ → τ + 2aHξ0 (7.8)
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where ξi = ξTi + ∂iξ
L. Expanding (7.3) up to second order in these fluctuations, we find

the following tensor-vector-scalar actions including the mass terms:

• Tensor action

S(T )
m =

1

4
M2

Pl

∫
d4xa2

[
− ηµν∂µχij∂νχij − a2m2

2χ
2
ij

]
, (7.9)

• Vector action

S(V )
m =

1

2
M2

Pl

∫
d4xa2

[
− (ui − s′i)∇2(ui − s′i) + a2(m2

1u
2
i +m2

2si∇2si)

]
, (7.10)

• Scalar action

S
(S)
m =

1

4
M2

Pl

∫
d4xa2

{
− 6(τ ′ + aHψ)2 + 2(2ψ − τ)∇2τ

+4(τ ′ + aHψ)∇2(2v − σ′) + a2
[
(m2

0 + 2εH2)ψ2 − 2m2
1v∇2v

−m2
2(σ∇4σ + 2τ∇2σ + 3τ2) +m2

3(∇2σ + 3τ)2 − 2m2
4ψ(∇σ + 3τ)

]}
(7.11)

Since diffeomorphisms are broken, one would expect to find six propagating degrees

of freedom, and one of these should generically be a ghost. Nevertheless, it has been

shown that in a FRW background the theory can be ghost-free and potential instabilities

avoided, if the masses mi satisfy certain conditions [202]. In the next subsections, we will

generalize this analysis including also the effect of a selection of derivative operators that

break diffeomorphism invariance, studying each sector of the theory and also discussing

possible phenomenological consequences. To the operators considered so far we will add

new quadratic operators that contain at most two space-time derivatives in hµν . They

potentially break spatial diffeomorphism invariance, although they preserve Euclidean

invariance in the spatial sections. See Appendix C.1 for a list of such operators. To

conclude this section, let us point out that our analysis includes operators with higher

spatial derivatives acting on the fields obtained after the tensor-vector-scalar decomposi-

tion of hµν (see for example the m2
2 coefficient in eq. (7.11)) that have been removed by

a parameter choice in [203]. See however [204] for a recent analysis including operators

that are higher order in spatial derivatives.

7.1.2 Tensor Fluctuations

Let us start by discussing the tensor fluctuations, since this is the sector we are most

interested in. We see from the action S
(T )
m in eq. (7.9) that tensors acquire a mass
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only in the case m2
2 6= 0 and no instabilities arise if m2

2 ≥ 0. Hence only the operator

proportional to m2
2 in eq. (7.3) influences the tensor spectrum by giving an effective mass

to the tensors. On the other hand, we can add to the mass term additional operators

that contain up to two space-time derivatives and preserve isotropy: they can change

speed of sound for tensor perturbations in eq. (7.9). In particular, the only allowed

operators that can contribute to the tensor sound speed are the ones in eqs. (C.15),

(C.17) in appendix C.1. We may add to the action (7.9) two derivative operators2, with

dimensionless coefficients b1 and d1:

S
(T )
d ≡ 1

4
M2

Pl

[
b1(∂0hij)

2 + d1(∂ihjk)
2
]
. (7.12)

It is important to notice that these two derivative operators do not necessarily orig-

inate from contributions that break the 3-dimensional diffeomorphism invariance per

se. In particular these terms can arise from the diffeomorphism invariant combination

b1δKijδK
ij − d1

(3)R, where δKijδK
ij is the perturbed extrinsic curvature and (3)δR is

the three-dimensional Ricci scalar [109, 205]. These specific combinations, on the other

hand, contain specific additional vector and scalar contributions that have to be taken

into account. We will consider them in the next subsections, but for the moment we do

not need to restrict to any special case; we can focus on (7.12) regardless of its origin.

The complete action for tensor fluctuations becomes

S(T ) = S(T )
m +S

(T )
d =

1

4
M2

Pl

∫
d4xa2

{
(1+b1)

[
(χ̇ij)

2−c2
T (∂iχjk)

2
]
−a2m2

2χ
2
ij

}
, (7.13)

where the speed of sound for tensors is

c2
T =

1 + d1

1 + b1
. (7.14)

In this case, in order to avoid ghosts one should also require b1 > −1, d1 ≥ −1; moreover

we could also demand d1 ≤ b1 not to have superluminal propagation. Taking the action

(7.13), it is easy to derive the expression for the tensor power spectrum, quantizing the

tensor fluctuations starting from the usual Bunch-Davies vacuum (see Section 1.3 and

Appendix A). Upon canonical normalization and neglecting for simplicity time depen-

dencies of cT and m2, the equation of motion for tensors has the usual Mukhanov–Sasaki

form. It can be solved to give the following expression for the power spectrum and its

scale dependence:

PT =
2H2

π2M2
PlcT

(
k

k∗

)nT
, nT = −2ε+

2

3

m2
2

(1 + b1)2H2

(
1 +

4

3
ε

)
, (7.15)

2Notice that also a parity violating, one derivative operator could be included, εijk (∂i hjm) hkm, with

εijk the totally antisymmetric operator in three spatial dimensions. On the other hand, in this work we

concentrate on operators that preserve parity, so we do not consider its effects.
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at leading order in slow-roll and in an expansion in m2/H � 1. Notice that the mass

term can render the tensor spectrum blue if m2/H is sufficiently large and positive so

that the second term in nT wins out over the negative contribution from the first term. In

this sense, a blue spectrum for tensors can be obtained without violating the Null Energy

Condition or exploiting the time-dependence of parameters: it is the effect of the mass

term proportional to m2
2 and is not depending on the sign of Ḣ. The amplitude of the

tensor power spectrum is enhanced by the inverse of the sound speed cT . On the other

hand, it has been recently shown in [206] that, when focussing on operators containing

at most two derivatives – as we do in this section – there exists a disformal redefinition

of the metric which converts the theory with a speed of sound cT 6= 1 into a theory

(in the Einstein frame) with unit speed of sound. Thus, in the Einstein frame, during

inflation the sound speed is equal to one. Hence – neglecting the scale dependence of PT
– the amplitude of the tensor power spectrum is directly linked to the scale of inflation.

Notice that in our scenario we do have an additional source of scale-dependence though,

associated with the mass term m2 that breaks the spatial diffeomorphism invariance.

The disformal transformation of [206] does not involve spatial coordinates hence does

not modify our predictions for the scale dependence of the tensor spectrum, whose sign

is still controlled by m2
2/H

2 versus ε. It has been discussed in [206] that terms involving

higher derivatives can actually change the situation and induce a non-trivial sound speed.

While in [206] three-derivative terms were included, we will extend this possibility and

study healthy four derivative terms (with at most two time derivatives) in a following

section.

7.1.3 Vector Fluctuations

We now discuss the propagation of vector fluctuations in our set-up. In this and in the

next subsection (where we will discuss the dynamics of scalars) we do not pretend to be

exhaustive in our analysis, but only to investigate simple and interesting cases among

the many possibilities allowed within our large parameter space. In particular, aiming

for simplicity, our purpose is to reduce as much as we can the number of propagating

degrees of freedom in our scenario, and choose parameters which can eliminate the vector

degrees of freedom.

In principle we have two vector degrees of freedom, ui and si, from the decomposition

in eq (7.7). Examining the action (7.10) for vector perturbations including mass terms

and in absence of additional derivative operators, it is straightforward to show that the

field ui is not dynamical, since we obtain

∇2(ui − s′i)− a2m2
1ui = 0 . (7.16)
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Hence ui can be integrated out to give the effective action

S(V )
m =

1

2
M2

Pl

∫
d4x a4

[
m2

1s
′
i

∇2

∇2 − a2m2
1

s′i +m2
2si∇2si

]
. (7.17)

The action is free of instabilities for m2
1 ≥ 0 and m2

2 ≥ 0. The case m2
1 = 0 is particularly

interesting as there are no propagating vector modes, since the coefficient of the si kinetic

term in (7.17) vanishes. Hence in order to eliminate vector degrees of freedom, we make

the choice m1 = 0.

On the other hand, the situation can drastically change if also other possible deriva-

tive contributions are included in the action, choosing from the list of allowed operators

in Appendix C.1. There are six possible terms with up to two derivatives that contribute

to the vector sector, that contribute to an effective Lagrangian that we dub L(V )
d :

L(V )
d =

1

4
M2

Pl

[
b1(∂0hij)

2 + b2(∂ih0j)
2 + b3(∂jh0i∂0hij)

+d1(∂ihjk)
2 + d2(∂ihij)

2
]

+
1

4
M3

Pl α4 (hij∂ih0j) , (7.18)

where bi, di and α4 are arbitrary constant coefficients. Notice that also a single derivative

term is allowed in the last line of eq. (7.18). These derivative contributions in S
(V )
d in

general switch on a non-trivial dynamics for si even if m2
1 = 0. On the other hand, it

can be shown (c.f. Appendix C.1) that if one chooses the particular values

b1 =
1

2
b2 = −1

4
b3 , (7.19)

then the structure of the action (7.10) would be unaltered and the vector si, when m2
1 =

0, would still be non-dynamical. This corresponds to a combination of the operators

forming the spatial diffeomorphism invariant quantity (δKij)
2. Provided this condition

(7.19) is satisfied, adding the operators proportional to d1, d2 and α4 in eq. (7.18) does

not change the conclusion such that si not dynamical. Hence, the condition m2
1 = 0

is appealing since we can still ensure that no vectors propagate. As we will see, this

condition also gives only one propagating mode in the scalar sector, since extrinsic

curvature terms do not render a second scalar mode dynamical. Fine-tuning relations

on mass parameters, such as m2
1 = 0 can be motivated and protected by residual gauge

symmetries [196]. Indeed, this is the case for m2
1 = 0; if we require invariance under

time-dependent diffeomorphisms,

xi → xi + ξi(t) , (7.20)

then the operator h0i, associated with m2
1, is forbidden in the action.
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7.1.4 Scalar Fluctuations

Not surprisingly, the scalar sector is the most tricky to analyze due to the number of

fields involved and their mixings. We separate the discussion in two parts. First we study

the case in which only scalar masses are included, and no derivative operators are added

to eq. (7.11). We show that an important physical consequence of our construction is

that the curvature perturbation ζ is generally not conserved on super-horizon scales.

We then proceed, including derivative operators in the second part of this section. The

main aim is to find the conditions required to propagate at most one (healthy) scalar

degree of freedom in our system.

Only masses are included

When only scalar masses are switched on, the action we are working with is eq. (7.11).

This action potentially propagates two degrees of freedom, σ and τ . It can be shown

that even in the case where all the masses are different from zero, the theory has no

ghosts nor other instabilities provided that m2
1 > 0, 6H2 ≥ m2

0 − 2Ḣ > 0 and Ḣ < 0

[202]. Here we focus instead on the case m2
1 = 0 that, besides having no vectors, it also

has only one propagating scalar, as we are going to discuss. From eq. (7.11) with m2
1 = 0

one can obtain the equations of motion for the auxiliary fields ψ and v,

ψ = − τ
′

H
,

∇2v =
a2

4H

[
(m2

0 − 2Ḣ)τ ′ − 2

a2
∇2τ +

2H
a2
∇2σ′ +m2

4(∇2σ + 3τ)

]
,

(7.21)

and substitute them back into the action obtaining (where we write H = aH and Ḣ =

−εH2)

S =
1

4
M2

Pl

∫
d4x a2

[
− 2

(
τ ′

aH
+ τ

)
∇2τ + a2(m2

0 + 2εH2)

(
τ ′

aH

)2

−a2m2
2(σ∇4σ + 2τ∇2σ + 3τ2)

+m2
3(∇2σ + 3τ)2 +

2m2
4a

2

aH
τ ′(∇2σ + 3τ)

]
.

(7.22)

This shows that σ is also an auxiliary field:

aH(m2
2 −m2

3)∇2σ = m2
4τ
′ − aH(m2

2 − 3m2
3)τ . (7.23)
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The action becomes

S = M2
Pl

∫
d4x

a2

H2

[
(m2

0 + 2εH2)(m2
2 −m2

3) +m2
4

2(m2
2 −m2

3)
τ ′

2
+ εH2τ∇2τ

−m
2
2a

2H2(m2
2 − 3m2

3 + (3 + ε)m2
4)

m2
2 −m2

3

τ2

]
.

(7.24)

After canonical normalization of τ , the action finally is given by

S =

∫
d4xa2

[
τ̂ ′2 + c2

s(τ̂∇2τ̂) + a2M2τ̂2
]
, (7.25)

where effective mass and speed of sound are

c2
s =

2εH2(m2
3 −m2

2)

m2
0(m2

2 −m2
3) +m2

4

, (7.26)

M2 = −
2H2m2

2

(
m2

2 − 3m2
3 + 3m2

4

)
m2

0(m2
2 −m2

3) +m4
4

, (7.27)

at leading order in slow-roll.

An exhaustive analysys of all the possibilities for the scalar action is beyond the

scope of this work. Other cases besides the one considered here could be interesting.

For example, when m2
1 = 0 and m2

2 = m2
3, case that is not included in (7.24), it can

be shown that no scalar degrees of freedom propagate [202]. However this is true only

if no derivative operators for hij are considered. When all the other combinations of h

and derivatives are considered, they can provide kinetic terms for scalars, changing the

previous conclusions. We will return to this later.

Non-conservation of R and ζ at super-horizon scales

Reconsidering the action (7.24), some interesting points can be made. There is only one

scalar perturbation, τ , which is related to the comoving curvature perturbation R. In

an arbitrary gauge we define

R = τ − H(τ ′ −Hψ)

H′ −H2
. (7.28)

However in the unitary gauge the equation of motion of the auxiliary field ψ, eq. (7.21),

requires τ ′ = Hψ and we have R = τ , even when diffeomorphisms are broken by the

masses. In the limit where all masses go to zero, the scalar action (7.24) reduces to the

standard slow-roll action for R. Since R coincides with the (massive) scalar fluctuation

τ , R (before canonical normalization) has a non-vanishing mass given by

M2
R =

m2
2(m2

2 − 3m2
3 + (3 + ε)m2

4)

m2
2 −m2

3

. (7.29)
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Notice that this mass is present only if m2
2 6= 0, exactly as for tensor perturbations. A

profound implication of this result is that R is in general not constant after horizon

exit, as it is in standard single-field models of inflation. For M2
R > 0 the solution

of the Mukhanov-Sasaki equation for R will decay after horizon exit. The standard

picture of different super-horizon patches of the universe evolving as separate universes

with constant R [30] is not valid anymore. A simple physical interpretation is that, given

that diffeomorphism invariance is broken in our set-up, very long wavelength fluctuations

can no longer be considered as a gauge mode in the zero momentum limit, and there

is actually a preferred frame (the unperturbed background, R = 0) towards which the

fluctuation dynamics is attracted for M2
R > 0. This is analogous to what happens in

the specific set-up of solid inflation [192], whose consequences can be considered as a

special case of our general discussion. Notice that, phenomenologically, in order for the

perturbations to remain over-damped on super-horizon scales (not to oscillate and decay

rapidly), we require M2
R � H2, which gives a constraint on M2

R. On the other hand,

given that the mass of the tensor depends only on m2
2 while the mass of the scalar also

on m2
3 and m2

4, there is still enough freedom to have a blue tilt for the tensor spectrum

and a nearly constant R outside the horizon. Actually, making the particular choice

m2
2 = 3m2

3 − (3 + ε)m2
4 one finds that R is massless and conserved outside the horizon.

In our framework, analogously to solid inflation, the comoving curvature perturba-

tions R and the curvature perturbations on uniform density slices ζ do not coincide in

the large scale limit, as they do in standard single-field inflation. Indeed, taking the

definition of the function ζ,

ζ = τ −Hδρ

ρ̇
, (7.30)

and computing the density ρ and its perturbation from the energy-momentum tensor,

one finds at leading order in gradients a contribution that does not vanish at large scales:

ζ = τ +
(1− ε)m2

4

m2
0 + 2εH2

τ +O(∇2) 6= R . (7.31)

Also ζ is not conserved and evolves after horizon exit. Following [30],

ζ̇ = − H

ρ+ p
δpnad +O(∇2) , (7.32)

it can be understood that the reason for this non-conservation is the existence of a

non-adiabatic stress induced by the presence of the masses. While in the standard case

one finds that δpnad is proportional only to gradient terms, here there is a non-trivial

contribution in the perturbed (spatial) energy-momentum tensor even on super-horizon

scales, given by

Tr [δTij ] = (m2
2 − 3m2

3) Tr[hij ] + 3(εH2 +
1

2
m2

4)h00 . (7.33)
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When diffeomorphisms are preserved, this trace is proportional only to h00 = ψ, which

can then be substituted using the constraints (7.21) to see that indeed only gradients

remain. When diffeomorphisms are broken by the masses, the use of the equation of

motion (7.21) and (7.23) does not allow us to get rid of all the terms and we are left

with

Tr [δTij ] = m2
2f(mi)τ +O(∇2) . (7.34)

where f(mi) is a (complicated) function of all the mass parameters. This term will

not vanish on large scales, making ζ evolve also after the horizon exit. The cause of

the non conservation of ζ and R has to be understood in terms of the contribution m2
2.

Indeed if m2
2 = 0 curvature perturbations are constant beyond the horizon. The operator

proportional to m2
2 is the only one that gives a non-trivial off-diagonal contribution to

the energy-momentum tensor,

Tij ∼ m2
2hij , (7.35)

and hence an anisotropic stress, that is sourced by the very same operator that gives an

effective mass to the graviton (although we will see next that diffeomorphism breaking

derivative operators can also play a role). This is coherent and very similar with what

was found in [192], where it is shown that a non-vanishing anisotropic stress with certain

characteristic on large scale violate some technical assumptions of Weinberg’s theorem

on the conservation of curvature perturbations [207].

Adding derivative operators

Let us now add derivative operators. We by adding the combination (δKij)
2 corre-

sponding to the first line of eq (7.18) with the condition (7.19) for the operators (∂0hij)
2,

(∂ih0j)
2 and (∂jh0i∂0hij)], that as we have seen has the nice feature of avoiding the prop-

agation of vectors. We then subtract (δKii)
2, including the operators (∂0hii)

2, (∂ih0i)
2

and (∂ih0i∂0hjj)), in order to avoid the propagation of a second (ghostly) scalar mode.

After this choice is made, we are free to add other derivative operators and write the

Lagrangian density as

L(s)
d = M2

Pl b
[
(δKij)

2 − (δKii)
2
]

+
1

4
M2

Pl

[
d1(∂ihjk)

2 + d2(∂ihij) + d3(∂ihjj)
2 + d4(∂ihjj∂khik)

+c1(∂ih00∂jhij) + c2(∂ih0i∂0hjj) + c3(∂ih00)2
]

+

+
1

4
aM3

Pl [α1(h00∂0hii) + α2(h00∂ih0i) + α3(hii∂jh0j) + α4(hij∂ih0j)] .(7.36)

Interestingly, also first derivative terms can be added, however the condition α1 = 2α2

in the single derivative sector has to be imposed, in order to avoid the propagation of a
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second (ghostly) scalar mode. Collecting these pieces together, the new action for the

scalars will then be

S(S) =
1

4
M2

Pl

∫
d4xa2

{
− 6

(
τ ′ + aHψ

)2
+ 2 (2ψ − τ)∇2τ

+4
(
τ ′ + aHψ

)
∇2
(
2v − σ′

)
+ a2

[ (
m2

0 + 2εH2
)
ψ2 − 2m2

1v∇2v

−m2
2

(
σ∇4σ + 2τ∇2σ + 3τ2

)
+m2

3

(
∇2σ + 3τ

)2 − 2m2
4ψ (∇σ + 3τ)

]
+b
(
8τ ′∇2v − 4τ ′∇2σ′ − 6τ ′2

)
− c1∇2ψ

(
∇2σ + τ

)
(7.37)

−c2∇2ψ
(
∇2σ + 3τ

)
− c3ψ∇2ψ − (d1 + d2 + d3 + d4)∇2σ∇4σ

−2 (d1 + d2 + 3d3 + 2d4) τ∇4σ − (3d1 + d2 + 9d3 + 3d4) τ∇2τ

+aM3
Pl

[
α1ψ(∇2σ′ + 3τ ′) + 2α1ψ∇2v

+α3∇2v(∇2σ + 3τ) + α4∇2v(∇2σ + τ)
]}

where the parameter b is associated to the combination (δKij)
2 − (δKii)

2 expanded at

quadratic order in fluctuations. As we said, the fields v and ψ are again auxiliary and

their equations of motion can be solved algebraically. The main point is that the action

resulting from their substitution does not contain any time derivative term σ′, which

means that the dangerous “sixth-mode” σ is not dynamical and can be integrated away.

The action for the only remaining dynamical scalar has the following simple structure:

S = M2
Pl

∫
d4xa2

[
A1τ

′2 +A2ττ
′ +A3τ

2 +A4σ
2 +A5στ +A6στ

′] , (7.38)

where the Ai are functions of all the parameters and the gradient ∇2 (see Appendix

C.2). The field σ can then be integrated out to give (after some integrations by parts)

S = M2
Pl

∫
d4xa2

[
B1τ

′2 +B2τ
2
]
, (7.39)

At this point, one can canonically normalize τ̂ =
√
B1τ and symbolically expand in ∇2

(which can be understood in Fourier space as an expansion in the momentum k), so that

one can read the mass and the speed of sound of the scalar mode:

S =

∫
d4x a2

[
τ̂ ′2 + ĉ2

s τ̂∇2τ̂ + a2M̂2τ̂2 +O(∇4)
]
. (7.40)

The expression of ĉ2
s and M̂2 are complicated functions of all the parameters. It can be

checked that in the limit where all the parameters of the modified kinetic terms b, ci,

di, δi, αi vanish, we recover the expressions of the previous section where cs is given by

eq. (7.26) and mass is given by eq. (7.27), while higher-order derivative terms correctly

drop to zero. As an example, we write here the effective mass and speed of sound at
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leading order in slow roll in the case where all the parameters are zero except for masses

and α1:

ĉ2
s =

α1Λ(m2
2 −m2

3)(α1Λ− 4H)

(m2
2 −m2

3)
(
3α1Λ(α1Λ− 8H) + 8m2

0

)
+ 8m4

4

, (7.41)

M̂2 = −
m2

2(4H − α1Λ)
(
4H
(
m2

2 − 3m2
3 + 3m2

4

)
− α1Λ

(
m2

2 − 3m2
3

))
(m2

2 −m2
3)
(
3α1Λ(α1Λ− 8H) + 8m2

0

)
+ 8m4

4

. (7.42)

One can see that “kinetic operators” like the one proportional to α1 can also affect the

effective mass. A natural question to ask is whether, by exploiting this fact, effective

mass contributions can be generated even in the absence of explicit non-derivative terms

in the action. This will be the subject of the next section.

Also after adding derivative contributions, the curvature perturbation is again not

conserved and decays after horizon exit. As previously, this can be seen also from the

trace of the spatial part of the energy-momentum tensor, which, in the simple example

we do, now reads

Tr [δTij ] = m2
2τ +

1

2
α1MPl(aψ)′ +O(∇2) , (7.43)

hence it does not vanish at superhorizon scales, due to the contributions proportional

to m2
2 and α1. One might use the constraint equation (7.21) to express ψ′ in terms of

τ , the only propagating scalar degree of freedom in the system. It would be interesting

to analyze how the curvature perturbation ζ evolves at superhorizon scales when α1 or

other diffeomorphism-breaking kinetic terms are included.

7.2 Generating a Mass without Mass: four Derivative

Operators

We have learned in the previous section that by breaking spatial diffeomorphism in-

variance of the action for metric perturbations, by means of mass terms or derivative

operators, we can change some of the properties of the tensor spectrum with respect

to the standard inflationary predictions, in particular its tilt nT and the value of the

tensor sound speed cT . It is natural to ask whether it is really necessary to explicitly

break spatial diffeomorphism invariance to do so. The aim of this section is to show

that the answer is no, provided that we allow for higher spatial derivative operators

in the quadratic action for fluctuations. An effective field theory approach to inflation

that takes into account of higher derivative operators has also been proposed in [100].

Adding such operators, one can avoid the argument [206] (based on operators with at
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most two space-time derivatives) and find genuine contributions to the tensor sound

speed cT , that cannot be eliminated by disformal transformations. This has interesting

implications since the tensor sound speed enters in the amplitude of the tensor power

spectrum (7.15) in a way that enhances the amplitude of PT that scales as c−1
T . It

would be interesting to find explicit models able to avoid the Lyth bound using this fact,

but would also need to consider the effect on the scalar modes and hence the observed

tensor-to-scalar ratio r. In particular, we will explore the effect of 4-derivative contribu-

tions to the action for fluctuations, organized in such a way as not to break the spatial

diffeomorphism invariance, and not to introduce instabilities. The starting point is to

consider the quantities

∂0∂l hij = ∂l χ
′
ij + ∂l∂(is

′
j) + ∂l∂i∂j σ

′ + δij ∂lτ
′ , (7.44)

∂0∂i hij = ∇2s′j + ∂j ∇2 σ′ + ∂jτ
′ , (7.45)

∂0∂j hii = ∂j ∇2 σ′ + 3∂jτ
′ , (7.46)

that we can use to build quadratic operators with four derivatives, that we can potentially

add to the action for metric perturbations

L1 = (∂l ∂0 hij)
2 =

(
∂l χ

′
ij

)2
+ 2

(
∇2s′j

)2 −∇2 σ′∇2∇2 σ′ − 3τ ′∇2τ ′ − 2∇2 σ′∇2τ ′ ,(7.47)

L2 = (∂0∂i hij)
2 =

(
∇2s′j

)2 −∇2 σ′∇2∇2 σ′ − τ ′∇2τ ′ − 2∇2 σ′∇2τ ′ , (7.48)

L3 = (∂0∂j hii)
2 = −∇2 σ′∇2∇2 σ′ − 9τ ′∇2τ ′ − 6∇2 σ′∇2τ ′ , (7.49)

L4 = ∂0∂i hij∂0∂j hii = −∇2 σ′∇2∇2 σ′ − 3τ ′∇2τ ′ − 4∇2 σ′∇2τ ′ , (7.50)

where integrations by parts have been performed. We would like to build a combi-

nation of Li such that only contributions associated with χ′ij ∇2 χ′ij and τ ′∇2τ ′ are

non-vanishing, while the vectors and the remaining scalars do not appear. If such com-

bination can be found, it is invariant under spatial diffeomorphisms, since χij and τ do

not transform under this symmetry (see eq (7.8), noticing that τ transforms but only

under time-reparameterization). The combination with the desired properties is

Lω1 = ω1(L1 − 2L2 − L3 + 2L4) (7.51)

= −ω1χ
′
ij∇2χ′ij + 2ω1τ

′∇2τ ′ . (7.52)

In analogy to what happens for the two derivatives operators, see the comment after

eq.(7.12)), this combination (7.51) corresponds to a particular combination of the ex-

trinsic curvature perturbation,

(∂iδKjk)
2 − (∂iδK)2 − 2(∂iδKij)

2 − 2∂iδK∂jδKij , (7.53)

expanded at quadratic order in perturbations. Analogously, one can consider four deriva-

tive operators that lead only to combinations involving four spatial derivatives acting on
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the tensors ∇2χij ∇2 χij . The following Lagrangians arise from all possible contractions

of two spatial derivatives and hij (once integrations by parts are taken into account):

L1 = (∇2hij)
2 = (∇2χij)

2 − 2si∇4si + (∇4σ)2 + 3(∇2τ)2 + 2∇2τ∇4σ , (7.54)

L2 = (∂i∂jhij) = (∇4σ +∇2τ)2 , (7.55)

L3 = (∇2hii)
2 = (∇4σ + 3∇2τ)2 , (7.56)

L4 = (∂k∂ihij)
2 = −si∇4si + (∇4σ +∇2τ)2 , (7.57)

L5 = (∇2hkk∂i∂jhij) = (∇4σ +∇2τ)(∇4σ + 3∇2τ) . (7.58)

There exist combinations of these operators which allow us to avoid contributions from

all vectors and scalars:

Lω2 = ω2(L1 +
1

2
L2 −

1

2
L3 − 2L4 + L5) = (7.59)

= ω2(∇2χij)
2 , (7.60)

hence this combination preserves full four dimensional diffeomorphism invariance.

By adding the Lagrangians Lω1 and Lω2 to the quadratic EH Lagrangian plus the

two derivative contribution (7.12) – that can preserve diffeomorphism invariance if it

originates from a combination of δK2
ij and (3)R (see the comment after eq. (7.12)) – one

obtains the effective Lagrangian for tensor modes3:

L(T ) =
M2
Pl

4
a2

[
(1 + b)(χ′ij)

2 − ω1

a2Λ2
χ′ij∇2χ′ij

+(1 + d)χij∇2χij +
ω2

a2 Λ2
χij∇2∇2χij

]
(7.61)

with ω1,2 arbitrary parameters, and Λ some cut-off energy scale, that will depend on

the UV completion, and that to be safe we take larger than the Hubble scale during

inflation. Let us emphasize that we constructed the Lagrangians Lω1 and Lω2 as space

diffeomorphism invariant combinations, with the specific aim to analyze the phenomeno-

logical consequences of higher order derivative operators in the tensor sector. These

Lagrangians are characterized by a specific choice of parameters among their terms: it

would be interesting to investigate whether such combinations can be enforced by some

symmetry principle. To canonically normalize the tensor field appearing in the Lagragian

L(T ) of eq. (7.61), we pass for simplicity to Fourier space, and define the quantity

χij =

√
2 χ̃ij

MPl a
√

1 + b+ ω1 k2/(a2 Λ2)
. (7.62)

3The same operators will also modify the scalar sector. Considering for simplicity only the Einstein-

Hilbert part plus these four-derivative operators, it can be easily seen that the action for the scalar has

the same form of the action for the tensors (7.61) and that the arguments that can be developed for the

scalar sector are very similar to the ones we are carring on for the tensors.
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Using this tilde quantity χ̃ij , the Lagrangian, after an integration by parts, acquires a

relatively simple form in a quasi-de Sitter universe

L(T ) =
1

2

[
(χ̃′ij)

2 − F (k, η) χ̃2
ij

]
(7.63)

with

F (k, η) =
1(

1 + b+ ω1 k2

a2 Λ2

)2

[
− (1 + b)2 (2− ε) a2H2

+k2 (1 + b)

(
1 + d− (3− ε) ω1H

2

Λ2

)
+

k4

a2 Λ2
(ω1 + dω1 + ω2 + b ω2) + ω1ω2

k6

a4 Λ4

]
. (7.64)

We can now work out some consequences of these results:

• By making the choice b = −1, the quadratic terms containing two time derivatives

cancel from the action (7.61), and the dynamics is driven by the four derivative

operator proportional to ω1. In a certain sense, the situation can be seen as

analogous to what happens in ghost inflation [208], where the leading terms in

the gradients of the ghost field vanish, and the next-to-leading contributions in

gradients become dominant. The expression for the function F above simplifies

considerably:

F (k, η) =
ω2

ω1
k2 +

(1 + d) Λ2

ω1
a2 , (7.65)

=
ω2

ω1
k2 − 2H2 a2 +

(1 + d) Λ2 + 2H2 ω1

ω1
a2 . (7.66)

The first term in the right hand side of (7.66) can be recognized as the usual

first contribution to the dispersion relation associated with χ̃ij , characterized by

an effective sound speed c2
T = ω1/ω2. The second piece is the effective ‘mass

term’ that usually arises in a quasi-de Sitter universe. Then, we have the third

contribution, that mimics exactly a mass term with

m2
χ̃ =

(1 + d) Λ2 + 2H2 ω1

ω1
. (7.67)

Interestingly this effective mass arises only from the higher derivative terms, with

no need to break diffeomorphism invariance! In this sense, 4-derivative contribu-

tions can be interpreted as being able to generate mass without an explicit mass

parameter. On the other hand, notice that in this case the relation between the
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canonically normalized tensor field χ̃ij and original one χij scales as the inverse

of the momentum: χij ∝ χ̃ij/k: see eq. (7.62). This typically implies – by the

arguments outlined around eq (7.6) – a low cut-off scale when focussing at large

scales; on the other hand, this crucially depends on the tensor interactions dur-

ing inflation, that might conspire in such a way to raise the cut-off. This is an

interesting question that we intend to pursue in the future.

• Let us now consider the more general situation with b 6= −1, focusing on the large

and small scale limits for the function F :

F (k, η)
k→0∼ (−2 + ε)a2H2 +O(k2) , (7.68)

F (k, η)
k→+∞∼ ω2

ω1
k2 +

a2Λ2

ω2
1

[(1 + d)ω1 − (1 + b)ω2] +O(k−2) . (7.69)

No major differences with respect to the standard case arise, apart from the pres-

ence of a non-trivial sound speed cT : the system can be quantized selecting a

Bunch-Davies vacuum at very small scales, while at large scales the tensors behave

as in a standard quasi-de Sitter universe, with no mass.

This preliminary analysis of the role of operators with higher spatial derivatives shows

their possible relevance for characterizing tensor modes, and can find some motivation

for example (but not only) in the context of Horava-Lifshitz cosmology (see [209] for a

review). It shows that in this set-up a non-unity tensor sound speed cT can be generated,

and that it cannot in general be set to one by a set of transformations of the metric [206].

105



106



CHAPTER 8

Breaking Discrete Symmetries

We have seen in the previous Chapter that the breaking of spatial diffeomorphisms

together with time diffeomorphisms during inflation can lead to a very interesting phe-

nomenology. Motivated by these considerations, we find interesting to add complexity

and explore the subject further along the same line. In particular, we want to exploit

the EFTI to find novel operators that can lead to possibly new effects associated with

inflationary observables, as non-standard correlations among inflationary perturbations.

In [5], on which this Chapter is based, we focus on the interesting class of operators that

break discrete symmetries as parity and time-reversal during inflation. Unless discrete

symmetries are imposed by hand on the theory under consideration, such operators will

normally be generated, for example, renormalization effects: hence it is interesting to

explore their consequences.

Parity-violating interactions have been studied in great detail for their consequences

in the CMB, starting with [210]. These operators can be associated with the amplifica-

tion of the amplitude of one of the circular polarization of tensor modes around horizon

crossing, leading to distinctive effects associated with TB and EB cross correlations

in the CMB [211–214]. Moreover, parity-violating operators can also affect the scalar

sector, leading to statistical anisotropies in the bispectrum, or also explain anomalies

in the CMB. The realization of models leading to parity violation during inflation and

their observational consequences have been motivated by, for example, pseudoscalars

coupled to gauge fields [215] or Chern-Simons modifications of gravity [216, 217] (see

e.g. [93, 218–238] for a selection of papers discussing both theoretical and observational

aspects of parity violation during inflation). To the best of our knowledge, there are

no studies on the consequences of operators that contain a single derivative of time co-

ordinate: in absence of better name, we say that these operators break time-reversal

symmetry during inflation. In this Chapter, using the model-independent language of
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the EFTI, we study selected operators that break the aforementioned discrete symme-

tries and their effects for the dynamics of linearized perturbations around a homogeneous

and isotropic Friedmann-Robertson-Walker (FRW) universe. Both in the scalar and ten-

sor sectors, we show that such operators can lead to new direction-dependent phases for

the fluctuations and also a small quadrupole contribution to the effective sound speed.

A direction-dependent phase does not affect the power spectrum, but can have conse-

quences for higher correlation functions.

8.1 Introduction

The starting point of the discussion is that if spatial diffeomorphisms are broken, in

the absence of specific symmetries, one can expect also a small degree of background

anisotropy during inflation. We consider a background metric that is decomposed as

homogeneous FRW and anisotropic parts, denoted by ḡ
(0)
µν and ḡ

(a)
µν respectively, as

ḡµν = ḡ(0)
µν + ḡ(a)

µν = a2(η)

(
−1

δij

)
+ a2(η)

(
βi

βi χij

)
, (8.1)

where βi and χij are transverse and traceless. We assume from now on that βi and

χij are small: |βi| � 1 and |χij | � 1. Hence we consider their contributions only at

linearized order in our analysis. In other words, we develop a perturbative scheme in

terms of the small quantities parameterizing the background anisotropy in the metric

and (as we shall see in a moment) in the energy-momentum tensor. We stress that (8.1)

is our background metric. On top of it, we will include inhomogeneous perturbations

in the next sections. We now consider a background energy-momentum tensor that is

able to support our small deformation (8.1) of a FRW background metric. For this

aim, we start introducing the following anisotropy parameters that will enter in the

energy-momentum tensor:

- A vector θi, selecting a preferred spatial direction.

- A shear σij , a symmetric, traceless tensor.

To be consistent with the fact that the magnitudes of the anisotropic metric components

βi and χij are small, we assume both these anisotropic parameters θi and σij to be

small, and treat them at linearized order in our discussion. We can think of these

objects as vevs of some fields and, in realistic cosmological situations, at least a mild

coordinate dependence is expected. Since we are implementing an EFT approach to
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describe inflationary fluctuations, we do not need to specify an underlying theory that

provides such quantities and the equations of motion for the fields associated with them.

This since by hypothesis the perturbations of energy-momentum tensor can be set zero by

an unitary gauge choice and do not influence the dynamics of the metric perturbations on

which we are focusing our attention. We only need to ensure that the energy-momentum

tensor constructed using these quantities satisfies the Einstein equations, order by order

in a perturbative expansion in the fluctuations.

In the spirit of the EFTI, the matter action that controls the background energy-

momentum tensor breaks both time and space reparametrization invariance, and it is

then written as

Sm = −
∫
d4x
√
−g
[
Λ(η) + c1(η)g00 + c2(η)δijg

ij + d1(η)θig
0i + d2(η)σijg

ij
]
. (8.2)

Notice the presence of terms depending on gij and g0i, that are absent in the standard

EFTI (4.16), where spatial diffeomorphisms are preserved. Since the degree of anisotropy

is assumed to be small, in what follows we only consider contributions at most linear

in θi and σij , and in the metric deformations βi and χij . Moreover, we neglect the

possible spatial dependence of the coefficients in the previous action. The background

energy-momentum tensor associated with the action (8.2) is

Tµν = − 2√
−g

δSm
δgµν

. (8.3)

Combined with the Einstein tensor Gµν – which can be constructed straightforwardly

from (8.1) – the Einstein equations impose the following relations to be satisfied at the

background level, in a linearized expansion for the anisotropy parameters (from now on

we set the Planck mass MPl = 1):

3H2 = c1 + 3c2 + a2Λ , (8.4)

H2 −H′ = c1 + c2 , (8.5)

d1θi = c2βi , (8.6)

2d2σij = Hχ′ij +
1

2
χ′′ij + 2c1χij . (8.7)

So we learn that in our linearized approximation the background quantity βi in the

metric is controlled by d1 and the vector θi, while χij is controlled by d2 and the shear

σij . A configuration that solves these equations can lead to a solution with a small

degree of anisotropy in the background during a quasi-de Sitter inflationary stage. By

choosing appropriately the anisotropic parameters θi and σij such a configuration can

avoid Wald’s no-hair theorem [239] and lead to anisotropic inflation.

Wald’s theorem states that, under some hypotheses on the energy-momentum tensor,

the inflationary expansion rapidly reduces the amplitude of background anisotropies to
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an unobservable level. The prerequisites behind the theorem are not necessarily satisfied

in our case. We can write

H′ = H2(1− ε) , (8.8)

where ε ≡ −a−1H ′/H2 with H = aH. Substituting this result into (8.5), we find that

c1 + c2 = εH2. Using this information, the background energy-momentum tensor can

be decomposed as

Tµν = −Λ(η) ḡµν + T (2)
µν (8.9)

with

T
(2)
00 = εH2 + 2c2 ,

T
(2)
0i =

(
εH2 − 2c2

)
βi ,

T
(2)
ij =

(
εH2 − 2c2

)
(δij + 3χij) +Hχ′ij +

1

2
χ′′ij .

Wald’s isotropization theorem states that anisotropies are rapidly suppressed during

inflation if the strong and dominant energy conditions are satisfied:(
T (2)
µν −

1

2
ḡµνT

(2)

)
tµtν ≥ 0 for all time-like vectors tµ , (8.10)

T (2)
µν t̂

µt̂ν ≥ 0 for all future-directed, causal vectors t̂µ . (8.11)

Time-like vectors tµ satisfy the condition(
t0
)2 ≥ 2βit

0ti + (δij + χij) t
itj . (8.12)

In our case, the dominant energy condition reads(
εH2 − 2c2

) [(
t0
)2

+ 2βit
0ti + (δij + χij) t

itj
]

+ 4c2

(
t0
)2

+ 2 (d2σij − c2χij) t
itj ≥ 0 . (8.13)

In the EFTI scenarios with no breaking of spatial diffeomorphisms or isotropy, c2 = 0,

σij = 0 and χij = 0. The second line in the above equation would vanish, while the

first line would be positive definite, satisfying in this way the dominant energy condition

(8.11). In our more general setup, instead, the second line is non-vanishing, and can

render the previous quantity negative. Hence, in general the prerequisites underlying

Wald’s theorem can be expected to be violated in our context based on the EFT of

inflation. Such situations can be realized in models of inflation with vector fields [240],

or solid inflation, as discussed in the recent literature, see e.g. [241–243].

Hence, as a matter of principle, our approach based on the EFTI can accommodate

a model-independent analysis of inflationary models with anisotropic backgrounds (see

e.g. [244, 245] for specific models with these properties). On the other hand, the general
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analysis of such system can be very cumbersome, due to several new operators that

can contribute. For the rest of this Chapter, we make some additional simplifying

assumptions to remove the background anisotropies and facilitate as much as we can our

analysis of fluctuations, yet covering some relevant features that are distinctive of our

system with broken spatial diffeomorphism invariance. Our requirements are as follows:

1. We impose a residual symmetry [196],

xi → xi + ξi(t) (8.14)

for an arbitrary time-dependent function ξi. Notice that this symmetry invariance

is less restrictive than spacetime-dependent spatial diffeomorphism. In our context,

this residual symmetry is quite powerful. Since the 0i component of the metric

perturbation transforms non-trivially under this symmetry (see next section), this

symmetry eliminates it from our action, if there are no spatial derivatives acting

on it. This requires to choose the parameter d1 = 0 in the action (8.2), and

consequently (8.6) tells us that the metric anisotropic parameter βi vanishes:

βi = 0 . (8.15)

2. In addition, from now on we set the shear equal to zero,

σij = 0 , (8.16)

and focus on the effects of the vector θi only. Setting the shear to zero implies a

vanishing source in (8.7) for the background anisotropic tensor χij . For simplicity,

in what follows we choose the solution corresponding to the configuration,

χij = 0 . (8.17)

After imposing these two requirements we obtain an isotropic and homogeneous FRW

background metric. However, the anisotropic parameter θi contributing to the back-

ground energy-momentum tensor can be non-vanishing, and as we shall see next, it can

play an important role to characterize quadratic operators that break discrete symme-

tries, in the quadratic action for perturbations.

8.2 Quadratic Action and New Operators

In this Section we discuss how to build a quadratic Lagrangian for the metric fluctuations

in our setup. We mainly concentrate on operators that break discrete symmetries during
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inflation. The operators that we consider in this section are a selection chosen for the

most notable phenomenological consequences. We stress that higher derivative symmetry

breaking operators – even preserving spatial diffeomorphisms – can also be included, but

ours are the leading ones in a derivative expansion given our symmetry choices. We make

use of the background vector θi introduced in the previous section for constructing our

quadratic operators and we work at linearized order on this small quantity.

The linearized perturbations around our isotropic background, gµν = ḡµν +a2(η)hµν ,

can be decomposed into scalar, vector, and tensor sectors1:

h00 = 2A , (8.18)

hi0 = Si + ∂iB , (8.19)

hij = 2ϕδij + 2∂i∂jE + ∂iFj + ∂jFi + γij . (8.20)

Under the most general diffeomorphism transformations xµ → xµ + ξµ(t,x), the quanti-

ties that appear in the decomposition of hµν transform as, with βi = σij = χij = 0 [246],

A → A− ∂ηξ0 −Hξ0 , (8.21)

Si → Si − ∂ηξTi , (8.22)

B → B − ∂ηξL + ξ0 , (8.23)

ϕ → ϕ−Hξ0 , (8.24)

E → E − ξL , (8.25)

Fi → Fi − ξTi , (8.26)

γij → γij . (8.27)

As we explained, our setup breaks both space and time diffeomorphism invariance, but

we impose invariance under the residual symmetry transformation of (8.14) that ensures

that the quadratic action for the metric perturbations does not contain contributions

proportional to the metric components h0i, if there are no spatial derivatives acting

on them. In Appendix C.3 we list the new derivative operators that are allowed by the

previous requirements. Here, after discussing the Einstein-Hilbert action and the leading

operators that do not contain derivatives – the mass terms – we concentrate on derivative

operators that break discrete symmetries. Our derivative operators can be considered

as leading derivative corrections to the mass terms that break spatial diffeomorphisms

and discrete symmetries in Lorentz violating theories of massive gravity [196–198].

We start with the Einstein-Hilbert action for quadratic fluctuations. Once decom-

1We adopt here the same notation of the original paper [5], which differs from the one in the previous

Chapter only for variable names and some normalizations. In particular, the changes from (7.7) are:

ψ → 2A, ui → Si, v → B, τ → 2ϕ, σ → E, si → Fi, χij → γij .
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posed into scalar, vector and tensor parts, they read respectively as follows [27]:

S(s) =

∫
d4x

a2

2

[
−6
(
ϕ′ −HA

)2 − 2(2A+ ϕ)∇2ϕ+ 4
(
ϕ′ −HA

)
∇2
(
B − E′

)]
,

(8.28)

S(v) =

∫
d4xa2

[
−(Si − F ′i )∇2(Si − F ′i )

]
, (8.29)

S(t) =

∫
d4x

a2

8

[
γ′ij

2 − (∇γij)2
]
. (8.30)

Repeated spatial indices are contracted with δij . To this action we can include the mass

operators that are allowed by our symmetries:

O(0)
1 = −m2

1a
4h2
ij = −m2

1a
4
[
12ϕ2 + 2 (∂iFj)

2 + γ2
ij + 8ϕ∇2E + 4(∇2E)2

]
, (8.31)

O(0)
2 = −m2

2a
4h2
ii = −m2

2a
4
(
6ϕ+ 2∇2E

)2
, (8.32)

O(0)
3 = −m2

3a
4h2

00 = −m2
3a

4(4A2) , (8.33)

O(0)
4 = −m2

4a
4h00hii = −m2

4a
4
(
12Aϕ+ 4A∇2E

)
. (8.34)

These are the zero-derivative (hence the superscript (0)), leading operators that break

diffeomorphism invariance. These operators, and the ones that we meet next, already

contain the square root of the metric, and can be included as they stand into the action.

For example the operator (8.31) can be included in the action as

∆S
(0)
1 =

∫
d4xO(0)

1 . (8.35)

These mass terms can lead to a non-vanishing anisotropic energy-momentum tensor,

that among other things does not respect the adiabaticity condition and leads to non-

conservation of the curvature perturbation on super-horizon scales. See [4] for a discus-

sion on this point.

We now consider also some novel single-derivative operators, built with or without the

anisotropic vector θi, that have the feature to break discrete symmetries in scalar and/or

tensor sectors. As discussed in the introduction, there is a rich literature on possible

interactions that violate the discrete parity symmetry, and their consequences for the

CMB. The novelty of our model-independent approach is the use of EFT for inflation in

a context where spatial diffeomorphism invariance can be explicitly broken (see also [100]

for a discussion of parity violating operators in an EFT for inflation preserving spatial

diffeomorphism invariance). As we discussed, spatial diffeomorphism invariance can

be violated in inflationary systems where background fields acquire spatial-dependent

background values, as in models with vectors or in solid inflation. If discrete symmetries

are not imposed a priori, the operators that we consider can be expected to be generated

113



by quantum effects in such inflationary scenarios. For this reason, it is interesting to

explore them and their consequences. Here we introduce a couple of such operators, the

ones with the most notable phenomenological consequences that will be studied in the

next section.

The lowest dimensional, single derivative operator that breaks parity does not involve

anisotropic parameters and reads

O(1)
1 = µa3εijk (∂ihjm)hkm = µa3εijk

[
(∂iγjm) γkm − ∂iFj∇2Fk

]
. (8.36)

It leads to parity violation in the tensor sector, since it is not invariant under the in-

terchange xi → −xi. µ is a mass scale we have included for dimensional reasons. In

addition, there is another interesting single-derivative operator, built with the back-

ground vector θi, that contains a single derivative along time:

O(1)
2 = µa3εijkθihjmh

′
km

= µa3εijkθi

(
γjmγ

′
km − Fm∂jγ′km − F ′m∂kγjm − Fj∇2F ′k (8.37)

+ 2∂jF
′
k∇2E + 2∂kFj∇2E′

)
.

We can say that such an operator breaks time-reversal in the tensor sector, since the

contributions within the parenthesis are not invariant under a change of sign in the time

direction. Notice that in order to build it we need to use the vector θi that selects a

preferred direction. Recent papers discussed possible phenomenology of scenarios that

contain together background anisotropies and parity violation: see e.g. [214, 247, 248].

We will see that such an operator can have interesting consequences for the dynamics of

the tensor modes.

We will also include two-derivative operators. Among the many possibilities, we

focus on two interesting operators that break discrete symmetries:

O(2)
1 = a2h′ijθj∂khik

= −a2θj

(
4ϕ′∂jϕ+ 2ϕ′∇2Fj + γ′ij∇2Fi − 2ϕ∇2F ′j − 2F ′j∇4E

+ 4ϕ′∂j∇2E + 4∂jϕ∇2E′ + 4∇2E′∂j∇2E − F ′i∂j∇2Fi

)
, (8.38)

O(2)
2 = a2h′ijθk∂khij

= −a2θk

(
12ϕ′∂kϕ+ γ′ij∂kγij

+ 4ϕ′∂k∇2E + 4∂kϕ∇2E′ + 4∇2E′∂k∇2E − F ′i∂k∇2Fi

)
. (8.39)

Notice that, considering their scalar and tensor parts, such operators are not invariant

under an (independent) interchange of spatial and of time coordinates. Hence we can say

that these operators break both parity and time-reversal, in the tensor as well as in the

scalar sectors. In the next section we will discuss their consequences. Other single and

two derivative operators that can break discrete symmetries are listed in Appendix C.3.
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8.3 Dynamics of linearized fluctuations

We now discuss some consequences of the discrete symmetry breaking operators that

we presented in the previous section. We concentrate our attention to the dynamics of

linearized fluctuations. Within our approximation of small anisotropy parameter θi, we

show that vector degrees of freedom do not propagate. Scalar degrees of freedom acquire

a direction-dependent phase. Although this phase factor does not have consequences for

the scalar power spectrum, nevertheless it might affect higher order correlators. We also

show that small direction dependent contributions to the sound speed can arise. At the

quadratic level, the most notable consequences occur in the tensor sector, where we find

that some of our new operators lead to a chiral amplification of gravity waves. This is

more effective than the one first pointed out in [210] discussing parity-breaking operators,

because the modes can be continuously amplified during the whole inflationary epoch.

8.3.1 No propagating vector modes

At linear order in the anisotropy parameter θi, we can arrange our system such that there

are no propagating vector degrees of freedom: the derivative operators of the previous

section have been selected, among other things, to ensure this condition. To see this,

we include for simplicity a single mass term, proportional to m2
1, as given by (8.31),

plus a combination of the discrete symmetry breaking operators proportional to θi that

we have introduced in the previous section. The quadratic vector Lagrangian can be

expressed as

L(v) =
a2

2

[
∂k
(
Si − F ′i

)
∂k
(
Si − F ′i

)]
− 2m2

1a
4 (∂iFj)

2 − θiFj (· · · ) , (8.40)

where the dots contain contributions depending on Fk or on scalar and tensor fields,

that we do not need to specify for our arguments. In the previous expression, the first

part comes from the Einstein-Hilbert term, the second from a mass term, while the third

part collects the contribution from the new derivative operators discussed in the previous

section. In this context, the vector Si appears only in the first term of (8.40). It can be

readily integrated out, leaving a Lagrangian identical to (8.40) but with the first term

missing. The equation of motion for Fi then reads

∇2Fi =
θi
m2

1

(· · · ) , (8.41)

where again the dots contain contributions of the various fields involved, that we do not

need to specify. Substituting (8.41) into (8.40), we find only terms of O(θ2
i ) that are

115



negligible within our approximation. Hence, although typically vector modes propagate

in our context, at linearized order in θi, the vector degrees of freedom are not dynamical

and will be set to zero.

8.3.2 Direction-dependent phase in the scalar sector

Let us examine the effects of parity breaking and time-reversal operators in the scalar sec-

tor. We consider a quadratic action built in terms of the Einstein-Hilbert contributions,

mass terms, and a linear combination of the two-derivative operators O(2)
i introduced

in (8.38) and (8.39). We set the vector perturbations to zero as seen in the previous

subsection. This scalar action contains four scalar degrees of freedom: A, B, E and ϕ.

Among them, A and B are non-dynamical and can be integrated out, leaving a scalar

Lagrangian for E and ϕ. We can proceed as done in [4], further solve the equation of

motion for the non-dynamical field E, and plug it into the action. We find at linearized

order in θi a two-derivative operator for ϕ (already present in our expressions for O(2)
i )

that breaks the discrete parity and time-reversal symmetries:

L(s) ⊃ a2ϕ′θi∂iϕ . (8.42)

Other contributions quadratic or higher in the parameter θi can be neglected, as done

in the previous subsection for vector fluctuations. The scalar field ϕ in the unitary

gauge is the curvature perturbation R, hence its statistics can be directly connected

with observable quantities. Here however we limit our attention to understand how the

operator (8.42) modifies the mode function for ϕ, viz. R. We consider then the action

for the canonically normalized field u = zR with z ∝ a during quasi-de Sitter expansion:

S(s) =

∫
d4x

1

2

[
u′2 − (∇u)2 +

z′′

z
u2 + 2b1θiu

′∂iu

]
, (8.43)

where the last is our new term, weighted by a real coefficient b1 that for simplicity we

consider as constant. Here we do not explicitly discuss the consequence of the mass terms

O(0)
i . Such contributions have been already studied for example in [4] and have been

shown to lead to anisotropic stress and non-conservation of the curvature perturbation,

generalizing the results first pointed out for solid inflation [192].

The equation of motion for the mode function uk, that follows from (8.43) once

converted to Fourier space, results

u′′k + 2ib1θikiu
′
k +

(
k2 − z′′

z

)
uk = 0 . (8.44)
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At early times the new operator proportional to b1 is subdominant, so a standard Bunch–

Davies vacuum can be unambiguously defined. It is convenient to express the mode

function uk as

uk = e−iθikib1ηu
(0)
k (8.45)

so that (8.44) becomes

u
(0)
k

′′
+

(
k2 − z′′

z

)
u

(0)
k + k2

(
b1θik̂i

)2
u

(0)
k = 0 , (8.46)

where k̂i ≡ ki/k. The last term in the previous expression is quadratic in θi, so it can

be neglected for consistency with our approximation (but see the comment at the end

of this subsection). Doing so we end with the standard evolution equation in a FRW

background, and the solution for u
(0)
k can be expressed in terms of Hankel functions. On

top of this, the complete solution for uk gains a new direction-dependent contribution to

the phase proportional to b1 as in (8.45). Such a configuration is only reliable at linearized

order in θi, hence on large scales, k/(aH) ≤ 1. For smaller scales, contributions that are

non-linear in θi can become large and change the solution: this fact is important when

quantizing the system. Note that the power spectrum remains isotropic because (8.45)

is different from the standard solution by a direction-dependent phase, which cancels

when computing the power spectrum. It is also interesting to interpret the role of this

phase in coordinate space, making a Fourier transform of (8.45). One finds that

u(η, xi) = u(0)(η, xi + b1 η θ
i) . (8.47)

Hence its effect amounts to a time-dependent shift of the argument of the scalar mode

function in coordinate space. Such shifts cancel when taking correlation functions among

scalar fluctuations, due to the translational invariance of these quantities. On the other

hand, they can have non-vanishing physical effects when taking higher order correla-

tions functions between scalar and tensor modes, since the tensor perturbations do not

necessarily share the same shifts. It would be interesting to study this topic further.

Let us end this subsection briefly commenting on the last term in (8.46): as we ex-

plained above, consistency of our approximations would require to neglect such terms,

since at quadratic order in the anisotropy parameter θi other contributions of compa-

rable size can arise – for example the coupled terms between scalar, vector and tensor

fluctuations – that should be taken into account. Nevertheless, such a particular term

would be present, and provide a quadrupole contribution to the scalar sound speed.

It would be interesting to study its effects, noticing also that being of positive size it

increases the amplitude of the sound speed rendering it larger than one. We leave the

analysis of this topic to future work.
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8.3.3 Chiral phase in the tensor sector

We now explore the consequences of our discrete symmetry breaking operators for the

tensor sector. We do not consider the mass terms, which were studied e.g. in [4]. We

consider here the effects of the single derivative operators O(1)
1 and O(1)

2 that break parity

and time-reversal. The consequences of the two-derivative operator O(2)
i are, as can be

read from the derivative structure of the tensor perturbations in (8.39), identical to the

ones discussed in the previous section on the scalar sector, so we do not analyze them

here.

The action for tensor fluctuations is

S(t) =

∫
d4x

a2

8

[
γ′ij

2 − (∇γij)2 + 2q1 µa εijk (∂iγjm) γkm + 2q2 µa εijkθiγjmγ
′
km

]
,

(8.48)

where we have assumed the the coefficients q1 and q2 are constant dimensionless real

parameters: the condition of being real is required by our conventions on the tensor

polarizations. The equation of motion for the tensor degrees of freedom results

γ′′ij + 2Hγ′ij −∇2γij − 2q1 µa εkmi∂kγmj + 2q2 µa εkmiθkγ
′
mj + 3q2 µaH εkmiθkγmj = 0 ,

(8.49)

where all indices are contracted with the Kronecker symbol δij . Now, we introduce the

circular polarization tensor e
(λ)
ij (k̂), with λ = + (−) corresponding to the right (left)

circular polarization, which satisfies the circular polarization conditions2:

e
(λ)
ij kj = e

(λ)
ii = 0 ,

εilme
(λ)
lj km = iλke

(λ)
ij ,

e
(λ)∗
ij e

(λ′)
ij = 2δλλ′ .

(8.56)

2Following[201, 249] The polarization vector e
(λ)
i (k̂) perpendicular to k̂ can be written as

e
(λ)
i (k̂) =

θ̂i(k̂) + iλφ̂i(k̂)√
2

, (8.50)

with λ = ±. This vector satisfies

kie
(λ)
i = 0 , (8.51)

e
(λ)∗
i (k̂) = e

(−λ)
i (k̂) = e

(λ)
i (−k̂) , (8.52)

e
(λ)∗
i e

(λ′)
i = δλλ′ , (8.53)

εijlkie
(λ)
j = −iλke(λ)

l . (8.54)

By means of such a polarization vector we can construct the polarization tensor as

e
(λ)
ij =

√
2e

(λ)
i e

(λ)
j . (8.55)

It is straightforward to prove (8.56) using (8.51).
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γij can be Fourier expanded in terms of polarization mode functions as

γij(η,x) =

∫
d3k

(2π)3

∑
λ=+,−

[
γ(λ)(η,k)e

(λ)
ij (k̂)eik·x + h.c.

]
. (8.57)

Then, we find the equation of motion for the mode function γ(λ), after contracting with

e
(−λ)
ij , as

γ′′(λ) + 2Hγ′(λ) + k2γ(λ) − 2λq1 µa kγ(λ) − 2λq2 µa θ̂γ
′
(λ) − 3λq2 µaHθ̂γ(λ) = 0 , (8.58)

where we have introduced

θ̂ ≡ λ

2
e

(λ)
ij εlmiθle

(−λ)
mj . (8.59)

Let us discuss the interpretation of θ̂. Using (8.55), we learn that θ̂ = λe
(λ)
i εlmiθle

(−λ)
m .

Here e
(λ)
i and e

(−λ)
m are two mutually orthogonal vectors, that are both orthogonal to the

direction of the three-momentum k. This implies that the cross product e
(λ)
i e

(−λ)
m εmil

is a vector parallel to k: contracting it with the vector θl and using (8.56) leads to the

identity

θ̂ = iθik̂i . (8.60)

Notice at this stage the main difference between the operators proportional to q1 and

q2. The operator proportional to q2 is associated with time-derivatives of the mode

function γ(λ) or the scale factor, while the operator q1 with space-derivatives. The effect

of the contribution of q1 corresponds to the known parity-violating operators [210], and

produces an enhancement/suppression of tensor mode polarization at horizon crossing

only. Such effects are well studied in the literature (see as an example the review [201])

so we will not study them here. Let us instead concentrate on the consequences of the

novel operator O(1)
2 proportional to q2. We rescale the field γ(λ) in the standard manner

as

v(λ) ≡
a√
2
γ(λ) . (8.61)

The equation of motion for v(λ) is then

v′′(λ) − 2iλq2µaθik̂iv
′
(λ) +

(
k2 − a′′

a
− iλq2µaHθik̂i

)
v(λ) = 0 . (8.62)

Similar to what we did for the scalar sector, it is convenient to rescale

v(λ) ≡ eiλq2µθik̂i
∫
adηv

(0)
(λ) . (8.63)

The equation for v
(0)
(λ), at linear order in θi and so neglecting quadrupolar effects, reduces

to the well-known form

v
(0)
(λ)

′′
+

(
k2 − a′′

a

)
v

(0)
(λ) = 0 . (8.64)
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This equation is identical to the standard mode function equation for the tensor pertur-

bations. Furthermore, we notice that, neglecting slow-roll corrections, we can write∫
adη =

Ne

H
, (8.65)

with Ne being the number of e-folds, and H the value of the Hubble parameter during

inflation. So the solution for γ(λ) is given by

γ(λ) = exp

(
iλq2µθik̂i

Ne

H

)
γ

(0)
(λ) . (8.66)

Therefore, we again find a phase modulation of the wavefunction – like in the scalar

sector – but now the coefficient of this phase depends on the chirality of the specific

gravity wave one is considering, and on the number of e-folds as well. Such a phase does

not influence the power spectrum, since it can be read as a “chiral” translation of the

modes when expressed in the coordinate space:

γ(λ)(η, x
i) = γ

(0)
(λ)

(
η, xi − λq2µ

Ne

H
θi
)
. (8.67)

A translation in the coordinates does not affect the power spectrum of the tensor modes,

since the power spectrum is translationally invariant. On the other hand, since the

translation depends on the chirality, it can affect the bispectra among tensor modes

with different chirality (as studied for example in [91, 92]), as well as bispectra between

tensor and scalar sectors. We hope to return to investigate these topics in the near

future.
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CHAPTER 9

Bispectrum Signatures of

Diffeomorphism Breaking

We have seen that the EFTI is a powerful tool for obtaining model independent

predictions for large classes of inflationary scenarios. It requires only information about

the symmetries broken during the inflationary era and the study of general sets of op-

erators that satisfies the symmetry requirements and connects the coefficients of such

operators with observable quantities. We have seen in the previous chapters how EFTI

methods can be succesfully applied to the exploration of scenarios where, besides time

diffeomorphisms, also spatial diffeomorphisms are broken. This Chapter, which is based

on [6], develop the subject further, paying particular attention to the specific signatures

that this symmetry breaking pattern can leave on the three-point function of primordial

fluctuations.

Spacetime diffeomorphisms correspond to the invariance of the theory under the

gauge symmetry of General Relativity:

xµ → xµ + ξµ(t,x) , (9.1)

for arbitrary functions ξµ of the coordinates. During inflation, time-reparameterisation

invariance

t→ t+ ξ(xµ) , (9.2)

is broken. This is due to the existence of an inflationary clock that breaks time diffeo-

morphisms and controls how much time is left before inflation ends. In models of single

field inflation, there is a unique clock and only adiabatic modes can be generated on

superhorizon scales. What is controlling the clock dynamics is what sources inflation,

and at the same time causes the spontaneous breaking of de Sitter symmetry during

the inflationary era. Studying the system at high energies, we can expect that gravity
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decouples. Time reparameterisation becomes a global symmetry and its breaking gives

rise to a massless Goldstone boson π. Its high-energy dynamics faithfully describes the

dynamics of the fluctuations of the inflationary clock. This thanks to Goldstone boson

equivalence theorems, originally proven in quantum field theory for gauge symmetries

[250] and more recently applied to the EFTI [109, 119]. While time reparameterization

invariance is certainly spontaneously broken by the source of inflation, it is interesting to

explore the possibility that space diffeomorphisms are also broken during the inflationary

epoch. After all, we are ignorant about what was really happening at the high energy

scales and early times characterising inflation. Here we will start from the case where

also the symmetry

xi → x′i(t, xj) , (9.3)

is violated during inflation. This can be realised if there are fields that acquire a vev

depending on spatial coordinates, as scalars φ = φ(xi), or alternatively if there are fields

that select a preferred direction, as vector configurations that break rotational invariance.

Concrete realisations of both these possibilities can be found, for example, in models

where inflationary fields acquire vacuum expectation values along space-like directions,

motivated by Solid Inflation [192, 193, 251] or inflationary set-ups involving vector fields

(see e.g. [201, 211, 240, 245, 252–257]). A general approach based on the EFTI allows

us to study in a model independent way the consequences of this particular symmetry

breaking. The phenomenology of these models can be quite different with respect to

standard scenarios. They can lead to a blue spectrum of gravity waves, anisotropic

features in non-Gaussianities and new couplings among different sectors (scalar-tensor-

vector) of fluctuations (see e.g. [212, 244, 258–264]), as we have seen in Chapter 7.

Also, at the level of the background, scenarios that break space diffeomorphisms can

accommodate models that break isotropy, as we discussed in Chapter 8, possibly related

to some of the anomalies in the CMB (see e.g. the recent review [265]). Here we further

develop this subject, directly working with a Goldstone action for fluctuations. When

working at sufficiently high energies, we can expect that gravity decouples and spatial

diffeomorphisms reduce to global space translations and rotations: the breaking of these

symmetries lead again to Goldstone bosons. In particular, a scalar “phonon” appears,

that we call σ and that is associated with the broken translational invariance. This

Goldstone field σ interacts with the Goldstone boson π associated with the breaking of

time translations. Such couplings are constrained by non-linearly realised symmetries.

They lead to interesting effects, that we analysed for the first time in [6] and that – as we

will explain – are not obtained in the standard EFTI, where only time-reparameterisation

invariance is broken, or Solid Inflation scenarios.

The main result are two broad physical effects, that are distinctive of our set-up and

that we will review in detail:

• The first is specific of the scalar sector and exploits the new couplings between
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the two scalar Goldstone modes of broken symmetries. We find potentially large

contributions to inflationary observables, that can give sizeable effects even in the

limit of small breaking of space diffeomorphisms. Such contributions lead to a

change in the amplitude of the power spectrum of scalar fluctuations and, more

interestingly, direction dependent contributions to the squeezed limit of the scalar

and tensor bispectra (in the sense that the bispectra non-trivially depend on the

angle between the three wavevectors and can be parametrized with Legendre poly-

nomials PL and amplitude coefficients cL as in [266]). We discuss the physical

consequences of these findings, pointing our similarities and differences with previ-

ous results in the literature, as Solid Inflation [192], inflationary models involving

vector [242, 243] or higher spin field components [267].

• The second effect is instead more specific of tensor sector, and exploits novel pos-

sibilities for tensors to couple with themselves and with scalars. Such possibilities

are associated with operators that are allowed only if we break also space repa-

rameterisation invariance during inflation. They can lead to a blue spectrum for

gravitational waves and to a particular structure for the squeezed limit of tensor-

scalar-scalar bispectra, that violates single field consistency relations.

9.1 System under consideration

The study of this system that interests us, where all diffeomophisms (9.1) are broken,

can be carried on following different approaches, that we now briefly discuss. The first

approach consists on working in what is called the “unitary gauge”. One makes the

hypothesis that the system breaks diffeomorphism symmetries in such a way that a

gauge can be selected, where the fluctuations of the fields sourcing inflation can be set

to zero and perturbations are stored in the metric only 1. This gauge choice makes

the counting of the degrees of freedom particularly simple and provides a geometrical

interpretation of the dynamical fluctuations. The possibility of making this gauge choice

requires that we can work with at most four fields, that acquire vacuum expectation

values spontaneously breaking the symmetry. We label them as φµ, µ = 0, .., 3. We then

assume that their own perturbations can be set to zero appropriately selecting the four

1Let us emphasise that this condition is not automatically satisfied in all models of inflation. Consider

a system of two-fields inflation, φi with i = 1, 2, where both fields contribute to inflation acquiring a

time-dependent vev. Their perturbations transform non-trivially under time reparameterization, δφi →
δφi + ∂tφi ξ

0. Having a unique function ξ0 to play with, we don’t have enough freedom for setting both

δφi to zero.
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functions ξµ in eq. (9.1). This is our definition of unitary gauge (a similar condition

was studied in [192]). In this gauge, the dynamical degrees of freedom are stored in

the metric: the usual transverse, plus all the longitudinal polarisations of the graviton.

The resulting theory can be seen as an effective theory of (Lorentz violating) massive

gravity in a cosmological spacetime [196, 197]. Besides the two transverse helicities, the

longitudinal graviton polarisations can account for at most four more degrees of freedom:

two form a transverse vector and two are scalars. Notice that the scalars can both have

healthy dynamics around a cosmological spacetime (i.e. one of them does not necessarily

correspond to a ghost, as in flat space [202]).

While the unitary gauge is well suited for geometrically understanding the dynamical

degrees of freedom, this Chapter we adopt a second approach to study an inflationary

system with broken spacetime diffeomorphisms. We interpret the new dynamical modes

that arise as Goldstone bosons of broken spacetime symmetries. In order to do so, it

is convenient to define our coordinates to be aligned with the background values of the

fields that spontaneously break diffeomorphisms. The vacuum expectation values for the

symmetry breaking fields are

φ̄0 = t , φ̄i = αxi , (9.4)

φ̄0 and φ̄i are respectively clock and rulers during inflation. The parameter α controls

the breaking of spatial diffeomorphisms: we assume it to be small and we will use it as

an expansion parameter. Using the Stückelberg trick, we can restore full diffeomorphism

invariance by introducing a set of four fields, π and σi, and write the gauge invariant

combinations φµ as

φ0 = t+ π , φi = αxi + ασi . (9.5)

The Stückelberg fields π and σi transform under diffeomorphisms such to render the

previous combinations gauge invariant. For the system that we consider, σi can be

decomposed into longitudinal σL and transverse components σTi . The longitudinal com-

ponent σL interacts with π, starting already at quadratic level: the interaction among

these scalars is the main topic of our work. We make further assumptions: we would like

to preserve homogeneity and isotropy, imposing extra internal symmetries on the field

configuration [192],

φi → Oijφ
j , φi → φi + ci , (9.6)

where Oij ∈ SO(3). We further assume an approximate shift symmetry φ0 → φ0 + c0,

which is a technically natural assumption to protect the small time dependence of the

coefficients that will appear in the action. Notice that these internal symmetries we

impose act on field space. Diffeomorphism invariance of eq. (9.1) acts on coordinate

space instead and is spontaneously broken in our system.
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With this in mind, we can write – at lowest order in a derivative expansion – the

diffeomorphisms invariant action describing our system

S =

∫
d4x
√
−g
[

1

2
M2

PlR+ F (X,Y i, Zij)

]
, (9.7)

where F is an arbitrary function, respecting the internal group of spacetime shifts and

rotations (9.6) and g is the determinant of the metric tensor. The building blocks that

appear in the function F are the operators:

X = ∂µφ
0∂νφ

0gµν ,

Y i = ∂µφ
0∂νφ

igµν , (9.8)

Zij = ∂µφ
i∂νφ

jgµν ,

where i = 1, 2, 3. In what follows, we discuss the consequences of this form of the action

for the dynamics of the Stückelberg fields.

9.2 Inflationary background and fluctuation dynamics

9.2.1 The equations for the background

Our first task is to determine the background evolution. We selected the background

values for the fields that break diffeomorphisms to be aligned with the spacetime coor-

dinates, as in eq. (9.4). Such background fields are expected to drive inflation. We now

consider what conditions our function F have to satisfy, in order to generate a quasi-de

Sitter period of inflationary expansion. We start assuming Friedmann-Robertson-Walker

ansatz for the metric

gµν = diag(−1, a2, a2, a2) , (9.9)

where a is the scale factor of the universe. The energy-momentum tensor of our theory

reads:

Tµν = − 2√
−g

δS

δgµν
=

= gµνF − 2
(
FX ∂µφ

0∂νφ
0 + FY i ∂µφ

0∂νφ
i + FZij ∂µφ

i∂νφ
j
)
,

(9.10)

where the subscripts of F stand for the partial derivatives with respect to the operators

(9.8). When computed on the background values of the fields (9.4), the Einstein equa-

tions lead to the Friedmann equations (where H = ȧ/a and overlines denote quantities
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evaluated on the background):

3M2
PlH

2 =
(
−F̄ − 2F̄X

)
, (9.11)

−2M2
PlḢ = −2

(
F̄X +

α2

a2
F̄Z

)
. (9.12)

On the background, the operators (9.8) read

X̄ = −1 , Ȳ i = 0 , Z̄ij =
α2δij

a2(t)
. (9.13)

Notice that Zij depends on α – being associated with the breaking of space diffeomor-

phisms – but it also explicitly depends on time, through the scale factor. The isotropy

of the background requires

F̄Zij = F̄Zδij , F̄Y i = 0 . (9.14)

Our configuration solves all the background equations of motion (included the ones

associated with the fields X, Y i, Zij) if the following condition is satisfied 2:

2α2F̄XZ = a2FX . (9.15)

Using this information, we can express the slow-roll epsilon parameter ε = −Ḣ/H2 as

ε =
3X̄F̄X − Z̄F̄Z
−F̄ + 2X̄F̄X

. (9.16)

To obtain a phase of inflation we require ε� 1, which, barring accidental cancellations,

can be naturally obtained if the function F has only a weak dependence on both X and

Z: (
d logF

d logX
,

d logF

d logZ

)
� 1 . (9.17)

Physically, the slow-roll parameter ε is associated with the “ticks” of the inflationary

clock. A small ε is associated with a configuration characterised by extremely slow ticks

of the clock, corresponding to a quasi-de Sitter spacetime. The rhythm of the inflationary

clock ticks also varies, and is controlled by a second, independent slow-roll parameter

η = ε̇/(εH). A small η ensures that changes in the rate of the inflationary clock occur

slowly, so to provide a sufficiently long period of inflation. The condition |η| � 1 requires∣∣∣∣η = 2ε+
6F̄XZ + 2Z̄F̄Z + 2Z̄2F̄Z2

−3F̄X − Z̄F̄Z

∣∣∣∣� 1 . (9.18)

2Notice that this equation is equivalent to the continuity equation. In the limit α→ 0, one consistently

obtain a limit FX → 0, which is the limit of the continuity equation for a F (X) theory when the symmetry

φ0 → φ0 + c is taken as an exact symmetry.
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Having a small value for ε implies, at leading order in slow-roll, that the quantities

FX
F

and
FZ
a2 F

, (9.19)

are constant that do not depend on spacetime coordinates (notice the explicit presence

of the scale factor in the second one).

Our set-up does not correspond to a single clock model of inflation. We can identify

two independent contributions that control the inflationary clock. The first is associ-

ated with the breaking of time reparameterisation, through an explicitly time-dependent

background value for the field φ̄0, as in eq. (9.4). The second is related with the time

dependence of the quantity Z̄ij introduced in eq. (9.13). Z̄ij is associated with the

breaking of space diffeomorphisms, and is defined in terms of the inflationary rulers φ̄i

in eq. (9.4). Z̄ij acquires a dependence on the scale factor a(t) (due to the contraction

with the spatial part of the metric). A similar fact is found also in Solid Inflation [192].

These two contributions to the energy momentum tensor both independently control the

inflationary clock. Hence we are not dealing with a purely adiabatic system. And in-

deed, we will see next that we can identify two dynamical scalar fluctuations around our

background configuration, each corresponding to a Goldstone boson of a different broken

symmetry. The non-adiabatic properties of our set-up are quite distinctive though and

are the topic of the remaining discussion.

9.2.2 Quadratic action for Stückelberg fields

We now discuss the structure of quadratic fluctuations of the transverse components of

the metric and the Stückelberg fields π, σi introduced in eq. (9.5) as

φ0 = t+ π , φi = α(xi + σi) , (9.20)

as fields restoring diffeomorphism invariance. In principle, besides the (self-)interactions

of π and σi, also interactions of these fields with the metric components δg00, δg0i,

δgij should be taken into account. However, we can consider the theory at very short

distances – corresponding to energy scales E = k/a � H – where the effects of gravity

backreaction can be neglected. Gravitational modes decouple: the local diffeomorphisms

of general relativity reduce to the global symmetries of Lorentz boosts and translations.

In this decoupling limit the fields π and σi can be interpreted as Goldstone bosons of these

broken global symmetries and these degrees of freedom interact only with themselves 3.

After these considerations, let us then focus on the system in a high energy decoupling

limit, where the Stückelberg fields can be identified with Goldstone bosons of broken

3See Appendix D.1 for a technical discussion of decoupling limit in our set-up.
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spacetime diffeomorphisms. We start writing the quadratic actions for these systems 4

at leading order in slow-roll parameters and the parameter α, neglecting gravitational

corrections in our decoupling limit:

S(S) =

∫
d4x a3

[(
− F̄X + 2F̄X2

)
π̇2 +

(
F̄X +

α2F̄Y 2

2a2

)
∂iπ∂

iπ

a2

+ +α2

(
F̄Y 2

2
− F̄Z

)
σ̇2
L + α2

(
F̄Z + α2 2F̄ZZ

a2
+ α2 2F̄Z2

a2

)
∂iσL∂

iσL
a2

(9.21)

+α2 4F̄XZ
a2

√
−∇2π̇σL − α2 F̄Y 2

a2

√
−∇2πσ̇L

]
,

S(V ) =

∫
d4x a3

[(
F̄Y 2

2
− F̄Z

)
σ̇iT σ̇T,i +

(
F̄Z + 2

F̄ZZ
a2

)
∂jσ

i
T∂

jσT,i
a2

]
, (9.22)

S(T ) =

∫
d4xa3 1

8

[
M2

Pl

(
γ̇ij γ̇

ij − ∂kγij∂
kγij

a2

)
+ α2

(
F̄Z
a2

+
α2F̄ZZ

2a4

)
γijγ

ij

]
.(9.23)

where S, V, T represent the scalar, vector and tensor sectors respectively. The fields π has

dimension of inverse of mass, and σ is dimensionless. The field σi has been decomposed

in a (vector) transverse component and a (scalar) longitudinal one:

σi = σiT +
∂iσL√
−∇2

. (9.24)

As explained above, when all diffeomorphisms are broken, in general six degrees of

freedom are dynamical: two scalar fluctuations, the two components of a transverse

vector, and the two helicities of a traceless transverse tensor.

The most evident consequence of our set-up is that we now have a system of two

interacting scalars, π and σ, Goldstone bosons of two different symmetries. These scalars

are coupled through distinctive derivative operators, controlled by the pattern of sym-

metry breaking in our system. Notice that masses, and non-derivative couplings among

the fields, do not arise at our level of approximation, because of the symmetries (9.6)

and since we are neglecting gravitational effects. We should also check that the ac-

tions (9.21), (9.22) and (9.23) do not lead to dangerous instabilities. For example, the

coefficient of the time kinetic operators should have the right sign:

−F̄X + 2F̄ 2
X > 0 , (9.25)

F̄Y 2 − 2F̄Z > 0 . (9.26)

4The internal symmetries (9.6) limit the possible operators that can appear in the action. For example,

deriving F twice with respect to Zij gives dF/dZijdZkl = FZZδikδjl + FZ2δijδkl.
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At the same time one should impose that the speeds of sound,

c2
π =

F̄X + ᾱ2FY 2/2a2

F̄X − 2F̄X2

, (9.27)

c2
σ =

F̄Z + 2α2F̄ZZ/a
2 + 2α2F̄Z2/a2

FZ − FY 2/2
, (9.28)

c2
T =

F̄Z + 2α2F̄ZZ/a
2

F̄Z + F̄Y 2/2
, (9.29)

lie in the interval 0 < c2
s ≤ 1, where s ≡ π, σ, T . The complete list of relations between

the coefficients that one can derive is not particularly illuminating, but we checked that

there are regions of the parameter space where there are no dangerous instabilities. The

allowed range of parameters will of course be important when trying to compare with

cosmological observations, but this topic goes beyond the scope of the present work.

Moreover, to avoid excessive time evolution for these quantities during inflation, we can

impose that the “slow-roll” parameter associated with the speeds of sound should be

small:

sc =
ċs
csH

� 1 . (9.30)

This again can give constraints on combinations of parameters in the action, when

comparing with observations. Moreover it suggests that, like F̄X and F̄Z/a
2, also the

other coefficients in the action, like for example F̄Y 2/a2 are slowly varying and can be

taken as constant. It would be interesting to see what are the consequences of relaxing

this assumption and consider non-trivial time dependencies.

9.2.3 The expression for the curvature perturbation

There are two commonly used gauge invariant definitions of curvature perturbations, the

curvature perturbation on uniform density hypersurfaces, ζ, and the comoving curvature

perturbation R. In single field inflation, on superhorizon scales these quantities are

conserved, and coincide up to a sign (see e.g. [188] for a review). This implies that any

result obtained in the aforementioned sub-horizon, decoupling limit remains valid also

at superhorizon scales, since the curvature perturbation gets frozen there in single-field

inflation. As we explained above, our system is, strictly speaking, not single field, and

non-adiabatic contributions can arise. They are controlled by a small quantity though

– the parameter α that characterises the breaking of space diffeomorphisms (9.4). The

expression for the comoving curvature perturbation in the decoupling limit reads for our
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system5:

R =
H

(−M2
PlḢ)

[(
−F̄X +

α2F̄Y 2

2a2

)
π + α2

(
2F̄Z − F̄Y 2

) σ̇L√
−∇2

]
. (9.31)

In the limit of α small, this expression reduces to the single-field expression

R = −H π , (9.32)

commonly used in the EFTI [109] (where R is dubbed ζ). In what follows, we will work

in a small α limit, so that the definition (9.32) is sufficiently accurate and we can neglect

its time-dependence at superhorizon scales. This is also justified because, nevertheless,

we will find interesting potentially sizeable corrections to the n-point functions for R
associated with the complete breaking of diffeomorphism invariance.

9.3 The two-point functions

9.3.1 The power spectrum for scalar fluctuations

In this section we consider the consequences of the new symmetry pattern in the second

order action of the scalar perturbations. First, let us rewrite the action (9.21) in terms

of the normalized fields π̂ and σ̂,

π̂ =
√

2
(
−F̄X + 2F̄X2

)
π , σ̂ = α

√
2

(
F̄Y 2

2a2
− F̄Z
a2

)
σL , (9.33)

S(S) =

∫
d4x a3

[
1

2

(
˙̂π2 − c2

π

∂iπ̂∂
iπ̂

a2

)
+

1

2
a2

(
˙̂σ2 − c2

σ

∂iσ̂∂
iσ̂

a2

)

+αλ1

√
−∇2 ˙̂πσ̂ + αλ2

√
−∇2π̂ ˙̂σ

]
, (9.34)

where the speeds of sound are written in eqs. (9.27), (9.28) and

λ1 =
2F̄XZ/a

2√(
−F̄X + 2F̄X2

) (
F̄Y 2/2a2 − F̄Z/a2

) , (9.35)

λ2 =
−F̄Y 2/a2

2
√(
−F̄X + 2F̄X2

) (
F̄Y 2/2a2 − F̄Z/a2

) . (9.36)

5In the flat gauge the comoving curvature perturbation is defined as R = Hδu, where δu is the

longitudinal component of the perturbed 4-velocity of the fluid [29].
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The normalization of the fields have been defined so that the parameters λ1, λ2 are

constant at leading order in slow-roll. The price to pay is that we leave an explicit factor

of a2 in front of the “kinetic action” for the Goldstone mode σ in eq. (9.34). We can see

that, for small values of the parameter α, the interaction terms that mix the two fields

can be treated as perturbations on top of a free Lagrangian for the two scalars involved.

Thanks to this fact, we can perturbatively compute the spectrum for the fluctuation π

by the following procedure. First, we evaluate it at zero order in the parameter α. Then,

we compute perturbative corrections in α, using the in-in formalism. This calculation

will provide a quantitative way to evaluate how the second Goldstone boson σ affects the

properties of the two-point function of π and the curvature perturbation. Physically, we

are interested to this question because we have learned that the contribution to curvature

perturbation R is mostly due the field π, in the limit of small values for α (see Section

(9.2.3)). On the other hand we will learn that contributions of σ to two and higher point

functions of R can be sizeable even in the limit of small α.

Let us then proceed computing the power spectrum for π. The zeroth order power

spectrum is straightforward to obtain:

〈π̂~k1
π̂~k2
〉 = (2π)3δ(~k1 + ~k2)

2π2

k3
1

P̂0 , (9.37)

where

P̂0 =
H2

4π2c3
π

. (9.38)

Using the normalization coefficient (9.33), the power spectrum of the original fields π

reads:

P̂0 =
H2

8π2c3
π(−F̄X + 2F̄X2)

=
H2

8π2 cπ
(
−F̄X − α2F̄Y 2/2a2

) , (9.39)

where we used the definition of the speed of sound (9.27). Taking α � 1 and using

eq. (9.12), this result reduces to the standard result of single-field inflation with only

time-diffeomorphism breaking, as in that case F̄X = M2
PlḢ:

P̂0 (α� 1) =
H4

8π2 cπ
(
−F̄X

) =
H2

8π2M2
Plε cπ

. (9.40)

The effect of the interaction terms in the second order action (9.34) can be now computed

using the in-in formalism [34, 160] (see Appendix B). The leading correction to the power

spectrum is given by

δ〈π̂~k1
π̂~k2

(τ)〉 = −
∫ τ

τmin

dτ1

∫ τ1

τmin

dτ2

〈[[
π̂

(0)
~k1
π̂

(0)
~k2

(τ) ,H(2)
int (τ1)

]
, H(2)

int (τ2)
]〉

,(9.41)

where H(2)
int is the second order interaction hamiltonian and τmin corresponds to the time

at which the contribution of the long mode starts to become dominant. This correction

is represented as mass insertion diagram in Figure 9.1. In our case, from (9.34), we have:
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Figure 9.1: Leading diagram for computing the symmetry breaking contributions to〈
π2
〉
.

H(2)
int (τ) = H(2)

int,1 (τ) +H(2)
int,2 (τ) , (9.42)

where

H(2)
int,1 (τ) =

αλ1

(Hτ)3

∫
d3k

(2π)3
|k|σ̂(0)

~k
(τ) π̂

′(0)

−~k
(τ) , (9.43)

H(2)
int,2 (τ) =

αλ2

(Hτ)3

∫
d3k

(2π)3
|k|π̂(0)

~k
(τ) σ̂

′(0)

−~k
(τ) . (9.44)

The field operators can be expanded in terms of their Fourier modes

π̂~k = uk a~k + u∗k a
†
−~k
,

σ̂~k = vk b~k + v∗k b
†
−~k
, (9.45)

where the creation and annihilation operators respect the commutation rules:[
a~k, a

†
−~k′

]
= (2π)3 δ(3)(~k+~k′) ,

[
b~k, b

†
−~k′

]
= (2π)3 δ(3)(~k+~k′) ,

[
a~k, b

†
−~k′

]
= 0 . (9.46)

This is because the eigenfunctions for the two scalar modes are the solution of the

classical equations of motion, derived from the (free) action that can be read from

(9.21). For the field π we have:

u′′k −
2

τ
u′k + c2

πk
2uk = 0 , (9.47)

where we have used aH = −1/τ +O(ε). This has the standard solution (after choosing

the Bunch–Davies vacuum and fixing the integration constants):

u~k(τ) = − H√
2c3
πk

3
(1 + ikcπτ)e−ikcπτ . (9.48)

In the same way one can write the equation of motion for the field σ:

v′′k −
4

τ
v′k + c2

σk
2vk = 0 , (9.49)

whose solution is:

vk(τ) = − H2√
2c5
σk

5
(−3− 3ikcστ + c2

σk
2τ2)e−ikcστ . (9.50)

132



Notice that the vacuum wave configuration for the field σ, (9.50), is different with respect

to the vacuum configuration for π, eq. (9.48). The difference is due to the presence of the

scale factor a2 in front of the kinetic term for σ, in the quadratic action for fluctuations.

Performing the commutators and plugging the interaction hamiltonian (9.43) into in

(9.41), we arrive to integrals like:

δ〈π̂~k1
π̂~k2

(τ)〉 = −4α2λ2
1

H6
Re

[∫ τ

τmin

dτ1

τ3
1

∫ τ1

τmin

dτ2

τ3
2

k2 ×(
vk1(τ2)v∗k1

(τ1)u′k1
(τ2)u∗k1

(τ)
(
u′k1

(τ1)u∗k1
(τ)− c.c

))]
. (9.51)

Together with this, there are also the integrals coming from the substitution of Hint,2

(9.44), proportional to λ2
2 and the mixed contributions proportional to λ1λ2. These

integrals are dominated by the contributions at the times when the modes are outside

the horizon, as on sub-horizon scale the oscillatory phases in the mode functions suppress

the result6. Setting cσ ' cπ for simplicity, we can take τmin = −1/cπk and perform the

integral analitically. We find the main contribution in the large scale limit:

δP
P0

=
3α2λ1Nk(3λ2 − λ1(3Nk + 6γE + 11− log(64))

c2
π

, (9.52)

where γE is the Euler gamma and Nk is the number of efolds from the time when the

mode k exits the horizon until the end of inflation. Notice that in eq. (9.51) the integrand

contains a factor of k2, associated with the derivative interactions among the modes π

and σ. This factor compensates for the non-standard form of the vacuum solution (9.50)

for σ, proportional to k−5/2 at small scales (and not to k−3/2 as it usually happens),

leading to a scale invariant correction to the power spectrum.

One can see that even when the breaking of spatial diffeomorphisms is small, α� 1,

the effect of the interaction between the field σ and the field π can still be sizeable, as it

is enhanced by the e-fold number Nk. In the limit of large Nk, the dominant correction

to the power spectrum scales as

δP
P0

= −
9α2 λ2

1N
2
k

c2
π

. (9.53)

This quantity can be non-negligible even if α is small, since the product αNk can be

sizeable (say of order one) being it enhanced by Nk. The logarithmic enhancement of

the power spectrum has a similar behavior already met in other set-ups7, see e.g. [270]

or the review [271]. These are novel effects that we first point out in this paper, and

are essentially due to the interplay between our two Goldstone bosons during inflation.

6The spurious divergences in the UV disappear when slightly deforming the countour of the time

integration in the imaginary direction [34].
7Notice that, since we are not in single field inflation, these enhancement effects cannot be ‘gauged

away’ by a rescaling of the curvature perturbation. See e.g. [268] or the reviews [269].
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They are physical and arise even if the breaking of space diffeomorphisms is small, since

they are enhanced by the e-fold number. Since for small α the curvature perturbation

R is proportional to π through the simple relation (9.32), we can write the following

modified expression to the power spectrum for R, induced by a log-enhancement due to

the Goldstone boson σ:

PR '
H2

8π2M2
Plε cπ

(
1−

9α2 λ2
1N

2
k

c2
π

)
. (9.54)

Although for the case of scalar power spectrum the correction induced by our pattern

for breaking spatial diffeomorphisms amounts to a change in the amplitude, for higher

point functions we can have more relevant, direction dependent effects, as we will discuss

in Section 9.4.

9.3.2 The power spectrum for tensor fluctuations

The effect of breaking spatial diffeomorphisms can have interesting effects also in the

tensor sector. This fact has been already explored in [4, 5]. At the level of two-point

functions involving tensor modes, the main difference with the standard case is associ-

ated with the possibility of assigning a non-vanishing mass to the tensors, since a mass

operator is allowed by the absence of diffeomorphism invariance. The resulting set-up

can then be considered as an effective theory of (Lorentz-violating) massive gravity dur-

ing inflation. It would be interesting to find a consistent UV complete theory of massive

gravity that allows us to have a large graviton mass during cosmological inflation and a

small graviton mass after inflation ends. Nevertheless, in our approach based on EFT

we do not need to rely on the existence of any specific UV realisation and simply work

with the most general set of operators, order by order in a field expansion.

Normalizing the tensor field as γij =
√

2γ̂ij/MPl the quadratic Lagrangian for the

two polarization modes of the gravitational fields has the form:

L =
1

4

√
−g
[
∂µγ̂ij∂

µγ̂ij −m2γ̂ij γ̂
ij
]
, (9.55)

where m2 = α2(F̄Z +α2F̄ZZ/2a
2)/M2

Pla
2. To compute the power spectrum, one decom-

poses hij into helicity modes,

γ̂ij =

∫
d3k

(2π)3

∑
s

ε
(s)
ij γ̂

(s)
~k

eik·x , (9.56)

where s = ± is the helicity index and εij is the polarization tensor. Making the redefini-

tion γ̂~k = h~k/a, the equation of motion (in conformal time dη = dt/a(t) and neglecting
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slow-roll corrections) reads:

h′′~k +

[
k2 − 1

τ2

(
ν2 − 1

4

)]
h~k = 0 , (9.57)

where ν = 9/4−m2/H2. The generic solution (for real ν) is 8:

h~k =

√
π

2
ei(ν+1/2)π

2
√
η H(1)

ν (kη) , (9.58)

where H
(1)
ν is the Hankel’s function of the first kind. At this point one can easily find

the tensor power spectrum

PT '
2H2

π2M2
Pl

(
k

k∗

)3−2ν

, (9.59)

where:

nT ' m2/H2 . (9.60)

Together with the standard −2ε contribution to nT , which can be easily found taking

into account the slow-roll dependence in the equation of motion, this shows a non-trivial

behaviour of the tensor tilt [4]:

nT = −2ε+
2

3

m2

H2
. (9.61)

As the m2/H2 contribution adds with a positive sign, if the mass of the tensor is large

enough, then the spectrum could become blue [4, 272]. Moreover this would happen

without inconsistencies, since it would not violate the Null Energy Condition, which is

related to a change of sign of Ḣ [110]. The interplay between the negative contribution

of ε given by the time-diffeomophism breaking part and the positive contribution given

by the breaking of space diffeomorphisms is a non-standard feature of this particular

symmetry pattern. Notice also that, even though massive tensors are not constant after

horizon exit, their evolution is very small as it is controlled by the small parameter α.

Indeed, if we take the limit α � 1, tensor mass becomes completely negligible and we

come back to the standard form of the tensor wave function:

γ~k =
H

MPlk3/2
(1 + ikτ)e−ikτ . (9.62)

So we find that breaking spatial diffeomorphisms provides qualitatively new effects in

the power spectrum of tensor fluctuations. Other interesting effects arise when studying

the bispectrum, as we are going to see in the next section.

8For imaginary ν one can define a new ν̃ = i ν and solve the differential equations in the same way.

However in this case the power spectrum would be suppressed by the ration H/m and fall rapidly on

very large scales [99].
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9.4 The three-point functions

In this section, we examine non-linear, cubic interactions among cosmological fluctua-

tions. In particular, we will study bispectra involving scalar and tensor fluctuations. The

study of bispectra is conceptually important since their squeezed limits are very infor-

mative for what concern general features of the physics driving inflation. For example,

it is known that in models with adiabatic fluctuations only, appropriate squeezed limits

of three-point functions involving scalars and tensors, e.g. 〈R3〉 and 〈γR2〉, are related

to the tilt of the scalar power spectrum [34, 164]. When non-adiabatic interactions are

turned on, these consistency relations are violated in a way that depends on the model

one considers. We are interested in understanding general features of how the breaking

of spacetime diffeomorphisms affects the squeezed limits of three-point functions. We

find that the breaking of such symmetry leads to (tunable) quadrupolar contributions to

these quantities (corresponding to cL=2 contributions in the parameterisation of [266])

besides “pure” local (monopole cL=0) contributions in the squeezed limit. Similar results

have been already found in specific models, as Solid Inflation or models with vector fields

[192, 242, 251, 266], but our EFT approach allows to generalize these results and under-

stand them as due to a specific pattern of symmetry breaking. As done in the case of the

power spectrum, we are mostly interested on operators that are specifically associated

with the simultaneous breaking of time and space reparameterization invariance, since

these operators can lead to effects that have not been studied so far, when breaking

separately time [109] and space [192] diffeomorphisms. Moreover, such effects can be

sizeable, rendering them physically interesting even in a limit of small α, the parameter

associated with the breaking of spatial diffeomorphisms.

Given these motivations, the operators that we consider are specific of our construc-

tion that simultaneously break space and time diffeomorphisms. Up to second order in

the parameter α they are the following:

8α2F̄X2Z

3a2
π̇2∂iσ

i , (9.63)

α2F̄Y 2

(
π̇σ̇iσ̇i −

π̇σ̇i∂iπ

a2
+
γij σ̇

i∂jπ

a2
− γij∂

iπ∂jπ

a4
− σ̇i∂jσi∂

jπ

a2
+
∂jσi∂

iπ∂jπ

a4

)
,

(9.64)
2

3
α2F̄Y 2X

(
−π̇σ̇iσ̇i +

2π̇σ̇i∂iπ

a2

)
. (9.65)

Here we are mostly interested in exploring interesting phenomenological consequences of

our approach. On the other hand, the analysis of interactions can also be theoretically

important to estimate the strong coupling scale at which unitarity bounds are violated

in scattering experiments. We do not discuss this argument in the main text, but we

develop it in Appendix D.2.
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9.4.1 The bispectrum for scalar fluctuations

We start discussing how the operators breaking simultaneously space and time diffeomor-

phisms affect the squeezed limit of the curvature three-point function. The bispectrum

of the curvature perturbation is defined as:

〈R(~k1)R(~k2)R(~k3)〉 = (2π)3δ3(~k1 + ~k2 + ~k3)B(~k1,~k2,~k3) . (9.66)

As for the two-point function, we compute the contributions of the symmetry breaking

operators using a perturbative approach based on the in-in formalism. We take the quan-

tity α controlling the breaking of space diffeomorphisms as a perturbation parameter. In

the limit of small α, the curvature perturbation is proportional to the Goldstone mode

π, up to small corrections, and is conserved on superhorizon scales (see the discussion

in Section 9.2.3 and the expression (9.32) for the curvature perturbations).

We then start with computing the contribution to the tree level bispectrum of the

Goldstone π, due to the mixing with the Goldstone σ. We consider the contribution

associated with the diagram represented in Figure 9.2. In the limit of small α, the

operators that we consider are associated with a mass insertion second order hamiltonian

H(2), given by (9.42), and by the third order operator

α√
2
(
F̄X + 2F̄X2

)
[

(λ2 + λ3)
˙̂π∂i ˙̂σ∂iπ̂√
−∇2

− λ2
∂j∂iσ̂∂

iπ̂∂j π̂

a2
√
−∇2

− λ4
˙̂π2
√
−∇2σ̂

]
, (9.67)

that we express in terms of normalized fields (9.33). The new parameters λ3 and λ4 are

defined as

λ3 =
4F̄Y 2X/a

2

3
√(
−F̄X + 2F̄ 2

X

) (
F̄Y 2/2a2 − F̄Z/a2

) , (9.68)

λ4 =
8F̄X2Z/a

2

3
√(
−F̄X + 2F̄ 2

X

) (
F̄Y 2/2a2 − F̄Z/a2

) , (9.69)

while λ1 and λ2 are defined in (9.35), (9.36). Then, the integral that we need to compute

(see Fig 9.2) is

〈π̂~k1
π̂~k2

π̂~k3
〉 = −

∫ 0

τmin

dτ1

∫ τ1

τmin

dτ2〈0|
[
H(3)(τ1),

[
H(2)(τ2), π̂k1(τ)π̂k2(τ)π̂k3(τ)

]]
|0〉 .

(9.70)

where the third-order interaction H(3) can be extracted from (9.67). Let us make some

example of the kind of integrals one has to study. Consider taking H(2) as eq. (9.43) and

H(3) with only the operator ∂jσi∂
iπ∂jπ from eq. (9.67). Then the form of the integral
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Figure 9.2: Leading diagram for computing the symmetry breaking contributions to

〈R3〉.

is:

〈π̂3〉 = 2 Re

{
α2 −λ1λ2√

2
(
−F̄X + 2F̄X2

) ∫ 0

−∞

dτ1

(−Hτ1)2

∫ τ1

−∞

dτ2

(−Hτ2)3
δ3(~k1 + ~k2 + ~k3)

(~k1 · ~k2)(~k1 · ~k3)
[
λ1σ̂k1 σ̂

∗
k1
π̂′k1

π̂∗k1

(
π̂k2 π̂

∗
k2
π̂k3 π̂

∗
k3
− c.c

)
+λ2σ̂

′
k1
σ̂∗k1

π̂k1 π̂
∗
k1

(
π̂k2 π̂

∗
k2
π̂k3 π̂

∗
k3
− c.c

)]}
. (9.71)

All the other integrals we compute have a similar structure. To keep computations

simple and analytical, we assume that the sound speeds are equal, cπ = cσ. We recall

that, when computing the power spectrum, we were finding log-enhanced contributions.

We can expect the same amplification effects to occur here for the case of a squeezed

bispectrum when a long wavelength mode (k → 0) is already outside the horizon. Then

we can consider one of the momenta k1 = kL → 0, while the other two are assumed with

equal lenght k2 ∼ k3 = kS , and evaluate the integral from the time when the mode exits

the horizon τ = −1/cπk1 until the end of inflation. Summing all the terms arising from

the operators (9.67) and focusing only on the leading contributions we obtain

〈π̂~k1
π̂~k2

π̂~k3
〉 =

α2H5

16c10
π k

3
Lk

3
S

1√
2
(
−F̄X + 2F̄X2

) × (9.72)

[
9c2
πλ1λ4 + (3λ1 + λ2)(λ2 + λ3)c2

πŜ2 − 27λ1λ2Ŝ1

]
log

(
kL
kS

)
,

where Ŝ1, Ŝ2 refer to scalar products between versors of momenta:

Ŝ1 = (k̂1 · k̂2)(k̂1 · k̂3) + (k̂2 · k̂3)(k̂1 · k̂2) + (k̂1 · k̂3)(k̂2 · k̂3) , (9.73)

Ŝ2 = k̂1 · k̂2 + k̂2 · k̂3 + k̂1 · k̂3 . (9.74)
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In the squeezed limit, they reduce to:

Ŝ1 = − cos2 θ , Ŝ2 = 1− 2 cos2 θ , (9.75)

where θ is the angle between the long and the short wavelengths modes. From the three-

point functions for π, as discussed above, we can extract the three-point function for the

curvature perturbation R. Using the normalization (9.33) together with the Friedmann

eq. (9.12) and the definition of the speed of sound (9.27), we can write the squeezed

limit of the three-point function for curvature pertubation, up to second order in α, as:

〈R3〉kL→0 ' (2π)3δ3(~k1 + ~k2 + ~k3)α2P(kL)P(kS)

k3
Lk

3
S

π4

c4
π

×

×

{[
9c2
πλ1λ4 + (3λ1 + λ2)(λ2 + λ3)c2

π

]
(9.76)

+
[
27λ1λ2 − 2(3λ1 + λ2)(λ2 + λ3)c2

π

]
cos2 θ

}
log

(
kL
kS

)
,

where we only write the log-enhanced contributions to this quantity. Let us comment

on the physical consequences of this result:

• Even if, in the squeezed limit, the curvature three-point function is suppressed by

a factor of α2 (a parameter that we consider small) it is nevertheless enhanced by

a factor log (kL/kS), a quantity that can be of order of the number of e-folds of

inflation:

log

(
kL
kS

)
' Nk . (9.77)

This means that, as for the case of the power spectrum, we find a log-enhanced

contribution. The same considerations of Section 9.3.1 hold here: since we have

non-adiabatic fluctuations only, these effects are physical and cannot be gauged

away with a redefinition of coordinates. Notice that, moreover, the three-point

function is enhanced by a large power of the sound speed (1/c4
π) that can also

considerably increase its size, in the case that cπ < 1.

• Interestingly, we find a non-trivial angular dependence of the squeezed limit of the

bispectrum. The squeezed bispectrum can be expressed as a sum of two contribu-

tions, a monopole plus a quadrupole, with tunable coefficients depending on the

parameters λi. An angular dependent squeezed bispectrum has been also found

in other works in the literature, as Solid Inflation [192], or inflation with vector

fields [213, 214, 242, 266, 273, 274], or in models with higher spin fields [267]. In

those realizations, the coefficients in front of each contributions (monopole and

quadrupole) are fixed by the model. In our set-up based on an EFT approach to
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inflation, we have been able to identify classes of operators that allow to obtain

more general squeezed limits for the bispectrum, with arbitrary coefficients in front

of each angular-dependent contribution. We can then identify a possible origin of

these effects as due to particular patterns of spacetime diffeomorphism breaking.

It would be interesting to find concrete models that obtain our operators from a

fundamental set-up.

9.4.2 Tensor-scalar-scalar bispectra and consistency relations

In this subsection we examine how breaking spacetime diffeomorphisms affects the bis-

pectra involving tensor and scalar fluctuations. Observables associated with three-point

functions involving tensor modes are becoming particularly interesting, since they are

sensitive to the behavior of gravity at the high scales of inflation, and since the future

promises advances in observational efforts to detect primordial tensor modes. We start

with a brief review on the present theoretical and observational status of our knowledge

of tensor-scalar-scalar bispectra; then we pass to discuss new results we obtain within

the EFT of inflation with broken spacetime diffeomorphisms.

Motivations

In the next years we will see an increased dedicated effort in trying to detect gravitational

waves [186, 275–279]. In light of the amount of precise measurements that are becom-

ing available, it is important to select the best observables that will clarify the physics

responsible for driving inflation. Among the predictions of inflation there is one that af-

fects both the CMB and the LSS of the universe: it is the correlation between primordial

scalar and tensor perturbations [34]. This tensor-scalar-scalar (TSS) correlation, that is

present in all the inflationary models, generates a local power quadrupole in the power

spectrum of the scalar perturbations when the wavelength of the tensor mode is much

bigger than the scalar one, giving rise to an apparent local departure from statistical

isotropy. This observable is a useful quantity to discriminate among the plethora of in-

flationary models. Moreover this long wavelength tensor mode leaves a precise imprints

(dubbed fossils) on the observed mass distribution of the universe. The properties of the

correlation functions are dictated by symmetries that have a crucial role in constraining

the form of correlation functions, and the corresponding consistency relations and their

violation [164, 280–286]. In [287] it has been shown that, in the case of single-clock

models, that are space-diffeomorphism invariant, a quadrupole contribution to the TSS

is cancelled. In particular, a quadrupole contribution arises, proportional to the number

of efolds, that is exactly compensated by late-time projection effects that leave a negli-

140



gible amplitude for the power quadrupole. However, when the conditions of single-clock

[99], invariance under space diffeomophism [192, 251, 288], slow-roll evolution [166, 289]

are evaded, then the consistency relation is violated, the cancellation is not perfect and

we get a possibly detectable amplitude for the local power quadrupole. In [290] it has

been shown how the violations of the slow-roll dynamics in non-attractor inflation and

of space-diffeomorphism invariance in Solid Inflation bring to the violation of the con-

sistency relation in the TSS correlation function with a consequent enhancement in the

local quadrupole. In the case of non-attractor inflation, the limits from CMB on the

statistical isotropy [291, 292] constrain the effects on non-observable scales since the tran-

sition from the non-attractor phase to the attractor one is found to happen before the

time when the current observable universe left the horizon during the inflationary phase.

In the Solid Inflation model, instead, the violation of the consistency relation is related

to the violation of the diffeomophism invariance and, more interestingly, the observable

anisotropic effects are spread on much smaller scales and so potentially detectable in the

next future galaxies surveys. In a recent paper [293] the effect of the violation of the

consistency relation has been computed in the Quasi-Single-Field model: a two fields

model where one of the two has a mass near the Hubble scale H. From the non-trivial

four-point function they estimate the size of the galaxy survey necessary to detect the

effect of the tensor-scalar-scalar consistency violation.

New results using the EFTI for broken spacetime diffeomorphisms

Our model, violating the invariance under space diffeomorphism, leads to a violations of

the consistency relation of the tensor-scalar-scalar correlator, as we are going to discuss.

Following [282] the three-point function, in the case of a tensor-scalar-scalar interaction,

can be re-defined as〈
γs~k1
R~k2
R~k3

〉
≡ (2π)3δ3(~k1 + ~k2 + ~k3)

〈
γs~k1
R~k2
R~k3

〉′
, (9.78)

where the primed correlator is related to the bispectrum by〈
γs~k1
R~k2
R~k3

〉′
≡ εsij k̂i2 k̂

j
3 B(k1, k2, k3) , (9.79)

and εsij is the polarization tensor of the tensor mode. Considering the limit in which the

momentum of the tensor (k1) is identified with kL (long wavelength) and the momenta of

the scalars (k2, k3) are identified with kS (short wavelengths), when the consistency re-

lation for the tensor-scalar-scalar correlator is satisfied, the bispectrum can be expressed

like

B(kL, kS , kS) ≡ −1

2
Pγ(kL)PR(kS)

∂ lnPR(kS)

∂ ln kS
, (9.80)

that, in single-field slow-roll models, translates in a quantity proportional to (ns − 4),

where ns is the scalar spectral index, as calculated by Maldacena in [34].
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In our case from the third order action (9.64) we can read that the tensor-scalar-scalar

bispectrum has two contributions, that we can schematically write as

B(k1, k2, k3) = B[γ∂π∂π](k1, k2, k3) + B[γ∂σ̇L∂π](k1, k2, k3) . (9.81)

These two contributions are associated with our novel operators corresponding to the

fourth and third terms in (9.64). They add to the other contributions already present

in EFTI and Solid Inflation (that we do not consider here) and can be computed using

the in-in formalism. The (normalized) scalar Fourier wavefunctions are defined in (9.45)

while for the tensor perturbations we use

γ
ij,~k

=
∑
s=±

εsij(k̂)
[
cs~k γk + (cs)†

−~k
γ∗k

]
, (9.82)

where “s” represents the two polarizations of the tensor and the creation and annihilation

operators respect the following commutation relation[
c~k, c

†
−~k′

]
= (2π)3 δ(3)(~k + ~k′) δss′ . (9.83)

The scalar wave functions for the two scalar goldstones are given by (9.48) and (9.50)

while for the tensor we can take the standard expression (9.62), since α2-correction to

the wave function would be subleading when considered in this interactions9, that are

already proportional to α2.

The effect of the long wavelenght tensor mode on the two scalars is encoded in the

squezeed limit (kL � kS) of the bispectrum 〈γkLπkSπkS 〉. The first contribution that we

obtain can be computed at tree-level, following [34]

〈γkL π̂kS π̂kS (τ0)〉 = − i
∫ τ0

τmin

dτ
〈[
γ~kL(τ0)π̂~kS (τ0)π̂~kS (τ0) ,H(3)

γ∂π∂π(τ)
]〉

, (9.84)

and it gives

B[γ∂R∂R](kL, kS , kS) =
H2

M2
Pl

α2

(FX − 2FX2)2

FY 2

a2

3H4

4c5
π

(
1

k3
S k

3
L

)
. (9.85)

Rewriting this contribution in terms of the curvature and tensor power spectra, we find

a violation of the consistency relation in the tensor-scalar-scalar bispectrum. This since

our result is proportional to the quantity F 2
Y that is not related to the scalar spectral tilt;

moreover it is not associated with the other observables met so far, so we do not have

bounds on its size, although for naturalness reasons we do not expect it to be large. Let

us also emphasize that such contribution to the TSS bispectrum is a distinctive feature

of our set-up that simultaneously breaks time and space diffeomorphisms.

9The effects of modified wavefunctions could be interesting, in principle, when considered in the other

bispectra which are not proportional to the small α2, like e.g. the standard 1/c2s bispectrum.
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(a) (b)

Figure 9.3: Leading consistency violating contributions to the TSS bispectrum 〈γππ〉

Interestingly, this is not the dominant contribution to the bispectrum: from the

second interaction term in eq. (9.81) we have

〈γkL π̂k2 π̂k3〉 = −
∫ 0

τmin

dτ1

∫ τ1

τmin

dτ2

〈[
H(3)(τ1),

[
H(2)(τ2), γkL(τ)π̂k2(τ)π̂k3(τ)

]]〉
,

(9.86)

where H(2) is given by (9.42) and

H(3)

[γ∂ ˙̂σ∂π̂]
= − 2α

MPl
λ2

∫
d3x a3 γij∂

iσ̂′∂j π̂√
−∇2

. (9.87)

Performing the integral, considering the limit in which the tensor momentum kL → 0 is

much smaller than the scalar momenta kS , the result reads:

B[γ∂σ̇∂π](kL, kS , kS) =
α2λ2λ1

8MPl

H4

c5
π

(
1

k3
S k

3
L

)
log

(
2cπkS
kL

)
. (9.88)

This contribution is the dominant violating contribution to the three-point tensor-scalar-

scalar correlation function. Indeed, although it is suppressed by a small parameter α,

it has a log-enhancement of the same kind we studied in the previous sections, that can

be of the order of the number of e-folds. Going back to the original correlator 〈γππ〉,
and considering only the leading contribution, rewriting it in terms of the curvature

perturbation we find

B[γ∂R∂R](kL, kS , kS) ⊃ α2

M2
Pl

λ2λ1

(−FX + 2FX2)

H6

4c5
π

(
1

k3
S k

3
L

)
log

(
2cπkS
kL

)
. (9.89)

or in terms of the scalar and tensor power spectra

B[γ∂R∂R](kL, kS , kS) ⊃ Pγ(kL)PR(kS)
α2λ1λ2

4c2
π

log

(
2cπkS
kL

)
, (9.90)

and this our final result.
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As anticipated, when a long wavelength tensor mode correlates with the density

(scalar) fluctuations in the tensor-scalar-scalar squeezed bispectrum a local power quad-

rupole is generated. This contribution, that appears like a departure from statistical

isotropy, shows an infrared-divergent behaviour, that becomes negligible O
(
kL

2

kS
2

)
when

late time projection effects are taken into account [287] in the case when the consistency

relation is satisfied, but not in our case. The local quadrupole Q enters in the power

spectrum as anisotropic contribution

PR(~kS)|
γ(~kL)

= PR(~kS)
[
1 +Qpij(~kL) k̂iS k̂

j
S

]
, (9.91)

and it is defined as the ratio between the consistency-relation-violating contribution of

the tensor-scalar-scalar bispectrum Bcv(kL, kS , kS) and the power spectra of the scalar

and tensor modes. Estimating the variance of the quadrupole, that is the observable

quantity, it is possibile to extract informations about the parameters of the theory. In

our case its value is not so informative in putting constraints on the model with respect

to the previous observables.

On the other hand a long wavelength tensor mode can leave “fossil” imprints also on

the Large Scale Structure. In this case a tensor mode with wavelength smaller than our

observable universe is considered and from an estimator for the tensor power spectrum

and its variance it is possibile to extract informations on the minimum size of the galaxy

survey on which the tensor can be detected. We report an estimate of the survey size in

Appendix E deserving a careful parameter space analysis of the theory in future work.

From the estimate we can see that in the next galaxy survey, like EUCLID or even better

in 21-cm will be possibile to put bounds and test our theory. So we want to emphasize

that even though some (null) searches for power asymmetry in the CMB [291, 294] and

Large Scale Structure [295] have already been done, much effort is needed because we

have seen how this signatures becomes important in order to rule out inflationary models

and also to give informations on the pattern of symmetries in the early universe.
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Part IV

Conclusions
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CHAPTER 10

Final Considerations

Year after year, Cosmology enters more and more into the era of high-precision ex-

periments. In particular, the past three years of early-Universe Cosmology have been

marked by the analysis of the Planck CMB data [13, 43, 44]. The window on the

inflationary physics opened by COBE [41] and WMAP [42] now shows results with un-

precedented accuracy in the field of primordial perturbations. Among the many scientific

achievements, one of the most fascinating one is the precision that the measurements

of primordial non-Gaussianity have reached. They can now be successfully used to-

gether with other observables to disentangle inflationary models, put stringent bounds

and hopefully, one day, choose the best candidate. At the moment, no primordial non-

Gaussianity has been discovered: this means that the fields active during inflation were

weakly coupled and non-linearities were small. Inflationary models beyond the simplest

slow-roll scenario can generically predict non-Gaussianity with appreciable size, there-

fore this non-detection means selection in the space of the possible inflationary theories.

Given the powerful experimental tests we can now use, the theoretical and observational

study of the many possible effects that deviates from the simplest cases of single-field

slow-roll inflation is of fundamental importance, in order to understand the physics of

the Early Universe.

In this Thesis, we have taken this path: exploring inflationary perturbations with the

aim of identifying and understanding possible departures from the simplest scenarios. A

first example has been given in Chapter 3, where we investigated the role of a departure

from Einstein gravity in the dynamics of fluctuations. We have shown that this could

leave potentially measurable effects, in the form of non-Gaussianity in a quasi-local

configuration.

In the following Chapters, we exploited the techniques of the effective field theory

[109], as it can be used to derive general model-independent conclusions on the physics
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of inflationary perturbations, without relying on particular UV realizations of the in-

flationary models. First (Chapters 5 and 6), we have followed the hints given by the

apparent “glitches” in the power spectrum of the CMB [43]. A possible explaination

could be the presence of “features” in the potential of the inflaton, which can tem-

porarily deviate from a simple slow-roll evolution and leave imprints on the dynamics

of fluctuations [124–134]. We have reformulated the problem with the language of the

EFT [1]: the starting consideration is that on very small time-scales the background

evolution could be very different from de Sitter, as long as the deviation is small enough

to preserve inflation and soon comes back to the attractor solution. As a step feature in

the potential of the inflaton translates into a similar feature in the slow-roll parameter

ε = −Ḣ/H2, we can describe these models in the EFT giving a specific form to the

time-variation of the Hubble parameter and its derivatives. This is valid in the case of

a very small and very sharp step. Here, “small” means that the total deviation of the

slow-roll parameter must be controlled by a parameter εstep, which is indeed related to

the height of the step, while “sharp” means that the characteristic time-scale of the vari-

ation should be much smaller than the characteristic time, ∆t = H−1 , of inflationary

evolution. Under these assumptions, it is possibile to analytically compute the effects of

features in the power-spectrum and bispectrum. These effects are larger for modes still

inside horizon at the time of the feature. Our technique also allows for a straightforward

generalization to include possible features in other coefficients of the EFT Lagrangian.

Very interestingly, we found that in this case, at the level of the three-point function, the

most interesting scenario is the one of a feature in the speed of sound. Finally, the study

of the energy-scale of the modes most affected by non-linear interactions has allowed us

to put also a strong upper bound on the sharpness of the step, which comes from the

requirement of validity of a perturbative treatment [2]. This severely restricts the space

of parameters allowed for models with sharp features and suggests that the exact limit of

an infinitely sharp step is theoretically inconsistent. Moreover, this bound can be used

to compare the ratio of the signal-to-noise ratio for the three-point function to the one

of the two-point function. Our result is that, within the range of validity of the effective

approach, the two-point function has the highest signal-to-noise ratio.

One of the most interesting aspects of the EFT of inflation is its use of symmetry

principles. Indeed, the theory of perturbations in standard single-field models of in-

flation is the theory of fluctuations around a FRW background, which spontaneously

breaks time-diffeomorphisms invariance [109]. However, nothing forbids a priori that

also spatial diffeomorphisms could be broken during inflation. This is the theoretical

motivation behind Chapters 7, 8 and 9. If all diffeomorphisms are broken, in general

more than one degree of freedom is dynamic and a plethora of effects becomes possible.

We decided to focus mainly on the tensor and scalar sector. Our first result [4] is that

the reduced symmetry allows the presence of masses for tensor perturbations, which can
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yield blue-tilted power spectra, without violating the null energy condition. The pres-

ence of a mass is also responsible for the non-conservation of super-horizon fluctuations,

even in the presence of only one scalar perturbation. Along the same line, we have also

studied the effect of a selection of operators that break discrete symmetries, such as

parity and time reversal [5]. Both in the scalar and tensor sectors, we have shown that

such operators can lead to a new direction-dependent phase for modes involved. Such a

directional phase does not affect the power spectrum, but could have consequences for

higher correlation functions. Moreover, a small quadrupole contribution to the sound

speed can be generated.

The natural following step has been the study of non-linearities in the context of

full-diffeomorphism breaking [6]. We built an action describing the physics of Gold-

stone bosons associated with our symmetry breaking pattern, where time and space

diffeomorphisms are broken, though preserving homogeneity and isotropy of the back-

ground. In our scenario we find two scalar Goldstone bosons: one scalar π associated

with the breaking of time reparameterisation, and one scalar σ – playing the role of

a phonon – associated with the breaking of space translations. We discussed observ-

ables relative both to scalar and tensor sector, associated with two- and three-point

functions among fluctuations. The scalar bispectrum receives new direction-dependent

contributions in the squeezed limit, because of the interactions between the two Gold-

stone bosons. Scalars can also couple to tensor perturbations and generate a particular

structure for the squeezed limit of tensor-scalar-scalar bispectra, that violate single field

consistency relations and can lead to distinctive observable signatures.

Following the points highlighted in this work, one can clearly see that a long road

has still to be walked until we will be finally sure of the physical mechanisms behind

inflation and inflationary perturbations. In particular, we find that the observational

power Cosmology has achieved suggests and requires a careful study of all the possible

effects on inflationary perturbations, in order to hunt down departures from the simplest

models and hints of new physics. We found the exploration of diffeomorphism breaking

during inflation very interesting, full of new phenomenology and particularly interesting

for the role that symmetries and broken symmetries play. This exploration is just at

the beginning and many are the possible future directions. At the theoretical level, it

would be interesting to find examples of inflationary models that break all spacetime

diffeomorphisms and then can concretely realize the new observable consequences that we

pointed out using an EFT approach. Finding explicit realizations of such set-ups would

help also to understand what happens after inflation and possibly find a dynamical

mechanism to recover space diffeomorphism invariance. At the observational level, more

work is needed to fully characterize the properties of n-point functions in these scenarios

– possibly not only three but also higher point functions. Given the present and future

experimental effort aimed to measure gravitational waves, it is important to develop
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the subject further also in this direction, for example studying all the non-Gaussian

effects that also the tensor sector could receive. Moreover it would be interesting to find

distinctive consistency relations associated with this symmetry breaking pattern or new

observables that specifically test particular features of breaking spatial diffeomorphism.
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APPENDIX A

Quantization

In this Appendix, we review some details of the quantization of a scalar fluctuation

in de Sitter, that we have used in Section 1.3. For simplicity, let us follow the example

we have already discussed in the main text: a spectator scalar field δφ in a de Sitter

stage of expansion of the Universe. We will also take the field as massless. The action

is:

S =

∫
d4x
√
−g

[
1

2
˙δφ

2 − (∂iδφ)2

a2

]
. (A.1)

The system can be quantized with the creation and annihilation operators,

δφk = uk(t)ak + u∗k(t)a
†
−k , (A.2)

which satisfy the usual commutation relations:

[ak, ak′ ] = 0
[
ak, a

†
k′

]
= (2π)3δ(k − k′) . (A.3)

The mode function uk in conformal time follows the classical equation of motion:

(auk)
′′ +

(
k2 − a′′

a

)
(auk) = 0 . (A.4)

In de Sitter we have a = −1/Hτ and the above equation has the exact solution:

uk = c1(1 + ikτ)−ikτ + c2(1− ikτ)eikτ . (A.5)

The integration constants c1 and c2 need to be fixed. First, from the uncertainty prin-

ciple,

πk =
δS

δ( ˙δφk)
= a3 ˙δφ−k , [δφk, πk′ ] = i(2π)3δ(k − k′) , (A.6)
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we obtain the normalization condition:

a2(uku
∗
k
′ − u′ku∗k) = i , (A.7)

which translates into a condition on the integration constants:

c1c
∗
1 − c2c

∗
2 =

H2

2k3
. (A.8)

As we are in a time-dependent background, this condition is not sufficient to determine

the mode function and reflects the intrisic ambiguity in choosing the vacuum state of

the system. To fix a vacuum state,

ak|0〉 = 0 , (A.9)

we aim to find the mode function that minimizes the Hamiltonian at τ → −∞, so that

the true physical vacuum corresponds to the lowest energy state at initial time. The

Hamiltonian here is:

Ĥ =
1

2

[
a4 ˙δφ

2
+ a2(∂iδφ)2

]
. (A.10)

Using the solution of the equation of motion (A.5) at time τ → −∞ one finds:

Ĥ ' 1

2H2
(c1c

∗
1 + c2c

∗
2) k4 . (A.11)

Together with the constraint (A.8), one finally concludes that:

c1 =
H2

√
2k3

, c2 = 0 . (A.12)

Physically, this confirms the expectation that the canonically normalized field auk for

τ → −∞ should have the same solution as in Minkowski, since a mode far within the

horizon effectively lives in flat spacetime.

154



APPENDIX B

The In-In Formalism

The in-in formalism [160, 296, 297] is the appropriate tool for the calculation of

cosmological correlation functions. This problem is quite different from the more familiar

one in quantum field theory as:

• we are not interested here in the calculation of S-matrix elements, but rather in

evaluating expectation values of products of fields at a fixed time;

• conditions are not imposed on the fields at both very early and very late times,

as in the calculation of S-matrix elements, but only at very early times, when the

wavelength is deep inside the horizon and according to the Equivalence Principle

the interaction picture fields should have the same form as in Minkowski spacetime;

• although the Hamiltonian H that generates the time dependence of the various

quantum fields is constant in time, the time-dependence of the fluctuations in

these fields are governed by a fluctuation Hamiltonian H with an explicit time

dependence.

In this Appendix we will briefly review the formalism, following [160]. Consider

a general Hamiltonian system, with canonical variable φ(x, t) and conjugate π(x, t)

satisfying the commutation relations

[φ(x, t), π(y, t)] = iδ3(x− y) , [φ(x, t), φ(y, t)] = 0 = [π(x, t), π(y, t)] , (B.1)

and the equation of motion:

φ̇(x, t) = [H[φ(t), π(t)], φ(x, t)] , π̇(x, t) = [H[φ(t), π(t)], π(x, t)] . (B.2)

The Hamiltonian H does not explicitly depends on time. Now we expand around the

solution of the classical equation of motion:

φ(x, t) = φ0(x, t) + δφ(x, t) , π(x, t) = π0(x, t) + δπ(x, t) (B.3)
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where

φ̇0(x, t) =
δH[φ0(t), π0(t)]

δπ0(x, t)
π̇0(x, t) = −δH[φ0(t), π0(t)]

δφ0(x, t)
. (B.4)

The perturbations satisfy the same commutation relations as the total fields, as the

classical solutions, being c-number, commutes with everything:

[δφ(x, t), δπ(y, t)] = iδ3(x− y) , [δφ(x, t), δφ(y, t)] = 0 = [δπ(x, t), δπ(y, t)] .

(B.5)

Expanding the Hamiltonian H in powers of the fluctuations,

H[φ(t), π(t)] = H[φ0(t), π0(t)]+

+

[
δH[φ0(t), π0(t)]

δφ0(x, t)
δφ0(x, t) +

δH[φ0(t), π0(t)]

δπ0(x, t)
δπ(x, t)

]
+

+H̃[δφ(t), δπ(t); t] ,

(B.6)

we find terms of zeroth and first order in the perturbations, plus a term H̃ which is the

sum of all higher-order contributions. Using (B.4), (B.5) and (B.6) it is easy to show

that the time evolution of the perturbations δφ(x, t) and δπ(x, t) is generated by the

time-dependent Hamiltonian H̃:

δφ̇(t) =
[
H̃[δφ(t), δπ(t); t], δφ(t)

]
, δπ̇(t) =

[
H̃[δφ(t), δπ(t); t], δπ(t)

]
. (B.7)

The fluctuations at a generic time t can be expressed as

δφ(t) = U−1(t, t0)δφ(t0)U(t, t0) δπ(t) = U−1(t, t0)δπ(t0)U(t, t0) , (B.8)

where t0 is some very early time and the unitary operator U(t, t0) is defined by

d

dt
U(t, t0) = −iH̃[δφ(t), δπ(t); t]U(t, t0) (B.9)

with the initial conditions U(t0, t0) = 1. Notice that in the application that concerns us

in cosmology, the classical solution would describe the FRW background and we can take

t0 = −∞, by which we mean any time early enough so that the wavelengths of interest

are deep inside the horizon. We now further decompose H̃ into a kinematic term H0

that is quadratic in the fluctuations, and an interaction term HI :

H̃[δφ(t), δπ(t); t] = H0[δφ(t), δπ(t); t] +HI [δφ(t), δπ(t); t] . (B.10)

As in standard quantum field theory, the interaction picture is introduced defining

fluctuations operators δφI(x, t) e δπI(x, t) whose time dependence is generated by the

quadratic part of the Hamiltonian:

˙δφI(t) = [H0[δφI(t), δπI(t); t], δφI(t)] , ˙δπI(t) = [H0[δφI(t), δπI(t); t], δπI(t)] ,

(B.11)
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together with the initial conditions

δφI(t0) = δφ(t0) , δπI(t0) = δπ(t0) . (B.12)

The solutions can again be written as unitary transformations,

δφI(t) = U−1
0 (t, t0)δφ(t0)U0(t, t0) δπI(t) = U−1

0 (t, t0)δπ(t0)U0(t, t0) , (B.13)

where U0(t, t0) defined by the differential equation

d

dt
U0(t, t0) = −iH0[δφ(t0), δπ(t0); t]U0(t, t0) (B.14)

with intial conditions U0(t0, t0) = 1. It can be shown that if we write U(t, t0) =

U0(t, t0)F (t, t0), the operator F (t, t0) satisfies the equation

d

dt
F (t, t0) = −iHI(t)F (t, t0) , F (t0, t0) = 1 , (B.15)

where HI(t) is the interaction Hamiltonian in the interaction picture,

HI(t) = U−1
0 (t, t0)HI [δφI(t), δπI(t); t]U0(t, t0) . (B.16)

The solution of equation (B.15) is:

F (t, t0) = T exp

(
−i
∫ t

t0

HI(t)dt

)
, (B.17)

where, as usual, “T exp” indicates the time-ordered product of the operators in the series

expansion of the exponential. It is now straighforward to show that, given any operator

Q(t) which is generally a product of δφ’s and δπ’s, its expectation value will be [160]:

〈Q(t)〉 = 〈0|
[
T̄ exp

(
i

∫ t

t0

HI(t)dt

)]
QI(t)

[
T exp

(
−i
∫ t

t0

HI(t)dt

)]
|0〉 , (B.18)

where T̄ denotes anti-time ordering. The terms of the series expansion are usually

rearranged as:

in
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn〈[HI(tn), [HI(tn−1), . . . , [HI(t1), QI(t)] · · · ]]〉 . (B.19)

For the calculation, one can stop the expansion at the desidered order in the interaction

Hamiltonian HI . For example, the tree-level amplitude of the three-point functions for

the scalar curvature perturbation ζ is given by:

〈ζk1ζk2ζk3〉 = −i
∫ t

t0

dt〈0|
[
ζk1ζk2ζk3 , HI(t)

]
|0〉 . (B.20)
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APPENDIX C

Some Details on Breaking

Diffeomorphisms in Unitary Gauge

C.1 Combinations of h and derivatives

Combinations up to second order in h and up to two derivatives, avoiding time derivatives

on N or N i (some integrations by parts have already been performed).

h00∂0hii = ψ(∇2σ′ + 3τ ′) (C.1)

h00∂ih0i = ψ∇2v (C.2)

hii∂jh0j = ∇2v(∇2σ + 3τ) (C.3)

hij∂ih0j = ∇2v(∇2σ + τ)− ui∇2si (C.4)

(∂ih00)2 = −ψ∇2ψ (C.5)

(∂0hii)
2 = (∇2σ′ + 3τ ′)2 (C.6)

(∂ih0i)
2 = (∇2v)2 (C.7)

∂ih0i∂0hjj = ∇2v(∇σ′ + 3τ ′) (C.8)

(∂ihjj)
2 = −(∇2σ + 3τ)∇2(∇2σ + 3τ) (C.9)

(∂ihij)
2 = −(∇2σ + τ)∇2(∇2σ + τ) + (∇2sj)

2 (C.10)

∂ihjj∂khik = −(∇2σ + 3τ)∇2(∇2σ + τ) (C.11)

∂ih00∂ihjj = −∇2ψ(∇2σ + 3τ) (C.12)

∂ih00∂jhij = −∇2ψ(∇2σ + τ) (C.13)
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∂jh0i∂0hij = ∇2v(∇2σ′ + τ ′)− ui∇2s′i (C.14)

(∂0hij)
2 = (χ′ij)

2 + (∇2σ′)2 + 2τ ′∇2σ′ + 3τ ′
2 − 2s′j∇2s′j (C.15)

(∂ih0j)
2 = (∂iuj)

2 + (∇2v)2 (C.16)

(∂ihjk)
2 = (∂iχjk)

2 + (∂i∂j∂kσ)2 − 2∇2σ∇2τ − 3τ∇2τ + 2(∇2si)
2 (C.17)

C.2 Speed of sound and mass

Coefficients Ai for the scalar action (7.38)

A1 = −
M2

Pl(1 + b)

2(α1Λ− 4H)2

[
− 8(1 + b)

(
c3k

2 + (m2
0 + 2εH2)

)
+48baH − 3a2α1Λ(α1Λ− 8H)

]
(C.18)

A2 =
aM2

Pl(1 + b)

(α1Λ− 4H)2

{[
(3c2 + c1 − 4)(α1Λ− 4H) + c3(3α3 + α4)Λ

]
k2 +

+

[(
m2

0 + 2εH2 − 6bH2

1 + b

)
(3α3 + α4)Λ− 6m2

4(α1Λ− 4H)

]}
+ (C.19)

+
a3M2

Plα1(3α3 + α4)(α1Λ− 8H)Λ2

8(α1Λ− 4H)

A3 =
a2M2

Plk
2

(α1Λ− 4H)2

[
4(2 + 3d1 + d2 + 9d3 + d4)(α1Λ− 4H)2

+(3α3 + α4)(2(3c2 + c1 − 4)(α1Λ− 4H) + c3(3α3 + α4))Λ
]

+

+
a4M2

Pl

(α1Λ− 4H)2

[
6H(m2

2 − 3m2
3)(α1 − 2H) + 3(3α+ α4)m2

4HΛ
]

+ (C.20)

−
a4M2

PlΛ
2

16(α1Λ− 4H)2

[
12α2

1(m2
2 −m2

3) + (3α3 + α4)×

(12α1m
2
4 − (3α3 + α4)(m2

0 + 2εH2 − 6H2))
]

A4 =
a2M2

Plk
6

16(α1Λ− 4H)2

[
4(d1 + d2 + d3 + d4)(α1Λ− 4H)2

+2(α3 + α4)(c1 + c2)(α1Λ− 4H)Λ + c3(α3 + α4)2Λ2
]

(C.21)

−
a4M2

Plk
4

16(α1Λ− 4H)2

[
4(m2

2 −m2
3)(α1Λ− 4H)2 + 4m2

4(α1Λ− 4H)(α3 + α4)Λ +

+(m2
0 + 2εH2 − 6H2)(α3 + α4)2Λ2

]
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A5 = −
a2M2

Plk
4

8(α1Λ− 4H)2

[
4(d1 + d2 + 5d4)(α1Λ− 4H)2 − c3(α3 + α4)(3α3 + 2α4)Λ2

−2α3(α1Λ− 4H)(3c2 + 2c1 − 2)Λ− 2α4(α1Λ− 4H)(2c2 + c1 − 1)Λ
]

+
a4M2

Plk
2

16(α1Λ− 4H)2

[
4(m2

2 − 3m2
3)(α1Λ− 4H)2 (C.22)

−(m2
0 + 2εH2 − 6H2)(α3 + α4)(3α3 + 2α4)Λ2 + 4m2

4(α1Λ− 4H)(3α3 + 2α4)Λ
]

A6 = −
a2M2

Plk
4

8(α1Λ− 4H)

[
(c1 + c2)(α1Λ− 4H)− c3(α3 + α4)Λ

]
+

+
a3M2

Plk
2

8(α1Λ− 4H)

[
16m2

4(1 + b)(α1Λ− 4H)− 8(1 + b)(m2
0 + 2εH2)(α3 + α4)Λ +

+3(16bH2 − α1Λ(α1Λ− 8H))(α3 + α4)Λ
]

(C.23)

C.3 Discrete-Symmetry breaking operators

In this Appendix, we list new derivative operators that satisfy the requirements of Chap-

ter 8, besides the ones already presented in the main text and in [4]. To avoid possible

ghost pathologies, we do not consider operators that contain time derivatives on h00 and

h0i. Moreover, to satisfy the residual symmetry (8.14) we consider operators containing

h0i only when spatial derivatives act on it.

The new single-derivative operators are the following:

h0i,ih00 , h0i,ihjj , h0i,jhij , h′iih00 , h′iihjj , h′ijhij , εijkh00,ihjk ,

θihij,jh00 , θihjj,ih00 , θihij,jhkk , θihij,khjk , (C.24)

θiεjklh0j,khil , θiεijkh0j,khll , θiεijkh0j,lhkl , θiεijkh0l,jhkl .

Note that θihjj,ihkk and θihjk,ihjk are allowed but can be made as total derivatives, thus

we have omitted these operators.

The new two-derivative operators are:

h0i,ih
′
jj , h0i,jh

′
ij , εjklhij,kh

′
il ,

θih00,ih
′
jj , θih00,jh

′
ij , θihij,jh

′
kk , θihij,kh

′
jk , θihjj,ih

′
kk , θihjj,kh

′
ik ,(C.25)

θiεjklh0j,kh
′
il , θiεijkh0j,kh

′
ll , θiεijkh0j,lh

′
kl , θiεijkh0l,jh

′
jl .
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APPENDIX D

Decoupling and Strong Coupling with

Broken Diffeomorphisms

D.1 Mixing with gravity and decoupling Limit

In this Appendix we will show why taking the decoupling limit is a consistent approxi-

mation in the case under study in Chapter 9 [6]. Similarly to the equivalence theorem

for massive gauge bosons, we expect that the physics of the Goldstone decouples from

the transverse modes above a certain energy scale, Emix. For example, in a non-Abelian

gauge theory,

L = −1

4
F 2
µν −

1

2
(∂µπ)2 − 1

2
m2A2

µ + im∂µπA
µ , (D.1)

where m2 = f2
πg

2, the decoupling limit is reached taking the limit g → 0, m → 0 with

fπ. Therefore, for energies E > m, the mixing between the Goldstone and the gauge

modes becomes irrelevant and the two sectors effectively decouple.

Just like the gauge theory analogy, in our case we can find a decoupling limit which

corresponds to the limits MPl → ∞, Ḣ → 0 with M2
PlḢ fixed1. To see that taking

this limit in our case effectively lead to the decoupling of Goldstones and gravity, let us

consider first a simplified case, where all the derivatives of F are zero but FX . When

expanding the the operator X (9.8) according to (9.20), one obtains

X = (1 + π̇)2g00 + 2∂iπg
0i + ∂iπ∂jπg

ij . (D.2)

Substituted back into the action (9.7), the leading mixing of the Goldstone π with gravity

will be of the form:

F̄X π̇δg
00 . (D.3)

1This is the same as the previous example with the indentifications g →M−1
Pl and m→ Ḣ.
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After canonical normalization πc ∼
√
−F̄Xπ, ĝ00

c ∼ MPlδg
00 (which gives to the fields

the dimension of a mass), we can see that taking the decoupling limit MPl →∞, Ḣ → 0

with M2
PlḢ implies that mixing terms becomes irrelevant with respect to the standard

kinetic term π2
c and can be neglected above a certain energy Emix:

E2
mix ∼

F̄X
M2

Pl

∼ F̄X
M2

PlH
2
H2 ∼ εH2 � H2 , (D.4)

where we have used (9.11) and (9.16). Therefore as long as Emix is smaller than H,

we can safely neglect mixing terms, as they would appear in the action suppressed by

powers of (Emix/H)2 ∼ ε, since H is our infrared cutoff. The same will happen for the

other terms present in the action, but in general the answer depends on which operators

are present and significant. For example, from Zij , after the canonical normalization

σc ∼
√
−F̄Z + F̄Y 2/2, one has:

F̄Z σ̇
ig0jδij =⇒ Emix ∝


α
√
−F̄Z/a2

MPl
, for |F̄Y 2 | . |F̄Z |

−αF̄Z/a2

MPl

√
F̄Y 2/a2

, for |F̄Z | � |F̄Y 2 |
(D.5)

In the first case, as α . 1,
E2
mix

H2
∼ −α

2F̄Z/a
2

M2
PlH

2
. ε , (D.6)

where we have used (9.16). In the second case, F̄Z � F̄Y 2 , one can find a similar

expression too:
E2
mix

H2
∼ −α

2F̄Z/a
2

M2
PlH

2

F̄Z
F̄Y 2

.
−α2F̄Z/a

2

M2
PlH

2
. ε . (D.7)

Also in this case Emix is smaller than H and the decopling limit can be safely taken.

However, if for example one has |F̄Y 2 | � |F̄Z |, then, looking at the expansion of the

operator YiY
i one can see that working in the decoupling limit can restrict the range of

the allowed parameters:

F̄Y 2 σ̇ig0jδij =⇒ E2
mix ∼

α2F̄Y 2/a2

M2
Pl

, (D.8)

which is lower than H only if Z̄F̄Y 2/M2
PlH

2 � 1.

D.2 Strong coupling

As it is usual in effective field theories, the non-renormalizable self-interactions of the

Goldstone fields will become strongly coupled at a certain energy scale, Λst, beyond
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which the theory ceases to make sense and new physics must enter. In our case, we have

to make sure that Λst � H so that the theory is weakly-coupled in the energy regime

we are interested in.

Stronger interactions are related to smaller kinetic energy: indeed if the time-kinetic

terms in (9.21) have prefactors of order ∼ ε, we would canonically normalize the fields

(collectively denoted with π for simplicity) like εF (∂π)2 ∼ (∂π̂)2 and inverse power of

ε will appear in higher order terms, which would mean stronger interactions or, equiv-

alently, a lower strong coupling scale. Of course, if the coefficients of the kinetic terms

were bigger or the coefficients of higher-order terms were smaller, interactions would be

accordingly weaker. As we have to impose a lower bound on Λst, from now on we will

focus only on the “worst possible case”, when prefactors of time-kinetic terms are as

small as ∼ εF , while interactions, which are proportional to higher derivatives of F with

respect to the operators X, Y i and Zij , are as big as F itself.

Let us first consider the case with speeds of sound very close to unity. In this case,

after canonical normalization, we can directly read the strong coupling scale as the scale

suppressing higher-order operators in the action, (∂π̂)3/Λ2. The result is simply:

Λ4
st ' ε3F . (D.9)

If the speed of sound are non-relativistic, the cut-off can not be immediately read from

the action as there is an hierarchy between time and spatial derivatives and the theory

is not Lorentz invariant. Let’s assume for simplicity that cπ ' cσ = cs � 1. We can

rescale the time coordinate [118, 298] as t→ t/cs, in order to remove this hierarchy. The

quadratic action has now the form:

S2 '
∫

d4x
√
−g εFcs(∂µπ)2 , (D.10)

and the fields would be normalized as εcsFπ = π̂. Schematically, after canonical nor-

malization, the cubic interactions will have the form

S3 '
∫

d4x
√
−g (∂π̂)3

c
5/2
s ε3/2 F 1/2

. (D.11)

where in the denominator the strong coupling momentum scale appears. We can obtain

the energy scale Λst multiplying by an extra cs. The result is:

Λ4
st ' ε3c9

s F . (D.12)

As we said, our theory is under control if Λst � H, which will give the constraint:

ε c3
s �

(
H

MPl

)2/3

, (D.13)
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where we have used the Friedmann equation (9.11). This is only an order-of-magnitude

estimate and, given the many possible combinations of free parameters that are allowed

in our action, this constraint can also be not very restrictive. However it is still an

important bound to respect for the consistency of the theory.
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APPENDIX E

Tensor fossil estimation

In order to extract precise informations about the size of the galaxy surveys on which

the long wavelength tensor mode can leave “fossil” imprints we need to use the optimal

estimator for the tensor power spectrum constructed in [299]. In this case we consider

a tensor mode which wavelength is smaller than the size of the observable universe and

then we compute the variance of the optimal estimator

σ−2
γ =

1

2

∑
~kL,p

[
k3
LP

n
p (kL)

]−2
, (E.1)

where p refer to the two polarizations of the tensor, Pnp is the noise power spectrum,

defined as the ratio between the consistency violating contribution to the bispectrum

and the total power spectrum

Pnp (kL) =

∑
~kS

|Bcv(kL, kS , |~kL − ~kS |)εpij k̂iS k̂
j
LS |2

2V P 2
γ (kL)P tot(kS)P tot(|~kL − ~kS |)

−1

, (E.2)

where V ≡ (2π)3/k3
min is the total volume of the survey and εpij is the polarization

tensor. The total power spectrum, that is the measured one, includes both the noise

and the signal, P tot(k) = P (k) + Pn(k). The bispectrum can be written in terms of a

function f(~k1,~k2), that describes the coupling of the soft mode, and the “long” mode

power spectrum P (kL)

B(~kL,~k1,~k2) = P (kL)f(~k1,~k2)εpij(k̂L)k̂i1k̂
j
2 = B(kL, k1, k2)εpij(k̂L)k̂i1k̂

j
2 , (E.3)

in such a way that the noise power spectrum becomes [299]

Pnp (kL) =

∑
~kS

|f(~kS ,~kL − ~kS)εpij k
i
S (kL − kS)j |2

2V P tot(kS)P tot(|~kL − ~kS |)

−1

. (E.4)
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kL and kS are the wave number of the long wavelength mode and the short wavelength

one. The function f(~k1,~k2) can be easily read from the tensor-scalar-scalar bispectrum

(9.89)

f(kS , kL) =
C P (kS)

k2
S

log

(
2cπkS
kL

)
, C =

α2

4c2
π

λ1λ2 , (E.5)

where we see the novel dependence from the number of modes in the survey. Even if we

know that in our case the tensor power spectrum is not exactly scale invariant, at lowest

order in α we can assume a nearly scale invariant fiducial power spectrum with amplitude

Aγ , Pγ = Aγk
nγ−3
L with nγ ' 0. Assuming P (0)(kS)/P tot(kS) ' 1 ( “correction” to the

power spectrum much smaller than 1) if kS ≤ kmax and equal to zero otherwise, where

kmax is the largest wavenumber that allows for a large signal-to-noise measurement, we

compute the noise power spectrum. Plugging this quantity in (E.1) and considering that

a signal is detected if it has an amplitude larger than 3σ we obtain

3σγ '
18
√

3 π3/2

C2

(
kmin

kmax

)3

log

(
2cπkmin

kmax

)−2

. (E.6)

Inverting this relation we can find the size of the galaxy survey necessary to detect at

3σ the imprints of primordial tensor mode with a given amplitude Aγ . The estimation,

as we can see, would be model dependent and require an improved parameter space

analysis of the model, but in order to have a rough estimation, if we assume cπ ' 10−1,

for the parameter C in the range (0.1− 1), one finds that a detectable primordial tensor

mode with an amplitude Aγ ' 2 × 10−9, that is a value close to the current upper

limits, requires a survey with size in the range kmax
kmin

∼ (4000− 1000), a value that can

be achievable with the next survey like 21-cm [300].
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